HOMOTOPY THEORIES OF ALGEBRAS OVER OPERADS

V. A. SMIRNOV

(communicated by Tom Lada)

Abstract

Homotopy theories over operads are defined. The corresponding spectral sequences for the homotopy groups are constructed. The calculations of the spectral sequences of the homotopy groups over the "n-dimensional little cubes" operads are produced.

There are two classical homotopy theories: the homotopy theory of topological spaces (the problem of calculating the homotopy groups of spheres is one of the most difficult problems of algebraic topology); the rational homotopy theory (the problem of calculating the homotopy groups of spheres is very simple).

In [1] it was shown that the rational homotopy theory of 1-connected topological spaces is equivalent to the homotopy theory of 1-connected commutative DGA-algebras. In [2], [3] it was shown that the singular chain complex $C_*(\mathcal{X})$ (cochain complex $C^*(\mathcal{X})$) of a topological space \mathcal{X} possesses the structure of an E_{∞} -coalgebra (E_{∞} -algebra), and the homotopy theory of 1-connected topological spaces is equivalent to the homotopy theory of 1-connected E_{∞} -coalgebras).

Here we consider the homotopy theories of algebras over operads and in particular over the "*n*-dimensional little cubes" operads E_n , $1 \leq n \leq \infty$, [4]. The ground ring will be assumed to be a field. We construct the spectral sequences for these homotopy theories and try to calculate the corresponding homotopy groups.

Recall that a family $\mathcal{E} = \{\mathcal{E}(j)\}_{j \ge 1}$ of chain complexes $\mathcal{E}(j)$ acted upon by the symmetric groups Σ_j is called an operad if there are given operaions

$$\gamma \colon \mathcal{E}(k) \otimes \mathcal{E}(j_1) \otimes \cdots \otimes \mathcal{E}(j_k) \to \mathcal{E}(j_1 + \cdots + j_k),$$

which are compatible with the actions of the symmetric groups and satisfy some associativity relations [2].

A chain complex X is called an algebra (coalgebra) over an operad \mathcal{E} or simply \mathcal{E} -algebra (\mathcal{E} -coalgebra) if there is given a family of mappings

$$\mu(j)\colon \mathcal{E}(j)\otimes X^{\otimes j}\to X, \quad (\tau(j)\colon X\to Hom(\mathcal{E}(j);X^{\otimes j}),$$

which are compatible with the actions of the symmetric groups and satisfy some associativity relation [2].

Suppoted by the RFBR grant 01-01-00482.

Received August 8, 2003, revised October 31, 2003; published on April 22, 2005.

2000 Mathematics Subject Classification: 55P15, 55S20.

Key words and phrases: Operads, homotopy theories.

© 2005, V. A. Smirnov. Permission to copy for private use granted.

Denote the sum

$$\sum_{j} \mathcal{E}(j) \otimes_{\Sigma_{j}} X^{\otimes j}$$

by $\mathcal{E}(X)$. The correspondence $X \mapsto \mathcal{E}(X)$ determines the functor in the category of chain complexes and an operad structure determines a natural transformation $\gamma \colon \mathcal{E} \circ \mathcal{E} \to \mathcal{E}$ of functors satisfying the associativity relation. It means that this functor is a monad in the category of chain complexes [3].

If X is an algebra over an operad \mathcal{E} then there will be a chain mapping $\mu \colon \mathcal{E}(X) \to X$ and hence X will be an algebra over the monad \mathcal{E} .

If one wants to consider unitial algebras, the sum in the definition of $\mathcal{E}(X)$ must be modded out by the unit relation [4].

Dually denote

$$\overline{\mathcal{E}}(X) = \prod_{j} Hom_{\Sigma_{j}}(\mathcal{E}(j); X^{\otimes j}).$$

Then under suitable assumptions (for example if \mathcal{E} is finitely generated) the correspondence $X \longmapsto \overline{\mathcal{E}}(X)$ determines the comonad in the category of chain complexes. If X is a coalgebra over an operad \mathcal{E} then it will be a coalgebra over the comonad

 $\overline{\mathcal{E}}$.

Operads and algebras over operads may be considered in the category of topological spaces (in this case we need instead of the tensor products \otimes in the definition of the operation γ , the usual product \times) or other symmetric monoidal categories [3].

Consider some examples of operads and algebras (coalgebras) over operads.

1. An operad $E_0 = \{E_0(j)\}$, where $E_0(j)$ is the free module with one zero dimensional generator e(j) and trivial action of the symmetric group Σ_j . So $E_0(j) \cong R$. The operation $\gamma: E_0 \times E_0 \to E_0$ is defined by the formula

$$\gamma(e(k) \otimes e(j_1) \otimes \cdots \otimes e(j_k)) = e(j_1 + \cdots + j_k).$$

It is easy to see that so defined, this operation is associative and compatible with the actions of the symmetric groups.

Algebras (coalgebras) over E_0 are simply commutative and associative algebras (coalgebras).

2. An operad $A = \{A(j)\}$, where A(j) is the free Σ_j -module with one zero dimensional generator a(j). So $A(j) \cong R(\Sigma_j)$. The operation $\gamma \colon A \times A \to A$ is defined by the formula

$$\gamma(a(k) \otimes a(j_1) \otimes \cdots \otimes a(j_k)) = a(j_1 + \cdots + j_k).$$

It is easy to see that the required relations are satisfied.

Algebras (coalgebras) over A are simply associative algebras (coalgebras).

3. For any chain complex X define operads \mathcal{E}_X , \mathcal{E}^X by putting

$$\mathcal{E}_X(j) = Hom(X^{\otimes j}; X); \quad \mathcal{E}^X(j) = Hom(X; X^{\otimes j}).$$

The actions of the symmetric groups are determined by the permutations of factors of $X^{\otimes j}$ and operad structures are defined by the formulas

$$\gamma_X(f \otimes g_1 \otimes \cdots \otimes g_k) = f \circ (g_1 \otimes \cdots \otimes g_k), \quad f \in \mathcal{E}_X(k), \ g_i \in \mathcal{E}_X(j_i);$$

$$\gamma^X(f \otimes g_1 \otimes \cdots \otimes g_k) = (g_1 \otimes \cdots \otimes g_k) \circ f, \quad f \in \mathcal{E}^X(k), \ g_i \in \mathcal{E}^X(j_i).$$

A chain complex X is an algebra (coalgebra) over an operad \mathcal{E} if and only if there is given an operad mapping $\xi \colon \mathcal{E} \to \mathcal{E}_X$ ($\xi \colon \mathcal{E} \to \mathcal{E}^X$).

4. For $n \ge 0$ denote by Δ^n the normalized chain complex of the standard *n*dimensional simplex. Then $\Delta^* = \{\Delta^n\}$ is the cosimplicial object in the category of chain complexes. Denote the realization of the cosimplisial object $(\Delta^*)^{\otimes j} = \Delta^* \otimes \cdots \otimes \Delta^*$ as $E^{\Delta}(j)$, i.e.

$$E^{\Delta}(j) = Hom(\Delta^*; (\Delta^*)^{\otimes j}),$$

where *Hom* is considered in the category of cosimplicial objects.

So the elements of $E^{\Delta}(j)$ are the sequences $f = \{f^n\}$ of mappings $f^n \colon \Delta^n \to (\Delta^n)^{\otimes j}$ commuting the diagrams

$$\begin{array}{c|c} \Delta^n & \xrightarrow{f^n} (\Delta^n)^{\otimes j} \\ & \delta^i & \uparrow & \uparrow & \delta^i \\ & \delta^n & \uparrow & \uparrow & \uparrow \\ \Delta^{n-1} & \xrightarrow{f^{n-1}} (\Delta^{n-1})^{\otimes j} \end{array}$$

The family $E^{\Delta} = \{E^{\Delta}(j)\}$ will be the operad for which the actions of the symmetric groups and the operad structure are defined similarly to the corresponding structure for the above defined operad \mathcal{E}^X , where instead of X we take Δ^* .

Note that since the complexes Δ^n are acyclic then the operad E^{Δ} is also acyclic.

In [3] it was shown that on the chain complex $C_*(\mathcal{X})$ of a topological space \mathcal{X} there exists a natural E^{Δ} -coalgebra structure. Dually, on the cochain complex $C^*(\mathcal{X})$ there exists a natural E^{Δ} -algebra structure.

5. The main examples of topological operads are the little *n*-cube operads E_n introduced by Boardman and Vogt [5] and studied by May [4]. Any *n*-fold loop space $\Omega^n \mathcal{X}$ is an algebra over the operad E_n .

There are inclusions $E_n \to E_{n+1}$ and its direct limit denoted as E_{∞} . It is acyclic operad with free actions of the symmetric groups.

Any acyclic operad with free action of the symmetric groups is called E_{∞} -operad. Any algebra (coalgebra) over E_{∞} -operad is called E_{∞} -algebra (E_{∞} -coalgebra).

6. It is easy to see that if $\mathcal{E} = \{\mathcal{E}(j)\}$ is an operad in the category of topological space then the family $C_*(\mathcal{E}) = \{C_*(\mathcal{E}(j))\}$ consisting of the corresponding chain complexes will be an operad in the category of chain complexes and if \mathcal{E} is E_{∞} -operad then $C_*(\mathcal{E})$ is E_{∞} -operad.

7. An operad \mathcal{E} is called a Hopf operad if there is given a coassociative operad mapping $\nabla : \mathcal{E} \to \mathcal{E} \otimes \mathcal{E}$. It is easy to see that E_0 , A are Hopf operads.

The operad E^{Δ} is a Hopf operad. The Hopf structure $\nabla \colon E^{\Delta} \to E^{\Delta} \otimes E^{\Delta}$ is induced by the diagonal mapping $\Delta^* \to \Delta^* \otimes \Delta^*$.

If \mathcal{E} is a topological operad then it's singular chain complexes operad $C_*(\mathcal{E})$ is a Hopf operad in which the Hopf structure is induced by the coalgebra structures on the $C_*(\mathcal{E}(j))$.

8. The singular chain complex $C_*(\mathcal{X})$ (cochain complex $C^*(\mathcal{X})$) is an E_{∞} -coalgebra (E_{∞} -algebra). Indeed, let E be an E_{∞} -operad. Consider the operad $E^{\Delta} \otimes E$. It is E_{∞} -operad and there is the projection of operads $p: E^{\Delta} \otimes E \to E^{\Delta}$. Then the composition

$$E^{\Delta} \otimes E \xrightarrow{p} E^{\Delta} \xrightarrow{\xi} \mathcal{E}^{C_*(\mathcal{X})} \quad (E^{\Delta} \otimes E \xrightarrow{p} E^{\Delta} \xrightarrow{\xi} \mathcal{E}_{C^*(\mathcal{X})}).$$

will give on $C_*(\mathcal{X})$ ($C^*(\mathcal{X})$) the structure of $E^{\Delta} \otimes E$ -coalgebra ($E^{\Delta} \otimes E$ -algebra).

Denote the operad $E^{\Delta} \otimes C_*(E_n)$ in the category of chain complex simply by E_n . Then $C_*(\mathcal{X})$ may be considered as an E_n -coalgebra. Dually, $C^*(\mathcal{X})$ may be considered as an E_n -algebra.

We will need the following general properties of algebras (coalgebras) over operads.

Proposition 1. The category of \mathcal{E} -algebras (\mathcal{E} -coalgebras) over a Hopf operad \mathcal{E} admits tensor products.

Proof. Let $X', X'' - \mathcal{E}$ -algebras, i.e. there are given operad mappings $\xi' \colon \mathcal{E} \to \mathcal{E}_{X'}, \xi'' \colon \mathcal{E} \to \mathcal{E}_{X''}$. Defing the mapping $\xi \colon \mathcal{E} \to \mathcal{E}_{X' \otimes X''}$ as the composition

$$\mathcal{E} \xrightarrow{\nabla} \mathcal{E} \otimes \mathcal{E} \xrightarrow{\xi' \otimes \xi''} \mathcal{E}_{X'} \otimes \mathcal{E}_{X''} \longrightarrow \mathcal{E}_{X' \otimes X''}$$

This mapping will give on $X' \otimes X''$ the desired \mathcal{E} -algebra structure.

Proposition 2. If $X_* = \{X_n\}$ is a simplicial object in the category of algebras over an operad \mathcal{E} then its realization $|X_*|$ will also be an \mathcal{E} -algebra. Dually, if $X^* = \{X^n\}$ is a cosimplicial object in the category of coalgebras over an operad \mathcal{E} then its realization $|X^*|$ will be an \mathcal{E} -coalgebra.

Proof. Consider a simplicial object $X_* = \{X_n\}$ in the category of \mathcal{E} -algebras, $\mu_n \colon \mathcal{E}(X_n) \to X_n$, the \mathcal{E} -algebra structure on X_n . The Eilenberg-Zilber mappings

$$\psi \colon |X_*| \otimes \cdots \otimes |X_*| \to |X_* \otimes \cdots \otimes X_*|$$

commute with the actions of the symmetric groups and hence induce mappings

$$\psi \colon \mathcal{E}(j) \otimes_{\Sigma_j} |X_*|^{\otimes j} \to |\mathcal{E}(j) \otimes_{\Sigma_j} X_*^{\otimes j}|.$$

These mappings give us the mapping $\psi \colon \mathcal{E}(|X_*|) \to |\mathcal{E}(X_*)|$ and desired mapping $\mathcal{E}(|X_*|) \to |X_*|$ is the composition

$$\mathcal{E}(|X_*|) \xrightarrow{\psi} |\mathcal{E}(X_*)| \xrightarrow{\mu_*} |X_*|.$$

Corollary. The realization $B(\mathcal{E}, \mathcal{E}, X)$ of the simplicial resolution

 $B_*(\mathcal{E}, \mathcal{E}, X) : \mathcal{E}(X) \longleftarrow \mathcal{E}^2(X) \longleftarrow \cdots \longleftarrow \mathcal{E}^n(X) \longleftarrow \cdots$

over an \mathcal{E} -algebra X is an \mathcal{E} -algebra with chain equivalence $\eta \colon B(\mathcal{E}, \mathcal{E}, X) \to X$. Dually, the realization $F(\mathcal{E}, \mathcal{E}, X)$ of the cosimplicial resolution

$$F^*(\mathcal{E},\mathcal{E},X):\overline{\mathcal{E}}(X)\longrightarrow\overline{\mathcal{E}}^2(X)\longrightarrow\cdots\longrightarrow\overline{\mathcal{E}}^n(X)\longrightarrow\cdots$$

over an \mathcal{E} -coalgebra X is an \mathcal{E} -coalgebra with chain equivalence $\xi \colon X \to F(\mathcal{E}, \mathcal{E}, X)$.

Pass now to the homotopy theories. Let \mathcal{E} be a Hopf operad for which there is given operad mapping $\mathcal{E} \to \mathcal{E}^{\Delta}$. It means that the chain complexes Δ^n possess \mathcal{E} -coalgebra structures compatible with the coface and codegeneracy operators. In particular, the unit segment $I = \Delta^1$ possesses \mathcal{E} -coalgebra structure.

Denote $\mathcal{A}_{\mathcal{E}}$ ($\mathcal{K}_{\mathcal{E}}$) the category in which objects are \mathcal{E} -algebras (\mathcal{E} -coalgebras) and morphisms are \mathcal{E} -algebra mappings (\mathcal{E} -coalgebra mappings).

In [6] there are given sufficient conditions for the existence of a closed model structure on the category of operads in an arbitrary symmetric monoidal category. In particular chain operads carry a closed model structure.

Here we prove that the category $\mathcal{A}_{\mathcal{E}}$ ($\mathcal{K}_{\mathcal{E}}$) possesses a closed model structure [7].

Define a map in $\mathcal{A}_{\mathcal{E}}$ to be a weak equivalence if it induces isomorphism on homology, a fibration if it is surjective and a cofibration if it has the left lifting property with respect to all trivial fibrations.

Theorem 1. The category $\mathcal{A}_{\mathcal{E}}$ is a closed model category.

Proof. As in the case of usual algebras [7] the only nontrivial part of the theorem to prove is that any map $f: X \to Y$ of \mathcal{E} -algebras may be factored into the composition $f = p \circ i$, where i is a cofibration and p is a trivial fibration.

The idea of the proof repeats the corresponding proof for usual algebras. Namely, let $f: X \to Y$ be a mapping of \mathcal{E} -algebras. Define an \mathcal{E} -algebra $\mathcal{E}(X,Y)$, putting $\mathcal{E}(X,Y) = X + \mathcal{E}(Y)$. An \mathcal{E} -algebra structure is induced by \mathcal{E} -algebra structures on X and $\mathcal{E}(Y)$.

There is a projection $p: \mathcal{E}(X, Y) \to Y$, induced by the mapping $f: X \to Y$ and the \mathcal{E} -algebra structure $\mu: \mathcal{E}(Y) \to Y$, $p(x+y) = f(x) + \mu(y)$. Besides that there are an injection $i: X \to \mathcal{E}(X, Y)$ and a chain mapping $j: Y \to \mathcal{E}(X, Y)$ such that $p \circ i = f, p \circ j = Id$. More over p is a fibration and i is a cofibration. However p is not a trivial fibration. To improve this fibration we construct a simplicial resolution $\mathcal{E}_*(X, Y)$, putting

$$\mathcal{E}_0(X,Y) = \mathcal{E}(X,Y), \qquad \mathcal{E}_{n+1}(X,Y) = \mathcal{E}(X,\mathcal{E}_n(X,Y)).$$

The face and degeneracy mappings are defined by the inductive formulas. Namely,

$$d_0 = p \colon \mathcal{E}(X, Y) \to Y, \quad s_0 = \mathcal{E}(-, j)\mathcal{E}(X, Y) \to \mathcal{E}_1(X, Y) = \mathcal{E}(X, \mathcal{E}(X, Y))$$

Similary there are defined

$$d_0 = p \colon \mathcal{E}_{n+1}(X, Y) = \mathcal{E}(X, \mathcal{E}_n(X, Y)) \to \mathcal{E}_n(X, Y);$$

$$s_0 = \mathcal{E}(-, j) \colon \mathcal{E}_n(X, Y) \to \mathcal{E}_{n+1}(X, Y) = \mathcal{E}(X, \mathcal{E}_n(X, Y)).$$

Homology, Homotopy and Applications, vol. 7(2), 2005

Finally, define

$$d_{i+1} = \mathcal{E}(-, d_i) \colon \mathcal{E}_{n+1}(X, Y) \to \mathcal{E}_n(X, Y);$$

$$s_{i+1} = \mathcal{E}(-, s_i) \colon \mathcal{E}_n(X, Y) \to \mathcal{E}_{n+1}(X, Y).$$

Note that if X is a trivial then $\mathcal{E}_*(X, Y)$ is isomorphic to $B_*(\mathcal{E}, \mathcal{E}, Y)$.

The realization $|\mathcal{E}_*(X, Y)|$ is an \mathcal{E} -algebra which is chain equivalent to Y. Moreover there are the surjective mapping $p: |\mathcal{E}_*(X, Y)| \to Y$ and an injective mapping $i: X \to |\mathcal{E}_*(X, Y)|$ such that $f = p \circ i$. If X is a trivial we have the isomorphism $|\mathcal{E}_*(X, Y)| \cong B(\mathcal{E}, \mathcal{E}, Y).$

We prove that the mapping $i: X \to |\mathcal{E}_*(X,Y)|$ is a cofibration. Let $u: U \to V$ be a trivial fibration. It means that u is an surjective and induces an isomorphism of homologies. Then there is a chain mapping $v: V \to U$ and a chain homotopy $w: U \to U$ such that

$$u \circ u = Id;$$
 $d(w) = v \circ u - Id;$ $u \circ w = 0;$ $w \circ v = 0;$ $w \circ w = 0.$

Further, let $g: X \to U, h: |\mathcal{E}_*(X, Y)| \to V$ be \mathcal{E} -algebra mappings commuting the diagram

$$\begin{array}{c|c} X & \xrightarrow{g} & U \\ & \downarrow & & \downarrow \\ i & \downarrow & & \downarrow \\ |\mathcal{E}_*(X,Y)| & \xrightarrow{h} & V \end{array}$$

We need to construct an \mathcal{E} -algebra mapping $\tilde{h} \colon |\mathcal{E}_*(X,Y)| \to U$ preserving commutativity of the diagram.

It is easy to see that giving an \mathcal{E} -algebra mapping $\tilde{h}: |\mathcal{E}_*(X,Y)| \to U$ is equivalent to giving a family of \mathcal{E} -algebra mappings $h^n: \mathcal{E}_n(X,Y) \to Hom(\Delta^n;U)$ such that the following diagrams are commutative

$$\mathcal{E}_{n}(X,Y) \xrightarrow{h^{n}} Hom(\Delta^{n};U)$$

$$s_{i} \downarrow \uparrow d_{i} \qquad s_{i} \downarrow \uparrow d_{i}$$

$$\mathcal{E}_{n+1}(X,Y) \xrightarrow{h^{n+1}} Hom(\Delta^{n+1};U)$$

Note that to giving \mathcal{E} -algebra mappings $h^n \colon \mathcal{E}_n(X, Y) \to Hom(\Delta^n; U)$ is equivalent to giving a mapping on X (determined by g) and a chain mapping

$$\overline{h}^n \colon \mathcal{E}_{n-1}(X,Y) \to Hom(\Delta^n;U).$$

So we conclude that to give an \mathcal{E} -algebra mapping $\tilde{h}: |\mathcal{E}_*(X,Y) \to U$ is equivalent to give a family of chain mappings $\bar{h}^n: \mathcal{E}_{n-1}(X,Y) \to Hom(\Delta^n;U)$ such that the corresponding mappings h^n are \mathcal{E} -algebra mappings commuting the above diagram.

We put $\overline{h}^0 = v \circ h \colon Y \to U$ and $\overline{h}^n = w \circ \mu \circ \mathcal{E}(g, \overline{h}^{n-1})$. Straight verifications show that the required relations are satisfied.

Corollary. For any \mathcal{E} -algebra Y the \mathcal{E} -algebra $B(\mathcal{E}, \mathcal{E}, Y)$ is a cofibrant object in the category $\mathcal{A}_{\mathcal{E}}$.

It follows from the fact that for trivial X there is the isomorphism $|\mathcal{E}_*(X,Y)| \cong B(\mathcal{E},\mathcal{E},Y)$.

Dually consider the category $\mathcal{K}_{\mathcal{E}}$. Define a map of this category to be a weak equivalences if it induces the isomorphism on homology a cofibration if it is injective and fibration if it has the right lifting property with respect to all trivial cofibrations.

Theorem (1'). The category $\mathcal{K}_{\mathcal{E}}$ is a closed model category.

Denote by $Ho\mathcal{K}_{\mathcal{E}}$ the localization of the category $\mathcal{K}_{\mathcal{E}}$ with respect to the class of weak equivalences, i.e. morphisms induce the isomorphisms of homologies.

For an \mathcal{E} -coalgebra X the tensor product $X \otimes \Delta^1$ will be a cylinder object, and \mathcal{E} coalgebra mappings $f_0, f_1 \colon X \to Y$ will be left homotopic if there exists a mapping $h \colon X \otimes \Delta^1 \to Y$ such that $h \circ \delta^0 = f_0, h \circ \delta^1 = f_1$.

Let $\widetilde{\mathcal{K}}_{\mathcal{E}}$ denote the category, whose objects are \mathcal{E} -coalgebras and morphisms $f: X \to Y$ are \mathcal{E} -coalgebra mappings $\widetilde{f}: X \to F(\mathcal{E}, \mathcal{E}, Y)$.

Denote by $\pi \mathcal{K}_{\mathcal{E}}$ the category whose objects are \mathcal{E} -coalgebras and morphisms are the homotopy classes of morphisms in $\mathcal{K}_{\mathcal{E}}$. From general homotopy theory [7] it follows

Theorem 2. There is an equivalence of categories

$$Ho\mathcal{K}_{\mathcal{E}}\cong\pi\mathcal{K}_{\mathcal{E}}.$$

Dually, for \mathcal{E} -algebras we have

Theorem (2'). There is an equivalence of categories

$$Ho\mathcal{A}_{\mathcal{E}}\cong\pi\mathcal{A}_{\mathcal{E}}.$$

Consider now the problem of calculating the homotopy groups of \mathcal{E} -coalgebras. \mathcal{E} will be assumed to satisfy some suitable assumptions, for example \mathcal{E} is finitely generated.

Since the chain complexes Δ^n of the standard *n*-dimensional simplexes are \mathcal{E} -coalgebras, the chain complexes S^n of the *n*-dimensional spheres will be \mathcal{E} -coalgebras. Define the homotopy groups $\pi_n^{\mathcal{E}}(X)$ of an \mathcal{E} -coalgebra X by putting $\pi_n^{\mathcal{E}}(X) = [S^n; F(\mathcal{E}, \mathcal{E}, X)]$, the set of homotopy classes of \mathcal{E} -coalgebra mappings $f: S^n \to F(\mathcal{E}, \mathcal{E}, X)$.

Theorem 3. For any \mathcal{E} -coalgebra X there is the spectral sequence of the homotopy groups $\pi^{\mathcal{E}}_*(X)$ in which the E^1 term is isomorphic to the cobar construction $F(\mathcal{E}_*, X_*)$, where \mathcal{E}_* , X_* denotes the homologies of \mathcal{E} and X correspondingly.

Proof. Consider the filtration

$$F(\mathcal{E},\mathcal{E},X) \supset F^1(\mathcal{E},\mathcal{E},X) \supset \cdots \supset F^m(\mathcal{E},\mathcal{E},X) \supset \ldots$$

where $F^m(\mathcal{E}, \mathcal{E}, X) : \overline{\mathcal{E}}^m(X) \longrightarrow \overline{\mathcal{E}}^{m+1}(X) \longrightarrow \cdots$.

This filtration induces the spectral sequence. Exact sequences

$$0 \to F^{m+1}(\mathcal{E}, \mathcal{E}, X) \to F^m(\mathcal{E}, \mathcal{E}, X) \to \overline{\mathcal{E}}^{m+1}(X) \to 0$$

induce the isomorphisms

$$E_{n,m}^{1} = [S^{n}, \overline{\mathcal{E}}^{m+1}(X)] \cong H_{n}(\overline{\mathcal{E}}^{m}(X))$$

and hence the isomorphism $E^1 \cong F(\mathcal{E}_*, X_*)$.

If S^n is a trivial \mathcal{E} -coalgebra then the differentials of the spectral sequence are determined only by the differentials of the cobar construction $F(\mathcal{E}, X)$ and thus we have

Theorem 4. If S^n is a trivial \mathcal{E} -coalgebra then for any \mathcal{E} -coalgebra X there is an isomorphism

$$\pi_n^{\mathcal{E}}(X) \cong H_n(F(\mathcal{E}, X)).$$

Now let E_n be the little *n*-cube operad. Note that if $m \ge n$ then the homology of $\overline{E}_n(S^m)$ is trivial up to the dimension 2m - n + 1 > m. From here it follows that S^m has trivial E_n -coalgebra structure and hence we have

Theorem 5. If \mathcal{X} is a topological space, $m \ge n$ then there is an isomorphism

$$\pi_m^{E_n}(\mathcal{X}) \cong H_m(F(E_n, C_*(\mathcal{X})))$$

The E^1 -term of the spectral sequence is expressed through the Dyer-Lashof algebra [8], [9] and the result is the following

Theorem 6. The E^1 -term of the spectral sequence of the homotopy groups $\pi_*^{E_n}(\mathcal{X})$ of a topological space \mathcal{X} is isomorphic to the module $S^n T_s R_{n-1} L_{n-1} S^{-n} H_*(\mathcal{X})$, where T_s is the free commutative algebra, R_{n-1} is the submodule of the Dyer-Lashof algebra generated by allowable sequence of excess less then n, L_{n-1} is the free (n-1)-Lie algebra.

If \mathcal{X} – *n*-connected topological space then the homology of the cobar construction $F(E_n, C_*(\mathcal{X}))$ is isomorphic to the *n*-fold suspension over the homology of iterated loop space $\Omega^n \mathcal{X}$ [9]. Hence we have

Theorem 7. If \mathcal{X} is an n-connected topological space then there is the isomorphism

$$\pi_*^{E_n}(X) \cong S^n H_*(\Omega^n \mathcal{X}).$$

References

- Quillen D., Rational homotopy theory. Ann. of Math. 90(1969), N2, 205– 295.
- [2] Smirnov V.A., On the cochain complex of topological spaces. Mat. Sb. (Russia), 115(1981), 146–158.
- [3] Smirnov V.A., Homotopy theory of coalgebras. *Izv. Ac. Nauk* (Russia) 49 (1985), 1302–1321.
- [4] May J.P., The geometry of iterated loop spaces. Lect. Notes in Math. 271(1972).

Homology, Homotopy and Applications, vol. 7(2), 2005

- [5] Boardman J.M., Vogt R.M., Homotopy invariant algebraic structures on topological spaces. *Lect. Notes in Math.* 347(1973).
- [6] Berger C., Moerdijk I., Axiomatic homotopy theory for operads. arXiv:math. AT/0206094 v2 4 Apr 2003.
- [7] Quillen D., Homotopical algebra. Lect. Notes in Math. 43(1967).
- [8] Dyer E., Lashof R., Homology of iterated loop spaces. Amer. J. Math. 84(1962), 35–88.
- [9] Smirnov V.A., The homology of iterated loop spaces. Forum Mathematicum 14(2002), 345–381.

This article may be accessed via WWW at http://www.rmi.acnet.ge/hha/ or by anonymous ftp at

ftp://ftp.rmi.acnet.ge/pub/hha/volumes/2005/n2a10/v7n2a10.(dvi,ps,pdf)

V. A. Smirnov v.smirnov@ru.net Moscow State Pedagogical University, Krasnoprudnaya st. 14, Moscow, 107140, Russia