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We construct spectral sequences for computing the cohomology of automorphism
groups of formal groups equipped with additional endomorphisms given by a p–adic
number ring. We then compute the cohomology of the group of automorphisms of
a height four formal group law which commute with additional endomorphisms of
the group law by the ring of integers in the field Qp.

p
p/ for primes p > 5 . This

automorphism group is a large profinite subgroup of the height four strict Morava
stabilizer group. The group cohomology of this group of automorphisms turns out
to have cohomological dimension 8 and total rank 80 . We then run the K.4/–local
E4 –Adams spectral sequence to compute the homotopy groups of the homotopy
fixed-point spectrum of this group’s action on the Lubin–Tate/Morava spectrum E4 .
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1 Introduction

This paper is intended as a companion and sequel to [20]. In J P May’s thesis [9], he
used the results of Milnor and Moore’s paper [13] to set up spectral sequences for
computing the cohomology of the Steenrod algebra, the input for the classical Adams
spectral sequence; in Chapter 6 of [17], Ravenel adapts May’s spectral sequences for the
purpose of computing the cohomology of automorphism groups of formal group laws,
ie Morava stabilizer groups, which are the input for various spectral sequence methods
for computing stable homotopy groups of spheres and Bousfield localizations of various
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2142 Andrew Salch

spectra. Here we adapt Ravenel’s tools to the task of computing the cohomology of
automorphism groups of formal group laws with additional endomorphisms1 by a
p–adic number ring A, ie formal A–modules. We show (Theorem 5.1) that these
automorphism groups are closed subgroups of the Morava stabilizer groups, so that
the machinery of Devinatz and Hopkins [4] can be used to construct and compute
the homotopy fixed-point spectra of the action of these automorphism groups on
Lubin–Tate/Morava E–theory spectra; and then, most importantly, we actually use
all this machinery to do some nontrivial computations: in Theorem 4.5, we compute
the cohomology of the group scheme strAut.1G

yZpŒ
p

p�

1=2
/ of strict automorphisms of a

height four formal group law which commute with “complex multiplication” by the
ring of integers in the field Qp.

p
p/ for primes p > 5. This is an eight-dimensional

pro-p–subgroup of the sixteen-dimensional height four strict Morava stabilizer group
scheme. The group cohomology

H�.strAut.1G
yZpŒ
p

p�

1=2
/IFp/

turns out to have cohomological dimension 8, total rank 80 and Poincaré series

.1C s/4.1C 3s2
C s4/D 1C 4sC 9s2

C 16s3
C 20s4

C 16s5
C 9s6

C 4s7
C s8:

We then run the descent/K.4/–local E4 –Adams spectral sequence to compute the ho-
motopy groups of the homotopy fixed-point spectrum Eh Aut.1G

yZp Œ
p

p�

1=2
˝Fp Fp/ÌGal.xk=Fp/

4

smashed with the Smith–Toda complex V .3/ (which exists, since we are still assuming
that p > 5). The computation is Theorem 5.2; see the statement of Theorem 5.2 for
a presentation of the homotopy groups of that spectrum, or Corollary 5.3 for just its
Poincaré series.

Part of the appeal of Theorem 5.2, the main result of this paper, is that it is one of
extremely few calculations of v4 –periodic homotopy groups which have ever been
made. Beyond that, deeper v4 –periodic calculations can be made by building upon
Theorem 5.2; in particular, see our [19] for some applications of the computations in
this paper as input for further, more difficult computations which eventually arrive at
the cohomology of the height four Morava stabilizer group scheme at primes p > 7.

The computations in Section 4 appeared already in the (unpublished, and not submitted
for publication) announcement [19]; any version of that announcement which is ever

1Sometimes one says that formal A–modules are “formal group laws with complex multiplication by A”,
but this terminology is ambiguous, since the theory of complex multiplication on abelian varieties really
demands that the ring A have as large a rank as possible given the dimension of the abelian variety, a
restriction whose analogue for formal group laws we do not make in this paper.
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submitted for journal publication will feature at most only an abbreviated version of
these computations, with the idea that the complete versions are those provided here.

This paper benefited from insightful suggestions of its anonymous referee, and I am
grateful to the referee for this. I am also grateful to J Greenlees for his editorial help,
and also for his patience, as well as the referee’s.

Conventions 1.1 In this paper, all formal groups and formal modules are implicitly
assumed to be one-dimensional and commutative.

“Formal group” is used to mean “formal group law”, ie a power series satisfying appro-
priate associativity, commutativity, unitality and inverse axioms, as in Hazewinkel [5]
or Ravenel [17]. We do not mean “formal group” in the coordinate-free sense, ie a
group structure on the formal affine line yA1 , as in Smithling [21]. Similarly, our formal
modules all have chosen coordinates, ie they are given by formal power series data.
(The difference between the “coordinate-free” and “coordinate-chosen” definitions is,
of course, simply a choice of power series generator for the ring of global sections
of yA1 . The statements of the computational results in this paper apply equally well to
formal modules in the coordinate-free sense, although some of the proofs only make
sense after a choice of coordinate.)

Whenever G is a formal group or a formal module over a field k , we will write
Aut.G/ for the automorphism group scheme of G , ie Aut.G/ is the functor from
commutative k –algebras to groups which sends a k –algebra A to the automorphism
group of G˝k A. For emphasis: our notation Aut.G/ designates a group scheme, not
a group. Similarly, strAut.G/ is the group scheme of strict automorphisms of G , ie
strAut.G/ W Comm Alg.k/!Groups sends A to the subgroup of Aut.G/.A/ consist-
ing of those automorphisms which are given by formal power series in AŒŒX �� which
are congruent to X modulo X 2 . In particular, when G is p–typical, strAut.G/ is
corepresented by the Hopf algebra k˝BP�BP�BP˝BP�k , where k is a BP�–module
via the classifying map BP�! k of G . In the special case in which BP�! Fp sends
vn to 1 and sends vi to 0 if i ¤ n, strAut.G/ is corepresented by the Morava stabilizer
algebra †.n/, as in Section 6.2 of [17].

The notation kŒstrAut.G/�� then refers to the commutative Hopf algebra of functions
on the group scheme strAut.G/; see Waterhouse [22] for a textbook treatment.

It is well known (see eg Theorem 6.2.3 of [17]) that, if k is finite, then Aut.G/ and
strAut.G/ are pro-étale; that is, after a separable base change, they become pro-constant.

Algebraic & Geometric Topology, Volume 21 (2021)



2144 Andrew Salch

Hence Aut.G˝k
xk/ and strAut.G˝k

xk/ are k –linear duals of honest profinite groups.
This point is discussed more at the start of Section 5. The cohomological consequences
of Aut.G/ being a group scheme and not a group are rather slight: see the proof of
Theorem 5.2 for an easy Galois descent argument which lets us pass between the
cohomology of the group scheme Aut.G/ and the continuous group cohomology of
the automorphism group of G˝k

xk .

Throughout, we will use Hazewinkel’s generators for BP� (and, more generally, for the
classifying ring V A of A–typical formal A–modules, where A is a discrete valuation
ring).

By a “p–adic number field” we mean a finite field extension of the p–adic rationals Qp

for some prime p .

When a ground field k is understood from context, we will write ƒ.x1; : : : ;xn/ for
the exterior/Grassmann k –algebra with generators x1; : : : ;xn .

Given a field k , we write kfx1; : : : ;xng for the abelian Lie algebra over k with basis
x1; : : : ;xn .

When L is a restricted Lie algebra over a field k and M is a module over the restricted
enveloping algebra VL, we write H�res.L;M / for restricted Lie algebra cohomology,
ie H�res.L;M /ŠExt�VL.k;M /, and we write H�unr.L;M / for unrestricted Lie algebra
cohomology, ie H�unr.L;M /Š Ext�UL.k;M /, where UL is the universal enveloping
algebra of L.

Whenever convenient, we make use, without comment, of the well-known theorem of
Milnor and Moore, from [13]: given a field k of characteristic p > 0, the functors P

(restricted Lie algebra of primitives) and V (restricted enveloping algebra) establish an
equivalence of categories between restricted Lie algebras over k and primitively gener-
ated cocommutative Hopf algebras over k , and this equivalence preserves cohomology,
ie H�res.L;M /Š Ext�VL.k;M /.

Whenever convenient, we make use of the Chevalley–Eilenberg complex of a Lie
algebra L to compute (unrestricted) Lie algebra cohomology H�unr.L;M /, as in [2].

Many of the differential graded algebras in this paper have a natural action by a finite
cyclic group; given an action by a finite cyclic group Cn on some DGA, we will always
fix a generator for Cn and write � for that generator.

Algebraic & Geometric Topology, Volume 21 (2021)
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2 Review of Ravenel’s filtration and associated May spectral
sequences

This paper continues from [20]; for a brief introduction to formal A–modules, their
moduli, A–typicality, A–height and so on, the reader can consult that paper. A more
complete account is in [16], and an even more complete account is [5, Chapter 21].
Briefly, the most important fact we will use is that, for A the ring of integers in a
p–adic number field, the classifying ring of A–typical formal A–modules is V A Š

AŒvA
1
; vA

2
; : : : �, and the classifying ring of strict isomorphisms of A–typical formal

A–modules is V AT Š V AŒtA
1
; tA

2
; : : : �, with vA

n and tA
n each in grading degree

2.qn� 1/, where q is the cardinality of the residue field of A.

Definition 2.1 and Theorem 2.2 appeared in [20]:

Definition 2.1 Let K be a p–adic number field with ring of integers A and residue
field k , and let n be a positive integer. Let k 0 be a field extension of k , and let
˛ 2 .k 0/� . We write ˛GA

1=n
for the formal A–module over k 0 classified by the map

V A! k 0 sending vA
n to ˛ and sending vA

i to 0 if i ¤ n.

We remind the reader of our convention, from Conventions 1.1, that the symbol
strAut.G/ refers to the strict automorphism group scheme of a formal group law G ,
and kŒstrAut.G/�� is the commutative Hopf k –algebra of functions on that group
scheme.

Theorem 2.2 Let L=K be a finite field extension of degree d , with K and L p–
adic number fields with rings of integers A and B, respectively. Let k and ` be the
residue fields of A and B, let e be the ramification degree and f the residue degree of
L=K, let q be the cardinality of `, and let �A and �B be uniformizers for A and B,
respectively. Let n be a positive integer. If `0 is a field extension of ` and ˇ 2 .`0/� ,
then the underlying formal A–module of ˇGB

1=n
is ˛GA

1=dn
, where

˛ D
�A

�e
B

ˇ.q
en�1/=.qn�1/:

Furthermore , the ring map

(2-1) k.˛/ŒstrAut.˛GA
1=dn/�

�
D k.˛/ŒtA

1 ; t
A
2 ; : : : �=.t

A
i ˛

qei�1
� .tA

i /
qen

for all i/

! `ŒtB
1 ; t

B
2 ; : : : �=.t

B
i ˇ

qi�1
� .tB

i /
qn

for all i/D `ŒstrAut.ˇGB
1=n/�

�

classifying the strict formal A–module automorphism of ˛GA
1=dn

underlying the uni-
versal strict formal B–automorphism of ˇGB

1=n
sends tA

i to tA
i=f

if i is divisible by

Algebraic & Geometric Topology, Volume 21 (2021)
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the residue degree f of L=K, and sends tA
i to zero if i is not divisible by the residue

degree f .

Ravenel writes S.n/ for the Hopf algebra Fpn ŒstrAut.1G
yZp

1=n
/�� ; most of his con-

structions and computations work equally well for the more general Hopf algebra
Fp ŒstrAut.˛GA

1=dn
/�� .

Definition 2.3 and Theorems 2.4 and 2.5 were given in Section 6.3 of [17].

Definition 2.3 (Ravenel’s numbers) Fix a prime number p and a positive integer n.
Let dn;i be the integer defined by the formula

dn;i D

�
0 if i � 0;

maxfi;pdn;i�ng if i > 0:

(Clearly dn;i depends on the prime number p , but the choice of prime p is suppressed
from the notation for dn;i .)

Now equip the continuous Fp –linear dual Hopf algebra

Fp ŒstrAut.1G
yZp

1=n
/�� Š Fp˝BP� BP�BP ˝BP� Fp Š Fp Œt1; t2; : : : �=.t

pn

i � ti for all i/

with the increasing filtration in which the element t
j
i is in filtration degree sp.j /dn;i ,

where sp.j / is the sum of the digits in the base p expansion of j. Here the BP�–
module structure of Fp is given by the ring map BP� ! Fp sending vn to 1 and
sending vi to 0 for all i ¤ 0. We call this filtration the Ravenel filtration.

Theorem 2.4 [17, Theorems 6.3.1–6.3.3] The Ravenel filtration is an increasing
Hopf algebra filtration , and its associated graded Hopf algebra E0S.n/ is Fp –linearly
dual to a primitively generated Hopf algebra. The Hopf algebra E0S.n/ is isomorphic ,
as an Fp –algebra , to a truncated polynomial algebra

E0Fp ŒstrAut.1G
yZp

1=n
/�� Š Fp Œti;j W 1� i; j 2 Z=nZ�=t

p
i;j ;

where the coproduct is given by

(2-2) �.ti;j /D

8<:
P

0�k�i tk;j ˝ ti�k;kCj if i < pn=.p� 1/;P
0�k�i tk;j ˝ ti�k;kCj C

xbi�n;jCn�1 if i D pn=.p� 1/;

ti;j ˝ 1C 1˝ ti;j C xbi�n;jCn�1 if i > pn=.p� 1/;

where ti;j is the element of E0Fp ŒstrAut.1G
yZp

1=n
/�� corresponding to

t
pj

i 2 Fp ŒstrAut.1G
yZp

1=n
/��;

Algebraic & Geometric Topology, Volume 21 (2021)
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t0;j D 1 and xx is the image in E0Fp ŒstrAut.1G
yZp

1=n
/�� of an element

x 2 Fp ŒstrAut.1G
yZp

1=n
/��:

The xb elements have a fairly complicated combinatorial description; see [17, 4.3.14].

The Hopf algebra E0Fp ŒstrAut.1G
yZp

1=n
/�� is the Fp –linear dual of the restricted en-

veloping algebra of a restricted Lie algebra L.n/. Let xi;j denote the Fp –linear

functional on E0Fp ŒstrAut.1G
yZp

1=n
/�� which is dual to ti;j ; then the set

fxi;j W i > 0; j 2 Z=nZg

is an Fpn –linear basis for L.n/. We describe the bracket and the restriction � on L.n/:

Œxi;j ;xk;l �D

�
ıl

iCj xiCk;j � ı
j

kCl
xiCk;l if i C k � pn=.p� 1/;

0 if i C k > pn=.p� 1/;

�.xi;j /D

8<:
xiCn;jC1 if i > n=.p� 1/ or i D n=.p� 1/ and p > 2;

x2n;j Cx2n;jC1 if i D n and p D 2;

0 if i < n=.p� 1/;

where ıa
b
D 1 if a� b modulo n, and ıa

b
D 0 if a 6� b modulo n.

The two spectral sequences of May’s thesis [9], in this context, take the form:

Theorem 2.5 We have spectral sequences

(2-3)
E

s;t;u
2
ŠH s;t

unr.L.n/IFp/˝Fp
P .bi;j W i � 1; j 2 Z=nZ/)H s;t

res .L.n/IFp/;

dr W r
s;t;u
!EsC1;t;uCr�1

r ;

and

(2-4)
E

s;t
1
ŠH s;t

res .L.n/IFp/)H s;t .strAut.1G
yZp

1=n
/IFp/;

dr W r
s;t
!EsC1;t�r

r ;

where H�unr is (unrestricted ) Lie algebra cohomology and H�res is restricted Lie algebra
cohomology. Furthermore , the filtered DGA which gives rise to spectral sequence (2-3)
splits as a tensor product of a term with trivial E1–term with a term whose E2 –term
is

H�
�
L
�
n;
j

pn

p�1

k�
IFp

�
˝Fp

P
�
bi;j W 1� i �

n

p�1
; j 2 Z=nZ

�
;

where L
�
n; bpn=.p� 1/c

�
is the quotient restricted Lie algebra of L.n/ in which we

quotient out by the elements xi;j with i > bpn=.p� 1/c. Consequently there exists a

Algebraic & Geometric Topology, Volume 21 (2021)



2148 Andrew Salch

spectral sequence

(2-5)

E
s;t;u
2
ŠH s;t

unr

�
L
�
n;
j

pn

p�1

k�
IFp

�
˝Fp

P
�
bi;j W 1� i �

n

p�1
; 0� j < n

�
)H s;t

res .L.n/IFp/;

dr W r
s;t;u
!EsC1;t;uCr�1

r :

Computation of the Chevalley–Eilenberg complex of L.n/ and of L
�
n; bpn=.p�1/c

�
is routine, and appears in Theorem 6.3.8 of [17]:

Theorem 2.6 Let K.n;m/ be the differential graded Fp –algebra which is the exterior
algebra ƒ.hi;j W 1� i �m; j 2 Z=nZ/ with differential

d.hi;j /D

i�1X
kD1

hk;j hi�k;jCk ;

with the convention that hi;kCn D hi;k . Then

H�
�
K
�
n;
j

pn

p�1

k��
ŠH�unr

�
L
�
n;
j

pn

p�1

k�
IFp

�
:

3 Generalizations for formal A–modules

Recall that a graded Hopf algebra A over a field k is said to be finite-type if, for each
n2Z, the grading degree n summand An of A is a finite-dimensional k –vector space.

Proposition 3.1 Let K=Qp be a field extension of degree d and ramification degree e

and residue degree f . Let q D pf , let A be the ring of integers of K, let � be a
uniformizer for A and let k be the residue field of A. Let n be a positive integer , and let
! 2 xk be a .qen�1/=.qn�1/th root of �e=p . Then the underlying formal yZp –module
of !GA

1=n
is 1G

yZp

1=dn
, and the Ravenel filtration on Fp ŒstrAut.1G

yZp

1=dn
/�� induces a

compatible filtration on the Hopf algebra ,

(3-6) k.!/ŒstrAut.!GA
1=n/�

�
Š k.!/Œtf ; t2f ; : : : �=.t

qn

if
�!qi�1tif for all i/:

The associated graded Hopf algebra E0k.!/ŒstrAut.!GA
1=n
/�� is the graded k –linear

dual of a primitively generated finite-type Hopf algebra , which , as a quotient of
E0Fp ŒstrAut.1G

yZp

1=dn
/��˝Fp

k.!/, is given by

k.!/Œtif;j W i � 1; j 2 Z=f nZ�=.tp
i;j for all i; j /;

Algebraic & Geometric Topology, Volume 21 (2021)
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with coproduct

(3-7) �.ti;j /D

8<:
P

0�k�i tk;j ˝ ti�k;kCj if i < pdn=.p� 1/;P
0�k�i tk;j ˝ ti�k;kCj C

xbi�dn;jCdn�1 if i D pdn=.p� 1/;

ti;j ˝ 1C 1˝ ti;j C xbi�dn;jCdn�1 if i > pdn=.p� 1/:

Here ti;j is the element of E0k.!/ŒstrAut.!GA
1=n
/�� corresponding to

t
pj

i 2 k.!/ŒstrAut.!GA
1=n/�

�;

and

(3-8)
t0;j D 1; ti;jCf n D !

pj .qi�1/ti;j ;

ti;j D 0 if f −i > 0; xbi;jCf n D !
pjC1.qi�1/xbi;j :

Proof The claim that the underlying formal yZp –module of !GA
1=n

is 1G
yZp

1=dn
is

simply a special case of Theorem 2.2, as is the isomorphism (3-6). The fact that the
Ravenel filtration on Fp ŒstrAut.1G

yZp

1=dn
/�� induces a filtration on the Hopf algebra

k.!/ŒstrAut.!GA
1=n
/�� is straightforward: the Hopf algebra k.!/ŒstrAut.!GA

1=n
/��

is the quotient of
�
Fp ŒstrAut.1G

yZp

1=dn
/��
�
˝Fp

k.!/ by the ideal I generated by
t
qn

if
� !qif�1tif for all i and by tj for all j not divisible by f ; these generators

for this ideal I are all homogeneous in the Ravenel filtration.

Computation of the associated graded, including the formula for the coproduct, is
routine: simply reduce the formulas of Theorem 2.4 modulo I. Deriving formula (3-8)
requires consulting the definition of bi;j in [17, 4.3.14] in terms of Witt polynomials;
the essential observations here are that bi;jC1 , modulo p , is obtained from bi;j by
replacing each element tm with t

p
m , and that

t
apjCf n

i ˝ t
.p�a/pjCf n

i D .t
pf n

i /apj

˝.t
pf n

i /.p�a/pj

D!pjC1.pf i�1/t
apj

i ˝ t
.p�a/pj

i :

The fact that E0k.!/ŒstrAut.!GA
1=n
/�� is finite-type is immediate from its given pre-

sentation; and it is dual to a primitively generated Hopf algebra since its linear dual is a
Hopf subalgebra of the linear dual of E0Fp ŒstrAut.1G

yZp

1=dn
/�� ˝Fp

k.!/, which is
primitively generated.

Theorem 3.2 (structure of PE0k.!/ŒstrAut.!GA
1=n
/�) Let K=Qp be a field exten-

sion of degree d and ramification degree e and residue degree f . Let A be the ring
of integers of K, let � be a uniformizer for A, and let k be the residue field of A.
Let n be a positive integer , and let ! 2 xk be a .qen�1/=.qn�1/th root of �e=p .
Let PE0k.!/ŒstrAut.!GA

1=n
/� be the restricted Lie algebra of primitives in the k.!/–

linear dual Hopf algebra
�
E0k.!/ŒstrAut.!GA

1=n
/��
�� . Let xA

i;j be the element of

Algebraic & Geometric Topology, Volume 21 (2021)
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PE0k.!/ŒstrAut.!GA
1=n
/� dual to the indecomposable ti;j 2E0k.!/ŒstrAut.!GA

1=n
/�� .

Then fxA
i;j W f j i; j 2 Z=f nZg is a k.!/–linear basis for PE0k.!/ŒstrAut.!GA

1=n
/�,

and dual to the natural surjection

Fp ŒstrAut.1G
yZp

1=dn
/��˝Fp

k.!/! k.!/ŒstrAut.!GA
1=n/�

�;

we have an inclusion of restricted Lie algebras over k.!/,

(3-9)

PE0k.!/ŒstrAut.!GA
1=n/�

�
�! PE0k.!/ŒstrAut.1G

yZp

1=dn
/�;

�.xA
i;j /D

e�1X
`D0

!pj .qi�1/.q`n�1/=.qn�1/xi;jC f̀ n:

When p D �e, the bracket on PE0k.!/ŒstrAut.!GA
1=n
/� is given by

(3-10) ŒxA
i;j ;x

A
k;`�D

�
zı`iCj xA

iCk;j
� zı

j

kC`
xA

iCk;`
if i C k � pdn=.p� 1/;

0 if i C k > pdn=.p� 1/;

where zıb
a D 1 if a� b modulo f n, and zıb

a D 0 if a 6� b modulo f n. The restriction
on PE0k.!/ŒstrAut.!GA

1=n
/� is given by

(3-11) �.xA
i;j /D

8̂̂̂̂
<̂̂
ˆ̂̂̂:

xA
iCn;jC1

if i > dn=.p� 1/;

xA
iCn;jC1

CxA
pi;j if i D dn=.p� 1/ and f n j i;

xA
iCn;jC1

if i D dn=.p� 1/ and f n−i;

xA
pi;j if i < dn=.p� 1/ and f n j i;

0 if i < dn=.p� 1/ and f n−i;

where xA
iCn;f n

D xA
iCn;0

.

Proof For (3-9), we check where elements in E0Fp ŒstrAut.1G
yZp

1=dn
/�� are sent in

E0k.!/ŒstrAut.!GA
1=n
/�� by the canonical surjection

E0Fp ŒstrAut.1G
yZp

1=dn
/��˝Fpn k.!/!E0k.!/ŒstrAut.!GA

1=n/�
�;

using the description of the map (2-1) in Theorem 2.2 to accomplish this. The map
Fp ŒstrAut.1G

yZp

1=dn
/��˝Fpn k.!/! k.!/ŒstrAut.!GA

1=n
/�� sends t

pj

i to

t
pj0Cj1f n

i D
�
.: : : ..t

pf n

i /p
f n

/p
f n

: : : /p
f n�pj0

D !pj0 .qi�1/.qj1n�1/=.qn�1/t
pj0

i ;

where j0 and j1 are the unique nonnegative integers such that j D j0C j1f n and
j0 < f n; hence the map

E0Fp ŒstrAut.1G
yZp

1=dn
/��˝Fpn k.!/!E0k.!/ŒstrAut.!GA

1=n/�
�

sends ti;j to !pj0 .qi�1/.qj1n�1/=.qn�1/ti;j0
. Formula (3-9) follows at once.
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Now suppose that p D �e. We compute the Lie bracket in PE0k.!/ŒstrAut.!GA
1=n
/�:

ŒxA
i;j ;x

A
k;`�D

� e�1X
aD0

xi;jCaf n;

e�1X
bD0

xk;`Cbf n

�

D

e�1X
aD0

e�1X
bD0

Œxi;jCaf n;xk;`Cbf n�

D

8̂<̂
:
Pe�1

aD0

Pe�1
bD0.ı

`Cbf n

iCjCaf n
xiCk;jCaf n� ı

jCaf n

kC`Cbf n
xiCk;`Cbf n/

if i C k � pdn=.p� 1/;

0 if i C k > pdn=.p� 1/;

D

8<:
zı`iCj

Pe�1
aD0 xiCk;jCaf n�

zı
j

kC`

Pe�1
bD0 xiCk;`Cbf n

if i C k � pdn=.p� 1/;

0 if i C k > pdn=.p� 1/;

D zı`iCj xA
iCk;j �

zı
j

kC`
xA

iCk;`;

where ıb
a D 1 if a� b modulo f n, and ıb

a D 0 if a 6� b modulo f n.

For the restriction on PE0k.!/ŒstrAut.!GA
1=n
/�, we could proceed as above, computing

�

� e�1X
`D0

xi;jC f̀ n

�
in PE0Fp ŒstrAut.1G

yZp

1=dn
/�; but this immediately means contending with the non-

linearity of the restriction map, which complicates the computation. Instead it is
easier to compute � on PE0k.!/ŒstrAut.!GA

1=n
/� in basically the same way that

Ravenel computes � on PE0Fp ŒstrAut.1G
yZp

1=dn
/� in the proof of [17, Proposition 6.3.3];

we sketch that method here. To compute �.xA
i;j / we just need to find which el-

ements ta;b 2 E0k.!/ŒstrAut.!GA
1=n
/�� have the property that the .p�1/st iterate

� ı � � � ı �.ta;b/ of �, applied to ta;b , has a monomial term which is a scalar
multiple of the p–fold tensor power ti;j ˝ � � � ˝ ti;j . When i > dn=.p � 1/, then
i C dn> pdn=.p� 1/ and hence, by formula (3-7), we have

�.tiCdn;jC1/D tiCdn;jC1˝ 1C 1˝ tiCdn;jC1C
xbi;j

D tiCdn;jC1˝ 1C 1˝ tiCdn;jC1�

X
0<`<p

1

p

�p

`

�
t`i;j ˝ t

p�`
i;j ;

and hence, after p � 1 iterations of � applied to tiCdn;jC1 , we get a copy of the
monomial ti;j ˝ � � �˝ ti;j . When pi � pdn=.p� 1/ and i D kf n for some positive
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integer k , then formula (3-7) gives us that the .p�1/st iterate of �, applied to �.tpi;j /,
contains the monomial

tkf n;j ˝ tkf n;jCkf n˝ tkf n;jC2kf n˝ � � �˝ tkf n;jC.p�1/kf n

D tkf n;j ˝ tkf n;j ˝ � � �˝ tkf n;j :

It is simple to show that no further monomials ta;b have the property that their .p�1/st

iterated coproducts contain the pth tensor power monomial ti;j ˝ � � �˝ ti;j . Formula
(3-11) follows.

The relation xA
iCn;f n

D xA
iCn;0

follows from the fact that xA
iCn;f n

is dual to tiCn;f n

and xA
iCn;0

is dual to tiCn;0 .

Definition 3.3 Let K=Qp be a finite extension with degree d , ramification degree e

and residue degree f , and let A be its ring of integers, � a uniformizer for A, and k the
residue field of A. Let n be a positive integer, and let ! be a .qen�1/=.qn�1/th root,
in xk , of �e=p . We have the restricted graded Lie algebras PE0k.!/ŒstrAut.!GA

1=n
/�

and PE0k.!/ŒstrAut.1G
yZp

1=dn
/� over k.!/, and we write LA

! .n/ and L.dn/, respec-
tively, as shorthand for them. If ` is a positive integer, we will also write L.dn; `/

for the quotient Lie algebra of L.dn/ in which we quotient out all generators xi;j

for which i > ` (this notation agrees with that of Theorem 2.5); and we will write
LA
! .n; `/ for the quotient Lie algebra of LA

! .n/ in which we quotient out all generators
xA

i;j for which i > `. We have an obvious commutative diagram of homomorphisms
of Lie algebras,

LA
! .n; `/

// L.dn; `/

LA
! .n/

//

OO

L.dn/

OO

Now here is a very useful corollary of Theorem 3.2:

Corollary 3.4 The restricted Lie algebra L
yZpŒ e
p

p�
1

.n;m/ is isomorphic to the re-
stricted Lie algebra L

yZp
1
.n;m/DL.n;m/ as long as m� pn=.p� 1/.

May actually constructed two different types of spectral sequence in his thesis [9]; the
spectral sequence of a filtered Hopf algebra, as in (2-4), is the one most typically called a
“May spectral sequence”. The other spectral sequence, of [11, Corollary 9] (as in (2-3)),
is the one which computes restricted Lie algebra cohomology from unrestricted Lie
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algebra cohomology; we will call that spectral sequence the Lie–May spectral sequence
to distinguish it from the May spectral sequence (unfortunately, there is probably no
perfect choice of terminology to be made here; eg Chapter 6 of Ravenel’s book [17]
refers to both spectral sequences as May spectral sequences).

Theorem 3.5 Let K=Qp be a field extension of degree d and ramification degree e

and residue degree f . Let A be the ring of integers of K, let � be a uniformizer for A,
and let k be the residue field of A. Let n be a positive integer , and let ! 2 xk be a
.qen�1/=.qn�1/th root of �e=p .

We have the morphism of Lie–May spectral sequences

(3-12)

H�unr.L.dn/I k.!//˝k.!/k.!/Œfbi;j W i � 1; 0� j � dn�1g� +3

��

H�res.L.dn/I k.!//

��

H�unr.L
A
! .n/I k.!//˝k.!/k.!/Œfbi;j Wf j i; 0� j �f n�1g� +3H�res.L

A
! .n/I k.!//

with bi;j in bidegree .2; 0/ (these two gradings are , respectively , cohomological degree
and Lie–May degree) and with auxiliary bidegree .pkti;jk; 2pjC1.pi �1// (these two
gradings are , respectively, the grading coming from the Ravenel filtration and the
grading coming from the topological grading on BP�BP ) in each spectral sequence ,
where kti;jk is the Ravenel degree of ti;j . The elements in H t

unr.L
A
! .n/I k.!// are in

bidegree .0; t/. The differential is , as is typical for the spectral sequence of a filtered
cochain complex, d

s;t
r WE

s;t
r !E

sCr;t�rC1
r .

If p D �e, then we have a tensor splitting of each of these Lie–May spectral sequences
such that the splittings are respected by the morphism (3-12) of spectral sequences: the
Lie–May spectral sequence

H�unr.L.dn/IFq/˝Fq
Fq Œfbi;j W i � 1; 0� j � dn� 1g�)H�res.L.dn/IFq/

splits into a tensor product of a spectral sequence

H�unr

�
L
�
dn;

pdn

p�1

�
IFq

�
˝Fq

Fq

hn
bi;j W 1� i �

dn

p�1
; 0� j � dn� 1

oi
)H�res

�
L
�
dn;

pdn

p�1

�
IFq

�
with a spectral sequence with trivial E1–term; and , likewise , the Lie–May spectral
sequence

H�unr.L
A
1 .n/IFq/˝Fq

Fq Œfbi;j W f j i; 0� j � f n� 1g�)H�unr.L
A
1 .n/IFq/
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splits into a tensor product of a spectral sequence

H�unr

�
LA

�
n;

pdn

p�1

�
IFq

�
˝Fq

Fq

hn
bi;j W f j i; 1� i �

dn

p�1
; 0� j � f n� 1

oi
)H�res

�
LA

�
n;

pdn

p�1

�
IFq

�
;

which we will call the reduced Lie–May spectral sequence , with a spectral sequence
with trivial E1–term.

We have a morphism of spectral sequences

H�unr

�
L
�
dn;

pdn

p�1

�
IFq

�
˝Fq

Fq

hn
bi;j W 1� i �

dn

p�1
; 0� j � dn� 1

oi
+3

��

H�res

�
L
�
dn;

pdn

p�1

�
IFq

�

��

H�unr

�
LA

1

�
n;

pdn

p�1

�
IFq

�
˝Fq

Fq

hn
bi;j W f j i; i �

dn

p�1
; 0� j � f n� 1

oi
+3H�res

�
LA

1

�
n;

pdn

p�1

�
IFq

�
Proof That the morphism (3-12) of spectral sequences exists follows from May’s
construction of the Lie–May spectral sequence in [11]. The splittings occur because
of formula (3-10), which tells us that the unrestricted Lie algebra underlying L.dn/

splits into a product of L.dn;pdn=.p � 1// with an abelian Lie algebra generated
by fxi;j W i > pdn=.p � 1/g, and the unrestricted Lie algebra underlying LA

1
.n/

splits into a product of LA.n;pdn=.p � 1// with an abelian Lie algebra gener-
ated by fxA

i;j W i > pdn=.p � 1/g; and formula (3-9) tells us that the morphism
LA

1
.n/ ,!L.dn/ respects these product splittings. By formula (3-11), the restriction

on PE0Fp ŒstrAut.1G
yZp

1=dn
/� sends xi;j to xiCn;jC1 when i > dn=.p � 1/; so the

filtered chain complex (see Theorem 5 in [10] or Corollary 9 of [11]) whose associated
spectral sequence is the Lie–May spectral sequence has the property that it splits into
a tensor product of a cohomologically trivial filtered chain complex and one whose
associated graded chain complex has cohomology

H�unr
�
L.dn;pdn=.p� 1//IFq

�
˝Fq

Fq Œfbi;j W 1� i � dn=.p� 1/; 0� j � dn� 1g�:

An analogous statement holds for the bracket and restriction on PE0Fq ŒstrAut.1GA
1=n
/�

and the filtered chain complex giving its Lie–May spectral sequence.
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Definition 3.6 Let K=Qp be a field extension of degree d and ramification degree e

and residue degree f . Let A be the ring of integers of K, let � be a uniformizer
for A, and let k be the residue field of A. Let n be a positive integer, and let ! 2 xk
be a .qen�1/=.qn�1/th root of �e=p . We write KA

! .n/ for the Chevalley–Eilenberg
DGA of the Lie algebra LA

! .n/. If m is a positive integer, we write KA
! .n;m/ for the

Chevalley–Eilenberg DGA of the Lie algebra LA
! .n;m/. (Note that the Chevalley–

Eilenberg DGA depends only on the underlying unrestricted Lie algebra.)

The cyclic group Cdn acts on KA
! .n/ by sending hi;j to hi;jC1 , and, when ! D 1,

this action reduces to an action of Cn on KA
! .n/.

The DGAs KA
! .n/ and KA

! .n;m/ are equipped with several gradings which we will
need to keep track of: the cohomological grading; the topological grading (sometimes
also called the “internal grading”) inherited from BP�BP, which is only defined modulo
2.pf n� 1/; and the Ravenel grading, inherited from the Ravenel filtration. Note that
the Cdn –action preserves the cohomological gradings and the Ravenel grading, but
not the internal grading; this behavior will be typical in all of the multigraded DGAs
we consider, and we adopt the convention that, whenever we speak of a “multigraded
equivariant DGA”, we assume that the group action preserves all of the gradings except
possibly the internal grading.

The presentation in Theorem 2.6 generalizes as follows:

Observation 3.7 It is easy and routine to extract a presentation for the Chevalley–
Eilenberg DGA from Proposition 3.1, without using the formulas in Theorem 3.2:
KA
! .n/ is the exterior algebra (over k.!/) with generators given by the set of symbols

hi;j with i divisible by the residue degree f and satisfying 1� i , and j 2 Z=f nZ;
the differential is given by

d.hi;j /D

i�1X
kD1

hk;j hi�k;jCk ;

with the convention that hi;kCf n D !
pk.qi�1/hi;k . Similarly, KA

! .n;m/ is the sub-
DGA of KA

! .n/ generated by all hi;j with i �m.

When ! D 1 and A D yZp Œ e
p

p� and m � pn=.p � 1/, we write K.n;m/ as short-
hand for KyZpŒ e

p
p�

1
.n;m/ and KyZp

1
.n;m/; this notation is unambiguous because of

Corollary 3.4.
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4 Cohomology computations

4.1 The cohomology of the height 2 Morava stabilizer group scheme

The material in this subsection is easy and well known, appearing already in Section 6.3
of [17]. Still, we give a relatively full account of the computation in Proposition 4.1,
largely to fix notation for the elements in that computation which will play a role in
our later spectral sequence calculations.

Proposition 4.1 Suppose p > 2. Then we have an isomorphism of trigraded C2 –
equivariant Fp –algebras ,

H�;�;�.L.2; 2//Š Fpf1; h10; h11; h10�2; h11�2; h10h11�2g˝Fp
ƒ.�2/;

with tridegrees and the C2 –action as in Table 1 (remember that the internal degree is
always reduced modulo 2.p2�1/, and recall from Conventions 1.1 that we write � for a
generator of C2 ), where the cup products in Fpf1; h10; h11; h10�2; h11�2; h10h11�2g

are all zero aside from the Poincaré duality cup products , ie each class has the obvious
dual class such that the cup product of the two is h10h11�2 , and the remaining cup
products are all zero.

Proof We have the extension of Lie algebras

1! Fpfx20;x21g !L.2; 2/!L.2; 1/! 1;

coh. class coh. degree internal degree Ravenel degree image under �

1 0 0 0 1

h10 1 2.p� 1/ 1 h11

h11 1 2p.p� 1/ 1 h10

�2 1 0 2 �2

h10�2 2 2.p� 1/ 3 �h11�2

h11�2 2 2p.p� 1/ 3 �h10�2

h10�2 2 2.p� 1/ 3 h11�2

h11�2 2 2p.p� 1/ 3 h10�2

h10h11�2 3 0 4 h10h11�2

h10�2�2 3 2.p� 1/ 5 �h11�2�2

h11�2�2 3 2p.p� 1/ 5 �h10�2�2

h10h11�2�2 4 0 6 h10h11�2�2

Table 1
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and to compute the resulting spectral sequence in cohomology, we take the Chevalley–
Eilenberg DGAs and then compute the Cartan–Eilenberg spectral sequence for the
extension of C2 –equivariant trigraded DGAs

1! K.2; 1/! K.2; 2/!ƒ.h20; h21/! 1:

Since the differential on K.2; 1/ is zero (see Observation 3.7), H�;�;�.K.2; 1// Š
K.2; 1/Šƒ.h10; h11/. A change of Fp –linear basis is convenient here: we will write
�2 for the element h20Ch21 2ƒ.h20; h21/. (This notation for this particular element
is standard. As far as I know, it began with [12].) We will write �2 for the element
h20� h21 .

We have the differentials

d�2 D 0; d�2 D�2h10h11:

Table 1 has one row for each element in an Fp –linear basis for the cohomology
ring H�;�;�.K.2; 2//, but from now on, for the sake of brevity, when writing out
similar tables for grading degrees of elements in the cohomology of a multigraded
equivariant DGA, I will just give one row for each element in a set of generators for
the cohomology ring of the DGA.

Proposition 4.2 Suppose p>3. Then the cohomology H�.strAut.1G1=2/IFp/ of the
height 2 strict Morava stabilizer group scheme is isomorphic , as a graded Fp –vector
space , to

H�;�;�.K.2; 2//Š Fpf1; h10; h11; h10�2; h11�2; h10h11�2g˝Fp
ƒ.�2/

from Proposition 4.1. The cohomological grading on H�.strAut.G1=2/IFp/ cor-
responds to the cohomological grading on H�;�;�.K.2; 2//, so that h10; h11; �2 2

H 1.strAut.G1=2/IFp/, h10�2; h11�2 2H 2.strAut.G1=2/IFp/, and so on.

The multiplication on H�.strAut.G1=2/IFp/ furthermore agrees with the multiplica-
tion on H�;�;�.K.2; 2//, modulo the question of exotic multiplicative extensions , ie
jumps in Ravenel filtration in the products of elements in H�.strAut.G1=2/IFp/.

Proof Spectral sequence (2-3) collapses immediately, since p > 3 implies that 1>

b2=.p� 1/c. Hence Cotor�;�;�
E0FpŒstrAut.G1=2/��

.Fp;Fp/ŠH�;�;�.K.4; 2//.

We now run spectral sequence (2-4). This is, like all May spectral sequences, the spectral
sequence of the filtration (in this case, Ravenel’s filtration) on the cobar complex C �.A/
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of a coalgebra A induced by a filtration on the coalgebra itself. To compute differentials,
we take an element x 2 H�.C �.E0A//, lift it to a cochain xx 2 H�.C �.A// whose
image in the cohomology of the associated graded H�

�
E0.C �.A//

�
ŠH�.C �.E0A//

is x , and then evaluate the differential d.xx/ in the cobar complex C �.A/. If d.xx/D 0,
then xx is a cocycle in the cobar complex C �.A/ and not merely in its associated
graded E0C �.A/, hence xx represents a cohomology class in H�.C �.A//; if d.xx/¤0,
then we add correcting coboundaries of lower or higher (depending on whether the
filtration is increasing or decreasing) filtration until we arrive at a cocycle which we
recognize as a cohomology class in the spectral sequence’s E1 –page.

It will be convenient to use the presentation

Fp Œti;j W i � 1; 0� j � 1�=.t
p
i;j for all i; j /

for E0
�
Fp ŒstrAut.1G1=2/�

�
�
Š E0

�
Fp Œt1; t2; : : : �=.t

p2

i � ti for all i/
�
, where ti;j is

the image in the associated graded of t
pj

i . The coproduct on

Fp Œti;j W i � 1; 0� j � 1�=.t
p
i;j for all i; j /;

inherited from that of Fp ŒstrAut.G1=2/�
� , is given by

�.ti;j /D

iX
kD0

tk;j ˝ ti�k;kCj

for all i < b2p=.p� 1/c; see Theorem 6.3.2 of [17] for this formula.

h10 , h11 The class h10 is represented by t1;0 in the cobar complex

C �
�
E0
�
Fp ŒstrAut.1G1=2/�

�
��
;

which lifts to t1 in the cobar complex C �
�
Fp ŒstrAut.1G1=2/�

�
�
. Since t1 is a coalgebra

primitive, ie a cobar complex 1–cocycle, all May differentials are zero on h1;0 . The
C2 –equivariance of the spectral sequence then tells us that all May differentials also
vanish on h1;0 .

�2 There is no nonzero class in cohomological degree 2 and internal degree 0 for �2
to hit by a May differential of any length.

h10�2 , h11�2 The cohomology class h10�2 in the Chevalley–Eilenberg complex
of the Lie algebra of primitives in E0

�
Fp ŒstrAut.1G1=2/�

�
�

(of which K.4; 2/ is a
subcomplex) is represented by the 2–cocycle t1;0˝ t2;0� t1;0˝ t2;1� t1;0˝ t1;0t1;1 in
the cobar complex of E0

�
Fp ŒstrAut.1G1=2/�

�
�
. This 2–cocycle lifts to the 2–cocycle
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t1˝ t2� t1˝ t
p
2
� t1˝ t

pC1
1

in the cobar complex of Fp ŒstrAut.1G1=2/�
� . Hence all

May differentials vanish on h10�2 , and by C2 –equivariance, also h11�2 .

So the May differentials of all lengths vanish on the generators of the ring

Cotor�;�;�
E0FpŒstrAut.1G1=2/��

.Fp;Fp/:

So H�.strAut.1G1=2/IFp/ŠCotor�;�;�
E0FpŒstrAut.1G1=2/��

.Fp;Fp/ŠH�;�;�.K.2; 2// as
a graded Fp –vector space.

Here is a chart of Table 1, displayed using the Adams convention (ie the vertical axis is
cohomological degree, and the horizontal axis is internal degree minus cohomological
degree), at the prime p D 7:

(4-13)

4 �

3 � � �

2 �� ��

1 � � �

0 �

�1 0 93

Not pictured in (4-13) is v2 in bidegree .0; 96/, which generates another copy of the
rest of the diagram; the rest of the diagram is repeated every 96 degrees (in homotopy,
ie along the horizontal axis).

4.2 The cohomology of the automorphism group scheme of a
yZpŒ

p
p�–height 2 formal yZpŒ

p
p�–module

Proposition 4.3 Suppose p > 3. Then we have an isomorphism of trigraded C2 –
equivariant Fp –algebras

H�;�;�.K.2; 3//ŠA2;3˝Fp
ƒ.�2/;

where

A2;3 Š Fp

˚
1; h10; h11; h10h30; h11h31; e40; �2e40; h10�2h30; h11�2h31;

h10�2h30h31; h11�2h30h31; h10h11�2h30h31

	
;

with tridegrees and the C2 –action as in Table 2 (remember that the internal degrees
are still reduced modulo 2.p2� 1/), where the cup products in A2;3 are all zero aside
from the Poincaré duality cup products , ie each class has the dual class such that the
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coh. class coh. degree internal degree Ravenel degree image under �

1 0 0 0 1

h10 1 2.p� 1/ 1 h11

h11 1 2p.p� 1/ 1 h10

h10h30 2 4.p� 1/ 1Cp h11h31

h11h31 2 4p.p� 1/ 1Cp h10h30

e40 2 0 1Cp �e40

�2e40 3 0 3Cp �2e40

h10�2h30 3 4.p� 1/ 3Cp �h11�2h31

h11�2h31 3 4p.p� 1/ 3Cp �h10�2h30

h10�2h30h31 4 2.p� 1/ 3C 2p h11�2h30h31

h11�2h30h31 4 2p.p� 1/ 3C 2p h10�2h30h31

h10h11�2h30h31 5 0 4C 2p �h10h11�2h30h31

�2 1 0 2 �2

Table 2

cup product of the two is h10h11�2h30h31 , and the remaining cup products are all zero.
The classes in Table 2 listed above �2 are listed in order so that the class which is n

lines below 1 is , up to multiplication by a unit in Fp , the Poincaré dual in A2;3 of the
class which is n lines above h10h11�2h30h31 .

Proof We have the extension of Lie algebras

1! Fpfx30;x31g !L.2; 3/!L.2; 2/! 1

and we take their Chevalley–Eilenberg DGAs, then compute the Cartan–Eilenberg
spectral sequence for the extension of C2 –equivariant trigraded DGAs

1! K.2; 2/! K.2; 3/!ƒ.h30; h31/! 1:

We have the differentials

dh30 D�h10�2; dh31 D h11�2; d.h30h31/D�h10�2h31� h11�2h30

and their products with classes in H�;�;�.K.2; 2//. The nonzero products are

d.h11h30/D�h10h11�2; d.h10h30h31/D h10h11�2h30;

d.h10h31/D�h10h11�2; d.h11h30h31/D�h10h11�2h31:

We write e40 for the cocycle h10h31�h11h30 . Extracting the output of the spectral
sequence from knowledge of the differentials is routine.
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coh. class coh. degree internal degree Ravenel degree image under �

1 0 0 0 1

h10 1 2.p�1/ 1 h11

h11 1 2p.p�1/ 1 h10

h10h30 2 4.p�1/ 1Cp h11h31

h11h31 2 4p.p�1/ 1Cp h10h30

h10�4��2h30 2 2.p�1/ 1C2p �h11�4C�2h30

h11�4��2h31 2 2p.p�1/ 1C2p �h10�4C�2h31

�2e40 3 0 3Cp �2e40

h10�2h30 3 4.p�1/ 3Cp �h11�2h31

h11�2h31 3 4p.p�1/ 3Cp �h10�2h30

h10h30�4 3 4.p�1/ 1C3p �h11h31�4

h11h31�4 3 4p.p�1/ 1C3p �h10h30�4

�4e40C4�2h30h31 3 0 1C3p �4e40C4�2h30h31

h10�2h30h31 4 2.p�1/ 3C2p h11�2h30h31

h11�2h30h31 4 2p.p�1/ 3C2p h10�2h30h31

h10�2h30�4 4 4.p�1/ 3C3p h11�2h31�4

h11�2h31�4 4 4p.p�1/ 3C3p h10�2h30�4

h10�2h30h31�4 5 2.p�1/ 3C4p �h11�2h30h31�4

h11�2h30h31�4 5 2p.p�1/ 3C4p �h10�2h30h31�4

h10h11�2h30h31�4 6 0 4C4p h10h11�2h30h31�4

�2 1 0 2 �2

�4 1 0 2p �4

Table 3

Proposition 4.4 Suppose p > 3. Then we have an isomorphism of trigraded C2 –
equivariant Fp –algebras

H�;�;�.K.2; 4//ŠA2;4˝Fp
ƒ.�2; �4/;

where

A2;4 Š Fp

˚
1; h10; h11; h10h30; h11h31; h10�4� �2h30; h11�4� �2h31; �2e40;

h10�2h30; h11�2h31; h10h30�4; h11h31�4; �4e40C 4�2h30h31;

h10�2h30h31; h11�2h30h31; h10�2h30�4; h11�2h31�4;

h10�2h30h31�4; h11�2h30h31�4; h10h11�2h30h31�4

	
;

with tridegrees and the C2 –action as in Table 3.
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The classes in Table 3 listed above �2 are listed in order so that the class which is n

lines below 1 is , up to multiplication by a unit in Fp , the Poincaré dual in A2;4 of the
class which is n lines above h10h11�2h30h31�4 .

Proof We compute the Cartan–Eilenberg spectral sequence for the extension of C2 –
equivariant trigraded DGAs

1! K.2; 3/! K.2; 4/!ƒ.h40; h41/! 1

arising from the extension of Lie algebras

1! Fpfx40;x41g !L.2; 4/!L.2; 3/! 1:

A change of Fp –linear basis is convenient here: we will write �4 for the element
h40Ch41 2ƒ.h40; h41/, and we will write �4 for h40�h41 . We have the differentials

d�4 D 0; d�4 D h10h31C h30h11 D e40;

and a nonzero product with a class in H�;�;�.K.2; 3//,

d.�2e40�4/D h10h11�2h30h31:

Extracting the output of the spectral sequence from knowledge of the differentials is
routine. The three classes h10�4 , h11�4 and �4e40 in the E1–term are not cocycles
in H�;�;�.K.2; 4//; adding terms of lower Cartan–Eilenberg filtration to get cocycles
yields the cohomology classes h10�4��2h30 , h11�4��2h31 and �4e40C4�2h30h31 .
Note that this implies that there are nonzero multiplications in A2;4 other than those be-
tween each class and its Poincaré dual; for example, h10.h10�4��2h30/D�h10�2h30 .

Theorem 4.5 Suppose p > 5. Then the cohomology H�.strAut.1G
yZpŒ
p

p�
1=2

/IFp/ of
the strict automorphism of the yZp Œ

p
p�–height 2 formal yZp Œ

p
p�–module 1G

yZpŒ
p

p�

1=2

is isomorphic , as a graded Fp –vector space , to

H�;�;�.K.2; 4//ŠA2;4˝Fp
ƒ.�2; �4/;

from Proposition 4.4. The cohomological grading on H�.strAut.1G
yZpŒ
p

p�
1=2

/IFp/

corresponds to the cohomological grading on H�;�;�.K.2; 4//.

The multiplication on H�.strAut.1G
yZpŒ
p

p�

1=2
/IFp/ furthermore agrees with the multipli-

cation on H�;�;�.K.2; 4//, modulo the question of exotic multiplicative extensions , ie
jumps in Ravenel filtration in the products of elements in H�.strAut.1G

yZpŒ
p

p�

1=2
/IFp/.
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In particular , the Poincaré series expressing the Fp –vector space dimensions of the
grading degrees in H�.strAut.1G

yZpŒ
p

p�

1=2
/IFp/ is

.1C s/2.1C 2sC 4s2
C 6s3

C 4s4
C 2s5

C s6/:

Proof The reduced Lie–May spectral sequence of Theorem 3.5 collapses immediately,
since p > 5 implies that 1> b4=.p� 1/c. Hence,

Cotor�;�;�
E0FpŒstrAut.1G

yZp Œ
p

p�

1=2
/��
.Fp;Fp/ŠH�;�;�.K.2; 4//:

We now run the May spectral sequence

(4-14) E
�;�;�
1
ŠCotor�;�;�

E0FpŒstrAut.1G
yZp Œ
p

p�

1=2
/��
.Fp;Fp/)H�.strAut.1G

yZpŒ
p

p�

1=2
/IFp/:

See the appendix and the proof of Proposition 4.2 for the general method we use. It
will be convenient to use the presentation

Fp Œti;j W i � 1; 0� j � 1�=.t
p
i;j for all i; j /

for E0
�
Fp ŒstrAut.1G

yZpŒ
p

p�
1=2

/��
�
ŠE0

�
Fp Œt1; t2; : : : �=.t

p2

i �ti for all i/
�
, where ti;j is

the image of t
pj

i in the associated graded. The coproduct on

Fp Œti;j W i � 1; 0� j � 1�=.t
p
i;j for all i; j /;

inherited from that of Fp ŒstrAut.1G
yZpŒ
p

p�

1=2
/�� , is given by

�.ti;j /D

iX
kD0

tk;j ˝ ti�k;kCj

for all i < b4p=.p� 1/c; reduce the nD 4 case of Theorem 6.3.2 of [17] modulo the
ideal generated by t

p2

i � ti for all i to arrive at this formula.

h10 , h11 , �2 There are no nonzero May differentials of any length on these classes,
by the same computation as in the proof of Proposition 4.2.

h10h30 , h11h31 The class h10h30 is represented by the 2–cocycle

(4-15) t1;0˝ t3;0� t1;0˝ t1;0t2;0�
1
2
t2
1;0˝ t2;0C

1
2
t2
1;0˝ t2;1

�
1
2
t2
1;0˝ t1;0t1;1�

1
3
t3
1;0˝ t1;1

in the cobar complex C �
�
E0
�
Fp ŒstrAut.1G

yZpŒ
p

p�
1=2

/��
��

, which lifts to the 2–cochain

t1˝ t3� t1˝ t1t2�
1
2
t2
1 ˝ t2C

1
2
t2
1 ˝ t

p
2
�

1
2
t2
1 ˝ t

pC1
1
�

1
3
t3
1 ˝ t

p
1
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in the cobar complex C �
�
Fp ŒstrAut.1G1=2/�

�
�
. Since this 2–cochain is also a 2–

cocycle, all May differentials vanish on h1;0h3;0 . The C2 –equivariance of the spectral
sequence then tells us that all May differentials also vanish on h11h31 . (Also, the referee
made the useful observation that the vanishing of the May differentials on h10h30 and
on h11h31 can also be deduced by expressing those two classes as Massey products.)

h10�4 , h11�4 The only elements of internal degree 2.p � 1/ and cohomological
degree 3 are scalar multiples of h10�2�4 , but h10�2�4 is of higher Ravenel degree
than h10�4 . Hence h10�4 cannot support a May differential of any length. By C2 –
equivariance, the same is true of h11�4 .

�2e40 The only elements of internal degree 0 and cohomological degree 4 are Fp –
linear combinations of �2�2e40 , �4�2e40 , �2�4e40 and �4�4e40 , but all four of these
elements have higher Ravenel degree than �2e40 , so again �2e40 cannot support a
May differential of any length.

h10�2h30 , h11�2h31 , �4e40 Similar degree considerations eliminate the possibility
of nonzero May differentials on these classes.

�4 The class �4 is represented by the 1–cocycle

(4-16) t4;0C t4;1� t1;0t3;1� t1;1t3;0�
1
2
t2
2;0�

1
2
t2
2;1C t1;0t1;1t2;0

C t1;0t1;1t2;1�
1
2
t2
1;0t2

1;1;

in the cobar complex C �
�
E0
�
Fp ŒstrAut.1G

yZpŒ
p

p�
1=2

/��
��

, which lifts to the 1–cochain

t4C t
p
4
� t1t

p
3
� t

p
1

t3�
1
2
t2
2 �

1
2
t
2p
2
C t

pC1
1

t2C t
pC1
1

t
p
2
�

1
2
t
2pC2
1

in the cobar complex C �
�
Fp ŒstrAut.1G1=2/�

�
�
. Since this 1–cochain is also a 1–

cocycle, all May differentials vanish on �4 . (The referee observed that it is perhaps also
possible to deduce the vanishing of the May differential on �4 by finding an expression
of �4 in terms of a norm map, along the lines of Theorem 6.2.7 and Proposition 6.3.13
of [17], obviating the need to use a cocycle representative for �4 ; we do not pursue
that alternative proof here.) Now suppose that q � 1 is some integer and that we have
already shown that dr vanishes on all classes, for all r < q . Then dr .�2e40 ��4e40/D0,
ie dr vanishes on the duality class in the algebra A2;4 . For each element in that algebra,
we have shown that dr vanishes on either that element, or on its Poincaré dual. Since
dr also vanishes on the duality class, dr vanishes on all elements in that algebra. Since
dr also vanishes on �2 and �4 , dr vanishes on all classes. By induction, the spectral
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sequence collapses with no nonzero differentials. So

H�.strAut.1G
yZpŒ
p

p�

1=2
/IFp/ŠCotor�;�;�

E0FpŒstrAut.1G
yZp Œ
p

p�

1=2
/��
.Fp;Fp/ŠH�;�;�.K.2; 4//

as a graded Fp –vector space.

5 Topological consequences

It is well known, eg from the Barsotti–Tate module generalization of the Dieudonné–
Manin classification of p–divisible groups over xk (see [8]; also see [15] for a nice treat-
ment of the theory of Barsotti–Tate modules), that the automorphism group scheme of a
formal A–module of positive, finite height over a finite field is pro-étale; in more down-
to-earth terms, the Hopf algebra corepresenting the group scheme Aut.!GA

1=n
˝k
xk/

is the continuous xk –linear dual of the xk –linear group ring of some profinite group,
namely, the automorphism group (honestly a group, not just a group scheme!) of

!GA
1=n
˝k
xk . In this section we will cease to work with group schemes and we will

simply write Aut.!GA
1=n
˝k
xk/ for that profinite group.

The following is a generalization of a result in [20], and the argument is almost word-
for-word the same:

Theorem 5.1 Let K=Qp be a field extension of degree d . Let A denote the ring of
integers of K, and let � denote a uniformizer for A and k the residue field of A. Let
q be the cardinality of k , and let ! denote a .qen�1/=.qn�1/th root of �e=p in xk .
Then Aut.!GA

1=n
˝k
xk/ is a closed subgroup of the height dn Morava stabilizer group

Aut.1G
yZp

1=dn
˝Fp
xk/.

Proof By Theorem 2.2, the underlying formal yZp –module of !GA
1=n

is 1G
yZp

1=dn
.

Hence the automorphisms of !GA
1=n
˝k
xk are the automorphisms of 1G

yZp

1=dn
˝Fp
xk

which commute with the complex multiplication by A, and hence Aut.!GA
1=n
˝k
xk/

is a subgroup of Aut.1G
yZp

1=dn
˝Fp
xk/.

Now let Ga denote the automorphism group of the underlying formal yZp –module
a–bud of 1G

yZp

1=dn
˝Fp

xk , so that Aut.1G
yZp

1=dn
˝Fp

xk/ is, as a profinite group, the
limit of the sequence of finite groups � � � ! G3 ! G2 ! G1 . Let Ha denote the
subgroup of Aut.1G

yZp

1=dn
˝Fp
xk/ consisting of those automorphisms whose underlying

formal yZp –module a–bud automorphism commutes with the complex multiplication
by A, ie those whose underlying formal yZp –module a–bud automorphism is an
automorphism of the underlying formal A–module a–bud of !GA

1=n
. The index of Ha
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in Aut.1G
yZp

1=dn
˝Fp
xk/ is at most the cardinality of Ga , hence is finite. Now we use the

theorem of Nikolov and Segal, from [14]: every finite-index subgroup of a topologically
finitely generated profinite group is an open subgroup. The group Aut.1G

yZp

1=dn
˝Fp
xk/

is topologically finitely generated since

� its pro-p–subgroup strAut.1G
yZp

1=n
˝Fp

Fpn/ is a p–adic analytic Lie group,
hence topologically finitely generated (see [7], or Theorem 5.11 of [6] for an
English-language summary of the relevant result), and

� Aut.1G
yZp

1=n
˝Fp

Fpn/ is a split extension of the finite group F�pn by the topolog-
ically finitely generated group strAut.1G

yZp

1=n
˝Fp

Fpn/, hence it too is topologi-
cally finitely generated.

So Ha is an open subgroup of Aut.1G
yZp

1=dn
˝Fp
xk/. Every open subgroup of a profinite

group is also closed; consequently each Ha is a closed subgroup of Aut.1G
yZp

1=dn
˝Fp
xk/,

and consequently so is the intersection
T

a Ha . But
T

a Ha is the group of all formal
power series which are automorphisms of 1G

yZp

1=dn
˝Fp
xk and whose polynomial trun-

cations, of any length, commute with the complex multiplication by A. Consequently
Aut.!GA

1=n
˝k
xk/D

T
a Ha is a closed subgroup of Aut.1G

yZp

1=dn
˝Fp
xk/.

Since Aut.!GA
1=n
˝k
xk/ is a closed subgroup of the height dn Morava stabilizer group

Aut.1G
yZp

1=dn
˝Fp

xk/, we can use the methods of [4] to construct and compute the
homotopy fixed-point spectra

E
h Aut.!GA

1=n
˝k
xk/

4
and E

h Aut.!GA
1=n
˝k
xk/ÌGal.xk=k/

4
:

The homotopy fixed-point spectrum Eh Aut.1G
yZp
1=dn
˝Fp
xk/ÌGal.xk=Fp/

4
' LK.4/S has a

natural map to Eh Aut.!GA
1=n
˝k
xk/ÌGal.xk=Fp/

4
, but this map is far from being an equiva-

lence; still, very few computations of homotopy groups of K.4/–local spectra exist in
the literature, so Theorem 5.2 is perhaps of some interest.

Theorem 5.2 Let p be a prime number such that the Smith–Toda complex V .3/ exists ,
ie p > 5. Then the V .3/–homotopy groups of Eh Aut.1G

yZp Œ
p

p�

1=2
˝Fp Fp/ÌGal.xk=Fp/

4
are

isomorphic to
A2;4˝Fp

ƒ.�2; �4/˝Fp
Fp Œv

˙1�;

where vp2C1 D v4 , where A2;4 is as in Proposition 4.4, and the topological degrees
and E4 –Adams filtrations are as in Table 4.

Proof See [3; 4] for the equivalence

LK.n/S 'E
h Aut.1G

yZp

1=n
˝Fp Fp/ÌGal.Fp=Fp/

n :
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homotopy class topological degree E4–Adams filtration

1 0 0

h10 2p� 3 1

h11 2p2� 2p� 1 1

h10h30 4p� 6 2

h11h31 4p2� 4p� 2 2

h10�4� �2h30 2p� 4 2

h11�4� �2h31 2p2� 2p� 2 2

�2e40 �3 3

h10�2h30 4p� 7 3

h11�2h31 4p2� 4p� 3 3

h10h30�4 4p� 7 3

h11h31�4 4p2� 4p� 3 3

�4e40C 4�2h30h31 �3 3

h10�2h30h31 2p� 6 4

h11�2h30h31 2p2� 2p� 4 4

h10�2h30�4 4p� 8 4

h11�2h31�4 4p2� 4p� 4 4

h10�2h30h31�4 2p� 7 5

h11�2h30h31�4 2p2� 2p� 5 5

h10h11�2h30h31�4 �6 6

�2 �1 1

�4 �1 1

v 2p2� 2 0

Table 4

Since V .3/ is E.3/–acyclic, LK.4/V .3/ is weakly equivalent to LE.4/V .3/, so
LK.4/V .3/ ' LE.4/V .3/ ' V .3/ ^ LE.4/S since E.4/–localization is smashing;
see [18] for the proof of Ravenel’s smashing conjecture. Since V .3/ is finite,

.E4 ^V .3//hG
'EhG

4 ^V .3/;

and now we use the X D V .3/ case of the conditionally convergent descent spectral
sequence (see eg [1, 4.6] or [4])

E
s;t
2
ŠH s

c .GI .En/t .X //) �t�s..En ^X /hG/; dr WE
s;t
r !EsCr;tCr�1

r :

The agreement of this spectral sequence with the K.4/–local E4 –Adams spectral
sequence is given by Proposition 6.6 of [4].
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In the case nD 4 and X D V .3/, we have .E4/� ŠW .Fp/ŒŒu1;u2;u3��Œu
˙1� with vi

acting by uiu
1�pi

for i D 1; 2; 3, and consequently .E4/�.V .3// Š Fp Œu
˙1�. One

needs to know the action of Aut.1G
yZpŒ
p

p�
1=2

˝Fp
Fp/ Ì Gal.Fp=Fp/ on Fp Œu

˙1� to
compute the E2 –term of the spectral sequence; but Aut.1G

yZpŒ
p

p
1=2

˝Fp
Fp/ has the

finite-index pro-p–subgroup strAut.1G
yZpŒ
p

p
1=2

˝Fp
Fp/. We will use the fact that a pro-

p–group admits no nontrivial continuous action on a one-dimensional Fp –vector space;
this is not a new observation, but a proof goes as follows. We have F�p D

S
j .F
�

pj /, so
GL1.Fp/ contains no elements of order p , but if G is a pro-p–group acting continuously
on Fp , then, since Fp is discrete, the kernel of the action map G! GL1.Fp/ must be
open, ie closed and finite-index. So the action of G on Fp must factor through a finite
quotient of G, ie a finite p–group which embeds in a group Fp with no elements of
order p ; so the action must be trivial.

So strAut.1G
yZpŒ
p

p�

1=2
˝Fp

Fp/ acts trivially on Fp Œu
˙1�, and we only need to know the

action of Aut.1G
yZpŒ
p

p�
1=2

˝Fp
Fp/=strAut.1G

yZpŒ
p

p�
1=2

˝Fp
Fp/Š F�

p2 on Fp Œu
˙1�; from

Section 1 of [3] we get that an element x 2F�
p2 acts on Fpfu

j g by multiplication by xj.
Consequently the (collapsing at E2 ) Lyndon–Hochschild–Serre spectral sequence of
the extension

1! strAut.1G
yZpŒ
p

p�

1=2
˝Fp

Fp/! Aut.1G
yZpŒ
p

p�

1=2
˝Fp

Fp/! F�
p2 ! 1

gives us that H�c
�
Aut.1G

yZpŒ
p

p�

1=2
˝Fp

Fp/IV .3/t .E
h Aut.1G

yZp Œ
p

p�

1=2
˝Fp Fp/

4
/
�

vanishes if
t is not divisible by 2.p2�1/, and is given by Theorem 4.5 if t is divisible by 2.p2�1/.
So there is a horizontal vanishing line of finite height already at the E2 –page of the
spectral sequence, hence the spectral sequence converges strongly.

More specifically, the cohomology computed in Theorem 4.5 is a Gal.Fp=Fp/–form of

H�c
�
Aut.1G

yZpŒ
p

p�

1=2
˝Fp

Fp/IV .3/2.p2�1/j .E
h Aut.1G

yZp Œ
p

p�

1=2
˝Fp Fp/

4
/
�
;

and

H�c
�
Aut.1G

yZpŒ
p

p�

1=2
˝Fp

Fp/IV .3/2.p2�1/j .E
h Aut.1G

yZp Œ
p

p�

1=2
˝Fp Fp/

4
/
�Gal.Fp=Fp/

is also a Gal.Fp=Fp/–form of

H�c
�
Aut.1G

yZpŒ
p

p�

1=2
˝Fp

Fp/IV .3/2.p2�1/j .E
h Aut.1G

yZp Œ
p

p�

1=2
˝Fp Fp/

4
/
�
:

Since the nonabelian Galois cohomology group H 1.Gal.Fp=Fp/IGLn.Fp// classifying
Gal.Fp=Fp/–forms of n–dimensional Fp –vector spaces vanishes (this is a well-known
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generalization of Hilbert’s Theorem 90), the invariants of the Gal.Fp=Fp/–action on

H�c
�
Aut.1G

yZpŒ
p

p�

1=2
˝Fp

Fp/IV .3/2.p2�1/j .E
h Aut.1G

yZp Œ
p

p�

1=2
˝Fp Fp/

4
/
�

agree, up to isomorphism of graded Fp –vector spaces, with the results of Theorem 4.5
(this Galois descent argument was suggested to me by T Lawson). There is no room for
differentials in the descent spectral sequence, so E2ŠE1 in the spectral sequence.

Corollary 5.3 The Poincaré series for the homotopy groups of V .3/ smashed with the
fixed-point spectrum Eh Aut.1G

yZp Œ
p

p�

1=2
˝Fp Fp/ÌGal.xk=Fp/

4
is�

s�6
C2s�3

C1C s2p�7
C s2p�6

C s2p�4
C s2p�3

C s4p�8
C2s4p�7

C s4p�6

Cs2p2�2p�5
Cs2p2�2p�4

Cs2p2�2p�1
Cs4p2�4p�4

C2s4p2�4p�3
Cs4p2�4p�2

�
� .1C s�1/2

1X
nD�1

s2.p2�2/n:

Appendix Explicit Milnor–Moore theory

Throughout this appendix, we assume g is a Lie algebra over a field k of characteristic
not equal to 2, and that either g is finite-dimensional or that it is equipped with an
N –grading such that the Lie bracket is of degree 0 (ie if x 2 gm and y 2 gn , then
Œx;y�2 gmCn ) and such that gn is a finite-dimensional k –vector-space for each n2N .

Several times in this paper (eg (4-15) and (4-16)), we have given cocycle representatives,
in the cobar complex for the linear dual of the universal enveloping algebra U g of g,
for elements in the cohomology of g. In this appendix we explain how these cocycle
representatives are obtained. The author of this paper is doubtful that the mathematics
in this appendix is actually new, but a search for this material in the literature did not
turn up anything, so even if these ideas are folklore, we think it is of some value to
write the ideas out.

One has an equivalence between the category of U g–modules and the category of
(unrestricted) representations of g, and as a consequence one gets an isomorphism

(A-17) Ext�U g.k; k/ŠH�unr.g; k/:

However, if one wants to run a May spectral sequence, like (4-14), whose input is
Ext�U g.k; k/, then, to compute May dr –differentials for r > 1, one typically needs
to know how to represent elements in the cohomology of g as cocycles in the cobar
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complex of .U g/� . (Let us be careful about the relationship between unrestricted Lie
algebra cohomology and the input of a May spectral sequence like (4-14): the input for
(4-14) is, a priori, the cohomology of the restricted Lie algebra of primitives in the Hopf
algebra E0Fp ŒstrAut.1G

yZpŒ
p

p�
1=2

/�� . However, when p > 5, the immediate collapse
of the reduced Lie–May spectral sequence of Theorem 3.5 implies that the restricted
Lie algebra cohomology of the primitives in E0Fp ŒstrAut.1G

yZpŒ
p

p�
1=2

/�� agrees with
the unrestricted Lie algebra cohomology of the Lie subalgebra L

yZpŒ
p

p�.2; 4/ of the
primitives in E0Fp ŒstrAut.1G

yZpŒ
p

p�
1=2

/�� . Of course this yZp Œ
p

p�–height 2 statement
generalizes to other heights and endomorphism rings other than yZp Œ

p
p�, at appropri-

ately large primes, as given by Theorem 3.5.)

So, after one has used (convenient, algebraically tractable) Lie algebra cohomology
methods to calculate H�unr.g; k/, one needs to translate the names of elements in
H�unr.g; k/ that one has from Lie-algebra-theoretic methods — eg from the Chevalley–
Eilenberg complex of g — into cocycle representatives in the cobar complex of .U g/� .
Here is how one can do this: let C �.U g�/ denote the cobar complex (as in Definition
A1.2.11 of [17]) of the k –linear dual Hopf algebra of U g, and let CE�.g/ denote the
Chevalley–Eilenberg complex of g, in the sense of [2]; that is, CEn.g/Dƒn.g�/ with
differential given on 1–cochains by the dual of the map

ƒ2.g�/� ,! g˝k g
Œ�;��
��! g;

and with the differential given on higher cochains by the Leibniz rule and the fact that
every higher cochain in CE�.g/ is a linear combination of products of 1–cochains.

We have a natural inclusion of g as a vector subspace of U g; let j W g! U g be twice
this natural inclusion map. (The factor of 2 will be necessary to get diagram (A-18) to
commute, below; remember that at the start of this appendix, we stipulated that the
characteristic of the ground field k is not 2.) Dualizing, we get a map .U g/�!g� , and
since the underlying k –algebra of the cobar complex C �..U g/�/ is the free associative
k –algebra on C 1..U g/�/ D .U g/� , the universal property of the free associative
k –algebra gives us a canonical map of graded k –algebras � W C �..U g/�/! CE�.g/.

We claim that � is not only a map of graded k –algebras, but is also a chain map, ie �
is a morphism of DGAs over k . One checks easily that the diagram

(A-18)

U g U g˝k U g

g g˝k g ƒ2.g�/�

r

j

bracket

.j˝j/ıi
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commutes, where r is the multiplication on U g, and i is the inclusion of ƒ2.g�/�

into g˝k g as the vector space of antisymmetric tensors. (But it is worth noticing
that, if one tries to include j ˝ j as a vertical arrow in (A-18), the resulting diagram
wouldn’t commute; in particular, the left-hand square would fail to commute.) Taking
the linear dual of diagram (A-18) yields the commutative square

.U g/� //

��

.U g/�˝k .U g/�

��

g� // ƒ2.g�/

in which the vertical maps are given by � , the top horizontal map is the differential
C 1..U g/�/ ! C 2..U g/�/ in the cobar complex, and the bottom horizontal map
CE1.g/ D g� ! ƒ2.g�/ D CE2.g/ is the differential in the Chevalley–Eilenberg
complex of g. So � commutes with the differentials on the 1–cochains. An analogous
argument for higher cochains gives us that � is a chain map.

Clearly � is surjective (since j is surjective, and so j˝kn is surjective for all n), so
if we write I for the kernel of � , then I is a differential graded ideal of C �..U g/�/

with the property that the DGA C �..U g/�/=I is isomorphic to CE�.g/. With all that
said, the process for representing elements in H�unr.g; k/ by cocycles in C �..U g/�/

is very simple: given an element x in H n
unr.g; k/, one represents x by an n–cocycle

in CE�.g/Š C �..U g/�/=I, lifts that n–cocycle to an n–cochain in C �..U g/�/, and
then adds “correcting terms” in I to get an n–cocycle in C �..U g/�/.

We demonstrate this process “in action” to show how the cocycle representative (4-15)
for h10h30 2 H 2

unr.L
yZpŒ
p

p�.2; 4// was obtained; h10h30 denotes the element of
H 2

unr.L
yZpŒ
p

p�.2; 4// which arose as the product of h10 2 H 1
unr.L

yZpŒ
p

p�.2; 1// and
h30 2H 1

unr.L
yZpŒ
p

p�.2; 3/=L
yZpŒ
p

p�.2; 2//, and which survived the Cartan–Eilenberg
spectral sequences of Propositions 4.3 and 4.4. Since h10 is represented in the
Chevalley–Eilenberg DGA (and the cobar complex) of L

yZpŒ
p

p�.2; 1/ by the 1–cocycle
t1;0 and since h30 is represented in the Chevalley–Eilenberg DGA (and the cobar com-
plex) of L

yZpŒ
p

p�.2; 3/=L
yZpŒ
p

p�.2; 2/ by the 1–cocycle t3;0 , h10h30 is represented in
CE2.L

yZpŒ
p

p�.2; 4//Šƒ2.L
yZpŒ
p

p�.2; 4/�/ by t1;0t3;0 , which we see is a 2–cocycle
in CE�.LyZpŒ

p
p�.2; 4//:

dCE.t1;0t3;0/D�t1;0.t1;0t2;1C t2;0t1;0/D 0:

The element t1;0t3;0 lifts to the 2–cochain t1;0˝ t3;0 in C �
�
.UL

yZpŒ
p

p�.2; 4//�
�
, but

there it is not a 2–cocycle:
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dcobar.t1;0˝t3;0/

D�t1;0˝.t1;0˝t2;1Ct2;0˝t1;0/

D dcobar
�
t1;0˝t1;0t2;0C

1
2
t2
1;0˝t2;0�

1
2
t2
1;0˝t2;1C

1
2
t2
1;0˝t1;0t1;1C

1
3
t3
1;0˝t1;1

�
:

Since t1;0˝ t1;0t2;0C
1
2
t2
1;0
˝ t2;0�

1
2
t2
1;0
˝ t2;1C

1
2
t2
1;0
˝ t1;0t1;1C

1
3
t3
1;0
˝ t1;1 2 I,

we have our cocycle representative (4-15) for h10h30 in the cobar complex.
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