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COMPUTATIONS OF COMPLEX EQUIVARIANT BORDISM RINGS

By DEV P. SINHA

Abstract. We give explicit computations of the coefficients of homotopical complex equivariant
cobordism theory MUG, when G is abelian. We present a set of generators which is complete for
any abelian group. We present a set of relations which is complete when G is cyclic and which
we conjecture to be complete in general. We proceed by first computing the localization of MUG

obtained by inverting Euler classes of representations. We then define a family of operations which
essentially divide by Euler classes and use these operations to define our generating sets. We give
geometric applications of these computations to the study of equivariant genera, circle actions on
four-manifolds, and cobordism relations between Lens spaces.

1. Introduction. Bordism theory is fundamental in algebraic topology and
its applications. In the early sixties Conner and Floyd introduced equivariant bor-
dism as a powerful tool in the study of transformation groups. In the late sixties,
tom Dieck introduced homotopical bordism in order to refine understanding of
the localization techniques employed by Atiyah, Segal and Singer in index theory.
Despite the many successful computations and applications of bordism theories,
equivariant bordism has been mysterious from a computational point of view,
even for cyclic groups of prime order p (see [14] and [15]).

In this paper we present the first computations of the coefficients of equivari-
ant bordism, for abelian groups. The key constructions are operations on equivari-
ant bordism. Analogs of these operations should play an important role in equiv-
ariant stable homotopy more generally. Our main techniques involve localization
and give some insight into the structure of MUG

� for nilpotent groups. There has
also been recent progress in defining an equivariant version of formal group laws
[5] and trying to prove an equivariant version of Quillen’s theorem which re-
lates the theory of formal group laws to bordism theory [10]. Understanding the
relationship between these approaches and ours should prove fruitful.

We now give a summary of our results. We denote by MUG
� the homotopi-

cal equivariant bordism ring, where G is a compact Lie group. It is defined
analogously to MU� as lim

! V [Sn�V , T(�G
jVj)]

G, where V ranges over isomorphism

classes of complex representations of G, Sn�V is the one-point compactification
of the Whitney sum of C n with trivial G action and V , and T(�G

jVj) is the Thom
space of the universal complex G-bundle. In fact, we may use these Thom spaces
to define an equivariant spectrum as first done by tom Dieck [8] and hence define
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associated equivariant homology and cohomology theories MUG
� (�) and MU�

G(�).
We will carefully make these constructions in Section 3.

Euler classes play fundamental roles in our work. The Euler classes which
are most important for us are those associated to a complex representation of G,
considered as a G-bundle over a point. More explicitly, the Euler class associated
to V is a class eV 2 MUm

G(pt.), where m is the dimension of V over the reals,
represented by the composite S0 ,! SV ! T(�G

jVj), where the second map is
“inclusion of a fiber.” Euler classes multiply by the rule eV � eW = eV�W . In
homological grading eV 2 MUG

�m, so it cannot be in the image of a geometric
bordism class under the Pontrijagin-Thom map if it is nontrivial. If VG = f0g
then eV is nonzero, reflecting the fact that V has no nonzero equivariant sections.
Therefore, the homotopy groups of MUG are not bounded below, a feature which
already distinguishes it from its nonequivariant counterpart.

More familiar classes in MUG
� are those in the image of classes in geometric

bordism under the Pontrijagin-Thom map. Given a stably complex G-manifold M,
let [M] denote the corresponding class in MUG

� . Complex projective spaces give
a rich collection of examples of G-manifolds. Given a complex representation
W of G let P(W) denote the space of complex one-dimensional subspaces of W
with inherited G-action.

The starting point in our work is that after inverting Euler classes, MUG
�

becomes computable by nonequivariant means. That we rely heavily on local-
ization is not surprising because localization techniques have pervaded equivari-
ant topology. Let R0 denote the sub-algebra of MUG

� generated by the eV and
[P(n � V)] = Zn,v as V ranges over nontrivial irreducible representations. Let S
be the multiplicative set in R0 of nontrivial Euler classes. By abuse, denote the
same multiplicative set in MUG

� by S. Then the key first result is the following.

THEOREM 1.1. Let G be nilpotent. The inclusion of R0 into MUG
� becomes an

isomorphism after inverting S.

In other words, we may multiply any class in MUG
� by some Euler class to

get a class in R0 modulo the kernel of the localization map S. We are led to study
divisibility by Euler classes as well as the kernel of this localization map. We
can do so successfully in the case when the group in question is a torus.

Let T be a torus, and let V be a nontrivial irreducible representation of
T . Let K(V) denote the subgroup of T which acts trivially on V . There is a
restriction homorphism (of algebras) resT

H: MUT
� ! MUH

� for any subgroup H.
The restriction of eV to MUK(V)

� is zero, as can be seen using an explicit homotopy.
Remarkably, we have the following.

THEOREM 1.2. The sequence

0 ! MUT
�
�eV! MUT

�

resT
K(V)
! MUK(V)

� ! 0

is exact.
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The injectivity of multiplication by Euler classes and explicit computation of
S�1MUT

� give rise to the following.

THEOREM 1.?. There are inclusions of MU�-algebras

R0 = MU�[ev , Zn,v ] � MUT
� � S�1MUT

� = MU�[e�1
v , Zn,v ],

where V ranges over nontrivial irreducible representations of T and n ranges over
positive integers.

Using the exact sequence of Theorem 1.2, we define operations which are
essentially division by Euler classes. To define these operations we need to split
the restriction maps. The restriction map to the trivial group is called the aug-
mentation map �: MUG

� ! MU�. There is a canonical splitting of this map as
rings which defines an MU�-algebra structure on MUG

� . All of the maps we have
defined so far are in fact maps of MU�-modules. The restriction maps to other
sub-groups are not canonically split, but we do know the following from [17].

THEOREM 1.3. (Comezaña) Let G be abelian. Then MUG
� is a free MU�-module

concentrated in even degrees.

Hence we may fix a splitting sV as MU�-modules of the restriction map
resT

K(V). Unless K(V) is the trivial group, this splitting is noncanonical and is not
a ring homomorphism.

Definition 1.4. Let T and V be as above. Define the MU�-linear operation ΓV

as follows. Let x 2 MUT
� . Then ΓV(x) is the unique class in MUT

� which satisfies

eV � ΓV(x) = x� sV (resT
K(V)x).

For convenience, let �V denote sV � resT
K(V). If I = V1, : : : , Vk is a finite

sequence of nontrivial irreducible representations let ΓI(x) = ΓVkΓVk�1
� � �ΓV1x.

Fix an ordering on the nontrivial irreducible representations of T . Call a finite
sequence of representations admissible if it respects this ordering.

We are now ready to state our main theorem.

THEOREM 1.5. With choices of splittings sV as in Theorem 5.8 below, MUT
� is

generated as an MU�-algebra by the classes ΓI(eV) and ΓI([P(n � V)]), where V
ranges over nontrivial irreducible representations, I ranges over all admissisible
sequences of nontrivial irreducible representations, and n ranges over natural
numbers.

Relations include the following:
(1) eVΓV(x) = x� �V (x),
(2) ΓV(�V(x)) = 0,
(3) ΓV(eV ) = 1,
(4) ΓV(x)y = (x� �V (x))ΓV(y)� ΓV(x)�V(y),
(5) ΓVΓWx = ΓWΓVx� ΓWΓV�W(x)� ΓWΓV(eW�V (ΓWx)),
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where V and W range over nontrivial irreducible representations of T and x and y
are any classes in MUT

� . For T = S1, these relations are complete.

The set of generators given is redundant, as it must be. We may take I above
to range in any set A such that any admissible sequence of representations is the
initial sequence for some sequence in A.

We may recover the structure of MUG
� for any abelian group G by realizing

G as the kernel of an irreducible representation of some torus and using the exact
sequence of Theorem 1.2.

We give both algebraic and geometric applications of our main computation.
For G = S1 and � its standard representation, we present a geometric model
of Γ�([M]). This geometric model allows us to compute the completion map
MUG

� ! (MUG
� )Î , where I is the kernel of the augmentation map from MUG

� to
MU�. The completion theorem of Löffler, as proved by Comezaña and May, states
that for G abelian, (MUG

� )Î
�= MU�(BG), where BG is the classifying space of

G. Hence this completion map gives a connection between equivariant bordism
and any complex-oriented equivariant theory which is defined using a Borel
construction EG �G �. We also give more classically-styled applications to the
understanding of group actions on manifolds. For example, a current topic of
great interest in equivariant cohomology is the investigation of G-manifolds with
isolated fixed points, essentially extending Smith theory. We prove the following.

THEOREM 1.6. Let M be a stably-complex four dimensional S1-manifold with
three isolated fixed points. Then M is equivariantly cobordant to P(1�V �W) for
some distinct nontrivial irreducible representations V and W of S1.

Acknowledgments. The author thanks Gunnar Carlsson for directing him
to this problem and for innumerable helpful comments. He also thanks Haynes
Miller for a close reading of an earlier version of this paper, as well as the referee
for many insightful comments and questions. Thanks also go to Greenlees, Kriz
and May for sharing preprints of their work.

2. Preliminaries. The group G will always be a compact Lie group. All G
actions are assumed to be continuous, and G-actions on manifolds are assumed to
be smooth. For any G-space X, we let XG denote the subspace of X fixed under
the action of G. The space of maps between two G-spaces, which we denote
Maps(X, Y) has a G-action by conjugation. We denote its subspace of G-fixed
maps by MapsG(X, Y). We will often work with based spaces, in which case we
assume that the basepoints are fixed by G. Throughout, EG will be a contractible
space on which G is acting freely, and BG, the classifying space of G, is the
quotient of EG by the action of G.

We will always let V and W be finite-dimensional complex representations
of G. Our G-vector bundles will always have paracompact base spaces, so we
may define a G-invariant inner product on the fibers. The constructions we make
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using such an inner product will be independent of the choice of inner product
up to homotopy. We will use the same notation for a G-bundle over a point as
for the corresponding representation. We let jVj denote the dimension of V as
a complex vector space. The sphere SV is the one-point compactification of V ,
based at 0 if a base point is needed, and the sphere S(V) is the unit sphere in
V with inherited G-action. For a G-vector bundle E, let T(E) denote its Thom
space, which is the cofiber of the unit sphere bundle of E included in the unit
disk bundle of E. Thus for V a representation T(V) = SV .

Let R+(G) denote the monoid (under direct sum) of isomorphism classes of
complex representations of G, and let R(G) denote the associated Grothendieck
ring (where multiplication is given by tensor product). We let Irr(G) denote the
set of isomorphism classes of irreducible complex representations of G, and let
Irr�(G) be the subset of nontrivial irreducible representations. If W =

P
aiVi 2

R(G) where Vi are distinct irreducible representations, let �V(W) for an irreducible
V be aj if V is isomorphic to Vj or zero if V is not isomorphic to any of the Vi.
We let IR(G) be the augmentation ideal of R(G), that is the subgroup of elements
of virtual dimension zero. Recall from the introduction that � is the standard
representation of S1. We will by abuse use � to denote the standard represen-
tation restricted to any subgroup of S1. We use n or C n to denote the trivial
n-dimensional complex representation of a group. We will sometimes think of
representations as group homomorphisms, and talk of their kernels, images, and
so forth. In particular, if W and V are distinct irreducible representations, we say
that W divides V if the kernel of W is contained in the kernel of V . And we say
that V is primitive if there are no irreducible representations which divide it.

We rely on techniques from equivariant stable homotopy theory, as described
in [17]. Let ΩW(X) denote the space of based maps from SW to X. By fixing a
representation U with inner product, of which a countably infinite direct sum of
any representation of G appears as a summand, we define a G-spectrum X to be
a family of spaces XV indexed on subspaces of U equipped with bonding maps,
which are G-homeomorphisms XV ! ΩV?XW for all V � W, where V? is the
complementary subspace of V in W. A G-pre-spectrum is a similarly indexed
family of spaces in which the bonding maps are not required to be homeomor-
phisms. A basic passage from equivariant to ordinary stable homotopy theory is
by taking the fixed-points spectrum. Consider only subspaces V � UG. Then we
may define the fixed-points spectrum XG using the family of spaces (XV)G, where
the bonding maps are restrictions to fixed sets of the given bonding maps.

3. Basic properties of MUG. There are two basic definitions of bordism,
geometric and homotopy theoretic. Equivariantly these two theories are not equiv-
alent, and we will comment on this difference later in this section.

Our main concern is the homotopy theoretic version of complex equivariant
bordism, as first defined by tom Dieck [8]. A good reference for a modern treat-
ment of the foundations of complex equivariant bordism is [17], in particular the
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later chapters. Fix U , a complex representation of which a countably infinite di-
rect sum of any representation of G appears as a summand. If there is ambiguity
possible we specify the group by writing U(G). Let BUG(n) be the Grassmanian
of complex n-dimensional linear subspaces of U . Let �G

n denote the tautological
complex n-plane bundle over BUG(n). As in the nonequivariant setting, the bun-
dle �G

n over BUG(n) serves as a model for the universal complex n-plane bundle.
If V is a complex representation, set �G

V = �G
jVj.

Definition 3.1. We let TUG be the pre-spectrum, indexed on all complex sub-
representations of U , defined by taking the Vth entry to be T(�G

V ) (it suffices to
define entries of a prespectrum only for complex representations). Define the
bonding maps by noting that for V � W in U , letting V? denote the complement
of V in W, we have

SV? ^ T(�G
V ) �= T(V? � �G

V ).

Then use the classifying map

V? � �G
V ! �G

W

to define the corresponding map of Thom spaces. Pass to a spectrum in the usual
way, so that the Vth de-looping is given by

(MUG)V = lim
W�V

ΩV?(T(�G
W)),

to obtain the homotopical equivariant bordism spectrum MUG.

From this spectrum indexed by subspaces of U we may pass to an RO(G)-
graded homology theory MUG

� (�). We will mostly be concerned with the coeffi-
cient ring in integer gradings, which we denote MUG

� . For some arguments, we
will need groups graded by complex representations of G, giving rise to the need
for the following proposition, which is proved in the real setting in chapter 15
of [17].

PROPOSITION 3.2. Let V be a complex representation of G. The group MUG
V (X)

is naturally isomorphic to MUG
2jVj(X).

We prove this proposition after defining the needed multiplicative structure
on MUG. The classifying map of the Whitney sum

�G
V � �G

W ! �G
V�W

gives rise to a map

T(�G
V ) ^ T(�G

W) ! T(�G
V�W),

which defines a multiplication on MUG. The unit element is represented by the
maps SV ! T(�G

V ) induced by passing to Thom spaces the classifying map of V
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viewed as a G-bundle over a point. Thus in the usual way the coefficients MUG
�

form a ring and MUG
� (X) is a module over MUG

� .

Definition 3.3. Let V � U be of dimension n. Then the classifying map
V ! �G

n induces a map of Thom spaces SV ! T(�G
n ), which represents an

element tV 2 MUG
V�2n known as a Thom class.

Proof of Proposition 3.2. We show that the Thom class tV is invertible. The
isomorphism between the groups MUG

V (X) and MUG
2jVj(X) is then given by mul-

tiplication by this Thom class.
The class in MUG

2n�V represented by the map S2n ! T(�G
V ) induced by the

classifying map C n ! �G
V is the multiplicative inverse of tV . The product of this

class with tV is homotopic to the unit map SV�C n
! T(�G

V�C n ).

The most pleasant way to produce classes in MUG
� is from stably complex G-

manifolds. Recall that there is an real analog of BUG(n), which we call BOG(n),
and which is the classifying space for all G-vector bundles.

Definition 3.4. A stably complex G-manifold is a pair (M, � ) where M is
a smooth G-manifold and � is a lift to BUG(n) of the map to BOG(2n) which
classifies TM � V for some real representation V .

We can define bordism equivalence in the usual way to get a geometric
version of equivariant bordism.

Definition 3.5. Let ΩU,G
� denote the ring of stably complex G-manifolds up

to bordism equivalence.

Classes in geometric bordism give rise to classes in homotopical bordism
through the Pontrijagin-Thom construction.

Definition 3.6. Define a map PT: ΩU,G
� ! MUG

� as follows. Choose a rep-
resentative M of a bordism class. Embed M in some sphere SV, avoiding the
basepoint and so that the normal bundle � has a complex structure. Identify the
normal bundle with a tubular neighborhood of M in SV. Define PT([M]) as the
composite

SV c
! T(�)

T( f )
! T(�j�j),

where c is the collapse map which is the identity on � and sends everything
outside � to the basepoint in T(�), and T( f ) is the map on Thom spaces given
rise to by the classifying map � ! �j�j.

The proof of the following theorem translates almost word-for-word from
Thom’s original proof.

THEOREM 3.7. The map PT is a well-defined graded ring homomorphism.
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The Pontrijagin-Thom homomorphism is not an isomorphism equivariantly
as it is in the ordinary setting. But, a theorem of Comezaña, namely Theorem 5.4
in Chapter 28 of [17] states that PT is split injective for abelian groups. The
following classes illustrate the failure of the Pontrijagin-Thom map to be an
isomorphism.

Definition 3.8. Compose the map SV ! T(�G
n ), in Definition 3.3 of the Thom

class with the evident inclusion S0 ! SV to get an element eV 2 MUG
�2n which

is called the Euler class associated to V .

We will see that Euler classes eV associated to representations V such that
VG = f0g are nontrivial. Thus MUG

� is not connective, a feature which already
distinguishes it from ΩU,G

� as well as MU�. The key difference between the
equivariant and ordinary settings is the lack of transversality equivariantly. For
example, if VG = f0g the inclusion of S0 into SV cannot be deformed equivariantly
to be transverse regular to 0 2 SV .

Finally, we introduce maps relating bordism rings for different groups. Recall
that ordinary homotopical bordism MU can be defined using Thom spaces as in
our definition of MUG but without any group action present.

Definition 3.9. Define the augmentation map �: MUG ! MU by forgetting
the G-action on MUG. When G is abelian and H is a subgroup of G define resG

H
to be the map from MUG

� ! MUH
� by restricting the G-action to an H-action.

We need to have G abelian for the map resG
H to be so defined. In the abelian

setting, any complex representation of H extends to a complex representation of
G, so that when its G-action is restricted to an H-action the Thom space T(�G

n )
coincides with T(�H

n ).

Definition 3.10. Define the inclusion map �: MU ! MUG by composing a
map Sn ! T(�n) with the inclusion T(�n) ! T(�G

n ).

On coefficients, � defines an MU�-algebra structure on MUG
� . The kernel of

� on coefficients is called the augmentation ideal. For example, the Euler class
eV is in the augmentation ideal as the map S0 ! SV in its definition is null-
homotopic when forgetting the G-action. On the other hand, � is injective, which
follows from the following proposition which is proved for example at the end
of Chapter 26 of [17].

PROPOSITION 3.11. The composite���: MU ! MU is homotopic to the identity
map.

4. The connection between taking fixed sets and localization. The con-
nection between localization, in the commutative algebraic sense, and “taking
fixed sets” has been a fruitful theme in equivariant topology. We develop this
connection in the setting of bordism in this section.
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The main goal of this section is to prove Theorem 1.1, which we restate here
for convenience. Let R0 denote the MU� sub-algebra of MUG

� generated by the
classes eV and [P(n�V)] as V ranges over nontrivial irreducible representations.
Let S be the multiplicative set in R0 of nontrivial Euler classes.

THEOREM. (Restatement of Theorem 1.1) Let G be nilpotent. The inclusion of
R0 into MUG

� becomes an isomorphism after inverting S.

We prove this theorem by first explicitly computing S�1MUG
� and then com-

puting the images of generators of R0 in S�1MUG
� . We start with the following

lemma, which provides translation between localization and topology. For any
commutative ring R and element e 2 R let R[ 1

e ] denote the localization of R
obtained by inverting e.

LEMMA 4.1. For any G, ]MUG
� (S�1V ) �= MUG

� [ 1
eV

] as rings.

Proof. The left-hand side ]MUG
� (S�1V ) is a ring because S�1V is an H-space

via the equivalence

S�1V ^ S�1V �= S�1V .

To compute the left-hand side, apply ]MUG
� to the identification S�1V = lim

�!
S�nV .

After applying the suspension isomorphisms ]MUG
� (S�kV) �= M̂UG

�+jVj(S
�k+1V ), the

maps in the resulting directed system are multiplication by the eV .

We will see that after inverting Euler classes, equivariant bordism is com-
putable for nilpotent groups. If G is nilpotent, any subgroup is a proper subgroup
of its normalizer (see [13], page 101). Hence all maximal subgroups are normal,
so that any proper subgroup H is contained in a proper normal subgroup N. Thus
for any subgroup H there will be a nontrivial representation of G which is trivial
when restricted to H, namely a nontrivial representation of G=N pulled back to
G. Therefore, if G is nilpotent and fWig are the nontrivial irreducible represen-
tations of G then Z = S�i(�1Wi) has fixed sets ZG = S0 while ZH is contractible
for any H � G. Robert Stong has pointed out to us that for G finite, the only
groups with this property are nilpotent groups.

Our next lemma, taken with Lemma 4.1, establishes the strong link between
localization and taking fixed sets.

LEMMA 4.2. Let X be a finite G-complex and let Z be a G-complex such that
ZG ' S0 and ZH is contractible for any proper subgroup of G. Then the restriction
map

MapsG(X, Y ^ Z) ! Maps(XG, (Y ^ Z)G) = Maps(XG, YG)

is a homotopy equivalence.
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Proof. As shown in Chapter 1 of [17], homotopy extension and lifting prop-
erties hold for G-complexes. Hence, the restriction map is a fibration whose fiber
at a given point is the space of G-maps which are specified on XG. Using the
skeletal filtration of X, we can then filter this mapping space by spaces

MapsG(Dk � G=H, Y ^ Z),

such that the maps are specified on the boundary of Dk � G=H, and where H
is a proper subgroup of G. A standard change-of-groups argument yields that
this mapping space is homeomorphic to Maps(Dk, (Y ^ Z)H), again with the map
specified on the boundary. But (Y ^ Z)H is contractible, and thus so are these
mapping spaces. Thus, the fiber of the restriction map is contractible.

We now translate this lemma to the stable realm. For simplicity, let us suppose
that our G-spectra are indexed over the real representation ring. We can do so
by choosing specific representatives of isomorphism classes of representations.
Let Kn � Kn+1 denote a sequence of representations which eventually contain
all irreducible representations infinitely often and such that Kn

? � Kn+1 contains
precisely one copy of the trivial representation. If G is finite, we can let Kn be
the direct sum of n copies of the regular representation.

Definition 4.3. Let X be a G-prespectrum. We define the geometric fixed sets
spectrum ΦGX by passing from a prespectrum �GX defined as follows. We let
the entry f�GXgn be (XKn)G, the G-fixed set of the Kn-entry of X. The bonding
maps are composites

(XKn)G�!(ΩKn
?

XKn+1)G �! Ω(Kn
?)G(XKn+1)G = Ω(XKn+1)G,

where the first map is a restriction of a bonding map of X, and the second map
is restriction to fixed sets of the loop space.

While the prespectrum �G(X) depends on the choice of filtration K�, the
spectrum ΦGX is independent of this choice.

LEMMA 4.4. Let Z be as in Lemma 4.2. Then for any G-prespectrum X, the
prespectra (X ^ Z)G and ΦGX are homotopy equivalent.

Proof. From the definition of (X ^ Z)G, consider

(ΩW(XW�V ^ Z))G.

Applying Lemma 4.2, the restriction from this mapping space to ΩWG
(XW�V)G

is a homotopy equivalence. Choosing V = Kn, we see that ΩWG
(XW�Kn)G is an

entry of �GX. The bonding maps clearly commute with these restriction to fixed
sets maps, so we have an equivalence of spectra.
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Note that any Z as in Lemma 4.2 is an (equivariant) H-space as Z ^ Z ' Z.
Hence if X is a ring spectrum so is (X ^Z)G. Taking Lemma 4.1 and Lemma 4.4
together, we have the following.

PROPOSITION 4.5. Let G be a nilpotent group and let S be the multiplicative set
of nontrivial Euler classes in MUG

� . As rings S�1MUG
�
�= (ΦGMUG)�.

To compute (ΦGMUG)�, we can use the geometry of Thom spaces. Because
smashing a weak equivalence of prespectra with a complex yields another weak
equivalence, we have Z ^ MUG ' Z ^ TUG as prespectra, where TUG denotes
the equivariant Thom prespectrum and Z is as in Lemma 4.2. Hence,

ΦGMUG ' (Z ^MUG)G ' (Z ^ TUG)G ' ΦGTUG.

As required by the definition of ΦGTUG, we proceed with analysis of fixed-sets
of Thom spaces.

We need the following basic fact about equivariant vector bundles.

PROPOSITION 4.6. Let E be a G-vector bundle over a base space with trivial
G-action X. Then E decomposes as a direct sum

E �=
M

V2Irr(G)

EV ,

where EV
�= eE 
 V for some vector bundle eE.

The following result is due to tom Dieck [8].

LEMMA 4.7. For any compact Lie group G, the G-fixed set of the Thom space
of �G

n is homotopy equivalent to

_
W2R+(G)n

T(�jWGj) ^

0@ Y
V2Irr�(G)

BU(�V(W))

1A
+

,

where we define R+(G)n as the subset of dimension n representations in R+(G),
and we recall that �V(W) is the greatest number m such that �mV appears as a
summand of W.

Proof. The universality of �G
n implies that (BUG(n))G is a classifying space

for n-dimensional complex G-vector bundles over trivial G-spaces. Using Propo-
sition 4.6 we see that this classifying space is weakly equivalent to

a
W2R+(G)n

0@ Y
V2Irr(G)

BU(�V(W))

1A
Over each component of this union, the universal bundle decomposes as �1 � �2,
where �1 is the universal vector bundle over the factor of

Q
BU(n) corresponding
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to the trivial representation. The fixed set �1
G is all of �1 while the fixed set �2

G

is the zero section. The result now follows by passing to Thom spaces.

For convenience, we define the following spectrum.

Definition 4.8. Recall that IR(G) is the augmentation ideal of R(G). Let

IR(G) =
_

W2IR(G)

S2(�1W).

Define a ring spectrum structure on IR(G) by sending the V summand smashed
with the W summand to the V + W summand.

THEOREM 4.9. For any compact Lie group G,

ΦGMUG ' IR(G) ^MU ^

0@ Y
V2Irr�(G)

BU

1A
+

.

Proof. After Lemma 4.7 the proof of this theorem is simply a passage from
prespectra to spectra.

By Lemma 4.7,

(�GTUG)n =
_

W2R+(G)d(n)

T(�jWGj) ^

0@ Y
V2Irr�(G)

BU(�V(W))

1A
+

,

where d(n) is the dimension of Kn in the definition of �G. The bonding maps
respect the wedge summand decomposition, sending the Wth wedge summand to
the W 0th wedge summand, where W � Kn = W 0 � Kn+1 in IR(G) � R(G). Hence,
ΦGTUG splits as a wedge sum of factors indexed by elements of IR(G) defined by
these differences. Moreover, because any representation appears as a summand
of some Kn, each element of IR(G) will appear as an index.

Restricted to each wedge summand, a bonding map of �GTUG is a bonding
map for the prespectrum TU on the T(�jWGj) factor smashed with a standard
inclusion of products of classifying spaces on the (

Q
BU(�V(W)))+ factor. There-

fore, upon passage to spectra each such wedge summand gives rise to a copy of
MU ^ (

Q
V2Irr�(G) BU)+, suspended by a factor of �1(V) where V 2 IR(G) is the

index of the summand in question.
Finally, note that the product on �GTUG arising from the product on TUG

also respects wedge summands. The smash product P = (�GTUG)n ^ (�GTUG)m

splits as

_
V2R+(G)d(n)
W2R+(G)d(m)

T(�jVGj) ^ T(�jWGj) ^

0@ Y
R2Irr�(G)

BU(�R(V))� BU(�R(W))

1A
+

.
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Under the product on �GTUG, the V , Wth summand of P gets mapped to the
V +Wth summand of (�GTUG)m+n by the smash product of the multiplication map
T(�k) ^ T(�l) ! T(�k+l) which defines the product on TU with the multiplication
maps BU(r)+ ^ BU(s)+ ! BU(r + s)+ which are defined through classifying the
Whitney sum of vector bundles.

For a nontrivial irreducible representation V , let fV be the map from C Pk

mapping to
Q

W2Irr�(G) BU by the canonical inclusion to BU(1) � BU on the Vth
factor and by the trivial map on the other factors. Define Yi,V to be the class
in �2i�jVj((

W
W�jWj2IR(G)

S�jWj) ^ MU ^
Q

W2Irr�(G) BU)+) represented by C P i�1

mapped to
Q

W2Irr�(G) BU by fV . By abuse of notation, let Yi,V also denote the
image of this class in �2i(ΦGMUG) under the standard inclusion of a wedge
summand.

We may now complete the central computation of this section.

THEOREM 4.10. The ring (ΦGMUG)� is a Laurent algebra tensored with a poly-
nomial algebra as follows:

(ΦGMUG)� �= MU�

h
e�1

V , Yi,V

i
.

Here V ranges over irreducible representations of G, i ranges over the positive
integers, where as indicated by notation eV is the image of the Euler class eV 2 MUG

�

under the canonical map to the localization and where Yi,V are as above.

Proof. This theorem is straightforward computation after Theorem 4.9. We
use the well-known computation MU�(BU) �= MU�[Yi] as rings, where Yi is
represented by C P i mapping to BU via its inclusion into BU(1), which is standard
as in [1]. Because MU�(BU) is a free MU�-module, it follows from the Künneth
theorem that MU�(

Q
Irr�(G) BU) is a polynomial algebra as well.

Next let �V 2 ��(IR(G)) be the generator on the V � jVjth summand of

IR(G). Then MU�(IR(G)) �= MU�[�V , ��1
V ], so that by a simple application of the

Künneth theorem, (ΦGMUG)� is the tensor product of a Laurent algebra and a
polynomial algebra as stated. To finish the computation, note that under the map
from MUG to ΦGMUG the Euler class eV maps to the �V smashed with the unit
in MU�(

Q
Irr�(G) BU).

We have shown the intimate relation between localization and taking fixed
sets for homotopical equivariant bordism. We will also need the following geo-
metric point of view, which dates back to Conner and Floyd.

PROPOSITION 4.11. Let M be a stably complex G-manifold. The normal bundle
� of MG in M is a stably complex vector bundle.

Proof. Let � be a complex G-bundle over M whose underlying real bundle is
TM�V , as given by the stably complex G-structure of M. Then by Proposition 4.6,
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�jMG decomposes as a complex G-bundle

�jMG
�= �1 �

M
�2Irr0(G)

��,

where �1 has trivial G-action. But we can identify �1 as having underlying real
bundle equal to TMG �VG. So the direct sum of the normal bundle � with some
trivial bundles underlies V=VGL

�2Irr�(G) ��, which gives � the desired stable
complex structure.

Definition 4.12. Let

F� =
M

W2R+(G)

MU��jWj

0@ Y
V2Irr�(G)

BU

1A .

Define the homomorphism ': ΩU,G
� ! F� as sending a class [M] 2 ΩU,G

n to the
class represented by MG with reference map which classifies its normal bundle.

This geometric picture of taking fixed sets of G-actions on manifolds fits
nicely with the homotopy theoretic picture we have been developing so far.

PROPOSITION 4.13. (tom Dieck) The following diagram commutes

ΩU,G
�

'
���! F�??yPT

??yi

MUG
�

�
���! (ΦGMUG)�,

where i is the inclusion map which sends the summand indexed by W 2 R+(G) in
F� to the summand indexed by W � jWj 2 IR(G) in (ΦGMUG)�.

We may now compute the images of geometric classes in MUG
� under local-

ization by geometric means.

PROPOSITION 4.14. Let V be an irreducible representation of G. The image of
[P(n � V)] in (ΦGMUG)� is Yn,V + X, where X is (eV�)�n if V is one-dimensional,
and X is zero otherwise.

Proof. We use homogeneous coordinates on P(n � V) respecting the direct
sum decomposition of n � V . There are two possible components of the fixed
sets. The points whose coordinates “in V” are zero, constitute a fixed C Pn�1 ,
whose normal bundle is the tautological line bundle over C Pn�1 whereon each
fiber is isomorphic to V as a representation of G. As a class in (ΦGMUG)�, this
manifold with reference map to

Q
Irr�(G) BU represents Yn,V . Alternately, when all

other coordinates are zero the resulting submanifold is the space of lines in V ,
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which is an isolated fixed point when V is one-dimensional and is a projective
space with no fixed points, as V has no nontrivial invariant subspaces, when V
has higher dimension. As a class in (ΦGMUG)�, an isolated fixed point whose
normal bundle is �Wi represents the class

Q
e�1

Wi
.

The following corollary now follows from Proposition 4.5 and Theorem 4.10
as well as the previous theorem.

COROLLARY 4.15. S�1MUT
�
�= MU�[e�1

V , Zi,V ] where Zi,V is the image under
localization of [P(i � V)].

Now recall that R0 is the sub-algebra of MUG
� generated by classes eV and

[P(n � V)]. Its image in S�1MUT
� along with inverses of Euler classes clearly

generate S�1MUT
� , so we have established Theorem 1.1.

5. Computation of MUG
� . By Theorem 1.1, for nilpotent groups G any

x 2 MUG
� can be multiplied by an Euler class to get a class in R0 modulo the

annihilator of some Euler class. Our plan, which we carry out for abelian groups,
is to build MUG

� from R0 by division by Euler classes. We are faced with two
questions: “when can one divide by an Euler class?” and “what are annhilators
of Euler classes?”

We now answer both of these questions for any abelian group. Recall that for
an irreducible representation V , K(V) is the subgroup of T which acts trivially
on V .

THEOREM 5.1. Let G be an abelian group and V a nontrivial irreducible rep-
resentation of G. The sequence

MUG
�
�aV! MUG

�
�eV! MUG

�

resG
K(V)
! MUK(V)

� ! 0

is exact, where aV is zero if S(V)=G is a point and is the class defined as the
composite

SV ! SV=G �= S2 1
! MUG

otherwise.

Note that Theorem 1.2 is just the case of this theorem in which G is a torus,
in which case aV is always zero.

Proof. We construct and analyze the appropriate Gysin sequence.

Apply ]MUG
�

to the cofiber sequence S(V)+
i
! S0 j

! SV to get the long exact
sequence

� � � !]MUG
n
(SV )

j�
! MUG

n i�
! MUn

G(S(V)) �
!]MUG

n+1
(SV ) ! � � � .
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As MUG has suspension isomorphisms for any representation, ]MUG
n
(SV ) �=

MUn�V
G . By Proposition 3.2, MUn�V

G
�= MUn�2

G . The map j� is by definition
multiplication by eV .

To compute MUn
G(S(V)), we note that for a nontrivial irreducible representa-

tion V of an abelian group S(V) is a free G=K(V) space with G action defined
through the projection G ! G=K(V). Hence the G-maps from S(V) to MUG are
in one-to-one correspondence with maps from S(V)=G, which is homeomorphic
to either S1 or a point, to the K(V)-fixed set of MUG, which is homeomorphic to
the K(V)-fixed set of MUK(V). We deduce that MUn

G(S(V)) �= MUn
K(V)(S(V)=G).

By Comezaña’s theorem (Theorem 1.3), both MU�
G and MU�

K(V) are concen-
trated in even degrees. Hence i� is surjective. In even degrees, MUn

K(V)(S(V)=G)
coincides with MUn

K(V)) and i� is the restriction map.
In odd degrees, we have that MU2k+1

K(V)(S(V)=G) is zero if S(V)=G is a point
and is isomorphic to MU2k

K(V) if S(V)=G is homeomorphic to S1. To understand
the boundary homomorphism we look at the Barratt-Puppe sequence, and hence
the map SV ! SV=S0. Under the isomorphisms

MU2k
K(V)

�= gMU
2k+1
K(V)(S

1
+) �= gMU

2k+1
G (S(V)+) �= gMU

2k+2
G (SV=S0),

any class in MU2k
K(V) corresponds to a class in gMU

2k+2
G (SV=S0) which when pulled

back to SV is a composite with the map SV ! SV=G, and thus is divisible by
aV . Because the kernel of multiplication is an ideal, the image of the boundary
homomorphism must be the ideal generated by aV .

COROLLARY 5.2. Let T be a torus. The canonical map from MUT
� to S�1MUT

�

is injective.

Theorem 1.? follows immediately from this and Corollary 4.15. We also have
the following:

COROLLARY 5.3. MUT
� is a domain.

Remark. For G finite, the sub-ring of MUG
� generated by all aV is the image

of the unit map �G
0 ! MUG

0 , isomorphic to the Burnside ring. Geometrically, aV

is represented by the G-set (zero-dimensional G-manifold) G=K(V).

Remark. Let T = S1 and �
n be the nth tensor power of the standard represen-
tation. There is a general construction in unstable equivariant homotopy theory
which reflects the fact that, by Theorem 1.2, the kernel of the restriction map
from MUS1

to MUZ=n is principal, generated by e�
n .
Let f : X ! Y be an S1-equivariant map of based spaces which is null-

homotopic upon restricting the action to Z=n. Let F: X � I ! Y be a null-
homotopy. Construct an S1-equivariant map fΣ(F): X � I � S1 ! Y , where the S1
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action on itself is through the degree n map, by sending

(x, t, �) 7! � � F(��1 � x, t).

This map passes to the quotient

X � I � S1=
�
fX � 0� S1g [ fX � 1� S1g [ f� � I � S1g

�
,

which is S�

n
^X. When restricted to S0 ^X � S�


n
^X this map coincides with

the original f , and thus gives a “quotient” of f by the class S0 ,! S�

n

.

As in the introduction, let sV be a splitting of resK(V) as a map of MU�-
modules. Let �V = sV � resK(V). For any x 2 MUT

n let ΓV(x) be the unique class in
MUT

n+2 such that eV � ΓV(x) = x � �V (x). The existence and uniqueness of ΓV(x)
follow from Theorem 1.2 and the fact that x � �V(x) is in the kernel of resK(V).
Both �V and ΓV depend on our choice of splitting sV , but we will suppress this
dependence from notation. If I = V1, � � � , Vk is a finite sequence of nontrivial
irreducible representations let ΓI(x) = ΓVkΓVk�1

� � �ΓV1x. These operations ΓV

give rise to a filtration of MUT
� .

Fix an ordering on the nontrivial irreducible representations of T . For T = S1,
we choose an ordering in which �
n is less than �
m if jnj < jmj. Call a finite
sequence of representations admissible if it respects this ordering. Let #I be the
number of representations in the sequence I.

Definition 5.4. Let Ri be the sub-module of MUT
� generated by all ΓI(y)

where y 2 R0 and I is admissible with #I � i.

LEMMA 5.5. For any choice of splittings sV , and hence of operations ΓV, the
filtration by Ri exhausts MUT

� .

Proof. By Theorem 4.10, any class in MUT
� can be multiplied by an Euler

class to give a class in R0 modulo the kernel of the canonical map from MUT
�

to S�1MUT
� , where S is the multiplicative set of nontrivial Euler classes. By

Theorem 1.2, multiplication by an Euler class is injective, so it follows that the
map to S�1MUT

� is injective. Hence, for any x 2 MUT
� there is some Euler class

eW such that x � eW = y 2 R0. It follows that x = ΓI(y), where I is such that
W =

L
Vi2I Vi. We may choose the Vi to be in any order, in particular so that I

is admissible.

An alternate characterization of Ri is as the sub-module generated by all
x 2 MUT

� such that (
Q

eWj)x 2 R0 for some product of fewer than or equal

to i Euler classes eWj . Let Ri � S�1MUT
�
�= MU�[e�1

V , Zi,V ] be the sub-module
generated by x such that (

Q
eWj)x 2 MU�[eV , Zi,V ], that is to say that (

Q
eWj)x is

in the image of R0 under the localization map. Alternately, Ri is the sub-module
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generated by monomials in which, in reduced form, at most i inverted Euler
classes appear. The fact that the map from MUT

� to S�1MUT
� is injective leads to

the following.

PROPOSITION 5.6. Some x 2 MUT
� is in Ri if and only if its image in S�1MUT

�

is in Ri.

It is clear that the operations ΓV play a central role in equivariant bordism. In
order to understand them better, we make refined choices of the splittings �V . We
first decompose MUT

� in a way which will be convenient for choosing these split-
tings. Recall that if W and V are distinct irreducible representations, we say that W
divides V if the kernel of W is contained in the kernel of V , and that an irreducible
representation is primitive if there are no other representations which divide it.

LEMMA 5.7. Let T be a torus, V be an irreducible representation of T and G
be the kernel of V. Then MUT

�
�= I � AV

� as MU�-modules, where I is the ideal
generated by eV when V is primitive and is the ideal generated by all ΓW(eV) for W
which divide V otherwise, and AV

� is a sub-algebra which is isomorphic to MUT
� =I.

Moreover, the restriction map gives rise to an isomorphism from AV
� to its image,

which is a split summand of MUG
� .

Proof. Our starting point is that while the restriction map from MUT
� to MUG

�

cannot be split multiplicatively, the corresponding map from eS�1MUT
� to S�1MUG

�

can be split multiplicatively when S is the multiplicative set of all (nonzero) Euler
classes in MUG

� and eS is the multiplicative set of all Euler-classes in MUT
� which

restrict to nonzero classes in MUG
� .

Recall that by Corollary 4.15, S�1MUG
� is isomorphic to MU�[e�1

W , Zi,W ]
where W ranges over irreducible representations of G. We claim that eS�1MUT

�

has a sub-algebra isomorphic to MU�[e�1
V , Zi,V ] where V ranges over irreducible

representations which restrict nontrivially to G, and on this sub-algebra the restric-
tion map is simply restriction of the indexing representations to G. The class Zi,V

is the image of [P(i�V)] in this localization. The fact that there are no relations
involving the classes eV and Zi,V follows from the same fact about their images in
the localization obtained by inverting all nontrivial Euler classes in MUT

� , which
we get from Proposition 4.14. Moreover, Zi,V maps to Zi,resG(V) under restric-
tion. Hence, we may split this restriction map multiplicatively by choosing lifts
of nontrivial irreducible representations of G. For T = S1, G = Z=n, we make
this choice of lifts definite, taking �
i for 0 < i < n as the set of lifts of the
representations.

Now consider the following commutative diagram:

MUT
�

�T
���! eS�1MUT

�??yr S�1r

??y
J = (faWg) ���! MUG

�

�G
���! S�1MUG

� ,
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where W ranges over representations of G, aW is as in Theorem 5.1, and the rows
are exact by Theorem 5.1. As we just remarked, S�1r can be split multiplicatively.
Let us call a splitting s. Let P = ��1

T � s ��G � r, where by abuse of notation ��1
T

is the inverse of the isomorphism from MUT
� to its image in eS�1MUT

� . Note that
P is a ring homomorphism. Because �G � r � ��1

T � s is the identity on the image
of �G, P is idempotent. The image of P in MUT

� is isomorphic to the image of
the map �G, which by Theorem 5.1 is MUG

� =J, where J is is the ideal generated
by the classes aW . Because the restriction map from MUT

� is surjective, MUG
� =J

is isomorphic to MUT
� modulo the preimage of J, which is I. By setting AV

� to be
the image of P, the decomposition of MUT

� by P gives the stated decomposition.
We may decompose MUG

� in a similar way, through the idempotent map
r ���1

T � s ��G, as r(AV
� )� I. The inverse of the map from AV

� to its image under
r is simply ��1

T � s � �G.

THEOREM 5.8. With notation as in Lemma 5.7, the map �V may be chosen to
be multiplicative on AV

� and in fact on the internal direct sum AV
� � (MUT

� � eV ).
Moreover, it may be chosen to send any xΓW(eV) to �W(x)ΓW(eV), respecting the
filtration by Ri.

Proof. That �V may be chosen to be multiplicative on AV
� follows from the

fact that, by Lemma 5.7, AV
� maps isomorphically to its image under r, which is a

split summand of MUG
� . We may choose sV to be the inverse to this isomorphism

on r(AV
� ). With such an sV , �V is multiplicative on A� or in fact on A��(MUT

� �eV),
as eV maps to zero under r.

Next we show that �V sends AV
� \ Ri to itself. Let ΓI(y) 2 AV

� for some
admissible I with #I � i and y 2 R0. By Proposition 5.6, x 2 Ri if and only if its
image in S�1MUT

�
�= MU�[e�1

V , Zi,V ] has less than or equal to i negative powers
of Euler classes occurring in each monomial which appears. For �V(ΓI(x)), the
number of negative powers of Euler classes which appear are bounded by the
number for ΓI(x), which is i.

We must now choose �V on I. Note that in MUG
� , ΓW(eV ) annihilates eW , so

that

r(xΓW(eV)) = r(�W(x)ΓW(eV)).

Hence, we may choose �V (xΓW(eV )) to be �W(x)ΓW(eV). With this choice, �V

respects the filtration by Ri when �W does for all W which divide V . By induction,
it suffices to show that �W preserves the filtration for primitive W, which means
that the kernel of W is a torus. But in this case AW

� � (MUT
� � eW ) is all of MUT

� ,
so this follows from what we have shown for AW

� .

COROLLARY 5.9. With choice of �V as in Theorem 5.8, ΓV(x �ΓW(eV)) = ΓW(x).

Proof. We have �V (x � ΓW(eV )) = �W (x)ΓW(eV) so that

ΓV(x � ΓW(eV)) = ΓV((x� �W (x))ΓW(eV)),
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where (x � �W(x))ΓW(eV) is divisible by eV . But by calculating their images in
S�1MUT

� we can see that ΓV((x� �W (x))ΓW(eV)) and ΓW(x) are equal.

Remark. Note that it is not possible to split the restriction map multiplicatively
on all of MUG

� , as in MUG
� there is the relation aW � eW = 0, but this relation

cannot be lifted to MUT
� , which is a domain by Corollary 5.3.

We are now ready to prove our main theorem.

THEOREM. (Restatement of Theorem 1.5) With a choice of splitting sV as
in Theorem 5.8, MUT

� is generated as an MU�-algebra by the classes ΓI(eV)
and ΓI([P(n � V)]), where V ranges over nontrivial irreducible representations, I
ranges over all admissisible sequences of nontrivial irreducible representations,
and n ranges over natural numbers. Relations include the following:

(1) eVΓV(x) = x� �V (x),
(2) ΓV(�V(x)) = 0,
(3) ΓV(eV ) = 1,
(4) ΓV(x)y = (x� �V (x))ΓV(y)� ΓV(x)�V(y),
(5) ΓVΓWx = ΓWΓVx� ΓWΓV�W (x)� ΓWΓV(eW�V (ΓWx)),

where V and W range over nontrivial irreducible representations of T and x and
y are any classes in MUT

� . For T = S1, these relations are complete.

Proof. Let Ci be the set consisting of ΓI(eV) and ΓI([P(n � V)]) where I
ranges over admissible sequences of length less than or equal to i. We will show
by induction that Ri is contained in the sub-algebra generated by Ci. Passing to
limits, we will have that C =

S
Ci is a generating set for MUT

� as stated. We will
inductively prove two statements:

(1) Ri is contained in the sub-algebra generated by Ci.
(2) For any x, y 2 Ri�1 and V irreducible, we may choose the splitting sV so

that ΓV(�V(x)�V(y)) 2 Ri.
Both of our induction statements are immediately true for i = 0. For each i

we will prove both of these statements through a separate induction on V , for
which we need to replace the first statement by the following, which is equivalent
for i > 0.

(1) For any x in Ri�1 and any irreducible V , ΓV(x) is in the sub-algebra
generated by Ci.

The logic of our induction on V with i fixed is that for every V for which
(2) is true, we will show (1) holds. And for every V such that (1) holds for all
W which divide V , we will show (2) is true. It will follow, after establishing the
induction steps and showing (2) is true for any primitive V , that both statements
are true for all V .

If V is primitive, then the map �V is in fact multiplicative by Theorem 5.8,
so that ΓV(�V(x)�V(y)) = ΓV(�V(xy)) = 0. Hence, the second statement is imme-
diately true for primitive V .
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For the inductive proof of statement (1), consider ΓI(y) where y 2 R0 is
a monomial in the elements of C0 and I = V1, � � � , Vk. By definition, ΓI(y) =
ΓV1(ΓI0(y)) where I0 = V2, � � � , Vk. By the induction hypothesis, ΓI0(y) is in the
sub-algebra generated by Ci�1. Namely ΓI0(y) is a sum of terms of the formQn

i=1 ΓJi(zi) where zi 2 C0, #J � k � 1, and all of the representations which
appear in some Ji are less than V1 in our ordering (because in fact they must be
in I0). By linearity of ΓV1 , it suffices to show the following:

(1) ΓV1(
Qn

i=1 ΓJi(zi)) is in the sub-algebra generated by Ci for any zi and Ji

as above.
We prove this claim by induction on n, with the case n = 1 being immediate.
First note that for any V , as can be verified by multiplying by eV ,

ΓV(xy) = ΓV(x)y + �V (x)ΓV(y) + ΓV(�V (x)�V(y)).

Hence we compute

ΓV1

 
nY

i=1

ΓJi(zi)

!
= ΓV1(ΓJ1(z1) � X) where X =

nY
i=2

ΓJi(zi)

= ΓV1(ΓJ1(z1))X � �V1(ΓJ1(z1))ΓV1(X)

� ΓV1

�
�V1 (ΓJ1(z1))�V1(X)

�
.

Now we check that ΓV1(ΓJ1(z1)) is in Ci by definition. X is in the sub-algebra
generated by Ci�1 and hence by Ci. As ΓJ1(z1) is in the sub-algebra generated
by Ci�1 so is �V1(ΓJ1(z1)), by Theorem 5.8. We have ΓV1(X) is in the sub-
algebra generated by Ci by induction on n, and ΓV1

�
�V1 (ΓJ1(z1))�V1(X)

�
is in the

sub-algebra generated by Ci by the second induction hypothesis for V1. Hence,
ΓV1

�Qn
i=1 ΓJi(zi)

�
is in the sub-algebra generated by Ci as claimed.

Next, we prove statement (2), inductively assuming statement (1) for any W
whose kernel is contained in that of V . First note that since �V(�V(x)�V(y)) =
�V(xy), we have

ΓV(�V(x)�V(y)) = ΓV(�V(x)�V(y)� �V (xy)),

so the fact that ΓV(�V(x)�V(y)) may be nonzero arises from the failure of �V to be
multiplicative. Hence we decompose x and y each as a+beV +ΣcWΓW(eV), where
a 2 AV

� \ Ri�1 and cW 2 Ri�1. Because �V is multiplicative on A� � (MUT
� � eV )

and is linear in general it suffices to consider x = cΓW(eV ). But in this case we
may proceed directly, as

ΓV(�V(x)�V(y)) = ΓV(�V(cΓW(eV))�V(y))

= ΓV(�W(c)ΓW(eV )�V(y)), by Theorem 5.8

= ΓW(�W(c)�V(y)), by Corollary 5.9,
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and ΓW(�W(c)�V(y)) is in Ri by inductive assumption. This computation con-
cludes the inductive argument that C is a complete set of generators.

Next we note that the relations are readily verifiable. Relation (1) holds by
definition. And we may use the fact that multiplication by nontrivial Euler classes
is a monomorphism to verify relations (2), (3) and (4) by multiplying them by eV ,
and (5) by multiplying it by eVeW . For T = S1 we claim that these relations are
complete. To show this, we first exhibit an additive basis for MUS1

� . Define the
isotropy group of an element x 2 MUT

� to be the largest subgroup H of T such
that the restriction of x to MUH

� is in the image of MU�. Choose an ordering on
C0 with x < y if the isotropy groups of x and y are Z=n and Z=m, respectively,
and n < m. We show that an additive basis for MUS1

� is given by monomials of
the form m = ΓI(z1)z2 � � � zk, where zi 2 C0, I is admissible, z1 is greater than all
other zi in the ordering above, and if some zj = eW then W =2 I. The fact that
these monomials m are linearly independent over MU� follows by checking the
same fact for their images in S�1MUT

� , which is straightforward. Hence, we are
left to show that our relations suffice to reduce to this basis.

Let M be the set of all monomials built from our generating set C. Let
m = ΓI1(z1) � � �ΓIk (zk) be an element of M. We will use relation (4) to reduce m
to a sum of monomials each of which will have only one nontrivial ΓI appearing,
using relation (5) to reduce further so that this I is in appropriate order. The
difficulty is capturing the sense in which relation (4) can be used to simplify
such a monomial m. To do this we define a partial ordering on M. Let m be
as above and let n = ΓJ1(w1) � � �ΓJl(wl). For convenience, if I is a k-tuple of
nontrivial representations of S1, namely �
n1 , � � � , �
nk we set v(I) = Σjnij. We
say m � n if the following hold.

� k � l.
� After permuting indices, zi is less than or equal to wi in our ordering on

C0 and moreover the dimension of zi is less than or equal to that of wi as a class
in MUT

� .
� Σv(Ii) < Σv(Ji), where i ranges over all indices except that of the zi

(respectively wi) which is maximal in our ordering on C0.
Now we establish the fact that we can reduce any monomial in M to a sum

of monomials for each of which only one nontrivial ΓI appears, and the element
of C0 on which it operates is maximal with respect to our ordering on C0. First
note that for any m 2 M there are only finitely many monomials which are less
than m in our partial ordering �. Secondly, suppose m = ΓI(z)ΓJ(w)m0 where z
is maximal in our ordering on C0, J = W1, � � �Wl is nontrivial, and m0 is some
monomial in M. Let J0 = W2, � � �Wl. Applying relation (4), we have

ΓI(z)ΓW1(ΓJ0(w))m0 =
�
(ΓJ0(w)� �W1(ΓJ0(w))ΓW1ΓI(z)� �W1(ΓI(z))ΓJ(w)

�
m0.

In order to have monomials in M, we must apply relation (5) to ΓW1ΓI(z), as
W1, V1, � � �Vk is not necessarily admissible. These monomials are all less than m in
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the ordering �. We may apply this procedure whenever there is any nontrivial ΓI

applied to a nonmaximal element of a monomial. Because there are only finitely
many monomials less than a given one under � this process will terminate.

Finally, note that once we have a monomial in the form ΓI(z0)z1 � � � zk, where
z0 is maximal there still may be some V such that V 2 I and zi = eV for some i.
We may use relation (5) to rearrange the order of I temporarily so that V is the
first representation in I. Then we may use relation (5) to reduce to monomials in
which the eV does not occur, and use (5) once again to restore admissibility.

Remark. For the reduction procedure to show that the relations for T = S1

are complete, it is crucial to have an ordering on monomials such that for any
V , �V (m) is either equal to m or is strictly less than m. Hence this reduction
procedure does not extend immediately to higher rank tori.

6. The completion map and a construction of Conner and Floyd. From
our computations, it is clear that the structure of MUG

� is governed by the op-
erations ΓV . We call these operations Conner-Floyd operations because in the
special case in which G = S1, V = � the standard representation, and [M] is a
geometric class, there is a construction of Γ�([M]), which dates back to work of
Conner and Floyd.

Definition 6.1. Define 
(M) for any stably complex S1-manifold to be the
stably complex manifold


(M) = M �S1 S3 t (�M)� P(1 � �)

where S3 has the standard Hopf S1-action, �M is the S1-manifold obtained from
M by imposing a trivial action on M and taking the opposite orientation, and the
S1-action on M �S1 S3 is given by

� � [m, z1, z2] = [� � m, z1, �z2] .(1)

Inductively define 
i(M) to be 
(
i�1(M)), where 
0(M) = M.

PROPOSITION 6.2. Let � be the standard representation of S1. And let M be a
stably complex S1-manifold. Then Γ�[M] = [
(M)] in MUS1

�

Proof. As the localization map is injective it suffices to check the equality in
S�1MUS1

� . By Proposition 4.13 we can compute the image of [M], [M�P(1��)]
and [Γ(M)] in the localization at a full set of Euler classes by computing fixed
sets with normal bundle data.

There are two types of fixed sets of Γ(M). To describe these, we refer to
equation (1) above. One set of fixed points of Γ(M) are points [m, z1, z2] such
that m is fixed in M and z2 = 0. This fixed set is diffeomorphic to MG, and its
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normal bundle is the normal bundle of MG in M crossed with the representation
�. In the localization, crossing with � coincides with multiplying by e�1

� . The
second set of fixed points are [m, z1, z2] such that z1 = 0. This set of fixed points
is diffeomorphic to M, and its normal bundle is the trivial bundle ��1.

Hence, if x 2 (ΦS1
MUS1

)� is the image of [M], then the image of [Γ(M)]
is xe�1

� + [M]e�1
��1 . By subtracting the image of [M � P(1 � �)] we are left with

xe�1
� � [M]e�1

� , which by definition is the image of Γ�([M]). The result follows

as the map from MUS1

� to (ΦS1
MUS1

)� is injective.

This geometric construction of a single Conner-Floyd operation gives us an
explicit understanding of the most important representation of MUT

� , namely the
map from MUT

� to its completion at its augmentation ideal. As a special case of
Theorem 1.2, we know that the augmentation ideal of MUS1

� is principal, gener-
ated by e�. Because the augmentation map is split and multiplication by e� is a
monomorphism, the completion of MUS1

� at its augmentation ideal is a power se-
ries ring over MU� where e� maps to the power series variable under completion.
As an immediate consequence of Proposition 6.2 we have the following.

THEOREM 6.3. Let [M] be class in MUS1

� which is the image under the Pontrijagin-
Thom map of the class in geometric bordism represented by the complex S1-manifold
M. The image of [M] under the map from MUS1

� to its completion at its augmentation
ideal, which is isomorphic to MU�[[x]], is the power series

[�(M)] + [�(
(M))]x + [�(
2(M))]x2 + � � � ,

where �(
i(M)) is the manifold obtained from 
i(M) simply by forgetting the G-
action.

Understanding this completion map for geometric classes is important for
some geometric applications. For example, let � be a genus, that is a ring homo-
morphism from MU� to some ring E�. For an extensive introduction to genera,
see [18]. For G = S1, we may extend � to an equivariant genus ΩU,G

� ! E�[[x]],
by taking the image of a class [M] under completion, namely f 2 (MUS1

� )Î
�=

MU�[[x]], and applying � term-wise.
A genus � is strongly multiplicative if for any fiber bundle of stably complex

manifolds F ! E ! B, �(E) = �(F) � �(B). The following theorem is a starting
point in the study of genera, saying essentially that strongly multiplicative genera
are rigid when extended to equivariant genera as above.

THEOREM 6.4. Let �be a strongly multiplicative genus. Then for any class [M] 2
ΩU,S1

� , the equivariant extension �([M]) is equal to �([�(M)]) 2 E� � E�[[x]].

Proof. By Theorem 6.3 the image of [M] under completion is

[�(M)] + [�(
(M))]x + [�(
2(M))]x2 + � � � .
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For any X 2 ΩU,S1

� we have that �([�(
(X))] = 0 because � is strongly multi-
plicative and by definition 
(X) is the difference between a twisted product and
a trivial product of X and C P1 .

Returning to computation of the completion map on MUT
� , we now focus on

Euler classes.

PROPOSITION 6.5. The image of the Euler class e�
n in the completion (MUS1

� )Î
is [n]Fx, the n-series in the formal group law over MU�.

Proof. As the map from MUG
� to its completion is a map of complex-oriented

equivariant cohomology theories, the Euler class of the bundle V over a point gets
mapped to the Euler class of V�G EG over BG. For G = S1, V = �
n the resulting
bundle is the nth-tensor power of the tautological bundle over BS1 , whose Euler
class is by definition the n-series.

We are now ready to state our theorem about the image of the completion
map for MUT

� . When T = (S1)k, the completion of MUT
� at its augmentation ideal

is isomorphic to MU�[[x1, � � � xk]].

Definition 6.6. Let Yn(x) 2 MU�[[x]] be the image of the class [P(n � �)]
under the completion map.

THEOREM 6.7. Let E be the set of all series

[m1]Fx1 +F � � � +F [mk]Fxk 2 MU�[[x1, � � � xk]].

The image of MUT
� in its completion at the augmentation ideal is contained in the

minimal sub-ring A of MU�[[x1, � � � , xk]] which satisfies the following two proper-
ties:

� E � A, and A contains the series Yi( f ) where f 2 E and Yi( f ) are defined
above.

� If �f 2 A then � 2 A, for any f 2 E.

We can recover the image of MUG
� in its completion at the augmentation

ideal for general G by reducing MU�[[xi]] modulo the ideal ([di]Fxi), where di

are the orders of the cyclic factors of G.

Proof. The first condition on A says that the image contains all images of
classes in R0. Indeed, E is the image of the Euler classes. We check that the
image of [P(i � �
n)] in (MUS1

� )Î is Yi([n]Fx), which follows from the fact that
the S1 action on [P(i��
n)] is pulled back from the S1 action on [P(i��)] by the
degree n homomorphism from S1 to itself. By Theorem 4.10 we may build any
class in MUT

� by dividing classes in R0 by Euler classes. The second condition
on A accounts for all possible quotients by Euler classes in the image.
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Suppose f = a0 + a1x + a2x2 + � � � is the image of x 2 MUS1

� under completion.
Then the image of Γ�(x) under completion is that a1 + a2x + a3x2 + � � � is in the
image. More generally, any ai + ai+1x + � � � is in the image of the completion map.
So the property of a series being in the image of the completion map depends
only on the tail of the series. It would be interesting to find an “analytic” way to
define this image.

7. Applications and further remarks. In this section we give an assort-
ment of applications and indicate directions for further inquiry.

Our first application is in answer to a question posed by Bott. Suppose a
group acts on a manifold compatible with a stably complex structure and that the
fixed points of the action are isolated. What can one say about the representations
which appear as tangent spaces to the fixed points? If there are only two fixed
points, the representations must be dual, which one can prove by Atiyah-Bott
localization. What happens for three or more fixed points is an active area of
inquiry in equivariant cohomology. With our bordism techniques, we can answer
some of these questions, as well as go beyond local information.

THEOREM. (Restatement of Theorem 1.6) Let M be a stably-complex four
dimensional S1-manifold with three isolated fixed points. Then M is equivariantly
cobordant to P(1�V�W) for some distinct nontrivial irreducible representations
V and W of S1.

Proof. For convenience, we refer to the Euler class e�
n 2 MUS1

� by en. A

complex S1 manifold M with three isolated fixed points defines a class in MUS1

�

whose image under �: MUS1

� ! S�1MUS1

� is

�([M]) = e�1
a e�1

b + e�1
c e�1

d + e�1
f e�1

g

for some integers a, � � � , g. We let T denote

ea � � � eg � �[M] = ecedef eg + eaebef eg + eaebeced 2 MUS1

� � S�1MUS1

� .

Without loss of generality, assume a is the greatest of the integers a, � � � , g
in absolute value. As T is divisible by ea in MUS1

� , Theorem 1.2 implies that

T restricted to MUZ=a
� must be zero. The Euler class en restricts nontrivially to

MUZ=a
� unless ajn. Therefore one of c, d, f , g—say c—must be equal to �a. We

first claim that this number must be �a.
Let Sâ denote the multiplicative set generated by all the Euler classes as-

sociated to irreducible representations except for ea. By localizing the modules
in Theorem 4.10 and Theorem 1.2, we find that S�1

â MUT
� is generated over the

operation Γa by S�1
â R0. Suppose that jbj, jdj, j f j, jgj < jaj and that c = a. Then

e�1
a e�1

b + e�1
a e�1

d + e�1
f e�1

g
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is in the image of the canonical map from S�1
â MUS1

� to S�1
â R0, as it is actually

in the image of �. Then we must have that e�1
b + e�1

d is divisible by ea and

thus is zero in S�1MUZ=a
� where S here is the multiplicative set of all Euler

classes of Z=a. This localization of MUZ=a
� is the target of the restriction map

from S�1
â MUS1

� . And by abuse we are using the same names for Euler classes for
different groups. But because jbj, jdj < jaj, e�1

b , e�1
d and their sum are nonzero

in S�1MUZ=a
� .

It is straightforward to rule out cases where some of jbj, jdj, j f j, jgj are equal
to jaj.

Next, consider the class

�â([M])� �â([P(1 + �
a)])e�1
d 2 S�1

â MUS1

� ,

where �â is the canonical map to this localization. Its image under the map to
the full localization is

e�1
a e�1

b � e�1
a e�1

d + e�1
f e�1

g ,

which implies that e�1
b � e�1

d is divisible by ea in S�1
â MUS1

� or that b � d
(mod a). But because jbj, jdj < jaj we have that d = a� b depending on whether
b is positive or negative.

Finally, as c = �a and d = b�a consider �([M]� [P(1��
a��
b)]), which
will be equal e�1

f e�1
g � e�1

a�be�1
�b. Case analysis of necessary divisibilities as we

have been doing implies that this difference must be zero, so that the fixed-set
data of [M] is isomorphic to that of P(1 � �
a � �
b).

Finally, because the localization map � is injective, this fixed-set data deter-
mines [M] as in S1-equivariant homotopical bordism uniquely, so that [M] must
equal [P(1� �
a ��
b)] in MUS1

4 . But a theorem of Comezaña, from chapter 28
of [17], says that the Pontrijagin-Thom map from ΩU,A

� to MUA
� is injective for

abelian groups A. Hence M is cobordant to P(1 � �
a � �
b).

Our next application answers a question about bordism of free Z=n-manifolds
posed to us by Milgram. It is well-known that the spheres S( �k �


m) for any
m relatively prime to n generate MU�(BZ=n) as an MU�-module. How are these
bases related?

THEOREM 7.1. Let m and n be relatively prime. Let Q(x) be a quotient of x by
[m]Fx modulo [n]Fx in MU�[[x]]. Define ai 2 MU� by (Q(x))k = a0 +a1x+a2x2 +� � �.
Then

[S(�k �

m)] = a0[S(�k �)] + a1[S(�k�1 �)] + � � � + ak�1[S(�)]

in MU�(BZ=n).
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Proof. We use an analog of the simple fact that if M is a G-manifold and
MrMG has a free G-action then [@�(MG)] = 0 in MU�(BG), where @�(MG) is the
boundary of a tubular neighborhood around the fixed set MG. The null-bordism
is defined by Mr �(MG). If the fixed points of M are isolated, this will give rise
to a relation among spheres with free G-actions.

Let �0 = qk where q is a quotient of e� by e�
m in MUZ=n
� . Inductively, let �i

be a quotient of �i�1��i�1 by e� (note that this quotient is not unique as we are
working in Z=n equivariant bordism). Then the “fixed sets” of �k are given by

�(�k) = e�
m
�k � �0e�

�k � �1e�
�k+1 � � � � � �k�1e�

�1.

As eV
�1 corresponds to a tubular neighborhood of an isolated fixed point in

geometric bordism, we can deduce via transversality arguments for free G-actions
that

[S(�k �

m)]� �0[S(�k �)]� �1[S(�k�1 �)]� � � � � �k�1[S(�)] = 0

in MU�(BZ=n). But the image of �0 in (MUZ=n
� )Î

�= MU�[[x]]=[n]Fx is (Q(x))k

from which we can read off that �i = ai.
Note that our expressions in MU�(BZ=n) are independent of the indeterminacy

in choosing q and the �i.

This old idea of using G-manifolds to bound and thus give insight into free
G-manifolds has been codified by Greenlees’s introduction of local cohomology
to equivariant stable homotopy theory [9]. Moreover, by work of Greenlees and
May, the theories we have been studying provide a unified framework in which
to study the characteristic classes E�(BG) for any complex-oriented theory E. We
hope that our understanding of relevant commutative algebra can lead to new
insights into these techniques.
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