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HOMOTOPY THEORIES OF ALGEBRAS OVER OPERADS

V. A. SMIRNOV
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Abstract
Homotopy theories over operads are defined. The corre-

sponding spectral sequences for the homotopy groups are con-
structed. The calculations of the spectral sequences of the ho-
motopy groups over the ”n-dimensional little cubes” operads
are produced.

There are two classical homotopy theories: the homotopy theory of topological
spaces (the problem of calculating the homotopy groups of spheres is one of the
most difficult problems of algebraic topology); the rational homotopy theory (the
problem of calculating the homotopy groups of spheres is very simple).

In [1] it was shown that the rational homotopy theory of 1-connected topological
spaces is equivalent to the homotopy theory of 1-connected commutative DGA-
algebras. In [2], [3] it was shown that the singular chain complex C∗(X ) (cochain
complex C∗(X )) of a topological space X possesses the structure of an E∞-coalgebra
(E∞-algebra), and the homotopy theory of 1-connected topological spaces is equiv-
alent to the homotopy theory of 1-connected E∞-coalgebras (E∞-algebras).

Here we consider the homotopy theories of algebras over operads and in particular
over the ”n-dimensional little cubes” operads En, 1 6 n 6 ∞, [4]. The ground
ring will be assumed to be a field. We construct the spectral sequences for these
homotopy theories and try to calculate the corresponding homotopy groups.

Recall that a family E = {E(j)}j>1 of chain complexes E(j) acted upon by the
symmetric groups Σj is called an operad if there are given operaions

γ : E(k)⊗ E(j1)⊗ · · · ⊗ E(jk) → E(j1 + · · ·+ jk),

which are compatible with the actions of the symmetric groups and satisfy some
associativity relations [2].

A chain complex X is called an algebra (coalgebra) over an operad E or simply
E-algebra (E-coalgebra) if there is given a family of mappings

µ(j) : E(j)⊗X⊗j → X, (τ(j) : X → Hom(E(j);X⊗j),

which are compatible with the actions of the symmetric groups and satisfy some
associativity relation [2].
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Denote the sum ∑

j

E(j)⊗Σj X
⊗j

by E(X). The correspondence X 7−→ E(X) determines the functor in the categoty
of chain complexes and an operad structure determines a natural transformation
γ : E ◦ E → E of functors satisfying the associativity relation. It means that this
functor is a monad in the category of chain complexes [3].

IfX is an algebra over an operad E then there will be a chain mapping µ : E(X) →
X and hence X will be an algebra over the monad E .

If one wants to consider unitial algebras, the sum in the definition of E(X) must
be modded out by the unit relation [4].

Dually denote

E(X) =
∏

j

HomΣj
(E(j);X⊗j).

Then under suitable assumptions (for example if E is finitely generated) the corre-
spondence X 7−→ E(X) determines the comonad in the category of chain complexes.

If X is a coalgebra over an operad E then it will be a coalgebra over the comonad
E .

Operads and algebras over operads may be considered in the category of topolog-
ical spaces (in this case we need instead of the tensor products ⊗ in the definition
of the operation γ, the usual product ×) or other symmetric monoidal categories
[3].

Consider some examples of operads and algebras (coalgebras) over operads.

1. An operad E0 = {E0(j)}, where E0(j) is the free module with one zero
dimensional generator e(j) and trivial action of the symmetric group Σj . So E0(j) ∼=
R. The operation γ : E0 × E0 → E0 is defined by the formula

γ(e(k)⊗ e(j1)⊗ · · · ⊗ e(jk)) = e(j1 + · · ·+ jk).

It is easy to see that so defined, this operation is associative and compatible with
the actions of the symmetric groups.

Algebras (coalgebras) over E0 are simply commutative and associative algebras
(coalgebras).

2. An operad A = {A(j)}, where A(j) is the free Σj-module with one zero
dimensional generator a(j). So A(j) ∼= R(Σj). The operation γ : A × A → A is
defined by the formula

γ(a(k)⊗ a(j1)⊗ · · · ⊗ a(jk)) = a(j1 + · · ·+ jk).

It is easy to see that the required relations are satisfied.
Algebras (coalgebras) over A are simply associative algebras (coalgebras).

3. For any chain complex X define operads EX , EX by putting

EX(j) = Hom(X⊗j ;X); EX(j) = Hom(X;X⊗j).
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The actions of the symmetric groups are determined by the permutations of factors
of X⊗j and operad structures are defined by the formulas

γX(f ⊗ g1 ⊗ · · · ⊗ gk) = f ◦ (g1 ⊗ · · · ⊗ gk), f ∈ EX(k), gi ∈ EX(ji);

γX(f ⊗ g1 ⊗ · · · ⊗ gk) = (g1 ⊗ · · · ⊗ gk) ◦ f, f ∈ EX(k), gi ∈ EX(ji).

A chain complex X is an algebra (coalgebra) over an operad E if and only if there
is given an operad mapping ξ : E → EX (ξ : E → EX).

4. For n > 0 denote by ∆n the normalized chain complex of the standard n-
dimensional simplex. Then ∆∗ = {∆n} is the cosimplicial object in the category
of chain complexes. Denote the realization of the cosimplisial object (∆∗)⊗j =
∆∗ ⊗ · · · ⊗∆∗ as E∆(j), i.e.

E∆(j) = Hom(∆∗; (∆∗)⊗j),

where Hom is considered in the category of cosimplicial objects.
So the elements of E∆(j) are the sequences f = {fn} of mappings fn : ∆n →

(∆n)⊗j commuting the diagrams

∆n
fn

//

σi

²²

(∆n)⊗j

σi

²²
∆n−1

δi

OO

fn−1
// (∆n−1)⊗j

δi

OO

The family E∆ = {E∆(j)} will be the operad for which the actions of the sym-
metric groups and the operad structure are defined similary to the corresponding
structure for the above defined operad EX , where instead of X we take ∆∗.

Note that since the complexes ∆n are acyclic then the operad E∆ is also acyclic.
In [3] it was shown that on the chain complex C∗(X ) of a topological space

X there exists a natural E∆-coalgebra structure. Dually, on the cochain complex
C∗(X ) there exists a natural E∆-algebra structure.

5. The main examples of topological operads are the little n-cube operads En
introduced by Boardman and Vogt [5] and studied by May [4]. Any n-fold loop
space ΩnX is an algebra over the operad En.

There are inclusions En → En+1 and its direct limit denoted as E∞. It is acyclic
operad with free actions of the symmetric groups.

Any acyclic operad with free action of the symmetric groups is called E∞-operad.
Any algebra (coalgebra) over E∞-operad is called E∞-algebra (E∞-coalgebra).

6. It is easy to see that if E = {E(j)} is an operad in the category of topological
space then the family C∗(E) = {C∗(E(j))} consisting of the corresponding chain
complexes will be an operad in the category of chain complexes and if E is E∞-
operad then C∗(E) is E∞-operad.

7. An operad E is called a Hopf operad if there is given a coassociative operad
mapping ∇ : E → E ⊗ E . It is easy to see that E0, A are Hopf operads.

The operad E∆ is a Hopf operad. The Hopf structure ∇ : E∆ → E∆ ⊗ E∆ is
induced by the diagonal mapping ∆∗ → ∆∗ ⊗∆∗.
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If E is a toplogical operad then it’s singular chain complexes operad C∗(E) is a
Hopf operad in which the Hopf structure is induced by the coalgebra structures on
the C∗(E(j)).

8. The singular chain complex C∗(X ) (cochain complex C∗(X )) is an E∞-coalgebra
(E∞-algebra). Indeed, let E be an E∞-operad. Consider the operad E∆ ⊗ E. It is
E∞-operad and there is the projection of operads p : E∆ ⊗ E → E∆. Then the
composition

E∆ ⊗E
p // E∆

ξ // EC∗(X ) (E∆ ⊗ E
p // E∆

ξ // EC∗(X )).

will give on C∗(X ) (C∗(X )) the structure of E∆ ⊗ E-coalgebra (E∆ ⊗ E-algebra).
Denote the operad E∆ ⊗ C∗(En) in the category of chain complex simply by

En. Then C∗(X ) may be considered as an En-coalgebra. Dually, C∗(X ) may be
considered as an En-algebra.

We will need the following general properties of algebras (coalgebras) over oper-
ads.

Proposition 1. The category of E-algebras (E-coalgebras) over a Hopf operad E
admits tensor products.

Proof. Let X ′, X ′′ – E-algebras, i.e. there are given operad mappings ξ′ : E → EX′ ,
ξ′′ : E → EX′′ . Defing the mapping ξ : E → EX′⊗X′′ as the composition

E ∇ // E ⊗ E ξ′⊗ξ′′ // EX′ ⊗ EX′′ // EX′⊗X′′ .
This mapping will give on X ′ ⊗X ′′ the desired E-algebra structure.

Proposition 2. If X∗ = {Xn} is a simplicial object in the category of algebras
over an operad E then its realization |X∗| will also be an E-algebra. Dually, if X∗ =
{Xn} is a cosimplicial object in the category of coalgebras over an operad E then its
realization |X∗| will be an E-coalgebra.
Proof. Consider a simplicial object X∗ = {Xn} in the category of E-algebras,
µn : E(Xn) → Xn, the E-algebra structure on Xn. The Eilenberg-Zilber mappings

ψ : |X∗| ⊗ · · · ⊗ |X∗| → |X∗ ⊗ · · · ⊗X∗|
commute with the actions of the symmetric groups and hence induce mappings

ψ : E(j)⊗Σj |X∗|⊗j → |E(j)⊗Σj X
⊗j
∗ |.

These mappings give us the mapping ψ : E(|X∗|) → |E(X∗)| and desired mapping
E(|X∗|) → |X∗| is the composition

E(|X∗|) ψ // |E(X∗)| µ∗ // |X∗|.

Corollary. The realization B(E , E , X) of the simplicial resolution

B∗(E , E , X) : E(X) E2(X)oo . . .oo En(X)oo . . .oo
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over an E-algebra X is an E-algebra with chain equivalence η : B(E , E , X) → X.
Dually, the realization F (E , E , X) of the cosimplicial resolution

F ∗(E , E , X) : E(X) // E2
(X) // . . . // En(X) // . . .

over an E-coalgebra X is an E-coalgebra with chain equivalence ξ : X → F (E , E , X).

Pass now to the homotopy theories. Let E be a Hopf operad for which there
is given operad mapping E → E∆. It means that the chain complexes ∆n possess
E-coalgebra structures compatible with the coface and codegeneracy operators. In
particular, the unit segment I = ∆1 possesses E-coalgebra structure.

Denote AE (KE) the category in which objects are E-algebras (E-coalgebras) and
morphisms are E-algebra mappings (E-coalgebra mappings).

In [6] there are given sufficient conditions for the existence of a closed model
structure on the category of operads in an arbitrary symmetric monoidal category.
In particular chain operads carry a closed model structure.

Here we prove that the category AE (KE) possesses a closed model structure [7].
Define a map in AE to be a weak equivalence if it induces isomorphism on homol-

ogy, a fibration if it is surjective and a cofibration if it has the left lifting property
with respect to all trivial fibrations.

Theorem 1. The category AE is a closed model category.

Proof. As in the case of usual algebras [7] the only nontrivial part of the theorem to
prove is that any map f : X → Y of E-algebras may be factored into the composition
f = p ◦ i, where i is a cofibration and p is a trivial fibration.

The idea of the proof repeats the corresponding proof for usual algebras. Namely,
let f : X → Y be a mapping of E-algebras. Define an E-algebra E(X,Y ), putting
E(X,Y ) = X + E(Y ). An E-algebra structure is induced by E-algebra structures on
X and E(Y ).

There is a projection p : E(X,Y ) → Y , induced by the mapping f : X → Y and
the E-algebra structure µ : E(Y ) → Y , p(x + y) = f(x) + µ(y). Besides that there
are an injection i : X → E(X,Y ) and a chain mapping j : Y → E(X,Y ) such that
p ◦ i = f , p ◦ j = Id. More over p is a fibration and i is a cofibration. However p is
not a trivial fibration. To improve this fibration we construct a simplicial resolution
E∗(X,Y ), putting

E0(X,Y ) = E(X,Y ), En+1(X,Y ) = E(X, En(X,Y )).

The face and degeneracy mappings are defined by the inductive formulas. Namely,

d0 = p : E(X,Y ) → Y, s0 = E(−, j)E(X,Y ) → E1(X,Y ) = E(X, E(X,Y )).

Similary there are defined

d0 = p : En+1(X,Y ) = E(X, En(X,Y )) → En(X,Y );
s0 = E(−, j) : En(X,Y ) → En+1(X,Y ) = E(X, En(X,Y )).
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Finally, define

di+1 = E(−, di) : En+1(X,Y ) → En(X,Y );
si+1 = E(−, si) : En(X,Y ) → En+1(X,Y ).

Note that if X is a trivial then E∗(X,Y ) is isomorphic to B∗(E , E , Y ).
The realization |E∗(X,Y )| is an E-algebra which is chain equivalent to Y . More-

over there are the surjective mapping p : |E∗(X,Y )| → Y and an injective mapping
i : X → |E∗(X,Y )| such that f = p ◦ i. If X is a trivial we have the isomorphism
|E∗(X,Y )| ∼= B(E , E , Y ).

We prove that the mapping i : X → |E∗(X,Y )| is a cofibration. Let u : U → V
be a trivial fibration. It means that u is an surjective and induces an isomorphism
of homologies. Then there is a chain mapping v : V → U and a chain homotopy
w : U → U such that

u ◦ u = Id; d(w) = v ◦ u− Id; u ◦ w = 0; w ◦ v = 0; w ◦ w = 0.

Further, let g : X → U , h : |E∗(X,Y )| → V be E-algebra mappings commuting the
diagram

X
g //

i

²²

U

u

²²
|E∗(X,Y )| h // V

We need to construct an E-algebra mapping h̃ : |E∗(X,Y )| → U preserving commu-
tativity of the diagram.

It is easy to see that giving an E-algebra mapping h̃ : |E∗(X,Y )| → U is equivalent
to giving a family of E-algebra mappings hn : En(X,Y ) → Hom(∆n;U) such that
the following diagrams are commutative

En(X,Y ) hn
//

si

²²

Hom(∆n;U)

si

²²
En+1(X,Y ) hn+1

//

di

OO

Hom(∆n+1;U)

di

OO

Note that to giving E-algebra mapings hn : En(X,Y ) → Hom(∆n;U) is equiva-
lent to giving a mapping on X (determined by g) and a chain mapping

h
n
: En−1(X,Y ) → Hom(∆n;U).

So we conclude that to give an E-algebra mapping h̃ : |E∗(X,Y ) → U is equivalent
to give a family of chain mappings h

n
: En−1(X,Y ) → Hom(∆n;U) such that the

corresponding mappings hn are E-algebra mappings commuting the above diagram.
We put h

0
= v ◦ h : Y → U and h

n
= w ◦ µ ◦ E(g, h

n−1
). Straight verifications

show that the required relations are satisfied.

Corollary. For any E-algebra Y the E-algebra B(E , E , Y ) is a cofibrant object in
the category AE .
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It follows from the fact that for trivial X there is the isomorphism |E∗(X,Y )| ∼=
B(E , E , Y ).

Dually consider the category KE . Define a map of this category to be a weak
equivalences if it induces the isomorphism on homology a cofibration if it is injective
and fibration if it has the right lifting property with respect to all trivial cofibrations.

Theorem (1’). The category KE is a closed model category.

Denote by HoKE the localization of the category KE with respect to the class of
weak equivalences, i.e. morphisms induce the isomorphisms of homologies.

For an E-coalgebra X the tensor product X⊗∆1 will be a cylinder object, and E-
coalgebra mappings f0, f1 : X → Y will be left homotopic if there exists a mapping
h : X ⊗∆1 → Y such that h ◦ δ0 = f0, h ◦ δ1 = f1.

Let K̃E denote the category, whose objects are E-coalgebras and morphisms
f : X → Y are E-coalgebra mappings f̃ : X → F (E , E , Y ).

Denote by πKE the category whose objects are E-coalgebras and morphisms are
the homotopy classes of morphisms in K̃E . From general homotopy theory [7] it
follows

Theorem 2. There is an equivalence of categories

HoKE ∼= πKE .
Dually, for E-algebras we have

Theorem (2’). There is an equivalence of categories

HoAE ∼= πAE .
Consider now the problem of calculating the homotopy groups of E-coalgebras.

E will be assumed to satisfy some suitable assumptions, for example E is finitely
generated.

Since the chain complexes ∆n of the standard n-dimensional simplexes are E-
coalgebras, the chain complexes Sn of the n-dimensional spheres will be E-coalgebras.
Define the homotopy groups πEn(X) of an E-coalgebra X by putting πEn(X) =
[Sn;F (E , E , X)] , the set of homotopy classes of E-coalgebra mappings f : Sn →
F (E , E , X).

Theorem 3. For any E-coalgebra X there is the spectral sequence of the homo-
topy groups πE∗ (X) in which the E1 term is isomorphic to the cobar construction
F (E∗, X∗), where E∗, X∗ denotes the homologies of E and X correspondingly.

Proof. Consider the filtration

F (E , E , X) ⊃ F 1(E , E , X) ⊃ · · · ⊃ Fm(E , E , X) ⊃ . . . ,

where Fm(E , E , X) : Em(X) // Em+1
(X) // . . . .

This filtration induces the spectral sequence. Exact sequences

0 → Fm+1(E , E , X) → Fm(E , E , X) → Em+1
(X) → 0
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induce the isomorphisms

E1
n,m = [Sn, Em+1

(X)] ∼= Hn(Em(X))

and hence the isomorphism E1 ∼= F (E∗, X∗).
If Sn is a trivial E-coalgebra then the differentials of the spectral sequence are

determined only by the differentials of the cobar construction F (E , X) and thus we
have

Theorem 4. If Sn is a trivial E-coalgebra then for any E-coalgebra X there is an
isomorphism

πEn(X) ∼= Hn(F (E , X)).

Now let En be the little n-cube operad. Note that if m > n then the homology
of En(Sm) is trivial up to the dimension 2m−n+1 > m. From here it follows that
Sm has trivial En-coalgebra structure and hence we have

Theorem 5. If X is a topological space, m > n then there is an isomorphism

πEn
m (X ) ∼= Hm(F (En, C∗(X ))).

The E1-term of the spectral sequence is expressed through the Dyer-Lashof al-
gebra [8], [9] and the result is the following

Theorem 6. The E1-term of the spectral sequence of the homotopy groups πEn∗ (X )
of a topological space X is isomorphic to the module SnTsRn−1Ln−1S

−nH∗(X ),
where Ts is the free commutative algebra, Rn−1 is the submodule of the Dyer-Lashof
algebra generated by allowable sequence of excess less then n, Ln−1 is the free (n−1)-
Lie algebra.

If X – n-connected topological space then the homology of the cobar construction
F (En, C∗(X )) is isomorphic to the n-fold suspension over the homology of iterated
loop space ΩnX [9]. Hence we have

Theorem 7. If X is an n-connected topological space then there is the isomorphism

πEn∗ (X) ∼= SnH∗(ΩnX ).
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