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Abstract. We calculate geometric and homotopical bordism rings associated to
semi-free S1 actions on complex manifolds, giving explicit generators for the geo-
metric theory. The classification of semi-free actions with isolated fixed points up
to cobordism complements similar results from symplectic geometry.

1. Introduction

In this paper we describe both the geometric and homotopical bordism rings asso-
ciated to S1-actions in which only the two simplest orbit types, namely fixed points
and free orbits, are allowed. Our work is of further interest in two different ways. To
make the computation of geometric semi-free bordism, in Corollary 2.12 we prove
the semi-free case of what we call the geometric realization conjecture, which if
true in general would determine the ring structure of geometric S1-bordism from
the ring structure of homotopical S1-bordism given in [21]. Additionally, we inves-
tigate semi-free actions with isolated fixed points as a first case, and that result is
parallel to results from symplectic geometry. Let P(C ⊕ ρ) denote the space of
complex lines in C ⊕ ρ where ρ is the standard complex representation of S1 (in
other words, the Riemann sphere with S1 action given by the action of the unit
complex numbers.)

Theorem 1.1. Let S1 act semi-freely with isolated fixed points on M , compatible
with a stable complex structure on M . Then M is equivariantly cobordant to a
disjoint union of products of P(C ⊕ ρ).

This result should be compared with the second main result of [19], which states
that when M is connected a semi-free Hamiltonian S1 action on M implies that M

has a perfect Morse function which realizes the same Borel equivariant cohomol-
ogy as a product of such P(C ⊕ ρ), as well as the same equivariant Chern classes.
Our work also refines, in this case of isolated fixed points, results of Stong [25].
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As Theorem 1.1 led us to the more general computation of bordism of semi-
free actions given in Theorem 3.10, it would also be interesting to see if there is an
analogue of Theorem 3.10 for Hamiltonian S1-actions. In general, the symplectic
and cobordism approaches to transformation groups have considerable overlaps in
language (for example, localization by inverting Euler classes of representations
plays a key role in each theory), though the same words sometimes have different
precise meanings. A synthesis of these techniques might be useful in addressing
interesting questions within transformation groups such as classifying semi-free
actions with isolated fixed points.

In section 2 of this paper we develop semi-free bordism theory and give a proof
of Theorem 1.1. We will see that the main ingredients are the Conner-Floyd-tom
Dieck exact sequences, which are standard. In section 3 we compute semi-free
bordism theories. In the final section, we review what is known about S1-bordism
and present a conjectural framework for the geometric theory.

The author would like to thank Jonathan Weitsman for stimulating conversa-
tions, and the referee, whose comments led to significant improvement of the paper.

1.1. Notation

If X is a G-space, X+ denotes X with a disjoint basepoint with trivial action added.
If V is a representation of G equipped with a G-invariant inner product, let SV

denote its one-point compactification, let D(V ) be the unit disk in V , and let S(V )

be the boundary of D(V ), namely the unit sphere in V . Let �V X denote the space
of based maps from SV to X, where S1 acts by conjugation. Let XS1

denote the
fixed points of an S1 action on X, so that Maps(X, Y )S

1
denotes the equivariant

maps from X to Y . Let
⊕n

V = ⊕n
i=1 V . Let ρ be the standard one-dimensional

representation of S1 and ρ∗ its conjugate.

2. First computations and Theorem 1.1

The foundational results of this section are based on [16], and the computational
results parallel those of [21].

Theorem 1.1 follows from little more than the computation of Conner-Floyd
and tom Dieck exact sequences adapted for semi-free bordism. Because construc-
tion of these sequences is standard [6,7,3,24,16,22,23], we will be brief in our
exposition.

Definition 2.1. Let �SF∗ denote the bordism theory represented by stably com-
plex (in the sense of Definition 28.3.1 of [16]) semi-free S1-manifolds. Bordisms
between the manifolds must also be semi-free (but see Remark 2.5 below). By equip-
ping these manifolds and bordisms with equivariant maps to a space X we define
an equivariant homology theory �SF∗ (X).

Bordism theory is approachable in general because of its relation to homotopy
theory. We choose a definition of homotopical equivariant bordism with a relatively
small amount of bookkeeping.
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Definition 2.2. • Let V SF = ρ ⊕ C ⊕ ρ∗, with S1-invariant inner product defined
through the standard inner products on ρ, C and ρ∗, and let USF be

⊕∞
V SF .

Fix an isomorphism σ : USF ⊕ V SF → USF sending (w1, w2, . . . ) ⊕ v, with
wi ∈ V SF , to (v, w1, w2, . . . ).

• Let BUSF (n) be the space of n-dimensional complex subspaces of USF ,
topologized as the union over k of BUSF (n, k), the n-dimensional subspaces
of

⊕n+k
(ρ ⊕ C ⊕ ρ∗).

• Let ξSF (n) denote the total space of the tautological bundle over BUSF (n) with
inner product inherited from USF , and let T USF (n) be its Thom space.

• Taking the direct sum of an n-dimensional subspace of USF with V SF defines a
map ξSF (n)⊕V SF to the total space of the tautological bundle of (n+3)-dimen-
sional subspaces of USF ⊕ V SF , which through σ is isomorphic to ξSF (n + 3).
Passing to Thom spaces we get β : SV SF ∧ T USF (n) → T USF (n + 3).

• Let MUSF denote the S1-spectrum with de-loopings by semi-free representations
built from the prespectrum T USF whose V th entry is T USF (dim(V )) and with
bonding maps given by β. Explicitly, the

⊕k
V SF th de-looping of the infinite loop

space associated to MUSF is given by the direct limit colimn �
⊕(n−k) V SF

T USF

(3n), where the β serve as maps in this directed system.

Because any semi-free manifold can be embedded equivariantly in some
⊕k

V SF

(a direct application of transversality results of [26] and the fact that ρ and ρ∗
are the only representations which appear in the decomposition of the fiber of
the normal bundle to a fixed set), there is a Pontryagin-Thom map from �SF∗ to
MUSF∗ = π∗MUSF . We will see that this map is not an isomorphism but that none-
theless MUSF∗ is essential in studying �SF∗ , in particular for proving Theorem 1.1.

The starting point in equivariant bordism is typically the use of a filtration which
can be traced back to Conner and Floyd [6].

Definition 2.3. • Define i : MU∗(BS1) → �SF∗ by taking a representative M

mapping to BS1 and pulling back the canonical S1-bundle to get a principal
S1-bundle over M , which is a free (and thus semi-free) S1 manifold.

• For a semi-free S1-manifold M , the normal bundle of MS1
in M will have as

the representation type of the fiber a direct sum of ρ’s and ρ∗’s. Because BU(n)

classifies n-dimensional complex bundles, MU∗(BU(n)) is the bordism module
of stably complex manifolds with n-dimensional complex bundles over them. Let

FSF∗ = MU∗
((⊔

n>0 BU(n)
)2

)
and define λ : �SF∗ → FSF∗ as sending a

semi-free bordism class to the bordism class of the normal bundle of its fixed set,
split according to appearance of ρ and ρ∗ in the fiber.

• Define ∂ : FSF∗ →MU∗−2(BS1) as taking a manifold with a direct sum of two
bundles over it (classified by maps to BU(i) × BU(j)) imposing S1 action as
ρ on the summand of the first factor and ρ∗ on the second, imposing an equi-
variant Hermitian inner product, and then taking the unit sphere bundle of that
S1-bundle.

Theorem 2.4. The following sequence is exact:

0 → �SF
∗

λ→ FSF
∗

∂→ MU∗(BS1) → 0.
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Note here that gradings are not preserved in the standard sense. The middle mod-
ule must be graded so that M mapping to BU(i) × BU(j) has degree dim(M) +
2(i + j). The map ∂ lowers degree by two.

Outline of proof. The maps i, λ and ∂ coincide with the maps in the families exact
sequence for the family {S1, 1} consisting of S1 and the trivial group (see chapter
15 of [16], or [22]). Exactness is straightforward and pleasant to verify. We claim
that i is the zero map. It is well-known that BS1 = CP

∞ and MU∗(CP
∞) is

generated by bordism representatives CP
n with their standard inclusions in CP

∞
(see for example Lemma 2.14 of part 2 of [1]). The principal S1-bundle over CP

n

is equivariantly diffeomorphic to S(
⊕n

ρ). But this class is zero in �SF∗ since it
bounds D(

⊕n
ρ). ��

Remark 2.5. If we let �SF !∗ denote the image of semi-free bordism in unrestricted
S1 bordism, thus allowing arbitrary bordism between semi-free representatives, we
see that �SF !∗ also fits in the exact sequence of Theorem 2.4, and thus is isomorphic
to �SF∗ by the five-lemma.

The space
⊔

n>0 BU(n) has a product which corresponds to Whitney sum of
bundles, through BU(n)’s role as the classifying space for complex vector bundles.

Thus MU∗
((⊔

n>0 BU(n)
)2

)
is a ring which we identify as follows.

Definition 2.6. Let Xn,ρ ∈ MU2n (BU(1) × BU(0)) be represented by P
n map-

ping to BU(1) by classifying the tautological line bundle. Let Xn,ρ∗ ∈ MU2n

(BU(0) × BU(1)) be defined similarly.

Proposition 2.7. FSF∗ ∼= MU∗[Xn,ρ, Xn,ρ∗ ], where n ≥ 0.

The proof is standard, as in Lemma 4.14 of part two of [1], using collapse of
the Atiyah-Hirzebruch spectral sequence for MU∗(BU(n)) and the corresponding
computation for homology.

Corollary 2.8. �SF∗ is a free MU∗-module concentrated in even degrees.

Proof. Looking at the exact sequence of Theorem 2.4 we see that the middle and
right terms are free modules over MU∗. The map ∂ is a split surjection, with one
splitting given by sending the class represented by CP

n ↪→ CP
∞ to the class rep-

resented by D(
⊕n+1

ρ), as in the outline of proof of Theorem 2.4. As a submodule
of FSF∗ , �SF∗ is complementary to the image of this splitting, and thus is free. ��

We give one important example of computation of the map λ.

Proposition 2.9. λ (P(Cn ⊕ ρ)) = Xn−1,ρ + Xn
0,ρ∗ .

Proof. We use homogeneous coordinates on P(Cn ⊕ ρ). There are two possible
components of the fixed sets. The points whose last coordinate is zero constitute a
fixed P

n−1, whose normal bundle is the tautological line bundle over which each
fiber is isomorphic to ρ as a representation of S1. This manifold with (normal)
bundle defines exactly Xn−1,ρ . There is also a fixed point in which all of the first n

coordinates are zero, and its normal bundle is
⊕n

ρ∗. This fixed set contributes a
summand of Xn

0,ρ∗ . ��
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Next we introduce the analogue of Theorem 2.4 for MUSF∗ , essentially the tom
Dieck exact sequence. We first need to develop Euler classes, which play important
roles in equivariant bordism. Consider BUSF (1), whose fixed set is three disjoint
copies of BU(1). The tautological bundle over BUSF (1) has fibers over these three
fixed sets of ρ, C and ρ∗.

Definition 2.10. Let ιρ be the inclusion of a fiber isomorphic to ρ over a fixed
point in the tautological bundle over BUSF (1), noting that all such inclusions
are homotopic. Let T (ιρ) denote the induced map on Thom spaces, and let eρ ∈
MUSF

−2 be the composite S0 → Sρ
T (ιρ)→ T USF (1). Let eρ∗ be defined similarly.

The class eρ , when viewed as a class in MU2
SF (pt.) serves as the Euler class

of ρ, viewed as a vector bundle over a point.
Next, we need to develop the analogue of FSF∗ . Let �SF∗ = MU∗[(BU ×Z)2],

where multiplication on (BU × Z)2 is the product of the standard Whitney sum
multiplication on each factor of BU and addition on each factor of Z. By inclusion
of

⊔
n>0 BU(n) in BU ×Z (which is a group completion map, though we will not

need that here), FSF∗ maps to �SF∗ . The analogue of Proposition 2.7 is that

�SF
∗ ∼= MU∗[X±1

0,ρ, X±1
0,ρ∗ , Xn,ρ, Xn,ρ∗ |n ≥ 1],

where Xi,ρ and Xi,ρ∗ are the images of the classes of the same name under the map
from FSF∗ . In particular, X0,ρ and X0,ρ∗ are the unit classes in (BU ×1)×(BU ×0)

and (BU × 0) × (BU × 1) respectively.

Theorem 2.11. There is a short exact sequence:

0 → MUSF
∗

λ→ �SF
∗ → MU∗−2(BS1) → 0.

The exact sequence of Theorem 2.4 maps naturally to this exact sequence through
Pontryagin-Thom maps. The Pontryagin-Thom map is the identity on MU∗(BS1).
On the middle terms, Xi,ρ and Xi,ρ∗ map to classes with the same names. Moreover,
λ(eρ) = X−1

0,ρ and λ(eρ∗) = X−1
0,ρ∗ .

Outline of proof. The proof of this theorem parallels the main results of [7] and
section four of [21]. The sequence in question is the MUSF∗ long exact sequence
associated to the cofiber sequence ES1+ → S0 → ẼS1. The middle term is of
course MUSF∗ . By either Adams’ transfer argument [2] or the fact that transver-

sality holds in the presence of free G-manifolds, M̃U
SF
∗ (ES1+) is isomorphic to

MU∗−1(BS1). The map from MU∗(BS1) to MUSF∗ is zero since it factors through
i : MU∗(BS1) → �SF∗ , which was shown to be zero in Theorem 2.4, so this long
exact sequence splits into short exact sequences.

To identify MUSF∗ (ẼS1) as �SF∗ is a longer exercise. The basic fact one uses is
that if X is semi-free and Y is contractible when forgetting S1-action (and both are
CW-complexes) then Maps(X, Y )S

1
is homotopy equivalent to Maps(XS1

, Y S1
)

through the restriction map, since the fibers of this restriction map are spaces of
(non-equivariant) maps into Y . In analyzing MUSF∗ (ẼS1) one applies this fact to
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Maps(SV , ẼS1 ∧ T USF (n)) to reduce to computing the fixed sets of these Thom
spaces. The fixed set (T USF (n))S

1
is

∨
i+j+k=n T U(i) ∧ (BU(j) × BU(k))+

(see Lemma 4.7 of [21]). Careful bookkeeping of the passage to spectra leads to
the identification

MUSF ∧ ẼS1 �
∨

(i,j)∈Z×Z

�2(i+j)MU ∧ (BU × BU)+,

from which the isomorphism MU∗(ẼS1) ∼= �SF∗ is immediate.
Identifying the Pontryagin-Thom map on the middle term with the inclusion

map from FSF∗ to �SF∗ above is straightforward. What remains is analysis of the
Euler classs eρ and eρ∗ . When one passes to fixed sets, eρ is represented by the
inclusion S0 ↪→ T U(0) ∧ (BU(1) × BU(0))+. This class passes in the limit to
the unit class in MU∗((BU × −1) × (BU × 0)), which is the inverse of X0,ρ . The
analysis of eρ∗ is similar. ��

In light of this theorem, we will usually express �SF∗ as MU∗[e±1
ρ , e±1

ρ∗ , Xn,ρ,

Xn,ρ∗ |n ≥ 1]. From this theorem we deduce the following, whose first part is an
analogue of a theorem of Comezaña (28.5.4 of [16]) and Löffler [14].

Corollary 2.12. The Pontryagin-Thom map �SF∗ → MUSF∗ is injective. The fol-
lowing diagram from Theorem 2.11 is a pullback square

�SF∗
λ−−−−→ FSF∗

P−T



�



�

MUSF∗ −−−−→ �SF∗ .

Proof. The horizontal maps are injective by Theorems 2.4 and 2.11, the right ver-
tical map is injective by inspection, so the left vertical map is injective by commu-
tativity.

The horizontal maps have isomorphic cokernels namely MU∗−2(BS1), so the
square is a pull-back square through an elementary diagram chase. ��

We use the phrase “geometric realization” to refer to the fact that this square
is a pull-back, since it implies that any fixed-set data which could be realized geo-
metrically is so realized. Corollary 2.12 will be the first ingredient in computing
�SF∗ in the next section.

Because homologically it is in negative degrees, eρ cannot be in the image of
the Pontryagin-Thom map and thus might seem exotic to the eyes of someone unfa-
miliar with equivariant bordism. We will see now that Euler classes can nonetheless
be of great use in proving geometric theorems.

Theorem 2.13. The intersection of λ(MUSF∗ ) with the subring Z[e−1
ρ , e−1

ρ∗ ] is the

subring Z[e−1
ρ + e−1

ρ∗ ].

Before proving this theorem, we deduce Theorem 1.1 from it.
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Proof of Theorem 1.1. Let M be a stably complex semi-free S1-manifold with iso-
lated fixed points. These isolated fixed points will have trivial normal bundles which
are direct sums of ρ and ρ∗. Under λ, a fixed point with

⊕k
ρ ⊕ ⊕l

ρ∗ for a nor-
mal bundle contributes Xk

0,ρXl
0,ρ∗ . By Theorem 2.11, this term maps to e−k

ρ e−l
ρ∗ .

Therefore, λ([M]) lies in Z[e−1
ρ , e−1

ρ∗ ].

Applying Theorem 2.13, λ([M]) lies in Z[e−1
ρ +e−1

ρ∗ ], which by Proposition 2.9
is Z[λ (P(C ⊕ ρ))]. But by Theorem 2.4, λ is injective, so [M] lies in Z[P(C⊕ρ)]
in MUSF∗ . Similarly, by Corollary 2.12, [M] lies in Z[P(C ⊕ ρ)] in �SF∗ , which
means that M is equivariantly cobordant to a disjoint union of products of P(C⊕ρ).

��
Our main tool in the proof of Theorem 2.13 is to use the augmentation map

α : MUSF∗ → MU∗, which takes a map SV → T USF (n) and forgets the S1

action. Note that α is a map of rings.

Proof of Theorem 2.13. Let R∗ denote the subring Z[e−1
ρ , e−1

ρ∗ ] of �∗. Since R∗ is
graded and lies in non-negative degrees, we may proceed by induction on degree,
focusing on homogeneous elements. Suppose that

a0e
−n
ρ + a1e

−(n−1)
ρ e−1

ρ∗ + · · · + ane
−n
ρ∗ = λ(x)

for some x.
Consider y = eρ∗(x − a0[P(C ⊕ ρ)]n). The image λ(y) is in R∗ and is in

degree 2(n − 1), thus by inductive hypothesis y is in Z[P(C ⊕ ρ)]. Hence y =
k[P(C ⊕ ρ)]n−1 for some k ∈ Z. Apply the augmentation map α to this equality.
The image of eρ∗ under α is zero since MU−2 = 0, thus so is α(y). It is well-known
that (P1)n−1 is non-zero in MU∗ for any n > 0, so k must be zero. This implies
y = 0, or since eρ∗ is not a zero divisor, x = a0[P(C ⊕ ρ)]n. The base case of this
induction in degree zero is immediate since both R and Z[e−1

ρ + e−1
ρ∗ ] consist only

of the integers in that degree. ��

3. Computation of semi-free bordism

We turn our attention to homotopical semi-free bordism, following the example of
[21]. Let Zn,ρ ∈ �SF∗ be [P(Cn ⊕ ρ)], and by abuse let it also denote the image
of this class under λ, which is equal to Xn−1,ρ + Xn

0,ρ∗ by Proposition 2.9. By
further abuse, let Zn,ρ also denote its image under the Pontryagin-Thom map in
MUSF∗ as well as its image in �SF∗ , namely Xn−1,ρ + e−n

ρ . Let Zn,ρ∗ be defined
(everywhere) similarly. We may use Zn,ρ and Zn,ρ∗ as generators of FSF∗ and �SF∗ .
By Theorem 2.11 we have the following.

Proposition 3.1. There is a sequence of inclusions

MU∗[eρ, eρ∗ , Zn,ρ, Zn,ρ∗ |n ≥ 2] ⊂ MUSF
∗ ⊂ MU∗[e±1

ρ , e±1
ρ∗ , Zn,ρ, Zn,ρ∗ |n ≥ 2].

Thus, to understand MUSF∗ is to understand divisibility by Euler classes, which
is traditionally done as part of a Gysin sequence. Recall α : MUSF∗ → MU∗, the
augmentation map which forgets S1 action.

Theorem 3.2. The sequences 0 → MUSF
∗+2

·eV→ MUSF∗
α→ MU∗ → 0, where V is

either ρ or ρ∗, are exact.
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Proof. Apply M̃U
∗
SF to the cofiber sequence S(ρ)+

i→ S0 j→ Sρ . The middle term
is by definition MU∗

SF . Since S(ρ) is a copy of the group S1, an equivariant map

is determined by the image of one point so that Maps(S(ρ), X)S
1 = X, for any

S1-space X (with action forgotten on the right-hand side), from which the similar
statement follows for spectra (see [2]) and in particular MUSF . The map i∗ is thus
the augmentation map.

The identification of the remaining term is through a Thom isomorphism for
Sρ . Note that if an equivariant cohomology theory has such Thom isomorphisms
for all SV with V complex it is said to be complex stable. We roughly follow the
construction of Thom isomorphisms for unrestricted homotopical bordism given in
section 10 of [9]. Unraveling definitions, we want to show that

colimk �ρ⊕⊕k V SF

T USF (3k) � colimk �C⊕⊕k V SF

T USF (3k). (1)

We start by choosing linear isomorphisms. Choose coordinates on USF =
⊕∞

V SF as
⊕∞

i=1(v
ρ
i , vC

i , v
ρ∗
i ) where v

ρ
i ∈ ρ, vC

i ∈ C and v
ρ∗
i ∈ ρ∗. Recall

σ : USF ⊕ V SF → USF , chosen to define bonding maps for MUSF∗ , which in this

notation sends
⊕∞

i=1(v
ρ
i , vC

i , v
ρ∗
i )⊕ (uρ, uC, uρ∗

) to
⊕∞

i=1(w
ρ
i , wC

i , w
ρ∗
i ), where

w
ρ
1 = uρ and w

ρ
i = v

ρ
i−1 for i > 1. The vectors wC

i and w
ρ∗
i are defined similarly.

Define σ1 : USF ⊕ ρ∗ ⊕ ⊕2
C

∼=−→ USF by

∞⊕

i=1

(v
ρ
i , vC

i , v
ρ∗
i ) ⊕ uρ∗ ⊕ uC

1 ⊕ uC

2 →
∞⊕

i=1

(w
ρ
i , wC

i , w
ρ∗
i ),

where

w
ρ
i = v

ρ
i wC

i =
{

uC

i i ≤ 2

vC

i−2 i > 2
w

ρ∗
i =

{
u

ρ∗
i i = 1

v
ρ∗
i−1 i > 1.

Define σ2 : USF ⊕ ρ∗ ⊕ ⊕2
ρ

∼=−→ USF analogously so that the following dia-
gram, in which the leftmost arrows are the obvious isomorphisms which reorder
coordinates, commutes:

On passage to Thom spaces, σ1 defines a map S(ρ∗⊕⊕2
C) ∧ T USF (3k) to

T USF (3k + 3), or by adjointness T (σ1)
† : T USF

3k → �(ρ∗⊕⊕2
C)T USF (3k + 3).

Define

β1 : �(ρ⊕⊕k V SF )T USF (3k) → �(C⊕⊕k+1 V SF )T USF (3k + 3)
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as sending an f : S(ρ⊕⊕k V SF ) → T USF (3k) to its composite with T (σ1)
†, using

adjointness and the standard isomorphism (ρ ⊕ ⊕k
V SF ) ⊕ (ρ∗ ⊕ ⊕2

C) ∼=
C ⊕ ⊕k+1

V SF to get an element of the range.

Define β2 : �(C⊕⊕k V SF )T USF (3k) → �(ρ⊕⊕k+1 V SF )T USF (3k + 3) sim-
ilarly by using σ2. By the commutativity of the diagram involving σ , σ1 and
σ2 above, as well as standard facts about associativity of smash products and
adjointness, β2 ◦ β1 and β1 ◦ β2 coincide with the structure maps in the colimits of
Equation 1, so that β1 and β2 give rise to the isomorphism of Equation 1. Moreover,
the map defining j∗ at the prespectrum level composed with β1 coincides with the
definition of eρ , so that j∗ is multiplication by eρ .

Finally, MU∗ is concentrated in even degrees, as is MUSF∗ since by Theo-
rem 2.11 it is a sub-algebra of �SF∗ which is so. Therefore this long exact sequence
breaks up into short exact sequences, as stated. ��

We introduce operations in MUSF∗ which are essentially division by Euler clas-
ses. We will see below that these operations have a geometric representation.

Definition 3.3. • Let σ be the canonical (up to homotopy) splitting of the augmenta-
tion map α, defined by taking some Sm → T U(n), suspending it by

⊕m
(ρ ⊕ρ∗)

to get a map from S
⊕m V SF

to a Thom space which is chosen as a subspace of
T USF (n).

• Let �ρ : MUSF∗ → MUSF
∗+2 (respectively �ρ∗ ) be the splitting of multiplication

by eρ (respectively eρ∗ ) which arises from the canonical splitting of α through
Theorem 3.2.

• If I is a sequence of ρ and ρ∗, let �I (x) be the composite of the corresponding
�ρ and �ρ∗ applied to x. For example, �ρρ∗(x) = �ρ�ρ∗(x).

• For x ∈ MUSF∗ let x = σ ◦ α(x).

The following lemma is immediate from the fact that eρ�ρ(x) = x − x.

Lemma 3.4. λ(�ρ(x)) = e−1
ρ (λ(x)−α(x)) and similarly λ(�ρ∗(x)) = e−1

ρ∗ (λ(x)−
α(x)).

We are now ready for our first computation.

Definition 3.5. Let B be the set of MUT∗ elements {eρ, eρ∗ , Zn,ρ, and Zn,ρ∗} where
n ≥ 2. Order B as follows

eρ < eρ∗ < Z2,ρ < Z2,ρ∗ < Z3,ρ < Z3,ρ∗ < · · · .

Theorem 3.6. MUSF∗ is generated as a ring by classes �i
ρ�

j
ρ∗(x) where x ∈ B.

Relations are

(1) eρ�ρ(x) = x − x̄ = eρ∗�ρ∗(x),

(2) �V (x)(y − ȳ) = (x − x̄)�V (y), where V is ρ or ρ∗,
(3) �V (eV · x) = x, where V is ρ or ρ∗.
(4) �ρ∗�ρ(x) = �ρ�ρ∗(x) + �ρ(x)�ρ�ρ∗(eρ),
(5) eV = 0.
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MUSF∗ is free as a module over MU∗ with an additive basis given by mono-

mials �i
ρ�

j
ρ∗(x)m, where x ∈ B, m is a monomial in the y ≥ x in B and with the

following restrictions: if x = eρ∗ then j = 0; if x = eρ and j �= 0 then no positive
power of eρ∗ occurs in m; if i �= 0 then j �= 0 and no positive power of eρ occurs
in m.

Proof. Proposition 3.1 implies that if y ∈ MUSF∗ then for some i and j , the product

x = ei
ρe

j
ρ∗y is in the subalgebra of MUSF∗ generated by B. Then �i

ρ�
j
ρ∗(x) = y.

By linearity, �i
ρ�

j
ρ∗(x) is a sum of �i

ρ�
j
ρ∗(m) for some monomials m in B. There

is a product formula

�ρ(wz) = �ρ(w)z + w�ρ(z),

and similarly for �ρ∗ , as can be verified by applying λ, which is injective, to both

sides using Lemma 3.4. Thus, �i
ρ�

j
ρ∗(m) is a sum of products of �i

ρ�
j
ρ∗(b) for

b ∈ B, which means these classes generate.
Except for relation 4, verification of the relations is straightforward. In each case

one checks the equality after λ, which is injective, using Lemma 3.4 as needed. For
example, for relation 2, the image of both sides under λ is e−1

V (x − x̄)(y − ȳ). For
relation 4 we also need that �ρ(x) = −�ρ(x), which we derive as follows. Take
relation 1 that x = eρ∗�ρ∗(x) and apply the product formula with w = eρ∗ and
z = �ρ∗(x) to get that

�ρ(x) = �ρ(eρ∗)�ρ∗(x),

noting that the second term in the product formula vanishes since eρ∗ = 0. If we
apply the augmentation map to both sides, �ρ(x) = −�ρ(x) will follow from
computing that �ρ(eρ∗) = −1. Represent �ρ(eρ∗) as the composite Sρ → Sρ∗ →
T USF (1), where the first map is through complex conjugation and the second is
the unit map, which includes Sρ as the Thom space of a fiber of the tautological
bundle. This composite represents −1 when the S1 action is forgotten.

To show that the members of the additive basis �i
ρ�

j
ρ∗(x)m are linearly inde-

pendent over MU∗ we apply λ, after which the verification is straightforward by
looking at the leading terms e−i

ρ e
−j
ρ∗ xm.

To complete the proof we show that one can use the relations to reduce to the
additive basis. Consider a product �I1(x1)�I2(x2) . . . �Ik

(xk) where x1 is minimal
among the xi in order within B. We may use relation 2, rewritten as �ρ(x)y =
x�ρ(y) − x̄�ρ(y) + ȳ�ρ(x) (and similarly for ρ∗) to perform a reduction. Choose
y to be �I1(x1) and x to be �I ′

2
(x2) where I ′

2 is I2 with the first ρ or ρ∗ removed,
to decrease either the number of operations �V which are applied to non-minimal
generators, in the cases of x�ρ(y) and x̄�ρ(y), or the number of non-minimal gen-
erators, in the case of ȳ�ρ(x). Inductively, we reduce to a sum of �I (b)m, where
m is a monomial in B and b is less than any generator which appears in m. Finally,
consider some �I1ρ∗ρI2(b)m. We decrease the number of ρ and ρ∗ which are out
of order by applying relations 4 to get �I1ρρ∗I2(x)m + �ρI2(x)�I1ρρ∗(eρ)m. Note
each of these monomials still has �V applied only to a minimal element of B.
Inductively, we reduce to monomials in which �ρ is applied after �ρ∗ . ��
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We now turn our attention to �SF∗ , adding to the short list of geometric bordism
theories which have been computed [3,11,23]. By the geometric realization Corol-
lary 2.12 we can deduce the structure of �SF∗ algebraically from Theorem 3.6 and
understanding of the localization map λ. We choose, in addition, to find explicit
geometric representatives.

We start by making geometric constructions of �ρ and �ρ∗ on classes repre-
sented by manifolds. These constructions follow ones made by Conner and Floyd.

Definition 3.7. Define γ (M) for any stably complex S1-manifold to be the stably
complex S1-manifold

γ (M) = M ×S1 S3 � (−M) × P(C ⊕ ρ),

where S3 has the standard Hopf S1-action and the S1-action on M ×S1 S3 is given
by

ζ · [m, z1, z2] = [ζ · m, z1, ζ z2] . (2)

Define γ ∗(M) similarly with the quotient of M × S3 by the S1 action in which τ

sends m, (z1, z2) to τm, (τz1, τ
−1z2) and with induced S1 action on the quotient

given by

ζ · [m, z1, z2] =
[
ζ · m, z1, ζ

−1z2

]
. (3)

Proposition 3.8. Let M be a stably complex S1-manifold. Then �ρ[M] = [γ (M)]

and �ρ∗ [M] = [γ ∗(M)] in MUS1

∗ .

Proof. By Lemma 3.4 and the injectivity of λ, it suffices to check the fixed sets
and normal data of γ (M) and γ̄ (M). One type of fixed points of γ (M) are points
[m, z1, z2] such that m is fixed in M and z2 = 0. This fixed set is diffeomorphic to
MG, and its normal bundle is that of MG in M crossed with the representation ρ.
Crossing with ρ coincides with multiplying by e−1

ρ∗ in FSF∗ . The second set of fixed
points are [m, z1, z2] such that z1 = 0. This set of fixed points is diffeomorphic to
M , and its normal bundle is the trivial bundle ρ∗.

Hence, if x = λ([M]), then the image of [γ (M)] is xe−1
ρ +Me−1

ρ∗ . By subtract-

ing the image of M × P(C ⊕ ρ) we obtain xe−1
ρ − Me−1

ρ . By Lemma 3.4, this is
λ(�ρ([M])). The analysis is similar for γ ∗(M). ��

The classes �I (Zn,ρ) and �I (Zn,ρ∗) can thus be realized geometrically, as Zn,ρ

and Zn,ρ∗ are represented by linear actions on projective spaces. Additionally we
have the following.

Lemma 3.9. �ρρ∗(eρ) = P(C ⊕ ρ).

Proof. The equality of these classes also follows from computation of their image
under λ. Proposition 2.9 states that λ (P(C ⊕ ρ)) = e−1

ρ + e−1
ρ∗ . To show that

this is also λ(�ρ�ρ∗(eρ)), by applying Lemma 3.4 twice it suffices to know that
�ρ(eρ∗) = −1, which was shown in the proof of Theorem 3.6. ��
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Given the general complexities of equivariant bordism, in particular for the
geometric theories, �SF∗ has a remarkably simple form.

Theorem 3.10. �SF∗ is generated as an algebra over MU∗ by classes
γ i(γ ∗)jP(Cn ⊕ ρ) for n ≥ 1 and γ i(γ ∗)jP(Cn ⊕ ρ∗) where n ≥ 2. Relations are

(1) γ (x)(y − ȳ) = (x − x̄)γ (y), and similarly for γ∗,
(2) γ ∗γ (x) = γ γ ∗(x) + γ (x)P(C ⊕ ρ),

where x and y can be any stably complex S1-manifolds, in particular those in the
generating set above. An additive basis is given by monomials γ i(γ ∗)j (x)m where
m is a monomial in P(Cn ⊕ ρ) and P(Cn ⊕ ρ∗) and x is such a projective space of
smaller dimension than those appearing in m.

Proof. We start with Corollary 2.12, which at the level of coefficients looks like

�SF∗ −−−−→ FSF∗ = MU∗[e−1
ρ , e−1

ρ∗ , Zn,ρ, Zn,ρ∗ |n ≥ 2]


�



�

MUSF∗ −−−−→ �SF∗ = MU∗[e±1
ρ , e±1

ρ∗ , Zn,ρ, Zn,ρ∗ |n ≥ 2],

where n > 0. All maps are inclusions, so we are looking to characterize the ele-
ments in MUSF∗ which map to FSF∗ . Observe that FSF∗ is an MU∗-direct summand
of �SF∗ . A complementary submodule C∗ is the submodule generated by reduced
monomials in which a strictly positive power of eρ or eρ∗ appears. We analyze the
image under λ of each additive basis element from Theorem 3.6 in terms of the
FSF∗ ⊕ C∗ decomposition of �SF∗ .

Consider the basis element y = �i
ρ�

j
ρ∗(x)m in which x is an element of the

generating set B of Theorem 3.6 and m is a monomial in the elements of B, each
greater than or equal to x in the ordering on B and with additional provisions of
x = eρ or eρ∗ . This y maps to FSF∗ if x = Zi,ρ or Zi,ρ∗ because by Lemma 3.4
λ(�I (Zi,ρ)) and λ(�I (Zi,ρ∗)) are polynomials over MU∗ in e−1

ρ , e−1
ρ∗ and Zi,ρ or

respectively Zi,ρ∗ and m is a monomial in Zn,ρ and Zn,ρ∗ for some n ≥ i by the
ordering on B. Next we focus on when x = eρ . By applying Lemma 3.4 we see that

λ(�
j
ρ∗(eρ)) = e

−j
ρ∗ eρ + P , where P is a polynomial in e−1

ρ∗ over MU∗. Continuing

we see λ(�i
ρ∗�

j
ρ∗(eρ)) = e1−i

ρ e
−j
ρ∗ + Q, where Q ∈ MU∗[e−1

ρ , e−1
ρ∗ ]. Recall that

for the basis element y = �i
ρ�

j
ρ∗(eρ)m with i, j > 0, the generators eρ and eρ∗

do not appear in m. We deduce that λ(y) is in FSF∗ since both λ(�i
ρ∗�

j
ρ∗(eρ)) and

λ(m) are.
There are three classes of basis elements remaining, namely ei

ρe
j
ρ∗m with i or

j > 0, �i
ρ∗(eρ)e

j
ρm with i > 0 and �i

ρ(eρ∗)ej
ρ∗m with i > 0, where m is a mono-

mial in MU∗[Zn,ρ, Zn,ρ∗ |n ≥ 2]. We take the image under λ and project onto C∗
to get ei

ρe
j
ρ∗m, e

j+1
ρ e−i

ρ∗ m and e−i
ρ e

j+1
ρ∗ m respectively. These three kinds of classes

are linearly independent taken all together in C∗ (in fact, they form a basis as m

varies over all possible monomials).
Summarizing, we have shown that the additive basis elements for MUSF∗ fall

into two groups, one group which maps to FSF∗ and one group whose projections
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onto C∗ is linearly independent. Therefore, the only elements of MUSF∗ which can
map to FSF∗ are in the span of the first group. By Corollary 2.12 the first group
serves as an additive basis for �SF∗ .

We will verify the additive basis stated in the theorem only after we use the
current additive basis to check that �SF∗ is generated as an algebra by classes
γ i(γ ∗)jP(Cn⊕ρ) and γ i(γ ∗)jP(Cn⊕ρ∗). By Proposition 3.8, γ i(γ ∗)jP(Cn⊕ρ)

represents �i
ρ�

j
ρ∗(Zn,ρ). These generate the additive basis elements of the form

�i
ρ�

j
ρ∗(x)m where x = Zi,ρ or Zi,ρ∗ . To see that �i

ρ�
j
ρ∗(eρ) where i, j > 0 is

in this subalgebra, first note that it is true for i, j = 1 by Lemma 3.9. We apply
relation 4 from Theorem 3.6 to reduce to this case as follows

�i
ρ�

j
ρ∗(eρ) = �i−1

ρ �ρ∗�ρ�
j−1
ρ∗ (eρ) − �ρ�

j
ρ∗(eρ)�ρ�ρ∗(eρ)

= · · · = �i−1
ρ �

j−1
ρ∗

(
�ρ�ρ∗(eρ)

) + Q,

where Q ∈ MU∗[�ρ�ρ∗(eρ)]. We see that Q is in our subalgebra by Lemma 3.9,

which along with Proposition 3.8 implies that �i−1
ρ �

j−1
ρ∗

(
�ρ�ρ∗(eρ)

) = γ i−1

(γ ∗)j−1
P(C ⊕ ρ). We deduce that �i

ρ�
j
ρ∗(eρ) is in our subalgebra, so that all

additive basis elements for �SF∗ are generated by the classes as stated.
The reduction to the additive basis given in the statement of the theorem, and

thus the proof that relations are complete, is similar to that given in Theorem 3.6.
Given a monomial in γ i(γ ∗)jP(Cn ⊕ρ) and γ i(γ ∗)jP(Cn ⊕ρ∗) we use relation 1
to reduce to monomials in which the operations γ and γ ∗ are applied to only the
projective space of the smallest dimension, and then use relation 2 to reorder the
operations. ��

4. Further directions in geometric bordism

We are led to ask about geometric bordism for unrestricted S1 actions or for actions
by other groups. Bordism which is equivariant with respect to Z/p behaves sim-
ilarly to semi-free bordism, as expected. The Conner-Floyd and tom Dieck exact
sequences are well-known in those cases (indeed, it is for Z/p that these sequences
first appeared in [6] and [7]), and the theories were computed in [11,13,20], though
the description is complicated by the classes which are not restrictions from �SF∗ .
As in Corollary 2.12, these theories fit in a pullback square

�
U,Z/p
∗ −−−−→ F

Z/p
∗



�



�

MU
Z/p
∗ −−−−→ �

Z/p
∗ ,

which follows because the kernels and cokernels of the horizontal maps are the
even and odd degrees, respectively, of MU∗(BZ/p). From this one can recover the
Kosniowski generators from those of [20]. Kriz in [13] gave the first computation of
MU

Z/p
∗ , but the relationship with the Kosniowski generators of geometric bordism

is not clear in Kriz’s approach.
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Less is known about �
U,S1

∗ , but we give a conjectural framework as follows. In
[21], MUS1

∗ was computed, and it has the following prominent features, much as
we have seen for semi-free bordism:

• Basic classes include Euler classes eV and linear actions on projective spaces
Zn,V = [P(Cn ⊕ V )] for all irreducible representations V .

• There is a sequence of inclusions MU∗[eV , Zn,V |n ≥ 2] ⊂ MUS1

∗ ⊂ �∗ =
MU∗[e±1

V , Zn,V |n ≥ 2], where V ranges over all irreducibles.
• There are operations �V such that eV �V (x) = x − βV (x), where βV (x) is

restriction to MU
K(V )
∗ followed by a splitting map back to MUS1

∗ . Here K(V )

is the kernel of V : S1 → C
×. Note that βV is not canonical if V = ρ or ρ∗.

• MUS1

∗ is generated over the operations �V by eV and Zn,V .

There are also the following facts about the geometric theory:

• (Comezaña and Löffler) The Pontryagin-Thom map �S1

∗ → MUS1

∗ is injective.

• Under the inclusion MUS1

∗ → �∗, the geometric theory �
U,S1

∗ maps to F∗ =
MU∗[e−1

V , Zn,V ].

A first important step towards understanding �
U,S1

∗ would be to establish the
analogue of Corollary 2.12, for which there are isolated computations, as well as
Corollary 2.12, as evidence.

Conjecture 4.1. The square

�
U,S1

∗ −−−−→ F∗


�



�

MUS1

∗ −−−−→ �∗

is a pull-back.

This conjecture is likely to be approachable through the families filtration,
perhaps with S1 replaced by Z/(p2) as a starting point. There would be two more
steps needed to parallel our computation of �SF∗ .

Question 4.2. Is there a version of the construction γ for representations other than
ρ and ρ∗? In other words, given some M can one find a manifold which represents
�V (M)?

There is some doubt as to whether such a construction should even exist, given
that embedded in such a construction would be a construction of splitting maps
MU

Z/n
∗ → MUS1

∗ , which are non-canonical and chosen with some effort in [21].
A concrete starting point would be to search for a manifold whose fixed sets are
D(ρ2) crossed with the fixed sets of P(Cn ⊕ρ3) and P(Cn ⊕ρ) with its orientation
reversed.

We should add that even �ρ deserves more attention. For example, what are the
relationships between the equivariant characteristic numbers (in both cohomology
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and K-theory) of M and γ (M)? How might �ρ be used to construct familiar classes
in MU∗? For example, in Proposition 6.5 of [21] we show that (�ρ)k(eρn) form the
coefficients of the n-series.

Finally, to compute �S1

∗ it would be helpful to understand the analogue of
Theorem 1.1, which promises to be much more difficult in the general setting.
Lemma 3.9 that �ρ�ρ∗(eρ) = [P(C ⊕ ρ)] is surprising at first, since Euler clas-
ses seem unrelated to geometric ones. But in fact all manifolds with framed fixed
sets, in particular those with isolated fixed sets, must arise within the description of
MUS1

∗ of [21] as �I (x) where x is a polynomial in eV . These constructions seem
to be the most difficult part of describing geometric classes within the homotopical
setting, so once we proved Theorem 1.1 we knew Theorem 3.10 would be possible.
To provide a framework for such investigation, we make the following.

Conjecture 4.3. Stably complex S1 actions with isolated fixed points up to bordism
are generated by linear actions on projective spaces P(V1 ⊕V2 ⊕· · ·⊕Vk), where
the weights of the Vi are relatively prime.

See Theorem 1.6 of [21] for an example. Taken all together, these questions and
conjectures point to the following.

Conjecture 4.4. �S1
is generated over geometric versions of the operations �V by

linear actions on projective spaces.
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