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ABSTRACT: In this paper, we define, for arithmetic schemes with semistable
reduction, p-adic objects playing the roles of Tate twists in étale topology, and
establish their fundamental properties.

RESUME: Dans ce papier, nous definissions, pour les schémas arithmétiques a
réduction semistable, des objets p-adiques jouant les roles de twists a la Tate en
topologie étale, et nous établissons leurs propriétés fondamentales.
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4 K. SATO

1. Introduction

Let k be a finite field of characteristic p > 0, and let X be a proper smooth variety over
Spec(k) of dimension d. For a positive integer m prime to p, we have the étale sheaf y,, on X
consisting of m-th roots of unity. The sheaves Z/mZ(n) := pu>" (n > 0), so called Tate twists,
satisfy Poincaré duality of the following form: There is a non-degenerate pairing of finite groups
for any i € Z

H, (X, Z/mZ(n)) x H3HH(X, Z/mZ(d — n)) —— Z/mZ.
On the other hand, we have the étale subsheaf W, Q% ., (n > 0,7 > 1) of the logarithmic part
of the Hodge-Witt sheaf W, Q% ([Bl1], [I11]). When we put Z/p"Z(n) := W, Q% . [-n], we have
an analogous duality fact due to Milne [Mil], [Mi2].

In this paper, for a regular scheme X which is flat of finite type over Spec(Z) and a prime
number p, we construct an object T,(n)x playing the role of ‘Z/p"Z(n)” in D*(Xy,Z/p"Z), the
derived category of bounded complexes of étale Z/p"Z-sheaves on X. The fundamental idea
is due to Schneider [Sch], that is, we will grue p" on X[1/p] and a logarithmic Hodge-Witt
sheaf on the fibers of characteristic p to define ¥, (n)x (cf. Lemma 1.3.1 below). We will further
prove a duality result analogous to the above Poincaré duality. The object T,.(n)x is a p-adic

analogue of the Beilinson-Deligne complex R(n)p on the complex manifold (X ®; C)**, while
e on X [1/p] corresponds to (2my/—1)" - R on (X ®z C)™.

1.1. Existence result. We fix the setting as follows. Let p be a rational prime number. Let
A be a Dedekind ring whose fraction field has characteristic zero and which has a residue field
of characteristic p. We assume that

every residue field of A of characteristic p is perfect.

Let X be a noetherian regular scheme of pure-dimension which is flat of finite type over B :=
Spec(A) and satisfies the following condition:

X is a smooth or semistable family around any fiber of X/B of characteristic p.
Let j be the open immersion X[1/p] < X. The first main result of this paper is the following:

Theorem 1.1.1. For each n > 0 and v > 1, there exists an object T,.(n)x € D*(Xy,Z/p"Z),
which we call a p-adic étale Tate twist, satisfying the following properties:

T1 (Trivialization, cf. 4.2.4). There is an isomorphism t : j*%,(n)x ~ ps".

T2 (Acyclicity, cf. 4.2.4). T.(n)x is concentrated in [0,n], i.e., the g-th
cohomology sheaf is zero unless 0 < q < n.

T3 (Purity, cf. 4.4.7). For a locally closed regular subscheme i : Z — X of
characteristic p and of codimension ¢ (> 1), there is a Gysin isomorphism

W Q5 [—n—d —— T4 Ri'T(n)x  in D*(Za,Z/p"ZL).

T4 (Compatibility, cf. 6.1.1). Leti,:y — X andi, : © — X be points on X
with ch(z) = p, x € {y} and codimy (z) = codimy(y) + 1. Put ¢ := codimx ().
Then the connecting homomorphism

Rn-i—c—lz'y* (Rlézr (n)X) _ Rn-i-c’&x* (RZ;ET (n)X)
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in localization theory (cf. (1.9.3) below) agrees with the (sheafified) boundary map
of Galois cohomology groups due to Kato (cf. §1.8 below)

n—c+1; ®Xn—c+1 —
R j’ly_*ﬁplr ( (y) 0) N Zw*m QZTng
iy W3 82 (ch(y) =p) ’

y,log
up to a sign depending only on (ch(y),c), via Gysin isomorphisms. Here the
Gysin map for i, with ch(y) = 0 is defined by the isomorphism t in T1 and

Deligne’s cycle class in R**~ %, p&e".

ch
ch

T5 (Product structure, cf. 4.2.6). There is a unique morphism
T(m)x @ T, (n)x —— Z.(m+n)x in D™ (Xe,Z/p'7Z)
that extends the natural isomorphism pi™ @ ps™ =~ psm™ " on X[1/p].

If X is smooth over B, the object T, (n)x is already considered by Schneider [Sch], §7 (see also
7.3.4 below). The properties T1-T3 and T5 are Z/p"Z-coefficient variants of the Beilinson-
Lichtenbaum axioms on the conjectural étale motivic complex I'(n)$t [Be], [Li2], [Li3]. More
precisely, T1 (resp. T2) corresponds to the axiom of Kummer theory for I'(n)$t (resp. the
acyclicity axiom for I'(n)%), and T3 is suggested by the purity axiom and the axiom of Kummer
theory for I'(n — ¢)$. Although T4 is not among the Beilinson-Lichtenbaum axioms, it is a
natural property to be satisfied. We deal with this rather technical property for two reasons.
One is that the pair (T,.(n)x,t) (¢ is that in T1) is characterized by the properties T2, T3 and
T4 (see 1.3.5 below). The other is that we need T4 to prove the property T7 in the following

functoriality result.

Theorem 1.1.2. Let X be as in 1.1.1, and let Z be another scheme which is flat of finite type
over B and for which the objects T,(n)z (n > 0,7 > 1) are defined. Let f : Z — X be a
morphism of schemes and let ¢ : Z[1/p| — X|[1/p| be the induced morphism. Then:

T6 (Contravariant functoriality, cf. 4.2.8). There is a unique morphism
*T.(n)x —— Z,.(n)z in DY(Zs,Z)p"Z)
that extends the natural isomorphism *ps™ ~ p=r on Z[1/p].
T7 (Covariant funtoriality, cf. 7.1.1). Assume that f is proper, and put
¢ :=dim(X) —dim(Z). Then there is a unique morphism
Rf.%Z.(n —c)z[-2c] —— Z.(n)x in D*(X,Z/p"7Z)

that extends the trace morphism Rap,us"~¢[—2c] — pi™ on X[1/p].

Furthermore, these morphisms satisfy a projection formula (cf. 7.2.4 below).
We will explain how we find ¥, (n)x in §1.3 below.

1.2. Arithmetic duality. We explain the second main result of this paper, the arithmetic
duality for p-adic étale Tate twists. We assume that A is an algebraic integer ring, and that
X is proper over B. Put V := X[1/p] and d := dim(X). For a scheme Z which is separated
of finite type over B, let H(Z,e) be the étale cohomology with compact support (cf. §10.2
below). There is a well-known pairing

HL(V, pgm) x Hy T4V, pgt =) —— Z/p'Z,

) H'pT
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and it is a non-degenerate pairing of finite groups by the Artin-Verdier duality ([AV], [Mal,
[Mi3], [De], [Sp]) and the relative Poincaré duality for regular schemes ([SGA4|, XVIII, [Th],
[FG]). We extend this duality to a twisted duality for X with coefficients in the p-adic étale
Tate twists. A key ingredient is a global trace map

H2 (X, T, (d)x) —— Z/p"Z,

which is obtained from the trace morphism in T7 for the structural morphism X — B and the
classical global class field theory. See §10.2 below for details. The product structure T5 and
the global trace map give rise to a pairing

HY(X, T,(n)x) x Hy 77X, F,.(d —n)x) —— Z/p'Z. (1.2.1)
The second main result of this paper is the following:

Theorem 1.2.2 (10.1.3). The pairing (1.2.1) is a non-degenerate pairing of finite groups for
any q and n with 0 <n < d.

A crucial point of this duality result is the non-degeneracy of a pairing
HE (X, To(n)xy) x HY 71X, To(d = n)x) —— Z/p'Z,

which is an extension of a duality result of Niziol [Ni] for crystalline local systems. Here X
denotes the set of the closed points on B of characteristic p, Xy, denotes [[,cs; X Xp By with
B, the henselization of B at s, and Y denotes X x g¥. To calculate this pairing, we will provide
an explicit formula (cf. 8.3.8 below) for a pairing of étale sheaves of p-adic vanishing cycles.

We state a consequence of Theorem 1.2.2. For an abelian group M, let M, (s be the subgroup
of p-primary torsion elements and let M), cotors be the quotient of M, o by its maximal p-
divisible subgroup. The following corollary is originally due to Cassels and Tate ([Ca], [Tal],
3.2) in the case that the structural morphism X — B has a section, and due to Saito [Sa2] in
the general case.

Corollary 1.2.3. Assume d =2 and either p > 3 or A has no real places. Then Br(X), cotors
is finite and carries a non-degenerate skew-symmetric bilinear form with values in Q,/Z,. In
particular, if p > 3 then it is alternating and the order of Br(X),.cotors 1S @ Square number.

Indeed, by a Bockstein triangle (cf. §4.3) and a standard limit argument, Theorem 1.2.2 yields
a non-degenerate pairing of cofinitely and finitely generated Z,-modules

HQ(X’ T@z)/zp(]‘)) X HS_q(X7 sz(l)) - QP/ZP’

where H*(X, QQP/ZP(I)) = hi)nrz:[ HZt(X’ sr(l)x) and H*(X, sz(l)) = @7’21 Hzt(X, Tr(l)X)
By the Kummer theory for Gy, (cf. 4.5.1 below), one can easily check that

Br(X)p—cotors = Hgt (Xa Soo (1)X)p—cotors = Hg)t (X> TZP (]-)X)p—tors-

Hence the corollary follows from the same argument as for [Ur], 1.5 (cf. [Ta3]) and the fact
that the bigraded algebra @,,>o HE (X, %, (n)x) with respect to the cup product is anti-
commutative in q.
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1.3. Construction of ¥,.(n)x. We explain how to find ¥,(n)x satisfying the properties in
Theorem 1.1.1. Let Y C X be the divisor on X defined by the radical ideal of (p) C Ox and
let V' be the complement X \ Y = X[1/p]. Let ¢ and j be as follows:

V -4 X Y.
We start with necessary conditions for T,.(n)x to exist.

Lemma 1.3.1. Assume that there exists an object T,(n)x € D*(Xg, Z/p"Z) satisfying T1-T4.
For a point x € X, let i, be the natural map v — X. Then:

(1) There is an exact sequence of sheaves on Xg

RS —— @yeyo iy W A —— Doyt i W Q02 (1.3.2)

where each arrow arises from the boundary maps of Galois cohomology groups.
(2) There is a distinguished triangle in D*(Xy, Z/p"Z) of the form

g ox,r(n)

LA e —1) —2 T(n)xy — re,Rjp

L —nl. (1.3.3)
Here t' is induced by t in T1 and the acyclicity property in T2, and 1<, denotes the

truncation at degree n. The object V{i;l is an étale sheaf on'Y defined as the kernel of
the second arrow in (1.3.2) (restricted onto Y'), and the arrow ox,(n) is induced by the

exact sequence (1.3.2).

The sheaf 14, agrees with W;Q%;g if Y is smooth. See §2.2 below for fundamental properties
of V{Zl. Because this lemma is quite simple, we include a proof here.

Proof. There is a localization distinguished triangle (cf. (1.9.2) below)
x 5100
T.(n)x —— Rjj T (n)x —2% Ru, RIS, (n)x[l] —=— T,.(n)x[1].  (1:34)

n

By T1, we have j*T,(n)x ~ j*us" via t. On the other hand, one can easily check
Tgn(Ri*Ri!Tr(n)X[l]) ~ L*Vﬁ;l[—n]

by T3 and T4 (cf. (1.9.4) below). Because the map R"j. 5" — 1.4, " of cohomology sheaves
induced by 5}}’702 is compatible with Kato’s boundary maps up to a sign (again by T4), the
sequence (1.3.2) must be a complex and we obtain the morphism ox,(n). Finally by T2, we
obtain the triangle (1.3.3) by truncating and shifting the triangle (1.3.4) suitably. The exactness

of (1.3.2) also follows from T2. Thus we obtain the lemma. O

We will prove the exactness of the sequence (1.3.2), independently of this lemma, in 3.2.4 and
3.4.2 below. By this exactness, we are provided with the morphism ox,(n) in (1.3.3), and
it turns out that any object T,(n)x € D®(X«,Z/p"Z) fitting into a distinguished triangle of
the form (1.3.3) is concentrated in [0,n]. Because D’(Xy,Z/p"Z) is a triangulated category,
there is at least one such ¥,(n)y. Moreover, an elementary homological algebra argument (cf.
2.1.2 (3) below) shows that a triple (¥,.(n)x,t, g) fitting into (1.3.3) is unique up to a unique
isomorphism (and that g is determined by (%,(n)x,t')). Thus there is a unique pair (¥, (n)x, t')
fitting into (1.3.3). Our task is to prove that this pair satisfies the listed properties, which will
be carried out in §§4-7 below. As a consequence of Theorem 1.1.1 and Lemma 1.3.1, we obtain

Theorem 1.3.5. The pair (T,(n)x,t) in 1.1.1 is the only pair that satisfies T2-T4, up to a
unique isomorphism in D*(Xy,Z/p"7Z).
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1.4. Comparison with known objects. We mention relations between ¥,(n)yx and other
cohomology theories (or coefficients). Assume that A is local with residue field k£ and p > n+2.
If X is smooth over B, then +*¥,(n)y is isomorphic to Re,S,(n), where S,(n) denotes the
syntomic complex of Fontaine-Messing [FM] on the crystalline site (X,/W,)eis with X, =
X®4A/p"Aand W, := W,(k), and € denotes the natural continuous map (X, /W, )eris — (X, )et
of sites. This fact follows from a result of Kurihara [Ku] (cf. [Ka2]) and Lemma 1.3.1 (see also
2.1.2 (3) below). The isomorphism ¢ in T1 corresponds to the Fontaine-Messing morphism
Re,S,(n) — T<pt*Rjps". On the other hand, (*T,.(n)x is not a log syntomic complex of
Kato and Tsuji ([Kab], [Tsl]) unless n > dim(X), because the latter object is isomorphic
to T<nt* Rj,pus" by a result of Tsuji [Ts2]. Therefore T,.(n)x is a new object particularly on
semistable families.

We turn to the setting in §1.1, and mention what can be hoped for ¥,.(n) y in comparison with
the étale sheafification Z(n)$t and the Zariski sheafification Z(n)4* of Bloch’s cycle complex
([B12], [Lel]). By works of Levine ([Lel], [Le2]), these two objects are strong candidates for the

motivic complexes I'(n)§ and I'(n)%*, respectively. So Theorem 1.3.5 leads us to the following:

Conjecture 1.4.1. (1) There is an isomorphism in D°(X¢, Z/p"Z)
Zn)EQ“Z/pZ —— T.(n)x.

(2) Let € be the natural continuous map X¢ — Xyar of sites. Then the isomorphism in (1)
induces an isomorphism in D*(Xza., Z/p"7Z)

Z(n)g(ar ®]L Z/pTZ = TSnRE*Tr(n)X-

The case n = 0 is obvious, because T,.(0)x = Z/p"Z (by definition). The case n = 1 holds by
the Kummer theory for Gy, (cf. 4.5.1 below) and the isomorphisms

ZO)E = Gul[-1], Z()%" = e.Gul-1] (Levine, [Le2], 11.2),
R'e,G,, =0 (Hilbert’s theorem 90).

As for n > 2, by results of Geisser ([Gel, 1.2 (2), (4), 1.3), Conjecture 1.4.1 holds if X/B is
smooth, under the Bloch-Kato conjecture on Galois symbol maps [BK], §5. A key step in his
proof is to show that Z(n)%* @ Z/p"Z is concentrated in degrees < n. We have nothing to say
about this problem for the general case in this paper.

1.5. Guide for the readers. This paper is organized as follows. In §2, we will review some
preliminary facts from homological algebra and results in [Sat], which will be used frequently
in this paper. In §3, which is the technical heart of this paper, we will provide preliminary
results on étale sheaves of p-adic vanishing cycles (cf. Theorem 3.4.2, Corollary 3.5.2) using
the Bloch-Kato-Hyodo theorem (Theorem 3.3.7). In §4, we will define p-adic étale Tate twists
in a slightly more general situation and prove fundamental properties including the product
structure T5, the contravariant functoriality T6, the purity property T3 and the Kummer
theory for Gy,. In §§5-6, we are concerned with the compatibility property T4. Using this
property, we will prove the covariant functoriality T'7 and a projection formula in §7. In §§8—
10, we will study pairings of p-adic vanishing cycles and prove Theorem 1.2.2. The appendix A
due to Kei Hagihara includes a proof of a semi-purity of the étale sheaves of p-adic vanishing
cycles (cf. Theorem A.2.6 below), which plays an important role in this paper. He applies his
semi-purity result to the coniveau filtration on étale cohomology groups of varieties over p-adic
fields (cf. Theorems A.1.4, A.1.5 and Corollary A.1.9 below).
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Notation and conventions

1.6. For an abelian group M and a positive integer n, , M and M /n denote the kernel and the

cokernel of the map M =% M, respectively. For a field k, k denotes a fixed separable closure,
and G}, denotes the absolute Galois group Gal(k/k). For a discrete Gi-module M, H*(k, M)
denote the Galois cohomology groups Hg,.,(Gx, M), which are the same as the étale cohomology
groups of Spec(k) with coefficients in the étale sheaf associated with M.

1.7. Unless indicated otherwise, all cohomology groups of schemes are taken over the étale
topology. We fix some general notation for a scheme X. For a point z € X, k(z) denotes its
residue field and 7 denotes Spec((x)). If X has pure dimension, then for a non-negative integer
q, X denotes the set of all points on X of codimension ¢. For an étale sheaf A of commutative
rings on X, we write D(Xg, A) for the derived category of étale A-modules on X (cf. [Hal,

I, [BBD], §1) We write DT (X, A) for the full subcategory of D(Xg, A) consisting of objects
coming from complexes of étale A-modules bounded below. For x € X and the natural map
iy . ¥ — X, we define the functor Ri' : DT(Xg, A) — D¥ (x4, N) as £*Ry', where ¢ denotes
the closed immersion {z} < X and ¢ denotes the natural map « < {z}. If £ is of finite type,

then Ri' is right adjoint to Ri,., but otherwise it is not. If z is a generic point of X, Ri', agrees
with i%. For F € DT (X4, A), we often write HX (X, F) for H:(Spec(Ox ), F).

1.8. We fix some notation of arithmetic objects defined for a scheme X. For a positive integer
m invertible on X, u,, denotes the étale sheaf of m-th roots of unity. If X is a smooth variety
over a perfect field of positive characteristic p > 0, then for integers » > 1 and ¢ > 0, W}Qgﬂog
denotes the étale subsheaf of the logarithmic part of the Hodge-Witt sheaf W, Q% ([BI1], [T11]).
For ¢ < 0, we define W, Q%,,, as the zero sheaf. For a noetherian excellent scheme X (all
schemes in this paper are of this kind), we will use the following notation. Let y and x be
points on X such that x has codimension 1 in the closure @ C X. Let p be a prime number,
and let ¢ and n be non-negative integers. In [KCT], §1, Kato defined the boundary maps

H* (y, py ™) — Hi(z, pg) (if ch(z) #p),
Ho(y, W,y Ts,) — H(z, W7 ,)  (if ch(y) = ch(z) =p),

H"  (y, p" ) — HO(z, W Q2 (if ch(y) =0 and ch(x) = p).

We write 8;5‘; for these maps. See (3.2.3) for the construction of the last map.

T log)

1.9. Let X be a scheme, let i : Z — X be a closed immersion, and let j : U < X be the open
complement X \ Z. Let m be a non-negative integer. For L € DT (X, Z/mZ), we define the
morphism

0p%(K) : Rjj*K —— Ri, RiI'K[1] in D*(Xe,Z/mZ)
as the connecting morphism associated with the semi-splitting short exact sequence of com-
plexes 0 — 4,i'I* — I* — j,j*I* — 0 ([SGA43], Catégories Dérivées, 1.1.2.4), where I® is an
injective resolution of K. The morphism 0%, (K) is functorial in K, and

055 (K)lgl = (=1)7 - 675 (Kla) (1.9.1)

for an integer q. Note also that the triangle

loc )

K —— Rjj*K 2= Ri.RiI'K[1] —— K[1] (1.9.2)
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is distinguished in DT (X, Z/mZ), where the arrow i, (resp. j*) denotes the adjunction map
Ri, Ri' — id (resp. id — Rj,j*). We generalize the above connecting morphism to the following
situation. Let y and z be points on X such that z has codimension 1 in the closure {y} C X.
Put 7 := {y} C X and S := Spec(Or,), and let ip (resp. iy, iz, 1) be the natural map 7" — X
(resp. y — X,z — X, S — T). Then for K € D*(X¢,Z/mZ), we define

6,°¢(K) := Rip R {025 (Vv* RipK) } © Riyy Riy K ——— Rig Ri, K[1] (1.9.3)

(Ri;, and R}, were defined in §1.6), which is a morphism in D*(Xe,Z/mZ). These connecting
morphisms for all points on X give rise to a local-global spectral sequence of sheaves on X

EYY =@ pexe R Vi (RiLK) = H(K).
For a closed immersion ¢ : Z <— X, there is a localized variant
BV = @ pexvnz R iy (RiLK) = i, RUTY'K. (1.9.4)

1.10. Let k be a field, and let X be a pure-dimensional scheme which is of finite type over
Spec(k). We call X a normal crossing scheme over Spec(k), if it is everywhere étale locally
isomorphic to

Spec(k:[To, T1> ce ,TN]/(TQT:[ s Ta))
for some integer a with 0 < a < N = dim(X). This condition is equivalent to the assumption
that X is everywhere étale locally embedded into a smooth variety over Spec(k) as a normal
crossing divisor.

1.11. Let A be a discrete valuation ring, and let K (resp. k) be the fraction field (resp. residue
field) of A. Let X be a pure-dimensional scheme which is flat of finite type over Spec(A). We
call X a regular semistable family over Spec(A), if it is regular and everywhere étale locally
isomorphic to
Spec(A[TO, Tl Ce ,TN]/(T()T:[ ce Ta — 71'))

for some integer a with 0 < a < N = dim(X/A), where 7 denotes a prime element of A. This
condition is equivalent to the assumption that X is regular, X ®4 K is smooth over Spec(K),
and X ®4 k is reduced and a normal crossing divisor on X. If X is a regular semistable family
over Spec(A), then the closed fiber X ®4 k is a normal crossing scheme over Spec(k).

2. Preliminaries
In this section we review some fundamental facts on homological algebra and results of the

author in [Sat], which will be used frequently in this paper.

2.1. Elementary facts from homological algebra. Let A be an abelian category with
enough injective objects, and let D(.A) be the derived category of complexes of objects of A.

Lemma 2.1.1. Let m and q be integers. Let KC be an object of D(A) concentrated in degrees
< m and let K' be an object of D(A) concentrated in degrees > 0. Then we have

Hom o(H™(K), HYK)  (if g =m),
0 (if ¢ >m),
where forn € Z and L € D(A), H"(L) denotes the n-th cohomology object of L.

Homp4) (K, K'[—¢q]) = {
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Proof. By the assumption that 4 has enough injectives, the left hand side is written as the
group of morphisms in the homotopy category of complexes of objects of A ([SGAZ%], Catégories
Dérivées, II, 2.3 (4)). The assertion follows from this fact. O

Lemma 2.1.2. Let Ny L Ny & Ny 2 Ni[1] be a distinguished triangle in D(A).

(1) Leti: K — Ny be a morphism with goi = 0 and suppose that Hompay(IC, N5[—1]) = 0.
Then there exists a unique morphism i’ : KK — N that i factors through.

(2) Let p: Ny — K be a morphism with po f =0 and suppose that Hompa)(N:[1], KC) = 0.
Then there exists a unique morphism p' : N3 — K that p factors through.

(3) Suppose that Homp(ay(N2, N1) = 0 (resp. Hompay(N3,N2) = 0). Then relatively to a
fized triple (N1, N3, h), the other triple (Na, f, g) is unique up to a unique isomorphism,
and f (resp. g) is determined by the pair (N, g) (resp. (Na, f)).

Proof. These claims follow from the same arguments as in [BBD], 1.1.9. The details are straight-
forward and left to the reader. O]

2.2. Logarithmic Hodge-Witt sheaves. Throughout this subsection, n denotes a non-
negative integer and r denotes a positive integer. Let k be a perfect field of positive char-
acteristic p. Let X be a pure-dimensional scheme of finite type over Spec(k). For a point
r € X, let i, be the canonical map z < X. We define the étale sheaves vy . and Ay, on X as

Vxr ¢ er zeX0 G VW7 x 10g zeX?1 lgx W, x 1og
X,r - m ( m, X ) zeX0 Zm* T 10g

where 9! denotes the sum of 97%’s with y € X° and x € X' (cf. §1.8). By definition, X
a subsheaf of v .. If X is smooth then both v% . and A%, agree with the sheaf WQX log* See
also Remark 3.3.8 (4) below.

We define the Gysin morphism for logarithmic Hodge-Witt sheaves as follows. We define the
complex of sheaves C?(X,n) on X¢ to be

(-1)n1.9 _ ne1 (D)L
EBIEXO Uiy Qx Jlog EBxEXl b VW7 Qx lolg -
(=pr~to (G DIe)

@xEX‘J ZSL‘*W Qx ,log T

Here the first term is placed in degree 0 and 0 denotes the sum of sheafified variants of 8;?;’8
with y € X7 and z € X7 (cf. §1.8). The fact 9o d = 0 is due to Kato ([KCT], 1.7). If X is a
normal crossing scheme, this complex is quasi-isomorphic to the sheaf v% . by [Sat], 2.2.5 (1).

Definition 2.2.1 (cf. loc. cit., 2.4.1). Let X be a normal crossing scheme over Spec(k) and let
1: 72 — X be a closed immersion of pure codimension ¢ > 0. We define the Gysin morphism

Gys} : vy, ‘[— — Rz”u}}vr in DY(Z¢, 7 /p"7)
as the adjoint morphism of the composite morphism in DX, Z/p"7)
iy = —— WCNZn—c)[-c] —— CN(X,n) —— v,
where the second arrow is the natural inclusion of complexes. See also Remark 2.2.6 below.

Theorem 2.2.2 (Purity, loc. cit., 2.4.2). Fori: Z — X as in Definition 2.2.1, Gys induces
an isomorphism T<.(Gys}) : vy “[—c] = 1< Ri'V% ..
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We next state the duality result in loc. cit. For integers m,n > 0, there is a natural biadditive
pairing of sheaves

Vi X N, —— v (2.2.3)
induced by the corresponding pairing on the generic points of X (cf. loc. cit., 3.1.1).

Theorem 2.2.4 (Duality, loc. cit., 1.2.2). Let k be a finite field, and let X be a normal crossing
scheme of dimension N which is proper over Spec(k). Then:
(1) There is a trace map trx : HNTY X, v¥ ) — Z/p"Z such that for an arbitrary closed
point x € X the composite map

H(z, Z/prZ) —o HN“(X vy, 2 Z/p'Z
coincides with the trace map of x, i.e., the map that sends a continuous character of
Gr(z) to its value at the Frobenius substitution. Furthermore trx is bijective if X is
connected.
(2) For integers q and n with 0 < n < N, the natural pairing

(2.2.3)

HY(X, v, ) x BN ) 222 gvex o ) 5 7)/pz (2.2.5)

is a non-degenerate pairing of finite Z/p" Z-modules.
We will give the definition of trx in Remark 2.2.6 (4) below.

Remark 2.2.6. We summarize the properties of the Gysin morphisms and the trace morphisms,
which will be used in this paper.

(1) The Gysin morphisms defined in Definition 2.2.1 satisfy the transitivity property.

(2) Fori:Z — X asin Definition 2.2.1, Gys]' agrees with the Gysin morphism considered
in [Sat], 2.4.1, up to a sign of (—1)¢. In particular if X and Z are smooth, then Gys}
agrees with the Gysin morphism W, Q5 [—c] — Ri'W. Q% ,,, of Gros ([Gs], IL1) up to
the sign (—1)¢ by [Sat], 2.3.1. This fact will be used in Lemma 6.4.1 below.

(3) Let X and Z be normal crossing schemes over Spec(k) of dimension N and d, respec-
tively, and let f : Z — X be a separated morphism of schemes. We define the morphism

try: Rfivg [d] —— v{,[N] in D"(Xe,Z/p"Z)

by applying the same arguments as for [JSS], Theorem 2.9 to the complexes C2(Z,d)[d]
and C’;(X, N)[N]. Then try agrees with that in loc. cit., Theorem 2.9 up to the sign

(=1)N=4. In particular if X and Z are smooth and f is proper, then tr; agrees with the
Gysin morphzsm REW QG0 [d] — W QN 1 [N] due to Gros ([Gs], IL1) up to the sign
( ].)N d‘

(4) We define the trace map trx in Theorem 2.2.4 (1) as the map induced by try for f :
X — Spec(k) and the trace map of Spec(k). The map try agrees with (—1)N-times of
the trace morphism constructed in loc. cit., §3.4.

3. Boundary maps on the sheaves of p-adic vanishing cycles

This section is devoted to technical preparations on the étale sheaves of p-adic vanishing cy-
cles. The main results of this section are Theorem 3.4.2 and Corollary 3.5.2 below. Throughout
this section, n and r denote integers with n > 0 and r > 1.
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3.1. Milnor K-groups and boundary maps. We prepare some notation on Milnor K-
groups. Let R be a commutative ring with unity. We define the 0-th Milnor K-group K2 (R)
as Z. For n > 1, we define the n-th Milnor K-group K (R) as (R*)®"/J, where J denotes the
subgroup of (R*)®" generated by elements of the form 1 ® --- ® z,, with z; +z; =0 or 1 for
some 1 <7< j<n. Anelement r; ®---®z, mod J will be denoted by {z1,...,z,}. Now let
L be a field endowed with a discrete valuation v. Let O, be the valuation ring with respect to
v, and let F, be its residue field. Fix a prime element 7, of O,. We define the homomorphism

O, + KN (L) — KLy (F)
(vesp. sp,., : K,/ (L) — K/ (F,))
by the assignment

{Tp, 1, p 1} — {T1,...,Tn1} (resp. 0)

{z1,...;2,} — 0 (resp. {T1,...,Tn})
with each x; € O (cf. [BT], 1.4.3). Here for z € O}, T denotes its residue class in F,*. The map
OM is called the boundary map of Milnor K -groups, and depends only on the valuation ideal
p, C O,. We will denote 8% by 8% . On the other hand, the specialization map sp,, depends on
the choice of 7,, and its restriction to Ker(d;!) C K}'(L) depends only on p,,. Indeed, Ker(d})
is generated by the image of (O)®" and symbols of the form {1+ a,x1,..., 2,1} with a € p,
and each x; € L*.

3.2. Boundary map in a geometric setting. Let p be a prime number. Let K be a henselian
discrete valuation field of characteristic 0 whose residue field £ has characteristic p. Let Og be
the integer ring of K. Let X be a regular semistable family over Spec(Of) of pure dimension
(cf. §1.11), or more generally, a scheme over Spec(Ok ) satisfying the following condition:

Condition 3.2.1. There ezist a discrete valuation subring O" C Ok with Ok /O’ finite and a
pure-dimensional reqular semistable family X' over Spec(O’) with X ~ X' ®¢r Ok .

Later in §3.4 and §3.5 below, the extension O /O’ will be assumed to be unramified or tamely
ramified. Let Y be the reduced divisor on X defined by a prime element m € O, and let ¢ and
j be as follows:
Xg 1> X «— V.
In this section, we are concerned with the étale sheaf
M = R jo "

on Y and the composite map of étale sheaves

N " Cengm OV . "

Nt M —— Dyeyo iysly M —— Dyeyo zy*W;QyJolg. (3.2.2)
Here for a point y € Y, i, denotes the canonical map y — Y. For each y € Y the second

arrow 9" is defined as follows:

% AN S r 9y — r _dlo n—

(07 = KO~ K2 ) 2 Wy, (323
where p, denotes the maximal ideal of the discrete valuation ring (93?@. The first isomorphism
is due to Bloch-Kato [BK], (5.12), and the arrow d,! denotes the boundary map of Milnor

K-groups. We first show the following fundamental fact:
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Lemma 3.2.4. The image of 0% . is contained in 1/{};1. See §2.2 for the definition of 1/{};1.
Proof. For x € Xk, let 7, be the natural map x — X. Consider a diagram on Y

LN ® 92 -1, ,®n—1
M;L eamG(XK)O L*anx*'uprn - @mG(XK)l R Zx*:uprn

N |

_ . _ o, : _
0 — V}rﬁ,rl - ®y€YO ZZ/”‘V[/;“Qz,lolg — @yEYl Zy*mQZ,lozg‘
Here a denotes the canonical adjunction map and each 0; (i = 1,...,4) is the sum of sheafified

variants of boundary maps in §1.8. The right square is anti-commutative by a result of Kato
[KCT], 1.7. The upper row is a complex by the smoothness of Xy . The lower row is exact by
the definition of 1{,'. Hence we have Im(d% ) = Im(d; o a) C 1§, O

By this lemma, d% . induces a map
o, M —— v (3.2.5)
which is a geometric version of the boundary map of Milnor K-groups (modulo p").

3.3. Bloch-Kato-Hyodo theorem. We give a brief review of the Bloch-Kato-Hyodo theorem
on the structure of M;', which will be useful in this and later sections. See also Remark 3.3.8
below. We define the étale sheaf K}y 1 onY as (1*5.0%, )®"/J, where J denotes the subsheaf
generated by local sections of the form 71 ® --- ® z,, (v; € 1"j.O0%,. ) with ; +2; = 0 or 1 for
some 1 < i < j <n. There is a natural map due to Bloch and Kato [BK], (1.2)

Ky — M, (3.3.1)

which is a geometric version of Tate’s Galois symbol map. We define the filtrations U® and V'*
on M using this map, as follows.

Definition 3.3.2. (1) Let w be a prime element of Ok. Let Uy, be the full sheaf *j, O%, .
For q > 1, let Uy, be the étale subsheaf of 1*j.O%,  generated by local sections of the
form 1+ w9 -a with a € *Ox. We define the subsheaf UqlefXK/y (g >0) of IC%XK/Y
as the part generated by U, ® {0*5,0%, }*" 1.

(2) We define the subsheaf UM (¢ > 0) of M as the image of UqlC%XK/Y under (3.3.1).
We define the subsheaf VIM™ (q > 0) of M as the part generated by UT™*M" and the
image of U |y v ® (1) under (3.3.1).

Remark 3.3.3. (1) U’IC%XK/Y and UM are independent of the choice of m € Ok by
definition.
(2) VOM™ and V*M} are independent of the choice of m € O by Theorem 3.3.7 below.

To describe the graded pieces grf,,, M;" := UIM]'/VIM]" and gy, M;" = VIM /U M
(especially in the case where Y is not smooth), we introduce some notation from log geometry
in étale topology See [Ka3] for the general framework of log schemes in the Zariski topology.
See also e.g., [KF], §2 and §3 for the corresponding framework in the étale topology. For a
regular scheme Z and a normal crossing divisor D on Z, we define the étale sheaf L£z(D) of
pointed sets on Z as

Lz(D):={f € Og; f is invertible outside of D} C Oy.
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We regard this sheaf as a sheaf of monoids by the multiplication of functions. The natural
inclusion Lz(D) — Oy gives a log structure on Z, and the associated sheaf £7(D)® of abelian
groups is étale locally generated by O and primes of Oz defining irreducible components of
D. Now we return to our situation. Put B := Spec(Ok) and s := Spec(k), and let L, be the
inverse image of Lp := Lp(s) onto sg in the sense of log structures. We define the log structure
Ly on Yy as follows. By 3.2.1, there exist a discrete valuation subring O’ C O and a regular
semistable family over B’ := Spec(O’) such that O /O’ is finite totally ramified and such that
X' ®0 Ok ~ X. Note that Y is a normal crossing divisor on X’. We fix such a pair (O’, X’)
and define the log structure Ly on X as that obtained from Lx/(Y) by base-change (in the
category of log schemes):

(X, Lx) = (X", Lx/(Y)) X8/, (s)) (B, LB).
Finally we define Ly as the inverse image of Lx onto Y in the sense of log structures. Let us

recall the following fundamental facts:

e The log scheme (X', Lx/(Y)) (resp. (X, Lx), (Y,Ly)) is smooth over the log scheme
(B, Lp(s)) (resp. (B,Lp), (s,Ls)) with respect to the natural map induced by the
structure map X' — B’.

e The relative differential modules w& £y)/(s,L5) O1 Yy are locally free Oy -modules of finite

rank and coincide with the modified differential modules wj- defined in [Hyl].
e There is a natural surjective homomorphism

v O0x, 2 (L) —— LY (3.3.4)
of sheaves of abelian groups on Yz (see [Tsl], (3.2.1) for the first isomorphism).

Let us recall further some facts relating log structures and differential modules.

e By the definition of Wiy £ )/c.) = Wy, there is a natural map taking the logarithmic
differentials of local sections of L3

dlog : L —— wi-. (3.3.5)
e There is an analogous map for each n > 0 and r» > 0
dlog : (LY)®" —— Dyeyo iy, W, (3.3.6)

The modified logarithmic Hodge-Witt sheaf W wy.,, defined by Hyodo ([Hyl], (1.5))
agrees with the image of this map. See also Remark 3.3.8 (4) below.
Now we state the theorems of Bloch-Kato [BK], (1.4) and Hyodo [Hy1], (1.6). For local sections
z; € 1*5.0%, (1 <i < n), we will denote the image of {x1,zs,...,2,} € K} under the
symbol map (3.3.1) again by {1, xs, ..., z,}, for simplicity.

Theorem 3.3.7 (Bloch-Kato/Hyodo). (1) The symbol map (3.3.1) is surjective, that is,
the subsheaf UM is the full sheaf M™ for anyn >0 and r > 0.
(2) There are isomorphisms

gy M o= Wwdyoe; {71, 29, 20} mod VOM? = dlog(Ti T2 ® -+ - ® Ty),

grQ//UMf ~ I/V,,w%(}g; {z1,...,Tp_1, 7} mod U'M" — dlog(T7 ® - -+ @ Tp,_1),

where for v € 1*j, 0%, T denotes its image into LY via (3.3.4).
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(3) Let e be the absolute ramification index of K, and let r = 1. Then for q with 1 < q <
¢ :==pe/(p—1), there are isomorphisms

n—1 n—1
Wy /BY (p/i/Q),

gri M@ ~ LA
vV {Wy 1/ZY ! (rla),

q n Ao n—2 n—2
ng/UMl ~ wy /2y,

given by the following, respectively:

a T7) A -+ A dlog(Tp—1) mod By
{1+7Tqa71'1,...737n_1} mod Vinn N {g (E) Og(f]}' l) mo Bn . (p/{/Q)
a - dlog(z7) A --- Adlog(T,,—1) mod Zy~ " (plq)
{1+ 7%, 21,...,2,- 2,7} mod Ut M} s @- dlog(T1) A - - - A dlog(Tn—z) mod 232,

where BY (resp. Z1) denotes the image of d : Wy~ — Wi (resp. the kernel of d : Wi —
W) a denotes a local section of Ox and @ denotes its residue class in Oy .

(4) We have UM = VIMP =0 for any q¢ > €.
Remark 3.3.8. (1) By Theorem 3.3.7 (1) and (2), the natural adjunction map
M2 UM —— @yeyo iy (M2 /U M?) (3.3.9)

is injective. We will use this injectivity to calculate the kernel of the map o% . defined
n (3.2.5). See the proof of Theorem 3.4.2 below.

(2) If Y is smooth over s = Spec(k), then we have Wowih,, = W, QP and vy = QF =
Qy)y., and the isomorphisms in Theorem 3.3.7 (2) yield the direct decomposition

M UM ~ W, & WLQY (3.3.10)

(cf. [BK], (1.4.1.i)). By this decomposition, it is easy to see that the kernel of o% . is
generated by U*M™ and the image of (:*O%)®™ under (3.3.1). In the next subsection,
we will extend the last fact to the reqular semistable case, although the decomposition
(3.3.10) does not hold any longer in that case.

(3) Theorem 3.3.7 (3) and (4) will be used in later sections.

(4) There are inclusions of étale sheaves (cf. [Sat], 4.2.1)

n n n
)\YJ, C W“WY,log C vy,

These inclusions are not equalities, in general (cf. loc. cit., 4.2.3). If n = dim(Y), then
we have Wowy,, = vy, by loc. cit., 1.3.2.

3.4. Structure of Ker(o% ). We define the étale subsheaf F'M* of M as the part generated

by U M™ and the image of (:*O%)®™ under (3.3.1). In the rest of this section, we are concerned
with the map 0%, in (3.2.5) and the filtration

0CcU'M"»C FM! C M.
Remark 3.4.1. Clearly, F'M" is contained in the kernel of o'y ,..

The main result of this section is the following theorem, which plays an important role in later
sections (see also Corollary 3.5.2 below):
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Theorem 3.4.2. Suppose that X is a reqular semistable family over Spec(Ok). Then o¥%
induces an isomorphism

MM FM? —— v, (3.4.3)
that is, o, is surjective and FM]' = Ker(o% ). Furthermore there is an isomorphism
FM! /UM —=— X}, (3.4.4)

sending the symbol {x1,za, ..., x,} (x; € 1*O%) to dlog(T1 @ T3 ® - - - ® T,). Here for a section
r € *Ox, T denotes its residue class in Oy. See §2.2 for the definition of Ay,

Remark 3.4.5. Theorem 3.4.2 is not included in Theorem 3.3.7 unless X is smooth over Og.
See also Remark 3.3.8 (2). In fact, VOM" is not related to F M directly. However, Theorem
3.3.7 (1) and (2) play a key role in the proof of Theorem 3.4.2 as the injectivity of (3.3.9).

We first prove the following lemma, which is an essential step in the proof of Theorem 3.4.2:

Lemma 3.4.6. Let
7 : Ker(o%,)/U' M —— @yeyo iy W.Q0

be the natural map induced by the first map in (3.2.2) and an exact sequence

y,log

X X aval
0 ®y€Y0 ZZ/"‘VV Qy log ®y€Y0 Zy*ZZ(M:L/UlM:L) @ero ZZ/"‘VV Qy log

(¢f. Remark 3.3.8 (2), see (3.2.2) for 9"'). Then 7 is injective, and Im(7) is contained in Y,

Proof. The injectivity of 7 immediately follows from that of (3.3.9). We prove that Im(7) is
contained in Ay.. Since the problem is étale local on Y, we may assume that Y has simple
normal crossings on X. For y € Y, let Y, be the irreducible component of ¥ whose generic
point is y. For 2 € Y, let i, be the canonical map = — Y. Let YY" (resp. Y)) be the disjoint
union of irreducible components of Y (resp. the disjoint union of intersections of two distinct
irreducible components of V), and let a; : Y® — Y (i = 1,2) be the natural map. Fix an
ordering on the set Y. There is a Cech restriction map 7 : a1 W Q) Jog a W, Q7 ) Jog? and
its kernel agrees with Ay, by [Sat], 3.2.1. Our task is to prove the followmg two claims:
(1) For arbitrary points y € Y° and x € (Y,)*, the composite map

val

Ay - Ker(a}’r) % ZQ*WQy log — ZI*WQx Jlog
is zero, where T, denotes the natural map induced by 7. Consequently, T induces a map
T Ker(aXT) — a1 W QP ) 1o

(2) The following composite map is zero:

B Ker(o%,) —— ap W Q. — s ag W

YD log Y () log*

Proof of Claim (1). It suffices to show that the stalk ()7 is the zero map. Let Yy, be the
singular locus of Y. The case & € (Yang)? immediately follows from the direct decomposition
(3.3.10). To show the case = € (Ysng)?, we fix some notation. Put R := OF';, which is a strict
henselian regular local ring of dimension 2. Let 77 and 7% be the irreducible components of
Spec(Oi%). We suppose that T} lies above Y. Fix a prime element ¢; € R (i = 1,2) defining
T;. Put wy; :=t; mod (t2) € R/(t2) and wy := ta mod (t1) € R/(t1). Because the divisor
Ty UTy C Spec(R) has simple normal crossings, R/(t1) and R/(t2) are discrete valuation rings
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and w; (resp. wq) is a prime element in R/(t2) (resp. R/(t1)). Let n; (i = 1,2) be the generic
point of T;. There is a commutative diagram with exact rows

Ker(d) —— KM(RI/p))/p" —2— KM (x(m))/p" ® KM, (k(m))/p"

l (3.3.1)l dlogl: (3.4.7)

(e Jz . _ . _
Ker(o-?(,r)f ; (Mﬁ)f X—y) (Zy*m &’Zz,lolg)5 @ (Zy’*VVT QZ’,lfl)g)f‘

Here 0 is the direct sum of the boundary maps of Milnor K-groups modulo p", and 3" denotes
the generic point of Y corresponding to 75. In this diagram, the right vertical arrow is bijective
by a theorem of Bloch-Gabber-Kato [BK], (2.1), and the central vertical map is surjective by
Theorem 3.3.7 (1). Hence the left vertical map, resulting from the right square, is surjective.
On the other hand, there is a composite map

i, a1 - KM (RIL/P) 7 —— KM (Frac(R)/p7 — KM(s(m))/p’.  (348)

n

See §3.1 for sp,,. The restriction of this map to Ker(0) fits into a commutative diagram

M
P4y, R[1/p] | Ker(0)
#

0
Ker(0) EM(k(m))/p7 —2 KM, (k(T))/p"
surjl dlogl dlogl (349)
n (my)z . n (0327 n—1
Ker(aX,r)f - (Zy*W“ Qy,log)f - W, QE,log’

where the composite of the lower row gives (o, ;)7 The composite of the upper row is the zero
map by a commutative diagram of Milnor K-groups modulo p”

KM RO/ —20 KM () /o
— /”]l Jspwl (3.4.10)

81\1
EM(k(m))/p7 —=25 KM, (k(z))/p",
whose commutativity is shown explicitly by the direct decomposition R[1/p]* ~ R* x (t1) X (t3).
Hence (o, ;)7 is the zero map by the diagram (3.4.9), and we obtain the claim (1).

Proof of Claim (2). Let Z be a connected component of Y. Let Y; and Y; be the irreducible
components of Y such that ay(Z) C Y; NY;. Our task is to show that the composite map

T/ 7
BZ : Ker(agl(,r) A1+ (W‘ Q%,log D W‘ Qﬁz,log) CLQ*W QTZL,log

is zero, where the last map sends (wi,ws) (w; € W, QY. ,) to wilz — wa|z. Let z be the
generic point of ay(Z). Since the canonical map ag. W, Q% ., — 1. W 27 1, is injective, we have
only to show that the stalk (87)z is zero. Put R := (93?,5, and let the notation be as in the
proof of Claim (1). Suppose that T; (i = 1,2) is the irreducible component of Spec(Oi}%) lying
above Y;. Let N; (i = 1,2) be the kernel of the boundary map K (k(n;))/p" — KM (k(T))/p".

By the commutative diagram (3.4.10), spy, g1/ in (3.4.8) induces a map
fi : Ker(0) —— N;.
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See (3.4.7) for 0. This map fits into a commutative diagram
(f1,f2) f3 M/ = r
Ker(0) —— N1 © N, —— K (k(T))/p
surjl dlogl dlogl (3411)
Ker(agl(,r)f — (m Q?H,log D m Qg“g,log>f —— W‘ Q%log?

where f3 sends (u1,u2) (u; € N;) to sp,, (U1
The composite of the lower row gives (8z)
commutative diagram

) — 8Py, (u2). See (3.4.7) for the left vertical map.
z. The composite of the upper row is zero by a

SPto,R[1/p]
—=

KY'(R[1/p])/p" KM (k(n2))/p"

SptpR[l/P]J lSpﬂq

SPuw _ .

Ky ((m)) /P —  KY(s(T))/1",
whose commutativity is checked in the same way as for (3.4.10). Thus (8z)z is the zero map,
and we obtain the claim (2) and Lemma 3.4.6. O

Proof of Theorem 3.4.2. The surjectivity of (3.4.3) follows from the same argument as for [Sat],
2.4.6 (see the surjectivity of the map (2.4.9) in loc. cit.). We prove the injectivity of (3.4.3)
and construct the bijection (3.4.4). There are injective maps

FM! /UM < Ker(c%,.) /U M < Ay,
(see Lemma 3.4.6 for 7). These two arrows are both bijective, because the sheaves FM™/U* M"
and A}, are generated by symbols from (¢*Ox)®" and (Oy)®", respectively. Therefore we have
FM! = Ker(o% ) as subsheaves of M" and the composite of the above two maps gives the
desired bijective map (3.4.4). This completes the proof of Theorem 3.4.2.

3.5. Tamely ramified case. Assume that X satisfies the following condition over Og:

Condition 3.5.1. There exist a discrete valuation subring O' C Ok with Ok /O’ finite tamely
ramified and a regular semistable family X' over O with X ~ X' ®or O .

Let Y and M" (resp. U'M™, FM") be as we defined in §3.2 (resp. §3.3, §3.4). By Theorems
3.3.7 and 3.4.2, we obtain

Corollary 3.5.2. The map 0%, induces an isomorphism M]'/FM]' ~ V{i;l, and there is an
isomorphism FM /U M? ~ Xy, = described in the same way as (3.4.4).

Proof. The second assertion is an immediate consequence of Remark 3.3.8 (1) for X and the
definitions of F'M" and Ay, (cf. Lemma 3.4.6). We prove the first assertion. Since the problem
is étale local on Y, we may assume that O /O’ is totally tamely ramified. Then the divisor
on X’ defined by a prime element 7’ € O’ agrees with Y. Let e; be the ramification index of
Ok/O" and let ' and j' be as follows:

-/ /

X, L= X' Y,
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where K’ denotes Frac(O'). Let My, be the étale sheaf /* R™j,u%". There is a commutative
diagram with exact rows

n 1 n
o, mod U Mr,X’

1 1 X/ r
0 —— FMy /UMy, —— Moy, /UMy, vy, — 0
l resl qu
n Lasn n Lasn o' . mod UlMﬁ
0 —— Ker(o%,)/U'M! ——  M"JU'M; Yy

where the exactness of the upper row follows from Theorem 3.4.2. Because (e1,p) = 1 by
assumption, the central vertical arrow is bijective by Theorem 3.3.7 (1), (2) (for X’ and X),
and the right vertical arrow is bijective as well. Hence o'y, is surjective and the left vertical
map is bijective, which implies the equality F'M;" = Ker (o' ,.). O

4. p-adic étale Tate twists

In this section, we define the objects T,.(n)x (n > 0, r > 1) stated in Theorem 1.1.1 and
discuss their fundamental properties including T1, T2, T3, T5 and T6.

4.1. Setting. Let A be a Dedekind ring whose fraction field has characteristic zero and which
has a maximal ideal of positive characteristic. Let p be a prime number which is not invertible
in A, and we assume that the residue fields of A at maximal ideals of characteristic p are perfect.
Put B := Spec(A) and write 3 for the set of the closed points on B of characteristic p. For
a point s on B, let B; be the henselization of B at s. Let X be a pure-dimensional scheme
which is flat of finite type over B. We assume that X satisfies the following condition, unless
mentioned otherwise:

Condition 4.1.1. X[1/p] is reqular. For any s € 3, each connected component X' of X X g B
satisfies the condition 3.5.1 over the integral closure of By in T'(X', Ox/).

We will often work under the following stronger assumption:

Condition 4.1.2. X is reqular. For any s € 3, each connected component X' of X xpg By is
a reqular semistable family over the integral closure of By in T'(X’, Ox/).

Let X be a pure-dimensional flat of finite type B-scheme satisfying 4.1.1. Let Y C X be the
divisor defined by the radical of (p) C Ox. We always assume that Y is non-empty. Let 4.,

be as in §2.2. Put V := X \ Y = X[1/p]. Let ¢ and j be as follows:

V 25 X Y.
Define the étale sheaf M* on Y to be v* R" j.u5".

4.2. Definition of T,.(n)x. Let X and p be as before. We define ¥,(0)x := Z/p"Zx. For
n > 1, let

oxp(n) : TenRjpS" —— vt [—n]  in D(Xe, Z/p"Z) (4.2.1)

be the morphism induced by the map t.(0o%,) : R"jus" = t.M]' — L*I/ﬁ;l of sheaves on X
(cf. Lemma 2.1.1). See (3.2.5) for 0% .
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Lemma 4.2.2. Supposen > 1, and let

WA e — 1) —2 K — s re Rjopen 0 ynet g (4.2.3)

be a distinguished triangle in D®(Xg,Z/p"Z). Then K is concentrated in [0,n], the triple
(K,t,g) is unique up to a unique isomorphism and g is determined by the pair (IC,t).

Proof. The map t.(0’ ) is surjective by Theorem 3.4.2 and Corollary 3.5.2. Hence K is acyclic
outside of [0, n] and there is no non-zero morphism from K to ¢,14",'[—n — 1] by Lemma 2.1.1.
The uniqueness assertion follows from this fact and Lemma 2.1.2 (3). O

Definition 4.2.4. Forn > 1, we fiz a pair (KC,t) fitting into a distinguished triangle of the form

(4.2.3), and define T,.(n)x := K. The morphism t determines an isomorphism j*K ~ p=", and

T (n)x is concentrated in [0,n], that is, T,(n)x satisfies T1 and T2 in 1.1.1. Moreover, t
induces isomorphisms

RIj ps” (0<qg<mn),

4.2.5
L AL (=), (4.2.5)

HI(Te(n)x) = {

where we have used Theorem 3.4.2 and Corollary 3.5.2 for g = n.
We prove here the existence of a natural product structure (T5 in 1.1.1).
Proposition 4.2.6 (Product structure). For m,n > 0, there is a unique morphism
T (m)x T, (n)xy —— T,(m+n)x in D (X, Z/p7Z) (4.2.7)
that extends the natural map p™ @ ps™ — ps™ " on V.

Proof. It m = 0 or n = 0, then the assertion is obvious. Assume m,n > 1, and put £ :=
T, (m)x®" T,.(n)x. By the definition of T,(m + n)x and Lemma 2.1.2 (1), it suffices to show
that the following composite morphism is zero in D~ (X, Z/p"Z):

. L . . UX,r(m+7l) ma4n—1
L — TemRjps™ @ < Rjupi — Temin Rjupiy™™" ——= 1,09, [=m — n],

where the second arrow is induced by the natural map p5™ ® ps" — ps™*™ on V. We prove
this triviality. Because £ is concentrated in degrees < m + n, this composite morphism is

determined by the composite map of the (m + n)-th cohomology sheaves (cf. Lemma 2.1.1)

L (o) _
H™(L) —— .M @ 1M —— o, M ——

The image of H™ ™™ (L)(~ t, FM™ & 1, FM") into ¢, M is contained in ¢, FM™". Hence
this composite map is zero and we obtain Proposition 4.2.6. O

The following proposition (T'6 in 1.1.2) follows from a similar argument as for Proposition 4.2.6.

Proposition 4.2.8 (Contravariant functoriality). Let X and Z be flat B-schemes satisfying
41.1. Let f: Z — X be a morphism of schemes, and let v : Z[1/p] — X[1/p] be the induced

morphism. Then there is a unique morphism
" %.(n)x —— T.(n)y in D*(Ze, Z/p"7Z)

that extends the natural isomorphism * ps™ ~ p=t on (Z[1/p])e.. Consequently, these pull-back

morphisms satisfy the transitivity property.
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4.3. Bockstein triangle. We prove the following proposition:

Proposition 4.3.1. For r,s > 1, the following holds:

(1) There is a unique morphism p : T,(n)x — T,41(n)x in D*( X, Z/p" ' Z) that extends
the natural inclusion pi" — ug’ﬁl on Vi.
(2) There is a unique morphism R : T,11(n)x — T.(n)x in D*(X, Z/p"1Z) that extends
the natural projection u?ﬁl — st on V.
(3) There is a canomnical Bockstein morphism 0, : To(n)x — Tp(n)x[1] in D°(Xg) satisfy-
ing
(3-1) b, extends the Bockstein morphism p3" — pSt(1] in D*(Vy) associated with the
short exact sequence 0 — pS™ — pt, — pS* — 0.
(3-2) 65, fits into a distinguished triangle
RT Os,r p[1]
Trps(n)x —— Tn)x —— T(n)x[l] —— Trpa(n)x[1].
Proof. The claims (1) and (2) follow from the fact that ¥,(n)x concentrated in [0,n] and
Lemma 2.1.2 (1). The details are straight-forward and left to the reader. We prove (3). For
two complexes M* = ({M"}uez, {dfy; : M" — M"*}uez), N* = ({N"}yez, {d }vez) and a
map h® : M* — N* of complexes, let Cone(h)® be the mapping cone (cf. [SGA4], XVII)

Cone(h)? := M™™ @& N, dl, . = (—dii, B 4 dY).
We construct a morphism Js, satisfying (3-1) and (3-2) in a canonical way. Take injective

resolutions pf" — I3 (v = r,r + s) and an injective resolution 5" — Jg in the category of
sheaves on V; for which there is a short exact sequence of complexes of the form

0 I I, Je 0.
Let ay @ T<pjuly — w4, [-n] (v = r,r +s) and by : 7<pfiJs — g, [—n] be the natural
maps of complexes that represent ox,(n) : T<, RjpS — w4, [—n] with v = r,r + s and s,
respectively (cf. §4.2). The complexes Cone®(a,) (v = 7,7+ s) and Cone®(bs) represent ¥,(n)x
with v = 7,7 + s and s, respectively. We show that the sequence of complexes

0 —— Cone'(ar) —— Cone'(ar+s) L) Cone'(bs) — 0 (432)

1 1

+s

is exact. Indeed, this exactness follows from that of the sequence 0 — vy — 1/3’};1 —

0 ([Sat], 2.2.5 (2)) and that of the sequence of complexes

— vy,

0 B Tgnj*l; I Tgnj*[.

r4s E— Tgn]*JS. E— 0 (433)

(cf. Theorem 3.3.7 (1)). Finally, we define J;, as the composite Cone®(b;) — Cone®(f) =~
Cone®(a,)[1] in D*(X4), i.e., connecting morphism associated with (4.3.2). By definition, d,,,
is canonical and satisfies the properties (3-1) and (3-2). This completes the proof. O

Remark 4.3.4. One can construct a map 0, : T(n)x — T.(n)x[1] in D*(Xg, Z/p*t"Z)
satisfying (3-1) and (3-2) in the same way as above. Clearly, 0, = 65, in D(Xg).
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4.4. Gysin morphism and purity. We define Gysin morphisms for closed subschemes of X
contained in Y and prove T3 in 1.1.1. See §6 below for a purity result for horizontal subschemes.

Lemma 4.4.1. (1) There is a unique morphism
g : V{ﬁ;l[—n —1] —— R/%.(n)x in DYy, Z/p"7Z)
fitting into a commutative diagram with distinguished rows

—ox,r(n) g[1]

Tr(n)x —t, TgnRj*ugr" L*Vﬁ;l[—n] Tr(n)x 1]

| | Rer(g)11] | | (4.4.2)

8196, (Z/p"Z(n) x)

T, (n)x —L—  Rj.uS" RuRIT,(n)x[1] —2— %,(n)x[1].

Here t and g denote the same morphisms as in Lemma 4.2.2, and the lower row is the
localization distinguished triangle (1.9.2).
(2) ¢ induces an isomorphism

Tensr(9) 114 o = 1] == 7RIS, (n)x  in D'(Ya, Z/p'Z).
Proof. We first calculate the cohomology sheaves of Ri'T,.(n)x. In the lower row of (4.4.2), the
map of the g-th cohomology sheaves of ot is bijective (resp. injective) if ¢ < n (resp. ¢ = n),
by (4.2.5). Hence by T2, we obtain

0 < 1
RIMT, (n)x =~ o (g<n+1), (4.4.3)
R (¢>n+1),
and a short exact sequence
LEHT 6loc ‘3:7' n
0 —— FMp —— Mp OO0 g gy 0, (444)

By Lemma 2.1.1, (4.4.3) and T2, we have
Home(YémZ/prz) (‘Zr(n)X [1], RL*RL!‘ZT(H)X[”) =0.

Hence the first assertion of the lemma follows from Lemma 2.1.2 (2). The second assertion
follows from (4.4.4). O

Definition 4.4.5. Let ¢ : Z — Y be a closed immersion of pure codimension. Put ¢ =
codimy (%), and let i be the composite map Z — Y — X. We define the morphism

Gysy : vy, ‘[-n—d —— Ri'T,(n)x in D"(Ze,Z/p"Z) (4.4.6)

n—c

as follows, where vy ¢ means the zero sheaf if n < c. If Z =Y (hence c =1 and i = 1), then
we define Gys!' as the morphism ¢' in Lemma 4.4.1. This morphism agrees with the adjoint
of g in Lemma 4.2.2 by the commutativity of the right square of (4.4.2). For a general Z, we
define Gys;' as the composite

Gysg ™' [=n—1] R¢' (Cys?
— —_—

L RO'RIT,(n)x = Ri'S,(n)x.

vl-n — d

See Definition 2.2.1 for Gysg_l.

R'vg M —n — 1]
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Theorem 4.4.7 (Purity). The morphism
e Gys)) : vmn — o] —— Tens R, (n)x
18 an isomorphism.
Proof. By the definition of Gys', the morphism 7<,;.(Gys}') is decomposed as follows:

Tente(Gysy [=n=1))

Vg l=n—d Tente( ROV, -0 — 1))

TSn+c{R¢! (TSn—l—l RL!‘ZT (n)X>}

Tgn_,_CRZ'!zr(n)X .

T<nteRO {T<ni1(Gys)}

canonical
_—

The first two arrows are isomorphisms by Theorem 2.2.2 and Lemma 4.4.1. We show that the
last arrow is an isomorphism as well. There is a distinguished triangle of the form

T§n+1RL!TT(TL)X — R/'T,.(n)x — TZnHRL!TT(n)X —_ (TSnHRL!TT(n)X)[l]
and we have 75,2 RI'T, (n) x 2 (Ton1t" Rjp™)[—1] (cf. (4.4.3)). Hence it suffices to show
Tente1 RO (Tops1t* Rjop) = 0. (4.4.8)
By the exactness of (4.3.3), there is a distinguished triangle of the form
72n+1Rj*M§rZ - 7‘2n+1Rj*M§rn - 7’2n+1Rj*M§n - (72n+1Rj*M§n)[1]

Hence (4.4.8) is reduced to the case r = 1 and then to the following semi-purity due to Hagihara
(cf. Theorem A.2.6 below):

Rqas!(L*ij*lugzm) =0 for any m, q with g<c-— 2,
where one must note ¢ = codimy (Z) + 1. This completes the proof. O

Corollary 4.4.9. Leti: Z — X be a closed immersion of codimesion > n + 1. Then we have
R%'T,.(n)x =0 for any q < 2n + 1.

Proof. If Z[1/p] is empty, then we have R%'T,.(n)x = 0 for ¢ < 2n + 1 by Theorem 4.4.7.
We next prove the case that Z[1/p] is non-empty. Put U := Z[1/p] and T := Z \ U. Let
a:T—Z B:U— Zand v :T — X be the natural immersions. There is a long exact
sequence of sheaves on Zg

T O‘*Rq’y!zr(n)X I qu!sr(n)X B Rqﬁ*ﬁ*RZ'TT(n)X — e

where o, R19'%,(n)x is zero for ¢ < 2n+1 by the previous case. We show that R43,3* Ri'T,(n)x
is zero for ¢ < 2n + 1. Indeed, we have 3*Ri'T,(n)x = Rw!ug’}" with ¢ the closed immersion
U — V, and it is concentrated in degrees > 2n + 2 by the absolute purity of Thomason and
Gabber [Th], [FG] and by the assumption that codimx(Z) > n + 1. O

We next prove a projection formula, which will be used later in §5 and §6.

Proposition 4.4.10 (Projection formula). Let i : Z — X be as in 4.4.5. We define the
morphism i : T,(n)x — .My, [—n] in D*(Xg, Z/p"Z) by the natural pull-back of symbols on
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the n-th cohomology sheaves (cf. (4.2.5)). Then the square

. m—c L Gysg’b@ﬂ‘id L
Vg, [=m = & T(n)x ——— T, (m)x @ T,(n)x

(ﬁ)l l(4-2-7)

;. mtn—c GyS;nJrn
iy [=m —n — (] — T(m+n)x

commutes in D~ (Xg, Z/p"Z). Here the left vertical arrow (§) is the composite map

iy lom = d @4 Ty (n)x 2 Gt m = @iy, [—n) — L em = — o)

and the last arrow is induced by the pairing (2.2.3) on the (m 4+ n + ¢)th cohomology sheaves.

Proof. One can easily check the case Z = Y by the commutativity of the central square in
(4.4.2). The general case is, by the previous case, reduced to the commutativity of a diagram

Gys” ! —m—1]®Yid[—n]
Oy [=m = @AY, [-n] — i [=m = 1] @8 A [0

l l

G m+n71[_ _ _1]
[—m —n — (] "o - v —m —n — 1]

g

in D~ (Y, Z/p"Z) with ¢ : Z — Y. Here the vertical arrows are defined in a similar way as

for (). We prove the commutativity of this square. For two complexes M*® = ({M"}yez, {dY; :

MY — Mt} ,cz) and N® = ({NV}oez, {d% }oez), we define the double complex M*® @ N* as
(M®*®@ N*)" = M"®@ N", 0" :=dy Qidye, 05" :=(=1)"idpu @ dy.

We write (M®* ® N°®)* for the associated total complex, whose image into the derived category
gives M*® @ N* if either M*® or N* is bounded above and consists of flat objects. Now for
T e{Y,Z} and a > 0, let C?(T,a) be the complex of sheaves defined in §2.2. Because Ay, is
flat over Z/p"7Z by [Sat], 3.2.3, the commutativity in question follows from that of a diagram
of complexes on Y

(0.C2(Z,m = c)[=m = @Ay, [-n])" — (C2(Y,m —1)[=m —1] @ A}, [-n])’
productl Jproduet
0.CH(Z,m+n—c)[-m—n—c — C(Y,m+n—1)][-m-—n-—1],

where the vertical arrows are induced by the pairings (2.2.3) and the horizontal arrows are
natural inclusions of complexes. This completes the proof. O]

4.5. Kummer sequence for G, and purity of Brauer groups. We study the case n = 1.
Proposition 4.5.1. Put G, :== Ox. Then there is a unique morphism
G @ Z/p"Z[-1] —— Z.(1)x in D*(Xe,Z/p"7)

that extends the canonical isomorphism j*(Gy @ Z/p"Z[—1]) =~ p,. Moreover it is an isomor-
phism, if X satisfies 4.1.2.
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Proof. Put M := G, ®“Z/p"Z[—1]. By definition, (i) M is concentrated in [0, 1], and (ii) there

are natural isomorphisms
HO(M) ~ Ker(Gy, LN Gn) and HY(M)~G,/p"

Because j*M =~ p, canonically in D®(Vi,Z/p"Z), there is a natural morphism M —
T<1Rjuptyr in DP(Xg, Z/p"Z) by (i). The composite morphism

M —— aiRjpy 2 0 1)

is zero by (ii) and Lemma 2.1.1. Hence by Lemma 2.1.2 (1), we obtain a unique morphism
M — %, (1)x that extends the isomorphism j*M =~ p,». Next we prove that this morphism
is bijective on cohomology sheaves, assuming that X satisfies 4.1.2. By the standard purity for
Gm ([Gt], (6.3)—(6.5)), there is an exact sequence

0 — Gy — 5.6, — @yeyo Ly*Z — 0,

where for x € X, ¢, denotes the canonical map x — X. Since @ eyo ty.Z is torsion-free, we
have H°(M) ~ j.u,» and there is an exact sequence

0 —— Hl(M) — le*,upf' —_— EBerO Ly*Z/pTZ(: L*I/%T)

by (ii) and the snake lemma. Here we have used the isomorphism (j,j*Gy)/p" =~ R'j.piyr
obtained from Hilbert’s theorem 90: R'j,j*G,, = 0. Now the assertion follows from (4.2.5). O

As an application of Corollary 4.4.9 and Proposition 4.5.1, we prove the p-primary part of the
purity of Brauer groups (cf. [Gt], §6).

Corollary 4.5.2 (Purity of Brauer groups). Assume that X satisfies 4.1.2. Let i : Z — X be
a closed immersion with codimx(Z) > 2. Then the p-primary torsion part of R*'Gy, is zero.

If dim(X) < 3, then the full sheaf R3'G,, is zero by a theorem of Gabber [Ga].

Proof. By Proposition 4.5.1, there is a distinguished triangle

Gm[_]'] - T7’(1)X Gm atl Gm in Db(Xét)’ (453)

which yields an exact sequence R%'%,.(1)x — R%'Gy, P R3{'G,,. Hence the corollary follows
from the vanishing result in Corollary 4.4.9. O

5. Cycle class and intersection property

Throughout this section, we work with the setting in §4.1 and assume that X satisfies the
condition 4.1.2. In this section we define the cycle class cly(Z) € HZ(X,%,.(n)) for an integral
closed subscheme Z C X of codmension n > 0, and prove an ‘intersection formula’

Ax(Z)Udx(Z) =dx(ZnZ) in HY™(X, T, (m +n)),

assuming that Z of codimension m and Z’ of codimension n are regular and meet transversally.
In §6, we will prove T4 in Theorem 1.1.1 using this result.
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5.1. Cycle class. We first note a standard consequence of Corollary 4.4.9.

Lemma 5.1.1. Let Z be a closed subscheme of X of pure codimension n > 0. Let Z' be a
dense open subset of Z, and let T' be the complement Z \ Z'. Then the natural map

HZ' (X, %, (n)x) — HZ(X\ T, % (n)x\1)
18 bijective.
Proof. There is a long exact sequence of cohomology groups with supports
= HP' (X, T, (n)x) — HZ (X, T,(n)x) — HZ(X\ T, T (n)x) — HF (X, T (n)x) — -
Since codimx (T) > n+1, we have H2*(X, T,.(n)x) = H?™ (X, %,(n)x) = 0 by Corollary 4.4.9,
which shows the lemma. U

Definition 5.1.2. For an integral closed subscheme Z C X of codimension n > 0, we define
the cycle class clx(Z) € HY' (X, T,.(n)x) as follows.

(1) If Z is reqular and contained in'Y, then we define clx(Z) to be the image of 1 € Z/p"Z
under the Gysin map

Gys! : Z/p"7 — H3'(X, %,.(n)x)

induced by the Gysin morphism defined in Definition 4.4.5.

(2) If Z is regular and not contained in'Y', then we have Gabber’s refined cycle class cly (U) €
HE (V, w3 (c¢f. [FG]), where we put U := Z[1/p] and V := X[1/p]. We define clx(Z)
as the inverse image of cly(U) under the natural map

HP (X, T.(n)x) — HF(V, uS™).

This map is bijective by Lemma 5.1.1 and excision, and hence clx(Z) is well-defined.
Note that Gabber’s refined cycle class agrees with Deligne’s cycle class ([SGA4], Cycle)
in any situation where the latter is defined (cf. [FG], 1.1.5).

(3) For a general Z, we take a dense open regqular subset Z' C Z and define clx(Z) to be
the inverse image of clx/(Z') € HZ(X', %, (n)x) (X' := X\ (Z\ Z')) under the natural
map

H7' (X, %, (n)x) — HZ (X', T, (n)x),
which is bijective by Lemma 5.1.1 and clx(Z) is well-defined.

We prove the following result:

Proposition 5.1.3 (Intersection property). Let Z and Z' be integral regular closed subschemes
of X of codimension a and b, respectively. Assume that Z and Z' meet transversally on X.
Then we have

Ax(Z)Udx(Z) =cdx(ZnZ) in HXP(X, T.(a+b)x).

Here, if Z N Z" is not connected, then clx(Z N Z') means the sum of the cycle classes of the
connected components.
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5.2. Proof of Proposition 5.1.3. Without loss of generality, we may assume that Z N Z’ is
connected (hence integral and regular). If Z N Z' is not contained in Y, the assertion follows
from Lemma 5.1.1 and the corresponding property of Gabber’s refined cycle classes [FG], 1.1.4.
We treat the case that ZNZ" C Y. Let x be the generic point of Z N Z’. By Lemma 5.1.1, we
may replace X by Spec(Ox ). Because Z and Z’ are regular and meet transversally at z, there
is a normal crossing divisor D = Uf;rlb D; with each D; integral regular such that N¢_,D; = Z

and N2FP 1 D; = Z'. Therefore we are reduced to the following local assertion:

Lemma 5.2.1. Suppose that X is local with closed point x of characteristic p. Put n =
codimx(z) > 1. Let D = U, D; be a normal crossing divisor on X with each D; integral
reqular such that N}y D; = x. Then the cohomology class

ClX(LL’; D) = Clx(Dl) U ClX(Dg) U---u ClX(Dn) c Hin(X, Tr(n)X)
depends only on the flag: D1 D DyN Dy D --- D DiN---ND,_1 Dz, and agrees with clx(z).

We prove this lemma by induction on n > 1. The case n = 1 is clear. Suppose that n > 2 and
put S := N'D;. Let v (resp. i) be the closed immersion S < X (resp. * — S). Note that
S is regular, local and of dimension 1.

We first show the case that S C Y. By the induction hypothesis and Lemma 5.1.1, we have
clx(D1)U---Uclx(D,_1) = clx(S), and hence

clx(7; D) = clx (S) Uclx(Dy) = Gysy(Gys; (1)) = clx ().

Here the second equality follows from Proposition 4.4.10 for ¢) and the last equality follows
from Remark 2.2.6 (1). In particular, cl(x; D) depends only on the flag of D.

We next show the case that S ¢ Y. Let y be the generic point of S. Since ch(y) = 0, we
have clx (D) U---Uclx(Dy—1) = clx(S) by Lemma 5.1.1 and [FG], 1.1.4. We have to show

Sublemma 5.2.2. Let E and E’ be reqular connected divisors on X each of which meets S
transversally at x. Then we have clx(S) Nclx(F) = clx(S) Neclx(E).

We first finish the proof of the lemma, admitting this sublemma. It implies that clx(z; D)
depends only on the flag of D, and moreover that clx(z; D) is independent of D by [SGAZ%],
Cycle, 2.2.3. Hence we obtain cly(z; D) = clx(z) by the computation in the previous case.

Proof of Sublemma 5.2.2. Let E be a regular divisor on X as in the sublemma. The map
H%(X,%,.(1)x) — H*(X,%,.(n)x), a—clx(S)Ua
factors through a natural pull-back map
" HE(X, % (1)x) — HE(S, 9%, (1)x).

We compute ¢*(clx (£)) as follows. Since ch(y) = 0, we have (¢*T,(1)x)|, = p,r on ye and
there is a commutative diagram with exact rows

HY(X,T,(1)x) — H(X\ E, T (1)xp) > HL(X,T.(1)x)

| | 7|

HY(S, 4" %, ()x) —  H'(y, 110 2 H2(8, 9, (1)x),
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where §; denotes 5§iE,E(¢*Tr(1)X) and dy denotes 6,°¢(1*%,(1)x) (cf. (1.9.2)). Take a prime

element 7 € I'(X, Ox) which defines F, and let {7TE} € HY(X \ E,%,(1)x\g) be the image of
g under the boundary map of Kummer theory (cf. (4.5.3))

D(X\ E,0% ) — H(X\ E, %, (1)x\5)-
We have cly(E) = —0;({ng'}) by [SGA41], Cycle, 2.1.3 (cf. (1.9.1)). By the diagram,
U (clx (E)) = =02(¢{mp})) = —0({TE})-

Here 75 denotes the residue class of 7z in Og, and it is a prime element by the assumption that
E meets S transversally at 2. Moreover we have dy({u}) = 0 for any unit u € Og,, because
every u € Og, lifts to O ,. Hence for a fixed prime 7, € Og, we have ¢*(clx(E)) = —d2({7,}),
which shows the sublemma. O

This completes the proof of Lemma 5.2.1 and Proposition 5.1.3.

6. Compatibility and purity for horizontal subschemes

In this section, we prove T4 in Theorem 1.1.1. This result is rather technical, but we will
need its consequence, Theorem 6.1.3, to prove the covariant functoriality T'7 in §7.

6.1. Gysin maps. We work with the setting in §4.1, and assume that X satisfies 4.1.1. Let b
and n be integers with n > b > 0. For # € X°, we define the complex Z/p"Z(n), on z¢ as

" _ ) (if ch(z) # p),
Z/p Z(n)x = {ng7log[_n] (lf Ch(g;) _ p)

We define the Gysin map
Gys!' : H* (2, Z/p"Z(n — b)) — HI(X, T, (n)x) := H!*(Spec(Ox,), Tr(n)x)

as the map induced by the Gysin morphism for i, : x — X, if ch(z) = p (cf. Definition
4.4.5). If ch(z) # p, we define Gys} by sending a € H"*(x, u3""") to cly(z) U a, where
cly(z) € H2(V, u&?) denotes Gabber’s refined cycle class we mentioned in Definition 5.1.2 (2).
The aim of this section is to prove the following two theorems:

Theorem 6.1.1 (Compatibility). Let x and y be points with x € {y}NY N X® and y € X!
(hence ch(y) = 0 or p). Then the diagram

val

H 0 (y, Z/pZ(n —b+1),)  —%  HYa, Z/p'Z(n — b),)
Gy J Jeys;; (6.1.2)

805 (Tr(n)x) n
(X T n)y) S (XS, (n)x)

is commutative (see (1.9.3) for the definition of the bottom arrow).

Sheafifying this commutative diagram, we obtain T4 in Theorem 1.1.1. As for the case x € Y,
the corresponding commutativity is proved in [JSS], §1.
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Theorem 6.1.3 (Purity). Let Z be an integral locally closed subscheme of X which is flat over

B and satisfies 4.1.1. Put ¢ := codimx(Z) and U := Z[1/p|. Let i and ¢ be the locally closed

immersions Z — X and U — V', respectively. Then for n > c, there is a unique morphism
Gys!

)

1 %.(n—c)z[—2c] —— Ri'T.(n)x in D*(Za,Z/p"Z)
that extends the purity isomorphism (cf. [Th], [FG])
Gys), : ps~[=2) —— RS in D*(Us, Z/p" ).

p

Moreover, Gys;' induces an isomorphism
Tente(Gys?) 1 Tp(n — ¢)z[-2c] ——— Ty RI'T,(0)x.

This result extends Theorem 4.4.7 to horizontal situations. Before starting the proof of these
theorems, we state a consequence of Theorem 6.1.1. For a point x € X™ and a closed subscheme
S C X containing x there is a natural map

H'(X, To(n)x) —— HE'(X, T (n)x)
by Lemma 5.1.1. By Theorem 6.1.1 and [JSS], Theorem 1.1, we obtain

Corollary 6.1.4 (Reciprocity law). Let y be a point with y € X', and put S = {y} C X.
Then for any o € H'(y, Z/p"Z(1),), we have

S aexnns Gysi (O () =0 in HF (X, T (n)x).
Consequently, the sum of Gysin maps
Yeexn Gys) t @uexn Z/p'L —— H™(X, T, (n)x)
factors through the Chow group of algebraic cycles modulo rational equivalence:
I, s CHY(X) /" —— H2(X, T,(n)x).

Remark 6.1.5. (1) The case ch(y) = p of Theorem 6.1.1 follows from the definition of
Gysin maps (cf. 2.2.1, 4.4.5) and a similar arguments as for [Sat], 2.3.1 (see also
(1.9.1)). On the other hand, the case ch(y) = 0 of Theorem 6.1.1 is closely related
to Theorem 6.1.3.

(2) Corollary 6.1.4 is not a new result if X is smooth over B. In fact, by an argument
of Geisser [Gel, §6, Proof of 1.3, one can construct a canonical map from higher Chow
groups of X to H (X, %, (n)x). A key ingredient in his argument is the localization exact
sequences for higher Chow groups due to Levine [Le2]. In this paper, we give a more
elementary proof of Theorem 6.1.1 without using Levine’s localization sequences.

In what follows, we refer the case ch(y) = 0 of Theorem 6.1.1 as Case (M). We will proceed the
proof of Theorems 6.1.1 and 6.1.3 in three steps. In §6.2, we will prove Case (M) of Theorem
6.1.1 assuming that X satisfies 4.1.2 and that S := @ is normal at x. In §6.3, we will prove
Theorem 6.1.3 assuming that X satisfies 4.1.2 and then reduce Case (M) of Theorem 6.1.1 to
the case where X is smooth over B (and S is arbitrary). The last case will be proved in §6.4,
which will complete the proof of Theorems 6.1.1 and 6.1.3.
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6.2. Proof of the theorems, Step 1. In this step, we prove Case (M) of Theorem 6.1.1
assuming that X and S(= {y}) are regular at z. Replacing X by Spec(OY% ) and replacing
y by the point on Spec(@&x) lying above y, we suppose that X is regular henselian local
with closed point x. Note that it suffices to show the desired compatibility in this situation,
and that Og, is a henselian discrete valuation ring. By the Bloch-Kato theorem [BK], (5.12),
H =+ (y, u&r=+1) is generated by symbols of the forms

(1) {51, Ce 76n—b+1} and (11) {7Tw, 61, Ce ,ﬂn_b},

where each 3\ belongs to Og,, and 7, denotes a prime element of Og,. We show that the
diagram (6.1.2) commutes for these two kinds of symbols. Recall that Gys?y is given by the

cup product with the cycle class cly(y) € H'*(V, u5*~"), and that this cycle class extends

to the cycle class clx(S) € HY %(X,%,(b— 1)x) (cf. Definition 5.1.2). We first show that the
diagram (6.1.2) commutes for symbols of the form (i). Because a symbol w of this form lifts
to @ € H" (X, T, (n — b+ 1)x), its image Gys (w) lifts to clx () U® € He™ (X, T, (n) x).
Hence we have §,°¢ o Gys; (w) = 0, which implies the assertion. We next consider symbols of

the form (ii). The map 6,°¢(%,(n)x) o Gys;, sends a symbol {7, 51, ..., Bu-p} t0

Sely (y) U{m}) Uw € HM(X T, (n)x). (6.2.1)

Here w denotes a lift of {31, ..., 3.} to H* (X, %,.(n — b)x), and & denotes the connecting
map 0,°5(%,(b)x). Since cly(y) extends to clx(S), we have d(cly(y) U {m}) = —clx(x) by
Proposition 5.1.3 (see also the proof of Sublemma 5.2.2). Hence we have

(6.2.1) = —clx(z) Uw = =Gys;. (@) = —Gys; o 8;’?;({7%,51, ooy Basb}),

where @ denotes the residue class of w in H(z, W,Q;‘if’g) and the second equality follows from

Proposition 4.4.10 for ¢,. Thus we obtain the desired commutativity. This completes Step 1.

6.3. Proof of the theorems, Step 2. In this step we prove Theorem 6.1.3 assuming that X
satisfies 4.1.2 (see also Remark 6.3.4 below). Let i : Z — X and ¢ : U — V be as in Theorem
6.1.3. Let T be the divisor on Z defined by the radical of (p) C Oz. We obtain a commutative

diagram of schemes
(0%

v L.z T
wl O zl l
V X Y

Put ¢ :=ioa:T — X, £:=%,.(n—c)z[-2c] and M := Ri'T,(n)x. By Theorem 4.4.7 for ¢,
there is an isomorphism

V;;c_l[—n — C— 1] >~ T§n+c+1R¢!‘3:7« (n>X = T§n+c+1R0z!ﬂﬁ. (631)
Consider a diagram with distinguished rows in D" (Z¢, Z/p"Z)

¢ 5 (e BB -2 < awr Tl n - £ g
Rﬁ*(Gyszg)l lRa*(Gysgm (6.3.2)
8 S195.(9M)

m — Rp.5*M ———  Ra,Ra'M[1] —— M[1].
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Here the upper low is the distinguished triangle defining ¥,.(n — ¢)z shifted by degree —2¢, and
we wrote o for 0,(n — ¢). The lower row is the localization distinguished triangle for 9t (cf.
(1.9.2)). We show that the square of (6.3.2) commutes. Indeed, by (6.3.1) and Lemma 2.1.1, it
is enough to show that the induced diagram of the (n+c)-th cohomology sheaves is commutative
at the generic points of T', which was shown in Step 1. Hence the square commutes, and there
is a unique morphism Gys;' : £ — 9 that extends Gys;; by Lemma 2.1.2 (1), because

Homp+ (z, z/pz) (£, R, Ra'IN) = 0

by (6.3.1) and Lemma 2.1.1.

We next show that 7<,,.(Gys!') is an isomorphism. By the commutativity of the square of
(6.3.2), the morphism 657%(9M) is surjective on the (n + ¢)-th cohomology sheaves, and there is
a distinguished triangle

loc )

* T M 1 [0 !
TenteM L 7 (RBSM s (e e R R[] 25 (7, O[],

where the arrow (o)’ is obtained by decomposing a., : Ra, Ra'O)[1] — 9M[1]. Replacing the
lower row of (6.3.2) with this distinguished triangle, we see that 7<,;.(Gys!') is an isomorphism.
This completes Step 2.

Corollary 6.3.3. Leti: Z — X be as in Theorem 6.1.3, and assume further that X satisfies
4.1.2. Leth: Z' — Z be a closed immersion of pure codimension with ch(Z') = p. Put g :=ioh
and ¢ := codimx (Z'). Then we have Gys, = Rh'(Gys}) o (Gysy~°[—2c]) as morphisms

vy [-n— ] —— R¢'T,(n)x in D'(Z4,Z[pZ).

Proof. Because T<pie_1Rg'T.(n)x = 0 by Theorem 4.4.7, a morphism V"TCI[—n —-d] —
Rg'%,.(n)x is determined by a map on the (n + ¢)-th cohomology sheaves (cf. Lemma 2.1.1).
Because R"¢¢'T,.(n)x is isomorphic to the sheaf V}Tcl by Theorem 4.4.7, we are reduced to
the case that X and Z are local with closed point Z’, and moreover, to the case that Z’ is a
generic point of Z ® F, (that is, ¢ = ¢+ 1). This last case follows from the commutativity of
(6.1.2) proved in Step 1. O

Remark 6.3.4. (1) By the results in this step and the bijectivity of Gys;' in (6.1.2) (cf.

Theorem 4.4.7), Case (M) of Theorem 6.1.1 (with X and {y} arbitrary) is reduced to
the case where X is smooth over B. We will prove this case in the next step.

(2) Once we finish the proof of Theorem 6.1.1, we will obtain Theorem 6.1.3 by repeating
the same arguments as for Step 2.

6.4. Proof of the theorems, Step 3. Assume that X is smooth over B. In this step, we
prove Case (M) of Theorem 6.1.1 for this X, which will complete the proof of Theorems 6.1.1
and 6.1.3 (cf. Remark 6.3.4). We first show Lemma 6.4.1 below. Let m be a positive integer,
and put P :=P%. Consider cartesian squares of schemes

For this diagram, we prove
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Lemma 6.4.1. (1) There is a unique morphism
tr} : Rf.Z.(n+m)p[2m] —— T,(n)x  in D"(X&,Z/p"Z)
that extends the trace morphism for ¢ ([SGA4], XVIIL.2.9, XII.5.3)
trl) © R ™t 2m] —— pSt in DP(Vee, Z/p" 7).

(2) tr'} fits into a commutative diagram

Ri, Rg. W, Q= tm —n — 1] O RLT,(n+ m)p[2m)]

]P’y,log
RL*(trgl)[—n—l]l tr;}l
Gys}
WL -1 S gy,

Here tr)~" denotes (—1)"-times of the Gysin morphism of Gros ([Gs], I1.1.2.7). The
arrow (§) is induced by the isomorphism Ri,Rg., = Rf.Ro, and the Gysin morphism
Gys .

Proof. Because Rf.%,(n + m)p[2m] is concentrated in derees < n ([SGA4], XIL.5.2, X.5.2), it
is enough to show that the square
Rf(a. W Q20" [m — 1]

Rfu(T<nim R0 M®n+m) [2m] Py ,log

l lm*(trgn—n}

. n g ,r(”) n—
T<n iyt T LW 0[]

is commutative in D*( Xy, Z/p"Z) (cf. Lemma 2.1.2 (1)). Here the left vertical arrow is defined
as the composite of the natural morphism

Rfu(TentmRBupty™)[2m] — 7<n(RERBupny ™" [2m]) = T<n (R Reopr™ " [2m])

and 7<, Rj.(try). The vertices of this diagram are concentrated in degrees < n. Hence we are
reduced to the commutativity of the diagram of the n-th cohomology sheaves, which one can
check by taking a section s : X < Py of f and using the compatibility proved in Step 1 (see
also Remark 2.2.6 (2)). More precisely, using (4.4.8) one can construct a Gysin map

Gys, : B"jupp” —— R™fo (R Bopy™™) = HY (R (T<nsm BBy ) [2m]),

induced by that for sy : V < Py,. One can further check that it is surjective by Theorem 3.3.7
with 7 = 1 and [Gs], .2.1.5, .2.2.3. The details are straight-forward and left to the reader. [

Rf«(op,r(nt+m))[2m]

Now we turn to the proof of Theorem 6.1.1. Replacing X by Spec(Ox..), we assume that X

is local with closed point 2. Suppose that S(= {y}) is not normal, and let n : T — S be the
normalization of S Since n is finite, the composite T" — S — X is projective, i.e., factors

as T < PP = P L X with ¢ closed, for some m > 1. Let ¢ : P{} — V be the morphlsm
induced by f. Let T, be the fiber n 1( ) C T with reduced structure, and let h : T, — = be
the natural map. Consider the diagram in Figure 1 below, where we wrote Gys for Gysin maps
for simplicity. In this diagram, the outer large square commutes by the definition of 5;5‘; and

[JSS], Lemma A.1. The square (1) commutes by Step 1. The square (2) commutes by [SGA41],
Cycle, 2.3.8 (i). The square (3) commutes by the property j*(tr’}) = try of tr}. The square (4)
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_bg1 @n—bt1 *8;%& 0 —b
H" (y7 lj/an ) H (Tf? VVT Q;L"m ,log)
O (1) Gys_~
H;L+2m+b71 (]P)V7 uf)Tern) H;j2m+b(P7 T'r (n + m)F)
505, (Tr(n 4+ m)p)
@) o ®) o @) O
- 5105 (Tr(n) x) b
HE =L (V, &) Hy (X, %0 (n)x)
s ) Gys N
Hn—b+1(y7 MgoTnberl) Ho(l,’ WQZT&)

78\]&1

Y,z

FIGURE 1. diagram for Step 3

commutes by Lemma 6.4.1 (2) and Remark 2.2.6 (1). Hence the square (5) commutes, which
is the commutativity of (6.1.2). This completes the proof of Theorems 6.1.1 and 6.1.3. O

7. Covariant functoriality and relative duality

In this section, we prove the covariant functoriality T7 in Theorem 1.1.2 and prove a relative
duality result (see Theorem 7.3.1 below). Throughout this section, we work with the setting
in §4.1. Let X and Z be integral schemes which are flat of finite type over B and satisfy 4.1.1,
and let f: Z — X be a separated morphism of finite type. Put ¢ := dim(X) — dim(Z), and let
v Z[1/p] — X[1/p] =V be the morphism induced by f. By the absolute purity [Th], [FG],
there is a trace morphism

try, : R ¢[=2c] —— pit

in Db(‘/gt,Z/p"Z),

which extends the trace morphisms for flat morphisms due to Deligne [SGA4], XVIII.2.9 and
satisfies the transitivity property.

7.1. Covariant functoriality. The first result of this section is the following:

Theorem 7.1.1 (Covariant funtoriality). For f : Z — X as before, there is a unique morphism
tr} : Rfi%.(n —¢)z[-2c] —— T.(n)x in D"(X&,Z/p'Z)

that extends try,. Consequently, these trace morphisms satisfy the transitivity property.

This theorem will be proved in the next subsection. In this subsection, we prove the following:

Lemma 7.1.2. Let k be a perfect field of characteristic p > 0, and let Y be a normal crossing
variety over Spec(k). Let g : T — Y be a separated morphism of finite type of schemes, and
assume that T has dimension < a. Put ¢ := dim(Y) —a. Assume that £ € D*(Wy,, Z/p"Z) and
M e D~ (Yer, Z/p"Z) are concentrated in degrees < ¢ and < m, respectively. Let F be a locally
free (Oy)P-module of finite rank. Then for an integer ¢ < ¢ — ¢ —m, we have

Homp-(v,, z/prz) (R £) @ M, v, [q]) = 0
Homp- (v, z/pr2) (R £) @ M, Flg]) = 0.

and
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Proof. We prove the assertion only for 3. One can check the assertion for F by repeating the
same arguments as for vy, using Lemma A.2.8 below.

We first prove the case that £ has constructible cohomology sheaves. If there are closed
subschemes ¢; : T; — T (i = 1,2) such that 7' =T} UTy and dim (73 N 7T5) < a — 1, then there
is a distinguished triangle of the form

R¢12*¢>1k2£[_1] — £ — R¢1*¢>{£ D R¢2*¢;£ - R¢12*¢>1k22

in Db(Ty, Z/p"Z), where ¢35 denotes the closed immersion 7; 0T, — T. Hence by induction
on a > 0, we may assume that 7" is irreducible. Let b be the dimension of g(T") C Y. Noting
that Rg.£ has constructible cohomology sheaves by [SGA4|, XIV.1.1, we prove

Sublemma 7.1.3. For i € Z, the support of R'g\L has dimension < min{b,a + { — i}, i.e.,
there is a closed subscheme ¢ : W — Y of dimension < min{b,a + ¢ — i} for which we have
RgL = 0" R'gL.

Proof of Sublemma 7.1.3. Without loss of generality, we may assume that g is proper (hence
Rgi = Rg,). Since R'g,£ is zero outside of g(T'), the support of R’g,£ has dimension < b. We
show that the support of R'g.£ is at most (a + ¢ — ¢)-dimensional. Let y be a point on ¢(T').
Put 7, := T xy y = g~ '(y). Since dim {y} + dim T}, equals the dimension of the closure of T},
in 7' ([SGA4], XIV.2.3 (iii)), we have dim {y} 4+ dim T}, < a. Now suppose that (Rig,£)y # 0.
Because (Rg.£)7 is zero for ¢ > dim T, + ¢ (loc. cit., XI1.5.2, X.5.2), we have

it <dimT, +¢ < a—dim@—l—ﬁ,
that is, dim@ < a+ ¢ —i. Thus we obtain the sublemma. O
We now turn to the proof of the lemma and compute a spectral sequence
B3 = Extyg (R 9L) ®F 0, 1vy,) = Extyl),, (Rgi€) & M, 14,).
For (u,v) withu+v <c—{¢—mand b < a+ ¢+ v, we have u+m < dim(Y’) — b and

E;’U - EXt)u/7z/prZ((¢*¢*R_vg'£) ®]L m? V;ﬁ,r)
= EXt?/’Z/pr-Z(R¢*¢*(R_vg!£ ®]L m)a V}@,r)
= Ext{y (6" (R™"9.L @ M), R$'14,) = 0

by Theorem 2.2.2 and Lemma 2.1.1. Here W denotes the closure of g(T") and ¢ denotes the
closed immersion W — Y. For (u,v) with u +v < ¢—¥¢ —m and b > a + { + v, we have
u+m < dim(Y) — (a + £ + v). There is a closed subscheme ¢ : W < Y of codimension
> dim(Y') — (a + ¢ + v) such that R™Yg£ = ¢.¢*R "¢ £, by the sublemma. Hence

By = Exty g 06" (R 9. & ), R§1A4L,) = 0

again by Theorem 2.2.2 and Lemma 2.1.1. Thus we obtain the assertion.

We next prove the case that £ is general. Take a bounded complex of Z/p"Z-sheaves £* which
is concentrated in degrees < ¢ and represents £. Take a filtered inductive system {£3}xea
consisting of bounded complexes of constructible Z/p"Z-sheaves which are concentrated in
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degrees < ¢ and whose limit is £°. Then for ¢ < ¢ — ¢ — m, we have
ExtY.y 2 ((R9.) & M, 15,) = Extl, (€, Ry RHom(, 17,,))
— lim e Ext]y (€3, Ry RHom(, 14:,)
= lim yep Ext§ 05 ((RgL3) @ M, 14,) = 0
by the previous case. Here Rg' denotes the twisted inverse image functor of Deligne [SGA4],
XVIII, and we have used the adjointness between Rg' and Rg.. The second equality follows

from the vanishing of the groups Ext‘{,jzl 1z ((RaiL3) @M, i) for all X € A and a standard
argument which is similar as for (8.4.2) below. This completes the proof of the lemma. U

As a sepecial case of Lemma 7.1.2, we obtain
Corollary 7.1.4 (Semi-purity). Under the same setting as in Lemma 7.1.2, we have
Tgc_le!l/;ﬁJ, = Tgc_le!f = 0.
Proof. For T" étale separated of finite type over T, G € {13, F} and ¢ < ¢ — 1, we have
Homp+ (71, 2/p2)(Z/p" Z, RW'Glq]) = Hompegy,, 77 (RMZ/P"Z, Glq]) = 0
by Lemma 7.1.2, where h denotes the composite map 77 — T — Y. Hence 7<,_1Rg'G =0. O

7.2. Proof of Theorem 7.1.1. Let j : V — X and ¢ : Y — X be as in §4.1. Put £ :=
T (n — ¢)z|—2c|, for simplicity. We first show
Hom po(x,, 7/prz) (RfIL, RuRIT,(n)x) = 0. (7.2.1)
Indeed, for g : T := Z xx Y — Y induced by f, we have
Homps(x,, z/przy (RAL, RuRU'T,(n)x) = Hompo(y,, 2/prz) (Rgra™ L, RI'T, (1) x)

by the adjointness between (* and Ri, and the proper base-change theorem: (*Rfi = Rga*,
where a denotes the closed immersion 7" — Z. The latter group is zero by Lemma 7.1.2 and
a similar argument as for the vanishing (4.4.8). By (7.2.1) and Lemma 2.1.2 (1), it remains to
show that the composite morphism

R (7))

. 8% (T (n)x)
RAiE —5 Rjubn X7

Xn
p’l‘

is zero in D°(X¢, Z/p"7Z). We show the following:

Lemma 7.2.3. (1) Let {Zx}xea be an open covering of Z with A finite, and let fr : Zy — X
be the composite map Z\ — Z — X for each A € A. Then the adjunction map

Home(Xét,Z/pTZ) (RAL, RL*RL!TT (n)x[1])
— @ rea Hompex, 272y (Rfri(£]2,), R RIT, (n) x [1])

Ri.RI‘'T,.(n) x[1] (7.2.2)

18 injective.
(2) Assume that f is flat. Let Y' C Y be a closed subscheme of codimension > 1. Put
U:= X \Y'. Then the following natural restriction map is injective:

Hompu(x,, z/prz) (RAL, R R/, (n)x[1])
— Hompuu,, 2/pr2) (RAL) v, (R RITo () x (1))
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Proof of Lemma 7.2.5. (1) It suffices to consider the case that A = {1,2}. Put Z15 := Z; N Z.
Let fi2 be the composite map Z1, — Z — X. There is a distinguished triangle of the form

Rf12!(£‘212> - Rfll(£|Z1)®Rf2!(£‘ZQ) - Rf'£ - Rf12!(£‘212>[1]'

Hence the assertion follows from the vanishing (7.2.1) for fi : Z15 — X.

(2) Let ¢ be the closed immersion Y’ < X. The kernel of the map in question is a quotient of
Hompu(x,, 7/pr7)(Rf1€, Rp.Rp'T,(n) x[1]). One can check that it is zero by a similar argument
as for (7.2.1), noting that Y’ X x Z has codimension > 1 in T" by the flatness of f. O

We show that the composite morphism (7.2.2) is zero. We first assume that Z = P (m > 1)
and that f is the natural projection. By Lemma 7.2.3 (2), we are reduced to the case that Y
is smooth. In this case, (7.2.2) is zero by Lemma 6.4.1. We next prove the general case. By

Lemma 7.2.3 (1), we may assume that f is affine. Take a decomposition Z < Pg =: PP rX
of f for some integer m > 0, where i is a locally closed immersion. We have morphisms

Rh.(Gys!"t™)[2m]

RfL RIS, (m +n)p[2m] — T, (n)x,

where tr} is obtained from the vanishing of (7.2.2) for h. See Theorem 6.1.3 for Gys]*"™. Since
this composite morphism extends trj}, we see that (7.2.2) is zero. This completes the proof of
Theorem 7.1.1. U

The following corollary is a horizontal variant of Proposition 4.4.10:

Corollary 7.2.4 (Projection formula). For f:Z — X as before, the diagram

trp@Lid (4.2.7)

Rf&r(m — C)Z[—2C] ®L ST(H)X (Zr(m)X ®]L (Zr(n)x —_— ‘Zr(m + n)X

st | [
m—+n

RAZ,(m +n—¢)z[-2¢] —L— T.(m+n)x

RAT,(m - ¢)7[-2 &% RfSo(n); 20

commutes in D~ (X, Z/p"Z). See Proposition 4.2.8 for f*: %, (n)x — Rf.Z.(n)z.

Proof. Because the diagram in question commutes on X[1/p], the assertion follows from Lemma
2.1.2 (1) and a vanishing

HomD*(Xét,Z/p’"Z) (Rfu‘fr(m — C)Z[—QC] ®]L TT(TL)X, RL*RL!TT(m + n)X) = 0,
which one can check by Lemma 7.1.2 and a similar argument as for (7.2.1). O
7.3. Relative duality. Let f: Z — X be as before. Let j: V — X and ¢ : Y — X be as in

§4.1. Let T be the divisor on Z defined by the radical of (p) C Oz. There is a commutative
diagram of schemes

Z1/p) -2 “ T

Z
| e
Vv X v
Put d := dim(X), b := dim(Z) and ¢ := d — b. We prove the following result, which was
included in the earlier version of [JSS]:
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Theorem 7.3.1 (Relative duality). (1) tr} induces an isomorphism
trf . T, (0)z[-2c] —— Rf'T.(d)x in D"(Zg, Z/p'Z).
(2) There is a commutative diagram in D*( Xy, Z/p"7Z)

Ri.Rg b —1] —2—  RAT,(b)[20)

Ruy (trg)l ltr? [2d]

Sd
L*V¢;1 [d _ 1] Gys;[2d]

To(d)x[2d],

where try denotes the trace morphism in Remark 2.2.6 (3), and the arrow () is induced
by the isomorphism Ri,Rgi = RfiRa, and the Gysin morphism Gys_..

To prove this theorem, we first note a standard fact (cf. [JSS], Lemma 3.8).
Lemma 7.3.2. For a torsion sheaf F on Vi and an integer ¢ > d, we have R1j,F = 0.
As an immediate consequence of Lemma 7.3.2 and (4.4.3), we obtain

Lemma 7.3.3. The natural morphism 7<q 1 R'T,(d)x — Ri'T,(d)x is an isomorphism in
DYy, 7.)p" 7). Consequently, Cys® : V{‘ﬁ;l[—d —1] — R/'T,.(d)x is an isomorphism.

Proof of Theorem 7.3.1. We first show (2). By Lemma 7.1.2 and a similar argument as for the
vanishing of (7.2.2), one can reduce the assertion to Lemma 6.4.1 (2) and Corollary 6.3.3 (see
also Remark 2.2.6 (3)). The details are straight-forward and left to the reader. We next show
(1). Let trf : T,(b)z[-2¢] — Rf'T,(d)x be the adjoint morphism of tr}. Because (*(tr/) is
an isomorphism by the absolute purity ([Th], [FG]), we have only to show that Ra'(trf) is an
isomorphism. By (2), there is a commutative diagram in D* (T, Z/p"Z)

-1 SEEL e () [20)

trgl JR(X! (trf)[2d]

Rg'(Gys{)[2d]
S

Rg'vMd — 1] Ro'Rf'ZT,(d)x[2d].

The horizontal arrows are isomorphisms by Lemma 7.3.3 for Z and X, respectively. The left
vertical arrow, defined as the adjoint morphism of tr,, is an isomorphism by [JSS], Theorem
2.8. Consequently, Ra'(tr/) is an isomorphism. This completes the proof of Theorem 7.3.1. [

Remark 7.3.4. By Theorem 7.3.1, T,.(d)x[2d] is canonically isomorphic to the object Dx ,r €
D*(Xe,Z/p"Z) considered in [JSS], Theorem 4.4.

8. Explicit formula for p-adic vanishing cycles

In this section we construct a canonical pairing on the sheaves of p-adic vanishing cycles in
the derived category, and prove an explicit formula for that pairing, which will be used in §9.
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8.1. Setting. The setting is the same as in §3.2. Note the condition 3.2.1 assumed there. We
further assume that K contains a primitive p-th root of unity and that k is finite. We put

vp =y, =g, and = g (K) (8.1.1)
for simplicity. Note that i’ is the constant étale sheaf on Y associated with the abstract group
p(=~ Z/pZ), because the sheaf i, on Xy is constant and the sheaf j,j, on X is also constant
by the normality of X (cf. [Ts1], 1.5.1). Now let NV be the relative dimension dim(X/Ok). Let
n be a positive integer with 1 <n < N +1. Put n' := N +2—n, M7 := M{ = *Rj, 139,
and let U® be the filtration on M? defined in Definition 3.3.2. The aim of this section is to
construct a morphism

O :UM"@U'M"™[-N —2] —— /@ v¥[-N —1] in DY, Z/pZ)
and to prove an explicit formula for this morphism (cf. Theorem 8.3.8 below).

8.2. Construction of ©". Because y is (non-canonically) isomorphic to the constant sheaf
7. pZ, we will write p/ @ K (K € D~ (Y, Z/pZ)) for the derived tensor product p' @Y K in
D= (Y, Z/pZ). For ¢ with 1 < ¢ < N + 1, fix a distinguished triangle
(MU MD)[—g = 1] —L— Alg) —— regr" Rjup§t —— (M?/UM9)[~q],

where the last arrow is defined as the composite 7<qt* Rj.us? — M9[—q] — (M/U*M?)[—q].
Clearly, A(q) is concentrated in [0,¢|, and the triple (A(g),t,¢') is unique up to a unique
isomorphism (and ¢’ is determined by (A(g),t')) by Lemma 2.1.2 (3). We construct O™ by
decomposing the morphism

A(n) @A) —— (T<nt* R pS™) @ (T<nrt Rjpi™)

(8.2.1)
L*Rj*M§N+2
induced by the natural isomorphism ,uf?” ® ,u;?"' ~ ,u;@N *2 in characteristic zero. By Lemma
7.3.2 and the assumption that ¢, € K, there is a morphism
CRIpENT ol © (ren Rjp@NY) S o N~ (822)

which, together with (8.2.1), induces a morphism
A(n) @“A(n') —— p/ @ [-N —1]. (8.2.3)

Noting that A(q) is concentrated in [0, q] with H9(A(q)) ~ U' M4, we show the following:
Lemma 8.2.4. There is a unique morphism

Aln) @ (UMY [-n']) —— W @Y [-N —1] in D~ (Y, Z/pZ) (8.2.5)
that the morphism (8.2.3) factors through.
Proof. There is a distinguished triangle of the form

A(n) @ (e 1 A()) — A(n) @A) — An) @ (U'M™[-n"]) — A(n) @" (r<w 1 AR))[1].
By Lemma 2.1.2 (2), it suffices to show that (i) the morphism
A(n) @" (<w-1AM') —— P @ [-N —1]
induced by (8.2.3) is zero and that (ii) we have
Homp- (v, z/pz) (A(n) @ (T<w-1AM))[1], 1/ @ 15¥[-N —1]) = 0.
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The claim (ii) follows from Lemma 2.1.1. As for the claim (i), because A(n) @" (1<,/_1A(n))
is concentrated in degrees < N + 1, the problem is reduced to the triviality of the induced
map on the (N + 1)st cohomology sheaves (cf. Lemma 2.1.1). One can check this by a similar
argument as for Proposition 4.2.6. O

Applying a similar argument as for this lemma to the morphism (8.2.5), we obtain a morphism
(U'M"[—n]) @ (U'M™ [-n']) —— p/ @ v¥[-N —1]. (8.2.6)
Finally because Z/pZ-sheaves are flat over Z/pZ, there is a natural isomorphism
(U'M"[—n]) @ (U'M™ [-n/]) ~ U'M" @ U'M™ [N —2] in D~ (Y, Z/pZ)

induced by the identity map on the (n + n’)th cohomology sheaves. We thus define ©" by
composing the inverse of this isomorphism and the morphism (8.2.6).

8.3. Explicit formula for ©”. We formulate an explicit formula (see Theorem 8.3.8 below)
to calculate the morphism ©". Let

X @ wy/BY) —— w@vl]  in D*(Ya,Z/pZ)
be the connecting morphism associated with a short exact sequence ([Hyl], (1.5.1))

ide(1-Cc~1)

id®incl, WRwy ——— y @ (Wi /BY) —— 0.

0 —— vy

Here BY denotes the image of d : wi ' — wi, C~! denotes the inverse Cartier operator defined

in loc. cit., (2.5) (cf. (9.3.2) below) and we have used the isomorphism wy,, ~ 13’ in Remark
3.3.8 (4). We next construct a key map f%" (cf. Definition 8.3.6 (2) below). Let e be the
absolute ramification index of K and put €’ := pe/(p — 1). Because K contains primitive p-th
roots of unity by assumption, ¢’ is an integer divided by p. Fix a prime element © € Og. Put
s := Spec(k). Let Ly (resp. L) be the log structure on Y (resp. on s) defined in §3.3. We use
the trivial log structure s* on s and a map on Yz analogous to (3.3.5)

dlog . E%/p _— w%Y,Ey)/(S,SX)' (831)

Remark 8.3.2. (1) The composite of (8.3.1) with the canonical projection w(lyﬁy)/(&sx) —
wy- agrees with the map dlog in (3.3.5).
(2) Let T be the residue class of © in Ly under (3.3.4). Then we have dlog(7) = 0 in wy,
but not in w(lyﬁy)/(&sx). Indeed, by the definition of relative differential modules ([Ka3],
[KF]), there is a short exact sequence on Y

a—a-dlog(T)
0 _— OY EE— w%Y,;Cy)/(S,SX) w%/ O

The isomorphism (8.3.3) below follows from this fact.

Now let n and g satisfy 1 <n< N+land1<¢<¢e —1. Putn':=N+2—n. Let Ug(K be
the étale subsheaf of 1*j, 0%, defined in Definition 3.3.2, and put

®n'—1

Rn—1 el — .
Symb?" .= U%, ® (L*j*03<(K) UL ® (L j*O)X(K)
The sheaf UIM™ @ U ~9M™ is a quotient of Symb?™ (cf. Definition 3.3.2):
UIM" @ UY~9M"™ = Im (Symbq’" — UM" ® UlM"’) .
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We define the homomorphism of étale sheaves
Fan: Symb?" — wi /BY
by sending a local section (1+7%) ® (77! ;) @ (1 +7°%ay) @ (®N., ;) with ay, ay € 1*Ox
and B3y, ..., 0y € 1*5.0%,., to the following:
q -0z - (N, dlogh,) + ¢~ (az - dai A (AL, dlogh)) mod BY,

where for © € *Ox (resp. = € 1*5, 0%, ), T denotes its residue class in Oy (resp. in £3” under
(3.3.4)) and g denotes the following Oy-linear isomorphism (cf. Remark 8.3.2 (2)):

g1 F = Wiy sy W dlog(T) Aw. (8.3.3)

Lemma 8.3.4. Let n and q be as above. Then F@" factors through UIM™ @ U ~9M™ .

Proof. Let Ygne be the singular locus of Y, and let jy be the open immersion Y \ Y, — Y.
Replacing X by X \ Ying, we may assume that Y is smooth over s = Spec(k), because wi /By
is a locally free (Oy)P-module and the canonical map wf /BY — jy.ji(wd /BY) is injective.
We show that F'¢" factors through gr{, M" ® greU/_qM "' assuming that Y is smooth. For m > 1
and ¢ with 1 </ <€ —1, let

pé,m . Qn}}_2 D Qg?/l—l N grng
be the Bloch-Kato map (cf. [BK], (4.3)) defined as

(o - dlogBy A -+ A dlogB_s, 0) — {1+ 7@, By, ..., Bn_s, 7} mod U1 M™,
(0, a-dlogB A - AdlogBm_1) — {1+ 7@, Br,..., Bm1} mod U M™

for « € Oy and each §; € OF, where & € Oy (resp. each §3; € O%) denotes a lift of o (vesp.
B;). There are short exact sequences

0— u2 O gmergouot AT olym g (if ple), 5.35)
0 — Zm-2g zm-t i, om2gom-t Ao ym g (if plo),

where §%™ is given by w +— ((—=1)™ - £ - w,dw) (cf. [BK], Lemma (4.5)). Let

m—1
)® Qnyv,—2 D Qnym—l

hem s UG, ® (15,05,
be the map that sends (1 + 7‘a) ® (@77 ;) with a € *Ox and §; € *O% U {r} to

(0, a - /\1§i§m_1 dlogE) (lf ﬁz c L*O;(( for all Z),
(=)™ " @ Ajcicm-1,izi dlogfi, 0) (if B; = 7 for exactly one i =: ¢'),
(0, 0) (otherwise).

Here for x € 1*Ox (resp. x € 1*O%), T denotes its residue class in Oy (resp. in Oy ). Now there
is a diagram

/ / ! ’
h4:MQhEe —"1 _ _ r_ ’_ Q;n® € —q,n
Symb®" —E s (P e Oy e (QF Peqy )

gOq,nl

Oy /BY,

gy M™ @ grg_qM"'
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where %" is defined as
(w1, ws) ® (w3, ws) = q-wy Awy + (=1 (dwr) Awg + (=1)" ' - wa A dws mod BY.
In this diagram, the composite of the top row agrees with the symbol map, and the composite
of h™ @ h¢~9"" and %" agrees with F%" (see also Remark 8.3.2 (2)). Hence to prove the
assertion, it suffices to show that the subsheaf
Ker(p?" @ p¢~4") c (B2 0V H @ (QF ey

has trivial image under ", which follows from (8.3.5) with (¢, m) = (¢,n), (¢/ — ¢,n’) (note
that p|q < p|(e’ — q), because p|e’). Thus we obtain Lemma 8.3.4. O

Definition 8.3.6. (1) For ¢ € = pp(K) with ¢ # 1, let v(¢) € k* be the residue class of
(1—=¢)/mP=D € OF. We define u = @v(¢)™P € u® k, which is independent of the
choice of ( # 1.
(2) Let k be the constant sheaf on Yy associated with k. We define the homomorphism

for UM @ UM™Y —— () @ k) @y (W /BY) ~ i’ @ (W /BY)

as u®y (—1)NTFe" . Here we regarded u € p®k as a global section of ' @k, and F4™
denotes the map induced by F™ (cf. Lemma 8.3.4).

Remark 8.3.7. f%" is independent of the choice of ™ by the definitions of F¥" and u.
Now we state the main result of this section.

Theorem 8.3.8 (Explicit formula). Assume that X is proper over B. Then for (q,n) with
1<qg<eée—1and1<n<N+1, the following square commutes in D*(Yy, Z/pZ):

viMr @ UM @ (Wl /BY)

canonical l l X

UMt g Ut pe 2 W@ vy

We will prove Theorem 8.3.8 in §§8.4-8.7 below. We will first reduce the problem to an induced
diagram of cohomology groups of Y in §8.4, and then to an induced diagram of cohomology
groups of higher local fields in §8.5. In §8.6, we will prove a Galois descent of invariant subgroups
of Galois modules. We will finish the proof of Theorem 8.3.8 in §8.7 by computing symbols,
whose details are standard in higher local class field theory (cf. [Kal]) but will be included for
the convenience of the reader.

8.4. Reduction to cohomology groups. In this step, we reduce Theorem 8.3.8 to the equal-
ity (8.4.3) below. We first show the following:

Proposition 8.4.1. Assume that Y is proper over Spec(k). Let F be a Z/pZ-sheaf on Y.
Then for i € 7, the Yoneda pairing

(Y, F) x Bxty s (Fogl) —— BN, ) =2 Z/pZ
(see Theorem 2.2.4 for try) induces an isomorphism

Extgijz(f, l/f/v) ~ Hom(H(Y, F), Z/pZ).
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Proof. It F is constructible, then the isomorphism in question is an isomorphism of finite groups
by the duality theorem of Moser [Mo] (note that the complex 77"y defined in loc. cit. is quasi-
isomorphic to the sheaf v3 by [Sat], 2.2.5 (1)). We prove the general case. Write F as a filtered
inductive limit lim xep Fy, where A is a filtered small category and each F) is a constructible
Z/pZ-sheaf. Replacing {Fy}rea with their images into F if necessary, we suppose that the
transition maps are injective. Since H'(Y, F) ~ lim yep H'(Y, F)) and

Hom(H'(Y, F), Z/pZ) ~ lim xep Hom(H'(Y, F), Z/pZ),
it is enough to show that
Exty 70 (F, vy) = lim sep Exty 70 (Fa, vy)). (8.4.2)

Take an injective resolution vy — I* in the category of Z/pZ-sheaves on Y. The group

Exty' 7(F,vy) (m € Z) is the m-th cohomology group of the complex Homy (F,I®) ~
lim yea Homy (Fy, I*). Noting that Ext"YfZ/pZ(fA,y{,V) is finite for any A € A and that the
transition maps F) — Fy (A < ) are injective, we are reduced to the following standard fact
on projective limits:

Fact. Let A be a cofiltered small category, and let {C3}xen be a projective system of complexes
of abelian groups. Form € Z and A € A, put HY* := H™(CY), the m-th cohomology group of CY.
Now fix m € Z, and assume that {C" " Yren, {OF Iren and {HP}ren satisfy the Mittag-Leffler

condition. Then we have lim xep H o~ Hm“(liin,\eA C’;).
This completes the proof of Proposition 8.4.1. 0J

We now turn to the proof of Theorem 8.3.8. Without loss of generality, we may assume that
X is connected. Then by Proposition 8.4.1 for i = N, we have
Hom iy, 2y (UTM™ @ US™IM™ 1 @ 137 [1])
~ Hom (HY (Y, U'M" @ U“~"M™), p @ HY (Y, 14)).
Hence we are reduced to the equality of induced maps on cohomology groups
HY(Y,007) = HY(Y, y o f17), (8.4.3)

where we wrote %" for the composite morphism

Qun ; JaM™ @ U o cmonical iy g e SN e ).,

8.5. Reduction to higher local fields. In this step, (8.4.3) will be reduced to (8.5.3) below.
We define a chain on Y to be a sequence (yo, y1,¥2, - --,yn) of points (=spectra of fields) over
Y such that yg is a closed point on Y and such that for each m with 1 <m < N, y,, is a closed

point on the scheme
[Spec ( . ((O?yo) 21) . ) Z,H} \ {1},

where the superscript h means the henselization at the point given on subscript. For a chain
(Yo, Y1, -+ ,yn) on Y, each k(y,,) (0 < m < N) is an m-dimensional local field. We write Ch(Y")
for the set of chains on Y. Now for K € DYy, Z/pZ) and 0 = (yo, y1, - ,yn) € Ch(Y), there
is a composite map

H(yy,K) — H,  (Yon-1,K) = -+ = HI7' (Y51, K) — HJ (Ya0, €) — HY(Y, K).



44 K. SATO

Here Y3, (0 < m < N) denotes the henselian local scheme

Spec ( i, ((@%O) 1;1) . ) b

and the map H) ™Yo, K) — H) "Y1, K) (1 <m < N) is defined as the composite
Hévm_m(yo,ma K) = Hé\f,fm(%,m—l \ AYm-1}1,K) —— B "Y1 \ {ym-1}.K)
B YT (Y, K.
Taking the direct sum with respect to all chains on Y, we obtain a map
oy (K) : @ H(yn, K) —— HY(Y,K).

(yo,y1,+,yn)ECh(Y)
Lemma 8.5.1. The map 6y (UIM" @ U ~IM™) is surjective.

Proof. By Theorem 3.3.7, the sheaf UIM" @ U ~9M™ is a finitely successive extension of étale
sheaves of the form F ® G, where F and G are locally free (Oy )P-modules of finite rank and
the tensor product is taken over Z/pZ. We are reduced to the following sublemma.

Sublemma 8.5.2. Let Z be a noetherian scheme which is of pure-dimension and essentially of
finite type over Spec(k). Put d := dim(Z). Let F and G be locally free (Oz)P-modules of finite
rank. Then:
(1) For any x € Z and i > codimy(z), H.(Z,F ® G) is zero.
(2) We have H(Z,F @ G) = 0 for i > d, and the natural map @,cze HUZ, F @ G) —
HY(Z, F ® G) is surjective.
(3) If Z is henselian local, then H(Z, F @ G) is zero for i > 0.

Proof of Sublemma 8.5.2. Since the absolute Frobenius morphism Fy : Z — Z is finite by
assumption, we have H*(Z, F®G) ~ H*(Z,F2.(F®G)) and H:(Z, F®G) ~ H:(Z,F 2. (F ®G))
for any x € Z. Hence we are reduced to the case where F and G are locally free Oz-modules
of finite rank.

We first show (3). Let R be the affine ring of Z, which is a henselian local ring by assumption.
Let R*® be the strict henselization of R. Without loss of generality, we may assume that F =
G = Oy. By the isomorphism HY(Z, O; ® Oy) ~ HE.,(Gr, B°*" ® R*") with G := Gal(R*"/R),
our task is to show that the right hand side is zero for ¢ > 0. We show that for a finite étale
galois extension R’/ R with Galois group G := Gal(R'/R), we have H1(G, R’ @ R') = 0 for ¢ > 0.
Indeed, by taking a normal basis, we have R’ ~ R|G] as left R|[G]-modules, and there is an
isomorphism of left G-modules

R[G]® R|G] —— R[G]® (RIG]°), alg] @ b[h] — alg] @ blg~"h],

where a and b (resp. g and h) are elements of R (resp. of G), and R[G]° denotes the abelian
group R[G] with trivial G-action. Hence R’ ® R’ is an induced G-module in the sense of [Se],
[.2.5 and we obtain the assertion.

We next prove (1) and (2) by induction on d and a standard local-global argument (cf. [Ral,
1.22). The case d = 0 follows from (3). Assume d > 1 and that (1) and (2) hold true for
schemes of dimension < d — 1. We first show (1). Indeed, the case codimy(x) = 0 follows from
the case d = 0. If codimz(z) > 1 and 7 > 1, then the connecting homomorphism

0%¢(K) - H=!(Spec(0} ) \ {2}, F ® G) —— H;(Spec(0},), F ® G) = Hi(Z, F ® G)
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is surjective by (3), and the left hand side is zero for i > codimy(x) by the induction hypothesis.
Thus we obtain (1). Finally one can easily check (2) by (1) and a local-global spectral sequence

EY =@ ez HEV(Z, F @ G) = H""(Z, F @ G).

This completes the proof of Sublemma 8.5.2 and Lemma 8.5.1. O
By Lemma 8.5.1, (8.4.3) is reduced to the formula
H°(yn, ©27) = H(yw, x © f") (8.5.3)

for all chains (yo,y1, -+ ,yn) € Ch(Y'), which will be proved in §8.7 below.
8.6. Galois descent by corestriction maps. We prove here the following lemma:

Lemma 8.6.1. Let F' be a field of characteristic p > 0. Let V; and V5 be discrete C_?F—Z/pZ—
modules which are finitely successive extensions of finite direct sums of copies of F' as Gp-
modules. Then (Vi @ V3)9F agrees with

tm((V)6r @ (Vo) 8" == (i @ V3)%r ——5 (1 @ V5)6F ),

U
F’/F: finite galois
where all tensor products are taken over Z)pZ, and F' runs through all finite galois field exten-
sions of F' contained in F.

Proof. It suffices to show the case V; = Vo = F. We prove that the corestriction map
corespr g F'QF' —— (F'@F')°, 2Qy— Syeq 92 ® gy
is surjective for a finite galois extension F'/F with G := Gal(F’/F'), which implies the assertion
by a limit argument. Since F’ ~ F[G] as F[G]-modules, we have
(F'® F")¢ ~ (F® F) @ (Z/pL|G] ® Z/pZ|G))®

by the finiteness of G and the flatness of Z/pZ-modules over Z/pZ. Hence the surjectivity of
corespr/r follows from that of the map

Z/pZ|G) ® Z/pZ|G] —— (Z/pZ]G] ® Z/PZ[G])®, 2@y Teec 92 @ gy.
Thus we obtain the lemma. U

8.7. Proof of (8.5.3). In this step, we finish the proof of Theorem 8.3.8. Fix an arbitrary chain
(Yo, Y1, ,yn) € Ch(Y). Put Fy := (yy) and

L o= Frac (- ((Okyn) ) )3

where Ly, is a henselian discrete valuation field (of characteristic 0) with residue field Fy,
that is, Ly is an (N + 1)-dimensional local field. Now let F'/Fy be a finite separable field
extension. Put y := Spec(F) and

A8 (F) = HO(y, USM™) @ HO(y, UF~4M") € BO(y, UM™ & U 90",
By Lemma 8.6.1 (for the subfield (Fv)? C Fy) and the naturality of corestriction maps, the
formula (8.5.3) for yy is reduced to the formula
HO(y, ©97)| awn(ry = H(y, x © f47) | a0n ). (8.7.1)

To prove this equality, we compute the left hand side, i.e., the composite map

poH (y, Q)

HO(y,09™)
y,log

AP(F) — HO(y, U'M" @ U“~1M") ). (8.7.2)
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Let L/ Ly, be the finite unramified extension corresponding to F//Fy. Fori > 0, put kM (L) :=
KM(L)/pKM(L). By a similar argument as for [BK], (5.15), we have
A (F) = {Uk) (L) /U kY (L)} @ {US 9k} (L) /U k) (L)}

Let us recall that 1 < g < ¢’ — 1 by assumption. In view of the construction of ©™ (cf. §8.2)
and the fact that U¢HEN (L) = 0 ([BK], (5.1.i)), the map (8.7.2) is written by the product
of Milnor K-groups and boundary maps of Galois cohomology groups:

n roduct ] Galois symbol
a(p) B () SR e e
= @ HY(F, HNFL (L, g8N+)) 1d®(3.2.3) pe H(y, O ),

where L™ denotes the maximal unramified extension of L, and the third arrow is obtained from a
Hochschild-Serre spectral sequence together with the facts that cd,(F) = 1 and c¢d,(L"™) = N+1
(cf. Lemma 7.3.2). Here we compute the product of symbols:

Lemma 8.7.4. For ay, as € Op \ {0} and fy,...,0By € L™, we have
{1+ 7y, B, B, L7 0, By -+ B} = (DN g {1+ % a0, B, .., By, 7}
+(=1)"- {1+ 709,01, 31, ..., By}
in kN 5(L). The second term on the right hand side is zero if §; belongs to OF for all i.
Proof. We compute the symbol {1 4 7%, 1+ 7 %y} € kY (L):
{14 7%, 1+ 7 %an} = {1+ 7% + 7% aran, 14+ 7% %0}
— {(1 + 7%y + 7% aras) (1 + mly) 7L 1 + 79 %0y}

—
N

/
= — {1+ 7%y + 7% ajaq, —mlay }

2 _ {1+ We/alag(l + 7la) 7Y, —mlaq }

—
~

& _ {1+ 7¢ g, mlay }.

—
=

(1) follows from the equality {1 + z129, 21} = —{1+ 129, —22} (applied to the first term) and
the fact that the second term is contained in U +'k} (L) = 0 ([BK], (4.1), (5.1.i)). (2) follows
from the equality {1 + z, —z} = 0, and (3) follows from loc. cit., (4.3). The equality assertion
in the lemma follows from this computation. The last assertion follows from loc. cit., (4.3) and
the fact that QN = 0. O

To calculate the last two maps in (8.7.3), we need the following lemma, which is a kind of
explicit formula for L (see §8.3 for v and y):

Lemma 8.7.5. The following square commutes:
oy T (@ k) @ (A /BY)
pe’l HO(%X)J (876)

HN+2(L, M§N+2) = 0 & Hl(y’ Qijlog)’



p-ADIC ETALE TATE TWISTS 47

where the bottom arrow is the composite of the last two maps in (8.7.3) and p* denoﬂes the ﬂoch-
Kato map sending o - dlog(B1) A --- Adlog(By) (a € F, p; € F*) to {1 +7%a,B1,...,0Bn, 7}
(& and B;’s are lifts of a and f3;’s, respectively).

Proof. This commutativity would be well-known to experts (cf. [Kad] for the case p > N +3, see
also [FV], VIL.4). However we include here a simple proof using a classical argument originally
due to Hasse [Has| to verify the above commutativity including signs. By [Kal], p. 612, Lemma
2, the bottom horizontal arrow of the diagram (8.7.6) maps

CUINE(@) U {1, Bay ..., By, ) = (@ (=) U (dlog(By) A -+ - A dlog(B))
for ¢ € p, x € HY(F,Z/pZ) and 3; € F*. Hence it is enough to show the following:

Claim. Fiz a primitive p-th root of unity ¢, € p, and consider the composite map

F — HY(F,Z/pZ) 25 HY(L, Z/pZ) —=2 HY(L, u,) = L* /(LX)

where the first map is the boundary map of Artin-Schreier theory and the last isomorphism is the
inverse of the boundary map of Kummer theory. Then this composite map sends —v((,) Pa € F
to 14 7¢a mod (L*)?, where & denotes a lift of a to O, (note that U T'L* C (L*)P). See
Definition 8.3.6 for the definition of v((p,).

Proof of Claim. 1t suffices to show that o € F maps to 1 — (1 — (,)? & mod (L*)P. Consider
the following equations in 1" over F' and L, respectively:

TP —T =q, (8.7.7)
TP =1—(1-()-a. (8.7.8)

We show that the Artin-Schreier character Gp — 7Z/pZ associated with (8.7.7) induces the
Kummer character G, — p associated with (8.7.8) by the composition G, — G — Z/pZ — pu.
Let 5 € L be a solution to (8.7.8). By the congruity relation

(=1 -p=(1-¢)" " mod 70y,
one can easily show that 3 is contained in O}" and that
v i= (1= B)/(1 = ¢) mod 7Oy €T

is a solution to (8.7.7). Moreover, o € G, satisfies 0(3)/8 = ;" € p if and only if o(y) —v =
m € Z/pZ, where G, acts on F via the canonical projection G, — Gp. Thus we obtain the
claim and Lemma 8.7.5. 0J

We now turn to the proof of (8.7.1). Let v, as € Op \ {0}, and 5; € OFf U{r} (1 <i < N).
By Lemmas 8.7.4 and 8.7.5, the value of the symbol

{1 + ﬂ-qah 617 o 7ﬂn—1} ® {1 + We’—qa% 67” o 75]\7} S quiw([/) ® Ue’—qk%([/)
under (8.7.2) agrees with the value of the following element of x ® (QF /BY) under HO(y, x):
u @y, (—1)"Ng - arag - (M<i<n dlogB;) mod BY] (if g; € OF for all 7),

u @y, (—1)" N [ag - dag A (A<icn iz dlogB;) mod BY]  (if 3; = 7 for exactly one i =: i'),
0 (otherwise),
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where for x € Of, (resp. © € Of), T denotes its residue class in F (resp. in F'*). Thus comparing
this presentation of (8.7.2) with the definition of f%™ (cf. §8.3), we conclude that the equality
(8.7.1) holds. This completes the proof of Theorem 8.3.8. O

9. Duality of p-adic vanishing cycles

In this section we prove Theorem 9.1.1 below, which will be used in §10.
9.1. Statement of the result. Let the notation be as in §8.1. We prove the following:

Theorem 9.1.1. Letn be 1 <n < N+ 1 and put n' := N + 2 —n. Assume that X is proper
over Spec(Ok). Then for an integer i, the pairing induced by ©™ and try (cf. Theorem 2.2.4)

o H(Y,U'M™) x BN=(Y, U'M™) 25 po BN (Y, ) 229 (9.1.2)
is a non-degenerate pairing of finite 7./ pZ-modules.

To prove this theorem, we first calculate the map f¢" defined in §8.3 (cf. Lemma 9.1.4 below).

Let U*M™ and V*M™ be as in Definition 3.3.2. We further define the subsheaf T9M™ C UIM™
(¢ > 1) as the part generated by VIM™ and symbols of the form

{1+ 7% B, Baor}
with a € 1*Ox and each 3; € 1*j,O%,. . By definition we have
Uty c ViM®t Cc TIM™ C UTM™.
For ¢ > 1, we put
grgypM™ = UIM" [TIM", gryy M™ = TIM"™ [VIM"
and  gry,, M" :=VIM" /U M"™.

Let us recall that ¢/ = pe/(p — 1) is an integer divided by p (because (, € K). By Theorem
3.3.7 (3), (4), the sheaf U¢ M™ is zero, and for ¢ with 1 < ¢ < ¢’ — 1 we have isomorphisms

an . .4 n = n—1 n—1
pi gty M —— wy /27,

n—1 /pn—1
P gl MY~ {OZY /By EZZ"){’ (9.1.3)
P gl MY S W Zp?
given by the following, respectively:
o™ {14+ 7%, By, -, Basiy mod TYM™ @ - (A dlogf;) mod Z3
P {1+ 7%, By, -, By} mod VIM™ @ - (A} dlogB;) mod BE Y, (pfq),
P L+ w0, By, Baeg, )y mod UIH M™ +— @ - (A2 dlogf3;) mod Z§ 2.

Here a (resp. each [3;) denotes a local section of t*Ox (resp. 1*j,0%, ), and @ (resp. ;) denotes
its residue class in Oy (resp. in £5" under (3.3.4)). The following lemma follows from straight-
forward computations on symbols, whose proof is left to the reader (cf. Remark 8.3.2 (2),
Definition 8.3.6):

Lemma 9.1.4. Let n and n' be as in Theorem 9.1.1, and assume 1 < ¢ <¢e' — 1. Then:
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(1) fo" annihilates the subsheaf of UIM™ @ U®~9M™ generated by U™ M™ @ U ~IM",
UIM™ @ UM™Y VIM™ @ T¢IM™ and TIM™ @ VE—9M™.
(2) The composite map

/ /
ng e —qn’y_1
®p3 )

n— n— n'— n'— (Pt n e— n fO"
wy 2y @uwy 2T — griyrM™ @ gry ] M™ — i @ (i /BY)

sends a local section x @y to u @y (—1)" - (dx) ANy. Similarly, the composite map

! !
e —q,n

(Pg’n®P1 )71

n=2) Zn-2 g u-l )z " gr€—a £
wy 2yt uwy T ZE T gry e M" @ gry A M™ @ (Wi /BY)

sends a local section x ®y to u @y (—1)N -z A dy.
(3) If q is prime to p, then the composite map

/A
(4" ")

n— n— ’_ ' — n o — S
Zy Byt e Zp T By grpy M" @ g M™ —— 1 ® (wyl /BY)

N+n

sends a local section x @y to u @y (—1)" gz Ny.

9.2. Proof of Theorem 9.1.1. In this subsection, we reduce the theorem to Lemma 9.2.7
below. The finiteness of the groups in the pairing (9.1.2) follows from the finiteness of k,
the properness of Y and the fact that the sheaves U'M™ and U'M™ are finitely successive
extensions of coherent (Oy )P-modules (cf. (9.1.3)). To show the non-degeneracy of (9.1.2), we
introduce an auxiliary descending filtration Z"M™ (r > 1) on U M™ defined as

UuiM (if r =1mod 3 and ¢ = (r + 2)/3),
Z"M"™ = TIM™ (if r=2mod 3 and ¢ = (r+1)/3),
VaM™ (if r = 0 mod 3 and ¢ = r/3).
Note that Z'M™ = U'M™ and Z"M" = 0 for r > 3¢’ — 2. We first show

Lemma 9.2.1. Assume 1 <r < 3¢’ — 3. Then:
(1) The composite map

HN(Y, Uan ® Z3e’—2—rMn’) BN HN(Y, Uan ® Uan’>

e G L
mduces a map
HY(Y, (U'M™ )27 M™) @ Z3¢ 2" M™) —— L. (9.2.2)

(2) The composite map
HN(Y'7 grrZMn ® Z3e’—2—rMn’) HN(Y, (Uan/Zr+1Mn) ® Z3e’—2—rMn’)
(9.2.2)

induces a map

HN (Y, gy M" @ gry 7" M") —— . (9:2.3)
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(3) We put
Frno.— (Uan/Zr—i—an) ® Z?)e’—2—7’j\4n’7
gr,n — f’r,n/(grrZMn ® Z3e’—1—rMn’) ’
HO = gr, M™ ® gr?;l_2_rM"/
(note that gr'’y M™ @ Z3¢=1="M™ is a subsheaf of F™", because a Z/pZ-sheaf is flat over
Z/pZ). Then the map (9.2.2) induces a map
HY(Y,G™) —— p. (9.2.4)
If r > 2, then this map makes the following diagram commutative:
HN(}/, Hr,n) D HN(Y, fr—l,n) HN(Y, gr,n)

(9.2.3)@%9.2.2) for r—1 l(9.2~4) (9.2.5)

product

o p — 1,
where the top horizontal arrow is induced by a natural inclusion H™™ @& Fr—tn c grm,

Proof of Lemma 9.2.1. We prove only (1). (2) and (3) are similar and left to the reader. We
use the notation we fixed in (3). Let ¢ be the maximal integer with 3(¢ — 1) < r. Noting that
ZrM™ @ Z3¢ =2 M c UIM™ @ U ~9M™ , consider the composite map

HN(Y" 7T M™ ® Z3e’_2—rMn’) . HN(K Uan ® de/_2_7,Mn/) (%) ,

where the arrow (*) denotes the first composite map in (1). By Theorem 8.3.8 (cf. (8.4.3)), this
composite map agrees with that induced by y o f¢". By Lemma 9.1.4 (1), f¢™ annihilates the
subsheaf Z"*1M™ @ Z3¢ 27" M™ of Z"M™ ® Z3*~2="M™ . Hence the arrow (%) induces a map
of the form (9.2.2) by the short exact sequence of sheaves
0 — gr+lpm ® Z3e’—2—rMn’ _ Uan ® Z3e’—2—rMn’ — S FTm 5

and Sublemma 8.5.2 (2) (cf. (9.1.3)). Thus we obtain the lemma. O
Now we turn to the proof of Theorem 9.1.1. By the trace maps (9.2.2) and (9.2.3), there are
induced pairings

bi,r . HZ(Y" Uan/Zr+1Mn) % HN_i(Y, Z3e’—2—rMn’) i,

cro H(Y, gty MM x HVT(Y, gy MY —— g,

for 7 and r with 1 < r < 3¢/ — 3. Note that b*3¢ 3 = ¢’ and ! = &1, By the commutative
diagram (9.2.5), there is a commutative diagram with exact rows for r > 2 (after changing the
signs of (b) suitably)

H=YY,U'M™/Z"M™) — H'(Y,gry M™) — HY(Y,U*M"/Z"T'M™) — HY(Y,U*M"/Z"M™) — H (Y, gty M™)

bi—l,rfll ci,'rJ/ bi,rl bi,r—ll ci+1,rl

HZ+1(Y7 Zt+1Mn’)* (i)) HZ(Y, grtZMn’)* N HZ(Y, ZtMn’)* N HZ(Y, Zt+1Mn’)* (L) I_Ilfl(yv7 gI,7tZ]\4n’)>~<7
where we put £ := N — i, t := 3¢’ — 2 —r and E* := Hom(F, ) for a Z/pZ-module E. Hence
Theorem 9.1.1 is reduced to the following lemma by induction on r > 1 and the five lemma.

(9.2.6)

Lemma 9.2.7. ¢ in (9.2.6) is non-degenerate for any i and r with 1 <r < 3¢’ — 3.
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We prove this lemma in the next subsection.

9.3. Proof of Lemma 9.2.7. We first give a brief review of linear Cartier operators. Let
(s,Ls) and Ly be as in §8.3, and let (Y’, Ly~) be the log scheme defined by a cartesian diagram

(Y, Ly) —== (Y, Ly)
m 0| 031

abs

F(S’Cs)
(S,ES) — (S>£S)a
abs

where F{;%. ) denotes the absolute Frobenius on (s, Ls). Let pra : Y' — Y be the underlying
morphism of schemes of pry, and let Fy/; : Y — Y’ be the unique morphism of schemes such
that pro o Fy/, agrees with the absolute Frobenius on Y. Note that Fy/ is a finite morphism of
schemes. We put wi, := u)f\{,,’ Ly)/(5:Ls) for simplicity, where we regarded (Y’, Ly+) as a smooth
log scheme over (s, L) by pr; in (9.3.1). By [KF], 5.3 and the same argument as for [Kz|, 7.2,
there is a Oy -linear isomorphism

C1hn wY’ — FY/s* (wy /By) (932)

(The following composite map gives the inverse Cartier operator C~! defined in [Hyl]:

1
N canonical N Pras (Clin) N /RrN\ _ N /RN
wy —— Prawy ——— Pra.Fy s (wy /By) = wy /By . )

Now we start the proof of Lemma 9.2.7. Let Cy, be the inverse of Ci..l. By [Hy2], 3.2 and
the same argument as for [Mil], 1.7, there are Oy--bilinear perfect pairings of locally free
Oy -modules of finite rank

Fy/aulw§ /2571 X Fyjalw§ 2/ 2872 — wff, (2,9) = Clal(dz) Ay),
FY/S*(Z{}_I/B)@_U X FY/S*(Z)@_I/B)@/_U — W)Zy’v (LU, y) = C’lin(x A y>7
Fy/aulw§ 2/ 257%) X Pyl 7 ZE) — wff, (2,9) = Crin(z Ady).

By [Hy2], Theorem 3.1 and the Serre-Hartshorne duality [Hal], wd, is a dualizing sheaf for Y’
in the sense of [Ha3], p. 241, Definition. Hence by (9.1.3) and Lemma 9.1.4, the pairing

I?
I,

N- 3¢'—2— for N Ny 98y
HY (Y, gr, M™) x HN=H(Y, gr' =2=" M) A p@HN (Y, /BY) ——5 u®k
(¢ is the maximal integer with 3(¢ — 1) < r) is a non-degenerate pairing of finite-dimensional
k-vector spaces. Here trg,/s denotes the k-linear trace map

HY (Y, 0 /BY) = HY(Y', Fy oo (@l /BY)) ~Ss BY (Y, 0d)) —— k.

Finally, ¢*" is non-degenerate by commutative squares

fam 1d®trY/S

HN(Y, gr%Mn ® gr%e’—2—7"Mn/) L) we HN(Y, wy/By) U k
(9.2.3)l lx lid@trk/Fp
1 id®try [ ® HN+1(Y, Vi]/v) id®try " ® ]Fp,

where the left square commutes by Theorem 8.3.8 and the right square commutes by a similar
argument as for [Sat], 3.4.1. This completes the proof of Lemma 9.2.7 and Theorem 9.1.1.
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10. Duality of p-adic étale Tate twists

In this section we prove Theorem 1.2.2 using Theorem 9.1.1.

10.1. Statement of the results. The setting is the same as in §4.1. In this section, we assume
that X is proper over B = Spec(A), and that A is either an algebraic integer ring (global case)
or a henselian discrete valuation ring whose fraction field has characteristic 0 and whose residue
field is finite of characteristic p (local case). Let d be the absolute dimension of X. Throughout
this section, n and r denote integers with 0 < n < d and 1 < r. The aim of this section is to
prove the following duality results:

Theorem 10.1.1. Assume that A is local. Then:
(1) There is a canonical trace map tr(xyy : Hy " (X, T, (d)x) — Z/p"Z, which is bijective
if X is connected.
(2) Fori € Z, the natural pairing arising from (4.2.7) and trix,y)

HY (X, %, (n)x) x B2 -4(X T.(d—n)x) —— Z/p'Z (10.1.2)
is a non-degenerate pairing of finite Z/p" Z-modules.

Theorem 10.1.3 (1.2.2). Assume that A is global. Then:

(1) There is a canonical trace map trx : H*(X %,(d)x) — Z/p"Z, where the subscript c
means the étale cohomology with compact support (see §10.2 below). If X is connected,
then trx is bijective.

(2) Fori € Z, the natural pairing arising from (4.2.7) and trx

H(X,%,.(n)x) x B4 X T, (d —n)x) —— Z/p'7Z (10.1.4)
is a non-degenerate pairing of finite Z/p" Z-modules.

In §10.2, we will define the localized trace map tr(xy) and the global trace map tryx. After
showing a compatibility of these trace maps, we will reduce Theorem 10.1.3 (2) to Theorem
10.1.1 (2). We will prove Theorem 10.1.1 (2) in §§10.3-10.5.

Remark 10.1.5. If A is local, there is a natural pairing of finite Z/p"Z-modules
HY(V, ) x H2HV, p8=m) —— H*(V, u34) ~ Z/p"Z, (10.1.6)

p

where V' denotes Xy with K = Frac(A). As is well-known, this pairing is non-degenerate by
the Tate duality for K and the Poincaré duality for V. Theorem 10.1.1 (2) does not follow
from these facts, although Theorem 10.1.1 implies the non-degeneracy of (10.1.6). We will
deduce Theorem 10.1.1 (2) from Theorems 2.2.4 and 9.1.1.

10.2. Trace maps. We first construct the localized trace map tr(xy), assuming that A is
local. Let ¢ : Y < X be the natural closed immersion. By Lemma 7.3.3 and Theorem 2.2.4,
Hi (X, T,.(d)x) is zero for any i > 2d + 2. We define tr(x y) as the composite

Sd —1 r
troy) t B, To(d)x) 2 HY, ) -2 2z,

which is bijective if X is connected (i.e., Y is connected). We next define the global trace map
trx, assuming that A is global. For a scheme Z which is separated of finite type over B and an
object K € D (Zg, Z/p"Z), we define H:(Z, K) as HX(B, RfiK), where f denotes the structural
morphism Z — B and H’(B, e) denote the étale cohomology groups with compact support of
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B (cf. [Mi3], 11.2). By the Kummer sequence (4.5.3) and the isomorphism H3(B,G,,) ~ Q/Z
(cf. [Mi3], 11.2.6), there is a trace map H3(B,%,(1)g) — Z/p"Z (cf. [JSS], Corollary 4.3 (a)).
We normalize this map so that for a closed point i, : s — B, the composite map

Gy is

H(s,Z/p"Z) — H3(B,%,(1)g) —— Z/p'Z
coincides with the trace map of s (defined in 2.2.4 (1)). We define the trace map try as the
composite
try : H2*Y(X, %, (d)x) —— H3(B,%.(1)3) —— Z/D'Z,
where the first arrow arises from the trace morphism in Theorem 7.1.1. The bijectivity assertion
for trx in Theorem 10.1.3 (1) will follow from 10.1.3 (2). We show here the following:

Lemma 10.2.1. Assume that A is global. Then there is a commutative diagram

H2H(X, T, (d)x) X% 7/pZ

| |

HXH (X, T, (d)x) === Z/'Z,

where the arrow v, denotes the canonical adjunction map and tr(xy) denotes the sum of the
localized trace maps for the connected components of Y.

Proof. Let {Y;}ie; be the connected components of Y. Let x be a closed point on Y with
i : © — X. Noting that H2d+1(X g (d) )~ @Pier Z/p"7Z, consider a diagram

tr(x, Y)

HY (0, Z/p'Z) o HE (X, To(d)x) 22 Z/f’“Z
H(z, Z/p'Z) —2o H2H(X, T, (d)x) —2 7/pZ.

Since the left square commutes, it suffices to show that the composite of the upper row is
bijective and that the outer rectangle is commutative. The composite of the upper row agrees
with the trace map for x by Theorem 2.2.4 (1). In particular it is bijective. The composite of
the lower row agrees with the trace map for by Theorem 7.3.1 (2). We are done. 0J

We reduce Theorem 10.1.3 (2) to Theorem 10.1.1 (2). Assume that A is global. We use the
notation in §4.1. Put Xy := [[;ex X xp Bs. Since j*T,.(n)x =~ pi", there is a distinguished
triangle
To(n)x —— Rud'T(n)x —— jug(1] —— To(n)x[1],

where the arrow ¢* (resp. ji) denotes the canonical adjunction morphism id — Ri..* (resp.
Rjj* — id). By Lemma 10.2.1 and the proper base-change theorem: H*(Y,:/*T.(n)x) =~
H*( Xy, %,.(n)xy), we obtain a commutative diagram with exact rows (after changing the signs
of (b) suitably)

H (X, T (n)xy) — HU(Vipp') — HU(X, To(n)x) — H(X5, To(n)xy) — HEHV ")

(10.1.2)l al (10.1.4)l (10.1.2)l al

b T\ * * * b _ T\ *
HEL(X, T (m)x )" 2 BV, p8m) = H(X, S, (m)x ) — HE (X, To(m)x)* & HELW, umye.
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Here the superscript * means the Pontryagin dual and we put £ :=2d+1—¢ and m :=d — n.
The lower row is the dual of the localization long exact sequence and the vertical arrows arise
from duality pairings. The arrows a are isomorphisms of finite groups by the Artin-Verdier
duality and the absolute purity [Th], [FG]. Thus Theorem 10.1.3 (2) is reduced to Theorem
10.1.1 (2) by the five lemma.

10.3. Reduction to the case r = 1. We start the proof of Theorem 10.1.1 (2), which will
be completed in §10.5. By the distinguished triangle in Proposition 4.3.1 (3), the problem is
reduced to the case r = 1. Furthermore we may assume that K = Frac(A) contains a primitive
p-th root of unity (,. Indeed, otherwise the scalar extension X, := X ®4 A’, where A" denotes
the integer ring of K((,), again satisfies the condition 4.1.1 over Spec(A). Hence once we show
Theorem 10.1.1 (2) for X4/, we will obtain Theorem 10.1.1 (2) for X by a standard norm
argument and Corollary 7.2.4.

10.4. Descending induction on n. Assume that (, € K and r = 1. We prove this case
of Theorem 10.1.1 (2) by descending induction on n < d. Let N be the relative dimension
dim(X/B). If n = N + 1(= d), (10.1.2) is isomorphic to the pairing

HENZ2(Y, 0y) x WPNESTH(Y, 2/p) — BVH(Y,,) o Z/pl

by the proper base-change theorem and Lemma 7.3.3. This pairing is a non-degenerate pairing
of finite Z/pZ-modules by Theorem 2.2.4. To proceed the descending induction on n, we study
the inductive structure of {¥1(n)x},>0 on n. We fix some notation. Let ¢ : ¥ — X and
Jj: V(= Xk) — X be as before. Let v§, i/ and p be as in (8.1.1). See also the remark after
(8.1.1). Put A} := Ay, and T(n)x := T1(n)x. Now for n with 1 <n < N + 1, we define the
morphism

ind, : (juz,) ® T(n — Vx (= (o) @ T — 1)x) —— T(n)x

by restricting the product structure T(1)x T (n—1)x — T(n)x to the 0-th cohomology sheaf
Jettp of T(1)x.

Lemma 10.4.1. Let
o*(indy,)
"

K(n)[—1] -2 4/ ® *T(n—1)x UT(n)y —2 K(n) (10.4.2)

be a distinguished triangle in D*(Yy, Z/pZ). Then:
(1) The triple (K(n), a,, b,) is unique up to a unique isomorphism in D*(Yy, Z/pZ), and b,
is determined by the pair (K(n),a,).
(2) K(n) is concentrated in [n — 1,n] and a, induces isomorphisms

M/®V§7}'_2 (q:n_1>7

HU(K(n)) ~ {FM" (=)

where M™ denotes the étale sheaf o R j.us"™ on'Y', and FM™ denotes the étale subsheaf
of M™ defined in §3.4.
(3) There is a distinguished triangle in D*(Ye, Z/pZ)

K(n)[-1] -2 1/ ® R'S(n— 1)x 2200, pign)y —2 K(n),  (104.3)

where ¢, and d,, are morphisms determined by the pair (K(n),a,).
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(4) There is an anti-commutative diagram

L*g(n)x canonical ,U/ ® L*Rj*,uf?"_l
anl lidﬂf®L*(6§2§,(T(n—l)x)) (10.4.4)

Kn) = e RIS —1)x[1].

Proof. (2) follows from the long exact sequence of cohomology sheaves associated with (10.4.2)
and the isomorphism of sheaves ' @ (*R%j,uS" " o~ 1*R9j, 2" (cf. (4.2.5)). The details are
straight-forward and left to the reader. By (2) and Lemma 2.1.1, there is no non-zero morphism
from 1/ ® 1*T(n — 1)x to K(n)[—1]. Lemma 10.4.1 (1) follows from this fact and Lemma 2.1.2

(3). We next prove (3). Let

Fl-1] L= (u) @ Tn — 1)y 2 (n)x —“— F

be a distinguished triangle in D°(Xg, Z/pZ). By a similar argument as for the claim (2),
the cohomology sheaves of F are supported on Y. This implies that F = Ru.*F. By the
uniqueness assertion of the claim (1), the triple (¢*F, t*(a’), c*(V')) is isomorphic to (K(n), a,, by)
by a unique isomorphism. Under this identification, we have a’ ~ Rui.(a,). Moreover, ¥ is
determined by the pair (F,d’) = (Ru.K(n), Ri.(a,)) by a similar argument as for the claim
(1). Hence applying R¢' to the above triangle, we obtain the distinguished triangle (10.4.3)
with ¢, = R/'(V) and d, = Ri'Ru,(a,). Finally, (4) follows from an elementary computation
on connecting morphisms, whose details are straight-forward and left to the reader. O

In what follows, we fix a pair (K(n), a,,) fitting into (10.4.2) for each n with 1 <n < N+1. By
Lemma 10.4.1, the morphisms b, ¢, and d, fitting into (10.4.2) and (10.4.3) are determined

by (K(n),a,). Next we construct a pairing on {K(n)}1<p<n+1 using {a, }1<n<ny+1. Let us note
that for objects K1, Ky € D™ (Y, Z/pZ), and K3 € DT (Y, Z/pZ), we have

Hompy,, z/pz) (K4 R Ko, K3) ~ Homp(y,, z/pz) (ICl, RHomy,zp2(Ks, IC3)) )
For K € D~ (Y, Z/pZ), we define
D(K) := RHomyz,(K, i @ v§¥ [-N — 2]) € D" (Y, Z/pZ). (10.4.5)
Lemma 10.4.6. Let n be as before and put n’ := N +2—n. Then there is a unique morphism
(K(n)[-1]) @ K(n') —— @' @vd¥[-N 2] in D™ (Y, Z/pZ) (10.4.7)

whose adjoint morphism K(n)[—1] — D(K(n')) fits into a commutative diagram with distin-
guished rows (cf. (10.4.2), (10.4.3))

Ri!(indy,) dn
e

Kn)[-1] —2— /'@ R'S(n—1)x RI'T(n)x S K(n)
l ®| (ﬁ)l |
DEKM)) —2 D)) ) D @ S — 1)x) —h DK (n)[-1]).

Here the vertical arrows (§) come from the product structure of {Z(n)x }n>o0, the identity map
of i and the Gysin isomorphism Gysf\”rl in Lemma 7.3.3 (the commutativity of the central
square is easy and left to the reader).
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Proof. The assertion follows from Lemma 2.1.2 (1) and the fact that

Homp+ (v, z/pz) (K(n), D(p' @ *F(n' — 1)X))

~ Homp-(v,, 2z (K(n) @ (1 @ *T(n' = 1)x), 1 @ v [-N —2]) =0,

where the last equality follows from Lemma 10.4.1 (2) and Lemma 2.1.1. O
Now we turn to the proof of Theorem 10.1.1 (2) and claim the following:
Proposition 10.4.8. Let n and n’ be as in Lemma 10.4.6. Then for i € Z, the pairing

Hi(Y, K(n)) x HANF27(Y, K(n)) — p @ HNFU(Y, ) =225 o, (10.4.9)
induced by (10.4.7), is a non-degenerate pairing of finite Z/pZ-modules.

We will prove this proposition in the next subsection. We first finish the proof of Theorem 10.1.1
(2) by descending induction on n < N + 1, admitting Proposition 10.4.8. See the beginning of
this subsection for the case n = N + 1. Indeed, we obtain Theorem 10.1.1 (2) from Proposition
10.4.8, applying the following general lemma to the commutative diagram in Lemma 10.4.6:

Lemma 10.4.10. Let K1 — Ky — K3 — Ky[l] and L3 — Lo — L1 — L3[1] be distinguished
triangles in D°(Yy, Z/pZ), and suppose that we are given a commutative diagram

lCl —_— ICQ O ng —— Kl[l]
C‘lll OZQl asl al[l}l
D(L1) —— D(Ly) —— D(L5) —— D(Ly)[1]
(with distinguished rows) in DT (Ye, Z/pZ). For m € {1,2,3} and i € Z, let
B s H(Y, ) x HANH(Y, £,) — @ HYFL(Y, o) 250
be the pairing induced by the adjoint morphism K, @ L,, — u' @ vi¥[-N — 2| of a,. Put
0:=2N + 3 —i. Then there is a commutative diagram with exact rows

H-Y(Y,K3) — H(Y,K;) — HY(Y,Ky) — HY(Y,K3) — HTY(Y,Ky)

T l o l 7 l o l At l
HEA(Y, La)* 20 HY, £1)7 — HEY, Lo)" — HUY, Lg)* 2 HEY(Y, L))

after changing the signs of (b) suitably. Here for a Z/pZ-module E, E* denotes Homy,,;(E, 1),
and ¢, denotes the natural map induced by BL.. Furthermore, if v and 4 are bijective for any
1, then 5 is bijective for any i.

Proof. For each m and 4, 7/ factors as follows:

HZ(Y’ ]Cm> M EXt;Z]\;I:;('Cmv ,U// ® V{Y) - HomZ/pZ(H2N+3_i(Y7 Em)a M)v
where the last map arises from a Yoneda pairing and the trace isomorphism H¥N (Y, i/ @ 4 ) ~
1. The commutativity of the diagram of cohomology groups in the lemma follows from the
functoriality of this decomposition. The last assertion follows from the five lemma. O
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10.5. Proof of Proposition 10.4.8. Let us recall that the canonical pairings

Hi(Y, 0%)  x HNH=iy, \N-ay 225 57,

HI(Y,U'M") x BYI(Y, U M) 222

(g =n' — 2 or n — 2) are non-degenerate pairings of finite groups for any i by Theorems 2.2.4
and 9.1.1, respectively. We deduce Proposition 10.4.8 from these results. Let U(n) be an object
of D*(Yy,7Z/pZ) fitting into a distinguished triangle

(10.5.1)

Al=n =1 —— Un) —— K(n) —— Ay[-n],

where the last morphism is defined as the composite K(n) — H"(K(n))[—n] ~ FM"[—n] —
Ay [—n] (cf. Lemma 10.4.1 (2), Theorem 3.4.2, Corollary 3.5.2). By Lemma 10.4.1 (2) and
Lemma 2.1.2 (3), U(n) is concentrated in [n — 1,n] and unique up to a unique isomorphism.
We have

,U/®V;/L'_2 (q:n_1)7 (1052)
Uutmr (g =n). o

For K € DY, Z/pZ), let D(K) be as in (10.4.5). In view of Lemma 10.4.10 and the non-
degeneracy of the pairings in (10.5.1), we have only to show the following:

Lemma 10.5.3. (1) There is a unique morphism
£ UM)[—1] —— DEM =) in D*(Ya,Z/pZ)
fitting into a commutative diagram with distinguished rows
Um)[-1]  — K»)[-1] — Ay [—n —1] — U(n)
fl (10.4.7)1 (—1)”vfll f[l}l (10.5.4)
DFM™ [-n']) — D(K(n) — D © vy ~2[~n' +1]) — DEM" [-n))[1].
Here the lower row arises from a distinguished triangle obtained by truncation
U= +1] —— K(n') —— FM"[-n] —— 1/ @ ¥ 2[—n 4 2]

(cf. Lemma 10.4.1 (2)), and we have chosen the signs of the connecting morphisms (=the
last arrows) of the both rows suitably. The arrow fi is defined as the adjoint morphism
of the map Ni-[—n—1]@% (1 @ v ~2)[—n' +1] — p' Qv [~ N — 2] induced by the identity
map of (' and the pairing (2.2.3).

(2) There is a commutative diagram with distinguished rows in Dt (Y, Z/pZ)

Weron] > Um)-1] — UM"[—n—1] = i @ 2 2[-n+1]

2| 7| al el | (10.5.5)

DAY [-n']) — D(FM™[-n')) — DU'M™ [-n']) — DO [-n'])[1].
Here the upper row is the distinguished triangle obtained by truncation (cf. (10.5.2)), the
lower row arises from the short exact sequence 0 — U*M™ — FM"™ — A\ — 0, and we
have chosen the signs of the connecting morphisms (=the last arrows) of the both rows

suitably. The arrow fo is defined in a similar way as for fi in (1), and f3 denotes the
morphism induced by O"[—1]. See §8.2 for O".
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To prove Lemma 10.5.3, we first show Lemma 10.5.6 below. Note that for K € D*( X4, Z/pZ),
Rj,j*K and R/'K are both bounded (cf. Lemma 7.3.2). For K, £ € D*(Xg,Z/pZ), K @" L is
bounded, because a Z/pZ-sheaf is flat over Z/pZ.

Lemma 10.5.6. For K, L € D*(Xy,Z/pZ), there is a commutative diagram
(Rj.j*K) @ L —— Rjj* (K" L)
a&zoyuc)@midl P‘&%(K@ILE) (10.5.7)
(LRK[)) @ L —— . RINK Y L)[1],
where the horizontal arrows are natural product morphisms.

The commutativity of the induced diagram of cohomology sheaves of (10.5.7) would be well-
known. However, we include a proof of the lemma, because we need the commutativity in the
derived category to show especially Lemma 10.5.3 (2).

Proof of Lemma 10.5.6. For two complexes M* and N°*, let (M* ® N*)' be as in Proof of
Proposition 4.4.10. For a map h® : M*®* — N°* of complexes, let Cone(h)® be as in Proof
of Proposition 4.3.1 and let u;, : N* — Cone(h)® be the canonical map. Let C°(Xy,Z/pZ)
be the category of bounded complexes of Z/pZ-sheaves on Xg. Take an i'-acyclic resolution
K* € C*Xg,Z/pZ) of K (see the remark before Lemma 10.5.6) and a bounded complex
L* € C* X, Z/pZ) which represents £. Note that K*® is a j,-acyclic resolution of K as well.
We further take an injective resolution J* € C* (X, Z/pZ) of (K*®@L*)". Let f : K* — j.j*K*®
and g : J* — j,j*J*® be the canonical maps, and let f': (K* ® L*)" — ((j.j*K*) ® L*)" be the
map induced by f. Then in D°(Xy,Z/pZ), the diagram (10.5.7) decomposes as follows:

(oK) ®L*)" —=—= ((j«j"K*) ® L*)" =—=—= ((j-j"K*)®L")" —— j.j"J ——= j.j"J°

5%?}(’C>®Lidl (1) (uf®id)”l (2) “f’l (3) ugl (4) la&g,(zm%)

(Lt K°[1]) ® L*)* % (Cone(f)* @ L*)* % Cone(f')* —24 , Cone(g)® —22— L./ J°[1],

where @1, ©9, w4 and @5 are canonical maps of complexes and py and 5 are isomorphisms
in D*( X, 7/pZ). The arrow o3 is defined as the natural identification of complexes, and the
composite of the lower row agrees with the bottom arrow in (10.5.7). The squares (2) and (3)
commute in the category of complexes, and the squares (1) and (4) commute in D*(Xg,Z/pZ)
by the definition of connecting morphisms. Thus the diagram (10.5.7) commutes. O

Proof of Lemma 10.5.3. There is a commutative diagram in D°( X, Z/pZ)

(RjupE 1) © T(n)x —— RjpuVT -1 P2 YN -
(G1[-1)@ka | sl | |

N+1

LWRIT(n— 1)y @ T(n')x —— WRIF(N +1)x 2 N [-N — 2],

~

where the left horizontal arrows are product morphisms and we wrote ¢; and s for 5%?3/(1(71 —
1)x) and 695 (T(N + 1)x), respectively. The left square commutes by Lemma 10.5.6, and the
right square commutes by (4.4.2). By this commutative diagram and the anti-commutativity
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of (10.4.4), the square

(T(n)x[-1]) @ ¢ T(n')x TN R pEN 1]
(an[—l})@)ﬂ“an/l J(s.zz) (10.5.8)
Km)[-1)) @ K(n) 0 @ uf[-N — 2]

commutes in D°(Yy, Z/pZ) (cf. the diagram in Lemma 10.4.6). Now we prove Lemma 10.5.3,
using a similar argument as for Lemma 10.4.6. We first show (1). Because there is no non-zero
morphism from U(n) to D(x/ ® v ~2[—n/ + 1]), it suffices to show the commutativity of the
central square in (10.5.4). Our task is to show that the composite morphism

K(m)[-1]) &% (1 @ ' )[-n'+1] — (Kn)[-1)) & K(n') 2 0 @ v [-N 2]
induces (—1)" - fi, which follows from the commutativity of (10.5.8) and Lemmas 10.4.1 (2)
and 2.1.1. The details are straight-forward and left to the reader. We next show (2). There
are no non-zero morphisms from p' ® v 2[—n + 1] to D(U*M™ [~n']), and the left square in
(10.5.5) commutes by a similar argument as for (1). Hence there is a unique morphism f; :
U'M"[—n] — D(U'M™ [-n’ — 1]) fitting into (10.5.5) (cf. Lemma 2.1.2 (2)), which necessarily
agrees with f3 by the commutativity of (10.5.8) and the construction of these maps. Thus we
obtain the lemma. 0J

This completes the proof of Proposition 10.4.8 and Theorems 10.1.1 and 10.1.3. ([

10.6. Consequences in the local case. We state some consequences of Theorem 10.1.1. Let
the notation be as in Theorem 10.1.1 and Remark 10.1.5. Let H{ (V, u5") be the image of the
canonical map H'(X, T,(n)x) — H'(V, u3").

Corollary 10.6.1. H. (V, &™) and HX=/(V, u3%") are exact annihilators of each other under
the non-degenerate pairing (10.1.6).

Proof. By Theorem 6.1.1 and a similar argument as for Lemma 10.2.1, one can easily check
that the composite map

5%201/ (zr(d)X) tI‘(X’y)
>

2V, i) HY (X, % (d)x) — Z/p'Z

agrees with the trace map try. Hence the diagram with exact rows
6loc

H'(X, T, (n)x) —  H(Vig) —— (X T(n)x)
(10.1.2)l: (10.1.6)l: (10.1.2)l:

HE 0 T (d — ) ) S RV, ) —— BT (d - n) )

P
commutes up to signs. Here the superscript * means the Pontryagin dual, and the bijectivity
of the left and the right vertical arrows follows from Theorem 10.1.1. Now the assertion follows
from a simple diagram chase on this diagram. 0J

Corollary 10.6.1 includes some non-trivial duality theorems in the local class field theory. More
precisely, we have the following consequence, where K := Frac(A) and Br(C) := H?(C, G,,):
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Corollary 10.6.2. Let C' be a proper smooth curve over K with semistable reduction. Then
there is a non-degenerate pairing of finite Z/p" Z-modules

Pic(C)/p" x ,Br(C) — Z/p"Z.

This corollary recovers the p-adic part of the Lichtenbaum duality [Lil] for C' and the Tate
duality [Tal] for the Jacobian variety of C' (cf. [Sal], p. 413). However our proof is not new,
because we use Artin’s proper base-change theorem for Brauer groups.

Proof. Take a proper flat regular model X over B of C' with semistable reduction. Let Y be the
closed fiber of X/B, and define Br(X) := H?(X,G,,). There is a commutative diagram with
exact rows

0 —— Pic(X)/p" —— H*(X,%,(1)x) —— »Br(X) —— 0

l | l

0 —— Pic(C)/p" —— H3*(C,upy) —— »Br(C) —— 0

See (4.5.3) for the upper row. In view of Corollary 10.6.1, our task is to show Pic(C)/p" =
H2 (C, p1,r). Because the left vertical arrow is surjective, it is enough to show Br(X) = 0. Now
by Artin’s proper base-change theorem: Br(X) ~ H?(Y,G,,) (cf. [Gt], II1.3.1), we are reduced
to showing H?(Y,Gy,) = 0, which follows from the classical Hasse principle for the function
fields of Y (cf. [Sal], §3, p. 388). Thus we obtain the corollary. O
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APPENDIX A. An application of p-adic Hodge theory to the coniveau filtration
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A.1. Every ‘suitable’ cohomology theory H* for schemes, for example étale cohomology, is
naturally accompanied with an important filtration called coniveau filtration, which is defined
as follows:

NH!(X) i=Im (lin gex>r Hy (X) — H(X))
:Ker(Hi(X) — lim e y>r HY(X — Z))7
where H%,(X) denote cohomology groups with support in Z and we put
X="={Z C X | closed in X and codimy(Z) > r}

IAppendix A is based on his master’s thesis at Tokyo University on 1999. He expresses his gratitude to
Professors Kazuya Kato and Shuji Saito for helpful conversations and much encouragement. He is supported
by the 21st century COE program at Graduate School of Mathematical Sciences, University of Tokyo.
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for non-negative integer r. This filtration, built into any cohomology group, is intimately related
to algebraic cycles and often enables us to control their behavior by various cohomological tools,
although the filtration per se has not been well-understood yet. The aim of this appendix is to
analyze this interesting filtration on étale cohomology groups by means of p-adic Hodge theory.
More precisely, we give an upper bound of it, assuming that X is a variety over a ‘p-adic’ field.

A.1.1. To state our results more precisely, we fix the setting. Let A be a henselian discrete
valuation ring A whose fraction field K has characteristic 0 and whose residue field k is perfect
of characteristic p > 0. Consider the following diagram of schemes:

y /5 x <L X

| = | o ]
Spec(k) —— Spec(A) «—— Spec(K),
where the vertical arrows are proper and flat, and both squares are cartesian. We assume that
X is a regular semistable family over A, i.e., X is regular, X is smooth over K and Y is a
reduced divisor on X with normal crossings. Fix an algebraic closure K of K, let A be the
integral closure of A in K and let k be its residue field. We denote Y @3k, X®4 A and X @ K
by Y, X and X, respectively, and write 7 and j for the canonical maps ¥ — X and X — X,
respectively. For simplicity we always suppose that X and X are connected. Throughout this
appendix, we use the general notation fixed in §§1.6-1.7 of the main body.

A.1.2. By standard theorems in étale cohomology theory, we have spectral sequences
Ey" = H(Y,i*Rj,.Z/p"(m)) = H* (X, Z/p"(m)),
By = BV, T R].Z/p") = H* (X, Z/p"),
where Z/p"(m) denotes the sheaf y=" on X We define the filtration F* C HY(X,Z/p"(m))
as that induced by the former spectral sequence. Alternatively, one can define
FTHY(X, Z/p"(m)) := Im (HY(X, 7<g— Rj.Z/p" (m)) — HI(X, Z/p"(m))).
Now we have two filtrations N* and F'* on HY(X, Z/p"(m)). One defines the filtrations N* and
F* on H(X,Z/p") as well in the same way.

A.1.3. Our results are stated as follows.

Theorem A.1.4. Let r,s and n be non-negative integers with 0 < r < s/2. Then
N'HY(X,Z/p" (s — 1)) C FTH*(X,Z/p"(s —1)).
Theorem A.1.5. Let r,s and n be non-negative integers with 0 < r < s/2. Then
N'H*(X,Z/p") C F'H*(X,Z/p").
Remark A.1.6. Ifr is outside of this interval, these assertions are straight-forward by coniveau
spectral sequences (cf. [BO]).

Al17 Ifr =1, s =3 and X is smooth, then Theorem A.1.4 is originally due to Langer
and Saito ([LS], 5.4). Their proof is K-theoretic and reduces the problem to semi-purity of
cohomology groups with coefficients in Ks-sheaves. On the other hand, our proof is p-adic
Hodge theoretic, i.e., we will reduce the problem to semi-purity of cohomology groups with
coefficients in étale sheaves of p-adic vanishing cycles.
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A.1.8. The filtration F* is highly non-trivial in the p-adic coefficients case, in contrast with
the ‘l-adic coefficients’ case, where for instance in the good reduction case, the corresponding
filtration is trivial. In fact, as an application of Theorem A.1.5 we will prove the following:

Corollary A.1.9._Let s, and n be non-negative integers with 0 < r < s/2. Assume that X is
ordinary, i.e., H*(Y, Bb?) =0 for all a and b (see Theorem 3.3.7 for Bb?) Then we have

lengthy , NTHY (X, Z/5") <Y lengthyy, o H(V, Wi ),

r<a<s

where W,wy denotes the de Rham-Witt complex defined in [Hyl].

A.1.10. Bloch and Esnault [BE] proved that T'(Y, Q) # 0 = N'H™(X,Z/p) # H™(X,Z/p),
assuming that X has ordinary good reduction and that the spectral sequence

By’ = W'Y, 7 R']Z/p) = H*"'(X, Z/p)
degenerates at Fo-terms. Corollary A.1.9 recovers and generalizes this fact.

A.1.11. We will prove Theorems A.1.4, A.1.5 and Corollary A.1.9 in §A.2, §A.3 and §A .4
below, respectively.

A.2. Proof of Theorem A.1.4. We first reduce Theorem A.1.4 to Lemma A.2.2 below. For
7 € X2", let 3 be the closure of Z in X. There is a commutative diagram

Hy (X, Z/p"(s —7))  ——  H(X,Z/p"(s—1))
T ] (A.2.1)
H3(X, 7<s—r RjZ[p" (s — 1)) —— H*(X, 7<s— Rj.Z/p" (5 —1)).
Put A := Rj,.Z/p"(s—r). Since H5(%, A) ~ H,(X,Z/p"(s —r)), there is a long exact sequence
o Y, T o A) — H(X 2/ (5 — 1) — HY(E, Tou 1) — HE (X, Ty o d) = -
Now Theorem A.1.4 is reduced to
Lemma A.2.2. H§(X, 7>,_,41A) =0 for any Z € X=" and any r,s € Z as in the theorem.

Indeed, by this lemma the left vertical arrow in (A.2.1) is surjective, and Theorem A.1.4 follows
from a diagram chase on (A.2.1).

A.2.3. The rest of this subsection is devoted to Lemma A.2.2. The following sublemma follows
from a simple argument on flatness, whose proof is left to the reader:

Lemma A.2.4. For Z € X=", put Z, := 3®4 k with 3 the closure of Z C X. Then Z, € Y=".

A25. Let Z, 3 and Z, be as in Lemma A.2.4. For q € Z, we put C,(q) := *Rj.Z/p"(q).
Since R"j.Z/p"(q) ~ i,i* R™j.Z/p"(q) for m > 0, we have

H%(}; TZS—T’-ﬁ-le*Z/pn(s - ’l“)) = HsZp (Y> T>s—r41 Cn(s - T))
We prove that the right hand side is zero. There are distinguished triangles
Tzs—r—l-l Cn—l(s - T) B— TZS—’I‘—I—I Cn(s - T) B— Tzs—r—l-l Cl (3 - T>7

RGP (s —r)[=m] — Tom Ci(s = 1) — Tomy Ci(s —7)
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in DT (Y ), where the former triangle is obtained from the short exact sequence
0—Z/p" (s —1) — Z/p"(s —7) — Z/p(s =) — 0

and, in fact, distinguished because the map i*R*"j,.Z/p"(s —r) — *R*"jZ/p(s — r) is
surjective (cf. Theorem 3.3.7 (1) in the main body). By these distinguished triangles and
Lemma A.2.4, Lemma A.2.2 is reduced to the following semi-purity result:

Theorem A.2.6 (Semi-purity). For any Z, € Y=" and any a,m,q with a <r — 1, we have
HY (Y,i"R™j.Z/p(q)) = 0.

A.2.7. By astandard norm argument, Theorem A.2.6 is reduced to the case where K contains
primitive p-th roots of unity. In this case, we have Z/p (¢) ~ Z/p (m) on X, and it suffices to
consider the case m = ¢q. Hence Theorem A.2.6 is reduced to the vanishing

HY (Y, wg’/,log) =H7 (Y, Wb /By = HY (Y, B) =0 for any a,b with a <r — 1

by the Bloch-Kato-Hyodo theorem (cf. Theorem 3.3.7). By a similar argument as for [Mil],
1.7, the sheaves wb /B% and B% are locally free (Oy)P-modules of finite rank. By [Hyl], (1.5.1),
there is an exact sequence

1-Cc—1
0 —— wg’/,log Wl Wb /B, —— 0.

Therefore we are further reduced to the following lemma:

Lemma A.2.8. Let F be a locally free (Oy)P-module of finite rank. Then HY (Y, F) is zero
foranya <r—1.

A.2.9. Since the absolute Frobenius morphism Fy : Y — Y is finite, H} (Y, F) is isomorphic
to Hy (Y, Fy.(F)). Hence we are reduced to the case that F is a locally free Oy-module of

finite rank. Take an étale covering {U,};c; of Y which trivializes F. By a local-global spectral
sequence ([SGA4], V.6.4 (3)), it suffices to prove that

Zxyu; (Ui, Op,) = 0 for any a <r —1 and any i € [,

where H3 (X, o) denotes the sheaf of cohomology groups with support ([SGA4], V.6). One can
easily check this triviality by the comparison theorem on Zariski and étale cohomology groups
for coherent sheaves ([SGA4], VII.4.3) and standard facts on depth (see, e.g., [Ha2|, (3.8)),
noting that Y and U; (i € I) are Cohen-Macauley ([AK], VII.4.8). This completes the proof of
Claim, Lemma A.2.2 and Theorem A.1.4. O

Corollary A.2.11. Let q,r and s be integers with 0 < r < s/2. Then
N'HY(X,Z/p(q)) € F'H* (X, Z/p (q))-

Proof. Indeed the restriction on Tate twists is unnecessary in this n = 1 case by a standard
norm argument. O

A.3. Proof of Theorem A.1.5. Because we do not need to care about Tate twists on X, the
proof becomes much simpler. As in the proof of Theorem A.1.4, it is enough to show that

HZ, (Y, 7o rai RIZ/p") =0
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for arbitrary Z, € Y=". Since Z /p"(1) =~ Z/p"™ on X for any n, we have an exact sequence
0 — @ R7,2/p""q) — 7 R'Z/p"(q) — T RT.Z/p(q) — 0
(cf. [BK], p. 142, line 9 and [Hy1], (1.11.1)). Hence it suffices to show that
HY (Y,i R7,Z/p(q)) =0

for any a,q with 0 < a < r — 1. Take a finite extension ko/k over which Z, C Y is defined,
and take a closed subset Z,o of Y ®;, ko such that Z,, ®x, k ~ Z, under the isomorphism
(Y @y ko) @k, k =Y. Now let K’ be a finite extension of K whose residue field &’ contains ky,
and let A’ be the integer ring of K'. By [SGA4], VIL.5.8, our task is to show that

0%, oo i (Y @1 K" R1j.Z/p(q)) =0

for any a,q with 0 < a < r — 1, where ' (resp. j') denotes the morphism ¥ @4 k' — X @4 A’
(resp. X @k K’ — X ®4 A’). This assertion follows from the same argument as in Theorem
A.2.6. Thus we obtain Theorem A.1.5. ([l

A.4. Proof of Corollary A.1.9. Let W, ws log be the modified logarithmic Hodge-Witt sheaves

(cf. §3.3 of the main body). The ordinarity assumption implies that
HY(Y, "R 2/p") = B (Y, Wy )
([BK], (9.2), [Hyl], (1.10)) and that
HO (T, Waids ) @apm Wal(F) 2 HO(V, W)
([BK], (7.3), [112], (2.3)). Hence Corollary A.1.9 follows from Theorem A.1.5. O

Remark A.4.1. The theorem of Bloch-Esnault in [BE], (1.2) is a direct consequence of Corol-
lary A1.9 with r =n =1 and X/A smooth. They derived some interesting results on algebraic
cycles from this case. Therefore Corollary A.1.9 would provide us with much more information.
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