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SIMPLICIAL STRUCTURES ON MODEL CATEGORIES AND FUNCTORS

By CHARLES REZK, STEFAN SCHWEDE, and BROOKE SHIPLEY

Abstract. We produce a highly structured way of associating a simplicial category to a model
category which improves on work of Dwyer and Kan and answers a question of Hovey. We show
that model categories satisfying a certain axiom are Quillen equivalent to simplicial model categories.
A simplicial model category provides higher order structure such as composable mapping spaces
and homotopy colimits. We also show that certain homotopy invariant functors can be replaced by
weakly equivalent simplicial, or “continuous,” functors. This is used to show that if a simplicial
model category structure exists on a model category then it is unique up to simplicial Quillen
equivalence.

1. Introduction. In [DK] Dwyer and Kan showed that a simplicial cate-
gory, called the hammock localization, can be associated to any Quillen model
category [Qui]. This simplicial category captures higher order information, for
example fibration and cofibration sequences and mapping spaces, see [Qui, I 3],
which is not captured by the ordinary homotopy category. Hovey carried this
further by showing that the homotopy category of simplicial sets acts on the
homotopy category of any model category [Hov, 5.5.3]. Hovey then wondered
if in fact every model category is Quillen equivalent to a simplicial model cate-
gory [Hov, 8.9]. Quillen equivalence is the appropriate notion of equivalence for
model categories, so this would be the most highly structured way of associating
a simplicial category to any model category. The following existence result is
proved in Theorem 3.6.

THEOREM 1.1. If C is a left proper, cofibrantly generated model category that
satisfies Realization Axiom 3.4, then C is Quillen equivalent to a simplicial model
category.

Throughout this paper we use a slightly stronger notion of cofibrantly gen-
erated model category than is standard; see Definition 8.1. We also have the
following uniqueness result, which is proved as Corollary 6.2. Assume that C
and D are model categories which either satisfy the hypotheses of Theorem 1.1
or satisfy the hypotheses of one of the general localization machines in [Hir] or
[Smi], see also [Dug].
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THEOREM 1.2. Under these hypotheses, if C and D are Quillen equivalent sim-
plicial model categories, then C and D are simplicially Quillen equivalent.

By considering the identity functor, this shows that a simplicial model category
structure on a model category is unique up to simplicial Quillen equivalence,
see Corollary 5.3. This strengthens Dwyer and Kan’s analogous result on the
homotopy categories in [DK].

To prove Theorem 1.2, in Section 6 we consider replacing functors between
simplicial model categories by simplicial, or “continuous,” functors. We show
that a homotopy invariant functor F can be replaced by a naturally weakly equiv-
alent simplicial functor, see Corollary 6.5. We also show that Quillen adjunctions
between simplicial model categories, the appropriate notion of functors between
model categories, can be replaced by simplicial Quillen adjunctions, see Propo-
sition 6.1. This answers another part of Hovey’s problem [Hov, 8.9].

Another reason to construct replacement simplicial model categories is to
have a simple definition of a homotopy colimit. The original definition in [BK,
XII] generalizes to define a homotopy colimit in any simplicial model category,
see [Hir, 20]. So the simplicial replacements considered here provide new situa-
tions where a simple homotopy colimit can be defined. The Bousfield-Kan type
homotopy colimit on the replacement simplicial model category can be trans-
ported to the original model category via the Quillen equivalence.

Showing that stable model categories have simplicial replacements was the
original motivation for this work, see Section 4.

PROPOSITION 1.3. Any proper, cofibrantly generated, stable model category is
Quillen equivalent to a simplicial model category.

The category of unbounded differential graded modules over a differential
graded algebra is one particular example of a stable model category that was
not previously known to have a Quillen equivalent simplicial replacement. This
example is treated explicitly in Corollary 4.6 and answers another question of
Hovey [Hov, 8.9].

For a model category C, our candidate for a Quillen equivalent simplicial
model category is based on the category of simplicial objects in C, sC. Reedy
[Ree] establishes the Reedy model category on sC, but it is neither simplicial
nor Quillen equivalent to C, see [DKS, 2.6] or Corollary 7.4. So we localize
the Reedy model category to create the realization model category. Instead of
using general machinery to produce the localization model category, we explicitly
define the cofibrations, weak equivalences, and fibrations and then check that they
form a model category. This avoids unnecessary hypotheses. In Theorem 3.6 we
show that if C is a left proper, cofibrantly generated model category that satisfies
Realization Axiom 3.4, then the realization structure on sC is a simplicial model
category that is Quillen equivalent to the original model category C.

More generally, we show that there is at most one model category on sC that
satisfies certain properties, see Theorem 3.1. When this model category exists on
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sC it is Quillen equivalent to the original model category C, and we refer to it
as the canonical model category structure on sC. If C satisfies the hypotheses of
Theorem 3.6 as listed above, then the canonical model category structure on sC
exists and is simplicial since it agrees with the realization model category. The
applications in Sections 5 and 6 rely only on the existence of the canonical model
category on sC and the fact that it is simplicial.

In [Dug], Dugger has also developed a way to produce replacement simplicial
model categories. His approach is similar to ours, but he uses the two general
localization machines that exist for left proper, cellular model categories, see
[Hir] and for left proper, cofibrantly generated, combinatorial model categories,
see [Smi]. Hence, these hypotheses also ensure the existence of the simplicial,
canonical model category on sC. So the applications of Sections 5 and 6 also
apply under the conditions investigated in [Dug].

One drawback to these general machines is that the fibrations cannot always
be identified in concrete terms. Our approach here is to explicitly define the
fibrations and then verify the model category axioms. This approach requires
a slightly stronger notion of “cofibrantly generated,” see Definition 8.1. Then
for left proper, cofibrantly generated model categories, Realization Axiom 3.4 is
equivalent to having the explicit definition of the fibrations, see Proposition 3.7.

Organization. In Section 2 we recall the simplicial structure on sC and the
Reedy model category structure on sC. In Section 3, we define the canonical model
category structure on sC, the realization model category structure on sC, and state
the main theorems. In Section 4 we consider examples including simplicial model
categories, stable model categories, and unbounded differential graded modules
over a differential graded algebra. In Sections 5 and 6 we consider the applications
mentioned above: the uniqueness of simplicial model category structures and
replacing functors by simplicial functors. In Section 7, we show that the Reedy
model category structure only partially satisfies the compatibility axiom SM7.
This also gives several statements that are needed in later proofs. In Section 8 we
verify the main theorem, Theorem 3.6, which states that the realization structure
on sC is a simplicial model category that is Quillen equivalent to the original
model category, C.

2. The Reedy model category for simplicial objects in C. Here we define
the canonical simplicial structure on the category of simplicial objects of C, sC.
This is our candidate category for replacing C by a simplicial model category.
We also recall the definition of a simplicial model category and the Reedy model
category structure on sC.

Let sC denote the simplicial objects in C, i.e. the functors ∆op ! C. Let S
denote the category of simplicial sets. For any category C with small limits and
colimits, sC is tensored and cotensored over S , compare [Qui, II 1]. For a set S
and X 2 C, let X � S =

`
s2S X. For X in sC and K in S define X 
 K in sC as
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the simplicial object with nth simplicial degree (X 
 K)n = Xn � Kn. For A in C
denote cA 
 K as A 
 K in sC where c: C ! sC is the constant object functor.
Note cA = A
 ∆[0]. The cotensor XK in sC is also defined in [Qui, II 1]. In this
paper we mainly use the degree zero part in C of this cotensor, and denote it XK .
From this simplicial tensor one can define simplicial mapping spaces, map (X, Y)
in S for X, Y 2 sC with nth simplicial degree map (X, Y)n = sC(X 
 ∆[n], Y). So
sC is also enriched over S .

We now recall the definition of a simplicial model category, which asks that
the simplicial structure be compatible with the model category structure.

Definition 2.1. A simplicial model category is a model category C that is
enriched, cotensored and tensored over S and satisfies the following axiom:

AXIOM 2.2. [Qui, II.2 SM7] If f : A ! B is a cofibration in C and i: K ! L is
a cofibration in S then

q: A
 L
a

A
K

B
 K ! B
 L

(1) is a cofibration;
(2) if f is a weak equivalence, then so is q;
(3) if i is a weak equivalence, then so is q.

The first model category we consider on sC is the Reedy model category
structure, see [Ree, Theorem A] or [DKS, 2.4]. Before defining the Reedy model
category structure we need to define latching and matching objects. Let Ln be
the category with objects the maps [ j] ! [n] 2 ∆op with j < n and with
morphisms the commuting triangles. Let l: Ln ! ∆op be the forgetful functor.
Given X: ∆op ! C, an object in sC, define LnX = colimLn l�X. LnX is the nth
latching object of X. Similarly, let Mn be the category with objects the maps
[n] ! [ j] 2 ∆op with j < n and with morphisms the commuting triangles. Let
m: Mn ! ∆op be the forgetful functor. Given X: ∆op ! C, an object in sC,
define MnX = limMn m�X. MnX is the nth matching object of X.

Definition 2.3. A map f : X ! Y in sC is a level weak equivalence if Xn ! Yn

is a weak equivalence in C for each n. It is a Reedy cofibration if the induced
map Xn

`
LnX LnY ! Yn is a cofibration in C for each n. Similarly, f is a Reedy

fibration if the induced map Xn ! Yn
Q

MnY MnX is a fibration in C.

Note that a map X ! Y in sC is a Reedy trivial cofibration (resp. Reedy trivial
fibration) if and only if all the maps Xn

`
LnX LnY ! Yn are acyclic cofibrations

in C (resp. all the maps Xn ! Yn
Q

MnY MnX are acyclic fibrations in C). The
following theorem is due to Reedy [Ree, Theorem A]. See also [DKS, 2.4] or
[Hov, 5.2.5].
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THEOREM 2.4. The category sC equipped with the level weak equivalences,
Reedy cofibrations, and Reedy fibrations is a model category, referred to as the
Reedy model category.

This Reedy model category structure on sC with the canonical simplicial
structure described above satisfies properties (1) and (2) of Axiom 2.2 (SM7)
but does not satisfy property (3). This is stated in Corollary 7.4. So this model
category is not a simplicial model category, but is a stepping stone for defining
the model category structure on sC that is simplicial.

3. Statement of results. Here we define the realization model category
structure on sC. This is the model category structure on sC which is simplicial and
also Quillen equivalent to the original model category on C, see Theorem 3.6. We
first show that there is at most one model category on sC with certain properties,
which we call the canonical model category, see Theorem 3.1. We then show
that the canonical model category coincides with the realization model category
when it exists.

Denote the set of morphisms in the homotopy category of the Reedy model
category on sC by [X, Y]Ho(Reedy). Call a map in sC a realization weak equiva-
lence if for all Z in C it induces an isomorphism on [�, cZ]Ho(Reedy), where c
is the constant functor. An object in sC is homotopically constant if each of the
simplicial operators di, si is a weak equivalence.

THEOREM 3.1. Let C be a model category. Then there is at most one model
category structure on sC such that:

� every level equivalence is a weak equivalence,
� the cofibrations are the Reedy cofibrations, and
� the fibrant objects are the homotopically constant, Reedy fibrant objects.

When this model category exists, we refer to it as the canonical model category on
sC. Moreover, when it exists the weak equivalences coincide with the realization
weak equivalences.

Proof. First assume this canonical model category exists. Then since Reedy
cofibrations are cofibrations and level equivalences are weak equivalences, a
Reedy cylinder object ([Qui, I.1 Def. 4], [Hov, 1.2.4]) for a Reedy cofibrant ob-
ject is also a cylinder object in the canonical model category. This shows using
[Qui, I.1 Cor. 1] that for A Reedy cofibrant and X homotopically constant and
Reedy fibrant the homotopy classes of maps coincide in the homotopy category
of the Reedy model category and the homotopy category of the canonical model
category, [A, X]Ho(Reedy) �= [A, X]Ho(can.). Since level equivalences are weak equiv-
alences in both cases this means that for arbitrary A and homotopically constant
X, [A, X]Ho(Reedy) �= [A, X]Ho(can.).

A map f : A ! B is a weak equivalence in the canonical model category if
and only if for each homotopically constant X, [ f , X]Ho(can.) is a bijection. Or,
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equivalently, [ f , X]Ho(Reedy) is a bijection. Since X is level equivalent to c(X0),
this is equivalent to [ f , cZ]Ho(Reedy) being a bijection for each Z in C. So the
weak equivalences are the realization weak equivalences.

Since the cofibrations and weak equivalences are determined, the fibrations
are determined by the right lifting property. Hence there is at most one model
category on sC with the above properties.

This specifies the model category of interest on sC because when the canonical
model category exists on sC it is Quillen equivalent to the original model category
C, see Proposition 3.9.

Remark 3.2. In [CS, 11.3] and [Hir, 21], for any model category C a ho-
motopy colimit functor is constructed which is the total left derived functor of
colimit. Using this definition we could have defined the realization weak equiv-
alences as those maps whose homotopy colimit is an isomorphism. We use “re-
alization” instead of “hocolim” to avoid conflict with the terminology of [Dug].
Specifically, let hocolim: Ho(Reedy) ! Ho (C) be the total left derived functor of
colimit. Then [A, cZ]Ho(Reedy) is isomorphic to [ hocolim A, Z]Ho (C). So f : A ! B
is a realization weak equivalence if and only if hocolim f is an isomorphism.
In the rest of this paper though we only assume the existence of the homotopy
colimit for simplicial model categories, which follows from [BK, XII], see also
[Hir, 20].

Now we demonstrate conditions which ensure the existence of the canonical
model category structure on sC.

Definition 3.3. A Reedy fibration f : X ! Y in sC is an equifibered Reedy

fibration if the map Xm+1
(di, fm+1)
����! Xm �Ym Ym+1 is a weak equivalence for each m

and for each simplicial face operator di with 0 � i � m + 1.

AXIOM 3.4. (Realization Axiom) If f : X ! Y in sC is an equifibered Reedy
fibration and a realization weak equivalence then f is a level weak equivalence.

See Section 4 for examples where Axiom 3.4 is verified. See Definition 8.1
for a definition of a cofibrantly generated model category. A model category is
left proper if the pushout of a weak equivalence along a cofibration is a weak
equivalence. Let Ev: sC ! C be the evaluation functor given by Ev X = X0. Note
Ev is right adjoint to c, the constant functor.

Definition 3.5. A pair L, R of adjoint functors between two model categories
is a Quillen adjoint pair if L, the left adjoint, preserves cofibrations and trivial
cofibrations. Equivalently, R preserves fibrations and trivial fibrations. Such an
adjoint pair induces adjoint total derived functors on the homotopy categories,
see [Qui, I.4 Thm. 3]. A Quillen adjoint pair is a Quillen equivalence if the total
derived functors induce an equivalence on the homotopy categories.
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THEOREM 3.6. If C is a left proper, cofibrantly generated model category that
satisfies the Realization Axiom, then the following hold.

(1) The canonical model category on sC exists. Moreover, it is cofibrantly
generated and the fibrations are the equifibered Reedy fibrations. It is also referred
to as the realization model category.

(2) The realization model category structure on sC satisfies Axiom 2.2 (SM7).
Hence it is a simplicial model category.

(3) The adjoint functor pair c: C � sC: Ev induces a Quillen equivalence of
the model category on C and the realization model category on sC.
Moreover, the realization model category structure agrees with the canonical model
category on sC.

This theorem is proved in Section 8. Recall that our definition of cofibrantly
generated is slightly stronger than standard; see Definition 8.1. Since the weak
equivalences and cofibrations of the realization model category agree with those
of the canonical model category, these two model categories agree when they
exist. Thus, under the hypotheses of this theorem, the canonical model category
is a simplicial model category. In fact, one can show that if the canonical model
category exists and is cofibrantly generated in the sense of Definition 8.1 then it
is a simplicial model category.

The next proposition shows that Realization Axiom 3.4 must hold if the
fibrations in the canonical model category on sC are to be the equifibered Reedy
fibrations.

PROPOSITION 3.7. Assume C is a left proper, cofibrantly generated model cat-
egory and the canonical model category on sC exists. Then the fibrations in the
canonical model structure coincide with the equifibered Reedy fibrations if and
only if C satisfies Realization Axiom 3.4.

Proof. If the Realization Axiom holds, then part 1 of Theorem 3.6 gives
the characterization of the fibrations as equifibered Reedy fibrations. For the
other implication, an equifibered Reedy fibration that is also a realization weak
equivalence is a trivial fibration in the canonical model structure by assump-
tion. But a trivial fibration has the right lifting property with respect to the
Reedy cofibrations, and hence is a level equivalence. Thus the Realization Axiom
holds.

Remark 3.8. As mentioned in the introduction, Dugger [Dug] also has condi-
tions on a model category C which ensure that sC has a model category structure,
called the hocolim model category, which agrees with the canonical model cat-
egory and is simplicial. In particular, Proposition 3.7 can be used to explicitly
describe the fibrations for some of Dugger’s examples.

We end this section by stating a few of the properties that follow just
from the existence of the canonical model category structure. Note that The-
orem 3.6 (3) follows from Theorem 3.6 (1) and the first statement below since
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the realization model category and the canonical model category agree when they
exist.

PROPOSITION 3.9. If the canonical model category on sC exists then
(1) The model category on C is Quillen equivalent to the canonical model

category on sC via the adjoint functor pair (c, Ev).
(2) A map between fibrant objects is a weak equivalence if and only if it is a

level equivalence.
(3) The fibrations between fibrant objects are the Reedy fibrations.

Proof. For the second statement, note that c preserves cofibrations and trivial
cofibrations. By adjointness Ev preserves fibrations and trivial fibrations, and
hence also weak equivalences between fibrant objects. But, if Ev f is a weak
equivalence then f is a level equivalence since fibrant objects are homotopically
constant.

To show that the adjoint functor pair (c, Ev) induces a Quillen equivalence, we
use the criterion in [HSS, 4.1.7] since Ev preserves and detects weak equivalences
between fibrant objects. So we must show for any cofibrant object X in C that
X ! Ev(cX) f is a weak equivalence where (cX) f is a fibrant replacement of cX
in sC. Take (cX) f to be the Reedy fibrant replacement of cX; it is homotopically
constant and hence also a fibrant replacement in the canonical model category.
Then (cX) f and cX are level equivalent so X ! Ev(cX) f is indeed a weak
equivalence in C.

Since fibrations have the right lifting property with respect to level trivial
Reedy cofibrations, a fibration is a Reedy fibration. So we assume f : X ! Y is a
Reedy fibration between two fibrant objects and show that it is a fibration. Factor
f = pi with i a trivial cofibration and p a fibration. Then i is a weak equivalence
between fibrant objects, hence a level equivalence by part two. Thus i is a trivial
Reedy cofibration so it has the left lifting property with respect to f . This implies
that f is a retract of p, and hence a fibration in sC.

4. Examples. In this section we give a criterion for simplicial model cat-
egories to satisfy the Realization Axiom and verify the Realization Axiom for
stable model categories. So for the left proper, cofibrantly generated model cate-
gories among these examples, Theorem 3.6 shows that C is Quillen equivalent to
the simplicial, canonical model category on sC. We mention one particular exam-
ple, the category D of unbounded differential graded modules over a differential
graded algebra.

Simplicial model categories. One source of model categories satisfying
Realization Axiom 3.4 is given by simplicial model categories where the realiza-
tion factors through simplicial sets, see below. These examples are of interest for
Sections 5 and 6, where we discuss replacing functors between simplicial model
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categories by simplicial functors and discuss the uniqueness of simplicial model
category structures.

For a simplicial model category C, define a functor Sing: C ! sC by (Sing X)n

= X∆[n]. Then j � j: sC ! C is the left adjoint to Sing. These functors are
investigated further in Section 5.

Definition 4.1. For a simplicial model category C, say that the realization
factors through simplicial sets if the following hold.

(1) There is a functor U: C ! S such that f is a weak equivalence in C if
and only if Uf is a weak equivalence in S .

(2) U preserves fibrations.
(3) For any object X 2 sC, UjXj is naturally weakly equivalent to jŪXj where

Ū is the prolongation of U defined by applying U to each level in sC.

Examples of such model categories include topological spaces with U = Sing
and the standard model category on simplicial objects in a category C with an
underlying set functor, such as simplicial groups [Qui, II.4].

A model category is right proper if the pullback of a weak equivalence along
a fibration is a weak equivalence. A proper model category is one that is both
right and left proper.

PROPOSITION 4.2. If C is a proper, cofibrantly generated simplicial model cate-
gory where the realization factors through simplicial sets, as above, then C satisfies
Realization Axiom 3.4. Hence the canonical model category on sC exists, is simpli-
cial, and is Quillen equivalent to C by Theorem 3.6.

Hence, under these hypotheses on C, the applications in Sections 5 and 6
apply. These statements basically follow because the Realization Axiom holds
for simplicial sets.

LEMMA 4.3. The model category of simplicial sets, S , satisfies Realization Ax-
iom 3.4.

Below we verify that Lemma 4.3 is a special case of the following proposition,
essentially due to Puppe [Pup].

PROPOSITION 4.4. Let I be a small category and X ! Y be a map of I-diagrams
of simplicial sets such that for each i1 ! i2 2 I the square

X(i1) ���! Y(i1)
??y

??y

X(i2) ���! Y(i2)
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is homotopy cartesian. Then for each object i 2 I, the square

X(i) ���! Y(i)
??y

??y

hocolimI X ���! hocolimI Y

is homotopy cartesian.

Proof of Lemma 4.3. In the proposition take I = ∆, the simplicial indexing
category. An equifibered Reedy fibration f : X ! Y , viewed as a map of ∆-
diagrams, satisfies the hypotheses of Proposition 4.4, and f is a realization weak
equivalence precisely when hocolim∆ X ! hocolim∆ Y is a weak equivalence by
Remark 3.2. Therefore, for such f and for every i 2 ∆ the map X(i) ! Y(i) is a
weak equivalence, i.e., f is a level weak equivalence.

A proof of Proposition 4.4 in this generality appears in [Rez] where it is gen-
eralized to simplicial sheaves. Alternatively, one can adapt the argument of [Far,
App. HL], where the Proposition is stated under the additional hypothesis that
the nerve of the indexing category I and all Y(i) are path-connected. This implies
that the homotopy colimit of Y is also connected, and so the conclusion as given
in [Far, App. HL] in terms of homotopy fibres is equivalent to the conclusion
of Proposition 4.4. Proposition 4.4 avoids explicit reference to homotopy fibres,
and in this form the connectivity hypotheses are irrelevant. It can be proved, as
in [Far, App. HL], by first checking the special cases of a homotopy pushout, a
(possibly infinite) disjoint union and a sequential homotopy colimit; an arbitrary
homotopy colimit is built from these three ingredients, so the result follows.

Puppe’s original result is about simplicial objects in the category of topo-
logical spaces; we could have derived the Realization Axiom for simplicial sets
directly from his result, although some care would be needed, since he effec-
tively works in a different model category (in which the “weak equivalences” of
spaces are plain homotopy equivalences) and he uses the version of geometric
realization of simplicial spaces in which degeneracies are not collapsed.

Proof of Proposition 4.2. Let f : X ! Y be an equifibered Reedy fibration and
a realization weak equivalence in sC. Since C is a right proper model category,
the condition for an equifibered Reedy fibration is invariant under level equiva-
lences. By definition level equivalences are realization equivalences. Hence, we
can assume that X and Y are Reedy cofibrant. For simplicial model categories, the
realization j� j is weakly equivalent to the homotopy colimit on Reedy cofibrant
objects. This follows from the generalization of [BK, XII] to general simplicial
model categories, see [Hir, 20.6.1]. So j f j is a weak equivalence in C by Re-
mark 3.2, since f is a realization weak equivalence. By properties (1) and (2) of
Definition 4.1, this means that Uj f j and jŪf j are weak equivalences. Thus, Ūf is
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a realization weak equivalence of bisimplicial sets, by Remark 3.2 and the fact
that all bisimplicial sets are Reedy cofibrant. Since U preserves fibrations and
weak equivalences, it preserves homotopy pullback squares, and hence Ū pre-
serves equifibered Reedy fibrations. So, by Lemma 4.3, Ūf is a level equivalence.
Thus f is a level equivalence.

Stable model categories. Recall from [Qui, I.2] that the homotopy category
of a pointed model category supports a suspension functor Σ with a right adjoint
loop functor Ω. A pointed model category C is stable if Σ and Ω are inverse
equivalences on the homotopy category.

PROPOSITION 4.5. Any proper, cofibrantly generated, stable model category C
satisfies Realization Axiom 3.4. Hence the canonical model category on sC exists,
is simplicial, and is Quillen equivalent to C by Theorem 3.6.

Proof. First note that since C is stable the Reedy model category on sC is also
stable. This follows since Reedy cofibrations and fibrations are level cofibrations
and fibrations and colimits and limits are taken levelwise. So the suspension and
loop functors in the Reedy model category are level equivalent to the levelwise
suspension and loop in C.

Now given a realization weak equivalence f : X ! Y in sC that is an equi-
fibered Reedy fibration, we must show that f is a level equivalence. Since C is
right proper, the level homotopy fiber of f is weakly equivalent to F, the fiber of
f . In a stable model category fiber sequences induce long exact sequences after
applying [�, cZ]Ho(Reedy). So [F, cZ]Ho(Reedy) is trivial for any Z in C. Since f
is equifibered, F is homotopically constant and hence level equivalent to c(F0).
Thus idF is trivial in Ho(Reedy). This implies that F is level trivial, and hence
that f is a level equivalence since C is stable.

Differential graded modules. A cofibrantly generated model category, D,
of differential graded modules over a differential graded algebra, A, is constructed
in [SSa, 5], see also [Hov, 2.3.11]. The weak equivalences and fibrations are the
quasi-isomorphisms and surjections of the underlying Z-graded chain complexes.
Since D is stable and proper, the realization axiom follows by Proposition 4.5.
Thus, the following corollary follows from Theorem 3.6.

COROLLARY 4.6. The proper, cofibrantly generated model categoryD of differ-
ential graded modules over a differential graded algebra A is Quillen equivalent
to the simplicial model category sD with the realization model category structure.

This answers a problem stated by Hovey [Hov, 8.9], which asks for a simple
simplicial model category that is Quillen equivalent to unbounded chain com-
plexes of R-modules, Ch(R). Here A is the differential graded algebra that is R
concentrated in degree zero.
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To make this example even more explicit, one can show that the total com-
plex functor T is weakly equivalent to the homotopy colimit. Let X 2 sD be a
simplicial object of differential graded A-modules. We denote by Xs,t the group in
simplicial level s and chain degree t. The total complex of X is the chain complex
with levels TXn = �s+t=nXs,t and with total differential dtot = ( � 1)sd + d0. Here
d is the internal chain differential in each simplicial level and d0 = Σ( � 1)idi.
TX is again a differential graded A-module. Then a map f is a realization weak
equivalence in sD if and only if Tf is a quasi-isomorphism.

5. Uniqueness of simplicial model category structures. In this section
we consider categories C that already have a given simplicial model category
structure. We then show that C is Quillen equivalent to sC via simplicial functors,
see Theorem 5.2. As stated in Corollary 5.3, this implies that simplicial model
category structures on a fixed model category are unique up to simplicial Quillen
equivalence. See also Corollary 6.2 for a generalization of this result. For these
two statements we only need to assume that the canonical model category on sC
exists and is a simplicial model category. We refer to this as assuming the exis-
tence of the simplicial, canonical model category. So the hypotheses considered in
[Dug] work equally as well as the hypotheses considered in Theorem 3.6. Also,
Proposition 4.2 provides many examples of simplicial model categories where
the simplicial, canonical model category on sC exists.

First we recall the definition of a simplicial functor.

Definition 5.1. Let C and D be categories enriched over simplicial sets. Then
a simplicial functor F: C ! D consists of a map F: Ob C ! ObD of objects
together with maps of simplicial sets F: mapC (X, Y) ! mapD (FX, FY) that are
associative and unital, see [Qui, II 1].

Since the vertices of the simplicial set mapC (X, Y) are the morphisms in the
category C, the restriction of a simplicial functor F to vertices is an ordinary
functor. If the categories C and D are also tensored over simplicial sets, then
endowing an ordinary functor with a simplicial structure is equivalent to giving a
transformation K 
 FX ! F(K 
 X) that is natural in the simplicial set K and in
X 2 C and that satisfies certain associativity and unity conditions, see [Hir, 11.6].

For C a simplicial model category we now recall the adjoint functors Sing:
C ! sC and j � j: sC ! C. For X an object in C, Sing (X) is the simplicial object
with Sing (X)n = X∆[n]. For Y an object in sC, jYj is a coend [ML, IX.6] or the
coequalizer of the following diagram induced by the simplicial operators.

qm,nXm 
 ∆[n] ���!���! qn Xn 
 ∆[n]

Throughout this section XK , for X in C and K a simplicial set, refers to the adjoint
of the simplicial action on C. The simplicial structure on sC is still as in Section 2
and [Qui, II 1].
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THEOREM 5.2. Let C be a simplicial model category such that the simplicial,
canonical model category on sC exists. Then the adjoint functors Sing and j � j
are simplicial and induce a Quillen equivalence between C and the simplicial,
canonical model category structure on sC.

Since the structures on sC are independent of any simplicial structure on
C, this gives the following uniqueness statement for simplicial model category
structures.

COROLLARY 5.3. LetC1 andC2 be two simplicial model categories with the same
underlying model category C such that the simplicial, canonical model category on
sC exists. Then C1 and C2 are simplicially Quillen equivalent.

Proof. Apply Theorem 5.2 to both C1 and C2. Then they are both simplicially
Quillen equivalent to sC.

To prove Theorem 5.2 we first prove that Sing and j � j are simplicial.

PROPOSITION 5.4. For C a simplicial model category, Sing: C ! sC and j � j:
sC ! C are simplicial functors.

Proof. To show that j � j is a simplicial functor we show that K 
C jXj
is isomorphic to jK 
sC Xj. Here 
C and 
sC are the simplicial actions in the
respective categories. These are not to be confused with the coends, see [ML],

∆ and 
∆�∆ which follow. Since the left adjoint j � j is a strong simplicial
functor, that is, the natural transformation is an isomorphism, it follows that the
right adjoint Sing is also a simplicial functor.

Let ∆̄: ∆ ! S be the functor such that ∆̄(n) = ∆[n], the simplicial n-simplex.
Then jXj is isomorphic to the coend X 
∆ ∆̄ and for any simplicial set K, K �=
(K 
∆ ∆̄). Because 
C commutes with colimits, K 
C jXj �= (K 
∆ ∆̄)
C (X 
∆
∆̄) �= (K � X) 
∆�∆ ∆̄ � ∆̄. Here (K � X)(m, n) = Km � Xn. The functor ∆̄ � ∆̄
is the left Kan extension of ∆̄ across the diagonal functor �: ∆ ! ∆ � ∆. So
(K � X) 
∆�∆ ∆̄ � ∆̄ �= ��(K � X) 
∆ ∆̄. But ��(K � X) is the functor describing
K 
sC X, so this gives an isomorphism of the last step with jK 
sC Xj. This
produces the required isomorphism.

Proof of Theorem 5.2. First note that Mn( Sing X) = X∆̇[n] where ∆̇[n] denotes
the boundary of the simplicial n-simplex. So if f : X ! Y is a Reedy (trivial)
fibration then Sing X ! Sing Y is a Reedy (trivial) fibration because the induced
map Xn ! MnX�MnY Yn is equivalent to the map X∆[n] ! X∆̇[n]�Y ∆̇[n] Y∆[n] which
is a (trivial) fibration by the adjoint form of SM7, see SM7(a) [Qui, II 2]. The
trivial fibrations in sC are the Reedy trivial fibrations. Since the fibrations in sC
between fibrant objects are Reedy fibrations by Proposition 3.9, this shows that
Sing preserves trivial fibrations and fibrations between fibrant objects. Hence,
by [Dug, A.2], Sing also preserves fibrations. By adjointness, j � j preserves
cofibrations and trivial cofibrations.
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Since j � j preserves trivial cofibrations it preserves weak equivalences be-
tween cofibrant objects. It also detects weak equivalences between cofibrant ob-
jects by Remark 3.2 since j � j is weakly equivalent to the homotopy colimit
on Reedy cofibrant objects, by [BK, XII] and [Hir, 20.6.1]. Hence by the dual
of the criterion for Quillen equivalences in [HSS, 4.1.7], we only need to check
that for fibrant objects X in C, j( Sing X)cj ! X is a weak equivalence where
( Sing X)c ! Sing X is a trivial fibration from a cofibrant object in sC. By the
simplicial model category structure on sC, Sing X is homotopically constant. Since
( Sing X)c is level equivalent to Sing X, it is also homotopically constant.

Consider the following commuting square

jc( Sing X)c
0j ���! j( Sing X)cj ���! j( Sing X)cj

??y
??y

??y

jcXj ���! jSing Xj ���! X.

The left vertical map is a weak equivalence since jcYj �= Y . The top map is a
weak equivalence since ( Sing X)c is homotopically constant. Finally, the bottom
composite is the identity map. Hence the right-hand map is a weak equivalence
as required.

6. Simplicial functors. In this section we again consider categories C that
already have a given simplicial model category structure. Since we have simpli-
cial replacements for model categories, we now consider simplicial replacements
of functors. We show that a functor that preserves weak equivalences between
fibrant objects can be replaced by a simplicial functor that is weakly equivalent
to the given functor on fibrant objects. We also show that a Quillen adjoint pair
between simplicial model categories can be replaced by a simplicial Quillen ad-
joint pair. Combined with Theorem 5.2 this shows that if two simplicial model
categories have Quillen equivalent underlying model categories then they are in
fact simplicially Quillen equivalent, see Corollary 6.2.

For a functor F: C ! D, let F̄: sC ! sD be the prolongation of F defined
by applying F at each level.

PROPOSITION 6.1. Let C and D be model categories for which the simplicial,
canonical model structures on sC and sD exist. Let L: C ! D and R: D ! C be
a Quillen adjoint pair of functors. Then L̄ and R̄ are a simplicial Quillen adjoint
pair between the simplicial model categories sC and sD. Moreover, if L, R form a
Quillen equivalence, so do L̄, R̄.

This answers Hovey’s question in [Hov, 8.9] about replacing Quillen adjunc-
tions by Quillen equivalent simplicial Quillen adjunctions. Indeed, if C and D are
simplicial model categories, then Theorem 5.2 shows that C and D are simpli-
cially Quillen equivalent to sC and sD. So using Proposition 6.1 one can replace
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a Quillen adjunction by a zig-zag of simplicial Quillen adjunctions through sC
and sD where the “backwards” adjunction is a Quillen equivalence.

Proof. First L̄ is a simplicial functor. The necessary natural transformation,
L̄(X)
K ! L̄(X
K) is given on each level by the canonical maps

`
�2Kn L(Xn) !

L(
`
�2Kn Xn).

Since R preserves fibrations, trivial fibrations, and limits, R̄ preserves Reedy
fibrations and Reedy trivial fibrations. So R̄ preserves trivial fibrations and fi-
brations between fibrant objects. By [Dug, A.2] this implies R̄ also preserves
fibrations. Hence L̄, R̄ are a Quillen adjoint pair. The last statement follows from
Theorem 5.2 and the two out of three property for equivalences of categories,
since Quillen equivalences are Quillen adjoint functors that induce equivalences
of homotopy categories [Hov, 1.3.13].

COROLLARY 6.2. Suppose that C and D are simplicial model categories for
which the simplicial, canonical model structures on sC and sD exist. If there is a
Quillen equivalence between the underlying model categories C andD, then C and
D are simplicially Quillen equivalent.

Proof. By Theorem 5.2, C and D are simplicially Quillen equivalent respec-
tively to sC and sD. By Proposition 6.1, the Quillen equivalence between C and
D can be lifted to a simplicial Quillen equivalence between sC and sD.

Next we turn to constructing simplicial functor replacements. Constructing
simplicial cofibrant and fibrant replacement functors is independent of the rest of
this paper, see also [Far, I.C.11] or [Hir]. This construction is delayed to the end
of the section. These simplicial replacement functors are then building blocks
for replacing general functors by simplicial ones. In this section one can use the
usual definition of cofibrantly generated (see e.g. [Hov, 2.1.17]), which is weaker
than Definition 8.1.

PROPOSITION 6.3. For C any simplicial, cofibrantly generated model category
there is a simplicial functorial factorization of any map f : X ! Y as a cofibration
followed by a trivial fibration and as a trivial cofibration followed by a fibration.
In particular, this produces simplicial cofibrant and fibrant replacement functors.

PROPOSITION 6.4. Assume C,D are cofibrantly generated, simplicial model cat-
egories such that the simplicial, canonical model categories on sC and sD exist and
are cofibrantly generated. Let F: C ! D be a functor that preserves weak equiv-
alences between fibrant objects. Then G = jQF̄ Sing (�)j is a simplicial functor,
where Q is a simplicial cofibrant replacement functor in the simplicial, canoni-
cal model category on sD. Moreover, there is a zig-zag of natural transformations
between F and G that induce weak equivalences on fibrant objects in C.

COROLLARY 6.5. Assume C, D are as above. If F preserves all weak equiva-
lences then H = jQF̄ Sing R(�)j is a simplicial functor where Q and R are simplicial
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cofibrant and fibrant replacement functors in sD and C respectively. Moreover, for
any X, FX and HX are naturally weakly equivalent.

Proof of Proposition 6.4. G is a simplicial functor because each of its com-
posites is simplicial by Propositions 5.4, 6.1, and 6.3.

The first step in the zig-zag between F and G uses the natural transformation
c ! Sing. This induces jQF̄c(�)j ! jQF̄ Sing (�)j = G(�). Note that for X
fibrant cX ! Sing X is a level equivalence between level fibrant objects by the
simplicial model category structure on C. Since j� j preserves trivial cofibrations
by Theorem 5.2, j � j preserves weak equivalences between cofibrant objects.
So, since F preserves weak equivalences between fibrant objects, jQF̄(cX)j !
jQF̄ Sing Xj = GX is an equivalence for X fibrant.

To relate this to FX, note that F̄(cX) = cFX. Since QY
p
! Y is a level

equivalence, QcFX is homotopically constant. Thus, cEv QcFX ! QcF is a level
equivalence between cofibrant objects. Hence jcEv QcFXj ! jQF̄cXj is also a
weak equivalence for any X. jcEv QcFXj ! Ev QcFX is an isomorphism. Since
p is a level equivalence, Ev QcFX ! FX is also an equivalence. Combining this
with the first step finishes the proof.

Proof of Proposition 6.3. Given f : X ! Y in C we construct a simplicial
functorial factorization, X ! Ff ! Y , as a cofibration followed by a trivial
fibration. The other factorization is similar. Let I be a set of generating cofibrations
in C. Define the first stage, F1f , as the pushout in the following square.

qAi!Bi2IAi 
 ( mapC (Ai, X)�map
C

(Ai,Y) mapC (Bi, Y)) ���! X
??y

??y

qAi!Bi2IBi 
 ( mapC (Ai, X)�map
C

(Ai,Y) mapC (Bi, Y)) ���! F1f

By [Hir, 12.4.23], any object that is small with respect to the regular I-cofibrations
is small with respect to all cofibrations. So each Ai is small relative to the cofi-
brations. Let � be the regular cardinal such that each Ai is �-small with respect
to the cofibrations. Let F�+1f = F1(F�f ! Y) and for any limit ordinal � < � let
F� = colim� F�. Then we claim that F = F� is a cofibrant replacement functor
which is also a simplicial functor.

We need to show that X ! Ff is a cofibration and that Ff ! Y is a trivial
fibration. Since C is a simplicial model category the left map in the square above
is a cofibration. Since pushouts and colimits preserve cofibrations this shows that
X ! Ff is a cofibration. To show that Ff ! Y is a trivial fibration we need to
show that it has the right lifting property with respect to any map Ai ! Bi 2 I.
Because Ai is �-small with respect to cofibrations, the map Ai ! Ff factors
through some stage, F�f . Then, by construction, there is a lift Bi ! F�+1f ! Ff .

We now show that F is simplicial. The colimit of a diagram of simplicial
functors is again a simplicial functor. Since the composition of simplicial functors
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is again simplicial, we only need to show that F1 is a simplicial functor. But F1

itself is a colimit of functors which are simplicial, so we are done.

7. Reedy model category. In this section we show that the Reedy model
category satisfies conditions (1) and (2) but not (3) of Axiom 2.2, (SM7). These
properties are also used in the proofs in Section 8.

The simplicial structure defined at the beginning of Section 3, as with any
simplicial structure, can be extended to morphisms. Using this structure on mor-
phisms simplifies some of the notation and adjointness properties that come up in
verifying Axiom 2.2, (SM7), for both the Reedy and realization model categories.
See [HSS, 5.3] for more about this structure on morphisms.

Definition 7.1. Given f : X ! Y 2 sC and i: K ! L 2 S define the pushout
product f � i: X 
 L

`
X
K Y 
K ! Y 
 L as the natural map from the pushout.

For f in C define f � i as cf � i where c: C ! sC is the constant functor. Define
f�i: XL ! YLQ

YK XK as the natural map to the pullback in sC or its 0th level in
C where the context will determine which category is meant.

Note that using this definition the map that appears in Axiom 2.2, (SM7),
can be rewritten as the pushout product, q = f � i. Also, note that � � i is
adjoint to (�)i. Next we rewrite the matching maps using this new notation.
Since X∆[n] = Xn and X∆̇[n] = MnX, we have:

LEMMA 7.2. Let f : X ! Y be a map in sC. The matching map Mnf : Xn !
Yn �MnY MnX is the map f�in with in: ∆̇[n] ! ∆[n] the boundary inclusion.

PROPOSITION 7.3. If g is a Reedy (trivial) fibration and i is a cofibration in S
then g�i in sC is a Reedy (trivial) fibration and hence its 0th level g�i in C is a
(trivial) fibration.

Proof. We need to consider the matching maps of g�i, that is (g�i)�in in C
by Lemma 7.2. Since i� in is a cofibration in S , it is enough to show that g�i is
a (trivial) fibration in C. In fact it is enough to show this for each in since they
generate the cofibrations in S by [Hov, 3.2.2]. But g�in is a (trivial) fibration by
Lemma 7.2 since g is a Reedy (trivial) fibration.

A corollary of this proposition is that although the Reedy model category is
not simplicial it does satisfy the first two properties of Axiom 2.2, (SM7).

COROLLARY 7.4. Given f : X ! Y a Reedy cofibration in sC and i: K ! L a
cofibration in S then f � i: X 
 L

`
X
K Y 
 K ! Y 
 L is a Reedy cofibration.

Moreover, if f is also a level weak equivalence, then so is f � i. But if i is a weak
equivalence and f is not, then f � i is not necessarily a weak equivalence.

Proof. The first two statements follow by adjointness from Proposition 7.3.
For all three statements, see also [DKS, 2.6] and compare with [Hov, 5.4.1].
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8. Realization model category. In this section we prove Theorem 3.6,
which states that the realization model structure on sC is a model category that
is simplicial and Quillen equivalent to the original model category C.

To verify the axioms for the realization model category on sC we assume
that C is a cofibrantly generated model category. We now recall a version of
the definition of cofibrantly generated model category from [DHK], or see [Hov,
2.1.17], [SSa, 2.2], or [Hir]. For a cocomplete category C and a class I of maps,
the I-injectives are the maps with the right lifting property with respect to the
maps in I. The I-cofibrations are the maps with the left lifting property with
respect to the I-injectives. Finally, the regular I-cofibrations (called relative I-cell
complexes in [Hov, 2.1]) are the (possibly transfinite) compositions of pushouts
of maps in I. In particular all isomorphisms are regular I-cofibrations, see the
remark following [Hov, 2.1.9].

Definition 8.1. A model category C is cofibrantly generated if it is com-
plete and cocomplete and there exists a set of cofibrations I and a set of trivial
cofibrations J such that:

(1) the fibrations are precisely the J-injectives,
(2) the acyclic fibrations are precisely the I-injectives,
(3) the domain and range of each map in I and each map in J is small relative

to the regular I-cofibrations, and
(4) the domain and range of each map in I is cofibrant.

Moreover, here the (trivial) cofibrations are the I (J)-cofibrations.

For the definition of small see the above mentioned references. The crucial
reason for requiring a cofibrantly generated model category is the small object
argument, Proposition 8.2, as in [Qui], see also [DHK] or [Hov, 2.1.14]. The
smallness requirements here are stronger than what is necessary for the small
object argument to apply to I and J; we added the requirement that the ranges
of I and J are also small. We use this to show that the domains of the new
generators defined in 8.3 for sC have small domains so the small object argument
will apply in sC. Since C is also assumed to be left proper, we could replace J by
a set J0 of regular I-cofibrations and the smallness condition for J0 would follow
by [Hir, 12.3.8]. The maps in I are required to be between cofibrant objects so
that Proposition 8.12 holds.

PROPOSITION 8.2. (Small object argument) Let C be a cocomplete category and
I a set of maps in C whose domains are small relative to the regular I-cofibrations.
Then:

(1) there is a functorial factorization of any map f in C as f = pi with p an
I-injective and i a regular I-cofibration. And thus,

(2) every I-cofibration is a retract of a regular I-cofibration.

We now begin to verify the model category axioms for the realization model
structure on sC. We assume that C is a left proper, cofibrantly generated model
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category that satisfies the Realization Axiom 3.4. For the factorizations we use
Proposition 8.2. We characterize the (trivial) fibrations as the maps with the right
lifting property with respect to a set of maps, J (I). Let IC be a set of generating
cofibrations for C and JC be a set of generating trivial cofibrations for C. In
the category of simplicial sets, let I@ be the set of inclusions of boundaries into
simplices, in: ∆̇[n] ! ∆[n] for each n. Let IF be the set of inclusions of faces
into simplices, �i: ∆[m] ! ∆[m + 1] for each m and 0 � i � m + 1.

Definition 8.3. Let I = IC � I@ denote the set of maps

f � in: A
 ∆[n]
a

A
∆̇[n]

B
 ∆̇[n] ! B
 ∆[n]

for each n and f : A ! B any map in IC. Let J0 = JC � I@ denote the set of maps

f � in: A
 ∆[n]
a

A
∆̇[n]

B
 ∆̇[n] ! B
 ∆[n]

for each n and f : A ! B any map in JC. Let J00 = IC � IF denote the set of maps

f � �i: A
 ∆[m + 1]
a

A
∆[m]

B
 ∆[m] ! B
 ∆[m + 1]

for each m and i with 0 � i � m + 1 and f : A ! B any map in IC. Let J be the
union of the two sets J0 and J00.

LEMMA 8.4. The domains of I and J are small relative to the regular I-cofi-
brations.

Proof. We prove the statement for J, the statement for I follows similarly.
A finite colimit of small objects is small since finite limits commute with small
filtered colimits, [ML, IX 2]. The domains of J can be built by finite colimits
from objects X 
 ∆[n] for X a domain or range of a map in IC or JC . Since
sC(X 
 ∆[n], Y) �= C(X, Y∆[n]) �= C(X, Yn) and X is small relative to regular IC-
cofibrations by Definition 8.1, X 
 ∆[n] is small relative to maps in sC that are
regular IC-cofibrations on each level. But each level of a regular I-cofibration is
a regular IC-cofibration. This is because each level of a map in I is just a direct
sum of copies of maps in IC or identity maps. Identity maps and coproducts of
regular cofibrations are regular cofibrations. So each level of each map in I is a
regular IC-cofibration. Hence this is also true of the regular I-cofibrations.

Since the domains are small we can use the small object argument, Proposi-
tion 8.2, to factor any map into an I (J)-cofibration followed by an I (J)-injective.
This applies directly to I by Lemma 8.4. For J, since the domains of J are small
relative to the regular I-cofibrations, they are small with respect to all cofibra-
tions including the regular J-cofibrations by [Hir, 13.3.3]. Hence Proposition 8.2
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applies. To see that this gives us the needed factorization we show in the next
propositions that an I (J)-cofibration is a realization (trivial) cofibration and that
a J (I)-injective is a realization (trivial) fibration.

PROPOSITION 8.5. The J-injective maps are the equifibered Reedy fibrations. In
other words, the equifibered Reedy fibrations are the maps with the right lifting
property with respect to J. The Reedy fibrations are the maps with the right lifting
property with respect to J0. Moreover, the J-injective objects are the homotopically
constant Reedy fibrant objects.

Proof. A Reedy fibration is a map f whose matching maps are fibrations.
These matching maps are f�in with in 2 I@ by Lemma 7.2. That is, f�in has
the right lifting property with respect to each map in JC. By adjointness, this
is equivalent to f having the right lifting property with respect to the maps in
JC � I@ = J0.

Given a Reedy fibration f : X ! Y , then f��i : Xm+1 ! Xm �Ym Ym+1 is a
fibration by Proposition 7.3. So a Reedy fibration f is equifibered if and only if
f��i is a trivial fibration. By adjunction f��i is a trivial fibration if and only if f
has the right lifting property with respect to J00 = IC � IF. So f is an equifibered
Reedy fibration if and only if f has the right lifting property with respect to J.
The last statement of the proposition follows since f : Z ! � is an equifibered
Reedy fibration if and only if Z is Reedy fibrant and for each n and i the map
di: Zn+1 ! Zn is a trivial fibration.

Next we turn to the I-cofibrations and I-injectives.

PROPOSITION 8.6. The I-injective maps are the Reedy trivial fibrations. Also, the
Reedy trivial fibrations are the equifibered Reedy fibrations that are also realization
weak equivalences. Hence, the I-cofibrations are the Reedy cofibrations.

Proof. Much as in the previous proof, a map f is a Reedy trivial fibration
if the matching maps f�in are trivial fibrations. That is f�in has the right lifting
property with respect to each map in IC. By adjointness, this is equivalent to f
having the right lifting property with respect to the maps in IC � I@ = I.

By the Realization Axiom 3.4, an equifibered Reedy fibration that is also a
realization weak equivalence is a level equivalence, and hence a Reedy trivial
fibration. Conversely, for f a Reedy trivial fibration, the maps fn: Xn ! Yn are
trivial fibrations. Since fn+1 factors as Xn+1 ! Xn�Yn Yn+1 ! Yn+1 and the second
map here is the pullback of a trivial fibration, the map Xn+1 ! Xn �Yn Yn+1 is a
weak equivalence. So a Reedy trivial fibration is equifibered. Then, since level
equivalences are realization weak equivalences, this shows that a Reedy trivial
fibration is a realization trivial fibration, i.e., an equifibered Reedy fibration that
is also a realization weak equivalence.

Now we are left with verifying that the J-cofibrations are Reedy cofibrations
and realization weak equivalences.
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PROPOSITION 8.7. A J-cofibration is a Reedy cofibration and a realization weak
equivalence.

Proof. A J-cofibration has the left lifting property with respect to the J-
injective maps, the equifibered Reedy fibrations. Since any Reedy fibration that is
also a level equivalence is equifibered, a J-cofibration has the left lifting property
with respect to the Reedy trivial fibrations. Hence a J-cofibration is a Reedy
cofibration.

Each J-cofibration is a retract of a directed colimit of pushouts of maps in J
by Proposition 8.2. The maps in J0 are level equivalences, hence the maps built
from J0 are Reedy trivial cofibrations. These level equivalences are realization
weak equivalences. So we only need to consider J00-cofibrations. Since the maps
in IF are trivial cofibrations of simplicial sets, they are IΛ-cofibrations where
IΛ = f�n: Λk[n] ! ∆[n]g is the set of inclusions of the horns into simplices.
Hence J00-cofibrations are (IC � IΛ)-cofibrations. Below, in Proposition 8.12, we
show that any (IC � IΛ)-cofibration is a realization weak equivalence.

To finish our verification of the realization model category structure we need
to use a different characterization of the realization weak equivalences.

Definition 8.8. A map f 0: A0 ! B0 is a cofibrant replacement of a map
f : A ! B if A0 and B0 are cofibrant objects, f 0 is a cofibration, and there exist
level equivalences iA: A0 ! A and iB: B0 ! B such that f iA = iBf 0.

PROPOSITION 8.9. A map f : A ! B in sC is a realization weak equivalence if
and only if for some cofibrant replacement f 0: A0 ! B0, and for each homotopi-
cally constant, Reedy fibrant object Z in sC, map (B0, Z) ! map (A0, Z) is a weak
equivalence.

The following lemmas are used to prove this proposition.

LEMMA 8.10. The map Z�n : Z∆[n] ! ZΛk[n] in C is a trivial fibration for Z any
homotopically constant Reedy fibrant object in sC.

Proof. Z�n is a fibration, by Corollary 7.4. Since Λk[1] = ∆[0], Z�1 is the
map dk: Z1 ! Z0, which is a trivial fibration since Z is a homotopically constant
Reedy fibrant object. This proves the lemma for n = 1. We proceed by induction.

ZΛk[n] is the pullback of a punctured n-cube where each arrow is of the form
Z�i : Z∆[m] ! Z∆[m�1], that is, Zm ! Zm�1 for m < n. These maps are fibrations
by Corollary 7.4 and they are weak equivalences because Z is homotopically
constant. By induction the map from the object at the puncture of each contained
punctured k-cube, for k < n, to the pullback is a trivial fibration. For any such
punctured n-cube, the added maps from the pullback are trivial fibrations. That is,
the maps from the pullback, ZΛk[n], to each Z∆[n�1] = Zn�1 are trivial fibrations.
Since each �i factors as ∆[n� 1] ! Λk[n] ! ∆[n], this proves the lemma holds
for n by the two out of three property for weak equivalences.
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LEMMA 8.11. For K any simplicial set and Z any homotopically constant Reedy
fibrant object, ZK is homotopically constant and Reedy fibrant.

Proof. First note that by an adjoint of SM7 (i), which is verified for the Reedy
model category in Corollary 7.4, ZK is Reedy fibrant. Hence by Proposition 8.5,
ZK is J0-injective and we only need to show that ZK is J00-injective to finish the
proof.

Here we say “( f , g) has the lifting property,” as shorthand for f has the
left lifting property with respect to g. This also extends to sets of maps. By
Lemma 8.10, (i, Z�n) has the lifting property for i in IC , �n in IΛ, and Z any
homotopically constant, Reedy fibrant object. Let H be the class of maps Z ! �
for such Z. Then, by adjointness (IC � IΛ, H) has the lifting property. But then
pushouts, colimits and retracts of maps in IC�IΛ also have the left lifting property
with respect to H. That is, ((IC� IΛ)-cofibrations, H) has the lifting property. For
i a cofibration and j a trivial cofibration of simplicial sets , the pushout product
j� i is an IΛ-cofibration. So f � j� i is an (IC � IΛ)-cofibration for f in IC . Hence
(IC � IΛ � I@ , Z) has the lifting property. Consider the cofibration i: ; ! K. By
adjointness this shows that (IC � IΛ, ZK) has the lifting property. Hence ZK is
J00-injective.

Proof of Proposition 8.9. Our first claim is that �0 map (A, X) is naturally
isomorphic to [A, X]Ho(Reedy) for A Reedy cofibrant and X homotopically constant

and Reedy fibrant. Indeed the maps X �= X∆[0] f
! X∆[1] p

! X∆[0]q∆[0] �= X � X
produce X∆[1] as a path object for X. Here f is a level equivalence by Lemma 8.11
since it is a map between homotopically constant objects whose 0th level is given
by the equivalence s1: X0 ! X1 and Proposition 7.3 shows that p is a Reedy
fibration. This implies the claim.

Since f is a realization weak equivalence if and only if its cofibrant
replacement is, we can restrict to the case when f is its own cofibrant re-
placement. Then requiring that map ( f , Z) be a weak equivalence for all homo-
topically constant Reedy fibrant objects Z is equivalent to requiring that for all
simplicial sets K, �0 map (K, map ( f , Z)) �= �0 map ( f , ZK) be a bijection for all
such Z. By Lemma 8.11 and the above, this is equivalent to [B, ZK]Ho(Reedy) !
[A, ZK]Ho(Reedy) being a bijection for all such K and Z.

As Z runs through all homotopically constant Reedy fibrant objects and K
runs through all simplicial sets, (ZK)0 runs through all fibrant objects in C. Since
c(ZK)0 ! ZK is a level equivalence, this is equivalent to [B, cX]Ho(Reedy) !
[A, cX]Ho(Reedy) being a bijection for all X in C.

The following proposition finishes the identification of the J-cofibrations as
realization weak equivalences. It is also useful in checking that sC is a simplicial
model category.

PROPOSITION 8.12. Any (IC� IΛ)-cofibration is a realization weak equivalence.
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Proof. By the proof above of Lemma 8.11, (IC � IΛ � I@ , Z) has the lifting
property for Z homotopically constant and Reedy fibrant. Then by adjointness,
(I@ , map (IC � IΛ, Z)) also has the lifting property for any such Z. That is, any
map in map (IC � IΛ, Z) is a trivial fibration. Since the maps in IC are assumed to
be between cofibrant objects, the maps in IC� IΛ are Reedy cofibrations between
Reedy cofibrant objects. So they are their own cofibrant replacements. Hence the
maps in IC � IΛ are realization weak equivalences by Proposition 8.9. Since the
maps in IC � IΛ are Reedy cofibrations, to finish this proof it is enough to show
that Reedy cofibrations that are realization weak equivalences are preserved under
pushouts, directed colimits, and retracts.

Since C is left proper, if g is a pushout of a Reedy cofibration f then one can
choose a cofibrant replacement g0 for g as a pushout of the cofibrant replacement
f 0 of f . Hence map (g0, Z) is a pullback of map ( f 0, Z). We show in the next
paragraph that if f 0 is a Reedy cofibration then map ( f 0, Z) is a fibration. So if f is
a Reedy cofibration and realization weak equivalence then map ( f 0, Z) and hence
also map (g0, Z) is a trivial fibration. Thus, g is a realization weak equivalence.
Since retracts and directed limits of trivial fibrations are also trivial fibrations, it
follows that retracts and directed colimits also preserve Reedy cofibrations that
are realization weak equivalences.

Since (IC� I@ � IΛ, Z) has the lifting property, so does ((IC� I@)-cofibrations,
ZIΛ) for Z any homotopically constant Reedy fibrant object. By adjointness this
shows that for any Reedy cofibration i, map (i, Z) is a fibration since it has the
right lifting property with respect to IΛ.

Proof of Theorem 3.6 (1). As always, we assume that C is a left proper,
cofibrantly generated model category that satisfies Realization Axiom 3.4. The
category sC has all limits and colimits since C does. The two out of three ax-
iom for weak equivalences and the retract axiom for the cofibrations and weak
equivalences are easily checked. The retract axiom for fibrations follows from
Proposition 8.5. The two factorizations follow from Propositions 8.5, 8.6 and 8.7
by Proposition 8.2. One lifting property follows from Proposition 8.6 since the
realization trivial fibrations are the Reedy trivial fibrations. So only the lifting of
a realization trivial cofibration with respect to an equifibered Reedy fibration is
left. Assume f : X ! Y is a Reedy cofibration and a realization weak equivalence.
Factor f = pi where i is a J-cofibration and p is J-injective. Since f and i are
realization weak equivalences, p is also a realization weak equivalence. Since f is
a Reedy cofibration, Propositions 8.5 and 8.6 show that it has the left lifting prop-
erty with respect to p. Thus, f is a retract of i. Hence f is a J-cofibration and so it
has the left lifting property with respect to any equifibered Reedy fibration. This
finishes the proof that the realization model structure on sC is a model category.

COROLLARY 8.13. Let I and J be as defined in Definition 8.3. The realization
model category on sC is cofibrantly generated, with I a set of generating cofibrations
and J a set of generating trivial cofibrations.
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We now prove Theorem 3.6 (2), which states that the realization model cate-
gory structure on sC satisfies Axiom 2.2, (SM7). Hence, it is a simplicial model
category.

Proof of Theorem 3.6 (2). Given f : A ! B a Reedy cofibration in sC and
i: K ! L a cofibration in S , f � i is a Reedy cofibration by Corollary 7.4. So we
are left with showing that if f or i is also a weak equivalence then so is f � i.

First consider the case where i is a trivial cofibration. Since the pushout
product of a trivial cofibration and a cofibration of simplicial sets is a trivial
cofibration, ((IC � I@)-cofibrations) �(IΛ-cofibrations) is contained in (IC � IΛ)-
cofibrations. So by Proposition 8.12, f � i is a realization weak equivalence for
f any Reedy cofibration.

Next consider the case where f is a realization weak equivalence. Since trivial
cofibrations are preserved under pushouts, retracts and colimits, it is enough to
show that for f in J, f � i is a realization weak equivalence. For f in J0 this
follows from Corollary 7.4. For f in J00 = IC � IF this follows from the previous
paragraph by associativity, since the maps in IF are trivial cofibrations.

Recall that the Quillen equivalence of C and sC, Theorem 3.6 part (3), fol-
lows from Proposition 3.9 since the realization model category agrees with the
canonical model category on sC.
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