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We show that the monoidal product on the stable homotopy category of spectra
is essentially unique. This strengthens work of this author with Schwede on
the uniqueness of models of the stable homotopy theory of spectra. Also, the equiv-
alences constructed here give a unified construction of the known equivalences
of the various symmetric monoidal categories of spectra (S-modules, W-spaces,
orthogonal spectra, simplicial functors) with symmetric spectra. As an application
we show that with an added assumption about underlying model structures
Margolis' axioms uniquely determine the stable homotopy category of spectra up
to monoidal equivalence. � 2001 Academic Press

1. INTRODUCTION

The homotopy category of spectra, obtained by inverting the weak
equivalences of spectra, has long been known to have a symmetric
monoidal product (or tensor product) induced by the smash product
[1, 26]. Recently, several categories of spectra have been constructed which
have symmetric monoidal smash products even before the weak equivalen-
ces are inverted [6, 10, 11, 14]. Such categories are of interest because they
facilitate the development of algebraic constructions such as ring spectra
and module spectra. In each of these examples, inverting the weak equiv-
alences recovers the standard homotopy category of spectra with the
standard smash product. This raises the question of whether this is forced.
In this paper we consider this question about the uniqueness properties of
the monoidal product on categories of spectra and on the homotopy
category of spectra.

Each of these categories of spectra is in fact a highly structured category.
This structure includes a simplicial Quillen model structure which encodes
standard homotopy theoretic constructions [16, Chap. II, Sect. 2]. The
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symmetric monoidal product is also compatible with this model structure
so that the derived product induces a symmetric monoidal product on the
homotopy category where the weak equivalences have been inverted.
Another common property of these model categories of spectra is that they
are stable��the suspension functor is invertible up to homotopy (with
inverse the loop functor); see Definition 2.4. A category with such com-
patible structures and a cofibrant desuspension of the unit is called a stable
simplicial monoidal model category; see Definition 4.5. (A cofibrant desu-
spension of the unit exists in these categories of spectra and any model
category for which the conclusion of Theorem 1.1 below holds; see
Remarks 4.6 and 4.9.)

Instead of restricting to these known model categories of spectra we con-
sider any stable simplicial monoidal model category C. First we show that
symmetric spectra, Sp7 [10], are initial among such model categories by
constructing a functor from Sp7 to C which is simplicial, strong monoidal,
and a left Quillen adjoint. That is, the functor is compatible with the simpli-
cial action, the monoidal product, and the model category structure. (See
[16, II, Sect. 2], Definition 2.2, and Definition 2.3.)

Theorem 1.1. There is a simplicial, strong monoidal, left Quillen functor
from Sp7 to C for C any stable simplicial monoidal model category. That is,
the positive stable model category on symmetric spectra is initial among the
stable simplicial monoidal model categories.

This statement is proved as Theorem 4.7. The positive stable model
structure on Sp7 is recalled in Definition 4.1. This positive model category
captures the same homotopy theory as the standard model category (i.e.,
they are Quillen equivalent, see Definition 2.3) but is initial because the
sphere spectrum is not positive cofibrant; see Theorem 4.2.

Under additional assumptions on C, the functor constructed in
Theorem 1.1 is a Quillen equivalence. Hence these additional assumptions
uniquely specify the models for the homotopy theory of spectra among the
stable simplicial monoidal model categories. The first additional assump-
tion here is that the unit I of the monoidal product in C is a small, weak
generator in the homotopy category of C. This is equivalent to asking that
[I, &]Ho(C) commutes with coproducts and detects isomorphisms; see
Definition 2.5. For example, the sphere spectrum, S, is a small, weak gener-
ator of the homotopy category of spectra. We also ask that [I, I]Ho(C) be
freely generated as a ?s

*
-module by the identity map of I, as holds for S

in the homotopy category of spectra.

Theorem 1.2. Let C be a stable simplicial monoidal model category.
There is a monoidal Quillen equivalence from the positive stable model structure
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on Sp7 to C if and only if the unit, I, is a small weak generator for
which [I, I]

*
Ho(C) is freely generated as a ?s

*
-module by the identity map

of I.

This shows that up to monoidal Quillen equivalence there is a unique
stable simplicial monoidal model category of spectra which satisfies the
above hypotheses. Other equivalent conditions are stated in Theorem 4.8.
In Section 5 this uniqueness is extended to modules, algebras, and
commutative algebras. Remark 4.9 shows that the monoidal Quillen equiv-
alences constructed in Theorems 4.7, 5.2, and 5.6 recover and unify those
constructed in [14, 19] between S-modules, orthogonal spectra, W-spaces,
simplicial functors, and symmetric spectra and the associated categories of
modules and algebras. The conditions on the unit in Theorem 1.2 were first
studied in [21]. There we considered the uniqueness of model categories of
spectra but ignored the monoidal product structure.

Theorems 1.1 and 1.2 give the most highly structured uniqueness proper-
ties of the monoidal product on the model category level. Next we consider
a weaker situation which is still strong enough to establish uniqueness
properties of the monoidal product on the homotopy category. This less
structured situation also provides an approach to Margolis' Conjecture, see
Theorem 1.5 below, with fewer hypotheses than would be required using
the above statements.

On the homotopy category, Corollary 3.3 shows that under weak
hypotheses if there is a natural transformation A 7 B � A 7$ B between
two monoidal products which both have the sphere spectrum, S, as the
unit, then this transformation is an isomorphism on all objects. Thus, the
main obstruction to showing that two monoidal products are equivalent is
constructing a natural transformation between them.

To construct such natural transformations we consider the model
categories of spectra, rather than the homotopy category. Here we consider
stable monoidal model categories, that is, stable model categories C with a
compatible monoidal product and a cofibrant desuspension of the unit; see
Definition 6.1. We construct a functor from the homotopy category of
spectra, Ho(Sp), to the homotopy category of C, Ho(C) which induces a
natural isomorphism between the smash product on Ho(Sp) and the derived
product on Ho(C) (i.e., a strong monoidal functor, see Definition 2.2).

Theorem 1.3. Let C be a stable monoidal model category. Then there is
a strong monoidal functor from Ho(Sp) to Ho(C).

This statement is proved as Theorem 6.2. As above, with added
hypotheses on the unit this strong monoidal functor induces a structured
monoidal equivalence between Ho(C) and Ho(Sp).
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Theorem 1.4. Let C be a stable monoidal model category. There is a
?s

*
-linear, triangulated, monoidal equivalence between the homotopy category

of C and the homotopy category of spectra if and only if the unit, I, is a
small weak generator for which [I, I]

*
Ho(C) is freely generated as a ?s-module

by the identity map of I.

This shows that the only monoidal product on Ho(Sp) which has an
underlying model satisfying these weak hypotheses is the usual smash
product. This statement and several other equivalent conditions are proved
as Theorem 6.3.

We apply these results to Margolis' Conjecture from [15]. Margolis
introduced axioms for a stable homotopy category which basically ensure
that it is the structured completion of the Spanier�Whitehead category of
finite CW complexes; see Definition 3.4. He then conjectured that these
axioms uniquely determine the stable homotopy category of spectra. Here
we add the assumption that the category has an underlying stable
monoidal model category; see Definition 3.5.

Theorem 1.5. Suppose that S is a stable homotopy category in the sense
of [15, Chap. 2, Sect. 1] which has an underlying stable monoidal model
category. Then S is monoidally equivalent to the stable homotopy category
of spectra.

2. MODEL CATEGORY PRELIMINARIES

In this section we recall the relevant definitions. A monoidal model
category is a model category with a compatible symmetric monoidal
product. Note that we do require the product to be symmetric even though
that term is suppressed in the name ``monoidal model category.'' The
compatibility is expressed by the pushout product axiom below. This
compatibility is analogous to the simplicial axiom of [16, Chap. II,
Sect. 2]. In particular, the product on a monoidal model category induces
a derived product on the homotopy category which is symmetric monoidal.
Monoidal model categories have been studied in [8, 20]. Here, instead of
requiring a closed monoidal structure, we use the weaker hypotheses that
the product commutes with colimits.

Definition 2.1. A model category C is a monoidal model category if it
is endowed with a symmetric monoidal structure which commutes with
colimits and satisfies the following pushout product axiom and unit axiom.
We denote the symmetric monoidal product by 7 and the unit by I.
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Pushout product axiom. Let i: A � B and j: X � Y be cofibrations in C.
Then the map

i g j : A 7 Y _A 7 X B 7 X � B 7Y

is a cofibration which is a weak equivalence if either i or j is a weak equiv-
alence.

Unit axiom. If the unit is not cofibrant then fix a cofibrant replace-
ment u: QI � I which is a trivial fibration from a cofibrant object QI. Then
for any cofibrant object X the map u 7 X : QI 7X � I 7 X is a weak
equivalence.

Definition 2.2. A functor F : C � D between symmetric monoidal
categories is lax monoidal if there is a map ': ID � F (IC) and a transforma-
tion ,: FA 7D FB � F (A 7C B), natural in both variables, such that the
coherence diagrams for commutativity, associativity, and unital properties
commute. The functor F is strong monoidal if ' and , are isomorphisms.

Next we define the appropriate equivalences of model categories and
monoidal model categories.

Definition 2.3. A pair of adjoint functors between model categories is
a Quillen adjoint pair if the right adjoint preserves trivial fibrations and
fibrations between fibrant objects. This is equivalent to the usual definition
[8, Definition 1.3.1] by [3, Corollary A.2]. We regard a Quillen adjoint
pair as a map of model categories in the direction of the left adjoint.
A Quillen adjoint pair induces adjoint total derived functors between the
homotopy categories [16, Chap. I, Sect. 4, Theorem 3]. A Quillen functor
pair is a Quillen equivalence if the total derived functors are adjoint equiv-
alences of the homotopy categories. A monoidal Quillen equivalence is a
Quillen equivalence between monoidal model categories with a strong
monoidal left adjoint functor L such that L(QI) � L(I) is a weak equiv-
alence. An equivalence of homotopy categories via strong monoidal
functors is called a monoidal equivalence. If one functor in an adjoint equiv-
alence is strong monoidal then so is the other, so both the left and right
total derived functors of a monoidal Quillen equivalence are strong
monoidal. Hence a monoidal Quillen equivalence induces a monoidal
equivalence on the homotopy categories.

In this paper we actually consider only stable model categories. Recall
from [8, Definition 6.1.1; 16, Chap. I, Sect. 2] that the homotopy category
of a pointed model category supports a suspension functor 7 with a right
adjoint loop functor 0.
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Definition 2.4. A stable model category is a pointed, complete, and
cocomplete category with a model category structure for which the functors
0 and 7 on the homotopy category are inverse equivalences.

Certain extra structures on the homotopy category of a stable model
category are key here. The homotopy category is naturally a triangulated
category [25]. The suspension functor defines the shift functor and the
cofiber sequences of [16, Chap. I, Sect. 3] define the distinguished triangles
(the fiber sequences agree up to sign [8, Theorem 7.1.11]); see [8, Proposi-
tion 7.1.6] for more details. We have required a stable model category to
have all limits and colimits so that its homotopy category has infinite sums
and products. The homotopy category of a stable model category also has
a natural action of the ring ?s

*
of stable homotopy groups of spheres [21,

Construction 2.3]. If F : C � D is the left adjoint of a Quillen adjoint pair
between stable model categories, then the total left derived functor
LF : Ho(C) � Ho(D) of F is ?s

*
-linear and an exact functor [8, Proposi-

tion 6.4.1; 21, Lemma 6.1].
For objects A and X of a triangulated category T we denote by [A, X]T

*
the graded abelian homomorphism group defined by [A, X ]T

m =
[A[m], X ]T for m # Z, where A[m] is the m-fold shift of A. If T is a
?s

*
-triangulated category, then the groups [A, X]T

*
form a graded ?s

*
-module.

Definition 2.5. An object G of a triangulated category T is called a
weak generator if it detects isomorphisms; i.e., a map f : X � Y is an
isomorphism if and only if it induces an isomorphism between the graded
abelian homomorphism groups T(G, X )

*
and T(G, Y)

*
. An object G of

T is small if for any family of objects [Ai] i # I whose coproduct exists the
canonical map

�
i # I

T(G, Ai) � T \G, �
i # I

Ai+
is an isomorphism.

3. MARGOLIS' UNIQUENESS CONJECTURE

In this section we apply our monoidal uniqueness results to Margolis'
conjecture about the uniqueness of the stable homotopy category. Margolis
introduced axioms for a stable homotopy category in [15]. He then con-
jectured that these axioms uniquely specify the stable homotopy category
of spectra up to a monoidal, triangulated equivalence of categories. In
[21], any stable homotopy category satisfying Margolis' axioms and
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having an underlying model category was shown to be triangulated equiv-
alent to the stable homotopy category of spectra. Here we strengthen that
result to a monoidal, triangulated equivalence.

First we consider a more general setting than Margolis' stable homotopy
categories. The following proposition shows that under weak hypotheses a
lax monoidal functor between two monogenic, monoidal, triangulated
categories is strong monoidal.

Definition 3.1. A monogenic, monoidal, triangulated category is a tri-
angulated category T with arbitrary coproducts and with a symmetric
monoidal, bi-exact smash product 7 which commutes with suspensions
and coproducts such that the unit I is a small, weak generator.

Proposition 3.2. Assume (T, 7, I) and (T$, 7$, I$) are two monogenic,
monoidal, triangulated categories. Suppose that F : T � T$ is a lax monoidal,
exact functor with unit map ': I$ � F (I) and natural transformation
,: FA 7$ FB � F (A 7 B). If F commutes with coproducts, ' is an isomor-
phism, and ,: F I 7$ F I � F (I 7 I) is an isomorphism, then F is strong
monoidal.

Proof. Consider the subcategory of objects A in T such that ,: FA7$ F I
� F (A 7 I) is an isomorphism. By the assumptions on F, 7 and 7$, both
source and target commute with triangles and coproducts. So this sub-
category is a localizing subcategory which contains I. Since I is a small,
weak generator it follows that this subcategory is the whole category. This
follows from [9, Theorem 2.3.2]; see also [22, Lemma 2.2.1]. Now fix any
A and consider the subcategory of objects B in T such that ,: FA7$ FB �
F (A 7 B) is an isomorphism. Again this is a localizing subcategory which
contains I, and hence is the whole category. Thus, , is an isomorphism for
any A and B. K

Since the stable homotopy category of spectra is a monogenic, monoidal,
triangulated category, this gives the following corollary.

Corollary 3.3. Assume that 7 and 7$ are two monogenic, monoidal,
triangulated structures on the homotopy category of spectra, both with unit
the sphere spectrum, S. If the identity functor is lax monoidal and the unit
map ' and the natural transformation , evaluated on the unit are isomor-
phisms, then the identity functor gives a monoidal equivalence between these
two structures.

So the only obstruction to showing that the smash product of spectra is
unique up to monoidal equivalence on the homotopy category is construct-
ing a natural transformation between any two monoidal products. Our
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solution is to assume there is an underlying stable monoidal model
category We state this result for Margolis' stable homotopy categories.

Definition 3.4. A stable homotopy category in the sense of [15,
Chap. 2, Sect. 1] is a monogenic, monoidal, triangulated category S with
an exact and strong symmetric monoidal equivalence R: SWf � Ssmall

between the Spanier�Whitehead category of finite CW-complexes [15,
Chap. 1, Sect. 2; 24] and the full subcategory of small objects in S.

As shown in [21, Sect. 3], such an equivalence induces a ?s

*
-linear

structure on the triangulated category S. In fact, we could weaken the
definition above to only require that there is such an equivalence R with
the full subcategory of SW on the spheres S n for n an integer.

Definition 3.5. A stable homotopy category S has an underlying
stable monoidal model category if there is a monoidal, ?s

*
-linear, exact

equivalence 8: S � Ho(C) with C a stable monoidal model category; see
Definition 6.1.

Proof of Theorem 1.5. Since S has an underlying stable monoidal
model category, there is an equivalence 8: S � Ho(C) with all of the
properties mentioned in Definition 3.5. Since the properties of a small,
weak generator are determined on the homotopy category level, the image
X # Ho(C) under 8 of the unit object in S is a small weak generator of the
homotopy category of C. Because the equivalence 8 is monoidal and
?s

*
-linear, X is isomorphic to the unit and satisfies the hypotheses on the

unit in Theorem 1.4. Thus, the homotopy category of C, and hence also S,
is monoidally equivalent to the ordinary stable homotopy category of
spectra. K

4. SIMPLICIAL MONOIDAL MODEL CATEGORIES

Here we construct a Quillen adjoint pair from the positive stable model
category on Sp7 to C. Then, under additional hypotheses on the unit, this
produces a monoidal Quillen equivalence from Sp7 to C. First we recall the
positive model structure from [14, Sect. 14].

Definition 4.1. In the positive stable model structure on Sp7 a map f
is a weak equivalence if it is a stable equivalence [10, 14]. The map f is a
positive trivial fibration if fn is a trivial fibration for n>0. The positive
cofibrations and positive fibrations are then determined by the respective
right and left lifting properties with respect to the trivial fibrations and the
trivial cofibrations.
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In [14] only symmetric spectra over topological spaces are considered,
but the arguments can be easily modified to apply to symmetric spectra
over simplicial sets. The identity functor from the usual to the positive
structure is a right Quillen functor since (trivial) fibrations are in particular
positive (trivial) fibrations.

Theorem 4.2 [14, Theorem 14.2, Proposition 14.6]. The positive stable
model structure on Sp7 forms a stable, monoidal model category. The iden-
tity functor induces a monoidal Quillen equivalence from the positive stable
model structure to the usual stable model structure on Sp7.

Denote the unit in Sp7 by S. Note S is not cofibrant in the positive
stable model category. To fix its cofibrant replacement for the unit axiom
of the monoidal model category structure, first consider the n th evalu-
ation functor Evn on symmetric spectra which lands in 7n -equivariant
spaces. For X a 7n -space, the left adjoint Fn$ is defined by (Fn$X )k $
7k 77n_7k&n

(X 7 S k&n). This is a slight variant of the free functor Fn

studied in [10]. Note that F1$$F1 and F0$$F0 . Then define the cofibrant
replacement of S as the weak equivalence QS=F1$S1 � F0S 0=S induced
by the identity map in level one.

Proposition 4.3. The fibrant objects in the positive stable model struc-
ture are the positive 0-spectra. That is, X is fibrant if Xn is fibrant for n>0
and Xn � 0Xn+1 is a weak equivalence for n>0. A map f between positive
0-spectra is a fibration if each fn is a fibration for n>0.

Proof. The description of the fibrant objects follows from [14,
Theorem 14.2]. The description of the fibrations follows from the fact that
the positive stable model structure is a localization of the positive level
model structure [14, Theorem 14.1]. In a localized model structure the
fibrations between fibrant objects are the fibrations in the original model
structure. So here they are the positive level fibrations. This statement also
follows from the positive variants of [10, Lemma 3.4.12; 14, Proposi-
tion 9.5]. K

We now define a stable simplicial monoidal model category. As men-
tioned in the Introduction, here we require the following technical
hypothesis on the unit which may not be required in other definitions of
stable simplicial monoidal model categories but is needed here; see
Remark 4.9.

Definition 4.4. A cofibrant desuspension of the unit is a cofibrant
object I&1

c with a weak equivalence ': I&1
c �S1 � I.
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Recall that a monoidal model category is a model category C with a
symmetric monoidal product that is compatible with the model structure;
see Definition 2.1. Similarly, a simplicial model category is a model category
with a compatible action of simplicial sets. A simplicial functor is a functor
that is compatible with this structure. See [16, Chap. II, Sects. 1, 2].

Definition 4.5. A stable simplicial monoidal model category is a category
C with a stable, simplicial model structure, a monoidal model structure
and a cofibrant desuspension of the unit such that the simplicial action
commutes with the monoidal product. That is, for X, Y in C and K in S

*
there are natural coherent isomorphisms (X 7Y )�K$X 7 (Y�K ).

Remark 4.6. If the unit I in C is fibrant, then a cofibrant desuspension
exists. Since C is stable, there is a cofibrant object X whose suspension in
the homotopy category is isomorphic to I. Since C is simplicial and X is
cofibrant its suspension is modeled by X�S1. Since X�S 1 is cofibrant
and I is fibrant the isomorphism in the homotopy category is realized by
some weak equivalence in C.

A cofibrant desuspension of the unit exists in every known symmetric
monoidal model category of spectra. In the diagram categories of spectra
investigated in [14] and their simplicial analogues [10, 11] (orthogonal
spectra, symmetric spectra, and simplicial functors or W-spaces) the
cofibrant desuspension can be chosen as the object denoted F1S0, with the
weak equivalence ': F1S 1 � F0S 0; see [14, Definition 1.3, Remark 4.7].
The S-modules of [6] are all fibrant, so the previous paragraph applies.

Theorem 4.7. Let C be a stable simplicial monoidal model category.
Then there exists a Quillen adjoint functor pair from the positive stable
model structure on Sp7 to C, I 7& : Sp7 � C and Hom(I, &) : C � Sp7.
These functors are simplicial, the left adjoint I 7& is strong monoidal, and
I 7 QS � I 7 S is a weak equivalence. Moreover, I 7& is the unique strong
monoidal, strong simplicial, left Quillen functor which takes F1$S 0 to I&1

c

in C.

The last statement gives the precise sense in which the positive stable
model category on Sp7 is initial as stated in Theorem 1.1. If the cofibrant
desuspension of the unit it not required to be preserved then it is only
weakly initial. Remark 4.9 below shows that the existence of such a Quillen
adjoint pair implies the existence of a cofibrant desuspension. Adding
conditions on the unit in C shows this Quillen adjoint pair is a Quillen
equivalence.

Theorem 4.8. Let C be a stable simplicial monoidal model category. The
following conditions are equivalent:
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(1) There is a ?s

*
-linear triangulated equivalence from the homotopy

category of Sp7 to the homotopy category of C which takes the unit I of the
monoidal product in C to the unit S of Sp7.

(2) The unit, I, is a small weak generator for which [I, I]
*
Ho(C) is

freely generated as a ?s

*
-module by the identity map of I.

(3) There is a simplicial, monoidal Quillen equivalence from the
positive stable model structure on Sp7 to C.

(4) There is a zig-zag of monoidal Quillen equivalences between the
usual stable model structure on Sp7 and C.

Proof. Condition (1) implies condition (2) since the properties of I
mentioned in (2) hold for S and are determined by the ?s

*
-linear tri-

angulated homotopy category. Condition (3) implies condition (4) because
the positive stable model structure is monoidally Quillen equivalent to the
usual stable model structure on Sp7 by Theorem 4.2. Since Quillen functors
induce ?s

*
-linear triangulated functors on the homotopy categories by

[8, Proposition 6.4.1, 21, Lemma 6.1] and monoidal functors preserve the
unit, condition (4) implies condition (1).

Next we show that given condition (2) the simplicial Quillen adjoint pair
constructed in Theorem 4.7 is a Quillen equivalence. Since I 7& is strong
monoidal, I 7 S$I. Also, I 7 QS � I 7 S is a weak equivalence, so
I 7L S$I. The total derived functor I 7L & is exact by [8, Proposi-
tion 6.4.1]. So I 7L S[n]$I[n] where X[n] denotes the n th shift of X for
any integer n. This isomorphism and the derived adjunction for I 7L & and
RHom(I, &) produce the following natural isomorphisms

?
*

RHom(I, Y )$[S[V], RHom(I, Y )]$[I, Y ]
*
Ho(C) .

Since I is a weak generator, RHom(I, &) detects isomorphisms. So to
show that this pair is a Quillen equivalence we need to show that for any
symmetric spectrum A the unit of the adjunction A � RHom(I, I 7L A) is
an isomorphism. Consider the full subcategory T of such objects. For
A=S in homotopy this map is the map [S, S]

*
� [I, I]

*
induced

by I 7L &. This map of free ?s

*
-modules takes the identity map of S

to the identity map of I. Hence it is also an isomorphism by condition (2).
So S is contained in T. Since I is small, RHom(I, &) commutes with
coproducts by the display above. Hence, since left adjoints commute with
coproducts and total derived functors between stable model categories are
exact, the composite RHom(I, I 7L&) is an exact functor which commutes
with coproducts. So T is a localizing subcategory which contains the
generator S of symmetric spectra. Hence T is the whole category. Thus,
these derived functors induce an equivalence of homotopy categories. K
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Proof of Theorem 4.7. We first construct the functor Hom(I, &):
C � Sp7. Let I&1

c be a cofibrant desuspension of the unit in C with a weak
equivalence ': I&1

c �S 1 � I. Let I&n
c =(I&1

c )7n be the n-fold smash product
of I where X0=I. Notice that in general I0

c is not cofibrant. For Y in C,
define the n th level of Hom(I, Y )n to be the simplicial mapping space
mapC(I&n

c , Y ). The symmetric group on n letters acts on I&n
c by permuting

the factors and hence also acts on Hom(I, Y )n . The structure map

mapC(I&n
c , Y ) � 0m mapC(I&(n+m)

c , Y )$mapC(I&(n+m)
c �S m, Y )

is induced by mapC(_, Y ) with _ defined as

_n, m : I&(n+m)
c �S m$I&n

c 7 (I&1
c �S1)m www�

id7 (')m

I&n
c 7 (I)m$I&n

c .

Since the adjoint of mapC(_, Y ) is 7n_7m equivariant, this makes Hom(I, Y )
into a symmetric spectrum. Here we have used the fact that the simplicial
action and the monoidal product commute. Hom(I, &) is an example of a
categorical construction described in [13, I.2].

Since C is a simplicial model category and I&n
c is cofibrant for n>0,

Hom(I, &) of a (trivial) fibration is a (trivial) fibration in levels n>0.
Since I&1

c �S 1 is cofibrant ' factors as I&1
c �S1 � QI � I where QI � I is

the fixed cofibrant replacement of I given in the monoidal model structure
on C. Since C is monoidal and ' is a weak equivalence, _n, 1 is a weak
equivalence between cofibrant objects for n>0. Hence Hom(I, &) takes a
fibrant object to a positive 0-spectrum, which is a fibrant object in the
positive stable model structure. Thus Hom(I, &) takes trivial fibrations to
positive trivial fibrations and fibrations to positive fibrations between
positive fibrant objects by Proposition 4.3. So Hom(I, &) is a right Quillen
adjoint.

Next we consider the left adjoint I 7& : Sp7 � C. Using the definition of
Fn$X, I 7 Fn$X is isomorphic to I&n

c �7n
X since both corepresent the

functor which takes Y in C to the space of 7n -equivariant maps from X to
Hom(I, Y )n . So I 7 QS � I 7 S is isomorphic to the weak equivalence
': I&1

c �S 1 � I.
To evaluate I 7& on an arbitrary symmetric spectrum A, note that A

can be built as the coequalizer of the diagram

�
n

F $n+1(7n+1 77n
(An 7S 1)) O �

n

Fn$An .

Here one map is induced by the map An 7 S1 � An+1 and the other is
induced by smashing Fn$An with the map F1$S1 � F0$S 0 which is the adjoint
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of the identity map on S1 in level one. Since I 7& must commute with
colimits, I 7A is defined as the coequalizer of the diagram

�
n

I&(n+1)
c �7n

(An 7 S 1) O �
n

I&n
c �7n

An .

Again the first map is induced by An 7S 1 � An+1 and the second map
uses the fact that the simplicial action and monoidal product in C com-
mute to give the isomorphism

I&(n+1)
c �7n

(An 7S 1)$(I&n
c �7n

An) 7 (I&1
c �S 1)

along with the map ': I&1
c �S 1 � I.

Next we consider the monoidal properties of these adjoint functors. First
Hom(I, &) is lax monoidal; since the simplicial action and monoidal
product commute the product of maps induces mapC(I&n

c , A) 7
mapC(I&m

c , B) � mapC(I&(n+m)
c , A7 B). These fit together to give a

natural map Hom(I, A) 7 Hom(I, B) � Hom(I, A 7B). The unit map
F0$S 0=S � Hom(I, I) is given by sending the non-base point of S 0 to the
identity map of I in simplicial degree zero of Hom(I, I)0=mapC(I, I).

The left adjoint of a lax monoidal functor is automatically lax com-
onoidal. That is, there are structure maps in the opposite direction of a lax
monoidal functor; see the display below. The adjoint of the unit map is an
isomorphism I 7S � I. Denote the adjoint pair by L and R. Then the
counit and unit of the adjunction and the lax monoidal structure of R give

L(A7 B) � L(RLA 7 RLB) � LR(LA 7 LB) � LA 7 LB.

Here in fact L=I 7& is strong monoidal because this map is an isomor-
phism. To show this we only need to consider the special case where
A=Fn$X and B=F $m Y for X a 7n -space and Y a 7m-space since the
general case follows by using the coequalizer diagrams above. Then

L(A 7 B)=LF $n+m(7n+m 77n_7m
X 7 Y )$I&(n+m)

c �7n_7m
X 7 Y.

Again commuting the simplicial action and the monoidal product shows
this last term is isomorphic via the transformation displayed above to
(I&n

c �7n
X ) 7 (I&m

c �7m
Y )=LA 7LB. These monoidal properties also

follow from the more general treatment in [13, I.2].
Finally, these adjoint functors Hom(I, &) and I 7& are simplicial

functors. This follows by various adjunctions from the isomorphism
Hom(I, YK)$Hom(I, Y )K given by the simplicial structure on C. In fact,
I 7& is strong simplicial since (I 7 X )�K$I 7 (X�K ).
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Let L: Sp7 � C be a strong monoidal, strong simplicial, left Quillen
functor such that L(F1$S0)=I&1

c . Since Fn$X=(F1$S 0)7n 77n
X, the proper-

ties of L imply that L(Fn$X )$I&n
c �7n

X. Since L also commutes with
colimits, L must be isomorphic to I 7& on all of Sp7 because of the
coequalizer construction above. Hence I 7& is the unique such functor. K

Remark 4.9. If there is a Quillen adjoint pair from the positive stable
model structure on Sp7 to C with a strong monoidal, simplicial left adjoint
L which takes QS � S to a weak equivalence, then a cofibrant desuspen-
sion of the unit exists. Set I&1

c =L(F1$S 0). The map ': I&1
c �S1 � I is then

given by L(F1$S 0)�S 1 �. L(F1$S 1=QS) � L(S) where . is induced by
the simplicial structure on L. The second map is a weak equivalence by
assumption. The first map is a weak equivalence because it is the cofiber
of the weak equivalence L(F1S 0)�2[1]+ �. L(F1 S0�2[1]+) by the
isomorphism L(F1 S0)� (S 0 6 S0) �. L(F1S 0� (S 0 6 S0)).

This also gives a procedure for recovering the known equivalences
between symmetric monoidal model categories of spectra as I 7& and
Hom(I, &) for some choice of a cofibrant desuspension of the unit. For the
monoidal functors constructed in [14] (P and U between orthogonal spec-
tra and symmetric spectra and between W-spaces and symmetric spectra),
the chosen desuspension of the unit is P(F1S 0)$F1S 0 [14, Definition 1.3,
Remark 4.7]. The monoidal functors (4 and 8) between S-modules and
symmetric spectra as defined in [19] are isomorphic to I 7& and
Hom(I, &) with 4(F1S 0)$S&1

c the chosen desuspension of the unit.

Remark 4.10. If C is a cofibrantly generated, proper, stable model
category then [18, Proposition 4.4] shows that C is Quillen equivalent to
a simplicial model category structure on the category of simplicial objects,
C2op

. If the product on C commutes with coproducts then the level
prolongation of the product commutes with the simplicial action. Using [7,
Proposition 16.11.1, Theorem 16.4.2], one can show that if C is a monoidal
model category then the simplicial model category from [18] is also
monoidal. Hence, under these conditions, one can apply the constructions
in this section to the stable simplicial monoidal model category on C2op

.
This remark can also be applied if C is simplicial and the product does not
commute with the simplicial action but does commute with coproducts. We
treat the non-simplicial case in even more generality in Section 6.

5. MODULES AND ALGEBRAS

In this section, we show that the functors constructed in Theorem 4.7
induce Quillen adjoint pairs on modules, algebras, and commutative
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algebras. Since I 7& is strong symmetric monoidal and Hom(I, &) is lax
symmetric monoidal, these functors restrict to adjoint functors on sub-
categories of modules and algebras. Since we want the restriction of
Hom(I, &) to be a right Quillen adjoint, we assume that in the model
structures on categories of modules or algebras over C a morphism is a
weak equivalence or fibration if it is one in the underlying model structure
on C. The next proposition states sufficient conditions for this assumption
to hold for modules and associative algebras. We treat commutative
algebras separately in the second part of this section.

Proposition 5.1 [20, Theorem 4.1]. Assume C is a cofibrantly generated,
monoidal model category that satisfies the monoid axiom [20, Definition 3.3].
If the objects in C satisfy certain smallness conditions [20, Lemma 2.3], then
the category of left R-modules ( for a fixed monoid R) and the category of
R-algebras ( for a fixed commutative monoid R) are model categories with
fibrations and weak equivalences determined in C.

Theorem 5.2. Let C be a stable simplicial monoidal model category with
a monoidal Quillen equivalence from Sp7 to C (or any equivalent condition
from Theorem 4.8) such that the conclusions of the previous proposition hold.
If I 7& preserves weak equivalences between stably cofibrant symmetric
spectra, then I 7& and Hom(I, &) induce a Quillen equivalence

(1) from the positive stable model category of R-modules for R a
cofibrant symmetric ring spectrum to (I 7R)-modules, and

(2) from the positive stable model category of R-algebras for R a
commutative symmetric ring spectrum which is cofibrant as a symmetric
spectrum to (I 7 R)-algebras.

These statements also hold with the usual stable model category replacing
the positive one if I is cofibrant.

Since S is cofibrant as a symmetric spectrum the second statement
implies that the category of symmetric ring spectra, S-algebras, and the
category of monoids in C, I-algebras, are Quillen equivalent.

Remark 5.3. The hypothesis that I 7& preserves weak equivalences
between stably cofibrant symmetric spectra is satisfied when C is any one
of the symmetric monoidal model categories of orthogonal spectra,
W-spaces [14], simplicial functors [11], or S-modules [6]. Since the unit
is cofibrant in the first three cases, this follows from the next proposition.
This holds in the case of S-modules by [19, Theorem 3.1] and the fact that
Hom(I, &) detects and preserves weak equivalences.
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Proposition 5.4. If I is cofibrant and C is a stable simplicial monoidal
model category which satisfies any of the equivalent conditions of Theorem 4.8,
then I 7& and Hom(I, &) form a Quillen equivalence from the usual stable
model category of symmetric spectra to C. Hence I 7& preserves weak
equivalences between cofibrant symmetric spectra.

Proof. If I is cofibrant, then Hom(I, &)0=map(I, &) also preserves
(trivial) fibrations. Hence Hom(I, &) is a right Quillen adjoint functor
from C to the usual stable model category of symmetric spectra. The
statements follow from the same proof as given in Theorem 4.8. K

Proof of Theorem 5.2. Since the (trivial) fibrations in the categories of
(I 7 R)-modules and (I 7 R)-algebras are determined on the underlying
category, the restriction of Hom(I, &) in both cases is still a right Quillen
adjoint functor to the positive model structure. Since I is assumed to be a
weak generator by condition (2) of Theorem 4.8, Hom(I, &) preserves and
detects weak equivalences. So by [10, Lemma 4.1.7] we only need to show
that �A : A � Hom(I, (I 7 A) f ) is a weak equivalence for A a positive
cofibrant object in R-modules or R-algebras where (I 7A) f is a fibrant
replacement. Since fibrations are determined on the underlying category, a
fibrant replacement as a module or algebra restricts to a fibrant replace-
ment in C.

Under the given conditions on R, if A is cofibrant in the positive model
category of R-modules or R-algebras then A is cofibrant as a symmetric
spectrum. By [14, Proposition 14.6] the identity functor from the positive
stable model structure on R-modules to the usual stable model structure on
R-modules is a Quillen left adjoint. So if A is a positive cofibrant R-module
then it is a cofibrant R-module. Since R is assumed to be cofibrant as
a symmetric ring spectrum it is cofibrant as a symmetric spectrum by
[14, Theorem 12.1(v)]. Hence, by [14, Theorem 12.1(ii)], A is cofibrant
as a symmetric spectrum. Again by [14, Proposition 14.6], if A is a
positive cofibrant R-algebra, then it is a cofibrant R-algebra. Then by
[14, Theorem 12.1(ii), (v)] it follows that A is cofibrant as a symmetric
spectrum.

We now show that �B is a weak equivalence for B any cofibrant sym-
metric spectrum. It then follows that I 7& and Hom(I, &) restrict to
Quillen equivalences on the positive stable model categories of R-modules
and R-algebras. The proof of Theorem 4.8 shows that �A is a weak equiv-
alence for A any positive cofibrant symmetric spectrum. Given a cofibrant
symmetric spectrum B, choose a positive cofibrant replacement ,: cB � B.
Since I 7& preserves weak equivalences between cofibrant objects and
positive cofibrant objects are cofibrant, I 7 cB � I 7 B is a weak equiv-
alence. Then one can choose fibrant replacements and a lift (I 7 ,) f so that

232 BROOKE SHIPLEY



�B b ,=Hom(I, (I 7 ,) f ) b �cB . Thus, �B is a weak equivalence, since
Hom(I, &) preserves weak equivalences between fibrant objects and , and
�cB are weak equivalences.

If I is cofibrant then Hom(I, &) is a right Quillen adjoint functor to the
usual stable model structures. So the last statement follows similarly. K

For the commutative algebra case we need several more assumptions.
These assumptions are satisfied in each of the known examples of equiv-
alences of commutative algebra spectra [14, Sect. 16; 19, Theorem 5.1]. Let
PX=�i�0 X (i)�7i be the monad on C which defines the commutative ring
objects (or more properly, monoids) in C. Here X (i) denotes the i th smash
power with 7i permuting the factors and X (0)=I. To ensure that
Hom(I, &) is a right Quillen adjoint here we require the weak equivalences
and fibrations in the model category of commutative monoids in C to be
maps which are underlying weak equivalences or fibrations in C. Unlike
associative algebras and modules, criteria for the existence of such a model
category on commutative monoids in C do not exist in the current
literature. Another one of our assumptions here is that the quotient map
from the extended power to the symmetric power, 8i : E7 i 77i

X (i) �
X (i)�7i , is a weak equivalence for cofibrant objects X in C. Since the monad
P does not necessarily preserve weak equivalences, this is likely to be one
of the criteria required for constructing a model category on commutative
monoids.

Hypotheses 5.5. Let C be a stable simplicial monoidal model category
such that

(1) for any commutative ring R$ in C the commutative R$-algebras in
C form a model category with a fibrant replacement functor and with fibra-
tions and weak equivalences the underlying fibrations and weak equivalences
in C,

(2) 8i : E7 i 77i
X (i) � X (i)�7i is a weak equivalence for cofibrant

objects X in C, and

(3) there is a monoidal Quillen equivalence from Sp7 to C (or any
other equivalent condition from Theorem 4.8).

These hypotheses hold for the positive stable model categories on
orthogonal spectra and symmetric spectra by [1410.4, 15.1, 15.2 and 15.5]
and they hold for S-modules by [6, III.5.1, VI.4.8; 19]. These hypotheses
are more subtle than those for modules and algebras; for example, the first
hypothesis does not hold for the usual stable model category on symmetric
spectra; see [14, Sect. 14].
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Theorem 5.6. Assume C satisfies Hypotheses 5.5. Then I 7& and
Hom(I, &) induce a Quillen equivalence

(1) from the commutative symmetric ring spectra to the commutative
rings in C and

(2) from the commutative R-algebras for R a cofibrant commutative
symmetric ring spectrum to commutative (I 7 R)-algebras.

Proof. The first statement is a special case of the second with R=S and
I7S$I. Since the weak equivalences and fibrations are determined on the
underlying category the restriction of Hom(I, &) is a right Quillen adjoint
functor. Since the equivalent conditions in Theorem 4.8 hold, Hom(I, &)
preserves and detects weak equivalences between fibrant objects. By
[10, Lemma 4.1.7] it thus suffices to show that �A : A � Hom(I, (I 7A) f ) is
a weak equivalence for cofibrant commutative R-algebras where (&) f is
the given fibrant replacement functor. Since fibrations are determined on
the underlying category a fibrant replacement as a commutative R-algebra
restricts to a fibrant replacement in C. We first consider the case where
R=S, the sphere spectrum.

Let A=PX for a positive cofibrant symmetric spectrum X. We claim
that to show �A is a weak equivalence it suffices to show that � is a weak
equivalence for each symmetric power X (i)�7 i . Hom(I, (I 7&) f ) does not
necessarily commute with coproducts, but it does commute up to weak
equivalence with homotopy coproducts because it is naturally isomorphic
to the identity on Ho(Sp7). Here the coproduct is a homotopy coproduct
because it is created levelwise and each level of each summand is cofibrant.
This is our general strategy; we follow the outline of the proof of [14,
Theorem 0.7] but there the composite of the adjoints commutes with
colimits on the nose and here it may only commute up to weak equivalence
with homotopy colimits. But each of the colimits we must consider is in
fact a homotopy colimit of symmetric spectra because such homotopy
colimits can be computed levelwise [23, 2.2.1].

Now consider each summand. Since I 7& is a left Quillen adjoint on
the spectrum level it commutes with colimits and smash products with
spaces, so I 7& applied to 8i of X in Sp7 is isomorphic to the weak equiv-
alence 8i of the cofibrant object I 7 X in C. Thus it is sufficient to show
that � is a weak equivalence for E7 i+ 77i

X (i) because 8i in Sp7 and
Hom(I, (I 7 8i)

f ) are weak equivalences by [14, 15.5] and the second
hypothesis on C. The extended power is the homotopy colimit of the 7i

action on X (i). So since � is a weak equivalence for the positive cofibrant
object X (i) and Hom(I, (I 7&) f ) commutes with homotopy colimits, we
conclude that � is a weak equivalence on the extended power.
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Following [14, 15.9], we proceed by building cofibrant S-algebras
using modified generating cofibrations. Let 2[n] denote the simplicial
n-simplex and 24 [n] its simplicial boundary. Let B

*
(K+ , K+ , K+) be the

simplicial bar construction which is the bisimplicial set with s, t-simplices
(Ks_(2[1])t)+ . Its geometric realization is isomorphic to K+ 7 2[1]+ . The
inclusion i1 : 2[0]+ � 2[1]+ induces an inclusion of the horizontally con-
stant bisimplicial set c

*
(K+) into B

*
(K+ , K+ , K+). Define B

*
(K+ , K+ , S0)

as the pushout of this inclusion over the map K+ � S0. The geometric realiza-
tion of the composite gives a map K+ � B(K+ , K+ , S0) with the geometric
realization B(K+ , K+ , S0) isomorphic to the unreduced cone (CK )+ . We can
use these composite maps with K=24 [r] instead of the simplicially homotopic
maps 24 [r]+ � 2[r]+ to construct generating cofibrations. The model
category of commutative symmetric ring spectra is cofibrantly generated with
PF+I=[P(Fn 24 [k]+) � P(Fn(C24 [k])+)]k�0, n>0 a set of generating
cofibrations.

So we need to show that �A is a weak equivalence when A is a PF+I-cell
complex [8, 2.1.18]. We have shown �A is a weak equivalence when A is
built in one stage. We next consider �A for A constructed from PF+I by
finitely many pushouts. Assume the result for those S-algebras built in n
stages, and consider A=An 7PX PY with An built in n stages and X � Y
a coproduct of maps in PF+I. Since Fn commutes with colimits and smash
products with spaces, it commutes with geometric realization and the
bar construction above. If X=�i Fni

24 [ri]+ and T=� i Fni
S 0, then

Y$B(X, X, T ), the geometric realization of the simplicial symmetric spec-
trum with q-simplices the coproduct of q+1 copies of X and one copy
of T. Statements analogous to [6, VII.2.10, VII.3.3; 14, 5.1] show that the
category of commutative S-algebras is tensored over simplicial sets and the
underlying symmetric spectrum of the geometric realization of a simplicial
commutative S-algebra is isomorphic to the geometric realization of the
underlying simplicial symmetric spectrum. Since P commutes with colimits
and converts smash products with spaces to tensors with spaces, P com-
mutes with geometric realizations. Hence,

A$An 7PX PY$An 7PX B(PX, PX, PT)$B(An , PX, PT ).

Since tensors with simplicial sets and colimits in Sp7 are levelwise, the
geometric realization is constructed on each level. But the geometric
realization of a bisimplicial set is weakly equivalent to the homotopy
colimit by [2, XII.4.3]. So the geometric realization B(An , PX, PT )
is weakly equivalent to the homotopy colimit and Hom(I, (I 7&) f )
commutes with the homotopy colimit. So it is enough to show that � is a
weak equivalence on each simplicial level of B(An , PX, PT ). The q-simplices
here are given by An 7 (PX ) (q) 7PT$An 7 P(X 6 } } } 6 X 6 T ). These
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q-simplices can be constructed in n stages, so by induction � is a weak
equivalence here, as required.

Finally, we must consider a filtered colimit of these commutative
S-algebras built in finitely many stages. Filtered colimits of commutative
S-algebras are created on the underlying symmetric spectra which in turn
are created on each level. Since the maps in question here are constructed
from PF+I, they are injections. So the colimit is over level injections
between level cofibrant objects and it is weakly equivalent to the homotopy
colimit. By induction we have shown that � is a weak equivalence at each
spot in the colimit and Hom(I, (I 7&) f ) commutes with homotopy
colimits, so � is a weak equivalence on the colimit as well. So we conclude
that �A is a weak equivalence for any cofibrant commutative symmetric
ring spectrum A (i.e., any retract of a PF+I-cell complex).

For the second statement we consider cofibrant commutative R-algebras
A for R a cofibrant commutative symmetric ring spectrum. Since R is
cofibrant the unit map S � R is a cofibration of commutative symmetric
ring spectra. Since A is cofibrant as a commutative R-algebra, the unit map
R � A and hence the composite S � A is also a cofibration. Hence, by the
above, �A is a weak equivalence. K

6. NON-SIMPLICIAL CASE

In this section we consider the case when the given stable, monoidal
model category C is not simplicial. We produce a Quillen adjoint pair from
Sp7 to C whose derived functors are monoidal. This can be used for example
to produce a Quillen adjoint pair from Sp7 to Z-graded chain complexes.
Since the results in this section are similar to those in Section 4 and in
[21], we have suppressed some of the details in this section. Since C is not
simplicial, we need a new definition for a desuspension of the unit.

Definition 6.1. A cylinder object for a cofibrant object X is an object
X_I with a factorization of the fold map X}X �i X_I �p X such that i
is a cofibration and p is a weak equivalence. A model for the suspension,
7X, is the cofiber of X}X �i X_I for some cylinder X_I [16, Chap. I,
Sects. 1, 2]. A good desuspension of the unit is a cofibrant object I&1

c with
a weak equivalence ' : 7I&1

c � I for some model of the suspension. A stable
monoidal model category is a monoidal model category which is stable and
has a good desuspension of the unit.

Theorem 6.2. Let C be a stable monoidal model category. Then there is
a Quillen adjoint pair from the positive stable model structure on Sp7 to C,
again denoted by I 7& and Hom(I, &), such that the total left derived
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functor I 7L & is strong monoidal. Moreover, Hom(I, &) is lax monoidal,
I 7 S$I, and I 7 QS � I 7 S is a weak equivalence.

As with the cofibrant desuspension, the existence of a functor with the
properties listed for I 7& implies the existence of a good desuspension.
Under additional conditions on the unit this monoidal functor induces a
monoidal equivalence of the homotopy category of C and the homotopy
category of symmetric spectra. The proof of the following statement is
similar to Theorem 4.8.

Theorem 6.3. Let C be a stable monoidal model category. The following
conditions are equivalent:

(1) There is a ?s

*
-linear, triangulated equivalence between the

homotopy category of C and the homotopy category of Sp7 which takes the
unit I of the monoidal product to the unit S.

(2) I, is a small weak generator and [I, I]
*
Ho(C) is freely generated as

a ?s

*
-module by idI .

(3) C and Sp7 are Quillen equivalent via functors whose derived
functors are strong monoidal.

(4) There is a ?s

*
-linear, triangulated, monoidal equivalence between

Ho(C) and Ho(Sp7).

To construct the right adjoint Hom(I, &) we use cosimplicial resolutions
since C is not simplicial. These were first used in [5] to construct function
complexes on homotopy categories, but in [4] this theory has been
extended to provide function complexes on model categories. Our main
reference here is [8, Chap. 5]; see also [21].

Given a cosimplicial object X } in C2 and a pointed simplicial set
K denote the coend [12, Chap. IX, Sect. 6] in C by X } �2 K; see also
[8, Chap. 5, Sect. 7]. Define X } �K by (X } �K )n=X }�2 (K7 2[n]+).
Notice X } �K and X } �2 K are objects in different categories (C2 and C

respectively.) Set Sm=(S 1)m and denote X } �S m by 7m(X }). If X } is a
cosimplicial object and Y is an object of C then C(X }, Y ) is a simplicial set
with degree n the set of C-morphisms C(Xn, Y ). There is an adjunction
isomorphism C(X } �K, Y )$map(K, C(X }, Y )).

We consider the Reedy model category on C2, the cosimplicial objects
on C [8, Theorem 5.2.5; 17]. An object A } is Reedy cofibrant if the map
A} ��2[k]+ � A} �2[k]+ $Ak is a cofibration for each k. A cosimplicial
resolution is then a Reedy cofibrant object of C2 such that each of the
codegeneracy and coface maps are weak equivalences. That is, cosimplicial
resolutions are the Reedy cofibrant, homotopically constant objects.
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A cosimplicial resolution A is called a cosimplicial frame of the cofibrant
object A0 in [8, Chap. 5].

The category C2 has a symmetric monoidal product, defined on each
level by the symmetric monoidal product on C. That is, (A} 7 B})n$
An 7 Bn. The following proposition collects several useful properties of the
proceeding constructions. These properties follow from [7, Theorem 16.4.2,
Proposition 16.11.1; 8, Proposition 5.7.1 and 5.7.2].

Proposition 6.4. Let A } and B} be cosimplicial resolutions in C2 where
C is a monoidal model category such that 7 commutes with colimits.

(1) A} 7 B } is a cosimplicial resolution.

(2) 7A} is a cosimplicial resolution.

(3) There is a natural level equivalence 7(A } 7B }) � (7A }) 7 B }.

Proof of Theorem 6.2. To define the right adjoint Hom(I, &) we con-
sider cosimplicial resolutions related to I. First, let |0I be the constant
cosimplicial object on I. Since I is not necessarily cofibrant, |0I is not
necessarily a cosimplicial resolution. Since C has a good desuspension of
the unit, one can build a cosimplicial resolution |1I of the cofibrant object
I&1

c . Define (|1I)0=I&1
c and (|1I)1=I&1

c _I. Define the coface maps as
the two inclusions X � X}X �i X_I and define the codegeneracy map as
the map X_I �p X. Using the factorization properties in C one can induc-
tively define the higher levels of |1I; see the proof of [8, Theorem 5.1.3].
Since 7(X }) is the cofiber of X }� (S 0 6 S 0) � X }�2[1]+ , 7(|1I)0 is the
cofiber of i, that is, a model for the suspension of I&1

c . Then the weak
equivalence ': 7I&1

c � I extends to a level equivalence ' }: 7|1I � |0I.
Define |nI=(|1I)7n for n>0. Define the right adjoint Hom(I, &) in level
n to be C(|nI, &). The symmetric group on n letters permutes the factors
of |nI. The structure maps are induced by the map '.

Using Proposition 6.4, part (1) and [8, Corollary 5.4.4], one can show
that Hom(I, &) takes fibrant objects to positive 0-spectra and (trivial)
fibrations to positive level (trivial) fibrations. Thus Hom(I, &) is a right
Quillen functor by [3, Corollary A.2] since positive stable fibrations
between positive 0-spectra are positive level fibrations by Proposition 4.3.
The left adjoint I 7& is formed as in the simplicial case except here the
tensors of cosimplicial resolutions with simplicial sets are given by coends.

The monoidal product on C induces a natural map C(|mI, A) 7
C(|nI, B) � C(|m+nI, A 7 B). Assembling these levels produces a natural
map Hom(I, A) 7Hom(I, B) � Hom(I, A 7 B). Hence, Hom(I, &) is lax
monoidal. So its left adjoint I 7& is lax comonoidal. Also, I 7 Fn$X$
(|nI�7n

X )0 because they represent the same functor in C. So I 7& takes
the cofibrant replacement QS$F1$S 1 � F0S 0$S to the weak equivalence
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': (|1I�S 1)0 � I. The comonoidal structure on I 7& induces a natural
transformation I 7L (A7L B) � (I 7L A) 7L (I 7L B) where I 7L & is the
total left derived functor of I 7&. Since I 7L S$I, this map is an
isomorphism for A=S and any B. For fixed B both the source and target
are exact functors in A which commute with coproducts, so the objects A
where this transformation is an isomorphism form a localizing subcategory
which contains the generator S. Hence this transformation is an
isomorphism for all A and B. So I 7L & is strong monoidal. K
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