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1. Introduction

Two important themes in modern homotopy theory are the study of structured ring 
spectra, such as E∞ ring spectra, and chromatic homotopy theory, in which the p-primary 
Brown-Peterson spectrum BP plays a key role. In [17], May asked the following question:

Question 1.1. Does the Brown-Peterson spectrum admit the structure of an E∞ ring 
spectrum?

This question has been seminal in the development of the theory of structured ring 
spectra. In an unpublished preprint [9], Kriz developed the theory of topological André-
Quillen cohomology in an attempt to prove that BP does admit the structure of an E∞
ring spectrum. While his attempt to apply his theory to BP did not ultimately succeed, a 
careful study of what exactly went wrong became the seed of a new attempt by Lawson 
to answer May’s question in the negative; recently, this project reached maturity in 
Lawson’s proof [12] that BP does not admit an E∞ multiplication at the prime p = 2.

In this paper, we prove in Theorem 1.2 that BP does not admit an E∞ multiplication 
at odd primes. Our technique is akin to Lawson’s and relies on the computation of a 
certain secondary power operation in the dual Steenrod algebra. The key input to this 
computation is the calculation of a certain MU-power operation in MU∗.

For further motivation and background, we refer the reader to the introduction of 
[12].

1.1. Statement of results

We prove two main results: one limiting the coherence of multiplicative structures on 
the Brown-Peterson spectrum and related spectra at odd primes, and another giving 
a stronger limitation on the coherence of complex orientations of such spectra. The 2-
primary analogues of our result were proven by Lawson [12, Theorem 1.1.2 and Remark 
4.4.7].

Theorem 1.2. Let p denote an odd prime. Neither the Brown-Peterson spectrum BP, 
nor the truncated Brown-Peterson spectra BP〈n〉 for n ≥ 4, nor any of their p-adic 
completions admit the structure of an E2(p2+2) ring spectrum.

We will prove Theorem 1.2 at the end of Section 3.

Theorem 1.3. Let p denote an odd prime. Neither the Brown-Peterson spectrum BP, 
nor the truncated Brown-Peterson spectra BP〈n〉 for n ≥ 3, nor any of their p-adic 
completions admit an E2p+3-map from the complex cobordism spectrum MU.

We will prove Theorem 1.3 at the end of Section 2. Again, the p = 2 case of this 
theorem is due to Lawson [12, Remark 4.4.7].
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Finally, we will prove in Corollary 2.4 the following result about the incompatibility 
of p-typical complex orientations with H∞-structures:

Corollary 1.4. Suppose f : MU(p) → E is a map of H∞-ring spectra satisfying:

(1) f factors through the Quillen idempotent MU(p) → BP.
(2) f induces a Landweber exact MU∗-module structure on E∗.

Then the induced formal group on E∗ has height at most 2, i.e. v2 is invertible in 
E∗/(p, v1).

This corollary is a variation on a result of Johnson–Noel [7, Theorem 1.3], who prove 
the stronger result that E∗ must be a Q-algebra under the restriction p ≤ 13. We suspect 
that E∗ must in fact be a Q-algebra for all primes p: see Question 1.9.

1.2. Outline of the paper

In Section 2, we carry out the computations of MU-power operations that we will 
need. The main result of Section 2 is Theorem 2.3. In Section 3, we generalize results 
of [12] to convert the MU power operations of Theorem 2.3 into Dyer-Lashof operations 
in π∗(HFp ∧MU HFp), thus obtaining Theorem 3.4. At the end of this section, we apply 
these results to obtain Theorem 1.3.

In Section 4.1, we state some relations satisfied by the action of the Dyer-Lashof opera-
tions on H∗(MU; Fp) and H∗(HFp; Fp). In Section 4.2, we write down the relation defining 
the secondary operation of interest and show that it is defined on ξ1 ∈ H∗(HFp; Fp). Fi-
nally, in Section 4.3, we compute this secondary operation on ξ1 to be a nonzero multiple 
of τ4 modulo the ξi by applying juggling formulae and a Peterson-Stein relation to reduce 
to Theorem 3.4. We then deduce Theorem 1.2.

1.3. Questions

Our work raises several interesting questions. While Theorems 1.2 and 1.3 provide 
upper bounds on the coherence of multiplicative structures on BP that are functions of 
p, the best known lower bounds [3], which state that BP is an E4-algebra and admits an 
E4 orientation MU → BP, do not depend on the prime p. So one is led to ask whether 
these coherence bounds are independent of p.

Question 1.5. Let cohBP(p) denote the largest integer n such that the p-primary BP
admits the structure of an En ring spectrum. Is cohBP(p) constant in p? If not, how does 
it vary with p?

In another direction, we may ask about E∞ structures on the truncated Brown-
Peterson spectra BP〈n〉. While Theorem 1.2 rules out the possibility of such structures for 
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n ≥ 4, the only known positive results state that BP〈1〉 always admits an E∞ structure 
(since it is the Adams summand) and that BP〈2〉 admits an E∞ structure at the primes 
2 and 3 [6,13]. What about the remaining cases?

Question 1.6. At which of the primes p ≥ 5 does the height 2 truncated Brown-Peterson 
spectrum BP〈2〉 admit an E∞ multiplication?

Question 1.7. At which primes does the height 3 truncated Brown-Peterson spectrum 
BP〈3〉 admit an E∞ multiplication?

Remark 1.8. The above questions are not quite well-defined: there are many generalized 
truncated Brown-Peterson spectra BP〈n〉 which are not a priori equivalent. However, 
Angeltveit and Lind [1] have shown that all choices of BP〈n〉 are equivalent as spec-
tra after p-completion, so that Question 1.6 and Question 1.7 are well-defined after 
p-completion.

Finally, we believe that the following strengthening of Corollary 1.4 holds:

Question 1.9. Can Corollary 1.4 be strengthened so that the conclusion is that E∗ is a 
Q-algebra? Equivalently, can the small primes condition be removed from [7, Theorem 
1.3]?

1.4. Conventions

We work throughout at a fixed odd prime p. We will let H denote the mod p Eilenberg-
MacLane spectrum HFp and let H∗(X) denote mod p homology.

We let F denote the universal formal group law, defined over MU∗.
In terms of foundations, we follow [12, Section 1.6], with the following caveat. In the 

proof of Proposition 3.24, we will allow ourselves to work freely with the language of 
∞-categories and the notion of En-ring native to this setting, as developed by Lurie 
[14,15]. To translate between Lawson’s framework and ours, we pass to the underlying 
∞-category of the model categories considered by Lawson. The compatibility of this 
procedure with multiplicative structures is justified by [18, Theorem 7.11].

1.5. Generators of the homology and homotopy of MU

For the convenience of the reader, we review the relations between various sets of 
elements of π∗(MU), H∗(MU; Z) and π∗(MU) ⊗Q that we will need to make use of.

The integral homology H∗(MU; Z) is generated by elements bi which are the images of 
the duals of ci1 under H∗(CP∞; Z) → H∗(BU ; Z) ∼= H∗(MU; Z). If we define the Newton 
polynomials in bi inductively by N1(b) = b1 and

Nn(b) = b1Nn−1(b) − b2Nn−2(b) + · · · + (−1)n−2bn−1N1(b) + (−1)n−1nbn,
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then Nn(b) generates the group of primitive elements in H2n(MU; Z). Furthermore, 
Nn(b) ≡ (−1)n−1nbn modulo decomposables. As we will see in Section 4.1, there are 
convenient formulae for the action of the Dyer-Lashof operations on Nn(b).

The homotopy π∗(MU) of MU is generated by elements xi whose images under the 
Hurewicz map are h(xi) ≡ pbi modulo decomposables when i = pn − 1 for some prime p
and h(xi) ≡ bi modulo decomposables otherwise.

We may view the corbordism class of CPn as an element [CPn] of π2n(MU). Then, 
the [CPn] do not generate π∗(MU), though they are generators of π∗(MU) ⊗Q. Under 
the isomorphism π∗(MU) ⊗ Q ∼= H∗(MU; Q) induced by the Hurewicz map, [CPn] ≡
−(n + 1)bn modulo decomposables.

The logarithm of the universal formal group F on π∗(MU) may be expressed in terms 
of the elements [CPn]:

�F (x) =
∑ [

CPn−1]xn

n
.

1.6. When are the Dyer-Lashof operations defined?

To obtain the precise bounds on En structures of Theorem 1.2 and Theorem 1.3, we 
need to know when a Dyer-Lashof operation Qk is defined on an element x ∈ πnR for R
an En-H-algebra.

Theorem 1.10 ([4, Theorems III.3.1 and III.3.3]). Let R be an En-H-algebra. Then the 
operation Qs is defined on an element x ∈ π∗R when 2s − deg(x) ≤ n − 1; however, 
these operations only satisfy the expected properties (e.g. linearity, Cartan formula) when 
2s − deg(x) ≤ n − 2.

1.7. Acknowledgments

The author would like to thank Tyler Lawson for explanations of his work [12] and 
for introducing him to the world of homotopy theory. He would also like to thank his 
advisor, Haynes Miller, for helpful conversations about this work. He would further like 
to thank them for providing useful comments on a draft of this paper.
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2. Power operations in the homotopy of MU

2.1. Statement of results

Our goal in this section is to compute certain power operations in the homotopy of 
MU which will form the starting point of our proof that BP does not admit the structure 
of a E2(p2+2)-ring.
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We begin by recalling that the H2
∞-structure on MU equips the even MU-cohomology 

of a space X with a power operation

PCp
: MU2∗(X) → MU2p∗(X ×BCp).

Notation 2.1. Let α ∈ MU2(BCp) denote the first Chern class of the standard character 
Cp ↪→ S1.

Then there is an isomorphism

MU∗(BCp) ∼= MU∗[[α]]/[p]F (α),

so that we may view the power operation PCp
applied to X = ∗ a point as a map

PCp
: MU2∗ → MU2p∗[[α]]/[p]F (α).

Let

r∗ : MU∗[[α]]/[p]F (α) → BP∗[[α]]/[p]F(p)(α)

denote the map induced by the Quillen idempotent. Here, we let F(p) denote the universal 
p-typical formal group law. Our goal in this section will be to compute the composition 
of r∗ ◦ P applied to certain elements of MU2∗. We begin with the following piece of 
notation.

Notation 2.2. Let

χ =
p−1∏
i=1

[i]F (α) ∈ MU∗(BCp) ∼= MU∗[[α]]/[p]F (α)

denote the MU-Euler class of the real reduced regular representation of Cp.

Theorem 2.3. The following equality holds modulo BP∗-decomposables:

r∗
(
χp(p−1)PCp

([
CPp(p−1)

]))
≡ −v3α

p3−1−p(p−1) + O(αp3
). (1)

We may deduce the following corollary.

Corollary 2.4. Suppose f : MU(p) → E is a map of H∞-ring spectra satisfying:

(1) f factors through the Quillen idempotent MU(p) → BP.
(2) f induces a Landweber exact MU∗-module structure on E∗.
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Then the induced formal group on E∗ has height at most 2, i.e. v2 is invertible in 
E∗/(p, v1).

This corollary is similar to [7, Theorem 1.3], which differs from it in the following 
respect: [7, Theorem 1.3] shows the stronger result that E∗ is a Q-algebra, but only for 
primes p ≤ 13.

Proof of Corollary 2.4. By [7, Theorem 1.3], we may as well assume that p > 2.
The map MU → E automatically acquires an H2

∞-structure by [7, Theorem 3.13]. 
Since 

[
CPp(p−1)

]
maps to zero under the Quillen idempotent and thus under f∗, it 

follows that

χp(p−1)PCp

([
CPp(p−1)

])

maps to zero in E∗[[α]]/[p](α). It follows from Theorem 2.3 that

r∗
(
χp(p−1)PCp

([
CPp(p−1)

]))
≡ −v3α

p3−1−p(p−1) + O(αp3
) mod (p, v1, v2).

Since [p](α) ≡ v3α
p3 + O(αp3+1) mod (p, v1, v2), the above implies that v3 = 0 ∈

E∗/(p, v1, v2) Now, v3 is regular in E∗/(p, v1, v2) by Landweber exactness, so that we 
must have E∗/(p, v1, v2) = 0, as desired. �

We begin the proof of Theorem 2.3 with a reduction. Since we are working modulo 
BP∗-decomposables, the coefficient of αp3−1−p(p−1) in (1) is equivalent to a constant 
multiple of v3. Moreover, this is the first term in (1) that can be nonzero modulo BP∗-
decomposables. It therefore suffices to show that (1) holds after composing with the map 
q : BP∗ → Zp[v3]/(v2

3) that sends v3 to v3 and vi to 0 for i �= 3. Here, we let vi denote 
the ith Hazewinkel generator. In conclusion, to prove Theorem 2.3 it suffices to prove 
the following proposition.

Proposition 2.5. There is an equality

q ◦ r∗
(
χp(p−1)PCp

([
CPp(p−1)

]))
≡ −v3α

p3−1−p(p−1)

in the ring 
(
Zp[v3]/(v2

3)
)
[[α]]/[p]G(α), where G is the p-typical formal group law over 

Zp[v3]/(v2
3) induced by the map q.

In the appendix of [12], Lawson shows how this computation may be made internally 
to Zp[v3]/(v2

3) and the induced formal group law by adapting a method of Johnson–Noel 
[7]. Since this formal group law is much simpler than the formal group law of BP, the 
computation that we need to make simplifies dramatically and so becomes tractable.
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2.2. Proof of Proposition 2.5

We begin by reviewing some basic facts about MU -power operations. This section is 
based on [12, Appendix A].

Notation 2.6. We let

〈p〉F (x) = [p]F (x)
x

.

Fact 2.7. The power operation PCp
: MU2∗(X) → MU2p∗(X)[[α]]/[p]F (α) satisfies the 

following properties:

(1) PCp
(uv) = PCp

(u)PCp
(v)

(2) PCp
(u) = up modulo α

(3) PCp
(u + v) = PCp

(u) + PCp
(v) modulo 〈p〉F (α)

(4) On the orientation class x ∈ M̃U
2
(CP∞),

PCp
(x) = x

p−1∏
i=1

(x +F [i]F (α)).

Parts (1)-(3) of Fact 2.7 are standard properties of power operations and are a con-
sequence of [4, Proposition VIII.1.1] and [19, Proposition 4.2]. Part (4) follows from [19, 
Proposition 3.17].

Notation 2.8. We let

g(x, α) = x

p−1∏
i=1

(x +F [i]F (α)),

viewed as an element of MU∗[[x, α]]/[p]F (α), so that PCp
(x) = g(x, α). Note that 

∂
∂xg(0, α) = χ.

Applying Fact 2.7 to the spaces X = (CP∞)×n for n = 0, 1, 2 and the product map 
(CP∞)×2 → CP∞, we obtain the following proposition:

Proposition 2.9. The composite

Ψ : MU∗ → MU∗[[α]]/〈p〉F (α)

of PCp
with the quotient map MU∗[[α]]/[p]F (α) → MU∗[[α]]/〈p〉F (α) is a ring homomor-

phism. Moreover, the power series g(x, α) defines an isogeny F → Ψ∗F .



A. Senger / Advances in Mathematics 458 (2024) 109996 9
Let ω ∈ Zp denote a (p − 1)st root of unity. We will find it convenient to express 
g(x, α) and χ in terms of [ωi]F (α) instead of [i]F (α), where i = 1, . . . , p − 1 on both 
sides. This is because we will eventually replace F with a p-typical formal group law G, 
and for any p-typical G we have the simple formula [ωi]G(x) = ωix.

To make sense of this, we must base change to the p-completion MU∗
p. When base 

changed to MU∗
p, the formal group law F admits the structure of a formal Zp-module. 

In particular, if we let ω ∈ Zp denote a primitive (p − 1)st root of unity, there are endo-
morphisms [ωi]F (x) of F . Since ω1, . . . , ωp−1 form a set of representatives for 1, . . . , p −1
modulo p, we obtain the following lemma:

Lemma 2.10. There are equalities

χ ≡
p−1∏
i=1

[ωi]F (α) mod [p]F (α)

and

g(x, α) ≡ x

p−1∏
i=1

(x +F [ωi]F (α)) mod [p]F (α).

Since MU∗ and MU∗[[α]]/〈p〉F (α) are torsion-free, F and Ψ∗F admit logarithms

�F (x) =
∑ [

CPn−1]xn

n

and

�Ψ∗F (x) =
∑ Ψ

([
CPn−1])xn

n
.

This implies that we may compute Ψ([CPn]) as the coefficient of xn in the derivative 
�′Ψ∗F (x) of �Ψ∗F (x) with respect to x. We will now describe a method for computing 
these coefficients. We begin with a lemma.

Lemma 2.11. Let R∗ denote a nonzero graded torsion-free ring and let r : MU∗
p → R∗

denote a map classifying a formal group law G over R∗. Then

χG := r(χ) ≡
p−1∏
i=1

[ωi]G(α) mod [p]G(α)

may be written as uαp−1, where u is a unit in R∗. Moreover, α is not a zero divisor in 
R∗[[α]]/〈p〉G(α), so neither is χG.
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Proof. We have

χG ≡
p−1∏
i=1

[ωi]G(α) mod [p]G(α)

=
p−1∏
i=1

(ωiα + O(α2))

= αp−1(−1 + O(α)),

which implies that r(χ) = u · αp−1 for a unit u.
It remains to show that α is not a zero-divisor in R∗[[α]]/〈p〉G(α). Suppose that 

α · f(α) = g(α) · 〈p〉G(α). We wish to show that α must divide g(α), or in other words 
that g(α) has trivial constant term. But this follows from the fact that 〈p〉G(α) has 
constant term p, which is not a zero divisor in R∗. �
Definition 2.12. We fix an arbitrary lift Ψ([CPn]) ∈ MU∗[[α]] of Ψ([CPn]) ∈
MU∗[[α]]/〈p〉F (α). This determines a lift of �Ψ∗F (x) to MU∗[[x, α]].

We also fix a lift of g(x, α) to MU∗
p[[x, α]]. Then ∂

∂xg(0, α) is a lift of χ to MU∗
p[[α]].

Notation 2.13. Define k(y, α) by g(χy, α) = χ2k(y, α). Then k(y, α) has leading term y, 
so we may let k−1(y, α) denote a composition inverse in the y variable.

Moreover, let �′F (x) = ∂
∂x�F (x), �′Ψ∗F (x) = ∂

∂x�Ψ∗F (x), k′(y, α) = ∂
∂yk(y, α) and 

(k−1)′(y, α) = ∂
∂yk

−1(y, α).

Proposition 2.14. Let fn(α) denote the coefficient of yn in

�′F (χk−1(y, α)) · (k−1)′(y, α).

Then

Ψ([CPn])χ2n ≡ fn(α) mod 〈p〉F (α).

Proof. Applying ∂
∂y to the equation

g(x, α) +Ψ∗F g(y, α) ≡ g(x +F y, α) mod 〈p〉(α)

and evaluating at y = 0, we obtain the equation

g′(0, α)
(�Ψ∗F )′(g(x, α)) ≡ g′(x, α)

(�F )′(x) mod 〈p〉F (α).

This implies that

g′(x, α) · (�Ψ∗F )′(g(x, α)) = χ · (�F )′(x) + h(x, α) · 〈p〉F (α)



A. Senger / Advances in Mathematics 458 (2024) 109996 11
for some h(x, α) ∈ MU∗
p[[x, α]]. In the above equation, we have used the fact that χ =

g′(0, α). Plugging in x = 0, we find that h(0, α) = 0, so that h(x, α) = xh̃(x, α) for some 
h̃(x, α) ∈ MU∗

p[[x, α]].
Next, we make the substitution x = χy and write g(χy, α) = χ2k(y, α) as in Nota-

tion 2.13. Plugging in our substitution, we obtain

χ · k′(y, α) · (�Ψ∗F )′(χ2k(y, α)) = χ · (�F )′(χy) + h(χy, α) · 〈p〉F (α)

= χ · (�F )′(χy) + χy · h̃(χy, α) · 〈p〉F (α).

Substituting y = k−1(z, α), applying the chain rule and dividing by χ (which is valid by 
Lemma 2.11), we obtain

(�Ψ∗F )′(χ2z) = (�F )′(χk−1(z, α)) · (k−1)′(z, α) + k−1(z, α) · h̃(χk−1(z, α), α) · 〈p〉F (α).

Taking coefficients of zn on both sides, we find that

Ψ(CPn)χ2n = fn(α) + h̃n(α) · 〈p〉F (α)

for some h̃n(α) ∈ MU∗
p[[α]], as desired. �

Finally, to compute PCp
([CPn]), we have the following proposition.

Proposition 2.15. There exists a unique polynomial hn(α) ∈ MU∗[α] of degree 2n(p − 1)
with the property that

fn(α) − hn(α) · 〈p〉F (α) ≡ χ2n [CPn]p mod α2n(p−1)+1.

Furthermore,

PCp
([CPn]) ≡ χ−2n(fn(α) − hn(α) · 〈p〉F (α)) mod [p]F (α).

Proof. By Proposition 2.14,

fn(α) ≡ χ2nΨ([CPn]) ≡ χ2nPCp
([CPn]) mod 〈p〉F (α).

By Fact 2.7(2), this implies that

fn(α) ≡ χ2n [CPn]p mod (〈p〉F (α), α).

Combining the above with Lemma 2.11, we find that hn(α) exists. Uniqueness follows 
from the fact that the constant term p of 〈p〉F (α) is not a zero divisor in MU∗

p.
In particular, we find that fn(α) − hn(α) · 〈p〉F (α) is divisible by χ2n and that

χ−2n(fn(α) − hn(α) · 〈p〉F (α)) ≡ [CPn]p ≡ PCp
([CPn]) mod α
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and

χ−2n(fn(α) − hn(α) · 〈p〉F (α)) ≡ Ψ([CPn]) ≡ PCp
([CPn]) mod 〈p〉F (α).

Again using the fact that p is not a zero divisor in MU∗
p, this implies that

χ−2n(fn(α) − hn(α) · 〈p〉F (α)) ≡ PCp
([CPn]) mod [p]F (α),

as desired. �
Suppose now that we are given a graded torsion-free ring R∗ and a homomorphism 

r : MU∗
p → R∗ classifying a formal group law G over R∗. Then we may define χG, 

gG(x, α), kG(x, α), k−1
G (x, α) and fG

n (α) as above, using the formal group law G on R∗

in place of the formal group law F over MU∗.

Proposition 2.16. Let R∗ denote a graded torsion-free ring, and let r : MU∗
p → R∗ classify 

a formal group law G over R∗. Then there exists a unique polynomial hG
n (α) ∈ R∗[α] of 

degree 2n(p − 1) with the property that

fG
n (α) − hG

n (α) · 〈p〉G(α) ≡ χ2n
G [CPn]p mod α2n(p−1)+1.

Moreover,

r(PCp
([CPn])) ≡ χ−2n

G (fG
n (α) − hG

n (α) · 〈p〉G(α)) mod [p]G(α).

Proof. The first part follows exactly as in the proof of Proposition 2.15.
For the second part, we note that fG

n (α) = r(fn(α)) by the definitions, and 
that hG

n (α) = r(hn(α)) by uniqueness. The second part then follows from Proposi-
tion 2.15. �
Proposition 2.17. Consider the map q ◦ r∗ : MU∗

p → Zp[v3]/(v2
3) and its induced formal 

group law G = (q ◦ r∗)∗F . Then the following hold:

(1) �G(x) = x + v3

p
xp3

.

(2) x +G y = x + y + v3

p
(xp3

+ yp
3 − (x + y)p

3
).

(3) [p]G(α) = pα− (pp
3−1 − 1)v3α

p3
, so that 〈p〉G(α) = p − (pp

3−1 − 1)v3α
p3−1.

(4) χG =
p−1∏
i=1

ωiα = −αp−1.

(5) gG(x, α) ≡ χx + xp + O(xp2) mod [p]G(α).
(6) kG(y, α) ≡ y + χp−2yp + O(yp2) mod [p]G(α).

(7) k−1
G (y, α) = y +

p∑
(−1)n

(
np
n

)
n(p− 1) + 1χ

n(p−2)yn(p−1)+1 + O(yp
2
).
n=1
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(8) fG
i(p−1)(α) = (−1)i

(
ip

i

)
χi(p−2) for 1 ≤ i ≤ p.

(9) hG
i(p−1)(α) = (−1)i

(
ip
i

)
p

χi(p−2) for 1 ≤ i ≤ p.

Proof. Part (1) follows from the formula for the logarithm of the universal p-typical 
formal group law [20, Appendix A2]. Recall that we are using the Hazewinkel vis. Parts 
(2) and (3) follow in a straightforward way from part (1). To establish part (4), we note 
that, since the formal group law G is p-typical, [ωi]G(x) = ωix. Therefore

χG =
p−1∏
i=1

ωiα = −αp−1,

since p is odd. Moreover, we have

gG(x, α) = x

p−1∏
i=1

(x +G (ωiα)).

We then compute

gG(x, α) = x

p−1∏
i=1

(x +G (ωiα))

= x

p−1∏
i=1

(x + ωiα)

⎡
⎣1 + v3

p

p−1∑
j=1

xp3 + (ωjα)p3 − (x + ωjα)p3

x + ωjα

⎤
⎦

≡ x

p−1∏
i=1

(x + ωiα) + O(xp2
) mod [p]G(α)

= x(xp−1 − αp−1) + O(xp2
)

= χGx + xp + O(xp2
),

where we have used the fact that pv3α = 0 modulo [p]G(α). This establishes part (5). 
Part (6) follows immediately from the defining equation χ2

GkG(y, α) = gG(χGy, α).
To deduce part (7), we apply Lagrange inversion to compute the composition inverse 

of the power series

y + xp−2yp

in the ring Z[x][[y]] to be

y +
∞∑

(−1)n
(
np
n

)
n(p− 1) + 1x

n(p−2)yn(p−1)+1.

n=1
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Applying this to (6), we obtain (7).
Since

(�G)′(x) = 1 + O(xp3−1),

we deduce that

(�G)′(χGk
−1(y, α)(k−1)′(y, α) = (k−1)′(y, α) + O(yp

3−1),

so we may read off (8) from (7).
Finally, (9) follows from (8) and the fact that [CPn]p = 0 in Z[v3]/v2

3 . �
Corollary 2.18. Given 1 ≤ i ≤ p, there is an equality

q ◦ r∗
(
χi(p−1)PCp

([
CP i(p−1)

]))
≡ −

(
ip
i

)
p

v3α
p3−1−i(p−1) mod [p]G(α).

Proof. Using Proposition 2.16 and Proposition 2.17, we compute:

q ◦ r∗
(
χi(p−1)PCp

([
CP i(p−1)

]))
≡ χ

−i(p−1)
G · (fG

i(p−1)(α) − hG
i(p−1)(α) · 〈p〉G(α))

≡ χ
−i(p−1)
G · (−hG

i(p−1)(α)) · (−(pp
3−1 − 1)v3α

p3−1)

≡ −hG
i(p−1)(α)v3α

p3−1−i(p−1)2

≡ (−1)i+1χ
i(p−2)
G

(
ip
i

)
p

v3α
p3−1−i(p−1)2

≡ −
(
ip
i

)
p

v3α
p3−1−i(p−1) mod [p]G(α),

where we have used the fact that pv3α = 0 modulo [p]G(α). �

Proof of Proposition 2.5. Applying the congruence 
(p2

p )
p ≡ 1 mod p to Corollary 2.18, 

we deduce that

q ◦ r∗
(
χp(p−1)PCp

([
CPp(p−1)

]))
≡ −v3α

p3−1−p(p−1) mod [p]G(α),

as desired. �
Remark 2.19. Lawson has informed the author that Zeshen Gu has independently worked 
on computations similar to those in this section.
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3. A Dyer-Lashof operation in the MU-dual Steenrod algebra

In this section, we apply Theorem 2.3 to compute certain Dyer-Lashof operations in 
the MU-dual Steenrod algebra π∗(H ∧MU H). We begin by determining the structure of 
π∗(H ∧MU H) as an algebra.

Proposition 3.1. The algebra π∗(H ∧MU H) is isomorphic to an exterior algebra ΛFp
(τi) ⊗

ΛFp
(σmi | i �= pk − 1) on classes τi for i ≥ 0 and σmi for i ≥ 1. The degrees of these 

classes are |τi| = 2pi − 1 and |σmi| = 2i + 1.
The natural map H ∧ H → H ∧MU H, upon taking homotopy, induces a map

ΛFp
(τi) ⊗ Fp[ξi] → ΛFp

(τi) ⊗ ΛFp
(σmi | i �= pk − 1)

sending τi to τi and ξi to 0.

Proof. It is standard to compute

TorH∗MU
∗,∗ (H∗,H∗H) ∼= ΛFp

(τi) ⊗ ΛFp
(σmi | i �= pk − 1),

so that the Künneth spectral sequence

TorH∗MU
∗,∗ (H∗,H∗H) ⇒ π∗ ((H ∧ H) ∧H∧MU (H ∧ H)) = π∗(H ∧MU H)

degenerates on the E2-page for degree reasons. There are no possible extension problems, 
and the computation of the map

π∗(H ∧ H) → TorH∗MU
∗,∗ (H∗,H∗H) → π∗(H ∧MU H)

follows from the degeneration. �
Next, we recall a construction from [12, Section 3.3].

Definition 3.2. Given an E∞-ring R, we let SL1(R) denote the component of the unit 
in Ω∞R. This naturally admits the structure of an infinite loop space coming from the 
product on R. We let BSL1(R) denote its delooping.

Construction 3.3. Given an E∞-map R → H, applying SL1 to the diagram of E∞-rings

R H

H H ⊗R H

and using the fact that SL1(H) is contractible, we obtain the diagram of infinite loop 
spaces
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SL1(R) ∗

∗ SL1(H ∧R H),

which gives rise to an infinite loop space map SL1(R) → ΩSL1(H ∧R H). This is adjoint 
to a map of H-modules H ∧ Σ∞

+ BSL1(R) → SL1(H ∧R H), which induces the second 
map in the composite

σ : H̃n(SL1(R)) → Hn+1(BSL1(R)) → πn+1(H ∧R H),

where the first map is the usual suspension map in homology. Precomposing with the 
Hurewicz map, one also obtains a map

σ : πnR → πn+1(H ∧R H),

now for n ≥ 1. This map is compatible via the Künneth spectral sequence with the 
natural map πnR → Torπ∗R

1,n (Fp, Fp).

We are now able to state the main theorem of this section.

Theorem 3.4. In π∗(H ∧MU H), we have

Qp2+1
(
σ
[
CPp(p−1)

])
= −σv3.

This follows immediately from Theorem 2.3 and the following theorem:

Theorem 3.5. Let y ∈ π2nMU and suppose that

χnP (y) =
∞∑
i=0

ciα
i

for some elements ci ∈ π2(n+i)MU. Then the action of the Dyer-Lashof operations on 
π∗(H ∧MU H) is determined by the equation

Qk(σy) = (−1)kσck(p−1).

Our proof of this theorem will follow [12, Sections 3 and 4] rather closely. The idea 
will be to relate the power operation PCp

to the action of the multiplicative Dyer-Lashof 
operations on the homology of the Ω-spectrum of MU, and to relate this in turn to the 
Dyer-Lashof operations on π∗(H ∧MU H).

First, we need to introduce some notation from [12, Section 4].
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Notation 3.6. We let

MUn = Ω∞ΣnMU

denote the spaces in the Ω-spectrum for MU.
Since MU is a ring spectrum, the homology of the spaces MUn is equipped with two 

products, making H∗(MU•) into a Hopf ring. We denote the additive one, coming from 
the infinite loop space structure on MUn, by

−#− : H∗(MUn) ⊗ H∗(MUn) → H∗(MUn),

and the multiplicative one, coming from the multiplication on MU, by

− ◦ − : H∗(MUn) ⊗ H∗(MUm) → H∗(MUn+m).

Since MU is an E∞-ring spectrum, MU0 is equipped with the structure of an E∞-ring 
space. Its homology is therefore equipped with two actions of the Dyer-Lashof operations, 
an additive action coming the infinite loop space structure on MU0, and a multiplicative 
one coming from the E∞-multiplication on MU.

We denote the additive operations by

Qk : Hn(MU0) → Hn+2(p−1)k(MU0)

and the multiplicative operations by

Q̂k : Hn(MU0) → Hn+2(p−1)k(MU0).

Definition 3.7. The H2
∞-algebra structure on MU implies the existence of based maps

MU2n ∧ (BΣp)+ → MU2pn

representing the power operation

P : MU2n(X) → MU2pn(X ×BΣp).

We let

Q : H∗(MU2n) → H∗(MU2pn)⊗̂H∗(BΣp)

denote the adjoint to the map

H∗(MU2n) ⊗ H∗(BΣp) → H∗(MU2pn)

induced by the above map of spaces.
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Multiplicativity of P implies the following:

Proposition 3.8 ([12, Proposition 4.2.2]). The operation Q preserves the ◦-product: Q(x) ◦
Q(y) = Q(x ◦ y).

Notation 3.9. Let bi ∈ H2i(MU2) denote the image under the orientation map CP∞ →
MU2 of the class in H2i(CP∞) dual to ci1. We let b(s) =

∑∞
i=1 bis

i, viewed as a formal 
power series in s.

Remark 3.10. Since b1 is the fundamental class of the unit map S2 → MU2, − ◦ b1 :
H∗(MU2n) → H∗(MU2n+2) corresponds to suspension.

Notation 3.11. Given a homotopy element x ∈ π2n(MU), we let [x] ∈ H0(MU2n) denote 
the image of the corresponding class in π0(MU2n) under the Hurewicz map.

It follows from Remark 3.10 that [x] ◦ b◦n1 ∈ H2n(MU0) is the image of x, viewed as 
an element of π2n(MU0), under the Hurewicz map.

Definition 3.12. Given a based space X, there is a natural map

Λ : MU2n(X) = [X,MU2n] → Hom(H∗(X),H∗(MU2n)) = H∗(MU2n)⊗̂H∗(X)

which sends a homotopy class of map to its induced map on homology.

The groups H∗(MU2n)⊗̂H∗(X) are equipped with products # and ◦, each induced by 
the corresponding product in H∗(MU2n) and the cup product in H∗(X).

Proposition 3.13 ([12, Propositions 3.2.3 and 4.2.3]). The map Λ satisfies the following 
properties:

• Λ(x + y) = Λ(x)#Λ(y)
• Λ(xy) = Λ(x) ◦ Λ(y)
• Λ([c]) = [c] ⊗ 1
• (Q ⊗ 1)(Λ(x)) = Λ(P (x)).

Notation 3.14. Recall that

H∗(BCp) ∼= Fp[w] ⊗ ΛFp
(v),

where |v| = 1, |w| = 2, and w is the image of the generator c1 of H2(CP∞) under the 
map on cohomology induced by the map

BCp → CP∞

corresponding to the standard inclusion Cp ↪→ S1. Furthermore,
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H∗(BΣp) ∼= Fp[u] ⊗ ΛFp
(z),

where, when pulled back to BCp, u = wp−1 and z = vwp−2.
Furthermore, we let βn be dual to un in H∗(BΣp) ∼= Fp[u] ⊗ΛFp

[z] and γn be dual to 
un−1z.

Remark 3.15 ([12, Remark 4.2.4]). Recall that MU∗(BCp) ∼= MU∗[[α]]/[p]F (α) with 
α ∈ MU2(BCp). The class α satisfies the equation

Λ(α) = b(w).

Notation 3.16. Let Pj be the homology operation dual to the Steenrod power P j.

Lemma 3.17. For a space X with pth extended power Dp(X) := X⊗p
hΣp

, the composite 
diagonal map on mod p homology

H∗(X) ⊗ H∗(BΣp)
∼−→ H∗(X ×BΣp) → H∗(Dp(X))

is given by

x⊗ βn �→ (−1)n
∑
j≥0

Qj+n(Pjx)

and

x⊗ γn �→ (−1)n+|x|

⎛
⎝∑

j≥0
βQj+n(Pjx) −

∑
j≥0

Qj+n(Pjβx)

⎞
⎠ ,

where β denotes the homology p-Bockstein.

Proof. This follows from the definition of the Dyer-Lashof operations (cf. [16, Definition 
2.2]) and [16, Proposition 9.1]. Note that an extra sign is introduced in the latter equation 
due to the fact that we have written the BΣp-action on the right and not the left. See 
also [10, Proposition 6]. �

The following corollary then follows from the definitions:

Corollary 3.18. Suppose that x ∈ H∗(MU0). Then:

Q(x) =
∑
n,j

(−1)nQ̂j+n(Pjx)un + (−1)n+|x|
(
βQ̂j+n(Pjx) − Q̂j+n(Piβx)

)
un−1z.

In particular, if x is in the image of the Hurewicz map, then
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Q(x) =
∞∑

n=0
(−1)nQ̂n(x)un + (−1)n+|x|βQ̂n(x)un−1z.

Proposition 3.19. We have

Q(b1) = b1 ◦ Λ(χ).

Proof. This is the second to last equation in the proof of [12, Proposition 4.3.1]. �
Proposition 3.20. Let y ∈ π2nMU and suppose that

χnP (y) =
∞∑
i=0

ciα
i

for some elements ci ∈ π2(n+i)MU.
Then, modulo #-decomposables and the ◦-ideal generated by b2, b3, . . . , we have

Q̂k([y] ◦ b◦n1 ) ≡ (−1)k[c(p−1)k] ◦ b◦(p−1)k
1 .

Proof. We have:

Q([y] ◦ b◦n1 ) = Q([y]) ◦ Q(b1)◦n

= Λ(P (y)) ◦ Λ(χ)◦n

= Λ(P (y)χn)

= Λ(
∞∑
i=0

ciα
i)

=
∞
#
i=0

[ci] ◦ b(w)◦i

≡
∞∑
i=0

[ci] ◦ (b1)◦iwi,

where we view Q([y] ◦b◦n1 ) as living inside of H∗(MU0)⊗̂H∗(BCp) via the natural inclusion 
H∗(BΣp) ↪→ H∗(BCp).

The result now follows from Corollary 3.18 and the fact that the operations Pj and 
Pjβ vanish on the spherical class [y] ◦ b◦n1 . �
Proposition 3.21. Let p be an odd prime. Then the multiplicative Dyer-Lashof operations 
in the Hopf ring of an E∞-ring space satisfy the following identity whenever y is in the 
homology of the path component of zero:

Q̂s([1]#y) ≡ [1]#Q̂s(y)
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modulo # and ◦ decomposables.

We first prove a lemma.

Lemma 3.22. In the situation of Proposition 3.21, for any x there exist elements zi for 
0 < i < |x| such that the additive Dyer-Lashof operations satisfy

Qs(x) = Qs[1] ◦ x +
∑

Qsi [1] ◦ zi.

Therefore Qs(x) is ◦-decomposable for any x and any s > 0.

Proof. This follows from the formula

Qs[1] ◦ x =
∑
i

Qs+i([1] ◦ Pix)

of [5, Proposition II.1.6] by inducting on the degree of x. �
Proof of Proposition 3.21. Let ε denote the counit and Δi denote the i-fold coproduct.

We apply the mixed Cartan formula [5, Theorem II.2.5], which states that

Q̂s(x#y) =
∑

s0+···+sp=s

∑
Q̂s0

0 (x0 ⊗ y0)# . . .#Q̂
sp
p (xp ⊗ yp)

where

Δp+1(x⊗ y) =
∑

(x0 ⊗ y0) ⊗ · · · ⊗ (xp ⊗ yp)

and where

Q̂s
0(x⊗ y) = ε(x)Q̂s(y),

Q̂s
p(x⊗ y) = ε(y)Q̂s(x),

and for 0 < i < p we put mi = 1
p

(
p
i

)
so that

Q̂s
i (x⊗ y) = [mi] ◦

(∑
Qj(x1 ◦ · · · ◦ xi ◦ y1 ◦ · · · ◦ yp−i)

)
where Δix =

∑
x1 ⊗ · · · ⊗ xi and Δp−iy =

∑
y1 ⊗ · · · ⊗ yp−i.

Applying this to the case that x = [1] and y is in the homology of the path component 
of zero, we first note that this is #-decomposable unless all of but one of the terms lies 
in degree 0, i.e. unless yi = [0] and si = 0 for all but one i.

Using Lemma 3.22, we further deduce that all of the terms with si �= 0 for some 
0 < i < p are ◦-decomposable. Finally, we note that Q̂s

p([1] ⊗ y) = Q̂s([1]) = 0 for s > 0
by [5, Lemma II.2.6], so that in fact the only term left is
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Q̂s
0([1] ⊗ y)#Q̂0

1([1] ⊗ [0])# . . .#Q̂0
p([1] ⊗ [0]).

Now, for 0 < i < p we have Q̂0
i ([1] ⊗ [0]) = [mi] ◦Q0([0]) = [mi] ◦ [0] = [0]. Furthermore, 

we have Q̂0
p([1] ⊗ [0]) = ε([0])Q̂0([1]) = [1] and Q̂s

0([1] ⊗ y) = ε([1])Q̂s(y) = Q̂s(y). It 
follows that

Q̂s
0([1] ⊗ y)#Q̂0

1([1] ⊗ [0])# . . .#Q̂0
p([1] ⊗ [0]) = Q̂sy#[1].

All that remains is to show that the multiplicity of this term is one, i.e. that

([1] ⊗ y) ⊗ ([1] ⊗ [0]) ⊗ · · · ⊗ ([1] ⊗ [0])

appears with coefficient one in Δp+1([1] ⊗y). This follows from the fact that Δp+1([1]) =
[1] ⊗ · · · ⊗ [1] and that x ⊗ [0] ⊗ · · · ⊗ [0] appears in Δp+1(x) with coefficient one. �

Before we prove Theorem 3.5, we need the following proposition, which is the odd-
primary analog of [12, Corollary 3.3.6 & Proposition 3.3.7]. The proof is exactly analogous 
to that of [12, Corollary 3.3.6 & Proposition 3.3.7].

Proposition 3.23. The map σ : H̃n(SL1(MU)) → πn+1(H ⊗MU H) of Construction 3.3
kills #-decomposables, ◦-decomposables, and bi for i > 1, and sends elements of the form 
[1]#([α] ◦b◦s1 ) to σα. Furthermore, it sends the multiplicative Dyer-Lashof operations Q̂k

to the Dyer-Lashof operations.

We are now ready to prove Theorem 3.5.

Proof of Theorem 3.5. Using Proposition 3.23 and applying σ to Proposition 3.20 and 
Proposition 3.21, we obtain the desired result. �

Our next goal is to deduce Theorem 1.3 from Theorem 3.4 by noting that the Dyer-
Lashof operations exhibited therein are incompatible with the existence of a highly 
structured map H ∧MU H → H ∧BP H. We begin by showing that a highly structured map 
MU → BP would induce a (slightly less) highly structured map H ∧MU H → H ∧BP H.

Proposition 3.24. Let R be an E∞-ring and let A → B denote a map of En-rings 
augmented over R. Then there exists a natural map R∧AR → R∧B R of En−1-(R∧R)-
algebras.

Proof. Let C denote the ∞-category AlgEn−1
R of En−1-R-algebras, equipped with the 

symmetric monoidal structure induced by that of ModR. Then the bar construction 
defines a functor Bar : Alg(C)/R → C by [14, Remark 5.2.2.19]. By [14, Theorem 5.1.2.2], 
Alg(C) is equivalent to AlgEn

R , so that Bar defines a functor from augmented En-R-
algebras to En−1-R-algebras.
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Since the forgetful functor C → ModR preserves sifted colimits by [14, Proposition 
3.2.3.1], Bar is computed in R-modules and so Bar(−) ∼= R ∧− R as functors into R-
modules.

This implies the existence of a natural map R ∧A∧R R → R ∧B∧R R of En−1-R-
modules. Applying the functor − ∧R (R ∧R) yields the desired map R ∧A R → R ∧B R

of En−1-(R ∧R)-algebras. �
We are now ready to prove Theorem 1.3. The p = 2 case of this theorem was sketched 

by Lawson in [12, Remark 4.4.7].

Proof of Theorem 1.3. For the sake of simplicity of notation, we prove Theorem 1.3 for 
BP. The proof for BP〈n〉 with n ≥ 3 is analogous. Taking the p-completion changes 
nothing because we are only using the mod p homology.

Begin by noting that the Künneth spectral sequence

Torπ∗BP
∗,∗ (H∗,H∗) ⇒ π∗(H ∧BP H)

collapses at the E2-term, so that there is an isomorphism π∗(H ∧BP H) ∼= ΛFp
(σvi).

Suppose that there were a map of E2p+3-rings MU → BP. By the naturality of 
Postnikov towers of E2p+3-rings, this is a map of E2p+3-algebras augmented over H. Then 
Proposition 3.24 implies that this induces a map H ∧MU H → H ∧BP H of E2p+2-(H ∧H)-
algebras. Forgetting the action of the left H, we obtain a map of E2p+2-H-algebras.

Now, the induced map ΛFp
(τ0, σxi) ∼= H ∧MU H → H ∧BP H ∼= ΛFp

(σvk) sends σxpk−1
to a nonzero multiple of σvk. On the other hand, Theorem 3.4 implies that we have 
Qp2+1σxp(p−1) = Cσxp3−1 for some nonzero C. Since σxp(p−1) goes to zero in ΛFp

(σvk)
for degree reasons, this is a contradiction because the operation Qp2+1σxp(p−1) is pre-
served by maps of E2p+2-H-algebras by Theorem 1.10. �
4. A secondary power operation in the dual Steenrod algebra

In this section, we define and compute a secondary power operation in the dual Steen-
rod algebra and deduce Theorem 1.2 from this computation. We make free use of the 
formalism of Toda brackets in categories enriched over pointed topological spaces devel-
oped in [12, Section 2], including the juggling, additivity and Peterson-Stein formulae of 
[12, Propositions 2.3.5 and 2.4.3].

Notation 4.1. Given a set S of graded formal variables, we let Pn
H(S) denote the free 

En-H-algebra on the wedge of spheres 
∨
x∈S

S|x| and let x ∈ π|x| (Pn
H(S)) denote the 

homotopy element corresponding to the fundamental class ι|x| ∈ π|x|
(
S|x|).

Let x be a formal variable of degree 2(p − 1) and let P 2(p2+2)
H (x) denote the 

free E2(p2+2)-H-algebra on x. Then we will let D denote the category
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(
Alg

E2(p2+2),aug
H

)
P2(p2+2)

H (x)/
of augmented E2(p2+2)-H-algebras under P 2(p2+2)

H (x). We 

note that the initial object of D is P 2(p2+2)
H (x), while the final object is H. Every 

E2(p2+2)-H-algebra we will consider below is connective with π0 = Fp, hence admits 
a unique augmentation to H.

The category C is a topological category, so the category C = D± of possibly pointed 
or augmented objects [12, Definition 2.2.2] in this category is enriched over pointed 
topological spaces. The category C consists of augmented objects of D, pointed objects 
of D, and objects of D without a pointing or augmentation. Through casework, one is able 
to define pointed spaces of maps between these objects, making use of the pointings and 
augmentations in the expected way when present. We refer the reader to [12, Definition 
2.2.2] for the somewhat lengthy details.

Whenever we take brackets in the below, it will be in the category C. Given a set of 
graded elements S, we always view P 2(p2+2)

H (x, S) as an element of C via the augmentation 

P 2(p2+2)
H (x, S) → P 2(p2+2)

H (x) sending x to x and all of the elements of S to 0.

Notation 4.2. In the following, we will make our computations in the exterior quotient 
ΛFp

(τ0, τ1, . . . ) of the dual Steenrod algebra H∗H; we call this quotient E∗.

4.1. Dyer-Lashof operations in H∗(MU) and H∗H

We will need to be able to compute Dyer-Lashof operations in H∗(MU) and H∗H. We 
will find the description of this action in terms of Newton polynomials convenient for 
our purposes, so we review how this works. Our choice to describe the action in this way 
was inspired by [2, Section 5].

We define the Newton polynomials Nn(t) = Nn(t1, . . . , tn) ∈ Z[t1, . . . , tn] by setting 
N1(t) = t1 and inductively letting

Nn(t) = t1Nn−1(t) − t2Nn−2(t) + · · · + (−1)n−2tn−1N1(t) + (−1)n−1ntn.

Then the following useful relation holds:

Npn(t) = (Nn(t))p mod p.

We let Nn(b) ∈ H∗MU be defined by setting tn = bn, and let Nn(ξ) ∈ H∗MU be 
defined by setting tpk−1 = ξk and the other tn to zero. When viewed as an element of 
H∗BU under the Thom isomorphism, Nn(b) generates the subgroup of primitive elements 
in degree 2n. Writing out the recurrence for Npk−1(ξ) shows that Npk−1(ξ) = −ξk where 
x �→ x is the conjugation in the Hopf algebra H∗H.

Kochman [8, Theorem 5] showed that the action of the Dyer-Lashof operations on 
Nn(b) is described by the formula:

QrNn(b) = (−1)r+n

(
r − 1

)
Nn+r(p−1)(b).
n− 1
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Since the orientation MU → H maps bpk−1 to ξk and the other bn to zero, it maps Nn(b)
to Nn(ξ) and so we also have:

QrNn(ξ) = (−1)r+n

(
r − 1
n− 1

)
Nn+r(p−1)(ξ).

Using Npk−1(ξ) = −ξk, we get:

Qrξk = (−1)r+1
(
r − 1
pk − 2

)
Npk−1+r(p−1)(ξ).

These formulas provide good control over the action of the Dyer-Lashof operations 
on H∗H and primitive elements in H∗BU. We will also need a good understanding of 
the action of the Dyer-Lashof operations on the indecomposable generators of H∗MU ∼=
H∗BU. It is immediate from the definitions that Nn(b) is such a generator when n is 
relatively prime to p, but is decomposable when n is divisible by p. In degrees divisible 
by p, the work of Lance determines generators on which the action of the Dyer-Lashof 
operations is convenient [11]. In the integral homology H∗(BU, Z(p)), Lance inductively 
defines classes an,k for k ≥ 0 and n coprime to p by the formula

Nnpk(b) = ap
k

n,0 + pap
k−1

n,1 + · · · + pkan,k,

so that |an,k| = 2pkn. In the above, we use Nn(b) to refer to the integral Newton 
polynomial, which generates the subgroup of primitive elements in H2n(BU; Z). When 
k = 0, we simply have an,0 = Nn(b). Lance proves that these classes lie in H∗(BU; Z(p))
and are indecomposable generators [11, Theorem 2.3].

To determine the action of the Dyer-Lashof algebra on the mod p reductions 
an,k ∈ H2pkn(BU), Lance proves in [11, Theorem 4.2] that there is a p-local inte-
gral lift of the Dyer-Lashof operations on H∗(BU) to operations Qi : Hn(BU; Z(p)) →
Hn+2(p−1)i(BU; Z(p)) which satisfy the following properties:

(1) Qi is a linear map.
(2) The Cartan formula Qi(xy) =

∑
j+k=i Q

j(x)Qk(y) is satisfied.
(3) We have QrNn(b) = (−1)r+n

(
r−1
n−1

)
Nn+r(p−1)(b).

Using these properties, one may inductively determine the action of the integral lifts of 
the Dyer-Lashof operations on an,k.

Using the above formulas and the Cartan formula, we may deduce the following two 
propositions by direct calculation. These propositions summarize what we need to know 
about the action of the Dyer-Lashof operations on H∗H and H∗MU, respectively.

Proposition 4.3. In the dual Steenrod algebra H∗H, the following identities hold:

Qp2
ξ1 = (ξp−1

1 )pQpξ1
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Qp2+iξ1 = 0 for i = 1, . . . , p− 2

Qp2+p−1ξ1 = −(Qp(ξ1))p

Qp2−p+1(ξp−1
1 ) = (ξ1)p

2

Qp2+piQpξ1 = 0 for i = 1, . . . , p− 1

Q2pξ1 = −ξ
p

1Q
p(ξ1).

Proposition 4.4. The following identities hold in H∗(MU):

Qp2−p+1(ap−1,1) = Qp2
Np−1(b) −Np−1(b)p(p−1)Qp(Np−1(b))

Qp2−p+1(Np−1(b)p) = 0

Qp2+iNp−1(b) = 0 for i = 1, . . . , p− 2

Qp2+p−1Np−1(b) = − (Qp(Np−1(b)))p

Qp2−p+1(Np−1(b)p−1) = (Np−1(b))p(p−2)(N2(p−1)(b))p

Qp2+piQpNp−1(b) = 0 for i = 1, . . . , p− 1

Q2pNp−1(b) = −N(2p+1)(p−1)(b)

QpNp−1(b) = N(p+1)(p−1)

Qp2+1(ap−1,1) = Np−1(b)p(p−1)N(2p+1)(p−1)(b)

− (Np−1(b)p−2N2(p−1)(b))pQpNp−1(b)

Qp2+1(Np−1(b)p) = 0.

Finally, we identify some elements in the kernel of H∗MU → H∗H.

Proposition 4.5. The following classes lie in the kernel of H∗MU → H∗H:

(1) N2(p−1)(b) + Np−1(b)2

(2) −ap−1,1 −Np−1(b)p

(3) N(2p+1)(p−1)(b) + N(p+1)(p−1)(b)Np−1(b)p.

Proof. Cases (1) and (3) are elementary computations using the definition of the Newton 
polynomials and the fact that bpi−1 �→ ξi and the rest of the bi go to zero. To prove case 
(2), we recall that by definition we have

pap−1,1 = Np(p−1)(b) −Np−1(b)p.
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Since b1, . . . , bp−2, bp, . . . , bp(p−1) go to zero under H∗MU → H∗H, it suffices to com-
pute ap−1,1 modulo I = (b1, . . . , bp−2, bp, . . . bp(p−1)). It is easy to see that N(p−1)(b) ≡
−(p − 1)bp−1 mod I and Ni(p−1)(b) ≡ −bp−1N(i−1)(p−1)(b) mod I for i ≤ p, so that 
Np(p−1)(b) ≡ −(p − 1)bpp−1 mod I. We therefore have

pap−1,1 ≡ −(p− 1)bpp−1 − (−(p− 1)bp−1)p ≡ ((p− 1)p − (p− 1))bpp−1

≡ −pbpp−1 mod (p2, I),

so that

ap−1,1 ≡ −bpp−1 mod (p, I).

Since Np−1(b) ≡ bp−1 mod (p, b1, . . . , bp−2), we are done. �
4.2. A relation among power operations

We will define the secondary operation of interest to us in terms of the following 
relation between primary power operations.

Proposition 4.6. Let R be an E2(p2+2)-H-algebra and x ∈ π2(p−1)(R). Define classes ai, 
i = 0, . . . , p − 1; b; ci, i = 1, . . . , p in π∗(R) by the following formulae:

a0 = Qp2
x− (xp−1)pQpx

ai = Qp2+ix for i = 1, . . . , p− 2

ap−1 = Qp2+p−1x + (Qpx)p

b = Qp2−p+1(xp−1) − xp2

ci = Qp2+piQpx for i = 1, . . . , p− 1

cp = Q2px + (Qpx)xp

Then the following identity holds:

0 =Qp3+pa0 +
p−2∑
i=1

(−1)iQp3+p−iai + Qp3+1ap−1+

bpQp2
Qpx +

p−1∑
i=1

(Qp2−p−i+1(xp−1))pci + (xp−1)p
2
Q2p2−pcp

Proof. It is elementary to check that the operation in this relation which takes the 
greatest n to be defined on En-H-algebras is Qp3+pa0. Since |a0| = 2(p − 1)(p2 + 1), 
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we conclude from Theorem 1.10 that this is defined and satisfies the usual properties 
whenever

n ≥ 2(p3 + p) − 2(p− 1)(p2 + 1) + 2 = 2(p2 + 2),

so that this relation is defined for E2(p2+2)-H-algebras.
The desired identity reduces to the following identities, which may be deduced from 

the Adem relations, the instability relations, and the Cartan formula:

Qp3+pQp2
x =

p−1∑
i=1

(−1)i+1Qp3+p−iQp2+ix

Qp3+1((Qpx)p) = 0

Qp3+p((xp−1)pQpx) =
p∑

i=0
(Qp2−p−i+1(xp−1))pQp2+piQpx

Q2p2
Qpx = Q2p2−pQ2px

Q2p2−p(xpQpx) = xp2
Qp2

Qpx. �
Let the symbols ai, i = 0, . . . , p − 1; b; cj , j = 1, . . . , p have the gradings of the 

elements in Proposition 4.6, and let d have the grading of the relation described there. 
Then the relation above determines maps

Q : P 2(p2+2)
H (x, a0, . . . , ap−1, b, c0, . . . , cp−1) → P 2(p2+2)

H (x)

and

R : P 2(p2+2)
H (x, d) → P 2(p2+2)

H (x, a0, . . . , ap−1, b, c0, . . . , cp−1)

in C (in particular, R is a map of augmented objects) such that the composition Q ◦R
is nullhomotopic in C.

Definition 4.7. From this point on, we regard H ∧ H as an object of C by first lifting 
it to D by setting x = ξ1 and then regarding it as a neither pointed nor augmented 
object.

Proposition 4.8. The bracket 〈ξ1, Q, R〉 is defined in H∗H and has zero indeterminacy in 
the quotient E∗ = ΛFp

(τ0, τ1, . . . ) of H∗H.

Proof. To show that the bracket is defined, we need to show that Q(ξ1) = 0. This is 
equivalent to Proposition 4.3.

The indeterminacy comes from degree (2p3+2p2+2p +1) E2(p2+2)-H-algebra homotopy 
operations applied to ξ1 and from the image of the suspended operation σR. Since ξ1
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lies in the image of the map H∗MU → H∗H induced by the E∞-map MU → H, the 
indeterminacy of the first type also lies in this image and hence maps to zero in E∗.

By the odd-primary analogue of [12, Proposition 2.6.13], σR is equal to

Qp3+pσa0 +
p−2∑
i=1

(−1)iQp3+p−iσai + Qp3+1σap−1

+
p−1∑
i=1

(Qp2−p−i+1(xp−1))pσci + (xp−1)p
2
Q2p2−pσcp,

where the σai and σci are variables in degree one higher than ai and ci, respectively. In 
particular, |σai| = 2(p2+i +1)(p −1) +1 for i = 0, . . . , p −1. Since H∗H is decomposable in 
these degrees, we conclude that the second sort of indeterminacy must be decomposable 
in H∗H. Since there are no nonzero decomposables in E∗ in degree 2p4 − 1, we conclude 
that the indeterminacy must actually be trivial in E∗. �
4.3. Computation of the secondary operation

To compute this operation, we will first juggle it into a functional operation for the 
map H ∧MU → H ∧H. To this end, we define maps in C (in this case, maps augmented 

over P 2(p2+2)
H (x)):

μ : P 2(p2+2)
H (x, a0, . . . , ap−1, b, c0, . . . , cp−1) → P 2(p2+2)

H (x, y2(p−1), yp(p−1), y(2p+1)(p−1))

Q : P 2(p2+2)
H (x, zp3−1) → P 2(p2+2)

H (x, y2(p−1), yp(p−1), y(2p+1)(p−1))

ν : P 2(p2+2)
H (x, d) → P 2(p2+2)

H (x, zp3−1),

where |yi| = 2i and 
∣∣zp3−1

∣∣ = 2(p3 − 1), by:

μ(a0) = Qp2−p+1yp(p−1)

μ(ai) = 0 for i �= 0

μ(b) = −xp(p−2)yp2(p−1)

μ(ci) = 0 for i �= p

μ(cp) = y(2p+1)(p−1)

Q(zp3−1) = Qp2+1yp(p−1) − (xp−2y2(p−1))pQpx + xp(p−1)y(2p+1)(p−1)

ν(d) = Qp3
zp3−1.

Here, we are viewing the classes yi and zi as formal graded variables in the sense of 
Notation 4.1.
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Definition 4.9. From this point on, we regard H ∧MU as an object of C by first lifting it 
to D by setting x = −Np−1(b) and then regarding it as a neither pointed nor augmented 
object.

Proposition 4.10. There is an identity μR = Qν and a homotopy commutative diagram

P 2(p2+2)
H (x, a0, . . . , ap−1, b, c0, . . . , cp−1) P 2(p2+2)

H (x)

P 2(p2+2)
H (x, y2(p−1), yp(p−1), y(2p+1)(p−1)) H ∧ MU H ∧ H,

Q

μ −Np−1(b)
ξ1

f p

where f is the map defined by the following:

x �→ −Np−1(b)

y2(p−1) �→ N2(p−1)(b) + Np−1(b)2

yp(p−1) �→ −ap−1,1 −Np−1(b)p

y(2p+1)(p−1) �→ N(2p+1)(p−1)(b) + N(p+1)(p−1)(b)Np−1(b)p.

Furthermore, the composites p ◦ f and f ◦Q are null in the category C.

Proof. The right triangle of the diagram commutes because ξ1 = −Np−1(ξ) and hence 
p(−Np−1(b)) = ξ1. The left square commutes by the first eight equations of Proposi-
tion 4.4.

The identity μR = Qν follows from the relations

Qp3+pQp2−p+1yp(p−1) = Qp3
Qp2+1yp(p−1)

Qp3
((xp−2y2(p−1))pQpx) = (xp(p−2)yp2(p−1))

pQp2
Qpx

Qp3
(xp(p−1)y(2p+1)(p−1)) = xp2(p−1)Q2p2−py(2p+1)(p−1),

which are readily deduced from the Adem, Cartan and instability relations.
Finally, the fact that p ◦ f and f ◦Q are null in the category C follows from Proposi-

tion 4.5 and the final three equations of Proposition 4.4, respectively. �
Proposition 4.11. There is an equality 〈ξ1, Q, R〉 ≡ Qp3(〈p, f, Q〉) in E∗.

Proof. Applying Proposition 4.10 repeatedly, we see that the juggling relations for brack-
ets imply the following sequence of identities:

〈ξ1, Q,R〉 = 〈p(−Np−1(b)), Q,R〉
⊂ 〈p, (−Np−1(b))Q,R〉
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= 〈p, fμ,R〉

⊃ 〈p, f, μR〉

= 〈p, f,Qν〉

⊃ 〈p, f,Q〉σν.

Let us show that the image in E∗ of each bracket appearing above is equal to a 
single element. To do this, it suffices to show that this is true for 〈p, (−Np−1(b))Q, R〉. 
This follows from the argument of Proposition 4.8. To conclude, we note that σν(d) =
Qp3

σzp3−1. �
Finally, we compute the bracket 〈p, f, Q〉 by means of Theorem 3.4.

Definition 4.12. Since the map i : H ∧H → H ∧MU H sends x = ξ1 to zero, the composite 

map P 2(p2+2)
H (x) ξ1−→ H ∧H i−→ H ∧MU H factors through the augmentation P 2(p2+2)

H (x) →
H. As a consequence, we may regard H ∧MU H as a pointed object of C and the map i as 
a morphism in C.

Notation 4.13. We let the symbols ·≡ and 
·
∈ denote equivalance and inclusion up to a 

unit in F×
p , respectively.

Proposition 4.14. There is an inclusion τ3
·
∈ 〈p, f, Q〉 after reducing to E∗.

Proof. By noting that each pair of maps in the diagram

P 2(p2+2)
H (x, zp3−1)

Q−→ P 2(p2+2)
H (x, y2(p−1), yp(p−1), y(2p+1)(p−1))

f−→ H ∧ MU p−→ H ∧ H i−→ H ∧MU H

compose to a nullhomotopic map in C (the first two by Proposition 4.10 and the third 
by definition), we find that we are allowed to apply the Peterson-Stein formula to obtain 
the equality

i〈p, f,Q〉 = −〈i, p, f〉σQ.

Since both −ap−1,1−Np−1(b)p and the Hurewicz image of [CPp(p−1)] are indecompos-
able generators of π∗(H ∧MU) in degree 2p(p −1), it follows from the odd-primary analog 
of [12, Proposition 2.7.6] that all elements of 〈i, p, f〉 send σyp(p−1) to a unit multiple of 
σ[CPp(p−1)] modulo decomposables.

Since σQ = Qp2+1σyp(p−1) + xp(p−1)σy(2p+1)(p−1) by the odd-primary version of [12, 
Proposition 2.6.13], it follows from Theorem 3.4 and the fact that x = 0 ∈ π∗(H ∧MU H)
that
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σv3
·
∈ −〈i, p, f〉σQ = i〈p, f,Q〉.

Since π∗(i) factors as

H∗H � E∗ ↪→ π∗(H ∧MU H)

and τ3 spans E2p3−1, we conclude that after reducing to E∗ we must have

τ3
·
∈ 〈p, f,Q〉. �

Corollary 4.15. We have 〈ξ1, Q, R〉 ·≡ τ4 in E∗.

Proof. Combine Propositions 4.11 and 4.14 with the operation Qp3
τ3 ≡ τ4 in E∗, which 

may be deduced from [4, Theorem III.2.3]. �
Since maps of E2(p2+2)-ring spectra must preserve secondary power operations [12, 

Proposition 2.6.7], we obtain the following corollary.

Corollary 4.16. Let R be an E2(p2+2)-ring spectrum and let R → H be a map of E2(p2+2)-
ring spectra. Then if the induced map on homology H∗R → H∗H is injective in degrees 
less than or equal to 2(2p2 + 1)(p − 1) and contains ξ1 in its image, then τ4 must also be 
in the image of the composite H∗R → H∗H → E∗.

Remark 4.17. In Corollary 4.16, the injectivity assumption ensures that for a lift x ∈ H∗R

of ξ1, we must have Q(x) = 0. The quantity 2(2p2 + 1)(p − 1) arises as the degree of the 
highest term of the operation Q, which is given by Q(cp−1) = Qp2+(p−1)pQpx.

We conclude by deducing Theorem 1.2 from Corollary 4.16.

Proof of Theorem 1.2. Assume that BP were an E2(p2+2)-ring spectrum. Since the Post-
nikov tower of an En-ring spectrum naturally lifts to a tower of En-ring spectra, there 
is a map of E2(p2+2)-ring spectra

BP → τ≤0BP ∼= HZ(p) → H

which induces the inclusion

Fp[ξ1, ξ2, . . . ] ↪→ ΛFp
(τ0, τ1, . . . ) ⊗ Fp[ξ1, ξ2, . . . ]

upon taking homology. In particular, the map is injective and contains ξ1 in its image. 
However, τ4 cannot be in the image of H∗BP → H∗H → E∗ because this composite is 
zero.
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The case of BP〈n〉 for n ≥ 4 is analogous, using the fact that

H∗(BP〈n〉) ∼= ΛFp
(τn+1, τn+2, . . . ) ⊗ Fp[ξ1, ξ2, . . . ].

Finally, taking p-completions makes no difference because we are only working with mod 
p homology in the first place. �
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