
Advances in Mathematics 285 (2015) 1415–1447
Contents lists available at ScienceDirect

Advances in Mathematics

www.elsevier.com/locate/aim

A transchromatic proof of Strickland’s theorem

Tomer M. Schlank, Nathaniel Stapleton ∗

a r t i c l e i n f o a b s t r a c t

Article history:
Received 27 June 2014
Received in revised form 23 July 
2015
Accepted 31 July 2015
Available online 9 September 2015
Communicated by Mark Behrens

Keywords:
Morava E-theory
Chromatic homotopy
Character theory

In [15] Strickland proved that the Morava E-theory of the 
symmetric group has an algebro-geometric interpretation after 
taking the quotient by a certain transfer ideal. This result has 
influenced most of the work on power operations in Morava 
E-theory and provides an important calculational tool. In 
this paper we give a new proof of this result as well as 
a generalization by using transchromatic character theory. 
The character maps are used to reduce Strickland’s result to 
representation theory.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction and outline

The coefficient ring of Morava E-theory carries the universal deformation of a height n
formal group over a perfect field of characteristic p. This formal group seems to determine 
the Morava E-theory of a large class of spaces. An example of this is the important result 
of Strickland’s [15] that describes the E-theory of the symmetric group (modulo a transfer 
ideal) as the scheme that classifies subgroups in the universal deformation. This result 
plays a critical role in the study of power operations for Morava E-theory [9–11] and 
explicit calculations of the E-theory of symmetric groups [8,18] and the spaces L(k) [4].
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We exploit a method that reduces facts such as the existence of Strickland’s isomor-
phism into questions in representation theory by using the transchromatic generalized 
character maps of [13]. In this paper we illustrate the method by giving a new proof of 
Strickland’s result as well as a generalization to wreath products of abelian groups with 
symmetric groups. The new feature here is more than the generalization of Strickland’s 
result to certain p-divisible groups, it is a method for reducing a class of hard problems 
in E-theory to representation theory.

We explain some of the ideas. Let G be a finite group. There is an endofunctor of 
finite G-CW complexes L called the (p-adic) inertia groupoid functor that has some very 
useful properties:

• Given a cohomology theory EG on finite G-CW complexes, the composite EG(L(−))
is a cohomology theory on finite G-CW complexes.

• Let ∗ be a point with a G-action. There is an equivalence

EG ×G L(∗) � Map(BZp,BG).

The right hand side is the (p-adic) free loop space of BG.
• If E is p-complete, characteristic 0, and complex oriented with formal group GE then 

(working Borel equivariantly) the isomorphisms

E0
Z/pk(L(∗)) ∼= E0(

∐
Z/pk

BZ/pk) ∼=
∏
Z/pk

E0(BZ/pk)

imply that, as k varies, the algebro-geometric object associated to EZ/pk(L(−)) is 
the p-divisible group GE ⊕Qp/Zp.

• The target of the character maps of [6] and [13] take values in a cohomology theory 
built using L.

Because of the second property we feel safe abusing notation and writing EG ×G L(∗)
and LBG interchangeably. The latter is certainly easier on the eyes.

Now let E be Morava En. The p-divisible group associated to GE is the directed 
system built out of the pk-torsion as k varies

GE [p] → GE [p2] → . . . .

We will be interested in finite subgroups of GE and related p-divisible groups. A subgroup 
will always mean a finite flat subgroup scheme of constant rank (order). Given such a 
finite flat subgroup scheme H we will denote its order by |H|.

Precomposing with the inertia groupoid h times gives a cohomology theory E(Lh(−))
with associated p-divisible group GE ⊕Qp/Z

h
p , where Qp/Z

h
p = (Qp/Zp)h. In [6] and [13]

rings called Ct for 0 ≤ t < n are constructed with three important properties:
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• The ring Ct is a faithfully flat LK(t)E
0-algebra and further E0 injects into Ct.

• There is an isomorphism of p-divisible groups

Ct ⊗E0 (GE ⊕Qp/Z
h
p) ∼= (Ct ⊗LK(t)E0 GLK(t)E) ⊕Qp/Z

n+h−t
p .

• Furthermore, for X a finite G-CW complex there is an isomorphism

Ct ⊗E0 E0
G(X) ∼= Ct ⊗LK(t)E0 (LK(t)E)0G(Ln−tX).

In this paper we are interested in comparing two schemes. The first is Spec(−) of 
the cohomology of the symmetric group E0(LhBΣpk) modulo the ideal Itr generated by 
the image of the transfer maps along the inclusions Σi × Σj ⊂ Σpk , where i, j > 0 and 

i + j = pk. Thus the scheme is the functor

Spec(E0(LhBΣpk)/Itr) : E0-algebras −→ Set

mapping

R 
→ HomE0-alg(E0(LhBΣpk)/Itr , R).

The second scheme classifies subgroups of the p-divisible group GE ⊕Qp/Z
h
p of order pk. 

It is the functor

Subpk(GE ⊕Qp/Z
h
p) : E0-algebras −→ Set

mapping

R 
→ {H ⊆ R⊗GE ⊕Qp/Z
h
p |H a subgroup scheme with |H| = pk}.

We begin by proving that these schemes are both finite and flat over E0. We construct 
a map between the schemes by using properties of the ring C0 to embed the rings of 
functions on these schemes as lattices inside the (generalized) class functions on Σpk . By 
embedding both rings in the same large ring we are able to see that one is a sublattice 
of the other. Because C0 is faithfully flat over p−1E = LK(0)E the map we construct is 
an isomorphism after inverting p.

We prove that the map is an isomorphism by using the third property of the ring C1
to reduce the computation to height 1. It suffices to prove the map is an isomorphism 
after reduction to height 1 because the schemes are finite and flat and the determinant 
of the map between them is a power of p times a unit. We wish to show that the power 
of p is zero. After base change to C1 we extend coefficients even further to identify with 
a faithfully flat extension of p-adic K-theory. This uses the main result of [3]. Thus we 
have produced a character map from E to a form of p-adic K-theory. This allows us 
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to reduce to a problem in representation theory that ends up being equivalent to the 
canonical isomorphism

Spec(RA)
∼=−→ Hom(A∗,Gm),

where RA is the representation ring of a finite abelian group A, Gm is the multiplicative 
group scheme, and A∗ is the Pontryagin dual.

The main result of the paper is the following:

Theorem. Let GEn
be the universal deformation formal group, let L be the (p-adic) free 

loop space functor, and let

Subpk(GEn
⊕Qp/Z

h
p) : E0

n-algebras −→ Set

be the functor mapping

R 
→ {H ⊆ R⊗GEn
⊕Qp/Z

h
p ||H| = pk}.

There is an isomorphism

Spec(E0
n(LhBΣpk)/Itr) ∼= Subpk(GEn

⊕Qp/Z
h
p),

where Itr is the ideal generated by the image of the transfer along the inclusions 
Σi × Σj ⊆ Σpk .

This recovers Strickland’s Theorem 9.2 from [15] when h = 0. Let α : Zh
p −→ Σpk and 

let

pr : Subpk(GEn
⊕Qp/Z

h
p) −→ Sub≤pk(Qp/Z

h
p)

be the projection onto the constant étale factor. For A ⊂ Qp/Z
h
p let

SubA
pk(GEn

⊕Qp/Z
h
p) : E0

n-algebras −→ Set

be the functor mapping

R 
→ {H ⊆ R⊗GEn
⊕Qp/Z

h
p ||H| = pk, pr(H) = A}.

We say a map α : Zh
p −→ Σpk is monotypical if the corresponding Zh

p -set of size pk is 
a disjoint union of isomorphic transitive Zh

p-sets. Assume that α is monotypical and let 
A = imα, then C(imα) ∼= A �Σpj . Let Itr ⊂ E0

n(BA �Σpj ) be the ideal generated by the 
image of the transfers along A � (Σl × Σm) ⊂ A � Σpj with l, m > 0 and l + m = pj .

A corollary of the theorem above is the E-theory version of the second author’s The-
orem 3.11 from [12].
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Corollary. Let α : Zh
p −→ Σpk be monotypical, A the image of α, and pj = pk/|A|. Then 

there are isomorphisms

Spec(E0
n(BA � Σpj )/Itr) ∼= Spec(E0

n(BC (imα)/I [α]
tr )) ∼= SubA∗

pk (GEn
⊕Qp/Z

h
p),

where I [α]
tr is described in Theorem 2.5 below.

Outline. In Section 2 we review the transchromatic character maps and we recall a 
specialization of the main result of [3] which shows that, for good groups, the character 
map from height n to height 1 can be modified to land in a faithfully flat extension of 
p-adic K-theory.

Then in Section 3 we develop a transchromatic character theory for the E-theory of 
the unitary group. We provide an algebro-geometric interpretation of the character map 
in terms of divisors of GEn

and divisors of Ct ⊗GLK(t)En
⊕ (Z/pk)n−t.

In Section 4 we develop the theory of centralizers in symmetric groups. These arise in 
the decomposition of the iterated free loop space LhBΣpk . The centralizers that we are 
interested in all have the form A �Σpj with j < k. In order to understand certain transfer 
maps, we also study the free loops of the maps BΣi ×BΣj → BΣpk , where i, j > 0 and 
i + j = pk.

In Section 5 we show that E0
n(BA � Σpj )/Itr is finitely generated and free as an 

E0
n-module. This relies on work of Rezk in [10] that reduces the question to Strickland’s 

result (Thm. 8.6, [15]) that E0
n(BΣpk)/Itr is finite and free.

In Section 6 we show that the ring of functions on SubA
pk(GEn

⊕Qp/Z
h
p) is free of the 

same rank as an E0
n-module. This follows by reduction to Strickland’s result (Thm. 10.1, 

[14]) concerning Subpk(GEn
). Thus in Sections 5 and 6 we rely on two freeness results 

of Strickland’s.
Finally in Section 7 we construct an injective map

fpk : Γ Subpk(GEn
⊕Qp/Z

h
p) ↪→ E0

n(LhBΣpk)/Itr ,

where Γ(−) is the global sections of the structure sheaf, by embedding both of the rings 
into the ring of class functions on (n + h)-tuples of commuting elements in Σpk and 
exhibiting the domain as a subset of the codomain. The map has the property that it 
becomes an isomorphism after inverting p. Since the domain and codomain are free of 
the same rank this means that the failure of the determinant to be a unit is only a 
power of the prime p. Thus, to prove that the map is an isomorphism, it suffices to 
base change the map to any E0

n-algebra in which p is not a unit and is not nilpotent 
and prove that the resulting map is an isomorphism. We then use the transchromatic 
character maps to reduce to height 1 and further base change in order to identify with a 
form of p-adic K-theory. This converts proving the map is an isomorphism to a question 
in representation theory that is easy to solve.

There is an appendix that includes an elementary proof of Strickland’s theorem when 
k = 1.
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2. From E-theory to K-theory

We recall the basics of the transchromatic character maps. Then we recall the modifi-
cation of the character map to height 1 that lands in a faithfully flat extension of p-adic 
K-theory. This is due to [3].

2.1. Character theory recollections

Fix a prime p. We fix inclusions

Qp/Zp ⊂ Q/Z ⊂ S1 ⊂ C∗,

where the middle inclusion is the exponential map e2πix. Thus for a finite abelian group 
A there is a fixed isomorphism between the characters of A and the Pontryagin dual of A

Â ∼= A∗.

Throughout the rest of the paper we will use the notation A∗ for either of these.
Now let G be a finite group and X a finite G-CW complex. We may produce from 

this the topological groupoid X/ /G. Let |X/ /G| be the geometric realization of the nerve 
of X/ /G. Thus we have an equivalence

|X//G| � EG ×G X.

For any cohomology theory E, in this paper, we always set

E∗(X//G) = E∗(|X//G|) = E∗(EG ×G X).

There is an endofunctor of topological groupoids called the (p-adic) inertia groupoid 
functor that we will denote by L. It takes finite G-CW complexes to finite G-CW com-
plexes by mapping

X//G 
→ L(X//G) := Homtop.gpd(∗//Zp, X//G),

where the right hand side is the internal mapping topological groupoid. It is an action 
groupoid by the isomorphism

Homtop.gpd(∗//Zp, X//G) ∼=
( ∐
α∈Hom(Zp,G)

X im α
)
//G,

where X im α is the fixed points of X with respect to the image of α and G acts by 
mapping x ∈ X im α to gx ∈ X im gαg−1 .

It is notationally convenient to equate L(X/ /G) and L(EG ×G X) and we will use 
these interchangeably. Note that L(EG ×G X) is not quite (but is closely related to) the 
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free loop space of EG×GX. In particular, when X is a space with an action by the trivial 
group then LX = X and when X = ∗ and G is a p-group L(X/ /G) = Map(S1, BG).

For a finite group G, the transchromatic generalized character maps approximate the 
Morava E-theory of BG by a certain height t cohomology theory for any t < n. For 
arbitrary t these are constructed in [13], when t = 0 this is in [6], and when n = 1 it goes 
back to [1]. These papers construct a faithfully flat extension of LK(t)En called C0

t (for 
t > 0 the faithfully flatness is Proposition 5.3 in [3]) and a map of cohomology theories 
on finite G-CW complexes called “the character map”

E0
n(X//G) −→ C0

t ⊗LK(t)E0
n
LK(t)E

0
n(Ln−tX//G).

The main theorem regarding these maps is the following:

Theorem 2.2. (See [13].) The character map has the property that the map induced by 
tensoring the domain up to C0

t

C0
t ⊗E0

n
E0

n(X//G)
∼=−→ C0

t ⊗LK(t)E0
n
LK(t)E

0
n(Ln−tX//G)

is an isomorphism.

There is a decomposition

LhBG ∼=
∐

[α]∈Hom(Zh
p ,G)/∼

BC (imα),

where [α] is the conjugacy class of a map α : Zh
p −→ G and C(imα) is the centralizer of 

the image of α.

Corollary 2.3. When X = ∗ the character map takes the form

E0
n(BG) −→

∏
[α]∈Hom(Zn−t

p ,G)/∼

C0
t ⊗LK(t)E0

n
LK(t)E

0
n(BC (imα)).

Remark. When t = 0 the ring C0
0 is an LK(0)E

0
n = p−1E0

n-algebra and so C0
0 (BG) = C0

0
for all finite G. Thus the codomain of the character map is just the product

∏
[α]∈Hom(Zn

p ,G)/∼
C0

0 ,

which is the ring of generalized class functions on G with values in C0
0 . Because of this 

we will often rewrite this ring as Cl(Gn
p , C

0
0 ), where Gn

p is shorthand for Hom(Zn
p , G).

Furthermore, there is a version of the theorem that includes taking the quotient by 
a transfer along i : H ⊂ G. Let Itr ⊂ E0

n(BG) be the image of the transfer along i. Let 
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α : Zn−t
p → G and let α′ be a lift of α to H up to conjugacy so that there exists g ∈ G

so that giα′g−1 = α. There is an induced inclusion

gCH(imα′)g−1 −→ CG(imα).

Definition 2.4. Let J [α]
tr ⊆ C0

t ⊗LK(t)E0
n
LK(t)E

0
n(BCG(imα)) be the ideal generated by 

the image of the transfer along the inclusions induced by the lifts of α to H up to 
conjugacy.

Theorem 2.5. (See Theorem 2.18, [12].) The character map induces an isomorphism

C0
t ⊗E0

n
E0

n(BG)/Itr ∼=
∏

[α]∈Gn−t
p /∼

C0
t ⊗LK(t)E0

n
LK(t)E

0
n(BC (imα))/J [α]

tr .

Remark. There is an analogous result for the cohomology theory E0
n(Lh(−)):

E0
n(LhBG)/Itr ∼=

∏
[α]∈Gh

p/∼
E0

n(BC (imα))/I [α]
tr ,

where I [α]
tr is defined as above.

2.6. Landing in K-theory

The work of Barthel and the second author in [3] modifies the character maps intro-
duced above to land in a faithfully flat extension of Et when G is good. In this subsection 
we recall the specialization of their construction that gives a character map from height 
n to height 1. For historical accuracy we note that their work was an offshoot of this 
project.

Recall the following definition:

Definition 2.7. (See Definition 7.1, [6].) A finite group is good if K(n)∗(BG) is generated 
by transfers of Euler classes of complex representations of subgroups of G.

If G is good then K(n)∗(BG) is concentrated in even degrees (by the remark after 
Definition 7.1 in [6]) and this implies (Proposition 3.5 in [15]) that E∗

n(BG) is free and 
concentrated in even degrees.

The cohomology theory C0
t ⊗LK(t)E0

n
LK(t)E

∗
n(−) defined on finite spaces gives rise to 

a spectrum Ct and thus a cohomology theory C∗
t (−) defined on all spaces. Of course, 

this can be quite different from C0
t ⊗LK(t)E0

n
LK(t)E

∗
n(−) on infinite spaces like BG.

Let C̄1 = LK(1)(C1 ∧Kp). We modify the codomain of the character map from height 
n to height 1 by changing coefficients further to C̄0

1 . The intuition for doing this comes 
from the following result, which is a special case of a result of Hopkins.
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Proposition 2.8. (See [5].) The ring π0(C1 ∧Kp) represents the scheme Iso(GC1 , Gm).

These results follow from the fact that C1 and Kp are Landweber exact cohomology 
theories. Further this implies that both of the maps C0

1 −→ π0(C1 ∧ Kp) and Zp =
K0

p −→ π0(C1 ∧Kp) are flat.

Proposition 2.9. (t = 1 in Proposition 5.8 of [3].) The spectrum C̄1 is even periodic and 
C̄∗

1 is faithfully flat as a K∗
p -module.

This is important for our purposes and used to prove the following result:

Proposition 2.10. (t = 1 in Theorem 6.9 of [3].) Let G be a good group and let C̄1 =
LK(1)(C1 ∧Kp). The maps Kp → C̄1 and C1 → C̄1 induce isomorphisms

C̄0
1 ⊗Zp

K0
p(BG) ∼= C̄0

1 ⊗C0
1

(C0
1 ⊗LK(1)E0

n
LK(1)E

0
n(BG)) ∼= C̄0

1 (BG).

Thus if the target of the character map from E-theory to height 1 has codomain
∏

[α]∈Gn−1
p /∼

C0
1 ⊗LK(1)E0

n
LK(1)E

0(BC (imα)),

where the groups C(imα) are good, then we may base change further to C̄1 and identify 
the resulting codomain with the faithfully flat extension of Kp

∏
[α]∈Gn−1

p /∼

C̄0
1 ⊗Zp

K0
p(BC (imα)).

Remark. In this paper we will apply this to groups of the form A � Σn.

Convention. Now that we have discussed these points and stated the previous proposition 
we will return to the second author’s conventions in [13] and [12] and abuse notation 
and write

C0
t (X) := C0

t ⊗LK(t)E0
n
LK(t)E

0
n(X)

for all spaces X (even X = BU (n)).

3. Character theory of the unitary group

3.1. The inertia groupoid and the unitary group

Recall from Subsection 2.1 that the (p-adic) inertia groupoid L is defined to be the 
functor on topological groupoids corepresented by ∗/ /Zp. Since we have taken G to be 
finite, we can replace ∗/ /Zp by ∗/ /Z/pk for k large enough.
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In this subsection we study the inertia groupoid applied to the unitary group U(m). 
In order to get a proper grip on LBU (m), we use a “torsion” version of the inertia 
groupoid. Thus we define

Lh
k(X//G) := Homtop.gpd(∗//(Z/pk)h, X//G),

and we may abuse this notation as described in the previous subsection.
Let V =

∐
n≥0

∗/ /U(n) be the groupoid of finite dimensional unitary vector spaces. 

For a finite abelian group A there is an equivalence of groupoids between the complex 
representations of A and the product over the characters of A of V

Hom(∗//A, V ) �
∏
A∗

V

given by decomposing a representation of A into one-dimensional representations and 
grouping isomorphic summands. Let F (A∗, Z≥0)m be the set of functions from A∗ to the 
non-negative integers such that the sum of the values on the characters is m ∈ Z. The 
equivalence of groupoids decomposes according to the dimension of the representation 
to give

Hom(∗//A, ∗//U(m)) �
∐

f∈F (A∗,Z≥0)m

( ∏
l∈A∗

∗//U(f(l))
)
.

Now let

Λk = ((Z/pk)h)∗,

the Pontryagin dual of the abelian group that we use to define Lh
k(−). The following 

proposition is immediate from the previous observation.

Proposition 3.2. There is an equivalence of groupoids

Lh
k(∗//U(m)) �

∐
f∈F (Λk,Z≥0)m

( ∏
l∈Λk

∗//U(f(l))
)
.

3.3. Character theory and divisors

Recall from [13] and [12], that the p-divisible group associated to C0
t (Ln−t(−)) is 

GCt
⊕Qp/Z

n−t
p .

Let E be either of the cohomology theories En or LK(t)En and recall that Λk =
((Z/pk)h)∗.

Proposition 3.4. The p-divisible group associated to E0(Lh(−)) is GE ⊕Qp/Z
h
p .



T.M. Schlank, N. Stapleton / Advances in Mathematics 285 (2015) 1415–1447 1425
Proof. We calculate the effect on ∗/ /Z/pk. We have

E0(Lh(∗//Z/pk)) ∼= E0(Lh(BZ/pk)) ∼=
∏
Λk

E0(BZ/pk) ∼= Γ((GE ⊕Qp/Z
h
p)[pk]),

where Γ is the global sections of the structure sheaf. It is easy to check that the Hopf 
algebra structure on these rings is isomorphic as well. �

There are many divisors of degree m in GE ⊕ Qp/Z
h
p . To get some control over the 

set, one can consider divisors of degree m in GE ⊕ Λk.

Definition 3.5. An (effective) divisor of degree m in GE ⊕Λk is a closed subscheme that 
is finite and flat of degree m over E.

We will use the isomorphism

Divm(GE ⊕ Λk) ∼= (GE ⊕ Λk)×m/Σm.

The quotient by Σm is the scheme-theoretic quotient. Since (GE ⊕ Λk)×m is affine, the 
quotient is affine as well. When h = 0, Divm(GE) is the usual divisors of degree m in 
the formal group GE .

Proposition 3.6. The functor Divm(GE ⊕ Λk) is corepresented by

E0(Lh
kBU (m)).

Proof. This is immediate from Proposition 3.2 and the fact that, in all of these cases, 
E0(BU (m)) corepresents divisors of degree m on GE (Section 9 of [15]). It is worth 
noting explicitly what is occurring on the level of connected components. A conjugacy 
class of maps

(Z/pk)h −→ U(m)

determines an m-dimensional representation of (Z/pk)h up to isomorphism. The repre-
sentation decomposes as a sum of m 1-dimensional representations. This corresponds to 
m maps (Z/pk)h −→ S1 which determines m elements in Λk (counted with multiplic-
ity). The divisor is concentrated on the components of GE ⊕ Λk corresponding to these 
elements. �

We may apply the transchromatic character maps to the unitary groups by using Ln−t
k

in place of Ln−t. The character map takes the form

E0
n(BU (m)) −→ C0

t (Ln−t
k BU (m)).
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These are defined exactly as the character maps for finite groups. There is no difficulty 
because we are working with the torsion inertia groupoid.

Note that a map G 
f−→ U(m) induces Ln−t

k BG
Ln−t

k f−→ Ln−t
k BU (m).

Proposition 3.7. Consider a map G 
f−→ U(m) and let k be large enough so that every 

map Zp −→ G factors through Z/pk. The following square commutes

E0
n(Lh

kBU (m)) E0
n(LhBG)

C0
t (Lh+n−t

k BU (m)) C0
t (Lh+n−tBG).

Proof. The character map is the composite of two maps, one is topological and the other 
is algebraic. The commutativity of the diagram follows from the fact that the topological 
part of the character map is E0

n applied to an evaluation map. That is, the following 
diagram induced by the map f commutes:

∗//G

f

∗//Λ∗
k × Hom(∗//Λ∗

k, ∗//G)
ev

∗//U(m) ∗//Λ∗
k × Hom(∗//Λ∗

k, ∗//U(m)).
ev

�

We often say that character maps like these approximate height n cohomology by 
height t cohomology because when we tensor the domain up to Ct they give an iso-
morphism. This is not true for U(m). However, these maps do have interesting algebro-
geometric content.

There is a canonical map of formal groups GLK(t)En
−→ GEn

and over C0
t there is a 

canonical map Λk −→ GEn
for all k. Put together this gives

C0
t ⊗ (GLK(t)En

⊕ Λk)×m/Σm −→ (GEn
)×m/Σm,

which we write as C0
t ⊗ Divm(GLK(t)En

⊕ Λk) −→ Divm(GEn
). Here we are thinking of 

GLK(t)En
as a formal group so C0

t ⊗GLK(t)En
is corepresented by C0

t (BS1) = C0
t ⊗LK(t)E0

n

LK(t)E
0
n(BS1).

Proposition 3.8. Let Λk = ((Z/pk)n−t)∗. The character map

E0
n(BU (m)) −→ C0

t (Ln−t
k BU (m))
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fits into a commutative square

E0
n(BU (m))

∼= Γ Divm(GEn
)

C0
t (Ln−t

k BU (m))
∼=

C0
t ⊗ Γ Divm(GLK(t)En

⊕ Λk).

Proof. Consider the character map applied to the inclusion of a maximal torus T ⊂
U(m). As E0

n(BU (m)) injects in E0
n(BT) and C0

t (Ln−t
k BU (m)) injects into C0

t (Ln−t
k BT), 

it is enough to check that the character map applied to S1 produces the global sections 
of

C0
t ⊗GLK(t)En

⊕ Λk −→ GEn

and this is the case. �
4. Centralizers in symmetric groups

In this section we develop the theory of centralizers of tuples of commuting elements 
in wreath products of a finite abelian group and a symmetric group. These arise when 
studying

LhBΣm

and play an important role in the rest of the paper. We show that these centralizers are 
all products of wreath products of finite abelian groups and symmetric groups. We also 
analyze L(−) applied to the maps Σi × Σj −→ Σm, where i, j > 0 and i + j = m.

For the rest of this section let A be a finite abelian group and let n ≥ 1 be an integer. 
Let

[n] := {1, 2, . . . , n}

and consider the set

A× [n] :=
∐

1≤i≤n

A.

The group An acts on A× [n] by multiplication coordinate-wise and the symmetric group 
Σn acts on A× [n] by permuting the coordinates. The two actions fit together to give 
an action of A � Σn on A× [n]. This action defines a map

s : A � Σn ↪→ Σ|A|n.
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The image of the diagonal map

z : A ↪→ A � Σn

is the center of A � Σn.
Now consider the map

d := s ◦ z : A → Σ|A|n.

Since the image of z is Z(A � Σn) we have

im s = A � Σn ⊂ CΣ|A|n(im d).

Lemma 4.1. There is an equality im(s) = CΣ|A|n(im d) and thus

A � Σn
∼= CΣ|A|n(im d).

Proof. We can consider the set A× [n] as an A-set via the diagonal action. Thus 
CΣ|A|n(im d) is just the group of automorphisms of A× [n] as an A-set. As an A-set 
A× [n] is a disjoint union of n-copies of A since the group of automorphisms of A as an 
A-set is isomorphic to A. The group of automorphisms of n-copies is A � Σn. �

Let h ≥ 0 be an integer and let

α : Zh → A � Σn

be a map. We denote by α̃ the map

α̃ := (s ◦ α) ⊕ d : Zh ⊕A → Σn|A|.

Now consider α̃ as an action of Zh ⊕A on A× [n]. Given an element x ∈ A× [n] and a 
map α we define the type of x to be the unique surjection

tx : Zh ⊕A � Atx

with kernel equal to the stabilizer of x. It is easy to see that the map tx induces an 
inclusion

A ↪→ Atx .

Note that if x has type t then so does any other element in the α̃-orbit x. Thus given 
an α̃ orbit O it makes sense to speak of the type of O. Given a type t : Zh ⊕A � At we 
denote by Nt the number of α̃-orbits with t as a type.
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Definition 4.2. We denote by T (α) the set of all types that occur in A× [n] (i.e. types t
with Nt > 0). We call a map α : Zh −→ A � Σn monotypical if |T (α)| = 1.

Remark. When A = e this is equivalent to saying that the Zh-set of size n classified by 
α is isomorphic to a union of isomorphic transitive Zh-sets.

Lemma 4.3. There is an isomorphism

CA�Σn
(imα) ∼=

∏
t∈T (α)

At � ΣNt
.

Proof. Choose some h′ ≥ 0 and a surjection Zh′ → A. Denote by

α′ : Zh ⊕ Zh′ → Σ|A|n

the resulting map. By Lemma 4.1 we have isomorphisms

CA�Σn
(imα) ∼= CΣn|A|(im α̃) ∼= CΣn|A|(imα′).

Also we have a natural bijection

T (α) → T (α′)

mapping

t 
→ t′

with At
∼= At′ and Nt = Nt′ . Thus it is enough to consider the case of A = 0. In 

this case A× [n] should be considered as a Zh-set and CΣn
(imα) is just the group of 

automorphisms of 0 × [n] ∼= [n] as a Zh-set. But now [n] decomposes as a disjoint union 
of Zh-orbits such that there are exactly Nt of type t. �
Lemma 4.4. Let α : Zh → A � Σn be a map, then α in monotypical if and only if the 
action of CA�Σn

(imα) on A× [n] is transitive.

Proof. Since the action of CA�Σn
(imα) on A× [n] preserves types it cannot be transitive 

if α is not monotypical. However if α is monotypical of type t it is easy to see that the 
action of CA�Σn

(imα) ∼= At � ΣNt
is transitive. Note that in this case

Nt|At| = n|A|. �
Let X

∐
Y = {1, 2, . . . , n} be a non-trivial partition and denote by

ΣX,Y ⊂ Σn

the subgroup of permutations preserving the partition {X, Y }.
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Let α : Zh → A �Σn be a map. Consider the action α̃ of Zh ⊕A on A× [n]. Since for 
every i ∈ [n], A acts transitively on A × {i} we have that any α̃-orbit o is of the form 
A × So for some subset So ⊂ [n]. The sets So for all the orbits of α̃ form a partition

∐
o

So = [n].

We shall denote this partition by Pα := {S1, . . . , Skα
}, where kα is the number of α̃

orbits.

Definition 4.5. We say that a map α : Zh → A �Σn is well-formed if Pα = {S1, . . . , Skα
}, 

is such that every Si is a set of consecutive numbers.

Lemma 4.6. Every map α : Zh → A � Σn is conjugate to a well-formed map.

Proof. Clear. �
Lemma 4.7. Let α : Zh → A � Σn be a map. If α is not monotypical then there exists 
some partition X

∐
Y = {1, 2, . . . , n} such that the map

α : Zh → A � Σn

factors through the inclusion

A � ΣX,Y ⊂ A � Σn

and

CA�ΣX,Y
(imα) = CA�Σn

(imα).

Proof. Now let α : Zh → A � Σn be a map. Let t ∈ T (α) be a type. Now let t ∈ T (α). 
Let Bt ⊂ A× [n] be the set of elements of type t. Bt is a union of At-orbits. However 
since we have an inclusion A ↪→ At each At-orbit is a disjoint union of A-orbits. So there 
exists some non-empty proper subset X ⊂ [n] such that

Bt = A×X.

Now the action CA�Σn
(imα) on A× [n] preserves types. Thus for Y := [n] \ X we see 

that

α : Zh → A � Σn

factors through the inclusion

A � ΣX,Y ⊂ A � Σn
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and that

CA�ΣX,Y
(imα) = CA�Σn

(imα). �
Corollary 4.8. Let

α : Zh → A � Σn

be a well-formed non-monotypical map. Then there exist some 0 < m < n such that α
factors through the inclusion:

A � Σm × Σn−m ⊂ A � Σn

and we have

CA�Σm×Σn−m
(imα) = CA�Σn

(imα).

Lemma 4.9. Let α : Zh → A � Σn be a monotypical map of type

t : Zh ⊕A → At.

Let X, Y be a partition of [n]. Then α factors through A �ΣX,Y if and only if the partition 
{X, Y } is coarser then Pα = {S1, . . . , Skα

}. Furthermore in this case

CA�ΣX,Y
(imα) = CA�ΣX

(imα) × CA�ΣY
(imα).

Proof. It is clear that if X,Y is not coarser then Pα = {S1, . . . , Skα
} the action of α

cannot factor through A � ΣX,Y . Otherwise we get that A × [n] factors as an α̃ set as

A× [n] = A×X
∐

A× Y.

The result now follows since

CA�ΣX,Y
(imα) = CΣA×X,A×Y

(im α̃) =

= CΣA×X
(im α̃) × CΣA×Y

(im α̃) = CA�ΣX
(imα) × CA�ΣY

(imα). �
Corollary 4.10. Let

α : Zh → A � Σn

be a well-formed mono-typical map of type t. Let l = |At|
|A| note that we have Nt = n

l . Let 
0 < m < n, then
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(1) If m is divisible by l then α factors through the inclusion:

A � Σm × Σn−m ⊂ A � Σn

and we have that the inclusion

CA�Σm×Σn−m
(imα) ⊂ CA�Σn

(imα)

is isomorphic to the natural inclusion

At � Σm
l
× Σn−m

l
⊂ At � Σn

l
.

(2) If m is not divisible by l then neither α nor any of its conjugates factors through the 
inclusion

A � Σm × Σn−m ⊂ A � Σn.

5. The Morava E-theory of centralizers

The goal of this section is to prove a freeness result for the Morava E-theory of 
centralizers of tuples of commuting elements in symmetric groups modulo a certain 
transfer ideal.

All of the groups that we study in this paper are good:

Proposition 5.1. Centralizers of tuples of commuting prime-power order elements in sym-
metric groups are good.

Proof. Lemma 4.3 implies that these centralizers are of the form 
∏
i

Ai�Σpki where Ai is an 

abelian p-group. Now the Sylow p-subgroups of this wreath product is 
∏
i

Ai �Z/p �. . .�Z/p, 

which is good. By Proposition 7.2 of [6] this implies that the group is good. �
Proposition 5.2. Let α : Zh

p −→ Σpk be monotypical (the case A = e in Definition 4.2) 
with centralizer A � Σpi . Let Itr ⊂ E0

n(BA � Σpi) be generated by maps of the form A �
(Σl × Σm) −→ A � Σpi , where l + m = pi and l, m > 0, then Itr = I

[α]
tr .

Proof. This follows immediately from both parts of Corollary 4.10. �
Proposition 5.3. Let Zh

p
α−→ Σpk . The ring E0

n(BC (imα))/I [α]
tr is finitely generated and 

free as an E0
n-module.

Proof. Note that Corollary 4.8 implies that this statement is trivial for non-monotypical 
maps α because I [α]

tr = E0
n(BC (imα)). When α is monotypical Proposition 5.2 implies 

that we need to study E0
n(BA � Σpi)/Itr .
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This puts us in a situation that is dual to Section 5 of [10] and thus essentially follows 
from the discussion there. For the purposes of this proof let E = En so that E0 = (En)0. 
In [11,10] Rezk constructs a functor

Tm : ModE0 −→ ModE0

that takes free E0-modules to free E0-modules and with the property that

Tm(E0) ∼= E0(BΣm).

More generally on the free E0-module E0(BA) it takes the value

Tm(E0(BA)) ∼= E0(BA � Σm).

Now it follows by dualizing Section 5 of [10] that taking the quotient by the image of 
the transfer maps along

A � (Σi × Σj) −→ A � Σm

is the right linearization of the functor Tm. Let M be a free E0-module and let i1, i2 :
M → M ⊕ M be the canonical inclusions. The right linearization is defined to be the 
equalizer

RTm
(M) Tm(M)

Tm(i1)+Tm(i2)

Tm(i1+i2)
Tm(M ⊕M).

It follows from Theorem 8.6 in [15] that

RTm
(E0) ∼= (E0(BΣm)/Itr)∗

is free, where (E0(BΣm)/Itr)∗ is the E0-linear dual. Since RTm
is linear it takes free 

modules to free modules. Thus

RTm
(E0(BA)) ∼= (E0(BA � Σm)/Itr)∗

is free. Taking the E0-linear dual gives the desired result. �
6. Subgroups of GGGEn ⊕QQQp/ZZZ

h
p

In this section we prove a freeness result for the ring of functions on the scheme that 
classifies subgroups of the p-divisible group GEn

⊕Qp/Z
h
p .

The main algebro-geometric objects of study are the following:
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Definition 6.1. For k ≥ 0 we define

Subpk(GEn
⊕Qp/Z

h
p) : E0

n-algebras −→ Set

to be the functor mapping

R 
→ {H ⊂ R⊗ (GEn
⊕Qp/Z

h
p), H a subgroups scheme with |H| = pk}.

Let

pr : GEn
⊕Qp/Z

h
p −→ Qp/Z

h
p

be the projection. This induces a surjective map

Subpk(GEn
⊕Qp/Z

h
p) −→ Sub≤pk(Qp/Z

h
p)

by mapping H 
→ pr(H). Since the target of this map is discrete and the map is surjective 
the fibers disconnect the source. The fibers have the following form:

Definition 6.2. For A ⊂ Qp/Z
h
p of order less than pk, define

SubA
pk(GEn

⊕Qp/Z
h
p) : E0

n-algebras −→ Set

to be the functor mapping

R 
→ {H ⊂ R⊗ (GEn
⊕Qp/Z

h
p)}

such that H is a subgroup of order pk and pr(H) = A(= R⊗A).

Remark. Note that it is not hard to make sense of projection. For K be the kernel of the 
composite

H −→ R⊗ (GEn
⊕Qp/Z

h
p) −→ Qp/Z

h
p

we see that pr(H) = H/K ⊂ Qp/Z
h
p .

Example 6.3. When A = e there is an isomorphism SubA
pk(GEn

⊕Qp/Z
h
p) ∼= Subpk(GEn

).

Remark. Note that Subpk(GEn
⊕Qp/Z

h
p) is a closed subscheme of Divpk(GEn

⊕ Λk).

Next we show that SubA
pk(GEn

⊕ Qp/Z
h
p) is corepresented by an E0

n-algebra that is 
finitely generated and free as an E0

n-module. We rely on Strickland’s result:



T.M. Schlank, N. Stapleton / Advances in Mathematics 285 (2015) 1415–1447 1435
Theorem 6.4. (See Theorem 10.1, [14].) The functor Subpk(GEn
) is corepresented by an 

E0
n-algebra that is free as an E0

n-module of rank equal to the number of subgroups of order 
pk in Qp/Z

n
p .

Proposition 6.5. The functor SubA
pk(GEn

⊕ Qp/Z
h
p) is corepresentable by an E0

n-algebra 
that is finitely generated and free as an E0

n-module.

Proof. Note that there is a surjection (there is a trivial section)

SubA
pk(GEn

⊕Qp/Z
h
p) −→ Subpk/|A|(GEn

)

given by sending a projection H −→ A to its kernel. Let ḠEn
be the pullback of GEn

to 
Subpk/|A|(GEn

). The formal group ḠEn
carries the universal subgroup U of order pk/|A|. 

For this proof let S = Γ Subpk/|A|(GEn
). Over Subpk/|A|(GEn

) there is an isomorphism

SubA
pk(GEn

⊕Qp/Z
h
p) ∼= Hom(A, ḠEn

/U).

We will see this by using the functor of points. Let Spec(R) be an affine scheme over 
Subpk/|A|(GEn

). A Spec(R) point of the left hand side is a subgroup

H ⊂ R⊗E0
n

(GEn
⊕Qp/Z

h
p) = R⊗S (ḠEn

⊕Qp/Z
h
p)

of order pk that projects onto A. Let K be the kernel of the projection, then K ∼= R⊗U . 
Now we have a map of short exact sequences

K H A

K R⊗ (GEn
⊕Qp/Z

h
p) (R⊗GEn

)/K ⊕Qp/Z
h
p .

Thus we get a Spec(R) point of the right hand side.
A Spec(R) point of the right hand side is a map

A −→ R⊗S ḠEn
/U ∼= (R⊗E0

n
GEn

)/K.

Combined with the canonical inclusion A ⊂ Qp/Z
h
p this gives a map

A −→ (R⊗GEn
)/K ⊕Qp/Z

h
p .
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Now we pull back to get H

H R⊗GEn
⊕Qp/Z

h
p

A (R⊗GEn
)/K ⊕Qp/Z

h
p

a subgroup of order pk that projects onto A. This produces the map back. Now the 
scheme Hom(A, ḠEn

/U) is finite flat over Subpk/|A|(GEn
) since GEn

/U is p-divisible. 
Theorem 6.4 implies that Subpk/|A|(GEn

) is finite flat over E0
n. Now the composite is 

finite flat and E0
n is complete local, so we are done. �

7. A generalized Strickland’s theorem

We show that E0
n(LhBΣpk)/Itr corepresents the scheme Subpk(GEn

⊕Qp/Z
h
p). In the 

first subsection we construct the map between the two objects. The map is clearly an 
isomorphism after inverting p. In the next subsection we give a direct proof of the main 
theorem at height 1. In the final subsection we prove that the map is an isomorphism 
by reduction to the height 1 case.

7.1. Character theoretic construction of the map

The purpose of this subsection is to construct a map

fpk : Γ Subpk(GEn
⊕Qp/Z

h
p) −→ E0

n(LhBΣpk)/Itr .

When h = 0 this should be compared to Proposition 9.1 of [15]. We will construct the 
map by using HKR character theory to embed both sides into class functions. There we 
will see that the image of the left hand side is contained in the image of the right hand 
side. Thus there is an injective map between the two rings.

Let

π : Σpk −→ U(pk)

be the permutation representation.
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Proposition 7.2. The following diagram commutes:

Γ Divpk(GEn
⊕ Λk)

∼=

Γ Subpk(GEn
⊕Qp/Z

h
p) ΓC0 ⊗ Subpk(GEn

⊕Qp/Z
h
p)

∼=

Γ Subpk(Qp/Z
n+h
p )

∼=

E0
n(Lh

kBU (pk)) π∗

E0
n(LhBΣpk)/Itr Cl((Σpk)n+h

p , C0)/Itr .

This implies that there is an injection

fpk : Γ Subpk(GEn
⊕Qp/Z

h
p) ↪→ E0

n(LhBΣpk)/Itr .

Proof. We have already seen that the left vertical map is an isomorphism. The right 
vertical map is given by sending α : Zn+h

p −→ Σpk to the image of the Pontryagin dual

Qp/Z
n+h
p ←↩ (imα)∗.

The right horizontal maps are injections by Propositions 5.3 and 6.5. Now the right 
vertical isomorphism implies that both of the E0

n-modules in the middle have the same 
rank. The left horizontal surjection is due to the fact that we are taking the ring of 
functions of a closed inclusion.

We can use the results of Section 3 to reduce commutativity of this diagram to a height 
0 (and thus combinatorial) problem. Let Λk = ((Z/pk)h)∗ and Δk = ((Z/pk)n+h)∗. 
Consider the following diagram:

ΓDivpk (GEn
⊕ Λk) Γ Subpk (GEn

⊕Qp/Z
h
p)

E0
n(Lh

kBU (pk)) E0
n(LhBΣpk )/Itr

C0
0 ⊗ Γ Divpk (Gp−1En

⊕ Δk) Γ Subpk (Qp/Z
n+h
p )

C0
0 (Ln+h

k BU (pk)) Cl((Σpk )n+h
p , C0

0 )/Itr .

The top square of this cube is at height n and the bottom square at height 0. The left 
side commutes by Proposition 3.8. The front side commutes by Proposition 3.7. The back 
side is completely algebro-geometric. The bottom is at height 0 and thus combinatorial, 
its commutativity follows from the definition of the permutation representation.
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We show that Spec(−) of the bottom square commutes. Let Zn+h
p

α−→ Σpk be a 

map classifying a transitive Zn+h
p -set. Let A = imα. Going around the square through 

Subpk(Qp/Z
n+h
p ) sends this to the image of the Pontryagin dual

A∗ −→ Δk ⊂ Qp/Z
n+h
p

viewed as a divisor in C0
0 ⊗Gp−1En

⊕ Δk that is just 0 in C0
0 ⊗Gp−1En

.
We show this is the same as going around the bottom square the other way. The map 

α factors into the following composite

Zn+h
p −→ (Z/pk)n+h g−→ A −→ Σpk .

Since A is a transitive abelian subgroup of Σpk it has order pk and the composite ρ :
A → Σpk

π→ U(pk) is the regular representation. Since ρ is the regular representation 
it is the sum of all characters of A. This defines |A| maps A −→ S1 are precisely the 
elements of A∗. Thus we get the divisor

A∗ ⊆ Δk = ((Z/pk)n+h)∗.

The last thing that needs to be checked is that all of the power series generators (after 
choosing a coordinate) of

C0
0 (Ln+h

k BU (pk))

map to 0 ∈ Cl((Σpk)n+h
p , C0

0 )/Itr . But this is clear as they are induced by elements of 
higher cohomological degree and the codomain is concentrated in degree 0. Thus we get 
exactly the same divisor of C0

0 ⊗Gp−1En
⊕Δk by going around the square both ways. �

7.3. The height 1 case

Given an abelian group A and an integer n ≥ 0, there is a map

NA : A � Σn → A

induced by the addition map An → A.

Lemma 7.4. The map NA induces an isomorphism

R(A)
∼=−→ R(A � Σn)/Itr

Proof. This isomorphism appears in Section 7 of [17]. Note that given a character ρ of A. 
The pulled back representation on A � Σn is ρ⊗n � 1. �
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The conjugacy classes of A � Σn have canonical representatives. It will be useful to 
know what they are.

Every conjugacy class of Σn is determined by a partition of n. We represent this as 
a non-increasing sequence of integers λ1 ≥ λ2 ≥ . . . ≥ λr ≥ 1 such that 

∑
λi = n. Any 

such conjugacy class contains a unique element that can be written in cycle notation as

σ = (1, . . . , λ1)(λ1 + 1, . . . , λ1 + λ2) · · · (n− λr + 1, . . . , n).

We call such a σ a canonical representative.
Now let σ be a canonical representative of Σn with r cycles and let (a1, . . . ar) ∈ Ar

be a tuple of elements in the abelian group A. We denote by [a1, . . . , ar] � σ ∈ A �Σn the 
element

(a1,

λ1−1︷ ︸︸ ︷
0, . . . , 0, a2,

λ2−1︷ ︸︸ ︷
0, . . . , 0, . . . , ar,

λr−1︷ ︸︸ ︷
0, . . . , 0) � σ.

We call the element of the form [a1, . . . , ar] � σ ∈ A � Σn a canonical representative in 
A � Σn. It is well-known and easy to check that the set of canonical representatives in 
A � Σn is a complete set of representatives for the conjugacy classes of A � Σn.

Lemma 7.5. Let A be an abelian group and n > 0 be an integer. The image of all the 
transfer maps

Cl(A � (Σk × Σn−k),C) → Cl(A � Σn,C)

together generate the ideal of functions that vanish on all conjugacy classes in A � Σn

which project to the n-cycle in Σn (i.e. the conjugacy classes of the form [a] � (1, . . . , n)
for some a ∈ A).

Proof. Clear. �
Lemma 7.6. Assume |A||r, then there exists a canonical isomorphism of schemes

cr,A : Hom(A∗,Gm)
∼=−→ SubA∗

r (Gm ⊕Q/Zh).

Proof. Denote l = r
|A| and recall the proof of Proposition 6.5. We get a natural isomor-

phism

Hom(A∗,Gm/Gm[l])
∼=−→ SubA∗

r (Gm ⊕Q/Zh)

as schemes over Subl(Gm). Now Gm has a unique subgroup Gm[l] of order l so

Subl(Gm) ∼= SpecZ

and we have a canonical isomorphism Gm/Gm[l] ∼= Gm. �
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Lemma 7.7. There is a canonical isomorphism of schemes

χA : SpecR(A)
∼=−→ Hom(A∗,Gm)

Proof. Consider the scheme SpecR(A) as a functor of points, given a test ring T a map 
R(A) → T is the same as a map A∗ → T× = Gm(T ). �

Let l = r/|A|, then there is an injective map

gr,A : Γ SubA∗

r (Gm ⊕Q/Zh) ↪→ R(A � Σl)/Itr

defined by embedding both sides into class functions just as in the proof of Proposi-
tion 7.2.

Proposition 7.8. Let α : Zh −→ Σr be monotypical and let A = imα and l = r/|A|. 
There is a commutative diagram

SpecR(A) ∼=

χA Hom(A∗,Gm)

∼=cr,A

Spec(R(A � Σl)/Itr)

∼=NA

g∗
r,A

SubA∗

r (Gm ⊕Q/Zh).

Proof. Since all schemes involved are reduced finite and flat over SpecZ it is enough 
to check the commutativity on C-points. By Lemma 7.5 Spec(R(A � Σl)/Itr)(C) can be 
naturally identified with the set of conjugacy classes of [a] � (1, . . . , l) for all a ∈ A. Let 
[a] � (1, . . . , l) be such an element. First we would like to describe g∗r,A([a] � (1, . . . , l)). The 

conjugacy class [a] � (1, . . . , l) corresponds to a map

αa : Z → A � Σl

such that α(a)(1) = [a] � (1, . . . , l). By Section 4, αa corresponds to map

α̃a : Z⊕A → Σl|A|.

To understand the kernel of this map note that A embeds into A � Σl via the diagonal 
map z : A → A � Σl on the other hand

([a] � (1, . . . , l))l = z(a).
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Thus we get that B := im α̃a is the result of the pushout:

Z

×l

1
→a
A

Z B.

Since A comes with the surjection α : Zh → A we can write B also as the pushout of

Z⊕ Zh

×l⊕Id

a⊕α
A

Z⊕ Zh B.

Dualizing the diagram above we get

B∗ Q/Z⊕Q/Zh

×l⊕Id

A∗
a∗⊕α∗

Q/Z⊕Q/Zh.

Considering B∗ as a subgroup in Q/Z ⊕Q/Zh we get

B∗ = g∗r,A([a] � (1, . . . , l)) ∈ SubA∗

r (Gm ⊕Q/Zh)(C).

Now we would like to compare B∗ with cr,A ◦ χA ◦NA([a] � (1, . . . , l)). It is clear that

NA([a] � (1, . . . , l)) = a ∈ A = Spec(R(A))(C).

The map χA(a) is

a∗ : A∗ → Q/Z

mapping a∗(φ) = φ(a). To apply cr,A we need to take a pullback as in the proof of 
Proposition 6.5. We get

B∗ Q/Z⊕Q/Zh

×l⊕Id

A∗
a∗⊕α∗

Q/Z⊕Q/Zh

just as before. �
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7.9. The map is an isomorphism

Recall that C0
0 is a faithfully flat p−1E0

n-algebra. Thus after inverting p the map

fpk : Γ Subpk(GEn
⊕Qp/Z

h
p) −→ E0

n(LhBΣpk)/Itr

constructed in Proposition 7.2 is an isomorphism. Now it suffices to show that the map 
is an isomorphism after base change to any ring in which p is not nilpotent and not 
invertible. We use the ring C̄0

1 constructed in Subsection 2.6.

Proposition 7.10. The isomorphism of Lemma 7.4 induces an isomorphism

K0
p(BA � Σpk)/Itr

∼=−→ K0
p(BA).

Proof. Let P be a Sylow p-subgroup of G and J the kernel of the restriction map 
RG −→ RP. By Proposition 9.7 in [16], K0

p(BG) ∼= Zp ⊗R(G)/J . Let us write RpG for 
Zp ⊗ RG. Assume that A is a p-group, then we have the following diagram

Itr Jtr

RpA � Σpk K0
pA � Σpk

RpA � Σpk/Itr

∼=

K0
pA � Σpk/Jtr

RpA
∼=

K0
pA,

where Itr is the image of the transfer in representation theory and Jtr is the image of the 
transfer in p-adic K-theory. The top two horizontal arrows are surjective by Strickland’s 
result. This implies the third horizontal arrow is surjective. But this is a map between 
free modules of the same rank so it is an isomorphism. This implies that the bottom 
right arrow is an isomorphism. �

Thus we have a commutative diagram

K0
p(LhBU (pk)) Γ Divpk(Ĝm ⊕ Λk)

∼=

K0
p(LhBΣpk)/Itr Γ Subpk(Ĝm ⊕Qp/Z

h
p),

g
pk

∼=



T.M. Schlank, N. Stapleton / Advances in Mathematics 285 (2015) 1415–1447 1443
where Ĝm is the formal multiplicative group. The bottom arrow may be defined purely 
in terms of the other arrows. We choose an element in Γ Subpk(Ĝm⊕Qp/Z

h
p), lift it to the 

global sections of divisors, pass to K0
p(Lh

kBU (pk)) and map down to K0
p(LhBΣpk)/Itr . 

We slightly abuse notation and call the bottom isomorphism gpk . By Proposition 7.8 it 
is a product of isomorphisms of the form gpk,A.

Theorem 7.11. The map

fpk : Γ Subpk(GEn
⊕Qp/Z

h
p) −→ E0

n(LhBΣpk)/Itr

is an isomorphism.

Proof. Recall from Subsection 2.6 that C̄0
1 = π0(LK(1)(C1 ∧Kp)) and that there is an 

isomorphism of p-divisible groups

C̄0
1 ⊗GC1

∼= C̄0
1 ⊗ Ĝm

∼= GC̄1
.

Applying the character maps of Theorem 2.2 and Theorem 3.8 to the square

E0
n(Lh

kBU (pk)) Γ Divpk(GEn
⊕ Λk)

∼=

E0
n(LhBΣpk)/Itr Γ Subpk(GEn

⊕Qp/Z
h
p)

and then base changing to C̄0
1 gives the square

C̄0
1 ⊗LK(t)E0

n
LK(t)E

0
n(Ln+h−1

k BU (pk)) C̄0
1 ⊗ Γ Divpk(GLK(t)En

⊕ (Z/pk)n+h−1)
∼=

C̄0
1 (Ln+h−1BΣpk)/Itr Γ Subpk(GC̄1

⊕Qp/Z
n+h−1
p ).

C̄0
1⊗f

pk

Proposition 2.10 implies that the bottom arrow of this square is the base change C̄0
1 ⊗fpk

because all of the groups that appear in Ln+h−1BΣpk are good. The map from the top 
arrow to the bottom arrow factors through

C̄0
1 (Ln+h−1

k BU (pk)) Γ Divpk(GC̄1
⊕ (Z/pk)n+h−1)

∼=

C̄0
1 (Ln+h−1BΣpk)/Itr Γ Subpk(GC̄1

⊕Qp/Z
n+h−1
p ),

C̄0
1⊗f

pk
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where C̄0
1 (Ln+h−1

k BU (pk)) = π0C̄
Ln+h−1

k BU(pk)
1 . From p-adic K-theory we have the 

square

C̄0
1 ⊗K0

p(Ln+h−1
k BU (pk)) C̄0

1 ⊗ Γ Divpk(Ĝm ⊕ (Z/pk)n+h−1)
∼=

C̄0
1 ⊗K0

p(Ln+h−1BΣpk)/Itr C̄0
1 ⊗ Γ Subpk(Ĝm ⊕Qp/Z

n+h−1
p ).

∼=

The bottom arrow of this square is C̄0
1 ⊗ gpk . The last square maps to the middle square 

and the bottom square of the resulting cube is

C̄0
1 (Ln+h−1BΣpk)/Itr Γ Subpk(C̄0

1 ⊗GC1 ⊕Qp/Z
h
p)

C̄0
1⊗f

pk

C̄0
1 ⊗K0

p(Ln+h−1BΣpk)/Itr

∼=

C̄0
1 ⊗ Γ Subpk(Ĝm ⊕Qp/Z

n+h−1
p ),

C̄0
1⊗g

pk

∼=

∼=

where the vertical arrows are isomorphisms by Proposition 2.10. This square commutes 
because all of the other squares in the cube commute and the maps C̄0

1⊗gpk and C̄0
1 ⊗fpk

are determined by the others.
Thus C̄0

1 ⊗ fpk is an isomorphism and this implies that fpk is an isomorphism. �
An advantage of the definition of the map fpk via the character maps is that the 

following corollary is immediate.

Corollary 7.12. Let α : Zh
p −→ Σpk be monotypical, let A = imα, and let pj = pk/|A|. 

Restricting f gives the isomorphism

E0
n(BA � Σpj )/Itr ∼= Γ SubA∗

pk (GEn
⊕Qp/Z

h
p).
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Appendix A. An elementary proof when k = 1

We give a proof of Strickland’s theorem when k = 1 by direct calculation. The calcu-
lation reduces to a congruence regarding Stirling numbers of the first kind. The trick in 
this case is that the Honda formal group law is easy to describe modulo xpn .

The mod In reduction of the map

fp : Γ Subp(GEn
) −→ E0

n(BΣp)/Itr

from Proposition 7.2 is the map

Γ Subp(GK(n)) −→ K(n)0(BΣp)/Itr .

The domain is still a closed subscheme of divisors. It suffices to show that

K(n)0(BU (p)) π∗
−→ K(n)0(BΣp)/Itr

is surjective.

Proposition A.1. The ring K(n)0(BΣp)/Itr is generated by the Chern classes of the 
permutation representation.

Proof. The ideal Itr has rank 1 so the rank of K(n)0(BΣp)/Itr is (pn − 1)/(p − 1).
The composite

Z/p ↪→ Σp
π−→ U(p)

is the regular representation ρ of Z/p. Thus it suffices to show that the Chern classes of 
ρ generate a subring of rank (pn − 1)/(p − 1) inside of K(n)0(BZ/p)/Itr .

Recall that there is an isomorphism

K(n)0(BZ/p) ∼= K(n)0[x]/(xpn

)

and the transfer map from e to Z/p sends 1 to xpn−1. Thus

K(n)0(BZ/p)/Itr ∼= K(n)0[x]/(xpn−1).

Let F be the height n Honda formal group law. By Lemma 4.12 in [2], there is a 
congruence

x +F y = x + y −
∑

0<j<p

p−1
(
p

j

)
(xpn−1

)j(yp
n−1

)p−j (1)

modulo xpn .
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Because the regular representation is the sum of the irreducible representations of 
Z/p, the total Chern class of ρ is

c(ρ) =
∏

0<i<p

(1 − [i]F (x)t),

where [i]F (x) is the first Chern class of the tensor power of a generating representation 
x : Z/p ↪→ S1.

Now Equation (1) implies that [i]F (x) = ix mod xpn . We are left trying to understand

c(ρ) =
∏

0<i<p

(1 − ixt).

Thus

ci(ρ) =
( ∑

0<k1<...<ki<p

k1k2 · · · ki
)
xi = s(p, i)xi,

where s(p, i) is the Stirling number of the first kind. It is well-known (see Corollary 4 in 
[7]) that s(p, i) is divisible by p when 1 < i < p.

Thus the only Chern class that does not disappear (we are working in characteristic 
p) is cp−1(ρ). This is congruent to p − 1.

Now the subring of

K(n)0(BZ/p)/Itr ∼= K(n)0[x]/xpn−1

generated by xp−1 has rank (pn − 1)/(p − 1). We conclude that K(n)0(BΣp)/Itr is 
generated by the Chern classes of the permutation representation. �

To generalize this, one might want to use the injection of Proposition 9.1 in [15]

Γ Subpk(GEn
) ↪→

∏
A⊂Σ

pk
transitive

Γ Level(A,GEn
),

where the product is over abelian transitive subgroups of Σpk .
One of the key obstructions to generalizing this proof seems to be the fact that, even 

for p = 2 and k = 2, the injection

Γ Subp2(GEn
) −→ Γ Level(Z/2 × Z/2,GEn

) × Γ Level(Z/4,GEn
)

does not pass to an injection after taking the quotient by In ⊂ E0
n.
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