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Summary. In this paper we investigate a relation between the James space J{X') with an
action of Z5 and the Zs-space 2V SV X for V the nontrivial one-dimensional representation
of the group Z>. After defining the action on J{X') we prove that the Z-spaces J(.X') and
2V sV X are weak Zs-homotopically equivalent. As an application of the result we get a
construction of a Zo-EHP sequence.

Introduction. In this paper by (X, ¢) we denote arcwise-connected
and compact topological Z,-space X with chosen nondegenerated base point

2o € X and a continuous map ¢ : X — R, such that

(i) q7'(0) = o,
(ii) for all g € Z, and z € X.

qlg - @) = g(x)
In Section | of this paper we formulate definitions of spaces I'V( X, q)
and 2°YI'V(X,q) and give some their properties. Moreover, we construct
a fibering which fiber is the space (2*V IV (X, ¢))22.

Section 2 contains definition of an action of the group 7, on the space
J(X). We also define a continuous Zs-equivariant map A : HX) —
2V IV (X,q). In addition we construct a quasi-fibering which fiber is the
space J(X )%z, ]

In Section 3 we formmulate and prove the main result of this paper.
Namely, we prove that the map A is a weak Zs-homotopic equivalence.

As an application, in Section 4 we give a construction of Z;-LHP se-
quence for a case not known before.

1. Spaces I'V(X,q), SVX, 2°VI'V(X,q), 2VSYX and their prop-
erties. Let us define the spaces SV X and I'V(X, ¢) in the following way

SYX =S AX and I'V(X, ) =V x X/{(v,2) : |o|| = ¢(2)}.
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We define the action of the group Z, on the spaces I'V(X,¢) and SV X by
the formula g-|(v,2)] = |(g-v,g-2)|. The space I'Y (X, q) is called Z;-Moore

suspension on the Zy-space (X,q). It is easy to see that the above spaces
are Zy-homeomorphic.

Next we define the space 2*VI'V (X, ¢) as follows
VIV (X,q) = {(r,f) € Ry x F(V, TV (X,q)) :
Vvoe V] =2 r= f(v) =20}
We consider the space 2*V I'V( X, q) as Z,-space with the action of Z; given
by the formula g - (r, f) = (r,¢ - f).

The space 2°V I'V(X,q) is called the Z,-space of the Moore loops on the
Z,-Moore suspension of the Zy-space (X, q).

LEMMA 1.1. 2*VI'V(X,q) is homotopically equivalent to 2V SV X.

W.e omitt easy proof of this Lemma. Let us introduce a structure of a
manoid on the space 2%V I'V(X,¢q). For (r, f) and (s,9) € 2*VT'V(X,q) we
define the multiplication by (», f) * (s,g9) = (r + s, h), where

flo+s-w) forve(—(r+s) -w,(r—s) w)
h(v)=<¢ glv—r-w) forve ((r—s) w,(r+s) w)
T forvg (—(r+s) -w,(r+s) w)
Next we construct a fibering with fiber equal to (2*VI'V (X, ¢))%2. First we
define the Z5-space of Moore paths

PY(IrY(X,)={(r,f)e Ry x F(V,I'V(X,q)): 32, T € I'V(X,q)Vv €V
or(v) - ||v|| 2 r = f(z) =z and or(v) - |jv|| < —r = f(2) =7T}.
The group Z, acts on the space P*YI'V(X,q) by g-(r,f) = (r,g- f). The
equation p;(r, f) = f(r- w) defines a continuous map
Py (PVIY(X,q)" — I'V(X,q).
Note that p; ' (zo) = (2*VT'V(X,q))%>.

LEMMA 1.2. The map B, : (P*VI'V(X,¢9))¥* — TI'V(X,q) defined as
above is a fibering.

Proof is standard and left to the reader. An easy computation shows
that the space (P*VI'V(X,¢))?? has the same homotopy type as the space
X2z, We define a homeomorphism e : I'Y (X, q) — I'V (X, q) by e(|(v,2)])
= |(v,g - )|, where g is the nontrivial element of Z. The map p1 = eop; :
(P*YIV(X,q)%: — I'Y(X,q) is a fibering.

We see that the exact homotopy sequence for the fibering can be written
in the following form

C— (VY (X, 9)P) — (X T2) —

o , -
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e (TP (X, ) — T (27 TV (X, g))) —

2. 7Z,-equivariant James construction and its properties. We use
the definition of James construction given in [4]. The James construction on
the space (X, q) will be denoted by J(X). The elements of the space J(X)
will be written in the form 21 -...-zx. We define an action of the group Z,
on the space J(X) as follows
- )= Tl ee. Tg forg=0¢€ 2,
gl Tk) = (g-xx) ... (g-x1) forg=1€1y
The space J(X) with this action of Z is called Zy-equivariant James con-
struction on the Z4-space (X, q).

Let us define a continuous Zo equivariant map A X — 2°VTIV(X,q)
by formula AM(z) = (g(), Ax( ), where Az(v) ) = [(v,2)]. The map A L\unds
to a continuous Zo- equnauant mdp A X)) —— 2V TV (X, q) defined by
/\("l]‘.. Lk)—/\ T'l) Lk)

We shall construct a quaslﬁbenng, which fiber is the space J(X)Z2. Form

amap f: X x J(X)2 — J(X )22 by formula
flaz,zy-oovag) = Ty Ti(gT),

where ¢ is the nontrivial element of Z,. We define the cone C'V(X,q) in the
following way

CY(X,q) = {(v2) e Vx X P <q@)}/{(v,z) eV x X:

llv|l = ¢(«) and or(v) < 0}.
We are given an injection X x J( X))z —— CY(X,q) x J(X )22 defined by
(z.y) — (J{g(x)-w,z)]),y). Let EY = (CY(X q)XJ Y)ZZ JUs JI(X)% be
the cylinder of the map f. Now let us define a map p : EY — I'V(X.q) as
follows
p(1(e,2)1, ) = l(v,)] and p(y) = 0.

By the James Lemma in [5] it follows that the map p is a quasifibering.

We have obtained: the folowing exact sequence of the quasifibering

T (IO ()
e TV (X, ) 2= Tt (J(X T2 —
On the space CV (X, q) x J(X)%2 we define the following relation
((g(z) - w, )], y) ~ (20,2 y - (g-2))s

where ¢ is the nontrivial element of Z,. Note that EV = CY(X,q) X
J(/Y)ZQ/N

Let us introduce the following filtration E} in the space EV . EY =
CY(X,q) X Jp(X)/~for n=1,2,3,...
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THEOREM 2.1 (Milnor Theorem). Let Z and X be topological spaces with
filtrations Z, and Y, respectively and [ :Y — Z be a map preserving the
filtrations. If

a) for all n > 1 the pairs (Z,41,Z,) and (Y,11,Yy) are cofiberings,
b) for all n > 1 the maps f, = iz, + Zn — Y, are homotopy equiva-
lences,

then the map f:Z — Y is a homotopy equivalence.

For the proof of the above theorem see for instance [5].

ZLEMMA 2.1. The space EV has the same homotopy type as the space
X4z,

Proof. Let g be the nontrivial element of the group Z;. We define a
continuous map h: EY — (P*VFV(X q))%= as follows

h(l(v,2)]y 21 - .. - %) = (E’ + g(2) + or(v) - |||,

Yi(v,z) * A(2q - wk)*yg(v,:v)>,

- where yy(v,z): V — I'Y(X,q) is given by

|(=v,2)| for or(?) - [|1]| < —(g(=)
+or(v) - {|v]])
7i(v,2)(t) = { (It = ¢(2) - w,g - 2) for —(g(2) + Or(v\ (1)
| <or(t) - 2} <
Zo for 0 < or(2) - ||¢]|
and where y3(v,2) : V — I'Y(X, q) is defined by
(v, g - @) for (g(2) + or(v) - [|v]])
Sor(t) - [feff-
Y2(v,2)(t) = (I = g(2)) - w,g - )| for 0 < ox(t) - |J¢]]
< q(l‘)+ Of(v) (o]
o for or(t) - ||t]| <

Let I : {0} x X%z — X 22 be the projection. We denote the coordinates
of the map h as h(y) = (s(y),t(y)). We define a map d : £V — XZ2 in

the following way d(y) = II(t(y)(0)). Let us apply Theorem 2.1. to the
following case

Z=EY, Y=X¥ 7.,=EY and f=d.

n
It is easy to see that for n > 1
a) the pairs (Zn41,7,) and (Yn41,Y,) are cofiberings,
b) the map d,, = d|z, : Z,, — Y, is a homotopy equivalence.

Zs-equivariant James Construction 87

By Theorem 2.1 it follows that the map d is a homotopy equivalernce. O

Using Lemma 2.1 we simplify the exact sequence of the quasifibering
p: BV — r‘ (/\ q). We obtain the following exact sequence

= T (X)) = (X)) —
— 1 (I (X, q)) — T (I(X)E2) — ..
In our notation the Theorem 2.2 has the following form
TueoreM 2.2 (James Theorem). The map A : J(X) — 2V TV (X,q)
is @ weak homotopy equivalence.

The proof of the theorem can be found in [4]. A stronger version of the
theorem is due to [9)].

3. Zy-equivariant James Theorem. In this section we formulate and
prove the main theorem of the paper.

THEOREM 3.1 (Zy-equivariant James Theorem). For every finite Zo-C'W

- complex K the map

A (KX g, — (B, 27V 1Y (X, ),

is an isomorphism.

Proof. An easy computation shows that the map h : EV ——
(P*VI'V(X,q))% defined in Lemma 2.1 is a homotopy equivalence. It fol-
lows immediately that fjy vz, = PLEN

We shall prove that the constructed exact sequences of fibering and quasi-
fibering are isomorphic. We have the following commutative diagram

z2 *
J(x)%2 _A7 (R'rvix,q))%2

] J"
EV——h——-. (p"vl"v()(,q)) z,
k K
r(%,q) —&—= rV(X,q)
By the Five Lemma the map
A (X)) —— (27 TV (X, )"

is an ijsomorphism for any n € N. From this it follows that the maps A,
and AZ2 are isomorphisms. Using the above and Proposition 11.2 in [1] we
complete our proof.
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4. Application of Z;-equivariant James Theorem. In this section
we use notation introduced in [1], where the exact sequence of Z,-pair (X A)
s . s . ryy . . . - ’

was constructed. This sequence is of the following form

— Tp(A) =1, (X)) T w, (Y, A) *«np{,,lu)»a.

Let us fix indexes r and s and write the above exact sequence for the Z,-pair
(J(27), 570) o
L) Py

_ \17 S ul j"‘
c T Ty Y )_“*‘”r (X)) ==
. (V7,5 a5y O Vo
F]».{](\J(L‘ )vl’ ,s) * Tpg— l( " 6) R

The snaces O 1Vey oy . [,0 ¢ .
ll,h( spaces $2°V I (X, q) and 290510 4re Zy-homotopically equivalent.
,‘)(‘not,0 by 7 a homotopy equivalence between these spaces. By the proper-
ties of the exact sequence of pair (X, A) and Theorem 3.1 we deduce that
the above sequence is equivalent to the sequence

1.0
X

. VTS w 1, H.
(%) = Tp(L77) - Tty )
- VT, S NS ‘l:'*‘ Ty S
— Ty, q(J( )»u ) T ﬂ.pqul(‘\jlﬁ) T
If «a. is the isomorphism of the groups ™, 'Q“) 1.0 ‘A‘T’S) and
yvor41,s ~1,0
Tt X ), then Y7 = v, 0v.0A. 0. and H*M ]*o/\ toa l It

can be verifie > vy ; )
con b y d that the groups ”r[) JIX), X% and T, ,I(J(_,’ SA L”))
are isomorphic forp+qg<3-(r+s)-2and ¢ <r+s— 1. Denote by o,
this isomorphism.

We are given an action of Z, on the space Y% A 7% by

(*x) g.(kjr./\y);_{(.’/ PIA(g-x) forg=1€12,
Ay forg=0¢7,

Prorosimion A.1. Assume thal p+q < 3-(r+s) -2 and qg<r4+s—1.
The simpliest forne of the cract sequence for the pair (J(X7%), %) is the
following

o 1. og.oll
2 T +1.s Tix O Ffx
7 7Tp+] r[( ) I ”

C T (V)

s stlrds, Ow0ol oyt
{& 7)) — » Tpg-1(X7)

T T+l g

—_ ...

Proof. Using the isomorphism o. we simplify the sequence (%)

§11,0
Y

— TI)(l(“IS)' C Mt q( ‘T+1b)_”*—°””;,

e ov:’

. ﬂ—p’q(‘J(E.r’s /\ ET‘,S)) ﬂ_p 1_]( T S) I

It can be prgved that the space V7% A Y% with action (xx) of Z, is Z,-
homeomorphic to the space Y75 7+s,
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Applying the above remark and Theorem 3.1 we conclude that the group
T, (J(E7* N Y7%)) is isomorphic to Tort (LT T2) 0 Denote the iso-
morphism by ..

Finally we get

1.0
X

.S vrtl.s mocuol{,(
— Ty, q( ) ) 7rp+l,q( ) -
A.o0 Yoyt
§r +—s+1 r+s T 00 T TS
— Tp+1, q( ) 7 W;),(}—\(L ) T e
0

NOTATIONS
1" — a one-dimensional nontrivial representation of the group Z».
w €V~ a versor of the representation V7,

or(r) = sen(k), where v = k- w,

5V = VU {sx} - one-point compactification of the representation V
with a chosen base point xg = ~C,

F(A.B) — the space of all continuous maps from a topological space A
into a to )ologica] space B. considered with compact open topology.

F(A, B) - the space of all these continuous maps from the topological
space A into the topological space B, which preserve base points, considered
with compact-open topology,

G- -~ is any group,

(Z.T]e — the set of G-homotopy classes of G-equivariant maps from a
G-space Z to a G-space T' preserving base points,

XG . the set of all fixed points of the action of the group G on the
Gi-space X,

X —. YH — the restriction of the G-equivariant map f: X
Y to the set of fixed points of the action of the subgroup [ of the group (;

RVSVX = F(SY,SY AX).

Given Z,-spaces A and B we define the f()llowmg action of the group Z,
on the space F(A,B): (g- [)(a)=g- f(g-a), where feF(AB), g€l
and a € A.

We introduce the action of the group Z; on the space F/(A, B) in analo-

gous way.

DEPARTMENT OF TECHNICAL PHYSICS AND APPLIED MATHEMATICS, TECHNICAL UNIVER-
SITY OF GDANSK, MAJAKOWSKIEGO 11/12, 80-952 GDANSK
(WYDZIAL FIZYKI TECHNICZNEJ I MATEMATYKI STOSOWANEJ POLITECHNIKI GDANSKIEJ)
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Skein Modules of 3-Manifolds
by

Jozef H. PRZYTYCKI

Presented by A. BIALYNICKI-BIRULA on January 25, 1989

Summary. It is natural to try to place the new polynomial invariants of links in algebraic
topology (e.g. to try to interpret them using homology or homotopy groups). However,
one can think that these new polynomial invariants are byproducts of a new more delicate
algebraic invariant of 3-manifolds which measures the obstruction to isotopy of links (which
are homotopic). We propose such an algebraic invariant based on skein theory introduced
by Conway (1969) and developed by Giller (1982) as well as Lickorish and Millett (1987).

Let M be an oriented 3-manifold and R a commutative ring with 1. For
Tos...,Te_1 € R we define the kth skein module Sp(M; R) (7o,...,Tk—1) as
follows:

Let £(M) be the set of all ambient isotopy classes of oriented links in
M. Let M(L, R) be a free R-module generated by L(M ) and S¢ary(ro,-- -,
7k—1) the submodule generated by linear skein expressions rqLo + r1l1 +
eootre_1Ly_y, where Ly, Ly,...,Li_1 arc classes of links identical except

the parts shown in lig. 1.

~—_ Ve
/'\ l
L, e Liq

Lo Lq
Iig. 1

DEFINITION 1. The R-module

Si(M;R) (7o, .. Tr—1) = M(L,R)/Scary(Tos- -y Th—1)
is called the kth skein module of M.

EXAMPLE 2.
(a) Sk(M; R)(O" .- 70) = M(‘CvR)7



