
New York Journal of Mathematics
New York J. Math. 17 (2011) 75–125.

Comparing composites of left and right
derived functors

Michael Shulman

Abstract. We introduce a new categorical framework for studying de-
rived functors, and in particular for comparing composites of left and
right derived functors. Our central observation is that model categories
are the objects of a double category whose vertical and horizontal ar-
rows are left and right Quillen functors, respectively, and that passage
to derived functors is functorial at the level of this double category. The
theory of conjunctions and mates in double categories, which generalizes
the theory of adjunctions and mates in 2-categories, then gives us canon-
ical ways to compare composites of left and right derived functors. We
give a number of sample applications, most of which are improvements
of existing proofs in the literature.
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Part I. Theory

1. Introduction

Part of the general philosophy of category theory is that morphisms are
often more important and subtler than objects. This applies also to cate-
gories and functors themselves, as well as to more complicated categorical
structures, such as model categories and Quillen adjunctions. The passage
from a model category to its homotopy category is well understood, but the
passage from Quillen functors to derived functors seems more subtle and
mysterious. In particular, the distinction between left and right derived
functors is not well understood at a conceptual level.

For instance, it is well-known that taking derived functors of Quillen
functors between model categories is pseudofunctorial—as long as all de-
rived functors involved have the same “handedness.” In other words, we
have coherent isomorphisms such as L(G ◦ F ) ∼= LG ◦ LF . However, not
infrequently it happens that we want to compose a Quillen left adjoint with
a Quillen right adjoint, and compare the result with another such composite.
Standard model category theory has little to say about such questions, but
such comparisons are often essential in applications.

For example, the authors of [MS06] construct, for every base space B,
a model category ExB of ex-spaces over B, and for every continuous map
f : A → B, a Quillen adjunction f! : ExA � ExB : f∗. The derived func-
tor Lf! is a parametrized version of homology, while the additional right
adjoint f∗ of Rf∗ (which is shown to exist using Brown representability) is
a parametrized version of cohomology. One of their central lemmas about
these adjunctions is that for any pullback square

A
h //

f
��

_� B

g

��
C

k
// D

of base spaces, there are isomorphisms Lf! ◦ Rh∗ ∼= Rk∗ ◦ Lg! of derived
functors, as long as either g or k is a fibration. (This sort of result is
sometimes called a Beck–Chevalley condition.) Another analogous result is
the proper base change theorem in sheaf theory. The aim of the current
paper is to provide a general categorical framework in which to speak about
such comparisons.

We should stress at the outset that we will not prove any general theorem
about when two composites of left and right derived functors are isomor-
phic. Like the question of whether a given Quillen adjunction is a Quillen
equivalence, the way to attack this question seems to depend a great deal
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on the particular situation. What we do give is a calculus describing the
relationships between the natural transformations which compare such com-
posites, which generalizes the calculus of “mates” in 2-categories (see §2).
This gives a general framework in which to speak about such comparisons,
and a way to make them more precise by identifying the particular natural
transformation which is an isomorphism.

Many well-known theorems in homotopy theory and homological algebra,
such as the proper base change theorem and the lemma from [MS06] men-
tioned above, can be restated in this language. We will work out a number
of such examples in the second half of the paper. Usually, the existing proofs
of such theorems already include all the real work, and only a little refor-
mulation is required to place them in our abstract context. There are two
main advantages accruing from the small amount of work involved in such
a reformulation.

(i) When trying to prove a new commutation result between left and
right derived functors, the abstract framework reduces the problem
from finding an isomorphism to proving that a particular, canoni-
cally specified map is a weak equivalence.

(ii) The result obtained is strengthened from the mere existence of an
isomorphism, which is usually all that the standard proofs provide,
to the statement that a specific canonically defined map is an iso-
morphism. In some cases this does not matter, but in others (for
instance, when coherence questions arise) it does.

In addition, we believe that our abstract framework sheds conceptual light
on the distinction between left and right derived functors.

The central idea of this paper is to upgrade the category (or 2-category)
of model categories and Quillen adjunctions to a more expressive structure
called a double category. The standard 2-category of model categories and
Quillen adjunctions is a somewhat uncomfortable thing, since to define it
one must choose whether to consider a Quillen adjunction as pointing in the
direction of the right adjoint or the left adjoint, and either choice is asym-
metrical and aesthetically unsatisfactory. A double category, on the other
hand, can include both the left and right Quillen functors as different types
of morphism. Quillen adjunctions then appear as “conjunctions” in this
double category. The central observation enabling us to compare left and
right derived functors is that the passage from Quillen functors to derived
functors is a functor of double categories.

Category theorists will be interested to see that there is also a formal
analogy between left Quillen functors and colax monoidal functors (or co-
lax morphisms for any 2-monad), and between right Quillen functors and
lax monoidal functors. A functor which is both left and right Quillen corre-
sponds to a strong monoidal functor, while a Quillen adjunction corresponds
to a “doctrinal” or “lax/colax adjunction.”
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The plan of this paper is as follows. In the first part, comprising §§2–8,
we develop the general theory. We begin in §2 by summarizing the theory
of mates in 2-categories, which provides a general way to construct trans-
formations comparing composites of adjoints; this is familiar to category
theorists, but not as widely known as it should be. Then in §3 we summa-
rize the standard theory of derived functors and note its deficiencies. The
next three sections are devoted to setting up the double-categorical machin-
ery we need. In §4 we recall the notion of double category and give our
main examples, including the double category of model categories. In §5 we
describe the theory of companions and conjoints in double categories, which
generalizes the calculus of adjunctions and mates in 2-categories. And in
§6 we define the relevant type of functor between double categories, which
we call a double pseudofunctor ; it differs from the most common notions
of functor between double categories in that it only preserves the structure
weakly in both directions.

The main result of the paper is proven in §7: passage to homotopy cate-
gories and derived functors is a double pseudofunctor on the double category
of model categories. In §8 we extend this result to a more general context,
involving categories equipped with “cofibrant” and “fibrant” approximations
that admit more flexibility than those in a model structure; this generality
turns out to be important in many examples. We call these derivable cate-
gories and the morphisms between them derivable functors; they are closely
related to the deformable functors of [DHKS04].

In the second part of the paper, comprising §§9–13, we work out a number
of example applications. Our goal is to show how the general theory can be
applied in practice to compare composites of left and right derived functors,
and to provide templates for future applications. In most of the examples we
consider, the existence of an isomorphism is known; our contribution is to
put all these facts in a general framework and show that the isomorphisms
involved are actually the canonically defined maps which one would hope to
be isomorphisms.

The procedure in all these examples is the following: use the general
theory to identify a point-set-level representative of the canonically defined
map in question, then invoke facts specific to the domain at hand to show
that this map is (or, in some cases, is not) a weak equivalence. In general,
the application of the general theory is easy, and the domain-specific facts
are the same ones used in the standard proofs that an isomorphism exists (so
that, in particular, the isomorphism constructed in the classical proof is in
fact the canonical one). We do, however, include one example in §13 where
the general theory does not apply so cleanly and a medium-sized diagram
chase is still required. But even in this case, the general theory simplifies
the problem significantly and provides a context in which to ask the right
questions.
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Our reference for model category theory is [Hov99]; in particular, we
assume our model categories to be equipped with functorial factorizations.
This is not strictly necessary, but it will make things easier. A good reference
for the 2-category theory we will need is the first few sections of [KS74].

I would like to thank my thesis advisor, Peter May, for helpful conver-
sations about derived functors, and the referee, for pointing out that more
concrete examples were necessary.

2. Mates

Since left and right derived functors are, in particular, left and right
adjoints, we begin by considering how to compare composites of left and
right adjoints. The primary tool used for this purpose is the theory of mates
in 2-categories. Though straightforward, this theory is not as well-known
as it should be, and is thus frequently reinvented. Here we give a brief
overview; a definitive treatment can be found in [KS74].

The most basic form of the mate correspondence says that if f∗, g∗ : A ⇒
B are parallel functors with left adjoints f! and g!, respectively, then there
is a bijection between natural transformations f! → g! and natural transfor-
mations g∗ → f∗. A pair of natural transformations that correspond to each
other under this bijection are called mates (or sometimes “conjugates” or
“adjuncts”).

More generally, for functors f∗ : A → B and g∗ : C → D with left adjoints
f! and g!, and any functors h∗ : D → B and k∗ : C → A , there is a bijection
between natural transformations f!h

∗ → k∗g! and natural transformations
h∗g∗ → f∗k∗, i.e., between transformations

D
h∗ //

g!
��

����|�

B

f!
��

C
k∗

// A

and

D
h∗ //

OO

g∗

BOO

f∗

C
k∗

//

<<<< �"

A .

Explicitly, the mate of α : f!h
∗ → k∗g! is the composite

h∗g∗
ηh∗g∗−−−→ f∗f!h

∗g∗
f∗αg∗−−−−→ f∗k∗g!g

∗ f∗k∗ε−−−→ f∗h∗,

where η is the unit of the adjunction f! a f∗ and ε is the counit of the
adjunction g! a g∗. This is also commonly described as the “pasting com-
posite”

D
h∗ //

g!
��

����|�

B

f!
��

B.

C

g∗
>>~~~~~~~

⇓

C
k∗

// A
f∗

>>}}}}}}}}

⇓

Dually, the mate of β : h∗g∗ → f∗k∗ is the composite

f!h
∗ f!h

∗η−−−→ f!h
∗g∗g!

f!βg!−−−→ f!f
∗k∗g!

εk∗g!−−−→ k∗g!.
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The triangular diagrams for the adjunctions f! a f∗ and g! a g∗ are precisely
what is required to make these into inverse bijections.

In general, the mate of an isomorphism need not be an isomorphism, but
there are two important situations in which it is.

Lemma 2.1. If h∗ and k∗ are identities, then a transformation f! → g! is
an isomorphism if and only if its mate g∗ → f∗ is an isomorphism.

Proof. The mate of the inverse of one supplies an inverse to the other. �

Note that this includes the standard fact that any two right adjoints of a
given functor are canonically isomorphic.

Lemma 2.2. If f! a f∗ and g! a g∗ are adjoint equivalences, then a transfor-
mation f!h

∗ → k∗g! is an isomorphism if and only if its mate h∗g∗ → f∗k∗

is an isomorphism.

Proof. In this case the η and ε appearing in the definition of mates are
isomorphisms, so composing with them preserves invertibility. �

However, in cases other than these, whether or not a given mate is an
isomorphism can have substantial mathematical content. Here are two ex-
amples; we will see more in §§9–13.

Example 2.3. In the situation of [MS06] mentioned in the introduction,
we have a category ExB associated to every space B and an adjunction
f! : ExA � ExB :f∗ to every continuous map f : A→ B, and moreover for
any commutative square

(2.4)

A
h //

f
��

B

g

��
C

k
// D

of continuous maps, we have a natural isomorphism

(2.5) h∗g∗
∼=−→ f∗k∗.

This isomorphism has a mate

(2.6) f!h
∗ −→ k∗g!

which may or may not be an isomorphism, depending on the square (2.4);
in particular, it is an isomorphism whenever (2.4) is a pullback square. In
category theory, the property of (2.6) being an isomorphism is often called
the Beck–Chevalley condition for the square (2.4).

This example is paradigmatic of a very general situation: we have a cat-
egory S (here S = Top) and a pseudofunctor S op → Cat (here this
pseudofunctor sends B to ExB), with the property that each morphism f
of S is sent to a functor f∗ having a left adjoint f!. For any such pseudo-
functor, we can ask whether a given commutative square in S satisfies the



COMPARING COMPOSITES OF LEFT AND RIGHT DERIVED FUNCTORS 81

Beck–Chevalley condition; often this is the case for (some class of) pullback
squares in S .

Example 2.7. Let C and D be closed symmetric monoidal categories and
let f∗ : D → C be a lax monoidal functor; this means that we have natural
transformations

f∗X ⊗ f∗Y −→ f∗(X ⊗ Y )(2.8)

I −→ f∗I(2.9)

satisfying certain axioms. Now we can also regard (2.8) as a transformation

D
f∗ //

X⊗−
��

����|�

C

f∗X⊗−
��

D
f∗

// C

which therefore has a mate

(2.10) f∗ Hom(X,Y ) −→ Hom(f∗X, f∗Y ).

We say that f∗ is a closed monoidal functor if (2.10) is an isomorphism.
Now suppose that f∗ has a left adjoint f!. Then we also have composite

adjunctions

X ⊗ f!(−) a f∗ Hom(X,−) and

f!(f∗X ⊗−) a Hom(f∗X, f∗−).

Under these adjunctions, (2.10) has a mate

(2.11) f!(f∗X ⊗A) −→ X ⊗ f!A.

By Lemma 2.1, (2.11) is an isomorphism if and only if (2.10) is. This
alternate condition is sometimes easier to verify.

There are many other mates of this sort that compare various composites
of adjoint functors between monoidal categories; see, for instance, [FHM03].

The thing to notice about both of these examples is that the given struc-
ture uniquely specifies a canonical transformation, and the important ques-
tion is whether that transformation is an isomorphism. Thus, for instance,
in the case of the Beck–Chevalley condition, it is important not merely that
there exists an isomorphism f!h

∗ ∼= k∗g!, but that the particular transforma-
tion f!h

∗ → k∗g! (the mate of the specified isomorphism h∗g∗ ∼= f∗k∗) is an
isomorphism. The mere existence of an isomorphism may be sufficient for
some applications, such as computing homology and cohomology groups up
to isomorphism. However, for other purposes, such as proving the coherence
axioms for the bicategory of parametrized spectra constructed in [MS06]
(see [Shu08a] for details), it is essential to know what that isomorphism is.

We end this section with a useful observation about iterated mates.
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Lemma 2.12. Given a transformation

A
g∗ //

h∗
��

����}�

B

k∗
��

C
f∗

// D

where all the functors f∗, g∗, h∗, and k∗ have left adjoints f!, g!, h!, and
k! respectively, if we first take its mate under the adjunctions f! a f∗ and
g! a g∗ to obtain a transformation f!k

∗ → h∗g!, and then take the mate of
this under the adjunctions h! a h∗ and k! a k∗, the resulting transformation
h!f! → g!k! is the same as the mate of the original transformation under the
composite adjunctions h!f! a f∗h∗ and g!k! a k∗g∗.

Proof. By unraveling definitions. �

3. Derived functors

A good deal of the power of model category theory, and of abstract ho-
motopy theory more generally, comes from its ability to construct derived
structure (that is, structure at the level of homotopy categories) from point-
set level structure, in a tractable way. The most basic example, of course, is
the construction of homotopy categories themselves; a few other examples
include the constructions of:

(i) derived functors from point-set level functors,
(ii) monoidal homotopy categories from monoidal model categories,
(iii) enriched homotopy categories from enriched model categories, and
(iv) triangulated homotopy categories from stable model categories.

Of course, structure-preserving passage from one world to another is a com-
mon phenomenon in mathematics; to describe it formally the term functor
was invented. In the case of constructing derived structure, one general
functoriality statement was proven in [Hov99]: passage to derived functors
is a pseudofunctor from a 2-category Model of model categories to the 2-
category Cat of categories, functors, and natural transformations.

In order to make such a statement precise, we need to specify what the
morphisms are in Model . However, there are really two different types of
morphism between model categories, so we end up with two different 2-
categories. In ModelL, the morphisms are left Quillen functors (functors
which preserve cofibrations and acyclic cofibrations and have a right adjoint),
and inModelR, the morphisms are right Quillen functors. In each case, we
allow arbitrary natural transformations as the 2-cells.

For the reader’s convenience, we now recall the usual definition of derived
functors. If f : C → D is left Quillen, by Ken Brown’s lemma it preserves
weak equivalences between cofibrant objects, so the composite f ◦Q : C →
D preserves all weak equivalences (where Q denotes a functorial cofibrant
replacement). Thus, f ◦ Q induces a functor Lf : Ho(C ) → Ho(D) which



COMPARING COMPOSITES OF LEFT AND RIGHT DERIVED FUNCTORS 83

we call the left derived functor of f . Dually, a right Quillen functor has a
right derived functor Rf induced by f ◦ R (where R denotes a functorial
fibrant replacement).

Remark 3.1. One can show that such a left derived functor of f is, in
particular, a right Kan extension of f along the localization C → Ho(C ),
and many authors take this as a definition of “derived functor”. From our
point of view it is fairly irrelevant, although it does imply that Lf depends
only on the weak equivalences in C rather than the model structure.

Recall that a pseudofunctor between 2-categories (also called a weak 2-
functor or a homomorphism of bicategories) is a map which preserves com-
position not exactly, but only up to constraint isomorphisms F (g) ◦F (f) ∼=
F (g ◦ f) and Id ∼= F (Id) (which are then required to satisfy standard coher-
ence axioms).

Theorem 3.2 ([Hov99]). There are pseudofunctors

L :ModelL −→ Cat
R :ModelR −→ Cat

which take a model category C to Ho(C ) and a left or right Quillen functor
to its left or right derived functor, respectively.

Proof. Consider L; of course R is dual. We have already defined the image
of each model category and each left Quillen functor. If f, g : C ⇒ D are left
Quillen and α : f → g is a natural transformation, then the image of α under
L is defined to be the natural transformation Lf → Lg whose components
are represented by αQX : fQX → gQX. We refer to this as the derived
natural transformation of α. This operation clearly preserves composites of
natural transformations. The pseudofunctor composition constraint

Lg ◦ Lf
∼=−→ L(g ◦ f)

is represented by the natural transformation

(3.3) gQfQ
gπfQ // gfQ

where π : Q → Id is a natural weak equivalence relating Q to the identity.
Since f preserves cofibrant objects, πfQ is a weak equivalence between
cofibrant objects, so (3.3) is also a weak equivalence and thus represents an
isomorphism in the homotopy category. The unit isomorphism L(Id)

∼=−→ Id
is simply represented by π itself, and the axioms of a pseudofunctor follow
by naturality of π. �

As usual, the existence of a functor implies the automatic preservation of
any structure that can be defined in the relevant sort of category. In this
case, that means any categorical structure that can be “internalized” to any
2-category.
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Example 3.4. An adjunction f a g in a 2-category consists of morphisms
f : C → D and g : D → C and 2-cells η : idC → gf and ε : fg → idD
satisfying the usual triangle identities. An adjunction in Cat is just an
adjunction in the usual sense.

Since adjunctions are defined purely 2-categorically, they are preserved by
any pseudofunctor. Thus, if f a g is an adjunction between model categories
in which both f and g are left Quillen, then we also have Lf a Lg.

Example 3.5. Of greatest interest to us is that mates can be defined in-
ternal to any 2-category. The definitions are the same as those given in §2:
simply replace “functor” by “morphism” and “natural transformation” by
“2-cell.”

Since the definition is purely 2-categorical, such mates are also preserved
by any pseudofunctor. Thus, in any of the examples given in §2, if all the
categories are model categories and all the functors involved are (say) left
Quillen, then the mate of a derived natural transformation is the same as
the derived natural transformation of a mate. In particular, since pseudo-
functors take 2-cell isomorphisms to 2-cell isomorphisms, if the mate of a
given transformation is an isomorphism, then so is the mate of its derived
transformation.

For example, given a square (2.4) which satisfies the Beck–Chevalley con-
dition on the point-set level, and in which the functors f∗, g∗, h∗, k∗, f!,
and g! are all left Quillen, it follows that the square also satisfies the Beck–
Chevalley condition at the derived level (i.e., the canonical transformation
Lf! ◦ Lh∗ → Lk∗ ◦ Lg! is an isomorphism).

This is a very appealing formal setup—we have not just one but two
functors—but unfortunately it is not all that useful in practice. It is certainly
useful to know that passage to derived functors of the same handedness
preserves composition (the pseudofunctor constraint Lg ◦ Lf ∼= L(g ◦ f)),
but it turns out that one almost never encounters adjunctions in ModelL
or ModelR. Much more common are, of course, Quillen adjunctions, in
which the left adjoint is left Quillen and (equivalently) the right adjoint is
right Quillen. It is well-known that any Quillen adjunction f a g has a
derived adjunction Lf a Rg, but since f and g live in different 2-categories
this does not follow from pseudofunctoriality as in Example 3.4. However,
functoriality is such a useful type of framework that it is natural to ask
whether there is some other type of “functor” which can serve to relate left
and right derived functors.

In the rest of the paper we give an affirmative answer to this question.
However, such an answer must move beyond 2-categories; it is impossible to
have a 2-category K in which Quillen adjunctions are internal adjunctions
and which admits a pseudofunctor K → Cat combining L and R. For if so,
then as in Example 3.5, this would imply that any Beck–Chevalley condition
that holds on the point-set level would remain true at the derived level. But
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this is known to be false; see, for instance, [MS06, Counterexample 0.0.1]
(which we repeat below as Remark 9.7).

4. Double categories

Roughly speaking, the problem we encountered in the previous section is
that the composite of a left Quillen functor and a right Quillen functor need
not be any sort of Quillen functor. It turns out, however, that there is a
well-known structure which precisely allows us to speak about 2-cells such
as the η and ε in a Quillen adjunction, but without necessarily being able
to actually “compose” f and g. This structure is called a double category.

Double categories are a fundamental categorical notion, like 2-categories
(although historically, they have received less attention). As such, they can
be seen from many different viewpoints and play many different roles in
mathematics (which also leads to many variants of the definition). Double
categories were originally introduced by Ehresmann [Ehr63]; a good refer-
ence with a point of view similar to ours is [KS74].

A double category K consists of the following data. First of all, we have
two categories with the same set of objects (or 0-cells). We distinguish
between the two types of morphisms (or 1-cells) by calling one of them
vertical and one of them horizontal, and usually drawing them accordingly.
In addition, there are squares (or 2-cells) which have the following shape:

(4.1) a
f //

h
��

����|� α

c

k
��

b g
// d.

Here a, b, c, and d are objects, f and g are horizontal morphisms, and h
and k are vertical morphisms. We think of such an α as a morphism from
“the composite kf” to “the composite gh,” even though such composites do
not actually exist (since the vertical and horizontal 1-cells live in different
categories).

Finally, we require that the 2-cells can be composed both horizontally and
vertically, forming the morphisms of a category in each direction, and that
these two category structures respect each other and the given categories of
horizontal and vertical 1-cells. We write α� β for the horizontal composite
of 2-cells

//

��
����{� α

//

��
����{� β

��// //
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and β � α for the vertical composite
//

��
����{� α

��//

��
~~~~{� β ��// .

The compatibility requirement for composition is then that

(α� β) � (γ � δ) = (α� γ) � (β � δ).

Every object a has both a vertical identity 1a and a horizontal identity 1a,
every vertical arrow g : a→ b has an identity 2-cell

1a
//

g

��
����{� 1g

g

��
1b

//

every horizontal arrow f : a→ c has an identity 2-cell
f //

1a

��
����{� 1f

1c

��
f

//

and the compatibility requirements for units are that

11a = 11a , 1g � 1f = 1gf , and 1f � 1g = 1gf .

We will often write identity arrows simply as equalities.

Remark 4.2. A more concise definition of a double category is that it is an
internal category in Cat (as contrasted with a 2-category, which is a category
enriched in Cat). This definition is often convenient for dealing with weak
double categories (the double-category counterpart of bicategories, or weak
2-categories). However, for our purposes this approach merely muddies the
water, since it breaks the symmetry between the horizontal and vertical
directions.

The following examples are fundamental.

Example 4.3. There is a double category Cat whose objects are categories,
whose vertical and horizontal 1-cells are functors, and whose 2-cells of the
form (4.1) are natural transformations α : kf → gh.

Example 4.4. A similar double category can be constructed with any 2-
category K replacing Cat ; we call this the double category Sq(K) of squares
in K. Ehresmann, who first defined it, called it the double category of
quintets in K, since a 2-cell in Sq(K) is defined by a quintet (f, g, h, k, α)
where α : kf → gh is a 2-cell in K.
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Example 4.5. Any ordinary category C can be regarded as a 2-category
with only identity 2-cells, so we thereby obtain a double category Sq(C) of
commutative squares in C.

In double categories of the form Sq(K), the vertical and horizontal 1-cells
are the same. Of course, the reason for considering double categories instead
of 2-categories is that the two can also be different. The following example
is the one in which we are most interested.

Example 4.6. There is a double category Model whose objects are model
categories, whose vertical arrows are left Quillen functors, whose horizon-
tal arrows are right Quillen functors, and whose 2-cells of the form (4.1)
are arbitrary natural transformations α : kf → gh. (The reason for these
particular choices will become clear in §7.)

Any double category has two underlying 2-categories with the same ob-
jects, called its horizontal 2-category H(K) and its vertical 2-category V(K).
The morphisms of H(K) are the horizontal 1-cells of K, and its 2-cells are
the squares in K of the form

//

����{�
//

which we call h-globular. Dually, V(K) is composed of the objects, vertical
1-cells, and v-globular squares in K.

Example 4.7. For any K we have H(Sq(K)) ∼= K and V(Sq(K)) ∼= K. More
interestingly, we have H(Model) ∼=ModelR and V(Model) ∼=ModelL.

Any double category K has three opposites, obtained by reversing it hori-
zontally, vertically, or both. It also has a transpose K> obtained by switching
the vertical and horizontal arrows.

We end this section by mentioning one further class of examples. We will
make no real use of these in this paper, but they are worth thinking about
for purposes of comparison and intuition.

Example 4.8. There is a double category MonCat whose objects are mo-
noidal categories, whose horizontal arrows are lax monoidal functors, and
whose vertical arrows are colax monoidal functors. A 2-cell

a
f //

h
��

����{� α

c

k
��

b g
// d
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is a natural transformation α : kf → gh such that the following diagrams
commute:

k(fx⊗ fy)
k⊗

wwooooooooo k(f⊗)

''NNNNNNNN

kfx⊗ kfy
α⊗α

��

kf(x⊗ y)
α

��
ghx⊗ ghy

g⊗ ''OOOOOOOOO
gh(x⊗ y)

g(h⊗)wwpppppppp

g(hx⊗ hy)

and

k(Ic)
kI

{{xxx
xx

xx k(fI)

##FFFFFF

Id kf(Ia)

α
��

Id

gI ##FF
FF

FF
F gh(Ia)

g(hI){{xxxxxx

g(Ib).

The horizontal 2-category H(MonCat) of MonCat isMonCat`, the 2-cate-
gory of monoidal categories, lax monoidal functors, and monoidal transfor-
mations, and dually for V(MonCat). More generally, we have a double cat-
egory T -Alg of T -algebras, lax and colax T -morphisms, and generalized T -
transformations for any 2-monad T . (A 2-monad is a monad on a 2-category,
for which we can define general notions of lax and colax morphisms of alge-
bras; see [BKP89].) These double categories were apparently first considered
in [GP04].

Remark 4.9. In Model no axioms are imposed on the 2-cells, whereas in
MonCat there is a compatibility requirement with the structure of the 1-cells.
Nevertheless, there is a connection between the two. One can “algebraicize”
parts of the definition of model category so that “algebraicized” left and
right Quillen functors become colax and lax morphisms for a 2-monad, re-
spectively; see [GT06, Gar09, Rie09].

5. Companions and conjoints

Recall that our goal in introducing double categories was to find an ab-
stract framework in which to express the adjointness between a left Quillen
functor and a right Quillen functor. Inspecting the definition of Model, we
immediately see how to write this down. The following terminology is due
to [DPP10] (in [GP04] it was called an orthogonal adjunction).

Definition 5.1. A conjunction in a double category K consists of a vertical
1-cell f : a→ b, a horizontal 1-cell g : b→ a, and 2-cells

a

f
��

����{� η

a

b g
// a

and b
g //

}}}}z� ε

a

f
��

b b

(the unit and counit) such that ε � η = 1g and ε � η = 1f . We say that f
is the left conjoint and g is the right conjoint, and write f � g.
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Example 5.2. A conjunction in Cat is an ordinary adjunction. Likewise, a
conjunction in Sq(K) is simply an ordinary internal adjunction in K.

Example 5.3. A conjunction in Model is an adjunction in which the left
adjoint is left Quillen and the right adjoint is right Quillen—in other words,
a Quillen adjunction.

Example 5.4. A conjunction in T -Alg (such as MonCat) is precisely a doc-
trinal adjunction as studied in [Kel74]. This is an adjunction between T -
algebras in which the left adjoint is colax and the right adjoint is lax, and
the colax and lax structure maps are mates under the adjunction.

Interpreting conjunctions in the horizontally-opposite double category (or,
equivalently, the vertically-opposite one), we obtain a different useful notion.

Definition 5.5. A companion pair in a double category K consists of a
vertical 1-cell f : a→ b, a horizontal 1-cell f ′ : a→ b, and 2-cells

a
f ′ //

f
��

}}}}z� ϕ

b

b a

and a

����{� ψ

a

f
��

a
f ′

// b

such that ϕ � ψ = 1f and ψ � ϕ = 1f ′ . We say that f ′ is the (horizontal)
companion of f and that f is the (vertical) companion of f ′, and write
f u f ′.

Example 5.6. In Cat or Sq(K), every 1-cell has a companion, namely itself;
ϕ and ψ are both identities. More generally, a companion pair in Sq(K) is
precisely a natural isomorphism between two parallel morphisms f, g : a ⇒ b
in K.

Thus, from the double-categorical perspective, “adjunctions are dual to
natural isomorphisms.”

Example 5.7. A 1-cell in Model has a companion just when it both left
and right Quillen.

Example 5.8. A 1-cell in MonCat has a companion just when it is a strong
monoidal functor. For the 2-cells ϕ and ψ show that f and f ′ are isomorphic
as ordinary functors, and then the hexagon axioms in the definition of a 2-
cell in MonCat imply that the lax structure maps of f ′ are inverses to the
colax structure maps of f , so that both are strong. An analogous statement
is true in any T -Alg.

Motivated by these examples, we say that a 1-cell in a general double
category is strong if it has a companion.

Companions and conjoints in a double category have most of the good
properties of adjunctions in a 2-category. For instance, they are unique up to
unique isomorphism when they exist, and are preserved under composition.



90 MICHAEL SHULMAN

Proposition 5.9. If f ′ and f ′′ are both horizontal companions of f , then
there is a canonical isomorphism f ′ ∼= f ′′ in H(K), and similarly for vertical
companions.

Proof. An isomorphism is given by the following composite.

~~~~{�

f ′ //

f

��
~~~~{�

f ′′
// .

Its inverse is the obvious dual construction. �

Proposition 5.10. If f and h have companions f ′ and h′, then h′f ′ is a
companion of hf .

Proof. It is straightforward to compose the 2-cells defining the companion
pairs f u f ′ and h u h′ to produce a companion pair hf u h′f ′. �

By duality, we have the corresponding results for conjunctions.

Proposition 5.11. If g and g′ are both conjoints of f , then there is a
canonical globular isomorphism g ∼= g′.

Proposition 5.12. If f and h have conjoints g and k, respectively, then gh
is a conjoint of hf .

The most important property of companions and conjunctions for our
purposes, however, is that they also have an associated mate correspondence.
We begin with mates for companions.

Proposition 5.13. If f and g have horizontal companions f ′ and g′, then
there is a canonical isomorphism

(5.14) V(K)(f, g) ∼= H(K)(f ′, g′).

More generally, for any i, j,m, n there is a bijection between 2-cells of the
following shapes:

(5.15)

j //

fi
��

����{� α mg

��
n

//

and

g′j //

i
��

~~~~{� β m
��

nf ′
// .

We say that a pair of 2-cells which correspond under (5.15) are mates.
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Proof. The bijection is given by the following correspondences.

(5.16)

j //

fi
��

����{� α mg

��
n

//

� //
i

��
����{�
1i

j //

i
�� oooos{

α

g

��

g′ //

����{� ϕ

����{� ψ f
��

m

��
����{� 1m m

��
f ′

//
n

//

�(5.17)

j //

����{� 1j
����{� ψ g

��
j

//

i
��

������ β
g′

//

m

��f ′ //

f
��

����{� ϕ

n //

����{� 1n

n
//

�oo

g′j //

i
��

~~~~{� β m
��

nf ′
// .

The correspondence (5.14) is preserved by composition, so we have a
2-category Str(K) whose 0-cells are the 0-cells of K, whose 1-cells are com-
panion pairs in K, and whose 2-cells are mate-pairs of globular 2-cells. We
also have canonical 2-functors

Str(K) −→ V(K)

Str(K) −→ H(K)

which are full and faithful on hom-categories.

Examples 5.18. Str(Sq(K)) is not quite the same as K; its morphisms
are pairs of parallel morphisms in K with an isomorphism between them.
However, it is “biequivalent” toK (this is the most general sort of equivalence
between 2-categories).

Similarly, Str(Model) is biequivalent to the 2-category of model categories
and functors which are both left and right Quillen, and Str(MonCat) is
biequivalent to the 2-category of monoidal categories and strong monoidal
functors.

Dualizing this correspondence, we immediately obtain the mate corre-
spondence for conjunctions.

Proposition 5.19. If f � g and h � k where f, h : a → b, then we have a
natural isomorphism

(5.20) V(K)(f, h) ∼= H(K)(k, g),

under which isomorphisms f ∼= h correspond to isomorphisms k ∼= g. More
generally, for any i, j,m, n there is a bijection between 2-cells of the following
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shapes:

(5.21)

i //

mh
��

����{� fj
��

n
//

and

ik //

m

��
~~~~{� j

��
gn

// .

We say that a pair of 2-cells which correspond under (5.21) are mates.

As with companions, we obtain a 2-category Conj (K) whose objects are
those of K, whose 1-cells are the conjunctions in K, and whose 2-cells are the
mate-pairs of globular 2-cells in K. Note, though, that to define Conj (K) we
must choose whether to consider a conjunction as pointing in the direction
of the left conjoint or the right conjoint; it is precisely this arbitrariness
which the double-categorical context avoids.

Examples 5.22. Of course, Conj (Cat) is the usual 2-category of categories
and adjunctions, while Conj (Model) is the usual 2-category of model cate-
gories and Quillen adjunctions.

Remark 5.23. Mates for conjunctions are clearly analogous to mates for
adjunctions in a 2-category. The mate correspondence for companion pairs
also has an analogue in a 2-category, though it is too obvious to require
comment (or a name): it simply says that if f ∼= f ′ and g ∼= g′, then there
is a bijection between 2-cells f → g and f ′ → g′.

As an immediate application of mates, we show that companion pairs
“mediate” between adjunctions and conjunctions.

Proposition 5.24. Let f : a→ b be a vertical 1-cell in K and let f ′ : a→ b
and g : b→ a be horizontal 1-cells. Then any two of the following statements
imply the third.

(i) f ′ is a horizontal companion of f .
(ii) g is a right conjoint of f .
(iii) g is a right adjoint of f ′ in H(K).

More precisely, any companion pair f u f ′ and conjunction f � g determine
a unique horizontal adjunction f ′ a g, and similarly in the other cases.

Proof. Assuming (i), the correspondence of Proposition 5.13 transforms a
unit and counit for a conjunction f �g into a unit and counit for a horizontal
adjunction f ′ a g, and vice versa. The other cases are similar. �

Remark 5.25. In T -Alg, this implies part of one of the main results of
[Kel74]: in a doctrinal adjunction, the left adjoint is a strong T -morphism
precisely when the adjunction is an adjunction in the 2-category T -Alg`.

Remark 5.26. We believe that the notions of companion pair and con-
junction are as central to the theory of double categories as the notions of
equivalence and adjunction are to the theory of 2-categories. It is thus sur-
prising that they seem only recently to have been isolated in the present
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form. The basic ideas, however, have been around a long time. For in-
stance, a folding or connection pair on a double category, as considered
in [BS76, BM99, Fio07], can be defined as a strictly functorial choice of a
companion for each vertical 1-cell. Since companions are always pseudofunc-
torial (Proposition 5.10), an arbitrary choice of companions for each vertical
1-cell is the same as a pseudo-folding in the sense of [Fio07]. The framed bi-
categories of [Shu08a] are (pseudo) double categories in which every vertical
1-cell has both a horizontal companion and a right conjoint.

6. Double pseudofunctors

The way forward should now be clear: we aim to show that passage to ho-
motopy categories and derived functors is a functor Model→ Cat. However,
as in the 2-categorical case, it can only be expected to be a pseudofunc-
tor, i.e., to preserve composition and identities up to coherent isomorphism.
Strict functors of double categories are easy to define, and functors which
are pseudo in one direction and strict in the other also appear in the liter-
ature under the name of pseudo double functor (see, for instance, [GP99]),
but we require functors which are pseudo in both directions. We now define
these precisely under the name of double pseudofunctors; the reader who is
uninterested in the details may skim this section.

Definition 6.1. Let K and L be double categories. A double pseudofunctor
F : K→ L consists of the following structure and properties.

(i) Functions from the objects, vertical 1-cells, horizontal 1-cells, and 2-
cells of K to those of L, preserving sources, targets, and boundaries.

(ii) For each object a of K, 2-cells

Fa
F (1a) //

1Fa ����~� Fa

Fa

1Fa

Fa
1Fa

Fa

and

Fa
1Fa

1Fa ����~� Fa

Fa

F (1a)
��

Fa
1Fa

Fa

in L, of which the first is an h-globular isomorphism and the second
a v-globular isomorphism.

(iii) For each composable pair a
f−→ b

g−→ c of vertical 1-cells in K, a
v-globular isomorphism

Fa

Ff
��

rrrru}
F gf

Fa

F (gf)

��

Fb

Fg

��
Fc Fc.



94 MICHAEL SHULMAN

F (gf) //

������ Fgf

Fu
��

//

����{� FαFv��

//

����{� Fβ Fw
��

Fh
//

Fk
//

=

F (gf) //

Fu

��

F (α�β)
{� ����

Fw

��//

������ Fkh

Fh
//

Fk
//

(6.2)

Fa

F−1
a

~� ����
Fa

Fa //

Ff
��

F (1f )
~� ����

Fa

Ff
��

Fa //

Fa
~� ����

Fa

Fa Fa

=

Fa

Ff
��

1Ff~� ����
Fa

Ff
��

Fa Fa

(6.3)

Figure 1. The horizontal double naturality axioms

(iv) For each composable pair a h−→ b
k−→ c of horizontal 1-cells in K,

an h-globular isomorphism

Fa
F (kh) //

������ Fkh

Fc

Fa
Fh

// Fb
Fk

// Fc.

(v) The following coherence axioms hold (the usual coherence axioms
for a pseudofunctor in both directions).

F h(gf) �
(
1Fh � F gf

)
= F (hg)f �

(
F hg � 1Ff

)
F b � 1Ff = F 1bf

1Ff � F a = F f1a

Fh(gf) � (Fgf � 1Fh) = F(hg)f � (1Ff � Fhg)
Fa � 1Ff = Ff1a

1Ff � Fb = F1bf .

(vi) The “double naturality” axioms displayed in Figure 1 hold, as do
their transposes involving F gf and F a.
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Note that in general, a double pseudofunctor does not preserve globularity
of 2-cells, since it does not preserve either vertical or horizontal identities
strictly. However, any h-globular 2-cell

a
f //

}}}}z� α

b

a
g

// b

in K gives rise to a canonical h-globular 2-cell

Fa

Fa~� ����
Fa

Ff //

��
F (α)}� ����

Fb

��
(Fa)−1{� ����

Fb

Fa Fa
Fg

// Fb Fb

in L, which we denoteHF (α). It is easy to check that this defines an ordinary
pseudofunctor HF : HK→ HL. Similarly, we have VF : VK→ VL.

Examples 6.4. An ordinary pseudofunctor F : K → L gives rise to a double
pseudofunctor Sq(F ) : Sq(K) → Sq(L) in a fairly straightforward way. The
only wrinkle is that if α : kf → gh is a 2-cell in Sq(K), we must compose
Fα with the constraints of F on either side to obtain a 2-cell in Sq(L).

In particular, if F : Cat → Cat is a pseudofunctor, we obtain a double
pseudofunctor Sq(F ) : Cat → Cat, and some of the double pseudofunctors
obtained in this way also give endofunctors of Model. For instance, there is
a double pseudofunctor Model→ Model which takes a model category C to
its pointed variant C∗; see [Hov99, 1.1.8, 1.3.5].

Example 6.5. Recall that K> denotes the transpose of a double category,
in which the vertical and horizontal arrows are interchanged. We then have
a double pseudofunctor Model> → Model which takes C to C op .

Example 6.6. Recall that for any ordinary category C we have a double
category Sq(C) of commutative squares in C. If we restrict the squares in
Sq(C) to a subclass A of commutative squares which are closed under com-
position and identities (such as all pullback squares), we obtain a smaller
double category Sq(C;A). Then for any 2-category K, a double pseudofunc-
tor Sq(C;A) → Sq(K) is essentially the same as a lower e-functor relative
to A, in the sense of [Del, §4.1]. Upper e-functors and e∗ and e! contradirec-
tional functors are defined by applying appropriate types of duality to Sq(K).
Finally, a cross functor is a double pseudofunctor Sq(C;A)→ Crs(K), where
Crs(K) is the double category defined as follows:
• Its objects are the objects of K.
• Its horizontal 1-cells A→ B are adjunctions f∗ : B � A :f∗ in K, where
f∗ is the right adjoint.
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• Its vertical 1-cells A→ B are adjunctions f! : A � B :f ! in K, where f!

is the left adjoint.
• Its 2-cells

A
f∗

//

h!

��

����|�

B
f∗oo

k!

��
C

g∗
//

h!

OO

D
g∗oo

k!

OO

are isomorphisms h!f
∗ ∼= g∗k!. Any such isomorphism has mates f∗k! →

h!g∗, k!g∗ ∼= f∗h
!, and k!f∗ → g∗h!; thus a cross functor has underlying

functors of all four sorts considered above.

The composite G◦F of two double pseudofunctors is defined in an obvious
way, with one minor wrinkle: since G need not preserve the globularity of the
constraints for F , we need to compose with the unit constraints of G when
defining the constraints of GF . For example, the composition constraint of
GF is given by the composite

GFa
{� ����

GF (gf) //

��
G(Fgf )

{� ����

��
GFc

{� ����

G(Fg)(Ff)
{� ����

//

GFf
//

GFg
// .

We thereby obtain a category Dbl of double categories and double pseudo-
functors. The operations V and H define functors from Dbl to the category
2-Cat of 2-categories and pseudofunctors. In the other direction, Sq defines
a functor from 2-Cat to Dbl.

The most important observation about double pseudofunctors for our
purposes is that they preserve companions, conjoints, and mates.

Proposition 6.7. If f has a horizontal companion f ′ in K and F : K → L
is a double pseudofunctor, then F (f) has a horizontal companion F (f ′).

Proof. We take the defining 2-cells to be

Ff ′ //

Ff
��

Fϕ
{� ����

��
����{� ∼=

//

����{� ∼=
=

and

= ����{� ∼=

~~~~{� ∼=

//

��
Fψ

{� ~~~~ Ff
��

Ff ′
// .

Verification of the equations defining a companion pair is straightforward
using the double naturality axioms (Figure 1). �
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Proposition 6.8. If f � g in K and F : K → L is a double pseudofunctor,
then F (f) � F (g).

Proof. By duality. �

Proposition 6.9. The mate correspondences (5.15) and (5.21) are pre-
served by double pseudofunctors.

Proof. Straightforward verification, again using the double naturality ax-
ioms and the horizontal and vertical pseudofunctor axioms. �

In particular, this means that we have two additional functors Str : Dbl→
2-Cat and Conj : Dbl → 2-Cat. It is of interest to note that Str is right
adjoint to Sq.

Remark 6.10. Double pseudofunctors, as we have defined them, do not
seem to appear in the literature on double categories. They can, however, be
shown to be equivalent to the morphisms of the tricategory HorizSH defined
in [Ver92, §1.4], after first identifying double categories with a certain strict
subclass of the double bicategories which form the objects of HorizSH .

7. The double pseudofunctor Ho

We are now finally ready to construct the double pseudofunctor

Ho: Model→ Cat.

We already know that it should take a model category to its homotopy
category, a left Quillen functor to its left derived functor, and a right Quillen
functor to its right derived functor, so it remains only to define its action
on a 2-cell

A
f //

h
��

����|� α

C

k
��

B g
// D

in Model. We define the derived transformation of such an α to be the
transformation

Ho(A )
Rf //

Lh
��

Ho(α)�� �
���

Ho(C )

Lk
��

Ho(B)
Rg

// Ho(D)

represented by the composite of the following zigzag:

(7.1) kQfR
∼←− kQfQR −→ kfQR

α−→ ghQR −→ gRhQR
∼←− gRhQ

in Ho(D). Note that the backwards maps are weak equivalences, hence rep-
resent isomorphisms in Ho(D), so this makes sense. (Recall our convention
that the functor Q preserves fibrant objects.)
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Remark 7.2. We can express this more simply as follows. Assume that
X ∈ C is both cofibrant and fibrant. Then we have a commutative diagram

kQfQRX // kfQRX
α // ghQRX // gRhQRXff

∼
MMMMMMMMMM

kQfRX
xx

∼
qqqqqqqqqq
kQfQX

∼
OO

// kfQX
α //

∼
OO

ghQX //

∼
OO

gRhQX

∼
ffMMMMMMMMMM

kQfX
��
∼∼

~
ffMMMMMMMMMM

// kfX
α //

��
∼

ghX //
��
∼

gRhX
xx

∼
~

qqqqqqqqqq

in which the zigzag along the top represents Ho(α) as defined above. The two
weak equivalences marked ~ represent the canonical isomorphisms Rf(X) ∼=
fX and Lh(X) ∼= hX whenX is fibrant and cofibrant, so this diagram shows
that modulo these isomorphisms, Ho(α)X is represented by

(7.3) kQfX −→ kfX
α−→ ghX −→ gRhX.

This suffices to determine Ho(α), since every object is isomorphic in Ho(C )
to a cofibrant and fibrant one.

Remark 7.4. We could equally well choose to represent Ho(α) by the com-
posite

(7.5) kQfR
∼←− kQfRQ −→ kfRQ

α−→ ghRQ −→ gRhRQ
∼←− gRhQ,

where we use instead the assumption that R preserves cofibrant objects to
conclude that the backwards maps are weak equivalences. A diagram chase
shows that (7.1) and (7.5) represent the same morphism in Ho(D).

Theorem 7.6. The above constructions define a double pseudofunctor

Ho: Model −→ Cat.

Proof. We take the constraint 2-cells to be those of the pseudofunctors L
and R defined in §3. The ordinary pseudofunctor coherence axioms (Def-
inition 6.1(v)) follow from naturality of fibrant and cofibrant replacement,
just as for the ordinary pseudofunctors L and R.

Proving the double-naturality axioms is basically an exercise in filling up
big diagrams with lots of naturality squares, though we do have to take care
that enough “interior” arrows are weak equivalences that the diagram can
be chased in the homotopy category. The diagrams for (6.2) and (6.3) are
shown in Figures 2 and 3, respectively. In both cases the source and target
of the zigzags in question are placed in boxes to be easily visible, and all
the quadrilaterals are naturality squares. In Figure 2 the two zigzags go
around the top-right and the bottom-left, and the marked arrows are weak
equivalences. In Figure 3 the two zigzags go across the top and the bottom,
and all the arrows are weak equivalences. The zigzag along the bottom of
Figure 3 represents the identity since a backwards-pointing arrow represents
the inverse of its forward-pointing version. �



COMPARING COMPOSITES OF LEFT AND RIGHT DERIVED FUNCTORS 99

wQgRfR wQgQRfR
∼oo // wgQRfR

β // kvQRfR // kRvQRfR

wQgfR

∼
OO

wQgQfR
∼oo //

∼
OO

wgQfR

OO

β // kvQfR

OO

// kRvQfR

∼
OO

wQgQfQR

∼vvnnnnnnnnn
//

∼
OO

wgQfQR

OO

��

β // kvQfQR

OO

��

// kRvQfQR

∼
OO

��
wQgfQR

∼

OO

// wgfQR
β // kvfQR //

α
��

kRvfQR

α
��

khuQR //

��

kRhuQR

��
khRuQR

∼ // kRhRuQR

khRuQ

∼
OO

∼
// kRhRuQ

∼
OO

Figure 2. Proof of (6.2) for the homotopy double pseudofunctor

fQQR
fQπR

uullllllll

fπQR // fQR
ρfQR // RfQR

fQR RfQ

RfQρiiRRRRRRRR

fQ

fQρ
OO

fQQ

fQQρ

bbEEEEEEEEEEEEEEE

fQπ
oo

fπQ
// fQ

fQρ

hhRRRRRRRRRRRRRRRRRRRRRRRRR
ρfQ

OO

fQQQ
fQπQ
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Figure 3. Proof of (6.3) for the homotopy double pseudofunctor

We can now fulfill our promise to exhibit the preservation of adjunctions
as a functoriality statement.

Corollary 7.7. If f : C � D : g is a Quillen adjunction, then we have a
derived adjunction Lf : Ho(C ) � Ho(D) :Rg.

Proof. This follows from Theorem 7.6 and Proposition 6.8. �
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In fact, applying the functor Conj to the morphism Ho in Dbl, we obtain
the ordinary pseudofunctor defined in [Hov99, 1.4.3].

Conj (Ho) : Conj (Model) −→ Conj (Cat).

Considering companion pairs instead, we obtain the following dual result,
which is also occasionally useful:

Corollary 7.8. If f : C → D is both left and right Quillen (with respect to
the same model structures), then Lf ∼= Rf . �

The full power of Theorem 7.6, however, lies in the fact that double
pseudofunctors also preserve mates (Proposition 6.9). In §§9–13 we will
see how to apply this fact to compare composites of left and right derived
functors.

Remark 7.9. Note that the problem mentioned at the end of §3 does not
arise in the double-categorical context. It is perfectly possible to have a 2-
cell α in Model which is a natural isomorphism, but for which Ho(α) is not
an isomorphism. This is because the fact that α is an isomorphism in Cat is
not visible to the double category Model, and hence need not be preserved
by the functor Ho.

Remark 7.10. Theorem 7.6 admits various generalizations. For instance,
it is shown in [Hov99] that if V is a monoidal model category, then the
homotopy category of any V -model category is enriched over Ho(V ); in
this way we can construct a double pseudofunctor from V -model categories
to Ho(V )-categories. We could also lift the codomain of Ho to the double
category QCat = Sq(QCat) of quasicategories (see [Joy02, Joy, Lur09]),
where QCat is the 2-category of quasicategories described in [Joy]. A third
generalization is described in the next section.

8. Derivable categories

For many purposes, the powerful framework of model categories and
Quillen adjunctions is adequate, but there are some examples in which it is
too restrictive. This includes many examples where we want to compare left
and right derived functors. The problem is roughly that when dealing with
derived functors, we need more flexible notions of “fibrant” and “cofibrant”
objects than are supplied by a model structure.

In this section we describe an extension of the double pseudofunctor Ho
from Model to a larger double category Drv of derivable categories. This
generalization also serves to clarify the essential properties necessary for the
definition of derived functors and the double pseudofunctor Ho.

Definition 8.1. A derivable structure on a category C consists of:
(i) a class of “weak equivalences” satisfying the 2-out-of-3 property,
(ii) full subcategories CQ and CR,



COMPARING COMPOSITES OF LEFT AND RIGHT DERIVED FUNCTORS 101

(iii) a functor Q : C → C , whose image is contained in CQ, and a natural
weak equivalence π : Q ∼−→ IdC , and

(iv) a functor R : C → C , whose image is contained in CR, and a natural
weak equivalence ρ : IdC

∼−→ R, such that
(v) either Q(CR) ⊂ CR or R(CQ) ⊂ CQ.

A category equipped with a derivable structure is called a derivable category.

In any derivable category we write CQR = CQ ∩ CR. The importance of
condition (v) is visible in the following lemma.

Lemma 8.2. If C is a derivable category, then every object is connected by
a zigzag of weak equivalences to an object in CQR.

Proof. If Q(CR) ⊂ CR, possible zigzags are

X
ρ

∼
// RX oo πR

∼
// QRX and X oo π

∼ QX
Qρ

∼
// QRX .

Similarly, if R(CQ) ⊂ CQ, possible zigzags are

X
ρ

∼
// RX oo Rπ

∼
// RQX and X oo π

∼ QX
ρQ

∼
// RQX . �

Example 8.3. Of course, any model category C is a derivable category
if we take CQ and CR to be its full subcategories of cofibrant and fibrant
objects, respectively. In this case both disjuncts of (v) can be satisfied at
once.

Example 8.4. If C is any category equipped with a class of weak equiv-
alences satisfying the 2-out-of-3 property, we can make it into a derivable
category with CQ = CR = C and Q = R = Id.

Example 8.5. The product of two derivable categories is derivable, with
a pointwise structure. Also, the opposite of any derivable category is also
derivable (simply switch CQ and CR).

We will see other examples of derivable categories in §§9–13.
Any derivable category C has a homotopy category Ho(C ) obtained by

formally inverting its weak equivalences (though Ho(C ) may not have small
hom-sets without additional assumptions on C ). An equivalent homotopy
category is obtained by inverting the weak equivalences in CQ, CR, or (by
Lemma 8.2) CQR.

Definition 8.6. If C and D are derivable categories, a functor f : C → D
is left derivable if

(i) it preserves weak equivalences in CQ and
(ii) f(CQ) ⊂ DQ.

The dual notion is right derivable.
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Condition (i) ensures that any left derivable f : C → D has a left derived
functor Lf : Ho(C ) → Ho(D), which we define to be induced by the com-
posite f ◦Q : C → D . Condition (ii) ensures that the composite of two left
derivable functors is again left derivable.

Example 8.7. Any left Quillen functor between model categories is left
derivable. Similarly, any right Quillen functor is right derivable.

Example 8.8. If C and D are derivable categories in which Q = R = Id,
as in Example 8.4, then a functor C → D is left or right derivable just when
it preserves all weak equivalences.

Definition 8.9. We write Drv for the double category whose objects are
derivable categories, whose vertical arrows are left derivable functors, whose
horizontal arrows are right derivable functors, and whose 2-cells are arbitrary
natural transformations.

Since every model category is a derivable category and every Quillen
functor is derivable, we have a forgetful functor Model→ Drv.

Theorem 8.10. There is a double pseudofunctor

Ho: Drv→ Cat

sending each object C to Ho(C ), each vertical 1-cell f to Lf , each horizontal
1-cell g to Rg, and each 2-cell to a derived transformation defined as in
Theorem 7.6.

Proof. This is a slight generalization of the proof of Theorem 7.6. Pseudo-
functoriality in each direction follows exactly as in that case. However, we
are now forced to choose between the defining composites (7.1) and (7.5)
based on whether Q(DR) ⊂ DR or R(DQ) ⊂ DQ, since we have only required
one or the other to hold. Note that in either case, Lemma 8.2 enables us to
use the simpler version of Remark 7.2. Additional diagram chases, which dif-
fer inconsequentially from those in Figure 2, are required to verify the double
naturality axioms for the composite of two 2-cells where one uses (7.1) and
the other (7.5). �

This theorem is applied in the same way as Theorem 7.6. For example,
we have the following immediate corollaries.

Corollary 8.11. If f : C → D is a functor which is both left and right
derivable (relative to the same derivable structures), then Lf ∼= Rf .

Proof. Such functors f are precisely the strong morphisms in Drv. �

Corollary 8.12. If f a g is an adjunction between derivable categories in
which f is left derivable and g is right derivable, then we have an adjunction
Lf a Rg.

Proof. Such an adjunction is precisely a conjunction in Drv. �
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We call a conjunction in Drv a derivable adjunction.
Of central importance for us, of course, is that mates are additionally

preserved. The rest of the paper will focus on example applications of this
fact.

Example 8.13. The extra generality of derivable categories and functors
can be useful even when simply comparing functors of the same handedness.
For instance, if C is a monoidal model category, then although its tensor
product ⊗ : C ×C → C does satisfy a Quillen condition of sorts, it is not a
left Quillen functor and not a morphism in Model. However, it does preserve
cofibrant objects and weak equivalences between cofibrant objects, so it is
left derivable.

In this way any such C becomes a pseudomonoid in the 2-category V(Drv).
(A pseudomonoid is the 2-categorical “internalization” of a monoidal cate-
gory.) Since pseudomonoids are preserved by any product-preserving pseudo-
functor, it follows immediately that Ho(C ) is a monoidal category for any
monoidal model category C (and more generally, for any “monoidal deriv-
able category” C ).

Remark 8.14. In the terminology of [DHKS04], the subcategories CQ and
CR of a derivable category C are a left and right “deformation retract” of
C , respectively, and our derivable functors are a special sort of “deformable
functors.” The difference in viewpoint is that we consider CQ and CR to be
given structure on the category C , whereas [DHKS04] allows deformation
retracts to vary with the functors under consideration.

Of particular note is that if f : C � D : g is a deformable adjunction in
the sense of [DHKS04], then it becomes a derivable adjunction in our sense
if we choose CQ to be a “left f -deformation retract,” DR to be a “right
g-deformation retract,” and CR = C and DQ = D . Therefore, the results
of [DHKS04, §44] on derived adjunctions of deformable adjunctions follow
from our Corollary 8.12, and [DHKS04, 44.3] is then a special case of the
preservation of mates by the double pseudofunctor Ho.

Part II. Applications

9. Base change for parametrized spaces

As we saw in §2, a number of important questions can be phrased in
the form “is the mate of such-and-such a transformation an isomorphism
or not?” The fact that the double pseudofunctor Ho preserves mates for
conjunctions gives us a structured way to attack such questions at the level
of homotopy categories, by giving an explicit formula for the mate of a
derived transformation Ho(α)—namely, it is the derived transformation of
the mate of α. In the remainder of the paper we present several worked
examples of how to apply this technique, taken both from folklore and from
recent work such as [MS06, Shu08b].
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We begin with a simpler version of the situation of [MS06], where we
deal with unsectioned spaces. Let Top denote the category of compactly
generated topological spaces. Then for any space B we have a category
Top/B, and for any continuous f : A→ B we have an adjunction

f! : Top/A � Top/B :f∗,

where f! is given by composition with f , and f∗ is given by pullback along
f . The categories Top/B and functors f∗ assemble into a pseudofunctor
Topop → Cat .

Lemma 9.1. This pseudofunctor satisfies the Beck–Chevalley condition for
any pullback square

A
h //

f
��

_� B

g

��
C

k
// D.

That is, for such a square, the canonical transformation f!h
∗ → k∗g! is an

isomorphism.

Proof. This follows from an elementary lemma about pullback squares (and
thus remains true if Top is replaced by any category with pullbacks). �

Now each category Top/B inherits a model structure from the “classical”
one on Top. The weak equivalences are weak homotopy equivalences of
total spaces, and the fibrations are Serre fibrations of total spaces (so in
particular, the fibrant objects are Serre fibrations over B). With these model
structures, each adjunction f! a f∗ is Quillen, so we have derived adjunctions
Lf! a Rf∗, and it is natural to ask whether we still have isomorphisms
Lf! ◦Rh∗ ∼= Rk∗ ◦ Lg!. This is no longer true for all pullback squares (see
Remark 9.7, below), but the preservation of mates by the homotopy double
pseudofunctor enables us to give a sufficient condition for it to hold.

Theorem 9.2. The derived pseudofunctor B 7→ Ho(Top/B) satisfies the
Beck–Chevalley condition for a pullback square

A
h //

f
��

_� B

g

��
C

k
// D.

as long as either g or k is a (Serre) fibration.

Proof. We have to show that the mate

(9.3) Lf! ◦Rh∗ −→ Rk∗ ◦ Lg!
of the isomorphism

(9.4) Rh∗ ◦Rg∗ ∼= Rf∗ ◦Rk∗
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is itself an isomorphism. Because Ho preserves mates, and (9.4) is the de-
rived transformation of the isomorphism h∗g∗ ∼= f∗k∗, it follows that (9.3)
is the derived transformation of the mate f!h

∗ → k∗g! (which is an isomor-
phism by Lemma 9.1). Therefore, by Remark 7.2, (9.3) is represented by
the composite

f!Qh
∗X −→ f!h

∗X
∼=−→ k∗g!X −→ k∗Rg!X

where X is fibrant and cofibrant in Top/C, i.e., X is a cofibrant space and
X → C is a fibration. We want to show that this composite is a weak
equivalence. But f! preserves all weak equivalences, since it is just given by
composition, so f!Qh

∗X −→ f!h
∗X is always a weak equivalence. Thus, it

suffices to show that k∗g!X −→ k∗Rg!X is also a weak equivalence; here is
where we will use the hypothesis on g or k.

We know that g!X → Rg!X is a weak equivalence, so it suffices to show
that this weak equivalence is preserved by the functor k∗. If k is a fibration,
then this is clear, since pullback along a fibration preserves all weak equiv-
alences (i.e., Top is right proper). On the other hand, if g is a fibration,
then g!X → D, being the composite X → C

g−→ D, is also a fibration, and
thus g!X is fibrant in Top/D. Therefore, since weak equivalences between
fibrant objects are preserved by right Quillen functors, k∗ preserves the weak
equivalence g!X → Rg!X, as desired. �

Remark 9.5. The same proof applies with any model category replacing
Top, as long as it is either right proper or we assume that the objects C
and D are fibrant.

Remark 9.6. Note that in the case when k is a fibration, and hence so is
h, all the functors f∗, g∗, h∗, k∗, k!, and h! lie in H(Drv). Thus, this case
of Theorem 9.2 could be deduced from the ordinary pseudofunctoriality of
R : H(Drv) → Cat . However, this is no longer the case when it is g that is
a fibration.

Remark 9.7. The same techniques can also be used to show that a par-
ticular square violates the Beck–Chevalley condition. For instance, consider
the situation of [MS06, Counterexample 0.0.1], where the pullback square is

∅ h //

f

��

_� ?

g=1
��

?
k=0

// [0, 1].

In this case the derived Beck–Chevalley transformation is represented by
the composite

f!Qh
∗X −→ f!h

∗X
∼=−→ k∗g!X −→ k∗Rg!X

where X is a space fibrant and cofibrant over ?, i.e., just a cofibrant space.
Since Top/∅ is trivial, Qh∗X → h∗X is an isomorphism ∅ ∼= ∅, and thus so
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is f!Qh
∗X → f!h

∗X. However, k∗g!X is also empty, whereas k∗Rg!X is not
(unless X is itself empty); thus the composite cannot be a weak equivalence.

The situation of greater interest in [MS06] is more complicated: instead
of the category Top/B of spaces over B, we consider the category ExB of
spaces over and under B. An object of ExB, called an ex-space over B, is
a space X equipped with a projection p : X → B and a section s : B → X
such that ps = idB. Once again for any f : A→ B we have an adjunction

f! : ExA � ExB :f∗

where f∗ is given by pullback, except that now f! is given by pushout rather
than mere composition.

Remark 9.8. To ensure good behavior of pushouts, in the sectioned case we
allow X to be merely a k-space, but the base spaces must still be compactly
generated; see [MS06, §1.3].

Each ExB again inherits a model structure from Top, although in [MS06]
a certain “qf -model structure” is constructed with better formal behavior.
For the purposes of the Beck–Chevalley condition, however, it is most con-
venient to give ExB the following derivable structure: we take (ExB)R to
consist of ex-spaces whose projection is a Hurewicz fibration, and (ExB)Q
to consist of ex-spaces whose section is a fiberwise closed Hurewicz cofi-
bration. In the terminology of [MS06], (ExB)R consists of h-fibrant ob-
jects, (ExB)Q of well-sectioned or f̄-cofibrant objects, and (ExB)QR of ex-
fibrations. In [MS06, §8.3] it is shown that there are functors Q and R
making ExB into a derivable category in this way.

By [MS06, 8.2.2], each functor f! preserves well-sectioned ex-spaces, and
by [MS06, 7.3.4] it preserves weak equivalences between well-sectioned ex-
spaces; thus it is left derivable. On the other hand, each functor f∗ certainly
preserves Hurewicz fibrations and weak equivalences between them; hence
it is right derivable. It follows that each adjunction f! a f∗ is a derivable
adjunction (i.e., a conjunction in Drv).

We now upgrade the proof of the Beck–Chevalley condition for ex-spaces
given in [MS06, 9.4.6], making the use of Theorem 8.10 explicit and thus
showing that the isomorphism constructed is, in fact, the canonical Beck–
Chevalley transformation.

Theorem 9.9. The derived pseudofunctor B 7→ Ho(ExB) satisfies the
Beck–Chevalley condition for a pullback square

A
h //

f
��

_� B

g

��
C

k
// D.

as long as either g or k is a Serre fibration.
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Proof. As in the proof of Theorem 9.2, we must show that the composite

f!Qh
∗X −→ f!h

∗X
∼=−→ k∗g!X −→ k∗Rg!X

is a weak equivalence, where X is an ex-fibration. Now by [MS06, 8.2.2],
h∗ preserves ex-fibrations, so in particular h∗X is well-sectioned. Thus
Qh∗X → h∗X is a weak equivalence between well-sectioned ex-spaces, and
so it is preserved by f!. It remains to show that the weak equivalence
g!X → Rg!X is preserved by k∗, and as before, this is evident if k is itself a
fibration. If instead g is a fibration, we factor k as a homotopy equivalence
followed by a Hurewicz fibration and consider the two cases separately. The
second case we have already dealt with, whereas if k is a homotopy equiv-
alence, then since g is a Serre fibration, h is also a homotopy equivalence.
Hence by [MS06, 7.3.4], the adjunctions Lh! a Rh∗ and Lk! a Rk∗ are
adjoint equivalences, and so in the composite
(9.10)

Lf!Rh∗
ηLf!Rh

∗
// Rk∗Lk!Lf!Rh∗ ∼= Rk∗Lg!Lh!Rh∗

Rk∗Lg!ε // Rk∗Lg!

both η and ε are isomorphisms. (Note that this composite is not the com-
posite we have taken to define the Beck–Chevalley map; that would be
(9.11)

Lf!Rh∗
Lf!Rh

∗η // Lf!Rh∗Rg∗Lg! ∼= Lf!Rf∗Rk∗Lg!
εRk∗Lg! // Rk∗Lg!.

However, they are equal, because the isomorphism Lk!Lf!
∼= Lg!Lh! occur-

ring in (9.10) is the mate of the isomorphism Rh∗Rg∗ ∼= Rf∗Rk∗ occurring
in (9.11).) �

Analogous proofs apply to the study of the category SpB of ex-spectra
over B; we leave the rephrasing of these to the interested reader. Since
the derived versions of f! and f∗ for ex-spectra are parametrized versions
of homology and cohomology, these compatibility relations imply important
calculational results.

10. Base change for sheaves

The examples in the previous section concerned spaces over spaces as one
way to to do homotopy theory over a base space. Another widespread type
of homotopy theory over a base space studies sheaves of various sorts. There
are many different types of sheaves, of course, but almost all of them even-
tually require comparisons of left and right derived functors. For simplicity,
we will consider only the category of sheaves of abelian groups on a topolog-
ical space A, which we denote Sh(A). We leave it to the reader to apply the
same language to sheaves on ringed spaces or topoi, quasicoherent sheaves,
simplicial sheaves, sheaves of spectra, and so on.

The most noticeable difference between all sheaf-theoretic contexts and
that of spaces over spaces is that for a map f : A → B of base spaces,
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the pullback functor f∗ : Sh(B) → Sh(A) of sheaves always has a well-
behaved right adjoint f∗, rather than a left adjoint f!. Furthermore, the
Beck–Chevalley condition for these adjoints does not hold for all pullback
squares even on the point-set level: given a pullback square

(10.1)

A
h //

f
��

_� B

g

��
C

k
// D.

the Beck–Chevalley transformation k∗g∗ → f∗h
∗ is only an isomorphism

under additional hypotheses. Probably the most well-known and useful
result along these lines is the following, which is a special case of the Proper
Base Change Theorem.

Lemma 10.2 ([KS90, 2.5.11]). If g (and hence also f) is a proper map
in (10.1) and all spaces involved are locally compact Hausdorff, then the
Beck–Chevalley transformation k∗g∗ → f∗h

∗ for sheaves is an isomorphism.

Since the derived version of f∗ gives the sheaf-theoretic approach to co-
homology, it is again of importance when and whether this isomorphism is
preserved by passage to homotopy categories. This is, of course, a special
case of the derived version of the Proper Base Change Theorem; a very
classical argument can be found (for instance) in [KS90, 2.6.7]. Just as for
spaces over spaces, the preservation of mates by passage to derived functors
is an implicit ingredient in any proof of this result. Here we sketch one such
proof, making this dependence explicit.

We write Ch+(A) for the category of bounded below cochain complexes
of sheaves of abelian groups on A. This category has a model structure
in which the weak equivalences are the quasi-isomorphisms (homology iso-
morphisms), every object is cofibrant, and the fibrant objects are the com-
plexes of injectives. Each continuous map f : A→ B induces an adjunction
f∗ : Ch+(B) � Ch+(A) : f∗ which is Quillen with respect to these model
structures, so we have a derived adjunction Lf∗ a Rf∗. (In fact, f∗ is exact
and hence preserves all weak equivalences, so one usually writes simply f∗

instead of Lf∗.)

Theorem 10.3. If g in (10.1) is proper and all spaces involved are locally
compact Hausdorff, then the derived Beck–Chevalley transformation

Lk∗ ◦Rg∗ −→ Rf∗ ◦ Lh∗

is an isomorphism.

Proof. The model structures mentioned above are sufficient for defining
the derived functors, but for this proof we need to give Ch+(A) a different
derivable structure. Recall that a sheaf X on a space A is c-soft if sections of
X over compact subsets of A can be extended to all of A, i.e., if Γ(A,X)→
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Γ(K,X) is surjective for all compact K ⊂ A. Given a continuous map
f : A→ B, a sheaf X on A is said to be f-soft if its restriction to every fiber
of f is c-soft. We say that a bounded below complex of sheaves is c-soft or
f -soft if it consists of c-soft or f -soft sheaves. Since every injective sheaf
is c-soft and every c-soft sheaf is f -soft, every bounded below complex of
sheaves has a c-soft or f -soft resolution.

In particular, Ch+(B) is a derivable category with Ch+(B)Q = Ch+(B)
and Ch+(B)R the full subcategory of g-soft complexes, and likewise Ch+(A)
is a derivable category with Ch+(A)Q = Ch+(A) and Ch+(A)R the full sub-
category of f -soft complexes. We consider Ch+(C) as a derivable category
with Ch+(C)Q = Ch+(C)R = Ch+(C), and likewise for Ch+(D). In all
cases, the weak equivalences are the quasi-isomorphisms.

Now g∗ preserves weak equivalences between g-soft complexes, and like-
wise for f∗ and f -soft complexes, so g∗ and f∗ are right derivable functors.
Since the pullback functors f∗, g∗, h∗, k∗ preserve all weak equivalences,
they are left derivable, so the mate correspondence in question takes place
in Drv. Therefore, the derived Beck–Chevalley transformation is the derived
natural transformation of the point-set-level transformation k∗g∗ → f∗h

∗,
and thus is represented by the explicit composite

k∗Qg∗X −→ k∗g∗X
∼=−→ f∗h

∗X −→ f∗Rh
∗X

where X ∈ Ch+(C)QR, i.e., X is a g-soft complex of sheaves on C. However,
Q is the identity functor, and the point-set transformation k∗g∗ → f∗h

∗ is an
isomorphism by Lemma 10.2, so it remains to show that f∗h∗X → f∗Rh

∗X
is a weak equivalence. This follows from the observation that h∗ takes g-soft
sheaves to f -soft ones, which is true since the fibers of f are the same as the
fibers of g, and h∗ doesn’t change the restrictions of X to fibers. �

Remark 10.4. The category of unbounded chain complexes of sheaves,
Ch(A), also admits a model structure in which the weak equivalences are the
quasi-isomorphisms, every object is cofibrant, and the fibrant objects are the
“dg-injective” or “K-injective” complexes; see [Joy84, Spa88, Bek00, Gil07].
(This is true with any Grothendieck abelian category replacing Sh(A).)
But it seems that Theorem 10.3 fails for unbounded complexes; see [Lur09,
6.5.4.3], where it is claimed that the solution is to use a more restrictive
notion of weak equivalence than quasi-isomorphism.

The full version of the Proper Base Change Theorem involves defining a
new “direct image with proper supports” functor f! equipped with a map
f! → f∗ (which is an isomorphism when f is proper), and showing that
the restricted transformation Lk∗ ◦ Rg! −→ Rf! ◦ Lh∗ is an isomorphism
whether or not f is proper. (This f! is not a left adjoint of f∗, but it serves
a similar function to the f! for parametrized spaces and spectra. Whereas
the f! for parametrized spectra is a version of homology, this f! is a version
of compactly supported cohomology, which plays a similar role in duality
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theory.) While this transformation is no longer itself defined directly as a
mate, mate correspondences are still essential for comparing various different
transformations relating these functors; see [FHM03].

11. Comparing homotopy theories

One of the most important uses of model category theory is that it
provides a structured way to compare different “models” of the same or
similar homotopy theories. The strongest such comparison is, of course,
a Quillen equivalence. For example, there are many different model cate-
gories of spectra, all of which are connected by a web of Quillen equivalences
(see [MMSS01, MM02]); thus one can work with whichever category of spec-
tra is most appropriate for a particular application. However, in situations
such as those considered in the previous two sections, we often have not
just two homotopy theories, but two “families” of homotopy theories, each
consisting of many model categories related by base change functors. Thus,
we naturally want to compare not only the model categories themselves in
the two theories, but the base change functors as well.

For instance, one might hope that each ordinary model category of spectra
(or at least some of them) would have a parametrized version SpB over
any base space, with base change adjunctions f! a f∗ a f∗ induced by
any continuous map f : A → B. Given some other family of categories of
parametrized spectra—denoted Sp′B, say—one would like to know not only
that there are Quillen equivalences SpB � Sp′B, but that these equivalences
are compatible with the base change adjunctions, and thus in particular
compute the same notions of homology and cohomology.

In fact, only parametrized orthogonal spectra are studied at any length
in [MS06], and there are certain difficulties involved in extending other mod-
els of spectra to the parametrized context (see [MS06, Chapter 24]). To get
across the ideas involved in such comparisons, therefore, we will consider
a less hypothetical, and also much less complicated, example of the same
phenomenon: comparing different model structures for parametrized spaces.

In §9 we considered the model structure on Top/B induced from the
“Quillen” or q-model structure on Top, which is constructed from weak
homotopy equivalences, Serre fibrations, and relative cell complexes. How-
ever, there are also other model structures on Top which induce model
structures on Top/B. In [Str72] it is shown that there is a “Hurewicz”
or h-model structure constructed from homotopy equivalences, Hurewicz fi-
brations, and Hurewicz cofibrations (see also [SV02], [MS06, Ch. 4], and
[Col06a]). And in [Col06b] it is shown that there is also a “mixed” or m-
model structure constructed from weak homotopy equivalences, Hurewicz
fibrations, and maps of the homotopy type of relative cell complexes. We
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have a pair of Quillen adjunctions

Topq
Im
q //

oo
Jm

q

Topm
Ih
m //

oo
Jh

m

Toph,

where all the functors are the identity functor. Each of these model struc-
tures lifts to Top/B, and we have analogous Quillen adjunctions:

(11.1) (Top/B)q
Im
q //

oo
Jm

q

(Top/B)m
Ih
m //

oo
Jh

m

(Top/B)h.

In both cases the first adjunction, but not the second, is a Quillen equiva-
lence. (The second is a left Quillen embedding in the sense of [Shu08b], i.e.,
the derived left adjoint Ho(Topm)→ Ho(Toph) is full and faithful.)

Now the adjunctions f! : Top/A � Top/B :f∗ are Quillen relative to all
three model structures, and the important questions regard the commuta-
tivity of squares such as

(Top/B)m
f∗ //

Jm
q

��
?

(Top/A)m

Jm
q

��
(Top/B)q

f∗
// (Top/A)q

and

(Top/A)m
f! //

Jm
q

��
?

(Top/B)m

Jm
q

��
(Top/A)q

f!

// (Top/B)q,

particularly after passage to homotopy categories. In general, the point-
set level question may already be interesting, but in our toy example it
is trivial: since all the functors in (11.1) are the identity functor, all such
squares obviously commute on the point-set level.

Moreover, the commutativity of some of these squares at the homotopy
category level is also easy: since f∗, Jmq , and Jhm are right Quillen, ordinary
pseudofunctoriality of R :ModelR → Cat gives us isomorphisms

Rqf∗ ◦RJmq ∼= RJmq ◦Rmf∗ and(11.2)

Rmf∗ ◦RJhm ∼= RJhm ◦Rhf∗(11.3)

(where we decorate R to indicate which model structure we are taking the
derived functor with respect to). Likewise, the left derived functors of f!

commute with those of Imq and Ihm:

Lmf! ◦ LImq ∼= LImq ◦ Lqf! and(11.4)

Lhf! ◦ LIhm ∼= LIhm ◦ Lmf!.(11.5)

Note that these isomorphisms are actually mates of the previous ones. We
also have four additional mates relating composites of left and right derived
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functors:

Lqf! ◦RJmq −→ RJmq ◦ Lmf!(11.6)

Lmf! ◦RJhm −→ RJhm ◦ Lhf!(11.7)

LImq ◦Rqf∗ −→ Rmf∗ ◦ LImq and(11.8)

LIhm ◦Rmf∗ −→ Rhf∗ ◦ LIhm.(11.9)

(Each of these can actually be constructed in two different ways, which
give the same result by Lemma 2.12.) Now since Imq a Jmq is a Quillen
equivalence, its derived adjunction LImq a RJmq is an adjoint equivalence,
so Lemma 2.2 implies that (11.6) and (11.8) are also isomorphisms. Thus,
it remains to consider (11.7) and (11.9). (Of course, the h- and q-model
structures can be compared by simply composing the other two comparisons;
double pseudofunctoriality shows that this gives the same result as a direct
treatment using Ihq = Ihm ◦ Imq and Jhq = Jmq ◦ Jhm.)

Remark 11.10. The situation with the q and m model structures is quite
common, since the most desirable (and very frequently occurring) compari-
son between homotopy theories is a Quillen equivalence. Thus, Lemma 2.2
means that in most cases no fancy technology is required to compare func-
tors. However, comparisons which are not equivalences do occur. The h
versus m/q model structures is a fairly trivial example, but we will mention
a more contentful one below.

Proposition 11.11. The derived transformation (11.7) is an isomorphism.

Proof. By double pseudofunctoriality, (11.7) is represented by the compos-
ite

f!(QmX) −→ f!X −→ Rh(f!X)
where X is h-fibrant and h-cofibrant over A, i.e., X is an h-cofibrant space
(a vacuous condition) and X → A is a Hurewicz fibration. Since f! pre-
serves all weak equivalences of any sort, the first map in this composite is
a weak homotopy equivalence (i.e., a weak equivalence in the mixed model
structure). And the second map is by definition a homotopy equivalence,
and therefore also a weak homotopy equivalence. �

On the other hand, (11.9) is not, in general, an isomorphism. Double
pseudofunctoriality tells us that it can be represented by the composite

Qm(f∗X) −→ f∗X −→ f∗(RhX)

where X is m-fibrant and m-cofibrant over B, i.e., X is m-cofibrant (of the
homotopy type of a CW complex) and X → B is an m-fibration. Since m-
fibrations are the same as Hurewicz fibrations, X is already h-fibrant; thus
X → RhX is an h-equivalence between h-fibrant objects and so is preserved
by f∗. However, if f∗X is not m-cofibrant, then the weak homotopy equiva-
lence Qm(f∗X)→ f∗X will not be an h-equivalence (otherwise, f∗X would
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be homotopy equivalent to the m-cofibrant Qm(f∗X), hence m-cofibrant it-
self). For example, we could take B = X = ? to be the one-point space and
A = f∗X to be any non-m-cofibrant space. Thus, in such a case the above
composite is not an h-equivalence, and so does not represent an isomorphism
in Ho((Top/A)h).

Remark 11.12. The situation for ex-spaces is basically the same; we have
the same set of Quillen adjunctions, and the same formal arguments apply
to six out of the eight possible comparisons. The analogue of (11.7) is also
an isomorphism, although the proof requires an invocation of the Gluing
Lemma, while the analogue of (11.9) is not an isomorphism. We leave the
details to the reader.

There are also interesting model structures on Top/B that are not inher-
ited from model structures on Top. One such is the “qf -model structure”
of [MS06, Ch. 6]. However, since the identity functor is a Quillen equivalence
between the qf -model structure and the q-model structure, all compatibility
relations follow directly as before.

A more interesting question concerns the model structure on Top/B con-
structed in [IJ02], which in [Shu08b] we called the ij-model structure. In
this model structure the cofibrations are built out of cells of the form U×Dn,
where U is any open subset of B. Thus, fibrations and weak equivalences are
detected by “spaces of sections” over open sets; precise definitions can be
found in [IJ02]. Since this model structure has a very sheaf-theoretic feel, it
is unsurprising that it is Quillen equivalent to a model category of simplicial
presheaves on B. Furthermore, the pullback functor f∗ : Top/B → Top/A
is left Quillen for the ij-model structures, just as it is for sheaves, and be-
cause we have a Quillen equivalence, the same arguments as before show
that the derived adjunctions Lf∗ a Rf∗ agree for the ij-model structure
and for simplicial presheaves.

The relationship of the ij-model structure to the other model structures
on Top/B is more subtle. We showed in [Shu08b] that if B is a locally
compact CW complex, then the identity adjunction of Top/B is a Quillen
adjunction

ι? : (Top/B)ij � (Top/B)m : ι?,

but not a Quillen equivalence (though it is a right Quillen embedding, i.e.,
the derived right adjoint is full and faithful). We showed moreover that
for any map f : A → B between locally compact CW complexes, when the
identity f∗ = f∗ is considered as a square

(Top/B)m
ι? //

������

(Top/B)ij

f∗

��
(Top/B)m

ι?◦f∗
// (Top/A)ij
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in Model, its derived natural transformation is an isomorphism

Lijf∗ ◦Rι? ∼= Rι? ◦Rmf∗.

The proof involves a careful analysis of the explicit formula for a derived
natural transformation. We also gave an analysis of the mate of this iso-
morphism:

Lι? ◦ Lijf∗ −→ Rmf∗ ◦ Lι?

which turns out to be an isomorphism when f is a q-fibration, but not much
more generally. By Lemma 2.1, if Rmf∗ happens to have a right adjoint
Mf∗ (in [MS06] such a right adjoint is constructed for connected ex-spaces
or spectra using Brown representability), the induced transformation

Rι? ◦Mf∗ −→ Rijf∗ ◦Rι?

is also an isomorphism whenever f is a q-fibration. This implies that
parametrized generalized cohomology can be computed via passage to the
ij-model structure, one of the main points of [Shu08b]. (In fact, this appli-
cation was the original motivation for the theory of the present paper.)

12. The projection formula for sheaves

We now consider monoidal structures and monoidal functors, as in Ex-
ample 2.7, beginning this time with sheaves. The usual “injective” model
structure on chain complexes of sheaves is not a monoidal model structure,
and there is no analogue for sheaves of the “projective” model structure
for modules over a ring (which is monoidal), but the remedy for this is
well-known: we consider flat resolutions rather than projective ones.

It is proven in [Gil06, Gil07] that the category Ch(A) of unbounded chain
complexes of sheaves admits a flat model structure which is monoidal; its
cofibrant objects are dg-flat complexes. (For our purposes, all we actu-
ally need is that all complexes admit dg-flat resolutions, which was proven
by [Spa88].) Thus Ho(Ch(A)) is symmetric monoidal; its tensor product
X ⊗L Y is represented by QX ⊗QY , where Q denotes a dg-flat resolution.
In fact, tensoring with a dg-flat complex preserves all weak equivalences, so
X ⊗L Y can equally be represented by QX ⊗ Y or X ⊗QY .

Now let f : A → B be a continuous map, which as always induces an
adjunction f∗ : Ch(B) � Ch(A) : f∗. This adjunction is derivable for
the flat model structures, and moreover f∗ is strong monoidal. Thus, by
pseudofunctoriality in V(Drv), its left derived functor Lf∗ is again strong
monoidal.
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We now regard the isomorphism f∗(X ⊗ Y ) ∼= f∗X ⊗ f∗Y , for fixed X,
as a transformation

(12.1)

Ch(B)
f∗ //

X⊗−
��

�����	

Ch(A)

f∗X⊗−
��

Ch(B)
f∗

// Ch(A).

Thus, under the adjunction f∗ a f∗, it has a mate

(12.2)

Ch(A)
f∗ //

f∗X⊗−
��

�����	

Ch(B)

X⊗−
��

Ch(A)
f∗

// Ch(B).

The following is part of the (point-set level) projection formula, and can be
found in [KS90, 2.5.13].

Lemma 12.3. If f : A → B is a proper map of locally compact Hausdorff
spaces, then the component of (12.2) at any flat sheaf X is an isomorphism

X ⊗ f∗Y ∼= f∗(f∗X ⊗ Y ).

Of course, generally of more interest is the derived projection formula.
We follow our usual procedure of upgrading the standard proof (in this
case, taken from [KS90, 2.6.6]) to use the derived mate correspondence and
show that the isomorphism constructed is, in fact, the canonical comparison
map.

Theorem 12.4. If f : A→ B is a proper map of locally compact Hausdorff
spaces, then for any bounded below complexes X and Y of sheaves on A and
B, respectively, the isomorphism

(12.5) Lf∗(X ⊗L Y ) ∼= Lf∗X ⊗L Lf∗Y

(which exhibits Lf∗ as strong monoidal) has a mate

(12.6) X ⊗L Rf∗Y −→ Rf∗(Lf∗X ⊗L Y )

which is an isomorphism.

Proof. We may assume without loss of generality that X is dg-flat, and
hence so is f∗X (which is isomorphic to Lf∗X, since f∗ is exact). Since
tensoring with a dg-flat complex preserves all weak equivalences, (X⊗−) and
(f∗X⊗−) are left derivable when Ch(A) and Ch(B) are equipped with their
injective model structures (in which everything is cofibrant and the fibrant
objects are the dg-injective complexes). With these model structures, (12.2)



116 MICHAEL SHULMAN

becomes a 2-cell in Drv as drawn, while (12.1) is a 2-cell in Drv where all
the arrows involved are vertical:

Ch(B)

X⊗−
��

xxxxx�

Ch(B)

f∗

��
Ch(B)

f∗

��

Ch(A)

f∗X⊗−
��

Ch(A) Ch(A).

Thus, since (12.5) is the derived transformation of (12.1), its mate (12.6) is
in fact the derived natural transformation of (12.2), and is therefore repre-
sented by the composite

X ⊗Qf∗Y −→ X ⊗ f∗Y
∼=−→ f∗(f∗X ⊗ Y ) −→ f∗R(f∗X ⊗ Y )

where Y is dg-injective. Since we have assumed that X and Y are bounded
below, we may assume that in fact Y is a complex of injective sheaves.
Since (X ⊗ −) preserves all weak equivalences, the first questionable map
X⊗Qf∗Y −→ X⊗f∗Y is always a weak equivalence. Now since f∗X is flat
and Y is injective (hence c-soft), (f∗X⊗Y ) is f -soft (this follows from [KS90,
2.5.12]). But as we saw in §10, f∗ preserves weak equivalences between f -soft
complexes, so the second questionable map f∗(f∗X⊗Y ) −→ f∗R(f∗X⊗Y )
is also a weak equivalence. �

As with the proper base change theorem, the full version of the projection
formula applies to all maps f , but replaces f∗ by the “direct image with
proper supports” functor f!.

13. The projection formula for parametrized spaces

Finally, we consider the version of the projection formula proven in [MS06]
for parametrized spaces. In this case there is no known monoidal model
structure on Top/B that is equivalent to the q-model structure, but we
can still make do with a derivable tensor product functor. Recall that the
cartesian monoidal structure on Top/B is given by pullback: X ⊗ Y =
X ×B Y . Since pullbacks along fibrations preserve weak equivalences, the
model category (Top/B)q is a pseudomonoid in H(Drv). (Recall from
Example 8.13 that a monoidal model category is, in particular, a pseu-
domonoid in V(Drv).) Therefore, Ho(Top/B) (we drop the superscript q
from now on) is a monoidal category; its monoidal structure is represented
by X ×R

B Y = RX ×B RY , where R denotes replacement by a (q-)fibration.
Moreover, for any map f : A → B, the functor f∗ is strong monoidal and
right derivable; thus Rf∗ is again strong monoidal by ordinary pseudofunc-
toriality.
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Now the isomorphism f∗X ×A f∗Y ∼= f∗(X ×B Y ) making f∗ strong
monoidal can be viewed as a transformation

(13.1)

Top/B

f∗

��

X×B− //

����
CK

Top/B

f∗

��
Top/A

f∗X×A−
// Top/A

which therefore has a mate under the adjunction f! a f∗:

(13.2)

Top/A
f∗X×A− //

f!
��

������

Top/A

f!
��

Top/B
X×B−

// Top/B

whose components are transformations

(13.3) f!(f∗X ×A Y ) −→ X ×B f!Y.

Lemma 13.4. The transformation (13.3) is always an isomorphism.

Proof. This follows again from elementary facts about pullback squares
(and hence is true in any category with pullbacks). �

Once again, we are interested in the derived version.

Theorem 13.5. The isomorphism

(13.6) Rf∗X ×R
A Rf∗Y ∼= Rf∗(X ×R

B Y )

(which exhibits Rf∗ as strong monoidal) has a mate

(13.7) Lf!(Rf∗X ×R
A Y ) −→ X ×R

B Lf!Y

which is an isomorphism.

Proof. Fix a fibrant X, so that X ×B − and f∗X ×A− are right derivable.
Then (13.2) is a 2-cell in Drv as drawn, whereas (13.1) is a 2-cell in Drv with
all arrows horizontal:

Top/B
f∗ //

������

Top/A
f∗X×A− // Top/A

Top/B
X×B−

// Top/B
f∗

// Top/A.

Thus, since (13.6) is the derived transformation of (13.1), it follows that
its mate (13.7) is the derived transformation of (13.2), and thus can be
represented by the composite

f!Q(f∗X ×A Y ) −→ f!(f∗X ×A Y )
∼=−→ X ×B f!Y −→ X ×B R(f!Y )
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where Y is fibrant and cofibrant over A. Now as in §9, f! preserves all
weak equivalences, so the first map f!Q(f∗X ×A Y ) → f!(f∗X ×A Y ) is a
weak equivalence. Likewise, since X is fibrant, X ×B − actually preserves
all weak equivalences (that is, Top is right proper); thus the second map
X ×B f!Y → X ×B R(f!Y ) is also a weak equivalence. �

The projection formulas for sectioned spaces is more subtle, since in this
case the monoidal structure is itself a composite of left and right derived
functors. This is the only one of our examples in which double pseudofunc-
toriality does not solve all our problems, since we end up having to compose
transformations in a way that is not possible in the double category Drv.
Nevertheless, double pseudofunctoriality does simplify the problem from a
composite of four transformations to a composite of two, and the rest of the
argument is completed by a diagram chase. (This diagram chase is exactly
the sort of argument that would have to be made explicit in all the other
examples, if we didn’t have double pseudofunctoriality to invoke. In other
words, Figures 2 and 3 in the proof of Theorem 7.6 have the effect of chasing
all such diagrams once and for all.)

Before defining the fiberwise smash product, we first define the exter-
nal smash product of ex-spaces X ∈ ExA and Y ∈ ExB by the following
pushout:

(X ×B) tA×B (A× Y ) //

��

X × Y

��
A×B // X ∧ Y .

This produces an ex-space X ∧ Y ∈ ExA×B, and thereby defines a functor

∧ : ExA ×ExB −→ ExA×B.

Note that the fiber ofX∧Y over (a, b) ∈ A×B isXa∧Yb. The external smash
product is coherently associative, unital, and symmetric, and furthermore
we have isomorphisms

(13.8) f∗X ∧ g∗Y ∼= (f × g)∗(X ∧ Y )

satisfying their own coherence conditions. In the terminology of [Shu08a],
this structure makes Ex(−) into a monoidal fibration over Top.

We then define the fiberwise smash product of X,Y ∈ ExA to be

X ∧A Y = ∆∗
A(X ∧ Y ),

where ∆A : A → A × A is the diagonal map. The isomorphisms (13.8), to-
gether with the coherence isomorphisms of ∧, can be used to construct co-
herence isomorphisms making ∧A a symmetric monoidal structure on ExA.
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Furthermore, we have isomorphisms

f∗(X ∧B Y ) = f∗∆∗
B(X ∧ Y )(13.9)

∼= ∆∗
A(f × f)∗(X ∧ Y )

∼= ∆∗
A(f∗X ∧ f∗Y )

= f∗X ∧A f∗Y
making each functor f∗ : ExB → ExA strong symmetric monoidal.

Remark 13.10. In [MS06] this construction is performed in the other direc-
tion, starting from the fiberwise smash product and producing the external
one. See [Shu08a] for a full equivalence of the two notions.

We will use the same derivable structure for ex-spaces as in §9, where
(ExA)QR consists of ex-fibrations. Recall that in this case each adjunction
f! a f∗ is derivable, and in particular f∗ is right derivable. On the other
hand, it is not hard to see, using the “gluing lemma,” that the functor ∧ is left
derivable. Thus, ∧A is a composite of a left and a right derivable functor, and
so ExA is not even a pseudomonoid in V(Drv) or H(Drv). We can, however,
produce a symmetric monoidal structure on Ho(ExA) in the same way that
we did on the point-set level, provided that the isomorphisms (13.8) descend
to derived functors. This is precisely the argument used in [MS06, §9.4].

Lemma 13.11. When (13.8) is regarded as a 2-cell

ExC ×ExD
f∗×g∗ //

∧
��

������

ExA ×ExB

∧
��

ExC×D
(f×g)∗

// ExA×B

in Drv, its derived natural transformation is an isomorphism.

Proof. Its derived natural transformation is represented by the composite

Qf∗X ∧Qg∗Y −→ f∗X ∧ g∗Y
∼=−→ (f × g)∗(X ∧ Y ) −→ (f × g)∗R(X ∧ Y ).

where X and Y are ex-fibrations over A and B, respectively. But by [MS06,
§8.2], the functors f∗, g∗, and ∧ all preserve ex-fibrations, so both question-
able maps in this composite are weak equivalences. �

In particular, we have isomorphisms

(13.12)
(
Rf∗X

)
∧L (

Rg∗Y
) ∼= R(f × g)∗

(
X ∧L Y

)
.

The associativity, unit, and symmetry isomorphisms for ∧ descend to ∧L

(by ordinary pseudofunctoriality), as do the compatibility axioms between
these and (13.8) (by double pseudofunctoriality). Therefore, we can define
the “middle derived fiberwise smash product”

X ∧M
A Y = R∆∗

A

(
X ∧L Y

)
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and show:

Theorem 13.13. Each ∧M is a symmetric monoidal structure on Ho(ExA),
and each functor Rf∗ is strong symmetric monoidal.

Now we consider the projection formula. As in the unsectioned case, on
the point-set level we have a canonical morphism

(13.14) f!(f∗X ∧A Y ) −→ X ∧B f!Y

defined as the mate of f∗X ∧A f∗Y ∼= f∗(X ∧B Y ), and once again we have:

Lemma 13.15. The transformation (13.14) is always an isomorphism.

Proof. This is a straightforward computation with limits and colimits, us-
ing only the fact that colimits are preserved by pullback in our convenient
category of spaces (see Remark 9.8). �

In order to pass to derived functors, we need to rephrase this in terms of
the external smash product. The morphism (13.14) becomes

(13.16) f!∆∗
A(f∗X ∧ Y ) −→ ∆∗

B(X ∧ f!Y ).

The definition of (13.14) as a mate of the isomorphism (13.9) then becomes
the following definition of (13.16) in terms of (13.8):

ExA

f!
��

�����


ExA

ExB
f∗ //

X∧−
��

�����	

ExA

f∗X∧−
��

ExB×B
(f×f)∗

//

������ ∼=

ExA×A
∆∗

A

// ExA

ExB×B
∆∗

B

// ExB
f∗ //

				��

ExA

f!
��

ExB ExB.

If we choose X to be an ex-fibration (in which case f∗X is also), then all the
2-cells in this diagram live in Drv as drawn. However, this diagram cannot
be composed in Drv, so a single application of functoriality is insufficient.
Instead, we can break it into two composites, each of which can be composed
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in Drv. (In fact, each is the construction of a mate.)
(13.17)

ExA

f!
��

�����


ExA

ExB
f∗ //

X∧−
��

�����	

ExA

f∗X∧−
��

ExB×B
(f×f)∗

// ExA×A

and

ExB×B
(f×f)∗//

������ ∼=

ExA×A
∆∗

A // ExA

ExB×B
∆∗

B //

∼=

ExB
f∗ //

				��

ExA

f!
��

ExB×B
∆B

// ExB ExB.

Now consider the transformation

(13.18) Lf!

(
R∆∗

A

(
Rf∗X ∧L Y

))
−→ R∆∗

B

(
X ∧L Lf!Y

)
,

defined from (13.12) in the same way that (13.16) is defined from (13.8).
For the same reasons, it is the composite of the morphisms corresponding
to (13.17) at the level of homotopy categories. But, by pseudofunctoriality,
the derived version of each of these is, in fact, the derived natural transfor-
mation of the corresponding point-set-level transformation (although this
doesn’t apply to the entire composite, which can’t be composed in Drv).
Thus, (13.18) is equal to the composite

Lf!

(
R∆∗

A

(
Rf∗X ∧L Y

))
−→ Lf!

(
R∆∗

A

(
R (f × f)∗

(
X ∧L Lf!Y

)))
−→ R∆∗

B

(
X ∧L Lf!Y

)
.

Here the first map is Lf! ◦R∆∗
A applied to the derived transformation of

f∗X ∧ Y −→ (f × f)∗(X ∧ f!Y )

and the second is the component at X ∧L f!Y of the derived transformation
of

f!∆∗
A(f × f)∗ −→ ∆∗

B.

Filling in the definition of derived natural transformations, along with a
pseudofunctoriality constraint for the composite ∆∗

A(f × f)∗, we conclude
that (13.18) is represented by the zigzag along the top-right of the diagram
in Figure 4, where Y is an ex-fibration.

To show that this composite represents an isomorphism in Ho(ExB), we
begin by “following our nose,” filling in naturality properties and definitions,
arriving at the zigzag along the bottom-left of Figure 4. (The region marked
~ is the definition of (13.16); all others are naturality squares.)

Thus it suffices to check that the maps along the bottom-left are weak
equivalences. For the first two, this is because (f∗X∧−) and ∆∗

B preserve
ex-fibrations, and the third is the isomorphism (13.16). We deal with the
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f!Q∆∗
AR(f∗X∧Y ) // f!Q∆∗

AR(f × f)∗(X∧f!Y ) // f!Q∆∗
AR(f × f)∗R(X∧f!Y )

f!Q∆∗
A(f∗X∧Y )

∼
OO

//

∼
��

f!Q∆∗
A(f × f)∗(X∧f!Y )

OO

//

��

f!Q∆∗
A(f × f)∗R(X∧f!Y )

��

∼
OO

∼= // f!Qf
∗∆∗

BR(X∧f!Y )

��

f!∆∗
A(f∗X∧Y )

∼=

��

//

~

f!∆∗
A(f × f)∗(X∧f!Y )

∼=
��

// f!∆∗
A(f × f)∗R(X∧f!Y )

∼=
++VVVVVVVVVVVVVV

f!f
∗∆∗

B(X∧f!Y )

ttiiiiiiiiiiiiiii
// ∆∗

BR(X∧Qf!Y )

��

∆∗
B(X∧f!Y ) // ∆∗

BR(X∧f!Y )

Figure 4. The diagram chase for the projection formula

fourth by replacing f!Y with an ex-fibration as follows:

(13.19)

∆∗
B(X∧f!Y ) // ∆∗

BR(X∧f!Y )

∆∗
B(X∧Qf!Y )

∼
OO

//

∼
��

∆∗
BR(X∧Qf!Y )

∼
OO

∼
��

∆∗
B(X∧QRf!Y ) ∼

// ∆∗
BR(X∧QRf!Y ).

Here the two left-hand vertical maps are weak equivalences because when X
is an ex-fibration, (X ∧A −) = ∆∗

A(X∧−) preserves h-equivalences between
well-sectioned ex-spaces (see [MS06, 8.2.6]). The two right-hand vertical
maps are weak equivalences because (X∧−) is left derivable and f!Y , Qf!Y ,
and QRf!Y are well-sectioned. Finally, the bottom horizontal map is a weak
equivalence because QRf!Y is an ex-fibration, hence so is X∧QRf!Y . Thus,
we have the projection formula for ex-spaces:

Theorem 13.20. For any map f : A→ B, the natural isomorphism

(13.21) Rf∗
(
X ∧M

B Y
)
∼=

(
Rf∗X ∧M

A Rf∗Y
)

(which exhibits Rf∗ as strong monoidal) has a mate

(13.22) Lf!

(
Rf∗X ∧M

A Y
)
−→

(
X ∧M

B Lf!Y
)

which is also an isomorphism. �

Remark 13.23. The isomorphism given in the proof of the projection for-
mula in [MS06, 9.4.5] is, essentially, the composite of the two maps along
the left of (13.19):

∆∗
B(X ∧ f!Y ) ∼←− ∆∗

B(X ∧Qf!Y ) ∼−→ ∆∗
B(X ∧QRf!Y ).

The other weak equivalences in (13.19) and Figure 4 are implicitly present in
the identification of the source and target of this zigzag as representing the
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source and target of (13.22). As always, the contribution of our theory is to
identify this with the canonical comparison map, i.e., the mate of (13.21).

Remark 13.24. In fact, ExB is actually a closed monoidal category, and it
is shown in [MS06, §9.3] (using Brown representability) that the subcategory
of Ho(ExB) consisting of connected spaces is also closed monoidal. Now
Lemma 2.12 implies that for a functor between closed monoidal categories,
the projection formula morphism is the same as the map (2.11) constructed
via the closed structure. As remarked in Example 2.7, it then follows from
Lemma 2.1 and the projection formula that f∗ and Rf∗ are closed monoidal
functors (the latter only insofar as Ho(ExB) is closed). The analogous facts
for spectra are true without any connectivity hypothesis.

These results, which play an important role in [MS06], seem impossible
to approach without the technology of mates, since the internal-homs in
Ho(ExB) are so inexplicit. Note in particular that for this argument to
work, it is essential that the isomorphism in the projection formula is not
just any isomorphism, but the particular map defined as a mate of the
derived transformation (13.21).
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