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§0. INTRODUCTION

EILENBERG AND MOORE [7] have developed a spectral sequence converging to the cohomo-
logy of the total space of an induced fibration. L. Smith [13] has recently developed methods
by which this spectral sequence can be computed, in the special case of a fibration induced
by an H-map from the path space fibration over a K(Z, n). Using these methods we have
computed the cohomology rings H*(BU(2n, ..., ©), Z,), and H*(U2n+1,...,0),Z,), p
an arbitrary prime. (We use the symbol X'(n, ..., o) to denote the n — ! connective fibering
over X.) The work is thus an extension of the work of Adams [1] (who computed the stable
groups: H*"**(BU (2n, ..., «), Z,) for k<2n) and of Stong [16] (who determined the ring
H*(BU(2n, ..., ©), Z,)). We summarize our results.

If p is an odd prime and M a graded Z,-module, denote by F[M ] the free Z,-algebra
generated by M. Let Op[BP'i,] denote the Hopf sub-algebra of H*(K(Z, n), Z,) generated
over the Steenrod algebra by the single element BP'i,, and define graded Z,modules M,
in such a way that F[M,]=~ Op[pP'i,]. Finally, if n is an integer it can be written uniquely
in the form n = Y ¥_,a;p’, with a; < p. Set 6,(n) = ) ¥.,a;. We find: if p is an odd prime
there exist indecomposable cohomology classes 6,; € H*(BU, Z,); Wy € H* (U, Z,)
such that

H*(BUQn, ..., ), Z,) =

H*(BU, Z,) p-2
ZpI:BZilG,,(i ~D<n- 1]® 11];) F[Mz,._3_2,]

+ Research partially supported by a National Science Foundation Cooperative Fellowship at Princeton
University.
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H*UQ@n+1,...,%),Z,)=
H*(U, Z,) p=2
- ® [{ FiMap-z-2 Efm,; splizi)=n-i-2
E[H2;+1IGP(1)<71] :I;[O [ 2 2 -t]® [ ..pk+1!k Q ]
as tensor products of Hopf algebras.

Our methods also permit determination of the cohomology of each stage of the
Postnikov tower of U. If p is an odd prime, then:

-2

p—2
H*(U(L, ...,2n~1), Z,) = E[py4 (|0, (D) <n]® H FIM 3,y -2]
t=0

as a tensor product of Hopf algebras.

We obtain similar answers for the case p = 2. These agree with the work of Stong [16],
Hirsch [8], and Vastersavendts [17].

We also derive divisibility conditions for Chern classes in integral cohomology. Let
s.:BU(2n, ..., )~ BU be the standard map, and let QOs,*: Q*H(BU, Z) — Q*H(BU
(2n, ..., ®), Z) be the induced map of indecomposables. Let ¢,eH *(BU, Z) be the Chern
class, and Qc,eQ**H(BU, Z) its image in the module of indecomposables. Then Qs *(Qc,)
is divisible by a certain positive integer A, , and by no greater number. In §9 of this paper
(Theorem 9.7) we determine A, , .

ADDED IN PROOF. The author has recently computed cohomology of the Postnikov
system of BU. The result is given at the end of §3.

In a forthcoming paper we will discuss more thoroughly the integral cohomology of
the spaces BU(2n,..., ) and U(2n+ 1,..., ). In particular, we will use a certain
splitting of BU into a Cartesian product [2], and some results of W. Browder [4], to
calculate the Bockstein spectral sequences. We thus determine completely the groups
H*(BUQn, ..., o), Z). We can also find some of the ring structure: a typical result is
that H*(BU(2n, ..., c0)Z)/Torsion is a polynomial algebra.

This paper is the author’s PhD. thesis written at Princeton University with the guidance
of J. C. Moore. It is a pleasure to thank Professor Moore for such useful advice; particu-
larly for the suggestion that the computations for BU and U be done simultaneously.
From Larry Smith I learned the use of the spectral sequence. I have had several conver-
sations with Bob Stong, and was guided by the results of his paper [16].

§1. HOPF ALGEBRAS
A. Primitives and indecomposables

The reader is assumed familiar with the paper of Milnor and Moore [9]. We state
here the results we will need.

We denote by the symbol #./Z, the category of positively graded, locally finite,
connected, bicommutative Hopf algebras over Z,, p prime. If A € Ob(H /Z,) we write
P(A) and Q(A) for the graded vector spaces of primitives and indecomposables, respectively.
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P and Q are in fact functors from the category #.Z, to the category .#/Z, of
positively graded vector spaces. The reader will recall the definition of the natural
transformation of functors /: P — Q. If [: P(4) — Q(4) is onto we say that 4 is primitively
generated. The “ Frobenius map” {: 4 — 4 is given by {(x) = x”. The image of {, written
24, is a Hopf sub-algebra of A4, and the sequence of vector spaces:

0 — P(CA) - P(A) 5 0(A4) (1.1)

is exact. ([9], Prop. 4.21). That is, the only decomposable primitives are p'th powers. If 4
is primitively generated this result can be strengthened to read that the only decomposable
primitives are p'th powers of primitives. In this case we write (1.1) in the form:

0 = LP(A) > P(A) > 0(4) - 0 (1.2)

The category #./Z, is abelian, with product given by the tensor product over Z,.
For the definitions of kernel and cokernel in 5 ./Z,, the reader is referred to ([9], pp. 223-4).
If f:4— Bis a map in the category, the actual set of elements that f sends to zero is the
ideal generated by the Hopf sub-algebra ker f= 4. Let Z, > A" -5 A 5 A" - Z, be an exact
sequence in H./Z,. Then the induced sequences in .#/Z, :

0—— PA) 2 pa) 22, prary (1.3)
0(4) 2% 9(4) 22 9(4") —0 (L4)

are exact. ([9], 3.11,3.12). We will need a stronger version of (1.3) which is due to Moore
and Smith [11].

ProrosiTION 1.1. Let p be an odd prime. Then the map P(m) of (1.3) is onto in odd
dimensions. P(m) is onto in even dimensions, except possibly those divisible by a number of
the form 2mp, where P*™(A4") # 0.

Proof. See ([11], Prop. 3.3 and Cor. 4.5).
We will also need the following lemma.

Lemyia 1.2, Suppose given a map f:B— A in the category . [Z,, where A is free
commutative as a Z, algebra. Let Qf be the map Qf : Q(B) — Q(A); let 2f be the map
27 : Q(B)— Q(im f), and suppose that ker Qf < ker 2. Then the natural maps

O(ker f) — ker(Q.f)
O(im f) — im(Q f)

are isomorphisms.

Proof. The Borel structure theorem ([9], 7.8 and 7.11) implies that im f, being a Hopf
sub-algebra of a free commutative algebra, is itself free commutative. Consequently the
map Q(ker /) = Q(B) is monic. Our hypothesis that ker Of < ker 2¢ implies that the map
Q(m f) - Q(4) is monic. The lemma now follows easily from the diagram overleaf, in
which horizontal and vertical sequences are exact.
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0
2f
0~ Q(ker f) — Q(B)— Q(im f) - 0
\
N

AN
AN

AV
o(A)

Recall that if 4 is an object of #/Z, then its dual D(4) = Hom(4, Z,) can also be
regarded, in a canonical way, as an object of #./Z,. One has natural isomorphisms
P(D(A4)) = D(Q(A)), and Q(D(A)) = D(P(A)). In this paper we are concerned with the
Hopf algebra H*(BU, Z,), which has the peculiar property that both it and its dual are
polynomial algebras. This leads us to:

Definition 1.3. We say A is a bipolynomial Hopf algebra if:

(1) Ae#,jZ,.

(2) The algebra structure of A is that of a polynomial algebra.

(3) The algebra structure of D(A) is that of a polynomial algebra.

If Vis a graded vector space, we write p,[ V] for its Poincaré series: p,[V] = 3 (rank V™).
n=0

PROPOSITION 1.4. Let A be a bipolynomial Hopf algebra. Then:

pLP(4)] = pLO(AD)].
Proof. One has p,[P(A)] = p,LD(P(A))] = p,L O(D(A4))], so it suffices to prove that

pLO(A)] = pLA(D(4))] (1.5)
But p,[A4] = p,[D(4)], and both A and D(A) are connected polynomial algebras. (1.5) now
follows by induction on dimension, and the proposition is proved.

Remark 1.5. Let A be a bipolynomial Hopf algebra. Suppose given an epimorphism
ino jZ,:

A-"»A”—»Zp (1.6)
and suppose further that 4” is a polynomial algebra. Taking duals in (1.6) we learn that
D(A”) is a Hopf sub-algebra of the polynomial algebra D(A4). Then it follows from the
Borel structure theorem ([9], 7.8 and 7.11) that D(A4") is itself a polynomial algebra. Then
A" is bipolynomial, and we can use Prop. 1.4 to conclude that p,[P(A")] = p,L O(A")].

B. Hopf algebras over the Steenrod algebra

Let &/(p) be the mod.p Steenrod algebra, and let 4 € Ob(s#/Z,) be given. Suppose
that A is an unstable o/(p) module. ([15], p. 27). Then we can use the co-multiplication
in #/(p) to make 4 ® A into an unstable &/(p) module. We say that A4 is a Hopf algebra
over #(p) iff t:A®A—>Aand A:Ad— A® A are morphisms of unstable &/(p) modules.
If 4 is a Hopf algebra over =«#(p), then both P{4) and Q(A) are unstable «/(p) modules
in a natural way. If f: 4 — B is a map of Hopf algebras over «/(p), then the Hopf sub-
algebra ker f < A is an &/(p) sub-algebra.
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Suppose given an exact sequence in 3 ,./Z,:

Z,-AH4a54" -2, (L.7)
and suppose that 4’ and A4 are Hopf algebras over =/(p). Then there is exactly one action
of </(p) on A" that makes n a map of =/(p) algebras. We refer to (1.7) as an exact sequence
of Hopf algebras over «/(p). We will find the following result useful in solving extension
problems.

PROPOSITION 1.6. Suppose given an exact sequence (1.7) of Hopf algebras over sZ(p),
p an odd prime, and suppose that A" is free commutarive as a Z,-algebra. Let y : Q(4") —

Z, ® Q(A") be the canonical epimorphism, and suppose that the composition P (m):
A (p)
P(n) ” l ” z ”
> P(A”) (4") z, ®)Q(A ) (1.8)

L(p

P(A4)

is onto. Then A" is primitively generated, and
A A @A (L.9)
as a tensor product of Hopf algebras.

Proof. Choose elements {a;} € Q(A") in such a way that the set {ya;} is a vector space

basis for Z, ® Q(A4"). Choose elements P’uie of(p) in such a way that the set {p”"a;}
o (p)
is a vector space basis for Q(4"). For each i choose a; € P(4) such that yIP(n)(a;) = xa;.

Then the elements {nP”"'a;} form a set of primitive generators for 4". Since A" is free
commutative we can define a map of algebras k:4” — A4 by setting k(nP7''a) = P'"a;.
Since k carries primitive generators to primitives it is actually a map of Hopf algebras that
splits the exact sequence (1.7). The proposition follows.

Let ¥ be an unstable «/(p) module and let W < V be a vector subspace. We say that
the subspace W is pseudo singly generated over «/(p) by the element wy, iff every element
of W can be written P”7w, for some P7 € o#(p). It is not required that W be an &Z(p) sub-
space of V.

Let A be a Hopf algebra over s#(p) and let B < A be a primitively generated Hopf
sub-algebra. We say that B is pseudo singly generated over «/(p) as a Hopf sub-algebra
of A, iff P(B) is pseudo singly generated over &/(p) as a vector subspace of P(A4).

Remark. In the situation envisioned in Prop. 1.6, suppose that B” is a Hopf sub-
algebra of A" that is pseudo singly generated over «/(p). Then the proof of Prop. 1.6 shows
that we can choose the splitting (1.9) in such a way that B” is pseudo singly generated
over &/(p) as a Hopf sub-algebra of A.

C. Properties of Tor

We introduce some notation, following [10]. Let #_*/Z, be the bigraded version of
H#./Z,; we demand that the bigrading satisfy:

uz0 (1.10a)
A™"?=0 unless { and
v=2u (1.10b)
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for each 4 e Ob(%”cz/Zp) - —uis called the homological degree of 4~**, v the complemen-
tary degree, —u + v the total degree. Let 7# /Z, be the category of *open triangles” of
Hopf algebras; that is, diagrams in #,/Z, of the form:

B

o (L11)
A“—“A/\\

!
We demand further that A be simply connected. (A° =Z,,A'=0). A morphism in
TH |Z, is the obvious thing. The tensor product over Z, induces a product on the cate-
gories chz/Zp and 74 /Z,. We now regard Tor as a product-preserving functor: Tor
THJZ,—~H# >|Z,. The bigrading on Tor,[4, B] satisfies (1.10a) because we index pro-
Jective resolutions on the negative integers; it satisfies (1.10b) because we have required
that A be simply connected.

Let A € ObA /Z,. We recall that by using a specific resolution of Z, as a A-module—
say, the bar resolution—one can define a natural map s of graded vector spaces:
s:Q*(A)—> P~ (Tor,(Z,, Z,)) (1.12)
called the suspension.

D. Calculation of Tor

The following result of L. Smith [13] permits calculation of Tor,[4, Z,].
PRoPOSITION 1.7. Let f:A — A be a given map in the category ¥ .[Z,. Then:
Tor,[4,Z,] = A//imf® Torye.[Z,,Z,] (1.13)

as a tensor product of Hopf algebras. Here ker f is the kernel in the category #./Z,. We
specify the bigrading:
Tor} *[4, 2,1 = (/" (1.14)
Proof. [13], Prop. 1.5.

It remains to calculate Tor,[Z,, Z,]. We assemble some notation in order to state
concisely a standard result. If V e .#/Z, we define V' € .//Z, by sctting (V ")k = V*if k is
even, (V*)* =0 if k is odd. Similarly, we define ¥~ to be the odd dimensional part of V.
Denote by J/z/Zp the category of bigraded vector spaces over Z, with the bigrading satis-
fying (1.10). Given Ve .#?*/Z,, define V¥ € #?*|Z, by setting (V)" = V** if u+v is
even, and (V' "y =0 if u + v is odd. Similarly, define ¥~ to consist of those parts of ¥ of
odd total degree. Given V in either W//Z, or M*|Z,, set:

Z,[V] = polynomial algebra over Z, generated by V' *

E[V] = exterior algebra over Z, generated by V'~

Z,[V] = truncated polynomial algebra of height p generated by }7*
T'[V] = algebra of divided powers generated by V' *

We make each of the above algebras into Hopf algebras by declaring the first three to be
primitively generated, and writing for the fourth:
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ACr()) = ) 1) @ 7,(x).

+j=k

Then Z,{ ], E[ ], etc,, are functors from .#4/Z, to ¥ /Z, (or from PZ, to K PHZ).
We define two more functors of this sort by setting:

F[V]=Z,V'I®E[V™]
D[V =TV 1®E[V™]
Finally, we define a functor s:v///Zp—u//z/Zp by setting (sV) 'Y = V" (sV)" =0 if

u# —1. If x e V we write s(x) for the corresponding element of sV. We can now state a
well known result: if V' e #/Z, then:

Totey[2,, Z,] = D(F[sV]) (1.15)

where the isomorphism is in # */Z,. The suspension (1.12) is indeed given by the corres-
A A na e o oas Hee = T/ Eloanlley 30 - LT/ TU 2 3 samimsermlaioies 120 (117 dhhn semAriAanad mame
PUIIUCIHILE X = 3.0, VA & V. ildlly, L g . ¥V — vV 15 a4 HIOIPILSIHL 1 ./M/Lp, LHG fflauULeu luap.

Tor g : Torgyy[2,, Z,]1 = Torgus(Z,, Z,] 1.16)
is given by Tor g(sx) = sg(x), together with the rule that Tor g commutes with divided
powers.

~—~

§2. THE EILENBERG-MOORE SPECTRAL SEQUENCE
A. Basic properties
We collect here the results of [7]; our notation is taken from [10].

We define a category #F & of “ Hopf fiber squares.” An object of ## & is a com-
mutative diagram of spaces and maps;

7
E—E,

pl lpo (2.1)

B—— B,
s

in which the following conditions are satisfied.

(1) All spaces are homotopy commutative and homotopy associative H-spaces, and
all maps are A-maps.

(2) Eq—7> B, is a fibration, and E—p—-» B is the fibration over B induced by f.
(3) B, is simply connected.

(4) The mod p-cohomology rings of B, B,, E,, E, are of finite type.
A morphism in the category # % & is a map between two fiber squares (it could be dia-
grammed as a commutative cube) which preserves all H-space structures.

We define a category &[#/Z,] of spectral sequences of Hopf algebras. An object
of #[#./Z,] consists of the following.

(1) For each m > 2 a differential Hopf algebra (£,,, d,,); E,, an object of JKCZ/ZP and:
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degd, =(m, 1 —m) (2.2)
() En.i=H(E,); and E " =E = -=E""
for sufficiently large m.
The main result of [7] may be stated as follows.

THEOREM 2.1, There is a contravariant functor §: X F Y — F[H [Z,] with the
following properties.

(1) For each fiber square (2.1) there is a decreasing filtration {F~"H*(E, Z,)} on the
Hopf algebra H*(E, Z,) that is natural with respect to morphisms of fiber squares.

(2) FOH*(E, Z,) is the Hopf sub-algebra of H*(E, Z)) generated by im f* and im p*,
and F""H*(E,Z,)=Z, for n <0.

(3) If(E,,, d,) is the spectral sequence assigned by the functor & to the fiber square (2.1),
there is a functorial isomorphism:

E, = Toryug,, 2, ,LH*(B, Z,), H*(E, Z,)] (2.3)

also a functorial isomorphism:

E,= oHE, Z) (2.4)
where EoH*(E, Z)) denotes the bigraded Hopf algebra associated to the filtration on
H*E, Z,).

Proof. [7] concerns itself with a homology spectral sequence. For explicit proofs for
the case of cohomology the reader is referred to [3].

We call attention to the special case of (2.1) in which the space B counsists of a single
point. Then the total space E of the induced bundle is the fiber F,, of the original bundle,

and Theorem 2.1 gives a spectral sequence converging to H*(F,, Z,). We refer to this as
the spectral sequence of the fibration Fy — Fy— B,.

B. Path space fibrations

We consider the spectral sequence of the fibration QX — PX — X, where X is a simply
connected H-space. The E, term is Tory«x z,)(Z,, Z,), and the map s of (1.12) gives
st Q*TIH(X, Z,)— PV T UE,) (2.5)
Since deg d, = (r, | - r), everything in E~'* is an infinite cycle, so there is defined an
epimorphism E;!* — EZ!"*. Composing this epimorphism with the map (2.5) we obtain a
map §:Q*"'H(X,Z,)—»P V*"YE,). Now from Theorem 2.1, #2 we know that
FOH*(QX, Z,) is zero in dimensions greater than zero; consequently there is an isomor-
phism #:F~'P*H(QX,Z,)—» P~ '**!(E,). Finally, let o denote the cohomology sus-
pension associated with the path space fibration over X: 6: Q**'H(X,Z,) - P*H(QX,Z,).
Then we have the following result:
c=1i""3 (2.6)
For a proof the reader is referred to [14].

We now study the spectral sequence of the fibration:
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K(Z,n—1)—L(Z, n)y— K(Z, n) (2.7)
Coefficients are taken in Z,, p an odd prime. We begin by singling out a certain **elemen-
tary” chain complex that will occur in this spectral sequence.

Definition 2.2. An elementary chain complex 4 is a bigraded differential Hopf algebra
of the form A =I[(x) ® E(y), with tot. deg. () = p - [tot. deg. (x)] + 1, and the differential
determined by the rules d(y,(x)) = y; dx = dy = 0.

One sees easily that
H(4) = Z,[x]. (2.8)
We now recall Cartan’s result [5] for H*(K(Z, n), Z,), p an odd prime. Let V, be the

graded vector space over Z, generated freely by objects P’i_, where the P! are admissible
monomials in the Steenrod algebra subject to the following conditions.

(1) P! = ppor--- P with a, #0.
(2) excessI <n if g =0. 2.9)
(3) excess I <n if g =1

Then (Cartan) there is an isomorphism of Hopt algebras:

H*(K(Z,n),Z,) = F[V,]. (2.10)
V, now appears as QH(K(Z, n), Z,).
Let
oem.: V,* > P* TH(K(Z,n — 1), Z,) (2.11)

be the suspension associated with the fibration (2.7). Another result of Cartan states that
ker o . is that subspace of V, spanned by all vectors P'i,, P! admissible and satisfying
(2.9), and excess I = n. We define a map of vector spaces

BPV,” > ker og . (2.12)

by assigning to each basis element P'i, of V the element BP'P’i, of ker og, , Where
2t + 1 =deg[P'i ]. It is not hard to show this map an isomorphism. In particular, ker og 5.
is concentrated in even dimensions.

We are ready to discuss the spectral sequence of the fibration (2.7). The £, term is
given by (2.3), (2.10), and (1.15):

£y = TorH‘(K(Z‘n),Z,,)[Zp’ Z1=D(f[sV,)=K,®L, (2.13)

where we have set K, =[[sV,]1® E[sfZ'V," ], and L, = E[s(V,”/B#'V,”). Since B2'V,~
suspends to zero we know from equation (2.6) that the factor E[sp2'V,”] must be killed
somewhere in passage from £, to £ . This is in fact all that happens in this spectral
sequence. The precise statement is due to Smith [13].

PrROPOSITION 2.3. Let p be an odd prime. In the spectral sequence of the fibration (2.7),
all differentials vanish except d,_,. The action of d,_, on the chain complex E,_| = E, is
given by the following rules.

(1) E,_, splits as a tensor product of complexes K, and L, .
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(2) d,-y vanishes on L, (as it must, since each element of s(V,T[B2V, ™) has homo-
logical degree —1).

(3) K, splits further as a tensor product of elementary chain complexes T [s4] ® E [spZ'a],
where {a} is any vector space basis for V.

n

(4) Consequently (Kunneth formula and (2.8)) we have an isomorphism of bigraded Hopf
algebras:

P I
E,= ,=ZV,]® ts W‘V‘] (2.14)

Proof. See ([13], Theorem 3.10). Smith discusses the path space fibration over a
K(Z,, n). Thus he imposes on admissible monomials only requirements (2.9 (2), (3)). We
get a proof of the current proposition byadding (2.9(1)) to each stage of Smith’s argument.

We will refer to the complex D(F[sV,]) of (2.13), with differential given by Prop. 2.3,
as the canonical complex D(F[sV,]).

If M, is an o/(p) sub-module of ¥, then D(F[sM,]) is a sub-Hopf algebra of D(F[sV.])
closed under action of the differential. We refer to the sub-complex D(F[sM,]) = D(F[sV,])
as the canonical complex D(F[sM,]}).

PrOPOSITION 2.4. Let M, be an s(p) sub-module of V,. Then the cohomology of the
canonical complex D(F{sM,)) is given by :
M,

o e, - . M, A PV
H(D(F[Slw"])) = Zp[SA\’I" ] ® E{S Wk [ —_—

ﬁ'@t l»l[" -

} (2.15)
an isomorphism of bigraded Hopf algebras.
Proof. Follows easily from Prop. 2.3 and the definition of the complex D(F[sM,]).

In the canonical complex D(F[sV,]) all elements of s(2*V, ) are boundaries, but in
the complex D(F[sM,]) only the elements of s(B#'M, ~) are boundaries. For this reason
the factor at the far right of (2.15) has no analogue in the expression (2.14). The injection
D(F[sM,}) - D(F[sV,]}) induces a map of homology:

H(D(F[sM,])) — H(D(F[sV,])) (2.16)
This map injects the first two factors of (2.15) into the two factors of (2.14), and carries
the third factor of (2.15) to zero.

Let M, be an #/(p) sub-module of V,. Consider the sub-algebra
AlocM} e H¥K(Z,n— 1), Z,) (2.17)

generated by the elements og \(x), x € M,. A[oM,] is primitively generated, therefore is
a Hopf sub-algebra of H*(K(Z,n ~ 1), Z,), and therefore, by the Borel structure theorem,
is free commutative.

We assemble the results of this section into the following theorem.

THEOREM 2.5. Let p be an odd prime. Suppose given a Hopf fiber square of the form:
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K(Z,n—-1)=—=K(Z,n-1)

£
|
B ——K(Z, n)
s
in which E is n-connected, and suppose that H*(B, Z,) is free commutative as a Z -algebra.
Suppose also that the 2/(p) Hopf sub-algebra ker f* < H¥K(Z, n), Z,) is generated over
A (p) by a single element b, satisfying

dim by < np — 1. (2.19)

——L(Z, n) (2.18)

Then the following statements hold.
There exists a sub-module M, = P*H(K(Z, n), Z,) satisfying
ker f* = F[M,] (2.20)

If M, is such a sub-module, the map /, : P*H(K(Z, n), Z,) » O*H(K(Z, n), Z,) carries
M, isomorphically to an &/(p) sub-module M, = V,, and

. MLt PV,
H*(E,Z,)=H*(B, Z,)/imf* ® A[cM,] ® E[s 1——'—[—;—;7—6_—1—] (2.21)
as a tensor product of Hopf algebras. Here
im q* = H*(B, Z,)/im f* (2.22)
imi* = AfoM,] (2.23)
sk . lwu+ M ﬁﬂtl/;l_
ker i* = H*(B, Z,)/im f* ® E{s W] (2.24)

Finally the splitting (2.21) can be chosen in such a way that 4{ocM,] is pseudo singly
generated over «/(p) as a Hopf sub-algebra of H*(E, Z,).

Proof. Kernel f* is a primitively generated Hopf sub-algebra of the free commu-
tative algebra H*(K(Z, n), Z,), so it clearly has the form (2.20) (although there is no
unique choice of M,. Since H*(B, Z,) is free commutative so is im f*. Therefore /,/M, is
monic. M, = im(/,/M,) is independent of the choice of M.

Consider the commutative diagram of Hopf fiber squares:
LEZ ) S LZn
i
JK(Z, n - 1)-;i———aE
I

“ | (2.25)
K(Z,n)elk - -~ 3K(Z, 1) q
"
AN
[xo] ——— "B
Here [x,] is a space consisting of a single point. Denote by (£,,, d,,) the spectral sequence
of the fiber square (2.18), and by (E,,, d,,) the spectral sequence of the path space fibration
over K(Z, n). E, and E, are given by (2.3). Since f'is an H-map f* is a map of Hopf algebras
and Prop. 1.7 is applicable to computing E,. We obtain:
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H*(B, Z)
E,= Tf*p ® Torke,,.[Zp, Zp] (2.26)
EZ = TOrH‘(K(Z. n, ZP)[ZP N Zp] (2.27)

The map of E, terms induced by (2.25) carries the first factor of (2.26) to zero, and when
restricted to the second factor gives a map Tory, [Z,, Z,] - Toryuwzmy.20[Zps Z,)
induced by the injection ker f* — H*(K(Z, n), Z,). We use 2.20 for ker f/*, and appeal to
{1.15) to write out all Tor terms:

H*(B,Z,)

Ey= T ® D(F[sM,]) (2.28)

2= D(F(sV, D) (2.29)

We now use in conjunction the following facts:

(1) The map E, —» E, commutes with differentials.

(2) The spectral sequence (E,,, d,,) is given by Prop. 2.3.

(3) (E,, d,) is a spectral sequence of Hopf algebras, and deg(d,, = (m, 1 — m).

to deduce that:

() dy=-..=d,_, =0, E,=E,_,.

(2) The tensor product of (2.28) is a splitting of the chain complex (£,_,, d,_,).

(3) d,—, vanishes on the first factor of (2.28), and the second factor is the canonical
complex D(F[sM,]). Then we have by Prop. 2.4;

- M,* Mt PV,
E,==—=Q@Z,[3M~ El§ —————— o 77 e
P =y & 4EM1® [S M, o M"V..“] ®E[S M-

] (2.30)

Since all indecomposables of (2.30) have homological degree > —1 all higher differentials
vanish:

E,=E, (2.31)

We can now use Theorem 2.1, #2, and equation (1.14), to deduce one part of our propo-
sition im g* = FOH*(E, Z,) = E2'* = H*(B, Z,)//im f*, and we have proved (2.22).

We must now solve the extension problem posed by (2.30) and (2.31). Let 4 be the
Hopf algebra H*(E, Z,), and let A’ be the sub-Hopf algebra im g* = H*(B, Z,)/im f*.
Then (2.30), (2.31) imply that there is a filtration on the quotient 4/ A4’, with the associated
bigraded Hopf algebra given by:

EL(AJA) = M. ] ® E| § 1o E[ M, BV
(44 = Z,(5M, 1 @ £ | -

M,* B2V, ] (2:32)

We invoke once more the functorial property of the spectral sequence in conjunction with
(2.25) to deduce a commutative diagram:
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0 0 (2.33)
| -. |
Foiapa)* »FTUHMNK(Z,n = 1), Z,)

l + M + ng - _ ‘ l 1% +
EX'V** U = 5M ~ @5 — Mn”‘—.<_:®§ nﬂgﬁ_cn E;l*?l=§V~—®§h,7_:
- " M nBPV, BP M, Yy [ BV,

!
| |
0 0

Here we have used (2.14) for E . w and 7 are isomorphisms in dimensions greater than zero
because F°(AfA") and FOH*(K(Z,n— 1), Z,) are trivial except in dimension zero. 7 is
given by (2.6). The map E(i*) is a restriction of the map (2.16): it is monic on the first

twa cummande af FoL#*+1 5004 cande the third cummand ta zero
tWo summands ot £, and sends tne inird summana o zEro.

Since i*(4') = Z,, there is a well defined map of Hopf algebras
i AfA > HNK(Z,n— 1), Z,).

Im i* is free commutative; consequently, the map Q(ker i*) — Q(A/A4") is monic. To deter-
min ker i* we first use (2.32) to deduce that all indecomposables of A/ A" live in F ™A/ A4").
On the other hand, the elements of

M. BPV,T

BPM,”

are odd dimensional primitives of AJ/A’; therefore (by (1.1)) they are indecomposable in
A A’. Tt now follows easily from (2.33) that

c F Y AfA)

M," A BPV,~
Ker i* = E|lson O FP7 V| 7
er i [s 220 ] (2.34)
A second, immediate consequence of (2.33) is that
imi* =im i* = A[oM,] (2.35)

this proves (2.23).
Consider the following exact sequence of Hopf algebras over .&/(p):
Z,—»keri*> AfA'>imi*>2Z, (2.36)
Using (2.19) and our assumption that E is n-connected we find from Prop. 1.1 that the
composition P[AJA"] - P[im 1*] - Q[im i*] —»Z,Jf@(p)Q[im i*7 is onto. Therefore the

sequence (2.36) satisfies the hypotheses of Prop. 1.6, and we invoke that proposition to
conclude that

(2.37)

AfA =im i* @ ker i* = A[cM,] ® E[s M]

BAM,”
as a tensor product of Hopf algebras. From the remark following Prop. 1.6 it follows that

we can choose the splitting (2.37) in such a way that A[cM,] is pseudo singly generated
over &Z(p) as a Hopf sub-algebra of A/A’.
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In exactly the same way we can now apply Prop. 1.6 to the exact sequence Z,—»A —

A—AfA4" -~ Z,. We conclude that
H*(B,Z,) M, PPV,

AZAQ@AJA = —LQ A[GM,]®E|§ 21—~ 1

@Ay =2 2@ Lo, ® [s o }

as a tensor product of Hopf algebras, and that the splitting (2.38) can be chosen in such a

way that A{oA{,] is pseudo singly generated over &/(p) as a Hopf sub-algebra of 4. We

thus obtain (2.21). (2.24) follows from (2.34), and the proof of Theorem 2.5 is complete.

(2.38)

We now define particular sub-modules M, < P*H(K(Z,n),Z,); M,<V,. Let
Op[BP'i,} be that sub-algebra of H*(K(Z,n), Z,) generated over &/(p) by the single
element BP'i,. Then Op[BP'i] is a primitively generated Hopf sub-algebra of
H*(K(Z,n),Z,) and therefore has the form F[M,] for some M, < P*H(K(Z,n),Z,).
There is no natural way to choose M,, but we assume some choice has been made. Let /,
be the map /,:P*H(K(Z, n),Z,)—~ Q*H(K(Z,n),Z,) =V,, and denote its restriction to
M, by I,1M, . Set M, = im(/,|M,). Then M, is an .«/(p) submodule of ¥V, ,and isindependent
of the choice of M,. We record the relations:

Op(BP'i,} = F[M,]
OLD[BPxin—IJ = A[GMn]

The symbols M, , M, will have throughout the rest of the paper the meanings we have
just assigned.

1t will appear in the course of the inductive calculation of §5 that Op[BP'i,] is the
kernel of a map from H*(K(Z, n), Z,) to a free commutative algebra, and consequently
that M, = M, .
§3. CONNECTIVE FIBERINGS AND BOTT PERIODICITY

Given any space X and integer n = | one can construct a fibration over X,
s X(n, ..., ®)— X, with the following two properties.

(1) w(X(n,...,00))=0fori<n.
(2) The map s induces isomorphisms in homotopy in dimensions > n.

For details of the construction the reader is referred to the paper [18] of G. Whitehead.
The space X(n,..., ) is called the n— 1 connective fibering over X. If X is a Ci~-
complex one can choose X (n, ..., ) to have the homotopy type of a Cl¥W-complex. The
pair (X (n, ..., ), 5) satisfying (1) and (2) is then unique up to homotopy type. We note
further that for any k > 0 one can regard X(n + k, ..., o) as the n + k& — ] connective
fibering over X'(n, ..., o).

If one takes loop spaces of the connective fiberings over X, one obtains connective
fiberings over QX. This follows straight from the definitions:

AX(n,...,c0))~(QX)n—1,...,m0) (3.1)

In this paper we are concerned with the connective fiberings over BU and U. Since BU
is the classifying space for U there is a homotopy equivalence:
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0 U—s Q(BU) (3.2)
¢ can be taken to be an H-map.

We can go further. Bott periodicity asserts the existence of a homotopy equivalence:

\l/:Q(SU);BU' (3.3)
where SU is the special unitary group. { can be taken to be an H-map (see [6]).
We now combine both (3.2) and (3.3) with (3.1) to obtain homotopy equivalences:
U2n—1,..., 0)~Q(BU(2x, ..., w0)) (3.9
BUQ2n,...,0) = AURn+1,...,0)) (3.5)
(3.4) and (3.5) will be useful in our inductive calculation of cohomology.

Any loop space has the structure of a homotopy commutative, homotopy associative
H-space, so we can use (3.4) and (3.5) to impose H-space structures on U2z — 1, ..., 00)
and BU(2n, ..., o) respectively. For n =1 we get by this method structures which are
equivalent to the usual ones on U and BU (since ¢ and Y are H-maps).

Let us consider the map ¢,: BU(@2n,..., 0)—=>BU(2n—2,..., ) as a fibration.
Application of the exact homotopy sequence shows that the fiber is a K(Z, 217 — 3). There-
fore the fibration is induced from the path space fibration over a K(Z, 2n — 2). We obtain
a fiber square:

K(Z,2n—-3) —K(Z,2n—-3)
BU(2n,...,0) —L(Z,2n-2) (3.6n)
- |
BU(2n =2,...,0)—K(Z,2n —-2)
Sn-1
The horizontal maps in (3.6n) induce a map from the exact homotopy sequence of the
fibration over BU(2n — 2, ..., c0) to the exact homotopy sequence of the fibration over
K(Z,2n — 2) and one deduces that £, ., must carry n,,_,(BU{(2n — 2, ..., o)) isomorphic-
ally to w5, ,(K(Z, 2n — 2)). If we choose canonical generators for these homotopy groups,
then the homotopy class of f,_ is well determined.

Similar remarks apply to the fibration by which one obtains U(2n + 1, ..., c0) from
U(2n -1, ..., o). In the fiber square:

K( ,2n-2) —K(Z,2n~2)
Jn
Un+1,...,0)—L(Z,2n ~ 1) (3.7n)

Tn

u@n—1,...,0)— K(Z,2n - 1)

Gn-1

g.— induces an isomorphism of homotopy in dimension 2n — 1.
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The fiber square (3.6n) can be obtained by “looping” the fiber square (3.7x); and
(3.7n) can be obtained by *“looping” (3.6, n + 1). Consequently both {3.6n) and (3.7n) are
Hopf fiber squares, and the theory of §2 is applicable.

Our goal in §§4 and 5 is to compute inductively the cohomology of the connective
fiberings over BU and U. We will assume known H*(BUQ22-—2,..., w), Z,),
H*(U@2n —~1,..., ®),Z,), and the images and kernels of f%_, and ¢¥_,. Application of
Theorem 2.5 to the fiber squares (3.6n) and (3.7n) will then give us H* (BU(2n, ..., o), Z,)
and H*(UQ@2n +1,..., ), Z,). In order to complete the induction we must determine
images and kernels of f,* and g,*. To this end we will first compute the suspensions (sce
(3.4), (3.5)):

G2t Q¥H(BU(2n, ..., 0), Z,) > P* 'H(UQn ~ 1, ..., ), Z,) (3.8n)
Ot 1 Q*HUQ@n + 1,..., ), Z,) > P* ' H(BU(2n, ..., ), Z,) (3.9n)

Then the commutative diagram:

P*TUH(K(Z, 20 — 1), Z) 2228 P* U H(UQR ~ 1, .., ), )

] ] (3.10n)

Qfn* .
4 O*H(BU(2n, ..., ©), Z,)

2n

will enable us to determine im £, * and ker f,*. We will then invoke the diagram:

P*TUH(K(Z, 2n), Z,)—L P*~ ‘H(BU(2;1, ), Z)

Vans s O S Q*H(U@n +1,..., %), )

(3.11n)

CTE.M.

in order to determine im g,* and ker g,*. Our task will be slightly complicated by the fact
that o . 1S not monic.

§4. STATEMENT OF THE MAIN THEOREM
Let p be a prime and » a non-negative integer. Then n can be written uniquely in the

formn =Y a;p', with0 < a; < p. Define an arithmetic function &, by setting G,(n =3 a,.
i i

If p* is the largest power of p dividing n, we set v, (n) = k. The following relations are
evident.

G, (n-p)=0c,(n),jz0 (4.1
G(m=cn—1+1-v,(n)(p-1) (4.2)
c,(n- r—-10= c,n—D+j(p-1 (4.3)

v(nl) = '_1_—6_"(1) (4.4)
p—1

The rest of this section consists of the statement of Theorem 4.1.

THEOREM 4.1. Let p be an odd prime. There exist indecomposable cohomology classes:
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8,; € H*(BU, Z,) for each i satisfying (i — 1) <n 4.3)
such that

H*BU, Z,) P2
F “v[7n— -2t 46
Z000,(i— 1) <n~1] ® 1] FlMan-3-2] (4.6n)

H*BUQn. ..., %), Z,) =

as a tensor product of Hopf algebras. Each sub-Hopf algebra F[M,,_g-,] is pseudo
singly generated over ./(p). Recall the maps ¢,:BU(2n, ..., ) > BU(2n~2,..., w),
i, K(Z,2n =3y~ BUQn, ..., <), f,:BUQ2n, ..., 0)— K(Z,2n) defined in §3. We list
for the induced maps of cohomology images and kernels in the category #./Z, (or only
images when the kernel is obvious).

H*BU, Z,) Lty
im g * = e iyl J FIM o3 4.7n
S 020, (i—1)<n— 1] ®t[=_ll [Mar-3-adl ( )
im i,* = Op[pP'i;,-3] (4.8n)
ker i * = im q,* (4.9n)
imf,*=2Z,[0,lc,(i—1)=n—=11® F[Ms,_2,+] (4.10n)
ker £,* = Op[BP'i,,] (4.11n)
We will deduce from (4.107) and (4.11n) information about the module M,,:
M,, = M,, (4.12n)
L\/12"+ M ﬁ?tVzn—
T P T2 g ;
B, (4.13n)

We now list the corresponding results for the connective unitary group.

HYU@n + 1, ..., ), Z,)
H*U, ) = oali=1)=n—t=2
Q’E?D’l +1|c(i§<n]® HOF[A/IZH—Z—ZJ®E[(‘02ip"+1l ot }c)>0 ! ~] (4-14n)
2i p =

as a tensor product of Hopf algebras. Each sub-Hopf algebra F[AM,,.,_,] is pseudo
singly generated over ./(p). Recall the maps of §3: r :U2n+1,...,0)—> U2n -1,
e, @), Joi K(Z, 2 =2y UQn+ 1, ..., ), g, UCn+1,...,0)—K(Z,2n+1). We
list for the induced maps of cohomology images and kernels in the category #,./Z, .

HYU, Z)) =

im = e iy < © L M2 -2 ® Bl |70 (G 45n)
im j,* = Op[BP'is,->] (4.16n)

ker j,* = im r,* ® E[0y04, 1 77¢ 385" 771 (4.17n)

img,* = E[Ms;41| (i) =nl® FIM 3, 20p42]1 ® E[0ap 0y [e2 057771 (4.18n)

ker g,* = Op[BP'isn41] (4.191)

We will deduce from (4.18#) and (4.19n) information about the module M,,:
I\IZn-{- 1= J\'—‘[f’.n-f- 1 (420")
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("\/[;n+l N PP Vinsy
B’Z‘)tl\ll—nﬂ'-l
This completes the statement of Theorem 4.1.

*
) = Span* [y | 005" (4.21n)

§5. PROOF OF THE MAIN THEOREM: INDUCTIVE STEP

We assume true statements (4.5k—4.21k) for all values of k <»n We are going 1o
establish (4.52-4.21n).

A. Calculation of H*(BU(2n, ..., ), Z,)

Using inductive assumptions (4.6, n — 1) and (4.11, n — 1) we see that the fiber square
(3.6n) satisfies the hypotheses of Theorem 2.5. Therefore we need only plug our inductive
assumptions into (2.21) in order to obtain H*(BU(2x, ..., o), Z,). Specifically, we use (4.6,
n—1) for H¥(B, Z,), (4.10, n — 1) for im f*, and (4.11, n — 1) for ker f*. Observe that
A[oM,,-,] = Op(BPY,,_3) = F[M;,-3] (by (4.20, n — 2)). We use (4.13, n —~ 1) to set the
factor on the far right of (2.21) equal to the trivial algebra Z,. The result for
H*(BU(Q2n, ..., w), Z,), namely, (4.6n), now follows immediately from (2.21). (4.7n), (4.8n),
(4.957) follow from (2.22), (2.23), and (2.24), respectively.

B. The commutative diagram (3.10n)

Our purposes require us to consider only a portion of the diagram (3.10n).

Lets,:BU(2n,...,w)—> BUand t,_,: U2n -1, ..., ©)— U be the canonical maps.
It follows easily from our inductive assumptions and the newly established (4.7n) that:

H*(BU, Z,)
im s,* = —2 5.1
e oo li- h<n—1] (-1m)
H*(U, Z
ime*, = (  Z5) (5.2, n—=1)
Elpyi-qlo i~ 1) <n—1]
also that
im[H*(BUQ(n — p +2), ..., ), Z,) > H*BUQn ,..., ©), Z)] = im 5,* ® F{Map_3,+,]
(5.3n)

im[H*UQn~-p+2)—1,...,0),Z,)»HURn -1, ..., ©), Z,)]

=im 1} ® F[M3,-2,] ® E[@yn, 1 17767056 7771] (54,0 = 1)
From these last two equations it follows that we can restrict the domain of

Gy Q*H(BUQn, ..., 0),Z)—>P* 1HUQ2n—1,...,©0),Z,)
to obtain a map o,,:
Gan: Q*[im 5," 1 D Mapozp4:1 = P*~'[im 17 ]
@ P*"1FIM,,_5,] @ Span*~![@aper, [ 7CTYT7THT (5.50)

We now consider the map f,:BU(22n, ..., ) —» K(Z, 2n). f, induces an isomorphism of

homotopy in dimension 2, therefore an isomorphism of cohomology in that dimension,
so that f*i;, = BPlisy-2,+1 € FIM;,_2,+.]- Since the cohomology of K(Z, 2n) is singly
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generated over 2/(p) it follows from (3.3n) thatim £, * < im 5, @ F[Ma,-1,+,]. We already
know from inductive assumption (4.18, » — 1) that
imgy_, cim_; ® F[M,,-5,]® E[0y,6+, A A

We conclude that we can write down the following restriction of the diagram (3.10n):

0
{ Py
P*IH(K(Z, 20 = 1), Z)———P* Mim 17,1 @ P*"'F[M,, 5,1 @ Span* ™ [wyper o | 720755777 1]

TE. M.

V;n——w‘_'_" Q*Dm Sn*] @ Mln—2p+1 (5.6"!)

The diagram (5.64) will be our principal tool in sections C, D, and E.

C. Kemel G,,

In order to use (3.6n) for the determination of im f,* and ker f,*, we first discuss G,,.
On restricting &,, to O*[ims,*] we obtain an isomorphism of Q*[im s,*] with P*7!
(imz,_]:
SO R 7T IOV NN L SO

Z0lo,i— ) <n—1} Elpgicilo(i-<n~1]

In fact, the map o,: Q*[H(BU, Zp)]—»'P*“[H(U, Z)) is an isomorphism, and (5.7n)
follows from the relation 1f_ 0, = 6,,5,. We claim next that &,, is onto. This follows
easily from (5.7n), (5.6n), and (4.18, n — 1).

We can now find the kernel of &,,, and begin with the assertion:
BP M3, 3,4, < ker G, (5.8n)

This is a consequence of the vanishing of the Bockstein operator on pth powers. (5.87) can
be strengthened to read:

BP My 3,41 = Ket S,y (5.9n)

In fact, since &,, is onto one has the following relation among Poincaré series:

p.LO0Im 5,10 + pLM 3, 2,41] ~ plker 63,]
=t~ [p,Plim (-3 + p, PF(M3,—2,] + p,Span(wypes | V75072711 (5.10n)
But og .y, carries My, _ ;5,4 onto PE[M,,_,,], so that:
PIM e 2prs] = PIM 3, 2psy O B2V snezpi1] = tpLPFIM;,-2,]] (5.11m)
From inductive assumption (4.21, n — p):
PIM napit 0 BP Voo spii] — p[BP M3, 25011 = tp, Spanf@agps , |7 RT5 7771

(5.12n)

and from (5.7n):
p, Olim 5,*] = tp, P[im 1;_,] (5.13n)
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Adding the last three equations and substituting into (3.10#) we learn that p,[ker G,,] =
PLBP My ~2,+1]. Combining this result with (5.8n) we obtain (5.9a).

D. Kernel f,*

We claim

fX(BPYi,,) =0 (5.14n)

In fact, f£,*(BP'i,,) is primitive, so that f,*(BP'i,,) € P[im .1 @ PF[Myn1pe1]-
But f,*i,, =BP'is,y,es € PF[Ms,_s,4,], and BP'BPYiy, _,,.; =0. So we must have
£ 5(BP,,) e P[im s,*]. But BP'i,, is odd dimensional and im s¥ is concentrated in even
dimensions, so we have proved (5.14n). In particular,

M,, = ker(Qf,) (5.15n)
We must now prove a converse to (5.151), and begin with the assertion:
ket(Q )™ < M3, (5.161)

Indeed, suppose given x & V,, with Qf,%(x) = 0. Thenirom (3.6n), Pg¥ _,(cg.a. x) = 0, and
from the inductive assumption (4.19, 1z — 1) it follows that og » (x) = P/BP*i,,_, for some
P’ e o/(p). But g, is monic on Vs, so x = PIBPi,, e M,,. We have proved (5.16n).
We next claim that:
kee(Qf,")" o p2'V3,
pP(ker(Q £,*)7)
For suppose given x € V5, with Of,*((B2'x)) = pP'Qf,*(x) = 0. Since B2’ is monic on
M3, _2,+1 we must have Qf,*(x) € Q[im S,*]. But Q[im 5,*] is empty in odd dimensions:
0f,*(x) = 0, and we have shown (5.171). We can now prove the full converse of (5.15n):
ker Qf.* = M,, (5.18n)
Let x € V,, be given with Qf,*(x) = 0. As before we use (5.6n) to establish og y (X) =
P’BP'i,,_, for some P’ es/(p), and therefore x = P’BP'i,, + (element of B2'V,).
Using (5.151) we strengthen this to read x = P/BP'i,, + (element of ker Of,* n B2V ;).
Invoking (5.16n) and (5.172) we have finally x € M,,, and we have proved (5.18x). (5.18n)
and (5.15n) imply

ker Qf,* = M,, (5.194)

E. Image f,*

We now use (5.61) to determine im(Q f£,*). By our inductive assumptions M, 3,44 is
psuedo singly generated over ./(p) as a subspace of Q*H(BU(2n, ..., w),Z,). But £,*i,,
is equal to the generator of M,,_,,.; therefore M,,_,,., = im 0 f.*. 1t remains to deter-
mine im Q f,* n Olim s5,"]. Let j be an integer satisfying 6,(j ~ 1) = n — 1. By (4.18,n — 1),
3y eP*H(K(Z,2n — 1), Z,) such that Pgy_,(¥) = li;;_;. Choose x € V,, with og () = .
Then from (5.6n) we have G, Of,*(x) = pas;~,. Choose 8,; e Q*/[ims,*] such that
6—2,,(52]-) = Hy;-;. Using (5.97) we now see that 01,5 (x) =§2j + element of fP*'M;, 5,41
But f#'M3,_5,., = im Qf,%, and wehaveproved:Span{8,;|c,(j — ) =n—- 1] < imQ f.*.
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The above argument is easily run backwards: given 6,; € im O f.* we use (3.6n) and (4.18,
n — 1) to deduce that 6,(j — 1) = n — 1. We conclude:
imQf,* = Span[éljlcp(j ~D=n—-11®M;z-2p+y (5.20n)

We must now pass from our results (5.194), (3.20), to the kernel and image of f,*
itself. Observe that f.* satisfies the hypotheses of Lemma 1.2: that ker Qfy < ker 27"
follows from (5.144) and (5.19x). Invoking that lemma we establish isomorphisms Q(ker £,*
~ ker (Of,F); O(im f,5)~im(Qf,*). From the first of these isomorphisms and (5.14n) we
obtain A,, = M,, and kerf,* = Op[BP'i,,] = F[M,,]; we have proved (4.1ln) and
{(4.12n). (4.13n) follows from (5.17a) and (5.19n), and we have completed our discussion of
ker /5. To determine im £, rote that our inductive hypotheses say that F[M,_5,+,] is
pseudo singly generated over /(p) as a Hopf sub-algebra of H*(BU(2n, ..., ®), Z,).
Therefore F{M,,_5,.,] < im f,*. For each j satisfying 6,(j — 1) = n — 1 choose an element

02 P”(z [e~.|5((?g’ji - 1])
ptV2i1 Pp ’
whose image in the space of indecomposables is §,;. That such a 8,; exists follows from
(5.20nm): since H™*(K(Z,2n),Z,) is primitively generated so is im f,*. That 0,; is unique
follows from Remark [.5: P[im 5,*] can have rank no greater than one in any given di-
mension. We now use the isomorphism Q(im f,*)~ im(Qf,") to deduce from (5.20n) that
imf* = Z,[0;lo(j~1)=n—=1]® F[M1,_5,+,], and we have proved (4.10n).

The reader has noticed that the classes 8,; for o,(j — 1) = n — | have been well defined
only in the quotient algebra H*(BU, Z,)/Z,[0,;]c,(i — 1) <n —1]. One can chooseina
number of ways corresponding elements (not necessarily primitive) in H*(BU, Z,), so as
to satisfy (4.51). Our purposes do not require us to make this choice specific.

F. Calculation of H*(UQ2n + 1, ..., ®), Z,)

Our procedure here is analogous to that of §5A. We apply Theorem 2.5 to the fiber
square (3.7n), plugging in our inductive assumptions (4.12, n — 1), (4.14,n — 1), (4.18,~
4.21, n — 1). Equations (4.14n), (4.15n), (4.16n), (4.17x) are immediate consequences.

G. The commutative diagram (3.11n)

We argue as in §5B. let ¢,:U(2n+1,..., )~ U be the canonical map. Then
im 15 = H*U, Z)JE[ts:4,/0,(i) < n]. By restricting 6,,., to im[H*(UQ2(n—p +2) +
l,...,0),Z)>H¥UQRn+1,...,0),Z,)] we get a map G,,,; whose image lies in
im[H*BUQRn—p+2),..., ©),Z,)—=>H*(BU?2n,...,x),Z,)]. We obtain a diagram
analogous to (5.6x).

0
+
P* U H(K(Z, 2n), Z,) =L P*~'[im 5,1 @ P* ' F[M,,_5,. ] (5.21n)
T E.M. Cin+ 1

* ke * " i—1)=n— y
V2n+l_'—_*_'—’ggn, 0 [im ¢, ]@Span*[mmkﬂf"?(’ w50 PO MY, g,
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H. Kernel G,,,,

The argument here is analogous to that of §5C. We claim first that on restricting
Garney t0 Q*[im ¢ *] we obtain a monomorphism into P*~![im s5,*]:

0—>Q*( H, Z,) )-»P*“‘( H(BU. Z,) ) (5.22m)

Eluasie o (i) <n] Z,0ylo,(i—-D<n—1]

In fact, if we denote by o, the map o5: Q*(H(SU, Z,))—P* '(H(BU, Z,)), then

o3(Ha 41) = A (c)?"?"”. Here I =j/p’*”, ¢, is the Chern class in dimension 2/, and

A #0eZ,. To show the map (5.227) monic we need only observe that if 6,(j) > n then by

(4.2), 4.3), ap(ij)—l = n —1; thus the Chern class ¢, is non-zero in the quotient
p P

algebra H*(BU, Z,)/Z,[8;;lc,(i = 1) <n—1].
We can now discuss ker &,,.,. Clearly
BP M3z, 2pss ket Spps s (5.23n)
We want to show:
BP'M3,mayss = ker Gy,0 (5.24n)

Define sets of numbers: 4 = {2j + 1]|c,(j) = n}; B={2jp* + 1]°°U713" "7}, Use of (4.2)
and (4.3) shows that A and B are disjoint. Further, given j satisfying ,(j — 1) = n — p, then
o,(pj — 1) =n—1, so that by the newly established (4.101) we have (62“,)""'l €im Pf,”

forany k>0: Y P™ims,*] <im Pf*. Again referring to (4.10n) we strengthen this to
MeB-1

read: Y P"[im s 1@ PF[M1,-2,+1]1 <imPf,*, and diagram (5.21n) now implies

MeB-1

Y. P™"[ims,*]®PF[M,,_2,+,] ©im Gy,,. Finally, using (5.221) and the fact that
MeB—1

A and B are disjoint we have Y P"[im s, 1@) P"[im 5,°1@® PF[Mj,_2,+1]1<

Med—-1 MeB—1
im G,,4,; therefore:

p, O[im tn*] + P Span[o)szuﬂ l«”(j‘k;)ozn—p] + P Myp2,12 — P KEI Gapyy
>tp, y  "limsl+tpe ) Prlims, ]+ tp, PFIM,,—5,40] (5.250)

meA—1 meB-1

Now, the indecomposables of im 7, are in 1-1 correspondence with the set A, and the
generators of Span[®, x4y 7Y 305" 7} are in 1-1 correspondence with the set B, so
(5.25n) implies p, My, 2,42 — P Ker Gypiy = tp, PF[M;,.5,.,]- Finally we observe that
Cpy. Maps M, s,+5 Onto PF[M,,_5,.,] with kernel M3, _5,.2 0 PV gp0, =
BP Mz, 2,+2; we have used inductive assumption (4.13,n~—p+1). We now have
P BP M3,-2,+2] = pilker G;,4,], and combining this equation with (5.23n) we obtain
(5.24n).

I. Image g.*
Since g,*(izn+1) = BPliln—2p+2 € Mapozp4, We have

M3a-2p+2 <im Qg,” (3.26n)
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We assert also that
Span[®, ;s lc"(j;i)ozn—p] <im Qg,* (3.27n)

In fact, let j, k be given, with o,(j — 1) =n—p; k> 0. One finds easily from inductive
assumptions (4.8, n—p +2), (417, n—p+2), that Gy, (0, = PLims, ] (e,
Gan+1(®1j,%41) has no component in the direct summand PF[M,,_1,+,]) (5.24n) tells us
that Gyp41(®yjk+1) # 0. But by Remark 1.5 P[im 5.7 has rank no greater than one in any
given dimension, and since by (4.3) o,(pj —1) =n — 1 we know from §5E that 0

2pj i3

primitive. We conclude that G,,41(@j,0s1) = MB2;,)7 ", L 0€Z,. Since (8,;,)" ' e
im Pf,*, we can now combine (5.21n), (5.24n), and (5.26n), to establish (5.27n).
We claim next that
Spanfi; 41 | 0,(j) = n] < im Qg,,* (5.28n)

In fact, let j be given with o,(j)=n. Let I=j/p**"". Then o, (/~1)=n—1 so that
(0,)7"7” € im Pf,*. But we have also 5,4 1(1y;41) = &+ (85)7*”, L # 0 € Z,. (5.28%) now
follows easily from (5.21n), (5.24n), (5.26n).

We now claim the converse: im Qg,* N im ¢,* < Span[u,;., [c,(j) = n]. Suppose given
Hyj+1 € 1m Qg,*. Then o,(j)> n. From (5.21n), (5.22n) we find that G5, (1;;+,) isa non-
zero primitive of im £, *. But im £, * is primitively generated, so that by (1.2) and (4.10a) we
find G541 (H2j41) = k(@zj')”", kz20and o,(j'=1)=n-—1 Then =j'p* and from (4.1),
(4.2), 6,(j) < n. Therefore o,(j) = n.

We conclude :

im Qg,* = Span[,;4 | 0,(j) =n]@Span[®, e | e DM, 2p42 (5.29n)

J. Kernel g *
Clearly
9. (BP'iz. ) =0 (5.30n)

In fact,BP'BP is,4 2 = 0,and by (1.1) theexterior algebra im £,* ® E[@,,s; | 7Y% 5777]
has no even dimensional primitives. (5.30n) implies:

M,, . < ker Qg,.* (3.31n)
We must prove a converse to (5.31#), and claim first that
ker(Qg,*)” < M3, (5.32n)

This follows from (4.11:1) and (5.21n) in the same way that (5.16n) follows from (4.19, n — 1)
and (5.6n).

Our next step is to establish an isomorphism of degree +1 of graded vector spaces:
i—1y=n—1q ~ K€1(Qg,")" 0 BP'Vy, 4
:S an m"i L Sa(l 'l>)-n 1 : n 2n+1
p: Span[@,xs | k20 ] 57 ker(0g. ")

We define p in the following way. Suppose given i, k with oi—1)=n—1and k>0
If v,(i) =0 then by (4.1) and (4.2) o,(i)) =o,(i- p*"') =n, and by (5.29n) there exists

(5.33n)
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Pjilnrl € I/'En‘lv‘i[h Qyn*(PJiln-‘l) = p'Zip“‘l+l' Clﬁdrha an#(ﬁgzpjl‘ln‘.-l) = 05 fOr by (11)
there are no even dimensional primitives in im 7,*. We set p(©yx.,) =PP7i,,,,. Re-
garded as an element of the quotient space (3.33n), B#'P7i,, ., is evidently independent of
the choice of P” to satisfy Qg,*(P’i,,,;) = 05 it is also non-zero. If v,(i) > 0 then by (4.3),
Gp(;’ — 1) =n—p. and by (5.29n) there exists P’i,,., € V1,4, such that
09, (Pliye ) = Oziphr g -
Now, the subspace
Plim 1,1 @ Span[w, . |90 71 < PLH(UQ2n + 1, ..., %), Z,)]

i5 closed under the action of «/(p); this follows easily from our inductive assumption
(.17, 1 — p + 2). Since there are no even dimensional primitives in an exterior algebra it
follows that Qg *(B#'P’i,,.,) =0, and we set p(©,;,e4,) = 2P ’i,,.,. This completes
the definition of p.

p is clearly | — [. To show it onto suppose given x € V5., with Qg,*(x) s 0 and
B2 Qg,*(x) = 0. Since 2" is monic on M3 _,,.,, Q¢,%(x) must lie in Qlim£,*] @
Span [©;,64 17*Y 305" ~7]. Therefore p is onto.
We are now ready to prove:
ker(Q0g,*)" < M3, .\ (5.34n)

We induct on dimension. Suppose given x € ker(Qg,*) " with dim x < 27p + 2. Then from
(5.21n), (Pf,*)0g\(x) =0, and so by (4.11x), op .y (¥) = PIBP,, for some P’ e o/(p).
Since gy, is monic in dimensions <2up + 2, we conclude that x = P/BPY,, . € Mohyy.
Now suppose that (5.34n) has been established for all dimensions <2m, and let x €
(ker 0g,*) be given with dim x = 2m. Then as usual o , (x) = P/BPi,,for some P’ e s/(p).
If 51 # 1 (mod p) we can immediately conclude x = P/8P,, ., € M4, ,, and are done.
If m=tp+1, then the best we can say is x = P/BPi,, ., + BP'y for some ye V3, .y,
dim y = 2t + 1. Our induction will be complete if we can show:

pP'yeM;, ., (5.33n)

If 3 € ker(Qg,*)~ then (5.32n) implies (5.35#), so it suffices to assume that BP'y is non-zero
in the quotient space of (5.33#). Then

09,%(») = Mz vy, L#0€Z, (5-36n)

(Here y,,,, is to be interpreted as either a pu or an ©.) The proof now divides into two
cases.

Case 1. t = | (mod p). Then we can solve the Adem relation
PBPITI =PI —(p~ 1)t~ D)BP’

for BPF, and write:

BP'y =\ PBy+ A, PIBP' 'y (5.37n)
A, hy €Z,. But im £,* @ E[03,64 119755 "] is closed under z/(p) action and contains no
even-dimensional primitives, so it is clear from (5.36r) that Qg,*(By) = 0 and Qg,*(BP'~'y)
= 0. Since dim(By) < 2m and dim (BP*~'y) < 2m it follows from the inductive assumption
that By and BP' !y are in M,,.,; hence from (5.37h) that PPy € M, ;.
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Case 2. ¢t =1 (mod p). In this case the right hand side of (5.36n) is really a y, so that
o,(¢) =n. Since v,(r) =0 we have G,(f — 1) =n—1. Write 1 = ap' + 1, with />0 and
v,(a) = 0. Then 6,(a — |) = n — 2, so that 8,, is non-zero in H*(BU(2n =2, ..., 0), Z,).
We have:

pg = per'Tigp (5.38n)
Since Steenrod powers commute with suspension we can deduce trom (5.22,n — 1) and
(5.38n) a relation in H¥(U(2n— 1, ..., 0), Z,) i Uygpie1 = A" P""'—‘p:‘,p,_l+1 + decompos-
ables; A # 0 €Z,. But since &/(p) carries primitives to primitives we can strengthen this
to read:
Haapier = A P Hagpis (5.39n)
Now o,(ap'™!) = n — 1 so that 0,,,i- 1+, is a non-zero primitive of H*(BU (2, ..., 0),Z,).
Then we get from (5.7#) and (5.391) a relation in A*¥BUQ2n, ..., 0),Z,): O14p42 =
)VP”"‘_‘BZWI_,”. Carrying this argument one step further we obtain finally a relation iin
H*U@2n+ 1, ..., ®), Z,):
Hare g = MP T s (5.40n)
Here {1;,,-14 3 is either a “’” or an “@”. In either case it is in im g,*, since 05,,:-14, Is in
im f,*. Choose v € V5,+ with 0g,*(t) = Pyapi-1+3- Then Qg,*(P?'"'t) = Aty,4y, and from
(5.32n) and (5.36n) we see that y differs from P ™'t by at most an element of ;.. So
to show BP'y e M, ., it suffices to show that
BPP e M., (5.41n)
To this end we establish:
LemMA 5.1. Let X be a space, and suppose given v € H* *3(X, Z,). Then
BPPIt1piy = prigpitly (5.42n)

Proof. The monomial PPBP/*! is not admissable. If we write down the appropriate

Adem relation, and use the rule P*x = 0 if 2k > dim x, we obtain (5.42n).

Applying Lemma 3.1 we find:
BPPwr = prrigpartTitly (5.43n)

Now Qg *(BP' " *1p) = BPo' "'y, -1, =0, since there are no even dimensional
primitives in an exterior algebra. By the inductive assumption on ker(Qg,*)* it follows that
BPer' ™ *lp e M. . (5.41n) now follows from (5.43n). Thus we have established (5.35n),
and our inductive proof of (5.34n) is complete.

Combining (5.31n), (5.32n), (5.34n) we obtain
ker(Qg,*) = M, (5.44n)

Mimicking the end of §5E we now use Lemma 1.2 to deduce im g,*, ker g%, from
our results (5.29n1), (5.44n). In this way we establish (4.18-4.20n). (4.21n) follows from
substituting (5.44n) into (5.33n), and we have completed the inductive part of the proof
of Theorem 4.1.
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§6. PROOF OF THE MAIN THEOREM: LOW DIMENSIONS

The statements (4.5n-4.21n) for p an odd prime are valid in low dimensions if we read
the trivial algebra Z, for F[M,] whenever M, = 0. We proceed to show this.

Observe that BU=~ K(Z,2) x BU(4, ..., ®), and that the map f,:BU— K(Z, 2) is
the projection of product onto factor. Setting 8, equal to the Chern class in dimension
two we find im fi* = Z,[0,], ker f;* = Z,, establishing (4.10, 1) and (4.11, 1). The state-
ments (4.6, 1-4.9, 1) and (4.12, 1-4.13, 1) are all trivial.

Observe that U=~ S' x U(3,..., w). Therefore H*(U(3,..., ©), Z,y=H*(U,Z,)/
E[u,]; this is (4.14, 1). Statements (4.15, 1-4.17, 1) are trivial. We consider now the map
g H*K(Z,3),Z,)» H¥U(@, ..., w), Z,). By Cartan’s calculation,

H*K(Z,3),Z,) = Z,[BP"P”" ™" - Pliy|n=0,1 - - J@ E[P""" -+ Plis|n=0,1,---]

(6.1)
Using diagram (3.11,1) we easily find g, *(P?" "' -+ P'i}) = Py nsy and g, *(BPP" -+ Pliy)
=0. Thus im g,* = E[1t5;4,]0,(i) = 1]; this is (4.18, 1). Using the Adem relations
PUBPT T =BPYP" Nn=1, 2, ...) one sees that BPZ'PP T .- Pliy = PPIPP"TN B P,
therefore:

1

ker g, * = Z,[BP"P""" -~ Pliy|n =0, 1,---] = Op[BP'i;] (6.2)
But the general argument of §5 shows that Op[BP'i;] < ker g,*, and we have established

{4.19, 1). The general argument also suffices to prove (4.20, 1) and (4.21, 1).

In order to prove equations (4.51-4.21n) for 1 < n < p we need make just one adjust-
ment in the general argument of §3. Note that for n> p one has f,*(i,,) = BPliz,,_2er1 €
F{My,_ 5,011 and g,*(isns() = BPYisy_gp4+2 € F[Ma,_2,4+,]. But for small values of n the
following relations hold:

f;r*(iZn) = >‘62na 1 < 14
gn*(i2n+ I) = Mlz:ﬂ, n< p (6'3)
gp*(i2p+1) = 7‘-‘szﬂ
(with A # 0 €Z,). Thus £, *, g,* do not kill the factors F[M,] until p — 1 of them have
accumulated. The statements of Theorem (4.1) and the arguments of §5 go through, how-

ever, even without change of wording. We need only set M, = 0 for k£ < 3. We have com-
pleted the proof of Theorem 4.1.

§7. THE CASE p=2
The calculations of H*(BU(2n, ..., c0), Z,) and H*(U(@2n + 1, ..., ©), Z,) for p =2
are somewhat different from the case in which p is odd. We indicate the changes.

By the results of Serre and Cartan [12], [5], H*(K(Z, n), Z,) is a pure polynomial
algebra on a certain graded Z,-module V,. Suppose given a map f*: H*(K(Z, n), Z,;) = 4
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in the category #./Z,, and suppose we have chosen M, = P*H(K(Z, n), Z,) to satisty
ker /* = Z,[M]. Let /, be the map /,: P*H(K( Z n),Z,)— Q O*H(K(Z, a), Z,). If im f*
contains odd dimensional ¢lements x for which x? = 0 we cannot conclude (as we did in
Theorem 2.5) that /,| M, is monic; for the odd-dimensional generators of H*(K(Z, n), Z,)
have infinite height. The version of Theorem 2.5 appropriate to the case p =2 runs as
follows.

Theorem 7.1. Suppose given a Hopf fiber square of the form (2.18). Choose a submodiile
M, < P*H(K(Z, n), Z,) satisfying ket f* = Z,[M,]. If either
a) kerl, nM,=0

or
b.) the algebra H*(B, ZZ)//imf* is generated by odd dimensional classes,
then
H*(B, Z,) 2 o
" 7.‘
o (7.1

as a tensor product of algebras. Here imq* = H*(B, Z)/im f*; imi* = A[cM,]; ker
i* = H*(B, Z,)im f* ® E [s(ker(l, | M,))]. The splitting (7.1) can be chosen in such a way
that A[oM,] is a Hopf sub-algebra of H*(E, Z,) that is pseudo-singly generated over s7(2).
To prove Theorem 7.1 one uses the Eilenberg-Moore spectral sequence for the fiber
square (2.18). One find E, = H*(B, Z,}/im f* @ Tor, ;[Z., Z,]1 = H*(B, Z,)/im f*®
E[sM,]. Since all indecomposables of this £, term have homological degree > —1 the

spectral sequence collapses. The remainder of the proof is analogous to the proof of
Theorem 2.7.

Let Op[Sq3i,] be that Hopf sub-algebra of H *(K(Z, n), Z,) generated over the Steenrod
algebra by the single element Sg*i,. In applying Theorem 7.1 to the computation of
H*(BUQ2n, ..., w),Zy)and H*(U(2n + 1, ..., ®), Z,) one chooses M, so that Z,[M,] =
Op[Sq®i,]. The reader can easily supply the details of the computation by analogy with §5.
One finds:

N B H*(BU, Z,) o =
H*(BU(2n, ..., ©), Z,) = 0o =D <n=1 & Z,[M;, 5] (7.2)

as a tensor product of Hopf algebras;

ker £,* = Op[Sq’is,] (7.3)

Also,

H*(U, Z,)
Elity:4 4| 02(i) < n]

HXU@n+1,...,0),2Z;) = ® Zo[ M3y 2] ® E[0- 1144 | 243 05772]

(7.4)
as a tensor product of Hopf algebras;

ker g,* = 0p[Sq’isns ] (7.5)
The equation analogous to (4.12n—4.13n) is:
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ker b, N M., =0 (7.6)
and the equation analogous to (4.20n—4.21n) is
(ker lypey 0 Myps )* = Span™ ™! [0 ey |00 77] (7.7)

(7.2), (7.3), and (7.6) were first obtained by Stong [6], using methods different from ours.

§8. POSTNIKOV SYSTEM GF THE UNITARY GROUP

If X is a space and # an integer one can construct a new space X(1,2,...,#) and a
map «: X — X(1, 2, ..., n) such that

() n(X(1,2,...,n))=0fori>n

(2) « induces isomorphisms of homotopy in dimensions < ».

If X is a CW-complex one can choose X (1, 2,...,n) to be a CW-compiex. Under
these circumstances, requirements (1), (2) determine (X(1, 2, ..., n), &) up to homotopy
type. The space X (1,2, ..., n)is known as a stage of the Postnikov tower of X.

Regard the map s,.,:BU{(2n +2,..., w)— BU as a fibration. A simple argument
shows that the fiber has the homotopy type U(1, ..., 2n — 1). We consider the Eilenberg—
Moore spectral sequence of the fibration:

Sn+t

ud,...,2n=1)->BUQRn +2,..., 0)—> BU 8.1
for cohomology with coefficients in Z,, p odd. From (1.13), (2.3), and (4.6, n + 1) we find:
E,=H*BUQ2n +2,...,0),Z)/imsy, ® Tore.,:..[Z,.Z,]

p—2
= I FiM,, 2] ® Toer[OZt’lo‘,,(i— nenllZps Z,]

¢
2

.

i

= H()F[Mzn— 1=20 @ E[Hy; -y |0, (i — 1) < n] (8.2)

- -

Since all indecomposables of (8.2) have homological degree > — | the spectral sequence
collapses. Since E, = E_, is free commutative as an algebra and primitively generated as
a Hopf algebra the extension problem of Hopf algebras is trivial, and we find:

p—2
HYU,2,...,2n = 1), Z,) = E[pa;  10,()) <n] @ [ [ FIM 35— 1 -2] (8.3)
t=0

as a tensor product of Hopf algebras. The result for p = 2 is slightly more complicated:

H*(U(L, ..., 20~ 1),Zy) = E[Hy+ 102() <n = 11® Z,[Hyiv fox(D) =n — 1]
M,
oz X | o

i—- )=n—-2,0:)=n-1
Spaﬂ[mi-zk*u—z|UZ(l b 'kioc w=rt]

as a tensor product of algebras. (8.4) has also been obtained by Hirsch [8] and Vaster-
savendts [17]. T am grateful to Miss Vastersavendts for having pointed out an error in my

original version of (8.4).
ADDED IN PROOF. Using these same methods the author has recently determined
cohomology for the Postnikov system of BU as well. The result for p odd is:
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p—2
H*BU2, ...,2mZ) = Z,[8:16,(i — 1) < n1® ] FIM3,-2] (8.5)

t=0
as a tensor product of algebras. In case p = 2 one finds:
H¥BUZ,....20).Z,) = Z,[05;|0:(i — 1) < n] ® Z,[M,,] (8.6)

39. DIVISIBILITY OF INTEGRAL CHERN CLASSES

Let /1 X — Y be a map. Throughout this chapter we will use the symbol f* to denote
the induced map of cohomology with coefficients in either Z or Z,. The precise meaning
will always be clear from context. In particular, all divisibility conditions pertain to integral
cohomology classes.

A. Formulation of the problem

Let c,eH **(BU, Z) be the Chern class, and let Qc,eQ**H(BU, Z) be its image in the
module of indecompoesables. Let s, be the standard map s,: BU(2n, ..., ) = BU, and
QOs,* the induced map Qs,*: Q*H(BU,Z)— Q*H(BU(2n, ..., =), Z). Then Qs,*(Qc,) is
divisible by some positive integer A, , and by no greater number. We set ourselves the
problem of determining A, .. If n > k then %, , = co, so only the case 2 < k is interesting.
For n = & the answer (s a well known consequence of Bott periodicity:

M o= (k= 1)! (9.1)

B. A splitting of BU

Let p be a prime. Let C be the Serre class of abelian groups having finite orders rela-
tively prime to p. We say a map f/: X' — Y is a p-homotopy equivalence iff / induces iso-
morphisms of homotopy groups mod C.

It has recently been observed by J. F. Adams and D. Anderson that for any prime p
there exists a homotopy associative, homotopy commutative H-space W, with:

M,W)=ZmodC if j=0(modp—1) andj#0
[0,(W,)=0mod C othe'rrwise (9.2)
M,;.,(W,)=0mod C

further, that there are p-homotopy equivalences

¢ HOQ”I'VP ~ BU (9.3)
J= p
pP-2

Uy JDOQZ’“ W, f U (9.4)

@, and Y, are H-maps. Bott periodicity appears as a p-homotopy equivalence between the
identity component of Q*"™V 1 and W, itself. For a proof of these results we refer the
reader to [2].

Any homotopy associative H-space has the rational homotopy type of a product of
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Eilenberg-Maclane spaces. It is therefore easy to infer from (9.2) and (9.3) that for
0<j<g<p~2:
H¥QYW,, Z,) = Z,[8,]i = —j (mod p — 1)] (9.5)
also that the map
P, HY(Q¥W,, Z) » H(Q¥W,. Z,) (9.6)

1s onto. We can go further. (9.3) implies the existence of p-homotopy equivalences:

-2 .
9, [1(QYW,)(2n,..., )~ BUQn. ..., ») (9.7
j=o

p
(9.7) allows us to interpret geometrically the occurrence of a p — 1-fold tensor product in
our result (4.6n) for H*(BU (2n, ..., »), Z,). In fact, it is easy to deduce from Theorem 4.1
that for0 <j<p —2:

S HXQY W
HA(QIW)(2n, ..., ), Z,) = ) ® FLMars—s ] (930)

Z,,{ezi o li-l<n~—1 ]

i= —j(mod p—1)
as a tensor product of Hopt algebras. Here #(n, /) is the unique integer satisfying both
0<t{n,j)<p—2 and t(n,j)=n+j—1 (mod p—1). Denote by ¢,/ the standard map
g,/ (QYW)(2n, ..., 0) > (QYW )20 —2,..., o). (9.2) implies that ¢/, is a p-homotopy
equivalence for n% —j+ I(mod p — ). But for n= —j+ I(mod p — 1) we find from
Theorem 4.1 that:
ker g, 7= Z0xlo(i—D=n—-21@ F[My,_y,-3-200-1. pJ(n = —j + Hmod p — 1))
(9.9n)

For each integer & choose a class &,eH **[Q*/W,, Z] (where 0 <j<p—~2andj= —k
(mod p — 1)) such that Q&, generates an infinite cyclic direct summand of Q*H [Q*W,, Z].
Let 5,/ denote the standard map s,/ (Q¥ W )2n, ..., ) — (Q*/I,), and let the integer
hnse be such that Qs /*(Q2)eQ* H (Q¥W,)(2n, ..., w), Z) is divisible by %, and by no
greater number. Recall the function v, defined at the beginning of section 4. The existence
of the p-homotopy equivalence (9.3) implies that

Vol ) = v, (0 0. (9.10)

C. Calculation of X, ,
The exact sequence of coefficient groups 0— Z = Z—Z,— 0 gives rise to a long
exact sequence of cohomology, of which we will need only the portion:

H'(X, 2)—>H'(X, )2 H'(X, Z,) (9.11)
LemMma 9.1. Suppose given a map f: X — Y and an element ve H*(Y,Z) satisfying
S*0,(0) = 0. Then Qf*(Qy)eQ*H (X, Z) is divisible by p.
Proof. We have p, f*(y) = f*p,(y) = 0. It follows from the exact sequence (9.11) that
S*(y) is divisible by p. Then so is Q(f*(»)) = O F/*(Qy).
The map p,: H*(Y,Z)—~ H*(Y,Z,) is an algebra map. We use the symbol @p, to
denote the corresponding map of indecomposables.
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LEMMA 9.2, Suppose given a map [ X — Y and an element yeH*(Y,Z) such that
Qf*(Qy) is divisible by p. Then Q f*[Qp,(@y)] = 0.

Proof. The sequence of groups QH(X, Z) — QH (X, Z) 2, QH (X, Z,) is not in
general exact, however the composition (Qp,)(.xp) is zero. Since Q f*(Qy)e im(xp) it follows
that 0 = Qp,[QF*(Q»)] = @ *[Qp,(Q»)].

We are now ready to calculate vp(i.,,,k). We will think of & as being fixed, and watch

the growth of )1,,,,( as n grows from | to k. Throughout the discussion let j be the unique

integer satisfying both 0 < j<p—~2and;j= —k (modp — ).
LemMma 9.3.
Vha ) =0 for n<l+o,(k—1) (9.12)
Proof. In the group Q*H(Q*W,, Z,) one has:
0p,(Q2) = 0, (9.13)

[t is clear from (9.8n) that for values of n satisfying o,(k — 1) 2 2 — 1, 0s,”*(08,,) is non-
zero in Q*[H((Q¥W,)(2n, ..., w))]. It follows from Lemma 9.2 that Qs,/*(Qg,) is not
divisible by p. This proves Lemma 9.3.

Note that if / is any integer, then / — & ,(/) is divisible by p — 1.

LeMMA 9.4, For values of n of the form.

n=2+ock—D+a-(p~1) (9.14)
where
k—1)—o(k~
w=0,1,2,.. . KZD=Zok=-D_, (9.15)
p—1
we have
A
v,,(. mk );1 (9.16)
)“n—l,k

Proof. We handle first the case « = 0. Choose an element &.eH**[Q*/W,, Z] such
that Q(&,.) = Q(¢,), and such that p,(&.) = GZk. That such a & exists follows from (9.13)
and the fact that the map (9.6) is onto. For n =2 + o,(k — 1) it is clear from (9.9n) that
.7 pp & = 0. It follows from Lemma 9.1 that Qsi*(Q&,) is divisible by p. But from Lemma
9.3 we know that Qsi_,.(Q&) is not divisible by p. (9.16) follows.

Suppose now that « >0, and let n have the value (9.14). Choose an element
xeH*((QYW,)(2(n — 1), ..., ), Z) that satisfies

Ao1,6Qx = 05]-1:(02) (9.17)
Since « > 0 we have n — 2 > o,(k — 1); therefore the left hand factor of (9.8, n — 1) has
no indecomposable in dimension 2k. It follows that we can choose x in such a way that
p,{x) lies in the right hand factor of (9.8, n — 1); that is, in FIMn-1y-3-20s-1.5p]- (Here
we are again using the fact that (9.6) is onto). From (9.9r) it now follows that g,/*p,(x) = 0,
so from Lemma 9.1 we see that Qg,/*(Qx) is divisible by p. Then from (9.17) it follows that
Osi*(Q2,) is divisible by p-A,_; . (9.16) follows.



302 WILLIAM M. SINGER

LeEMMA 9.5, For values of n of the form (9.14), (9.13), we have

A'nk
()5 o

A‘n—l,k

Proof. Immediate from Lemma (9.4) and equation (9.10).

Lemya 9.6. For cvalues of n of the form (9.14), (9.13),

)"n,k
Vol5: k) =1 (9.19)

n—1,

and for all other values of n in the range 2 < n < k,

A
v,,( med ) =0. (9.20)
)\‘n—l.k

Proof.

vp(xk'k)zvpf[ (k)‘—") =é:vp(k}‘"-“ )

n=2 n—1,k n—1,k/

But from (9.1) and (4.4) we have

(k= 1) —o,(k - 1)
p—1 '

Vp(}‘k,k) = Vp((l\' - DY =

Therefore

(k=D —o,k—1)
p—1 o

M=

]

2

)\‘n k )
. 21
vp(xn‘l,k (9 )

We now invoke Lemma 9.5, observing that there are [(k — 1) — o, (k — D)]/(p — 1) dif-
ferent values of n in the range 2 < n < k for which (9.18) holds. (9.19) and (9.20) now follow
from (9.21).

We define a function lig m:

_ leastinteger=m if | m=0

lig m 0 if | m<o.

THEOREM 9.7. 0s5,*(Qc)) is divisible by
[(n— 1)—oplk— l)]

A’n.k=Hp“g Pt

P

(9.22)

and by no greater number.
Proof. Immediate from Lemma 9.6.

The reader can use (4.4) to verify that in the ““stable range” & < 2n our divisibility
condition (9.22) agrees with the stable result of Adams [1].
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