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1. Introduction

In recent years the theory of structured ring spectra (formerly known as A1- and
E1-ring spectra) has been signi®cantly simpli®ed by the discovery of categories of
spectra with strictly associative and commutative smash products. Now a ring
spectrum can simply be de®ned as a monoid with respect to the smash product in
one of these new categories of spectra. In order to make use of all of the standard
tools from homotopy theory, it is important to have a Quillen model category
structure [20] available here. In this paper we provide a general method for lifting
model structures to categories of rings, algebras, and modules. This includes, but
is not limited to, each of the new theories of ring spectra.

One model for structured ring spectra is given by the S-algebras of [11]. This
example has the special feature that every object is ®brant, which makes it easier
to form model structures of modules and algebras. There are other new theories
such as `symmetric ring spectra' [13], `functors with smash product' [2, 3, 16] or
`diagram ring spectra' [19] which do not have this special property. This paper
provides the necessary input for obtaining model categories of associative
structured ring spectra in these contexts. Categories of commutative ring spectra
appear to be intrinsically more complicated, and they are not treated system-
atically here. Our general construction of model structures for associative monoids
also gives a uni®ed treatment of previously known cases (simplicial sets,
simplicial abelian groups, chain complexes, S-modules) and applies to other new
examples (G-spaces and modules over group algebras). We discuss these examples
in more detail in § 5.

Technically, what we mean by an `algebra' is a monoid in a symmetric
monoidal category, for example, a ring in the category of abelian groups under
tensor product. To work with this symmetric monoidal product it must be
compatible with the model category structure, which leads to the de®nition of a
monoidal model category; see De®nition 3.1. To obtain a model category structure
of algebras we have to introduce one further axiom, the monoid axiom (De®nition
3.3). A ®ltration on certain pushouts of monoids (see Lemma 6.2) is then used to
reduce the problem to standard model category arguments based on Quillen's
`small object argument'. The case of modules also uses the monoid axiom, but the
argument here is straightforward. Our main result is stated in Theorem 4.1.
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Organization. We assume that the reader is familiar with the language of
homotopical algebra (cf. [20, 10, 12]) and with the basic ideas concerning
monoidal and symmetric monoidal categories (cf. [17, VII; 4, Chapter 6]) and
triples (also called monads, cf. [17, VI.1; 4, Chapter 4]). In § 2 we consider the
general question of lifting model categories to categories of algebras over a triple.
This forms a basis for the following study of the more speci®c examples of
algebras and modules in a monoidal category. In § 3 we discuss the compatibility
that is necessary between the monoidal and model category structures. In § 4 we
state our main results which construct model categories for modules and algebras
and compare the homotopy categories of modules or algebras over weakly
equivalent monoids. In § 5 we list examples to which our theorems apply. Then
®nally, in § 6 we prove the main theorem, Theorem 4.1.

Acknowledgements. We would ®rst like to thank Charles Rezk for conversa-
tions which led us to the ®ltration that appears in Lemma 6.2. We also bene®ted
from several conversations about this project with Bill Dwyer, Mark Hovey and
Manos Lydakis. We would also like to thank Bill Dwyer, Phil Hirschhorn, and
Dan Kan for sharing the draft of [9] with us. In § 2 we recall the notion of a
co®brantly generated model category from their book.

2. Co®brantly generated model categories

In this section we review a general method for creating model category
structures; we will later apply this material to the special cases of module and
algebra categories. We need to transfer model category structures to categories of
algebras over triples. In [20, II, p. 3.4], Quillen formulates his small object
argument, which is now the standard device for such purposes. In our context we
will need a trans®nite version of the small object argument, so we work with the
`co®brantly generated model category' of [9], which we now recall. This material
also appears in more detail in [12, 2.1].

If a model category is co®brantly generated, its model category structure is
completely determined by a set of co®brations and a set of acyclic co®brations.
The trans®nite version of Quillen's small object argument allows functorial
factorization of maps as co®brations followed by acyclic ®brations and as acyclic
co®brations followed by ®brations. Most of the model categories in the literature
are co®brantly generated, for example, topological spaces and simplicial sets, as
are all the examples that appear in this paper.

The only complicated part of the de®nition of a co®brantly generated model
category is formulating the de®nition of relative smallness. For this we need to
consider the following set-theoretic concepts. The reader might keep in mind the
example of a compact topological space with is À0-small relative to closed
inclusions.

Ordinals and cardinals. An ordinal g is an ordered isomorphism class of well
ordered sets; it can be identi®ed with the well ordered set of all preceding
ordinals. For an ordinal g, the same symbol will denote the associated poset
category. The latter has an initial object 0= , the empty ordinal. An ordinal k is a
cardinal if its cardinality is larger than that of any preceding ordinal. A cardinal k
is called regular if for every set of sets fXjg j2 J indexed by a set J of cardinality
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less than k such that the cardinality of each Xj is less than that of k, then the
cardinality of the union

S
J Xj is also less than that of k. The successor cardinal

(the smallest cardinal of larger cardinality) of every cardinal is regular.

Trans®nite composition. Let C be a cocomplete category and g a well ordered
set which we identify with its poset category. A functor V : gÿ!C is called a g-
sequence if for every limit ordinal b < g the natural map colim V jbÿ!V�b� is an
isomorphism. The map V�0=�ÿ! colimgV is called the trans®nite composition of
the maps of V . A subcategory C1 Ì C is said to be closed under trans®nite
composition if for every ordinal g and every g-sequence V: gÿ!C with map
V�a�ÿ!V�a� 1� in C1 for every ordinal a < g, the induced map
V�0=�ÿ! colimg V is also in C1. Examples of such subcategories are the
co®brations or the acyclic co®brations in a closed model category.

Relatively small objects. Consider a cocomplete category C and a subcategory
C1 Ì C closed under trans®nite composition. If k is a regular cardinal, an object
C 2 C is called k-small relative to C1 if for every regular cardinal l > k and
every functor V : lÿ!C1 which is a l-sequence in C, the map

coliml HomC�C;V�ÿ!HomC�C; coliml V�
is an isomorphism. An object C 2 C is called small relative to C1 is there exists a
regular cardinal k such that C is k-small relative to C1.

I-injectives, I-co®brations and regular I-co®brations. Given a cocomplete
category C and a class I of maps, we use the following notation.

By I-inj we denote the class of maps which have the right lifting property with
respect to the maps in I. Maps in I-inj are referred to as I-injectives.

By I-cof we denote the class of maps which have the left lifting property with
respect to the maps in I-inj. Maps in I-cof are referred to as I-co®brations.

By I-cofreg Ì I-cof we denote the class of the (possibly trans®nite) compositions
of pushouts (cobase changes) of maps in I. Maps in I-cofreg are referred to as
regular I-co®brations.

Quillen's small object argument [20, p. II 3.4] has the following trans®nite
analogue. Note that here I has to be a set, not just a class of maps. The obvious
analogue of Quillen's small object argument would seem to require that
coproducts are included in the regular I-co®brations. In fact, any coproduct of
regular I-co®brations is already a regular I-co®bration; see [12, 2.1.6].

Lemma 2.1 [9; 12, 2.1.14]. Let C be a cocomplete category and I a set of
maps in C whose domains are small relative to I-cofreg. Then

(i) there is a functorial factorization of any map f in C as f � qi with
q 2 I-inj and i 2 I-cofreg, and thus

(ii) every I-co®bration is a retract of a regular I-co®bration.

De®nition 2.2 [9]. A model category C is called co®brantly generated if it is
complete and cocomplete and there exist a set of co®brations I and a set of
acyclic co®brations J such that

(i) the ®brations are precisely the J-injectives;
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(ii) the acyclic ®brations are precisely the I-injectives;

(iii) the domain of each map in I or J is small relative to I-cofreg or J-cofreg,
respectively.

Moreover, here the co®brations are the I-co®brations, and the acyclic co®brations
are the J-co®brations.

For a speci®c choice of I and J as in the de®nition of a co®brantly generated
model category, the maps in I will be referred to as generating co®brations, and
those in J as generating acyclic co®brations. In co®brantly generated model
categories, a map may be functorially factored as an acyclic co®bration followed
by a ®bration and as a co®bration followed by an acyclic ®bration.

Let C be a co®brantly generated model category and T a triple on C. We want
to form a model category on the category of algebras over the triple T , denoted
T-alg. De®ne a map of T-algebras to be a weak equivalence or a ®bration if the
underlying map in C is a weak equivalence or a ®bration, respectively. De®ne a
map of T-algebras to be a co®bration if it has the left lifting property with respect
to all acyclic ®brations. The forgetful functor T-alg ÿ! C has a left adjoint `free'
functor. The following lemma gives two different situations in which one can lift
a model category on C to one on T-alg. We make no great claim to originality for
this lemma. Other lifting theorems for model category structures can be found in
[1, Theorem 4.14; 6, Theorem 2.5; 8, Theorem 3.3; 11, VII, Theorems 4.7, 4.9;
21, Lemma B.2; 9].

Let X be a T-algebra. We de®ne a path object for X to be a T-algebra X I

together with T-algebra maps

Xÿ!, X I ÿ!X ´ X

factoring the diagonal map, such that the ®rst map is a weak equivalence and the
second map is a ®bration in the underlying category C.

Lemma 2.3. Assume that the underlying functor of T commutes with ®ltered
direct limits. Let I be a set of generating co®brations and J be a set of generating
acyclic co®brations for the co®brantly generated model category C. Let IT and JT be
the images of these sets under the free T-algebra functor. Assume that the domains of
IT and JT are small relative to IT -cofreg and JT -cofreg respectively. Suppose that

(1) every regular JT-co®bration is a weak equivalence, or

(2) every object of C is ®brant and every T-algebra has a path object.

Then the category of T-algebras is a co®brantly generated model category with IT

a generating set of co®brations and JT a generating set of acyclic co®brations.

Proof. We refer the reader to [10, 3.3] for the numbering of the model
category axioms. All those kinds of limits that exist in C also exist in T-alg,
and limits are created in the underlying category C [4, Proposition 4.3.1].
Colimits are more subtle, but since the underlying functor of T commutes with
®ltered colimits, they exist by [4, Proposition 4.3.6]. Model category axioms
MC2 (saturation) and MC3 (closure properties under retracts) are clear. One half
of MC4 (lifting properties) holds by the de®nition of co®brations of T-algebras.
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The proof of the remaining axioms uses the trans®nite small object argument
(Lemma 2.1), which applies because of the hypothesis about the smallness of the
domains. We begin with the factorization axiom, MC5. Every map in IT and JT is
a co®bration of T-algebras by adjointness. Hence any IT -co®bration or JT-
co®bration is a co®bration of T-algebras. By adjointness and the fact that I is a
generating set of co®brations for C, a map is IT -injective precisely when the map
is an acyclic ®bration of underlying objects, that is, an acyclic ®bration of T-
algebras. Hence the small object argument applied to the set IT gives a
(functorial) factorization of any map in T-alg as a co®bration followed by an
acyclic ®bration.

The other half of the factorization axiom, MC5, needs hypothesis (1) or (2).
Applying the small object argument to the set of maps JT gives a functorial
factorization of a map in T-alg as a regular JT-co®bration followed by a JT -injective.
Since J is a generating set for the acyclic co®brations in C, the JT -injectives are
precisely the ®brations among the T-algebra maps, once more by adjointness. In case
(1) we assume that every regular JT-co®bration is a weak equivalence on underlying
objects in C. We noted above that every JT -co®bration is a co®bration in T-alg. So
we see that the factorization above is an acyclic co®bration followed by a ®bration.

In case (2) we can adapt the argument of [20, II, p. 4.9] as follows. Let
i: Xÿ!Y be any JT -co®bration. We claim that it is a weak equivalence in the
underlying category. Since X is ®brant and ®brations are JT -injectives, we obtain a
retraction r to i by lifting in the square

X ÿÿÿ!id X

i

ÿÿÿÿ! r

ÿÿÿÿ!

Y ÿÿÿ! �
Here Y possesses a path object and i has the left lifting property with respect to
®brations. So a lifting exists in the square

X ÿÿÿ!i Y ÿÿÿ! Y Iÿÿÿ!

ÿÿÿ!

Yÿÿÿÿÿÿÿÿÿ!�id; i±r� Y ´ Y

This shows that in the homotopy category of C, i±r is equal to the identity map
of Y . Since maps in C are weak equivalences if and only if they become
isomorphisms in the homotopy category of C, this proves that i is a weak
equivalence, and it completes the proof of model category axiom MC5 under
hypothesis (2).

It remains to prove the other half of MC4, that is, that any acyclic co®bration
Aÿ!, B has the left lifting property with respect to ®brations. In other words, we
need to show that the acyclic co®brations are contained in the JT -co®brations. The
small object argument provides a factorization

Aÿ!, W ÿ!B

with Aÿ!W a JT -co®bration and W ÿ!B a ®bration. In addition, W ÿ!B is a
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weak equivalence since Aÿ!B is. Since Aÿ!B is a co®bration, a lifting in

A ÿÿÿ! Wÿÿÿ!

ÿÿÿ! ,
B ÿÿÿ!

id
B

exists. Thus Aÿ!B is a retract of a JT -co®bration; hence it is a JT -co®bration.

Remark 2.4. To simplify the exposition, we will assume that every object of
C is small relative to the whole category C when we apply Lemma 2.3 in the rest
of this paper. This holds for G-spaces and symmetric spectra based on simplicial
sets. These two categories are in fact examples of the very general notion of a
`locally presentable category' [4, 5.2]. Category theory takes care of the smallness
conditions here since every object of a locally presentable category is small [4,
Proposition 5.2.10]. As a rule of thumb, diagram categories involving sets or
simplicial sets are locally presentable, but categories involving actual topological
spaces are not. If the underlying functor of the triple T on C commutes with
®ltered direct limits, then so does the forgetful functor from T-algebras to C.
Hence by adjointness, if every object of C is small relative to C, then every free
T-algebra is small relative to the whole category of T-algebras, so the smallness
conditions of Lemma 2.3 hold. Of course, if one is interested in a category where
not all objects are small with respect to all of C one can verify those smallness
conditions directly. So by adding hypotheses about smallness of the domains of
the new generators to each of the statements in the rest of the paper, we could
remove the condition that all objects are small.

3. Monoidal model categories

A monoidal model category is essentially a model category with a compatible
closed symmetric monoidal product. The compatibility is expressed by the
pushout product axiom below. In this paper we always require a closed symmetric
monoidal product, although for expository ease we refer to these categories as just
`monoidal' model categories. One could also consider model categories enriched
over a monoidal model category with certain compatibility requirements analogous
to the pushout product axiom or the simplicial axiom of [20, II.2]. For example,
closed simplicial model categories [20, II.2] are such compatibly enriched
categories over the monoidal model category of simplicial sets. See [12, Chapter
4] for an exposition on this material.

We also introduce the monoid axiom which is the crucial ingredient for lifting
the model category structure to monoids and modules. Examples of monoidal
model categories satisfying the monoid axiom are given in § 5.

De®nition 3.1. A model category C is a monoidal model category if it is
endowed with a closed symmetric monoidal structure and satis®es the following
pushout product axiom. We will denote the symmetric monoidal product by ,̂ the
unit by I and the internal Hom object by [±,±]

Pushout product axiom. Let Aÿ!B and Kÿ!L be co®brations in C. Then
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the map

A ^ L ÈA ^ K B ^ Kÿ!B ^ L

is also a co®bration. If in addition one of the former maps is a weak equivalence,
so is the latter map.

Remark 3.2. Mark Hovey has pointed out that an extra condition is needed to
ensure that the monoidal structure on the model category induces a monoidal
structure on the homotopy category; see [12, 4.3.2]. The pushout product axiom
guarantees that for co®brant objects the smash product is an invariant of the weak
equivalence type, so it passes to a product on the homotopy category. However, if
the unit of the smash product is not co®brant, then it need not represent a unit on
the homotopy category level. The following additional requirement ®xes this
problem: let cIÿ! I be a co®brant replacement of the unit. Then for any co®brant
X the map cI ^ Xÿ! I ^ X > X should be a weak equivalence (or equivalently:
for any ®brant Y the map Y > �I; Y � ÿ! �cI; Y � should be a weak equivalence).
This extra property holds in all of our examples; for G-spaces, symmetric spectra
and simplicial functors the unit is co®brant, and for S-modules this condition is in
[11, III, 3.8]. However this extra condition is irrelevant for the purpose of the
present paper since we always work on the model category level.

If C is a category with a monoidal product ^ and I is a class of maps in C, we
denote by I ^ C the class of maps of the form

A ^ Zÿ!B ^ Z

for Aÿ!B a map in I and Z an object of C. Recall that I-cofreg denotes the class
of maps obtained from the maps of I by cobase change and composition (possibly
trans®nite; see § 2).

De®nition 3.3. A monoidal model category C satis®es the monoid axiom if
every map in

�facyclic cofibrationsg ^ C�-cofreg

is a weak equivalence.

Remark 3.4. Note that if C has the special property that every object is
co®brant, then the monoid axiom is a consequence of the pushout product axiom.
To see this, ®rst note that the initial object acts like a zero for the smash product
since ^ preserves colimits in each of its variables. So the pushout product axiom
says that for an acyclic co®bration Aÿ!B and for co®brant (that is, for all) Z,
the map A ^ Zÿ!B ^ Z is again an acyclic co®bration. Since the acyclic
co®brations are also closed under cobase change and trans®nite composition,
every map in the class (facyclic co®brationsg ^ C)-cofreg is an acyclic co®bration.

In co®brantly generated model categories ®brations can be detected by checking
the right lifting property against a set of maps, the generating acyclic co®brations,
and similarly for acyclic ®brations. This is in contrast to general model categories
where the lifting property has to be checked against the whole class of acyclic
co®brations. Similarly, in co®brantly generated model categories, the pushout
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product axiom and the monoid axiom only have to be checked for a set of
generating (acyclic) co®brations.

Lemma 3.5. Let C be a co®brantly generated model category endowed with a
closed symmetric monoidal structure.

(1) If the pushout product axiom holds for a set of generating co®brations and
a set of generating acyclic co®brations, then it holds in general.

(2) Let J be a set of generating acyclic co®brations. If every map in
�J ^ C�-cofreg is a weak equivalence, then the monoid axiom holds.

Proof. For the ®rst statement consider a map i: Aÿ!B in C. Denote by G�i�
the class of maps j: Kÿ!L such that the pushout product

A ^ L ÈA ^ K B ^ Kÿ!B ^ L

is a co®bration. This pushout product has the left lifting property with respect to a
map f : Xÿ!Y if and only if j has the left lifting property with respect to the map

p: �B;X� ÿ! �B; Y � ´�A;Y � �A;X �:
Hence, a map is in G�i� if and only if it has the left lifting property with respect
to the map p for all f : Xÿ!Y which are acyclic ®brations in C.

Thus G�i� is closed under cobase change, trans®nite composition and retracts. If
i: Aÿ!B is a generating co®bration, G�i� contains all generating co®brations by
assumption; because of the closure properties it thus contains all co®brations; see
Lemma 2.1. Reversing the roles of i and an arbitrary co®bration j: Kÿ!L, we
thus know that G� j � contains all generating co®brations. Again by the closure
properties, G� j � contains all co®brations, which proves the pushout product axiom
for two co®brations. The proof of the fact that the pushout product is an acyclic
co®bration when one of the constituents is, follows in the same manner.

For the second statement note that by the small object argument, Lemma 2.1,
every acyclic co®bration is a retract of a trans®nite composition of cobase changes
along the generating acyclic co®brations. Since trans®nite compositions of
trans®nite compositions are trans®nite compositions, every map in (facyclic
co®brationsg ^ C�-cofreg is thus a retract of a map in �J ^ C�-cofreg.

4. Model categories of algebras and modules

In this section we state the main theorem, Theorem 4.1, which constructs model
categories for algebras and modules. The proof of this theorem is delayed to § 6.
Examples of model categories for which this theorem applies are given in § 5. We
end this section with two results which compare the homotopy categories of
modules or algebras over weakly equivalent monoids.

We consider a symmetric monoidal category with product ^ and unit I. A
monoid is an object R together with a `multiplication' map R ^ Rÿ!R and a
`unit' Iÿ!R which satisfy certain associativity and unit conditions (see [17,
VII.3]). Note that R is a commutative monoid if the multiplication map is
unchanged when composed with the twist, or the symmetry isomorphism, of
R ^ R. If R is a monoid, a left R-module (`object with left R-action' in [17,
VII.4]) is an object N together with an action map R ^ Nÿ!N satisfying
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associativity and unit conditions (see again [17, VII.4]). Right R-modules are
de®ned similarly.

Assume that C has coequalizers. Then there is a smash product over R, denoted
M ^R N, of a right R-module M and a left R-module N. It is de®ned as the
coequalizer, in C, of the two maps M ^ R ^ N ÿ!ÿ! M ^ N induced by the actions of
R on M and N respectively. If R is a commutative monoid, then the category of left
R-modules is isomorphic to the category of right R-modules, and we simply speak of
R-modules. In this case, the smash product of two R-modules is another R-module
and smashing over R makes R-mod into a symmetric monoidal category with unit R.
If C has equalizers, there is also an internal Hom object of R-modules, �M; N �R. It is
the equalizer of two maps �M; N � ÿ!ÿ! �R ^ M; N �. The ®rst map is induced by the
action of R on M, the second map is the composition of

R ^ÿ: �M; N � ÿ! �R ^ M; R ^ N �
followed by the map induced by the action of R on N.

For a commutative monoid R, an R-algebra is de®ned to be a monoid in the
category of R-modules. It is a formal property of symmetric monoidal categories
(cf. [11, VII, 1.3]) that specifying an R-algebra structure on an object A is the
same as giving A a monoid structure together with a monoid map f : Rÿ!A
which is central in the sense that the following diagram commutes:

R ^ A ÿÿÿÿÿ!switch
A ^ R ÿÿÿÿÿ!id ^ f

A ^ A

f ^ id

ÿÿÿ!

ÿÿÿ! mult:

A ^ A ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ!
mult:

A

Now we can state our main theorem. It essentially says that monoids, modules
and algebras in a co®brantly generated, monoidal model category C again form a
model category if the monoid axiom holds. To simplify the exposition, we assume
that all objects in C are small relative to the whole category; see § 2. This last
assumption can be weakened as indicated in Remark 2.4. The proofs will be
delayed until the last section.

In the categories of monoids, left R-modules (when R is a ®xed monoid), and
R-algebras (when R is a ®xed commutative monoid), a morphism is de®ned to be
a ®bration or weak equivalence if it is a ®bration or weak equivalence in the
underlying category C. A morphism is a co®bration if it has the left lifting
property with respect to all acyclic ®brations.

In part (3) of the following theorem we can take R to be the unit of the smash
product, in which case we see that the category of monoids in C forms a model
category. Note that this theorem does not treat the case of commutative R-algebras.
See Remark 4.5 for examples of categories C satisfying the hypotheses but where
the category of commutative monoids in fact does not have a model category
structure with ®brations and weak equivalences de®ned in the underlying category.

Theorem 4.1. Let C be a co®brantly generated, monoidal model category.
Assume further that every object in C is small relative to the whole category and
that C satis®es the monoid axiom.

(1) Let R be a monoid in C. Then the category of left R-modules is a
co®brantly generated model category.
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(2) Let R be a commutative monoid in C. Then the category of R-modules is a
co®brantly generated, monoidal model category satisfying the monoid axiom.

(3) Let R be a commutative monoid in C. Then the category of R-algebras is a
co®brantly generated model category. Every co®bration of R-algebras whose
source is co®brant as an R-module is also a co®bration of R-modules. In
particular, if the unit I of the smash product is co®brant in C, then every
co®brant R-algebra is also co®brant as an R-module.

Remark 4.2. The full strength of the monoid axiom is not necessary to obtain
a model category of R-modules for a particular monoid R. In fact, to get
hypothesis (1) of Lemma 2.3 for R-modules, one need only know that every map
in (facyclic co®brationsg ^ R�-cofreg is a weak equivalence. This holds,
independently of the monoid axiom, if R is co®brant in the underlying category
C, by arguments similar to those in Remark 3.4. For then the pushout product
axiom implies that smashing with R preserves acyclic co®brations.

The following theorems concern comparisons of homotopy categories of
modules and algebras. The homotopy theory of R-modules and R-algebras should
only depend on the weak equivalence type of the monoid R. To show this for R-
modules we must require that the functor ÿ ^R N take any weak equivalence of right
R-modules to a weak equivalence in C whenever N is a co®brant left R-module. In
all of our examples this added property of the smash product holds. For the
comparison of R-algebras, we also require that the unit of the smash product is
co®brant. This is the case, for example, with G-spaces, symmetric spectra, and
simplicial functors, although it does not hold for the S-modules of [11].

Theorem 4.3. Assume that for any co®brant left R-module N, ÿ ^R N takes
weak equivalences of right R-modules to weak equivalences in C. If Rÿ!, S is a
weak equivalence of monoids, then the total derived functors of restriction and
extension of scalars induce equivalences of homotopy categories

Ho�R-mod�> Ho�S-mod�:

Proof. This is an application of Quillen's adjoint functor theorem (see [20, I.4,
Theorem 3] or [10, Theorem 9.7]). The weak equivalences and ®brations are de®ned
in the underlying category; hence the restriction functor preserves ®brations and
acyclic ®brations. By adjointness, the extension functor preserves co®brations and
trivial co®brations. By assumption, for N a co®brant left R-module

N > R ^R Nÿ! S ^R N

is a weak equivalence. Thus if Y is a ®brant left S-module, an R-module map N ÿ!Y
is a weak equivalence if and only if the adjoint S-module map S ^R Nÿ!Y is a
weak equivalence. This veri®es the two conditions in [10, Theorem 9.7].

Theorem 4.4. Suppose that the unit I of the smash product is co®brant in C
and that for any co®brant left R-module N, ÿ ^R N takes weak equivalences of
right R-modules to weak equivalences in C. Then for a weak equivalence of
commutative monoids Rÿ!, S, the total derived functors of restriction and
extension of scalars induce equivalences of homotopy categories

Ho�R-alg�> Ho�S-alg�:
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Proof. The proof is similar to the one of the previous theorem. Again the right
adjoint restriction functor does not change underlying objects, so it preserves
®brations and acyclic ®brations. Since co®brant R-algebras are also co®brant as R-
modules (Theorem 4.1(3)), for any co®brant R-algebra the unit of the adjunction
A > R ^R Aÿ! S ^R A is again a weak equivalence. So [10, Theorem 9.7] applies
one more time.

Remark 4.5. In the next section we give some important examples of monoidal
model categories in which all objects are ®brant. This greatly simpli®es the
situation. If there is also a simplicial or topological model category structure and if a
simplicial or topological triple T acts, then the category of T-algebras is again a
simplicial or topological (respectively) category, so it has path objects. Hence
hypothesis (2) of Lemma 2.3 applies. We emphasize again that in our main
examples, symmetric spectra and G-spaces, not all objects are ®brant, which is why
we need a more complicated approach. In the ®brant case, one gets model category
structures for algebras over all reasonable (for example, continuous or simplicial)
triples, whereas our monoid axiom approach only applies to the free R-module and
free R-algebra triples. The category of commutative monoids often has a model
category structure in the ®brant case (for example, commutative simplicial rings or
commutative S-algebras [11, Corollary VII 4.8]). In contrast, for G-spaces,
symmetric spectra and simplicial functors, the category of commutative monoids
can not form a model category with ®brations and weak equivalences de®ned in the
underlying category. For if such a model category structure existed, one could choose
a ®brant replacement of the unit S0 inside the respective category of commutative
monoids. Evaluating this ®brant representative at 1�2 Gop, level 0 or S0 respectively,
would give a commutative simplicial monoid weakly equivalent to QS 0. This would
imply that the space QS0 is weakly equivalent to a product of Eilenberg±Mac Lane
spaces, which is not the case. The homotopy category of commutative monoids in
symmetric spectra is still closely related to E1-ring spectra though.

5. Examples

Simplicial sets

The category of simplicial sets has a well-known model category structure
established by Quillen [20, II.3, Theorem 3]. The co®brations are the degreewise
injective maps, the ®brations are the Kan ®brations and the weak equivalences are
the maps which become homotopy equivalences after geometric realization. This
model category is co®brantly generated. The standard choice for the generating
co®brations, or generating acyclic co®brations, are the inclusions of the
boundaries, or horns respectively, into the standard simplices. Here every object
is small with respect to the whole category.

The cartesian product of simplicial sets is symmetric monoidal with unit the
discrete one-point simplicial set. The pushout product axiom is well known in this
case; see [20, II.3, Theorem 3]. Since every simplicial set is co®brant, the monoid
axiom follows from the pushout product axiom. A monoid in the category of
simplicial sets under cartesian product is just a simplicial monoid, that is, a
simplicial object of ordinary unital and associative monoids. So the main theorem,
Theorem 4.1(3), recovers Quillen's model category structure for simplicial monoids
[20, II.4, Theorem 4, and Remark 1, p. 4.2].
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G-spaces, symmetric spectra and simplicial functors

These examples are new. In fact, the main justi®cation for writing this paper is
to give a uni®ed treatment of why monoids and modules in these categories form
model categories. Here we only give an overview; for the details the reader may
consult [22, 5, 15, 21] in the case of G-spaces, [13] in the case of symmetric
spectra, and [16] for simplicial functors. These three examples have a very similar
¯avor, and in fact they are all instances of categories of diagram spectra in the
sense of [18]. The particular interest in these categories comes from the fact that
they model stable homotopy theory. The homotopy categories of symmetric
spectra and of simplicial functors are equivalent to the usual stable homotopy
category of algebraic topology. In the case of G-spaces, one obtains the stable
homotopy category of connective (that is, (ÿ1)-connected) spectra. Monoids in
either of these categories are thus possible ways of de®ning `brave new rings',
that is, rings up to homotopy with higher coherence conditions. Another approach
to this idea consists of the S-algebras of [11].

G-spaces. These were introduced by G. Segal [22] who showed that they give
rise to a homotopy category equivalent to the usual homotopy category of
connective spectra. A. K. Bous®eld and E. M. Friedlander [5] considered a larger
category of G-spaces in which the ones introduced by Segal appeared as the
special G-spaces. Their category admits a simplicial model category structure with
a notion of stable weak equivalence giving rise again to the homotopy theory of
connective spectra. Then M. Lydakis [15] showed that G-spaces admit internal
function objects and a symmetric monoidal smash product with nice homotopical
properties. Smallness and co®brant generation for G-spaces is veri®ed in [21], as
well as the pushout product and the monoid axiom. The monoids in this setting
are called Gamma-rings.

Symmetric spectra. The category of symmetric spectra, SpS, is described in
[13]. There it is also shown that this category is a co®brantly generated, monoidal
model category, and that the associated homotopy category is equivalent to the
usual homotopy category of spectra. For symmetric spectra over the category of
simplicial sets every object is small with respect to the whole category. The
monoid axiom and the fact that smashing with a co®brant left R-module preserves
weak equivalences between right R-modules are veri®ed in [13]. The monoids in
this setting are called symmetric ring spectra.

Simplicial functors. The category of simplicial functors from the category of
®nite simplicial sets to the category of all simplicial sets is another model for the
category of spectra and is studied by Lydakis in [16]. Here the monoids with
respect to the smash product coincide with the functors with smash product as
introduced by BoÈkstedt in [2]; see also [3]. The pushout product and monoid
axioms can be deduced from Lydakis' results in a way similar to that used for
G-spaces and symmetric spectra.

Fibrant examples: simplicial abelian groups, chain complexes, stable module
categories and S-modules

These are the examples of monoidal model categories in which every object is

502 stefan schwede and brooke e. shipley

P



®brant. With this special property it is easier to lift model category structures
since the (often hard to verify) condition (1) of the lifting lemma, Lemma 2.3, is
a formal consequence of ®brancy and the existence of path objects; see the proof
of Lemma 2.3. For example, the commutative monoids sometimes form model
categories in these cases. The pushout product and monoid axioms also hold in
these examples, but since the ®brancy property deprives them of their importance,
we will not bother to prove them.

Simplicial abelian groups. The model category structure for simplicial abelian
groups was established by Quillen [20, II.6]. The weak equivalences and ®brations
are de®ned on underlying simplicial sets. The co®brations are the retracts of the
free maps (see [20, II, p. 4.11, Remark 4]). This model category is co®brantly
generated and all objects are small. The (degreewise) tensor product provides a
symmetric monoidal product for simplicial abelian groups. The unit for this
product is the integers, considered as a constant simplicial abelian group. A
monoid then is nothing but a simplicial ring. These have path objects given by the
simplicial structure. This means that for a simplicial ring R the simplicial set
Hom (D[1], R) of maps of the standard 1-simplex into the underlying simplicial
set of R is naturally a simplicial ring. The model category structure for simplicial
rings and simplicial modules was established by Quillen in [20, II.4, Theorem 4]
and [20, II.6].

Chain complexes. The category of non-negatively graded chain complexes
over a commutative ring k forms a model category; see [20, II, p. 4.11, Remark 5;
10, § 7]. The weak equivalences are the maps inducing homology isomorphisms,
the ®brations are the maps which are surjective in positive degrees, and
co®brations are monomorphisms with degreewise projective cokernels. This
model category is co®brantly generated and every object is small. The category
of unbounded chain complexes over k , although less well known, also forms a
co®brantly generated model category with weak equivalences the homology
isomorphism and ®brations the epimorphisms; see [12, 2.3.11]. The co®brations
here are still degreewise split injections, but their description is a bit more
complicated than for bounded chain complexes. The following remarks refer to
this category of Z-graded chain complexes of k-modules.

The graded tensor product of chain complexes is symmetric monoidal and has
adjoint internal hom-complexes. A monoid in this symmetric monoidal category is
a differential graded algebra (DGA). Every complex is ®brant and associative
DGAs have path objects. To construct them, we need the following 2-term
complex denoted I. In degree 0, I consists of a free k-module on two generators
[0] and [1]. In degree 1, I is a free k-module on a single generator i. The
differential is given by di � �1� ÿ �0�. This complex becomes a coassociative and
counital coalgebra when given the comultiplication

D: Iÿ! I 
k I

de®ned by D��0�� � �0� 
 �0�, D��1�� � �1� 
 �1�, D�i� � �0� 
 i� i
 �1�. The
counit map Iÿ! k sends both [0] and [1] to 1 2 k. The two inclusions kÿ! I
given by the generators in degree 0 and the counit are maps of coalgebras. Note
that the comultiplication of I is not cocommutative (this is reminiscent of the
failure of the Alexander±Whitney map to be commutative).
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For any coassociative, counital differential graded coalgebra C, and any DGA A,
the internal Hom-chain complex HomCh�C; A�� becomes a DGA with multiplication

f ´ g � mA±� f 
 g�±DC

where mA is the multiplication of A and DC is the comultiplication of C. In
particular, HomCh�I; A� is a DGA, and it comes with DGA maps from A and to
A ´ A which make it into a path object. In this way we recover the model
category structure for associative DGAs over a commutative ring, ®rst discovered
by J. F. Jardine [14]. Our approach is a bit more general, since we can de®ne
similar path objects for associative DGAs over a ®xed commutative DGA, and for
modules over a ®xed DGA A. We thus also get model categories in those cases.
However, since the basic differential graded coalgebra I is not cocommutative,
this does not provide path objects for commutative DGAs.

Stable module categories. Another class of examples arises from modular
representation theory. We let k be a ®eld and G a ®nite group; the interesting
cases will be those where the characteristic of k does divide the order of G. The
group algebra kG is a Frobenius ring, that is, the classes of its projective and
injective modules coincide. The stable module category Stmod�kG� has as objects
all (left, say) kG-modules, and the group of morphisms in Stmod�kG� is de®ned to
be the quotient of the group of module homomorphisms by the subgroup of those
homomorphisms which factor through a projective (equivalently, an injective)
module; see for example [7, § 5]. The stable module category is in fact the
homotopy category associated to a model category structure on the category of all
kG-modules; compare [12, 2.2]. The co®brations are the monomorphisms, the
®brations are the epimorphisms, and the weak equivalences are maps which
become isomorphisms in the stable module category. This model category is quite
special because every object is both ®brant and co®brant.

The above model category structure exists over any Frobenius ring, but for the
group algebra kG (or more generally for ®nite-dimensional cocommutative Hopf-
algebras over a ®eld) there is a compatible monoidal structure. For two kG-
modules M and N, the tensor product over the ground ®eld M 
k N becomes a
kG-module when endowed with the diagonal G-action. Similarly the group
Homk�M; N� of k-linear maps supports a G-action by conjugation. This data
makes the category of kG-modules into a symmetric monoidal closed category
with unit object the trivial module k. The pushout product axiom and the monoid
axiom follow easily.

A monoid in this monoidal model category is the same as an associative k-algebra
A with an action of G via algebra-automorphisms. A module (in the sense of
monoidal category theory) over such a monoid corresponds to a module in the
ordinary sense over the twisted group algebra ÄA�G� � A
k k�G� with multiplication

�a
 g� ´ �b
 h� � �a ´ bg� 
 � g ´ h�
(where bg denotes the action of g 2 G on b 2 A). Our results thus provide model
category structures for the categories of ÄA�G�-modules and for the category of all
k-algebras with G-action; in both cases the ®brations are the surjective morphisms
and the weak equivalences are the morphisms which are stable equivalences of
underlying kG-modules. To our knowledge these model structures have not yet
been considered.
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S-modules. The model category of S-modules, MS, is described in [11, VII 4.6].
This model category structure is co®brantly generated (see [11, VII, 5.6 and 5.8]).
To ease notation, let Fq � S ^L LS1

q �ÿ�, the functor from topological spaces to
MS that is used to de®ne the model category structure on S-modules. In our
terminology, a set of generating (acyclic) co®brations is obtained by applying Fq

to a set of generators for topological spaces, for example, Snÿ!CSn �CSnÿ!
CSn ^ I��, where CX is the cone on X. The associative monoids are the S-
algebras. The dif®cult part for showing that model category structures can be
lifted to the categories of modules and algebras in this case is verifying the
smallness hypothesis. This is where the `Co®bration Hypothesis' comes in; see
[11, VII, 5.2]. The underlying category of S-modules is a topological model
category (see [11, VII, 4.4]), and the triples in question are continuous. Hence,
Remark 4.5 applies to give path objects, and Lemma 2.3(2) recovers [11, VII,
4.7], in particular, the model category structures for R-algebras and R-modules.
Our module comparison, Theorem 4.3, recovers [11, III, 4.2]. To see that the
hypothesis for Theorem 4.3 holds for S-modules, [11, VII, 4.15] shows that any
co®brant object is a retract of a cell object and [11, III, 3.8] shows that a cell
object smash any weak equivalence is still a weak equivalence. Our method of
comparing algebra categories over equivalent commutative monoids does not
apply here because the unit of the smash product is not co®brant. Note, however,
that even though the unit is not co®brant here, the unit axiom mentioned in
Remark 3.2 does hold by [11, III, 3.8]. Furthermore the hypothesis for Theorem
4.3 holds, because smashing with a co®brant object preserves weak equivalences,
again a consequence of [11, III, 3.8].

6. Proofs

Proof of Theorem 4.1(1). The cateogry of R-modules is also the category of
algebras over the triple TR where TR�M� � R ^ M. The triple structure for TR

comes from the multiplication R ^ R! R. This theorem is a direct application of
Lemma 2.3 since by the monoid axiom the JT -co®brations are weak equivalences.

Proof of Theorem 4.1(2). The model category part is Theorem 4.1(1). By
Lemma 3.5, it suf®ces to check the pushout product axiom and the monoid axiom for
the generating co®brations and the generating acyclic co®brations. Every generating
co®bration is induced from C by smashing with R, that is, it is of the form

R ^ Aÿ!R ^ B

for Aÿ!B a co®bration in C. In the pushout product of two such maps, one R
smash factor cancels due to using ^R, so that the pushout product is again
induced from a pushout product of co®brations in C, where the pushout product
axiom holds. Acyclic co®brations can be treated in the same way. This gives the
pushout product axiom for ^R .

If J is a set of generating acyclic co®brations in C, the set of generating acyclic
co®brations in the category of R-modules (called JT above) consists of maps of J
smashed with R. We thus have the equality JT ^R �R-mod� � J ^ C. Since the
forgetful functor R-modÿ!C preserves colimits (it has a right adjoint �R;ÿ��,
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�JT ^R �R-mod��-cofreg is a subset of �J ^ C�-cofreg. The monoid axiom for C
thus implies the monoid axiom for R-mod.

Proof of Theorem 4.1(3). This proof is much longer than the previous ones; it
occupies the rest of the paper. The main ingredient here is a ®ltration of a certain
pushout in the monoid category. This ®ltration is also needed to prove the
statement about co®brant monoids. The crucial step only depends on the weak
equivalences and co®brations in the model category structure. Hence we formulate
it in a more general context. The hope is that it can also be useful in a situation
where one only has something weaker than a model category, without a notion of
®brations. The following de®nition captures exactly what is needed.

De®nition 6.1. An applicable category is a symmetric monoidal category C
equipped with two classes of morphisms called co®brations and weak equiva-
lences, satisfying the following axioms.

(a) The category C has pushouts and ®ltered colimits. The monoidal product
preserves colimits in each of its variables.

(b) Any isomorphism is a weak equivalence and a co®bration. Weak
equivalences are closed under composition. Co®brations and acyclic co®brations
are closed under trans®nite composition and cobase change.

(c) The pushout product and monoid axiom are satis®ed.

Of course, any monoidal model category which satis®es the monoid axiom is
applicable. We are essentially forgetting all references to ®brations since they play
no role in the following ®ltration argument. Note that the notion of regular
co®brations as de®ned in De®nition 3.3 and § 2 still makes sense in an applicable
category. In the following lemma, let I and J be the classes of those maps between
monoids in C which are obtained from co®brations and acyclic co®brations,
respectively, in C by application of the free monoid functor; see (�) below.

Lemma 6.2. If C is an applicable category, any regular J-co®bration is a
weak equivalence in the underlying category C. Moreover, any regular I-
co®bration whose source is co®brant in C is a co®bration in the underlying
category C.

Proof of Theorem 4.1(3), assuming Lemma 6.2. By the already-established
part (2) of Theorem 4.1, the category of R-modules is itself a co®brantly
generated, monoidal model category satisfying the monoid axiom. Also if I is
co®brant in C, then R, the unit for ^R , is co®brant in R-mod. So we can assume
that the commutative monoid R is actually equal to the unit I of the smash
product, thus simplifying terminology from `R-algebras' to `monoids'.

To use Lemma 2.3 here we need to recognize monoids in C as the algebras
over the free monoid triple T . For an object K of C, de®ne T�K� to be

T�K� � Iq K q�K ^ K�q . . . q K^ n q . . . : ���
One can think of T�K� as the `tensor algebra'. Using the fact that ^ distributes
over the coproduct, we ®nd that T�K� has a monoid structure given by
concatenation. The functor T is left adjoint to the forgetful functor from monoids
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to C. Hence T is also a triple on the category C and the T-algebras are precisely
the monoids.

Because the monoidal product is closed symmetric, ^ commutes with colimits.
Hence, the underlying functor of T commutes with ®ltered colimits, as required
for Lemma 2.3. The condition on the regular co®brations is taken care of by
Lemma 6.2. Let f : Mÿ!N be a co®bration of monoids with M co®brant in C.
By the small object argument, Lemma 2.1, the map f can be factored as a
composite f � qi such that i is a regular I-co®bration and f has the left lifting
property with respect to q. So f is a retract of the regular I-co®bration i. The
source of i is again the monoid M which is co®brant in C, so by Lemma 6.2 the
map i, and hence its retract, f , is a co®bration in C. In particular, a co®brant
monoid is a monoid M such that the unit map Iÿ!M is a co®bration of monoids.
So if the unit I is co®brant in C, then the unit map Iÿ!M is a co®bration in C
and M is co®brant in the underlying category C.

Proof of Lemma 6.2. The main ingredient is a ®ltration of a certain kind of
pushout in the monoid category. Consider a map Kÿ!L in C, a monoid X and a
monoid map T�K�ÿ!X. We want to describe the pushout in the monoid category
of the diagram

T�K� ÿÿÿ! T�L�ÿÿÿ!

X

The pushout P will be obtained as the colimit, in the underlying category C, of a
sequence

X � P0ÿ!P1ÿ! . . . ÿ!Pnÿ! . . . :

If one thinks of P as consisting of formal products of elements from X and from
L, with relations coming from the elements of K and the multiplication in X, then
Pn consists of those products where the total number of factors from L is less than
or equal to n. For ordinary monoids, this is in fact a valid description, and we will
now translate this idea into the element-free form which applies to general
symmetric monoidal categories.

As indicated above, we set P0 � X and describe Pn inductively as a pushout in C.
We ®rst describe an n-dimensional cube in C; by de®nition, such a cube is a functor

W: P�f1; 2; . . . ; ng�ÿ!C

from the poset category of subsets of f1; 2; . . . ; ng and inclusions to C. If
S Í f1; 2; . . . ; ng is a subset, the vertex of the cube at S is de®ned to be

W�S� � X ^ C1 ^ X ^ C2 ^ . . . ^ Cn ^ X

with

Ci �
K if i 2= S,

L if i 2 S.

�
All maps in the cube W are induced from the map Kÿ!L and the identity on the
X factors.
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So at each vertex a total of n� 1 smash factors of X alternate with n smash factors
of either K or L. The initial vertex corresponding to the empty subset has all its Ci

equal to K and the terminal vertex corresponding to the whole set has all its Ci equal
to L. For example, for n � 2, the cube is a square and looks like

X ^ K ^ X ^ K ^ X ÿÿÿ! X ^ K ^ X ^ L ^ Xÿÿÿ!

ÿÿÿ!
X ^ L ^ X ^ K ^ X ÿÿÿ! X ^ L ^ X ^ L ^ X

Denote by Qn the colimit of the punctured cube, that is, the cube with the
terminal vertex removed. De®ne Pn via the pushout in C,

Qn ÿÿÿ! �X ^ L�^ n ^ Xÿÿÿ!

ÿÿÿ!

Pnÿ 1 ÿÿÿÿÿÿÿ! Pn

This is not a complete de®nition until we say what the left vertical map is. We de®ne
the map from Qn to Pnÿ 1 by describing how it maps a vertex W�S� for S a proper
subset of f1; 2; . . . ; ng. Each of the smash factors of W�S� which is equal to K is ®rst
mapped into X. Then adjacent smash factors of X are multiplied. This gives a map

W�S�ÿ!X ^ L ^ X ^ . . . ^ L ^ X;

where the right-hand side has jS j � 1 smash factors of X and jS j smash factors of
L. So the right-hand side maps further to PjS j, and hence to Pnÿ 1 since S is a
proper subset.

We have to check that these maps on the vertices of the punctured cube W are
compatible so that they assemble to a map from the colimit, Qn. So let S be again
a proper subset of f1; 2; . . . ; ng and take i 2= S. We have to verify commutativity of
the diagram

W�S� ÿÿÿÿÿÿ! �X ^ L�^ j S j ^ X ÿÿÿÿÿÿ! Pj S jÿÿÿ!

ÿÿÿ!

W�S È fig� ÿÿÿ! �X ^ L�^ �j S j � 1� ^ X ÿÿÿ! Pj S j � 1

By de®nition, W�S� and W�S È fig� differ at exactly one smash factor in the 2 i th
position which is equal to K for the former and equal to L for the latter. The
upper left map factors as

W�S�ÿ!�X ^ L�^ a ^ X ^ K ^ �X ^ L�^ b ^ Xÿ!�X ^ L�^ j S j ^ X

where a and b are the numbers of elements in S which are, respectively, smaller
than or larger than i; in particular a� b � jS j. The right map in this factorization
pushes K into X and multiplies the three adjacent smash factors of X. Hence the
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diagram in question is the composite of two commutative squares

W�S� ÿÿÿ! �X ^ L�^ a ^ X ^ K ^ �X ^ L�^ b ^ X ÿÿÿÿÿ! Pj S jÿÿÿ!

ÿÿÿ!

ÿÿÿ!

W�S È fig� ÿÿÿÿÿÿÿÿ! �X ^ L�^ �j S j � 1� ^ X ÿÿÿÿÿÿÿÿ! Pj S j � 1

The right-hand square commutes by the de®nition of Pj S j � 1.
We have now completed the inductive de®nition of Pn. We set P � colim Pn,

the colimit being taken in C. Then P comes equipped with C-morphisms
X � P0ÿ!P and

L > I ^ L ^ Iÿ!X ^ L ^ Xÿ!P1ÿ!P

which make the diagram
K ÿÿÿ! Lÿÿÿ!

ÿÿÿ!

X ÿÿÿ! P

commute. There are several things to check:

(i) P is naturally a monoid, so that

(ii) Xÿ!P is a map of monoids and

(iii) P has the universal property of the pushout in the category of monoids.

De®ne the unit of P as the composite of Xÿ!P with the unit of X. The
multiplication of P is de®ned from compatible maps Pn ^ Pmÿ!Pn�m by passage
to the colimit. These maps are de®ned by induction on n� m as follows. Note
that Pn ^ Pm is the pushout in C in the following diagram:

Qn ^ ��X ^ L�m ^ X�È�Qn ^ Qm� ��X ^ L�n ^ X� ^ Qm ÿÿÿ! ��X ^ L�n ^ X� ^ ��X ^ L�m ^ X�ÿÿÿ!

ÿÿÿ!

�Pnÿ 1 ^ Pm�È�Pnÿ 1 ^ Pmÿ 1� �Pn ^ Pmÿ 1� ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ! Pn ^ Pm

The lower left corner already has a map to Pn�m by induction, the upper right
corner is mapped there by multiplying the two adjacent factors of X followed by
the map �X ^ L� n�m ^ Xÿ!Pn�m from the de®nition of Pn�m. We omit the
tedious veri®cation that this in fact gives a well-de®ned multiplication map and
that the associativity and unital diagrams commute. Hence, P is a monoid.
Multiplication in P was arranged so that Xÿ!P is a monoid map.

For (iii), suppose we are given another monoid M, a monoidal map Xÿ!M,
and a C-map Lÿ!M such that the outer square in

K ÿÿÿ! Lÿÿÿÿÿÿÿ!

ÿÿÿ!

ÿÿÿ!

X ÿÿÿ! Pÿÿÿÿÿÿÿÿ! M
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commutes. We have to show that there is a unique monoidal map Pÿ!M making
the entire square commute. These conditions in fact force the behavior of the
composite map W�S�ÿ!Pnÿ!Pÿ!M. Since P is obtained by various colimit
constructions from these basic building blocks, uniqueness follows. We again omit
the tedious veri®cation that the maps W�S�ÿ!M are compatible and assemble to
a monoidal map Pÿ!M.

Now that we have established that P is the pushout of the original diagram of
monoids, we continue with the homotopical analysis of the constructed ®ltration,
that is, we will verify that the regular J-co®brations are weak equivalences.
Assume now that K ! L is an acyclic co®bration in C. The cube W used in the
inductive de®nition of Pn has n� 1 smash factors of X at every vertex which map
by the identity everywhere. Using the symmetry isomorphism for ^, we see that
these can all be shuf¯ed to one side and we ®nd that the map
Qn ! �X ^ L�^ n ^ X is isomorphic to

ÅQn ^ X^ �n� 1� ÿ!L^ n ^ X^ �n� 1�:

Here ÅQn is the colimit of a punctured cube analogous to W , but with all the
smash factors of X in the vertices deleted. By iterated application of the pushout
product axiom, the map ÅQnÿ!, L^ n is an acyclic co®bration. So by the monoid
axiom, the map Pnÿ 1ÿ!, Pn is a weak equivalence. The map X � P0ÿ!, P is an
instance of a trans®nite composite (indexed by the ®rst in®nite ordinal) of the
kind of maps considered in the monoid axiom, so it is also a weak equivalence.

With the use of the ®ltration we have just established that any pushout, in the
category of monoids, of a map in J, is a countable composite of maps of the kind
considered in the monoid axiom. Recall here that any map in J is obtained by
applying the free monoid functor to an acyclic co®bration in C. A trans®nite
composite of trans®nite composites is again a trans®nite composite. Because the
forgetful functor from monoids to C preserves ®ltered colimits, this shows that
regular J-co®brations are weak equivalences.

It remains to prove the statement about regular I-co®brations. We note that if,
in the above pushout diagram, Kÿ!L is a co®bration and the monoid X is
co®brant in the underlying category, then

ÅQn ^ X^ �n� 1� ÿ!L^ n ^ X^ �n� 1�

is a co®bration in the underlying category (by several applications of the pushout
product axiom). Thus also the maps Pnÿ 1ÿ!Pn and ®nally X � P0ÿ!P are
co®brations in the underlying category. Since the forgetful functor commutes with
®ltered colimits, trans®nite composites of such pushouts in the monoid category
are still co®brations in the underlying category C.
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