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Preface 

There is a canard that every textbook of algebraic topology either ends with 
the definition of the Klein bottle or is a personal communication to J. H. C. 
Whitehead. Of course, this is false, as a glance at the books of Hilton and 
Wylie, Maunder, Munkres, and Schubert reveals. Still, the canard does reflect 
some truth. Too often one finds too much generality and too little attention 
to details. 

There are two types of obstacle for the student learning algebraic topology. 
The first is the formidable array of new techniques (e.g., most students know 
very little homological algebra); the second obstacle is that the basic defini­
tions have been so abstracted that their geometric or analytic origins have 
been obscured. I have tried to overcome these barriers. In the first instance, 
new definitions are introduced only when needed (e.g., homology with coeffi­
cients and cohomology are deferred until after the Eilenberg-Steenrod axioms 
have been verified for the three homology theories we treat-singular, sim­
plicial, and cellular). Moreover, many exercises are given to help the reader 
assimilate material. In the second instance, important definitions are often 
accompanied by an informal discussion describing their origins (e.g., winding 
numbers are discussed before computing 1tl (Sl), Green's theorem occurs 
before defining homology, and differential forms appear before introducing 
cohomology). 

We assume that the reader has had a first course in point-set topology, but 
we do discuss quotient spaces, path connectedness, and function spaces. We 
assume that the reader is familiar with groups and rings, but we do discuss 
free abelian groups, free groups, exact sequences, tensor products (always over 
Z), categories, and functors. 

I am an algebraist with an interest in topology. The basic outline of this 
book corresponds to the syllabus of a first-year's course in algebraic topology 
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designed by geometers and topologists at the University of Illinois, Urbana; 
other expert advice came (indirectly) from my teachers, E. H. Spanier and S. 
Mac Lane, and from J. F. Adams's Algebraic Topology: A Student's Guide. This 
latter book is strongly recommended to the reader who, having finished this 
book, wants direction for further study. 

I am indebted to the many authors of books on algebraic topology, with 
a special bow to Spanier's now classic text. My colleagues in Urbana, es­
pecially Ph. Tondeur, H. Osborn, and R. L. Bishop, listened and explained. 
M.-E. Hamstrom took a particular interest in this book; she read almost the 
entire manuscript and made many wise comments and suggestions that have 
improved the text; my warmest thanks to her. Finally, I thank Mrs. Dee 
Wrather for a superb job of typing and Springer-Verlag for its patience. 

Joseph J. Rotman 

Addendum to Second Corrected Printing 

Though I did read the original galleys carefully, there were many errors that 
eluded me. I thank all who apprised me of mistakes in the first printing, 
especially David Carlton, Monica Nicolau, Howard Osborn, Rick Rarick, 
and Lewis Stiller. 

November 1992 Joseph J. Rotman 

Addendum to Fourth Corrected Printing 

Even though many errors in the first printing were corrected in the second 
printing, some were unnoticed by me. I thank Bernhard J. Elsner and Martin 
Meier for apprising me of errors that persisted into the the second and third 
printings. I have corrected these errors, and the book is surely more readable 
because of their kind efforts. 

April,1998 Joseph Rotman 



To the Reader 

Doing exercises is an essential part of learning mathematics, and the serious 
reader of this book should attempt to solve all the exercises as they arise. An 
asterisk indicates only that an exercise is cited elsewhere in the text, sometimes 
in a proof (those exercises used in proofs, however, are always routine). 

I have never found references of the form 1.2.1.1 convenient (after all, one 
decimal point suffices for the usual description of real numbers). Thus, Theorem 
7.28 here means the 28th theorem in Chapter 7. 
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CHAPTER 0 

Introduction 

One expects algebraic topology to be a mixture of algebra and topology, and 
that is exactly what it is. The fundamental idea is to convert problems about 
topological spaces and continuous functions into problems about algebraic 
objects (e.g., groups, rings, vector spaces) and their homomorphisms; the 
method may succeed when the algebraic problem is easier than the original 
one. Before giving the appropriate setting, we illustrate how the method 
works. 

Notation 
Let us first introduce notation for some standard spaces that is used through­
out the book. 

Z = integers (positive, negative, and zero). 
Q = rational numbers. 
C = complex numbers. 
I = [0,1], the (closed) unit interval. 
R = real numbers. 
Rn = {(Xl' x 2 , ••• , xn)lxi E R for all i}. 

Rn is called real n-space or euclidean space (of course, Rn is the cartesian 
product ofn copies ofR). Also, R2 is homeomorphic to C; in symbols, R2 ~ C. 
If X = (x l' ... , xn) ERn, then its norm is defined by II x II = JI7=l xf (when 
n = 1, then Ilxll = lxi, the absolute value of x). We regard Rn as the subspace 
of Rn+l consisting of all (n + I)-tuples having last coordinate zero. 

sn = {x E Rn+l: IIxll = I}. 
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S" is called the n-sphere (of radius 1 and center the origin). Observe that 
S" c R"+l(as the circle Sl c R2); note also that the O-sphere SO consists of the 
two points {I, -l} and hence is a discrete two-point space. We may regard 
S" as the equator of sn+ 1 : 

S" R"+l n sn+l {( ) sn+1. O} = = x 1,···,Xn+2 E .X"+2=' 

The north pole is (0,0, ... ,0, 1) E sn; the south pole is (0,0, ... ,0, -1). The 
antipode of x = (x 1, ... , Xn+1) E sn is the other endpoint ofthe diameter having 
one endpoint x; thus the antipode of x is - x = ( - Xl' ... , - x n+1), for the 
distance from - x to x is 2. 

D" is called the n-disk (or n-ball). Observe that S"-l cD" c R"; indeed S"-l is 
the boundary of D" in R". 

/l." is called the standard n-simplex. Observe that /l. 0 is a point, /l.1 is a closed 
interval, /l. 2 is a triangle (with interior), /l. 3 is a (solid) tetrahedron, and so on. 
It is obvious that /l." ::::; D", although the reader may not want to construct 1 a 
homeomorphism until Exercise 2.11. 

There is a standard homeomorphism from S" - {north pole} to R", called 
stereographic projection. Denote the north pole by N, and define 0": S" - {N} 
..... R" to be the intersection of R" and the line joining x and N. Points on 
the latter line have the form tx + (1 - t)N; hence they have coordinates 
(tx1, ... , tx", tX"+l + (1 - t)). The last coordinate is zero for t = (1 - X"+l fl; 
hence 

where t = (1 - xn+lfl. It is now routine to check that 0" is indeed a homeo­
morphism. Note that O"(x) = x if and only if x lies on the equator S"-l. 

Brouwer Fixed Point Theorem 

Having established notation, we now sketch a proof of the Brouwer fixed point 
theorem: if f: D" ..... D" is continuous, then there exists xED" with f(x) = x. 
When n = 1, this theorem has a simple proof. The disk Dl is the closed interval 
[ -1, 1]; let us look at the graph of f inside the square Dl x Dl. 

1 It is an exercise that a compact convex subset of R" containing an interior point is homeomor­
phic to D" (convexity is defined in Chapter 1); it follows that /1", D", and I" are homeomorphic. 
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(-1, 1) r--------~ (1, 1) 

a b 

(-1, -1) "'----------' (1, -1) 

Theorem 0.1. Every continuous f: Dl --+ Dl has a fixed point. 

PROOF. Let f( -1) = a and f(l) = b. If either f( -1) = -lor f(l) = 1, we are 
done. Therefore, we may assume thatf( -1) = a > -1 and thatf(l) = b < 1, 
as drawn. If G is the graph of f and ~ is the graph of the identity function (of 
course, ~ is the diagonal), then we must prove that G n ~ -# 0. The idea is to 
use a connectedness argument to show that every path in Dl x Dl from a to 
b must cross~. Since f is continuous, G = {(x, f(x)): x E Dl } is connected [G 
is the image of the continuous map Dl --+ Dl X Dl given by x 1---+ (x, f(x))]. 
Define A = {(x,f(x)): f(x) > x} andB = {(x,f(x)): f(x) < x}. Note that a E A 
and bE B, so that A -# 0 and B -# 0. If G n ~ = 0, then G is the disjoint 
umon 

G = AUB. 

Finally, it is easy to see that both A and B are open in G, and this contradicts 
the connectedness of G. 0 

Unfortunately, no one knows how to adapt this elementary topological 
argument when n > 1; some new idea must be introduced. There is a proof 
using the simplicial approximation theorem (see [Hirsch]). There are proofs 
by analysis (see [Dunford and Schwartz, pp. 467-470] or [Milnor (1978)]); 
the basic idea is to approximate a continuous function f: Dn --+ Dn by smooth 
functions g: Dn --+ D n in such a way that f has a fixed point if all the g do; one 
can then apply analytic techniques to smooth functions. 

Here is a proof of the Brouwer fixed point theorem by algebraic topology. 
We shall eventually prove that, for each n ~ 0, there is a homology functor Hn 
with the following properties: for each topological space X there is an abelian 
group Hn(X), and for each continuous function f: X --+ Y there is a homomor­
phism Hn(f): Hn(X) --+ Hn(Y), such that: 

(1) 

whenever the composite g 0 f is defined; 

Hn(1x) is the identity function on Hn(X), (2) 
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where 1 x is the identity function on X; 

Hn(Dn+1) = 0 for all n ~ 1; 

for all n ~ 1. 

Using these Hn's, we now prove the Brouwer theorem. 

O. Introduction 

(3) 

(4) 

Definition. A subspace X of a topological space Y is a retract of Y if there is 
a continuous map2 r: Y --+ X with r(x) = x for all x EX; such a map r is called 
a retraction. 

Remarks. (1) Recall that a topological space X contained in a topological 
space Y is a subspace of Y if a subset V of X is open in X if and only if 
V = X n U for some open subset U of Y. Observe that this guarantees that 
the inclusion i: X <:... Y is continuous, because i-l(U) = X n U is open in X 
whenever U is open in Y. This parallels group theory: a group H contained 
in a group G is a subgroup of G if and only if the inclusion i: H <:... G is a 
homomorphism (this says that the group operations in H and in G coincide). 

(2) One may rephrase the definition of retract in terms of functions. If 
i: X <:... Y is the inclusion, then a continuous map r: Y --+ X is a retraction if 
and only if 

r 0 i = 1x. 

(3) For abelian groups, one can prove that a subgroup H of G is a retract 
of G if and only if H is a direct summand of G; that is, there is a subgroup K 
of G with K n H = 0 and K + H = G (see Exercise 0.1). 

Lemma 0.2. If n ~ 0, then sn is not a retract of Dn+1. 

PROOF. Suppose there were a retraction r: Dn+1 --+ sn; then there would be a 
"commutative diagram" of topological spaces and continuous maps 

Dn+1 

(\ 
sn ------+ sn 

1 

(here commutative means that r 0 i = 1, the identity function on sn). Applying 
Hn gives a diagram of abelian groups and homomorphisms: 

Hn(Dn+1 ) 

Hn(i)/ ~n(r) 
Hn(sn) ------+ Hn(sn). 

Hn(l) 

2 We use the words map and function interchangeably. 
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By property (1) of the homology functor Hn , the new diagram commutes: 
Hn(r) a Hn(i) = Hn(1). Since Hn(Dn+1) = 0, by (3), it follows that Hn(1) = O. But 
Hn(1) is the identity on Hn(sn), by (2). This contradicts (4) because Hn(sn) =1= O. 

o 
Note how homology functors Hn have converted a topological problem 

into an algebraic one. 
We mention that Lemma 0.2 has an elementary proof when n = o. It 

is plain that a retraction r: Y -+ X is surjective. In particular, a retraction 
r: D1 -+ SO would be a continuous map from [ -1, IJ onto the two-point set 
{± I}, and this contradicts the fact that a continuous image of a connected 
set is connected. 

Theorem 0.3 (Brouwer). If f: Dn -+ Dn is continuous, then f has a fixed point. 

PROOF. Suppose that f(x) =1= x for all x E Dn; the distinct points x and f(x) thus 
determine a line. Define g: Dn -+ sn-1 (the boundary of Dn) as the function 

assigning to x that point where the ray from f(x) to x intersects sn-1. Ob­
viously, x E sn-1 implies g(x) = x. The proof that g is continuous is left as an 
exercise in analytic geometry. We have contradicted the lemma. 0 

There is an extension of this theorem to infinite-dimensional spaces due to 
Schauder (which explains why there is a proof of the Brouwer fixed point 
theorem in [Dunford and SchwartzJ): if D is a compact convex subset of a 
Banach space, then every continuous f: D -+ D has a fixed point. The proof 
involves approximating f - 1 D by a sequence of continuous functions each of 
which is defined on a finite-dimensional subspace of D where Brouwer's 
theorem applies. 

EXERCISES 

*0.1. LetHbe a subgroup of an abelian group G. If there is a homomorphism r: G -+ H 
with r(x) = x for all x E H, then G = H EB ker r. (Hint: If y E G, then y = r(y) + 
(y - r(y».) 
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0.2. Give a proof of Brouwer's fixed point theorem for n = 1 using the proof of 
Theorem 0.3 and the remark preceding it. 

0.3. Assume, for n 2 1, that Hi(sn) = Z if i = 0, n, and that Hi(sn) = 0 otherwise. 
Using the technique of the proof of Lemma 0.2, prove that the equator of the 
n-sphere is not a retract. 

0.4. If X is a topological space homeomorphic to Dn, then every continuous f: X --> X 
has a fixed point. 

0.5. Let f, g: I --> I x I be continuous; let f(O) = (a, 0) and f(1) = (b, 1), and let g(O) = 
(0, c) and g(1) = (1, d) for some a, b, c, dEl. Show that f(s) = g(t) for some s, 
tEl; that is, the paths intersect. (Hint: Use Theorem 0.3 for a suitable map 
I x I --> I x I.) (There is a proof in [Maehara]; this paper also shows how to 
derive the Jordan curve theorem from the Brouwer theorem.) 

0.6. (Perron). Let A = [aiJ be a real n x n matrix with au > 0 for every i, j. Prove 
that A has a positive eigenvalue A; moreover, there is a corresponding eigenvector 
x = (Xl' XZ, ... , xn)(i.e., Ax = AX) with each coordinate Xi > O. (Hint: First define 
a: Rn --> R by a(xl' Xz, ... , Xn) = I7=1 Xi' and then define g: ~n-l --> N-l by 
g(x) = Ax/a(Ax), where X E ~n-l C Rn is regarded as a column vector. Apply the 
Brouwer fixed point theorem after showing that 9 is a well defined continuous 
function.) 

Categories and Functors 

Having illustrated the technique, let us now give the appropriate setting for 
algebraic topology. 

Definition. A category ri consists of three ingredients: a class of objects, obj ri; 
sets of morphisms Hom(A, B), one for every ordered pair A, B E obj ri; com­
position Hom(A, B) x Hom(B, C) -+ Hom(A, C), denoted by (f, g) f-+ g 0 f, for 
every A, B, C E obj ri, satisfying the following axioms: 

(i) the family of Hom(A, B)'s is pairwise disjoint; 
(ii) composition is associative when defined; 

(iii) for each A E obj ri, there exists an identity 1A E Hom(A, A) satisfying 
1A 0 f = f for every f E Hom(B, A), all BE obj ri, and g 0 1A = g for every 
g E Hom(A, C), all C E obj ri. 

Remarks. (1) The associativity axiom stated more precisely is: if f, g, hare 
morphisms with either h 0 (g 0 f) or (h 0 g) 0 f defined, then the other is 
also defined and both composites are equal. 

(2) We distinguish class from set: a set is a class that is small enough 
to have a cardinal number. Thus, we may speak of the class of all topological 
spaces, but we cannot say the set of all topological spaces. (The set theory we 
accept has primitive undefined terms: class, element, and the membership 
relation E. All the usual constructs (e.g., functions, subclasses, Boolean opera-
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tions, relations) are permissible except that the statement x E A is always false 
whenever x is a class that is not a set.) 

(3) The only restriction on Hom(A, B) is that it be a set. In particular, 
Hom(A, B) = 0 is allowed, although axiom (iii) shows that Hom(A, A) -=F 0 
because it contains lA. 

(4) Instead of writing f E Hom(A, B), we usually write f: A -+ B. 

EXAMPLE 0.1. 'If = Sets. Here obj 'If = all sets, Hom(A, B) = {all functions 
A -+ B}, and composition is the usual composition of functions. 

This example needs some discussion. Our requirement, in the definition of 
category, that Hom sets are pairwise disjoint is a reflection of our insistence 
that a function f: A -+ B is given by its domain A, its target B, and its graph: 
{all (a, f(a»: a E A} c A x B. In particular, if A is a proper subset of B, we 
distinguish the inclusion i: A c... B from the identity lA even though both 
functions have the same domain and the same graph; i E Hom(A, B) and 
1A E Hom(A, A), and so i -=F 1A. This distinction is essential. For example, in 
the proof of Lemma 0.2, Hn(i) = 0 and Hn(1A) -=F 0 when A = sn and B = Dn+l. 
Here are two obvious consequences of this distinction: (1) If B c B' and 
f: A -+ Band g: A -+ B' are functions with the same graph (and visibly the 
same domain), then 9 = i 0 f, where i: B c... B' is the inclusion. (2) One may 
form the composite hog only when target 9 = domain h. Others may allow 
one to compose g: A -+ B with h: C -+ D when Be C; we insist that the only 
composite defined here is hoi 0 g, where i: B c... C is the given inclusion. 

Now that we have explained the fine points of the definition, we continue 
our list of examples of categories. 

EXAMPLE 0.2. 'If = Top. Here obj 'If = all topological spaces, Hom(A, B) = 
{all continuous functions A -+ B}, and composition is usual composition. 

Definition. Let 'If and d be categories with obj 'If c obj d. If A, BE obj 'If, 
let us denote the two possible Hom sets by Homcc(A, B) and HomJAA, B). 
Then 'If is a subcategory of d if Homcc(A, B) c Homd(A, B) for all A, B E 

obj 'If and if composition in 'If is the same as composition in d; that is, the 
function Homcc(A, B) x Homcc(B, C) -+ Homcc(A, C) is the restriCtion of the 
corresponding composition with subscripts d. 

EXAMPLE 0.2'. The category Top has many interesting subcategories. First, we 
may restrict objects to be subspaces of euclidean spaces, or Hausdorff spaces, 
or compact spaces, and so on. Second, we may restrict the maps to be differ­
entiable or analytic (assuming that these make sense for the objects being 
considered). 

EXAMPLE 0.3. 'If = Groups. Here obj 'If = all groups, Hom(A, B) = {all homo­
morphisms A -+ B}, and composition is usual composition (Hom sets are so 
called because of this example). 
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EXAMPLE 0.4. Cf/ = Ab. Here obj Cf/ = all abelian groups, and Hom(A, B) = {all 
homomorphisms A --+ B}; Ab is a subcategory of Groups. 

EXAMPLE 0.5. Cf/ = Rings. Here obj Cf/ = all rings (always with a two-sided 
identity element), Hom(A, B) = {all ring homomorphisms A --+ B that pre­
serve identity elements}, and usual composition. 

EXAMPLE 0.6. Cf/ = TOp2. Here obj Cf/ consists of all ordered pairs (X, A), where 
X is a topological space and A is a subspace of X. A morphism I: (X, A) --+ 

(Y, B) is an ordered pair (I,f'), where I: X --+ Y is continuous and Ii = jf' 
(where i and j are inclusions), 

B~Y; 
j 

and composition is coordinatewise (usually one is less pedantic, and one says 
that a morphism is a continuous map I: X --+ Y with I(A) c B). TOp2 is called 
the category of pairs (of topological spaces). 

EXAMPLE 0.7. Cf/ = Top*. Here obj Cf/ consists of all ordered pairs (X, xo), where 
X is a topological space and Xo is a point of X. Top* is a subcategory of TOp2 
(subspaces here are always one-point subspaces), and it is called the category 
of pointed spaces; Xo is called the basepoint of (X, xo), and morphisms are called 
pointed maps (or basepoint preserving maps). The category Sets* of pointed 
sets is defined similarly. 

Of course, there are many other examples of categories, and others arise 
as we proceed. 

EXERCISES 

0.7. Let f E Hom(A, B) be a morphism in a category C(j. If f has a left inverse 9 
(g E Hom(B, A) and 9 0 f = 1A ) and a right inverse h (h E Hom(B, A) and 
f 0 h = 1B ), then 9 = h. 

0.8. (i) Let C(j be a category and let A E obj C(j. Prove that Hom(A, A) has a unique 
identity 1A' 

(ii) If C(j' is a subcategory of C(j, and if A E obj C(j', then the identity o~ A in 
Hom'C,(A, A) is the identity 1A in Hom'lJ'(A, A). 

*0.9. A set X is called quasi-ordered (or pre-ordered) if X has a transitive and 
reflexive relation ~. (Of course, such a set is partially ordered if, in addition, ~ 
is antisymmetric.) Prove that the following construction gives a category C(j. 

Define obj C(j = X; if x, y E X and x$; y, define Hom(x, y) = 0; if x ~ y, define 
Hom(x, y) to be a set with exactly one element, denoted by i;; if x ~ y ~ z, 
define composition by i: 0 i; = i;. 
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*0.10. Let G be a monoid, that is, a semigroup with 1. Show that the following 
construction gives a category re. Let obj re have exactly one element, denoted 
by *; define Hom(*, *) = G, and define composition G x G ..... G as the given 
multiplication in G. (This example shows that morphisms may not be functions.) 

0.11. Show that one may regard Top as a subcategory of Top2 if one identifies 
a space X with the pair (X, 0). 

Definition. A diagram in a category re is a directed graph whose vertices are 
labeled by objects of re and whose directed edges are labeled by morphisms 
in reo A commutative diagram in re is a diagram in which, for each pair of 
vertices, every two paths (composites) between them are equal as morphisms. 

This terminology comes from the particular diagram 

A 
g' 

A' ~ 

If'· 
B ~ B' 

g 

which commutes if g 0 f = f' 0 g'. Of course, we have already encountered 
commutative diagrams in the proof of Lemma 0.2. 

EXERCISES 

*0.12. Given a category re, show that the following construction gives a category At. 
First, an object of At is a morphism of re. Next, if J, g E obj At, say, J: A ..... B 
and g: C ..... D, then a morphism in At is an ordered pair (h, k) of morphisms in 
re such that the diagram 

J 
A ---> B 

C ---> D 
g 

commutes. Define composition coordinatewise: 

(h', k') 0 (h, k) = (h' 0 h, k' 0 k). 

0.13. Show that Top2 is a subcategory of a suitable morphism category (as con­
structed in Exercise 0.12). (Hint: Take re = Top, and let At be the corresponding 
morphism category; regard a pair (X, A) as an inclusion i: A ..... X.) 

The next simple construction is useful. 

Definition. A congruence on a category re is an equivalence relation '" on the 
class U(A,B) Hom(A, B) of all morphisms in re such that: 
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(i) f E Hom(A, B) and f ~ I' implies I' E Hom(A, B); 
(ii) f ~ 1', 9 ~ g', and the composite 9 0 f exists imply that 

go f ~ g' 01'. 

Theorem 0.4. Let C{j be a category with congruence ~, and let [fJ denote the 
equivalence class of a morphism f. Define C{j' as follows: 

obj C{j' = obj C{j; 

Hom<c,(A, B) = {en: f E Hom<c(A, B)}; 

[gJ 0 [n = [g 0 n. 
Then C{j' is a category. 

PROOF. Property (i) in the definition of congruence shows that ~ partitions 
each set Hom<c(A, B), and this implies that Hom<c,(A, B) is a set; moreover, 
the family of these sets is pairwise disjoint. Property (ii) in the definition of 
congruence shows that composition in C{j' is well defined, and it is routine to 
see that composition in C{j' is associative and that [tAJ is the identity morphism 
ooA. 0 

The category C{j' just constructed is called a quotient category of C{j; one 
usually denotes Hom<c,(A, B) by [A, B]. 

The most important quotient category for us is the homotopy category 
described in Chapter 1. Here is a lesser example. Let C{j be the category of 
groups and let f, I' E Hom(G, H). Define f ~ I' if there exists a E H with 
f(x) = al'(x)a-1 for all x E G (one may say that f and I' are conjugate), It is 
routine to check that ~ is an equivalence relation on each Hom(G, H). To 
see that ~ is a congruence, assume that f ~ 1', that 9 ~ g', and that go f 
exists. Thus f and I' E Hom(G, H), 9 and g' E Hom(H, K), there is a E H with 
f(x) = al'(x)a-1 for all x E G, and there is b E K with g(y) = bg'(y)b-1 for all 
y E H. It is easy to see that g(f(x)) = [g(a)bJg'(I'(x))[g(a)brl for all x E G, 
that is, 9 0 f ~ g' 01', Thus the quotient category is defined. If G and Hare 
groups, then [G, HJ is the set of all "conjugacy classes" [n, where f: G ~ H 
is a homomorphism. 

EXERCISE 

0.14. Let G be a group and let ~ be the one-object category it defines (Exercise 0.10 
applies because every group is a monoid): obj ~ = {*}, Hom(*, *) = G, and 
composition is the group operation. If H is a normal subgroup of G, define x - y 
to mean xy-l E H. Show that - is a congruence on ~ and that [*, *] = G/H 
in the corresponding quotient category. 

Just as topological spaces are important because they carry continuous 
functions, so categories are important because they carry functors. 
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Definition. If d and C€ are categories, a functor T: d ---+ C€ is a function, that is, 

(i) A E obj d implies T A E obj C€, 
and 
(ii) iff: A ---+ A' is a morphism in d, then Tf: T A ---+ T A' is a morphism in C€, 
such that 
(iii) if f, g are morphisms in d for which g 0 f is defined, then 

T(g 0 f) = (Tg) 0 (Tf); 

(iv) T(lA ) = ITA for every A E obj d. 

Our earlier discussion of homology functors Hn can now be rephrased: for 
each n :2': 0, we shall construct a functor Hn: Top ---+ Ab with Hn(Dn+l) = 0 and 
Hn(sn) "# o. 

EXAMPLE 0.8. The forgetful functor F: Top ---+ Sets assigns to each topological 
space its underlying set and to each continuous function itself ("forgetting" its 
continuity). Similarly, there are forgetful functors Groups ~ Sets, Ab---+ 
Groups, Ab ---+ Sets, and so on. 

EXAMPLE 0.9. If C€ is a category, the identity functor J: C€ ---+ Cfi is defined by 
JA = A for every object A and Jf = f for every morphism f. 

EXAMPLE 0.10. If M is a fixed topological space, then TM : Top ---+ Top is 
a functor, where TM(X) = X x M and, if f: X ---+ Y is continuous, then 
TM(f): X x M ---+ Y x M is defined by (x, m) 1-+ (f(x), m). 

EXAMPLE 0.11. Fix an object A in a category Cfi. Then Hom(A, ): C€ ---+ Sets 
is a functor assigning to each object B the set Hom(A, B) and to each mor­
phism f: B ---+ B' the induced map Hom(A, f): Hom(A, B) ~ Hom(A, B') de­
fined by g 1-+ fog. One usually denotes the induced map Hom(A, f) by f*. 

Functors as just defined are also called covariant functors to distinguish 
them from contravariant functors that reverse the direction of arrows. Thus 
the functor of Example 0.11 is sometimes called a covariant Hom functor. 

Definition. If d and C€ are categories, a contravariant functor S: d ---+ Cfi is a 
function, that is, 

(i) A E obj d implies SA E obj Cfi, 
and 
(ii) iff: A ---+ A' is a morphism in d, then Sf: SA' ---+ SA is a morphism in C€, 
such that: 
(iii) if f, g are morphisms in d for which g 0 f is defined, then 

S(g 0 f) = S(f) 0 S(g); 

(iv) S(1A) = 1SA for every A E obj d. 
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EXAMPLE 0.12. Fix an object B in a category'?? Then Hom( ,B): '?? --+ Sets 
is a contravariant functor assigning to each object A the set Hom(A, B) and 
to each morphism g: A --+ A' the induced map Hom(g, B): Hom(A', B) --+ 

Hom(A, B) defined by h f---+ hog. One usually denotes the induced map 
Hom(g, B) by g*; Hom( ,B) is called a contravariant Hom functor. 

EXAMPLE 0.13. Let F be a field and let'?? be the category of all finite-dimensional 
vector spaces over F. Define S: '?? --+ '?? by S(V) = V* = Hom(V, F) and Sf = 
f*. Thus S is the dual space functor that assigns to each vector space V its 
dual space V* consisting of all linear functionals on V and to each linear 
transformation f its transpose f*. Note that this example is essentially a 
special case of the preceding one, since F is a vector space over itself. 

For quite a while, we shall deal exclusively with covariant functors, but 
contravariant functors are important and will eventually arise. 

When working with functors, one is forced to state problems in a form 
recognizable by them. Thus, in our proof of the Brouwer fixed point theorem, 
we had to rephrase the definition of retraction from the version using elements, 
"r(x) = x for all x E X", to an equivalent version using functions: "r 0 i = lx". 
Similarly, one must rephrase the definition of bijection. 

Definition. An equivalence in a category'?? is a morphism f: A --+ B for which 
there exists a morphism g: B -+ A with fog = 1B and g 0 f = lAo 

Theorem 0.5. If d and'?? are categories and T: d -+ '?? is a Junctor of either 
variance, then f an equivalence in d implies that Tf is an equivalence in '?? 

PROOF. Apply T to the equations fog = 1 and g 0 f = 1. o 
EXERCISES 

0.15. Let d and re be categories, and let T: d --+ re be a functor of either variance. 
If D is a commutative diagram in d, then T(D) (i.e., relabel all vertices and 
(possibly reversed) arrows) is a commutative diagram in re. 

0.16. Check that the following are the equivalences in the specified category: (i) Sets: 
bijections; (ii) Top: homeomorphisms; (iii) Groups: isomorphisms; (iv) Rings: 
isomorphisms; (v) quasi-ordered set: all i;, where x s y and y s x; (vi) Top2: all 
f: (X, A) --+ (X', A'), wheref: X --+ X'is a homeomorphism forwhichJ(A) = A'; 
(vii) monoid G: all elements having a two-sided inverse. 

*0.17. Let re and d be categories, and let ~ be a congruence on re. If T: re --+ d is a 
functor with T(f) = T(g) whenever f ~ g, then T defines a functor T': re' --+ d 
(where re' is the quotient category) by T'(X) = T(X) for every object X and 
T'([fJ) = T(f) for every morphism f. 

0.18. For an abelian group G, let 

tG = {x E G: x has finite order} 

denote its torsion subgroup. 
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(i) Show that t defines a functor Ab -> Ab if one defines t(f) = fltG for every 
homomorphism f. 

(ii) If f is injective, then t(f) is injective. 
(iii) Give an example of a surjective homomorphism f for which t(f) is not 

surjective. 

0.19. Let p be a fixed prime in Z. Define a functor F: Ab -> Ab by F(G) = G/pG and 
F(f): x + pGf-+ f(x) + pH (where f: G -> H is a homomorphism). 
(i) Show that ii f is a surjection, then F(f) is a surjection. 

(ii) Give an example of an injective homomorphism f for which F(f) is not 
injective. 

*0.20. (i) If X is a topological space, show that C(X), the set of all continuous 
real-valued functions on X, is a commutative ring with 1 under pointwise 
operations: 

f + g: x f-+ f(x) + g(x) and f· g: x f-+ f(x)g(x) 

for all x E X. 
(ii) Show that X f-+ C(X) gives a (contravariant) functor Top -> Rings. 

One might expect that the functor C: Top -+ Rings of Exercise 0.20 is 
as valuable as the homology functors. Indeed, a theorem of Gelfand and 
Kolmogoroff (see [Dugundji, p. 289]) states that for X and Y compact 
Hausdorff, C(X) and C(Y) isomorphic as rings implies that X and Yare 
homeomorphic. Paradoxically, a less accurate translation of a problem from 
topology to algebra is usually more interesting than a very accurate one. The 
functor C is not as useful as other functors precisely because of the theorem 
of Gelfand and Kolmogoroff: the translated problem is exactly as complicated 
as the original one and hence cannot be any easier to solve (one can hope only 
that the change in viewpoint is helpful). Aside from homology, other functors 
to be introduced are cohomology groups, cohomology rings, and homotopy 
groups, one of which is the fundamental group. 



CHAPTER 1 

Some Basic Topological Notions 

Homotopy 

One often replaces a complicated function by another, simpler function that 
somehow approximates it and shares an important property of the original 
function. An allied idea is the notion of "deforming" one function into another: 
"perturbing" a function a bit may yield a new simpler function similar to the 
old one. 

Definition. If X and Y are spaces and if fo, f1 are continuous maps from X to 
Y, then fo is homotopic to f1' denoted by fo ~ f1' if there is a continuous map 
F: X x I _ Y with 

F(x, 0) = fo(x) and F(x, 1) = f1 (x) for all x E X. 

Such a map F is called a homotopy. One often writes F: fo ~ f1 if one wishes 
to display a homotopy. 

If it: X - Y is defined by !t(x) = F(x, t), then a homotopy F gives a one­
parameter family of continuous maps deforming fo into fl. One thinks of !t 
as describing the deformation at time t. 

We now present some basic properties of homotopy, and we prepare the 
way with an elementary lemma of point-set topology. 

Lemma 1.1 (Gluing lemma). Assume that a space X is a finite union of closed 
subsets: X = U7=1 Xi. If, for some space Y, there are continuous maps J;: Xi - Y 
that agree on overlaps (J;IXi n Xj = fjlXi n Xj for all i, j), then there exists a 
unique continuous f: X - Y with flXi = J; for all i. 
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PROOF. It is obvious that f defined by f(x) = J;(x) if x E Xi is the unique well 
defined function X --+ Y with restrictions fl Xi = J; for all i; only the continuity 
of f need be established. If C is a closed set in Y, then 

f-l(C) = X nf-l(C) = (U XJ nf-l(C) 

= U (Xi nf-l(C» 

= U(XinJ;-l(C» = UJ;-l(C). 

Since each J; is continuous, J;-1(C) is closed in Xi; since Xi is closed in X, 
J;-1(C) is closed in X. Therefore f-l(C) is closed in X, being a finite union of 
closed sets, and so f is continuous. 0 

There is another version of the gluing lemma, using open sets, whose proof 
is that of Lemma 1.1, mutatis mutandis. 

Lemma 1.1' (Gluing lemma). Assume that a space X has a (possibly irifinite) 
open cover: X = U Xi' If, for some space Y, there are continuous maps J;: Xi --+ Y 
that agree on overlaps, then there exists a unique continuous f: X --+ Y with 
flXi = J; for all i. 

Theorem 1.2. Homotopy is an equivalence relation on the set of all continuous 
maps X --+ Y. 

PROOF. Reflexivity. If f: X --+ Y, define F: X x 1--+ Y by F(x, t) = f(x) for all 
x E X and all tEl; clearly F: f ~ f. 

Symmetry: Assume that f ~ g, so there is a continuous F: X x 1--+ Y 
with F(x, 0) = f(x) and F(x, 1) = g(x) for all x E X. Define G: X x 1--+ Y by 
G(x, t) = F(x, 1 - t), and note that G: g ~ f. 

Transitivity: Assume that F: f ~ g and G: g ~ h. Define H: X x 1--+ Y by 

( ) _ {F(X, 2t) if ° ~ t ~ 1 
H x, t - . 1 

G(x, 2t - 1) If 2" ~ t ~ 1. 

Because these functions agree on the overlap {(x, 1): x E X}, the gluin~lemma 
applies to show that H is continuous. Therefore H: f ~ h. 0 

Definition. If f: X --+ Y is continuous, its homotopy class is the equivalence 
class 

[f] = {continuous g: X --+ Y: g ~ f}. 

The family of all such homotopy classes is denoted by [X, Y]. 

Theorem 1.3. Let J;: X --+ Y and gi: Y --+ Z, for i = 0, 1, be continuous. If fo ~ fl 
and go ~ gl' then go 0 fo ~ gl 0 fl; that is, [go 0 foJ = [gl 0 fl]. 

PROOF. Let F: fo ~ fl and G: go ~ gl be homotopies. First, we show that 

go 0 fo ~ gl 0 fo· 
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Define H: X x 1--+ Z by H(x, t) = G(fo(x), t). Clearly, H is continuous; more­
over, H(x, 0) = G(fo(x), 0) = go(fo(x» and H(x, 1) = G(fo(x), 1) = gl (fo(x». 
Next, observe that 

(**) 

where K: X x 1--+ Z is the composite gl 0 F. Finally, use (*) and (**) together 
with the transitivity of the homotopy relation. 0 

Corollary 1.4. Homotopy is a congruence on the category Top. 

PROOF. Immediate from Theorems 1.2 and 1.3. o 
It follows at once from Theorem 0.4 that there is a quotient category whose 

objects are topological spaces X, whose Hom sets are Hom(X, Y) = [X, Y], 
and whose composition is [g] 0 [f] = [g 0 f]' 

Definition. The quotient category just described is called the homotopy cate­
gory, and it is denoted by hTop. 

All the functors T: Top --+ .91 that we shall construct, where .91 is some 
"algebraic" category (e.g., Ab, Groups, Rings), will have the property that f ~ 9 
implies T(f) = T(g). This fact, aside from a natural wish to identify homotopic 
maps, makes homotopy valuable, because it guarantees that the algebraic 
problem in .91 arising from a topological problem via T is simpler than the 
original problem. Furthermore, Exercise 0.17 shows that every such functor 
gives a functor hTop --+ .91, and so the homotopy category is actually quite 
fundamental. 

What are the equivalences in hTop? 

Definition. A continuous map f: X --+ Y is a homotopy equivalence if there is 
a continuous map g: Y --+ X with 9 0 f ~ Ix and fog ~ ly. Two spaces X and 
Y have the same homotopy type if there is a homotopy equivalence f: X --+ Y. 

If one rewrites this definition, one sees that f is a homotopy equivalence if 
and only if [f] E [X, Y] is an equivalence in hTop. Thus the passage from 
hTop to the more familiar Top is accomplished by removing brackets and by 
replacing = by ~. 

Clearly, homeomorphic spaces have the same homotopy type, but the 
converse is false, as we shall see (Theorem 1.12). 

The next two results show that homotopy is related to interesting questions. 

Definition. Let X and Y be spaces, and let Yo E Y. The constant map at Yo is 
the function c: X --+ Y with c(x) = Yo for all x E X. A continuous map f: X --+ Y 
is nullhomotopic if there is a constant map c: X --+ Y with f ~ c. 
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Theorem 1.5. Let C denote the complex numbers, let ~p c C ~ R2 denote the 
circle with center at the origin 0 and radius p, and let J;: ~p ~ C - {O} denote 
the restriction to ~p of Z HZ". If none of the maps fp" is nullhomotopic (n ;::: 1 
and p > O), then the fundamental theorem of algebra is true (i.e., every noncon­
stant complex polynomial has a complex root). 

PROOF. Consider the polynomial with complex coefficients: 

g(z} = z" + a"_1z"-1 + ... + a1z + ao. 

Choose p > max{1, L;':Jlad}, and define F: ~p x I ~ C by 
"-1 

F(z, t} = z" + L (1 - t}aiz i. 
i=O 

It is obvious that F: gl~p ~ fp" if we can show that the image of F is contained 
in C - {O}; that is, F(z, t) #- 0 (this restriction is crucial because, as we shall 
see in Theorem 1.13, every continuous function having values in a "contracti­
ble" space, e.g., in C, is nullhomotopic). If, on the contrary, F(z, t} = 0 for some 
tEl and some z with Izl = p, then z" = - L;':J (1 - t}aiz i. The triangle in­
equality gives 

"-1 "-1 ("-1) 
p":s; i~ (1 - t}ladpi:s; i~ ladpi:s; i~O lad p"-l, 

for p > 1 implies that pi s p"-1. Canceling p"-1 gives p s L?:Jlad, a con­
tradiction. 

Assume now that 9 has no complex roots. Define G: ~p x I ~ C - {O} by 
G(z, t) = g((1 - t}z}. (Since 9 has no roots, the values of G do lie in C - {O}.} 
Visibly, G: gl~p ~ k, where k is the constant function at ao. Therefore gl~p is 
nullhomotopic and, by transitivity, fp" is nullhomotopic, contradicting the 
hypothesis. 0 

Remark. We shall see later (Corollary 1.23) that C - {O} is essentially the circle 
S1 = ~1; more precisely, C - {O} and S1 have the same homotopy type. 

A common problem involves extending a map f: X ~ Z to a larger space 
Y; the picture is 

Y 

r',,~, 
X ---;-+ z. 

Homotopy itself raises such a problem: if fo, f1: X ~ Z, then fo ~ f1 if we can 
extendfoUf1:X x {O}UX x {1}~ZtoallofX x I. 

Theorem 1.6. Let f: S" ~ Y be a continuous map into some space Y. The 
following conditions are equivalent: 
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(i) f is nullhomotopic; 
(ii) f can be extended to a continuous map Dn+1 -+ Y; 

(iii) if Xo E sn and k: sn -+ Y is the constant map at f(xo), then there is a 
homotopy F: f ~ k with F(xo, t) = f(xo) for all tEl 

Remark. Condition (iii) is a technical improvement on (i) that will be needed 
later; using terminology not yet introduced, it says that "F is a homotopy 
rei {xo}". 

PROOF. (i) = (ii). Assume that F: f ~ c, where c(x) = Yo for all x E sn. Define 
g: Dn+1 -+ Y by 

() {Yo if 0 ~ Ilxll~! 
g x = 

F(x/llxll,2-2I1xll) if!~ Ilxll ~ 1. 

Note that all makes sense: if x =F 0, then x/llxli E sn; if ! ~ Ilxll ~ 1, then 
2 - 211xll E I;ifllxll =!, then 2 - 211xll = 1 andF(x/llxll, 1) = c(x/llxll) = Yo. 
The gluing lemma shows that g is continuous. Finally, g does extend f: if 
x E sn, then Ilxll = 1 and g(x) = F(x, 0) = f(x). 

(ii) = (iii). Assume that g: Dn+1 -+ Y extends f Define F: sn x 1-+ Y by 
F(x, t) = g((1 - t)x + txo); note that (1 - t)x + txo E Dn+1, since this is just a 
point on the line segment joining x and Xo. Visibly, F is continuous. Now 
F(x,O) = g(x) = f(x) (since g extends f), while F(x, 1) = g(xo) = f(xo) for all 
x E sn; hence F: f ~ k, where k: sn -+ Y is the constant map at f(xo). Finally, 
F(xo, t) = g(xo) = f(xo) for all tEl 

(iii) = (i). Obvious. 0 

Compare this theorem with Lemma 0.2. If Y = sn and f is the identity, then 
Lemma 0.2 (not yet officially known!) implies that f is not nullhomotopic 
(otherwise sn would be a retract of Dn+1). 

Convexity, Contractibility, and Cones 

Let us name a property of Dn+1 that was used in the last proof. 

Defmition. A subset X of Rm is convex if, for each pair of points x, y E X, the 
line segment joining x and y is contained in X. In other words, if x, y E X, 
then tx + (1 - t)y E X for all tEl 

It is easy to give examples of convex sets; in particular, In, Rn, Dn, and I1n 

are convex. The sphere sn considered as a subset of Rn+1 is not convex. 

Definition. A space X is contractible if Ix is nullhomotopic. 

Theorem 1.7. Every convex set X is contractible. 
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PROOF. Choose Xo E X, and define c: X --+ X by c(x) = Xo for all x E X. Define 
F: X x I --+ X by F(x, t) = txo + (1 - t)x. It is easy to see that F: lx ~ c. 0 

A hemisphere is contractible but not convex, so that the converse of 
Theorem 1.7 is not true. After proving Theorem 1.6, we observed that Lemma 
0.2 implies that sn is not contractible. 

EXERCISES 

1.1. Let xo, XI E X and let!;: X -> X for i = 0, 1 denote the constant map at Xi. Prove 
that Jo ~ Jl if and only if there is a continuous F: I -> X with F(O) = Xo and 
F(I) = XI. 

1.2. (i) If X ~ Yand X is contractible, then Y is contractible. 
(ii) If X and Yare subspaces of euclidean space, X ~ Y, and X is convex, show 

that Y may not be convex. 

*1.3. Let R: Sl -> Sl be rotation by Of. radians. Prove that R ~ Is, where Is is the 
identity map of Sl. Conclude that every continuous map J: SI -> SI is homotopic 
to a continuous map g: SI -> SI with g(l) = 1 (where 1 = e2niO E SI). 

1.4. (i) If X is a convex subset of Rn and Y is a convex subset of Rm, then X x Y is 
a convex subset of Rn+m. 

(ii) If X and Yare contractible, then X x Y is contractible. 

*1.5. Let X = {O} U {I, t, t, ... , lin, ... } and let Ybe a countable discrete space. Show 
that X and Y do not have the same homotopy type. (Hint: Use the compactness 
of X to show that every map X -> Y takes all but finitely many points of X to a 
common point of Y.) 

1.6. Contractible sets and hence convex sets are connected. 

1.7. Let X be Sierpinski space: X = {x, y} with topology {X, 0, {x}}. Prove that X 
is contractible. 

1.8. (i) Give an example of a continuous image of a contractible space that is not 
contractible. 

(ii) Show that a retract of a contractible space is contractible. 

1.9. If J: X -+ Y is nullhomotopic and if g: Y -> Z is continuous, then go J is null­
homotopic. 

The coming construction of a "cone" will show that every space can be 
imbedded in a contractible space. Before giving the definition, let us recall the 
construction of a quotient space. 

Definition. Let X be a topological space and let X' = {Xj: j E J} be a partition 
of X (each Xi is nonempty, X = U Xi' and the Xi are pairwise disjoint). The 
natural map v: X --+ X' is defined by v(x) = Xi' where Xi is the (unique) subset 
in the partition containing x. The quotient topology on X' is the family of all 
subsets U' of X' for which v- 1 (U') is open in X. 

It is easy to see that v: X --+ X' is a continuous map when X' has the quotient 
topology. There are two special cases that we wish to mention. If A is a subset 
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of X, then we write XIA for X', where the partition of X consists of A together 
with all the one-point subsets of X - A (this construction collapses A to a 
point but does not identify any other points of X; therefore, this construction 
differs from the quotient group construction for X a group and A a normal 
subgroup). The second special case arises from an equivalence relation ~ on 
X; in this case, the partition consists of the equivalence classes, the natural 
map is given by v: x 1-+ [xJ (where [xJ denotes the equivalence class containing 
x), and the quotient space is denoted by X I ~. The natural map is always a 
continuous surjection, but it may not be an open map [see Exercise 1.23(iii)]. 

EXAMPLE 1.1. Consider the space 1= [0, 1J and let A be the two-point subset 
A = {O, 1}. Intuitively, the quotient space II A identifies 0 and 1 and ought to 
be the circle S1; we let the reader supply the details that it is. 

EXAMPLE 1.2. As an example of the quotient topology using an equivalence 
relation, let X = I x I 

(0, 1)r--~--..,(1, 1) 

I X I 

(0, O)L-.--~---' (1, 0) 

and define (x, 0) ~ (x, 1) for every x E l We let the reader show that XI ~ is 
homeomorphic to the cylinder S1 x l As a further example, suppose we define 
a second equivalence relation on I x I by (x, 0) ~ (x, 1) for all x E I and 
(0, y) ~ (1, y) for all y E l Now I x II ~ is the toms S1 x S1 (first one has a 
cylinder and then one glues the circular ends together). 

EXAMPLE 1.3. If h: X -+ Y is a function, then ker h is the equivalence relation 
on X defined by x ~ x' if h(x) = h(x'). The corresponding quotient space is 
denoted by X/ker h. Note that, given h: X -+ Y, there always exists an injection 
qJ: X/ker h -+ Y making the following diagram commute: 

X~Y 

\ /~ 
X/ker h, 

namely, qJ([xJ) = h(x). 

If h: X -+ Y is continuous, it is a natural question whether the map 
qJ: X/ker h -+ Y of Example 1.3 is continuous. 
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Definition. A continuous surjection f: X - Y is an identification if a subset U 
of Y is open if and only if f-1(U) is open in X. 

EXAMPLE 1.4. If '" is an equivalence relation on X and X/ '" is given the 
quotient topology, then the natural map v: X - X / '" is an identification. 

EXAMPLE 1.5. If f: X - Y is a continuous surjection that is either open or 
closed, then f is an identification. 

EXAMPLE 1.6. If f: X - Y is a continuous map having a section (i.e., there is 
a continuous s: Y - X with fs = 1y), then f is an identification (note that f 
must be a surjection). 

Theorem 1.8. Let f: X - Y be a continuous surjection. Then f is an identifica­
tion if and only if, for all spaces Z and all functions g: Y - Z, one has g 
continuous if and only if gf is continuous. 

X ---.!!.L Z. 

~;. 
Y 

PROOF. Assume f is an identification. If g is continuous, then gf is con­
tinuous. Conversely, let gf be continuous and let V be an open set in Z. Then 
(gf)-l(V) = f-1(g-1(V)) is open in X; since f is an identification, g-l(V) is 
open in Y, hence g is continuous. 

Assume the condition. Let Z = X/ker f, let v: X - X/ker f be the natural 
map, and let cp: X/ker f - Y be the injection of Example 1.3. Note that cp is 
surjective because f is. Consider the commutative diagram 

X ~ X/kerf 

~ ;'-1 
Y 

That cp-1f = v is continuous implies that cp-1 is continuous, by hypothesis. 
Also, cp is continuous because v is an identification. We conclude that cp is a 
homeomorphism, and the result follows at once. 0 

Definition. Let f: X - Y be a function and let y E Y. Then f- 1 (y) is called the 
fiber over y. 

If f: X - Y is a homomorphism between" groups, then the fiber over 1 is 
the (group-theoretic) kernel of f, while the fiber over an arbitrary point y is a 
coset of the subgroup ker f More generally, fibers are the equivalence classes 
of the equivalence relation ker f on X. 
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Corollary 1.9. Let f: X --+ Y be an identification and, for some space Z, let 
h: X --+ Z be a continuous function that is constant on each fiber of f. Then 
hf-l: Y --+ Z is continuous. 

Moreover, hf-1 is an open map (or a closed map) if and only if h(U) is open (or 
closed) in Z whenever U is an open (or closed) set in X of the form U = f-lf(U).l 

PROOF. That h-is constant on each fiber of f implies that hf-1 : Y --+ Z is a well 
defined function; hf-1 is continuous because (hf-l)f = h is continuous, and 
Theorem 1.8 applies. Finally, if V is an open set in Y, then f-l(V) is an open 
set of the stated form: f-l(V) = f-1f(f-l(V)); the result now follows easily. 

D 

Remark. If A is a subset of X and h: X --+ Z is constant on A, then h is constant 
on the fibers of the natural map v: X --+ X/A. 

Corollary 1.10. Let X and Z be spaces, and let h: X --+ Z be an identification. 
Then the map <p: X/ker h --+ Z, defined by [x] f--+ h(x), is a homeomorphism. 

PROOF. It is plain that the function <p: X/ker h --+ Z is a bijection; <p is con­
tinuous, by Corollary 1.9. Let v: X --+ X/ker h be the natural map. To see that 
<p is an open map, let U be an open set in X/ker h. Then h-l<p(U) = V-l(U) is 
an open set in X, because v is continuous, and hence <p(U) is open, because h 
is an identification. D 

EXERCISES 

* 1.10. Let f: X -+ Y be an identification, and let g: Y -+ Z be a continuous surjection. 
Then 9 is an identification if and only if gf is an identification. 

*1.11. Let X and Y be spaces with equivalence relations ~ and D, respectively, and 
let f: X -+ Y be a continuous map preserving the relations (if x ~ x', then 
f(x) D f(x')). Prove that the induced map 1: XI ~ -+ YID is continuous; 
moreover, if f is an identification, then so is J 

1.12. Let X and Z be compact Hausdorff spaces, and let h: X -+ Z be a continuous sur­
jection. Prove that q>: X/ker h -+ Z, defined by [x] H h(x), is a homeomorphism. 

I Recall elementary set theory: if f: X -> Y is a function and U c im f, then if-I(U) = U and 
U c rlf(U); in general, there is no equality U = f-If(U). 
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Definition. If X is a space, define an equivalence relation on X x I by (x, t) '" 
(x', t') if t = t' = 1. Denote the equivalence class of (x, t) by [x, t]. The cone 
over X, denoted by ex, is the quotient space X x II"'. 

One may also regard ex as the quotient space X x I/X x {1}. The identi­
fied point [x, 1] is called the vertex; we have essentially introduced a new point 
v not in X (the vertex) and joined each point in X to v by a line segment. 

v 

x 

This picture is fine when X is compact Hausdorff, but it may be misleading 
otherwise: the quotient topology may have more open sets than expected.2 

EXAMPLE 1.7. For spaces X and Y, every continuous map f: X x 1-+ Y 
with f(x, 1) = Yo, say, for all x E X, induces a continuous map 1: ex -+ Y, 
namely, 1: [x, t] f-+ f(x, t). In particular, let f: sn x 1-+ Dn+l be the map 
(u, t) f-+ (1 - t)u; since f(u, 1) = 0 for all u E sn, there is a continuous map 
1: esn -+ Dn+1 with [u, t] f-+ (1 - t)u. The reader may check that J is a homeo­
morphism (thus Dn+1 is the cone over sn with vertex 0). 

EXERCISES 

*1.13. For fixed t with 0:5: t < 1, prove that x ~ [x, t] defines a homeomorphism from 
a space X to a subspace of ex. 

1.14. Prove that X ~ ex defines a functor Top -> Top (the reader must define the 
behavior on morphisms). (Hint: Use Exercise 1.11.) 

Theorem 1.11. For every space X, the cone ex is contractible. 

PROOF. Define F: ex x I -+ ex by F([x, t], s) = [x, (1 - s)t + s]. 0 

Combining Theorem 1.11 with Exercise 1.13 shows that every space can 
be embedded in a contractible space. 

2 Let X be the set of positive integers regarded as points on the x-axis in R2; let C'X denote the 
subspace of R2 obtained by joining each (n, 0) E X to v = (0, 1) with a line segment. There is a 
continuous bijection ex -> C'X, but ex is not homeomorphic to C'X (see [Dugundji, p. 127]). 
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The next result shows that contractible spaces are the simplest objects in 
hTop. 

Theorem 1.12. A space X has the same homotopy type as a point if and only if 
X is contractible. 

PROOF. Let {a} be a one-point space, and assume that X and {a} have the 
same homotopy type. There are thus maps f: X --+ {a} (visibly constant) and 
g: {a} --+ X (with g(a) = Xo E X, say) with go f ~ Ix andf 0 9 ~ l{a} (actually, 
fog = l{a}). But gf(x) = g(a) = Xo for all x E X, so that 9 0 f is constant. 
Therefore Ix is nullhomotopic and X is contractible. 

Assume that Ix ~ k, where k(x) == Xo E X. Define f: X --+ {xo} as the con­
stant map at Xo (no choice!), and define g: {xo} --+ X by g(xo) = Xo. Note that 
fog = l{xo} and that 9 0 f = k ~ lx, by hypothesis. We have shown that X 
and {xo} have the same homotopy type. 0 

This theorem suggests that contractible spaces may behave as singletons, 
especially when homotopy is in sight. 

Theorem 1.13. If Y is contractible, then any two maps X --+ Yare homotopic 
(indeed they are nullhomotopic). 

PROOF. Assume that 1y ~ k, where there is Yo E Y with k(y) = Yo for all y E Y. 
Define g: X --+ Yas the constant map g(x) = Yo for all x E X. If f: X --+ Y is 
any continuous map, we claim that f ~ g. Consider the diagram 

k 
X -----+ Y ====t Y. 

ly 

Since 1y ~ k, Theorem 1.3 gives f = Iy 0 f ~ k 0 f = g. D 

If X is contractible (instead of y), this result is false (indeed this result is 
false for X a singleton). However, the result is true when combined with a 
connectivity hypothesis (Exercise 1.19). This hypothesis also answers the 
question whether two nullhomotopic maps X --+ Yare necessarily homotopic 
(as they are in Theorem 1.13). 

Paths and Path Connectedness 

Definition. A path in X is a continuous map f: 1 --+ X. If f(O) = a and f(l) = b, 
one says that f is a path from a to b. 

Do not confuse a path f with its image f(I), but do regard a path as a 
parametrized curve in X. Note that if f is a path in X from a to b, then 
g(t) = f(l - t) defines a path in X from b to a (of course, g(l) = f(I)). 
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Definition. A space X is path connected if, for every a, b E X, there exists a path 
in X from a to b. 

Theorem 1.14. If X is path connected, then X is connected. 

PROOF. If X is disconnected, then X is the disjoint union X = A U B, where A 
and Bare nonempty open subsets of X. Choose a E A and b E B, and let 
f: 1 -. X be a path from a to b. Now f(l) is connected, yet 

f(l) = (A n f(l» U (B n f(l» 

displays f(l) as disconnected, a contradiction. D 

The converse of Theorem 1.14 is false. 

EXAMPLE 1.8. The sin(1/x) space X is the subspace X = AUG of R2, where 
A = {(O, y): -1::;; y::;; I} and G = {(x, sin(1/x»: 0 < x::;; 1/2n}. 

It is easy to see that X is connected, because the component of X that con­
tains G is closed (components are always closed) and A is contained in the 
closure of G. Exercise 1.15 contains a hint toward proving that X is not path 
connected. 

EXERCISES 

*1.15. Show that the sin(1/x) space X is not path connected. (Hint: Assume that 
f: I --> X is a path from (0, 0) to (1/2n, 0). If to = SUp{tEI: f(t) E A}, then a = 
f(to) E A and f(s) ¢ A for all s > to. One may thus assume that there is a path 
g: I --> X with g(O) E A and with g(t) E G for all t > 0.) 

1.16. Show that S" is path connected for all n ~ 1. 

1.17. If U c R" is open, then U is connected if and only if U is path connected. (This 
is false if "open" is replaced by "closed": the sin(1/x) space is a (compact) subset 
ofR2.) 
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1.18. Every contractible space is path connected. 

*1.19. (i) A space X is path connected if and only if every two constant maps X -+ X 
are homotopic. 

(ii) If X is contractible and Y is path connected, then any two continuous maps 
X -+ Yare homotopic (and each is nullhomotopic). 

1.20. Let A and B be path connected subspaces of a space X. If A n B oF 0 is path 
connected, then A U B is path connected. 

*1.21. If X and Yare path connected, then X x Y is path connected. 

* 1.22. Iff: X -+ Y is continuous and X is path connected, then f(X) is path connected. 

Let us now analyze path connectedness as one analyzes connectedness. 

Theorem 1.15. If X is a space, then the binary relation,.., on X defined by "a ,.., b 
if there is a path in X from a to b" is an equivalence relation. 

PROOF. Reflexivity: If a E X, the constant function f: I -+ X with f(t) = a for 
all tEl is a path from a to a. 

Symmetry: Iff: I -+ X is a path in X from a to b, then g: I -+ X defined by 
g(t) = f(1 - t) is a path from b to a. 

Transitivity: If f is a path from a to band 9 is a path from b to c, define 
h: I-+Xby 

h(t) = {f(2t) if 0 ~ t ~! 
g(2t - 1) if t ~ t ~ 1. 

The gluing lemma shows that h is continuous. o 

The reader has probably noticed the similarity of this proof to that of 
Theorem 1.2: homotopy is an equivalence relation on the set of all continuous 
maps X -+ Y. This will be explained in Chapter 12 when we discuss function 
spaces. 

Definition. The equivalence classes of X under the relation,.., in Theorem 1.15 
are called the path components of X. 

We now can see that every space is the disjoint union of path connected 
subspaces, namely, its path components. 

EXERCISES 

*1.23. (i) The sin(l/x) space X has exactly two path components: the vertical line A 
and the graph G. 

(ii) Show that the graph G is not closed. Conclude that, in contrast to com­
ponents (which are always closed), path components may not be closed. 

(iii) Show that the natural map v: X -+ X/A is not an open map. (Hint: Let U 
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be the open disk with center (0, t) and radius i; show that v(X n U) is not 
open in X/A (~[O, in]).) 

*1.24. The path components of a space X are maximal path connected subspaces; 
moreover, every path connected subset of X is contained in a unique path 
component of X. 

1.25. Prove that the sin(l/x) space is not homeomorphic to I. 

Let us use this notion to construct a (simple-minded) functor. 

Definition. Define 1to(X) to be the set of path components of X. If f: X --+ Y, 
define 1to(f); 1to(X) --+ 1to(Y) to be the function taking a path component C of 
X to the (unique) path component of Y containing f(C) (Exercises 1.24 and 
1.22). 

Theorem 1.16. 1to: Top --+ Sets is a functor. Moreover, if f ~ g, then 1to(f) = 
1to(g)· 

PROOF. It is an easy exercise to check that 1to preserves identities and composi­
tion; that is, 1to is a functor. 

Assume that F: f ~ g, where f, g: X --+ Y. If C is a path component of X, 
then C x I is path connected (Exercise 1.21), hence F(C x I) is path connected 
(Exercise 1.22). Now 

f(C) = F(C x {O}) c F(C x I) 

and 

g(C) = F(C x {I}) c F(C x I); 

the unique path component of Y containing F(C x I) thus contains both f(C) 
and g(C). This says that 1to(f) = 1to(g). 0 

Corollary 1.17. If X and Y have the same homotopy type, then they have the 
same number of path components. 

PROOF. Assume that f: X --+ Y and g: Y --+ X are continuous with 9 0 f ~ Ix 
and fog ~ 1y. Then 1to(g 0 f) = 1to(1x) and 1to(f 0 g) = 1to(1y), by Theorem 
1.16. Since 1to is a functor, it follows that 1to(f) is a bijection. 0 

Here is a more conceptual proof. One may regard 1to as a functor hTop --+ 

Sets, by Exercise 0.17. If f: X --+ Y is a homotopy equivalence, then [f] is an 
equivalence in hTop, and so 1to([f]) (which is 1to(f), by definition) is an 
equivalence in Sets, by Theorem 0.5. 

1to is not a very thrilling functor since its values lie in Sets, and the only 
thing one can do with a set is count it. Still, it is as useful as counting ordinary 
components (which is how one proves that S1 and I are not homeomorphic 
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(after deleting a point)). 1to is the first (zeroth?) of a sequence of functors. The 
next is 1t 1 , the fundamental group, which takes values in Groups; the others, 
1t2 , 1t3 , ••• , are called (higher) homotopy groups and take values in Ab (we 
shall study these functors in Chapter 11). 

Definition. A space X is locally path connected if, for each x E X and every 
open neighborhood U of x, there is an open V with x EVe U such that any 
two points in V can be joined by a path in U. 

Corollary 1.19 will show that one can choose V so that every two points 
in V can be joined by a path in V; that is, V is path connected. 

EXAMPLE 1.9. Let X be the subspace of R2 obtained from the sin(l/x) space 
by adjoining a curve from (0, 1) to (i", 0). It is easy to see that X is path 
connected but not locally path connected. 

Theorem 1.lS. A space X is locally path connected if and only if path components 
of open subsets are open. In particular, if X is locally path connected, then its 
path components are open. 

PROOF. Assume that X is locally path connected and that U is an open subset 
of X. Let C be a path component of U, and let x E C. There is an open V with 
x EVe U such that every point of V can be joined to x by a path in U. Hence 
each point of V lies in the same path component as x, and so V c C. Therefore 
C is open. 

Conversely, let U be an open set in X, let x E U, and let V be the path 
component of x in U. By hypothesis, V is open. Therefore X is locally path 
connected. 0 

Corollary 1.19. X is locally path connected if and only if, for each x E X and 
each open neighborhood U of x, there is an open path connected V with 
XE Vc U. 

PROOF. If X is locally path connected, then choose V to be the path component 
of U containing x. The converse is obvious. 0 

Corollary 1.20. If X is locally path connected, then the components of every 
open set coincide with its path components. In particular, the components of X 
coincide with the path components of X. 

PROOF. Let C be a component of an open set U in X, and let {A j : j E J} be 
the path components of C; then C is the disjoint union of the Aj : by Theorem 
1.18, each Aj is open in C, hence each Aj is closed in C (its complement being 
the open set, which is the union of the other A's). Were there more than one 
Aj , then C would be disconnected. 0 
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Corollary 1.21. If X is connected and locally path connected, then X is path 
connected. 

PROOF. Since X is connected, X has only one component; since X is locally 
path connected, this component is a path component. 0 

EXERCISES 

* 1.26. A locally path connected space is locally connected. (Recall that a space is locally 
connected if every point has a connected open neighborhood.) (Hint: A space is 
locally connected if and only if components of open sets are open.) 

1.27. If X and Yare locally path connected, then so is X x Y. 

*1.28. Every open subset of a locally path connected space is itself locally path 
connected. 

Definition. Let A be a subspace of X and let i: A 4 X be the inclusion. Then 
A is a deformation retract of X if there is a continuous r: X --+ A such that 
r 0 i = IA and i 0 r ~ Ix. 

Of course, every deformation retract is a retract. One can rephrase the 
definition as follows: there is a continuous F: X x I --+ X such that F(x, 0) = x 
for all x E X, F(x, 1) E A for all x E X, and F(a, 1) = a for all a E A (in this 
formulation, we have r(x) = F(x, 1)). The next result is immediate. 

Theorem 1.22. If A is a deformation retract of X, then A and X have the same 
homotopy type. 

Corollary 1.23. Sl is a deformation retract of C - {O}, and so these spaces have 
the same homotopy type. 

PROOF. Write each nonzero complex number z in polar coordinates: 

p > 0, 0::; (} < 2n. 

Define F: (C - {O}) x 1--+ C - {O} by 

F(pe i6, t) = [(1 - t)p + tJe i6• 

It is clear that F is never 0 and that F satisfies the requirements making 
Sl = {e i6 : 0 ::; (} < 2n} a deformation retract of C - {O}. 0 

EXERCISES 

*1.29. For n ~ 1, show that S" is a deformation retract ofR"+1 - {O}. 

1.30. For n ~ 1, show that S" is a deformation retract of the "punctured disk" 
D"+1 - {O}. 
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* 1.31. Let a = (0, ... , 0, 1) and b = (0, ... , 0, -1) be the north and south poles, respec­
tively, of S·. Show that the equator S·-l is a deformation retract of S' - {a, b}, 
hence S·-l and S' - {a, b} have the same homotopy type. 

1.32. Assume that X, Y, and Z are spaces with X c Y. If X is a retract, then every 
continuous map f: X --+ Z can be extended to a continuous map l: y --+ Z, 
namely, J = fr, where r: Y --+ X is a retraction. Prove that if X is a retract of Y 
and if fo and f1 are homotopic continuous maps X --+ Z, then Jo ~ J1· 

Definition. Let f: X -+ Y be continuous and define3 

Mf = ((X x lUi Y)/-, 

where (x, t) - y if y = f(x) and t = 1. Denote the class of (x, t) in Mf by [x, t] 
and the class of yin Mf by [y] (so that [x, 1] = [f(x)]). The space Mf is called 
the mapping cylinder of f 

o 

y 

EXERCISES 

1.33. If Y is a one-point space, then f: X --+ Y must be constant. Prove that the 
mapping cylinder in this case is ex, the cone on X. 

1.34. (i) Define i: X --+ Mf by i(x) = [x, 0] and j: Y --+ M f by j(y) = [y]. Show that 
i and j are homeomorphisms to subspaces of M f. 

(ii) Define r: Mf --+ Y by rex, t] = f(x) for all (x, t) E X x I and r[y] = y. Prove 
that r is a retraction: rj = ly. 

(iii) Prove that Y is a deformation retract of M f . (Hint: Define F: M f x 1--+ M f 
by 

F([x, t], s) = [x, (1 - s)t + s] if x E X, t, s E I; 

F([y], s) = [y] if Y E Y, S E I.) 

(iv) Show that every continuous map f: X --+ Y is homotopic to r 0 i, where i is 
an injection and r is a homotopy equivalence. 

3 If A and B are topological spaces, then A II B denotes their disjoint union topologized so that 
both A and B are open sets. 



CHAPTER 2 

Simplexes 

Affine Spaces 

Many interesting spaces are constructed from certain familiar subsets of 
euclidean space, called simplexes. This brief chapter is devoted to describing 
these sets and maps between them. 

Definition. A subset A of euclidean space is called affine if, for every pair of 
distinct points x, x' E A, the line determined by x, x' is contained in A. 

Observe that affine subsets are convex (convexity requires only that the 
line segment between x and x' lies in the set). Note also that, by default, 0 
and one-point subsets are affine. 

Theorem 2.1. If {Xj: j E J} is a family of convex (or affine) subsets of Rn, then 
n Xj is also convex (or affine). 

PROOF. Immediate from the definitions. o 
It thus makes sense to speak of the convex (or affine) set in Rn spanned by 

a subset X of Rn (also called the convex hull of X), namely, the intersection of 
all convex (or affine) subsets of Rn containing X. We denote the convex set 
spanned by X by [X] (note that [X] does exist, for Rn itself is affine, hence 
convex). It is hopeless to try to describe arbitrary convex subsets of Rn: for 
example, for every subset K of SI, the set D2 - K is convex. Even closed 
convex sets exist in abundance. However, we can describe [X] for finite X. 

Definition. An affine combination of points Po, Pl' ... ' Pm in Rn is a point x with 

x = toPo + tlPl + ... + tmPm' 
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where L:'!=o t; = 1. A convex combination is an affine combination for which 
t; ?: 0 for all i. 

For example, a convex combination of x, x' has the form tx + (1 - t)x' for 
tEl. 

Theorem 2.2. If Po, Pl' ... ' Pm ERn, then [Po, Pl' ... , Pm], the convex set spanned 
by these points, is the set of all convex combinations of Po, Pl' ... , Pm. 

PROOF. Let S denote the set of all convex combinations. 
[Po, ... , Pm] C s: It suffices to show that S is a convex set containing 

{Po, ... , Pm}· First, if we set tj = 1 and the other t; = 0, then we see that Pj E S 
for every j. Second, let a = L a;p; and f3 = L b;p; E S, where a;, b; ?: 0 and 
La; = 1 = Lb;. We claim that ta + (1 - t)f3 E S for tEl. Now 

m 

ta + (1 - t)f3 = L Eta; + (1 - t)bJp;. 
;=0 

This is a convex combination of Po, ... , Pm' hence lies in S: 

(i) L Eta; + (1 - t)bJ = t L a; + (1 - t) L b; = t + (1 - t) = 1; 
(ii) ta; + (1 - t)b; ?: 0 because each term is nonnegative. 

S C [Po, ... , Pm]: If X is any convex set containing {Po, ... , Pm}, we show 
that SeX by induction on m ?: O. If m = 0, then S = {Po} and we are done. 
Let m > O. If t; ?: 0 and L t; = 1, is P = L tiP; in X? We may assume that 
to #- 1 (otherwise P = Po E X); by induction, 

q = C ~ tJ Pl + ... + C ~ tJ Pm E X 

(for this is a convex combination), and so 

P = toPo + (1 - to)q E X, 

because X is convex. D 

Corollary 2.3. The affine set spanned by {Po, Pl' ... , Pm} eRn consists of all 
affine combinations of these points. 

PROOF. A minor variation of the proof just given. D 

Definition. An ordered set of points {Po, Pl' ... , Pm} C Rn is affine independent 
if {Pl - Po, P2 - Po, ... , Pm - Po} is a linearly independent subset of the real 
vector space Rn. 

Any linearly independent subset of Rn is an affine independent set; the 
converse is not true, because any linearly independent set together with the 
origin is affine independent. Anyone point set {Po} is affine independent (there 
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are no points of the form Pi - Po with i #- 0, and 0 is linearly independent); 
a set {Po, Pl} is affine independent if Pl - Po #- 0, that is, if Pl #- Po; a set 
{Po, Pl' P2} is affine independent if it is not collinear; a set {Po, Pl' P2' P3} is 
affine independent if it is not coplanar. 

Theorem 2.4. The following conditions on an ordered set of points {Po, Pl' ... , Pm} 
in Rn are equivalent. 

(i) {Po, Pl' ... , Pm} is affine independent; 
(ii) if {so, Sl' ... , sm} c R satisfies I:"=OSiPi = 0 and L:"=OSi = 0, then So = 

Sl = ... = Sm = 0; 
(iii) each x E A, the affine set spanned by {Po, Pl' ... , Pm}, has a unique expres­

sion as an affine combination: 

m m 

X = I tiPi and I ti = 1. 
i=O i=O 

PROOF. (i) = (ii). Assume that I Si = 0 and that I SiPi = O. Then 

m m (m) m m 

i~O SiPi = i~ SiPi - i~O Si Po = i~ Si(Pi - Po) = i~ Si(Pi - Po) 

(because Pi - Po = 0 when i = 0). Affine independence of {Po, ... , Pm} gives 
linear independence of {Pl - Po, ... , Pm - Po}, hence Si = 0 for i = 1, 2, ... , 
m. Finally, I Si = 0 implies that So = 0 as well. 

(ii) = (iii). Assume that x E A. By Corollary 2.3, 

m 

X = I tiP;. 
i=O 

where I7!=o ti = 1. If, also, 
m 

X = I t;Pi, 
i=O 

where I:,,=o t; = 1, then 

m 

o = I (ti - t;)Pi· 
i=O 

Since I(ti - t;) = Iti - It; = 1 - 1 = 0, it follows that ti - t; = 0 for all i, 
and ti = t; for all i, as desired. 

(iii) = (i). We may assume that m #- O. Assume that each x E A has a unique 
expression as an affine combination of Po, ... , Pm. We shall reach a contradic­
tion by assuming that {Pl - Po, ... , Pm - Po} is linearly dependent. If so, there 
would be real numbers r i , not all zero, with 

m 

o = I ri(Pi - Po)· 
i=l 

Let rj #- 0; indeed, multiplying the equation by rj- l if necessary, we may 
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suppose that ri = 1. Now Pi E A has two expressions as an affine combination 
of Po, ... , Pm: 

Pi = 1Pi; 

Pi = - L riPi + (1 + L ri)po, 
i#i i#i 

where 1 ~ i ~ m in the summations (recall that ri = 1). D 

Corollary 2.5. Affine independence is a property of the set {Po, ... , Pm} that is 
independent of the given ordering. 

PROOF. The characterizations of affine independence in the theorem do not 
depend on the given ordering. D 

Corollary 2.6. If A is the affine set in Rn spanned by an affine independent set 
{Po, ... , Pm}, then A is a translate of an m-dimensional sub-vector-space Vof 
R", namely, 

A = V + X o 

for some Xo E R". 

PROOF. Let V be the sub-vector-space with basis {P1 - Po, ... , Pm - Po}, and 
set X o = Po· D 

Definition. A set of points {a1' a2 , ••• , ad in Rn is in general position if every 
n + 1 of its points forms an affine independent set. 

Observe that the property of being in general position depends on n. Thus, 
assume that {a1' a2 , ••• , ad eRn is in general position. Ifn = 1, we are saying 
that every pair {ai' aj } is affine independent; that is, all the points are distinct. 
If n = 2, we are saying that no three points are collinear, and if n = 3, that no 
four points are coplanar. 

Let ro, r1, ... , rm be real numbers. Recall that the (m + 1) x (m + 1) 
Vandermonde matrix V has as its ith column [1, ri, rl, ... , rt]; moreover, 
det V = ni<i(ri - ri ), hence V is nonsingular if all the ri are distinct. If one 
subtracts column ° from each of the other columns of V, then the ith column 
(for i > 0) of the new matrix is 

[0, ri - ro, rl- r6, ... , rt - rO']. 

If V* is the southeast m x m block of this new matrix, then det V* = det V 
(consider Laplace expansion across the first row). 

Theorem 2.7. For every k ~ 0, euclidean space Rn contains k points in general 
position. 
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PROOF. We may assume that k > n + 1 (otherwise, choose the origin together 
with k - 1 elements of a basis). Select k distinct reals r l' r 2' ... , rk , and for each 
i = 1, 2, ... , k, define 

ai = (ri' r?, ... , rr) ERn. 

We claim that {a l , a2 , •.• , ad is in general position. If not, there are n + 1 
points {aio' ai" ... , aiJ not affine independent, hence {ai, - aio' ai2 - aio' ... , 
ain - aiD} is linearly dependent. There are thus real numbers Sl' S2' ... ' Sn' not 
all zero, with 

o = L sj(aij - aio) = (L skij - rio)' L ski~ - ri~)' ... , L skG - ri~))· 

If V* is the n x n southeast block of the (n + 1) x (n + 1) Vandermonde 
matrix obtained from rio' ri" ... , rin, and if (j is the column vector (j = 

(Sl' S2' ... , sn), then the vector equation above is V*(j = O. But since all the ri 
are distinct, V* is nonsingular and (j = 0, contradicting our hypothesis that 
not all the Si are zero. 0 

There are other proofs of this theorem using induction on k. The key 
geometric observation needed is that Rn is not the union of only finitely many 
(proper) affine subsets (the reader may take this observation as an exercise). 

EXERCISES 

2.1. Every affine subset A ofR" is spanned by a finite subset. (Hint: Choose a maximal 
affine independent subset of A.) Conclude that every nonempty affine subset of 
R" is as described in Corollary 2.6. 

*2.2. Assume that n < k and that the vector space R" is isomorphic to a subspace of 
Rk (not necessarily the subspace of all those vectors whose last k - n coordinates 
are 0). If X is a subset of R", then the affine set spanned by X in R" is the same 
as the affine set spanned by X in Rk. 

2.3. Show that S" contains an affine independent set with n + 2 points. (Hint: 
Theorem 2.7.) 

Definition. Let {Po, Pl' ... , Pm} be an affine independent subset of Rn, and let 
A be the affine set spanned by this subset. If x E A, then Theorem 2.4 gives a 
unique (m + I)-tuple (to, t l , ... , tm) with L ti = 1 and x = L:"=o tiPi. The en­
tries of this (m + I)-tuple are called the barycentric coordinates of x (relative 
to the ordered set {Po, Pl' ... , Pm})· 

In light of Exercise 2.2, the barycentric coordinates of a point relative to 
{Po, Pl' ... , Pm} eRn do not depend on the ambient space Rn. 

Definition. Let {Po, Pl' ... , Pm} be an affine independent subset of Rn. The 
convex set spanned by this set, denoted by [Po, Pl' ... , Pm], is called the (affine) 
m-simplex with vertices Po, Pl'···' Pm· 
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Theorem 2.8. If {Po, Pl' ... , Pm} is affine independent, then each x in the 
m-simplex [Po, Pl' ... , Pm] has a unique expression of the form 

x = L tiPi' where L ti = 1 and each ti ;::::.: O. 

PROOF. Theorem 2.2 shows that every x E [Po, ... , Pm] is such a convex 
combination. Were this expression not unique, the barycentric coordinates of 
x would not be unique. D 

Definition. If {Po, ... , Pm} is affine independent, the barycenter of [Po, ... , Pm] 
is (11m + i)(po + Pl + ... + Pm)· 

Barycenter comes from the Greek barys meaning heavy; thus, barycenter 
is just "center of gravity". Let us consider some low-dimensional examples; 
we assume that {Po, ... , Pm} is affine independent. 

EXAMPLE 2.1. [Po] is a O-simplex and consists of one point, which is its own 
barycenter. 

EXAMPLE 2.2. The i-simplex [Po, Pl] = {tpo + (1 - t)Pl: tEl} is the closed 
line segment with endpoints Po, Pl. The barycenter ·!"<Po + Pl) is the midpoint 
of the line segment. 

EXAMPLE 2.3. The 2-simplex [Po, Pl, P2] is a triangle (with interior) with 
vertices Po, Pl' P2; the barycenter l(po + Pl + P2) is the center of gravity (this 
is easy to see in the special case of an equilateral triangle). Note that the three 
edges are [Po, Pl], [Pl' P2], and [Po, P2]. Now [Po, Pl] is the edge opposite 

Po L.... ____ -l PI 

P2 and is the i-simplex obtained by deleting P2. Thus, a point on this edge has 
barycentric coordinates (t, 1 - t, 0); that is, the coordinate t2 is O. More 
generally, (to, t l' t2) lies on an edge if and only if one of its coordinates is zero 
(after all, such points are convex combinations of the endpoints of their 
respective edges). 

EXAMPLE 2.4. The 3-simplex [Po, Pl' P2, P3] is the (solid) tetrahedron with 
vertices Po, Pl' P2' P3· The triangular face opposite Pi consists of all those 
points whose ith barycentric coordinate is zero. 
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EXAMPLE 2.5. For i = 0, 1, ... , n, let ei denote the point in Rn+1 having 
(cartesian) coordinates all zeros except for 1 in the (i + l)st position. Clearly, 
{eo, e1, ... , en} is affine independent (it is even linearly independent). Now 
[eo, e 1, ... , en] consists of all convex combinations x = L tiei. In this case, bary-
centric and cartesian coordinates (to, t1, ... , tn) coincide, and [eo, e1, ... , en] 
= An, the standard n-simplex. 

The next definition gives names to what was seen in the examples. 

Definition. Let [Po, P1' ... , Pm] be an m-simplex. The face opposite Pi is 

[Po, ... , Pi' ... , Pm] = U: tjN tj 2: 0, L tj = 1, and ti = O} 

(circumflex A means "delete"). The boundary of [Po, P1' ... , Pm] is the union 
of its faces. 

Clearly, an m-simplex has m + lfaces. For an integer k with ° ::;; k ::;; m - 1, 
one sometimes speaks of a k-face of [Po, P1' ... , Pm], namely, a k-simplex 
spanned by k + 1 ofthe vertices {Po, P1' ... , Pm}. In this terminology, the faces 
defined above are (m - I)-faces. 

The following theorem will be needed when we discuss barycentric sub­
division. 

Theorem 2.9. Let S denote the n-simplex [Po, ... , Pn]. 

(i) If u, v E S, then lIu - vii::;; SUPi lIu - Pi II. 
(ii) diam S = sUPi,i Ilpi - pJ. 

(iii) If b is the barycenter of S, then lib - p;!1 ::;; (nln + 1) diam S. 

PROOF. (i) v = L tiPi' where ti 2: ° and L ti = 1. Therefore 

Ilu - vii = lIu - L tiPJ = II(L ti)u - L tiP;!1 

::;; L tillu - Pill::;; L ti sup Ilu - pdl = sup lIu - pdl· 

(ii) By (i), Ilu - pdl ::;; SUPj IIpj - p;II. 
(iii) Since b = (lin + 1) LPi' we have 

i i 

lib - Pi II = II Jo (lin + l)pj - Pi II = tto (lin + l)pj - (Jo (lin + 1)) Pi II 

= II ito (lin + l)(pj - Pi) II 

n 

::;; (lIn + 1) L Ilpi - Pill 
j=O 

::;; (nln + 1) sup II Pj - p;!1 (for II Pj - p;!1 = ° when j = i) 
i,j 

= (nln + 1) diam S. o 
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Affine Maps 

Definition. Let {Po, Pi' ... , Pm} eRn be affine independent and let A denote 
the affine set it spans. An affine map T: A --t Rk (for some k ~ 1) is a function 
satisfying 

T(L tjPj) = L tj T(pj) 

whenever L tj = 1. The restriction of T to [Po, Pi' ... , Pm] is also called an 
affine map. 

Thus affine maps preserve affine combinations, hence convex combina­
tions. It is clear that an affine map is determined by its values on an affine 
independent subset; its restriction to a simplex is thus determined by its values 
on the vertices. Moreover, uniqueness of barycentric coordinates relative to 
{Po, ... ,Pm} shows that such an affine T exists, since the formula in the 
definition is well defined. 

Theorem 2.10. If [Po, ... , Pm] is an m-simplex, [qo, ... , qn] an n-simplex, and 
f: {Po, ... , Pm} --t [qo, ... , qn] any function, then there exists a unique affine 
map T: [Po, ... , Pm] --t [qo, ... , qn] with T(Pi) = f(Pi) for i = 0, 1, ... , m. 

PROOF. Define T(L tiPi) = L tJ(Pi), where L tiPi is a convex combination. 
Uniqueness is obvious. 0 

EXERCISES 

*2.4. If T: Rn -+ Rk is affine, then T(x) = A(X) + Yo, where A: Rn -+ Rk is a linear 
transformation and Yo E Rk is fixed. (Hint: Define Yo = T(O).) 

2.5. Every affine map is continuous. 

*2.6. Prove that any two m-simplexes are homeomorphic via an affine map. 

*2.7. Give an explicit formula for the affine map 8: R -+ R carrying [Sl' S2] -+ [t l , t 2 ] 

with 8(Si) = ti , i = 1, 2. In particular, give a formula for the affine map taking 
[32,212] onto [0, 100]. (Hint: 8(x) = AX + xo, by Exercise 2.4.) 

*2.8. Let A c Rn be an affine set and let T: A -+ Rk be an affine map. If X c A is 
affine (or convex), then T(X) c Rk is affine (or convex). In particular, if a, bare 
distinct points in A and if t is the line segment with endpoints a, b, then T(t) 
is the line segment with endpoints T(a), T(b) if T(a) #- T(b), and T(t) coJlapses 
to the point T(a) if T(a) = T(b). 

2.9. If {Po, Pl' ... , Pm} is affine independent with barycenter b, then {b, Po, ... , 
Pi' ... , Pm} (Le., delete Pi) is affine independent for each i. 

*2.10. Show that, for 0:-:;;; i :-:;;; m, [Po, ... , Pm] is homeomorphic to the cone 
C[Po, ... , Pi' ... , Pm] with vertex Pi· 

*2.11. Give an explicit homeomorphism from an n-simplex [Po, ... , Pn] to Dn. (Hint: 
Any n-simplex is homeomorphic to An, by Exercise 2.6, and An ~ Dn by radial 
stretching.) 



CHAPTER 3 

The Fundamental Group 

The first functor we have constructed on Top (actually, on hTop), namely, TCo, 

takes values in Sets; it is of limited use because it merely counts the number 
of path components. The functor to be constructed in this chapter takes values 
in Groups, the category of (not necessarily abelian) groups. The basic idea is 
that one can "multiply" two paths f and g if f ends where g begins. 

The Fundamental Groupoid 

Definition. Letf, g: I ..... X be paths withf(1) = g(O). Define a pathf * g: I ..... X 
by 

{
f(2t) if 0 ::;; t ::;; 1 

(f * g)(t) = g(2t _ 1) if 1::;; t ::;; 1. 

The gluing lemma shows that f * g is continuous (for f(1) = g(O)), and so 
f * g is a path in X. Our aim is to construct a group whose elements are certain 
homotopy classes of paths in X with binary operation [fJ [gJ = [f * g]. Now 
if we impose the rather mild condition that X be path connected, then con­
tractibility ofI implies that all maps I ..... X are homotopic (Exercise 1J9(ii)); 
thus, there is only one homotopy class of maps. Since groups of order 1 carry 
little information, we modify our earlier definition of homotopy. 

Definition. Let A c X and letfo,f1: X ..... Y be continuous maps with folA = 

f11A. We write 

fo =:= f1 reI A 
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if there is a continuous map F: X x I ~ Y with F:/o ~ 11 and 

F(a, t) = lo(a) = 11 (a) for all a E A and all tEl. 

The homotopy F above is called a relative homotopy (more precisely, a 
homotopy reI A); in contrast, the original definition (which may be viewed as 
a homotopy reI A = 0) is called a free homotopy. We leave to the reader the 
routine exercise that, for fixed A c X, homotopy reI A is an equivalence 
relation on the set of continuous maps X ~ Y. 

Definition. Let t = {O, 1} be the boundary of I in R. The equivalence class of 
a path I: I ~ X reI i is called the path class of I and is denoted by [f]. 

No confusion should arise from using the same notation for the homotopy 
class of a path as for its path class, because we have remarked that the (free) 
homotopy class is always trivial. 

Theorem 3.1. Assume that 10' 11' go, gl are paths in X with 

10 ~ 11 rel i and go ~ gl reI i. 

1110(1) = 11 (1) = go(O) = gl (0), then 10 * go ~ 11 * gl reI i. 

Remark. In path class notation, if [fo] = [f1] and [go] = [gl], then 
[fo * go] = [f1 * gl] (assuming that the stars are defined). 

PROOF. If F:fo ~ 11 reI i and G: go ~ gl reI i, then one checks easily that 
H: I x I ~ X defined by 

{
F(2t,S) ifO::;;t::;;! 

H t s = 
(,) G(2t - 1, s) if!::;; t ::;; 1 

is a continuous map (the gluing lemma applies because both functions agree 
on {!} x I) that is a relative homotopy 10 * go ~ 11 * gl reI i. 0 

EXERCISES 

*3.1. Generalize Theorem 1.3 as follows. Let A c X and BeY be given. Assume that 
fO'!l: X -+ Y with folA = f11A and J;(A) c B for i = 0.1; assume go, gl: Y -+ Z 
with golB = gdB. If fa ~ f1 rei A and go ~ gl rei B, then go ofo ~ gl of1 reI A. 

*3.2. (i) If f: I -+ X is a path with f(O) = f(1) = Xo E X, then there is a continuous 
1': Sl -+ X given by f'(e2nit ) = f(t). If f, g: I -+ X are paths with f(O) = 
f(1)=xo=g(0)=g(1) and if f~grelt, then f'~g'rel{1} (of course, 
1 = eO E Sl). 

(ii) If f and 9 are as above, then f ~ f1 reI t and 9 ~ gl reI t implies that 
I' * g' ~ f; * g~ rel{1}. 

3.3. Using Theorem 1.6, show (with the notation of Exercise 3.2) that if f and 9 are 
paths with 9 constant, then I' ~ g' reI {1} if and only if there is a free homotopy 
I' ~ g'. 
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Definition. If I: I .... X is a path from Xo to Xl' call Xo the origin of I and write 
Xo = CL(!); call x 1 the end of I and write Xl = w(!). A path I in X is closed at 
Xo if CL(f) = Xo = w(f). 

Observe that if I and 9 are paths with I ~ 9 reI 1, then CL(!) = CL(g) and 
w(!) = meg); therefore we may speak of the origin and end of a path class and 
write CL[fJ and w[f]. 

Definition. If p E X, then the constant function ip: I .... X with ip(t) = P for all 
tEl is called the constant path at p. If I: I .... X is a path, its inverse path 
1-1: I .... X is defined by tl-+ 1(1 - t). 

EXERCISES 

*3.4. Let u: ,:\2 -+ X be continuous, where ,:\2 = [eo, e l , ezl 

Define 8 0 : 1-+,:\2 as the affine map with 8 0 (0) = el and 80 (1) = e2 ; similarly, 
define 8 1 by 8 1 (0) = eo and 8 1 (1) = e2 , and define 8z by 8 2 (0) = eo and 8z(1) = el • 

Finally, define Ui = U 0 8 i for i = 0, 1,2. 
(i) Prove that (uo * Uil) * Uz is nullhomotopic reI 1. (Hint: Theorem 1.6.) 

(ii) Prove that (ul * uol ) * U;I is null homotopic reI 1. 
(iii) Let F: I x I -+ X be continuous, and define paths ex, {3, y, fJ in X as 

indicated in the figure. 

(3 
.... 

Thus, ex(t) = F(t, 0), f3(t) = F(t, 1), y(t) = F(O, t), and fJ(t) = F(1, t). Prove 
that ex ~ y * f3 * (5-1 reI 1. 
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*3.5. Let 10 ~ II reI t and go ~ 9 I reI t be paths in X and Y, respectively. If, for i = 0, 
1, (/;, gi) is the path in X x Y defined by t ..... (/;(t), gi(t)), prove that (fo, go) ~ 
(fl' gd reI 1. 

*3.6. (i) If I ~ 9 reI 1, then I-I ~ g-I reI t, where I, 9 are paths in X. 
(ii) If I and 9 are paths in X with w(f) = cx(g), then 

(f * g)-I = g-I * I-I. 

(iii) Give an example of a closed path I with I * I-I 0/= I-I * f. 
(iv) Show that if cx(f) = p and I is not constant, then ip * I 0/= I. 

Exercise 3.6 shows that it is hopeless to force paths to form a group under 
* unless we can somehow identify, for example,f * f- 1 withf-1 * f(of course, 
there are other obstacles as well}. The next theorem shows that replacing paths 
by path classes resolves most problems. 

Theorem 3.2. If X is a space, then the set of all path classes in X under the (not 
always defined) binary operation [f] [g] = [f * g] forms an algebraic system 
(called a groupoid) satisfying the following properties: 

(i) each path class [fJ has an origin ll([fJ = p E X and an end w[fJ = q E X, 
and 

[ip] [fJ = [fJ = [fJ [iq]; 

(ii) associativity holds whenever possible; 
(iii) if p = Il([f] and q = w[fJ, then 

[fJ [f-1] = [ip ] and [f-1] [fJ = [iq ]. 

PROOF. (i) We show only that ip * f ~ frel 1; the other half is similar. 

(0, 1) 

><-------1 (I, t) 

(0, 0) L<.£.c.LLLL..L~ ___ --' 

(1,0) -s 

First, draw the line in I x I joining (0, 1) to (t, O); its equation is 2s = 1 - t. 
For fixed t, define ()r: [(1 - t)/2, 1] --+ [0, 1] as the affine map matching the 
endpoints of these intervals. By Exercise 2.7, 
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Define H: I x I -+ X by 

8t (s) = s - (1 - t)/2. 
1 - (1 - t)/2 

H(s t) = S p if 2s :$; 1 - t ((s, t) E shaded triangle) 
, l!(8t (s)) = f((2s - 1 + t)/(1 + t)) if 2s ;;::: 1 - t. 
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One sees easily that H is continuous (using the gluing lemma),1 that 
H: ip * f ~ J, and that t remains fixed during the homotopy. 

(ii) To prove associativity, use the picture below. 

f 

o 

1 1-
"4 2 

f 
1. 
2 

1. 
4 

h 

First, draw the slanted lines in I x I and write their equations. On each of the 
three pieces, construct a continuous function whose formula is, for each fixed 
t, the affine map from the bottom Oth interval (e.g., from [0, t]) to the upper 
tth interval (e.g., to [0, (2 - t)/4]). It suffices to show that the continuous map 
obtained by gluing maps together, as in part (i), is a homotopy f * (g * h) ~ 
(f * g) * h reI t, and this is routine. 

(iii) We show only that f * f- 1 ~ ip reI t; the other half is similar. One 
proceeds as in the first two cases, subdividing I x I; here are the formulas. 
Define H: I x I -+X by 

{
f(2S(1 - t)) if 0 :$; s :$; t 

H(s, t) = f(2(1 _ s)(1 - t)) if t :$; s :$; 1. 

That H is the desired relative homotopy is left to the reader. o 
The groupoid in Theorem 3.2 is not a group because multiplication is not 

always defined; we remedy this defect in the most naive possible way, namely, 
by restricting our attention to closed paths. See [Brown] for uses of groupoids 
in topology. 

1 I x I is divided into two pieces: a triangle and a quadrilateral. The affine maps on each tth 
interval give the formula for a function of two variables defined on the quadrilateral; this formula 
is used to show that this function is continuous. 
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Definition. Fix a point Xo E X and call it the basepoint. The fundamental group 
of X with basepoint Xo is 

1t 1(X, xo) = {[f]: [fJ is a path class in X with cx[fJ = Xo = w[fJ} 

with binary operation 

[fJ [g] = [f * g]. 

Theorem 3.3. 1t1 (X, xo) is a group for each Xo E X. 

PROOF. This follows at once from Theorem 3.2. 

The Functor 11: 1 

D 

We have been led to the category Top*of pointed spaces and pointed maps 
that we introduced in Chapter O. Recall that a morphism f: (X, xo) ~ (Y, Yo) 
is a continuous map f: X ~ Ypreserving the basepoint: f(xo) = Yo. In Top*, 
one usually chooses 0 as the basepoint of! and 1 as the basepoint of S1. 

Theorem 3.4. 1t 1 : Top* ~ Groups is a (covariant) functor. Moreover, if h, 
k: (X, xo) ~ (Y, Yo) and h ~ k reI {xo}, then 1t1 (h) = 1t1 (k). 

PROOF. If [f] E 1t1 (X, xo), define 1tl (h) by [f] f-+ [h 0 fJ. Note that the com­
posite h 0 f: I ~ Y is defined, is continuous, and is a closed path in Y at Yo; 
thus [h 0 fJ E 1t1 (Y, Yo). Also, 1tl (h) is well defined: if f ~ f' rel 1, then h 0 f ~ 
h 0 f' reI t (Exercise 3.1). If f and g are closed paths in X at xo, then evaluation 
of both sides shows that there is equality (not merely homotopy) 

h 0 (f * g) = (h 0 f) * (h 0 g); 

it follows that 1t 1 (h) is a homomorphism. 
It is routine to check that 1t1 preserves composition and identities in Top*, 

so that 1t 1 is indeed a functor. 
Finally, Exercise 3.1 shows that h ~ k reI {xo} implies that h 0 f ~ k 0 f reI t 

whenever f is a closed path in X at Xo' Thus [h 0 fJ = [k 0 fJ for all such f; 
that is, 1t 1 (h) = 1t 1 (k). D 

Remarks. (1) One usually writes h* instead of 1t 1(h) and calls h* the map 
induced by h. 

(2) We have shown that h* = k* if there is a relative homotopy h ~ k 
rel{xo}. We have not shown that h* = k* if there is a free homotopy h ~ k 
(between pointed maps hand k), and this may not be true (we shall return to 
this point in Lemma 3.8). 

(3) There is a category appropriate to the fundamental group functor 1t l' 

Define the pointed homotopy category, hTop*, as the quotient category arising 
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from the congruence of relative homotopy: if fo, fl: (X, xo) ~ (Y, Yo), then 
fo ~ fl rel{xo}· The objects ofhTop* are pointed spaces (X, xo), morphisms 
(X, xo) --+ (Y, Yo) are relative homotopy classes [f], where f: (X, xo) ~ (Y, Yo) 
is a pointed map, and composition is given by [h] [f] = [h 0 f] (when h, f 
can be composed in Top*). By Exercise 3.2, each closed path f: (I, t) ~ (Y, Yo) 
may be viewed as a pointed map f': (SI, 1) --+ (Y, Yo). If Hom sets in hTop* are 
denoted by [(X, xo), (Y, Yo)], then [f] f---+ [f'] is a bijection 

7t 1 (Y, Yo) ~ [(Sl, 1), (Y, Yo)]. 

Using Exercise 3.2(ii), one may introduce a multiplication in the Hom set, 
namely, [f'] [g'] = [(f * g)'J, and the bijection is now an isomorphism. There­
fore 71:1 is an instance of a covariant Hom functor (Example 0.11). Roughly 
speaking, the fundamental group of a space Y is just the set of morphisms 
SI --+ Y. We shall elaborate on this theme when we introduce the higher 
homotopy group functors 7tn (which, roughly speaking, are the morphisms of 
sn into a space). These remarks are designed to place 7tl in its proper context, 
to whet the reader's appetite for the 7I:n'S, and to indicate that paying attention 
to categories is worthwhile. On the other hand, we must say that the funda­
mental group was invented and used (by Poincare) 50 years before anyone 
dreamt of categories! 

Let us return to properties of fundamental groups. The next result shows 
that one may as well assume that spaces are path connected. 

Let Xo be a basepoint of a space X, and let A be a subspace of X containing 
xo; the inclusionj: (A, xo) '-> (X, xo) is a pointed map, and hence it induces a 
homomorphismj*: 71:1 (A, xo) --+ 71:1 (X, xo), namely, [f] f---+ Uf] (where f is a 
closed path in A at xo). The path jf is the path f now regarded as a path in 
X. It is possible that f is not nUllhomotopic in A, yet f (really, jf) is null­
homotopic in X (e.g., take X to be a contractible space containing A-the 
cone CA will do for X); the extra room in X may allow f to be contracted to 
a point in X even though this is impossible in A. The homomorphismj* may 
thus have a kernel. 

Theorem 3.5. Let Xo E X, and let Xo be the path component of X containing Xo. 
Then 

PROOF. Let j: (Xo, xo) '-> (X, xo) be the inclusion. If [f] E ker j*, then jf ~ 
c reI 1, where c: I ~ X is the constant path at xo. If F: I x I --+ X is a 
homotopy, then F(O, 0) = Xo; as F(I x I) is path connected, it follows that 
F(I x I) c Xo.1t is now a simple matter to see that f is nullhomotopic in Xo. 
Hencej* is injective. To see thatj* is surjective, observe that if f: I --+ X is a 
closed path at xo, then f(l) c Xo. Be fussy and define f': 1--+ Xo by f'(t) = 
f(t) for all tEl; note that jf' = f. 0 
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What happens when the basepoint is changed? 

Theorem 3.6. If X is path connected and x o, Xl E X, then 

1t l (X, xo) ~ 1t l (X, xd· 

PROOF. Let y be a path in X from Xo to Xl' Define cp: 1t l (X, xo) -+ 1t l (X, Xl) 
by [f] 1--+ [y-l ] [f] [y] (note that the multiplication occurs in the groupoid 
of X). Using Theorem 3.2, one sees easily that cp is an isomorphism (with 
inverse [g] 1--+ [y] [g] [y-l ]). D 

It follows that the fundamental group of a space X is independent of the 
choice of basepoint when X is path connected. 

Let us establish notation. In a cartesian product H x K, there are two 
projections: p: H x K -+ Hand q: H x K -+ K defined by p(h, k) = hand 
q(h, k) = k. Also, if 0(: L -+ Hand f3: L -+ K are functions from some set L, then 
there is a function (0(, f3): L -+ H x K defined by (0(, f3)(x) = (O(x), f3(x)). Of 
course, p 0 (0(, f3) = 0( and q 0 (0(, f3) = f3. 

HxK 

yr~ 
H~ :~(ri,fJ) K 

ri~ I fJ 
L 

If the sets are groups and the functions are homomorphisms, then (0(, f3) is a 
homomorphism; if the sets are topological spaces and the functions are 
continuous, then (0(, f3) is continuous. 

Theorem 3.7. If (X, xo) and (Y, Yo) are pointed spaces, then 

1tl (X x Y, (xo, Yo)) ~ 1tl (X, xo) X 1tl (Y, Yo)· 

PROOF. Let p: (X x Y, (xo, Yo)) -+ (X, xo) and q: (X x Y, (xo, Yo)) -+ (Y, Yo) be 
the projections. Then (p*, q*): 1tl (X x Y, (xo, Yo)) -+ 1tl (X, xo) X 1tl (Y, Yo) is 
a homomorphism. In more detail, if f: I -+ X x Y is a closed path at (xo, Yo), 
then (p*, q*): [f] 1--+ (p* [f], q* [f]) = ([pf], [qf]). We show that (p*, q*) is 
an isomorphism by displaying its inverse. Let g be a closed path in X at X o, 
and let h be a closed path in Y at Yo; define (): 1t l (X, xo) x 1t l (Y, yo)-+ 
1tl (X X Y, (xo, Yo)) by 

(): ([g], [h]) 1--+ [(g, h)], 

where (g, h): I -+ X x Y is defined by t 1--+ (g(t), h(t)); Exercise 3.5 shows that 
() is well defined. It is routine to check that (p*, q*) and () are inverse. D 

Remark. Often it is not enough to know that two groups are isomorphic; one 
needs to know an explicit isomorphism. For example, we shall use the isomor­
phisms (p*, q*) and () in the proof of Theorem 3.20. 
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EXERCISES 

3.7. If X is the sin(1/x) space, prove that n 1 (X, xo) = {1} for every Xo E X. 

*3.8. Give an example of a contractible space that is not locally path connected. 
(Hint: Take the cone on a suitable space.) 

*3.9. Let X be a space. Show that there is a category rc with obj rc = X, with 
Hom(p, q) = {all path classes [fJ with llC[fJ = P and w[fJ = q}, and with 
composition Hom(p, q) x Hom(q, r) ---> Hom(p, r) defined by ([fJ, [gJ)t---> 
[f * g]. Show that every morphism in rc is an equivalence. 

3.10. If (X, xo) is a pointed space, let the path component of X containing Xo be the 
basepoint of no (X); show that no defines a functor Top* ---> Sets* (pointed sets). 

*3.11. If X = {xo} is a one-point space, then n1(X, xo) = {l}. 

Choosing a basepoint in X is only an artifice to extract a group from a 
groupoid. On this minor point, we have constructed new categories Top* and 
hTop*; eventually, we shall see that we have not overreacted. Nevertheless, 
these constructions raise an honest question: Do spaces having the same 
homotopy type have isomorphic fundamental groups? 

Lemma 3.8. Assume that F: ({Jo ::e ({J1 is a (free) homotopy, where ({Ji: X ---> Y is 
continuous for i = 0, 1. Choose Xo E X and let A denote the path F(xo, ) in Y 
from ({Jo(X o) to ({J1 (xo). Then there is a commutative diagram 

.,(X, X'~"(Y' rOll 
1t1 (Y, ((Jo(xo)), 

where I/J is the isomorphism [g] ~ [A * g * A-I]. 

PROOF. Let f: I ---> X be a closed path at xo, and define G: I x 1---> Y by 

G(t, s) = F(f(t), s). 

Note that G: ({Jo 0 f ::e ({J1 0 f (of course, ({Jo 0 f and ({J1 0 f are closed paths in 
Yat ({Jo(xo) and ({J1 (xo), respectively). Consider the two triangulations of the 
square I x I pictured below. 

1 
4 

1 
2" 

q..----------,--------"p 
c 

a""--------------"b 

/j r-------71 

p 

"'---------'" {3 



48 3. The Fundamental Group 

Define a continuous map H: I x I --+ I x I by first defining it on each triangle 
and then invoking the gluing lemma. On each triangle (2-simplex), H shall be 
an affine map; it thus suffices to evaluate H on each vertex (observe that 
agreement on overlaps is automatic here). Define H(a) = H(q) = 0(, H(b) = 

H(p) = f3; H(c) = y; H(d) = b; H(r) = p. By Exercise 2.8, the vertical edge 
[a, q] collapses to 0(, and the vertical edge [b, p] collapses to f3. Also, [q, d] 
goes to [0(, b], Ed, c] goes to [b, y], and [c, p] goes to [y, f3]. The map J = 

Go H: I x 1--+ Y is easily seen to be a relative homotopy; 

J: IPo of ~ (A.*(IPI of))d-1 rell 

Therefore IPo*[f] = [IPo of] = [A * IPl of * rl] (using homotopy associa­
tivity). On the other hand, t/l1P1*[f] = t/I[IPl of] = [hIPl ofd-1], as 
desired. D 

This lemma shows that freely homotopic maps IPo and IPl may not induce 
the same homomorphism between fundamental groups, because they differ by 
the isomorphism t/I. 

Corollary 3.9. Assume that IPi: (X, xo) --+ (Y, Yo), for i = 0, 1, are freely homo­
topic. 

(i) 1Po* and IPl* are conjugate; that is, there is [A] E nl(Y, Yo) with IPo*[f] = 

[A]IPl*([f])[Arl for every [f] E nl(X, xo)· 
(ii) If nl(Y, Yo) is abelian, then IPo* = IPl*' 

PROOF. In the notation of the lemma, we have IPo(xo) = Yo = IPl (xo), and the 
path A in Y is now a closed path at Yo; therefore [A] lies in n l (Y, Yo). The path 
class [A * IPl * f * A-I], which can always be factored in the groupoid of Y, now 
factors in the group n1(Y, Yo): 

[hIPl O!*A-l ] = [A][IPl of] [A-I] 

= [A]IPu([f])[Arl. 

This proves (i), and the second statement is immediate from this. D 

Theorem 3.10. If f3: X --+ Y is a homotopy equivalence, then the induced homo­
morphism f3*: n l (X, x o) --+ n 1 (Y, f3(xo)) is an isomorphism for every Xo E X. 

PROOF. Choose a continuous map 0(: Y --+ X with 0( a f3 ~ Ix and f3 a 0( ~ ly. 
By the lemma, the lower triangle of the diagram below commutes. 
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Since'" is an isomorphism, it follows that (cxP)* is an isomorphism. Now the 
top triangle commutes because 11:1 is a functor: (cx{J)* = cx*{J*. It follows that 
{J* is injective and cx* is surjective. A similar diagram arising from {Jcx ~ 1y 
shows that {J* is surjective; that is, {J* is an isomorphism. 0 

Corollary 3.11. Let X and Y be path connected spaces having the same homotopy 
type. Then, for every Xo E X and Yo E Y, we have 

11:1 (X, Xo) ~ 1I: 1(Y, Yo)· 

PROOF. The theorem gives 11:1 (X, Xo) ~ 11:1 (Y, {J(xo)) if {J: X ~ Yis a homotopy 
equivalence, and Theorem 3.6 shows that the isomorphism class of either side 
is independent of the choice of basepoint. 0 

Corollary 3.12. If X is a contractible space and Xo E X, then 

11:1 (X, Xo) = {1}. 

PROOF. Corollary 3.11 and Exercise 3.11. (This result also follows from 
Theorem 1.13.) D 

Definition. A space X is called simply connected if it is path connected and 
11:1 (X, Xo) = {1} for every Xo E X. 

According to this definition, all simply connected spaces are path con­
nected; that is, both 11:1 and 11:0 are trivial. The reader should be aware that 
some authors allow simply connected spaces that are not path connected; this 
means that every path component is simply connected in our sense. 

Remark. In complex variables, one calls an open connected subset U of e 
(= C U {oo}, homeomorphic to S2) simply connected if its complement is 
connected. This agrees with our definition, but it requires some work to prove 
it: 1I: 1(U, uo) = {1} if and only if S2 - U is connected. 

We have just shown, in Corollary 3.12, that contractible spaces are simply 
connected. The converse is false; for example, we will see eventually that sn is 
simply connected whenever n 2 2, yet these spheres are not contractible. 

Here is another consequence of Theorem 3.10. 

Corollary 3.13. If {J: (X, xo) ~ (Y, Yo) is (freely) nullhomotopic, then the induced 
homomorphism {J*: 1I: 1(X, xo) ~ 1I: 1 (Y, Yo) is trivial. 2 

PROOF. If k: X ~ Y is a constant map at Yl' say, then it is easy to see that 
k*: 11:1 (X, Xo) ~ 1I: 1 (Y, Yl) is trivial (k*[f] = [k of], and k of is a constant 

2 If G and H are groups, a homomorphism cp: G ---> H is called trivial if cp(x) = 1 for all x E G, 
where 1 is the identity element of H. 



50 3. The Fundamental Group 

path). Suppose that 13 ::= k, as in the hypothesis. By Lemma 3.8, there is an 
isomorphism 1/1 with 1/113* = k*; it follows that 13* = I/I-1 k* is trivial. 0 

We have yet to exhibit a space that is not simply connected, that is, a space 
with a nontrivial fundamental group. Since 71:1 (X, xo) consists of relative 
homotopy classes of maps SI -+ X, the space X = SI suggests itself for 
consideration. 

EXERCISE 

3.12. If ndY, Yo) # {1} for some pointed space (Y, Yo), then nl(Sl, 1) # {1}. (Hint: 
Otherwise 1s is nullhomotopic, where Is is the identity map on sl, and this 
implies that f = f 0 1s is nullhomotopic for every closed path f in Y at Yo·) 

To compute 71:1(SI, 1), let us view SI as the set of all complex numbers z 
with II z II = 1. One feels that z f-+ Z2, which wraps I around SI twice, ought not 
to be homotopic to the constant map Z f-+ ZO = 1, and so we seek a way to 
distinguish these two functions (of course, we must even distinguish their 
homotopy classes). Recall from complex variables that these functions can be 
distinguished by a certain line integral called the winding number: 

W(f)=~ J dz 
2m 'jj Z 

(here f: (I, t) -+ (SI, 1) is a parametrization of the circle by some "nice", e.g., 
differentiable, function f). Evaluate W(f) by rewriting f(t) = exp ](t) for some 
real-valued function] [exp s denotes e 2ltiS ]. With this rewriting, one can 
convert the line integral into an ordinary integral via the substitution z = 

f(t) = exp](t). Thus dz = z271:il'(t) dt and 

1 f dz fl - - -W(f) = -. - = f'(t) dt = f(l) - f(O). 
2m J z 0 

For example, let f(t) = e2ltimt be the function wrapping I around SI Iml times 
(counterclockwise if m ~ 0 and clockwise if m < 0). Here we may let ](t) = mt, 
and so 

W(f) = ](1) - ](0) = m. 

(Note that there are other possible choices for j, namely, ](t) = mt + k for any 
fixed integer k. This multitude of choices is easily explained: ] is essentially 
logf, and the complex logarithm is not single-valued.) Here is the point of 
these remarks. Investigation of 71:1(SI) in the spirit of the winding number 
suggests constructing maps 1: I -+ R with f(t) = e 2lt ;j(t) (for every closed path 
fin SI); moreover, attention should be paid to ](1) and ](0). 
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Lemma 3.14. Let X be a compact convex subset of some R\ let f: (X, xo)-+ 
(Sl, 1) be continuous, let to E Z, and let exp t denote e21[it. Then there exists a 
unique continuous j: (X, xo) -+ (R, to) with expj = f 

(R, to) 

}/~ j "P 

(X, xo) ~ (Sl, 1) 

Remarks. (1) j is called a lifting of f 
(2) In order that expj(xo) = f(xo) = 1, to must be an integer. 

PROOF. Since X is compact metric, f must be uniformly continuous. There is 
thus B > 0 such that whenever Ilx - x'il < B, then Ilf(x) - f(x')11 < 2 (we 
choose 2 = diam Sl to guarantee that f(x) and f(x') are not antipodal, i.e., 
f(x)f(x')-l =I- -1). Now X bounded implies the existence of a positive integer 
n with IIx - xoli/n < B for all x E X. 

For each x E X, subdivide the line segment having endpoints Xo and x 
(which is contained in X by convexity) into n intervals of equal length using 
(uniquely determined) points xo, Xl' ... , Xn = x. Thus Ilxj - xj+111 = 
Ilx - xoll/n < B, hencef(xTlf(xj+1) =I- -1. For eachjwith 0 ~j ~ n - 1, the 
function gj: X -+ Sl - { -I} defined by 

gix) = f(Xj)-lf(xj+l ) 

is easily seen to be continuous (for multiplication Sl x Sl -+ Sl and inversion 
Sl -+ Sl are continuous); note that gj(xo) = 1 for all j. Since Sl is a multi­
plicative group, there is a "telescoping product" in Sl: 

f(x) = f(xo) [f(xoflf(xl)] [f(Xl)-lf(X2)]··· [f(xn_d-lf(xn)] 

= f(xo)gO(X)gl (x)··· gn-l (x). 

Now the restriction of exp to (-t, t) is a homeomorphism from (-t, t) 
to Sl - { -I}; let us call its inverse A (actually, A = (1/2ni) log); note that 
A(I) = o. Since im gj c Sl - { -I} for all j, each A 0 gj is defined and con­
tinuous. Define j: X -+ R by 

j(x) = to + A(gO(X)) + A(gl (x)) + ... + A(gn-l (x)). 

Now j is continuous (it is a sum of continuous functions), j(xo) = to 
(because gj(xo) = 1 for all j and A(I) = 0), and expj = f (because exp is a 
homomorphism). 

To prove uniqueness of j, assume that iJ: X -+ R is a continuous function 
with exp iJ = f and iJ(xo) = to. Define h: X -+ R by h(x) = j(x) - iJ(x); it is 
clear that h is continuous. Now 

exp h(x) = exp(j(x) - iJ(x)) = expj(x)/exp iJ(x) = 1, 
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because exp j = f = exp g. But exp: R -+ S1 is a homomorphism with kernel 
Z. Therefore h: X -+ R is integer-valued. Since X is connected (it is convex), 
it follows from the discreteness of Z that h is constant. Finally, h(xo) = 
j(xo) - g(xo) = to - to = 0 shows that the constant is zero; that is, j = g. 

D 

Corollary 3.15. Let f: (I, 1) -+ (S1, 1) be continuous. 

(i) There exists a unique continuous j: 1 -+ R with exp j = f and j(0) = O. 
(ii) If g: (I, 1) -+ (S1, 1) is continuous and f ~ 9 reI t, then j ~ g reI t (where 

exp g = 9 and g(O) = 0); moreover, j(1) = g(1). 

PROOF. (i) This follows from the lemma because 1 is compact convex. 
(ii) Note that 1 x 1 is compact convex; choose (0, 0) as a basepoint. If 

F: 1 x 1 -+ S1 is a relative homotopy, F:f ~ 9 reI t, then the lemma provides 
a continuous map F: 1 x 1 -+ R with exp F = F and with F(O,O) = o. We 
claim that FJ ~ g reI 1; that is, the homotopy F can be lifted. If ({Jo: 1 -+ R is 
defined by ((Jo(t) = F(t, 0), then exp ((Jo(t) = exp F(t, 0) = F(t, 0) = f(t); since 
((Jo(O) = F(O, 0) = 0, uniqueness of lifting gives ({Jo = j Define (Jo: 1 -+ R by 
(Jo(t) = F(O, t); a similar argument shows that (Jo is the constant function 
(Jo(t) == 0; it follows that F(O, 1) = O. Define ({J1: 1 -+ R by ((J1(t) = F(t, 1); as 
above, exp ({J1 (t) = F(t, 1) = g(t) and ({J1 (0) = F(O, 1) = 0, hence ({J1 (t) = g. 
Finally, define (J1: 1 -+ R by (J1 (t) = F(1, t). Now exp (J1 is the constant function 
c with value f(1), and (J1(0) = j(1). Therefore the constant function at j(1) is 
a lifting of c, and uniqueness gives (J1(t) == j(1) for all tEl. Hence g(1) = j(1) 
and P is a relative homotopy PJ ~ g rel 1. D 

Part (ii) of this corollary shows that differentiable functions J, g: (I, t) -+ 

(S1, 1) which are homotopic reI t have the same winding number: W(f) = 
W(g) because j(1) - j(O) = j(1) = g(1) = g(1) - g(O). 

Definition. Iff: (I, 1) -+ (S1, 1) is continuous, define the degree of f by 

degf = j(1), 

where j is the unique lifting of f with j(O) = O. 

Observe that exp j(1) = f(1) = 1 hence j(1) lies in the kernel of the homo­
morphism exp, namely, Z. Thus, degfE Z for every f: (I, 1) -+ (S1, 1). Also, if 
f(z) = zm (more precisely, if f(t) = exp(mt)), we saw above that j(1) = m; this 
explains the term degree. 

Theorem 3.16. The function d: 1t1 (S1, 1) -+ Z given by [fJ 1-+ degf is an iso­
morphism. In particular, deg(f * g) = degf + deg g. 

PROOF. First, Corollary 3.1S(ii) shows that d is a well defined function. Second, 
d is a surjection because, for each m E Z, the function f(z) = zm has degree m 
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(as we have just observed above). Assume that degf = 0, where f is a closed 
path in S1 at 1. Thus 1(1) = 0, which says that 1 is a closed path in R at O. 
Now exp: (R, 0) --+ (Sl, 1) induces a homomorphism 11:1 (R, 0) --+ 11:1 (Sl, 1) with 
[IJ 1--+ [explJ = [f]. But R contractible implies that 11:1 (R, 0) = {I}, so that 
[IJ = 1 and [f] = 1 (the identity element of 1I:1(Rl, 1)). It remains to show 
that d is a homomorphism, for then we can conclude that ker d is trivial and 
d is injective. 

Assume that f and g are closed paths in S1 at 1 of degrees m and n, 
respectively. To compute deg(f * g), we must find a path h: 1--+ R with exp h = 
f * g and with h(O) = 0; then deg(f * g) = h(1). Let 9 be the lifting of g with 
g(O) = O. Define f: 1--+ R by y(t) = m + g(t), so that y is a path in R from m to 
m + n. Now let 1 be the lifting of f with 1(0) = 0 (and 1(1) = m). Then 1 * y is 
a path in R with (f * YHO) = 0 and (I * f)(1) = m + n. We claim that 1 * y is a 
lifting of f * g: 

f- ;";'\ ( ) {exp 1(2t) if 0 ::; t ::; t exp( *y,t = 
exp y(2t - 1) if t ::; t :::;; 1. 

Now exp 1<s) = f(s) for s E I, because 1 is a lifting of f; also, exp y(s) = 

exp(m + g(s)) = e21tim exp g(s) = g(s), because mE Z and 9 is a lifting of 
g (incidentally, this shows that y is the lifting of g with y(O) = m). Hence 
exp(1 * f) = f * g. Therefore 

deg(f*g) = (1*f)(1) = m + n = degf + deg g. 

It follows that d: 11: 1 (Sl, 1) --+ Z is a homomorphism and hence is an 
isomorphism. o 

Corollary 3.17. S1 is not simply connected. 

Corollary 3.1S. Two closed paths in S1 at 1 are homotopic reI t if and only if 
they have the same degree. 

PROOF. If f ~ g reI t, then degf = deg g, for we have already shown that 
d: 11:1 (S1, 1) --+ Z is well defined. Conversely, degf = deg g implies that [fJ = 

[gJ because d is injective. D 

Theorem 3.19 (Fundamental Theorem of Algebra). Every nonconstant poly­
nomial with complex coefficients has a complex root. 

PROOF. Let :Ep denote the circle in C of radius p and center at the origin and, 
for n ;e:: 1, let /p": :Ep --+ C - {O} be the restriction to :Ep of z 1--+ z". By Theorem 
1.5, it suffices to prove that f; is not (freely) nullhomotopic. Consider the 
composite h: S1 --+ :Ep --+ C - {O} --+ Sl, where the maps are z 1--+ pz, Z 1--+ z", and 
zl--+z/llzlI; one checks that h(z) = z". Were /p" nullhomotopic, then it would 
follow that h is nullhomotopic. Corollary 3.13 now says that h*: 11: 1 (Sl, 1) --+ 
11:1 (Sl, 1) is trivial.In particular, h* [expJ = [h expJ = [exp"J is trivial; that is, 
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expO is nullhomotopic reI t, and so expo has degree O. But we know that expo 
has degree n ~ 1, and this is a contradiction. 0 

There are other proofs of the fundamental theorem of algebra (one of the 
simplest is E. Actin's variation of a proof by Gauss, which requires only two 
facts, both following from the intermediate value theorem: every positive real 
number has a positive square root; every real polynomial of odd degree has 
a real root (see [Jacobson, p. 293]). The proof of Theorem 3.19, however, still 
illustrates that the ideas we are developing are powerful. Later, we shall 
investigate methods of computing fundamental groups, one of which (covering 
spaces) generalizes the computation of 1tl (S1, 1) just given. We shall also see 
that 1t l (X, xo) may not be abelian; indeed, given any group G, there exists a 
space X with 1tl (X, xo) ~ G. 

EXERCISES 

3.13. Let u: (I, :t) --+ (S1, 1) be the closed path t f-+ exp(t). Show that [u] is a generator 
ofn1 (S1, 1). 

*3.14. Iff is a closed path in S1 at 1 and if mE Z, then t f-+ f(tr is a closed path in S1 
at 1 and 

deg(r) = m degf 

3.15. Let f: (I, :t) --+ (S1, a) be a closed path in S1 at a = exp(IX). Define degree f = 
degree R 0 f, where R: SI --+ SI is rotation by -2nlX radians. Prove that two 
closed paths f and 9 in SI (with f(O) = a and g(O) = b) are homotopic (with 
closed paths at every time t of the homotopy) if and only if they have the same 
degree. (Hint: Corollary 3.18, Exercise 1.3, and Theorem 1.6.) 

3.16. Compute n1 (T, to), where T is the torus S1 x S1. 

3.17. Prove that S1 is not a retract of D2. 

3.18. Prove the Brouwer fixed point theorem for continuous maps D2 --+ D2. 

3.19. Let f be a closed path in S1 at 1. 
(i) If f is not surjective, then degf = O. 

(ii) Give an example of a surjective f with degf = O. 

*3.20. Let X be a space with basepoint xo, and let {~:j E J} be an open cover of X 
by path connected subspaces such that: 
(i) Xo E Uj for allj; 

(ii) ~ n Uk is path connected for all j, k. 
(It follows that X is path connected.) Prove that n1(X, xo) is generated by the 
subgroups im ij*, where i/ (~, xo) c... (X, xo) is the inclusion. (Hint: Iff: 1 --+ X 
is a closed path in X at xo, use a Lebesgue number of the open cover 
{f-1(U):j E J} ofI.) 

*3.21. If n ~ 2, prove that S· is simply connected. (Hint: Use Exercise 3.20 with the 
open cover {U1, U2 } of S·, where Ul is the complement ofthe north pole and 
U2 is the complement of the south pole.) 

3.22. If n ~ 2, then S· and S1 do not have the same homotopy type. 
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Definition. A topological group is a group G whose underlying set is equipped 
with a topology3 such that: 

(i) the multiplication map Jl: G x G --+ G, given by (x, y) f--+ xy, is continuous 
if G x G has the product topology; 

(ii) the inversion map i: G --+ G, given by x f--+ X-I, is continuous. 

Both Rn (under addition) and SI (under multiplication) are topological 
groups. 

EXERCISES 

*3.23. Let G be a topological group and let H be a normal subgroup. Prove that G/H 
is a topological group, where G/H is regarded as the quotient space of G by the 
kernel of the natural map. 

*3.24. Let G be a simply connected topological group and let H be a discrete closed 
normal subgroup. Prove that TtI(G/H, 1} ~ H. (Hint: Adapt the proof of 
Theorem 3.16 with exp: R ---+ Sl replaced by the natural map v: G ---+ G/H, and 
with the open neighborhood (-t, t) of 0 in R replaced by a suitable open 
neighborhood of the identity element 1 in G.} (Remark: If G is To, then every 
discrete subgroup of G is necessarily closed.) 

3.25. Let GL(n, R} denote the multiplicative group of all n x n nonsingular real 
matrices. Regard GL(n, R} as a subspace of Rn2 , and show that it and its 
subgroups are topological groups. 

3.26. A discrete normal subgroup H of a connected topological group G is contained 
in the center of G (i.e., each h E H commutes with every x E G), hence is abelian. 
(Hint: Fix h E H and show that cp: G ---+ H defined by cp(x) = xhx- l h- l is con­
stant.} Conclude that Ttl (G/H, 1) is abelian when G is simply connected and H 
is a discrete closed normal subgroup. 

The next result is a vast generalization ofthe conclusion ofthe last exercise. 

Definition. A pointed space (X, xo) is called an H-space (after H. Hopf) if there 
is a pointed map m: (X x X, (xo, xo)) --+ (X, x o) such that each of the (neces­
sarily pointed) maps m(xo, ) and m( ,xo) on (X, x o) is homotopic to 
lx rel{xo}· One calls Xo a homotopy identity. 

Clearly, every topological group X with identity Xo and multiplication m 
is an H-space (one even has equality instead of relative homotopy). 

To help us evaluate the induced map m(xo, )*, let us restate the definition 
of H-space so that it is phrased completely in terms of maps. If k: X --+ X is 
the constant map at Xo and (k, lx): X --+ X x X is the map Xf--+(xo, x), then 
m(xo, ) is the composite m 0 (k, Ix). Similarly, m( ,xo) is the composite 

3 One often assumes as part of the definition that G has some separation property. It is known 
(see [Hewitt and Ross, p. 70]) that if G is To, then it is completely regular. 
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m 0 (lx, k). In an H-space, therefore, each of these composites is homotopic 
to Ix rel{xo}· 

Recall an elementary property of direct products of groups: if x E G and 
Y E H, then in G x H, 

(x, 1)(1', y) = (x, y) = (1', y)(x, 1), 

where 1 denotes the identity element in H and l' denotes the identity element 
ofG. 

Theorem 3.20. If (X, xo) is an H-space, then 1tl (X, xo) is abelian. 

PROOF. In Theorem 3.7, we have proved that (J:1t 1(X,XO) x 1t1(X,xo)--+ 
1tl (X X X, (xo, xo)), defined by ([f], [g])t-+ [(f, g)], is an isomorphism, where 
(f, g) is the path in X x X given by tt-+(f(t), get)). Choose [f], [g] E 1tl (X, xo). 
Now 

[g] = (m 0 (k, l x ))*[g] (definition of H-space) 

= m*(k, l x )*[g] (1t 1 is a functor) 

= m* [(k, Ix) 0 g] (definition of induced map) 

= m*[(kg, g)] 

= m*(J([kg], [g]) (definition of (J) 

= m*(J(e, [g]), 

where e = [k] is the identity element of 1tl (X, xo). Similarly, 

[f] = m*(J(U], e), 

because m 0 (lx, k) ~ Ix rel{xo}. Since m*(J: 1t1(X, xo) x 1t1(X, xo) --+ 1t1(X, xo) 
is a homomorphism, we have 

m*(J([f], [g]) = m*(J((e, [g])([f], e)) 

= m*(J((e, [g]))m*(J((U], e)) = [g] [f]. 

If instead one factors (U], [g]) = ([f], e)(e, [g]), one obtains m*(J([f], [g]) = 

[f] [g]. We conclude that [g] [f] = [f] [g], hence 1tl (X, xo) is abelian. 
o 

Corollary 3.21. If G is a topological group, then 1t 1 (G, e) is abelian. 

The contra positive of this last corollary is also interesting. If X is a space 
with 1tl (X, xo) not abelian (eventually we shall see such X), then there is no 
way to define a multiplication on X making it a topological group. Indeed 
one cannot even equip such an X with the structure of an H-space. 

We have seen that computing the fundamental group of a space yields 
useful information, but this computation, even for Sl, is not routine. In other 
chapters we shall develop techniques to facilitate this work. 



CHAPTER 4 

Singular Homology 

Holes and Green's Theorem 
For each n ~ 0, we now construct the homology functors Hn: Top -+ Ab that 
we used in Chapter 0 to prove Brouwer's fixed point theorem. The question 
we ask is whether a union of n-simplexes in a space X that "ought" to be the 
boundary of some union of (n + 1 )-simplexes in X actually is such a boundary. 
Consider the case n = 0; a O-simplex in X is a point. Given two points xo, 
Xl E X, they "ought" to be the endpoints of a 1-simplex; that is, there ought 
to be a path in X from Xo to Xl' Thus, Ho(X) will bear on whether or not X 
is path connected. Consider the case n = 1. Let X be the punctured plane 

R2 - {O}, and let IX, /3, y be the 1-simplexes as drawn; IX U /3 U Y "ought" to 
bound the triangular 2-simplex, but the absence of the origin prevents this; 
loosely speaking, X has a "one-dimensional" hole in it. (Of course, IX U /3 U Y 
would not bound the triangular 2-simplex if X were missing a small line seg­
ment through the origin, or even if X were missing a small neighborhood of 
the origin. When we say "one-dimensional" hole, we speak not of the size of 
the hole but of the size of the possible boundary. One must keep one's eye on 
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the doughnut and not upon the hole!) HI (X) will describe the presence of such 
holes. We shall also see a close relation between HI (X) and 1t1 (X, xo); after all, 
the hole prevents one from deforming the closed path IX * f3 * Y to a constant. 

Better insight into homology is provided by Green's theorem from 
advanced calculus. Let D be an open disk in R 2 with a finite number of points 
ZI' Z2"'" Zn deleted. Assume that there are closed curves y, YI"'" Yn in D as 
pictured below. 

Here each Yi is a simple closed curve (it does not intersect itself as does, say, a 
figure 8) having Zi inside and the other z's outside; all the Yi are inside y. If Y is 
oriented counterclockwise and each Yi is oriented clockwise, then Green's 
theorem asserts, with certain differentiability hypotheses on these curves and 
on functions P, Q: D --+ R, that 

f P dx + Q dy + f P dx + Q dy + ... + f P dx + Q dy 

, " '" 
= LfG; -~;)dXdY, 

where R is the shaded region in the picture. One is tempted to, and does, write 
the sum of the line integrals more concisely as 

1+,,+00.+," P dx + Q dy. 

Moreover, instead of describing how the orientations align, one could instead 
use signed coefficients to indicate this. If we no longer demand that the curves 
be simple and allow each Yi to wind around Zi several times, we may even 
admit Z-linear combinations of closed curves in D. 

Green's theorem arises when one considers whether, given two points a, 
bED, a line integral SIl P dx + Q dy is independent of the path f3 in D from a 
to b. If IX is a second path in D from a to b, is SIl P dx + Q dy = Sa P dx + Q dy? 

b 
a 
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(Such paths a and {3 are examples of chains.) Plainly, for y = {3 - a (proceed 
from a to b via {3 and then return to a backward via a, i.e., y = {3 * a- 1 in the 
multiplicative notation of Chapter 3), the two line integrals have the same 
value if and only if L P dx + Q dy = O. We are thus led to closed paths (which 
are examples of cycles), and Green's theorem tells us to consider finite unions 
of oriented closed curves; algebraically, we consider formal Z-linear com­
binations of cycles. If we now restrict our attention to "exact" function pairs 
(P, Q) (there exists a function F: D -+ R with 8Fj8x = P and 8Fj8y = Q, 
hence 8Qj8x = 8Pj8y), then the theorem asserts that the line integral van­
ishes if its oriented curves form the boundary of a two-dimensional region R 
inDo 

One is thus led to consideration of oriented curves, closed oriented curves, 
and boundary curves (certain finite unions of oriented closed curves). The 
following equivalence relation on the set Sl (D) = {all Z-linear combinations 
of oriented curves in D} is suggested: if a, {3 E Sl (D), define a '" {3 ifJa;P dx + 
Q dy = SIl P dx + Q dy for all exact function pairs (P, Q). Such linear combina­
tions a and {3 are called homologous (agreeing); equivalence classes of such 
linear combinations are called homology classes. It is known that two line 
integrals Sa; P dx + Q dy and SIl P dx + Q dy agree in value for every exact pair 
(P, Q) (i.e., a and {3 are homologous) precisely when a - {3 is a boundary. Thus 
integration is independent of paths lying in the same homology class. There 
are higher-dimensional analogues of this discussion: Stokes's and Gauss's 
theorems in two and three dimensions; more generally, there is a version for 
integration on differentiable manifolds. 1 

Free Abelian Groups 

Let us proceed to the formal definitions: but first, some algebra. 

Definition. Let B be a subset of an (additive) abelian group F. Then F is free 
abelian with basis B if the cyclic subgroup (b) is infinite cyclic for each b E B 
and F = LbeB (b) (direct sum). 

A free abelian group is thus a direct sum of copies of Z. A typical element 
x E F has a unique expression 

x = Lmbb, 

where mb E Z and almost all mb (all but a finite number of mb) are zero. 
Bases of free abelian groups behave as bases of vector spaces; one can 

construct a (unique) homomorphism if one knows its behavior on a basis; 
moreover, one can "do anything" to a basis. 

1 Further discussion of Green's theorem is in the first section of Chapter 12 on differential forms. 
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Theorem 4.1. Let F be free abelian with basis B. If G is an abelian group and 
q>: B -+ G is a function, then there exists a unique homomorphism iP: F -+ G with 
iP(b) = q>(b) for all b E B. 

F 

r",< 
B~G 

((J 

(ii) Every abelian group G is isomorphic to a quotient group of the form 
FIR, where F is a free abelian group. 

PROOF. (i) Each x E F may be written x = L mbb; define iP(x) = L mbq>(b). 
Uniqueness of the expression for x shows that iP is a well defined homo­
morphism. Finally, iP is unique, because two homomorphisms agreeing on a 
set of generators-namely, B-must be equal. 

(ii) For each x E G, choose an infinite cyclic group Zx having generator bx, 
say. It follows that F = LXE G Zx is a free abelian group with basis B = 
{bx : x E G}. Define a function q>: B -+ G by q>(bJ = x. Since q> is surjective, it 
follows that the homomorphism iP is surjective. By the first isomorphism 
theorem, G;;: FIR, where R = ker iP· 0 

Definition. The construction of iP from q> is called extending by linearity. 
Usually one abuses notation and denotes iP by q> as well. 

Part (ii) of the theorem suggests a way of describing abelian groups. 

Definition. An abelian group G has generators B = {xj : j E J} and relations 
~ = {rk: k E K} if F is the free abelian group with basis B, if ~ c F (i.e., 
each rk is a linear combination of the Xj with integer coefficients), and if 
G ;;: FIR, where R is the subgroup of F generated by ~. We say that (BI~) is 
a presentation2 of the abelian group G. 

Of course, an abelian group G has many presentations. The existence 
question for free abelian groups is essentially settled by the definition: one can 
exhibit a free abelian group with a basis of any cardinality merely by forming 
the direct sum of the desired number of copies of Z. Here is a sharper version 
of the existence theorem. 

Theorem 4.2. Given a set T, there exists a free abelian group F having T as a 
basis. 

2 Later we shall define presentations of groups that may not be abelian. 



Free Abelian Groups 61 

PROOF. If T = 0, define F = O. Otherwise, for each t E T, define a group Zt 
whose elements are all symbols mt with m E Z and with addition defined by 
mt + nt = (m + n)t. It is easy to see that Zt is infinite cyclic with generator t. 
The group F = It E T Zt is free abelian with basis the set of all J TJ-tuples bt, 
where bt has all coordinates zero save for a 1 as its tth coordinate. The theorem 
is proved by first using a scissors to cut out all b/s from F and then replacing 
each bt by t itself. (One can be more fussy here if one wishes.) 0 

In our discussion of Green's theorem, we formed Z-linear combinations of 
curves; Theorem 4.2 allows one to add and subtract curves without fear. 

There is an analogue for free abelian groups of the dimension of a vector 
space. 

Theorem 4.3. Any two bases of a free abelian group F have the same cardinal. 

PROOF. Recall that any two bases of a vector space V (over any field) have the 
same cardinal. If V is finite-dimensional, this is standard linear algebra. If V 
is infinite-dimensional, one uses Zorn's lemma to prove that bases of V exist, 
and one then uses a set-theoretic fact (the family of all finite subsets of an 
infinite set A has the same cardinal as A) to prove invariance of the cardinal 
of a basis. 

Now let A and B be bases of F. For a fixed prime p, it is easy to see 
that the quotient group F jpF is a vector space over ZjpZ and that the 
cosets {a + pF: a E A} form a basis. Thus dim FjpF = card A. Similarly, 
dim FjpF = card B, hence card A = card B. 0 

Definition. If F is a free abelian group with basis B, then 

rank F = card B. 

Theorem 4.3 shows that rank F is well defined; that is, it does not depend 
on the choice of basis B. Exercise 4.2 below shows that the vector space 
analogy is a good one: free abelian groups are characterized by their rank as 
vector spaces are characterized by their dimension. 

One can now define the rank of an arbitrary abelian group G. 

Definition. An abelian group G has (possibly infinite) rank r if there exists a 
free abelian subgroup F of G with 

(i) rank F = r; 
(ii) GjF is torsion. 

Such free abelian subgroups do exist. Define a subset B of G to be indepen­
dent if I mibi = 0 implies each mi = 0 (where mi E Z and bi E B). It is easy to 
see that the subgroup generated by an independent subset B is free abelian 
with basis B. If F is the subgroup generated by a maximal independent subset 
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(which exists, by Zorn's lemma), then F is free abelian and GIF is torsion. One 
can prove that the rank of F depends only on G (Exercise 9.32), so that the 
rank of G is indeed well defined. 

EXERCISES 

4.1. Let F be free abelian with basis B. If B is the disjoint union B = UBI., then 
F = I FA' where FA is free abelian with basis B;.- Conclude that each Y E F has a 
unique expression Y = I YA' where YA E FA and almost all Y;. = O. 

*4.2. Prove that two free abelian groups are isomorphic if and only if they have the 
same rank. 

*4.3. For a given space X, define Sl (X) to be the free abelian group with basis all paths 
a: I --+ X, and let So(X) be the free abelian group with basis X. 

(i) Show that there is a homomorphism i\: Sl (X) --+ So(X) with 01 0'= 0'(1) -
0'(0) for every path a in X. 

(ii) If Xl' Xo E X, show that Xl - Xo E im 01 if and only if xo , Xl lie in the same 
path component of X. 

(iii) If a is a path in X, then a E ker 01 if and only if a is a closed path. Exhibit 
a nonzero element of ker 01 that is not a closed path. 

The Singular Complex and Homology Functors 

Exercise 4.3(ii) indicates that we are proceeding toward a definition that 
appears to capture the informal ideas discussed at the beginning of this 
chapter: Xl - Xo ought to be the boundary of a curve in X, but it may not be 
unless Xl' Xo lie in the same path component of X. In preparation for the 
general definition, recall that Green's theorem suggests looking at oriented 
curves. 

Definition. An orientation of Lin = [eo, e1 , ..• , en] is a linear ordering of its 
vertices. 

An orientation thus gives a tour of the vertices. For example, the orienta­
tion eo < e1 < ez of LiZ gives a counterclockwise tour. 
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It is clear that two different orderings can give the same tour; thus eo < el < e2 
and el < e2 < eo and e2 < eo < el all give the counterclockwise tour, while 
the other three orderings (orientations) give a clockwise tour. 

If n = 3, the reader should see that there are essentially only two different 
tours, corresponding to the left-hand rule and right-hand rule, respectively. 

Definition. Two orientations of d n are the same if, as permutations of 
{eo, el' ... ' en}, they have the same parity (i.e., both are even or both are odd); 
otherwise the orientations are opposite. 

Given an orientation of d n, there is an induced orientation of its faces 
defined by orienting the ith face in the sense (-1)i[eo, ... , ei , ... , en], where 
- [eo, ... , ei , ... , en] means the ith face (vertex ei deleted) with orientation 
opposite to the one with the vertices ordered as displayed. For example, 
assume that d 2 is oriented counterclockwise. 

The Oth face of d 2 is [eo, el , e2] = Eel' e2], and it is oriented from el to e2; 
the first face [eo, el , e2] = [eo, e2] is oriented in the opposite direction: 
-[eo, e2] = [e2' eo] is oriented from e2 to eo; the second face is [eo, ell It 
is plain that these orientations of the edges are "compatible" with the orienta­
tion of d 2• 

The boundary of d 2 is 

Eel' e2] U [eo, e2] U [eo, el ] = [eo, el , e2] U [eo, el , e2] U [eo, el , e2 l 
The oriented boundary of d 2 is 

[eo, el , e2] U -[eo, e l , e2] U [eo, el , e2] = Eel' e2] U [e2, eo] U [eo, ell 

More generally, the boundary of d n = [eo, ... , en] is U?=o [eo, ... , ei , ... , en] 
and the oriented boundary of dn is U?=o (-1)i[eo, ... , ei , ... , en]. 

For the moment, denote the ith face of d 2 by ei' where i = 0, 1,2. Applying 
the homomorphism 01 (see Exercise 4.3) to the oriented boundary, we see that 

0l(eO - el + (2) = (e2 - ed - (e2 - eo) + (e l - eo) = 0, 

and eo - el + e2 E ker 01 ; on the other hand, eo + el + e2 ¢ ker 01 (one thus sees 
that orientations are important). At last, here are the important definitions. 
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Definition. Let X be a topological space. A (singular) n-simplex in X is a 
continuous map 0": /1n --+ X, where /1n is the standard n-simplex. 

Since /11 is a closed interval (/11 ~ I), a singular I-simplex in X is essentially 
a path in X; since /10 is a one-point set, a singular O-simplex may be identified 
with a point in X. 

Definition. Let X be a topological space. For each n 2 0, define Sn(X) as the 
free abelian group with basis all singular n-simplexes in X; define S -1 (X) = 0. 
The elements of Sn(X) are called (singular) n-chains in X. 

Of course, Sn(X) essentially agrees with the construction in Exercise 4.3 
when n = ° and n = 1. 

The oriented boundary of a singular n-simplex 0": /1n --+ X ought to be 
2:7=0 (-I)i(O"I [eo, ... , ei, ... , en]). A technical point arises: we prefer that this 
be a singular (n - I)-chain; it is not because the domain of 0"1 [eo, ... , ei, ... , en] 
is not the standard (n - I)-simplex /1n-1. This is easily remedied. For each n 
and i, define the ith face map 

to be the affine map taking the vertices {eo, ... , en-I} to the vertices 
{eo, ... , ei, ... , en} preserving the displayed orderings: 

e~: (to, ... , tn-I) 1--+ (0, to, ... , tn-I); 

ef: (to,···, tn-I) 1--+ (to, ... , ti-1> 0, ti, ... , tn-I) ifi 2 1. 

(The superscript n indicates that the target of ef is Lln.) For example, there are 
three face maps ef: /11 .... /12: eo: [eo, e1] --+ [e 1, e2 ]; e1: [eo, e1] --+ [eo, e2 ]; 

e2 : [eo, e1 ] --+ [eo, e1]. 

Definition. If 0": /1n --+ X is continuous and n > 0, then its boundary is 

n 

anO" = i~ ( -1)iO"ef E Sn-l (X); 

if n = 0, define aoO" = 0. 

Note that if X = /1n and 0: /1n --+ /1n is the identity, then 

Theorem 4.4. For each n 2 0, there is a unique homomorphism an: Sn(X)--+ 
Sn-1 (X) with GnO" = 2:7=0 ( -1 )iO"ei for every singular n-simplex 0" in X. 

PROOF. Use the formula for anO" and extend by linearity. o 
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The homomorphisms an: Sn(X) ~ Sn-1 (X) are called boundary operators. 
Strictly speaking, one ought to write a; since these homomorphisms do 
depend on X; however, this is rarely done. We have constructed, for each X, 
a sequence of free abelian groups and homomorphisms 

~ ~ ~ 
... ------+ Sn (X) ------+ Sn -1 (X) ------+ . .. ------+ S 1 (X) ------+ So (X) ------+ 0, 

called the singular complex of X; it is denoted by (S*(X), a) or, more simply, 
by S*(X). 

Lemma 4.5. If k < j, the face maps satisfy 

PROOF. Just evaluate these affine maps on every vertex ei for 0 ::::; i ::::; n - 1. 

o 
For example, e1e6 maps e0 l--4e l l--4e1; el l--4e2l--4e3; and e21--4e31--4e4 (the 

image is thus the 2-face [e 1, e3, e4] of L\4); ecid: eo 1--4 eo l--4e1; ell--4e2l--4e3; 
and e21--4 e3 1--4 e4. If k < j, the image of ejek is the (n - I)-face of L\n+1 obtained 
by deleting vertices ej and ek; when k 2 j, the image deletes vertices ej and ek+1. 

Theorem 4.6. For all n 2 0, we have anan+1 = o. 

PROOF. Since Sn+1 (X) is generated by all (n + I)-simplexes rr, it suffices to show 
that aarr = 0 for each such rr. 

= L ( -1 )j+k rre;+1 e~ 
j.k 

= L (-I)j+krrer1e~ + L (-I)j+krrer1e~ 
j~k k<j 

= L (-I)i+krrer1e~+ L (-l)i+krre~+leJ'_l' by Lemma 4.5. 
i~k k<j 

In the second sum, change variables: set p = k and q = j - 1; it is now 
Lp~q( _1)p+q+1rre;+le;. Each term rrer1e~ occurs twice, once in the first sum 
with sign (_I)i+k and once in the second sum with (opposite) sign (_I)i+k+1. 
Therefore terms cancel in pairs and aarr = o. 0 

Definition. The group of (singular) n-cycles in X, denoted by Zn(X),3 is ker an; 
the group of (singular) n-boundaries in X, denoted by Bn(X), is im an+1. 

Clearly, Zn(X) and Bn(X) are subgroups of Sn(X) for all n 2 0; but more is 
true. 

3 From the German Zykel. 
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Corollary 4.7. For every space X and for every n 2 0, 

Bn(X) c Zn(X) c Sn(X). 

PROOF. If f3 E Bn(X), then f3 = an+! ex for some ex E Sn+! (X). But then an(f3) = 

anan+1 ex = 0, by Theorem 4.6, and f3 E Zn(X). D 

We have now made our earlier discussion precise: an n-cycle corresponds 
to those sum (unions) of oriented n-simplexes in X that ought to constitute 
the boundary of some union of (n + I)-simplexes in X. Returning to the 
example of the punctured plane given at the beginning of this chapter, we see 
that ex + f3 + y is a I-cycle in X. It is intuitively clear (but not so obvious to 
prove) that ex + f3 + y is not a I-boundary (because the obvious candidate for 
the two-dimensional region it should bound is not a 2-simplex in X, lacking 
as it does the origin). 

To detect "holes" in a space X, one should consider only cycles that are 
not boundaries; boundaries are "trivial" cycles. Indeed, Green's theorem also 
suggests this, for the line integral L P dx + Q dy (where (P, Q) is an exact pair) 
is zero when y is a union of oriented curves comprising the boundary of a 
region R in the space D. We are led to the following definition. 

Definition. For each n 2 0, the nth (singular) homology group of a space X is 

H (X) = Zn(X) = ker an 
n Bn(X) im an+! . 

The coset Zn + Bn(X), where Zn is an n-cycle, is called the homology class of Zn' 
and it is denoted by cls Zn' 

Our next aim is to show that each Hn is actually a functor Top --+ Ab. 
If f: X --+ Y is continuous and if a: An --+ X is an n-simplex in X, then 
f 0 a: An --+ Y is an n-simplex in Y. Extending by linearity gives a homo­
morphism f#: Sn(X) --+ Sn(Y), namely, 

f # (I. mqa) = I. mAf 0 a), where mq E Z. 

This notation is careless, for f # does depend on n. In fact there is one such 
f# for every n 2 0. 

Lemma 4.8. Iff: X --+ Yiscontinuous,thenaJ# = f#an;thatis,foreveryn 2 ° 
there is a commutative diagram 

Sn(X) 
an 

Sn-l(X) -----+ 

f# j 
an 

j f, 
Sn(Y) -----+ Sn-l(Y)' 
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Remark. Not content with omitting subscripts on the maps f#, we have 
omitted superscripts on the boundary maps On as well (these maps do depend 
on the spaces X and Y). This casual attitude is customary and necessary, for 
a jumble of indices, aside from being cumbersome, can mask a simple idea or 
a routine calculation. When the abbreviated symbol may cause confusion, 
however, we shall restore decorations as required. 

PROOF. It suffices to evaluate each composite on a generator a of Sn(X). Now 

f# oa = f# (I (-I)ia8;) 

= I (-I)if#(a8;) = I (-I)if(a8J 

On the other hand, 

D 

Lemma 4.9. Iff: X --+ Y is continuous, then for every n ~ 0, 

PROOF. If rx. E Zn(X), then orx. = 0. Therefore of#rx. = f#orx. = f#(O) = 0, and 
f#rx. E ker On = Zn(Y)' If f3 E Bn(X), then f3 = oy for some y E Sn+1(X), and 
f# f3 = f# oy = of# Y E im 0n+l = Bn(Y). D 

Theorem 4.10. For each n ~ 0, Hn: Top --+ Ab is a functor. 

PROOF. We have already defined Hn on objects X: Hn(X) = Zn(X)/Bn(X). If 
f: X --+ Y is continuous, define 

Hn(f): Hn(X) --+ Hn(Y) 

by Zn + Bn(X) ~ f # (zn) + Bn( Y), where Zn E Zn(X); that is, 

Hn(f): cls zn~clsf#(zn)' 

There are some details to check. First, Zn being an n-cycle in X implies that 
f#zn is an n-cycle in Y, by Lemma 4.9. Second, this definition is independent 
of the choice of representative because f # (Bn(X)) c Bn( Y): if bn E Bn(X), 
then f#(zn + bn) + Bn(Y) = f#(zn) + f#(bn) + Bn(Y) = f#(zn) + Bn(Y). The 
remaining details-Hn(f) is a homomorphism, Hn(1X) is the identity homo­
morphism, and Hn(gf) = Hn(g)Hn(f)-are all easy consequences of the defini­
tion of Hn. D 

Corollary 4.11. If X and Yare homeomorphic, then Hn(X) ~ Hn( Y) for all n ~ 0. 

PROOF. Theorem 0.5. D 

Each homology group Hn(X) is thus an invariant of the space X; in 
particular, rank Hn(X) is an invariant of X for each n ~ 0. 
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Definition. For each n ~ 0, rank Hn(X) is called the nth Betti number of X. 

If Hn(X) is free abelian, then it is characterized by its rank; otherwise, there 
is more information contained in the homology group. 

Dimension Axiom and Compact Supports 

Before giving the first properties of the homology functors, we caution the 
reader. Many proofs, even of geometrically "obvious" facts, will seem too long 
(and too algebraic). One reason for this is our decision to define Hn as above, 
using singular theory. The advantages of this theory are the following: Hn(X) 
is defined for every topological space X, that is, Hn is defined on all of Top; 
it is very easy to define induced maps and to prove that Hn is a functor. One 
disadvantage, as we have just said, is that some proofs appear too fussy and 
formal; another great disadvantage is that it is usually difficult to compute 
Hn(X) for specific X. If we limit attention to spaces X that are polyhedra or 
CW complexes (these terms are defined later), then there are other definitions 
of Hn (the simplicial theory and the cellular theory) for which Hn(X) is easier 
to calculate. The disadvantages of the other two theories are that they apply 
only to these special spaces and that induced maps are more complicated to 
define. These theories4 will be presented along with a theorem of Eilenberg 
and Steenrod, which axiomatizes homology functors on the subcategory of 
(compact) polyhedra and which shows that the various theories agree on this 
subcategory. Once all this is known, the reader may then select the particular 
theory that is most convenient for a problem at hand. We have no such 
freedom of choice now, however, and so all our proofs are in singular style 
until Chapter 7. Thus warned, the reader should not be discouraged as we set 
forth the details of (singular) homology. 

Theorem 4.12 (Dimension Axiom).5 If X is a one-point space, then Hn(X) = 0 
for all n > O. 

PROOF. For each n ~ 0, there is only one singular n-simplex O"n: /)n ~ X, 
namely, the constant map. Therefore Sn(X) = <O"n), the infinite cyclic group 
generated by O"n' Let us now compute the boundary operators: 

onO"n = ito (-1)iO"nGi = [to (-1)iJ O"n-I' 

(for O"nGi is an (n - 1)-simplex in X, and O"n-I is the only such). It follows that 

4 There are homology theories other than the three we have mentioned here; these three are the 
most popular. 

5 The reason for this name will be explained in Chapter 9. 
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if n is odd 
if n is even and positive. 

Therefore On = 0 when n is odd, and On is an isomorphism when n is even and 
n > O. Assume that n > 0, and consider the sequence 

iJ.+1 iJ. 
Sn+1 (X) ------+ Sn(X) ------+ Sn-1 (X). 

If n is odd, then On = 0 implies that Sn(X) = ker On = Zn(X); also On+1 is an 
isomorphism (n + 1 is even), hence is surjective, and so Sn(X) = im 0n+1 = 

Bn(X). Thus Hn(X) = Zn(X)/Bn(X) = O. If n > 0 is even, then On is an iso­
morphism, hence injective, and so Zn(X) = ker On = O. It follows that Hn(X) = 

Zn(X)/Bn(X) = 0 in this case as well. D 

Definition. A space X is called acyclic if Hn(X) = 0 for all n ~ 1. 

The dimension axiom shows that everyone-point space is acyclic. 

EXERCISES 

*4.4. If X = 0, then Hn(X) = 0 for all n ;::: O. (Hint: The free abelian group with empty 
basis is the trivial group {O}.) 

4.5. If X is a one-point space, then Ho(X) ~ Z. 

*4.6. For each fixed n ;::: 0, show that Sn: Top ---> Ab is a functor. 

The next result will allow us to focus on path connected spaces. 

Theorem 4.13. If {X;.: A E A} is the set of path components of X, then,for every 
n ~O, 

Hn(X) ~ L Hn(X;.). 
;. 

Remark. The elements of a direct sum L G;. are those "vectors" (g;.) having 
only finitely many nonzero coordinates. 

PROOF. If '}' = L mi(Ji E Sn(X), then Exercise 1.24 shows that each im (Ji is 
contained in a unique path component of X; we may thus write,), = L '}';., 
where '}';. is the sum of those terms in '}' involving a simplex (Ji for which 
im (Ji c: X;.. It is easy to see that, for each n, the map')' 1--+ ('}';.) is an isomorphism 
Sn(X) -+ L;. Sn(X;.). Now'}' is a cycle if and only if each ')i;. is a cycle: since 
O'}';. E Sn-1 (X;.) (because im (J c: X;. implies im (Jei c: X;.), the assumption 0 = 
a'}' = L o'}';. implies O')i;. = 0 for all A (because an element in the direct sum 
L Sn-1 (X;.) is zero if and only if all its coordinates are zero). It follows that the 
map On: Hn(X) -+ I Hn(X;.), given by cls '}' 1--+ (cls '}';.), is well defined. To see that 
On is an isomorphism, we exhibit its inverse. Define <l>n: L Hn(X;.) -+ Hn(X) by 
(cls '}';.) 1--+ cls(L '}';.); it is routine to check that both composites are identities. 

D 
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EXERCISES 

4.7. Compute H.(SO) for all n ~ o. 
4.8. Compute H.(X) for all n ~ 0, where X is the Cantor set. 

Of course, the computation of Hn(X), even when X is path connected, is 
usually difficult. However, one can always compute Ho(X). 

Theorem 4.14. 

(i) If X is a nonempty path connected space, then Ho(X) ~ Z. Moreover, if 
xo, Xl E X, then cls Xo = cls Xl is a generator of Ho(X). 

(ii) For any space X, the group Ho(X) is free abelian of rank = card A, where 
{X;.: A. E A} is the family of path components. 

(iii) If X and Yare path connected spaces and f: X --+ Y is continuous, then 
f*: Ho(X) --+ Ho(Y) takes a generator of Ho(X) to a generator of Ho(Y). 

PROOF. (i) Consider the end of the singular complex 
01 00 

Sl (X) ---+ So(X) ---+ O. 

As 00 is zero, Zo(X) = ker 00 = So(X); therefore every O-chain in X is a 
O-cycle (in particular, cls X E Ho(X) for every X E X). A typical O-cycle is thus 
LXEXmXx, where mx E Z and almost all mx = o. We claim that 

Bo(X) = {L mxx E So(X): L mx = O}. 

If this claim is true, then define 0: Zo(X) --+ Z by L mxx 1--+ L mx. It is clear that 
o is a surjection with kernel Bo(X), and so the first isomorphism theorem gives 
Ho(X) ~ Z. 

Let us prove the claim. Let y = L~=o mixi E So(X), and assume that L mi = 
o. Choose a point x E X (X "# 0), and choose a path O"i in X from x to Xi for 
each i (X is path connected). Note that 0l O"i = O"i(e 1) - O"i(eO) = Xi - X (we 
have identified 1= [0, IJ with.11 = [eo, elJ). Now LmiO"i E Sl(X), and 

ol(L miO"i) = L miol(O"i) = L mi(xi - x) = L mixi - (L mi)x = y, 

since L mi = O. Therefore y = L mixi = 01 (L miO"J E Bo(X). Conversely, if 
y E Bo(X), then y = 01 (L njLj), where nj E Z and Lj is a I-simplex in X. Hence 

y = L nj(Liel) - Lieo», 
so that each coefficient nj occurs twice and with opposite sign. Thus the sum 
of the coefficients is zero. 

Let xo, Xl EX. There is a path 0" in X from Xo to Xl' and Xl - Xo = 
01 0" E Bo(X); this says that Xl + Bo(X) = Xo + Bo(X), that is, cls Xo = cls Xl. 
Finally, if cls y is a generator of Ho(X), where y = L mixi> then O(y) = L mi = 
± 1. Replacing y by - y if necessary, we may assume that L mi = 1. If Xo E X, 
then y = Xo + (y - xo); since y - Xo E Bo(X) (its coefficient sum is zero), we 
have cls y = cls xo, as desired. 
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(ii) Immediate from Theorem 4.13 and part (i) of this theorem. 
(iii) Immediate from part (i). 0 

Compare the functors no and Ho: no(X) is the set of path components of 
X; Ho(X) carries exactly the same information and builds a free abelian group 
from it. 

In Theorem 4.32, we shall give a geometric characterization of 1-cycIes in 
a space X. 

Lemma 4.15. Let A be a subspace of X with inclusion j: A c... X. Then 
j #: Sn(A) ~ Sn(X) is an injection for every n ~ O. 

PROOF. Let y = L mi(Ji E Sn(A); we may assume that all (Ji are distinct. If 
y E ker j #' then 0 = j # L mi(Ji = L mi(j 0 (JJ Since j 0 (Ji differs from (Ji only in 
having its target enlarged from A to X, it follows that all j 0 (Ji are distinct. 
But Sn(X) is free abelian with basis all n-simplexes in X; it follows that every 
mi = 0 and y = o. 0 

This lemma is invoked often, usually tacitly. 

Definition. If , = L mi(Ji E Sn(X), with all mi -# 0 and all (Ji distinct, then the 
support of " denoted by supp " is U (J;(An). 

It is cIear that supp , is a compact subset of X, since it is a finite union of 
compact subsets. 

Theorem 4.16 (Compact Supports). If cIs , E Hn(X), then there is a compact 
subspace A of X with cIs, E imj*, wherej: A c... X is the inclusion. 

PROOF. Let A = supp ,. If , = L mi(Ji, then for each i we may write (Ji = 
j(J;, where (J;: An ~ A. Define y = Lmi(J; E Sn(A). Now j#oy = oj#y = 0' = 0 
(because' is an n-cycIe in X); since j # is an injection, it follows that oy = 0, 
that is, y is an n-cycIe in A. Therefore cIs y E Hn(A) andj* cIs y = cIs (. 0 

Corollary 4.17. If X is a space for which there exists an integer n ~ 0 with 
Hn(A) = 0 for every compact subspace of X, then Hn(X) = O. 

PROOF. If cIs , E Hn(X), then the theorem provides a compact subspace A of 
X (with incIusionj: A c... X) and an element cIs y E Hn(A) withj* cIs y = cIs ,. 
But Hn(A) = 0, by hypothesis, hence cIs y = 0, and hence cIs , = O. 0 

The next technical result will be used in proving the Jordan curve theorem. 

Theorem 4.18. Let X = U~=l XP with XP c Xp+l for all p (call the inclusion 
maps A,P: XP c... X and <pP: XP c...XP+1). If every compact subspace A of X is 
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contained in some XP, then cIs ( E Hn(X) is zero if and only if there exist p and 
cIs (' E Hn(XP) with 

A~ cIs " = cIs ( and cp: cIs " = O. 
Xp+1 

~\(' 
-------->~ X 

PROOF. Sufficiency is obvious, for AP+1 0 cpP = AP, hence 0 = A~+1(cp: cIs (') = 

A~ cIs (' = cIs (. 
Conversely, assume that cIs ( = 0 in Hn(X). Thus ( = L miai E Sn(X), and 

there exists p = L Ck Tk E Sn+1 (X) with ap = (. Define A = supp (U supp p,6 
and choose p with A c XP. As in the proof of Theorem 4.16, there are 
n-simplexes a;: N --+ XP and (n + I)-simplexes T~: L\n+1 --+ XP for all i, k with 
ai = APa; and Tk = APT~; moreover, if " = L mia;, then" is an n-cycIe in 
XP and A~ cIs " = cIs (. On the other hand, if pi = L Ck T~, then acp~ pi = 
cp~ ap' = cp~ C; that is, cp: cIs " = 0 in Hn(XP+1). 0 

Theorem 4.18 and Corollary 4.17 are instances of a more general result: 
each homology functor Hn preserves "direct limits" over a directed index set 
(see [Spanier, p. 162]). 

The Homotopy Axiom 

Our next goal is to show that Hn(f) = Hn(g) for all n whenever f and g are 
homotopic. First, we present a preliminary result. 

Theorem 4.19. If X is a bounded convex subspace of euclidean space, then 
Hn(X) = 0 for all n ~ 1. In particular, Hn(Dk) = 0 for all n > 0 and all k. 

Remarks. (1) If X i= 0, then Theorem 4.14 shows that Ho(X) = Z. 
(2) This theorem will be used to prove a stronger result, Corollary 4.25, 

which replaces "convex subspace of eucIidean space" by "contractible space". 

PROOF. Choose a point bE X. For every n-simplex a: N --+ X, consider the 
"cone over a with vertex b" (recall that Exercise 2.10 shows that an affine 
simplex is the cone over anyone of its faces with opposite vertex). Define an 
(n + I)-simplex b. a: L\n+1 --+ X as follows: 

6 Actually, it is easy to see that supp , c supp p, so that one may take A = supp p. 
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if to = 1 

if to # 1 

(here (to, t 1, ... , tn+1) are barycentric coordinates of points in i1n+1). Note that 
to = 1 implies that (to, ... , tn+1) = (1,0, ... ,0); moreover, b. a is well defined 
because (1 - to)-l 'L7:!;i t; = 1 (hence the argument of a lies in i1n) and X is 
convex. A routine argument shows that b. a is continuous. 

Define Cn: Sn(X) -+ Sn+1 (X) by setting cn(a) = b. a and extending by linear­
ity. We claim that, for all n ~ 1 and every n-simplex a in X, 

(If one ignores signs, formula (*) says that the (oriented) boundary of the cone 
on a is the union of a with the cone on the boundary of a. We illustrate this 
when a is a 2-simplex. 

b 

Here a is represented by [eo, e1 , ez]; the cone b. a is the tetrahedron, and the 
boundary of this tetrahedron is a together with the three faces [b, eo, ed, 
[b, eo, ez], and [b, e1 , ez], each of which is the cone on a face on a.) 

If formula (*) holds, then the theorem follows easily. If l' E Sn(X), then 
extending by linearity gives 

l' = acl' + cal'; 

if}' is a cycle, that is, a}' = 0, then}' = acl' E Bn(X). Hence Zn(X) = Bn(X), and 
Hn(X) = 0. 

To verify (*), let us first compute the faces of cn(a) = b . a. If n ~ 1 and i = 0, 
then 

«b. a)88+1 )(to, ... , tn) = (b. a)(O, to, ... , tn) = a(to, ... , tn). 

IfO<i::;;n+1,then 

«b. a)8~+1 )(to, ... , tn) = (b. a)(to, ... , t;-l' 0, t;, ... , tn). 

If, in addition, to = 1, then 

(b. a)(1, 0, ... , 0) = b; 



74 4. Singular Homology 

if to =I- 1, then the right side above is equal to 

( t 1 ti- 1 ti tn ) 
tob + (1 - to)O' -1--' ... , -1--' 0, -1--' ... ,--

- to - to - to 1 - to 

( t1 tn ) = tob + (1 - to)O'ef-1 --, ... , -I--
I - to - to 

= cn- 1 (O'ef-d(to, ... , t n ). 

In conclusion, after evaluating each side on (to, ... , t n), 

(cnO')eo+1 = 0' and (cnO')ef+1 = Cn- 1 (O'ef-d ifi > 0. 

Taking alternating sums, 

n+1 n+1 
0n+1 cn(O') = L (-I)i(cnO')ei = 0' + L (-I)i cn_1 (O'ei-1) 

i=O i=1 
n 

= 0' - L (-I)jcn_1(O'e) 
j=O 

Definition. The homomorphism Cn is called the cone construction. 

Corollary 4.20. 

(i) Let X be convex and let y = L miO'i E Sn(X). If b E X, then 

o(b. y) = {y - b. oy if n > ° 
(Lmi)b - y ifn = 0. 

(ii) If y is an n-cycle and n > 0, then 

o(b. y) = o(cny) = y. 

Remark. Part (ii) may be regarded as an integration formula. 

o 

PROOF. (i) For n > 0, the formula has just been proved above. When n = 0, 
consider first a O-simplex 0' (which we identify with its image x E X). The 
definition b. 0': ~ 1 -+ X is 

(b.O')(t) = tb + (1 - t)x. 

Therefore, if one identifies O'i with its image Xi' 

o(b. y) = o(L mib. 0';) = L mio(b. 0';) 

= L mi(b - X;) = (L m;)b - y. 

(ii) Immediate from part (i). o 
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Lemma 4.21. Assume that f, g: X --+ Yare continuous maps and that there are 
homomorphisms Pn: Sn(X) --+ Sn+1(Y) with 

f# - g# = O~+lPn + Pn- 10n· 

On + 1 On 
••• ~Sn+l(X)'~ Sn(X) ~ Sn .. l(X)~ ••• 

/ /~, 

Then, for all n ~ 0, Hn(f) = Hn(g)· 

PROOF. By definition, Hn(f): z + Bn(X) 1--+ f#(z) + Bn(Y), where oz = 0. But 

(f# - g#)z = (0' P + Po)z = 0' pz E Bn(Y), 

D 

Remark. The equation in the statement of the lemma makes sense when n = 0, 
for S-l (X) was defined to be zero, hence P -1: S-l (X) --+ So(Y) must be the zero 
map. 

Lemma 4.22. Let X be a space and, for i = 0, 1, let Af: X --+ X x I be defined 
by x 1--+ (x, i). If Hn(AS) = Hn(Af): Hn(X) --+ Hn(X x I), then Hn(f) = Hn(g) 
whenever f and g: X --+ Yare homotopic. 

PROOF. If F: X x I --+ Y is a homotopy f ~ g, then 

f = FAS and g = FAr 

Therefore 

Hn(f) = Hn(F AS) = Hn(F)Hn(AS) 

= Hn(F)Hn(Af) = Hn(F Af) = Hn(g)· D 

Theorem 4.23 (Homotopy Axiom). Iff, g: X --+ Yare homotopic, then 

Hn(f) = Hn(g) for all n ~ 0. 

PROOF. By Lemma 4.22, it suffices to prove that Hn(AS) = Hn(Af) for all 
n ~ 0; by Lemma 4.21, it suffices to construct homomorphisms P;: Sn(X)--+ 
Sn+1 (X x I) with 

(1) 

We propose proving the existence of such homomorphisms P; for all spaces 
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X by induction on n ~ O. In order to prove the inductive step (and realizing 
that we must define P; on a basis of the free abelian group Sn(X)), we 
strengthen the inductive hypothesis as follows. For all spaces X, there exist 
homomorphisms Pnx : Sn(X) -t Sn+1 (X x I) satisfying (1) and the following 
"naturality condition": the following diagram commutes for every simplex 
0": I1n -t X: 

that is, 

Sn+l (I1n x I) I (a d), 

Sn+l(X X I); 

(Recall that 0" x 1: I1n x I -t X x I is defined by (x, t) H (O"(x), t).) 

(2) 

Let n = O. Begin by defining P~l = 0 (there is no choice here because 
S-l(X) = 0). Now 110 = {eo}; given 0": 110 -tX, define pl(O"): 111 -tX X I by 
t H (O"(eo), t), and then define Pl: So(X) -t Sl (X x I) by extending by linearity. 
To check Eq. (1), it suffices to evaluate on a typical basis element 0": 

i\PlO" = (O"(eo), 1) - (O"(eo), 0) = Af 0 0" - A& 00" = Af#(O") - A&#(o"); 

that is (since P!l = 0), 

To check the naturality condition (2), consider the diagram 

So (11 0) 
Pgo 

Sl(110 x I) ----+ 

a,l I (.- 1), 

So (X) ----+ Sl(X x I). 
P6 

There is only one O-simplex in 11°, namely, the identity function J with 
J(eo) = eo. To check commutativity, it suffices to evaluate each composite on 
J; note that each result is a map 111 -t X x I. Identify (1 - t)eo + tel E 111 
with t, and evaluate: 

plO"#(J) = pl(O" 0 J) = pl(O"): tH(O"(eo), t); 

(0" x 1)# pf(J): t H (0" X 1)# (J(eo), t) = (0" X 1)# (eo, t) = (O"(eo), t), 

as desired. 
Assume that n > o. We shall sometimes write 11 instead of I1n for the 
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remainder of this proof. Were Eq. (1) true, then (At# - A~# - P:-10n)(1') 
would be a cycle for every l' E Sn(X). This is indeed so. 

On(At # - A~ # - P:-10n) = At # On - A~ # On - OnP:-10n (Lemma 4.8) 

= At#on - A~#On - (At# - A~# - P:- 2 0n- 1)On 

(by induction) 

= 0 (since 00 = 0). 

If 15: fl.n -+ fl.n is the identity map, then 15 E Sn(fl.n); it follows that (At # -
A~# - P:-1 on)(b) E Zn(fl.n x I). But fl.n x I is convex, so that Theorem 4.19 
gives Hn(fl.n x I) = 0 (because n > 0); therefore Zn(fl.n x I) = Bn(fl.n x I), and 
there exists /3n+1 E Sn+1 (fl.n X I) with 

On+1/3n+1 = (At# - A~# - p:-10n)(b). 

Define P;: Sn(X) -+ Sn+1 (X x I), for any space X, by 

P;(a) = (a x 1)#(/3n+d 

(where a is an n-simplex in X), and extend by linearity. 
Before checking Eqs. (1) and (2), observe that, for i = 0, 1 and for a: fl.n -+ X 

an n-simplex in X, we have 

(a x 1)At = Af a: fl.n -+ X x I (3) 

[if Y E fl.n, then 

(a x 1)At(y) = (a x 1)(y, i) = (a(y), i) = Af(a(y))]. 

To check Eq. (1), let a: fl.n -+ X be an n-simplex in X. 

On+1 P;(a) = 0n+1(a X 1)#(/3n+1) 

=(a x 1)#On+1(/3n+1) (Lemma 4.8) 

= (a x 1)#(At# - A~# - P:-10n)(b) (definition of /3n+d 

= (a x 1)At - (a x 1)A~ - (a x 1)# P:-1 on(b) (sincdt# (b) = At) 

= (a x 1)At - (a x 1)A~ - P:-1 a # on(b) (Eq. (2) for Pn- 1) 

= Af a - AJ a - P;-l ona # (b) (Eq. (3) and Lemma 4.8) 

= (Af - AJ - P;-10n)(a) (since a#(b) = a). 

To check the naturality equation (2), let 'r: fl.n -+ fl.n be an n-simplex in fl.n. 
Then for every a: fl.n -+ X, 

(a x 1)#P:(r) = (a x 1)#(, x 1)#(/3"+1) = (a, x 1)#(/3n+d, 

while 

as desired. o 
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Remarks. (1) If X = d n and (J = D, the identity map in d n, then one can give 
a geometric interpretation of Pn+1. Recall that P;((J) = ((J x 1)#(Pn+I); in 
particular, P:(D) = (D x 1)#(Pn+l) = Pn+l' since D x 1 is the identity on d n x I. 
Now Pn+l = P:(D) is, in no obvious way, a linear combination of simplexes 
because d n x I is a prism (hence the letter P) which is not triangulated. 

If d n = [eo, ... , en], define ai = (ei, 0) and bi = (ei, 1) for 0::;; i::;; n. A formula 
for Pn+1 turns out to be 

n 

Pn+l = L (-1)i[ao, ... , ai' bi' bi+l , ... , bn], 
i=O 

(4) 

where the brackets denote the affine map d n+1 ~ d n x I taking the vertices 
{eo, ... , en+l } to the vertices {ao, ... , ai' bi' ... , bn} preserving the displayed 
orderings. Aside from signs, formula (4) does triangulate the prisms. For 
example, d l x I is divided into two triangles [ao, bo, bl ] and [ao, ai' bl ]. 

bo 
/' 

b l 
/' 

/' 
/' 

/ 
/ 

/ 
/ 

/ 
/' 

/ 
/' 

ao al 

After drawing in dotted lines in d 2 x I pictured above, one sees three tetra-
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hedra: [ao, bo, bi> b2 ], [ao, a1 , b1 , b2 ], and [ao, a 1 , a2 , b2 ]. One thus views 
P(a) as the "triangulated prism over (J". The geometric interpretation of 
ap + pa = A1# - Ao# is: the (oriented) boundary ap of the solid prism with­
out pa, the prism on the boundary, is the top and bottom (we ignore signs 
when being descriptive). 

(2) One could prove Theorem 4.23 using the explicit formula (4) for /3n+1' 
but the proof is no shorter and one must always be alert that signs are correct. 

(3) The construction of the sequence of homomorphisms Pn has been 
axiomatized (and will appear again); it is called the method of acyclic models, 
and we shall discuss it in Chapter 9. 

We now draw the usual consequence of the homotopy axiom: the homo­
logy functors induce functors on the homotopy category; we may regard Hn 

as a functor hTop -+ Ab. 

Corollary 4.24. If X and Y have the same homotopy type, then Hn(X) ~ Hn(Y) 
for all n ~ 0, where the isomorphism is induced by any homotopy equivalence. 

We now generalize Theorem 4.19. 

Corollary 4.25. If X is contractible, then Hn(X) = ° for all n > 0. 

PROOF. X has the same homotopy type as a one-point space; apply Corollary 
4.24 and the dimension axiom, Theorem 4.12. 0 

EXERCISES 

4.9. (i) Using the explicit formula for /3n+1' show that 

I n +1/3n+l = (At# - Ag# - P:-1Jn)(D) 

for n = 0 and n = 1. 
(ii) Give an explicit formula for pf(a), where a: .11 ---> X is a I-simplex. 

*4.10. Prove that Pn is "natural": if j: X ---> Y is continuous, there is a commutative 
diagram 

Sn(X) 

1·1 
Sn(Y) 

*4.11. If X is a deformation retract of Y, then Hn(X} ~ Hn(Y} for all n z O. In fact, if 
i: X ---> Y is the inclusion, then Hn(i} is an isomorphism. 

4.12. Compute the homology groups of the sin(l/x) space. 
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The H urewicz Theorem 

There is an intimate relation between n 1 and HI' 

Lemma 4.26. Let r,: Al -+ I be the homeomorphism (1 - t)eo + tel f---+ t. There is 
a well defined function 

given by 

[fJ f---+ cls f1J, 

where f: I -+ X is a closed path in X at xo' 

PROOF. It is plain that f1J is a I-simplex in X, so that f1J E Sl (X). Indeed, 
f1J E Zl(X), for 01(f1J) = f1J(e 1) - f1J(e o) = f(I) - f(O) = 0, because f is a 
closed path; thus cls f1J E HI (X). In particular, if u: I -+ Sl is defined by t f---+ 

e21tit, then U1J is a I-cycle in Sl. We saw in Exercise 3.2 that there is a map 
f': Sl -+ X making the following diagram commute (f is a closed path in X): 

hencef' induces a homomorphismf;: HI (Sl) -+ HI (X), namely, cls(I miO";) f---+ 

cls(I mi(f' 0 0";)). It follows that 

cls f1J = cls f' U1J = f; cls U1J E HI (X). 

Now assume that g is a closed path in X at Xo with f ~ g reI i; by Exercise 
3.2, we have f' ~ g'. The homotopy axiom (Theorem 4.23) thus gives 

cls f1J = f; cls U1J = g ~ cls U1J = cls g1J. 

Therefore <p is well defined. D 

Lemma 4.26 may be paraphrased: homotopic closed curves in X must be 
homologous. 

Definition. The function <p: n 1(X, xo) -+ HI (X) of Lemma 4.26 is called the 
Hurewicz map. 

Theorem 4.27. The Hurewicz map <p: n 1(X, xo) -+ H 1(X) is a homomorphism. 

PROOF. Let f and g be closed paths in X at xo' Define a continuous map 
0": A2 -+ X as indicated by the following picture. 
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In more detail, first define a on LV: 0'(1 - t, t, 0) = f(t); 0'(0, 1 - t, t) = g(t); 
0'(1 - t, 0, t) = (f * g)(t). Now define a on all of il2 by setting it constant on 
the line segments with endpoints a = a(t) = (1 - t, t, 0) and b = b(t) = 
((2 - t)/2, 0, t/2), and constant on the line segments with endpoints c = c(t) = 
(0, 1 - t, t) and d = d(t) = ((1 - t)/2, 0, (1 + t)/2). It is easy to see that 
a: il2 --+ X is continuous, that is, a E S2(X). Moreover, 80' = aeo - aet + ae2. 
But aeo(t) = 0'(0, 1 - t, t) = g(t), aet = f * g, and ae2 = f, so that 80' = 

g - f * g + f Therefore 

<p: [fJ [g] = [f * g] H cls(f * g)ll = cls(f + g)ll = clsfll + cls gll· 0 

EXERCISES 

*4.13. Prove that the Hurewicz map cp is "natural". If h: (X, x o) -> (Y, Yo) is a map of 
pointed spaces, then the following diagram commutes: 

h. 
1l: 1(X, xo) --> 1l: 1(Y, Yo) 

.j j. 
*4.14. If/is a (not necessarily closed) path in X, prove that the 1-chain / is homo­

logous to _/-1. (Hint: Use Theorem 4.27 and Exercise 3.4 with the picture 
below.) 

f 

*4.15. Let X be a space and let IX, /3, y be (not necessarily closed) paths in X such that 
IX * /3 * y is defined and is a closed path. Prove that, in H 1 (X), 
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cis (IX * f3 * y) = cis (IX + f3 + y) = cis IX + cis f3 + cis y. 

(Hint: Use Theorem 4.27 and Exercise 3.4 with maps ~2 ---> X suggested by 

.) 

(0: * ~) * r 

Lemma 4.28 (Substitution Principle). Let F be a free abelian group with basis 
B, let xo, Xl' ... , X k be a list of elements of B, possibly with repetitions, and 
assume that 

k 

moxo = L mix;, where mi E Z. 
i=l 

If G is any abelian group, and if Yo, Yl> ... , Yk EGis a list such that Xi = Xj 

implies Yi = Yj' then moYo = L~=l miYi in G. 

PROOF. Define a function f: B -+ G by f(x;) = Y Jor i = 0, 1, ... , k, and f(x) = 0 
otherwise (f is well defined by hypothesis). By Theorem 4.1, there is a homo­
morphism j: F -+ Gextending f But 

o = j(moxo - L mixi) = moYo - L miYi' D 

A key ingredient in the next proof is that if 0': ~2 -+ X is a 2-simplex, then 
0'ILi2 is nullhomotopic (Theorem 1.6), and hence 0'ILi2 ~ (0'1>0) * (0'61f1 * (0'62) 
is nUllhomotopic (Exercise 3.4). 

Theorem 4.29 (Hurewicz 7 Theorem). If X is path connected, then the Hurewicz 
map cp: 1t1(X, xo) -+H1(X) is a surjection with kernel1t 1(X, xo)', the commu­
tator subgroup of 1t1 (X, xo). Hence 

1t1(X, X O)/1t1(X, xo)' ~ H1(X), 

PROOF. To see that cp is a surjection, consider a I-cycle, = L miO'i in X; hence 

o = 01 (0 = L m;(O'i(ed - O'i(eO)), 

an equation among the basis elements X of the free abelian group So (X). Now 
X path connected implies that, for each i, there are paths in X, say, Yi from Xo 

to O'i(e 1) and Ji from Xo to O'i(eO)' 

7 Although this result is due to Poincare, there is a more general theorem of Hurewicz relating 
homotopy groups and homology groups. 



The Hurewicz Theorem 83 

Choose 1'i = 1'j if (Ji(ed = (Jiel); choose Ji = Jj if (Ji(eO) = (Jieo); choose 1'i = Jj 
if (Ji(ed = (Jj(eo)' The substitution principle (for the list (Jl(e1), (Jl(eO)' (J2(e1), 
(J2(eO)"" in the free abelian group So(X) and for the list 1'11'/, J1 1'/, 1'21'/, J2 1'/, ... 
in Sl (X)) gives the equation 0 = L mi(Ji1'/ - 1'i1'/) in Sl (X). Hence 

L m;(Ji1'/ + (Ji - 1'i1'/) = L mi(Ji = (. (1) 

But Ji * (Ji1'/-l * 1'i-1 is a closed path in X at xo, so that Exercise 4.14 and 
Exercise 4.15 give 

<p(n [Ji * (Ji1'/-l * 1'i-1 r;) = L mi<P [Ji * (Ji1'/-l * 1'i-1] 

= L mi cls(Ji1'/ + (Ji - 1'i1'/) = cls (. 

We now compute ker <po For the remainder of this proof, abbreviate 
1t 1(X, xo) to 1t. Since Hi (X) is abelian, 1t' c ker <po For the reverse inclusion, 
assume that l' is a closed path in X at xo with [1'] E ker <p; there are thus 
2-simplexes ri: A2 --+ X with 1'1'/ = 02(L nir;) for ni E Z. If riej is denoted by rij' 
then 02(ri) = riO - r il + r i2, and 

(2) 

an equation among the basis elements of the free abelian group Sl (X). It 
follows that 1'1'/ = rpq for some p = i and q E {O, 1, 2} (because 1'1'/ also is a basis 
element). As in the first part of the proof, we use path connectedness to 
construct auxiliary paths to make loops at xo. For each i, choose paths Ai, fli' 
Vi from Xo to riO(eO), ril(ed, r i2 (eO), respectively. 

Xo~~--------~----~ 

Should any of the ends riO(eO), ril (e1), rdeo) be Xo, choose the corresponding 
A, fl, V to be the constant path at Xo; also, should riO(eO) = rjo(eo), choose 
Ai = Aj (and similarly for fl, v). Assemble paths to obtain elements of 1t = 
1tl (X, xo). Define 



84 

L iO = [A.i * 'i01'/-l * .ui1]; 

Lil = [Vi * 'il 1'/-1 * .ui1]; 

4. Singular Homology 

The substitution principle when applied to Eq. (2) in Sl (X) and the multiplica­
tive abelian group n/n' gives an equation 

Lpq = n (LiOLi/ L;z)";, 

where bar denotes coset mod n'. Now Lpq = [0( * 'pq1'/-l * {3], where 0( and {3 
are appropriate A., .u, v. Since, pq = Y1'/ is a closed path at X o, the choice of 
auxiliary paths shows that 0( and {3 are constant paths at Xo; therefore Lpq = 

['pq1'/-l] = [y]. Finally, we have in n that 

LiOLi/ Li2 = [A.i * 'i01'/-l * .ui1 *.ui * ('i1 1'/-1 )-1 * Vi- 1 * Vi * 'i21'/-1 * A.i1] 

= [Ai * 'i01'/-l * ('il 1'/-1 )-1 * 'i21'/-1 * A.i1] = 1, 

by Exercise 3.4(i). It follows that Lpq = n (LiOLi11 L i2 )"; = 1 in n/n', hence 
[y] = Lpq = 1 in n/n'; that is, [y] En'. 0 

As we mentioned earlier, two homotopic closed curves in a space X are 
necessarily homologous (this is the statement that the Hurewicz map is well 
defined). One can show that the converse is not true by giving a space X whose 
fundamental group is not abelian (so that cp is not injective). An example of 
such a space X is the figure 8. 

The closed paths 0( * {3 and {3 * 0( at Xo are homologous, but they are not 
homotopic (i.e., 0( * {3 * 0(-1 * p-1 is not nullhomotopicin X; see Corollary 7.42. 

Corollary 4.30. H 1 (S 1 ) ~ z. 

Corollary 4.31. If X is simply connected, then H1 (X) = o. 

EXERCISE 

4.16. Iff: 81 -> 81 is continuous, define degree f = m if the induced map f*: H1 (8 1)-> 

H1 (8 1 ) is multiplication by m. Show that this definition of degree coincides with 
the degree of a pointed map (8 1, 1) -> (81, 1) defined in terms of nd81, 1). 
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The last result in this chapter is a geometric characterization of Zl (X). 

Definition. A polygon in a space X is a I-chain n = L~=o O"i' where O"i(e 1) = 
O"i+l(eO) for all i (indices are read mod(k + 1)). 

Theorem 4.32. Let X be a space. A I-chain I' = L miO"i E Sl (X) is a cycle if and 
only if I' is homologous to a linear combination of polygons. 

PROOF. Sufficiency is clear, for every polygon n is a cycle: 

an = o(I O"J = I (O"i(e l ) - O"i(eO)) = 0. 

Conversely, let I' = I miO"i be a cycle. If some mi < 0, then Exercise 4.14 
says that miO"i is homologous to ( - mJO"i- l . We may thus assume that each 
mi ~ 0. The proof proceeds by induction on I mi ~ 0; the induction does begin 
when I mi = 0, for now I' = 0. For the inductive step, we may assume each 
mi > 0. Define Ei = {O"i(eO)' O"i(ed} and define E = U E i. Since every closed 
path 0" is itself a polygon, we may assume that no O"i is closed (otherwise, apply 
induction to I' - 0";). Denote O"l(eO) by Xl and O"l(e l ) by xz , so that 00"1 = 

X z - Xl. Since 01' = ° and all mi > 0, there must be some O"i occurring in I' with 
O"i(eO) = X z [and so Xz occurs with a negative sign in OO"i = O"i(e l ) - O"i(eO)]. 

Define X3 = O"i(e l ). Iterate this procedure to obtain a sequence Xl' X z , X 3 , ••• 

of points in E. Because E is a finite set, there exists a "loop" x P ' x p + l , ••• , X n , 

X n+1 = xp; that is, there is a polygon n = LJ=p O"ij • Thus I' - n is a I-cycle to 
which the inductive hypothesis applies. Therefore I' - n and hence I' is (homo­
logous to) a linear combination of polygons. 0 

Just as one may regard n l (X, xo) as (pointed) maps of Sl into X, one can 
define higher homotopy groups nn(X, xo) as pointed maps of sn into X. There 
is a Hurewicz map nn(X) -. Hn(X), and the question whether there is an analog 
of Theorem 4.32 is related to the image of this map. 

There are two more fundamental properties (axioms) of homology functors: 
the long exact sequence and excision. Once we know these, we shall be able to 
compute some homology groups and give interesting applications of this 
computation. These properties, along with properties we already know, serve 
to characterize the homology functors as well. 



CHAPTER 5 

Long Exact Sequences 

The homology groups of a space X are defined in two stages: (1) construction 
of the singular complex (S*(X), a) and (2) formation of the groups Hn(X) = 
ker an/im an+1 • The first stage involves the topology of X in an essential way, 
for one needs to know the n-simplexes in X; the second stage is purely 
algebraic. Let us now acquaint ourselves with the algebraic half of the defini­
tion in order to establish the existence of certain long exact sequences; these 
are very useful for calculation because they display connections between the 
homology of a space and the homology of its subspaces. 

The Category Comp 

Definition. A (chain) complex is a sequence of abelian groups and homo­
morphisms 

nEZ, 

such that anan+1 = 0 for each n E Z. The homomorphism an is called the 
differentiation of degree n, and Sn is called the term of degree n. 

The complex above is denoted by (S*, a) or, more simply, by S*. Observe 
that the condition anan+! = 0 is equivalent to 

im an+1 c ker an. 
Of course, the singular complex (S*(X), a) is an example of a complex (in which 
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all terms with negative subscripts are zero). We shall see examples of com­
plexes with negative subscripts in Chapter 12. 

Definition. A sequence of two homomorphisms (of groups) A! B ~ C is 
exact at B if im f = ker g. A sequence of abelian groups and homomorphisms 

On+! On 
···-Sn+1- Sn- Sn-l-··· 

is exact if it is exact at each Sn, that is, im 0n+l = ker On for all n E Z. 

It is clear that every exact sequence is a complex: equality (im = ker) implies 
inclusion (im c ker). 

EXERCISES 

*5.1. (i) If 0 --+ A!. B is exact, then fis injective (there is no need to label the only 
possible homomorphism 0 --+ A). 

(ii) If B !!.. C --+ 0 is exact, then g is surjective (there is no need to label the only 
possible homomorphism C --+ 0). 

(iii) If 0 --+ A 1. B --+ 0 is exact, then f is an isomorphism. 
(iv) If 0 --+ A --+ 0 is exact, then A = o. 

*5.2. If A 1. B ~ C !!. D is exact, then f is surjective if and only if h is injective. 

*5.3. A short exact sequence is an exact sequence of the form 

o --+ A ~ B !. C --+ o. 

In this case, show that iA ~ A and B/iA ~ C via b + iA I--> pb. 

f h" hn- 1 *5.4. I ... ---> Cn+1 ---> An ---> Bn ---> Cn ------+ An- 1 ---> Bn- I ---> Cn - I ---> ... 

is exact and every third arrow hn: An --+ Bn is an isomorphism, then Cn = 0 for 
all n. 

*5.5. (i) If 0 --+ A --+ B --+ C --+ 0 is a short exact sequence of abelian groups, then 
rank B = rank A + rank C. (Hint: Extend a maximal independent subset of 
A to a maximal independent subset of B.) 

(ii) If 0 --+ An --+ An-I --+ .•• --+ Al --+ Ao --+ 0 is an exact sequence of (finitely 
generated) abelian groups, then L:?=o (_1)i rank Ai = O. 

Definition. If (S*, 0) is a complex, then ker On is called the group of n-cycles 
and is denoted by Zn(S*, 0); im On+1 is called the group of n-boundaries and is 
denoted by Bn(S*, 0). The nth homology group of this complex is 

Hn(S*, 0) = Zn(S*, o)/Bn(S*, 0). 

Of course, we shall abbreviate this notation if no confusion ensues. If 
Zn E Zn, then Zn + Bn E Hn is called the homology class of Zn and it is denoted 
by cls Zn. 
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Theorem 5.1. A complex (S*, a) is an exact sequence if and only if Hn(S*, a) = 0 
for every n. 

PROOF. Zn = Bn if and only if ker an = im an+1. o 

Thus the homology groups "measure" the deviation of a complex from 
being an exact sequence. Because of this theorem, an exact sequence is also 
called an acyclic complex. 

Definition. If(S~, af) and (S*, a) are complexes, a chain map f: (S~, af) -+ (S*, a) 
is a sequence of homomorphisms {fn: S~ -+ Sn} such that the following dia­
gram commutes: 

... ~ S~+l 
a~+l Sf O~ 

S~-l ~ ~ ~ n 

I f. .. If. 1[.· 
Sn+l ~ Sn~ Sn-1 ~ 

an+! an 
... ~ 

that is, anfn = 1.-1 a~ for all n E Z. If f = {In}, then one calls fn the term of 
degree n. 

Iff: X -+ Yis continuous, then we saw in Lemma 4.8 thatfinduces a chain 
map f #: S*(X) -+ S*(Y). 

Definition. All complexes and chain maps form a category, denoted by Comp, 
when one defines composition of chain maps coordinatewise: {gn} 0 {fn} = 

{gn 0 f.}. 

The category Comp has the feature that, for every pair of complexes S~ and 
S*, Hom(S~, S*) is an abelian group: if f = {In} and 9 = {gn} E Hom(S~, S*), 
then f + 9 is the chain map whose term of degree n is fn + gn. 

The reader may now show that there is a functor S*: Top -+ Comp with 
X 1---+ (S* (X), a) and f 1---+ f # . Also for each nEZ, there is a functor Hn: Comp -+ 

Ab with S* 1---+ Hn(S*) = Zn(S*)/Bn(S*) and with Hn(f): cls Zn 1---+ cls fn(zn) for 
every chain map f: S~ -+ S* (one proves that Hn(!) is well defined, as in 
Lemma 4.9, and one proves that Hn is a functor, as in Theorem 4.10). One 
usually writes f* instead of Hn(!), again omitting the subscript n unless it 
is needed for clarity. Obviously, each homology functor Hn: Top -+ Ab (for 
n 2: 0) is the composite of these functors Top -+ Comp -+ Ab; we have made 
precise the observation that our original construction of Hn(X) involves a 
topological step followed by an algebraic one. 

Theorem 5.2. For each nEZ, the functor Hn: Comp -+ Ab is additive; that is, if 
f, 9 E Hom(S~, S*), then Hn(f + g) = Hn(!) + Hn(g)· 



The Category Comp 89 

PROOF. A routine exercise. o 

It follows easily that Hn(O) = 0, where (the first) ° denotes either the zero 
complex (all terms Sn zero) or the zero chain map (all terms!n zero). 

The category Comp strongly resembles the category Ab in the sense that 
one has analogues in Comp of the familiar notions of subgroup, quotient group, 
first isomorphism theorem, and so on. It is important that the reader feel 
as comfortable with a complex as with an abelian group. Here are the 
constructions. 

Subcomplex. Define (S'*, a') to be a subcomplex of (S*' a) if each S~ is a 
subgroup of Sn and if each a~ = anIS~. Here are two other descriptions: (1) the 
following diagram commutes for all n: 

where in: S~ c... Sn is the inclusion map; (2) if i = {in}, then i: S~ -+ S* is a chain 
map. (That all three descriptions are equivalent is left as an exercise.) 

Quotient. If(S~, a') is a subcomplex of (S*' a), then the quotient complex is 
the complex 

· .. ---+SIS'~S IS' ---+ ... n n n-1 n-1 , 

where an: Sn + S~ ~ an(sn) + S~-l (an is well defined because an(S~) c S~-l)' 
Kernel and Image. If f: (S*' a) -+ (S;, a") is a chain map, then ker lis the 

subcomplex of S* 
0' 

"'---+ker!n~ker!n_l---+"" 

where a~ is (necessarily) the restriction anlker fn; im lis the subcomplex of S; 
. A; . 

"'---+lm!n---+lmfn-l ---+"', 

where A~ is (necessarily) the restriction a~' lim fn. 
Exactness. A sequence of complexes and chain maps 

/"+1 /" 
... -- At+1 --At --At-1 --'" 

is exact if im f q +1 = ker r for every q. A short exact sequence of complexes 
is an exact sequence of the form 

° -+ S~ !... S* ~ S; -+ 0, 

where ° denotes the zero complex. 
Here is the picture of a short exact sequence of complexes in unabbreviated 

form. 
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1 
in+l 

1 
P.+l 

1 
0 ---+ S~+1 ---+ Sn+1 ---+ S:+1 ---+ 0 

.... j ~.. j 
P. 

j ... , 
0 S' 

I. 
S" 0 ---+ ---+ Sn ---+ ---+ n n 

.. j 
in- 1 

~j 
P.-l 

j~ 
0---+ S~-1 ---+ Sn-1 ---+ S:-1 ---+ 0 

1 1 1 
This is a commutative diagram whose columns are complexes. By Exercise 
5.8 below, its rows are short exact sequence of groups. 

Intersection and Sum. Let S~ and S; be subcomplexes of S*. Then S~ n S; 
is the subcomplex of S* whose nth term is S~ n S:, and S~ + S; is the sub­
complex of S* whose nth term is S~ + S:. 

Direct Sum. Let {(S!, o.l'): A. E A} be a family of complexes, indexed by a 
set A. Their direct sum is the complex 

... ---+" S). ~"S).~" S). ---+ ... L...). n+1 L...). n L...). n-1 , 

where an = L).O:: L).S:H L).on).(s:) for s: E S:. Note the special case A = 
{1,2}. 

An important example of a subcomplex arises from a subspace A of a space 
X. If j: A 4 X is the inclusion, we saw in Lemma 4.15 that j#: Sn(A) -+ Sn(X) 
is injective for every n. There is thus a short exact sequence of complexes 

0-+ S*(A) -+ S*(X) -+ S*(X)/S*(A) -+ 0 

that will be very useful. It is convenient to regard S*(A) as being a subcomplex 
of S*(X) (instead of being isomorphic to im j#). This is accomplished by 
regarding every n-simplex u: /1n -+ A as an n-simplex in X whose image 
happens to be contained in A, that is, by identifying U with ja. 

One cannot form the intersection of two arbitrary sets; one can only form 
the intersection of two subsets of a set. Let A1 and A2 be subspaces of a space 
X. As above, regard S*(A 1) and S*(A2) as subcomplexes of S*(X). We claim 
that S*(Atl n S*(A2) = S*(A 1 n A2). IfL mjUj E Sn(Atl n Sn(A 2), then each U j is 
an n-simplex in X with im Uj C A1 and with im U j C A2; hence each Uj is an 
n-simplex in X with im Uj C A1 n A2, that is, Lmjuj E Sn(A1 n A2). For the 
reverse inclusion, each n-simplex U in X with im U j C A 1 n A2 may be regarded 
as an n-simplex in either A1 or A2, and so U E Sn(Atl n Sn(A2). 
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Our last example here involves the decomposition of a space X into the 
disjoint union of its path components: X = U X;.. As above, each subspace 
X;. gives a subcomplex S*(X;.) of S*(X). Each n-simplex a: I1n ..... X actually 
takes values in some X;.; therefore a linear combination of n-simplexes in 
X can be written, after collecting like terms, as a linear combination of 
n-simplexes in various X;., It follows (with routine details left to the reader) 
that S*(X) = L;.S*(X;.), 

EXERCISES 

*5.6. If (S*, 0) is a complex with On = 0 for every nEZ, then H.(S*) = Sn for every 
nEZ. 

5.7. Prove that a chain map f is an equivalence in Comp if and only if each J. is an 
isomorphism (one calls f an isomorphism). 

*5.8. A sequence S~ L S*!!.. S; is exact in Comp if and only if S~ £.:. s. ~ S; is 
exact in Ab for every n E Z. 

5.9. (i) Recall that the natural map v: G -+ G/K (in Ab) is defined by v(g) = g + K. 
If S~ is a subcomplex of S*, show that v: S* -+ S*/S~, defined by v = 
{v.: S. -+ S./S~: v. is the natural map}, is a chain map whose kernel is S~ 
(v is also called the natural map). 

(ii) Prove that the first isomorphism theorem holds in Compo Iff: S* -+ S; is a 
chain map, then there is an isomorphism 

8: S*/ker f:::+ im f 

making the following diagram commute (v is the natural map): 

S ~ im f '----+ s" 

*\ f * 
S*/ker f 

5.10. If S~ and S; are subcomplexes of S*, prove that the second isomorphism theorem 
holds in Comp: 

S~/(S~ n S;) ~ (S~ + S;)/S;. 

(Hint: Adapt the usual proof from group theory deriving the second isomor­
phism theorem from the first.) 

*5.11. Prove that the third isomorphism theorem holds in Comp.1f U* c: T* c: S* are 
subcomplexes, then there is a short exact sequence of complexes 

. p 

0-+ T*/U* ~ S*/U* -+ S*/T* -+ 0, 

where i.: t. + U. H t. + U. (inclusion) and P.(s. + U.) = s. + T.. 

*5.12. For every n, H.(LA S;) ~ LA H.(S~). (See the proof of Theorem 4.13.) 

The next definition comes from Lemma 4.21. 
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Definition. If f, g: (S~, 0') --+ (s*' 0) are chain maps, then f and g are (chain) 
homotopic, denoted by f ~ g, if there is a sequence of homomorphisms 
{Pn: S~ --+ Sn+d such that, for all nEZ, 

0n+1 Pn + Pn- 1 O~ = fn - gn· 

The sequence P = {Pn } is called a chain homotopy. 
A chain map f: (S~, 0') --+ (S*' 0) is called a chain equivalence if there exists 

a chain map g: (S*' 0) --+ (S~, 0') such that g 0 f ~ Is~ and fog ~ Is •. Two 
chain complexes are called chain equivalent if there exists a chain equivalence 
between them. 

The relation of homotopy is an equivalence relation on the set of all chain 
maps S~ --+ S*. 

Theorem 5.3. 

(i) Iff, g: S~ --+ S* are chain maps with f ~ g, then, for all n, 

Hn(f) = Hn(g): Hn(S~) --+ Hn(S*). 

(ii)l If f: S~ --+ S* is a chain equivalence, then, for all n, 

is an isomorphism. 

PROOF. (i) See the proof of Lemma 4.21. 
(ii) An immediate consequence of part (i) and the definitions. 

The next definition recalls the cone construction of Theorem 4.19. 

o 

Definition. A contracting homotopy of a complex (S*' 0) is a sequence of 
homomorphisms c = {cn: Sn --+ Sn+1} such that for all nEZ, 

0n+1 Cn + Cn- 10n = Is.· 

Plainly, a contracting homotopy is a chain homotopy between the identity 
map of S* (namely, {Is.}) and the zero map on S*. 

Corollary 5.4.2 If a complex S* has a contracting homotopy, then S* is acyclic 
(i.e., Hn(S*) = 0 for all n, i.e., S* is an exact sequence). 

1 The converse is almost true. In Theorem 9.8, we shall prove that if S~ and S. are chain complexes 
each of whose terms is free abelian and if f: S~ ..... S. is a chain map with every H.(f) an 
isomorphism, then f is a chain equivalence. 

2 The converse is true if each term S. of S. is free abelian (Theorem 9.4). 
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PROOF. If 1 denotes the identity on S*, then Theorem 5.3 gives Hn(l) = 

Hn(O) = 0 for all n. Since Hn is a functor, Hn(l) is the identity on Hn(S*); it 
follows that Hn(S*) = O. 0 

Indeed it is easy to see that a complex with a contracting homotopy is chain 
equivalent to the zero complex. 

Exact Homology Sequences 

A fundamental property of the homology functors Hn is that they are con­
nected to one another. To see this, let us first see how Hn affects exactness. 

Lemma 5.5. If 0 -+ (S~, at) ~ (S*, a) ~ (S~, a") -+ 0 is a short exact sequence 
of complexes, then for each n there is a homomorphism 

dn: Hn(S~) -+ Hn- 1 (S~) 

given by 

PROOF. 3 Because i and p are chain maps, the following diagram commutes; 
moreover, the rows are exact, by Exercise 5.8. 

S' 
i sn ~S"-o -n n 

a' J ja I" 
O-S~_l • sn - 1 

......!!.- S" n - 1 

Suppose that z" E Z; so a" z" = O. Since p is surjective, we may lift z" to Sn E Sn 
and then push down to aSn E Sn-l' By commutativity, 

aSn E ker(Sn_l -+ S;-d = im i. 

It follows that i-1 aSn makes sense; that is, there is a unique (i is injective) 
S~-l E S~-l with iS~-l = aSn' 

Suppose that we had lifted z" to Un E Sn. Then the construction above yields 
U~-l E S~-l with iU~-l = aUn- We also know that 

3 This method of proof is called diagram chasing. It is really a simple technique, for each step is 
essentially dictated, and so one proceeds without having to make any decisions. 
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sn - (In E ker p = im(S~ -+ Sn), 

so there is x~ E S~ with S~-l - (J~-l = 0' x~ E B~-l' There is thus a well defined 
homomorphism 

z; -+ S~-dB~-l' 

It is easy to see that this map sends B; into 0 and that S~-l = i-I Op-l Z" is 
a cycle. Therefore the formula does give a map Hn(S~) -+ Hn- l (S~), as desired. 

o 

Definition. The maps dn of Lemma 5.5 are called connecting homomorphisms. 

Theorem 5.6 (Exact Triangle). If 0 -+ (S~, 0') ..!.. (S*, 0) ~ (S~, 0") -+ 0 is a 
short exact sequence of complexes, then there is an exact sequence 

.•. --> Hn(S~) ~ Hn(S*) ~ Hn(S;).! Hn- 1 (S~) ~ Hn- l (S*) ~ Hn - l (S;) --> .... 

PROOF. The argument is routine, but we give the details anyway. The notation 
below is self-explanatory and subscripts are omitted. 

(1) im i* c ker p*. 
This follows from p*i* = (pi)* = 0* = O. 
(2) ker p* c im i*. 
If p*(z + B) = pz + B" = B", then pz = 0" S". But p surjective gives S" = ps, 

so that pz = 0" ps = pos and p(z - os) = O. By exactness, there exists s' with 
is' = z - os. Note that s' E Z', for io's' = ois' = OZ - oos = 0 (z is a cycle). 
Since i is injective, 0' s' = O. Therefore 

i*(s' + B') = is' + B = z - os + B = z + B. 

(3) im p* c ker d. 

dp*(z + B) = d(pz + B") = i-lop-l(pZ) + B'. 

As the definition of d is independent of the choice of lifting, we may choose 
z = p-l(pZ), hence i-lop-l(pZ) = i-loz = O. 

(4) ker de im p*. 
If d(ZIl + B") = B', then x' = i-lop-lZ" E B' and x' = o's'. Now ix' = 

io's' = ois' = Op-l Zll, so that O(p-l Z" - is') = 0, and p-l Z" - is' E Z. Therefore 

p*(p-l Z" - is' + B) = pp-l Z" - pis' + B" = Z" + B". 

(5) im d c ker i*. 

i*d(ZIl + B") = i*(i-l Op-l Z" + B') = Op-l Z" + B = B. 

(6) ker i* c im d. 
If i*(z' + B') = B, then iz' = os, and O"pS = pos = piz' = 0 and ps E Z". 

But d(ps + B") = i-lOp-IpS + B' = i-lOS + B' = i-liz' + B = z' + B'. 0 
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Theorem 5.6 is called the Exact Triangle because ofthe mnemonic diagram, 

H(S~) ~ H(S*) 

~~. 
H(S~) 

Theorem 5.7 (Naturality of the Connecting Homomorphism). Assume that 
there is a commutative diagram of complexes with exact rows: 

S~ -----+ 0 

If" 
T';: -----+ O. 

Then there is a commutative diagram of abelian groups with exact rows: 

Hn(S~) 
i* 

HiS*) 
p* 

Hn(S~) 
d 

Hn-l(S~) ... ----+ ----+ ----+ ----+ ----+ 

If; [fo If; If; 
... ----+ Hn(T~) ----+ Hn(T*) ----+ Hn(T';:) ----+ Hn- l (T~) ----+ 

j. q* d' 

PROOF. Exactness of the rows is Theorem 5.6. The first two squares commute 
because Hn is a functor (e.g., fi = jf' implies that f*i* = j*f~). 

To see commutativity of the last square, we first set up notation: let 
S* = (S*, a) and let T* = (T*, ~). If cIs Z" E Hn(S~), then p surjective implies 
that cIs z" = cIs ps for some s. But now 

f~d cIs z" = f~d cIs ps = f~ cIs i-las 

= cIs f';-l as = cIs r l fos (since jf' = fi) 

= cIs rl~fs (f is a chain map) 

= d' cIs qfs (since d' cIs (" = cIsrl~q-ln 

= d' cIs f"ps = d'f';: cIs ps = d't.;: cIs z". o 
As we remarked earlier, a subspace A of a topological space X gives rise 

to a short exact sequence of complexes: 

o ~ S*(A) ~ S*(X) ~ S*(X)/S*(A) ~ O. 

We have already dubbed Hn(S*(A)) and Hn(S*(X)) as Hn(A) and Hn(X), 
respectively; we now give a name to the homology of the quotient complex. 



96 5. Long Exact Sequences 

Definition. If A is a subspace of X, the nth relative homology group Hn(X, A) 
is defined to be Hn(S*(X)/S*(A)). 

Theorem 5.8 (Exact Sequence of the Pair (X, A)). If A is a subspace of X, there 
is an exact sequence 

d 
... --+ Hn(A) --+ Hn(X) --+ Hn(X, A) --+ Hn- 1 (A) --+ .... 

Moreover, iff: (X, A) --+ (Y, B)(i.e.,f: X --+ Yis continuous withf(A) c B), then 
there is a commutative diagram 

... ~ Hn(A) ~ Hn(X) ~ Hn(X, A) ~ Hn- 1 (A) ~ ... 

j j j j 
... ~ Hn(B) ~ Hn(Y) ---+ Hn(Y, B) ---+ Hn-1(B) ---+ 

where the vertical maps are induced by f. 

PROOF. Immediate from Theorems 5.6 and 5.7. D 

One now sees that the homology of a subspace A of X influences the 
homology of X, because Exercises 5.1-5.4 may be invoked when applicable. 

A tower of subspaces gives a long exact sequence of relative homology 
groups. 

Theorem 5.9 (Exact Sequence of the Triple (X, A, A')). If A' cAe X are 
subspaces, there is an exact sequence 

.•. --+ Hn(A, A') --+ Hn(X, A') --+ Hn(X, A) !!. Hn- 1 (A, A') --+ .... 

Moreover, if there is a commutative diagram of pairs of spaces 

(A, A') ----+ (X, A') ----+ (X, A) 

j j j 
(B, B') ----+ (Y, B') ----+ (Y, B), 

then there is a commutative diagram with exact rows 

PROOF. Apply Theorems 5.6 and 5.7 to the short exact sequences of complexes 
given by the third isomorphism theorem (Exercise 5.11): 

0--+ S*(A)/S*(A' ) --+ S*(X)jS*(A' ) --+ S*(X)/S*(A) --+ 0 
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and 

Remarks. (1) If A = 0, then we saw in Exercise 4.4 that S*(A) = O. It follows 
that Hn(X, 0) = Hn(X); that is, absolute homology groups are particular 
relative homology groups. Thus Theorem 5.8 is a special case of Theorem 5.9. 

(2) We claim that, except for connecting homomorphisms, all homo­
morphisms in Theorems 5.8 and 5.9 are induced by inclusions. 

Recall that Top2 is the category whose objects are pairs (X, A) (where A is 
a subspace of X), whose morphisms f: (X, A) -+ (Y, B) are continuous 
functions f: X -+ Y with f(A) c B, and whose composition is ordinary com­
position of functions. Define a functor S*: Top2 -+ Comp as follows. On an 
object (X, A), define S*(X, A) = S*(X)/S*(A). To define S* on a morphism 
f: (X, A) -+ (Y, B), note that the induced chain map f#: S*(X) -+ S*(Y) satisfies 
f# (S*(A» c S*(B).1t follows thatfinduces a chain map S*(f): S*(X)/S*(A)-+ 
S*(Y)/S*(B), namely, 

Yn + Sn(A) H f # (Yn) + Sn(B), 

where Yn E Sn(X). One usually denotes S*(f) by f #. That S* is a functor is 
routine. 

In TOp2, there are inclusions 
i j 

(A, 0) 4 (X, 0) 4 (X, A); 

there are thus chain maps i# and j # that give a short exact sequence of com­
plexes (j # is the natural map!): 

i# j# 
O--S*(A, 0)--S*(X, 0)--S*(X,A)--O. 

Theorem 5.8 is the result of applying the exact triangle to this short exact 
sequence of complexes. In a similar way, using the third isomorphism theorem, 
one sees that Theorem 5.9 arises from the inclusions (in TOp2) 

(A, A') 4 (X, A') 4 (X, A). 

(3) One can show that Theorem 5.8 implies Theorem 5.9. The proof is a 
long diagram chase using the following commutative diagram. 

I Hn(A,B) -Hn(X,B) - Hn(X,A) 

• l d 

HI1 _ 1 (B) - H n _ 1 (A) - H n - 1 (X) 

! i* ~ 
Hn_1(A,B)-Hn_1(X,B) I 
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All maps are either connecting homomorphisms or are induced by inclusions; 
the map Hn(X, A) -+ Hn- 1 (A, B) is defined as the composite i*d: Hn(X, A) -+ 

H n- 1 (A) -+ H n- 1 (A, B). Full details can be found in [Eilenberg and Steenrod, 
pp. 25-28J. One should note that this proof applies to any sequence of func­
tors 1',.: Top2 -+ Ab that satisfies Theorem 5.8; that is, there is a long exact 
sequence of a pair that has natural connecting homomorphisms. 

(4) The following special case of Theorem 5.9 will be used in Chapter 8. 
If (X, A, B) is a triple of topological spaces, then there is a commutative 

diagram 
d 

Hn(X, A) -----+ Hn- 1 (A), 

d'] /-
H n- 1 (A, B) 

where i: (A, 0) -+ (A, B) is the inclusion, where d is the connecting homo­
morphism of the pair (X, A), and where d' is the connecting homomorphism 
of the triple (X, A, B). 

To see this,just apply Theorem 5.9 to the following commutative diagram 
of pairs and inclusions: 

(A,0) -----+ (X, 0) -----+ (X, A) 

i] ] ]1 
(A, B) -----+ (X, B) -----+ (X, A). 

With Theorem 5.9 in mind, the reader can believe that the following 
theorem will be useful. 

Theorem 5.10 (Five Lemma). Consider the commutative diagram with exact 
rows 

A4 -----+ 

]r. 
Bl -----+ B2 -----+ B3 -----+ B4 -----+ Bs· 

(i) If f2 and f4 are surjective and fs is injective, then f3 is surjective. 
(ii) If f2 and f4 are injective and fl is surjective, then f3 is injective. 
(iii) If fl'/2'/4'/S are isomorphisms, then f3 is an isomorphism. 

PROOF. Parts (i) and (ii) are proved by diagram chasing; part (iii) follows from 
the first two parts. 0 

Having seen the proof of the exact triangle and having supplied the proof 
of the five lemma, the reader should now be comfortable with proofs by 
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diagram chasing. Although such proofs may be long, they are not difficult; at 
each step, there is only one reasonable way to proceed, and so such proofs 
almost write themselves. 

The definition of the relative homology group Hn(X, A) as Hn(S*(X)/S*(A)) 
is perhaps too concise. Let us put this group in a more convenient form. 

Recall the definition of the quotient complex 

Sn+1 (X) 8.+1 Sn(X) 8. Sn-1 (X) 
... -----+ -----+ -- -----+ -----+ ... 

Sn+1 (A) Sn(A) Sn-1 (A) , 

where, for y E Sn(X), 

Now 

and 

Definition. The group of relative n-cycles mod A is 

Zn(X, A) = {y E Sn(X): onY E Sn-1 (A)}. 

The group of relative n-boundaries mod A is 

Bn(X, A) = {y E Sn(X): Y - y' E Bn(X) for some y' E Sn(A)} 

= Bn(X) + Sn(A). 

It is easy to check that Sn(A) c Bn(X, A) c Zn(X, A) c Sn(X). 

Theorem 5.11. For all n ;;:: 0, 

PROOF. By definition, 

Hn(X, A) = ker an/im an+1. 

But it is easy to see from our remarks above that 

ker an = Zn(X, A)/Sn(A) 

and 

im an+1 = Bn(X, A)/Sn(A). 

The result now follows from the third isomorphism theorem (for groups). 0 

EXERCISES 

*5.13. If A is a subspace of X, then for every n ;::: 0, Sn(X)/S.(A) is a free abelian group 
with basis all (cosets of) n-simplexes u in X for which im u¢ A. 
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*5.14. (i) Consider an exact sequence of abelian groups 

i. P. C i.-1 B P.-1 C 
... --> Cn+1 --> An --> Bn --> n --> An-I --> n-I --> n-I --> ... 

in which every third map in is injective. Then 

is exact for all n. (Hint: Exercise 5.2.) 
(ii) If A is a retract of X, prove that for all n ~ 0, 

Hn(X) ~ Hn(A) EB Hn(X, A). 

(iii) If A is a deformation retract of X, then Hn(X, A) = 0 for all n ~ O. (Note: 
G ~ H EB K and G ~ H do not imply that K = 0.) 

5.15. Assume that 0 --+ S~ --+ S* --+ S~ --+ 0 is a short exact sequence of complexes. If 
two of the complexes are acyclic, then so is the third one. 

5.16. If f: (X, A) --+ (X', A'), then f#: S*(X) --+ S*(X') satisfies f#(Zn(X, A)) c 

Zn(X', A') and f#(Bn(X, A)) c Bn(X', A'). 

5.17. Iff: (X, A) --+ (X', A'), then the induced map f*: Hn(X, A) --+ Hn(X', A') is given 
by 

where Y E Zn(X, A). (The original definition of f* is not in terms of relative cycles 
and relative boundaries.) 

*5.18. If every face (JBi of an n-simplex (J: I1n --+ X has its values in A c X, then (J 

represents an element of Zn(X, A). 

Exercise 5.18 gives a picture. 

For example, a path (J in X is a 1-cycle if it is a closed path; it is a relative 
1-cycle if it begins and ends in A. Observe, in this example, that if A = {xo}, 
then "cycle" and "relative cycle" coincide. This is actually true (almost) always. 
First, we do a small computation. 

Theorem 5.12. If X is path connected and A is a nonempty subspace, then 
Ho(X, A) = o. 

PROOF. Choose Xo E A, and let)! = Lmxx E Zo(X, A) = So(X). Since X is path 
connected, for each x E X there is a "path" ax: d l -. X with ax(eo) = Xo and 
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O"Ae l ) = x. Then ImxO"x E SI(X), and 

al(ImxO"x) = Imxx - (Imx)xo = y - (ImJxo· 

But y' defined as (I mx)xo lies in So (A); hence y - y' = a(I mxO"x) E Bo(X), and 
so y E Bo(X, A). Therefore Bo(X, A) = Zo(X, A) and Ho(X, A) = 0. D 

Theorem 5.13. If {X,,: A E A} is the family of path components of X, then, for 
each n ~ 0, 

Hn(X, A) ~ I Hn(X", A n X,,). 

" 
PROOF. Use Exercise 5.12 and Theorem 4.13. 

Corollary 5.14. Ho(X, A) is free abelian and 

rank Ho(X, A) = card {A E A: A n X" = 0} 

(where {X,,: A E A} is the family of path components of X). 

D 

PROOF. By Theorem 5.13, Ho(X, A) ~ I Ho(X ", A n X,,). If A n X" = 0, then 
Ho(X", A n X,,) = Ho(X,,) = Z (by Theorem 4.14(i)). If, on the other hand, 
A n X" #- 0, then Ho(X", A n X,,) = ° (by Theorem 5.12, for X" is path 
connected). 0 

Corollary 5.15. If X is a space with basepoint xo, then Ho(X, xo) is a free abelian 
group of (possibly irifinite) rank r, where X has exactly r + 1 path components. 

PROOF. Since path components are pairwise disjoint, the path component X"o 
containing Xo is unique, and so {xo} nx" = 0 for all A#- Ao. Hence 
HO(XA' {xo} n X A) ~ Z for all A#- AO' while HO(XAO' xo) = 0. 0 

Theorem 5.16. Let X be a space with basepoint Xo. Then 

for all n ~ 1. 

PROOF. By Theorem 5.8, there is an exact sequence 

.,. ~ Hn( {xo}) ~ Hn(X) ~ Hn(X, xo) ~ Hn- I ( {xo}) ~ .... 

If n ~ 2, then n - 1 ~ 1, and the dimension axiom (Theorem 4.12) gives 
Hn({xo})=O=Hn-I({xo}); hence Hn(X)~Hn(X,xo) for all n~2. To 
examine the remaining case n = 1, let us look at the tail of the exact sequence: 

9 h k 
... ~ H I( {xo}) ~ HI (X) ~ HI (X, xo) ~ Ho( {xo}) ~ Ho(X) ~ Ho(X, xo) ~O. 

Since HI ( {xo}) = 0, the map g is injective; by Exercise 5.2, g is surjective (hence 
is an isomorphism) if and only if h is injective. The map h has domain 
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Ho{{ xo}) ~ Z and target the free abelian group Ho(X). If h oF 0, then h must 
be injective (if ker h oF 0, then Ho(X) would contain a nontrivial finite sub­
group isomorphic to Z/ker h). Now im h = ker k, so that ker k oF ° implies 
that im h oF 0, hence h oF 0, as desired. But k, being induced by inclusion, is 
the map So(X)/Bo(X) -+ So(X)/Bo(X) + So(xo) [So (X) = Zo(X) = Zo(X, xo)] 
given by y + Bo(X) f-+ Y + Bo(X) + So(xo), and so ker k = (Bo(X) + So(xo))/ 
Bo(X). The proof of Theorem 4.14 describes Bo(X) as all L mxx with L mx = 0; 
hence ker k oF 0, and the proof is complete. 0 

For each n ~ 1, one may thus regard Hn as a functor with domain Top*, 
the category of pointed spaces. 

Reduced Homology 

The coming construction of reduced homology groups will allow us to avoid 
the fussy algebra at the end of the proof of Theorem 5.16. 

Definition. Let (S*(X), 0) be the singular complex of a space X. Define ~-1 (X) 
to be the infinite cyclic group with generator the symbol [ ], and define 
80 : So(X) -+ ~-1 (X) by L mxx f-+ (L mx ) [ ]. The augmented singular complex 
of X is 

It is a quick calculation that 80 01 = 0, so that the augmented singular 
complex is in fact a complex (having 8_1 (X) ~ Z as a nonzero term of negative 
degree). 

There are several remarks to be made. First, the map 80 has already 
appeared (in the proof of Theorem 4.14(i)). Second, suppose that one defines 
the empty set 0 as the standard (-I)-simplex. For any space X, there is a 
unique (inclusion) function 0 -+ X, and so 8_1(X) as defined above is rea­
sonable. Moreover, if one regards the boundary of a point x E X as empty, 
then 80 is obtained from aox = [ ] by extending by linearity. 

Definition. The reduced homology groups of X are 

for all n ~ 0. 

Theorem 5.17. For all n ~ 0, 

PROOF. If n ~ 1, lUX) = ker on/im 0n+1 = Hn(X), so the result follows from 
Theorem 5.16. If n = 0, the end of 8* (X) gives a short exact sequence 

- ao 'Cf 0-+ ker 00 4 So(X) -+ ..)-1 (X) -+ 0. 
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If a E So (X) satisfies 80 (a) = 1, then it is easy to see4 that So(X) = ker 80 Ee <a) 
and <a) ~ Z. But 60 01 = ° implies that Bo(X) = im 01 c ker 60 , Since 
So(X) = Zo(X), we have5 

Ho(X) = So(X)/Bo(X) = (ker 80 Ee <a»)jBo(X) 

~ (ker 80 /Bo(X)) Ee Z = Ho(X) Ee Z. 

Since Ho(X) is free abelian, the result follows from Corollary 5.15. D 

One can squeeze a bit more from this proof to improve Theorem 5.17 by 
exhibiting a basis of Ho(X). 

Corollary 5.18. Let {X).: A E A} be the family of path components of X, and let 
x). E X). be a choice of points, one from each path component. If Xo E X lies in 
X).o' then Ho(X) is free abelian with basis {cls(x). - xo): A # Ao}. 

PROOF. We saw in the last proof that 

So(X) = ker 60 Ee <a), 

where a is any O-chain with 80 (a) = 1; let us choose a = Xo' Since X is a basis 
of So(X), we see that {xo} U Y is also a basis, where Y = {x - Xo: x # xo}. 
We claim that Y is a basis of ker 60 , for which it now suffices to prove that 
Y generates ker 80 , As 80 (x - xo) = 0, we see that Y c ker 60 ; furthermore, if 
L mixi E So(X) and I mi = 0, then 

Imixi = Lmixi - (Im;)xo = Imi(xi - xo) 

(of course, we may delete Xi - Xo from the sum if Xi = xo). 
Ho(X) = ker 80 /Bo(X) is a direct summand of Ho(X) = So(X)/Bo(X) = 

(ker 80 + <xo))/Bo(X). By Theorem 4.14, {clsx).: A # Ao} U {cls xo} is a basis 
of Ho(X). As above, {cls(x). - xo): A # Ao} U {cls xo} is also a basis of Ho(X); 
since {cls(x). - xo): A # Ao} generates Ho(X), it is a basis. D 

We shall see that reduced homology has other uses than allowing us to 
avoid algebraic arguments as in the proof of Theorem 5.16. For example, look 
at Theorem 6.5 and its proof. 

4 This is a special case of a more general result (Corollary 9.2): if 0 -> K c... G -> F -> 0 is exact and 
F is free abelian, then G = K EB F', where F' ~ F. Here we present a proof of this special case. 
If x E ker ao n (IX), then x = mIX and ao(x) = 0 = m, hence x = 0; if Y E So(X), then ao(Y) = k, 
say, and so y = (y - klX) + klX E ker ao + (IX). 

5 If Bo C Ai for i = 1, 2, then (AI EB A 2l/(Bl EB B2) ~ (A1IB,) EB (A2IB2) (indeed the analogous 
statement for any index set is true): define a map 0: Al EB A 2 ..... (At/Btl EB (A 2IB2) by (aI' a2)""" 
(a l + Bl , a2 + B2)' Then 0 is surjective and ker 0 = Bl EB B2; now apply the first isomorphism 
theorem. 
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EXERCISES 

*5.19. If A c X, then there is an exact sequence 

... -+ R.(A) -+ R.(X) -+ H.(X, A) -+ R.-l (A) -+ ... , 

which ends 

... -+ 110 (A) -+ Ro(X) -+ Ho(X, A) -+ o. 
(Hint: S*(X)jS*(A) = S*(X)/S*(A).) 

5.20. Show that HI (D2, SI) = O. 

5.21. Assume that X has five path components. If CX is the cone on X, what is 
HI (CX, X)? 

5.22. What is H1(SI, SO)? 

5.23. Show that H.(X, X) = 0 for all n ;;::: O. 

There is a geometric interpretation of relative homology groups other than 
Theorem 5.11. Recall that the quotient space X/A is obtained from X by 
collapsing A to a point. For a large class of pairs, for example, for A a "nice" 
subset of a polyhedron X, one can prove that H*(X, A) ~ 11*(X/A) (see 
Theorem 8.41). In this case, the exact sequence of Exercise 5.19 is 

... -+ I1n(A) -+ I1n(X) -+ 11.(X/A) -+ 11.-1 (A) -+ .... 

It turns out that the importance of relative homology groups is such that 
the category of pairs, Top2, is more convenient than Top. Let us therefore give 
the obvious version of homotopy in Top2. 

Definition. If f, g: (X, A) -+ (Y, B), then f ~ g mod A if there is a continuous 
F: (X x I, A x I) -+ (Y, B) with Fo = f and F1 = g. 

This notion of homotopy mod A is weaker than the previous notion of 
homotopy reI A, which requires that flA = glA and also that F(a, t) remain 
fixed for all a E A during the homotopy (i.e., for every time t). Now we require 
only that F(a, t) E B for all a E A and all tEl. Of course, the notions coincide 
when B is a one-point space. 

Here is the appropriate version of the homotopy axiom in Top2. 

Theorem 5.19 (Homotopy Axiom for Pairs). If f, g: (X, A) -+ (Y, B) and 
f ~ g mod A, then for all n ~ 0, 

H.(f) = H.(g): Hn(X, A) -+ H.(Y, B). 

PROOF. If j: A c... X is the inclusion, then Exercise 4.10 gives a commutative 
diagram 



Reduced Homology 

S.+1(A X I) 

IU'I), 
S.+1(X x I), 

lOS 

where p. is the nth term of the chain homotopy of Theorem 4.23. It follows 
that p. induces a homomorphism p,,: S.(X)/S.(A) ~ S.+1 (X X 1)/S.+1 (A x I), 
that is, p,,: S.(X, A) -> S.+1 (X x I, A x I). The proof now proceeds exactly as 
that of Theorem 4.23; it is left to the reader to show that the maps P" satisfy 
aJi + Jia = Il # - Io# and hence comprise a chain homotopy. 0 



CHAPTER 6 

Excision and Applications 

Excision and Mayer-Vietoris 

The last fundamental property (or axiom) of homology is excision. We state 
two versions. If A is a subspace of X, then A denotes its closure and AO denotes 
its interior. 

Excision I. Assume that U cAe X are subspaces with tJ c AO. Then the 
inclusion i: (X - U, A - U) '-+ (X, A) induces isomorphisms 

i*: Hn(X - U, A - U) ~ Hn(X, A) 

for all n. 

Stated in this way, we see that one may excise (cut out) U without changing 
relative homology groups. 

Excision II. Let Xl and X 2 be subspaces of X with X = X~ U X2. Then the 
inclusion j: (Xl' Xl n X 2 ) '-+ (Xl U X 2 , X 2 ) = (X, X 2 ) induces isomorphisms 

j*: Hn(Xl , Xl n X 2 ) ~ Hn(X, X 2 ) 

for all n. 
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The second form is reminiscent of the second isomorphism theorem. Note 
that both forms involve two subspaces of X. 

Theorem 6.1. Excision I is equivalent to Excision II. 

PROOF. Assume Excision I, and let X = X~ U X~. Define A = X 2 and U = 

X - Xl' First, we claim that U c AO: X~ c Xl implies X - Xl eX - X~, 
hence U = (X - Xl) C X - X~ (for the last set is closed); but X - X~ = 
(X~ U Xn - X~ = X~ - X~ c X~ = A 0. Second, X - U = X - (X - X d = 
Xl and A - U = X2 - (X - Xl) = X2 n (XDC (where X1 = X - Xl' the 
complement of X). Thus the pair (X - U, A - U) is the pair (Xl' Xl nX2 ). 

Finally, the pair (X, A) is the pair (X, X 2 ). The inclusions coincide and hence 
induce the same map in homology. 

Assume Excision II, and let U c AO. Define X2 = A and Xl = X - U. 
Now U cUe AO implies X - U ::::> X - U ::::> X - AO. Since X - U is open, 
X - U = (X - U)" ::::> X - AO. Hence 

X~UX~ = (X - U)"UA°::::> (X - U)"UA°::::> (X - AO)UAO = X. 

Finally, it is easy to see that (Xl' Xl n X 2 ) = (X - U, A - U) and (X, X 2 ) = 
~4 D 

Before we prove excision, let us see some of its consequences. We begin 
with a general diagram lemma. 

Lemma 6.2 (Barratt-Whitehead). Consider the commutative diagram with exact 
rows 

B Pn 
n ----. An - l ----. 

I g. 
1[., 

... ----. A~ -----:---+ B~ ----. C~ ----. A~-l ----. 
in qn ~n 

in which every third vertical map hn is an isomorphism. Then there is an exact 
sequence 

. . . A (in' f.) B ffi A' gn - jn B' dn h;; , qn A ... 
----. n ----. n Q7 n ----. n ----. n-1 ----. . 

PROOF. The map (in, fn) is defined by an r-+ (inan, fnan), and the map gn - in is 
defined by (bn, a~) r-+ gnbn - ina~. The proof of exactness is a diagram chase. 

D 

Theorem 6.3 (Mayer-Vietoris). If Xl' X 2 are subspaces of X with X = 
X~ U X~, then there is an exact sequence 

(i,., i 2.) g. - j. D 
... ---+ Hn(X, nx2 )-------+ Hn(X,) ED Hn(X2 )-+ Hn(X)-+Hn-,(X, nx2 ) -- "', 
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with ii' i 2 , g, j inclusions and D = dh;lq*, where h, q are inclusions and dis 
the connecting homomorphism of the pair (Xl' Xl n X 2)' 

PROOF. The following diagram of pairs of spaces commutes when all maps are 
inclusions: 

---+ 
j 

(X, 0) ---+ 
q 

By Theorem 5.9, there is a commutative diagram with exact rows: 

... - H.(X2 ) 

Excision II asserts that each h* is an isomorphism, so that Lemma 6.2 gives 
the result at once. 0 

EXAMPLE 6.1. Here is an example of a space X = Xl U X 2 , where Xl and X2 

are (closed) subspaces of X (but where X ::j= Xr U Xl) in which the Mayer­
Vietoris theorem, and hence excision, fails. 

Let X be the closed vertical strip in R2 lying between the y-axis and the 
line x = 1/2n. Define 

Xl = {(O, y): -1 ~ y} U {(x, y): 0 < x ~ 1/2n and sin(1/x) ~ y}; 

define 

X2 = {(O, y): y ~ 1} U {(x, y): 0 < x ~ 1/2n and sin(1/x) ~ y}. 

Note that Xl U X2 = X and that Xl n X2 is the sin(1/x) space. Were the 
Mayer-Vietoris theorem true here, there would be an exact sequence 

Hl(X) -+ HO(Xl n X 2 ) -+ HO(Xl ) EB HO(X2 ) -+ Ho(X) -+ O. 

Since X, Xl' and X2 are contractible, Hi (X) = 0 and Ho(X) = Z = HO(Xi ) for 
i = 1,2. There is thus an exact sequence of the form 

o -+ Z EB Z -+ Z EB Z -+ Z -+ 0, 

and this contradicts Exercise 5.5. 

Corollary 6.4 (Mayer-Vietoris Theorem for Reduced Homology). If Xl, X2 

are subspaces of X with X = xr U X~ and Xl n X 2 ::j= 0, then there is an exact 
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sequence 

with induced maps as in Theorem 6.3. This sequence ends 

••• --+ HO(X I ) EB HO(X2 ) --+ Ho(x) --+ o. 

109 

PROOF. If Xo E X I n X 2, proceed as in Theorem 6.3 from the commutative 
diagram of inclusions of pairs 

(Xl nx2 , XO) ~ (XI,XO) ~ (XI,Xl nX2 ) 

j j j 
(X2 , XO) ~ (X, XO) ~ (X, X 2 ). D 

EXERCISES 

*6.1. Assume that X = AU B is a disconnection (A and Bare nonempty open sets and 
An B = 0). Then H.(X) ~ H.(A) EB H.(B) for all n ~ O. (Hint: The inclusion 
A 4 X is an excision here; or, use Theorem 4.13.) 

6.2. If X = AU B is a disconnection, then H.(X, A) ~ H.(B) for all n ~ O. 

*6.3. Assume that X = X~ U X~ and Y = yt U yzo; assume further that f: X ---> Y is 
continuous with f(X i ) C ~ for i = 1, 2. Then the following diagram commutes: 

H.(Y) ----+ 
D' 

where g is the restriction of f and D, D' are connecting homomorphisms of 
Mayer-Vietoris sequences. 

*6.4. Assume that X = Xl U X z U X 3 , where each Xi is open. Ifall Xi' all three Xi n Xj' 
and Xl n X z n X3 are either contractible or empty, then H.(X) = 0 for all n ~ 2. 
(Hint: Iterate Mayer-Vietoris.) (For a generalization to any open cover of X, see 
[K. S. Brown, p. 166]. Also, see Corollary 7.27.) 

Homology of Spheres and Some Applications 

Theorem 6.5. Let S' be the n-sphere, where n ~ O. Then 

H (SO) = {Z EB Z if p = 0 
p 0 if p > 0; 

if n > 0, then 
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H (sn) = {Z if p = 0 or p = n 
p 0 otherwise. 

Remark. Using reduced homology, we can state these formulas more concisely: 

H (sn) = {Z if p = n 
p 0 ifp#n. 

PROOF. We do an induction on n ~ 0 that Hp(sn) is as claimed for all p ~ o. 
The formula holds if n = 0, by the dimension axiom (Theorem 4.12) and 
Theorem 4.13; one can also use Exercise 6.1. 

Assume that n > O. Let a and b be the north and south poles of sn, let 
Xl = sn - {a}, and let X2 = sn - {b}. Note that sn = X~ U X2 (because Xl 
and X 2 are open), that Xl and X 2 are contractible, and that Xl n X 2 = sn -
{a, b} has the same homotopy type as the equator sn-l (by Exercise 1.31). 
Applying the Mayer-Vietoris sequence for reduced homology, we obtain an 
exact sequence 

Hp(Xd Ef> Hp(X2 ) --+ Hp(sn) --+ Hp-l(Xl nX2 ) --+ Hp-l(Xd Ef> Hp- l (X2 ). 

Contractibility of Xl and X2 shows that the flanking (direct sum) terms are 
both zero, and so 

Hp(sn) ~ Hp-l(Xl nX2) ~ Hp_l(sn-l), 

by Corollary 4.24 (note that we are using n > 0 as well). By induction, 
Hp- l (sn-l) = Z if p - 1 = n - 1 and 0 otherwise; therefore Hp(sn) = Z if 
p = nand 0 otherwise. 0 

This theorem illustrates the value of reduced homology. Not only is the 
"reduced" statement better, but the proof is shorter. Without reduced homo­
logy, the inductive step would divide into two cases: p - 1 > 0 (which would 
proceed as above) and p - 1 = 0 (which would require an extra argument 
involving free abelian groups as in the proof of Theorem 5.16). 

We may now draw some conclusions. 

Theorem 6.6. If n ~ 0, then sn is not a retract of Dn+l. 

PROOF. We have verified all the requirements for the proof of Lemma 0.2. 
o 

Theorem 6.7 (Brouwer Fixed Point Theorem). Iff: Dn --+ Dn is continuous, then 
there is x E Dn with f(x) = x. 

PROOF. Theorem 0.3. o 

Theorem 6.8. If m # n, then sm and sn are not homeomorphic. Indeed they do 
not have the same homotopy type. 
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PROOF. If sm and sn had the same homotopy type, then Hp(sm) ~ Hp(sn) for 
ill~ D 

Theorem 6.9. If m i= n, then Rm and Rn are not homeomorphic. 

PROOF. If there is a homeomorphism f: Rm --+ Rn, choose Xo E Rm and obtain 
a homeomorphism Rm - {xo} ~ Rn - {f(xo)}. But Rm - {xo} has the same 
homotopy type as sm-l (Exercise 1.29), which leads to a contradiction of 
Theorem 6.8. D 

Theorem 6.10. If n :?: 0, then sn is not contractible. 

PROOF. Otherwise sn would have the same homology groups as a point. D 

Using Exercise 3.21, we now have examples, namely, sn for n :?: 2,ofsimply 
connected spaces that are not contractible. 

Barycentric Subdivision and the Proof of Excision 

The applications of Theorem 6.5 are not exhausted, but let us get on with the 
proof of excision (more precisely, of Excision II); we begin with an algebraic 
lemma. 

If Xl is a subspace of X, regard S*(Xl ) as the subcomplex of S*(X) whose 
term of degree n is generated by all n-simplexes u: /l.n --+ X for which 
u(/l.n) c Xl. 

Lemma 6.11. Let Xl and X2 be subspaces of X. If the inclusion S*(Xd + 
S*(X2 ) 4 S*(X) induces isomorphisms in homology, then excision holds for 
the subspaces Xl and X2 of X. 

PROOF. Applying the exact triangle to the short exact sequence 
i 

0--+ S*(Xl ) + S*(X2 ) --+ S*(X) --+ S*(X)/(S*(Xd + S*(X2 » --+ 0, 

we obtain a long exact sequence in which every third arrow Hn(i) is 
an isomorphism (by hypothesis); it follows easily (Exercise 5.4) that 
Hn(S*(X)/(S*(Xl ) + S*(X2 ») = ° for all n. 

Now consider the short exact sequence of complexes 

° --+ S*(Xd + S*(X2 ) ~ S*(X) --+ S*(X) --+ 0. 
S*(X2 ) S*(X2 ) S*(X j ) + S*(X2 ) 

The corresponding long exact sequence has every third term zero, so that Hn(j) 
is an isomorphism for every n. 

Finally, consider the commutative diagram of complexes 
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S*(XI ) k S*(X) S*(X,,\) IX')' 
s*(Xd + S*(X2 ) 

S*(X2 ) 

where k is induced by the inclusion (Xl' Xl nX2 ) 4 (X, X 2 ) and t is the 
isomorphism of the second isomorphism theorem (recall that S*(X I n X 2) = 
S*(Xd n S*(X2 )). Now jt = k implies Hn(j)Hn(t) = Hn(k). We have just seen 
that Hn(j) is an isomorphism, while Hn(t) is an isomorphism because t is. It 
follows that Hn(k) is an isomorphism for all n, which is the statement of 
Excision II. D 

It thus remains to show that the inclusion S*(XI ) + S*(X2 ) 4 S*(X) 
induces isomorphisms in homology whenever X = X~ U X~. This would 
appear reasonable if every n-cycle in X were a sum of chains in X I and chains 
in X 2 • However, an n-simplex (f in X may have its image in neither Xl nor 
X 2 • The idea is to subdivide An into small pieces so that the restrictions of (f 
to these pieces do have images in either Xl or X 2 • The forthcoming construc­
tion, barycentric subdivision, is important in other contexts as well; let us 
therefore consider it leisurely. 

We begin by examining (geometric) subdivisions of An for small n. With an 
understanding of these low-dimensional examples, we shall see how to define 
(inductively) subdivisions of every An; this definition will then be transferred 
to subdivisions of n-simplexes in an arbitrary space X. 

Now A ° is a one-point set; we admit it cannot be divided further and define 
AO to be its own subdivision. Consider the more interesting Al = [eo, etl A 
reasonable way to subdivide A I is to cut it in half: let b be the midpoint of the 
interval [eo, e l ], that is, b is the barycenter of At. Define the barycentric 
subdivision of Al to be the 1-simplexes [eo, b] and [b, el ] and their faces. Let 
us now subdivide the standard 2-simplex A2. 
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Subdivide the triangle Llz as follows: first, subdivide each face (which is a 
I-simplex) as above, using new vertices the barycenters bo, b1 , bz; second, let 
b be the barycenter of Llz; finally, draw the six new triangles illustrated above. 
Here is one way to view this construction. We have adjoined new vertices bo, 
b1 , bz , b to the original vertices. Which triangles do we form using these seven 
vertices? Note that each vertex is a barycenter of a face of Llz: the original 
vertices eo, el> ez are barycenters ofO-faces (themselves); bo, b1 , bz are bary­
centers of I-faces; b is the barycenter of Llz itself. Each vertex may thus be 
denoted by beT, where a denotes a face of Llz, and {b r , beT, bP } is a triangle 
precisely when r < a (r is a proper face of a) and a < p. There are thus 3! 
triangles. 

Definition. The barycentric subdivision of an affine n-simplex ~n, denoted by 
Sd ~n, is a family of affine n-simplexes defined inductively for n ;::: 0: 
(i) Sd~o = ~o; 

(ii) if ({Jo, ({Jl' ... , ({In+l are the n-faces of ~n+1 and if b is the barycenter of 
~n+1, then Sd ~n+l consists of all the (n + I)-simplexes spanned by band 
n-simplexes in Sd ({Ji' i = 0, ... , n + 1. 

It is plain that ~n is the union of the n-simplexes in Sd ~n. 

EXERCISES 

6.5. Prove that Sd ~n consists of exactly (n + I)! n-simplexes. 

*6.6. (i) Every vertex b of Sd ~n is the barycenter of a unique face (J of ~n (denoted by 
b = bal. 

(ii) Every n-simplex in Sd ~n has the form [b ao , ba" ... , ban], where each (Ji is an 
i-face of ~n and (Jo < (Jt < ... < (In. 

Observe that even though an affine n-simplex may not be given with an 
orientation (i.e., an ordering of its vertices), Exercise 6.6(ii) shows that each 
n-simplex of Sd ~n comes equipped with an orientation. 

Here is one last remark before we subdivide an arbitrary n-simplex 
a: Lln -+ X. Recall that we saw in Exercise 2.10 that an (affine) n-simplex 
[Po, ... , Pn] is the cone over its ith face [Po,···, Pi' ... , Pn] with vertex Pi· 
This observation suggested the singular version, in a convex set, of the cone 
b. a over a singular n-simplex a with vertex b (see Theorem 4.19). 

Definition. Let E be a convex set. Then barycentric subdivision is a homo­
morphism Sdn: Sn(E) -+ Sn(E) defined inductively on generators r: Lln -+ E as 
follows: 

(i) If n = 0, then Sdo(r) = r; 
(ii) if n > 0, then Sdn(r) = r(bn). Sdn- 1 (or), where bn is the barycenter of Lln. 
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If X is any space, then the nth barycentric subdivision, for n ~ 0, is the 
homomorphism Sdn: Sn(X) --+ Sn(X) defined on generators u: An --+ X by 

where bn : An --+ An is the identity map. 

Observe that u: An --+ X induces u #: Sn(An) --+ Sn(X), so that Sdn(u) = 

u# Sdn(bn) does make sense and does lie in Sn(X). It is easy to see that both 
definitions ofSdn(u) agree when X is convex. IfSdn(bn) = ~miri' then Sdn(u) = 

u#(~miri) = ~miuri; thus one may view the n-simplexes r i as the smaller 
simplexes subdividing An, and one may view the n-simplexes uri as "restric­
tions" of u to the r i that subdivide the image of u. 

EXERCISES 

6.7. (i) Give explicit formulas for Sd.(b·) when n = 1 and n = 2. 
(ii) Give explicit formulas for Sd.(u) whenever u is an n-simplex in X and n = 1 

and n = 2. 

*6.8. If f: X ...... Y is continuous, prove that Sd f # = f # Sd, that is, the following 
diagram commutes for every n ~ 0: 

S.(X) ~ S.(X) 

f. j jf. 
S.(Y) -- S.(Y). 

Sd 

Lemma 6.12. Sd: S*(X) --+ S*(X) is a chain map. 

PROOF. The proof is in two stages, according to the definition of Sd. Assume 
first that X is convex and that r: An --+ X is an n-simplex. We prove, by 
induction on n ~ 0, that 

Sdn- 1 On r = On Sdn r. 

Since Sd_1 = ° (because S-l(X) = 0) and 00 = 0, the base step n = ° is 
obvious. If n > 0, then 

On Sdn r = on(r(bn). Sdn- 1 (On r)) (definition of Sd) 

= Sdn- 1 On r - r(bn). ((0.- 1 Sd._do. r) 

(Corollary 4.20(i): o(b. y) = y - b. oy) 

= Sd.-1 O. r - r(b.). ((Sd.-2 0.-don r) (induction) 

= Sd.-1 O. r (00 = 0). 

Now let X be any space, not necessarily convex. If u: A' --+ X IS an 
n-simplex, then 
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o Sd(O") = 00"# Sd(15n) (definition of Sd) 

= 0"#0 Sd(15n) (0"# is a chain map) 

= 0"# Sd o(15n) (An is convex) 

= Sd O"#o(15n) (Exercise 6.8) 

= Sd 00"# (15n) (0"# is a chain map) 

= Sd 00" 
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o 
What is z + Bn(X) f--+ Sd z + Bn(X), the homomorphism induced by Sd in 

homology? 

Lemma 6.13. For each n ~ 0, Hn(Sd): Hn(X) --+ Hn(X) is the identity. 

PROOF. It suffices (Theorem 5.3) to construct a chain homotopy between the 
chain maps Sd and 1, the identity on S*(X): we want homomorphisms 
T,,: Sn(X) --+ Sn+1 (X) such that 0n+1 T" + T,,-lon = In - Sdn· 

Again the proof is in two steps. Assume first that X is convex; let us do an 
induction on n. If n = 0, define To: So(X) --+ Sl (X) as the zero map. If 0" is a 
O-simplex, then 

o = oToO" and 0" - Sd 0" = 0" - 0" = O. 

Assume that n > O. If y E Sn(X), then T" y should satisfy 

oT"y = y - Sd y - T,,-10y. 

Now the right-hand side is a cycle, because, using induction, 

o(y - Sd y - T,,-10Y) = oy - 0 Sd y - (1 - Sd - T,,-2 0)oy = O. 

Since X is convex, the "integration formula", Corollary 4.20(ii), applies; define 

T"y = b.(y - Sd y - T,,-10Y), 

and note that oT" y = y - Sd y - T,,-10y. 
The remainder of the proof proceeds as the second stage of the preced­

ing lemma. Let X be any space, not necessarily convex. If 0": N --+ X is an 
n-simplex, define 

T,,(O") = 0"# T,,(15n) E Sn+1 (X), 

where 15n is the identity on An, and extend by linearity. We leave as an exercise 
that the T,,'s constitute the desired chain homotopy. As a hint, one should 
show first that if f: X --+ Y, then there is a commutative diagram 

o 
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Corollary 6.14. If q ~ 0 is an integer and if Z E Zn(X), then 

cls Z = cls(Sdq z). 

PROOF. Since Sd induces the identity on H*(X), so does every composite 
Sdq: z + Bn(X) ~ Sdq z + Bn(X). D 

If E is a subspace of a euclidean space, then a continuous map a: I1n -+ E 
was called affine (in Chapter 2) if a (2: tieJ = I tia(eJ, where ti ~ 0 and 
I ti = 1. Clearly, the identity <5": 11" -+ 11" is affine. 

Definition. If E is a subspace of euclidean space, then an n-chain y = 

L miai E S"(E) is affine if each ai is affine. 

EXERCISES 

6.9. If II is affine, then so is its ith face lIe i ; moreover, the vertex set of (Ie i , the set of 
all images of eo, el , •.• , en, is contained in the vertex set of II. Conclude that alI 
is affine whenever II is affine. 

6.10. If E is convex and II is affine, then so is the cone b. II, where bEE; moreover, 
the vertex set of b. II is the union of {b} and the vertex set of II. Conclude that 
Sd II is affine whenever II is affine. 

Definition. If E is a subspace of some euclidean space, and if y = 

Impj E S"(E), where all mj "# 0, then 

mesh y = sup {diam aj (l1")} 
j 

(note that ail1") is compact (because 11" is) and hence has finite diameter). 

Using Theorem 2.9, the reader may show that if E is a subspace of some 
euclidean space and y is an affine n-chain in E, then mesh(Sd y) 5 
[n/(n + 1)] mesh y. Iteration gives the next result. 

Theorem 6.15. If E is a subspace of some euclidean space and y is an affine 
n-chain in E, then for all integers q ~ 1, 

mesh Sdq y 5 (n/n + 1)q mesh y. 

This last theorem is fundamental; it says that the mesh of an affine chain, 
for example, <5": 11" -+ 11", can be made arbitrarily small by repeated barycen­
tric subdivision (limq->oo (n/n + l)q = 0 because n/n + 1 < 1). 

After this discussion of various features of barycentric subdivision, let us 
return to the proof of excision. Recall that we have only to show that the 
inclusion S*(X1 ) + S*(X2 ) c... S*(X) induces isomorphisms in homology when­
ever X = X~ U X~. 



Barycentric Subdivision and the Proof of Excision 117 

Lemma 6.16. If Xl and Xz are subspaces of X with X = X~ U X~, and if (J is 
an n-simplex in X, then there exists an integer q 2: 1 with 

PROOF. Since (J: An -+ X is continuous, {(J-l (Xn, (J-l(X~)) is an open cover of 
An. Since N is compact metric, this open cover has a Lebesgue number A > 0: 
whenever x, YEAn satisfy IIx - yii < A, then there is an i = 1,2 with (J-l(Xn 
containing both x and y. Choose q 2: 1 with (n/n + 1)q diam An < A. Since the 
identity bn : An -+ An is an affine n-simplex in An, Theorem 6.15 says that such 
a choice of q forces 

mesh Sdq(b n ) < A. 

If Sdq(8 n) = Im/rj, then diam t)An) < A for every j; hence t)N) C (J-l(Xn 
for some i = i(rj) E {t, 2}. Now Sdq (J = (J# Sdq(8 n) = (J#I.mjrj = Imj(Jt); 
therefore (JriAn) c X iQ c Xi (where i = i(t)) for every j. After collecting terms, 
Sdq (J can be written Yl + Yz, where Yi E Sn(XJ 0 

Theorem 6.17 (Excision). If X = X~ U X~, then the inclusion j: (Xl' Xl n Xz) c... 
(X, Xz) induces isomorphisms, for all n 2: 0, 

Hn(X1, Xl n Xz) ~ Hn(X, Xz)· 

PROOF. By Lemma 6.11, it suffices to show that the maps 

On: Hn(S*(X1) + S*(XZ )) -+ Hn(S*(X)) = Hn(X) 

induced by the inclusion S*(Xd + S*(Xz) c... S*(X) are isomorphisms. If 
Yi E Sn(X;) for i = 1, 2, and if Yl + Y2 is a cycle in the subcomplex (hence in 
S*(X)), then 

0: [Yl + Y2] H clS(Yl + Y2), 

where we denote the homology class in the subcomplex by [ ]. 
o is surjective. Let cls Z E Hn(X). By Lemma 6.16, there is an integer q 2: 1 

with Sdq z = Yl + Y2, where Yi E Sn(X;) for i = 1, 2. Since z is a cycle and 
Sdq is a chain map, it follows that Sdq z = Yl + Y2 is a cycle. Therefore 
[Yl + Y2] is an element of the nth homology group of the subcomplex, and 
O([Yl + Y2]) = clS(Yl + Y2) = cls(Sdq z) = cls z, by Corollary 6.14. 

o is injective. Suppose that [Yl + Y2] E ker 0; then clS(Yl + Y2) = 0, so there 
is /3 E Sn+1(X) with 0/3 = Yl + Yz. By Lemma 6.16, there is an integer q 2: 1 
with Sdq /3 = /31 + /3z, where /3i E Sn+1 (X;) for i = 1, 2. Hence 0(/31 + /32) = 
oSdq /3 = Sdq 0/3 = Sdq(Yl + Yz) (because Sdq is a chain map). It follows 
that [Sdq(Yl + Yz)] = O. However, we know only that cls SdQ (Yl + Y2) = 
clS(Yl + Yz); we do not yet know that [Sdq(Yl + Y2)] = [Yl + Y2]. 

By Exercise 6.8 applied to the inclusion map Xi c... X, one sees that 
Sd: S*(X) -+ S*(X) carries S*(X;) into S*(X;) for i = 1,2; hence Sd carries the 
subcomplex S*(X 1) + S*(X 2) into itself. Moreover, the contracting homotopy 
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{ T,,: Sn(X) - Sn+l (X)} of Lemma 6.13 restricts to contracting homotopies T 
and Til of S*(Xd and S*(X2), respectively (inspect the definition). Therefore 
Yl - Sdq Yl = (To + aT)Yl and Y2 - Sdq Y2 = (T"o + aT")Y2' hence 

Yl + Y2 - Sdq(Yl + Y2) = T aYl + Til OY2 + O(TYl + T"Y2)' 

T' aYl + Til 0Y2 = Ta(Yl + Y2), because T' and Til are restrictions of T, and so it is 
0, since Yl + Yz is a cycle. Because a(T'Yl + T"Y2) E Bn(S*(Xd + S*(X2», it fol­
lows that [Yl + Y2] = [Sdq(Yl + Yz)]' But [Sdq(Yl + Y2)] = [O(Pl + P2)] = 0. 

o 

Having completed the proof of excision, we may now accept the Mayer­
Vietoris theorem and the calculation of the homology groups of the spheres. 
We record two useful facts before giving more applications. 

Lemma 6.18. Let X = X~ U X~, let ij : Xl n X2 '-+ Xj be inclusions for j = 

1,2, and let cls Z E Hn(Xl nx2 ). If Hn+I(X) = 0, then cls Z = ° if and only if 
i l* cls Z = ° and i2* cls Z = 0. 

PROOF. Consider the portion of the Mayer-Vietoris sequence 
(i 1*, i 2*) 

----+) Hn+1(X) ) Hn(Xl n X 2 ) ) Hn(Xl ) EB Hn(X2 )· 

Since Hn+1 (X) = 0, the map (il*' i2 *) is injective. Thus cls z = ° if and only if 
i l* cls z = ° in Hn(XI) and i2* cls z = ° in Hn(X2 ). 0 

Lemma 6.19. Assume that X = X~ U X~. Then each n-cycle z in X is homologous 
to a cycle of the form Yl + Y2' where Yi E Sn(XJ Moreover, if D: Hn(X) -
Hn-I(Xl nX2 ) is the connecting homomorphism in the Mayer-Vietoris 
sequence, then 

Remark. Of course, one may interchange Xl and X 2 • 

PROOF. That cls z = clS(YI + Y2) has already been proved (in Theorem 6.17). 
To see the last assertion, consider the diagram 

where q# sends Yl + Y2 into its coset mod Sn(X2), and h# is the isomorphism 
of the second isomorphism theorem; hence h;/ sends the coset YI + Y2 + 
Sn(X2 ) to Yl + Sn(Xl n X 2 ). The formula for D in Theorem 6.3 is D = 

dh;/ q #' so that D clS(YI + Y2) is d(YI + Sn(X l n X 2», where d is the connecting 
homomorphism from the exact sequence 
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Now d = ii/oji/ (Lemma 5.5); thus one lifts Y1 + Sn(X1 nX2 ) to Y1' pushes 
down to 0Y1, and regards 0Y1 as being in Xl nx2 · Hence D cls(Y1 + Y2) = 

cls(oyd in H n- 1 (Xl n X 2 )· 0 

More Applications to Euclidean Space 

Recall that if h: Z --+ Z is a homomorphism, then h is multiplication by some 
integer m: hen) = mn for all n E Z (indeed m = h(l)). 

Definition. A continuous map f: sn --+ sn (where n > 0) has degree m, denoted 
by d(f) = m, if f*: Hn(sn) --+ Hn(sn) is multiplication by m. 

Recall that we discussed a notion of degree for maps f: Sl --+ Sl (denoted 
by deg f) in terms of fundamental groups. 

Theorem 6.20. Iff: Sl --+ Sl, then deg(f) = d(f). 

PROOF. By Exercise 4.13, there is a commutative diagram 

f* 
----+ 

----+ 
f* 

where qJ is the Hurewicz map. Since n1 (Sl) ~ Z is abelian, we know that qJ is 
an isomorphism (Theorem 4.29). Finally, use Exercise 3.14, which says that 
one may view f*: n1 (Sl, 1) --+ n 1 (Sl, f(l)) as multiplication by deg(f). 0 

Lemma 6.21. Let f, g: sn --+ sn be continuous maps. 

(i) d(g 0 f) = d(g)d(f). 
(ii) d(lsn) = 1. 

(iii) If f is constant, then d(f) = O. 
(iv) If f ~ g, then d(f) = d(g).l 
(v) Iff is a homotopy equivalence, then d(f) = ± 1. 

PROOF. All parts follows from the fact that Hn is a functor defined on hTop 
(and that Hn(sn) = Z); in particular, (iii) follows from the existence of a com-

1 The converse is also true, and it is a theorem of Brouwer (see [Spanier, p. 398]). We know the 
converse when n = 1 (Corollary 3.18). A theorem of Hopf (see [Hu (1959), p. 53]) generalizes this 
by classifying all homotopy classes of maps X --> S", where X is an n-dimensional polyhedron, in 
terms of the cohomology H"(X; Z). 
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mutative diagram 

where {*} is a one-point space. D 

Using degrees, one may give another proof of Theorem 6.10: sn is not 
contractible. Otherwise, Is" ~ c, where c: sn --+ sn is some constant map, and 
these two maps would have the same degree, by Lemma 6.21 (iv); but Lemma 
6.21, parts (ii) and (iii), show that this is not so. 

Computation of the degree of a map is facilitated if one has an explicit 
generator of Hn(sn). The next result exhibits a generator when n = 1. 

Theorem 6.22. Let x = ( -1,0) and y = (1,0) E Sl, let a be the (northerly) path 
in Sl from y to x, and let r be the (southerly) path in Sl from x to y. Then 
a + r is a I-cycle in Sl whose homology class generates HI(SI). 

n 

x y 

PROOF. First, a + r is a I-cycle, because 

o(a + r) = oa + or = (x - y) + (y - x) = 0. 

Let n = (0, 1) and s = (0, - 1) be the north and south poles; let X I = 
Sl - {n} and X2 = Sl - {s}. Note that Sl = X~ U X~, each Xi is contractible, 
and X I n X 2 = Sl - {n, s} consists of two disjoint open arcs Land R with 
x ELand y E R. The Mayer-Vietoris theorem for reduced homology provides 
exactness of 

- - - ID- --HI(Xd Ef> HI(X2 ) --+ HI(S ) --+ HO(XI nX2 ) --+ Ho(Xd Ef> HO(X2 )· 

Now D is an isomorphism, because contractibility of Xl and X2 forces 
both direct sums to be zero. Since X I n X 2 = L U R, Corollary 5.18 gives 
fiO(XI nX2 ) infinite cyclic with generator cls(x - y). But Lemma 6.19 shows 
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that D cls(a + r) = cls oa = cls(x - y); it follows that cls(a + r) generates 
H1(Sl)=H1(Sl). 0 

Remark. One can show that a (simple) closed path generates Hl (Sl), but we 
need Theorem 6.22 as stated. 

Definition. If x = (x 1, ... , xn+1 ) E sn, its antipode is - x = ( - Xl' ... , - Xn+1). 
The antipodal map a = an: sn -4 sn is defined by Xf---+ -x. 

Note that the distance from x to -x is 2, the diameter of sn, so that -x is 
indeed antipodal to x. 

Theorem 6.23. If n ~ 1, then the antipodal map an: sn -4 sn has degree ( _1)n+l . 

PROOF. As a preliminary step, we show, by induction on n, that the map 
f:sn-4sn given by f(x 1 , ••• , xn+1 )=(-X1 ,X2 , •.• , Xn+1) has degree -1. 
Recall that the north pole of sn is (0,0, ... , 0, 1) and that the south pole is 
(0, 0, ... , - 1). 

Let n = 1. Set Xl = Sl - {north pole} and X2 = Sl - {south pole}. By 
Exercise 6.3, there is a commutative diagram from Mayer~ Vietoris 

D 
----------> 

D 
----------> 

where g is the restriction of f (note that f(X;) C Xi for i = 1, 2). Observe that 
D is injective, for the preceding term in the Mayer~ Vietoris sequence is 
H1(X 1 ) EB H 1(X2 ) = 0. By Theorem 6.22 and Lemma 6.19, cls(a + r) is a 
generator of Hl (Sl), and D(cls(a + r)) = cls oa = cls(x - y). Hence com­
mutativity of the diagram above gives 

Df* cls(a + r) = g*D cls(a + r) = g* cls(x - y) = cls(g(x) - g(y)) 

= cls(y - x), 

because f (and hence g) interchanges x and y. But 

cls(y - x) = - D cls(a + r) = D cls( - (a + r)). 
Since D is injective, we have f* cls(a + r) = -cls(a + r), and d(f) = -1. 

For the inductive step, we may assume that n ~ 2. Let Xl = sn - {north 
pole}, let X2 = sn - {south pole}, and let i: sn-l c... Xl nX2 be the inclusion 
of the equator. Since sn-l is a deformation retract of Xl n X 2' we know that 
i*: Hn_1(sn-l) -4 Hn- 1(X1 n X 2 ) is an isomorphism. Iff' is the restriction of f 
to sn-l, there is a commutative diagram 
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Hn(sn) ---.!!.- Hn-l(Xl nX2 ) ~ Hn_l(sn-l) 

&1 1·. 1~ 
Hn(sn) ---.!!.- Hn- l (X 1 n X 2) ~ Hn- l (sn-l ). 

Since n ~ 2, we know that D is an isomorphism (for the flanking terms in the 
Mayer-Vietoris sequence are 0 because Xl and X 2 are contractible). We thus 
have f* = D-l i*f~i;l D. By induction, d(f') = -1, so that f~ is multiplication 
by -1; the other factors cancel each other and so f* is also multiplication by 
-1, that is, d(f) = -l. 

The next step shows that there is nothing magical about changing the 
sign of the first coordinate: if /;: sn -+ sn is defined by /;(x l' ... , X n+1) = 
(Xl' ... , - Xi> ••• , xn+d, we claim that d(/;) = -1 also. If h: sn -+ sn is the 
homeomorphism of sn interchanging the first and ith coordinates, then /; = 
hfh. Using Lemma 6.21, we see that 

d(/;) = d(hfh) = (d(h))2d(f) = (d(h))2( -1). 

As d(h) = ± 1 (since h is a homeomorphism), we have d(/;) = -l. 
Finally, observe that the antipodal map an is the composite 

an = ff2f3 .. "fn+l' 

so that d(an) = (-l)n+1, as desired. D 

Another proof of this theorem is given as Corollary 9.24. 

Theorem 6.24. 

(i) Iff: sn -+ sn has no fixed points, then f is homotopic to the antipodal map 
a = an. 

(ii) If g: sn -+ sn is nullhomotopic, then 9 has a fixed point. 

PROOF. (i) We can give a homotopy explicitly. Define F: sn x 1-+ sn by 

(1 - t)a(x) + tf(x) 
F(x, t) = 11(1 _ t)a(x) + tf(x)II' 

The right-hand side is a unit vector (hence lies in sn) as long as (1 - t)a(x) + 
tf(x) "# O. Were this zero, then we would have 

f(x) = ( - (1 - t)/t)a(x). 

Taking the norm of each side, noting that Ilf(x)1I = 1 = Ila(x)ll, we see that 
(1 - t)/t = 1; therefore f(x) = - a(x). But, by definition, a(x) = - x, so that 
f(x) = x, a contradiction. 

(ii) If 9 has no fixed points, then 9 ~ a, by part (i), and so d(g) = d(a) = 
± 1 (Lemma 6.21). But 9 nullhomotopic implies that d(g) = 0, a contradiction. 

o 



More Applications to Euclidean Space 123 

Theorem 6.25. Iff: s2n -4 s2n, then either f has a fixed point or some point is 
sent to its antipode. 

PROOF. Assume that f has no fixed points. By Theorem 6.24, f ~ a2n ; by 
Theorem 6.23, d(f) = ( - 1 )2n+l = -1. Suppose that f(x) -# - x for all x E s2n. 
If we define g(x) = - f(x), we see that g has no fixed points, and so - f = 

g ~ a2n . It follows that f ~ _a2n = Is2" and d(!) = 1, a contradiction. 0 

This result is false for odd-dimensional spheres; for example, rotation 
P: Sl -4 Sl about the origin through almost any angle has neither fixed points 
nor points sent into antipodes. More generally, regard a point x E s2n-l as an 
n-tuple (z l' ... , zn) of complex numbers, and define f: s2n-l -4 s2n-l by 

(Zl' ... , zn)f--+(PZl' PZ2' ... , PZn), 

where p: Sl -4 Sl is a suitable rotation. 

Theorem 6.26. There is no continuous f: s2n -4 s2n such that x and f(x) are 
orthogonal for every x. 

PROOF. If f(x o) = - Xo for some x o, then their inner product (xo, f(x o)) = -1, 
contradicting the hypothesis that (xo,f(xo)) = O. Hence f sends no point to 
its antipode, so that f must have a fixed point, say, Xl' But then Xl is 
orthogonal to itself, contradicting Ilxlll = 1. 0 

Theorem 6.26 is false for Sl; indeed it is false for every odd-dimensional 
sphere. If X E s2n-1, then x = (Xl' x 2, ... , X 2n- l ' X2n); define f: s2n-l -4 s2n-l 

by 

Definition. A vector field on sm is a continuous map f: sm -4 Rm+1 with f(x) 
tangent to sm at x for every x E sm; one says that f is nonzero if f(x) -# 0 for 
all x. 

Corollary 6.27 (Hairy Ball Theorem). There exists no nonzero vector field on 
s2n. 

PROOF. If f: s2n -4 R2n+1 is a nonzero vector field, then g: s2n -4 s2n defined 
by x f--+ f(x)/llfll is a continuous map with g(x) tangent to s2n at x for every x. 

o 

A function f: sm -4 Rm+ l may be viewed as a family of vectors with f(x) 
attached to sm at x (thus sm is a "hairy ball"). If we say that a hair is "combed" 
if it lies flat, that is, if it is tangent to the sphere, then Theorem 6.27 can be 
interpreted as saying that one cannot comb the hair on an even-dimensional 
sphere. 
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Definition. A continuous map g: sm ....... sn is called antipodal if gam = ang, that 
is, if g( -x) = -g(x) for all x E sm. 

An antipodal map 9 thus carries the antipode of x to the antipode of g(x). 
Hence, if y = - x, then g(y) = - g( - y), that is, 9 maps antipodal pairs into 
antipodal pairs. Note that the antipodal map an: sn ....... sn is antipodal. 

EXERCISES 

*6.11. If y: ~ 1 --> sn is a "path" with y(e1 ) = - y(eo), then (1 + a#)y is a I-cycle in sn. 
(Note: By "path" we mean that (J has domain ~1 = [-1,1] instead of I.) 

*6.12. If y is a 1-chain in sn, then 

(1 + a#)(1 - a#)y = o. 
*6.13. If P is a 1-chain in sn, then 

(1 + a#)(1 + a#){3 = 2(1 + a#)f3. 

*6.14. If (J is the northerly path in SI from y = (1,0) to a1(y) = (-1,0), then (1 + a~)(J 
is a 1-cycle whose homology class generates Hl(SI). (Hint: Theorem 6.22.) 

Theorem 6.28. If m > 1, there exists no antipodal map g: sm ....... Sl. 

PROOF (after J. W. Walker). Assume that such a map 9 exists. Let 
y = (1,0) E Sl and let a be the northerly path in Sl from y to al(y) = 

(-1,0). Choose a point Xo E sm, and let A be a path in sm from Xo to 
- Xo. Finally, choose a path f in Sl from g(xo) to y. Now 

a - 9 # A + f - af 

is a I-cycle in St, for its boundary is 

(a l y - y) - (g( - xo) - g(xo» + (y - g(xo» - (a l y - al g(xo» = 0 

(because 9 is antipodal). Let () = 1 + a~. Since cls ()a is a generator of 
HI (Sl), by Exercise 6.14, there is some integer m with 

cls(a - g#A + f - al !) = m cls ()a. 

On the other hand, applying () to this equation gives 

cls«()a - ()g # A) = 2m cls ()a 

(using Exercises 6.12 and 6.13). Therefore 

cls«()a) = clS«()g#A) in H I(SI)/2HI(SI) 

(where bar denotes coset mod 2Hl (Sl». As cls«()a) is a generator 
of HI(SI), it follows that cls«()a) and clS«()g#A) are nonzero in 
HI(SI)/2HdS I ); therefore cls(89#A) =1= 0 in HI(SI). But 9 is antipodal, so that 
()g#A = (1 + a~)g#A = g#(1 + a~)A. Since (1 + a~)A is a I-cycle in sm, 
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Exercise 6.11, we must have cls((1 + a~)A.) =F 0 in HI(sm). As m> 1, this 
contradicts HI (sm) = O. 0 

Corollary 6.29 (Borsuk-Ulam). Given a continuous f: SZ --+ RZ, there exists 
x E SZ with f(x) = f( - x). 

PROOF. If no such x exists, define g: SZ --+ Sl by 

g(x) = (f(x) - f( -x))/lIf(x) - f( -x)lI· 

Clearly, g is an antipodal map, and this contradicts the theorem. 0 

Remark. In Chapter 12, we shall prove the more general version of Theorem 
6.28 and its corollary: if m > n, then there is no antipodal map sm --+ S"; if 
f: sm --+ Rm, then there exists x E sm with f(x) = f( -x). 

EXERCISES 

6.15. Prove directly that if f: SI -+ R is continuous, then there exists x E SI with 
f(x) = f( -x). 

6.16. Prove that there is no homeomorphic copy of SZ in the plane RZ. This result says 
that a map of the earth cannot be drawn (homeomorphically) on a page of an 
atlas. (Remark: This result remains true if "2" is replaced by "n"; it follows from 
the general Borsuk-Ulam theorem.) 

Corollary 6.30 (Lusternik-Schnirelmann). If SZ = FI U Fz U F3 , where each F; 
is closed, then some F; contains a pair of antipodal points. 

PROOF. If aZ: SZ --+ SZ is the antipodal map x H - x, then we may assume that 
aZ(FI) n FI = 0 = aZ(Fz) n Fz, or we are done. By the Urysohn lemma, there 
are continuous maps g;: SZ --+ I, for i = 1, 2, with g;(F;) = 0 and g;(aZ F;) = 1. 
Define f: SZ --+ RZ by 

f(x) = (gl(x), gz(x)). 

By Corollary 6.29, there exists Xo E SZ with f(xo) = f( -xo), that is, g;(xo) = 
g;( -xo) for i = 1,2. It follows that Xo ¢ F; for i = 1,2, because x E F; implies 
that g;(xo) = 0 and g;( - xo) = 1 (for - Xo = aZ(xo) E aZ FJ Since S2 = 

FI U Fz U F3 , we must have Xo E F3 . A similar argument shows that 
-Xo ¢ FI UFz, hence -Xo E F3 , as desired. 0 

EXERCISES 

6.17. If f: S2 -+ R2 satisfies f( -x) = - f(x) for all x, then there exists Xo E S2 with 
f(x o) = O. 

6.18. Assume that there is no antipodal map sm -+ S· for m > n. Prove that if 
f: S· -+ R', then there exists Xo E S· with f(xo) = f( -xo)· 

6.19. Assume that there is no antipodal map sm -+ S· for m > n. Prove that if S· is the 
union of n + 1 closed subsets F1 , F2 , .•• , F.+1 , then at least one Fj contains a pair 
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of antipodal points. Prove that this conclusion is false if one replaces n + 1 by 
n + 2. 

We now prepare for the Jordan-Brouwer separation theorem. 

Definition. If r ~ 0, a (closed) r-cell er is a homeomorphic copy of 1', the 
cartesian product of r copies of I. In particular, eo is a point. 

Theorem 6.31. If sn contains an r-cell e" then sn - er is acyclic: 

fiq(sn - er ) = ° for all q. 

PROOF. We prove the theorem by induction on r ~ 0. If r = 0, then eo is a 
point, sn - eo ~ Rn (stereographic projection), and so sn - eo is contractible; 
the result follows. 

Suppose that r > 0, let B = 1'-1, and let h: I' = B x I -+ er be a homeo­
morphism. Define e' = h(B x [0, t]) and e" = h(B x [t, 1]). Then er = e' U 
e" while e' n e" = h(B x {t}) is an (r - 1 )-cell. By induction, (sn - e') U 
(sn - elf) = sn - (e' n elf) is acyclic. Since sn - e' and sn - elf are open sub­
sets, Mayer-Vietoris for reduced homology gives exactness of 

Hq+l (S· - (e' n elf)) ..... Hq(S· - (e' U elf)) ..... Hq(S· - e') E9 Hq(S· - elf) ..... Hq(S· - (e' n elf)). 

The outside terms being zero and sn - (e' U elf) = sn - er give an isomorphism 

fiq(S" - er ) .:::; fiq(sn - e') EB fiq(sn - elf). 

Assume that cls ( E fiq(sn - er ) and cls ( i= 0; we shall reach a contradiction. 
Now Lemma 6.18 gives either i~ cls ( i= ° or i; cls ( i= 0, where i': S" - er 4 

sn - e' and ilf: sn - er 4 S" - elf are inclusions. Assume that i~ cls ( i= 0, and 
define E1 = e'. We have thus constructed an r-cell E1 c er such that the 
inclusion i: S" - er 4 S" - E1 satisfies i* cls ( i= 0. Repeat this construction 
with B x I replaced by B x [0, t] and with [0, t] bisected. Iterating, we see 
that there is a descending sequence of r-cells 

er :::::> E1 :::::> E2 :::::> ••• :::::> EP :::::> EP+1 :::::> ••• , 

with £P = h(B x JP) (where JP c JP-1 is a subinterval of length 2-P), with 
i~ cls ( i= ° (where i P: sn - er 4 S" - £P is inclusion), and with n EP an 
(r - 1 )-cell, namely, h(B x {point}). 

We are going to apply Theorem 4.18. There is a commutative diagram with 
all arrows inclusions: 
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Since i~ cls , =I- ° for all p, it follows that cp:(i~ cls 0 =I- ° for all p. Now 
assume that A is a compact subset of sn - n EP = u(sn - EP), an ascending 
union of open sets in sn. This open cover of A has a finite subcover, that is, 
A c sn - EP for some p. Theorem 4.18 now applies to give A!i! cls , =I- ° in 
flq(sn - n EP) for all k. But flq(sn - n EP) = 0, by induction, because n EP 
is an (r - l)-cell, and we have reached a contradiction. Therefore cls' = 0, 
that is, flq(sn - er) = 0, and sn - er is acyclic. 0 

Corollary 6.32. If er is a closed r-cell in sn, then sn - er is path connected. 

PROOF. flo(sn - er) = 0, and so Corollary 5.15 applies. o 

Theorem 6.33. Let Sr be a homeomorphic copy of sr in sn, where n > 0. Then 

_ {Z if q = n - r - 1 
H (sn - s) = 

q r ° otherwise. 

PROOF. We do an induction on r. If r = 0, then So consists of two points and 
sn - So has the same homotopy type as sn-l (think of So as the north and 
south poles, and deform sn - So to the equator). Hence 

flisn - so) ~ flq(sn-l), 

and this is ° for q =I- n - 1, and Z for q = n - 1, as desired. 
Assume that r > 0, and let cp: sr -+ Sr be a homeomorphism. Write sr = 

E+ U E-, where E+ is the closed northern hemisphere and E- is the closed 
southern hemisphere. Note that E+ n E- = sr-l, the equator. If e' = cp(E+) 
and elf = cp(E-), then it is an easy exercise to show that e' and elf are closed 
r-cells in sn. 

Define Xl = sn - e' and X 2 = sn - elf; then Xl and X 2 are open subsets 
of sn, hence Xl U X 2 = X~ U X~. Furthermore, 

Xl U X 2 = (sn - e') U (sn - elf) == sn - (e' n elf) = sn - Sr-1. 

We also have 

Xl nX2 = (sn - e')n(Sn - elf) = sn - (e'Ue") = sn - Sr. 

There is an exact Mayer-Vietoris sequence 

Hq+1 (S· - e') EB Hq+1 (s· - elf) -> Hq+1 (S· - S,-l) -> Hq(S· - s,) -> Hq(S· - e') EB Hq(S· - elf). 

By Theorem 6.31, the flanking (direct sum) terms are 0, so that 

flq+1(sn - Sr-1) ~ flq(sn - sr). 

By induction, 

if q + 1 = n - (r - 1) - 1 

otherwise, 
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and this gives 

il (S" _ ) = {Z if q = n - r - 1 
q Sr 0 otherwise. o 

Corollary 6.34. Let Sr be contained in sn. If r # n - 1, then S" - sr is path 
connected; if r = n - 1, then S" - Sr has exactly two path components. 

PROOF. Compute ilo(sn - sr) by the theorem, and apply Corollary 5.15. 0 

We have shown that one cannot disconnect S" by removing a homeomorph 
of a sphere of dimension :5; n - 2. Since S" is the one-point compactification 
ofR", it follows that one cannot disconnect R" by removing Sr with r :5; n - 2. 

Definition. Let U be a subspace of a space X. An element x E X is a boundary 
point of U if every neighborhood of x meets both U and X - U. The boundary 
of U (or the frontier of U), denoted by 0, is the set of all boundary points of U. 

Clearly, 0 depends on the ambient space X; moreover, the closure (j of U 
is just U U 0, while U open implies that 0 = (j - U. 

Theorem 6.35 (Jordan-Brouwer2 Separation Theorem). If S"-1 is a subspace 
of S" that is homeomorphic to S"-1, then S" - Sn-1 has exactly two components, 
and Sn-1 is their common boundary. 

PROOF. Denote Sn-1 by s. By Corollary 6.34, sn - s has exactly two path 
components, say, U and V. By Exercise 1.28, sn - s is locally path connected, 
and so Corollary 1.20 shows that U and V are components; by Theorem 1.18, 
U and V are open sets of sn - s and hence are open in S". 

Since V is open in S", S" - V = U U s is a closed set containing U; hence 
(j c U U s, and so 0 = (j - U c s. A similar argument shows that V c s. 

For the reverse inclusion, let XES and let N be an open neighborhood of x. 
Clearly, N meets S" - U = V Us; to show that x E 0, it remains to prove that 
N meets U. Now every nonempty open subset of S"-1 contains an (open) subset 
D whose complement is an (n - 1 )-cell (because every open set contains a 
homeomorph of R"-1); since s ~ S"-1, there exists a subset A of N n s with 
s - A a closed (n - l)-cell. By Theorem 6.31, ilo(S" - (s - A)) = 0, hence 
Sft - (s - A) is path connected. If u E U and v E V, there exists a path f in 
Sft - (s - A) from u to v. Since u and v lie in distinct path components of Sft - s, 
we must have f(l) n A # 0. But f(l) n A = f(l) n s: f(1) n A c f(l) n s because 
A c s; for the reverse inclusion, 

2 The special case n = 2 is called the Jordan curve theorem; it was conjectured by Jordan but 
proved by Veblen; Theorem 6.35 was later proved by Brouwer. 
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f(l) n s c f(l) n (sn - (s - A)) n s c f(l) n A. 

Hence, if to = inf{tEI: f(t) E s}, then to = inf{t E I: f(t) E A}. Thus f(to) E 
f(l) n A c N. If J = [0, to), then f(J) is a connected set containing u = f(O) 
and with f(J) c f(l) n sn - S = f(l) n (U U V); it follows that f(J) c U. There­
fore any open neighborhood of f(to) in N meets U, as desired. A similar 
argument using t1 = sup{tEI: f(t) E s} shows that N meets Vas well. 0 

If we regard sn = Rn U {oo}, and if 00 ¢ Sn-1' then that component of 
sn - Sn-1 containing 00 is called the outside of Sn-1' and the other component 
is called the inside. Is the inside of Sn-1 homeomorphic to an open ball (i.e., 
the interior of Dn)? When n = 2, then Sl is called a Jordan curve, and the 
Schoenflies theorem gives an affirmative answer: the inside of a Jordan curve 
is homeomorphic to the interior of D2. However, for n = 3, Alexander gave 
an example (the "horned sphere") showing that the inside need not be homeo­
morphic to an open ball (the interior of D 3 ) (see [Hocking and Young, p. 176]). 
Alexander's example can be modified to show the same phenomenon of bad 
insides can occur for all n ?: 3. 

Let us mention a famous example (the lakes of Wada), which comes very 
close to the Jordan curve theorem. There exists a compact connected subset 
K of R2 whose complement R2 - K has three components U1 , U2 , U3 and 
K = Vi for i = 1, 2, 3. Of course, K is not a Jordan curve, otherwise its 
complement would have two components. (See [Kosniowski, p. 100] for 
details of this example.) 

Here is another important theorem of Brouwer. 

Theorem 6.36 (Invariance of Domain). Let U and V be subsets of sn having a 
homeomorphism h: U --+ V. If U is open, then V is open. 

PROOF. Let y E V and let h(x) = y. Take a closed neighborhood N of x in U 
with N ~ In and N ~ sn-1; of course, h(N) c V. Now Nand h(N) are closed 
n-cells, so that Theorem 6.31 says that sn - h(N) is connected. On the other 
hand, sn - h(N) has two components, by Theorem 6.35. Since 

sn - h(N) = (sn - h(N)) U (h(N) - h(N)) 

and the two terms on the right are disjoint, nonempty, and connected, they 
must be the components of sn - h(N).1t follows that each is open in sn - h(N); 
in particular, h(N) - h(N) is open in sn - h(N) and hence is open in sn. But 
y E h(N) - h(N) c V; since h(N) is the boundary of each component, it follows 
that y is an interior point of V. Therefore, V is open in sn. 0 

For more applications to euclidean space, we recommend [Eilenberg and 
Steenrod, Chap. XI]. 



130 6. Excision and Applications 

EXERCISES 

6.20. Show that sn is not homeomorphic to any proper subspace of itself. (Hint: Use 
compactness of sn and invariance of domain.) 

*6.21. Prove invariance of domain if the ambient space sn is replaced by Rn. 
*6.22. If invariance of domain holds with ambient space X, then show it holds with 

any ambient space homeomorphic to X. 
6.23. Show that invariance of domain does not hold with ambient space Dn. 



CHAPTER 7 

Simplicial Complexes 

Definitions 

We have been studying arbitrary spaces X using fundamental groups and 
homology groups, and we have been rewarded with interesting applications 
in the few cases in which we could compute these groups. At this point, 
however, we would have difficulty computing the homology groups of a space 
as simple as the torus T = Sl X Sl; indeed S.(T) is uncountable for every 
n 2 0, so it is conceivable that Hn(T) is uncountable for every n (we shall soon 
see that this is not so). Many interesting spaces, as the torus, can be "tri­
angulated", and we shall see that this (strong) condition greatly facilitates 
calculation of homology groups. Moreover, we shall also be able to give a 
presentation of the fundamental groups of such spaces. 

In contrast to the singular theory, a q-simplex will once again be an honest 
space (and not a continuous map with domain i1q). Recall that if {vo, ... , vq} 
is an affine independent subset of some euclidean space, then it spans the 
q-simplex s = [Vo, ... , vq ] consisting of all convex combinations of these 
vertices. 

Definition. If s = [Vo, ... , vq ] is a q-simplex, then we denote its vertex set by 
Vert(s) = {Vo, ... , vq }. 

Definition. If s is a simplex, then a face of s is a simplex s' with Vert(s') c 

Vert(s); one writes s' ::::;; s. If s' < s (i.e., Vert(s') ~ Vert(s)), then s' is called a 
proper face of s. 

Definition. A finite simplicial complex K is a finite collection of simplexes in 
some euclidean space such that: 
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(i) if s E K, then every face of s also belongs to K; 
(ii) if s, t E K, then s ntis either empty or a common face of s and of t. 

We write Vert(K) to denote the vertex set of K, namely, the set of all 
O-simplexes in K. 

Definition. If K is a simplicial complex, its underlying space I K I is the subspace 
(of the ambient euclidean space) 

IKI = Us, 
SEK 

the union of all the simplexes in K. 

Clearly, IKI is a compact subspace of some euclidean space. Note that if s 
is a simplex in K, then lsi = s. 

Definition. A topological space X is a polyhedron if there exists a simplicial 
complex K and a homemorphism h: IKI-+ X. The ordered pair (K, h) is called 
a triangulation of X. 

EXAMPLE 7.1. The standard 2-simplex ~2 is contained in euclidean space R3. 

Define K to be the family of all vertices and 1-simplexes of ~2 (i.e., K is the 
family of all proper faces of ~2). Then K is a simplicial complex whose 
underlying space IKI is the perimeter ofthe triangle ~2 in R3. If X = sl, choose 
distinct points aQ, aI' a2 E sl, and define a homemorphism h: IKI-+ SI with 
h(e;) = ai for i = 0, 1, 2, and with h taking each 1-simplex [ei , ei+1] (read 
indices mod 3) onto the arc joining ai to ai+1. Then (K, h) is a triangulation 
of sl, and so SI is a polyhedron. 

EXAMPLE 7.2. If K is the family of all proper faces of an n-simplex s, then there 
is a triangulation (K, h) of sn-I. Denote this simplicial complex K by s. 
(Note that IKI is the boundary s ~ sn-l, so that our two dot notations are 
compatible.) 

EXAMPLE 7.3. It is easy to give examples of finite collections of simplexes 
satisfying condition (i) of the definition of simplicial complexes but not condi­
tion (ii). 

b 

'f----.... j 

aL----_____ ~ 
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The simplexes s = [a, b, e] and t = Ed, e,f] (and all their faces) do not com­
prise a simplicial complex because s n t, though a face of t, is not a face of s. 
The space X = lsi U It I is a polyhedron, but one needs another simplicial 
complex to triangulate it; for example, K = {[a, b, d], [a, d, e], Ed, e,f], and 
all their faces} will serve. 

EXAMPLE 7.4. Every q-simplex s determines a simplicial complex K, namely, 
the family of all (not necessarily proper) faces of s. Clearly, IKI = s.H h: IKI -+ s 
is the identity map, then s is a polyhedron (as it ought to be!). 

EXAMPLE 7.5. Consider the square I x I with sides identified as indicated. 

ar-------~~--------/'-b 

1[\ 

/' 
/' 

/' 

/' 
/' 

/' 
/' 

/' 

/' 
/' 

/' 

/' 

/' 
/' 

/' 

I 

d ... ""--/'------~/------..... C 

In detail, (t, 0) is identified with (t, 1) for each tEl, giving a cylinder, and (0, s) 
is identified with (1, s) for each s E I, giving a torus. A triangulation of I x I 
(e.g., insertion of the diagonal bd) may not give a triangulation of the torus 
because, after the identification, the two distinct triangles (2-simplexes) abd 
and bed have the same vertex set. The following triangulation of I x I does 
lead to a triangulation of the torus, hence the torus is a polyhedron. 

This triangulation of the torus has 18 triangles (2-simplexes), 27 edges 
(I-simplexes), and 9 vertices; it is known that the minimum number of tri­
angles in a triangulation of the torus is 14 (see [Massey (1967), p. 34, Exercise 
2] for an inequality implying this result). 
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EXAMPLE 7.6. 1 Other identifications of the boundary points of I x I lead to 
other polyhedra. 

./ 
..... "-

\V [; Ir-

.... 
"-

Figure (i) Figure (ii) 

The space obtained from Fig. (i) by identifying (t, 0) with (1 - t, 1) and (0, t) 
with (1, 1 - t) for all tEl is called the real projective plane Rp2; the space 
obtained from Fig. (ii) is called the Klein bottle. If one identifies all the 
boundary to a common point, one obtains the sphere S2. 

EXERCISES 

7.1. Show that Rp2 is homemorphic to the quotient space of the disk D2 after 
identifying antipodal points. 

7.2. Exhibit a compact connected subset of R2 that is not a polyhedron. 

7.3. Why does the following triangulation of I x I not give a triangulation of the 
torus? 

Definition. Let s be a q-simplex. If q = 0, define SO = s; if q > 0, define SO = 

s - oS (see Example 7.2). One calls SO an open q-simplex. 

Observe that a simplicial complex is the disjoint union of its open 
simplexes. 

It is plain that an open q-simplex SO is an open subset of s (it is its interior), 
but if s lies in a simplicial complex K, then SO may not be an open subset of 

1 It will be shown that the homology groups obtained from I x I by "twisting", for example, Rp2 
and the Klein bottle, have homology groups with elements of finite order. This is probably the 
reason that torsion groups are so called. An etymology of twisting also appears in the discussion 
of lens spaces in [Seifert and Threlfall, p. 220]. 
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IKI. For example, an open I-simplex SO is an open interval; its endpoints are 
open O-simplexes that are not open subsets of the (closed) I-simplex spanned 
by the endpoints. Similarly, an open I-simplex is not an open subset of a 
2-simplex. 

Definition. Let K be a simplicial complex and let p E Vert{K). Then the star 
of p, denoted by step), is defined by 

step) = U SO c IKI. 
seK 

peVerl(s) 

In the figure, step) consists of the open shaded region. One sees that step) 
consists of all the open simplexes of which p is a neighbor. 

EXERCISES 

*7.4. (i) If K is a simplicial complex and F is a subset of IKI, then F is closed if and 
only if F n s is closed in s for every s E K. 

(ii) If s is a simplex in K of largest dimension, then SO = s - oS is an open subset 
oflKI· 

7.5. If K is a simplicial complex, then I K I is the disjoint union of all the open simplexes 
SO with s E K. Conclude that each x E IKllies in a unique open simplex. 

7.6. Let K be a simplicial complex, let x E IKI, and let SO be the (unique) open simplex 
with x E so. If Vert(s) = {Po, ... , pq }, then x E st(p) if and only if P = Pi for some 
i = 0, 1, ... , q. 

*7.7. (i) For each vertex P E Vert(K), prove that st(p) is an open subset of IKI and 
that the family of all such stars is an open cover of IKI. 

(ii) If x E st(p), then the line segment with endpoints x and p is contained in st(p). 

*7.8. Let Po, Pl, ... , Po E Vert(K). Prove that {Po, ... , Po} spans a simplex of K if and 
only if ni=o st(Pi) #- 0· 

Definition. If K is a simplicial complex, define its dimension, denoted by dim K, 
to be 
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dim K = sup {dim s} 
seK 

(of course, a q-simplex has dimension q). 

The construction of polyhedra as quotient spaces ofI x I raises an interest­
ing question. It is plain that there exists a simplicial complex-indeed a 
collection of triangles in R 3 -which can be assembled to form a space home­
omorphic to the torus. It is less obvious, though not difficult, that such a 
simplicial complex with fourteen 2-simplexes exists in R3. Now the Klein 
bottle exists in R 4, but it cannot be imbedded in R 3 . There is a general existence 
theorem (see [Hurewicz and Wallman, p. 56]) that a finite simplicial complex 
of dimension d always triangulates a subspace of R2d+1; moreover, this result 
is best possible: if K consists of all the faces of A2d +2 having dimension::;; d, 
then dim K = d and K cannot be imbedded in R2d (see [Flores]) (when d = 1, 
this says that the complete pentagon cannot be imbedded in the plane, as one 
knows from Kuratowski's theorem characterizing planar graphs). 

Theorem 7.1 (In variance of Dimension). If K and L are simplicial complexes 
and if there exists a homeomorphism f: IKI-+ ILl, then dim K = dim L. 

Remark. It follows that one can define the dimension of a polyhedron X as 
the common dimension of the simplicial complexes involved in triangulations 
ofX. 

PROOF. Assume, on the contrary, that m = dim K > dim L = n (replacing f 
by f- 1 handles the reverse inequality). Take an m-simplex (J in K, and let 
(J0 = (J - 0' be its interior. Now (J0 is an open set in I KI, by Exercise 7.4(ii). 
Since f is a homeomorphism, f((J°) is open in ILl. There thus exists some p­
simplex'rinL(ofcourse,p::;; n< m)withf((J°)nrO = W, a nonempty open set 
in ILl (for the stars of vertices form an open cover of ILl, by Exercise 7.7(i». 
Choose a homeomorphism cp: Am -+ (J with cp(Am) = 0'; then U, defined by 
U = cp-1f- 1(W), is an open subset of (Amr. Since p < m, there exists an 
imbedding g: AP -+ (Amr such that im 9 contains no nonempty open subsets 
of (Am)o. Both U and g(W) are homeomorphic subsets of (Am)o; as U is open 
and g(W) is not, this contradicts invariance of domain (Theorem 6.36) as 
modified by Exercises 6.21 and 6.22. 0 

Simplicial Approximation 

If we want a category whose objects are simplicial complexes (and we do), 
what are the morphisms? 

Definition. Let K and L be simplicial complexes. A simplicial map cp: K -+ L 
is a function cp: Vert(K) -+ Vert(L) such that whenever {Po, Pl"'" pq} spans 
a simplex of K, then {cp(Po), CP(Pl), ... , cp(Pq)} spans a simplex of L. 
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Of course, repetitions among cp(Po), ... , cp(Pq) are allowed. 

Theorem 7.2. If .$" consists of all simplicial complexes and all simplicial maps 
(with usual composition), then.$" is a category, and underlying defines a functor 
I I: .$"-+ Top. 

PROOF. It is routine to check that .$" is a category; let us construct I I. On 
objects, assign the space IKI to K. If cp: K -+ L is a simplicial map, define 
Icpl: IKI -+ ILl as follows. For each s E K, define Is: s -+ ILl as the affine map 
determined by cp I Vert(s) (Theorem 2.1 0). Condition (ii) of the definition of 
simplicial complex implies that the functions Is agree on overlaps, so that the 
gluing lemma 1.1 assembles them into a unique continuous function IKI -+ ILl, 
denoted by Icpl. That we have defined a functor is left as an exercise. 0 

Definition. A map of the form Icpl: IKI-+ ILl, where cp: K -+ L is a simplicial 
map, is called piecewise linear. 

There is no obvious functor Top -+ .$", even if we confine our attention to 
the subcategory of polyhedra. Given a continuous f: IKI-+ ILl, it may not be 
true that f = Icpl for some simplicial map cp: after all, there are only finitely 
many cp's. But we are flexible. Is it true that f ~ Icpl for some cp? The answer 
is still "no": if K = L = {all properfaces of[po, PI' P2]}' then IKI ~ Sl ~ ILl. 
Since 1[1 (Sl) ~ Z, there are infinitely many nonhomotopic maps f: Sl -+ S\ 
while there are still only finitely many simplicial maps cp: K -+ L. We shall 
subdivide K (the same process as in the proof of excision) to obtain more (and 
better) approximations by simplicial maps. 

Definition. Let K and L be simplicial complexes, let cp: K -+ L be a simplicial 
map, and let f: IKI-+ ILl be continuous. Then cp is a simplicial approximation 
to f if, for every vertex p of K, 

f(st(p)) c st(cp(p». 

It is easy to see that Icpl(st(p» c st(cp(p)). Thus we are saying thatfbehaves 
like I cp I in that it carries neighboring simplexes of p inside the union of the 
simplexes near cp(p). 

EXERCISES 

7.9. Let K and K' be simplicial complexes, and let cp: Vert(K) -> Vert(K') be a 
function. Prove that cp is a simplicial map if and only if, whenever n st(p,) #- 0, 
then n st(cpp,) #- 0. (Hint: Use Exercise 7.8.) 

*7.10. Prove that a simplicial map cp: K -> L is a simplicial approximation to f: I K I -> 
ILl if and only if, whenever x E IKI and f(x) E SO (where s is a simplex of L), then 
Icpl(x)Es. 

*7.11. If cp: K -> L is a simplicial approximation to f: IKI-> ILl, then Icpl ~ f. 
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Our remarks about 11:1 (Sl) show that, for a given triangulation, a con­
tinuous map need not have a simplicial approximation. Let us therefore 
change the triangulation. 

Definition. If S is a simplex, let bS denote its barycenter. If K is a simplicial 
complex, define Sd K, the barycentric subdivision of K, to be the simplicial 
complex with 

Vert(Sd K) = {b s : S E K} 

and with simplexes [b So , bS', ••• , bSq ], where the Si are simplexes in K with 
So < Sl < ... < Sq. 

Recall that if S is a vertex of K, that is, S is a O-simplex, then bS = s; therefore 
Vert(K) c Vert(Sd K). It is easy to check axioms (i) and (ii) in the definition 
of simplicial complex; using Exercise 7.13 below, one shows that [bSo, ••• , bSq ] 

is a q-simplex. 

EXAMPLE 7.7. If (J = [Po, PI' P2]' then Vert(Sd (J) = {Po, PI' P2' bo, bl , b2, b"}. 

pz 

PO~--------~--------~Pl 

Examples of 1-simplexes in Sd (J are [Po, b2] and [Po, bIT]; an example of a 
2-simplex in Sd (J is [Po, bl , b"]. Thus this is precisely the earlier construction 
of Chapter 6. 

EXERCISES 

*7.12. (i) For every simplicial complex K, prove that ISd KI = IKI. 
(ii) Prove that there exists a simplicial map <p: Sd K ..... K that is a simplicial 

approximation to the identity !Sd KI ..... IK!. (Hint: Define <p: Vert(Sd K) ..... 
Vert(K) so that <pCbS) E Vert(s).) 

(iii) If X is a polyhedron and x E X, there exists a triangulation (K, h) of X with 
x = h(v) for some vertex v of K. 

*7.13. If So < SI < ... < Sq are simplexes in some euclidean space, then {bSo, bS', ... , bS.} 
is affine independent. 

7.14. Every open simplex of Sd K is contained in a unique open simplex of K. 
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Definition. If K is a simplicial complex, then 

mesh K = sup {diam(s)}, 
seK 

where diam(s) denotes the diameter of s. 

EXERCISES 

*7.15. If mesh K = J1 and P E Vert(K), then diam(st(p» ::; 2J1. 

*7.16. If dim K = n, then 

mesh Sd K ::; (n/n + 1) mesh K. 

(Hint: Theorem 2.9.) Conclude that, for q ~ 1, 

mesh Sdq K ::; (n/n + 1)q mesh K. 
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Theorem 7.3 (Simplicial Approximation Theorem). If K and L are simplicial 
complexes and iff: I K I -+ I LI is continuous, then there is an integer q ;;::: 1 and a 
simplicial approximation cp: Sdq K -+ L to f. 

PROOF. Let Vert(L) = {Wj: j E J} and let {st( w)} be the open cover of I LI by its 
stars. Since f is continuous, U-I st(w)} is an open cover of IKI. Since IKI is 
compact metric, this cover has a Lebesgue number .A. > O. By Exercise 7.16, we 
can choose q large enough so that mesh Sdq K < t.A.; it follows from Exercise 
7.15 that diam(st(p)) < A for every p E Vert(Sdq K). 

Define cp: Vert(Sdq K) -+ Vert(L) by cp(p) = Wj' where Wj is some vertex with 
step) c f-I(st(w) (Wj exists, by definition of Lebesgue number; if there are 
several choices, pick anyone). It follows that f(st(p)) c st(wj ) = st(cp(p», so 
that we are done if we can show that cp is a simplicial map: if {Po, ... , Pm} 
spans a simplex in Sdq K, does {cp(Po), ... , CP(Pm)} span a simplex in L? Now 
Exercise 7.8 gives ni=o step;) "# 0, so that 

o "# fen step;)~ c n f(st(p;) c n st(cp(p;). 

Exercise 7.8 thus shows that {cp(Po), ... , CP(Pm)} spans a simplex of L. D 

Corollary 7.4. Let K and L be simplicial complexes, and let f: IKI-+ ILl be 
continuous. Assume that K' is a simplicial complex such that 

(i) IK'I = IKI; 
(ii) Vert(K) c Vert(K'); 

(iii) mesh K' is "small". 

Then there exists a simplicial approximation cp: K' -+ L to f 

PROOF. The listed properties are the only properties of Sdq K used in the proof 
of the theorem. 0 

Definition. A subcomplex L of a simplicial complex K is a simplicial complex 
contained in K (i.e., s E L implies that s E K) with Vert(L) c Vert(K). 
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Note that Sd K is not a subcomplex of K (nor is K a subcomplex of Sd K). 

Definition. For any q ~ -1, the q-skeleton of K, denoted by K(q), is the 
subcomplex of K consisting of all simplexes s E K with dim(s) ~ q. 

EXERCISES 

*7.17. If q>: K -> L is a simplicial map, then q>(K(q») c L(q) for every q. Conclude that 
dim K = n implies that imlq>1 c IVn)l. 

7.18. If K is the n-skeleton of an (n + I)-simplex, then IKI ~ sn. 

Theorem 7.5. If m < n, then every continuous map f: sm -+ sn is nul/homotopic. 

PROOF. Let K be the m-skeleton of an (m + I)-simplex, and let L be the 
n-skeleton of an (n + I)-simplex; we may regard f as a continuous map from 
IKI into ILl. Let cp: Sdq K -+ L be a simplicial approximation to f Since 
dim Sdq K = dim K = m, Exercise 7.17 gives imlcpl c IVm)l, and so Icpl is not 
surjective. Hence imlcpl c ILl - {point}, which is contractible, and so Icpl is 
nullhomotopic. But I cp I ~ f, hence f is nullhomotopic. 0 

Corollary 7;6. If n ~ 2, then sn is simply connected. 

PROOF. The theorem shows that every continuous map f: Sl -+ sn is null­
homotopic, and so the result follows from Theorem 1.6. 0 

We have already sketched a proof of this corollary in Exercises 3.20 and 
3.21. The result does not follow, however, from the Hurewicz theorem and the 
fact that H1(sn) = 0 for n ~ 2 (one can conclude from these data only that 
11:1 (sn, 1) is its own commutator subgroup, and such groups do exist; e.g., every 
nonabelian simple group is such a group). 

Let us mention a famous problem. The Poincare conjecture asks whether 
a simply connected compact n-manifold having the same homology groups 
as sn is homeomorphic to sn. It is not too difficult to show that the conjecture 
is true when n = 2; for n ~ 5, the conjecture was solved affirmatively by 
Smale in the 1960s; the case n = 4 was solved (affirmatively) in the 1980s by 
Freedman. The familiar dimension 3 is thus the only open case. 

Abstract Simplicial Complexes 

We are going to define homology groups of a simplicial complex K (which 
will turn out to be isomorphic to the homology groups of the space X = I K I 
as defined in Chapter 4). This construction works in a simpler setting, which 
we now describe. 



Abstract Simplicial Complexes 141 

Definition.2 Let V be a finite set. An abstract simplicial complex K is a family 
of nonempty subsets of V, called simplexes, such that 

(i) if V E V, then {v} E K; 
(ii) if s E K and Sf c s, then Sf E K. 

One calls V the vertex set of K and denotes it by Vert(K); a simplex s E K 
having q + 1 distinct vertices is called a q-simplex. 

Definition. If K and L are abstract simplicial complexes, then a simplicial map 
cp: K -+ L is a function cp: Vert(K) -+ Vert(L) such that whenever {vo, ... , vq } 

is a simplex in K, then {cpvo, ... , cpvq } is a simplex in L (of course, it is possible 
that the latter list of vertices has repetitions). 

Theorem 7.7. All abstract simplicial complexes and simplicial maps determine a 
category, denoted by ,Ka. 

PROOF. A routine check. o 

Equivalences in the category ,Ka and in the category ,K are called 
isomorphisms. 

EXAMPLE 7.8. Every simplicial complex K determines an abstract simplicial 
complex Ka with the same vertex set: let each simplex s E K determine its 
vertex set Vert(s) c Vert(K). 

EXAMPLE 7.9. Let X be a topological space, and let 0If be a finite open cover 
of X. Define an abstract simplicial complex having vertices the open sets 
in 0If and declare that open sets Vo, V 1 , ••• , Vq in 0If form a simplex if 
nr=o Vi #- 0· This simplicial complex is called the nerve of the open cover 0If 
and is denoted by N(OIf). 

EXAMPLE 7.10. Let G be a finite group. Define an abstract simplicial complex 
Qp(G) whose vertex set consists of all nontrivial p-subgroups (for some fixed 
prime divisor p of I GI) and with subgroups Po, P1 , ... , Pq forming a simplex if 
nr=oPi #- {1}. 

EXAMPLE 7.11. If K is an abstract simplicial complex, we construct its bary­
centric subdivision Sd K as follows (here Sd K is also an abstract simplicial 
complex): define Vert(Sd K) = {simplexes a: a E K}; define a simplex in 
Sd(K) to be a set {ao, a1 , ••• , aq } with ao < a1 < ... < aq (where a < a f means 

a * a f
). 

2 Here is the definition of a possibly infinite abstract simplicial complex K; let V be any set and 
define K as a family of finite nonempty subsets of V satisfying properties (i) and (ii). 
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The construction K 1---+ K8 in Example 7.8 defines a functor :K --. :K8. The 
next theorem says that there is a good way to reverse the procedure, obtaining 
a simplicial complex from an abstract one. 

Theorem 7.S. There is a functor u::K8 --.:K such that K ~ U(K8) for all 
K E obj :K and L ~ (UL)8 for every L E obj :K8. 

PROOF. Let L be an abstract simplicial complex, and let V = Vert(L) = 
{vo, VI' ••• , vn}. Recall that the standard n-simplex An has vertices 
{eo, e l , ... , en}. If s = {Via' ..• , Vi.} is a q-simplex in L, define lsi = [eio ' ••. , e1q ], 

the q-simplex in An spanned by the displayed vertices. Finally, define u(L) as 
the family of alII s I for s E L. It is plain that u(L) is a simplicial complex; indeed 
u(L) is a subcomplex of An. 

It is easy to see that a simplicial map cp: L --. L' in :Ka (which is a certain 
function cp: Vert(L) --. Vert(L')) corresponds to the obvious simplicial map 
u(cp): u(L) --. u(L') (which is a certain function {eo, ... , en} --. {eo, ... , em}). 
Moreover, one verifies quickly that u: :Ka --.:K is a functor and that the 
isomorphisms mentioned in the statement do exist. D 

Definition. If L is an abstract simplicial complex, then a geometric realization 
of L is a space homeomorphic to lu(L)I.3 

Corollary 7.9. Isomorphic abstract Simplicial complexes have homeomorphic 
geometric realizations. 

PROOF. Every functor (in particular, the composite:K8 --. :K --. Top) preserves 
equivalences. 0 

As a result of Theorem 7.8, one usually does not emphasize the distinction 
between simplicial complexes and abstract simplicial complexes. Henceforth, 
we drop the adjective "abstract", although we shall usually be thinking of the 
simpler notion of abstract simplicial complex. We shall also not distinguish 
between the categories :K and :K8; either will be denoted by :K. Indeed some 
authors do not bother to distinguish simplicial complexes from polyhedra! 

Simplicial Homology 

Definition. An oriented simplicial complex K is a simplicial complex and a 
partial order on Vert(K) whose restriction to the vertices of any simplex in K 
is a linear order. 

3 The geometric realization of an infinite abstract simplicial complex can also be defined (see 
Example 8.11); in general, it does not lie in any (finite-dimensional) euclidean space. 
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Every linear ordering of Vert(K) makes K into an oriented simplicial 
complex. For every simplicial complex K, the barycentric subdivision Sd K 
is always oriented (see Exercise 6.6 (ii)). 

We shall define homology groups of oriented simplicial complexes K; 
eventually, we shall see that they coincide with the homology groups of IKI 
(hence are independent of the partial order on Vert(K)). 

Definition. If K is an oriented simplicial complex and q z 0, let CiK) be the 
abelian group having the following presentation. 

Generators: all (q + I)-tuples (Po, ... , Pq) with Pi E Vert(K) such that 
{Po, ... , pq } spans a simplex in K. 

Relations: (i) (Po, ... , pq) = ° if some vertex is repeated; 
(ii) (Po, ... , Pq) = (sgn n)(p"o, P7tl, ... , P"q), where n is a per-

mutation of {a, 1, ... , q}. 

Denote the element of Cq(K) corresponding to (Po, ... , pq) by (Po, ... , pq). 
Of course, sgn n = ± 1 (depending on the parity of n). 

Lemma 7.10. Let K be an oriented simplicial complex of dimension m. 

(i) Cq(K) is a free abelian group with basis all symbols (Po, ... , pq), where 
{Po, ... , pq} spans a q-simplex in K and Po < Pi < ... < Pq. Moreover, 
<p"o, ... , P"q) = (sgn n) (Po, ... , Pq)· 

(ii) Cq(K) = ° for all q > m. 

PROOF. (i) Define Fq to be the free abelian group with basis all (q + I)-tuples 
(Po, ... , Pq) of vertices of K such that {Po, ... , pq} spans a simplex in K. If Rq 
is the subgroup of relations (as in the definition above), then Fq/Rq = CiK). 
But it is easy to see that there is a new basis of Fq of the form Bi U B2 U B3 , 

where Bi consists of all (q + I)-tuples in Fq with a repeated vertex, B2 consists 
of all (Po, ... , pq) with Po < Pi < ... < Pq, and B3 consists of all terms of the 
form (Po, ... , pq) - (sgn n)(p"o, ... , P"q), where n is a nonidentity permutation 
of {a, 1, ... , q}. It is now clear that Rq (with basis Bi U B3 ) is a direct summand 
of Fq. Therefore Cq(K) = Fq/Rq is free abelian as claimed. 

(ii) If q > m, then every (q + I)-tuple (Po, ... , pq) of vertices, which spans a 
simplex of K, must have a repeated vertex; hence <Po, ... , pq) = ° in CiK). 

o 
The reason for not defining Cq(K) as described in the lemma will soon be 

clear. 

Definition. Define Oq: Cq(K) --+ Cq- i (K) by setting 

q 

Oq«Po, ... , Pq») = L (-l)i(po,···, 1\, ... , pq) 
i=O 

(where Pi means delete the vertex Pi) and extending by linearity. 
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Theorem 7.11. If K is an oriented simplicial complex of dimension m, then 
a a 

C*(K) = 0 ...... Cm(K) ............... C1 (K) ...... Co(K) ...... ° 
is a chain complex. 

PROOF. The argument of Theorem 4.6 can be used here to show that 00 = 0. 

Definition.4 If K is an oriented simplicial complex, then 

Zq(K) = ker Oq, the group of simplicial q-cycles, 
BiK) = im Oq+1' the group of simplicial q-boundaries, 

and 
Hq(K) = Zq(K)jBq(K), the qth simplicial homology group. 

We now associate an induced homomorphism to every simplicial map. 

D 

Definition. Let K and L be oriented simplicial complexes. If qJ: K ...... L is a 
simplicial map, define qJ#: Cq(K) ...... Cq(L), for each q ~ 0, by 

qJ# «Po, ... , Pq » = < qJ(Po), ... , qJ(Pq»· 

Of course, if some vertex qJ(p;) is repeated, then the term on the right is 
zero. Furthermore, the ordering of the vertices on the right side may not be 
compatible with the orientation of L; our fussy definition of Cq(K) (and Cq(L» 
thus allows qJ# to be defined. Better, it allows the next result to be proved. 

Lemma 7.12. If qJ: K ...... L is a simplicial map, then qJ#: C*(K) ...... C*(L) is a 
chain map; that is, qJ# a = OqJ#. 

PROOF. The usual calculation, as in Lemma 4.8. D 

Theorem 7.13. For each q ~ 0, Hq : $' ...... Ab is a functor. 

PROOF. Hq(K) has already been defined on objects K. On morphisms qJ: K ...... L, 
that is, on simplicial maps, define qJ*: Hq(K) ...... Hq(L) by 

qJ*: Z + Bq(K)/---+qJ#(z) + Bq(L). 

That Hq is a functor is routine. D 

One wants to promote the definition of simplicial homology functors to 
the subcategory of Top of polyhedra. One problem is the definition of f* when 
f is a continuous map. Plainly, the simplicial approximation theorem will be 

4 This definition also makes sense for infinite oriented simplicial complexes. 
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useful, and this will force comparison of HiK) and Hq(Sd K). This complica­
tion is one reason that we presented the singular theory first. 

Theorem 7.14. Let K be a (finite) oriented simplicial complex of dimension m. 

(i) HiK) is f.g. (finitely generated) for every q ;:::: 0. 
(ii) HiK) = ° for all q > m. 

(iii) Hm(K) is free abelian, possibly zero. 

PROOF. (i) Cq(K) is f.g., hence its subgroup Zq(K) is f.g. (Theorem 9.3), and, 
finally, its quotient Hq(K) is f.g. 

(ii) Immediate from Lemma 7. I ° (ii). 
(iii) Since Cm+1 (K) = 0, we have Bm(K) = ° and so Hm(K) = Zm(K). But a 

subgroup of a free abelian group is also free abelian (Theorem 9.3). 0 

Remark. If dim K = m, we do not assert that Hm(K) =1= ° (this may be false). 
Moreover, if there are rt.q q-simplexes in K, then Hq(K) needs at most rt.q 
generators. 

We have just defined "absolute" simplicial homology groups. If K is an 
oriented simplicial complex and L is a subcomplex, then L is also oriented in 
the induced orientation, namely, the partial order on Vert(L) inherited from 
that on Vert K. It is easy to see that each Cq(L) is a subgroup of CiK) and 
that C*(L) is a subcomplex of C*(K). 

Definition. If L is a subcomplex of an oriented simplicial complex K, then the 
qth relative simplicial homology group is 

Let (K,f) be any triangulation of S2; let V be the number of vertices, let E 
be the number of edges (I-simplexes), and let F be the number of faces 
(2-simplexes) in K. Euler's famous formula is 

V-E+F=2; 

this formula is a key ingredient in showing that the five Platonic solids 
(tetrahedron, cube, octahedron, dodecahedron, and icosahedron) are the only 
regular solids in R3. Let us now generalize Euler's formula. 

Definition. Let K be a simplicial complex of dimension m, and for each q ;:::: 0, 
let rt.q be the number of q-simplexes in K. The Euler-Poincare characteristic 
of K, denoted by X(K), is defined by 

m 

X(K) = I (-I)qrt.q. 
q=O 
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Theorem 7.15. If K is an oriented simplicial complex of dimension m, then 

m 

X(K) = L (-I)q rank Hq(K). 
q=O 

Remark. The Euler-Poincare characteristic is the alternating sum of the Betti 
numbers (once we show that Hq(K) ~ Hq(IKI) for all q). 

PROOF. Consider the chain complex C.(K): 

~ ~ ( 0-- Cm(K) -- Cm - 1 (K) -- ... -- C1 (K) -- Co K) -- O. 

Each Cq(K) is a (free abelian) group of rank cxq. Of course, Hq(K) = 
Zq(K)/Bq(K) = ker (Vim aq+1; Exercise 5.5 thus gives 

rank Hq(K) = rank Zq(K) - rank Bq(K). 

Note that rank Bm(K) = 0 (in fact Bm(K) = 0). For each q ~ 0, there is an exact 
sequence 

°4 0-- Zq(K) -- Cq(K) -- Bq- 1 (K) -- 0; 

again Exercise 5.5 applies, and 

cxq = rank Cq(K) = rank Zq(K) + rank Bq- 1 (K). 

Hence 

m m 
X(K) = L (-lr cxq = L (-I)q(rank Zq(K) + rank Bq- 1 (K» 

q=O q=O 
m m 

= L (-I)q rank Zq(K) + L (- l)q rank Bq- 1 (K). 
q=O q=O 

Changing index of summation in the last sum and using the fact that 
rank B-1 (K) = 0 = rank Bm(K), we have 

m m 
X(K) = L (-1)q rank Zq(K) + L (_1)q+1 rank BiK ) 

q=O q=O 
m 

= L (-lr(rank Zq(K) - rank Bq(K» 
q=O 

m 
= L (-1)q rank Hq(K). o 

q=O 

Remark. We have actually proved a more general result. If 

d. do 
C. = 0 -- Cn -- ••• -- C1 -- Co -- 0 

is a chain complex in which each Ci is a f.g. free abelian group of rank cx;, then 

n n 

L (_1)iCXi = L (_1)i rank Hi(C.). 
i=O i=O 
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EXERCISES 

7.19. Prove that 

) {
2 if n is even 

X(S" = o if n is odd. 

7.20. Compute X(T), where T is the torus (see Example 7.5 above). 

147 

*7.21. If B is a set, let F(B) denote the free abelian group with basis B. If B = Bl U B2 , 

show there is an exact sequence 
i p 

0-> F(BI n B2 ) -> F(Bd E9 F(B2 ) -> F(B) -> 0, 

where i is the "diagonal" map x I-> (x, x) and p is the "subtraction" map 
p: (x, y)I->X - y. 

Theorem 7.16 (Excision). If K 1 and K 2 are subcomplexes of a simplicial complex 
K with Kl U K2 = K, then the inclusion (Kl' Kl n K 2) c... (K, K 2) induces iso­
morphisms, for all q 2 0, 

Hq(K 1 , Kl n K 2) ~ Hq(K, K2). 

PROOF. By Lemma 6.11, it suffices to show that the inclusion C*(K d + 
C*(K2) c... C*(K) induces isomorphisms in homology. But this map is the 
identity: C*(K 1 ) + C*(K 2) = C*(K). If Imi()i E Cq(K), where ()i denotes a 
q-simplex in K, then ()i E K = Kl U K 2; that is, ()i E Kl or ()i E K 2. One may 
thus collect terms and write I mi()i = 1'1 + 1'2' where 1'1 is the sum of all those 
terms involving ()i in K l' and 1'2 is the sum of the other terms involving ()i 

necessarily in K 2 • 0 

Corollary 7.17 (Mayer-Vietoris). If Kl and K2 are sub complexes of a simplicial 
complex K with Kl U K2 = K, then there is an exact sequence 

... -> Hq+l(K) -> Hq(K I nK2 ) -> Hq(K 1 )E9 Hq(K 2 ) -> Hq(K) -> Hq- 1(K 1 nK2 ) -> .... 

PROOF. Use the proof of Theorem 6.3; even the induced maps are the same. 
D 

Comparison with Singular Homology 

We are now going to compare H*(K) with H*(IKI). To facilitate our work, 
we introduce reduced simplicial homology groups by augmenting C*(K), 
because it is more convenient to compare H*(K) (defined below) with H*(IKI). 

Definition. If K is an oriented simplicial complex, define C- 1 (K) to be the 
infinite cyclic group generated by the symbol < ), define ao: Co(K) --+ C 1 (K) 
by Imp<p) 1---+ (I mp) < ), and define the augmented complex 

70 am a, ao 
L,*(K) = 0 --+ Cm(K) -+ Cm- 1 (K) --+ •.. --+ C1 (K) --+ Co(K) --+ C- 1 (K) --+ o. 



148 7. Simplicial Complexes 

Finally, define reduced simplicial homology groups by 

Hq(K) = Hq(C*(K». 

Essentially, reduced simplicial homology differs from ordinary simplicial 
homology in that it recognizes 0 as the (unique) (-I)-simplex. 

EXERCISES 

7.22. For all q :2: 1, fiq(K) ~ Hq(K); Ho(K) ~ fio(K) EB Z. (Hint: See Theorem 5.17.) 

7.23. Show that fi_ 1(c*(K» = O. 

Corollary 7.18. Let K be the simplicial complex consisting of all the faces of an 
n-simplex whose vertex set is linearly ordered (so that IKI ~ An). Then 

Hq(K) = ° for all q 2 0. 

PROOF. The statement is that the augmented complex C*(K) is an exact 
sequence; we prove this by appealing to Corollary 5.4. Thus it suffices to 
exhibit a contracting homotopy, 

{hq: CiK) --+ Cq +1 (K), all q 2 -I} 

so that 

The construction of h is patterned after the cone construction in Theorem 4.19. 
Let vo be the smallest vertex in the orientation. For q = -1, define 

h_1 : C 1 (K) --+ Co(K) by < ) f--+ <va) and extending by linearity. For q 2 0, 
define hq: CiK) --+ Cq+1 (K) by <Po, ... , Pq) f--+ <va' Po, ... , Pq) and extending 
by linearity. Note that the last value is ° if Vo = Po. It remains to verify Eq. (*). 

If q = -1, the desired formula is 80 h_l = 1; this is clear because 
80 h_ 1« »=80 «vo»=< ).Ifq20, 

q 

hq- 1 8q<po, ... , Pq) = hq- 1 L (-I)i<po,···, Pi' ... , pq) 
i=O 

On the other hand, 

q 

= L (_l)i<VO,PO"",Pi""'Pq), 
i=O 

q 

= <Po,""pq) - L (-I)i<vo,Po""'Pi""'Pq) 
i=O 

o 
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Remarks. (1) If K is any oriented simplicial complex and if s is a simplex in 
K, then the induced orientation on s is a linear ordering of Vert(s). 

(2) Note how much simpler this proof is than the corresponding result for 
singular homology. The next result is also simpler than its singular version, 
and so we present it; however, we do not use it in the proof QfTheorem 7.22. 

Corollary 7.19. Let K consist of all the faces of an oriented n-simplex (so that 
Vert(K) is linearly ordered), and let L be the subcomplex of all the proper faces 
(so that ILl ~ sn-1). Then 

HiL ) = {O ~ q # n - 1 
Z ifq=n-l. 

PROOF. Since L is a subcomplex of K, C*(L) is a subcomplex of C*(K), and so 
there is a commutative diagram 

where the vertical maps (for -1 ::;; q ::;; n - 1) are identities. Now the bottom 
row is an exact sequence, by Corollary 7.18. It follows easily that Hq(L) = 

Hq(K) = 0 for all q < n - 1; moreover, Hq(L) = 0 for all q > n - 1, by 
Theorem 7.14(ii). 

Note that Cn(K) ~ Z because K has only one n-simplex. Exactness of the 
bottom row of the diagram thus gives 

Z ~ Cn(K) ~ im On = ker 0n-1' 

On the other hand, Hn- 1 (L) = ker On-1 (because Cn(L) = 0 implies that 
Bn- 1 (L) = im On = 0). We conclude that Hn- 1 (L) ~ Z, as desired. 0 

The reader can readily construct an example of a simplicial complex K hav­
ing subcomplexes K1 and K2 with K =K 1 U K2 such that IKI # IK11° U IK21°. 
Nevertheless, excision and Mayer~ Vietoris do hold for IK I, I K 11, and I K 21; 
this will follows from Theorem 7.16 and Corollary 7.18 once we prove that 
HiK, Kd ~ Hq(IKI, IK11)· The next lemma is a special case of this extended 
(singular) Mayer~ Vietoris theorem that will be used to establish the general 
case. 

Lemma 7.20. Let K be a finite simplicial complex, and let s be a simplex of 
highest dimension; define K1 = K - {s} and K2 = {s and all its proper faces}. 
Then there is an exact Mayer~ Vietoris sequence in singular homology 



150 7. Simplicial Complexes 

PROOF. It suffices to prove excision here. Define V = s - {x}, where x is an 
interior point of s. Then V is an open subset of IK21 (because s has highest 
dimension), and I K 1 n K 21 = I K 11 n I K 21 = I s I is a deformation retract of V 
(deform along radii from x). There is a commutative diagram with exact rows 
and with vertical arrows induced by inclusions: 

. .. ------+ 

. .. -------+ 

H'(IK

1 
n K,I) 

Hi V) 

H'(rl) 
Hq(IK21) 

Hil K,I, r n K,I) 

Hq(IK21, V) 

~ ... 

-----+ ... 

Since I K 1 n K 21 is a deformation retract of V, the inclusion is a homotopy 
equivalence, hence it induces isomorphisms for all q. The five lemma now 
shows that inclusion induces an isomorphism for all q 

Hq(IK21, IK11 n IK21) ~ Hq(IK21, V). 

Let Xl = IK11 U V. Note that Xl n IK21 = (IK11 U V)n IK21 = (IK11 n IK21)U 
(Vn IK21) = V because IK11 n IK21 = IK1 n K21 eVe IK21. Furthermore, 
I K 11 c X~ and, since I K 21 - I K 11 is an open subset of I K 21, it follows that 
IK21 - IK11 c IK21°. Therefore X~ U IK21° = IKI and (singular) excision 
holds: inclusion induces isomorphisms for all q 

Hi1K21, V) ~ HiIKI, IK 1 1)· 

Composing with the earlier isomorphisms gives the desired isomorphisms 

o 
Lemma 7.21. For each oriented simplicial complex K, there is a chain map 
j = jK: C*(K) ~ S*(IKI) with each jq an injection. For every simplicial map 
cp: K ~ K', there is a commutative diagram 

C(K) ~ C(K') 

il Ii 
S(lKI) -----+ S(IK'I). 

Icpl* 
Moreover, if K1 and K2 are subcomplexes of K as in Lemma 7.20, then there is 
a commutative diagram 

HrK) ~ H,_'(K(K') 

HilKI) -----+ Hq- 1(IK 1 nK2 1), 

where the horizontal maps are connecting homomorphisms of M ayer~ Vietoris 
sequences. 
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PROOF. Define j-l: C 1 (K) -+ S-l (IKJ) by ( ) f-+ [ ] and extending by lin­
earity. If q ?:: 0, definejq: Cq(K) -+ SiIKI) by 

jq( (Po, ... , pq» = (J, 

where (J: !!,.q -+ IKI is the affine map L tiei f-+ L tiPi. The routine verifications 
of the stated properties of j are left to the reader. D 

Theorem 7.22. For every orientedfinite simplicial complex K, the chain map 
j: C*(K) -+ S*(IKI) (of Lemma 7.21) induces isomorphisms,s for all q ?:: 0, 

HiK ) ~ HiIKI). 

PROOF. We do an induction on the number N of simplexes in K. If N = 1, 
then K = 0 and IKI = 0 (reduced homology recognizes 0 as a simplex), 
and H*(K) = ° = H*(IKJ) in this case. 

Assume that N > 1 and choose a simplex s E K of highest dimension. 
As in Lemma 7.20, define 

Kl = K - {s} and K2 = {s and all of its proper faces}. 

Thus Kl U K2 = K and Kl n K2 = {all proper faces ofs}. Note that the vertex 
sets of K 2 and of KIn K 2 are each linearly ordered in the induced orientation. 
Since each of Kl and Kl nK2 have fewer than N simplexes (the alternative 
is that K 1 = K - {s} = 0 and K = s, which must now be a O-simplex), 
the inductive hypothesis says that the respective chain maps j induce iso­
morphisms for each q ?:: 0: 

HiKl)~Hq(IKll) and HiKlnK2)~HiIKlnK2J). 

There are two Mayer-Vietoris sequences, from Corollary 7.17 and Lemma 
7.20, and the maps j between them give a commutative diagram with exact 
rows, by Lemma 7.21. 

Hq(K, nK2) --> Hq(K, )tBHq(K2) --> Hq(K) --> Hq_, (K,nK2) --> Hq_, (K .JtBHq-, (K2) 

t t t t t 
Hq(lK, nK2iJ-->Hq(IK,iJtBHq(IK2iJ--> Hq(IKiJ-->Hq_, (IK, nK2iJ-->Hq_, (IK ,iJtBHq-, (IK2 1). 

By Corollary 7.18 

Hq(K 1 ) tB Hq(K2) = Hq(K 1 ); 

similarly, since IK21 = s is contractible, 

Hq(IK 1 I)tBHq(IK21) = Hq(IKll)· 

Since all vertical maps are now induced by j, all save the middle one are known 
to be are isomorphisms. But the five lemma (Theorem 5.10) applies to show 
that the middle mapj*: Hq(K) -+ Hq(IKI) is also an isomorphism. D 

5 j is actually a chain equivalence; this follows from Theorem 9.8. 
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Corollary 7.23 (Alexander-Veblen). Let X be a polyhedron having triangula­
tions (K, h) and (K', h'). Then Hq(K) ~ Hq(K') for all q ~ o. 

PROOF. By hypothesis, IKI;::::: IK'I. But Hq(K) ~ Hq(IKI) and Hq(K') ~ 
HiIK'I), by Theorem 7.22. D 

Corollary 7.24. If X is a polyhedron of dimension m, then 

(i) Hq(X) is f.g. for every q ~ 0; 
(ii) HiX) = 0 for all q > m; 

(iii) Hm(X) is free abelian. 

PROOF. Immediate from Theorems 7.22 and 7.14. D 

Corollary 7.25. (i) If K is an oriented simplicial complex, then Hq(K) is inde­
pendent of the orientation. 

(ii) If X is a polyhedron with triangulation (K, h), then the Euler-Poincare 
characteristic is independent of the triangulation. 

PROOF. (i) HilKI) is independent of any ordering ofVert(K). 
(ii) Combine Theorems 7.22 and 7.15. D 

One can now define X(X), the Euler-Poincare characteristic of a poly­
hedron X as X(K), where there is a triangulation (K, h) of X. 

One last comment before proceeding. First attempts to prove Corollary 
7.23 were aimed at the polyhedron itself. For many years, one tried to prove 
the Hauptvermutung (principle conjecture): if (K, h) and (L, g) are triangula­
tions of a polyhedron X, then there are subdivisions (not necessarily bary­
centric) K' of K and L' of L with K' ~ L'. Were this true, there would be an 
easy proof of the topological invariance of H*(K). The Hauptvermutung was 
proved for n = 3 by Moise (in the 1950s), but in 1961 Milnor constructed 
counterexamples to it for every n ~ 6. 

The following notion is a substitute for homotopy in X. 

Definition. Let cp, t/J: K --+ L be simplicial maps. Then cp is contiguous to t/J, 
denoted by cp ~ t/J, if, for each simplex s = {Po, ... , pq} of K, there exists a 
simplex s' of L with both {CPPo, ... , cppq } and {t/Jpo, ... , t/JPq} faces of s'. 

EXERCISES 

7.24. Let cP, 1/1: K --+ L be contiguous. 
(i) Prove that Icpl ~ 11/11. 

(ii) cp* = 1/1*: Hq(K) --+ HiL) for all q 2': 0 (Hint: Theorem 7.22.) 

7.25. Give an example showing that contiguity may not be a transitive relation. 
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Definition. Let (X, xo) and (Y, Yo) be pointed spaces. Their wedge X v Y is 
the quotient space of their disjoint union, X 11 Y in which the basepoints are 
identified. 

It is easy to see that if X and Yare polyhedra, then so is X v Y. 

EXERCISES 

*7.26. (i) Show that wedge is associative; that is, (X v Y) v Z and X v (Y v Z) are 
homeomorphic pointed spaces. 

(ii) If Kl and K2 are polyhedra, then for all n ~ 1, 

Hn(Kl v K 2) ~ Hn(Kd EB Hn(K2)' 

(Hint: Mayer-Vietoris, Corollary 7.17.) 

(iii) Let m1 , ... , mn be a sequence of nonnegative integers. Prove that there exists 
a connected polyhedron X of dimension n with HiX) free abelian of 
rank mq for every q = 1, ... , n. 

7.27. (i) If L is a subcomplex of K, prove that for all q ~ 0, 

Hq(K, L) ~ Hq(IKI, ILl). 

(Hint: Five lemma and Theorem 7.22.) 

(ii) There is an exact Mayer-Vietoris sequence in singular homology corre­
sponding to any pair of subcomplexes K 1, K 2 of a simplicial complex K for 
which K = Kl U K 2 , namely, 

....... Hq{IK,1 n IK2 1J .... H.(IK,ll EEl Hq(lK 2 1l ..... Hq{IKIJ ..... Hq_,(lK,1 n IK2 1J ..... ··· . 

*7.28. Let K be a simplicial complex and let p E Vert(K). Define the closed star of p 

to be the subcomplex of K consisting of all the faces of those (J in the star st(p). 
Prove that the closed star of p is contractible. (Hint: Exercise 7.7(ii).). 

The next result considers the question, generalizing the Mayer-Vietoris theo­
rem, of relating the homology of K to the homology of subcomplexes whose 
union is K (also see [K. S. Brown, p. 166J). 

Definition. A cover of a simplicial complex K is a family of subcomplexes 
5l! = {La: C( E A} with K = U La. 
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Definition. Let 2 = {La: rl E A} be a cover of a simplicial complex K. The 
nerve of 2, denoted by N(2), is the simplicial complex having vertices 
Vert(N(2)) = A and with {rlo, ... , rlq} a simplex if n La, of. 0 (see Example 
7.9.) 

Theorem 7.26 (Leray).6 Assume that 2 = {La: rl E A} is a cover of a simplicial 
complex K such that each La and every finite intersection La n La n··· n La 

'2 • 

is acyclic. Then 

for all q ~ O. 

PROOF. It suffices to construct a simplicial map f: Sd K -+ N(2) that induces 
isomorphisms Hq(Sd K) -+ Hq(N(2)) (because Hq(K) ~ Hq(Sd K) since IKI = 
ISd KI). We view Sd K as an abstract simplicial complex, as in Example 7.11. 
Linearly order the index set A, say, A = {rl1' ... , rln }. Define f: Vert(Sd K) -+ 

Vert(N(2)) = A as follows: for each simplex (J E K, there exists La with (J E La 
(for 2 is a cover of K); define f((J) = rli' where rli is the first rl for which (J E La. 
We claim that f is a simplicial map. If {(Jo, ... , (Jq} is a simplex in Sd K, then 
(Jo < (J1 < ... < (Jq; thus (Jo ::;; (Ji for every i ::;; q, hence (Jo E La, for every i ::;; q. 
Therefore {j(Jo, ... ,f(Jq} is a simplex in N(2), for (Jo E Lao n··· n La., and so 
this intersection is nonempty. 

The proof that f induces isomorphisms in homology is by induction on 
n = IAI. If n = 1, then N(2) is a point and K = La has the homology of a 
point: Hq(La) = 0 for all q > 0 (K is acyclic because, by hypothesis, every La 
is acyclic). The result is thus obvious in this case. 

Assume that A = {rl1' ... , rln+1}. Define 

K1 = La, U'" U Lan and K2 = Lan+, 

(thus 21 = {La" ... , LaJ is a cover of K 1}; define 

N1 = N(21)' 

Note that N1 is a subcomplex of N(2), as is N2 defined by 

N2 = closed star of rln+1. 

The construction of f shows that if (J E K l' then f((J) E {rl1' ... , rln }. It follows 
by induction that fl Sd K 1 induces isomorphisms Hq(Sd K 1) ~ H q(N1). 

FurthermoreflSd L an+, induces isomorphisms Hq(Sd K 2) ~ Hq(N2) because 
K2 = La.n+" hence Sd K 2, is acyclic (by hypothesis) and N2 is acyclic (by 
Exercise 7.28). 

There is an obvious cover of K1 n K 2, namely,.It = {Ma." ... , Ma.J, where 
Ma., is defined by Ma., = La, n La.n+,. Note that .It has the property that each 

6 It is proved in [Bott and Tu, p. 148] that if every finite intersection is contractible, then 
1t,(lKI);;;: 1t,(N(ft')). 
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M a, and every finite intersection of them is acyclic. Since Sd(Kl n K 2 ) = 
Sd Kl n Sd K 2, it follows by induction that flSd(Kl n K 2) induces isomor­
phisms Hq(Sd(K 1 n K 2)) ~ HiN(.A)). But it is easy to see that N(.A) = 

Nl n N 2, hence HiN(.A)) = Hq(Nl n N 2). Of course, Sd K = Sd Kl U Sd K2 
and NI U N2 = N(5l'), so that we may apply Mayer-Vietoris (Corollary 7.17) 
to assert exactne\ of the rows in the following commutative diagram. 

HiPI n pz) -+ HiPd tB Hq(Pz) -+ Hq(Sd K) -+ Hq- l (PI n pz) -+ Hq- l (PI) tB Hq- l (pz) 
! ! ! ! ! 

Hq(NI n Nz) -+ HiNI) tB Hq(Nz) -+ Hq(N(se)) -+ Hq- l (NI n Nz) -+ Hq- l (N1 ) tB Hq- l (Nz); 

here Pi denotes Sd Ki for i = 1, 2, and the vertical maps are induced by 
restrictions of f. We have already seen that the four outside vertical maps are 
isomorphisms, and so the five lemma gives f*: Hq(Sd K) --+ HiN(5l')) an iso­
morphism for all q. 0 

Definition. An acyclic cover of a simplicial complex is a cover satisfying the 
hypotheses of Theorem 7.26. 

Corollary 7.27. If 5l' is an acyclic cover of a simplicial complex K, then 
Hq(K) = 0 for all q > dim N(5l'). 

Remark. Compare Exercise 6.4. 

EXERCISES 

7.29. In the proof of Theorem 7.26, suppose that we define g: Sd K -+ N(se) as follows: 
g(a) = IX, where a E L. (but IX may not be the first such index in the ordering of 
A). Show that g and f are contiguous. 

7.30. Let {M, L 1 , •.• , Ln} be a cover of a simplicial complex K such that (i) each L; is 
acyclic, (ii) M n L; is acyclic for each i, and (iii)L; n Lj c M for all i i' j. Prove 
that H*(K) ~ H*(M). 

Calculations 

The significance of Theorem 7.22 is that one can compute homology groups 
of polyhedra using simplicial homology. That this is valuable is clear from 
Corollary 7.24, for we now know that Hq(IKI) is always f.g., and this is 
important because such groups are completely classified. 

Fundamental Theorem. Let G be a f.g. abelian group. 

(i) G = F EB T, where F is free abelian of finite rank r ~ 0 and T is finite. 
(ii) T is a direct sum of cyclic groups, T = C1 EB ... EB Ck , with order Ci = bi' 

say, and with b1 Ib 21" 'Ibk (b 1 1b2 means "b l divides b2"). The numbers b l , 

... , bk are called the torsion coefficients of G. 
(iii) rank F and the torsion coefficients are invariants of G, and two f.g. abelian 

groups are isomorphic if and only if they have the same rank and the same 
torsion coefficients. 
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Let F and F' be free abelian groups with finite bases {Xl"'" Xn} and 
{X~, ... , x~}, respectively. If h: F --+ F' is a homomorphism, then h(xJ = 

I,dj,xj with dj, E Z. Thus, given ordered bases of F and F', h gives an m x n 
matrix D = [dj ,] over Z, where the ith column consists of the coefficients of 
h(xJ in terms of the xj. In light of Theorem 4.1 (i), h is completely determined 
by this matrix. 

Definition. A normal form is an m x n matrix N over Z such that 

N = [~ ~l 
where d is a diagonal matrix, say, d = diag{bu bz, ... , bk }, with bllbzl···lbk • 

(Zero rows or columns bordering d need not be present.) 

There is an analogue of Gaussian elimination for matrices over Z. Define 
three types of elementary row operation: (i) interchange two rows, (ii) multiply 
a row by ± 1, and (iii) replace a row by that row plus an integer multiple of 
another row; there are three similar elementary column operations. 

Theorem (Smith Normal Form). Every rectangular matrix Dover Z can be 
transformed, using elementary row and column operations, into a normal form; 
moreover, this normal form is independent of the elementary operations and is 
thus uniquely determined by D. 

The proof ofthis theorem uses nothing more sophisticated than the division 
algorithm in Z; indeed the usual proof is itself an algorithm (e.g., see 
[Jacobson, p. 176]). 

Theorem. For any oriented simplicial complex K, there is an algorithm to 
compute Hq(K) for all q ~ o. 

For a proof, see [Munkres (1984), p. 60]. 
Here is the algorithm. Each CiK) is a free abelian group equipped with a 

(finite) basis of oriented q-simplexes. As above, each Oq: Cq(K) --+ Cq- l (K) 
determines a matrix Dq over Z (with entries 0, 1, -1). Let Nq be the Smith 
normal form of Dq, let d q = diag{bi, ... , bO be the diagonal block of Nq, let 
cq ~ 0 be the number of zero columns of Nq, and let rq ~ 0 be the number of 
nonzero rows of Nq. Then the qth Betti number of K is cq - rq+1 , and the 
torsion coefficients of Hq(K) are those bi, ... , bfq if any that are distinct from 1. 

Here is the reason that the algorithm computes Betti numbers. Regard each 
integer matrix Dq as a matrix of rational numbers. Then the rank of the matrix 
Dq is the rank of the abelian group Bq- 1 (K) and the nullity of Dq is the rank 
of Zq(K). Therefore 

rank Hq(K) = rank ZiK) - rank Bq(K) = nullity Dq - rank Dq+1 . 

In spite of this algorithm, one cannot in practice compute HiX) with its 
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use because of the large number of q-simplexes in a triangulation (K, h) of X. 
In short, the matrices Dq are too big and the calculations are too long. One is 
led to modify the definition of triangulation to obtain cellular decompositions 
of a space, which are more useful (we shall soon give an algebraic method of 
reducing the number of simplexes). 

We illustrate these remarks by trying to compute H*(X) via simplicial 
homology when X is either the torus or the real projective plane. 

EXAMPLE 7.12. In Example 7.5, we gave an explicit triangulation (K, h) of the 
torus X with dim K = 2; moreover, if !Xq denotes the number of q-simplexes 
in K, then !X2 = 18, !Xl = 27, and !xo = 9. It follows from Corollary 7.24 
that Hq(X) = 0 for all q> 2 and that H2 (X) is free abelian. Since X is 
path connected, Ho(X) = Z. Now X(K) = 9 - 27 + 18 = 0, so that 1 + 
rank H 2 (X) = rank H t (X). To complete the computation using the algor­
ithm, we must examine the matrices of 02 and 0t; the first is 18 x 27 and the 
second is 27 x 9. These matrices are too big! Even a minimal triangulation 
having 14 triangles is not a significant improvement. These matrices will be 
shrunk in Example 7.14. 

Let us instead use a Mayer-Vietoris sequence to compute H*(X). Take two 
circles a and b on the torus. Choose two overlapping open cylinders Xl and 

X 2 , each containing a and b, with X t U X 2 = X and such that X t n X 2 = 
Va U Vb' a disjoint union of two open cylinders with a c Va and b c Vb. Note 
that Xl> X 2 , Va, and Vb each have the homotopy type of a circle st. There is 
thus an exact sequence of reduced homology groups: 

- - f- - - -o ~ H2 (X) ~ Ht(Va U Vb) ~ H 1(X1 ) EB H 1(X2 ) ~ Ht(X) ~ Ho(Va U Vb) ~ o. 
Since we know generators of HI (Sl), we can abuse notation and write 
Ht(Va) = <a) and H 1(Vb) = <b). Recall that if it: VaU Vb '-> X t and 
i2 : Va U Vb '-> X 2 are inclusions, then the map! in the sequence is given by 
cls Zf---+(ih cls Z, i2 * cls z). In particular, it*a and it*b are generators of 
Ht(Xd and i2*a and i2*b are generators of Ht(X2 ). It follows easily that! 
cannot be injective; therefore H2 (X) #- O. Furthermore, since fi1 (Va U Vb) ~ 
Z EB Z, we must have fi2 (X) ~ Z (otherwise, im! is a subgroup of 
fi 1(Xd EB H1(X2 ) = Z EB Z of rank 0, i.e., im! = 0, and this is not so). 
One can show that (Z EB Z)/im! ~ Z. Since fit (X) ~ Z EB (Z EB Z)/im! (see 
footnote on page 103), it follows that fi1 (X) ~ Z EB Z. (A more sophisticated 
argument showing that H t (X) = Z EB Z uses the Hurewicz theorem (Theorem 
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4.29) since we know that 

7r1(X) = 7rl(Sl x Sl) ~ 7rl(Sl) x 7rl(Sl) = Z Ei7 Z.) 

We agree that this proof is not satisfying, because it really does not use a 
triangulation of X. See Example 7.14 for a better version. 

EXAMPLE 7.13. Let X be the real projective plane Rp2 regarded as the quotient 
space of D2 by identifying antipodal points. 

3 

3 

Note that dim K = 2, 1Y.2 = 10, 1Y.1 = 15, and lY.o = 6. Again, Ho(X) = Z, but 
now x(X) = 6 - 15 + 10 = 1. It follows that rank H 2 (X) = rank HI (X). If 
(= <4, 5) - (3,5) + (3,4), then it is easy to see that ( is a cycle, that is, 
o( = O. To see that cls ( =F 0, assume that ( = o~, where ~ = 2:)21 mi(Ji. Com­
puting O(Ji explicitly for each of the ten (Ji and comparing coefficients, one sees 
that all the mi are equal; this leads to the contradiction that the coefficient of, 
say, <4, 5) in the expression o~ = ( is even. If {3 is the 2-chain which is the 
sum of all the 2-simplexes in K with signs chosen according to the orientations 
above, then o{3 = 2( (every edge inside D2 occurs exactly twice as a face of a 
2-simplex and with opposite orientations; hence only the edges on the circum­
ference survive). It turns out that HI (X) = Zj2Z (we have shown only that it 
has an element, namely, cls " of order 2), hence rank HI (X) = O. It follows 
that H 2 (X) = 0, since it is free abelian of rank o. This example thus shows that 
the top homology group may be zero and also that there may be torsion 
coefficients. We shall complete this calculation in Example 7.15. 

We have seen in Example 7.12 that the algorithm for computing homology 
is impractical for a space as simple as the torus. The following technique is 
more practical. 

Definition. A subcomplex E~ of a chain complex E* is adequate if, for all q 2 0: 

(i) if Z E Zq, then there exists z' E Z~ with z - Z' E Bq; 
(ii) if z' E Z~ and z' = oe for some e E Eq+1 , then there exists e' E E~+l with 

Z' = oe'. 
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(Of course, Zq and Bq are cycles and boundaries of E *, and Z~ and B~ are cycles 
and boundaries of E~.) 

Lemma 7.28. If E~ is an adequate subcomplex of E*, then, for every q, the map 
z' + B~ ~ z' + Bq is an isomorphism 

PROOF. Let 8: z' + B~ ~ z' + Bq be the "enlargement of coset" map; it is well 
defined because B~ c Bq. Now ker 8 is (Z~ n Bq)!B~, and this is zero because 
axiom (ii) says that Z~ n Bq C B~. Finally, im 8 = (Z~ + Bq)/Bq = Zq/Bq, 
because axiom (i) says that Z~ + Bq = Zq. 0 

Definition. A chain complex E* is finitely based if each term Eq is a f.g. free 
abelian group with a specified basis; the elements of the specified basis of Eq 
are called (algebraic) q-cells. 

If K is a finite oriented simplicial complex, then C*(K) is finitely based with 
q-cells all symbols <Po"", Pq), where Po < Pl < ... < Pq and {Po,···, pq} 
spans a simplex in K. 

Lemma 7.29. Let E* be a finitely based chain complex, and let (J be a q-cell such 
that (J = iJr for some (q + l)-cell T. If (J is not involved in ar' for any (q + 1)-cell 
T' =1= T, then one may remove (J and T leaving an adequate subcomplex E~. 

PROOF. Let E~+1 be the free abelian group with basis all (q + l)-cells T' =1= T, 

let E~ be the free abelian group with basis all q-cells (J' =1= (J, and let E~ = Ep 
for all p =1= q, q + 1. It is easy to see that E~ is a subcomplex of E* if we show 
that im aq+ 2 C E~+1' It suffices to see that there are no (q + 2)-cells c with 
ac = ± T + y, where T is not involved in y. If such a c exists, then 0 = ± (J + ay 
and (J is involved in ay, contrary to the hypothesis. It remains to check axioms 
(i) and (ii) in each dimension. 

Dimension q + 1. To check (i), let z E Zq+l' Is there z' E Z~+1 with z - Z' E 

Bq? Now z = mT + IY., where m E Z and T is not involved in IY.. Since z is a cycle, 
o = az = m(J + alY., where (by hypothesis) (J is not involved in alY.. But 0 = 
m(J + alY. is an equation relating basis elements, hence m = 0 = alY.. Thus 
IY. E Z~+l and z - IY. = 0 E Bq+1' To check (ii), assume that z' E Z~+1 and z' = ac 
for some c E Eq+2. Since Eq+2 = E~+2' we have c E E~+2' 

Dimension q. To check (i), let z E Zq, and write z = M + /3, where n E Z 
and (J is not involved in /3. Then 0 = az = na(J + a/3 = a/3 (because (J = aT). 
Therefore /3 E Z~ and z - /3 = M = nar E Bq • To check (ii), take z' E Z~ with 
z' = ac for some c E Eq+1; thus c = mT + c' for m E Z and c' E E~+1' Hence 

z' = ac = maT + ac' = m(J + ac'. 

Since (J is not involved in either ac' or z', it follows that m = O. o 
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Theorem 7.30 (Reduction). Let E* be a finitely based chain complex. Let (J be 
a q-cell involved in the boundary of precisely two (q + I)-cells '1 and '2 and 
with opposite sign; that is, 

(hi = (J + C1 and ih2 = -(J + c2, 

where (J is involved in neither c 1 nor c 2. 

Then replacing '1 and, 2 by '1 + '2 and deleting (J yields an adequate 
subcomplex. 

PROOF. Change the basis of Eq+1 by replacing, 1 by '1 + '2 and '2 by '1; 
change the basis of Eq by replacing (J by (J' = (J + c 1. We claim that this new 
finitely based chain complex satisfies the hypotheses of Lemma 7.29. Note that 
(J' = ih 1. Let, be a (q + I)-cell with, =1= '1. Either, = '1 + '2 or , is an 
original (q + I)-cell. In the first case, a, = a('l + '2) = C1 + c2, and this does 
not involve (J' because it does not involve (J. In the second case, the hypothesis 
says that a, does not involve (J, and hence it does not involve (J' = (J + c 1. It 
follows from Lemma 7.29 that removal of '1 and (J' leaves an adequate 
subcomplex (note that, 2 was removed at the outset, being replaced by '1). 
Finally, rewrite the basis of Eq in terms of the original basis. 0 

In Examples 7.5 and 7.6, certain spaces were constructed from the square 
I x I by identifying various edges; the following discussion will compute the 
homology groups of these spaces. 

Let P be a polygon in the plane having m sides, with vertices ordered 
counterclockwise, and let X be the quotient space of P that identifies certain 
edges. The following triangulation of P induces a triangulation of X. Let A, 

D be consecutive vertices of P. Insert an interior vertex 0 and new (boundary) 
vertices B, C as illustrated, and draw the edges OA, OB, OC, OD. Insert new 
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vertices E on OA and H on OD. Finally, draw EH, label the new vertices F and 
G, and insert edges BE, CF, and DG. This triangulation should be repeated 
for each sector of P. Now orient every triangle counterclockwise. Note that 
the triangle OAD has been subdivided into nine triangles, so that P is sub­
divided into 9m triangles. 

Let K denote this triangulation of X, and let C*(K) be the simplicial chain 
complex of K. Then C*(K) has nonzero q-cells only for q ::; 2. We shall use 
reduction (Theorem 7.30) to replace C*(K) by an adequate subcomplex having 
fewer cells. 

Apply reduction to remove successively the I-cells corresponding to the 
edges OF, OG, BE, BF, CF, CG, DG (each lies on the boundary of exactly two 
2-cells); the picture is now 

A 

B 

o 
c 

D 

Reduce by removing the O-cells B, C, F, G; now remove the I-cell EH, and 
then the O-cells E and H. What remains is 

. '. 

'. 

Now successively remove all but two of the radii, leaving 

A 

D 

. . 

o 
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Finally, remove the O-cell 0 (which lies on exactly two I-cells), making the 
broken line AO + OD into a new I-cell; reduce once again to eliminate this 
I-cell (which lies on exactly two 2-cells). 

In sum, we have arrived at an adequate subcomplex of C.(K) having at 
most m O-cells (Example 7.14 shows that there can be fewer than m), at most 
m I-cells, and one 2-cell (the polygon itself). 

EXAMPLE 7.14. Let X be the torus arising from identifying opposite edges of 
a square P as follows. 

a 
vp-------~~~----__ v 

b I' b 

v ...... -------E--------' v 
a 

Note that, in this case, all the vertices (corners) of the square are identified to 
a common vertex. The adequate subcomplex obtained above has chains 

E2 = (P), E1 = (a) E9 (b), Eo = (v), 

and differentiations 

iJP = a - b - a + b = 0, 

iJa = v - v = 0 = iJb, and iJv = o. 
(The differentiations in a sUbcomplex are restrictions of the differentiations in 
the original subcomplex.) We see that 

Z2 = (P), Zl = (a) E9 (b), Zo = (v), 

Bo =0, 

and we conclude that 

Ho=Z. 

Of course, this result agrees with Example 7.12. Note that a basis of H1(X) 
consists of the two "obvious" circles. 

EXAMPLE 7.15. Let X be the real projective plane RP2. Here are two pictures 
(m = 1 and m = 2): 
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a 

a 
w r-------.E/~--., v 

v 
b b 

v '----~---~ w 
a a 

For the first picture, the adequate subcomplex has chains 

and differentiations 

oP = a + a = 2a, oa = v - v = 0, and ov = 0. 

We conclude that 

hence 

Z2 = 0, Zl = <a), Zo = <v), 

B2 = 0, B1 = <2a), Bo = 0, 

H2 =0, H1 =Z/2Z, Ho=Z. 

163 

If we compute using the second picture, the adequate subcomplex has 
chains 

E2 = <P), E1 = <a) EB <b), Eo = <v) EB <w) 

and differentiations 

oP '= 2(a + b), oa = w - v, ob = v - w, ov = ° = ow. 

We conclude that 

and again 

Z2 = 0, Zl = <a + b), Zo = <v) EEl <w), 

B2 = 0, B1 = (2(a + b», Bo = <w - v), 

H2 = 0, H1 = Z/2Z, Ho = Z 

(one needs a little algebra to see that Ho is infinite cyclic: the homomorphism 
Zo --+ Z defined by mv + nw f-+ m + n is a surjection with kernel Bo, and so the 
first isomorphism theorem gives Ho = Zo/Bo ~ Z). 

Remark. It is known (see [Massey (1967), Chap. 1]) that every compact 
connected 2-manifold can be obtained by identifying edges of an even-sided 
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polygon. The method of adequate subcomplexes is thus strong enough to 
compute their homology groups. 

EXERCISES 

7.31. Show that the homology groups of the Klein bottle are 

Hp = 0 for p:2: 2, HI = Z liB (Z/2Z), and Ho = Z. 

7.32. Let P be a polygon with k vertices vo, VI' ••. , Vk - l (where we assume that Vi is 
adjacent to Vi - l for all i (subscripts are read mod k». Orient the edges in the 
direction from Vi-l to Vi' and now identify all edges with one another. The 
quotient space is called the k-fold dunce cap (when k = 2, the dunce cap is the 
real projective plane). 

\ 

Prove that the homology groups of the k-fold dunce cap are: 

Hp = 0 for p :2: 2, HI = Z/kZ, Ho = Z. 

Fundamental Groups of Polyhedra 

Let us turn our attention from the homology groups of a polyhedron to its 
fundamental group. We begin by mimicking, in an atopological setting, our 
earlier discussion of multiplication of paths. 

Definition. An edge e = (p, q) in a simplicial complex K is an ordered pair of 
(not necessarily distinct) vertices lying in a simplex of K; p is called the origin 
of e and q is called the end of e. 

Definition. An edge path oc (of length n) in K is a finite sequence of edges, 

where end ei = origin ei+l for all i = 1,2, ... , n - 1. We call origin e 1 the origin 
of oc, denoting it by o(oc), and we call end en the end of oc, denoting it by e(oc). 
An edge path oc is closed if o(oc) = e(oc). If oc = e 1 ••• en and oc' = e~ ... e:,. are edge 
paths with e(oc) = o(oc') then their product is 
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Clearly, the product of edge paths, when defined, is associative. 

Notation. If e = (p, q) is an edge, then e-l = (q, p) (which is also an edge). If 
a = el ···en is an edge path, then its inverse is a-I = e;;-l···e;-l. If e = (p, p), 
then e is called a constant path and is denoted by ip • 

In order to force a group structure on edge paths, we must (as with 
fundamental groups) impose an equivalence relation on them. 

Definition. Two edge paths a and a' in K are homotopic, denoted by a ~ a', if 
one can be obtained from the other by a finite number of elementary moves 
consisting of replacing one side of the following equation by the other: 

pep, q)(q, r)( = pep, r)(, 
where {p, q, r} lie in a simplex of K, and p, ( are (possibly empty) edge paths 
in K. 

EXAMPLE 7.16. If K is the 2-simplex [Po, PI' Pz], then the edge paths a = 
(Po, pd(Pl' pz) and a' = (Po, pz) are homotopic; if K(l) is the I-skeleton of K, 
then these edge paths are not homotopic in K(l). 

P2 

Po4--------~ PI 

EXERCISES 

7.33. Homotopy is an equivalence relation on the set of all edge paths in K; the 
equivalence class of oc is denoted by [oc] and is called a path class. 

7.34. (i) If oc ~ oc', then o(oc) = o(oc') and e(oc) = e(oc'). Conclude that o[oc] and e[oc] are 
well defined. 

(ii) If oc ~ oc', f3 ~ f3' and e(oc) = o( f3), then ocf3 ~ oc' f3'. Conclude that [oc] [f3] = 
[ocf3] is well defined when e[oc] = o[f3]. 

Let n(K) denote the set of all path classes in K. 

Theorem 7.31. n(K) is a groupoid, that is, it is an algebraic system satisfying the 
following axioms: 
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(i) each path class [ex] has an origin P and an end q, where p, q E Vert(K), and 

[ip] [ex] = [ex] = [ex] [iq]; 

(ii) associativity holds when defined; 
(iii) [ex] [ex-I] = [ip ] and [ex-I] [ex] = [iq ]. 

PROOF. Straightforward (much simpler than the analogous Theorem 3.2). 

D 

Definition. Fix a vertex P E Vert(K) and call it a basepoint. The edge path group 
is 

n(K, p) = {[ex] E n(K): o[ex] = P = e[ex]}. 

Theorem 7.32. The edge path group n(K, p) is a group. 

PROOF. Immediate from Theorem 7.31. D 

Definition. A simplicial complex K is connected if, for every pair of vertices p, 
q E Vert(K), there exists an edge path in K from p to q. 

EXERCISES 

7.35. Show that the following are equivalent K is connected; the I-skeleton K(I) is 
connected; I K I is connected; I K I is path connected. 

7.36. If K is connected and Po, PI E Vert(K), then n(K, Po) ~ n(K, PI)' (Hint: See the 
proof of Theorem 3.6.) 

7.37. If K is a connected simplicial complex with 2-skeleton K(2), then n(K, p) ~ 
n(K(2), pl. 

Let ex = e l '''em be an edge path in K from Po to Pm' where ei = (Pi-I, Pi) 
for i = 1, ... , m. Let 1m denote I subdivided into m intervals of equal length; 
more precisely, let 1m be the simplicial complex with Vert(Im) = {VO, VI' ... , Vm } 

(so Vi = i/m) and 1-simplexes {Vi-I' Vi} for i = 1, ... , m. An edge path ex oflength 
m defines a simplicial map exo: 1m -+ K by exO(Vi) = Pi' Of course, lexol: I -+ IKI is 
an honest path in IKI, where lexol is the piecewise linear map determined by exo. 

EXERCISES 

7.38. Define a relation R on Vert(K) by vRw ifthere exists an edge path in K from v 
to w. 

(i) Show that R is an equivalence relation on Vert(K). 
(ii) For each x E Vert(K), define the component of K containing x as the family 

of all simplexes S E K with Vert(s) contained in the R-equivalence class of 
x. Show that each component of K is a connected subcomplex and that K 
is their disjoint union. 

(iii) If x E Vert(K) and L is the component of K containing x, then 
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n(K, x) ~ n(L, x). 

*7.39. (i) If a and fJ are edge paths in K of lengths m and n, respectively, and if 
e(a) = o(fJ), then there are simplicial maps aO: 1m --+ K and fJo: In --+ K (as 
above). Define a simplicial map y: Im+n --+ K by y(v;) = aO(v i ) for 0 :::; i :::; m 
and y(vm+j ) = fJO(Vj) for O:::;j:::; n. Show that (afJt = y. 

(ii) If a and fJ are edge paths in K with a ~ fJ, then lao I ~ I fJo I rei 1. 

In the sequel, we drop the distinction between rt. and rt. 0 , and we shall regard 
an edge path as a simplicial map when convenient. 

Definition. An edge path rt. = e l ... en is reduced if no ej is a constant ip and if 
ej #- ej';l for allj = 1,2, ... , n - 1; a circuit is a reduced closed edge path. 

Definition. A tree is a connected simplicial complex T with dim T :::;; 1 and 
which contains no circuits. 

A tree of dimension 0 must have only one vertex. 

EXERCISES 

*7.40. If a = e1 ... en is a closed edge path in K with o(a) = p = e(a), and if there is a 
tree Tin K containing every edge ej , then [a] = 1 in n(K, p). (Intuitively, trees 
are contractible, and every path in a contractible space is nullhomotopic.) 

*7.41. Let Tl and T2 be trees in a simplicial complex K. If Tl n T2 is connected, then 
T j U T2 is a tree. 

Lemma 7.33. Every tree T' in a connected simplicial complex K is contained in 
a tree Twith Vert(T) = Vert(K); moreover, a tree Tin K is maximal if and only 
if Vert(T) = Vert(K). 

PROOF. Suppose there is a vertex q E Vert(K) with q ¢ Vcrt(T'). Choose P E 

Vert(T'). Since K is connected, there is a (reduced) edge path rt. in K from P = Po 
to q, say, rt. = (p, PI)(PI' P2)"'(Pn, q). Since P E Vert(T') and q ¢ Vert(T'), 
there is a smallest index i with Pi E Vert(T') and Pi+l ¢ Vert(T'). Define a 
sub complex Til of K with vertices Vert(T')U {Pi+d and one additional 
I-simplex {Pi' Pi+d. Clearly, Til ~ T'. But Til is a tree, for any circuit in Til 
must pass through PHI (since T' is a tree), and such an edge path cannot be 
reduced. This procedure may be iterated as long as the tree obtained has vertex 
set smaller than Vert(K). We conclude that a maximal tree T containing T' 
exists, and that Vert(T) = Vert(K). The proof of the second statement is left 
as an (easy) exercise. 0 

It follows from Lemma 7.33 that maximal trees in finite simplicial com­
plexes always exist; one can prove their existence in general by Zorn's lemma. 

Some maximal trees of a "figure 8" are indicated below. 
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We now introduce free groups so that we can describe (not necessarily 
abelian) groups by generators and relations. 

Definition. Let F be a group containing a subset X. Then F is free with basis 
X if for every group G and every function <p: X -+ G, there exists a unique 
homomorphism ip: F -+ G with ip(x) = <p(x) for all x E X. 

F, 

J ""': 
X ----+ G. 

qJ 

The reader should compare this definition with the corresponding property 
offree abelian groups in Theorem 4.1(i) (we emphasize that the groups G here 
may not be abelian). Assuming that free groups exist, one can prove, as in 
Theorem 4.1(ii), that every group is isomorphic to a quotient group of a free 
group. The positive answer to the existence question for free groups is given 
by the following construction. 

Let X' be a set disjoint from X and let x H x-1 be a bijection X -+ X'. Let 
X" be a set disjoint from X U X' that contains one element we denote by "1". 
Call X U X' U X" the alphabet, and call its elements letters. Let S be the set of 
all sequence ofletters (0(1' 0(2' ••• ); that is, each O(k = 1 or X±l for some x E X 
(we agree that Xl may denote x). A word on X is a sequence (0(1> 0(2' ••• ) E S 
such that all coordinates are 1 from some point on; that is, there is an integer 
n such that O(k = 1 for all k ~ n. In particular, the constant sequence 

(1,1,1, ... ) 

is a word; it is called the empty word and is also denoted by 1. A reduced word 
on X is a word on X that satisfies the extra conditions: 

(i) x and x-1 are never adjacent; 
(ii) if O(m = 1 for some m, then O(k = 1 for all k > m. 

In particular, the empty word is a reduced word. Since words contain only a 
finite number of letters before they become constant, we use the more eco­
nomical (and suggestive) notation 

where Ci = ± 1. Observe that this spelling of a reduced word is unique, for this 
is just the definition of equality of sequences. 
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The idea of the construction of the free group F is just this: the elements of 
F are the reduced words and the binary operation is essentially juxtaposition. 
Unfortunately, the juxtaposition of two reduced words need not be reduced, 
and one defines the product of two reduced words as the reduced word 
obtained from their juxtaposition after performing all possible cancellations. 
One verifies that this product is well defined and associative. Moreover, given 
a function <p: X ~ G, one defines 

<r(X!' X;2 ... x~n) = <p(x dE, <p(X2)'2 ... <p(xn)'n. 

Definition. If F is free with basis X, then rank F = card X. 

EXERCISES 

*7.42. If F is free with basis X and if F' is the commutator subgroup of F, then FjF' 
is free abelian with basis all co sets xF' with x E X. 

7.43. The rank of a free group does not depend on the choice of basis. (Hint: Exercise 
7.42 and Theorem 4.3.) 

Definition. A group G is defined by generators X = {Xk: k E K} and relations 
d = {rj = l:j E J} if G ~ FjR, where F is free on X and R is the normal 
subgroup of F generated by {r/j E J}. The ordered pair (Xlil) is called a 
presentation of G. 

There are two reasons forcing us to use the normal subgroup R generated 
by {rj:j E J}: we wish to form the quotient group FjR; ifrj = 1 in G and WE F, 
then wrjw-1 = 1 in G. 

Definition. Let K be a connected simplicial complex and let T be a maximal 
tree in K. Define a group G = GK , T having the presentation: 

Generators: all edges (p, q) in K; 
Relations: (i) (p, q) = 1 if (p, q) is an edge in T; 

(ii) (p, q)(q, r) = (p, r) if {p, q, r} is a simplex in K. 

Theorem 7.34. If K is a connected simplicial complex with basepoint p, then 

n(K, p) ~ GK , T' 

Remark. We are describing n(K, p) by generators and relations. 

PROOF. Let F be the free group with basis all edges (u, v) in K, and let R be 
the normal subgroup of F generated by all relations of types (i) and (ii) above 
(so that GK,T = FjR). 

Let v E Vert(K). If v = p, define (Xp = (p, p). If v =F p, there is a reduced edge 
path (Xv in Tfrom p to v (for Tis connected and Vert(T) = Vert(K), by Lemma 
7.33). Note that (Xv is the unique such path lest T contain a circuit. 
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Define <p: F --+ n(K, p) by <p(u, v) = [au(u, v)a;l]. To see that <p defines a 
homomorphism on F / R = GK , T, it suffices to show that all the relators (hence 
R) lie in ker <po 

Type (i). If (u, v) E T, then every edge in au(u, v)a;l lies in T, and Exercise 
7.40 shows that <p(u, v) = 1. 

Type (ii). If {u, v, w} is a simplex of K, then 

[au(u, v)a;l] [av(v, w)a;;;l] = [au(u, v)a;lav(v, w)a;;;l] 

= [au(u, v)(v, w)a;;;l] = [au(u, w)a;;;l], 

the last equation being the definition of the homotopy relation. Hence <p 

induces a homomorphism qi: GK , T --+ n(K, p), namely, 

(u, v)R 1--+ <p(u, v) = [au(u, v)a;l]. 

We prove that qi is an isomorphism by constructing its inverse. If a = 

el ... en is a closed edge path in K at p, define 

O(a) = el .. , enR E GK • T' 

If a' is a second such edge path with a' == a, the relations of type (ii) show that 
O(a) = O(a'). Therefore 0 induces a homomorphism e: n(K, p) --+ GK , T by 

e: [e l ... en] = [a] 1--+ O(a) = el ... enR. 

Let us compute composites. If [a] E n(K, p) and a = el '" en, ~en 

qie[a] = qi(O(a)) = qi(e l ... enR) 

= <p(el )'" <p(en) (since <p is a homomorphism killing R) 

= [ape l .,. ena;l] 

= [a], since Cap] = 1. 

Finally, assume that (u, v) is a generator of GK , T' 

eqi«u, v)R) = e(<p(u, v)) = e[au(u, v)a;l] 

= au(u, v)a;l R. 

Now au and a;l lie in R (since their edges do), so that normality of R gives 
aiu, v)a;l R = au(u, v)R = (u, v)R. 

Therefore both composites are identities, and qi is an isomorphism. 0 

Corollary 7.35. If K is a graph, that is, a connected 1-complex, then n(K, p) 
is a free group. Moreover, it has a basis in bijective correspondence with 
{1-simplexes s E K: s ¢ T}, where T is some chosen maximal tree in K. 

PROOF. By relations of type (i), n(K, p) ~ GK , T is generated by all edges (u, v) 
that are not in T. Examining relations of type (ii), we see that (u, v)(v, u) = 1, 
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so that, for each of the edges just mentioned, picking just one of (u, v) or (v, u) 
still leaves a set of generators. Next, if {u, v, w} is a simplex of K, then at least 
one vertex is repeated, for dim K :$; 1. The relations of type (ii) are thus all 
trivial [(u, u)(u, v) = (u, v), (u, v)(v, v) = (u, v), and (u, v)(v, u) = (u, un 0 

EXAMPLE 7.17. (i) If K is oS, the i-skeleton of a 2-simplex s, then n(K, p) ~ z. 
(ii) If K is oS v oS, that is, a "figure 8", then n(K, p) is a free group having two 
generators. In particular, n(K, p) is not abelian. 

Theorem 7.36. If K is a connected simplicial complex with basepoint p, then 

Remark. A presentation for n(K, p) is given in Theorem 7.34. 

PROOF. If we regard an edge path a of length m as a simplicial map 1m -+ K, 
then Exercise 7.39(i) shows that there is a homomorphism r: n(K, p) -+ 
n 1 (IKI, p) given by [a] t--> [Ial], where lal: Ilml = 1-+ IKI· 

To see that r is surjective, let f: 1-+ IKI be a closed path in IKI at p. By 
Corollary 7.4, there is an integer m and a simplicial approximation cp: 1m -+ K 
to f Of course, we may regard cp as a closed edge path in K at p; moreover, 
I cp I ~ f reI t [Exercise 7 .39(ii)], and so r: [cp] t--> [f]. 

To see that r is injective, assume that a is a closed edge path in K at p with 
lal nullhomotopic in IKI; we must show that a ~ ip • Let F: I x 1-+ IKI be a 
(relative) homotopy F: lal ~ c reI 1, where c is the constant path at p. Assume 
that a has length m, that is, a: 1m -+ K, where a(O) = a(m) = p and a(i) = 
Pi E Vert(K) for 0 < i < m. Subdivide I x I by a rectangular grid of vertical 
and horizontal lines, which contains a vertical line passing through each point 
(Vi' 0), O:$; i :$; m (recall that Vert(lm) = {vo, ... , vm }). Further subdivide by 
bisecting each little square in the grid into two triangles, using one of its 
diagonals. Clearly, such subdivisions can be made with arbitrarily small mesh, 
and so Corollary 7.4 gives a simplicial approximation CI>: L -+ K to F, where 
L is a suitable subdivision of I x I. 

Let 1* be the bottom edge ofI x I as subdivided by L. Clearly, CI> I 1*: 1* -+ K 
is a simplicial approximation to FII x {O} = lal. Suppose that 

Vert(I*) = { ... , Vi' a1 , a2 , ••• , ak , vi+1, .•• }. 

Since Cl>11* is a simplicial map, CI>(aj ) E Vert(K), CI>(v;) = Pi' and CI>(Vi+l) = Pi+l· 
Furthermore, that Cl>11* is a simplicial approximation to lal gives CI>(aj ) E 

{Pi' Pi+l}, that is, CI>(aj ) = Pi or Pi+l. The edge path a' = Cl>11* is thus obtained 
from a by insertion of edges of the form (Pi' Pi+d, (Pi+l' p;), (Pi+l, pi+d, or 
(Pi' p;); it follows that a ~ a'. A similar investigation of the top edge of I x I 
(as well as the left and right sides) shows that each is just a product of ip's (p 
is the basepoint of K), which is obviously homotopic to ip • The bottom row 
of I x I has the following form. 
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Vk1 
Now ex ~ ex' = (p, td(t1' t2 )···(tn- 1, tn)(tn, p) 

~ (p, ud(u1, td(t1' U2 )(U2 , t2 )·· ·(tn- 1, Un)(Un, tn)(tn, p)(p, p) 

~ (p, p)(p, ud(u1, U2 )··· (Un- 1, Un)(Um p)(p, p) 

~ (p, U1)(U 1, U2 )"'(Un- 1, Un)(Un, p). 

Thus, ex is homotopic to the edge path on the top of the row. An induction on 
the number of rows gives ex ~ ip , as desired. D 

Corollary 7.37 (Tietze). If X is a connected polyhedron, then 1t1 (X, xo) is finitely 
presented, that is, 1t 1 (X, xo) has a presentation with only finitely many genera­
tors and finitely many relations. Indeed, if (K, h) is a triangulation of X and T 
is a maximal tree in K, then 

PROOF. Theorems 7.36 and 7.34. D 

We remark that it is a stronger condition on a group that it be finitely 
presented than that it be finitely generated; in fact there are uncountably many 
nonisomorphic f.g. groups while there are only countably many finitely pre­
sented groups. It is easy to prove, however, that every f.g. abelian group is 
finitely presented. 

To see the power of Corollary 7.37, recall our earlier labor in proving 
that 1t 1(Sl, 1) ~ Z. This is immediate from the corollary and Corollary 7.35. 
Example 7.17 also gives us our first example of a nonabelian fundamental 
group. On the other hand, there is a limit to the power of Corollary 7.37, which 
shows that fundamental groups are inherently more difficult than homology 
groups. We have already mentioned that there exists an algorithm to compute 
the homology groups of a polyhedron. In contrast, it is known (see [Rotman 
(1984), p. 395]) that there is no algorithm that can decide of an arbitrary finite 
presentation whether or not the presented group has order 1. In our context, 
there is no algorithm using Corollary 7.37 which can always decide whether 
or not a polyhedron is simply connected! 

EXERCISES 

7.44. (i) Using Example 7.13, prove that 1t1 (RP2, xo) ~ Zj2Z. 
(ii) Using part (i) and the Hurewicz theorem, show (again) that H1 (RP2) ~ 

Zj2Z. 
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7.45. Let X be a polyhedron. 
(i) Show that X is connected if X(O) = Vert(X) is contractible in X, i.e., there 

is F: X x I -> X with F(v,O) = v for all v E X(O) and F( , 1) a constant 
function. 

(ii) Show that X is simply connected if X(I) is contractible in X. 

7.46. Let K be a connected one-dimensional simplicial complex having m edges and 
n vertices. Prove that ndlKI, xo) is a free group of rank m - n + 1. 

7.47. If X is a connected polyhedron of dimension 1, show that: 

Ho(X) = Z; 
HI (X) is free abelian ofrank (1 - x(X)); 
Hq(X) = 0 for all q ;::: 2. 

7.48. Use Theorem 7.36 to prove (again) that sm is simply connected for all m ;::: 2. 

7.49. A subcomplex L of a simplicial complex K is called full if, whenever a E K and 
Vert(a) c Vert(L), then a E L. 
(i) The q-skeleton K(q) is not full for q < dim K. 

(ii) If A c Vert(K), then there is a unique full subcomplex L of K with Vert(L) = 
A; moreover, if L' is a subcomplex of K with Vert(L') = A, then L' c L. 

7.50. Let K be a connected simplicial complex, let L be a full connected subcomplex 
of K, and let Vo E Vert(L). If every closed edge path in K at Vo is homotopic to 
a closed edge path in L at vo, then the inclusion L 4 K induces a surjection 
n(L, vol .::::; n(K, vol. Show that this map need not be an isomorphism (take K 
simply connected). 

The Seifert-van Kampen Theorem 

Definition. Let A and B be (not necessarily abelian) groups. Their free product, 
denoted by A * B, is a group satisfying the following condition: 

A*B 

A/~B 
~t/' 

G 

there are homomorphisms i andj such that, for every pair of homomorphisms 
f: A --+ G and g: B --+ G for any group G, there exists a unique homomorphism 
h: A * B --+ G making the diagram commute. 

In categorical language, A * B is the coproduct in Groups and hence is 
unique to isomorphism if it exists. Existence is proved by showing that there 
is a group, each of whose nonidentity elements has a unique factorization of 
the form 
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a1 b1 a2 b2'" anbn, 

where ai E A, bi E B, and only a1 or bn is allowed to be 1.7 An alternative 
description of A * B can be given via presentations. Let A = (XIR) and 
B = (YIS) be presentations in which the sets X and Y of generators (and 
hence the relations Rand S) are disjoint; then a presentation for A * B is 
(XU YIRUS). 

EXAMPLE 7.18. Z * Z is a free group (of rank 2). 

Definition. Let B, A 1, A2 be objects in a category rc, and let f1' f2 be 
morphisms: 

(b) 

A2 

A solution of the diagram (b) is an object C and morphisms 9 1, 9 2 such that 
the following diagram commutes: 

/,i~r, 
A2~ C. 

A pushout of the diagram (b) is a solution (C, gl' g2) such that, for any other 
solution (D, h1' h2 ), there exists a unique morphism cp: C ---+ D making the 
following diagram commute: 

B ----... Ai 

(b*) 

7 Multiplication is essentially juxtaposition: moreover, in the definition of A * B, one defines 
h(a 1 b1 ••• anbn) = f(adg(b 1 )··· f(an)g(bn)· 



The Seifert-van Kampen Theorem 175 

One proves quickly that pushouts, when they exist, are unique to equi­
valence: if (C, gl' gz) and (D, h1' hz) are both pushouts, then the morphism 
q;: C -+ D is an equivalence. 

Theorem 7.38. A pushout exists for the diagram (c5) in Groups. Moreover, if for 
i = 1,2, Ai has presentation (Xi 1,1;), then the pushout has the presentation 

C = (Xl UXZI,11 U,1z U {I1(b)f2(b- 1): bE B}). 

PROOF. Let N be the normal subgroup of A1 * Az generated by {I1 (b)fz(b- 1): 
bE B}. Define C = (A1 * Az)/N and define gi: Ai -+ C by gi(a;) = aiN for i = 1, 
2. It is easy to verify that (C, gl' gz) is a solution of (c5). 

Suppose that (D, h1' hz) is a second solution of (c5). The definition of free 
product provides a unique homomorphism l/I: A1 * Az -+ D with l/IIAi = hi for 
i = 1,2. Since hzfz = hd1' it follows that N c ker l/I and l/I induces a homo­
morphism q;: C -+ D. One shows easily that the diagram (c5*) commutes and 
that q; is unique. Finally, it is plain from the construction that C has a 
presentation as described in the statement. 0 

Corollary 7.39. If Az = {I} in diagram (c5), then the pushout C is AdN, where 
N is the normal subgroup generated by f1 (B). 

An observation is needed. If G is an infinite cyclic group with generator x, 
we know that G * G is a free group of rank 2 and that a presentation of G * G 
is (x, YI0). It is necessary to write y for the second generator to avoid 
confusing it with x. More generally, if groups Ai have presentations (X;I,1;) 
for i = 1,2, then A1 * Az has presentation (X 1 U XZI,11 U Llz) if Xl and X z are 
disjoint; if Xl and X z are not disjoint, new notation must be introduced to 
make them disjoint. We have tacitly done this in Theorem 7.38; we shall be 
more explicit in the next proof. 

The next theorem shows that pushouts occur quite naturally. 

Theorem 7.40 (Seifert-van Kampen).8,9 Let K be a simplicial complex having 
connected sUbcomplexes L1 and L z such that L1 U L z = K and L1 n L z is 
connected. If Vo E Vert(L 1 n L z) (so that L1 n L z =1= 0), then n(K, vo) is the 
pushout of the diagram 

n(L1 n L z, vo) --> n(L1' vo) 

I 
n(Lz, vo) 

where the arrows are induced by the inclusion maps ji: L1 n L z 4 Li for i = 1,2. 

8 Many authors calJ this van Kampen's theorem. 

9 In light of Theorem 7.36, this theorem may be rephrased so that "simplicial complex" may 
everywhere be replaced by "polyhedron". 
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Remark. The hypothesis implies that K is connected. 

PROOF. Denote Ll n L2 by Lo. Choose a maximal tree To in Lo and for each 
i = 1,2 choose a maximal tree T; in Li containing To. By Exercise 7.41, Tl U T2 
is a tree in K; moreover, Tl U T2 is a maximal tree because Vert(Tt U T2 ) = 

Vert(Td U Vert(T2) = Vert(L 1 ) U Vert(L 2 ) = Vert(K). Theorem 7.34 says that 
re(K, vo) has a presentation (EIA' U A"), where E is the set of edges (u, v) in K, 
A' = En (Tl U T2), and 

A" = {(u, v)(v, w)(u, wt1: {u, v, w} = S E K}. 

There are similar presentations for re(Li' vo), namely, (EdA; U An, where Ei is 
the set of edges in L i • 

Denote the set of edges in Lo = Ll n L2 by Eo. We make E1 and E2 disjoint 
by affixing the symbols jl and j2 (which designate the inclusions). Theorem 
7.38 thus gives the presentation for the pushout 

(jiE1 Uj2E21j1A'l Uj1A'{ Uj2A~ Uj2A~ U {(jle)(j2e)-1: e E Eo}). 

The generators may be rewritten as 

jl EOUjl(E1 - EO)Uj2 EOUj2(E2 - Eo)· 

The relations includejlEo = j2EO (so that one of these subsets is superfluous). 
Next, A; = Ei n T; = (Ei n To) U (Ei n (T; - To)), and this gives a decomposi­
tion OfjlA'l Uj2A~ into four subsets, one of which is superfluous. Furthermore, 
A" = A~ U A~, for if (u, v)(v, w)(u, W)-l E A, then {u, v, w} E K = L1 U L2 and 
{u, v, w} ELi for some i. Transform this presentation as follows: (1) isolate 
those generators and relations involving Lo; (2) delete superfluous generators 
and relations involving Lo (say, delete such having symbol j2); (3) erase the 
now unnecessary symbolsjl andj2' It is now apparent that the pushout and 
re(K, vo) have the same presentation and hence are isomorphic. 0 

Corollary 7.41. With the hypothesis and notation of the previous theorem, a 
presentation for re(K, vo) is 

(j1El Uj2E21j1A'l Uj1A'{ Uj2A~ Uj2A~ U {(jle)(j2ef1: e E Eo})· 

Corollary 7.42. If K is a simplicial complex having connected subcomplexes 
L1 and L2 such that Ll U L2 = K and Ll n L2 is simply connected, then for 
Vo E Vert(L1 n L 2 ), 

Remark. There is a version of the Seifert-van Kampen theorem for spaces 
other than polyhedra, but the analogue of Corollary 7.42 [re 1 (Xl v X 2 , xo) ~ 
re 1(X1, XO)*rel(X2, xo)] may be false (see [Olum]). 

Note that a "figure 8" is Sl V Sl, so that Corollary 7.42 gives another proof 
of Example 7.17. 
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Corollary 7.43. Let K be a simplicial complex having connected subcomplexes 
L1 and L2 such that L1 U L2 = K and L1 n L2 is connected. If Vo E Vert{L 1 n L 2) 
and if L2 is simply connected, then 

n(K, vo) ~ n(L1, vo}/N, 

where N is the normal subgroup generated by the image of n(L1 n L 2 , vo). 
Moreover, in the notation of the theorem, n(K, vo) has the presentation 

PROOF. Since n{L 2 , vo) = il}, the first statement is immediatefrom the Seifert­
van Kampen theorem and Corollary 7.39; the second statement is immediate 
from Corollary 7.41. 0 

We now exploit Corollary 7.43. Let K be a connected 2-complex with 
basepoint Vo and let rx be a closed edge path in Kat vo, say, 

rx = e1 ... en = (vo, V1)(V1, v2)··· (vn- 1, vo)· 

Define a triangulated polygon D(rx) as the 2-complex with vertices Vert(D(rx» = 
{Po, ... , Pn-1, qo, ... , qn-1, r} and 2-simplexes {r, qi, qi+1}' {qi, qi+1, Pi+1}, and 
{qi, Pi' Pi+1}' where 0 sis n - 1 and subscripts are read modulo n. 

Po 

Let 8D(rx) denote the boundary of D(rx), that is, 8D(rx) is the full sub­
complex with vertices {Po, ... , Pn-1}' Define the attaching map <fJa: 8D(rx) -+ K 
by <fJa{pJ = Vi for 0 sis n - 1. Clearly, <fJa carries the boundary edge path 
(Po, pd" . (Pn-1, Po) onto the edge path rx. 

Definition. Let K be a simplicial complex and let ~ be an equivalence relation 
on Vert(K). The quotient complex K/ ~ is the simplicial complex with 
vertex set all equivalence classes [vJ for v E Vert(K) and with simplexes 
{[voJ, ... , [vqJ} if there exists a simplex {uo, ... , uq} E K with Ui ~ Vi for 
i = 0, ... , q. 
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One verifies quickly that K/ - is in fact a simplicial complex. 

Detlnition. Let IX be a closed edge path in K at vo, let D(IX) be the corresponding 
triangulated polygon, and let ({Ja: aD (IX) -+ K be the attaching map. The quo- . 
tient complex Ka = (K J1 D(IX))/ "', where'" identifies each Pi with ((Ja(P;), is 
called the simplicial complex obtained from K by attaching a 2-cell along rx. 

Theorem 7.44. Let IX be a closed edge path in K at Vo and let Ka be obtained by 
attaching a 2-cell along IX. Then 

n(Ka, vo) ~ n(K, vo)/N, 

where N is the normal subgroup generated by [IX]. 

PROOF. Define Ll to be the full subcomplex of Ka with vertices Vert(K) U 
{qo, ... , qn-l}, and define L2 to be the full subcomplex of Ka with vertices 
{r, vo, qo, ql"'" qn-d· Note that Ll U L z = Ka and Ll n L z is the edge 
(vo, qo) and the loop {qo, ... , qn-l}; it follows that n(Ll n L z, vo) ~ Z. Now 
L2 (isomorphic to the full sUbcomplex of D(IX) with vertices {r, qo, ... , qn-l}) 
is simply connected. The inclusion j: K c.. Ll induces an isomorphism 
n(K, vo) ~ n(L l , vo). Define a function t/J: Vert(Ld -+ Vert(K) by t/J(v) = v for 
all v E K and t/J(q;) = ((Ja(P;) for all i. It is easy to see that t/J is a simplicial map 
and jt/J: L 1 -+ L 1 is homotopic to the identity; hence the induced map t/J * is the 
inverse of j*. The proof is completed by applying Corollary 7.43, since the 
image of the infinite cyclic group n(Ll n L z, vo) is generated by [IX]. 0 

Definition. A bouquet of circles is a wedge of complexes V K i, where each Ki 
has the form s for a 2-simplex s. 

If V Ki is a bouquet of m circles, then Corollary 7.35 shows that n(V K i, b) 
is a free group of rank m. 

Theorem 7.45. Given a finitely presented group G, there exists a connected 
2-complex K with G ~ n(K, vo). 

Remark. If one uses infinite simplicial complexes K, one can prove that for 
any (not necessarily finitely presented) group G, there exists a topological 
space X ~ K with G ~ nl(X, x o). 

PROOF. Let (XI~) be a presentation of G and let B be a bouquet of IXI 
circles: Vert(B) = {vo, ui , vi: x E X}. If we identify the closed edge path 
(vo, ui)(ui, vi)(vi, vo) with x, then each word w E ~ may be regarded as a 
closed edge path in B at vo' Let D(w) be the triangulated polygon ofw and let 
({Jw: 8D(w) -+ B be the attaching map; let D be the wedge VWEaD(W) and let 
({J: V8D(w) -+ B satisfy ({J18D(w) = ({Jw. Finally, define K as the quotient com­
plex of BUD in which we identify each pW [in D(w)] with ({J(pW) = ((Jw(pW) 
[vertices of D(w) are rW, P;J, pf, ... , q;J, qf, ... ]. 
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Let T be the tree in K with vertices {vo, uf: x E X}. Define LI to be the full 
sub complex of K with vertices 

Yert(B)U( U {q;;', qi, ... }), 
wed 

and define L2 to be the full subcomplex of K with vertices 

Yert(T)U(U {rw,q;;"qi,"'})' 
wed 

Note that LI U L2 = K and LI n L2 is the union of Twith loops {q;;', qi, ... }; 
it follows that n(LI n L 2, vo) is free on these loops. Now L 2, being a wedge of 
simply connected complexes, is simply connected and n(LI' Vo) ~ n(B, Vo), as 
in the proof of Theorem 7.44. This proof is completed by applying Corollary 
7.43, for the image of the free group n(L I n L 2 , vo) is generated by d. 0 

Corollary 7.46. 

(i) Let K be a bouquet of 2g circles, and let Ka be obtained from K by attaching 
a 2-cell along IX, where IX = al bl all bl l ... agbga;;t b;l. Then 

n(Ka' Vo) = (aI' bl , ... , ag, bglll a;b;ailbil ). 

(ii) Let K be a bouquet of g circles, and let Ka be obtained from K by attaching 
a 2-cell along IX, where IX = ci d ... c;. Then 

n(Ka, Vo) = (c l , ... , Cglll cr). 
PROOF. Theorem 7.44. o 
Definition. The one-relator groups occurring in Corollary 7.46 are called 
surface groups. 

Surface groups are the fundamental groups of surfaces (compact connected 
2-manifolds); see Exercise 8.18 and the subsequent discussion. 

Corollary 7.47. A group G is finitely presented if and only if there exists a 
polyhedron X with G ~ nl(X, x o). 

PROOF. Necessity follows from the theorem; sufficiency follows from Corollary 
~3~ 0 

The quotient group in the statement of the Seifert-van Kampen theorem 
can be complicated. In the special case when the maps j;* induced by the 
inclusions (for i = 1, 2) are injections, the resulting group is called an amalgam 
(or a free product with amalgamated subgroups). Such groups have been 
studied extensively. 



CHAPTER 8 

CW Complexes 

We return to homology, seeking to compute homology groups more effec­
tively. The spaces for which this search is successful, the so-called CW com­
plexes introduced by J. H. C. Whitehead, generalize simplicial complexes; they 
have also proved to be of fundamental importance in homotopy theory. 

The basic idea is quite simple. Recall that a simplicial complex is a union 
of simplexes (homeomorphs of standard simplexes) that fit together nicely: 
any two, of its simplexes that intersect do so in a common face. Standard 
simplexes as building blocks of nice spaces is too good an idea to abandon. 
On the other hand, we can replace simplexes by spaces that are "almost" 
homeomorphic to standard simplexes in the sense that boundary points may 
be identified. Think for a moment of the interesting spaces obtained from the 
square I x I (which is homeomorphic to A2) by identifying points on its 
boundary: torus; real projective plane; Klein bottle; 2-sphere; there are others, 
of course. After constructing these spaces, one must take care in actually 
triangulating them; moreover, triangulations are wanted only because sim­
plicial homology requires them. The idea now is to consider spaces built from 
generalized simplexes ("almost" homeomorphic to standard simplexes) that 
are glued together along their boundaries (more details later). We shall see 
that the homology groups of these spaces arise from chain groups having 
smaller ranks than the chain groups appearing in simplicial theory. 

Hausdorff Quotient Spaces 

In Chapter 1 we considered quotient spaces X 1-, where - is an equivalence 
relation on a space X; the points of XI- are the equivalence classes [x] for 
x E X. An important item in this context is the natural map v: X -+ X 1-, 
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defined by x 1--+ [x]; it is a continuous surjection; indeed v is an identification. 
Recall that if A is a subset of X, then X/A denotes the quotient space 
corresponding to the equivalence relation that identifies every pair of elements 
of A and no others. 

The following examples show that a quotient space of a (compact) 
Hausdorff space may not be Hausdorff and that the natural map need be 
neither an open map nor a closed map. 

EXAMPLE 8.1. Consider the quotient space X/A, where X = I and A is the 
(open) subset A = [0, 1); let v: X ~ X/A be the natural map. Then the point 
[0] E X/A is open (because v-l([O]) = A is open), but the other point [1] E 
X/A is not open (because v- l ([1]) = {l} is not open). Therefore X/A is 
Sierpinski space, which is not Hausdorff. 

EXAMPLE 8.2. (i) Let v: X ~ X/A be the natural map of Example 8.1. Then 
v( [0, 1/2]) = {[O]} is not closed in X/A, and so v is not a closed map. 

(ii) Let X be the sin (l/x) space, and define f: X ~ I as the vertical projection 
(x, y) 1--+ x; it is easy to see (using the definition of an identification) that the 
continuous surjection f is an identification. If U = V n X, where V is the open 
disk with center (0, t) and radius i, then f(U) is not open in I, and so f is not 
an open map. (Note that the target I is Hausdorff.) 

We seek sufficient conditions guaranteeing that X/ ~ be Hausdorff when 
X is Hausdorff. Recall an elementary fact. The diagonal of a space Y is the 
subset D of Y x Y (product topology) defined by 

D = {(y, y) E Y X Y: y E Y}; 

a space Y is Hausdorff if and only if its diagonal D is closed in Y x Y. 

Definition. If ~ is a binary relation on a space X, then its graph G is the subset 
of X x X defined by 

G = {(X l ,X2 )EX x X: Xl ~ X2}; 

we say that ~ is closed if its graph G is a closed subset of X x X. 

The identity relation on X is closed if and only if X is Hausdorff. 
If ~ is an equivalence relation on a space X, then its graph G is equal to 

(v x vrl(D), where v: X ~ X/ ~ is the natural map and D is the diagonal of 
X / ~. When X / ~ is Hausdorff, the diagonal D c (X / ~) x (X / ~ ) is closed, 
hence G is closed in X x X (because v and hence v x v are continuous) and 
~ is closed. We give a partial converse after a general lemma. 

Lemma 8.1. Let v: W ~ Z be a closed map, let S be a subset of Z, and let U be 
an open subset of W containing V-l(S). Then there exists an open set Vin Z with 

S c V and v-l(V) c U. 
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PROOF. Define V = v(UC)C, where C means complement. Since U is open, UC is 
closed; since v is a closed map, v(UC) is closed and so V = v(UC)C is open. Now 
v-l(S) c U gives S n v(UC) = 0, so that S c v(UC)C = V. Finally, v-l(V) = 
W - v-lv(W - U) C W - (W - U) = U, as claimed. D 

Theorem 8.2. If'" is a closed equivalence relation on a compact Hausdorff space 
X, then the quotient space XI'" is also (compact) Hausdorff. 

PROOF. Let v: X --+ XI'" be the natural map, and let G c X x X be the graph 
of "'; for i = 1,2, let Pi: X x X --+ X be the projection (Xl' X 2 ) r+ Xi' We claim 
that v is a closed map. If C is any subset of X, then 

pz(pIl (C) n G) = {y E X: y '" X for some X E C} = v-lv(C). 

If C is closed, then so are PIl (C) and PIl (C) n G; since X is compact Hausdorff, 
P2 is a closed map, and so v-lv(C) is closed. But v is an identification, and so 
v(C) is closed, as claimed. 

It follows that every point of XI'" is closed (being the image of a (necessarily 
closed) singleton in X). If [x], [y] are distinct points of XI "', then v-l([x]) and 
v-l([y]) are disjoint closed subsets of X. Since X is compact and Hausdorff, 
it is normal; there thus exist disjoint open sets U[x] and Ury] in X with 
v-l([x]) c U[x] and v-l([y]) c U[y]. By the lemma, there are open sets Jl(X] and 
Jl(y] in XI'" with [x] E Jl(x], [y] E Jl(y], v-l(JI(X]) c UrX]' and v-l(V[y]) c U[y]' It 
follows that Jl(x] n Jl(y] = 0, and this shows that XI'" is Hausdorff. 0 

Corollary 8.3. If X is a compact Hausdorff space and A is a closed subset, then 
XIA is (compact) Hausdorff. 

PROOF. The graph of the appropriate equivalence relation is (A x A) U D, 
where D is the diagonal of X, and this is a closed subset in X x X because A 
is closed in X. D 

Here is an important class of examples. 

Definition. Let F be a division ring and let n ;;:: O. Define an equivalence 
relation on Fn+1 - {O} (where Fn+l is the (left) vector space over F consisting 
of all (n + 1)-tuples x = (xo, Xl' ... , xn) with coordinates Xi in F) by x '" y if 
there exists A E F - {O} with x = Ay. The quotient set (Fn+l - {O})I "', that is, 
the set of all equivalence classes, is called F-projective n-space and is denoted 
by Fpn. The class of x = (xo, ... , xn) is denoted by [x] = [xo, ... , xn] E Fpn. 

Note, for each n;;:: 0, that there is an imbedding Fpn c... Fpn+l given 
by [xo, ... , xn] r+ [xo, ... , X n, 0]. One calls the union l Un:2:0 Fpn infinite­
dimensional F-projective space and denotes it by Fpoo. 

1 Actually, one can only take the union of a family of subsets of a given set; the notion of direct 
limit is needed to make this definition precise. 



Hausdorff Quotient Spaces 183 

There are three division rings in which we are interested: the reals R, the 
complexes C, and the quaternions H. Of course, the reader is familiar with C 
as a two-dimensional vector space over R with basis {l, i}. Let us recall that 
H is a four-dimensional vector space over R with basis {I, i, j, k}. The ring 
structure on H is determined by the distributivity laws and the rules: i1 = jl = 

kl= -l·ij= -ji=k"jk= -kj=i·ki= -ki=j EachofR C andHhas 
a norm I' I with value~ nonnegative 'real numbers:· in R, Ixl ~ P. is abso­
lute value; in C, Izl = la + bil = Ja1 + b1 ; in H, Iwl = la + bi + cj + dkl = 
J a1 + b1 + c1 + d1 . One verifies that, in each case, the norm is a continuous 
multiplicative map: Ixyl = Ixllyl (this calculation in H is tedious). 

In C, we know that if z = a + bi, then z defined as a - bi satisfies zz = Iz1 1 ; 

hence, if z =I 0, then Z-l = z/zz = z/Izll. Similarly, if w = a + bi + cj + dk E 

H, then w defined as w = a - bi - cj - dk satisfies ww = Iwl1.lfw =I 0, define 
w-l = w/lwll; it is now straightforward to check that H is a division ring. 

For each of the three division rings F = R, C, and H, we see that F"+l - {O} 
is a topological space, and so the corresponding projective spaces F P" are also 
topological spaces when given the quotient topology. 

Notation. For each n ~ 0, real projective n-space is denoted by RP", complex 
projective n-space is denoted by CP", and quaternionic projective n-space is 
denoted by HP". 

EXERCISES 

8.1. For every division ring F, show that Fpo is a point. 

*8.2. Show that Rpl ~ Sl, Cpl ~ S2, and Hpl ~ S4. 

8.3. Define U(F) = {x E F: Ixl = 1}, where F = R, C, or H. Show that U(R) ~ So, 
U(C) ~ sl, and U(H) ~ S3. 

8.4. Show that Rp2 is homeomorphic to the real projective plane (defined earlier as 
a certain quotient space of I x I). 

*8.5. For each n ;:::: 0, define an equivalence relation on sn by x ~ y if x = ± y (identify 
antipodal points). Prove that sn/ ~ ~ RP". 

*8.6. For each n ~ 0, define an equivalence relation on s2n+1 by x ~ y if x = AY for 
some complex A with IAI = 1. Prove that S2n+1/~ ~ cpn. (Hint: Write x = 

(Xl' X2' ... , X2n+2) E s2n+1 as an (n + 1)-tuple of complex numbers: x = 
(z I, ... , Zn+1); then x = AY implies Ixl = IAyl = IAIIYI and IAI = 1.) 

*8.7. For each n ~ 0, define an equivalence relation on s4n+3 by x ~ y if x = AY for 
some quaternion A with IAI = 1. Prove that S4n+3/~ ~Hpn. (Hint: If x, yE 
s4n+3 C Hn+1 - {O}, then x = AY implies IAI = 1.) 

Theorem 8.4. For every n ~ 0, the projective spaces RP", CP", and Hpn are 
compact Hausdorff. 
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PROOF. In light of Exercise 8.5, we may regard Rpn as a quotient space of 
sn. Moreover, it is easy to see that the graph of the equivalence relation 
(in that exercise) is D U D*, where D is the diagonal in sn x sn and D* = 

{(x, -x) E sn X sn: X E sn}. This graph is closed, and so Theorem 8.2 applies. 
As in Exercise 8.6, we may regard cpn as a quotient space of s2n+l. 

Moreover, it is easy to see that the graph of the equivalence relation is 

G = {(x, AX) E s2n+1 X s2n+1: x E s2n+1 and A E SI }. 

Thus G is the image of s2n+l X SI under the continuous map of s2n+l X s2n+l 
to itself given by (x, y) f--t (x, yx); therefore G is compact, hence closed. 

A similar argument, using Exercise 8.7, applies to Hpn regarded as a 
quotient of s4n+3; the graph is a continuous image of s4n+3 X S3. 0 

A ttaching Cells 

We now prepare for an important construction of examples of quotient spaces. 
Recall the definition of the coproduct XI 11 X 2 of two spaces XI and X 2 (the 
disjoint union in which each Xi is an open sUbset). If/;: Xi ~ Y is continuous, 
for i = 1,2, then the (continuous) map 1111/2: X 111 X 2 ~ Y is defined by 
(11 11 12)(X) = h(x), where x E Xi' 

Definition. Let X and Y be spaces, let A be a closed subset of X, and let 
I: A ~ Y be continuous. The space obtained from Y by attaching X via I is 
(X 11 Y)/ "', where '" is the equivalence relation on X 11 Y generated2 by 
{(a, I(a» E (X 11 Y) x (X 11 Y): a E A}, This space is denoted by X 111 Y; 
the map I is called the attaching map. 

The mapping cylinder shows that every continuous map can be viewed as 
an attaching map. 

EXERCISES 

8.8. Let v: X 11 y -> X 11J Y be the natural map. Let Z be a space, and let rx: X -> Z 
and f3: Y -> Z be continuous maps such that 

rx(a) = f3(f(a)) for all a E A. 

Then (rx 11 f3) 0 V-I is a well defined continuous map X 11J Y -> Z. (Hint: Use 
Corollary 1.9.) 

*8.9. If B is a subset of Z x Z for some set Z, then define 

B-1 = {(V,U)EZ x Z:(u,v)EB}. 

2 If R is a binary relation on a set X, then define a new binary relation R' on X by (x, y) E R' if 
there exists n ~ 1 and elements xo , Xl' •.. , Xn E X with Xo = X and Xn = Y such that, for all 
o ~ i ~ n - 1, either Xi = Xi+!' (Xi' X i+l ) E R, or (Xi+l , X;) E R. It is easy to see that R' is an 
equivalence relation on X; it is called the equivalence relation generated by R. 
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(i) Let X and Y be sets, let A be a subset of X, and let f: A -> Y be a function. 
If B = {(a,j(a» E (X 11 Y) x (X 11 Y): a E A}, then the equivalence rela­
tion on X 11 Y generated by B is 

DUBUB-1 UK, 

where D is the diagonal of X 11 Yand K = ker f = {(a, a') E A x A: f(a) = 

f(a')} (regard A x A as a subset of (X 11 Y) x (X 11 Y». 
(ii) Let ~ be the diagonal of Y x Y. Show that 

K = (f X f)-l(~ n im(f x f). 

8.10. Show that the diagram 
f 

A -----+ Y 

,1 1 
X -----+ X 11/ Y 

(where i: A c.... X is inclusion) is a pushout in Top. 

8.11. If X and Yare path connected, then X 11/ Y is path connected. 

*8.12. Let X and Y be spaces, let A be a nonempty closed subset of X, let f: A -> Y 
be continuous, and let v: X II Y -> X ll/ Y be the natural map. 
(i) Assume that C c X 11 Y is such that C n X is closed in X. Show that v(C) 

is closed in X 11/ Y if and only if (C n Y) U f(C n A) is closed in Y. (Hint: 
For any C c X 11 Y, show that 

v-1v(C) = CUf(CnA)Url(f(CnA»Url(Cn Y).) 

(ii) Show that the composite 

Yc....X 11 Y->X 11/ Y 

is a homeomorphism from Y to a subspace of X 11r Y. (One usually identi­
fies Y with its image under this map.) 

(iii) Show that the composite 

<1>: X c.... X 11 Y -> X 11/ Y 

maps X - A homeomorphically onto an open subset of X 11/ Y. 
(iv) Under the identification in (ii), show that one may regard <l>IA as the 

attaching map f. 

*8.13. Suppose that, in Exercise 8.12, A is compact and both X and Yare Hausdorff. 
(i) Show that the natural map v: X 11 Y -> X 11/ Y is a closed map. 

(ii) If Z E X ll/ Y, show that its fiber v-1(z) is a nonempty compact subset of 
XllY. 

Definition. The map <1>: X ~ X 11J Y (which is the composite X 4 X 11 Y 
~ X 11J Y) is called the characteristic map. (See the remark after Theorem 
8.7 as well as the definition of CW complex.) 

Theorem 8.5. Let X and Y be Hausdorff, let A be a compact subset of X, and 
let f: A ~ Y be continuous; then X 11J Y is Hausdorff. 
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PROOF. Let Zl and Z2 be distinct points of X 11- Y. The fibers v-l(zd and 
V-I (Z2) are disjoint compact subsets of X II Y, by Exercise 8.13(ii). Since 
X II Y is Hausdorff, a standard subcover argument provides disjoint open 
sets U1 and U2 in X II Y with V-I(Zi) c Ui for i = 1,2. Since v is a closed map 
(Exercise 8. 13 (i)), Lemma 8.1 gives open subsets Y; in X 11- Y with Zi E Y; and 
v-I(Y;) c Ui> i = 1,2. But VI and V2 must be disjoint (because U1 and U2 are 
disjoint); hence X llJ Y is Hausdorff. 0 

Remark. Theorem 8.2 cannot be used to prove Theorem 8.5 because we are 
not assuming that X and Yare compact. 

The next (technical) result enables one to recognize when a given space is 
homeomorphic to a space obtained from another space via an attaching map. 
This situation is analogous to that in group theory when one passes from the 
description of an external direct product in terms of ordered pairs to a 
description of an internal direct product whose elements need not be ordered 
pairs. 

Lemma 8.6. Let X and Y be compact Hausdorff, let A be a closed subset of X, 
let f: A -+ Y be continuous, and let X 11- Y = (X II Y)/ "'. Assume that W is 
a compact Hausdorff space for which there exists a continuous surjection 
h: X II Y -+ W such that, for u, v E X II Y, one has u '" v if and only if h(u) = 
h(v). Then [u] 1-+ h(u) is a homeomorphism X llJ Y -+ W. 

PROOF. Consider the diagram 

XllY 
~ j /~w, 

xll/i 
where the vertical arrow is the natural map Ul-+ [u]. The hypothesis says that 
the equivalence relation '" on X II Y coincides with ker h, hence X 11- Y = 
(X II Y)/ker h. Since all spaces are compact Hausdorff, Corollary 1.10 applies 
at once to show that the dashed arrow [u] 1-+ h(u) is a homeomorphism. 0 

Definition. An n-cell en (or simply e) is a homeomorphic copy of the open 
n-disk DR _ sn-l. 

Of course, Dn - sn-l is homeomorphic to RR (hence has dimension n). This 
definition of n-cell is compatible with our earlier notion of "closed n-cell" (a 
homeomorphic copy of DR) as the following exercise shows. 

EXERCISE 

*8.14. Assume that Y is Hausdorff and that E is a closed n-cell in Y, where n > O. If 
<Xl: DR -+ E is a homeomorphism, then <Xl(D" - S"-I) is an n-cell whose closure 
in Y is E = <Xl(D"). 
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Definition.3 Let Y be a Hausdorff space and let f: S"-l -+ Y be continuous. 
Then D" 11J Y is called the space obtained from Y by attaching an n-cell via 
J, and it is denoted by lj. 

The elements of lj have the form [x] or [y], where XED" and y E Y. 
Exercise 8.9(i) says that the only identifications are [x] = [x'] (when x, 
x' E S"-l and f(x) = f(x')) and [x] = [y] (when y = f(x)). The characteristic 
map <I> in this case is the composite 

D" c... D" 11 Y -+ D" 11J Y = lj, 

so that <1>: (D", S"-l) -+ (lj, Y) is a function of pairs (as in Exercise 8. 12(ii), we 
ha ve identified Y with its homeomorphic copy in lj via y f--+ [y]). Our previous 
discussion gives the following: (i) lj is a Hausdorff space (Theorem 8.5), which 
is compact when Y is: (ii) <l>IS"-l is the attaching map f (Exercise 8.12(iv)); 
(iii) <I>(D" - S"-l) is an n-cell, which is an open subset of lj (Exercise 8.12(iii)). 

The next definition isolates a property of characteristic maps. 

Definition. A continuous map g: (X, A) -+ (Y, B) is a relative homeomorphism 
if gl(X - A): X - A -+ Y - B is a homeomorphism. 

EXAMPLE 8.3. If Y is a Hausdorff space, then a characteristic map <1>: (D", S"-l) -+ 

(lj, Y) is a relative homeomorphism. 

EXAMPLE 8.4. If U cAe X with [j c AO, then the excision map (namely, the 
inclusion (X - U, A - U) c... (X, A)) is a relative homeomorphism. 

EXAMPLE 8.5. If X is a compact Hausdorff space and A is a closed subset, then 
the natural map v: (X, A) -+ (X/A, *), where * denotes the equivalence class 
comprised of all the points of A, is a relative homeomorphism. 

In contrast to the constructive approach we have been giving, the following 
result shows that spaces with attached cells exist in nature. 

Theorem 8.7. Let Z be a compact Hausdorff space, let Y be a closed subset of 
Z, and let e be an n-cell in Z with en Y = 0. rr there is a relative homeomor­
phism <1>: (D", S"-l) -+ (e U Y, Y), then the "obvious" map lj = D" fu Y -+ e U Y 
(where f = <l>IS·-1 ), defined by [u] f--+ (<I> 11ly )(u), is a homeomorphism. 

PROOF. We are going to use Lemma 8.6. The map h: D" 11 Y -+ e U Y defined 
by h = <I> 11ly is a continuous surjection, hence e U Y is compact. Assume 
that u, v E D" 11 Y. We must show that u '" v (where", is the defining equiva­
lence relation for attaching via f) if and only if h(u) = h(v). If u '" v, then 
Exercise 8.9(i) allows us to assume that u E S"-l and that either (1) v E Yand 
v = <I>(u), or (2) v E S"-l and <I>(v) = f(v) = f(u) = <I>(u). In either case, one sees 

3 Compare the simplicial version of this construction at the end of Chapter 7. 
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that h(u) = h(v). Conversely, if h(u) = h(v), then either u, v are both in Dn, both 
in Y, or one in each. The only nontrivial case is u, v in Dn; here the hypothesis 
that <l>IDn - sn-l is a homeomorphism from Dn - sn-l to (e U Y) - Y = e (for 
en Y = 0) forces u, v in sn-l and f(u) = <I>(u) = <I>(v) = f(v). Hence u '" v. 
Lemma 8.6 applies (for e U Y is compact Hausdorff) to show that [u] 1--+ h(u) 
is a homeomorphism 1f = Dn ilJ Y --+ e U Y. 0 

Remark. A relative homeomorphism <I> as in the statement of this theorem is 
also called a characteristic map. This extends our earlier usage, which allowed 
only maps with values in Dn ilJ Y. 

EXERCISES 

8.15. Let K be an n-dimensional simplicial complex, and let s be an n-simplex in K. 
Show that s U IK(n-I)1 may be viewed as a space obtained from IK(n-I)1 by 
attaching an n-ce11. (Hint: Let e be the open n-simplex e = s - s.) 

8.16. If Y is a singleton, show that the space obtained from Y by attaching an n-cell 
is sn, hence sn = eO U en (disjoint union) (where ei denotes an i-cell). (See Example 
8.14.) 

Theorem 8.8. 

(i) For each n;::: 1, Rpn is obtained from Rpn-l by attaching an n-cell; 
moreover, there is a disjoint union 

Rpn = eO U el U··· U en, 

where e i denotes an i-cell. 
(ii) For each n ;::: 1, cpn is obtained from cpn-l by attaching a 2n-cell; more­

over, there is a disjoint union 

cpn = eO Ue2 U···Ue2n• 

(iii) For each n ;::: 1, Hpn is obtained from Hpn-l by attaching a 4n-cell; more­
over, there is a disjoint union 

Hpn = eO U e4 U ... U e4n. 

PROOF. (i) If x = (Xl' ... , Xn+l ) E sn, denote its equivalence class in Rpn by 
[x] = [Xl' ... , X.+ l ]. Define 

e = {[Xl' ... , x.+1] E RP': X.+1 "# a}. 

The complement Y of e in RP' is just (the standard imbedded copy of) Rp·-l. 
Also, e is an n-cell, for e .::t R' via [Xl> ... , X.+l ] 1--+ (X;! 1 Xl' ... , X;!l X.), and 
R' ~ D' - S·-l. By Theorem 8.7, it suffices to find a relative homeomorphism 
<1>: (D', S·-l) --+ (e U Y, Y) = (RP', RP"-l). Let u = (u 1 , ... , u.) E D' (so Ilull ~ 
1), and define 
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It is easy to see that <D has the required properties.4 Finally, the decomposition 
of RP" as a disjoint union of cells follows by induction on n. 

(ii) and (iii). Imitate the proof in (i) after identifying complex numbers as 
ordered pairs of real numbers in the first case and quaternions as ordered 
quadruples of real numbers in the second case. 0 

Homology and Attaching Cells 

There is a close relation between H*(Y) and H*(lj); before displaying it, we 
need a technical lemma. 

Definition. A Hausdorff space X is locally compact if, for each x E X and every 
open set U containing x, there exists an open set W with W compact and 
XE We We U. 

Lemma 8.9. If v: X --+ X' is an identification and if Z is locally compar;;t 
Hausdorff, then v xl: X x Z --+ X' x Z is also an identification. 

PROOF. It suffices to prove that if U' is a subset of X' x Z for which U = 
(v X l)-l(U' ) is open in X x Z, then U' is itself open. Choose (x', z) E U' ; if 
vx = x', then (v x l)(x, z) = (x', z) and (x, z) E U. Since U is open in X x Z, 
there are open sets V in X and J in Z with (x, z) E V x J e U. Local compact­
ness of Z provides an open set Win Z with z EWe W e J with W compact. 
Of course, {x} x W e U. Define 

A = {a E X: {a} x We U}; 

note that x E A. We claim that A is open in X. Fix a E A. For each, E W, there 
are open sets L, in X and N, in Z with (a, n E L, x N, e U. The family 
{N,: e E W} is an open cover of the compact set W; let {Nl' ... , Nm } be a finite 
subcover. Then, for 1 .::;; i .::;; m, we have Li x Ni e U (if Ni = N" we define 
Li = L,); moreover, a E n L i, and We U Ni. Now L = n Li is an open set 
containing a, and L x Ni e U for all i. Therefore L x W e U (L x Ni) e U; 
hence a E LeA and A is open in X. 

Now observe that, for f3 E X, we have un x We U = (v X l)-l(U' ) if and 
only if {v(J1)} x We U'. In particular, {3 E A if and only if {v({3)} x We [J, 
from which it follows that v-1v(A) = A. Since v is an identification, v(A) is 
open in X', hence v(A) x We U' is an open neighborhood of (x', z). Therefore 
U' is open. 0 

Lemma 8.9' (Tube Lemma). Let X and Y be topological spaces with Y compact. 
If Xo E X and U is an open subset of X x Y containing {xo} x Y, then there is 

4 Note that the attaching map q> = cDlsn-l is just (u 1 , ... , Un)""" [U 1, ... , Un' OJ. 
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an open neighborhood L of Xo in X with 

{xo} x YcL x Yc U. 

PROOF. In the proof of Lemma 8.9, replace ex by Xo and W by Y. D 

Corollary S.10. If f, g: (X, A) -+ (Y, B) are homotopic (as maps of pairs), then 
the induced maps 1, g: (X/A, *) -+ (Y/B, *) are homotopic (as maps of pointed 
spaces). 

PROOF. IfF: (X x I, A x I) -+ (Y, B) is a homotopy from f to g, then it induces 
a function F: (X/A) x 1 -+ Y/B making the following diagram commute: 

X x I ~ Y 

.. ' j j, 
(X/A) x I Y/B, 

where p and q are identifications. Since qF is continuous, F(p x 1) is con­
tinuous. But p x 1 is an identification (Lemma 8.9 applies because I is compact 
Hausdorff); by Theorem 1.8, F is continuous, as desired. D 

If brackets denote the Hom set in the homotopy category of pairs, then 
this last corollary gives (the known fact) [(I, t), (X, xo)] = [(S1, 1), (X, xo)]; 
that is, either Hom set can be used to describe 7t1(X, xo). 

Theorem S.ll. Let n ~ 1 and assume that Yf is obtained from a Hausdorff space 
Y by attaching an n-cell via f Then there is an exact sequence 

... ---+ Hisn-1) A Hp(Y) -S Hp(lJ) ---+ Hp_1(sn-1) ---+ ... 

... ---+ Ho(sn-1) ---+ Z EEl Ho(Y) ---+ Ho(lJ) ---+ 0, 

where i: Y c... lJ is the inclusion. 

PROOF. Let v: Dn 11 Y -+ lJ be the natural map, and let <I> = vlDn : (D", S"-1)-+ 
(lJ, Y) be the characteristic map; let e = <I>(D" - S"-1) (an open n-cell in Y,), 
and let U' be the open n-disk in Db with center the origin and radius t. Since 
<I> is a relative homeomorphism and e is open, we have U = <I>(U') open in Y,. 
Define V = lJ - <1>(0); thus {U, V} is an open cover of lJ. There is an exact 
(Mayer-Vietoris) sequence 

... -+ Hp(U n V) -+ Hp(U) EEl Hp(V) -+ Hp(lJ) -+ Hp- 1 (U n V) -+ .... 

For p > 0, we have Hp(U) = ° because U is contractible. From Theorem 6.3, 
one sees that the homomorphisms Hp(U n V) -+ HiV) and Hp(V) -+ Hp(Y,), 
for p > 0, are induced by inclusions. Let us examine U n V and V. The first is 
an open punctured n-disk and hence has the same homotopy type as S"-1. 
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The second space V has Yas a deformation retract: define F: V x I -+ V by 

( ) _{v ifvEY F V, t - . 
<1>((1 - t)z + tz/llzll) lfv = <I>(z) E e. 

Note that F is well defined because Yr is the disjoint union e U Y. To see that 
F is continuous, consider first the following diagram: 

where v' is the restriction of the natural map Dn 11 Y -+ Yr and h is defined by 
(x, t)f-+(1 - t)x + tx/llxli for x E Dn - {O} and tEl, and by (y, t)f-+ Y for y E Y 
and tEl. Since h(x, t) = x for all x E sn-1 and all tEl, it is easy to see that v'h 
is constant on the fibers of v' x 1; it follows from Corollary 1.9 and Lemma 
8.9 (for I is locally compact) that F is continuous. 

We now see that the displayed sequence (save for recognizing that, for 
p > 0, the maps Hp(sn-1) -+ Hp(Y) are induced by f) is exact; when p = 0, we 
are looking at the end of the Mayer-Vietoris sequence with Ho(U) replaced 
by Z (for U is path connected). 

Finally, consider the following commutative diagram of spaces (vertical 
maps are inclusions and horizontal maps are restrictions of <1»: 

U - {O} <1>' unv ---
·r <1>" 

[k 
Dn - {O} --- V 

p] Jj 
sn-1 ---f 

Y 

Note that the inclusions IX, /3, and j are homotopy equivalences because the 
respective subspaces are deformation retracts; it follows from Exercise 4.11 
that IX*, /3*, and j* are isomorphisms. The map <I>~ is also an isomorphism, 
for <1>' is a homeomorphism. Therefore the following diagram is commutative: 

Hp(U n V) k* Hp(V) ---
1 1 

Hp(sn-1) --- Hp(Y), 
f* 
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where the vertical maps are the isomorphisms cI>~0(;1 p* and j*. This completes 
the proof. D 

Corollary 8.12. Suppose that n c: 2, and let lj be the space obtained from a 
compact Hausdorff space Y by attaching an n-cell via f 
(i) If p -=P n, n - 1, then 

(ii) There is an exact sequence 

0---4 Hn(Y) ~ Hn(lj) ---4 Hn- 1 (sn-l) ~ Hn- 1 (Y) ---4 Hn- 1 (lj); 

moreover, the last map is a surjection if n c: 3. 

PROOF. Immediate from the theorem and the computation of H*(sn-l). The 
last remark about surjectivity is true because the next term in the sequence is 
Hn_Z(sn-l), and this vanishes when n c: 3. 0 

Theorem 8.13. 

Hp(cpn) = {OZ if p = 0, 2, 4, ... , 2n 
otherwise. 

Hp(upn) = {OZ if p = 0, 4,8, ... , 4n 
otherwise. 

PROOF. We prove that the formula for H*(cpn) is correct by induction on 
n C: O. All is well for n = 0 because Cpo is a point; since Cpl ~ SZ, the formula 
holds for n = 1 as well. We may now consider cpn+l for n C: 1. By Theorem 
8.8(ii), cpn+l is obtained from cpn by attaching a 2(n + l)-cell; since n C: 1, 
2n + 2 > 3, and so we may use the full statement of Corollary 8.12. Thus, for 
p -=P 2n + 2, 2n + 1, we have 

Hp(cpn) ~ Hp(cpn+l). 

By induction, the left side is nonzero only for even p :$; 2n, in which case it is 
Z. For p = 2n + 2,2n + 1, there is an exact sequence 

0-+ HZn+z(cpn) -+ HZn+2(cpn+1) -+ Z -+ H2n+1 (cpn) -+ H2n +1 (cpn+1) -+ O. 

Since H2n+Z(cpn) = 0 = HZn+1(cpn) (by induction), it follows that 
Hzn+2(cpn+1) = Z and H2n+1 (cpn+l) = 0, as desired. 

The quaternionic case is similar, using the facts that Upl ~ S4 and Theorem 
8.8(iii) that Upn+l is obtained from upn by attaching a 4(n + l)-cell. D 

Theorem 8.11 and its corollary are not strong enough to allow computation 
of H*(RP") (arguing as above breaks down when n = 2). Before introducing 
cellular theory, which will greatly assist computations (indeed it wll simplify 
the proof of Theorem 8.13), let us give more applications of Theorem 8.11. 
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EXAMPLE 8.6. 

{
z ifp=O 

Hp(RP2) = Z/2Z if p = 1 

o if p ;::: 2. 

We already know (Example 7.13) that Hp(RP2) = 0 for p ;::: 3, that H o(Rp2) = 
Z, and that rank H 2(Rp2 ) = rank H1(Rp2 ) (the last fact follows from our 
computation of the Euler-Poincare characteristic: X(RP2) = 1). Regard Rp2 
as the space obtained from Rpl = Sl by attaching a 2-cell via f, where 
f(e i9 ) = e2i9 (thereby identifying antipodal points). The attaching map f has 
degree 2, and so the induced map f*: HI (Sl) -+ HI (Sl) is multiplication by 2. 
Now Theorem 8.11 gives exactness of 

H2(Rpl) ---+ H 2(Rp2) ---+ HI(SI) ~ H 1 (Rpl) ~ H 1 (Rp2) ---+ HO(SI); 

this can be rewritten (since Rpl = Sl) as 

2 2 i* 2 0---+ H 2 (RP ) ---+ Z - Z ---+ HI (RP ) ---+ Z. 

Since multiplication by 2 is monic, H 2(Rp2) = 0; since rank HI (RP2) = 

rank H 2(Rp2) = 0, it follows that H 1 (Rp2) is torsion, and so exactness 
shows i* is surjective (because H 1 (Rp2) is torsion and Z is torsion-free). 
Therefore H 1 (RP2) = Z/2Z. Note that the generator of HI (RP2) arises from 
the obvious I-cycle, namely, the image of f. (Of course, this result agrees with 
our computation in Example 7.15.) 

EXAMPLE 8.7. If T is the torus, then 

H,(T) ~ {~ffiZ 
if p = 0, 2 

if p = 1 

if p ;::: 3. 

We already know (Example 7.12) that Hp(T) = 0 for p ;::: 3, that Ho(T) = Z, 
and that rank H 2(T) + 1 = rank H1(T) (for X(T) = 0). The construction of T 
as a quotient space of I x I by identifying parallel edges exhibits T as being 

\ 13 1 

(XI 
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obtained from the wedge Sl v Sl by attaching a 2-cell. More precisely, let 
cD: I x I --+ T be the natural map, let 8(1 x I) denote the perimeter of I x I 
(which we identify with Sl), and let f = cD18(I x I). Note that cD(8(I x I» = 
Sl v sl, and so we may regard f as a function Sl --+ Sl V Sl. Now Theorem 
6.22 says that (the class of) a * 13 * all * 1311 is a generator of HI (Sl); more­
over, fa = fa l and f13 = f13l' Therefore composing f with either projection 
Sl v Sl --+ Sl yields maps Sl --+ sl, namely, fa * fall and f13 * f131l. Since 
each of these maps has degree 0 (Theorems 3.16 and 6.20), it follows that 
f*: HI (Sl) --+ HI (Sl V Sl) ~ HI (Sl) tB HI (Sl) is the zero map. But Theorem 
8.11 gives exactness of 

0= H2 (Sl v Sl)--+H2 (T)--+Hl(Sl)A H1 (Sl v Sl)~Hl(T)--+Ho(Sl). 

Since f* = 0, the map H 2 (T) --+ Hl(Sl) is an isomorphism and H 2 (T) = Z. 
Also, HI (T) must be torsion free (because the two flanking terms HI (Sl v Sl) 
andHo(Sl) are) and of rank 2 (rank H2 (T) + 1 = rank Hl(T»; hence Hl(T) = 
Z tB Z. Note that i* must be an isomorphism, so that the two obvious circles 
on the torus are independent generating I-cycles, as one expects. (Of course, 
this result agrees with our computation in Example 7.14.) 

These examples do not yet indicate the power of "cellular homology" that 
will be apparent by the end of this chapter. 

EXERCISES 

8.17. If K is the Klein bottle, prove that 

H,(K) ~ {: <I> Z/2Z 

ifp = 0 

if p = 1 

if p z 2. 

(Hint: Show that K arises by attaching a 2-cell to SI v SI; compute the induced 
map f*: HI (SI) -+ HI (SI V SI) as in Example 8.7.) 

*8.18. Let W be a 4h-gon in the plane whose edges are labeled 

and let M be the quotient space of W in which the edges are identified according 
to the labels. (If h = 1, then M is the torus; if h = 0, one defines M by identifying 
all the boundary points of W to a point, hence M ~ S2.) One calls h the number 
of handles of M. 

Let W' be a 2n-gon in the plane whose edges are labeled 

and let M' be the quotient space of W' in which the edges are identified 
according to the labels. (If n = 1, then M' is RP2.) One calls n the number 
of crosscaps of M'. 
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(i) Prove that M (respectively, M') is obtained from a wedge of h (respectively, 
n) circles by attaching a 2-cell (here h ~ 0 and n ~ 1). 

(ii) Prove that H2 (M) = Z, that H 1(M) is free abelian of rank 2h, and that 
X(M) = h. 

(iii) Prove that H2(M') = 0, that rank H1 (M') = n - 1, and that X(M') = 2 - n. 
(iv) Use the method of adequate subcomplexes for these computations. 

Definition. An n-manifold is a Hausdorff space M such that each point in M 
has a neighborhood homeomorphic to R". 

It is a remarkable fact that every compact connected 2-manifold is homeo­
morphic to either M or M' as defined in Exercise 8.18; in the first case, Mis 
called a sphere with h handles and is orientable; in the second case, M' is 
nonorientable. 

If Ml and M2 are compact connected 2-manifolds, choose open sets Ui in 
Mi (for i = 1,2) with Ui ~ R2, and choose (closed) disks Di in Ui. Define a new 
space Ml # M2 (the connected sum) by removing the interiors of Dl and D2 
and then gluing Ml and M2 together at the boundaries of the Di • More 
precisely, choose a homeomorphism k: Vl -+V2 c M2 (of course, Vi ~ Sl)and 
let Ml # M2 = Ml ilk M 2. It can be shown that Ml # M2 can be viewed as 
a (compact connected) 2-manifold and that, to homeomorphism, it is inde­
pendent ofthe several choices. The # operation is commutative and associa­
tive; also, S2 acts as a unit, that is, for every (compact connected) 2-manifold 
X, we have S2 # X ~ X. The "remarkable fact" mentioned above is proved 
in [Massey (1967), Chap. 1]. In more detail, it is first shown that such a 
2-manifold X is homeomorphic to either S2, T = Sl X Sl (the torus), Rp2, 
or a connected sum of several copies of the latter two. Then one sees that 
Rp2 # T ~ Rp2 # Rp2 # Rp2 (this last relation explains why there is no mix­
ture of tori and projective planes needed in expressing X as a connected sum; 
one can also prove [Massey (1967), p. 9] that the Klein bottle is homeomorphic 
to Rp2 # RP2). If X is orientable, then either X ~ S2 or X ~ M 1 # ... # M g , 

where each Mi = T; if X is nonorientable, then X ~ M 1 # ... # M g, where 
each Mi = RP2. The number g of "summands" is called the genus of X. To see 
that g is an invariant of X, one first proves that two compact connected 
2-manifolds X and X' are homeomorphic ifand only if(l) both are orientable 
or both are nonorientable and (2) X(X) = X(X'), where X(X) is the Euler­
Poincare characteristic of X. Next, one sees that g = !(2 - X(X)) when X is 
orientable and g = 2 - X(X) when X is nonorientable. The invariance of g is 
thus a consequence of the invariance of X (Theorem 7.15 proves the invariance 
of X for simplicial complexes, and compact 2-manifolds can be triangulated). 
The fundamental groups of these surfaces are the surface groups of Corollary 
7.46: If X is orientable of genus g, then 1tl (X) has a presentation of the first 
type in that corollary; if X is nonorientable of genus g, then 1tl(X) has a 
presentation ofthe second type (see [Massey (1967), pp. 131-132] or [Seifert­
Threlfall, p. 176]). 
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CW Complexes 

This section introduces an important class of spaces that contains all (possibly 
infinite) simplicial complexes. The definition may appear at first to be rather 
technical, but we shall see that such spaces are built in stages: attach a (possibly 
infinite) family of I-cells to a discrete space; attach a family of 2-cells to the 
result; then attach 3-cells, 4-cells, and so on. Since we allow attaching infinitely 
many cells, let us begin by discussing an appropriate topology. 

Definition. Let X be a set covered by subsets Aj , where j lies in some (possibly 
infinite) index set J, that is, X = UjEJ Aj . Assume the following: 

(i) each Aj is a topological space; 
(ii) for each j, k E J, the topologies of Aj and of Ak agree on Aj n Ak; 

(iii) for each j, k E J, the intersection Aj n Ak is closed in Aj and in Ak. 

Then the weak topology on X determined by {A/ j E J} is the topology 
whose closed sets are those subsets F for which F n Aj is closed in Aj for 
every j E J. 

It is easy to see that each Aj is a closed subset of X when X is given the 
weak topology; moreover, each Aj , as a subspace of X, retains its original 
topology. If the index set J is finite, then there is only one topology on X 
compatible with conditions (i), (ii), and (iii), and so it must be the weak 
topology. 

EXERCISES 

8.19. If X has the weak topology determined by {A/ j E J}, then a subset U of X is 
open if and only if U n Aj is open in Aj for every j E J. 

8.20. If X has the weak topology determined by {A/ j E J} and if Y is a closed subspace 
of X, then Y has the weak topology determined by {yn A/ j E J}. 

EXAMPLE 8.8. If {X/ j E J} is a family of topological spaces, then their 
coproduct 11 Xj is their disjoint union equipped with the weak topology 
determined by {Xj: j E J}. The reader may check that each Xj is both open 
and closed in the coproduct. 

EXAMPLE 8.9. If {(Xj ' Xj): j E J} is a family of pointed topological spaces, then 
their wedge V Xj is the quotient space of 11 Xj in which all the (closed) 
basepoints Xj are identified (V Xj is thus a pointed space with basepoint the 
identified family of basepoints). Each Xj is imbedded in V X j , and V Xj has 
the weak topology determined by these subspaces. 

EXAMPLE 8.10. Let X = Vi'21 S/ (where Sl ~ Sl) have basepoint b, and let Y 
be the subspace of R2 consisting of the circles Cn, n z 1, where Cn has center 
(0, lin) and radius lin. Now X and Yare not homeomorphic. For each n z 1, 
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choose Xn E en - {origin}, and define F = {xn: n ~ I}. Now F n en = {xn}, so 
that F n en is closed in en" Thus F is a closed subset of V Sl = x. On the 
other hand, F is not a closed subset of Y, for (0, 0) ¢ F and (0, 0) is a limit point 
of Fin Y. 

A similar argument, using a compact neighborhood of the origin, shows 
that X is not homeomorphic to the subspace Z of R2, which is the union of 
the circles Bn having center (0, n) and radius n. Of course, Y and Z are not 
homeomorphic because Y is compact and Z is not. 

EXAMPLE 8.11. Let K be an abstract simplicial complex with vertex set V 
(which may be infinite). Define I(V) to be the set of all functions cp: V ~ I that 
are zero for all but a finite number of v E V (I(V) is a subspace of the cartesian 
product IV, the latter consisting of all functions V ~ I). In particular, for each 
v E V, define v E I(V) by 

_() {I ifu=v v u = o ifu #- v. 

(Informally, we identify the function v with the vertex v.) If a = {vo, ... , vn } is 
an n-simplex in K, define a c I(V) as the family of all convex combinations of 
{vo, ... , vn} (it is easy to see that the subspace a is homeomorphic to An via 
L Aivi f--+ (Ao, ... , An), the barycentric coordinates). Finally, define 

IKI= U a 
(JEK 

and equip IKI with the weak topology determined by {a: a E K}. (Note that, 
when K is infinite, IKI is not a subspace of I(Y) c IV.) One calls IKI the 
geometric realization of K. The reader should check that, when K is finite, this 
definition coincides with our earlier definition (in Chapter 7). 

Lemma 8.14. Let X have the weak topology determined by a family of subsets 
{Aj: j E J}. For any topological space Y, a function f: X ~ Y is continuous if 
and only if flAj is continuous for every j E J. 
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PROOF. As always, f continuous implies that each of its restrictions is con­
tinuous. Conversely, if G is closed in Y, then f~l(G) n Aj = UIAT1(G) is 
closed in Aj for every j E 1. Since X has the weak topology, f~l(G) is closed 
in X and f is continuous. D 

EXAMPLE 8.8'. Let {X/ j E J} be a family of topological spaces, let Y also be 
a topological space, and let {jj: j E J} be a family of continuous functions, 
where jj: Xj --+ Y. Define 

f: llXj --+ Y 

as follows: if x E llXj, then there is a unique Xj containing x; define f(x) = 

jj(x). Since flXj = jj for all j, it follows from Lemma 8.14 that f is continuous. 
One often uses the notation 

f = lljj· 

EXAMPLE 8.9'. Let {(Xj' xJ j E J} be a family of pointed spaces, let (Y, Yo) also 
be a pointed space, and let {jj: j E J} be a family of continuous pointed maps, 
where jj: (Xj' xJ --+ (Y, Yo). Define 

f: (V X j , b) --+ (Y, Yo) 

as follows: if x E V Xj and x i= b, then there is a unique Xj containing x; define 
f(x) = jj(x); if x = b, define f(x) = Yo. Since flXj = jj for all j, it follows from 
Lemma 8.14 that f is continuous (one can also prove continuity of fusing 
Theorem 1.8). One often uses the notation 

f= V jj. 

Definition. Assume that a topological space X is a disjoint union of cells: 
X = U {e: e E E}. For each k 2 0, the k-skeleton X(k) of X is defined by 

X(k) = U {e E E: dim (e) ::;; k}. 

Of course X(O) c X(l) c X(2) c ... and X = U X(k) , k~O . 

Definition. A CW complex is an ordered triple (X, E, <1», where X is a Hausdorff 
space, E is a family of cells in X, and <I> = {<I>e: e E E} is a family of maps, such 
that 

(1) X = U {e: e E E} (disjoint union); 
(2) for each k-cell e E E, the map <l>e: (D\ Sk~l) --+ (e U X(k~l), X(k~l») is a rela-

tive homeomorphism; 
(3) if e E E, then its closure e is contained in a finite union of cells in E; 
(4) X has the weak topology determined by {e: e E E}. 

If (X, E, <1» is a CW complex, then X is called a CW space, (E, <1» is called 
a CW decomposition of X, and <l>e E <I> is called the characteristic map of e. One 
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should regard a CW space X as a generalized polyhedron (Examples 8.11 and 
8.12 below), and one should regard (E, <1» as a generalized triangulation of X. 

Remarks. (1) Axiom (1) says that the cells E partition X. 
(2) Axiom (2) says that each k-cell e arises from attaching a k-cell to X(k-1) 

via the attaching map <l>eISk-1. 
(3) Axiom (3) is called closure finiteness; the letters CW are the initials of 

"closure finiteness" and "weak topology". 
(4) Axiom (4) says that a subset A of X is closed if and only if An eis closed 

in efor every e E E. Moreover, Lemma 8.14 implies that if Y is any topological 
space and f: X -+ Y any function, then f is continuous if and only if fie is 
continuous for every e E E. 

(5) Just as a polyhedron may have many triangulations, a CW space may 
have many CW decompositions. 

Definition. A CW complex (X, E, <1» is finite if E is a finite set. 

If (X, E, <1» is a finite CW complex, then axioms (3) and (4) in the definition 
of CW complex are redundant. The reader interested in this case only can 
shorten many of the coming proofs. 

EXAMPLE 8.12. Let X be a compact polyhedron and let (K, h) be a triangulation 
of X, where K is a finite simplicial complex and h: IKI-+ X is a homeomor­
phism. For each simplex a E K, let aO = a - 6 denote the corresponding open 
simplex, and define E = {h(aO): a E K}. It is clear that E is a partition of X. If 
K(n-1) denotes the (n - I)-skeleton of K, and if a E K is an n-simplex, then 
define <l>cr = (hla) 0 rJ.cr ' where rJ.cr: (Dn, sn-1) -+ (a, 6) is some homeomorphism. 
Because simplexes intersect in faces (or not at all), 

<l>cr: (Dn, sn-1) -+ (a, 6) -+ (h(aO) U h(IK(n-1)1), h(IK(n-1)1)) 

is a relative homeomorphism (indeed each <l>cr is a homeomorphism from Dn 

to <l>cr(Dn)). Since K is finite, it follows that X is a finite CW complex. 
The geometric realization IKI of a (possibly infinite) simplicial complex K 

is a CW complex. The definition of (E, <1» is as above; by definition (Example 
8.11), I K I has the weak topology determined by the closures of its cells, and 
it is straightforward to check that IKI is closure finite. 

EXAMPLE 8.13. Iff is a real-valued function on a manifold M and if a E R, then 
M a = {x EM: f(x) ::;; a}. A basic result of Morse theory (see [Milnor (1963)]) 
is that if f is a differentiable function on a manifold M with no "degenerate 
critical points" and if each M a is compact, then M has the same homotopy 
type as a CW complex. Indeed it is shown in [Lundell and Weingram, p. 135] 
that every separable manifold has the same homotopy type as a CW complex. 

EXAMPLE 8.14. Regard sn as a subspace of Rn+1. For each n ~ 1, define 
<1>: (Dn, sn-1) -+ (sn, p), where p = (0, ... ,0, 1) E sn, by 

xf---*(2Jl - Ilxl1 2 x, 211xl1 2 - 1). 
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If we denote an i-cell by ei, then the map <1> allows one to view S" as a CW 
complex with E = {eO, en}. Of course, SO also has a CW decomposition with 
two cells, namely, {e?, e~}. 

EXAMPLE 8.15. Recall that S" = E~ U E~ (upper and lower closed hemispheres) 
and E~ n E~ = S"-l (the equator). There are thus two n-cells e1 and e2 with 
e1 = E~ and e2 = E~; one concludes by induction that S" has a CW decom­
position with two i-cells in every dimension 0 :::;; i :::;; n. 

EXAMPLE 8.16. RP" has a CW decomposition {eO, el, ... , en} (Theorem 8.8(i)). 

EXAMPLE 8.17. Rpoo has a CW decomposition with one i-cell in every dimen­
sion i :2: 0 (by definition, Rpoo = U RP" has the weak topology determined by 
the family {RP": n :2: O}). 

EXAMPLE 8.18. CP" has a CW decomposition { eO, e2, ... , e2n } (Theorem 8.8(ii)). 

EXAMPLE 8.19. HP" has a CW decomposition {eO, e4 , .•• , e4"} (Theorem 
8.8(iii)). 

Definition. Let (X, E, <1» be a CW complex. If E' c E, define 

IE'I = U {e: e E E'} eX, 

and define <1>' = {<1>e: e E E'}. Call (IE'I, E', <1>') a CW subcomplex if im <1>e c 

IE'I for every e E E'. 

If E' c E and X' = IE'I, then it is easy to see that every CW subcomplex is 
itself a CW complex (once one observes that (X')(k) = X(k) n X' for all k :2: 0). 
It is also easy to see that any union and any intersection of CW sUbcomplexes 
is again a CW subcomplex. 

Henceforth we may not display all necessary ingredients, and we may say 
that (X, E), or even X, is a CW complex; similarly, we may say that (X', E'), 
or even X', is a CW subcomplex. The next lemma is just Exercise 8.14. 

Lemma 8.15. If (X, E) is a CW complex and if e E E is a k-cell (where k > 0) 
with characteristic map <1>e, then e = im <1>e = <1>e(Dk). 

PROOF. Since <1>e is continuous, 

<1>e(Dk) = <1>e(Dk - Sk-1) c <1>e(Dk - Sk-1) = e. 
For the reverse inclusion, observe that compactness of Dk gives compactness 
of <1>e(Dk). Since X is Hausdorff, <1>.(Dk) is a closed subset of X containing 
e = <1>e(Dk - Sk-1), and so e c <1>.(Dk). 0 

EXAMPLE 8.20. If (X, E) is a CW complex and E' c E, then IE'I is a CW 
sUbcomplex if and only if eel E' I for every e E E'. Hence, if E' is a family of 
k-cells in E, for some fixed k > 0, then I E' I U X(k-1) is a CW subcomplex (for 
axiom (2) gives e c e U X(k-1»). 
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EXAMPLE 8.21. Every k-skeleton X(k) is a CW sub complex (this is the special 
case of the previous example for which E' = 0). 

The following technical lemma will be useful. 

Lemma 8.16. Let (X, E, <1» be an ordered triple satisfying axiom (1) and axiom 
(2) of the definition of CW complex, and let cp: 11eeE Dn(e) ~ X be the map 
cp = 11eeE <l>e· Then X has the weak topology determined by {e: e E E} if and 
only if cp is an identification. 

PROOF. Assume that X has the weak topology. Since cp is a continuous 
surjection, it suffices to show that if C c X and cp-1(C) is closed in 11e Dn(e), 
then C is closed in X. Now cp-1(C) n Dn(e) is compact, being a closed subset of 
Dn(e). On the other hand, 

cp-1(C)nDn(e) = <I>;;1(C)nDn(e) 

= <I>;;1(C) n <1>;;1 (e) (Lemma 8.15) 

= <I>;;1(C n e). 

Thus C n e is compact, hence closed in e. As X has the weak topology, C is 
closed in X. 

Conversely, assume that cp is an identification. Let C c X be such that C n e 
is closed in e for all e E E. Then cp -1 (C) n Dn(e) is closed in Dn(e) for all e E E. 
Since 11 Dn(e) has the weak topology determined by {Dn(e): e E E}, cp-1(C) is 
closed in 11 Dn(e); since cp is an identification, C is closed in X. Therefore X 
has the weak topology. 0 

Lemma 8.17. Let (X, E) be a CW complex, and let E' be a finite subset of E. 
Then IE'I is a CW subcomplex if and only if IE'I is closed. 

PROOF. If IE'I is a CW subcomplex, then e c IE'I for every e E E'. Hence 
IE'I = U {e: e E E'} = U {e: e E E'} is closed, being a finite union of closed 
sets. Conversely, if IE'I is closed and e E E', then e c IE'I and e c IE'I; hence 
IE'I is a CW sub complex. 0 

Lemma 8.18. If (X, E) is a CW complex and e E E, then the closure e is 
contained in a finite CW subcomplex. 

PROOF. We proceed by induction on n = dim (e); the statement is obviously 
true when n = 0. If n > 0, then Lemma 8.15 gives 

e - e = <l>e(Dn) - e c (e U x(n-1») - e c x(n-1). 

By axiom (3), emeets only finitely many cells other than e, say, el>"" em, and 
we have just seen that dim(eJ :-:; n - 1 for all i. By induction, there is a finite 
CW subcomplex Xi containing ei, for i = 1, ... , m, and each Xi is closed, by 
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Lemma 8.17. But e c e U Xl U ... U X m , so that this union of finitely many cells 
is closed and hence is a finite CW subcomplex. 0 

Theorem 8.19. If (X, E) is a CW complex, then every compact subset K of X 
lies in a finite CW subcomplex. Therefore, a CW space X is compact if and only 
if (X, E) is a finite CW complex for every CW decomposition E. 

PROOF. For each e E E with K n e =f. 0, choose a point ae E K n e, and let A 
be the set comprised ofall such ae . For each e E E, Lemma 8.18 says that there 
is a finite CW subcomplex Xe containing e. Therefore A nee A n Xe is a finite 
set and hence is closed in e. Since X has the weak topology, A is closed in X; 
indeed the same argument shows that every subset of A is closed in X, hence 
A is discrete. But A is also compact, being a closed subset of K. Thus A is 
finite, so that K meets only finitely many e E E, say, e1 , ••• , em. By Lemma 
8.18, there are finite CW subcomplexes Xi with ei c Xi for i = 1, ... , m. It 
follows that K is contained in the finite CW subcomplex U Xi· D 

Lemma 8.20. If (X, E) is a CW complex, then a subset A of X is closed if and 
only if A n X' is closed in X' for every finite CW subcomplex X' in X. 

PROOF. If A is closed in X, then A n X' is certainly closed in X'. Conversely, 
for each e E E, choose a finite sub complex Xe containing e. By hypothesis, 
An Xe is closed in Xe; it follows that An e = (A n Xe) n e is closed in Xe and 
hence is closed in the smaller set e. Therefore A is closed in X because X has 
the weak topology determined by all e. 0 

It follows that a CW complex has the weak topology determined by the 
family of its finite CW subcomplexes. The next result generalizes Lemma 
8.17 by removing the finiteness hypothesis. 

Theorem 8.21. Let (X, E) be a CW complex and let E' be a (possibly infinite) 
subset of E. Then IE'I is a CW subcomplex if and only if IE'I is closed. 

PROOF. If IE'I is closed and e E E', then e c IE'I and IE'I is a CW subcomplex. 
Conversely, assume that IE'I = X' is a CW subcomplex.1t suffices, by Lemma 
8.20, to show that X' n Y is closed in Y for every finite CW subcomplex Y of 
X. Now X' n Y is a finite union of cells, say, X' n Y = e1 U··· U em. As X' n Y 
is a CW subcomplex, ei c X' n Y for all i; hence X' n Y = e 1 U ... U em' and so 
X' n Y is closed in Y (even in X). 0 

Corollary 8.22. Let (X, E) be a CW complex and, for some fixed n > 0, let E' 
be a family of n-cells in E. 

(i) X' = IE'I U x(n-l) is closed in X; 
(ii) every n-skeleton x(n) is closed in X; 
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(iii) every n-cell e is open in x(n); 

(iv) x(n) - x(n-l) is an open subset of x(n). 

PROOF. (i) We know that X' is a CW subcomplex (Example 8.20), hence it is 
closed. 

(ii) If n > 0, this is the special case of (i) in which E' = 0; if n = 0, this is 
Exercise 8.22. 

(iii) This is the special case of (i) in which E' consists of every n-cell in E 
except e. 

(iv) Immediate from (iii). 

Theorem 8.23. Let X be a CW complex. 

(i) Every path component of X is a CW subcomplex, hence is closed. 
(ii) The path components of X are closed and open. 

(iii) The path components of X are the components of x. 
(iv) X is connected if and only if X is path connected. 

o 

PROOF. (i) Since X is a disjoint union of cells, each of which is path connected, 
it follows that each path component A is a union of cells. If e is an n-cell with 
e c A, then e = cI> e(Dn) is also path connected, and so e c A. Therefore A is 
a CW subcomplex and hence is closed. 

(ii) Let A be a path component of X, and let B be the union of the other 
path components. Since B is a union of CW subcomplexes, it is a CW 
subcomplex and hence is closed. As B is the complement of A, we see that A 
is open. 

(iii) Let A be a path component of X and let Y be the component of X 
containing A. Since A is closed and open, it follows that A = Y (lest Y = 
AU (Y - A) be a disconnection). 

(iv) Immediate from (iii). 0 

The sin{l/x) space is connected but not path connected; there are thus 
Hausdorff spaces (even compact subsets of the plane) that are not CW spaces. 

EXERCISES 

8.21. A space is called compactly generated if it is Hausdorff and it has the weak 
topology determined by its compact subsets. Prove that every CW complex is 
compactly generated. 

*8.22. If (X, E) is a CW complex, then X(O) is a discrete closed subset of X. (Hint: If A 
is any subset of X(O), then A n e is finite for every e E E. Note that {lin: n ~ l} 
is a discrete subspace of R that is not a closed subset of R.) 

*8.23. Show that a CW complex X has the weak topology determined by the family 
of its skeletons {X('): n ~ O}. Conclude that a set U is open in X if and only if 
un x(·) is open in x(n) for every n ~ O. 
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*8.24. Let (X, E) be a CW complex, and for fixed n > 0, let En be the family of all n-cells 
in E. Show that 

x(n) = (-¥.- Dn) lli x(n-l), 

where f = II eeE (<I>elsn-1). (As in Exercise 8.I2(ii), we identify x(n-l) with its 
image in the;pa~e obtained from x(n-l) by attaching 11 Dn via f) 

*8.25. Show that both the torus and the Klein bottle have CW decompositions of the 
form {eO, el, eL e2}, that is, one O-cell, two I-cells, and one 2-cell. 

8.26. (i) Show that neither union of tangent circles in Example 8.10 is a CW space. 
(ii) Show that the subspace X of R, namely, 

X = {O}U{I/n: n;:: I}, 

is not a CW space. 

8.27. Define the dimension of a CW complex (X, E) to be 

dim X = sup{dim(e): e E E}. 

If E' is another CW decomposition of X, show that (X, E) and (X, E') have the 
same dimension. (Hint: See the proof of Theorem 7.1.) Conclude that dim X is 
independent of the CW decomposition of X. 

8.28. Show that a CW complex X is connected if and only if its I-skeleton X(I) is 
connected. 

8.29. Let (X, E) be a CW complex, and Y be any space. Prove that a function 
f: X -+ Y is continuous if and only if f<l>e is continuous for all e E E. 

The next theorem is the generalization of Lemma 8.6 (where we attached 
one cell), which characterizes CW complexes as spaces obtained by a sequence 
of attaching spaces. More important, this theorem provides an inductive 
method of constructing CW complexes. 

Theorem 8.24. Let X be a space, and let 

XO c Xl C X 2 c··· 

be a sequence of subsets with X = Un;?:o xn. Assume the following: 

(i) XO is discrete; 
(ii) for each n > 0, there is a (possibly empty) index set An and a family of 

continuous functions {fan-I: sn-l -+ Xn-Ila E An} so that 

xn = (Jf Dn) 111 X n-\ 

where f = 11 fan- l ; 
(iii) X has the weak topology determined by {xn: n 2 O}. 
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If <1>~ denotes the (usual) composite 

Dn ~ Jf Dn ~ (Jf Dn) 11 X n- 1 ~ (Jf Dn) 11J X n- 1, 

then (X, E, <1» is a CW complex, where 

E = XO U U {<1>~(Dn - sn-l): IX E An} 
n;;>:l 

and 

<1> = {constant maps to XO} U U {<1>~: IX E An}. 
n;;>:l 

Remarks. (i) The converse ofthis theorem is contained in Exercises 8.22, 8.23, 
and 8.24. 

(2) Often the most difficult part of verifying that a space X is a CW complex 
is checking that it is Hausdorff; this theorem is a way to avoid this problem. 

PROOF (after Maunder). Let us show that X is Hausdorff. Let x, y be distinct 
points in X, and let n be the least integer with both x and y in xn; we may 
assume that x E e; = <1>~(Dn - sn-l). We claim that there are disjoint sets Un' 
v" that are open in xn and with x E Un and y E v". If n = 0, such sets exist 
because XO is discrete. If n > 0, and B(e) denotes the closed disk in Dn with 
radius e and center (<1>~)-l(X), then one may choose v" = xn - <1>~(B(e)) for 
suitable e. Next, we show by induction on k ~ n that there exist disjoint subsets 
Uk' l-k, open in X\ with Uk C Uk+l and l-k c l-k+l' and with Uk n xn = Un and 
l-k n xn = v". Given Uk and l-k, observe that, for each (k + i)-cell e, the sets 
<1>;l(Ud and <1>;1(l-k) are disjoint open sets in Sk c Dk+l. Define 

Ae = {z E Dk+1 - Sk: Ilzll > t and z/llzil E <1>;l(Uk)} 

and 
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Now define Uk+1 = Uk U (U <l>AAe)) and ~+1 = ~ U (U <l>e(Be)), where e varies 
over all (k + I)-cells in X. Clearly, Uk+1 n Vk+1 = 0, and Uk+1 n X' = 

Uk n X' = U. (similarly, ~+1 n X' = V.). Also, Uk+l (and Vk+l ) is open in Xk+l, 
using condition (ii) and Exercise 8.12(i). Finally, define U = Uk~' Uk and 
V = Uk~' ~. Both U and V are open in X, because X has the weak topology 
determined by {X': n 20}, by condition (iii). Therefore X is Hausdorff. 

Let us now verify the four axioms in the definition of CW complex. It is 
plain that axiom (1) and axiom (2) are satisfied. We prove, by induction on n, 
that each X' is a CW complex. If n = 0, this follows from XO being discrete. 
Assume that n > 0. To see that X' is closure finite, let e be an i-cell in X' (hence 
i ::::;; n). If i < n, then induction shows that e meets only finitely many cells. If 
i = n, then e = <l>:(D') for some r:t (the proof of Lemma 8.15 requires that X 
be Hausdorff). But <l>:(S·-I) is a compact subset of X·- l , which is a CW 
complex, by induction; by Theorem 8.19, there is a finite CW subcomplex Y 
containing <l>:(S·-I). Therefore 

e = <l>:(D') = e U <l>:(S·-I) c e U Y, 

and so e meets only finitely many cells. We prove, by induction on n 2 0, 
that X' has the weak topology determined by {e: dim(e) ::::;; n}. Of course, 
the discrete space XO has the weak topology. Since X' is a quotient space 
of U1 D') 11 X·- l , the result follows from the inductive hypothesis and 
Lemma 8.16. 

We now know that X' is a CW complex for every n. To see that X is a CW 
complex, one can quickly check axioms (1), (2), and (3). To check the weak 
topology, assume that Z c X and Z n e is closed in e for every cell e. In 
particular, Z n e is closed in e for every i-cell e with i ::::;; n; hence Z n X' is 
closed in X' for every n. Condition (iii) now gives Z closed in X. 0 

EXERCISES 

8.30. (i) Show that there exist finite CW complexes that are not polyhedra. (Hint: 
Attach a 2-cell to SI with an attaching map resembling x sin(l/x).} 

(ii) Prove that every finite CW complex has the same homotopy type as a 
polyhedron. (Hint: Use Theorem 8.24, induction, and the simplicial approxi­
mation theorem. See [Lundell and Weingram, p. 131J.) 

8.31. If {X A: A. E A} is a family of CW complexes with basepoint, then their wedge 
V X A is also a CW complex. (Note: This result follows at once from Theorem 
8.27 below, but a direct proof can be given here.) 

*8.32. If (X, E) and (X', E) are finite CW complexes, then (X x X', En) is a CW 
complex, where En = {e x e': e E E and e' E E'}. (Hint: If e is an i-cell and e' 
is a j-cell, then e x e' is an (i + j}-cell and e x e' - e x e' = [(e - e) x e'J U 
[e x (e' - e')].) 

*8.33. If (X, E) is a CW complex, then so is X x I. (Hint: View I as a CW com­
plex having two O-cells, aO, bO, and one I-cell cl • Show that En = {e x aO, e x bO, 

e x c1: e E E} is a CW decomposition of X x I. In particular, show that X x I 
has the weak topology determined by En.} 
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Remark. There exist CW complexes (Xl' E l ) and (X2' E2) with Xl x X 2 not 
a CW space (see [Dowker]). It is known (see [Maunder, p. 282] that if Xl 
and X 2 are CW spaces, then so is XIX X 2 if either one of the Xi is locally 
compact or if both Xl and X 2 have only a countable number of cells. 

The inductive construction of open sets given in the proof of Theorem 8.24, 
that is, the "thickening" of Uk to Uk+l' can be modified and used again. 

Theorem 8.25. Every CW complex X is locally path connected. 

PROOF. Let x E X and let U be an open neighborhood of x; it suffices to find 
an open path connected set V with x EVe U. Let n be the smallest integer 
with x E x(n), and let eo be the n-cell containing x. We prove, by induction on 
k ;::: n, that there exist path connected subsets VIc in X(k) with VIc+1 n X(k) = VIc, 
with x E VIc c X(k) n U, and with VIc open in X(k). The base of the induction 
requires two cases: if n > 0, then v,. exists because eo is homeomorphic to the 
locally path connected space Dn - sn-l; if n = 0, define Vo = eo = {x}, which 
is an open set in the discrete space X(O). 

For the inductive step, assume that VIc exists as in the inductive state­
ment. If T is any open path connected subset of S\ and if 0 < 8 < 1, define 
"thickenings" 

B(T, 8) = {z E Dk+l - Sk: Ilzll > 8 and z/llzil E T}. 

It is easy to see that every B(T, 8) is an open path connected subset of Dk+1 
with TU B(T, 8) C B(T, 8). Moreover, if W is any open subset of Dk+l and 
rJ E wn S\ then there exists an open path connected set T(rJ) with rJ E T(rJ) c 

wn Sk and there exists an 8 with 0 < 8 < 1 such that B(T(rJ), 8) c W For 
every (k + I)-cell e, <l>;l(U n X(k+l)) is an open subset of Dk+l; moreover, 
<l>;l(VIc) is an open subset (in Sk) contained in Sk n <l>;l(U n X(k+1)). Define 

VIc+l = VIc U U U <l>e(B(T(rJ),8)), 
e <1E<I>;l(vd 

where rJ E T(rJ) c <l>;l(VIc) and 8 (which depends on T(rJ)) are chosen so that 
B(T(rJ), 8) c <l>;l(U n X(k+l)). Now VIc+1 is path connected: it is the union 
of the path connected subsets <l>e(T(rJ) U B(T(rJ), 8)) (for B(T(rJ), 8) c T(rJ) U 
B(T(rJ), 8) C B(T(rJ), 8) and Uu T(rJ) = <l>;l(VIc)) each of which meets the path 
connected set Vk contained in the union. Plainly, VIc+1 n X(k) = Vk, and x E 
VIc+l c un X(k+l). Finally, VIc+1 is open in X(k+l), by Exercise 8.12(iii) (VIc+1 is 
the image of 

11 (<l>;l(VIc)U U B(T(rJ),8))ll X (k)). 
e <1E<I>;l(Vk) 

Define V = U Vk • Then x EVe U, V is open in X, and V is path 
connected. 0 

This result coupled with Corollary 1.20 gives another proof of Theorem 
8.23(iii). We continue investigating topological properties of CW complexes. 
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Theorem 8.26. Every CW complex X is a normal space. 

PROOF. If A and B are disjoint closed subsets of X, it suffices to find a 
continuousf: X -dwithf(A) = {OJ andf(B) = {I}. We shall prove byinduc­
tion on n that there exist continuous maps f,,: x(n) ~ I with fn(A n x(n») = {OJ 
and fn(B n x(n») = {I}. Given such maps fn' one can define the desired map f 
by setting flx(n) = f". 

If n = 0, then fo exists because X(O) is discrete. Assume that n > ° and let 
e be an n-cell in X with characteristic map IDe. Now ID;l(A) = ID;l(A ne) and 
ID;l (B) = ID;l (B n e) are disjoint closed subsets of Dn. If he = fn-1 0 (IDe I sn-1), 
then he: sn-1 ~ I is a continuous map with he(ID;l(A) n sn-1) = {OJ and 
hAID;l(B) n sn-1) = {I}. Extend he to h~ defined on ID;l(A) U ID;l(B) U sn-1 by 
defining h~(ID;l(A)) = {OJ and h~(ID;l(B)) = {I}. By the Tietze extension theo­
rem, there is a continuous fe: Dn ~ I extending h~. Finally, define f,,: x(n) ~ I 
as the extension of fn-1 with f" Ie = fe for all n-cells e in X. It is easy to see that 
fn has the necessary properties. D 

It is known that CW complexes are paracompact and perfectly normal (see 
[Lundell and Weingram, p. 54]). 

Theorem 8.27. If X is a CW complex and Y is a CW subcomplex, then X/Y is 
a CW complex. 

PROOF. Let us prove that X/Y is Hausdorff. Let v: X ~ X/Y be the natural 
map, let * = v(Y), and let v(x), v(z) be distinct points in X/Y. If neither v(x) 
nor v(z) equals *, then they can be separated by open sets because X, hence 
X - Y, is Hausdorff and v I X - Y is a homeomorphism from X - Y to the 
subspace (X/Y) - {*}. If v(z) = *, then x f/: Y; since X is normal, there is a 
continuous f: X ~ I with f(x) = ° and f(Y) = {1}. Since f is constant on the 
fibers of v, Corollary 1.9 says that f induces a continuous 1': X/Y ~ I with 
f'(v(x)) = ° and 1'(*) = 1; it follows that X/Y is Hausdorff. 

Let (E, ID) be a CW decomposition of X and let (E', ID') be a CW decomposi­
tion of Y, where E' c E and ID' c ID. For each n ~ 0, let En (respectively, E~) 
denote the family of all n-cells in E (respectively, E'). Define the O-cells in X /Y 
by 

for n > 0, define 

(x/y)n = {v(e): e E En - E~}. 

Finally, define the characteristic map of v(e) as the composite vIDe' 
We now verify the four axioms in the definition of CW complex. 
(1) X/Y is the disjoint union of its cells; this follows easily from the cor­

responding property of X. 
(2) Note first that, for each e E En - E~, the map vIDe is a map of pairs 
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(Dn, sn-I) --+ (v(e) U (Xly)(n-l), (Xly)(n-,»); moreover, since <l>e and v: (X, Y)--+ 
(X IY, *) are relative homeomorphisms (Example 8.5), it follows that v<l> e is also 
a relative homeomorphism. 

(3) If e E En - E~, then v(e) = v<l>e(Dn) = v(e); since e is contained in the 
union of finitely many cells in X, it follows that v(e) is also contained in such 
a finite union in XIY. 

(4) Suppose that B c XIY is such that B n v(e) is closed in v(e) for every e. 
Then V-I (B n v(e)) = V-I (B) n v-I(v(e)) is closed in V-I (v(e)) = Y U e for every 
cell e. For every cell a in X, V-I (B) n a = V-I (B) n (Y U a) n a is closed in a. 
Since X has the weak topology determined by its cells, V-I (B) is closed in X; 
since V is an identification, B = vv- I B is closed in XIY. 0 

One can also prove this theorem using Theorem 8.24. 

Definition. Let A be a subspace of X, and let i: A <:... X be the inclusion. Then 
A is a strong deformation retract of X if there is a continuous r: X --+ A such 
that r 0 i = IA and i 0 r ~ Ix reI A; one calls r a strong deformation retraction. 

One can rephrase this definition as follows: There is a continuous 
F: X x I --+ X such that 

(i) F(x, 0) = x for all x E X; 
(ii) F(x, 1) E A for all x E X; 

(iii) F(a, t) = a for all a E A and all tEl. 

Now define r: X --+ A by r(x) = F(x, 1) to recapture the definition. 
Recall the weaker definitions already given. A subspace A is a retract of X 

ifthere exists a continuous r: X --+ A with r 0 i = 1A ; a subspace A is a deforma­
tion retract of X if r 0 i = IA and i 0 r ~ Ix. Thus A is a strong deformation 
retract if A is a retract and there is a relative homotopy i 0 r ~ lx, not merely 
a free homotopy. 

Let X be the subset of the closed strip in R2 between the y-axis and the line 
x = 1, which is the union of I and all the line segments through the origin 
having slope lin for n = 1, 2, 3, .... It can be shown that I is a deformation 
retract of X, but that I is not a strong deformation retract of X. 

EXERCISE 

*8.34. Let Z eYe X. If Z is a strong deformation retract of Y and Y is a strong 
deformation retract of X, then Z is a strong deformation retract of X. More 
precisely, if r2 : X ~ Y and rl : Y ~ Z are strong deformation retractions, then 
r,r2 : X ~ Z is a strong deformation retraction. 

The next technical lemma is useful. 

Lemma 8.28. Let (X, E) be a CW complex and let (Y, E') be a CW sub complex 
(where E' c E). If M c X(k) - (X(k-I) U Y) consists of one point chosen from 
each k-cell in X - Y, then X(k-I) U Y is a strong deformation retract of 
(X(k) U Y) - M for every k :2: 1. 
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PROOF. There is no loss in generality in assuming that, for each k-cell e, the 
characteristic map <l>e: Dk --+ X(k) U Y satisfies <l>e(O) = m., where {me} = en M. 
Define F: «X(k) U Y) - M) x 1--+ (X(k) U Y) - M by 

{
X if x E X(k-l) U Y 

F(x, t) = . 
<l>eW - t)v + tv/llvll] If x = <l>e(v), v#- 0, and e ¢ E' 

(we are merely projecting e - {me} onto the boundary of e by contracting 
along radii from me)' It suffices to show that F is continuous. 

Now X(k) U Y has the weak topology determined by its cells; it is easy to 
see that (X(k) U Y) - M has the weak topology determined by the cells in E' 
and the punctured cells e - {me} for e E E - E'.1t follows from Exercise 8.33 
that «X(k) U Y) - M) x I has the weak topology determined by all e# x aO, 
e# x bO, and e# x c\ where the cells in I are aO, bO (the endpoints), c1 (the 
open interval), and e# is either a cell in E' or a punctured cell in E - E'. But, 
as in the proof of Theorem 8.11, the restriction of F to any of these subsets 
is continuous, so that the continuity of F follows from Lemma 8.14. D 

Theorem 8.29. Let X be a CW complex and let Y be a CW subcomplex. There 
is an open set U in X containing Y with Ya strong deformation retract of U. 

PROOF (Dold). By Lemma 8.28, X(k-l) U Y is a strong deformation retract of 
(X(k) U Y) - M for every k ~ 1 (where M consists of exactly one point from 
each cell in X that is not in Y); let 

rk: (X(k) U Y) - M --+ X(k-1) U Y 

be a strong deformation retraction. Define Uo = Yand Uk = r;1(Uk_1) for 
k ~ 1. Clearly, Y c U1; moreover, U1 is open in (X(1) U Y) - M (since Uo = Y 
is open in X(O) U Y because X(O) is discrete). It follows that Uk is open in 
(X(k) U Y) - M for all k ~ 1 and that Uk c Uk+1' Hence U = U Uk is an open 
set in X containing Y (that U is open is by now a familiar argument). By 
Exercise 8.34, Y is a strong deformation retract of each Uk: there are contin­
uous maps Gk: Uk x I --+ Uk for all k ~ 1 such that 

Gk(x, 0) = x } l' 11 lor a x E Uk; 
Gk(x, 1) = r1 r2 ••• rk(x) E Y 

Gk(y, t) = y for all y E Y and tEl. 

Moreover, these Gk can be constructed, inductively, so that Gk+11 Uk x I = Gk. 
Finally, define H: U x 1--+ U by HI Uk X 1= Gk. Now H is continuous, for 
U x I has the weak topology determined by {(U x I) n X(k) x I: k ~ I} = 

{Uk x I: k ~ I}, and H exhibits Y as a strong deformation retract of U. D 

Remark. More is true: given any open set W containing Y, there exists an open 
V with Y eVe Wand with Ya strong deformation retract of V ([Lundell 
and Weingram, p. 63]). 
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Lemma 8.30. Let (X, E) be a CW complex and let x EX. Then there is a CW 
decomposition of X having x as a O-cell. 

PROOF. There exists a (unique) n-cell e E E containing x. If n = 0, then x is 
already a O-cell. If n > 0, there exists Z E Dn - sn-l with <l>e(z) = x. By sub­
dividing, one can regard Dn as a CW complex with cells ~, say, and with Z a 
O-cell in~. Then E' = (E - {e}) U {<I>Au): u E ~} gives the desired CW decom­
position of X. 0 

Corollary 8.31. If X is a CW complex and x E X, then there exists an open 
neighborhood U of x with U contractible to x. 

PROOF. By Lemma 8.30, we may assume that x is a O-cell in X, hence {x} is a 
CW subcomplex of X. Theorem 8.29 now applies. 0 

Remark. More is true. A space X is locally contractible if, for every x E X, each 
neighborhood U of x contains an open neighborhood V of x that is contracti­
ble to x in U; that is, there exists a continuous F: V x 1-+ U with F(v, 0) = v 
and F(v, 1) = x for all v E V. Using the improved version of Theorem 8.29 cited 
above, one can prove that CW complexes are locally contractible. 

Lemma 8.32. Let X be a normal space, and let Y be a closed subspace. If 
X x {O} U Y x I is a retract of some open set U containing it, then, for every 
space Z, every map H': X x {O} U Y x 1-+ Z can be extended to X x I. 

x X I 

/ 
, , 

u 

;j 
x X {a} U Y X I 

H' 

'\ 
'\ 

'\ 
'\ 
'\ , 

\ 
~ z 

PROOF. Let r: U -+ X x {O} U Y x I be a retraction. We shall construct a 
continuous map u': X x 1-+ U that fixes X x {O} U Y x I pointwise; then the 
composite H'ru' is the desired extension of H'. 

For each y E Y, {y} x leU, so that the tube lemma (Lemma 8.9') gives 
an open set Wy of X containing y such that Wy x leU. If W is the union of 
these sets Wy, then W is an open set in X with YeW and with W x leU. 
Since X is normal, the Urysohn lemma gives a continuous map u: X -+ I with 
u(Y) = 1 and u(X - W) = O. 

Define u': X x I -+ X x I by u'(x, t) = (x, tu(x)). First, we show that im u' c 

U, so that we may assume that u': X x 1-+ U. If x f/: W, then u(x) = 0 and 
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u'(x, t) = (x, 0) E X X {O} c U; if x E W, then u'(x, t) = (x, tu(x)) E W x Ie 
U. Finally, we show that u' fixes X x {O} U Y x I pointwise. Clearly, u'(x, 0) = 
(x, 0), while y E Y implies u'(y, t) = (y, tu(y)) = (y, t) because u(y) = 1. 0 

Theorem 8.33 (Homotopy Extension Theorem). Let X be a CW complex, let 
Y be a CW subcomplex, and let Z be a space. For every continuous f: X -. Z 
and every homotopy h: Y x I -. Z with h(y, 0) = f(y) for all y E Y, there exists 
a homotopy H: X x I -. Z with 

H(x, 0) = f(x) for all x E X 

and 

H(y, t) = h(y, t) for all (y, t) E Y x I. 

PROOF. DefineH':(X x {O})U(Y x I)-.ZbyH'(x, 0) = f(x) for all x EXand 
H'(y, t) = h(y, t) for all (y, t) E Y x I. Since X x {O} U Y x I is a CW sub­
complex of X x I, Theorem 8.29 provides an open neighborhood U con­
taining it and with X x {O} U Y x I a (strong deformation) retract of U. Since 
X is normal, by Theorem 8.26, Lemma 8.32 applies to show that H' can be 
extended to X x I. 0 

For a proof of Theorem 8.33 avoiding Theorem 8.29, see [Maunder, p. 284]. 
There is standard terminology describing these theorems. Every CW sub­

complex of a CW complex is an absolute neighborhood retract (ANR) (Theorem 
8.29), and its inclusion is a co fibration (Theorem 8.33). 

Cellular Homology 

We now introduce cellular homology, the theory most suitable for computing 
homology groups of CW complexes. Given a CW decomposition E of a space 
X, we shall define a chain complex whose group of n-chains, for each n ~ 0, 
is a free abelian group whose rank is the number of n-cells in E. For simplicial 
complexes, these ranks are usually smaller than the ranks of the chain groups 
of simplicial theory, for the number of n-cells in a CW decomposition can be 
less than the number of n-simplexes in a triangulation. Thus Example 8.14 
shows that the cellular chain groups for sn (with n > 0) can be infinite cyclic 
in degree 0 and n and zero elsewhere. Knowing this, one can instantly compute 
H*(sn). 

One could define the cellular chain complex directly (we have not yet 
described the differentiations), but it is quicker for us to define it in terms of 
singular homology groups. 

Definition. A filtration of a topological space X is a sequence of subspaces 
{xn: n E Z} with xn C Xn+1 for all n. A filtration is cellular if: 
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(i) Hp(xn, X n- 1) = 0 for all p i= n; 
(ii) for every m ~ 0 and every continuous 0": d m ~ X, there is an integer n with 

im 0" C xn. 

Note that condition (ii), a weak version of Theorem 8.19, implies that 
X = U xn because every O-simplex (namely, every point in X) lies in some xn. 

Definition. A cellular space is a topological space with a cellular filtration. If 
X and Yare cellular spaces, then a cellular map is a continuous function 
f: X ~ Y with f(Xn) c yn for all n E Z. 

It is plain that all cellular spaces and cellular maps form a category. The 
filtration of a CW complex by its skeletons will be seen to be cellular (Theorem 
8.38). If no other cellular filtrations are mentioned, a continuous map f: X ~ Y 
between CW complexes is called cellular if 

f(x(n)) c yIn) for all n ~ o. 

Definition. If X is a cellular space and k ~ 0, define 

~(X) = Hk(X\ X k- 1) (singular homology); 

define dk : ~(X) ~ ~-l(X) as the composite dk = i*o, 
Hk(Xk, X k- 1) 

,j~ 
Hk_1(Xk- 1) ~ Hk_1(Xk-1, X k- 2 ) 

I. 

where i: (Xk- 1, 0) 4 (X\ X k- 1) is the inclusion and 0 is the connecting homo­
morphism arising from the long exact sequence of the pair (Xk, X k- 1 ). 

Lemma 8.34. If X is cellular space, then (W*(X), d) is a chain complex (called 
the cellular chain complex of the filtration of X). 

PROOF. We need show only that dkdk+1 = O. But dkdk+l is the composite 

Hk+l (Xk+1, Xk) ~ Hk(Xk) ~ Hk(X\ X k- 1) ~ Hk- 1 (Xk- 1) ~ Hk- 1 (Xk- 1, X k- 2), 

and this is zero because the middle two arrows are adjacent arrows in the long 
exact sequence of the pair (Xk, X k- 1). 0 

The hypothesis that the filtration on X is cellular is not needed for Lemma 
8.34; any filtration gives the same result. 

Lemma 8.35. Let X be a cellular space and let p ~ q. 

(i) Hn(XP, xq) = 0 if q ~ n or if n > p. 
(ii) Hn(X, xq) = 0 for all q ~ n. 
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(iii) Hn(X, xq) ~ Hn(Xn+1, xq) if q < n. 
(iv) Hn(X, X-I) ~ Hn(X, X- 2 ) ~ Hn(X, X- 3 ) ~ ••• for all n. 

PROOF. (i) We do an induction on p - q ~ 0. If p - q = 0, then the result is 
true because Hn(Y, Y) = ° for every space Y and every n (use the long exact 
seq uence of the pair (Y, Y)). If p - q > 0, consider the following portion of the 
long exact sequence of the triple (XP, xq+1, xq): 

Hn(Xq+1, xq) ~ Hn(XP, xq) ~ Hn(XP, Xq+1 ). 

Now n > p ~ q + 1 implies that n #- q + 1, so that the first term is zero, 
by definition of cellular filtration. The inductive hypothesis does apply to 
the third term, for p - (q + 1) < p - q; moreover, we know that n > p, 
while q ~ n implies that q + 1 ~ n; therefore Hn(XP, Xq+l) = 0, and hence the 
middle term is zero, as desired. 

(ii) Let cls , E Hn(X, xq). By condition (ii) in the definition of cellular 
filtration, there exists p ~ q with, E Sn(XP). Hence 

cls , E im(Hn(XP, xq) ~ Hn(X, xq)), 

and this last (sub)group is zero, by (i). 
(iii) The long exact sequence of the triple (X, X n+1, xq) contains the portion 

Hn+1 (X, xn+1) ~ Hn(xn+1, xq) ~ Hn(X, xq) ~ Hn(X, X n+I ), 

and the outside flanking terms are zero, by (ii). 
(iv) Let q =::; - 2. Given n, we know that Hn(X, xq) ~ Hn(Xn+l , xq), by (iii). 

The long exact sequence of the triple (xn+1, x-I, xq) contains the portion 

Hn(X- I , xq) ~ Hn(xn+1, xq) ~ Hn(xn+1, x-l ) ~ Hn- l (X- l , xq). 

Now Hn(X-I, xq) = ° if n ~ 0, by (i); when n < 0, singular homology always 
vanishes. We conclude that 

Theorem 8.36. If X is a cellular space and k ~ 0, then 

Hk(W*(X)) ~ Hk(X, X-l ). 

PROOF (Dold). Let k < n - 1. By remark (4) after Theorem 5.9, the triple 
(xn+l, xn, Xk) gives a commutative diagram 

H (xn+1 xn) ~ H (xn) 

"H'l/" 
Hn(xn, X k), 

where 0, 0' are appropriate connecting homomorphisms and A* is induced 
from the inclusion A: (xn, 0) ~ (xn, Xk). Since Hn is a functor, there is a 
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commutative diagram 

where all arrows are induced from inclusions. Combining these triangles gives 
a commutative diagram 

By definition, dn+1 = J.1*a. There is thus a commutative diagram 

Hn+l (xn+l, xn) 

"I ~ 
Hn(Xn, Xk) ----:---+ Hn(Xn, X n- 1 ). 

J* 

A similar argument gives commutativity of the other triangle in the diagram 
below: 

The row and two columns are each portions of appropriate exact sequences 
of triples, the zeros occurring by Lemma 8.35. Now 

Hn(X, Xk) ~ Hn(Xn+\ Xk) [Lemma 8.35(iii)] 

~ Hn(Xn, Xk)/im a' [exactness of first column] 
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~ im j*/im j*a' [j* is an injection] 

= ker a/im j*a' [exactness of row] 

= ker a/im dn+1 [definition of dn+1] 

= ker i*a/im dn+1 [i* is an injection] 

= ker dn/im dn+1 [definition of dn]. 

Thus Hn(X, Xk) ~ Hn(W*(X)) whenever k < n - 1. It follows from Lemma 
8.35(iv) that Hn(X, X-1 ) ~ Hn(W*(X)) for all n. D 

Corollary 8.37. If X is a cellular space with X-1 = 0, then, for all k, 

Hk(X) ~ Hk(W*(X)). 

Let X be a CW complex with CW subcomplex Y. Define 

X~ = X(k)U Y, 

D 

where (as usual) X(k) is the k-skeleton of X. Note that Xi1 = Y; in particular, 
Xi1 = 0 if Y = 0. It is plain that X~ c X~+l for all k, so that we have defined 
a filtration of X. 

Notation. W*(X, Y) is the chain complex determined by the filtration of X by 
the X~ [so that Jtk(X, y) = Hk(X~, X~-l)]. 

Suppose that X and X' are CW complexes and that f: X -+ X' is a cellular 
map; that is, f(X(k») c (X')(k) for all k ;;::: 0. If Y and Y' are CW subcomplexes 
of X and X', respectively, and if f is a map of pairs [f: (X, Y) -+ (X', Y')], 
then f: X -+ X' is cellular with respect to the filtrations X~ and (X')~" It 
follows that every cellular map of pairs f: (X, Y) -+ (X', Y') induces a chain 
map f#: W*(X, Y) -+ W*(X', Y') and hence homomorphisms 

k Hk(W*(X, Y)) -+ Hk(W*(X', Y')) 

for all k ;;::: 0, 

Theorem 8.38. Let X be a CW complex with CW subcomplex Y. 

(i) The filtration of X by the subspaces X~ is a cellular filtration (so that X 
is a cellular space). 

(ii) If W*(X, Y) is the corresponding cellular chain complex, then there are 
isomorphisms for all k ;;::: 0, 

PROOF. (i) Let E be a CW decomposition of X, let E' c E be a CW decomposi­
tion of Y, and let M consist of one point chosen from each cell in E - E'. If 
k ;;::: 1, then Lemma 8.28 says that X~-l is a deformation retract of X~ - M; 
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for all p ~ 0, Exercise 5.14(iii) gives Hp(X~ - M, X~-l) = O. A portion of the 
long exact sequence ofthe triple (X~, X~ - M, X~-l) is 

Hp(X~ - M, X~-l) --+ Hp(X~, X~-l) --+ Hp(X~, X~ - M) --+ Hp- 1 (X~ - M, X~-l), 

where the middle arrow is induced by inclusion. It follows from the two outside 
terms being zero that there are isomorphisms (all p, k ~ 1) 

Hp(X~, X~-l) ~ Hp(X~, X~ - M). 

Computing closure and interior in X~, we see that X~-l c (X~ - Mt. Hence 
excision applies and there are isomorphisms 

Hp(X~, X~ - M) ~ Hp(X~ - X~-l, X~ - X~-l - M). 

Since X~ - X~-l = 1L. {e~ E E - E': e~ is a k-cell}, Theorem 5.13 applies to 
give isomorphisms for all p, k ~ 1 

Hp(X~ - X~-l, X~ - X~-l - M) ~ L Hp(e~, e~ - M) (*) 
;. 

(remember that e~ - M = e~ - {rn;.} for some rn;. E en. Now e~ ~ Rk implies 
that Hp(e~, e~ - M) ~ Hp(R\ Rk - {O}). Taking composites, we have isomor­
phisms for all p, k ~ 1 

Hp(X~, X~-l) ~ L Hp(R\ Rk - {O}). (**) 
;. 

Since Rk - {O} has the same homotopy type as Sk-l, the long exact sequence 
of the pair (Rk, Rk - {O}) becomes 

.•. -+ Hp+l (Rk) -+ Hp+1 (Rk, Rk - {O}) -+ Hp(Sk-l) -+ Hp(Rk) -+ .... 

If p ~ 1, then both homology groups ofRk vanish, and there are isomorphisms 

Hp +1(R\ Rk - {O}) ~ Hp (Sk-l). 

The right-hand side is zero unless p = k - 1, hence Hp(R\ Rk - {O}) = 0 for 
p 1: k. 

If p = 1 (and k 1: 1), we have exactness of 

0= Hl (Rk) -+ Hl (R\ Rk - {O}) -+ Ho(Rk - {O}). 

Sincek 1: 1, we know that Rk - {O} is path connected; therefore Ho(Rk - {O}) = 
o and H1(R\ Rk - {O}) = 0, as desired. 

Finally, if p = 0, then Ho(R\ Rk - {O}) = 0 when k 1: 0 because Rk is path 
connected and Rk - {O} 1: 0. 

The second condition in the definition of a cellular filtration is that for every 
rn ~ 0 and every continuous 0': am -+ X, there exists an integer n with im 0' c 

Xy. This follows at once from Corollary 8.19, because im 0' is compact and 
hence lies in some finite CW subcomplex of X. 

(ii) Now that we have verified that the X~ form a cellular filtration with 
Xi1 = Y, the result is immediate from Theorem 8.36. 0 
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One can squeeze more information from the proof just given. 

Theorem 8.39. Let (X, E) be a CW complex with CW subcomplex (Y, E'). For 
each k ~ 0, the chain group w,,(X, Y) is free abelian of (possibly infinite) 
rank rk> where rk is the number of k-cells in E - E'. In particular, w,,(X) = 

w,,(X, 0) is free abelian of rank equal to the number of k-cells in E. 

PROOF. Equation (**) in the proof of Theorem 8.38 holds for all p, k ~ 1; in 
particular, when p = k, it says that 

w,,(X, Y) = Hk(X~, X~-l) ~ L Hk(Rk, Rk - {O}), 
A. 

where A ranges over an index set of cardinal rk • We later observed, when k > 1 
(remember p = k now), that Hk(Rk, Rk - {O}) ~ Hk- l (Sk-l). The theorem is 
thus proved for all k ~ 2, for then Hk- l (Sk-l) ~ z. 

When k = 1, there is an exact sequence 

0= Hl(Rl) -+ Hl(Rl, Rl - {O}) -+ Ho(so) -+ Ho(Rl) = 0; 

that is, there is an exact sequence 

0-+ Hl(Rl, Rl - {O}) -+ Z -+ O. 

I t follows that H 1 (R l, R 1 - {O}) = Z, and the theorem holds in this case too. 
The case k = 0 follows from Corollary 5.14: Ho(X, A) ~ Lj Ho(Xj' A n Xj), 

where {Xj: j E J} is the set of path components of X. Here we must compute 
Ho(X$, Y), where X$ = X(O) U Y. Let {Y;: i E I} be the path components of Y, 
and let X~O) = {e~ E X(O): e~ ¢ Y}. Since X(O) is discrete and Y is closed, the 
path components of X$ are the Y; and the singletons {e~}. Thus 

Ho(X$, Y)~LHo({en, Yn{en)EBLHo(Y;, Y;nY) 
A. i 

~ L Ho({en, yn {en) (Theorem 5.12) 
A. 

(Yn{en = 0)· 

We have shown that Wo(X, Y) = Ho(X$, Y) is free abelian of rank ro, where 
ro is the cardinal of X~O), the O-cells in E - E'. D 

EXERCISE 

*8.35. If X is a CW complex, show that there is a chain map W*(X) -+ S*(X) inducing 
isomorphisms in homology. (Hint: First define an isomorphism rp: ~(X)-+ 
l,Hp(e;., e;. - M) as in the proof of Theorem 8.38, namely, the composite 

W/X) = Hp(X(P), X(P-l» -+ Hp(X(P), X(p) - M) 

-+ Hp(X(P) - X(p-l), X(p) - X(p-l) - M) -+ l,Hp(e;., e. - M). 
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Now define sp: I, Hp(e)., e). - M) -+ SiX) by sending a generator of 
Hp(e)., e). - M) into <1>.,0 IX, where IX: (l1P, Ap) -+ (DP, SP-I) is a homeomor­
phism. Then {sprp} is the desired chain map.) 

As we asserted at the outset, the chain groups of the cellular chain complex 
of a CW complex are free abelian groups of "small" rank. For example, the 
reader may now give a quick proof of Theorem 6.22, which says that a loop 
generates Hl(Sl). 

Corollary 8.40. If X is a compact CW complex of dimension m, then 

(i) HP(X) is fg. for every p ~ 0; 
(ii) Hp(X) = 0 for all p > m; 

(iii) Hm(X) is free abelian. 

Theorem 8.41. Let (X, E) be a CW complex with CW subcomplex (Y, E'). Then 
the natural map v: X -+ X/Y induces isomorphisms for every k ~ 0 

v*: Hk(X, Y) ~ Hk(X/Y, *) ~ Bk(X/Y), 

where * denotes the singleton point v(Y) in X/Y. 

PROOF. As in Theorem 8.27, we regard X/Y as a CW complex with CW 
decomposition E" = (E - E') U {*}. The natural map v is a cellular map of 
pairs (X, y) -+ (X/Y, *), which maps those cells of X not in Y homeomor­
phically onto those cells of X /Y other than the O-cell *. That v is cellular implies 
that v induces a chain map v#: W*(X, Y) -+ W*(X/Y, *). Recall the isomor­
phism (*) in the proof of Theorem 8.38: 

~(X, Y) = Hk(X~, X~-l) ~ L Hk(ek, ek - M) for all k ~ 1; 

this map is a composite of inclusions (and the injections and projections of a 
direct sum decomposition). Since v maps cells in E - E' homeomorphically, 
it follows that V#k is an isomorphism for all k ~ 1. Even v#o is an isomorphism, 
but now we must also observe, using Theorem 5.13, that v induces a bijection 
from the family of path components of X(O) U Y not containing Y to the family 
of path components of X /Y not containing *. Therefore v # is an isomorphism 
of chain complexes, and hence it induces isomorphisms of the respective 
homology groups: 

H*(X, Y) 8:: H*(X/Y, *). 

But Theorem 5.17 gives H*(X/Y, *) ~ B*(X/Y). o 
Corollary 8.42. For i = 1,2, let Xi be a CW complex with CW subcomplex 1';; 
let f: (Xl> Y1 ) -+ (X2' Y2) be a continuous (but not necessarily cellular) map of 
pairs that induces a homeomorphism 1: Xt/Y1 ~ X 2/Y2. Then f induces iso­
morphisms for all k ~ 0 
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PROOF. For i = 1, 2, let Vi: Xi -+ XJY; be the natural map. The following 
diagram commutes: 

Hk(X1, Y1) f. Hk(X2, Y2) ----+ 

',. j j ',. 
fik(XdYd ----+ fik(X2/Y2). 

1. 
Since three of the maps are isomorphisms (1. by hypothesis and the Vi. by 
Theorem 8.41), it follows that f. is an isomorphism. 0 

Corollary 8.43 (Excision). If X is a CW complex and Y1 , Y2 are CW subcom­
plexes with X = Y1 U Y2, then the inclusion i: (Y1, Y1 n Y2) 4 (X, Y2) induces 
isomorphisms for all k ~ 0, 

i.: Hk(Y1, Y1 n Y2) ~ Hk(X, Y2). 

PROOF. The inclusion induces a homeomorphism YdY1 n Y2 ~ X/Y2 (if Ei is 
the family of cells in Y;, then the cells of the left side are those of E1 - (E1 n E2) 
and the basepoint, while the cells of the right side are those of(E1 U E2) - E2 
and the basepoint). The corollary now follows at once from Corollary 8.42. 

o 

Corollary 8.44 (Mayer-Vietoris). If X is a CW complex with CW subcomplexes 
Y1 and Y2 with X = Y1 U Y2, then there is an exact sequence 

... -+ Hk(Y1 n Y2) -+ Hk(Yd EB Hk(Y2) -+ Hk(X) -+ Hk- 1(Y1 n Y2) -+ ... 

whose maps can be given explicitly. 

PROOF. The usual consequence of excision (see Theorem 6.3). 

EXERCISES 

o 

8.36. (i) If X is a compact CW complex with CW subcomplex Y, then Hk(X, Y) is 
f.g. for every k ~ O. 

(ii) If(X, E) is a CW complex having only finitely many cells in each dimension, 
then Hk(X) is f.g. for every k ~ O. 

8.37. Show that Hk(RpOO ) is cyclic (possibly zero) for every k ~ O. 

8.38. If {Xl: A. E A} is a family ofCW complexes with basepoint, show that 

H.(V Xl) ~ IH.(Xl ). 

8.39. Using the CW decomposition of the torus T given in Exercise 8.25, compute 
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H*(T)(once again!). (Hint: The i-skeleton is Sl v Sl, so that H2 (T, Sl v Sl) = Z 
and H1(T, Sl v Sl) = 0.) 

Definition. Let (X, E) be a finite CW complex and let CXi denote the number of 
i-cells in E. The Euler-Poincare characteristic of (X, E) is 

x(X) = L (-1)iCXi · 
i::?:O 

The remark after the proof of Theorem 7.15 shows that the Euler-Poincare 
characteristic ofafinite CW complex (X, E) is equal to Li::?:O (_1)i rank Hi(X); 
hence this number depends only on X and not on the CW decomposition E. 
Moreover, since every polyhedron X may be viewed as a CW complex 
(determined by a triangulation of X), we see that we have generalized our 
previous definition from polyhedra to finite CW complexes. 

Theorem 8.45. If X and X' are finite CW complexes, then 

x(X x X') = X(X)x(X'). 

PROOF. If E and E' are CW decompositions of X and X', respectively, then we 
saw in Exercise 8.32 that E" = {e x e': e E E and e' E E'} is a CW decomposi­
tion of X x X'. If e is an i-cell and e' is a j-cell, then e x e' is, of course, an 
(i + j)-cell. The number 13k of k-cells in E" is thus Li+i=k cxicxj (where CXi is the 
number of i-cells in E and cxj is the number of j-cells in E'). But 

(~::c -1)iCXJ (L ( _1)icxj) = L ( _l)i+iCXiCXj = L (-1t L cxicx; = L ( -1)kf3k' 
i,i k i+i=k 

Therefore X(X)x(X') = X(X x X'). o 
If X and X' are polyhedra, a proof of this formula using the techniques of 

Chapter 7 is fussy (a triangulation of X x X' is more complicated than the 
CW decomposition E" above). 

EXERCISES 

8.40. Compute x(sm x SO). 

8.41. Show that X(CP") = n + 1 = X(HP"). 

8.42. Show that X(RP") = t(l + (-1)"). 

8.43. If X is a CW complex with CW subcomplexes Y1 and Y2 such that X = Y1 U Y2 , 

then 

Of course, one must know both the chain groups and the differentiations 
to understand a chain complex; apart from its definition, we have not yet 
discussed the differentiations dk of W*(X). To emphasize this point, consider 
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x = Rpn. By Theorem 8.8(i), there is a CW decomposition of X of the form 
{eO, e1 , ... , en}, and so each chain group ~(X) = ~(X, 0) = Z for 0 :$; 

k :$; n (and ~(X) = 0 for k> n). We conclude that Hk(Rpn) is cyclic for 
o :$; k :$; n; however, without knowing the differentiations explicitly, we can­
not yet say whether these cyclic groups, for any fixed k, are infinite, finite, or 
even zero. (On the other hand, the CW decompositions of cpn and Hpn of 
Theorem 8.8 may now be used to give an instant proof of Theorem 8.13.) 

As in Example 8.15, regard sn as a CW complex having two k-cells {e~, en 
for each k with 0 :$; k :$; n. Recall that e~ is the closed northern hemisphere of 
Sk and that e~ is the closed southern hemisphere; thus the k-skeleton of sn 
consists of the cells in Sk. By Eq. (*) in the proof of Theorem 8.38, 

~(sn) = Hk(Sk, Sk-l) ~ Hk(e~, e~ - {m1 }) Et> Hk(e~, e~ - {mz}), 

where mi E ef, for i = 1,2, are any chosen points; choose mz to be the antipode 
of m1 . We know that each summand on the right-hand side is infinite cyclic. 
Let 13k be a generator of Hk(et e~ - {md). 

As usual, let ak: Sk --> Sk denote the antipodal map; let us denote the 
antipodal map of pairs (Sk, Sk-l) --+ (sk, Sk-l) by Ak. Now Ak restricts to 
a homeomorphism (e~, e~ - {md) --+ (e~, e~ - {mz}). Therefore, A~(f3k) is a 
generator of Hk(e~, e~ - {mz}), and hence {13k, A~(f3k)} is a basis of ~(sn). 

Consider the commutative diagram 

Hk(Sk, Sk-l) 
Ak 

Hk(Sk, Sk-l) * ------+ 

a·1 I-
Hk_1(Sk-l) ------+ Hk- 1 (Sk-l ): 

0-1 
a* 

akA~ = a~-lak. Recall that Theorem 6.23 says that a~-l is multiplication 
by (_l)k; on the other hand, we see that A~ is the automorphism of 
Hk(Sk, Sk-l) ~ Z EB Z which interchanges the free generators 13k and A~(f3k). 

Let v: sn --> Rpn be the usual identification, which identifies antipodal 
points. If we regard Rpn as a CW complex with the CW decomposition 
of Theorem 8.8(i), then v is a cellular map and it induces a chain map 
v#: w*(sn) --+ W*(Rpn). Since VAk = v for all k, it is plain that V#(f3k) = 
V#(A~(f3k)) for all k and that their common value is a generator of the infinite 
cyclic group ~(Rpn). 

Lemma 8.46. Using the notation above, for all k ;;:::.: 0 there is a basis of ~(sn) 
of the form {13k, A~(f3k)} with the following properties: 

(i) V#(f3k) = v#(A~(f3k)), and their common value is a generator of ~(Rpn); 
(ii) the differentiation dk: ~(sn) --+ ~-l (sn), for k > 0, satisfies 

dk(f3k) = ± (A~-l(f3k-l) + (_l)kf3k-l). 
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PROOF. (i) This was proved above. 
(ii) Identify 13k E Hk(e~, e~ - {md) with its image in Hk(S\ Sk-l) = "",(sn) 

(Eq. (*) in the proof of Theorem 8.38). Recall that dk: "",(sn) --+ "",-1 (sn) is the 
composite dk = i*Ok: 

where i: (Sk-l, 0) '-+ (Sk-l, Sk-2). Now 

(1) dkA~(f3k) = i*OkA~(f3k) = i*a~-lok(f3k) = (-lti*ok(f3k) = (-l)kdk(f3k). 

It follows that Yk defined by 

Yk = A~(f3k) - (-1tf3k = A~(f3k) + (_1)k+lf3k 

lies in ker dk = Zk(w*(sn)). We claim that Zk(w*(sn)) = (Yk) for 1 :s; k :s; n. 
For the other inclusion, assume that 

r, S E Z 

= rdkA~(f3k) + sdk(f3k) 

= r( -1)kdk(f3k) + sdk(f3k) = [r( _1)k + sJdk(f3k). 

Since "",-1 (sn) is a free abelian group, either r( - l)k + s = ° or dk(f3k) = 0. In 
the first case, s = (_I)k+l r and rA~(f3k) + sf3k = rYk E (Yk)' as desired. We 
now show that the second case cannot occur. If dk(f3k) = 0, then Eq. (1) 
gives dkA~(f3k) = (-1Nk(f3k) = 0, and so Bk- 1 (w*(sn)) = im dk = 0. If n > 
k - 1 > 0, then we contradict Hk - 1 (sn) = ° (since we have just seen that 
Zk_l(w*(sn)) = (Yk-l) # 0). There is also a contradiction if k = 1, because 
Zo(w*(sn)) = Wo(sn) is free abelian of rank 2, while Ho(sn) = Z forces 
Bo(w*(sn)) # 0. 

If 1 < k:s; n, then dk(f3k) E Bk_1(w*(sn)) = Zk_l(w*(sn)) = (Yk-l), by our 
computation above. Hence dk(f3k) = mYk-l for some m E Z; furthermore 
dkA~(f3k) = (-1)kmyk_1 • Thus im dk C (mYk-l); since Yk-l # ° has infinite 
order, m = ± 1. Therefore 

dk(f3k) = ± Yk-l = ± (A~-l(f3k-l) + ( _l)kf3k-l), 

as desired. When k = 1, we may compute d1 directly. Now 13 1 is the upper half 
circle from 1 to -1, and 130 = 1; hence 

d 1 (13 1 ) = i*Ol (13 1 ) = cls 1 - cls( -1), 

as desired. D 
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Theorem 8.47. If n is odd, then 

H,(RP") ~ {:12Z 

if p = 0 or p = n 

if p is odd and 0 < p < n 

otherwise. 

If n is even, then 

H,(RP") ~ E/2Z 

ifp=O 

if P is odd and 0 < p < n 

otherwise. 

PROOF. Consider the commutative diagram 

w,,(S") 
dk w,,-l (S") ------. 

" j j " 
w,,(RP") ------. w,,-l (RP"), 

Dk 

where we are writing Dk for the differentiation in W*(RP"). Then 

Dk v # (13 k) = V # dk(f3k) 

= ±V#(A~-l(f3k-l) + (_1)kf3k-l) 

= ±(1 + (-1)k)V#(f3k-l). 

Since v# (13 k) is a generator of w,,(Rpn), Dk is the zero map for odd k and is 
multiplication by 2 for even k. Abbreviating w,,(RP") to w", we see that the 
cellular complex is: 

~ ~ ~ ~ ~ 
W* = 0 ----+ w" -----+ w,,-I ----+ ...... ----+ w4 ----+ W3 ----+ w2 ----+ WI ----+ Wo ----+ 0 

II 1+ (-1)" II II 2 II 0 II 2 II 0 II 
o ----+ z -----+ z ----+. .. . .. ----+ Z ----+ Z ----+ Z ----+ Z ----+ Z ----+ O. 

The theorem now follows easily. o 

Remark. It is possible to compute H*(RP") by simplicial methods using an 
explicit triangulation of RP". First, triangulate S" using the 2(n + 1) vertices 
eiei, where ei = ± 1 and ei is the (n + 1)- tuple having (i + 1) st coordinate 1 
and all other coordinates 0; the n-simplexes are of the form [eoeo, ... , eRe"] 
for every choice of signs (eo, ... , en). If this simplicial complex is called K, then 
one proves by induction that Sd K induces a triangulation of RP" (under the 
map S" -+ RP", which identifies antipodal points). This triangulation is essen­
tially in [Hilton and Wylie, p. 133]; the reader is referred to the discussion in 
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[Wallace, p. 71], which contains a geometric version of Theorem 7.30; see also 
[Maunder, p. 140]. 

EXAMPLE 8.22. Let p and q be relatively prime integers. Regard S3 as all 
(zo, Zl) E C2 with IZol2 + IZl12 = 1. Let (= e21ti/p be a primitive pth root of 
unity; define h: S3 -+ S3 by 

h(zo, zd = ((zo, ( QZ1), 

and define an equivalence relation on S3 by (zo, Zl) '" (z~, zD if there exists an 
integer m with hm(zo, zd = (z~, z~). The quotient space S3/ '" is called a lens 
space and is denoted by L(p, q). 

EXERCISES 

8.44. Show that L(p, q) is a compact Hausdorff space. (In Exercise 10.32, we shall see 
that L(p, q) is a compact connected 3-manifold.) 

8.45. (i) Show that L(I, 1) = S3. 
(ii) Show that L(2, 1) = RP3. 

(iii) If q == q' mod p, then L(p, q) = L(p, q'). 

*8.46. (i) Show that there is a CW decomposition of S3 having p cells in each 
dimension, namely, for r = 0, 1, ... , p - 1, 

e? = {(zo, 0) E S3: arg(zo) = 2nrjp}, 

e; = {(zo, 0) E S3: 2nrjp < arg(zo) < 2n(r + l)jp}, 

e; = {(zo, zd E S3: arg(zd = 2nrjp}, 

e; = {(zo, zd E S3: 2nrjp < arg(zd < 2n(r + l)jp}. 

(Recall that if z is a nonzero complex number, then z = pe i9 for p > 0 and 
o ~ B < 2n; one defines arg(z) = B.) 

(ii) If v: S3 -+ L(p, q) is the natural map, show that the family of all v(e~) is a 
CW decomposition of L(p, q). Conclude that L(p, q) may be viewed as a 
CW complex having one cell in every dimension ~ 3. 

8.47. (i) Show that the CW decomposition of S3 in the above exercise leads to a 
cellular chain complex W*(S3) with differentiations: 

d(e;) = e? - e?+l 

d( 2) _ ,",p-l 1 er - ~i=Oei 

(take subscripts r mod p in the first and third formulas). 
(ii) From Exercise 8.46(ii), we know that there is a CW decomposition of 

L(p, q) with w,,(L(p, q)) = Z for all k ~ 3 (and with w" = 0 for k > 3); let 
Yk denote a generator of w,,(L(p, q)). Use part (i) of this exercise to show 
that the differentiations satisfy 
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(iii) Show that 

{
z if k = 0, 3 

HdL(p, q)) = Z/pZ if k = 1 

o otherwise. 

Lens spaces are examples that arose in investigating the Poincare conjec­
ture (they also enter into Milnor's counterexample to the Hauptvermutung): 
Is every compact simply connected manifold having the homology groups of 
a sphere actually homeomorphic to a sphere? (We have already mentioned 
this problem in Chapter 7.) A natural first question is whether two (com­
pact connected) manifolds having the same homology groups are necessarily 
homeomorphic; indeed, must they have the same homotopy type? The lens 
spaces (which are compact 3-manifolds) settle these first questions. Note that 
if p -# p', then L(p, q) and L(p', q') do not have the same homotopy type 
because they have different first homology groups. 

Theorem 

(i) L(p, q) and L(p, q') have the same homotopy type if and only if either qq' 
or - qq' is a quadratic residue mod p; 

(ii) L(p, q) and L(p, q') are homeomorphic if and only if either q == ±q' mod p 
orqq' == ±1 modp. 

The first statement is proved in [Hilton and Wylie, p. 223] and in [Seifert and 
Threlfall, p. 222]; necessity of (ii) is outlined in [Munkres (1984), p. 242]; 
sufficiency is proved in [Brody]. 

The 3-manifolds L(5, 1) and L(5,2) have the same homology groups, 
but they do not have the same homotopy type (for neither 2 nor - 2 is a 
quadratic residue mod 5). The 3-manifolds L(7, 1) and L(7, 2) have the same 
homotopy type (for 2 == 32 mod 7), but they are not homeomorphic (for 
2 =1= ± 1 mod 7). 

There are two general methods for computing cellular homology (aside 
from variations ofthe method used for Rpn). One way involves selecting bases, 
say, {aj: i E I} of ~(X) and {{3j: j E J} of ~-l (X). Now dk(a j ) = :L [aj: {3j]{3j, 
where [a j : {3j] are certain integers called incidence numbers; of course, dk is 
completely determined by the matrix of incidence numbers. It can be shown 
([Maunder, p. 319] that [aj: {3j] can be computed as the degree of a certain 
map Sk-l --+ Sk-l (which is a composite of maps involving the characteristic 
maps of a j and of {3j). 

A second approach (see [Cooke and Finney] or [Massey (1978)]) involves 
defining (new) cellular chain groups Ck(X) as free abelian groups with bases 
the k-cells in a given CW decomposition of X, and then defining the differentia­
tions dk by specifying incidence numbers. When the CW complex is regular, 
that is, all attaching maps are homeomorphisms, then all incidence numbers 
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are 0, 1, or -1, and there is an axiomatic description of them. In this case 
(which obtains, e.g., when X is a polyhedron), there is an algorithm for 
computing H*(X) that is essentially the same as that described for polyhedra 
in Chapter 7. 

There are other features of CW complexes to interest us. For example, one 
can generalize Tietze's theorem (Corollary 7.37). If X is a finite CW complex 
having m 1-cells and n 2-cells, then 1t1 (X, x o) is a finitely presented group; 
indeed there is a presentation having m generators and n relations (see [Fuks 
and Rokhlin, p. 448]). One can also show that the Seifert-van Kampen 
theorem holds for a CW complex X and connected CW subcomplexes Y1 and 
Y2 such that Y1 U Y2 = X and Y1 n Y2 is connected. 

There is also an analogue of the simplificial approximation theorem. 

Cellular Approximation Theorem. Let X and Y be CW complexes, and let 
g: X -+ Y be continuous; suppose that glX' is a cellular map for some (possibly 
empty) CW sub complex X' of X. Then there exists a cellular map f: X -+ Y 
such that fiX' = glX' and 

f ~ g reI X'. 

There is a proof in [Maunder, p. 302] or in [Lundell-Weingram, p. 69]. 



CHAPTER 9 

Natural Transformations 

In preceding chapters, the adjective "natural" was used, always in the context 
of some commutative diagram. This important term will now be defined, for 
it will allow us to compare different functors; in particular, it will make precise 
the question whether two functors are isomorphic. The notion of an adjoint 
pair of functors, though intimately involved with naturality, will not be 
discussed until Chapter 11, where it will be used. 

Definitions and Examples 

Definition. Let C(j and d be categories, and let F, G: C(j -+ d be (covariant) 
functors. A natural transformation r: F -+ G is a one-parameter family of 
morphisms r = {rc: F( C) -+ G( c)1 C E obj C(j} such that the following diagram 
commutes for every morphism f: C -+ C: 

F(C) 
Ff 

F(C) ~ 

" j j 'C' 

G(C) ~ G(C). 
Gf 

A similar definition can be given, mutatis mutandis, when both functors F 
and G are contravariant; just reverse both horizontal arrows. 

Definition. A natural transformation r: F -+ G is a natural equivalence if every 
rc is an equivalence. Two functors are called isomorphic (or naturally equiva­
lent) if there is some natural equivalence between them. 
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EXAMPLE 9.1.H * is a one-point space, say, * = {a}, then a function h: * -+ X 
is completely determined by its only value x = h(a) E X; denote h by hx. One 
usually identifies x and hx even though they are distinct (e.g., we have identified 
the singular O-simplexes in a space X with the points of X). More precisely, 
let us see that the identity functor on Sets is isomorphic to Hom(*, ). For 
each set X, define 'x: X -+ Hom(*, X) by 'x(x) = hx.HJ: X -+ Yisafunction, 
then the diagram below commutes: 

X f Y ~ 

'. I j " 
Hom(*, X) ~ Hom(*, Y); 

f* 
if XEX, then ,yJ:xl--+hf(x) and J*'x:xI--+Johx=hf(x). Therefore, is a 
natural transformation (we let the reader check that, is in fact a natural 
equivalence). 

EXAMPLE 9.2. The identity functor on Ab is isomorphic to Hom (Z, ). The 
argument is essentially that of the preceding example, for every homomor­
phism J: Z -+ G is completely determined by J(1) E G. 

EXAMPLE 9.3. Let k be a field and let rtf = .s1 be the category of all vector spaces 
over k and all linear transformations. Recall that V* denotes the dual space 
of a vector space V, namely, the vector space of all linear functionals on V 
(hence V* = Hom(V, k» and that V** = (V*)* is the second dual. For x E V 
and J E V*, let (x, f) denote J(x). For each vector space V, define ey : V -+ V** 
by ey(x) = (x, ), evaluation at x. The reader may check (if this has not 
already been seen in one's linear algebra course) that ey is an injective linear 
transformation. It is also easy to check that all such ey define a natural 
transformation from the identity functor to the second dual functor (which is 
a natural equivalence when one restricts to the subcategory of all finite­
dimensional vector spaces over k). 

EXERCISES 

9.1. If (S*(X), a) is the singular complex of a space X, then we have seen, in Exercise 
4.6, that Sn: Top --> Ab is a functor for each fixed n ~ O. For each space X, 
the boundary operator's complete notation is a;: Sn(X) --> Sn-I (X). Show that 
an: Sn --> Sn-I is a natural transformation. (Hint: Lemma 4.8.) 

9.2. For each fixed n ~ 0, define a functor E: Top --> Ab by EX = Sn+1 (X x I) and 
Ef = (f X 1)#. Use Exercise 4.10 to show that the prism operator Pn: Sn --> E 
is a natural transformation. 

9.3. Recall that HI(X) ~ HI(X, xo) for any Xo E X, and regard HI: Top* --> Groups 
(of course, HI (X) is abelian, but we choose to forget this in this exercise). Show 
that the Hurewicz map defines a natural transformation 11:1 --> HI. (Hint: Exercise 
4.13.) 
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*9.4. Consider the functor R: Top2 --> Top2 defined on objects by (X, A) H (A, 0) and 
defined on morphisms by fH flA, where f: (X, A) --> (X', A'). Use Theorem 5.9 
to show that the connecting homomorphism defines a natural transformation 
a: Hn --> Hn - 1 0 R. 

9.5. For each fixed n ;:::: 0, show that subdivision, Sdn: Sn --> Sn' is a natural transforma­
tion, where Sn: Top --> Ab is the nth term of the singular chain complex. (Hint: 
Exercise 6.8.) 

9.6. (i) Prove that the composite of two natural transformations, when defined, is a 
natural transformation. 

(ii) Prove that natural equivalence is an equivalence relation on the class of all 
(covariant) functors between a given pair of categories. 

*9.7. (Yoneda Lemma) Let 'if be a category, let A E obj 'if, and let F: 'if --> Sets be a 
contravariant functor; let Nat(Hom( ,A), F) denote the class of all natural 
transformations Hom( ,A) --> F. 

(i) There is a function y: Nat(Hom( ,A), F) --> F(A) given by 

<pH <PA(1A). 

(ii) There is a function y': F(A) --> Nat(Hom( ,A), F) given by IlH!, where, 
for each X E obj 'if, LX: Hom(X, A) --> F(X) is defined by 

!x(f) = (Ff)(I1)· 

(iii) y is a bijection with inverse y'. 
(iv) If BE obj 'if, then every natural transformation <P: Hom( ,A) --> Hom( , B) 

has the form <P =(<p x) with <Px(f) = Ilf, where 11= <PA(lA) andf E Hom(X, A). 
(v) State and prove the dual version of the Yoneda lemma involving 

Nat(Hom(A, ), G), where G: 'if --> Sets is a covariant functor. 

9.8. Call a category 'if small if obj 'if is a set (it follows that the class of all morphisms 
in 'if is also a set). If 'if and .91 are categories with 'if small, show that there is a 
category (denoted by .91'&) whose objects are all (covariant) functors 'if --> .91 and 
whose morphisms are all natural transformations. (Remark: One assumes that 
'if is small to guarantee that Hom(F, G) is a set.) A subcategory ofd is called a 
functor category. 

9.9. (i) Regard the ordered set Z as a category (Exercise 0.9) and show that a complex 
may be construed as a contravariant functor C: Z --> Ab (with the extra 
condition that composites of nonidentity morphisms are zero). 

(ii) If C and C' are complexes, then a chain map f: C --> C' is a natural trans­
formation. 

Eilenberg-Steenrod Axioms 

We are now able to state the theorem of Eilenberg and Steenrod. 

Definition. A pair (X, A) of spaces, where A is a subspace of X, is called a 
compact polyhedral pair ifthere is a (finite) simplicial complex K, a subcomplex 
L, and a homeomorphism f: IKI-> X with f(ILI) = A. 
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Definition. Let C(/ be the category of compact polyhedral pairs. A homology 
theory (H, a) on C(/ is a sequence of functors Hn: C(/ --. Ab for n ~ 0 and a 
sequence of natural transformations an: Hn --. Hn- 1 0 R (where R: C(/ --. C(/ is the 
functor (X, A) t-+ (A, 0) of Exercise 9.4) such that the following axioms hold. 

Homotopy Axiom. If fo, f1: (X, A) --. (Y, B) are homotopic (i.e., there is a 
homotopy F: (X x I, A x I) --. (Y, B) with Fo = fo and F1 = f1), then Hn(fo) = 
Hn(fd: Hn(X, A) --. Hn(Y, B) for all n ~ O. 

Exactness Axiom. For every pair (X, A) with inclusions i: (A, 0) c... (X, 0) 
and j: (X, 0) c... (X, A), there is an exact sequence 

~m ~n ~ ... --. Hn(A, 0) ----4 Hn(X, 0) ----4 Hn(X, A) ----4 Hn- 1(A, 0) --.' ... 

Excision Axiom. For every pair (X, A) and every open subset U of X with 
[j c AO, the inclusion (X - U, A - U) c... (X, A) induces isomorphisms 

for all n ~ O. 
Dimension Axiom. If X is a one-point space, then Hn(X, 0) = 0 for all 

n > O. (One calls Ho(X, 0) the coefficient group.) 

Since we have proved that each part of the definition holds for the singular 
theory, we know that homology theories with coefficient group Z on C(/ do 
exist. Indeed we have even proved that such theories exist for the larger 
category Top2. Of course, one usually writes Hn(X) instead of Hn(X, 0). 

Definition. Let (H, a) and (H', a') be homology theories on C(/. An isomorphism 
r: (H, a) --. (H', a') is a sequence of natural equivalences 

making the following diagram commute 

for all pairs (X, A) and all n ~ O. 

-iJ' 

Theorem (Eilenberg-Steenrod). Any two homology theories with isomorphic co­
efficient groups on the category C(/ of all compact polyhedral pairs are isomorphic. 1 

Remarks. (1) A proof of this theorem (indeed of more general versions of it) 
can be found in [Eilenberg and Steenrod]. See also [Spanier, pp.199-205]. 

1 [Hu(1966), pp. 51-60] extends this theorem to the category of all (X, A), where X is a finite 
CW complex and A is a CW subcomplex. 
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(2) We have already seen that singular, simplicial, and cellular homology 
theories assign isomorphic homology groups to each compact polyhedral pair 
(X, A), but we have not shown the stronger result that these three theories on 
rtf are isomorphic; that is, the induced homomorphisms are essentially the 
same as well. 

(3) An extraordinary cohomology theory on rtf is almost a homology theory: 
it satisfies all the conditions of the definition except the dimension axiom 
(on page 257, we shall introduce homology with arbitrary abelian coefficient 
groups). An example of an extraordinary cohomology theory is topological 
K-theory. 

(4) There is an extension of the Eilenberg-Steenrod theorem characterizing 
homology theories on larger categories that contain certain noncompact 
pairs. This extension requires an extra axiom, compact supports, which is 
essentially Theorem 4.16. More precisely, the axiom states that if cls Z E 

Hn(X, A), then there is a compact pair (X', A') c (X, A) (i.e., (X', A') is a pair, 
X' is compact, and A' is closed in X) with cls z in the image of j*: Hn(X' A') ...... 
Hn(X, A), where j: (X', A') c... (X, A) is the inclusion. With this extra axiom, 
there is an isomorphism of any two homology theories having isomorphic 
coefficient groups defined on the category of all not necessarily compact 
polyhedral pairs. 

(5) Here is the reason that the dimension axiom is so called. Given a 
homology theory (H, 0), one can define an extraordinary homology theory 
(H', 0') by defining H~(X, A) = Hn- 1 (X, A) for all n and for all pairs (X, A). 
Since one wants a point to be zero-dimensional (and eventually that spaces 
X of dimension d should have Hn(X) = 0 for all n > d), the dimension axiom 
"tends to insure that the dimensional index should have a geometric meaning" 
(quotation from [Eilenberg and Steenrod, p. 12]). 

(6) The only axiom guaranteeing nontriviality, that is, which forbids 
Hn(X) = 0 for all n and all X, is the dimension axiom (when we further assume 
that the coefficient group is nontrivial). In principle, one ought to be able to 
construct H*(X) from the homology of a point! The first step in this construc­
tion is the computation of the homology of spheres. In Chapter 11, we shall 
discuss the suspension LX of a space X. 

a 

~x 

b 
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One defines LX as the quotient space of X x I in which X x {O} is identified 
to a point, say, a, and X x {1} is also identified to a point, say, b. Of course, 
X is imbedded in LX as X x {t}. The picture of LX reminds one of a sphere 
in which X is the equator, the cone over X with vertex a is the northern 
hemisphere, and the cone over X with vertex b is the southern hemisphere. 
Indeed one can prove that this picture is accurate: LSn ~ sn+l. Now the proof 
of Theorem 6.5, the computation of H*(sn), can be adapted to prove that 
Hp(X) ~ Hp+ l (LX) for every space X (this is called the suspension isomor­
phism). In particular, Z ~ Ho(SO) ~ Hl (Sl) ~ ... ~ Hn(sn); the axioms pro­
duce the homology of spheres from the homology of a point. 

(7) It can be shown that the excision axiom can be replaced by an exact 
Mayer-Vietoris sequence [Spanier, p. 208]. 

The Eilenberg-Steenrod theorem was very important in the development 
of algebraic topology. For two decades before it, there was a host of homology 
theories (we have discussed only three; some others are named tech, Vietoris, 
cubical) designed to treat appropriate classes of problems. One was obliged 
to learn them all, and the subject grew quite complicated. Today one can 
invoke the Eilenberg-Steenrod theorem to see that the various homology 
theories are but different constructions of the unique theory (on compact 
polyhedral pairs). Besides giving a simplifying organizing principle, the 
Eilenberg-Steenrod theorem also introduced the possibility of axiomatic 
proofs in algebraic topology, which are conceptually easy to grasp. 

Chain Equivalences 

Definition. A chain complex C* is called free if each of its terms is a free abelian 
group. 

The main theorem in this section is a necessary and sufficient condition 
that a chain map between free chain complexes be a chain equivalence. 

Theorem 9.1. Let F be a free abelian group. In the diagram below with exact 
row, that is, g is a surjective homomorphism, there exists a homomorphism 
f: F -+ B with gf = h. 

F 

)/j' 
B -----+ C -----+ O. 

g 

PROOF. Let X be a basis of F. For each x E X, choose bx E B with g(bx ) = h(x) 
(which is possible because g is surjective). The function x H bx defines a 
homomorphism f: F -+ B by extending by linearity. For each x E X, we have 
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gf(x} = g(bx } = h(x}; it follows that gf = h, because both homomorphisms 
agree on a set of generators of F. D 

Corollary 9.2. If F is a free abelian group and g: B --. F is a surjective homomor­
phism from some abelian group B, then 

B = ker 9 Ee F', 

whereF' ~ F. 

PROOF. Consider the diagram 

F 

)/1 1, 

B-F-O. 
g 

By the theorem, there is a homomorphism f: F --. B with gf = IF; it follows 
that f is injective. But B = ker 9 Ee im f: if bE B, then b = (b - fg(b)) + 
fg(b} E ker 9 + im f (because g(b - fg(b)) = O}, and (it is easy to see that) 
ker 9 n im f = O. The result follows by defining F' = im f D 

One can rephrase the conclusion of the corollary in terms of exact 
sequences. 

Definition. A split exact sequence is an exact sequence 0 --. A -4 B -4 C --. 0 
for which there exists a homomorphism s: C --. B with ps = lc. 

EXERCISE 

*9.10. The following statements are equivalent. 
(i) The exact sequence 0 -+ A -4 B .4 C -+ 0 is split. 

(ii) A is a direct summand of B; that is, there exists a subgroup C' of B with 
C' ~ C via piC' and B = im i E9 C'. 

(iii) There exists a homomorphism q: B -+ A with qi = lA. 

Corollary 9.2 thus says that an exact sequence 0 --. A --. B --. F --. 0 with F 
free abelian is necessarily a split exact sequence. 

Theorem 9.3. Every subgroup H of a free abelian group F is free abelian; 
moreover, rank H ~ rank F. 

Remark. It follows that if F is f.g., then H is f.g. 

PROOF. We give two proofs: the first proof works only when F has finite rank, 
but it allows us to focus on essentials. 
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Suppose that F has finite rank n; we prove the theorem by induction on n. 
If n = 1, then F ~ Z and the division algorithm shows that any subgroup H 
of F is cyclic, hence is 0 or isomorphic to Z. Thus H is free abelian and 
rank H::; 1 = rankF. For the inductive step, let {Xl' ... ' Xn} be a basis of F, 
let Fn = <x l' ... , xn- l ), and let Hn = H n Fn. By induction, Hn is free abelian 
ofrank ::;n - 1. Now 

H/Hn = H/(H n Fn) ~ (H + Fn}/Fn c F/Fn ~ Z. 

By Corollary 9.2, H = Hn or H = Hn EEl <h), where <h) ~ Z. Therefore H is 
free abelian of rank ::; n. 

We now give a second proof that does not assume the rank of F is finite. 
Let {Xk: k E K} be a basis of F, which we assume is well ordered. (That every 
nonempty set can be somehow well ordered is equivalent to the axiom of 
choice.) 

For each k E K, define Fk = Lj<k <Xj) and i{ = Lj:5:k <Xj); define Hk = 

H n Fk and Hk = H n KNow F = U i{ and H = U Hk; also, Hk = H n Fk = 
Hk n Fk. Hence 

HdHk = Hk/(Hk n Fk) ~ (Hk + Fk)/Fk C i{/Fk ~ Z. 

By Corollary 9.2, either Hk = Hk or 

Hk = Hk EEl <hk), where <hk) ~ Z. 

We claim that H is free abelian on the set of hk'S; note that it will then follow 
that rank H ::; rank F, for the set of hk clearly has cardinality::; I K I = rank F. 

Let HO be the subgroup of H generated by the hk. Since F = U i{, each 
hE H (as any element of F) lies in some i{. Let Jl(h) be the least index k with 
hE i{. Suppose that H #- HO and consider {Jl(h): h E Hand h ¢ HO}. There is 
a least such index j, because K is well ordered. Choose h' E H with Jl(h') = j 
and h' ¢ HO. Now Jl(h') = j says that h' E H n~, so 

h' = a + mhj' mEZ. 

Therefore a = h' - mhj E H, a ¢ HO (lest h' E HO), and Jl(a) < j, a contradic­
tion. Hence H = HO. 

Next, we show that linear combinations of the hk are unique. It suffices to 
show that if 

then each mi = O. We may assume that mn #-0. But then mnhkn E <hk)nHkn = 0, 
a contradiction. This shows that H is free abelian on the hk • 0 

Theorem 9.4. A free chain complex (A*, 0) is acyclic if and only if it has a 
contracting homotopy. 

PROOF. Sufficiency is Corollary 5.4. For the converse, assume that Hn(A*) = 0 
for all n 2 O. Now Zn(A*) C An is free abelian, by Theorem 9.3. The differentia-
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tion an: An --+ An- 1 has image Bn- 1 (A*) = Zn-l (A*) (since Hn- 1 (A*) = 0), so 
that Theorem 9.1 gives a homomorphism sn-l: Zn-l (A*) --+ An with OnSn-l = 1. 
It follows that the map 1 - Sn-l an: An --+ An has its image in Zn(A*). Define 
tn: An --+ An+1 as the composite 

Then 

tn = sn(1 - Sn-10n)· 

On+1 tn + tn-10n = 0n+l sn(1 - Sn-10n) + sn-l (1 - Sn-2 On-l )on 

= 1 - Sn-10n + Sn-10n = 1. 

Therefore {tn } is a contracting homotopy of A*. o 
Definition. Let f: (A*, a) --+ (B*, a') be a chain map. The mapping cone of f is 
the chain complex C(f) whose nth term is 

C(f)n = An- 1 EEl Bn 

and whose differentiation Dn: C(f)n --+ C(f)n-l is given by 

Dn(an- 1, bn) = ( - On-l an- 1, fn-l an- 1 + o~bn)· 

It is convenient to write Dn in matrix form: 

( -a 0) 
D= f a'· 

Lemma 9.5. If f: A* --+ B* is a chain map between free chain complexes, then 
C(f) is a free chain complex. 

PROOF. Matrix multiplication shows that DD = 0, using the fact that -fa + 
o'f = ° (because f is a chain map). The freeness of C(f) follows at once from 
the freeness of A* and of B*. D 

Theorem 9.6. Let f: A* --+ B* be a chain map between free chain complexes. If 
C(f) is acyclic, then f is a chain equivalence. 

PROOF. Assume that C(f) is acyclic; since the chain complexes are free, 
Theorem 9.4 says that C(f) has a contracting homotopy. In matrix notation, 
there is a 2 x 2 matrix T with DT + TD = I: 

( -a O)(A Jl) + (A Jl)(-O 0) = (1 0). 
f O'ut Ut fa' 01 

Define f' = Jl, s' = - t, and S = A. Then the matrix equation shows that f' is 
a chain map (-OJl + JlO' = 0), so + as = f'f - 1, and s'o' + a's' = if' - 1. 
Therefore f is a chain equivalence. D 

Lemma 9.7. If f: A* --+ B* is a chain map. then there is an exact sequence 

... ----+ Hn+1 (C(f)) ----+ Hn(A*) ~ Hn(B*) ----+ Hn(C(f)) ----+ .... 
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PROOF. Define a shifted version A; of A* as follows: 

(A;)n = A n- 1 and a: = 0n-l. 

There is a short exact sequence of chain complexes 
. p 

o ~ B* ~ C(f) ~ A; ~ 0, 
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where i: b~(O, b) and p: (a, b)~a. There results a long exact sequence of 
homology groups 

~ 
... ~ Hn+1(C(f)) ~ Hn+1(A;) ~ Hn(B*) ~ Hn(C(f)) ~ ... , 

where A is the connecting homomorphism. Now it is easy to see that 
Hn+1 (A;) = Hn(A*); let us compute A. Consider the usual diagram 

p 
An EB Bn+1 ~ An ~ 0 

. 1 D 
I o ~ Bn ~ A n- 1 EB Bn 

If a is a cycle, then Dp-l(a) = D(a, 0) = (-oa,fa) = (O,fa) = i(fa); hence 
A: cls a~cls fa, and so A = f*· 0 

Theorem 9.S. Let A* and B* be free chain complexes, and let f: A* ~ B* be a 
chain map. Then f is a chain equivalence if and only if f*n: Hn(A*) ~ Hn(B*) 
is an isomorphism for every n. 

PROOF. Necessity is Theorem 5.3. For sufficiency, consider the exact sequence 
of Lemma 9.7. Since each f* is an isomorphism, exactness forces Hn( C(f)) = 0 
for all n; that is, C(f) is acyclic. Theorem 9.6 now applies to show that f is a 
chain equivalence. 0 

Remark. If E~ is an adequate subcomplex of a free chain complex E*, then 
Lemma 7.28 shows that the inclusion i: E~ 4 E* induces isomorphisms in 
homology. It follows from Theorem 9.8 that i is a chain equivalence. 

The chain map j: C*(K) ~ S*(IKI) of Theorem 7.22 (where K is a simplicial 
complex) is a chain equivalence, because j* is an isomorphism; also, the chain 
map W*(X) ~ S*(X) of Exercise 8.35 is a chain equivalence for every CW 
complex X. 

Acyclic Models 

The next topic, the method of acyclic models, is a technique of constructing 
chain maps and chain homotopies. The following elementary result is the heart 
of the so-called comparison theorem of homological algebra; its analogue in 
functor categories is the heart of acyclic models. 
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Theorem 9.9. 

(i) Consider the commutative diagram of abelian groups 

F 
t G~ G" ----+ 

I 

jb I " I 
c l 

I 

~ 
E' ----+ E ----+ E" 

r p 

in which the bottom row is exact, st = 0, and F is free abelian. Then there 
exists a homomorphism c making the first square commute. 

(ii) Consider the diagram of abelian groups2 

-----+ F2 
d2 d1 

Fo 
e 

coker d1 -----+ 0 -----+ F1 -----+ -----+ 
I I I I f I I I 
I I t1 I 

t2 I I I to 

~ ~ ~ 
-----+ E2 -----+ E1 -----+ Eo -----+ coker 01 -----+ 0 a2 a1 e 

in which the rows are chain complexes, each Fi is free abelian, and the 
bottom row is exact (i.e., it is an acyclic complex). Then there exists a chain 
map t: F --+ E with fe = eto. 

PROOF. (i) If we can show that im bt c im r, then we have a diagram 

F 

j " 
E'~ im r ----+ 0 

to which Theorem 9.1 applies, yielding the result. Now exactness ofthe bottom 
row gives im r = ker p, so that it suffices to prove that pbt = O. But pbt = ast, 
by commutativity, and st = 0, by hypothesis. 

(ii) Construct ti by induction on i ~ O. When i = 0, use Theorem 9.1 with 
the diagram 

For the inductive step, use part (i). 0 

Definition. One says that a chain map t is over f in the circumstance of 
Theorem 9.9(ii); that is, fe = eto. 

2 Iff: A ~ A' is a homomorphism, then its cokernel is defined as 

coker f = A'lim f. 
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EXERCISE 

9.11. In Theorem 9.9(ii), prove that t is unique in the sense that any other such chain 
map t' (over f) is chain homotopic to t. (Hint: Define L1 = 0 and construct 
sn: Fn ...... En+1 with an +1 Sn + Sn-1 dn = tn - t~ by induction on n ~ 0 by using the 
commutative diagram 

Fn -----> 0 

t" ~ t; ~ s"_ld" I I 
En+1 -----> En -----> En- 1·) 

an+1 0" 

Definition. A functor F: Ab ...... Ab IS additive if whenever j, g: A ...... Bare 
homomorphisms then 

F(f + g) = F(f) + F(g). 

(In Theorem 5.2, we proved that Hn: Comp ...... Ab is additive if one makes 
the obvious generalization from Ab to Comp.) 

EXERCISES 

*9.12. Let F: Ab -> Ab be an additive functor; if f is a zero homomorphism, then so 
is F(f); if A is the zero group, then so is F(A). 

*9.13. Let F: Ab ...... Ab be an additive functor of either variance. 
(i) If 0 ...... A -> B ...... C ...... 0 is a split exact sequence, then 0 ...... FA ...... FB ...... FC ...... 0 

is also split exact when F is covariant (and 0 ...... FC ...... F B ...... FA ...... 0 is split 
exact when F is contravariant). In particular, the functored sequence is exact. 

(ii) If I is a finite index set, then 

F(I Ai) ~ I FAi· 
ie I ie I 

*9.14. Let F: Ab ...... Ab be an additive functor of either variance. 
(i) If (A*, a) is a chain complex, then (F A*, Fa) is a chain complex. 

(ii) If f: A* ...... B* is a chain map, then Ff: F A* -> F B* is a chain map when F 
is covariant (Ff: FB* ...... FA* when F is contravariant). 

(iii) Iff: A* ...... B* is a chain equivalence, then so is Ff Conclude that F A* and 
FB* have the same homology groups. 

Definition. A category ~ with models A is an ordered pair (~, A), where A 
is a subset of obj ~.If F: ~ ...... Ab is a functor, then an F-model set is an indexed 
set ff = {Xj E F M.: j E J}, where {Mj : j E J} is an indexed family of models. 

J 

For every object C in ~ and every a: M j ...... C in~, one has Fa: FMj ...... FC 
in Ab, and hence (Fa)(xj) E FC for every j E J and every Xj E ff. 

Definition. Let ~ be a category with models A, and let F: ~ ...... Ab be a functor. 
Then F is free with base in A if: 
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(i) FC is a free abelian group for every object C; 
(ii) there is an F-model set f!{ = {Xj E FM/ j E 1} such that, for every object 

C, the set 

{(F a)(xJ Xj E f!{ and a: M j ~ C} 

is a basis of Fe. 

EXAMPLE 9.4. Fix k 2: 0, and consider the category Top with models vi( = {Llk} 
(there is only one model). If Sk: Top ~ Ab is the functor that is the kth term 
of the singular complex, then f!{ = {(j} is an Sk-model set, where fJ E Sk(Llk) 
is the identity map. For every space X, we know that Sk(X) is a free abelian 
group with basis all k-simplexes a: Llk ~ X. But Sk(a)(fJ) = a # (fJ) = a 0 (j = a, 
so that 

{Sk(a)«j): (j E f!{ and a: Llk ~ X} 

is a basis of Sk(X), Hence Sk is free with base in vi( = {Llk}. 

EXAMPLE 9.5. Let :1{" be the category of simplicial complexes, let p 2: ° be fixed, 
and let Cp ::1{" ~ Ab be the pth term of the simplicial chain complex. If 
vi( = {LlP}, where LlP is the standard p-simplex [eo, . .. , ep], then proceeding 
as in Example 9.4 does not show that Cp is a free functor. Let f!{ = {fJ}, where 
fJ E Cp(LlP) is the element <eo, ... , ep). If K is a simplicial complex, then the set 

{Cp(a)(fJ)la: LlP ~ K is a simplicial map} 

= {<aeo,"" aep)la: M ~ K simplicial} 

is too big; it does contain a basis of Cp(K), but it also contains symbols 
<vo, ... , vp) with repeated vertices as well as symbols <v"o, ... , v"p) for every 
permutation 1t of {O, 1, ... , p}. 

Define Fp: :1{" ~ Ab so that Fp(K) is the free abelian group having the large 
basis above; that is, Fp(K) is the free abelian group with basis all symbols 
<VO, ... , vp) for which Vo, ... , vp are (not necessarily distinct) vertices that span 
a simplex in K. Then Fp is free with base {LlP}. 

Lemma 9.10. Let ~ be a category with models vI(, and let F: ~ ~ Ab be a free 
functor with base f!{ = {Xj E FM/ j E 1}. If G: ~ ~ Ab is a functor and i!!f = 

{Yj E GM/ j E 1} is a G-model set (same models Mj ), then there exists a unique 
natural transformation r: F ~ G with rMj(xj ) = Yj for all j E 1. 

Remark. The following diagram is a mnemonic. 

F 
T 

G --- ---+ 

I I 
f!{ ~ i!!f. 

Xj I-> Yj 
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PROOF. Let us prove uniqueness of, (assuming that it exists). For fixed index 
j and object C, naturality of , gives a commutative diagram for every 
0": Mj --+ C: 

FMj 
Fa 

FC ---------+ 

" j ] " 
GMj ---------+ GC, 

Ga 

where 'j abbreviates 'Mj ; that is, 'e 0 (FO") = (GO") 0 'j. Hence, if Xj E !!l, the 
hypothesis gives ,d(FO")(xj)) = (GO")(,iXj)) = (GO")(y). Since the family of all 
(FO")(xj) forms a basis of FC and hence generates FC, it follows that each 
homomorphism 'e is uniquely determined. Therefore, = {,d is unique. 

To construct " define 'e: FC --+ GC by first setting ,d(FO")(x)) = (GO")(y) 
and then extending by linearity (FC is free abelian, and we have assigned a 
value to each basis element). It remains to prove that all such 'e constitute a 
natural transformation: if f: C --+ D, then the following diagram commutes: 

Ff 
---------+ 

GC ---------+ GD. 
Gf 

Since FC is free abelian, it suffices to evaluate both composites on a typical 
basis element, say, (FO")(xj). Now 

(Gf) 0 'e: (FO")(x) 1---+ (Gf)((GO")(y)) = (Gf 0 GO")(y) = (G(fO"))(y) 

(because G is a functor); on the other hand, 

'D 0 Ff: (FO")(xj) 1---+ 'D((Ff 0 FO")(xj)) = 'D((F(fO"))(xj)) = (G(fO"))(Yj)· D 

Lemma 9.11. Let rc be a category with models vIt. Consider the commutative 
diagram of functors rc --+ Ab and natural transformations 

F 
1: G~ G" ---------+ 

y ]1 ] , 
E' ---------+ E ---------+ E" 

p 1t 

in which 0", = 0 (i.e., O"e'e = 0 for every object C), im P = ker n on vIt (i.e., 
im PM = ker nM for every model M), and F is free with base in vIt. Then there 
exists a natural transformation y: F --+ E' making the first square commute. 
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PROOF. By hypothesis, there exists an F-model set {Xj E FM/ j E J} that is a 
base for F. Now for each j, there is a commutative diagram in Ab satisfying 
the hypotheses of Theorem 9.9(i): 

FMj ------+ GMj ------+ G"Mj 

j j 
E'Mj ------+ EMj ------+ E"Mj; 

hence each Xj E F Mj determines some yj E E'Mj (its image under the dashed 
arrow); of course, these yj form an E'-model set. By Lemma 9.10, there exists 
a natural transformation '}': F --+ E' with '}'j(Xj) = yj (here '}'j abbreviates I'M)' It 
remains to check commutativity. Define an E-model set by setting Yj = Pjyj. 
Since both f3r and PI' are natural transformations F --+ E whose M}h compo­
nent takes Xjl---+ Yj' the uniqueness assertion in Lemma 9.10 gives f3r = PI'· 0 

It is simplest to regard Lemma 9.11 as merely a functor version of the 
elementary Theorem 9.9(i). But Lemma 9.11 is stronger than this; not only 
is there no assumption that C(j is small (to force "functor categories" to be 
categories), but the most important feature is that the bottom row of the 
diagram is assumed exact only for models M in .-If. 

The theorem we seek is a version of these results with Ab replaced by Compo 
Of course, if E: C(j --+ Comp is a functor, then Hn(EC) is defined for every object 
C; moreover, if E is nonnegative, that is, E; = 0 for i < 0, then we may lengthen 
the complex EC as follows: 

.•• --+ E2 C --+ El C --+ EoC --+ Ho(EC) --+ 0 

(for Ho(EC) isjust coker(E I C --+ Eo C». Finally, for every k ~ 0, E determines 
a functor Ek: C(j --+ Ab, namely, C 1---+ EkC, the kth term ofthe chain complex EC. 

Definition. Let E: C(j --+ Comp be a functor. An object C in C(j is called E-acyclic 
if Hn(EC) = 0 for all n > O. 

Theorem 9.12 (Acyclic Models). Let C(j be a category with models .-If, and let F, 
E: C(j --+ Comp be nonnegative functors. For each k ~ 0, assume that Fk is free 
with base in .-Ifk C .-If and that each model M in .-If is E-acyclic. Then 

(i) For every natural transformation cp: HoF --+ HoE, there is some natural 
chain map r: F --+ E over cp; that is, there is a commutative diagram 

d2 d l 
Fo ------+ HoF ------+ 0 ... ------+ Fl ------+ 

j " j '. j • 
------+ El ------+ Eo ------+ HoE ------+ O. 

°2 °1 
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(ii) If r, r': F --+ E are natural chain maps over <p, then rand r' are naturally 
chain homotopic. 

(iii) Assume that Ek is free with base .ltk C .It and each model M in .It is 
F-acyclic. If <p is a natural equivalence, then every natural chain map 
r: F --+ E over <p is a natural chain equivalence. 

Remarks. (1) We shall elaborate on the term "naturally chain homotopic" in 
the proof. 

(2) Realize what this theorem does; it constructs (natural) chain maps and, 
perhaps more useful, it constructs (natural) chain homotopies and chain 
equivalences. 

(3) Recall that chain maps induce homomorphisms in homology, chain 
homotopic chain maps induce the same homomorphisms in homology, and 
chain equivalences induce isomorphisms in homology. 

PROOF. (i) The statement means that for every natural transformation 
<p: HoF --+ HoE there exists a sequence of natural transformations rk: Fk --+ Ek, 
all k ~ 0, making the diagram in the statement commute (note that, for every 
model M, indeed for every object C in ce, the bottom row is exact at EoC, 
because Ho(EC) is just the cokernel of E 1 C --+ Eo C). The proof is by induction 
on k ~ O. When k = 0, use Lemma 9.11 with the diagram 

Fo ----+ HoF ----+ 0 

I· 10 

Eo ----+ HoE ----+ 0; 

the inductive step also follows easily from Lemma 9.11. 
(ii) Assume that both r, r': F --+ E are over <p; our task is to find natural 

transformations Sk: Fk ..... Ek+1 for all k ~ - 1 such that 

Define L1 = 0, and proceed by induction on k ~ 0 to define Sk. Let Ok = 
rk - r~. As both rand r' are over <p, it is easy to see that the following diagram 
commutes: 

E1 ----+ Eo ----+ HoE. o 

Lemma 9.11 applies at once (the bottom row is exact for every model M, 
indeed for every C, as noted above) to provide so: Fo --+ E1 with oSo = 00 , as' 
desired. 
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For the inductive step, consider the diagram 

Fk ~Fk~ 0 

j ~ -'"d, j 0 

Ek+1 ~ Ek ~ Ek- 1 a a 

whose bottom row is exact for every model M. Now Lemma 9.11 provides 
Sk: Fk --+ Ek+1 with aSk = 8k - Sk-1 dk (which is what we seek) if we can show 
that this diagram commutes. But, by induction, 

ak(8k - Sk-1 dk)= ak8k - (akSk- 1)dk 

= a8k - (8k- 1 - Sk-2 d)d 

= a8k - 8k- 1 d, 

and this last is zero because 8 is a chain map. 
(iii) If cp is a natural equivalence, then its inverse cp-1: HoE --+ HoF exists. 

By (i), there exists a natural chain map (T: E --+ F over cp -1. Therefore (Tr: F --+ F 
is a natural chain map over cp-1cp = 1, the identity natural transformation on 
HoF. Obviously, the identity IF: F --+ F is also a natural chain map over 1, so 
that (ii) gives a natural chain homotopy (Tr ~ IF. A similar argument gives 
r(T ~ IE, hence r: F --+ E is a natural chain equivalence. 0 

Let us now review the proof of the homotopy axiom (Theorem 4.23) in the 
light of acyclic models. Top is a category with models A = {Llk : k ;::-: O}. 
In Example 9.4, we saw that the singular complex S*: Top --+ Comp has 
each term Sk: Top --+ Ab free with base in A. Recall that the proof of Theorem 
4.23 involved constructing a chain homotopy pX: A?# ~ AS# for every space 
X, where At: X --+ X x I is defined by x H (x, i) for i = 0, 1. Define a functor 
E: Top --+ Comp by E(X) = S*(X x I). In Theorem 4.19, it was shown that 
every convex set is acyclic; since Llk x I is convex, it follows that every model 
Llk is E-acyclic. Now both A1# and Ao# are natural chain maps S* --+ E. 
Therefore acyclic models says that if HO(A 1) = Ho(Ao), then A1# and Ao# are 
naturally chain homotopic. The equality Ho(A1) = Ho(Ao) is the content of 
Eqs. (1) and (2) in the base step (n = 0) of the proof of Theorem 4.23. Thus all 
other calculations in the proof of the homotopy axiom are necessarily routine, 
because they can be made once and for all in great generality. 

Before giving further applications of acyclic models, we modify it to make 
it easier to use. 

Definition. An augmentation of a nonnegative complex (S*, a) is a surjective 
homomorphism s: So --+ Z with the composite Sal = O. A chain map f: S* --+ S~ 

is augmentation preserving if there is a commutative diagram 
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So 
£ 

Z -
f. j j 1 

S~ - Z. 
£' 

We have seen augmentations before, when reduced homology was intro­
duced (then we wrote 80 instead of e, where 80 adds coefficients). 

Corollary 9.13. Let ({j be a category with models J{, and let F, E be functors 
from ({j to the category of augmented chain complexes. 

(i) If each Fk is free with base in J{ and each model M is totally E-acyclic (i.e., 
jt(EM) = 0 for all n 2 0), then there exist natural chain maps F -+ E that 
are augmentation preserving, and any two such are naturally chain homo­
topic. 

(ii) If both Fk and Ek are free with bases in J{, all k 2 0, and if every model is 
both totally E-acyclic and totally F-acyclic, then every augmentation pre­
serving natural chain map is a natural chain equivalence. 

PROOF. (i) In the proof of Theorem 9.12, replace Fo -+ HoF -+ 0 and Eo-+ 
HoE -+ 0 by their respective augmentations, so that Z now plays the role of 
Ho and the identity Z -+ Z plays the role of cp: HoF -+ HoE (the only proper­
ties of HoF and HoE used in the proof are shared by augmentations, namely, 
commutativity of the square 

Eo-Z 

and exactness of ElM -+ EoM -+ Z -+ 0 for all models M: since each model 
M is totally E-acyclic, 0 = Ho(EM) = ker e/im(E1M -+ EoM)). There is thus 
a natural chain homotopy between any two augmentation preserving natural 
chain maps. 

(ii) If both F and E are free and acyclic, then there are augmentation 
preserving natural chain maps r: F -+ E and (J: E -+ F. But the identity chain 
map 1: F -+ F is also augmentation preserving, so that uniqueness says that 
there is a natural chain homotopy (Jr ~ 1F ; similarly, r(J ~ 1E • Therefore rand 
(J are natural chain equivalences. 0 

EXERCISE 

*9.15. (i) The "large" simplicial chain functors Fp in Example 9.5 can be assembled 
(with the usual alternating sum differentiations) to form a functor 
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F: :K -+ Compo Prove that F is naturally chain equivalent to the singular 
chain complex functor (restricted to the category of finite simplicial 
complexes). 

(ii) Using Theorem 7.22, prove, for K a finite simplicial complex, that H.(K) 
can be computed either via singular theory, or via the large simplicial chain 
complex, or via oriented simplicial chain complexes. (As we observed in 
Example 9.5, the "oriented" functor C. is not free, so that acyclic models 
does not apply to prove Theorem 7.22. In this case, Theorem 9.8 applies.) 

There is a cheap variant of acyclic models called acyclic carriers; rather 
than deriving it from acyclic models, we prove it directly. 

Definition. Let (S*, a) be a free chain complex in which each term Sn has a 
given basis Bn. If IX E Sn and P E Sn-1' then P is a face of IX, denoted by P < IX, 

if P occurs with nonzero coefficient in alX. 
Let (T*, L\) be a chain complex, and let cP: S* -+ T. be a chain map. A carrier 

function for cP is a function E that assigns to each Y E U Bn a subcomplex E(y) 
of T* such that, for all y, 

(i) E(y) is acyclic; 
(ii) if y E Bn, then CPn(Y) E En(Y) C 1',,; 

(iii) if P < y, then E(P) c E(y). 

Carrier functions arise as follows. Let K and L be simplicial complexes, 
and let ~ be a function that assigns to each simplex S E K an acyclic subcom­
plex ~(s) of L such that s' c s implies ~(s') c ~(s). It is straightforward to check 
that if cP: C*(K) -+ C*(L) is a chain map for which cp(s) E Cn(~(s)) whenever s 
is an n-simplex in K, then E(s) = C*(~(s)) is a carrier function for cp. 

Theorem 9.14 (Acyclic Carriers). Let S* be a free chain complex in which each 
term has a given basis, and let cP: S* -+ T. be a chain map into some chain 
complex T*. If cP has a carrier function and if CPo: So -+ To is the zero map, then 
cP is chain homotopic to the zero chain map. 

PROOF. We prove by induction on p ;;::: 0 that there exist homomorphisms 
sp: Sp -+ '1;,+1 such that: 

(1) CPp = a~+l sp + Sp-1 ap; 
(2) Si(y) E E(y) for all y E Si with i :::;; p. 

The induction begins by setting S-l = 0 = So (here one uses the hypothesis 
that CPo = 0). 
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Suppose, by induction, that so, Sl' ... , sp have been defined satisfying (1) 
and (2). To define Sp+1: Sp+1 -+ Tp+2, it suffices to evaluate it on any y in the 
basis of Sp+1' The boundary oy of such a basis element y lies in Sp, so that 
sp(oy) is defined. Moreover, 

sp(oy) E <E(y'): y' < y) c E(y) 

(where < ) means "subcomplex generated by"); the first relation holds by (2) 
of the inductive hypothesis; the inclusion holds by (iii) of the definition of 
carrier function. It follows from (ii) that 

CPp+1 (y) - sp(oy) E E(y). 

Now CPp+1 (y) - sp(oy) is a cycle in the complex E(y): 

o'(CPP+1(y) - sp(oy)) = (O'CPP+1 - o'spo)(y) 

= (O'CPP+1 - (cpp - Sp_1 0)O)(y) (by (1)) 

= (O'CPP+1 - CPpo - soo)(y) = 0, 

the last equality because cP is a chain map. Since E(y) is acyclic, CPp+1 (y) - sp(oy) 
must be a boundary: there exists a (p + 2)-chain f3 E E(Y)p+2 with 

o'(f3) = CPP+1(y) - sp(oy); 

define Sp+1 (y) = f3. This last formula now reads 

o'sy = cpy - say, 

and this is (1). Also, (2) holds, because f3 does lie in E(y). o 

Corollary 9.15. Let S* and T* be chain complexes, let S* be free with each term 
having a given basis. and let cP and t/J be chain maps S* -+ T*. If CPo = t/Jo: So -+ To 
and if cP - t/J has a carrier function, then cP and t/J are chain homotopic. 

PROOF. By the theorem, cP -t/J ~ 0. o 

Lefschetz Fixed Point Theorem 

Recall that when we constructed barycentric subdivision Sd in singular theory, 
we saw (Lemmas 6.12 and 6.l3) that Sd#: S*(X) -+ S*(X) is a chain map that 
induces the identity map in homology. In simplicial theory, however, 
Sd: K -+ Sd K, hence the chain map Sd#: C*(K) -+ C*(Sd K) cannot induce 
the identity map in homology. 

Lemma 9.16. For every simplicial complex K, Sd#: C*(K) -+ C*(Sd K) induces 
an isomorphism in reduced homology. 
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PROOF. By Lemma 7.21, there is a natural chain map j: (;.(K) -+ S.(lKI); 
moreover, by Theorem 7.22, j induces isomorphisms in homology. The result 
thus follows from commutativity of the diagram 

C.(K) 
Sd .. 

(;.(Sd K) ---+ 

j j j j 
S.(IKI) ---+ S.(ISd KI), 

Sd .. 

because ISd KI = IKI and the other three maps in the diagram induce 
isomorphisms. D 

It will be convenient to have an explicit description of the inverse of this 
isomorphism. Recall (Exercise 7.12(ii)) that there exists a simplicial map 
({J: Sd K -+ K that is a simplicial approximation to the identity ISd KI-+ IKI. 

Lemma 9.17.1f K is a finite simplicial complex and ({J: Sd K -+ K is a simplicial 
approximation to the identity ISd KI-+ IKI, then 

({J. = (Sd.)-l: H.(Sd K) .:+ H.(K). 

PROOF. Let .91 be the category of all subcomplexes of K (with inclusions as 
the only nonidentity morphisms), and define models .,(( in .91 to be all the 
simplexes of K. IfF is the augmented (large) simplicial chain complex functor 
of Exercise 9.15 (restricted to .91), then each Fp is free with base in .,(( and each 
model M is totally F -acyclic. 

Define E:.9I-+ Comp by setting 

E(L) = (;.(Sd L) 

for every subcomplex L of K. Now Sd#: F -+ E and ({J#: E -+ F are aug­
mentation preserving natural chain maps (Exercises 6.8 and 7.12(ii)), so that 
the composite ({J# Sd#: F -+ F is an augmentation preserving natural chain 
map. Since F is free with totally acyclic models, Corollary 9.13(ii) shows 
that ({J# Sd# is naturally chain equivalent to the identity, hence ({J.Sd. is the 
identity on H.(FK) = H.(K). But Sd. is an isomorphism, by Lemma 9.16, 
hence ({J. and Sd. are inverse. D 

Remark. This lemma cannot be proved using Theorem 9.9 in place of acyclic 
models, because the bottom row of 

... ---+ C1(K) ---+ a ---+ 
e 

Z ---+ 0 
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is not exact (it is only a chain complex), and so it is not obvious how to 
construct a chain homotopy between the identity and «1# Sd# . 

The purpose of these lemmas is to prove the Lefschetz fixed point theorem, 
which gives a sufficient condition that a continuous map f on a compact 
polyhedron have a fixed point. 

Recall that if V is a finite-dimensional vector space over Q and T: V ~ V 
is a linear transformation, then a choice of basis of V associates a square matrix 
A to T; one defines the trace of T, denoted by tr T, to be the trace of A (namely, 
L au). It is a standard argument that tr T is independent of the choice of basis 
(and the resulting matrix A). If 0 ~ V' 4 V ~ V" ~ 0 is a short exact sequence 
of vector spaces and if T: V ~ V is a linear transformation with T(V') c V', 
then T induces a linear transformation T" on V". In fact, if {Xl' ... ' xd is a 
basis of V', and if one extends it to a basis {X l' ... , xn} of V, then T" (Xi + V') = 

TXi + V' for i = k + 1, ... , n (we have identified V" with V/V'). Moreover, 

tr T = tr(TI V') + tr T", 

for the matrix A of T with respect to the (extended) basis is 

tffiJ' * A-
o A", 

where A' is the matrix of TI V' with respect to {Xl' ... , xd and A" is the matrix 
of T" with respect to {Xk+l + V', ... , Xn + V'}. The result is now clear, because 
tr T is just the sum of the diagonal entries of A. It is also easy to see that 

tr Iv = dim V. 

The notion of trace can also be defined for endomorphisms of f.g. free 
abelian groups, and even for endomorphisms of arbitrary f.g. abelian groups. 
If G is free abelian with basis {Xl' ... , xn}, then a homomorphism f: G ~ G 
is completely determined by the n x n matrix A over Z, where f(x;) = L ajixj 
and A = [au]. A different choice of basis {Yl' ... ' Yn} of G replaces A by 
p-l AP, where the ith column of P expresses Yi as a Z-linear combination of 
the x/s; it follows that tr f defined as tr A is independent of the choice of basis 
(and of the matrix A). Finally, if G is any f.g. abelian group and f: G ~ G is a 
homomorphism, then f(tG) c tG (where tG is the torsion subgroup of G), and 
so f induces a homomorphism l: G/tG ~ G/tG, namely, X + tG ~ f(x) + tG. 
Observe that G/tG is free abelian, because it is f.g. with no (nonzero) elements 
of finite order. 

Definition. If G is a f.g. abelian group and f: G ~ G is a homomorphism, then 
the trace of f, denoted by tr f, is defined to be tr 1, where 1 is the induced 
homomorphism on the f.g. free abelian group G/tG. 
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EXERCISES 

9.16. Prove that tr(lG) = rank G. 

*9.17. If 0 -> G' -!. G4 G" -> Ois an exact sequence off.g. abelian groupsandf: G -> G 
is a homomorphism with f(G') c G', then 

tr(fl G') + tr f" = tr f, 

where f": G" -> G" is induced by f (if x" E G" and x E G satisfies px = x", then 
define f"x" = pfx). 

Definition. Let Go, G1 , ... , Gm be a sequence of f.g. abelian groups and let 
h = (ho, hl' ... , hm), where hi: Gi --+ Gi is a homomorphism for every i. The 
Lefschetz number of h, denoted by A(h), is 

m 

A(h) = L (_l)i tr hi. 
i=O 

EXAMPLE 9.6. Let K be an m-dimensional (finite) simplicial complex, and let 
f: K --+ K be a simplicial map. Let f# = (fo#, ... ,fm#), where h#: Ci(K) --+ 

Ci(K) is the ith term of the chain map f#. Then 

m 

A(f#) = L (-l)itr h#. 
i=O 

EXAMPLE 9.7. In the above example, let f = 1K • Then tr h# = rank Ci(K), so 
that A(1K) is the Euler-Poincare characteristic of K. 

EXAMPLE 9.8. If f: K --+ K (as in Example 9.6), let f* = (fo*, ... , fm*), where 
h*: Hi(K) --+ Hi(K). Then 

m 

A(f*) = L (_l)i tr h*. 
i=O 

Lemma 9.18. Let C be a chain complex of the form ° --+ Cm --+ ... --+ Co --+ 0 in 
which each Ci is f.g., and let f: C --+ C be a chain map. Then 

PROOF. Imitate the proof of the corresponding result for the Euler-Poincare 
characteristic (Theorem 7.15), using Exercise 9.17 at appropriate moments. 

D 

It follows that if f: X --+ X is a continuous map on a compact polyhedron, 
then A(f) defined by A(f*) is a well defined number, independent of any 
triangulation of X. 

Theorem 9.19 (Lefschetz). Let X be a compact polyhedron and let f: X --+ X be 
continuous. If A(f) # 0, then f has a fixed point. 
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PROOF. Assume that f has no fixed points, so that compactness of X provides 
<5 > 0 with II x - f(x) II ~ <5 for all x E X. Let X = I K I for some finite simplicial 
complex K, and choose n so that mesh Sdn K < t<5. Choose t so that there 
is a simplicial approximation g: Sdn+t K --+ Sdn K to f. If h: Sdn+t K --+ Sdn K 
is a simplicial approximation to the identity ISdn+t KI--+ ISdn KI, then Igl ~ 
f ~ flhl and Igl* = f* Ihl*· Iterated application of Lemma 9.17 gives h* = 
(Sd~)-\ hence 

g# Sd~: C*(Sdn K) --+ C*(Sdn K) 

is a chain map inducingf* (actually, since Lemma 9.17 applies only to reduced 
homology, this is so for all subscripts n > 0; however, it holds trivially when 
n = 0 because Sd is the identity on O-simplexes). 

If a is a p-simplex in Sdn K, then gpSd~(a) = L mi'i, where mi E Z and each 
'i is a p-simplex. If, for every simplex a, none of the 'i is a, then the definition 
of trace gives A(g#Sd~) = 0, hence A(f*) = A(g*Sd~) = 0, by Lemma 9.18. 
Suppose, on the contrary, that some 'io = a for some p and some p-simplex 
a. Since Sd~(a) = LmiPi, where each Pi is a p-simplex with Ip;i c lal, it follows 
that g# Pio = Igl (Pio) c lal. Hence there is x E lal with Igl (x) E lal (namely, any 
x E IPiol); that is, Ilx - Igl (x)11 ::;; mesh Sdn K < t<5. But Exercise 7.10 (essen­
tially the definition of simplicial approximation) gives Illgl (x) - f(x) II < t<5. 
Thus 

Ilx - f(x) II ::;; Ilx -lgl(x)11 + Illgl(x) - f(x) II < <5, 

and this contradicts the definition of <5. D 

Corollary 9.20. Let X be a path connected compact polyhedron for which Hn(X) 
is finite for every n > O. Then every f: X --+ X has a fixed point. 

PROOF. Since rank Hn(X) = 0 for n > 0, it follows that J,.* = 0 for all n > 0 
where J,.* is the homomorphism induced by !,,* on Hn(X)/tHn(X); therefore 
tr fn* = 0 for all n > 0 and 

A(f) = tr fo*· 

Since X is path connected, Ho(X) ~ Z and tr fo* i= 0 (indeed fo* is the 
identity, by Theorem 4. 14(iii), and so tr fo* = 1). The result is now immediate 
from the Lefschetz theorem. D 

Corollary 9.21. If n is even, every f: Rpn --+ Rpn has a fixed point. 

PROOF. We saw in Theorem 8.47 that Hq(Rpn) = 0 or Z/2Z for all q > o. 0 

Corollary 9.22. If X is a compact contractible polyhedron, then every f: X --+ X 
has a fixed point. 

PROOF. Immediate from Corollary 9.20, because Hn(X) = 0 for all n > O. 0 
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Of course, Corollary 9.22 implies the Brouwer fixed point theorem. 

Corollary 9.23. If X is a compact contractible polyhedron with more than one 
point, then there is no multiplication Jl: X x X --+ X making X a topological 
group. 

PROOF. Suppose X were a topological group. Choose y E X with y #- 1; then 
cp: X --+ X defined by cp(x) = xy (= Jl(x, y)) is a continuous map (even a 
homeomorphism) having no fixed points. 0 

Corollary 9.24 (= Theorem 6.23). If n ~ 1, then the antipodal map a: sn --+ sn 
has degree ( _1)n+1. 

PROOF. By definition, degree a = d, where an*: Hn(sn) --+ Hn(sn) is multiplica­
tion by d. Thus tr an* = d = degree a, so that 

A(a) = 1 + (-IN. 

But A(a) = 0 because the antipodal map has no fixed points; therefore d = 
(_1)n+1. 0 

There is a survey article [Bing] in which the following simple example is 
given. Let X denote a circle in the plane with a spiral converging to it. 

Then ex, the cone on X, is a contractible space that does not have the fixed 
point property. 

EXERCISE 

9.18. If J: sn --> sn is a continuous map that is not a homotopy equivalence, then J has 
a fixed point. 
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Tensor Products 

The last topic in this chapter answers the question: What is H*(X x Y) in 
terms of H*(X) and H*(Y)? The ultimate answer is quite satisfactory, and it 
involves a nice mixture of algebra and topology. First, we need the notion of 
tensor product (which we shall define) and some results from homological 
algebra (which we shall quote). The link with algebraic topology is the 
Eilenberg-Zilber theorem, whose heart is an application of acyclic models. 

Definition. Let A and B be abelian groups. Their tensor product, denoted by 
A ® B, is the abelian group having the following presentation: 

Generators: A x B, that is, all ordered pairs (a, b). 
Relations: (a + a', b) = (a, b) + (a', b) and (a, b + b') = (a, b) + (a, b') for 

all a, a' E A and all b, b' E B. 

If F is the free abelian group with basis A x B and if N is the subgroup of F 
generated by all relations, then A ® B = FIN. We denote the coset (a, b) + N 
by a Q9 b. Observe that a typical element of A ® B thus has an expression of 
the form L mi(ai ® bi) for mi E Z. Indeed one can dispense with the mi because 
of Exercise 9.20 below. 

EXERCISES 

9.19. a ® 0 = 0 = 0 ® b for all a E A and b E B. 

*9.20. Ifrn E Z, then rn(a ® b) = (rna) ® b = a ® (rnb). 

*9.21. If A is torsion, then A ® Q = O. (Hint: If a E A, then rna = 0 for some rn > 0; if 
q E Q, then a ® q = a ® rn(q/rn) = rna ® (q/rn) = 0.) 

*9.22. If A and B are finite abelian groups whose orders are relatively prime, then 
A®B =0. 

A definition by generators and relations, though displaying elements, is 
difficult to work with; for example, it is usually unclear whether or not a given 
element is zero. A worse defect is that one does not understand what purpose 
the construction is to serve. 

Definition. Let A, B, and G be abelian groups. A bilinear function <p: A x B -> G 
is a function such that 

<p(a + a', b) = <pea, b) + <pea', b) 

and 

<pea, b + b') = <pea, b) + <pea, b') 

for all a, a' E A and all b, b' E B. 



254 9. Natural Transformations 

The natural map v: A x B ~ A ® B taking (a, b) into a ® b is bilinear. 
The next result states that A ® B is a group (indeed is the only group) that 

converts bilinear functions into ordinary (linear) homomorphisms. 

Theorem 9.25. 

(i) Given any abelian group G and any bilinear map <p: A x B ~ G, there 
exists a unique homomorphism f: A ® B ~ G making the following diagram 
commute: 

(v is the natural map (a, b) 1---+ a ® b). 
(ii) A <8> B is the only group with this property; that is, if T is an abelian group 

and 11: A x B ~ T is a bilinear map such that the diagram 

AxB~ T 

~//~ 
G 

always has a unique "completion" f, then T ~ A ® B. 

PROOF. (i) Recall that A <8> B = FIN, where F is free abelian with basis A x B 
(and N is generated by certain relations). Consider the diagram 

AxB~ F ~ FIN=A<8>B 

~l'/{ 
G"'" 

Define ijJ: F ~ G by extending by linearity. The relations N are such that 
N c ker ijJ, and so ijJ induces a homomorphism f: FIN ~ G, namely, 
f: (a, b) + N 1---+ ijJ(a, b) = <p(a, b). In other words, f(a ® b) = <p(a, b) for every 
(a, b) E A x B. Such a homomorphism f is unique, for the set of all a <8> b 
generates A ® B. 

(ii) Consider the following diagram: 

AxB~A<8>B 

~? 
T 

By hypothesis, there exist homomorphisms f: A <8> B ~ T and g: T ~ A ® B 
with fv = 11 and gl1 = v. Now consider the diagram 
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AxB~A®B 

~~// 
A®B. 

Both gf and the identity complete the diagram, so that uniqueness of the 
completion gives gf = identity. A similar diagram shows that fg = IT, hence 
f and g are isomorphisms. 0 

Theorem 9.26. Let f: A ~ A' and g: B ~ B' be homomorphisms. 

(i) There is a unique homomorphism A ® B ~ A' ® B', denoted by f ® g, with 
a ® b ~ fa ® gb for every a E A and b E B. 

(ii) If 1': A' ~ A" and g': B'--> B" are homomorphisms, then (f' ® g') 0 (f ® g) = 

(I' 0 f) ® (g' 0 g). 

PROOF. (i) The function cp: A x B ~ A' ® B' defined by cp(a, b) = fa ® gb is 
easily seen to be bilinear. By Theorem 9.2S(i), there is a unique homomor­
phism A ® B ~ A' ® B' with a ® b~cp(a, b) = fa ® gb. 

(ii) Both maps complete the diagram 

AxB ~ A®B 

~~// 
A"®B", 

where cp(a, b) = I'(f(a)) ® g'(g(b)). o 
Corollary 9.27. Let A be a fixed abelian group. There is a functor T = ~: Ab ~ 
Ab such that T(B) = A ® Band T(f) = lA ® f. 

PROOF. That T preserves composites follows from Theorem 9.26(ii): 

(lA ® 1') 0 (lA ® f) = lA ® f}; 

that lA ® lB = lA@B follows from Theorem 9.2S(i). 

One usually denotes the functor ~ by A ® _. 

EXERCISES 

o 

9.23. For a fixed abelian group B, show that there is a functor F = FB : Ab --> Ab such 
that F(A) = A ® Band F(g) = g ® lB. (One usually denotes this functor by 
_®B.) 

9.24. (i) Prove that there is an isomorphism A ® B --> B ® A taking a ® b f--> b ® a. 
(ii) For any abelian group A, the functors A ® _ and _ ® A are isomorphic. 

*9.25. Prove that the tensor product functor TA (and FB ) is additive. Conclude that if 
f: B --> B' is the zero map (f = 0), then T(f) = 0, and that if B = {O}, then 
T(B) = {O}. 
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*9.26. If f: B ---> B is multiplication by an integer m, that is, f(b) = mb for all bE B, 
then lA ® f is also multiplication by m. 

*9.27. (i) For every abelian group A, there is an isomorphism 'fA: Z ® A ---> A with 
n ® af->na. 

(ii) Show that the family of all 'fA comprise a natural equivalence between 
Z ® _ and the identity functor on Ab. 

We remind the reader of a property of direct sums of abelian groups. 
Suppose that {B/ j E J} is a (possibly infinite) family of abelian groups and 
that {.!j: Bj --+ GIj E J} is a family of homomorphisms into some abelian group 
G. There exists a unique homomorphism I: L Bj --+ G with II Bj = .!j for all 
j E J. 

Theorem 9.28. There is an isomorphism A ® L Bj --+ L (A ® B) with 
a ® (bj ) I----> (a ® bJ 

PROOF. First, the function 11: A x L Bj --+ L (A ® Bj ) defined by (a, (bj )) I----> 

(a ® bj ) is bilinear. Consider the diagram with cp bilinear 

A x LBj ~ L(A®B) 

~ 1<"/// 

G. 

For each j, define CPj: A x Bj --+ G by (a, bj ) I----> cp(a, ~}, where ~ E L Bj has bj in 
the jth coordinate and 0 elsewhere. It is easy to see that each CPj is bilinear, so 
there exists a homomorphism .fj: A ® Bi --+ G with a ® bil----> cp(a, bi}' Our re­
marks about direct sums show that there is a homomorphism I: L (A ® Bj }--+ G 
with La ® bj --+ L.!j(a ® bj ) = L cp(a, bj } = cp(a, L~} = cp(a, (b)}. It follows 
that 111 = cp, so Theorem 9.25(ii} gives A ® L Bj ~ L (4 ® Bj ). But this last 
theorem not only asserts that an isomorphism exists; it also constructs one 
(with a commutative diagram). The reader can now show that this isomor­
phism does send a ® (b) into (a ® bj ). D 

Note that Exercise 9.13 shows only that there is some isomorphism 
A ® L Bj ~ L (A ® Bj ) whenever there are only finitely many summands, and 
so it is a weaker result than Theorem 9.28. 

Universal Coefficients 

If(C*, iJ} is a complex, then so is (C* ® G, iJ ® IG) (for any fixed abelian group 
G), because the composite of any two consecutive maps in 

an+1 01 an 01 
------>. Cn+1 ® G ) Cn ® G ) Cn - 1 ® G ) '" 

is zero, thanks to the additivity of - ® G (Exercise 9.25). 
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Definition. Let (X, A) be a pair of spaces and let G be an abelian group. If 
(S*(X, A), 0) is the singular chain complex of (X, A), then the singular complex 
with coefficients G is the complex 

8®1 8®1 
--+ Sn+1 (X, A) @ G ---+ Sn(X, A) @ G ---+ Sn-l (X, A) @ G --+ .... 

The nth homology group of (X, A) with coefficients Gis 

Hn(X, A; G) = ker(on @ l)jim(on+l @ 1). 

The word "coefficient" is suggested by the definition of tensor product, for 
a typical n-chain in Sn(X, A) @ G has the form I Pi @ gi' where Pi E Sn(X, A) 
and gi E G; the elements gi do resemble coefficients. 

Here is one way such a construction arises in topology. Given a field F and 
a space X, construct a vector space analogue of S*(X), call it S*(X, F), as 
follows: Sn(X, F) is the F-vector space with basis all n-simplexes in X; the 
differentiations are F-linear transformations defined on basis vectors as the 
usual alternating sum. Note that the subgroups of cycles and of boundaries are 
F-vector spaces, since they are, respectively, kernels and images of F-linear 
transformations. It follows that the homology groups are now F-vector spaces. 
This can be convenient, because it allows one to use linear algebra. We have 
already alluded to this in Chapter 7 when we mentioned how to find the Betti 
numbers of finite polyhedra in terms of ranks and nullities of certain matrices. 

Coefficients make a more serious appearance in obstruction theory (see 
[Spanier, Chap. 8J) where the coefficients are certain homotopy groups. But 
the major reason one needs coefficients is for spectral sequences, the most 
powerful method of computing homology groups (see [McClearyJ). In the 
very statements of its theorems, one sees terms of the form Hp(X, Hq(Y)), 
homology groups of X with coefficients Hq(Y). 

For every abelian group G, H*( ; G) is a homology theory with coefficient 
group G. The proof is straightforward, using Theorem 9.29 (the interested 
reader may look at the corresponding result for cohomology, Theorems 12.3, 
12.4, 12.9, and 12.10). 

The first question is the relation of homology with coefficients to ordinary 
homology. The optimistic guess is that Hn(X, A; G) ~ Hn(X, A) @ G; unfor­
tunately, this is always true only for certain G, namely, G torsion-free, and so 
it is usually false. This question eventually leads to an algebraic question: How 
does _@ G affect exact sequences? 

Theorem 9.29. If B' -4 B .4 B" --+ 0 is an exact sequence of abelian groups, then 
for every abelian group A, there are exact sequences 

A@B'~A@B~A@B"---+O 
and 

B' @ A ~ B@ A ~ B" @A---+O. 
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PROOF. (i) im(1 ® i) c ker(1 ® p). 
It suffices to prove that (1 ® p)(1 ® i) = 0; but this composite is equal to 

1 ® pi = 1 ® 0 = O. 
(ii) ker(1 ® p) c im(1 ® i). 
If we denote im(1 ® i) by E, then 1 ® p induces a map p: (A ® B)jE--+ 

A ® B" given by a ® b + E f--+ a ® pb (since E c ker(1 ® p), by (i)). It is easily 
seen that 1 ® p = pn, where n: A ® B --+ (A ® B)jE is the natural map. 

If p is an isomorphism, then 

ker(1 ® p) = ker pn = ker n = E = im(1 ® i), 

as desired. Let us construct a map A ® B" --+ (A ® B)jE inverse to p. The 
function f: A x B" --+ (A ® B)jE defined by 

f(a, b") = a ® b + E, 

where pb = b", is well defined: such an element bE B exists because p is a 
surjection; if pbi = b" = pb, then bi - b E ker p = im i, hence bi - b = ib' for 
some b' E B', and 

a ® bi - a ® b = a ® (b i - b) = (1 ® i)(a ® b') E im(1 ® i) = E. 

Now f is easily seen to be bilinear, so that Theorem 9.25(i) gives a homomor­
phism 1: A ® B" --+ (A ® B)jE with f(a ® b") = a ® b + E (where pb = b"). It 
is plain that J and p are inverse functions. 

(iii) 1 ® p is a surjection. 
If La; ® b(' E A ® B", then surjectivity of p provides elements b; E B, for 

all i, with pb; = b;', and 

Proof of exactness of the second sequence is similar to that just given. 0 

Note that there is no zero at the left, nor need there be one even under the 
extra hypothesis that i is injective. 

EXAMPLE 9.9. Consider the short exact sequence 0 --+ Z -4 Q.4 QjZ --+ 0, and 
let G be a torsion group. Now Exercise 9.27(i) shows that Z ® G ~ G, while 
Exercise 9.21 shows that Q ® G = O. Thus there can be no injection Z ® G--+ 
Q ® G, and so, in particular, i ® 1 is not injective. 

Corollary 9.30. 

(i) Let m > O. For any abelian group G, 

(ZjmZ) ® G ~ GjmG. 

(ii) If m, n are integers with (m, n) = d (i.e., gcd = d), then 

(ZjmZ) ® (ZjnZ) ~ ZjdZ. 
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PROOF. (i) Apply _ ® G to the short exact sequence 
m p o -+ Z -+ Z -+ ZjmZ -+ 0 

(where the first map is multiplication by m) to obtain exactness of 
m p@l 

G ------+ G ------+ (ZjmZ) ® G ------+ 0 
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(we have used Exercises 9.26 and 9.27). The first isomorphism theorem 
now applies: Gjker(p ® 1) ~ im p ® 1. But ker(p ® 1) = im m = mG, and 
im p ® 1 = (ZjmZ) ® G. 

(ii) The proof that G cyclic of order n implies GjmG cyclic of order d = 
(m, n) is left to the reader. 0 

Observe that Exercise 9.22 is a consequence of this corollary. 

Corollary 9.31. If A and B are known fg. abelian groups, then A ® B is also 
known. 

PROOF. A and B, being f.g. abelian groups, have decompositions as direct sums 
of cyclic groups. When we say these groups are "known", we mean that we 
know such decompositions of each. The result now follows from Corollary 
9.30 and Theorem 9.28. 0 

EXERCISES 

*9.28. (i) Let F and F' be free abelian groups with bases {Xj: j E J} and {x,:: k E K}, 
respectively. Then F @ F' is free abelian with basis {xj @ x':: j E J, k E K}. 
(Hint: Theorem 9.28.) 

(ii) If F and F' are f.g. free abelian groups, then F @ F' is a f.g. free abelian group 
and rank F @ F' = (rank F)(rank F'). 

9.29. Compute A @ B, where A = Z EB Z EB Z/6Z EB Z/5Z and B = Z/3Z EB Z/5Z. 

Evaluating ker(A' ® G -+ A ® G), where 0 -+ A' -+ A -+ AU -+ 0 is a short 
exact sequence of abelian groups, is one of the basic problems of homological 
algebra. 

Definition. For each abelian group A, choose an exact sequence 0 -+ R c!. F -+ 

A -+ 0 with F free abelian. For any abelian group E, define 

Tor(A, B) = ker(i ® 1B). 

Note that R is free abelian, by Theorem 9.3. Choosing bases of F and of R 
thus gives a presentation of A by generators and relations. 

(We can view this construction in a sophisticated way. If we delete A, 
then C* = 0 -+ R -+ F -+ 0 is a chain complex, as is C* ® B = 0 -+ R ® B -+ 

F ® B -+ 0 (just attach a sequence of zeros). Hence Tor(A, B)' = Hi (C* ® B). 
For fixed B, Tor( ,B) is even a (covariant) functor. Iff: A -+ A' is a homo-
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morphism, then Theorem 9.9 asserts the existence of the dashed arrows 
making the diagram below commutative. 

o ----+ R ----+ F ----+ A ----+ 0 
I I 

]1 I I 
I I 
I I 

~ ~ 
o ----+ R' ----+ F' ----+ A' ----+ O. 

The dashed arrows constitute a chain map over f; moreover, after being 
tensored by 1B , they constitute a chain map C* ® B --+ C~ ® B (where C~ is 
the complex 0 --+ R' --+ F' --+ 0). One defines f*: Tor(A, B) --+ Tor(A', B) as the 
homomorphism H 1(C* ® B) --+ Hl(C~ ® B) induced by this chain map.) 

Of course, there is an obvious question. Is the definition of Tor independent 
of the choice of exact sequence 0 --+ R --+ F --+ A --+ O? The answer is "yes". In 
fact one can even work on the second variable: if 0 --+ R' .4 F' --+ B --+ 0 is exact, 
then ker(i ® 1B ) ~ ker(lA ® j). Proofs of these facts can be found in any book 
on homological algebra. 

The reader may yearn for a less sophisticated description ofTor(A, B). Here 
is a presentation of it. As generators, take all symbols <a, m, b), where a E A, 
b E B, m E Z, and ma = 0 = mb. These generators are subject to the following 
relations: 

<a, m, b + b') = <a, m, b) + <a, m, b') ifma = 0 = mb = mb'; 

<a + a', m, b) = <a, m, b) + <a', m, b) ifma = ma' = 0 = mb; 

<a, mn, b) = <ma, n, b) ifmna = 0 = nb; 

<a, mn, b) = <a, m, nb) ifma = 0 = mnb. 

With this description of Tor(A, B), it is easy to define the map f* induced by 
f: A --+ A'; send the coset of <a, m, b) into the coset of <fa, m, b). It also 
follows that Tor(A, B) is a torsion group for all A and B (this is the etymology 
of Tor). 

Here are the basic properties of Tor. 
For each fixed abelian group B, Tor( ,B): Ab --+ Ab is an additive 

(covariant) functor satisfying the following: 

[Tor 1]. If 0 --+ A' --+ A --+ A" --+ 0 is a short exact sequence, then there is an 
exact sequence 

0--+ Tor(A', B) --+ Tor(A, B) --+ Tor(A", B) --+ A' ® B --+ A ® B --+ A" ® B --+ O. 

[Tor 2]. If A is torsion-free, then Tor(A, B) = 0 for any B. 
[Tor 3]. Tor(I A j , B) ~ L Tor(Aj' B) and Tor(A, L B;) ~ L Tor(A, BJ. 
[Tor 4]. Tor(Z/mZ, B) ~ B[m] = {b E B: mb = O}. 
[Tor 5]. Tor(A, B) ~ Tor(B, A) for all A and B. 

Using these properties, one can compute Tor(A, B) whenever A and Bare 
f.g. abelian groups. Indeed [Tor 4] shows that Tor(A, B) is finite in this case. 
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Remark. As with tensor product, fixing the first variable of Tor gives an 
additive functor Tor(A, ): Ab --+ Ab, and the value of Tor(A, ) on B is 
(isomorphic to) the value of Tor( , B) on A. 

Proofs of the properties [Tor i], 1 ::;; i ::;; 5 (and of the theorem mentioned 
in the remark), can be found in books on homological algebra. 

Let A be an abelian group, and let 0 --+ R --+ F --+ A --+ 0 be an exact sequence 
with F free abelian. For any abelian group B, Tor(F, B) = 0, by [Tor 2], 
and so the exact sequence given by [Tor 1] shows that Tor(A, B) ~ 
ker(R ® B --+ F ® B); we have recaptured the definition of Tor. 

EXERCISES 

9.30. (i) For any abelian group G, prove that Q ® G is a vector space over Q. (Hint: 
Q ® G is an abelian group admitting scalar multiplication by rational 
numbers.) Conclude that dim Q ® G is defined. 

(ii) If 0 -> A' -> A -> A" -> 0 is an exact sequence of abelian groups, then 0 -> 

Q ® A' -> Q ® A -> Q ® A" -> 0 is an exact sequence of vector spaces. Con­
clude that 

dim Q® A = dim Q®A' + dim Q®A". 

(Hint: Use [Tor 1] and [Tor 2].) 

9.31. Compute Tor(A, B), where A = Z EB Z EB Z/6Z EB Z/5Z and B = Z/3Z EB Z/5Z. 

*9.32. For any abelian group G, prove that rank G = dim Q ® G. (Hint: Exercise 
9.21.) 

*9.33. If 0 -> B' -> B -> B" -> 0 is an exact sequence of abelian groups and if A is 
torsion-free, then 

o -> A ® B' -> A ® B -> A ® B" -> 0 

is also exact. 

*9.34. If F, H are abelian groups with F free abelian, and if a E F and hE Hare 
nonzero, then a ® h * 0 in F ® H. 

We are now able to compute homology with coefficients. 

Theorem 9.32 (Universal Coefficients Theorem for Homology). 

(i) For every space X and every abelian group G, there are exact sequences for 
all n ~ 0: 

0--+ Hn(X) ® G ~ Hn(X; G) --+ Tor(Hn - 1 (X), G) --+ 0, 

where t):: (cIs z) ® g f--+ cIs(z ® g). 
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(ii) This sequence splits; that is, 

Hn(X; G) ~ Hn(X) (8) G EB Tor(Hn_l (X), G). 

Remark. The value of the first statement is that one has an explicit formula 
for an isomorphism Hn(X) ® G ~ Hn(X; G) in the special case when 
Tor(Hn- l (X), G) vanishes. 

PROOF. (i) We prove a more general result. If (C*, 0) is a free chain complex, 
then there are exact sequences for all n :2: 0: 

0-+ Hn(C*) ® G ~ Hn(C* (8) G) -+ Tor(Hn_l(C*), G) -+ 0, 

where a: (cls z) ® 9 1---+ cls(z (8) g) (note that if z is a cycle in Cn, then z ® 9 is a 
cycle in Cn ® G for every 9 E G). The theorem follows by specializing C* to 
S*(X). 

The definition of cycles and boundaries of C* gives exact sequences for 
every n: 

(1) 

where in is the inclusion and dn differs from On only in its target; there is a 
commutative diagram 

Since Bn - l is a subgroup of the free abelian group Cn-l, Theorem 9.3 shows 
that Bn- l is free abelian; by (the rephrasing of) Corollary 9.2, Eq. (1) is a split 
exact sequence. Exercise 9.13(i) now applies to show that 

in ® 1 dn ® 1 o -----+ Zn ® G -----+ Cn (8) G -----+ Bn- l ® G -----+ 0 (2) 

is a (split) exact sequence. 
If Z* is the subcomplex of C* whose nth term is Zn, then the differentiations 

in Z* are restrictions of On and hence are zero; it follows that the differentiations 
in Z* ® G are zero. Define B; to be the chain complex whose nth term is Bn - l 

(sic) and with all differentiations zero; it follows that the differentiations in 
B; ® G are zero. Assembling the exact sequences (2) gives an exact sequence 
of complexes 

i® 1 d® 1 o ------+ Z* ® G ------+ C * ® G ------+ B; ® G ------+ 0, 

and this sequence begets a long exact sequence of abelian groups (exact 
triangle) 
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where An is the connecting homomorphism. Since B; ® G and Z* ® G have 
zero differentiations, Exercise 5.6 gives 

and 

The long exact sequence can thus be rewritten as 

••. -+ B. ® G ~ Z. ® G ~ H.(C. ® G) ~ B._I ® G ~ Zn-I ® G -+ ••.• 

For each n, there is thus an exact sequence 

• A IX ( ) (d ® 1). k A 0 (3) o -+ (Zn ® G)/lm Un+1 ----+) Hn e* ® G ) er Un -+ , 

where oc is induced by (i ® 1)*; that is, 

oc: z ® g + im An+l 1-+ (i ® 1)*(z ® g) = cls(z ® g). 

Let us evaluate An (and An+1) and the two outside terms in Eq. (3). Consider 
the usual diagram for the connecting homomorphism: 

e,.®G ~ Bn-1®G - 0 

j '01 

en - 1 ® G 
i®1 -

On any generator bn- 1 ® g of Bn- 1 ® G, we have 

Aibn- 1 ® g) = (i ® l)-l(a ® l)(d ® Ifl(bn_1 ® g) 

= bn- 1 ® g regarded as an element of Zn-l ® G; thus An = jn-l ® 1, where jn-l: 
Bn- 1 c... Z,,-l is the inclusion. We may thus rewrite the exact sequence (3) as 

0-+ (Zn ® G)/im(jn ® 1).! H,,(e* ® G) -+ ker jn-l ® 1 -+ O. (3') 

The definition of homology gives exact sequences for every n: 

j.-I () 0 0---+ Bn- 1 ---+ Zn-l ---+ Hn- 1 e* ---+ . 

By [Tor 1], there is an exact sequence 

Tor(Z._I, G) -+ Tor(H._1 (c.), G) -+ Bn- I ® G ~ Z._I ® G -+ H._I (C.) ® G -+ O. 

Since Zn-l is torsion-free (it is a subgroup of the free abelian group en-d, 
[Tor 2] says that Tor(Zn-l' G) = O. Therefore 

ker(jn-l ® 1) ~ Tor(Hn- 1 (e*), G) 

and, by replacing n - 1 by n, 
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(Zn ® G)jim(jn ® 1) = coker(jn ® 1) = Hn(C*) ® G. (4) 

The exact sequence (3') can thus be rewritten as 

0--+ Hn(C*) ® G ~ Hn(C* ® G) --+ Tor(Hn- 1 (C*), G) --+ O. (5) 

(ii) It remains to show that the exact sequence (3'), hence (5), is split. 
Examining elements gives the string of inclusions 

im(on+1 ® 1) c Zn ® G c ker(on ® 1) c Cn ® G. 

Now Zn ® G is a direct summand of Cn ® G (because the exact sequence 
(2) splits); a fortiori, it is a direct summand of ker(on ® 1). It follows that 
(Zn ® G)jim(on+l ® 1) is a direct summand of ker(on ® l)jim(o.+1 ® 1) = 

Hn(C* ® G). But im(on+l ® 1) = im(jn ® 1), so that (Z. ® G)jim(on+1 ® 1) ~ 
Hn(C*) ® G (by (4)), and the result now follows from Exercise 9.10. D 

Remarks. (1) There are stronger forms of the universal coefficients theorem 
(and also a contravariant version to be discussed in Chapter 12); this weaker 
version is satisfactory almost always. 

(2) The name of the theorem is well chosen, because it reminds one that 
homology with any coefficient group G can be computed from ordinary 
homology. 

(3) Note that Tor delayed his entrance until the last act of the proof. 

EXERCISES 

9.35. IfG is a torsion-free abelian group, then (cls z) ® gr-+cls(z ® g) is an isomorphism 
H.(X) ® G -> Hn(X; G). 

9.36. For every positive integer m and every space X, 

Hn(X; Z/mZ) ~ Hn(X) ® Z/mZ EB Hn- 1 (X) [m], 

where, for an abelian group H, one defines 

H[m] = {h E H: mh = O}. 

Conclude that if Hn - 1 (X) is torsion-free, then 

Hn(X; Z/mZ) ~ Hn(X) ® Z/mZ. 

(When p is a prime, one calls H*(X; Z/pZ) homology modp.) 

EXAMPLE 9.10. Although homology with coefficients was defined only for 
singular homology, the proof of the universal coefficients theorem also applies 
to the simplicial and cellular homology theories as well, since they have been 
defined using free chain complexes (see the remark after Theorem 9.8 and 
Exercise 9.14(iii)). 

EXAMPLE 9.11. Ordinary homology can be regarded as homology with coeffi­
cients in Z, for Hn(X) ® Z ~ Hn(X), by Example 9.2, and Tor(Hn- 1 (X), Z) = 0, 
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by [Tor 2]. An easier way to see this, however, is to return to the definition 
of homology: applying the functor _ ® Z to a chain complex does not change 
anything (Example 9.2). 

EXAMPLE 9.12. If G is the additive group of either Q, R, or C, then 

Hn(X; G) ~ Hn(X) ® G, 

because G is torsion-free in each case, and so [Tor 2] gives Tor(Hn - 1 (X), G) = 0. 
(H*(X; Q) is called rational homology, H*(X; R) is called real homology, and 
H*(X; C) is called complex homology.) 

One can simplify the discussion ofthe Lefschetz number if one uses rational 
homology. By Example 9.12, Hn(X; Q) is a vector space over Q; moreover, if 
f: X -+ X is continuous, then f*: Hn(X; Q) -+ Hn(X; Q) can be seen to be a 
linear transformation, and so the trace of f* is now the usual trace of linear 
algebra. A similar simplification occurs in our discussion, in Chapter 7, of 
computing homology; if one wants only Betti numbers, then all is linear 
algebra. 

Eilenberg-Zilber Theorem and the Kiinneth Formula 

The long algebraic interlude began with the problem of computing H*(X x Y). 
The main result shows that S*(X x Y) is determined by S*(X) and S*(y). 

Definition. Let (C*, d) and (G*, 0) be nonnegative chain complexes. Their 
tensor product C* ® G* is the (nonnegative) chain complex whose term of 
degree n ~ ° is 

(C* ® G*)n = I Ci ® Gj 
i+j=n 

and whose differentiation Dn: (C* ® G*)n -+ (C* ® G*)n-l is defined on genera­
tors by 

i + j = n. 

Since i + j = n and both d and 0 lower degrees by 1, we have Dn(ci ® gJ E 

(C* ® G*)n-l. The sign in the definition of Dn is present to force Dn-IDn = 0, 
as the reader can easily check. 

EXERCISES 

9.37. If A: C* ~ C~ and /1: E* ~ E~ are chain maps, then A ® /1: C* ® E* ~ C~ ® E~ 
is a chain map, where 

(A ® /1). = L: Ai ® /1j. 
i+j=n 
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9.38. If A, A.': (C*, d) --> (C~, d') are chain homotopic and if fl, fl': E* --> E~ are chain 
homotopic, then A ® fl and A.' ® fl' are chain homotopic. (Hint: First show that 
A ® J1 and A.' ® fl are chain homotopic via s ® fl, where d's + sd = A - A'.) 

*9.39. If C* is chain equivalent to C~ and if E* is chain equivalent to E~, then C* ® E* 
is chain equivalent to C~ ® E~. 

*9.40. Let 0 --> S~ --> S* --> S~ --> 0 be a short exact sequence of nonnegative complexes. 
If E* is a nonnegative free chain complex, then 0 --> S~ ® E* --> S* ® E* --> 

S~ ® E* --> 0 is exact. (Hint: Exercise 9.33.) 

Theorem 9.33 (Eilenberg-Zilber). For topological spaces X and Y, there is a 
(natural) chain equivalence ,: S*(X x Y) --+ S*(X) ® S*(Y), unique to chain 
homotopy, hence 

for all n ~ O. 

PROOF. Let Top x Top denote the category with objects all ordered pairs of 
topological spaces (A, B) (we do not demand that B be a subspace of A), with 
morphisms all ordered pairs of continuous maps, and with coordinatewise 
composition. Let .$1 be the set of all (AP, Aq), p, q ~ O. Define functors 
F, E: Top x Top --+ Comp by F(X, Y) = S*(X x Y) and E(X, Y) = 

S*(X) ® S*(Y). We show that both F and E are free and acyclic. 
For fixed p ~ 0, define an Fp-model set?l"p to be the singleton {d P }, where 

dP: AP --+ AP x AP is the diagonal x H (x, x) (note that dP E Fp(AP, AP) = 

Sp(AP x AP)).1f A1 and A2 are spaces and 0": AP --+ A1 X A2 is a p-simplex, then 
there are continuous maps 0";: AP --+ A;, for i = 1, 2, with 0" = (0"1 x 0"2) 0 dP 
(define 0"; = p; 0 0", where Pi: A1 x A2 --+ A; is the projection, for i = 1,2). Con­
versely, given any pair of continuous maps 0";: AP --+ A;, then (0"1 x 0"2) 0 dP is 
a p-simplex in Ai x A 2 • It follows that Fp is free with base f!lp. Since AP x AP 
is convex, we see that the model (AP, AP) is F-acyclic. 

Let us now consider the functor E. Exercise 9.28(i) shows that Sp(X) ® Sq(Y) 
is free abelian with basis all symbols 0" ® T, where 0": AP --+ X and T: Aq --+ Y 
are continuous. By Example 9.4, the functor Sp is free with (singleton) base 
{JP}, where JP: AP --+ AP is the identity (of course, JP E Sp(AP)). It follows easily 
that En is free with base in .$1: indeed the E-model set OJIn = {JP ® Jq E 
Sp(AP) ® Sq(Aq): p + q = n} serves. To check acyclicity, recall that each AP is 
Sp-acyclic (i.e., Hm(AP) = Hm(S*(AP)) = 0 for all m ~ 1), so that the free chain 
complex S*(AP) is chain equivalent to Z*, the chain complex with Z concen­
trated in degree 0 (Theorem 9.8). Therefore the model (AP, Aq) is E-acyclic, 
because E(AP, M) = S*(AP) ® S*(Aq) is chain equivalent to Z* ® Z* ~ Z*, by 
Exercise 9.39. 

Define <p: HoF --+ HoE as follows. For a pair of spaces A1 and A 2, 
Fo(A1' A 2) = SO(A1 x A 2) is the free abelian group on all ordered pairs 
(a 1, a2) (where a; E A;), while Eo(A1' A 2) = (S*(A 1) ® S*(A 2))o is the free 
abelian group on all symbols a1 ® a2 • It is easy to see that the maps 
<PA I ,A2 : Fo(A1' A 2) --+ Eo(A1' A2), defined by (a 1, a2)Ha1 ® a2 , induce iso-
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morphisms HoF(Al' A 2 ) -.. HoE(Al' A 2 ) which constitute a natural equiva­
lence qJ. By acyclic models (Theorem 9.12(iii)), there is a natural chain map 
-r: F -.. E, unique to homotopy, that is a natural chain equivalence. 0 

To use the Eilenberg-Zilber theorem, it is necessary to solve the algebraic 
problem of computing the homology groups of the tensor product of two 
complexes. The proof below (which I learned from [VickJ) reduces the prob­
lem to the universal coefficients theorem. 

Lemma 9.34. Let A. and G. be nonnegative chain complexes. If every differen­
tiation in A. is zero, then 

H,,(A. ® G.) ~ L H,,(A i ® G~), 
i~O 

where G~ is G. "shifted by i", that is, 

(G~)" = G,,-i. 

PROOF. Recall that D,,: (A. ® G.)" -.. (A. ® G.)"-l is defined by ai ® gjl-+ 
dai ® gj + (-1)iai ® agj, where i + j = n, where d is the differentiation in A., 
and where a is the differentiation in G •. As d = 0, by hypothesis, we have 

( G ) = ker D" = ~ ( ker 1 ® O"-i ) 
H" A. ®.. L..- • • 

1m D,,+l i 1m 1 ® a,,+l-i 

For each fixed i, there is thus the shifting described in the statement. 0 

Lemma 9.35. If C. and G. are nonnegative free chain complexes, then 

H,,(C. ® G.) ~ H,,(H.(C.) ® G.), 

where H.(C.) is regarded as a chain complex in which every differentiation is 
zero. 

PROOF. Let B., Z. be the subcomplexes of C. whose terms are boundaries 
and cycles, respectively; each of these complexes has all differentiations zero, 
hence the quotient complex H. = H.(C.) may also be viewed as a complex 
with zero differentiations. As in the proof of the universal coefficients theorem, 
let B: denote the complex (with zero differentiations) with nth term B,,-l. 
There are two short exact sequences of complexes: 

0-.. Z. ~ C. ~ B: -.. 0; 
j p 

0-.. B. -.. Z. -.. H. -.. 0 

(1) 

(2) 

(here p is the natural map and i, j are inclusions). Since each term of G. is free 
abelian, Exercise 9.40 gives exactness of 

i®l d®l + 
O--Z.®G.--C.®G.--B. ®G.--O (3) 

and 
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j(8)l p(8)l 
0-----+ B* ® G* -----+ Z* ® G* -----+ H* ® G* -----+ O. (4) 

Next, the exact sequences 

must split, since Corollary 9.2 applies because Bn - 1 is free abelian (Theorem 
9.3); there are thus homomorphisms qn: Cn ~ Zn with qnin = lZn. Define 
CPn: Cn ~ Hn as the composite 

The map cP: C* ~ H* is a chain map: if C E Cn+l' then 

cpdc = Pnqndc 

= Pn(dc) (because dc E Zn and hence is fixed by qn) 

= 0 (because dc is a boundary). 

On the other hand, d' cpc = 0, where d' is the (zero) differentiation of H*, and 
so cpd = d' cpo 

Consider the following diagram: 
+ L\ (i(8)I). (d(8)I). + L\ 

Hn+1(B* (8)G*) -- Hn(Z* (8) G*) -- Hn(C*(8)G*) -- H.(B* (8)G*) -- Hn- 1(Z*(8)G*) 

The rows are exact, because they arise by applying the exact triangle to 
sequences (3) and (4); thus D and d are connecting homomorphisms. Since 
Hn+l (B; ® G*) = Hn(B* ® G*), we may define rx and rx' to be identities. 
Finally, define f3 to be (cp ® 1)*. 

We claim that each of these squares commutes up to sign. If this is so, then 
a trivial modification of the five lemma shows that f3 is an isomorphism, and 
the proof is complete. Each verification is routine; for example, let us prove 
that the first (and fourth) squares actually commute. Let bt ® gn-i be a cycle 
in (B;)i ® Gn- i = Bi - 1 ® Gn- i; hence 0 = dbt ® gn-i + ( _1)ibt ® ogn-i = 

(_1)ibt ® ogn-i> because dbt = O. By Exercise 9.34, it follows that ogn-i = 0 
(for Bi - 1 is free abelian). Hence d cls(bt ® gn-i) = cls(D(ci ® gn-J), where 
ci E Ci and dCi = bt. Now 

D(ci ® gn-J = dCi ® gn-i + ( -l)ici ® ogn-i = b/ ® gn-i 

(since dCi = bt and ogn-i = 0). We have checked commutativity for a set of 
generators of Hn+l (B; ® G*). The commutativity to sign of the other two 
squares is left to the reader. D 

Theorem 9.36 (Kiinneth Theorem). 

(i) If C* and G* are nonnegative free chain complexes, then there are exact 
sequences for all n: 
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0---> L H;(C*) ® H/G*) ~ Hn(C* ® G*) ---> L Tor(Hp(C*), Hq(G*)) ---> 0, 
i+j=n p+q=n-l 

where iX: cls(z;) ® (cls zi) ~ cls(z; ® zj). 
(ii) This exact sequence splits; that is, 

Hn(C* ® G*) ~ L Hi(C*) @ Hj(G*) EB L Tor(Hp(C*), Hq(G*)). 
i+j=n p+q=n-l 

PROOF. By Lemmas 9.35 and 9.34, 

Hn(C* ® G*) ~ Hn(H*(C*) ® G*) ~ L Hn(Hi(C*) ® G~). 
i 

By the universal coefficients theorem, Theorem 9.32 (actually, by the more 
general isomorphism given in its proof), there are split exact sequences for all 
n, i, 

0--+ Hi(C*) @ Hn(G~) ~ Hn(Hi(C*) ® G~) --+ Tor(Hi(C*), Hn- 1 (G~)) --+ 0; 

that is, there are split exact sequences 

0--+ Hi(C*) ® Hn-i(G*) ~ Hn(Hi(C*) ® G!) --+ Tor(H;(C*), Hn- i - 1 (G*)) --+ O. 

If i > n, we have Hn(G~) = O. Taking the direct sum over all i ~ 0 now gives 
the result. D 

There are more sophisticated proofs allowing one to prove the Kiinneth 
theorem with no (freeness) condition on the nonnegative chain complex G*. 
There is an immediate proof of the universal coefficients theorem from this 
more general Kiinneth theorem. Given an abelian group G, define G* as the 
chain complex with G concentrated in degree 0: Go = G and Gn = 0 if n # 0 
(all differentiations are necessarily zero). By Exercise 5.6, Ho(G*) = G and 
Hn(G*) = 0 for n # O. The tensor product C* ® G* in this case is just C* ® G, 
and the Kiinneth theorem simplifies to 

Hn(C* ® G) ~ Hn(C*)@ G EEl Tor(Hn_1(C*), G), 

as claimed. 
Combining the Eilenberg-Zilber theorem with the Kiinneth theorem yields 

the result we have been seeking. 

Theorem 9.37 (Kiinneth Formula).3 For every pair of topological spaces X and 
Y and for every integer n ~ 0, there is a split exact sequence 

3 Here is the original form of the Kiinneth formula. If X and Yare compact polyhedra, then 

b.(X x Y) = I b,(X)bj(y), 
i+j=n 

where b,(X) is the ith Betti number of X. This follows from Theorem 9.37 once one observes that, 
for any f.g. abelian groups A and B, the group Tor(A, B) is finite, and hence it contributes nothing 
to the calculation of Betti numbers. 
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where IX": (cls zJ <8l (cls Z;)~clS("(Zi ® zm and ": S*(X) ® S*(Y) --+ S*(X x Y) 
is the inverse of an Eilenberg~Zilber chain equivalence. Hence 

Hn(X x Y) ~ L Hi(X) ® HiY) Et> L Tor(Hp(X), Hq(Y)). 
i+j=n p+q=n-l 

PROOF. The Kiinneth theorem gives a split exact sequence with middle term 
Hn(S*(X) <8l S*( Y)), and the Eilenberg~Zilber theorem identifies this term with 
~~xn D 

This theorem is especially useful when X and Yare compact polyhedra, 
better, finite CW complexes, for then each of their homology groups is a f.g. 
abelian group. Thus, if the homology groups of X and Yare known, then 
Corollary 9.31 and the cited properties of Tor are adequate for computing 
Hn(X x Y). 

EXAMPLE 9.13. Let m, n be positive integers. If m =I n, then 

H (sm x sn) = {Z if p = 0, m, n, m + n 
p ° otherwise. 

Ifm = n, then 

{
z ifp = 0, 2m 

Hp(sm x sm) = Z Et> Z if p = m 

° otherwise. 

(Note that this example agrees with our earlier computation of the homology 
groups of the torus Sl x Sl.) 

EXAMPLE 9.14. If X = Sl V S2 V S3 (wedge), then we saw in Exercise 7.26 that 

) {z if p = 0, 1, 2, 3 
Hp(X = ° otherwise. 

It follows from Example 9.13 that X and Sl x S2 have the same homology 
groups; however, they do not have the same homotopy type (see Exercise 9.46 
below). 

EXAMPLE 9.15. If X = Rp3 X Rp2, then Theorem 8.47 with the Kiinneth 
formula gives 

Z if p = ° 
Z/2Z Et> Z/2Z if p = 1 

Hp(X) = Z/2Z if p = 2 

Z Et> Z/2Z if p = 3 

° if p;;:: 4. 
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EXERCISES 

9.41. If X and Yare acyclic, then X x Y is acyclic. 

9.42. If X and Yare path connected, then 

HI(X x Y)=HI(X)EBHI(Y) 

and 

Hz(X x Y) = Hz(X) EB [HI (X) ® HdY)] EB Hz(Y). 

9.43. Compute H*(K x RP'), where K is the Klein bottle. 

9.44. Compute H*(RP' x sm). 

9.45. Compute H*(RP' x Rpm). 
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*9.46. Prove that Sl v SZ V S3 does not have the same homotopy type as SI x Sz. 

*9.47. Show that SI x SI and SZ v SI V SI have the same homology groups. (In 
Example 12.8, we shall see that these two spaces do not have the same homotopy 
type.) 

9.48. (i) Show that Rp3 and Rpz v S3 have the same homology groups. (Hint: 
Exercise 7.26(ii).) 

(ii) Show that Rp3 and Rpz v S3 do not have the same homotopy type. 
(iii) Show that Rp3 x Rpz and (RPZ v S3) x Rpz have the same homology 

groups and the same fundamental group. (These spaces do not have the 
same homotopy type.) 

9.49. Compute H*(T'), where T' is the r-torus, that is, T' is the cartesian product of 
r copies of SI. 



CHAPTER 10 

Covering Spaces 

When first computing 11: 1 (Sl), we looked to winding numbers for inspiration. 
Every closed path f in Sl at 1 (1 = e21tiO E Sl) suggested the picture 

We proved two preliminary results: the lifting lemma (Lemma 3.14) says that 
every (not necessarily closed) path f possesses a "lifting" j: I --+ R that is 
unique once 1(0) is specified 

R 

/1"', 
I ___ Sl. 

f ' 

the covering homotopy lemma (Corollary 3.15) says that if g: I --+ Sl is a path 
and if f ~ 9 reI t, then 1 ~ g rel 1. More precisely, if F: I x 1-+ Sl is con­
tinuous (i.e., F is a homotopy), then one can lift the homotopy: there exists a 
continuous F making the following diagram commute: 
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These two lemmas were used (in Theorem 3.16) to show that the degree 
function d: n 1 (S\ 1) --+ Z, defined by [f] f--+ J(1), is an isomorphism. In the 
first section, we shall extend this proof by replacing the exponential map 
exp: R --+ Sl by certain maps between more general spaces. What emerges is 
a tool for computing fundamental groups as well as an analogue of Galois 
theory! Moreover, many important constructions (e.g., fibrations, "killing" 
homotopy groups) can be viewed as generalizations of covering spaces. 

Basic Properties 

Definition. Let g and X be topological spaces and let p: g --+ X be continuous. 
An open set U in X is evenly covered by p if p-1 (U) is a disjoint union of open 
sets Si in g, called sheets, with plSi: Si --+ U a homeomorphism for every i. 

The exponential map exp: R --+ Sl provides an example: the open set U = 

Sl - { -1} is evenly covered by exp, where exp(t) = e21tit : indeed 

(exp)-l(U) = U (n - 1, n + t), 
nEZ 

so that the sheets here are open intervals. 

Definition. If X is a topological space, then an ordered pair (g, p) is a covering 
space of X if: 

(i) g is a path connected topological space; 
(ii) p: g --+ X is continuous; 
(iii) each x E X has an open neighborhood U = Ux that is evenly covered by p. 

The map p is called the covering projection,l and an open set that is evenly 
covered by p is called p-admissible or, more simply, admissible. 

1 A covering projection is an example of a local homeomorphism, defined as follows. A continuous 
map f: Y ---> X is a local homeomorphism if each Y E Y has an open neighborhood V with f(V) 
open in X and with fl V: V ---> f(V) a homeomorphism. 
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It is clear that the admissible open sets comprise an open cover of X. The 
picture to keep in mind is 

x 

~P 

GJx 
u 

Lemma 10.1. Let (g, p) be a covering space of X. Then p is an open continuous 
surjection and hence is an identification; moreover, X is path connected. 

PROOF. If x E X and U = Ux is admissible, then p(p-l(U)) = U and x E im p; 
hence p is a surjection. To see that p is open, let V be an open set in g and let 
x E p(V); let U be an admissible open set containing x, let x E p-l(X) n V, and 
let 0 be the sheet over U containing x. Then 0 n V is an open set in 0 
(containing x), and so p(O n V) is an open subset of U containing x; therefore 
p(V) is open. Finally, an open continuous map is an identification; moreover, 
a continuous image of a path connected space is path connected. 0 

Remark. The covering projection p: g -+ X need not be closed. For example, 
the discrete set {n + lin: n ~ 3} is a closed subset of R whose image under 
exp is not closed in Sl. 

EXERCISES 

10.1. Show that (R, exp) is a covering space of S1. 

10.2. If S1 is regarded as a multiplicative topological group and if k E Z - {O}, then 
the map Pk: S1 ..... S1 given by z f--+ Zk is continuous. Prove that (s1, Pk) is a 
covering space of S1. 

*10.3. Prove that (sn, p) is a covering space of Rpn, where P is the map identifying 
antipodal points. 

*10.4. Let X be a wedge of two circles, say, X = A v B, and let Xo denote their point 
oftangency. Let q: S1 ..... X be the identification map that identifies -1 and + 1 
(so we may assume that q( -1) = Xo = q(1)). 
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(i) Show that (Sl, q) is not a covering space of X. 
(ii) Let X be a doubly infinite sequence of tangent circles: 

X= 

with points of tangency xk for k E Z. Define p: X -+ X to be the map with 
p(xk ) = Xo for every k and with the restriction of P to every circle being q (we 
have been imprecise). Prove that (X, p) is a covering space of X. 

*10.5. If(X, p) is a covering space of X and if Xo E X, then the fiber p-I(xo) is a discrete 
subset of X. 

* 10.6. Let (X, p) be a covering space of X. Prove that if X is either Hausdorff or locally 
compact or locally path connected or is an n-manifold, then so is X. Indeed any 
"local" property of X is inherited by X. 

*10.7. Let p: X -+ X be continuous and let U be an open set in X that is evenly covered 
by p. If V is an open subset of U, then V is also evenly covered by p. 

10.8. (i) If (Xi' Pi) is a covering space of Xi' for i = 1, 2, then (XI x X 2, PI x P2) 
is a covering space of X I x X 2 . (Hint: If UI is PI-admissible and U2 is 
P2-admissible, then UI x U2 is (PI x P2)-admissible.) Conclude that the 
plane is a covering space of the torus. 

(ii) Prove that an infinite cylinder R x SI is a covering space ofthe torus. (Hint: 
For any path connected space X, (X, Ix) is a covering space of X.) 

*10.9. Consider the commutative diagram 

y~X 

,1 1, 
Y ---+ X 

in which f1 and ex are homeomorphisms and (X, p) is a covering space of X. Show 
that (Y, q) is a covering space of Y. 

Theorem 10.2. Let G be a path connected topological group, and let H be a 
discrete normal subgroup of G. If p: G -+ G/H is the natural homomorphism, 
then (G, p) is a covering space ofG/H. 

Remark. We know, by Exercise 3.23, that G/H is a topological group. 

PROOF. Let us first show that p is an open map. If V is open in G, then 
p(V) = {Hx: x E V}. Hence 

p-l p(V) = U Hx = U hV. 
xeV heH 
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Now each h V is open in G (because g 1-+ hg is a homeomorphism G ..... G), and 
so p-l p(V) is open in G; since p is an identification, it follows that p(V) is open 
in G/H. 

Since H is discrete, every subset of H is closed in H, and so every subset of 
H is open in H. In particular, there is an open set Win G with W n H = {1}, 
where 1 is the identity element of G. As the map G x G ..... G given by (x, y) 1-+ 

xy-l is continuous, there is an open neighborhood V of 1 with VV- 1 c W 
(recall that VV- 1 = {ab- 1 : a, b E V}). Define U = p(V); since p is open, U is 
an open neighborhood of 1 in G/H. We claim that U is evenly covered by p. 
As we saw above, 

heH 

where each h V is open in G. The sets of the form h V, where h E H, are pairwise 
disjoint: if h, k are distinct elements of Hand h V n k V "# 0, then there are 
elements v, W E V with hv = kw; hence vw-1 = k-1 h E VV- 1 n HeW n H = 
{1}, a contradiction. Finally, plhV is a homeomorphism from hV to U. We 
already know that plhV is an open continuous map; plhV is a surjection, 
since p(hV) = p(h)p(V) = p(V) = U (because hE H = ker p); plhV is an 
injection, because if p(hv) = p(hw) (where v, WE V), then p(v) = p(w) and 
vw-1 E VV- 1 nH = {1}. 

It is now easy to see that if x E G/H, then xU is an open neighborhood of 
x in G/H that is evenly covered by p. Therefore (G, p) is a covering space of 
G/H. 0 

Note that if (G, p) is a covering space of G/H, then H = ker p is just the 
fiber over 1; by Exercise 10.5, H must be discrete. 

After giving a uniqueness result, we shall show that the lifting lemma and 
the covering homotopy lemma (which we have proved for (R, exp» hold for 
arbitrary covering spaces. 

Lemma 10.3. Let (g, p) be a covering space of X, let Y be a connected space, 
and let f: (Y, yo) ..... (X, xo) be continuous. Given Xo in the fiber over xo, there 
is at most one continuous j: (Y, yo) ..... (g, xo) with pj = f 

(g, xo) 

yjP 
(Y, Yo) ~ (X, xo)· 

PROOF. Suppose that 1': (Y, yo) ..... (g, xo) satisfies PI' = f Let 

A = {y E y:j(y) = f'(y)} 

and 

B = {y E y:j(y) "# f'(y)}. 



Basic Properties 277 

Clearly, Y = A U B, A n B = 0, and A#-0 (because Yo E A). If we show that 
A and B are open, then the connectivity of Y will force B = 0, hence j = 1'. 

Let a E A. Let U be an admissible neighborhood of f(a), and let S be the 
sheet over U containing j(a) = f'(a). Of course, W = j-l(S)nf'-l(S) is an 
open neighborhood of a in Y. Indeed We A: if WE W, then j(w) and f'(w) lie 
in S, and so pj(w) = f(w) = pf'(w); hence j(w) = f'(w) because piS is a 
homeomorphism. Therefore w E A, W c A, and A is open. 

Were X Hausdorff, one could use a standard result that A is closed, and 
this would complete the proof. Without this assumption, we argue as follows. 
If b E B, then let V be an admissible neighborhood of f(b). If both j(b) and 
f'(b) lie in the same sheet over V, then the argument above gives j(b) = f'(b), 
contradicting the fact that bE B. Hence j(b) E Sand f'(b) E S', where S, S' are 
distinct sheets. But now W' = j-l(S)nf'-l(S') is an open neighborhood of 
b, and one can check quickly that W' c B. Therefore B is open. D 

Theorem 10.4 (Lifting Lemma). Let (X, p) be a covering space of X and let 
f: (I, 0) --+ (X, x o) be a path. If Xo is in the fiber over x o, then there exists a 

unique j: (I, 0) --+ (X, xo) with pj = f 

PROOF. In light of Lemma 10.3, I connected implies the uniqueness of any such 
j We now prove thatj exists. Suppose that [a, b] c 1 is such thatf([a, b]) c U, 
where U is an admissible neighborhood of x = f(a). If x lies in the fiber over 
x, then x lies in a unique sheet, say, S.1t is easy to see that g: ([a, b], a) --+ (X, x) 
defined by g = (plSr1 0 (fl[a, b]) satisfies pg = fl[a, b]. 

For each tEl, let Ut be an admissible neighborhood of f(t). Now 
U- 1(Ut ): tEl}, being an open cover of the compact metric space I, has a 
Lebesgue number 2. This means that if ° < b < 2 and Y is a subset of I of 
diameter less than b, then Y c f- 1(Ut) for some tEl; that is, f(Y) cUt. 
Partition 1 with points tl = 0, t2, ... , tm = 1, where tHl - ti < b for 1 :::;; i :::;; 
m - 1. By our initial remarks, there is a continuous gl: [0, t 2 ] --+ X with 
pgl = fl[O, t 2] and gl(O) = xo· Similarly, there is a continuous g2: [t2' t3]--+ 
X with pg2 = fl[t 2, t 3] and g2(t2) = gl(t2); indeed, for 1:::;; i :::;; m - 2, 
there is a continuous gi+l: [tHl' t i+2] --+ X with pgHl = fl[t H1 , tH2 ] and 
gi+l (tHd = gi(tHd· By the gluing lemma (Lemma 1.1), we may assemble 
the functions gi into a continuous function j: 1 --+ X, where j(t) = gi(t) if 
t E [ti' t i+1]. D 

A stronger version of the covering homotopy lemma holds, and its proof 
is essentially that of the special case. 

Theorem 10.5 (Covering Homotopy Theorem).2 Let (X, p) be a covering space 
of X, and let Y be any space. Consider the diagram of continuous maps 

2 Anticipating terminology not yet introduced, this theorem says that a covering projection 
p: X -+ X is a fibration. 

Suppose one defines g: Y -+ X by g(y) = F(y, 1) and g: Y -+ X by g(y) = F(y, 1). Then pg = 9 
and p:j '" g. Therefore, if f '" g, then their respective liftings j and 9 are also homotopic. 
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where j(y) = (y, 0) for all y E Y. Then there exists a continuous map F: Y x I -> X 
making the diagram commute; moreover, if Y is connected, then F is unique. 

PROOF. Note that if Y is connected, then Y x I is also connected, and so 
Lemma 10.3 gives the uniqueness of F (because, for any y E Y, we have 
F(y, 0) = j(y)). 

We show first that it suffices to work locally: we shall show that F exists if 
each y E Y has an open neighborhood Ny such that there is a continuous Fy 
making the following diagram commute 

~X 

(the horizontal maps are restrictions of j and F, respectively). Since {Ny x I: 
y E Y} is an open cover of Y x I, it suffices to show that the Fy agree on 
overlaps (Lemma 1.1'). Suppose that y' E Ny n Nz • Then 

Fy(y', 0) = j(y') = F.(y', 0); 

moreover, if tEl, then 

pFy(y', t) = F(y', t) = pF.(y', t). 

Thus both Fy and Fz are liftings of Fj{y'} x I which agree on (y', 0). Since 
{y'} x I is connected, Lemma 10.3 gives Fyi {y'} x 1= Fzl {y'} x I; as y' is an 
arbitrary element of Ny n N., it follows that Fy and Fz agree on (Ny n Nz ) x I = 

(Ny x I) n (Nz x I), as desired. 
We now construct the neighborhoods Ny and the maps Fy. For each y E Y 

and each tEl, let Vt be an admissible neighborhood of F(y, t) in X; since F 
is continuous, there are open neighborhoods My and It of y and t, respectively, 
with F(My x It) c Vt • Compactness of I implies that finitely many I/s cover 
I; denote them by 11, ... , In. If we define Ny = n~=1 Mv, then Ny is an open 
neighborhood of y. Also, there are numbers 0 = to < t1 < ... < tm = 1 in 
I with [t i - 1 , tJ contained in some Iv (depending on i), where v = 1, ... , n. 
Hence Ny x [ti - 1 , tJ c Mv x IV' and F(Ny x [t i - 1 , tJ) is contained in some 
admissible open set in X (which depends on i). 

It suffices to construct continuous maps Gi : Ny x [t i- 1 , tJ -> X for i = 

1, ... , m, such that 
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(i) pGi = FINy x [t i - 1 , tJ, 
(ii) G1 (y', 0) = ](y') for all y' E Ny, 
and 
(iii) Gi-l(Y" ti-l) = GJy', ti-l) for all y' E Ny and all i, 
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because such maps Gi can be glued together giving Fy: Ny x 1 --+ X, as desired. 
To define G1 , let V be an admissible open set with F(Ny x [0, t 1 ]) c V, let 
{S,,: A E A} be the sheets in X over V, and let V" = ]-l(S,,) in Y. Note that 
{V,,: A E A} is a disjoint open cover of Ny. Define G1 as the composite 

F (pIS;.fl 
V"x[0,t 1 ] IV IS". 

It is easy to see that G1 satisfies (i) and (ii). Assuming that Gi-l exists, a similar 
construction gives Gi , and so the proof is completed by induction. D 

Corollary 10.6 (Covering Homotopy Lemma). Let (X, p) be a covering space 
of X. Let x o , Xl be points in X, let f, g: 1 --+ X be paths in X from Xo to Xl' and 
let io be in the fiber over Xo. 

(i) If F: 1 x 1 --+ X is a relative homotopy F:f ~ g reI 1, then there exists a 
unique continuous F: 1 x 1 --+ X with pF = F and F(O, 0) = i o. 

(ii) If j, 9 are the liftings of f, g, respectively, with ](0) = io = g(O), then 
](1) = g(l) and F:j ~ 9 reI 1. 

Remark. Statement (ii) is often called the monodromy theorem. 

PROOF. (i) This follows from Theorem 10.5 if we set Y = I. 
(ii) If we define Fo: 1 --+ X by Fo(t) = F(t, 0), then pFo = f and Fo(O) = 

F(O, 0) = io; the lifting lemma (Theorem 10.4) gives Fo = j Next, FI{O} x 1 
is a path in X lying over the constant path at Xo and starting at io; Theorem 
10.4 gives F(O, t) = io for all tEl. Similarly, FI{l} x 1 is the constant path 
at ](1). Finally, if F1: 1 --+ X is defined by F1(t) = F(t, 1), then pFl = g and 
F1(0) = F(O, 1) = io (since FI{O} x 1 is constant). Hence F1 = g. Therefore 
g(l) = Fl (1) = F(l, 1) = ](1), and F:j ~ 9 reI i, as desired. D 

Recall that the fundamental group 1l:1 is a functor from pointed spaces to 
groups; in particular, if cp: (X', xo) --+ (X, xo) is continuous, then there is a 
homomorphism cp*: 1l:l(X', xo) --+ 1l:1(X, xo) defined by [1'] 1---+ [cpf']. 

Theorem 10.7. If (X, p) is a covering space of X, then 

p*: 1l: 1(X, io) --+ 1l: 1(X, xo) 

is an injection (where io lies in the fiber over xo). 

PROOF. Let j: (I, i) --+ (X, io) be a closed path in X at i o. If p* []] = [pi] = 1 
in 1l:1 (X, xo), then there is a relative homotopy F: p] ~ c reI t, where c is the 
constant path at xo. By Corollary 10.6, there is a lifting F:j ~ c reI t, where 
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c is the constant path at xo, hence [j] = 1 in x 1(X, xo). Therefore p. is an 
injection. 0 

In the special case of the covering space (R, exp) of Sl, the covering 
homotopy lemma enables one to define the degree map d: Xl (Sl, 1) -+ Z (the 
fiber over 1) by [f] H j(1), where j is the lifting of f with j(O) = 0 E R. For 
an arbitrary covering space (X, p) of X, there is a function 

Xl (X, xo) x Y -+ Y, 

where Y is the fiber over xo, given by 

([f], y)H j(1), 

where j is the lifting of f with j(O) = y E Y c: X. Corollary 10.6 shows that 
this function is well defined, for it is independent of the choice of path in the 
path class [f]. Fixing y E Y thus gives a function Xl (X, xo) -+ Y that general­
izes the degree function d. Since a fiber Y may not be equipped with a group 
structure (as is the case for (R, exp) or, more generally, for topological groups), 
these generalized degree functions are not homomorphisms. 

Definition. Let G be a group and let Y be a set (topological space). Then G 
acts on Y ifthere is a (continuous) function G x Y -+ Y, denoted by (g, y) H gy, 
such that 

(gg')y = g(g' y) 

and 

1y = y 

for all y E Yand g, g' E G (here 1 is the identity element of G). Call Ya G-set 
(G-space) if G acts on Y. One says that G acts transitively on Y if, for each y, 
y' E Y, there exists g E G with gy = y'; call Ya transitive G-set (G-space) in this 
case. 

Let a group G act on a set Y. For each g E G, the function on Y defined by 
y H gy is a permutation of Y (its inverse is y H g -1 y); moreover, if G acts on 
a topological space Y, then y H gy is a homeomorphism. 

Definition. Let a group G act on a set Y, and let y E Y. Then the orbit of y is 

o(y) = {gy: g E G} c: Y, 

and the stabilizer of y (also called the isotropy subgroup of y) is 

Gy = {g E G: gy = y} c: G. 

It is easy to see that Gy is a subgroup of G. Note that G acts transitively on 
Y if and only if o(y) = Y for every y E Y. 
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Lemma 10.8. If a group G acts on a set Y and if y E Y, then 

10(y)1 = [G : Gy ]. 

In particular, if G acts transitively, then I YI = [G: Gy ]. 

PROOF. The following statements are equivalent: gy = hy; g-l hy = y; 
g-l hE Gy ; gGy = hGy • If GjjGy denotes the family ofleft co sets of Gy in G, then 
it follows that cp: o(y) --+ GjjGy given by cp(gy) = gGy is a well defined function 
that is injective. Since cp is obviously a surjection, it is a bijection. D 

Remark. There is another way that Y can be a G-set: if there is a function 
G x Y --+ Y, denoted by (g, y) f--+ yg, such that 

y(gg') = (yg)g' 

and 

y1 = y 

for all y E Y and g, g' E G. Call Y a right G-set if such a function exists; call Y 
a left G-set when the original definition holds. 

We are forced to consider both types of G-sets because of our choice of 
notation. When f and 9 are paths, then f * 9 means first traverse f and then 
g; when f and 9 are functions, then their composite fog means first apply 9 
and then f There is no real problem here, because one can convert a right 
G-set into a left G-set by defining 

gy = yg-1. 

Note that this does work, because 

g(g' y) = g(yg,-l) = (ygH )g-l = y(g,-l g-l) = y(ggT1 = (gg')y. 

Theorem 10.9. Let (X, p) be a covering space of X, let Xo E X, and let Y be the 
fiber over Xo' 

(i) 1[1 (X, Xo) acts transitively on Y 
(ii) If Xo E Y, then the stabilizer of Xo is P*1[l(X, xo). 

(iii) I YI = [1[1 (X, Xo): P*1[l(X, xo)]. 

PROOF. (i) Let us first show that Y is a (right) 1[1 (X, xo)-set. If [fJ E 1[1 (X, xo) 
and x E Y, then xU] is defined as 1(1), where 1 is the (unique) lifting of f with 
1(0) = x. By Corollary 10.6, this definition does not depend on the choice of 
representative in the path class [fJ. 

It is easy to see that xU] = x when f is the constant path at xo, for then 
1 is the constant path at X. Suppose that [g] E 1[1 (X, xo). Let 1 be the lifting 
of f with ](0) = x; let g be the lifting of 9 with g(O) = 1(1). Then 1 * g is the 
lifting of f * 9 that begins at x, and it ends at g(1). It follows easily that 
xU * g] = (x[fJ) [g]. 
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Choose Xo E Y, and let x be any point in Y. Since X is path connected (this 
is the first time we have recognized this property of X), there is a path 1 in X 
from Xo to x. Now p1 is a closed path in X at Xo whose lifting with initial 
point Xo is visibly 1. Thus [p1] E 1tl (X, xo), and xo[p1] = 1(1) = X. It follows 
that 1tl (X, xo) acts transitively on Y. 

(ii) If f is a closed path in X at xo, let] be the lifting of f with ](0) = xo. 
If [f] E 1tl (X, xo)xo' the ~tabilizer of.xo, then Xo = Xo [f] = ](1); hence []] E 

1tl (X, xo) and [f] = [pf] E p* 1tl (X, xo). For the reverse inclusion, assume 
that [f] = [pg] for some [g] E 1t l (X, xo). Then] = g(forbothliftfand both 
have initial point xo), and so ](1) = g(l) = xo. Therefore xo[f] = ](1) = xo, 
and [f] lies in the stabilizer of xo. 

(iii) This now follows from Lemma lO.8. 0 

Theorem 10.10. Let (X, p) be a covering space of X, let x o , Xl E X, and let Yo, 
Yl be the fibers over Xo, Xl' respectively. Then 

PROOF. Choose Xo E Yo and Xl E Yl , let 1 be a path in X from Xo to Xl' and 
let A = p1 denote the corresponding path in X from Xo to Xl. It is easy to see 
that the following diagram commutes: 

Here the top map L sends []] f---+ [1-1 *] * 1], and the bottom map (j sends 
[f] f---+ [A -1 * f * A]. Since these maps are isomorphisms and p* is an injection, 
it follows that L induces a bijection between cosets: [1t l (X, xo): p*1t l (X, xo)] = 
[1t l (X, xd: p*1t l (X, xd]. Theorem lO.9(iii) now gives the result. 0 

We have just proved that all the fibers in a covering space have the 
same cardinal. Since each fiber is discrete, it follows that any two fibers are 
homeomorphic. 

Definition. The multiplicity of a covering space (X, p) of X is the cardinal of 
a fiber. If the multiplicity is m, one also says that (X, p) is an m-sheeted covering 
space of X, or that (X, p) is an m-fold cover of X. 

Corollary 10.11. If n ;::: 2, then 1tl (Rpn) ~ Z/2Z. 

PROOF. We know that (sn, p) is a covering space of Rpn (Exercise 10.3) of 
multiplicity 2; therefore [1t l (Rpn, xo): p* 1tl (sn, xo)] = 2. By Corollary 7.6, sn 
is simply connected for n ;::: 2. Therefore l1tl (Rpn, xo)1 = 2 and 1tl (Rpn, xo) ~ 
Z/2Z. D 



Basic Properties 283 

Corollary 10.12. Let (g, p) be a covering space of X, let Xo E X, and let Y be 
the fiber over Xo. 

(i) If xo, Xl E Y, then P*11: l (g, xo) and P*11: l (g, Xl) are conjugate subgroups 
of 11:1 (X, Xo)· 

(ii) If S is a subgroup of 11: l (X, xo) that is conjugate to P*11:l(g, xo) for some 
Xo E Y, then there exists Xl E Y with S = P*11: l (g, Xl)' 

Remark. Since g is path connected, we know that 11:1 (g, Xo) ~ 11:1 (g, xd, so 
that their images under the injection p* are isomorphic. This corollary asserts 
that these images are even conjugate. 

PROOF. (i) Recall the commutative diagram from Theorem 10.10 (with 
Yo = Yl ): 

_ L 

11: l (X, xo) ---+ 

p. j 
11:1 (X, Xo) ~ 11:1 (X, xo); 

here L: [1] f--+ [X-I * 1 d] and 0": [f] f--+ [rl * f d], where 1 is a path in X 
from Xo to Xl' and A. = pi Now 

P*L11: l (g, Xo) = p* 11:1 (g, Xl) = O"P*11: l (g, Xo), 

so that the two subgroups are conjugate by [A.] E 11:1 (X, Xo) (note that A. is a 
closed path in X at Xo since both xo, Xl E Y). 

(ii) Suppose that S = [A. -1 ]p* 11:1 (g, Xo) [A.] for some closed path A. in X at 
xo' Let 1 be the path in g lying over A. for which 1(0) = xo. Note that 1(1) E Y 
(because p1 = A.), say, 1(1) = Xl' Using the commutative diagram in Theorem 
10.10, 

as desired. o 

Definition. A covering space (g, p) of X is regular if p* 11:1 (g, xo) is a normal 
subgroup of 11: 1 (X, xo) for every Xo E X. 

If(g, p) is a regular covering space of X, then P*11: l (g, xo) = p* 11:1 (g, Xl) 
for every XO, Xl in the same fiber. If g is simply connected, then (g, p) is 
regular. 

EXERCISES 

lD.lD. Let (X, p) be an m-sheeted covering space of X, where m is prime. If X is simply 
connected, prove that 11: 1 (X, xo) ~ Z/mZ. 
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10.11. It is known that (m, <p(m)) = 1, where <p is the Euler <p-function, if and only if 
every group of order m is cyclic. Prove that if (X, p) is an m-sheeted covering 
space of X, where (m, <p(m)) = 1, and if X is simply connected, then 1C I (X, xo) ~ 
Z/mZ. 

10.12. Let (X, p) be an m-sheeted covering space of X (we allow m to be an infinite 
cardinal). If U is an admissible open set in X, so that p-I(U) = U;E1S;, then 
III = m. 

*10.13. Let (X, xo) be a pointed space, let (X, p) be a covering space of X, and let 
Y = p-I(XO). Let 8: 1CtCX, xo) --+ Sy (where Sy is the symmetric group on Y) be 
the homomorphism corresponding to the action of 1C I (X, xo) on the fiber, 
namely, 8([!]): x f--+ xC!]. 
(i) Show that ker 8 = nXEYP*1C I(X, x). (The quotient 1C I(X, xo)/ker 8 is 

called the monodromy group of (X, p).) 
(ii) If X is simply connected, then 8 is an injection. 

10.14. Let G be a simply connected topological group, and let H be a discrete normal 
subgroup. Prove that 1CtCG/H, 1) ~ H. (Remark: This is Exercise 3.24, whose 
solution should now be clearer.) 

*10.15. If 1C I (X, xo) is abelian, then every covering space of X is regular. 

*10.16. Let CY, q) and (X, p) be covering spaces of X. If there exists a continuous 
h: r --+ X with ph = q, then h is a surjection. (Hint: Use unique path lifting.) 

*10.17. Let (X, p) be a covering space of X, let Xo E X, and let Xo E p-I(XO). Iff is a 
closed path in X at Xo and if j is the lifting of f with ](0) = xo, then [!] E 

P*1C I (X, xo) if and only ifjis a closed path in X at xo. 

Covering Transformations 

In this section, we investigate maps between covering spaces of a space X. Let 
us begin by recalling the covering homotopy theorem (Theorem 10.5). If (g, p) 
is a covering space of X and if f: Y -+ X is a continuous map that has a lifting 
1: Y -+ g, then any homotopy starting with f lifts to a homotopy starting at 
j Thus, if f ~ g and f has a lifting 1, then g has a lifting g and j ~ g. If Y = I, 
then Theorem 10.4 says that every f: I -+ X does have a lifting; the next result 
gives a necessary and sufficient condition for f: Y -+ X to have a lifting. 

Theorem 10.13 (Lifting Criterion). Let Y be connected and locally path con­
nected, and let f: (Y, Yo) -+ (X, xo) be continuous. If (g, p) is a covering space 
of X, then there exists a unique j: (Y, Yo) -+ (g, xo) (where Xo E p-l (xo)) lifting 
f if and only if f* 1t1 (Y, Yo) c p* 1t1 (g, xo)· 

PROOF. Lemma 10.3 allows us to consider only existence. Assume that a lifting 
j does exist: pj = f and j(yo) = xo. Then 

f* 1t I(Y, Yo) = p*j*1t I (Y, Yo) c p*1t I (g, xo)· 
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The converse is less obvious. By Corollary 1.21, Y is path connected. Let 
y E Y and let h: I ~ Y be a path from Yo to y; thus fh is a path from 
f(yo) = Xo to f(y)· 

x 
~ //;;j?jP 
// / 

.,..........-/ // 

I~Y----+X 
h f 

By Theorem 10.4, there is a unique path X in X that lifts fh and with X(O) = xo. 
We propose to definej: Y ~ X by j(y) = X(l). Ifjis well defined, then pj(y) = 

pX(l) = fh(l) = f(y). 
We claim that X(l) is independent of the choice of path h. Choose another 

path hI from Yo to y, and let Xl be the path in X liftingfhl for which Xl (0) = xo· 
Now h * hi1 is a closed path in Yat Yo, hence f 0 (h * hi1) = (f 0 h) * (f 0 hi1) 
is a closed path in X at Xo' Since 

[(f 0 h)*(f 0 hi1)] = f*[h*h i 1] E f*1r 1(Y, Yo) c P*1r1(X, xo) 

(the inclusion is the hypothesis), there exists a closed path g in X at xo with 

(fo h)*(f0 hi1) ~ pg relt. 

Hence 

and 

because pX 1 = f 0 hI' 
By Theorem 10.5, the covering homotopy theorem, 

X ~ g * Xl rel t 

and X(l) = ({j * X1 )(1) = Xl (1), as desired. 
It remains to prove that j: Y ~ X is continuous. Let y E Y, let x = j(y), 

and let 01 be an open neighborhood of x; we must find an open neighborhood 
V of y with j(V) cOl ' Let x = px E X, let V be an admissible open neighbor­
hood of x, and let S be the sheet over V containing X. Replacing 01 by 01 n S 
if necessary, we may assume that 01 c S (remember that S is an open set in X). 

Since p is an open map, the set VI defined by VI = P(Ol) is an open 
neighborhood of x with VI c V; since f is continuous, f- 1 (Vd is an open 
neighborhood of yin Y. By Corollary 1.19, Y locally path connected implies 
that there is an open path connected V with y EVe f-l(Vd. We claim that 
j(V) cOl ' which will complete the proof. Let h: I ~ Y be a path from Yo to 
y, and let X be the lifting of fh with X(O) = xO' If v E V, then there is a path 
h2 : I ~ V from y to v; thus h2 (I) eVe f- 1(V1 ) andfh2(I) c VI' Let [1: I ~ X 
be the lifting of fh2 with [1(0) = X. Since VI c V and V is admissible, it follows 
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that [i. = (pISr1(fh2)' hence [i.(1) E S n 01 = 01. Now 2(1) = x = [i.(0), so that 
2 * [i. is defined. But p(2 * [i.) = p2 * p[i. = fh * fhz = f(h * h2), where h * h2 
is a path from Yo to v; moreover, (2 * [i.)(0) = 1(0) = xo. Therefore 1(v) = 
(2 * [i.)(I) = [i.(1) E 01, as desired. 0 

The lifting criterion is a fine example of a good theorem of algebraic 
topology: a topological result (here the existence of a certain continuous map) 
is equivalent to an algebraic problem (is one subgroup contained in another). 

Corollary 10.14. Let Y be simply connected and locally path connected, and let 
f: (Y, Yo) --+ (X, xo) be continuous. If (X, p) is a covering space of X and if 
Xo E p-1(XO), then there exists a unique 1: (Y, Yo) --+ (X, xo) lifting f 

PROOF. Since Y is simply connected, n1(Y, Yo) = {I}, and so f*n 1(Y, Yo) = 

{l}cp*n 1(X,xO)· 0 

This corollary applies, in particular, to Y = sn, n ~ 2. 

Remark. Recall (Exercise 3.8) that a simply connected space need not be locally 
path connected. 

Corollary 10.15. Let X be connected and locally path connected, and let (X, p) 
and (Y, q) be covering spaces of X. Choose basepoints Xo E X, Xo E X, and Yo E Y 
with pxo = Xo = qyo. 

If q*n1Cy,yo) = p*n1(X,xO)' then there exists a unique continuous 
h: (Y, Yo) --+ (X, xo) with ph = q, and h is a homeomorphism. 

PROOF. The existence and uniqueness of h are guaranteed by the theorem; we 
need check only that h is a homeomorphism. Consider the commutative 
diagram 

The theorem also guarantees a continuous k: (X, xo) --+ (Y, Yo) with qk = p. 
The composite hk and the identity Ix both complete the diagram 

X ----+ X 

~/p 
X; 

uniqueness of the completion gives hk = Ix. Similarly, kh = Ii', and h is a 
homeomorphism (with inverse k). 0 
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The next theorem augments the lifting criterion (Theorem 10.13). 

Theorem 10.16. Let X be connected and locally path connected, and let (X, p) 
and (Y, q) be covering spaces of X. Choose basepoints Xo E X, Xo E X, and Yo E Y 
with pXo = Xo = qyo. 

If q*ni(Y, Yo) c p*ni(X, xo), then there exists a unique continuous 
h: (Y, Yo) --+ (X, xo) with ph = q. Moreover, (Y, h) is a covering space of X, 
and so X is a quotient space of Y. 

Y 

~-/X 
x. 

PROOF. By the definition of covering space, both X and Yare path connected; 
by Exercise 10.6, X locally path connected implies that both X and Yare 
locally path connected. Since q*ni(Y, Yo) c p*ni(X, xo), the lifting criterion 
provides a unique continuous h: (Y, Yo) --+ (X, xo) such that ph = q.1t remains 
to prove that (Y, h) is a covering space of X; Lemma 10.1 will then apply to 
show that h is an identification, hence X is a quotient space of Y. 

Let x E X, and let x = px E X. Let Vi be a p-admissible open neighborhood 
of x and let Vz be a q-admissible open neighborhood of x. Then Vi n Vz is an 
open neighborhood of x, and, since X is locally path connected, there is an 
open path connected V with x EVe Vi n Vz . By Exercise 10.7, V is evenly 
covered by p and by q. Hence p-i(V) = U Sj' where the Sj are sheets in X; let 
S = Sjo be the sheet containing X. It suffices to prove that S is evenly covered 
by h (for h is a surjection, by Exercise 10.16). 

Now q-i(V) = U 7;" where the 7;, are sheets in Y; thus the 7;, are open, 
pairwise disjoint, and ql7;,: 7;, --+ V are homeomorphisms, hence each 7;, is 
path connected. For each k, 

ph(7;,) = q(7;,) = V, 

so that 

h(7;,) C p-i(V) = U Sj. 

Since h(7;,) is path connected and the Sj are open, pairwise disjoint, it follows 
that either h(7;,) c S or h(7;,) n S = 0. Therefore h-i(S) is the disjoint union 
of those 7;, such that h(7;,) c S. Finally, if h(7;,) c S, then there is a commu­
tative diagram 

7;, 

j~ qlT. ~S 

V. piS 
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Since ql1k and piS are homeomorphisms, it follows that hl1k is a homeo­
morphism. We have shown that S is evenly covered by h. 0 

Definition. A universal covering space of X is a covering space (X, p) with X 
simply connected. 

Often one abuses notation and says that X is a universal covering space of 
X when X is simply connected. 

EXAMPLE 10.1. The space of real numbers R is a universal covering space of 
Sl, and the plane is a universal covering space of the torus. If n :2: 2, sn is a 
universal covering space of Rr. 

The reason for the adjective "universal" is provided by the next theorem. 
We defer the question of the existence of universal covering spaces (see 
Theorem 10.34). 

Theorem 10.17. Let X be connected and locally path connected, and let (Y, q) 
be a covering space of X. If (X, p) is a universal covering space of X, then there 
exists a unique continuous h: X ~ Y making the following diagram commute: 

X~ ______ ~_ 
p --- ...... Y 

~ x. 

PROOF. Since X is locally path connected, Exercise 10.6 says that X is locally 
path connected. Corollary 10.14 now gives the result. 0 

A standard argument shows that a universal covering space, if it exists, is 
unique to homeomorphism. The converse of Theorem 10.17 is not true unless 
some mild restrictions are imposed on X (see Corollary 10.35). 

The fundamental group has already been seen to be intimately related to 
covering spaces. When comparing covering spaces (Y, q) and (X, p) of a space 
X, one considers diagrams of the form 

Y-X 

q\/p 
x. 

This leads one to the following group. 

Definition. If (X, p) is a covering space of X, then a covering transformation 
(or deck transformation) is a homeomorphism h: X ~ X with ph = p; that is, 
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the following diagram commutes: 

X~X 

~/p 
x. 

Define Cov(XjX) as the set of all covering transformations of X. 

It is easy to see that Cov(X j X) is a group under composition of functions. 
Before continuing, we mention an analogy between groups of covering trans­
formations and Galois groups. Suppose that F is a subfield of a field E. Recall 
that 

Gal(EjF) = {automorphisms a: E -+ Ela fixes F pointwise}. 

If i: F c... E is the inclusion, then an automorphism a of E lies in Gal(EjF) if 
and only if the following diagram commutes: 

E~E. 

~) 
F 

Since all arrows are reversed, one might expect that covering transformations 
give a "co-Galois theory"; that is, there may be "duals" for covering spaces of 
the usual results for Galois groups. In this analogy, universal covering spaces 
will play the role of algebraic closures (see Theorem 10.52). 

In light of Theorem 10.9, the next result suggests that Cov(XjX) resembles 
1l: l (X, xo)· 

Theorem 10.18. Let X be connected and locally path connected, and let Xo E X. 
Then a covering space (X, p) of X is regular if and only if Cov(XjX) acts 
transitively on the fiber over Xo. 

PROOF. Let XO, Xl E p-l(XO). If (X, p) is regular, then Corollary 10.12 gives 
P*1l: l (X, xo) = P*1l: l (X, xd. By Corollary 10.15, there is a homeomorphism 
h: (X, xo) -+ (X, xd with ph = p; thus hE Cov(XjX) and h(xo) = Xl' as 
desired. 

Conversely, assume that Cov(X/X) acts transitively on p-l(XO): if xo, Xl E 
p-l(XO)' then there exists h E Cov(XjX) with h(xo) = Xl. Now h*1l: l (X, xo) = 

1l: l (X, xd. Since p = ph, it follows that p* = p*h*, hence 

P*1l: l (X, xo) = p*h*1l: l (X, xo) = P*1l: l (X, Xl)· 

By Corollary 10.12, P*1l: l (X, xo) is a normal subgroup of 1l: l (X, xo), and so 
(X, p) is regular. 0 
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Theorem 10.19. Let (X, p) be a covering space of X. 

(i) If hE Cov(X/X) and h #- Ii, then h has no fixed points. 
(ii) If hi> h2 E Cov(X/X) and there exists x E X with hl(x) = h2(x), then 

hl = h2 • 

PROOF. (i) Suppose that there exists x E X with h(x) = x; let x = px. Consider 
the diagram 

(X, x) --- ~ (X, x) 

~/-
(X, x). 

By Lemma 10.3, there is at most one way to complete this diagram so that it 
commutes. Since both h and Ii complete it, h = li, a contradiction. 

(ii) The map hil h2 E Cov(X/X) has a fixed point, namely, x, and so 
hil h2 = Ii, by (i); therefore hl = h2· 0 

Definition. Two covering spaces (Y, q) and (X, p) of a space X are equivalent 
if there exists a homeomorphism <p: Y ~ X making the following diagram 
commute: 

Theorem 10.20. Let X be locally path connected, and let Xo E X. Let (Y, q) and 
(X, p) be covering spaces of X, and let Xo E p-l (xo) and Yo E q-l (xo). Then (Y, q) 
and (X, p) are equivalent if and only if q*1!l(Y, Yo) and P*1!l(X, xo) are con­
jugate subgroups of 1!1 (X, xo). 

PROOF. Assume that (Y, q) and (X, p) are equivalent, and let <p: Y ~ X be 
a homeomorphism with p<p = q. Then <p(Yo) E p-l(XO) and q*1!l(Y, Yo) = 

P*1!l(X, <PYo). By Corollary 1O.12(i), P*1!l(X, <PYo) and P*1!l(X, xo) are con­
jugate subgroups of 1! 1 (X, xo). 

Conversely, assume that q*1!l(Y, Yo) and P*1!l(X, xo) are conjugate sub­
groups of 1!1 (X, xo). By Corollary 10. 12(ii), there exists Xl E p-l(XO) such that 
q* 1!1 (Y, Yo) = p* 1!1 (X, xd. The lifting criterion provides a continuous map 
<P: Y ~ X with P<P = q, and Corollary 10.15 says that <P is a homeomorphism. 
Therefore (Y, q) and (X, p) are equivalent. 0 

Recall that if (X, p) is a covering space of X and if Xo E X, then 1!1 (X, xo) 
acts transitively on the fiber p-l(XO): if [f] E 1!l(X, xo) and x E p-l(XO)' then 
x[fJ = ](1), where] is the lifting of f with ](0) = x. 

Definition. Let G be a group, and let Y and Z be G-sets. A function <P: Y ~ Z 
is a G-map (one also says that <p is G-equivariant) if 



Covering Transformations 291 

<p(gy) = g<p(y) 

for all g E G and y E Y. A G-isomorphism is a G-map that is also a bijection. 
Let Aut( Y) denote the group (under composition) of all G-isomorphisms from 
Y to itself. 

We are going to prove that a covering space (X, p) of a space X (with 
basepoint xo) is completely determined by the fiber p-l(XO) viewed as a 
ttl (X, xo)-set. Another group-theoretic lemma is needed. 

Let G be a group, let H be a (not necessarily normal) subgroup of G, and 
let G / / H denote the family of all left co sets of H in G. Now G acts on G / / H by 
left translation: if a E G and gH E G//H, then a: gH 1-+ agH. It is easy to see 
that G/ /H is a transitive G-set and that H is the stabilizer of the coset H. 

Lemma 10.21. 

(i) If X is a transitive G-set and H is the stabilizer of a point, then X is 
G-isomorphic to G//H, the family of all left co sets of H in G on which G 
acts by left translation. 

(ii) If Hand K are subgroups of a group G, then G//H and G//K are 
G-isomorphic if and only if Hand K are conjugate in G. 

PROOF. (i) Let Xo E X, and let H = Gxo' For each x E X, transitivity provides 
an element gx E G with gxxo = x. The routine argument that (J: H -+ G//H, 
defined by (J(x) = gxH, is a well defined bijection is left to the reader. To see 
that (J is a G-isomorphism, let a E G and x E X. Now x = gxxo and ax = gaxxo; 
hence ax = agxxo, and so g;;; agx E Gxo = H. Thus gaxH = agxH. But (J(ax) = 

gaxH and a(J(x) = agxH, so that (J(ax) = a(J(x), as desired. 
(ii) Assume that (J: G//H -+ G//K is a G-isomorphism. There exists g E G 

with (J(H) = gK. If h E H, then 

gK = (J(H) = (J(hH) = h(J(H) = hgK. 

Therefore g-l hg E K and g-l Hg c K. Since (J(g-l H) = g-l (J(H) = g-l gK = 

K, we see that (J-l(K) = g-l H. The argument above now gives gKg- l c H, 
hence g-l Hg = K. 

For the converse, choose g E G with g-l Hg = K. Observe that the follow­
ing are equivalent for a, bEG: aH = bH; a-lb E H; g-la-lbg E g-l Hg = K; 
agK = bgK. We conclude that the function (J: G//H -+ G//K given by (J(aH) = 

agK is a well defined injection. Clearly, (J is onto, because bEG implies 
bK = (J(bg- l H). Finally, (J is a G-map, because (J(abH) = (ab)gK and a(J(bH) = 

a(bgK). 0 

Corollary 10.22. Let X be locally path connected, and let Xo E X. Two covering 
spaces (X, p) and CY, q) of X are equivalent if and only if the fibers p-l(XO) and 
q-l(XO) are isomorphic ttl (X, xo)-sets. 
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PROOF. Choose Xo E p-l(XO) and Yo E q-l(XO). By Theorem 10.20, (X, p) and 
CY, q) are equivalent if and only if P*1[l(X, xo) and q*1[l(Y, Yo) are conjugate 
subgroups of 1[1 (X, xo). By Theorem 10.9, the fiber p-l(XO) is a transitive 
1[1 (X, xo)-set, and p* 1[1 (X, xo) is the stabilizer of xo; similarly, q-l (xo) is a 
transitive 1[1 (X, xo)-set and q*1[l(Y, Yo) is the stabilizer of Yo. It follows from 
the lemma that P*1[l(X, xo) and q*1[l(Y, Yo) are conjugate subgroups of 
1[1 (X, xo) if and only if the fibers are 1[1 (X, xo)-isomorphic. D 

This last corollary explains why so much of the theory of permutation 
groups appears in this context. 

Lemma 10.23. Let a group G act transitively on a set Y, and let x, y E Y. Then 
the stabilizers Gx and Gy are equal if and only if there exists cp E Aut(Y) with 
cp(x) = y. 

PROOF. Assume that there exists cp E Aut(Y) with cp(x) = y. If hE Gx , then 
hx = x and cp(hx) = cp(x) = y; on the other hand, cp(hx) = hcp(x) = hy, and so 
h fixes y. Therefore Gx c Gy ; the reverse inclusion is proved similarly. 

Conversely, assume that Gx = Gy • If z E Y, then there exists g E G with 
z = gx; define cp: Y --+ Yby cp(z) = cp(gx) = gy. Now cp is well defined, because 
if gx = glX, then g-lglX = x, hence g-lgl E Gx = Gy , and so gy = glY. Also, 
cp is a G-map, because cp(hz) = cp(hgx) = hgy = hcp(z). Finally, cp is a bijection: 
its inverse is 8: Y --+ Y, where 8(g'y) = g'x. D 

Lemma 10.24. Let (X, p) be a covering space of X, where X is locally path 
connected; let Xo E X, and recall that p-l(XO) is a transitive 1[1 (X, xo)-set. Given 
Xo, Xl E p-l(XO), there exists hE Cov(XjX) with h(xo) = Xl if and only if there 
exists cp E Aut(p-l(XO)) with cp(xo) = Xl. 

PROOF. If there exists hE Cov(XjX) with h(xo) = Xl' then the lifting cri­
terion (with h and with h-l ) gives P*1[lCX, xo) = P*1[l(X, xd; the converse 
follows from Corollary 10.15. Since P*1[l(X, xo) is the stabilizer of xo, by 
Theorem 10.9(ii), h exists if and only if the stabilizers of Xo and Xl coincide. 
But, by Lemma 10.23, these stabilizers coincide if and only if there exists 
cp E Aut(p-l(XO)) with cp(xo) = Xl. D 

Lemma 10.25. Let (X, p) be a covering space of X, where X is locally path 
connected. Let Xo E X, and let the fiber p-l(XO) be viewed as a 1[1 (X, xo)-set. 
Then h ....... hlp-l(xo) is an isomorphism 

Cov(XjX) ~ Aut(p-l(XO)). 

PROOF. Denote p-l(XO) by Y. If hE Cov(XjX), then it is plain that h(Y) = Y 
and that hi Y: Y --+ Yis a bijection. To see that hi Yis a 1[1 (X, xo)-isomorphism, 
consider [f] E 1[1 (X, x o) and X E Y. Now 
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h([f]x) = hj(l), 

where j is the lifting of f with j(o) = x. On the other hand, 

[f]h(x) = j1(1), 
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where jl is the lifting of f with jl (0) = hex). But phj = pj = f and hj(O) = hex), 
so that uniqueness gives h = hJ Hence h([f]x) = [f]h(x), as desired. 

Clearly, h ~ hi Y is a homomorphism. By Theorem lO.l9(i), this map is an 
injection. To see that this map is a surjection, let cp E Aut(Y). If x E Y, then 
Lemma 10.24 provides hE Cov(XjX) with hex) = cp(x). Since 1l: 1 (X, xo) acts 
transitively on Y, for each Xl E Y there exists [f] E 1l:1 (X, xo) with Xl = [f]x. 
Therefore 

h(x1) = h([f]x) = [f]h(x) = [f]cp(x) = cp([f] x) = cp(x1), 

and so hi Y = cp, as desired. o 

Recall that if H is a subgroup of a group G, then its normalizer is the 
subgroup 

NG(H) = {g E G: gHg-1 = H}. 

Note that H is a normal subgroup of NG(H); moreover, if H is a normal 
subgroup of G, then NG(H) = G. 

Lemma 10.26. Let G be a group acting transitively on a set Y, and let Yo E y. 
Then 

Aut(Y) ~ NG(Go)jGo, 

where Go is the stabilizer of Yo' 

PROOF. Let cp E Aut(Y). Since G acts transitively on Y, there is 9 E G with 
cp(Yo) = gyo' First, we show that 9 E NG(Go). If hE Go, then hyo = Yo and 

gyo = cp(Yo) = cp(hyo) = hcp(yo) = hgyo; 

hence Yo = g-l hgyo and g-l hg E Go, as desired. Second, if cp(Yo) = gyo = 

glYO, then g-l g1 fixes Yo and gl Go = gGo. Therefore the function 

defined by 

r(cp) = g-l Go, 

where cp(yo) = gyo, is a well defined function. 
To see that r is a homomorphism, let 8 E Aut( Y) and let 8(yo) = g' Yo' Now 

8cp(yo) = 8(gyo) = g8(yo) = gg' Yo, so that r(8cp) = (gg')-l Go. On the other 
hand, r(8)r(cp) = g'-l Gog-1 Go = g'-l g-l Go. Since (ggTl = g'-l g-1, it fol­
lows that r is a homomorphism (the reason for the inverse in the definition 
of r is now apparent). 
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Assume that qcp) = Go. Then cp(Yo) = Yo, hence cp(hyo) = hcp(yo) = hyo 
for every hE G; that is, cp fixes every element in Y of the form hyo. As G acts 
transitively, cp = 1y , and so r is an injection. 

Finally, assume that g E NG(Go). The function cp: Y --+ Y given by cp(y) = 

hgyo, where y = hyo, is easily seen to be a well defined G-automorphism of Y 
As qcp) = g-l Go, it follows that r is a surjection and hence that r is an 
isomorphism. D 

Theorem 10.27. Let (X, p) be a covering space of X, where X is locally path 
connected. Then, for Xo E X and Xo E p-l(XO), 

Cov(X/X) ~ N,,(p*n1(X, xo))/p*n1(X, xo), 

where n denotes n1(X, xo). 

PROOF. By Lemma 10.25, Cov(X/X) ~ Aut(p-l(XO))' where the fiber p-l(XO) 
is viewed as a transitive nl (X, xo)-set (Theorem 10.9 (i)). The stabilizer of Xo 
is p*n1(X, xo), by Theorem 1O.9(ii). The theorem now follows from Lemma 
10.26. D 

Corollary 10.28. Let (X, p) be a regular covering space of X, where X is locally 
path connected. Then, for Xo E X and Xo E p-l(XO), 

Cov(X/X) ~ n1(X, xO)/p*n1(X, xo), 

the monodromy group of the regular covering space. 

PROOF. Since (X, p) is a regular covering space of Y, p*n1(X, xo) is a normal 
- - 1 subgroup of n1(X, xo), and so p*n1(X, xo) = p*n1(X, y) for all y E p- (xo). 

D 

Corollary 10.29. Let (X, p) be a universal covering space of X, where X is locally 
path connected. Then, for Xo E X, 

Cov(X/X) ~ n1(X, xo). 

PROOF. Since X is simply connected, n1(X, xo) = {l} for every Xo E p-l(XO), 
and so p*n1(X, xo) = {I}. D 

Observe that the last result gives a description of the fundamental group 
of X, which requires no choice of basepoint. 

EXAMPLE 10.2. We use Corollary 10.29 to give another proof that n 1 (Sl, 1) ~ 
Z. Since R is simply connected, (R, exp) is a universal covering space of Sl (of 
course, Sl is locally path connected); hence COV(R/Sl) ~ n 1 (Sl, 1). Let h: R --+ 

R be a homeomorphism with exp(h(x)) = exp(x); then h(x) = x + n(x), where 
n(x) E Z (by definition, exp(x) = e2"ix). Hence n(x) = h(x) - x is a continuous 
map R --+ Z; as R is connected and Z is discrete, n(x) is constant, say, n(x) == n. 
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Therefore h(x) is the translation x H x + n. It is clear that all such translations 
under composition form an infinite cyclic group. 

EXERCISES 

10.18. Let (X, p) be a universal covering space of X, where X is locally path connected. 
If Xo E X, give an explicit isomorphism Cov(XjX) -+ 1t 1(X, xo). 

10.19. In Exercises 8.6 and 8.7, it is shown that complex and quaternionic projective 
spaces are quotient spaces of spheres. Are these spheres universal covering 
spaces? 

10.20. If G is a simply connected and locally path connected topological group, if H 
is a discrete normal subgroup, and if p: G -+ GjH is the natural map, then every 
continuous qy: G -+ G with pqy = p has the form qy(x) = xho for some ho E H. 
(Hint: Adapt the argument in Example 10.2.) 

10.21. Let (X, p) be a covering space of X, where X is locally path connected. Prove 
that (X, p) is regular if and only if, for each closed path f: I -+ X, either every 
lifting 1 of f is a closed path or no lifting 1 of f is a closed path. (Hint: Exercise 
10.17.) 

10.22. Let (X, p) be a covering space of X, where X is locally path connected. If (X, p) 
is regular, then the monodromy group of (X, p) (see Exercise 10.13) is iso­
morphic to Cov(XjX). 

10.23. If X is an H-space (a fortiori, if X is a topological group), then every covering 
space of X is regular. (Hint: Exercise 10.15.) 

Existence 

When does a space X possess a universal covering space (X, p)? More 
generally, given Xo E X and a subgroup G of 11:1 (X, xo), when does there exist 
a covering space (X, p) of X (and a point X'o E p-1 (xo)) with G = p* 11:1 (X, X'o)? 

Definition. Let G be a subgroup of 11:1 (X, xo) and let P(X, xo) be the family of 
all paths f in X with f(O) = Xo. Define f1 '" f2 (more precisely,j1 '" f2 mod G) 
by 

(i) f1(1) = f2(1); 
(ii) [f1 * f2- 1 ] E G. 

Lemma 10.30. If G is a subgroup of 11:1 (X, xo), then the relation f1 '" f2 is an 
equivalence relation on P(X, xo). 

PROOF. Reflexivity holds because 1 E G; symmetry holds because g E G implies 
that g-l E G; transitivity holds because g, h E G implies that gh E G. 0 

Definition. Let (X, xo) be a pointed space and let G be a subgroup of 11:1 (X, xo). 
Denote the equivalence class of f E P(X, xo) by <f)G' and define XG as the 
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set of all such equivalence classes. If eo is the constant path at X o, define 
io = <eo>G E .KG' Finally, define a function p:.KG -+ X by <J>Gi--+ f(I). 

It is obvious that p(io) = Xo. We shall prove that, with some mild condi­
tions on X, the set .KG can be topologized so that (.KG' p) is a covering space 
of X with P*7r 1(.KG , io) = G. 

Definition. If fE P(X, xo) and U is an open neighborhood of f(I), then a 
continuation of fin U is a path FE P(X, xo) of the form F = f* A, where 
),,(0) = f(l) and ),,(1) c U. 

Definition. Let i = <f>G' and let U be an open neighborhood of x in X. Then 

(U, i) = (U, <f>G) = { <F>G E .KG: F is a continuation of fin U}. 

Note that if f '" f' and ),,(0) = f(I), then f *)., '" f' *).,. 

Recall that a family flA of subsets of a set Y is a basis for a topology if: 

(Bl) for each y E Y, there is B E flA with y E B; 
(B2) if B1, B2 E flA and ify E B1 n B2, then there is B3 E!!J with y E B3 C B1 n B2. 

The corresponding topology on Y is the family of all unions of sets in !!J. 
One may rephrase Corollary 1.19 by saying that a space is locally path 

connected if and only if it has a basis of path connected subsets. 

Lemma 10.31. Let (X, xo) be a pointed topological space, and let G be a subgroup 
of 7r 1(X, xo). Then the subsets (U, i) form a basis for a topology on .KG for 
which-ihe function p: .KG -+ X is continuous. Moreover, if X is path connected, 
then p is a surjection. 

PROOF. Let i = <f>G E .KG' and let e be the constant path in X at f(I). For 
every open neighborhood U of f(I), the function F = f * e is a continuation 
of fin U. Therefore (Bl) holds, for i = <f>G = <F>G E (U, i). 

We show that if y E (U, i), then (U, i) = (U, y). Now Y = <F>G = <f * )">G, 
where ),,(0) = f(l) and ),,(1) c U. If Z E (U, i), then Z = <F'>G = <f * I1>G' 
where 11(0) = f(l) and 11(1) c U. Hence F' '" f * 11 '" (f *).,) * (A -1 * 11) '" 
F * ()., -1 * 11); since ()., -1 * 11)(0) = F(I) and (r1 * 11)(1) c U, we have z = <F' >G = 
<F * ()., -1 * 11) >G E (U, y) and (U, i) c (U, y). The reverse inclusion is proved 
similarly. To prove (B2), assume that Z E (U, i) n (V, y); then (U, i) = (U, Z) 
and (V, y) = (V, Z), and it is easy to see that Z E (U n V, Z) c (U, Z) n (V, Z). 

To prove that p:.KG -+ X is continuous, let i E.K and let U be an open 
neighborhood of pi in X. Then it is easy to see that p((U, i» c U. Finally, if 
X is path connected, then for each x E X, there is a path f in X from Xo to x, 
and p(i) = x, where i = <f>G' 0 

Lemma 10.32. Let (X, xo) be a pointed space, and let G be a subgroup of 
7r1 (X, xo ). Every path f in X beginning at Xo can be lifted to a path j in .KG 
beginning at xo and ending at <f>G' 
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PROOF. For tEl, define ft: 1 ~ X by ft(s) = f(ts). Each ft is a path in X 
beginning at xo; that is, ft E P(X, x o), fo = eo (the constant path at xo), and 
f1 = f Define j: 1 ~ X by 

](t) = <ft)G' 

Observe that ](0) = <fo)G = <eo)G = Xo and that ](1) = <f1)G = <f)G' 
Moreover, for each tEl, we have p](t) = p<ft)G = ft(1) = f(t), that is, 
p] = f It remains to prove that] is continuous. 

Let to Eland let (U,j(to» be a basic open set containing ](to)' Since f is 
continuous, there is an open interval V of to in 1 with f(V) c U; we claim that 
](V) c (U,j(to», that is, if t E V; then ft is a continuation of fto in U. It is 
straightforward to show that ft = fto * 2 for some path 2 with 2(0) = fto(1) = 
f(t o) and with 2(1) c U: ift > to, then let 2 = fl [to, t] suitably reparametrized 
so that its domain is I; if t < to, reparametrize f- 11 [t, toJ. 0 

Corollary 10.33. If (X, xo) is a pointed space and G is a subgroup of 1t1 (X, xo), 
then X G is path connected. 

PROOF. For each x = <f)G E XG, there is a path in XG from Xo to x. 0 

There is a necessary condition that a locally path connected space X have 
a universal covering space (X, p). If x E X, then Exercise 10.7 allows us to 
assume that x has a path connected admissible open neighborhood U. Let 
x E p-1(X), and let S be the sheet lying over U that contains X. There is a 
commutative diagram 

1t 1 (S,x) ~ 

(pis), j 
1t1 (U, x) ~ 

where the horizontal maps are induced by inclusions. Since 1t 1 (X, x) = {1} 
(because X is simply connected) and (pIS)* is an isomorphism (because piS is 
a homeomorphism), it follows that 1t1 (U, x) ~ 1t1 (X, x) is the trivial map. 

Definition. A space X is semilocally l-connected3 if each x E X has an open 
neighborhood U so that i*:1t1(U,x)~1t1(X,x) is the trivial map (where 
i: U 4 X is the inclusion). 

EXAMPLE 10.3. Every simply connected space is semilocally I-connected. 

3 A space X is called locally I-connected if, for each x E X, every neighborhood N of x contains 
a neighborhood U of x with i*: n 1 (U, x) --> n 1 (N, x) trivial. Compare this definition with that of 
locally path connected (which could be called locally O-connected). 
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EXAMPLE 10.4. If each point x E X has a contractible open neighborhood, then 
X is semilocally I-connected. By Corollary 8.31, every CW complex (and 
hence every simplicial complex) is semilocally I-connected. 

EXAMPLE 10.5. A cartesian product of infinitely many circles is connected and 
locally path connected, but it is not semilocally I-connected (see [Spanier, 
p.84]). 

One can rephrase the definition. A space X is semilocally I-connected if 
each x E X has an open neighborhood U with the following property: every 
closed path in U at x is nullhomotopic in X. 

Theorem 10.34. Let (X, xo) be a pointed space and let G be a subgroup 
of 1tl (X, xo). If X is connected, locally path connected, and semilocally 
I-connected, then (XG' p) is a covering space of X and p*1t 1 (XG' io) = G. 

PROOF. Let x E X. Since X is semilocally I-connected, there is an open 
neighborhood W of x with every closed path in W at x nullhomotopic in X. 
Since X is locally path connected, there is an open path connected neighbor­
hood U of x with x E U c: W; of course, every closed path in U at x is 
nullhomotopic in X. We shall show that U is evenly covered by p, and this 
will show that (XG' p) is a covering space of X (for we already know that XG 
is path connected and p is a continuous surjection). 

Let i E p-l(X), so that i = (f)G' where f is a path in X from Xo to x. To 
prove that U is evenly covered by p, we shall show that (U, i) is the sheet over 
U containing i. First, pl(U, i): (U, i) ~ U is a surjection. If y E U, there exists 
a path A in U from x to y (because U is path connected). Then f * A is 
a continuation of f in U with (f * A)(I) = y; hence (f * A)G E (U, i) and 
p( (f * A)G) = (f * A)(I) = y. Second, pl(U, i) is an injection. Suppose that ji, 
Z E (U, i) and p(ji) = p(Z). Now Z = (f * J.l)G, where J.l(0) = f(l) = x and 
J.l(I) c: U; similarly, ji = (f * A)G, where A(O) = x and A(I) c: U. Since p(ji) = 
p(Z), we have A(I) = Jl(I), so that A * J.l-1 is a closed path in U at x. By the 
choice of U, A * J.l- 1 is nullhomotopic in X. Hence f * A * J.l- 1 * f- 1 is null­
homotopic in X; that is, [f * A * J.l-1 * f-l] = 1 in 1tl (X, xo). Therefore 
[f * A * J.l-1 * f-l] E G, and so (f * A)G = (f * J.l)G' that is, ji = Z. Third, 
pl(U, i) is an open map. Every neighborhood W of i in XG contains an open 
set of the form (U, i), where U is as chosen in the first paragraph. But, for 
such U, weknowthatp((U, i)) = U (because pl(U, i) is a surjection). It follows 
that pl(U, i): (U, i) ~ U is a homeomorphism. 

Next, we show that p-l(U) = Ui(U, i). Clearly, p-l(U) contains the union. 
For the reverse inclusion, let ji E XG be such that p(ji) E U, that is, ji = (f)G 
and f(l) E U. Since U is path connected, there is a path A in U from f(l) to x. 
Then f * A is a continuation of fin U, so that i defined by i = (f * A)G lies 
in the fiber over x. Now (f * A) * A-I is a continuation of f * A in U, so that 
«(f * A) * A-1 )G E (U, i). But ji = (f)G = «(f * A) * A-I )G' 

As each (U, i) is open in XG , it remains to prove that the sheets are pairwise 
disjoint. In the proof of Lemma 10.31, we showed that if ji E (U, i), then 
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(U, x) = (U, y). If Xl' X2 E p-1(X), and if there exists y E (U, Xl) n(U, x 2 ), then 
(U, x;) = (U, y) for i = 1,2, and (U, xd = (U, x 2 ). We have proved that (XG' p) 
is a covering space of X. 

Finally, let us show that p*n 1(XG , xo) = G. Let [f] E n 1(X, xo). Since 
(XG' p) is a covering space of X, there exists a unique lifting] of f with ](0) = 
xo. In Lemma 10.32, however, we constructed such a lifting, namely, j(t) = 
<ft>G' whereftis a path from Xo tof(t). By Exercise 10.17, [f] E P*1C 1 (XG' xo) 

if and only if] is a closed path at xo, that is, ](0) = ](1) = xo. But ](0) = 

Xo = <eo>G' where eo is the constant path in X at xo, while](1) = <f1>G = 
<f>G. Hence ](0) = ](1) if and only if f ~ eo. But f ~ eo if and only if [f] = 
[f H01] E G. Therefore P*1C 1 (XG' xo) = G, as desired. 0 

Corollary 10.35. Let X be a connected, locally path connected, semilocally 
I-connected space.4 Every covering space CY, q) of X is equivalent to a covering 
space of the form (XG' p). 

PROOF. Choose a basepoint Xo E X and let Yo E f lie in the fiber over Xo. If 
G = q*1C 1(Y, Yo), then P*1C1(XG, xo) = G, and so Theorem 10.20 applies to 
show that (Y, q) is equivalent to (XG , p). 0 

Corollary 10.36. Let X be a connected, locally path connected, semilocally 
I-connected space. If(X, p) is a covering space of X, then every open contractible 
set U in X is evenly covered by p. 

PROOF. In the proof of the theorem, we saw that if U is an open path connected 
set in X for which every closed path in U is nullhomotopic in X, then U is 
evenly covered by p (indeed, if x E U, then 

p-1(U) = U (U, x)). 
XEp-'(X) 

In particular, contractible open sets are evenly covered in every covering space 
of the form (XG' p). The result follows from Corollary 10.35. 0 

Corollary 10.37. Let X be connected and locally path connected. Then X has a 
universal covering space if and only if X is semilocally I-connected. 

PROOF. Sufficiency follows immediately from the theorem; necessity was 
proved in our discussion given just before the definition of semilocally 
I-connected. 0 

We repeat the description of the elements of XG when it is simply connected, 
that is, when G = {I}: they are the equivalence classes of P(X, xo) defined by 
the relation f ~ g if f(l) = g(l) and f * g-l is nullhomotopic in X. 

4 Perhaps such spaces should be called triply connected! 
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Theorem 10.38. Every connected CW complex has a universal covering space. 

PROOF. CW complexes are locally path connected (Theorem 8.25) and semi­
locally I-connected (Example 10.4). D 

It follows immediately that connected polyhedra have universal covering 
spaces. Let us give a direct proof ofthis, avoiding the fussy proofs of Theorem 
8.25 and Corollary 8.31. 

Lemma 10.39. A locally contractible space X is locally path connected and 
semilocally I-connected. 

PROOF. Let x E X, let U be an open neighborhood of x, and let V c U 
be an open neighborhood of x, which is contractible to x in U; that is, let 
F: V x 1--+ U be a continuous map with F(v, 0) = v and F(v, 1) = x for all 
v E V. If Vo E V, then f(t) = F(vo, t) is a path in U from Vo to x. It follows that 
X is locally path connected (use the definition oflocally path connected rather 
than its characterization, Corollary 1.19). 

With the same notation as in the first paragraph, it is easy to see that if 
i: V c... U is the inclusion, then i*: 1t1(V, x) --+ 1tl(U, x) is trivial. It follows that 
if j: V c... X is the inclusion, then j*: 1tl (V, x) --+ 1tl (X, x) is trivial; hence X is 
semilocally I-connected. D 

Theorem 10.40. Every polyhedron is locally contractible, and every connected 
polyhedron has a universal covering space. 

PROOF. The second half of the statement follows from the first, in light of 
Lemma 10.39 and Corollary 10.37. 

Let x E X and let U be an open neighborhood of x. By Exercise 7.12(iii), 
we may assume that there is a simplicial complex K with IKI = X and with 
x E Vert(K). Define F: st(x) x 1--+ IKI by F(w, t) = tx + (1 - t)w, where WE 

st(x) (Exercise 7.7(ii) guarantees that such convex combinations make sense). 
Note that F is a deformation in IKI of st(x) to x and that F({x} x I) = 
{x} c U. By the tube lemma (Lemma 8.9'), there is an open neighborhood V 
of x such that F(V x I) c U. Replacing V by V n U if necessary, we may 
assume that V c U. It follows that X is locally contractible. D 

Though we have not proved it, we remind the reader that CW complexes 
are locally contractible. 

Corollary 10.41. Every connected n-manifold has a universal covering space 
(which is also an n-manifold). 

PROOF. We have already remarked that n-manifolds are locally contractible, 
hence locally path connected and semilocally I-connected, by Lemma 10.39. 
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In Exercise 10.6, we observed that any covering space of an n-manifold is itself 
an n-manifold. D 

In Exercise 10.6, we observed that every covering space X inherits local 
properties of X. Let us prove that other properties of the base space X may 
lift to properties of covering spaces (X, p) of X. 

Theorem 10.42. Every covering space (X, p) of a connected, locally path con­
nected, semilocally 1-connected topological group X can be equipped with a 
multiplication making X a topological group and p a homomorphism. 

PROOF. Let e be the identity element of X. By Corollary 10.35, we may assume 
that X = XG for some subgroup G of 1[1 (X, e). Let m: X x X -+ X be the given 
multiplication in the topological group X, and write m(x, y) = x 0 y for x, 
y E X. If f, g E P(X, e), define a product fog by pointwise multiplication: 

(f 0 g)(t) = f(t) 0 get) for all tEl. 

Note that fog is continuous, being the composite of the continuous functions 
f x g and m. Since f(O) = e = g(O), it follows that (f 0 g) (0) = e, and so fog E 

P(X, e). We propose to define multiplication in XG by 

(1) 

but we need some preliminary results to prove that this is well defined. 
Let a1, a2, P1' P2 be paths in X that agree when necessary: a1(1) = P1(0), 

a2(1) = P2(0), and a1(1) 0 a2(1) = P1(0) 0 P2(0). Evaluating at tEl gives 

(a1 * P1) 0 (a2 * P2) = (a 1 0 ( 2 ) * (P1 0 P2)· 

If, as usual, a-1 (t) = a(l - t), then evaluating at tEl gives 

(a1 0 a2r 1 = all 0 a21. 

Let us denote the pointwise inverse of a by~: 

~(t) = (a(tW 1• 

Now suppose that a and P are closed paths at e; we claim that 

a 0 P ~ a * P reI 1. 

(2) 

(3) 

(4) 

To see this, consider the continuous map F: I x I -+ X defined by F(s, t) = 

a(st) 0 pes). The following picture displays F on the boundary of I x I: 

exo~ 

e I' I ex 
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By Exercise 3.4(iii), f3 ~ (ex 0 f3) * ex-1 reI t, hence f3 * ex ~ ex 0 f3 reI 1. Since 
1t1 (X, e) is abelian, by Corollary 3.21, it follows that ex * f3 ~ ex 0 f3 reI 1. 

Let us now show that formula (1) does not depend on the choice of 
paths in <f)G and <g)G. Suppose that f1 E <f)G and gl E <g)G: thus f1 (1) = 
f(l) and [f*f1-1] E G; gl(1) = g(l) and [g*gI1] E G. Now (fo g)(l) = 
f(l) 0 g(l) = (f1 0 gd(l). Moreover, 

[(fo g) * (f1 0 glf1] = [(fo g) * (f1-1 0 gil)], by (3) 

= [(f * f1- 1) 0 (g * gil )], by (2) 

= [(f * f1- 1) * (g * gil )], by (4) 

= [f * f1- 1] [g * gil] E G. 

Therefore <f)G<g)G = <f1 )G<gl )G' as desired. 
Define e E P(X, e) to be the constant path at e. It is easy to see that XG is 

a group with identity e and with [1] the inverse of [f]. Since p( <f)G) = f(l), 
it follows at once that p is a homomorphism. 

It remains to prove that XG is a topological group. To see that inversion 
XG --+ XG is continuous, let (U, <1)G) be a basic open neighborhood of <1)G 
(thus U is an admissible open neighborhood of f(lf1). Since X is a topological 
group, U- 1 = {x-1 : x E U} is an open neighborhood of f(l); moreover, 
we may assume that U- 1 is admissible (for any open subset of an admissible 
open set is admissible). But inversion carries (U-l, <f)G) inside (U, <1)G)' 
and hence it is continuous. To see that multiplication is continuous, let 
Wbe an admissible open neighborhood ofj(l)g(l), and let U, Vbe admissible 
open neighborhoods of f(l), g(l), respectively, such that U 0 V = {u 0 v: 
U E U, V E V} c W. Then multiplication carries (U, <f)G) x (V, <g)G) inside 
(w, <f)G<g)G), and so XG is a topological group. 0 

EXERCISES 

10.24. Let X be a topological group that is connected, locally path connected, and 
semilocally I-connected, and let G be a subgroup of 71:1 (X, e), where e is the 
identity of X. If f is a closed path in X at e, show that [J] = [f-1] and 
<J)G = <r1 )G· 

10.25. Let X be an H-space that is connected, locally path connected, and semilocally 
I-connected, and let G be a subgroup of 71:1 (X, e), where e is a homotopy identity 
in X. Prove that XG is an H-space and that p "preserves" multiplication. 

Remark. A Lie group is a topological group whose underlying space is an 
n-manifold and whose group operations are real analytic. Covering spaces of 
connected Lie groups are also Lie groups. 

Theorem 10.43. 

(i) Every covering space (X, p) of a connected CW complex (X, E, $) can be 
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equipped with a CW decomposition so that X is a CW complex with 
dim X = dim X and p is a cellular map. 5 

(ii) Every covering space (X, p) of a connected polyhedron X can be equipped 
with a triangulation so that X is a polyhedron with dim X = dim X and p 
is a simplicial map. 

Remark. Since covering spaces of compact spaces need not be compact, one 
is thus obliged to consider infinite CW complexes and infinite simplicial 
complexes. 

PROOF. (i) Let I be a set indexing the points in a fiber: if x E X, then p-l(X) = 

{Xi: i E I, p(xJ = x}. For each e E E, let Xe = <DeCO) E e. Since Dn is simply 
connected, the lifting criterion (Theorem 10.13) provides continuous maps 
<l>ei: (Dn, 0) --+ (X, xJ, all e E E and i E I, with p<l>ei = <De and p(xJ = Xe. 

Denote <l>ei(Dn - sn-l) by ei. Define 

and 

<I> = {<I>ei: Dn --+ Xle E E, i E I, n = nee)}, 

E = {ei: e E E, i E I} 

x(n) = U {ei E E: dim(eJ :S n}. 

If (X, E, <1» is a CW complex, then dim X = dim X and p is a cellular map 
(indeed, since p<l>ei = <De' a relative homeomorphism, it is easy to see that 
plei : ei --+ e is a homeomorphism). 

We show by induction on n :::::-: 0 that X(n) is a CW complex; the argument 
in the last paragraph ofthe proof of Theorem 8.24 shows that this implies that 
X is a CW complex. The induction begins because X(O) is discrete ((X, p) is a 
covering space). 

Assume that n > 0; let us check the axioms in the definition of CW complex. 
(1) If Y E X, let y = p(y), let e be the cell in X containing y, and let f be a 

path in e from y to Xe. For each Yi E p-l(y), there is a lifting 1 of f that is a 
path in ei from Yi to Xi. But Y = Yi for some i, so that Y E ei C X. Therefore 
X = Un~O X(n). (Of course, x(n) is the union of cells, by its very definition.) 

To see that this is a disjoint union, consider cells e, a in x(n), and suppose 

5 More is true: the appropriate restriction of p is a homeomorphism from each cell in X to a cell 
inX. 
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that ei n aj i= 0 for some i, j. By induction, we may assume that ei is an 
n-cell and hence is open in x(n) (Corollary 8.22(iii)). If e i= a, then p(ei n aj ) C 

pei n paj = en a = 0, hence ei n aj = 0; if e = a, then ei n ej = 0 for i i= j 
because Lemma 10.36 says that e is evenly covered by p. 

(2) If dim(e) = n, then <l>e(sn-1) C x(n-1). Since pCbei = <l>e, it follows that 
Cb .(sn-1) C x(n-1) so that Cb . is a map of pairs (Dn sn-1) -+ (e. u x(n-1) x(n-1)) 

eL 'eL 'I.'. 
Furthermore, each Cbei is a relative homeomorphism because each <l>e is. 

(3) We use the following commutative diagram to check that x(n) has the 
weak topology determined by the closures of its cells. 

11 Dn(e) ------+ X. 
q> 

Here ip = 11e,iCbei, q; = 11e<l>e, and q = 11qei' where qei: Dn(e,) -+ Dn(e) acts as 
the identity. By Lemma 8.16, X has the weak topology if and only if ip is an 
identification. Suppose that 13 is a subset of X with ip -1 (13) open; since ip is a 
continuous surjection, ip is an identification if each such 13 is open in X. Let 
x E 13, let x = p(x), let U be an admissible open neighborhood of x, and let 0 
be the sheet over U containing X. Then 13 is open if and only if each such 13 n 0 
is open in X. Changing notation if necessary, we may thus assume that 13 C 0, 
where pI 0 is a homeomorphism. Now ip-1(13) is open; since q is an open map, 
qip-1(13) is open. We claim that qip-1(13) = q;-l p(13). If this claim is correct, 
then q;qip -1 (13) = q;q; -1 p(13) = p(13) is open in X, because q; is an identification. 
It follows that (pI 0)-1(13) = 13 is open in X, for pI 0 is a homeomorphism, and 
this will complete the proof. 

Assume that ip(z) E 13. Commutativity of the diagram gives q;q(z) = pip(z) E 

p(13); hence qip -1 (13) C q; -1 p(13). For the reverse inclusion, let z E q; -1 p(13), so 
that q;(z) E p(13). Now z E Dn(e), say; choose a path f in Dn(e) from z to O. Hence 
q;f is a path in e from q;(z) to Xe' Let {j be a lifting of q;f with {j(0) E 13; of course, 
{j(I) = Xi for some i. But ipq-;/f is also a lifting of q;f (for pipq-;/J = q;qq-;/f = 

q;f), which ends at Xi' By uniqueness of path lifting (here we lift the reverse of 
q;f), it follows that ipq-;/J = {j, and so ipq-;/J(O) = {j(0) E 13. But ipq-;/J(O) = 

ipq-;/(z), and so z E qip-1(13), as desired. 
(4) x(n) is closure finite, for if dim(e;) = n, then the closure of ei is contained 

in ei U Cb ei(sn-1). Since Cb ei(sn-1) is compact, it is contained in a finite CW 
subcomplex of x(n-1); it follows that the closure of ei meets only finitely many 
cells. 

(ii) If X is a polyhedron, then one can adapt the proof above replacing the 
word "cell" everywhere by "open simplex". The straightforward and simpler 
details are left to the reader. D 

Corollary 10.44. If X is a connected graph, then its universal covering space is 
a tree. 
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PROOF. A connected graph is, by definition, a connected one-dimensional 
simplicial complex. The universal covering space X of X is thus a simply 
connected graph. It is easy to see that X can have no circuits, hence X is a tree. 

D 

Corollary 10.45. Let X be a compact connected CW complex, and let (X, p) be 
a j-sheeted covering space of X for some integer j. Then X is compact and 

x(X) = jx(X). 

PROOF. The proof of the theorem shows that there is a CW decomposition of 
X having precisely j i-cells for each i-cell in X. Thus, if fi;, respectively IX;, 

denotes the number of i-cells in X, respectively X, then fi; = jlX; for all i. Since 
X has only finitely many cells, it follows that X has only finitely many 
cells and hence is compact. Moreover, the definition of the Euler-Poincare 
characteristic is 

o 

Here are some applications to group theory; for deeper applications, see 
[Massey (1967)]. 

Theorem 10.46. Every subgroup G of a free group F is itself free. 

PROOF. Let {x;: i E I} be a basis of F, and let X be a wedge of III circles. By 
Corollary 7.35,11:1 (X, xo) ~ F (where Xo is a basepoint of X). Now the covering 
space (XG' p) of X has fundamental group isomorphic (via p*) to G. Theorem 
10.43 (ii) says that XG is a (connected) one-dimensional simplicial complex, and 
Corollary 7.35 says that its fundamental group is free. D 

Theorem 10.47. A free group F of rank 2 contains a subgroup that is not finitely 
generated. 

PROOF. In Exercise 10.4(ii), we exhibited a covering space (X, p) of Sl v Sl 
that is a doubly infinite sequence of tangent circles. If one regards X as a 
simplicial complex, then there is a maximal tree whose complement is the 
union of the open upper semicircles in X. By Corollary 7.35, 11:1 (X, xo) is free 
of infinite rank. But 11:1 (X, xo) is isomorphic to a subgroup of 11:1 (Sl v Sl, x o), 
which is free of rank 2. D 

One can show that the commutator subgroup of a free group of rank ;::0: 2 
is free of infinite rank. 

Theorem 10.48. Let F be a free group of finite rank n, and let G be a subgroup 
of finite index j. Then G is a free group of finite rank; indeed 

rank G = jn - j + l. 
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PROOF. If r is a finite graph (i.e., a finite one-dimensional simplicial complex), 
let e(r) denote the number of edges in r and let v(r) denote the number of 
vertices in r. If T is a finite tree, then e(T) = v(T) - 1: since T is contractible, 
X(T) = 1; on the other hand, X(T) = v(T) - e(T) (there are elementary proofs 
of this equality). It follows that if T is a maximal tree in a finite graph r, then 
the number of edges in r - Tis e(r) - e(T) = e(r) - v(T) + 1. Since T is a 
maximal tree, v(T) = v(r) (Lemma 7.33). Therefore, if r is a finite graph, then 
7r1 (r, xo) is free of rank e(r) - v(r) + 1 (Corollary 7.35). 

If X is a wedge of n circles, then it is easy to see that X(X) = 1 - n. Let 
(XG' p) be the covering space of X corresponding to G (we identify F with 
7r1 (X, *)). Since [F : G] = j, Theorem 1O.9(ii) says that XG is aj-sheeted cover­
ing space. Therefore 

as claimed. 

EXERCISES 

e(XG) - v(XG) + 1 = - X(XG) + 1 

= - jX(X) + 1 by Corollary 10.45 

= -j(1-n)+ 1 

=jn - j + 1. 

o 

In each of the following exercises, the space X is connected, locally path connected, 
and semilocally i-connected. 

10.26. If X is compact and (X, p) is a finite-sheeted covering space of X, then X is 
compact. 

10.27. Ifj is a positive integer and Xo is a basepoint in X, then the number ofj-sheeted 
covering spaces of X is the number of subgroups of 1tl (X, xo) having index j. 
(Remark: There is a group-theoretic result that could be used in conjunction 
with this exercise. If G is a finite abelian group, then the number of subgroups 
of G having index j is equal to the number of subgroups of G having order j.) 

10.28. Ifj is a positive integer and X is a finite CW complex, then there are only finitely 
many j-sheeted covering spaces of X. (Hint: Use the group-theoretic result that 
a finitely generated group has only finitely many subgroups of index j.) 

Orbit Spaces 

If (X, p) is a covering space of X, then both 7r 1(X, xo) and Cov(X/X) act 
on the fiber p-1(XO); moreover, if (X, p) is a regular covering space, then 
Cov(X/X) ~ 7r1 (X, XO)/P*7r 1 (X, xo). Let us now concentrate on groups acting 
on X instead of on fibers. Plainly, Cov(X/X) acts on X; moreover, if (X, p) is 
regular, then there is a surjection 7r1 (X, xo) ~ Cov(X/X) (the isomorphism 
above displays Cov(X / X) as a quotient group of 7r 1 (X, xo)), which shows that 
7r 1(X, xo) acts on X as well. 
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Definition. If a group G acts on a space Y, then the orbit space Y/G is the set 
of all orbits of G, 

Y/G = {o(y): y E Y}, 

regarded as a quotient space of Y via the identification v: y H o(y). 

The next pair of lemmas will be used in proving an analogue of the 
fundamental theorem of Galois theory. 

Lemma 10.49. Let (X, p) be a regular covering space of X, where X is connected 
and locally path connected, and let G = Cov(X/X). There exists a homeo­
morphism qJ: X --+ X/G making the following diagram commute: 

X 

Pj~ 
X ------> X/G; 

rp 

moreover, (X, v) is a covering space of X/G. 

PROOF. If x E X, choose x E p-l(X), and define qJ by 

qJ(x) = v(x) = o(x). 

(1) qJ is well defined. 
Assume that Xl E p-l(X). The hypotheses allow us to use Theorem 10.18, 

so that Cov(X/X) acts transitively on p-l(X). There exists g E Cov(X/X) with 
g(x) = Xl' and so o(x) = o(xd, as required. 

(2) qJ is a bijection. 
Commutativity of the diagram and the surjectivity of v imply that qJ is 

surjective. To see that qJ is injective, assume that qJ(x) = qJ(y). Then there exists 
X E p-l(X) and y E p-l(y) with o(x) = 0(.Y); that is, there exists g E Cov(X/X) 
with X = g(y). Hence 

x = p(x) = pg(y) = py = y 

(recall that pg = p for every covering transformation g). 
(3) qJ is continuous. 
If U is open in X/G, then the continuity of v shows that p-lqJ-l(U) = 

V-l(U) is open in X. But p is an open map, so that p(p-lqJ-l(U» = qJ-l(U) is 
open in X. 

(4) qJ is open. 
If V is open in X, then v-lqJ(V) = p-l(V) is open in X; since v is an 

identification, qJ(V) is open in X/G. 
We have shown that qJ is a homeomorphism. That (X, v) is a covering space 

of X/G now follows from Exercise 10.9. 0 

Let us generalize the notion of equivalence of covering spaces. 
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Definition. Let (X, p) and (Y, q) be covering spaces of X and Y, respectively. 
These covering spaces are equivalent if there exist homeomorphisms ep and l/J 
making the following diagram commute: 

Y~X. 
if! 

If X = Y and l/J = lx, then we have the old definition of equivalence. The 
conclusion of Lemma 10.49 can now be restated: the covering spaces (X, p) 
and (X, v) are equivalent. 

Lemma 10.50. Let X be connected and locally path connected, and consider the 
commutative diagram of covering spaces 

X 

l~ P /oY, 

X 

where (X, p) and (X, r) are regular; let G = Cov(X/Y) and let H = Cov(X/X). 
Then there is a commutative diagram 

X 

'f=?X/G 
- q 
X/H 

of covering spaces, each of which is equivalent to the corresponding covering 
space in the original diagram. 

PROOF. By Lemma 10.49, (X, r) is equivalent to (X, r') and (X, p) is equivalent 
to (X, pi), where r' and pi are natural maps that send a point into its orbit. 
Lemma 10.49 does not apply to the third covering space because (Y, q) need 
not be regular. 

Now G = Cov(X/Y) c H = Cov(X/X): if ep: X --+ X is a homeomorphism 
with rep = r, then pep = qrep = qr = p. It follows that, for each x E X, the 
G-orbit of x is contained in the H-orbit of x. Define q': X/G --+ X/H to be the 
function that sends a G-orbit into the H-orbit containing it; it is clear that 
q'r' = p'. Note that q' is continuous: if U is open in X, then rl-lq'-l(U) = 

p-l(U) is open in X; since r' is an identification (because (X, r') is a covering 
space), rl(rl-lq'-l(U)) = q'-l(U)is open. Finally, (X/G, q')is a covering space 
of X/H equivalent to (Y, q), by Exercise 10.9. 0 
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Corollary 10.51. Let X be a connected, locally path connected, semilocally 
I-connected space, and let (X, p) be its universal covering space. Every covering 
space (Y; q) of X is equivalent to (X/G, v) for some subgroup G of Cov(X/X). 

PROOF. By Theorem 10.17, there exists a continuous map r: X -+ Y making 
the following diagram commute: 

moreover, (X, r) is a covering space of Y; by Theorem 10.16. Since X is simply 
connected, both (X, p) and (X, r) are regular covering spaces. Therefore 
Lemma 10.50 applies to show that (Y; q) is equivalent to (X/G, v), where 
G = Cov(X/Y). 0 

There are set-theoretic problems arising from an attempt to consider all 
the covering spaces of a space X: the totality of all covering spaces equivalent 
to a fixed covering space (X, p) is a proper class and not a set. The same 
problem arises in Galois theory; there are too many field extensions of a given 
field F unless one restricts attention to only those inside a given algebraic 
closure of F. In light of the last corollary, let us regard "all" covering spaces 
of a space X to be of the form (X/G, v), where (X, p) is a universal covering 
space of X and G is a subgroup of Cov(X/X). 

Theorem 10.52. Let X be a connected, locally path connected, semilocally 
I-connected space, and let (X, p) be its universal covering space. Denote the 
family of all covering spaces of X of the form (X/G, v), where G is a subgroup 
of Cov(X / X), by fl, and denote the family of all subgroups of Cov(X / X) by [/'. 

Then <1>: fl -+ [/' defined by (Y; q) 1--+ Cov(X /Y) and 'P: [/' -+ fl defined by 
GI--+(X/G, v) are bijections inverse to one another. 

Remark. Recall that Corollary 10.29 gives an isomorphism Cov(X/X) ~ 
n 1 (X, xo). Therefore this theorem shows that the covering spaces of X are 
classified by the subgroups of the fundamental group of X. (Also see Theorem 
10.20.) 

PROOF. Let us evaluate both composites <I>'P and 'P<I> to see that they are 
identities. If G c Cov(X / X), then <I>'P (G) = Cov(X /(X /G)); call this last group 
G*. Note that G* consists of all homeomorphisms h: X -+ X making the 
following diagram commute: 
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where v: X -+ X/G is the natural map. Is G = G*? If 9 E G and i E X, then 
o(i) = o(gi) (definition of orbit), so that vg = v; hence 9 E G* and G c G*. 
For the reverse inclusion, let hE G*, so that vh = v. If i E X, then o(i) = 
o(h(i)), so that, by definition of G-orbit, there exists 9 E G with g(h(i)) = i. 
Since 9 E G* (by the first inclusion), it follows that gh E G*. By Theorem 
10.19(i), gh = lx, and h = g-1 E G. 

Finally, '1'<1> is the composite (X/G, v) f-+ Cov(X/(X/G)) = G*f-+(X/G*, v*). 
But we have just seen that G = G*, so that v = v* and '1'<1> is also an 
identity. D 

Corollary 10.53. Let X be a connected, locally path connected, semilocally 
1-connected space, and let (X, p) be its universal covering space. If G is a 
subgroup of Cov(X/X) (~ 1t1(X, x o)), then 

1t1 (X/G, *) ~ G. 

PROOF. By Corollary 10.29, 1t 1(X/G, *) ~ Cov(X/(X/G)). In the proof of the 
theorem, however, we saw that the latter group is just G. D 

The theorem reverses the viewpoint adopted earlier: instead of beginning 
with X and constructing X, one can also start with X and construct X (as an 
orbit space). Let us pursue this further. Let (X, p) be a covering space of X, 
let U be an admissible open set in X, and let S be a sheet in X lying over U. 
Suppose that h E Cov(X/X) and that h(S) n S =I- 0. If i E h(S) n S, then there 
is YES with i = h(Y). Hence pi = ph(Y) = py, so that both i and y lie in the 
fiber over pi. Since piS is a homeomorphism, it follows that i = y. By 
Theorem 10.19(i), h = 1x. 

Definition. Let G be a group acting on a space X. An open set V in X is proper 
if gVn V = 0 for every 9 E G - {1}. One says that G acts properly on X if 
every point in X has a proper open neighborhood. 

Our preliminary discussion shows that Cov(X/X) acts properly on X. 

Theorem 10.54. Let X be a connected locally path connected space, let G be a 
group acting properly on X, and let p: X -+ X/G be the natural map. 

(i) (X, p) is a regular covering space of X/G. 
(ii) If X is semilocally 1-connected, then Cov(X/(X/G)) ~ G. 

(iii) If X is simply connected, then 1t1(X/G, *) ~ G. 

PROOF. (i) The natural map p is an identification. If U is any open set in X, then 

p-1(p(U)) = U gU 
gEG 

is open; it follows that p(U) is open, hence p is an open map. Let ~ E X/G, let 
x E X be such that p(x) = ~, and let U be a proper open neighborhood of x. 
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We claim that p(U) is evenly covered by p (we do know that p(U) is an open 
neighborhood of O. If g, h are distinct elements of G, then gU n hU = 0 (lest 
g-l hU n U #- 0). It remains to prove that plgU: gU ~ p(U) is a bijection (for 
we already know that plgU is an open continuous map). Ifu E U, then u and 
gu lie in the same orbit, for every g E G, and so p(gu) = p(u); hence plgU is 
surjective. If p(gu) = p(gv), where u, v E U, then there exists hE G with gu = 

hgv; hence gU n hgU #- 0, a contradiction. Therefore plgU is an injection. 
We have proved that (X, p) is a covering space of X/G. 

Now G c Cov(X/(X/G)) because each g E G may be regarded as a homeo­
morphism of X with pg = p. As the fiber over ~ is {gx: g E G} (where p(x) = ~), 

it follows that G, hence Cov(X/(X/G)), acts transitively on the fiber. By 
Theorem 10.18, (X, p) is regular. 

(ii) This follows at once from Theorem 10.52. 
(iii) This follows at once from Corollary 10.29. 0 

EXERCISES 

10.29. Let X be connected, locally path connected, and semilocally I-connected, let 
(X, p) be its universal covering space, and let G and H be subgroups of 
Cov(X/X). Prove that G c H ifand only if (X/G, v) is a covering space of X/H, 
where v sends G-orbits of elements of X into H -orbits. 

10.30. (i) If a group G acts properly on a space X, then G acts without fixed points; 
that is, if 9 E G and 9 i= 1, then 9 has no fixed points. 

(ii) If X is Hausdorff, G is finite, and G acts on X without fixed points, then 
G acts properly on X. 

10.31. If G is a topological group, then every subgroup H acts on G by left translation: 
if h E H and x E G, then h: x 1---+ hx. Prove that if H is a discrete subgroup, then 
H acts properly on G. (Hint: See the proof of Theorem 10.2.) 

*10.32. (i) For every p ~ 2, show that the action of Z/pZ on S3 giving lens spaces 
L(p, q) (Example 8.22) is proper. 

(ii) Show that S3 is a universal covering space of L(p, q) for all q and that 
ITl (L(p, q» ~ Z/pZ. 

(iii) Show that L(p, q) is a compact connected 3-manifold. 

10.33. Let G be a group. If there exists a tree T on which G acts properly, then G is 
free. (Hint: T -+ T/G is a universal covering space.) 

Remark. The theory of groups acting on spaces in a rich one; we recommend 
[Bredon] to the interested reader. 



CHAPTER 11 

Homotopy Groups 

Since a closed pathf: (I, t) ..... (X, xo) can be viewed as a map (Sl, 1) ..... (X, xo), 
one may view 1l:1 (X, xo) as (pointed) homotopy classes of (pointed) maps from 
Sl into X. It is thus quite natural to consider (pointed) maps of sn into a space 
X; their homotopy classes will be elements of the homotopy group 1l:n(X, xo). 
This chapter gives the basic properties ofthe homotopy groups; in particular, 
it will be seen that they satisfy every Eilenberg-Steenrod axiom save excision. 

Function Spaces 

We shall soon be examining subs paces of the space of all paths in a space, so 
let us begin by looking at function spaces. 

Definition. If X and Yare topological spaces, then X Y is the set of all 
continuous functions from Y into X. The compact-open topology on X Y is the 
topology having a sub-basis consisting of all subsets (K; U), when K is a 
compact subset of Y, U is an open subset of X, and 

(K; U) = {IE XY:f(K) c U}. 

A typical open set in X Y is thus an arbitrary union of finite intersections 
of sets of the form (K; U). 

Although there are other topologies one can give X Y, we shall always 
consider it topologized with the compact-open topology. We remark that the 
compact-open topology does arise naturally. For example, if X is a metric 
space, then the compact-open topology on X Y , for any space Y, is precisely 
the topology given by uniform convergence on compact subsets (see [M unkres 
(1975), p. 286J). 
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Let X, Y, and Z be sets, and let F: Z x Y --> X be a function of two variables. 
If we fix the first variable, then F(z, ): Y --> X is a function of the other 
variable; let us write Fz instead of F(z, ). Thus F determines a one-parameter 
family of functions Fz : Y --> X; better, F determines a function F#: Z--> 
Hom(Y, X) by F#(z) = Fz (where Hom(Y, X) denotes the set of all functions 
from Y into X). 

Definition. If F: Z x Y --> X is a function, then its associate is the function 
F#: Z --> Hom(Y, X) defined by F#(z) = Fz (where Fz : yl--+F(z, y)). 

Note that F can be recaptured from its associate F#: if G: Z --> Hom(Y, X), 
define G~: Z x Y --> X by G~(z, y) = G(z)(y). Indeed FI--+F# is a bijection 
Hom(Z x Y, X) --> Hom(Z, Hom(Y, X)) with inverse G 1--+ G~ (this is called 
the exponential law for sets because it becomes XZ x y = (XY)Z if one uses 
exponential notation). A decent topology on function spaces (the set of all 
continuous functions) should give analogous results. 

There is another obvious function in this context. 

Definition. If X and Yare sets, then the evaluation map e: Hom( Y, X) x Y --> X 
is defined by 

e(f, y) = f(y)· 

Theorem 11.1. Let X and Z be topological spaces, let Y be a locally compact 
Hausdorff space, and let X Y have the compact-open topology (as usual). 

(i) The evaluation map e: X Y x Y --> X is continuous. 
(ii) A function F: Z x Y --> X is continuous if and only if its associate F #: Z --> X Y 

is continuous. 

PROOF. (i) Let (f, y) E X Y X Y, and let V be an open neighborhood of f(y) in 
X. Since f is continuous, there is an open neighborhood W of y with f(W) c V; 
since Y is locally compact Hausdorff, there is an open set U with V compact 
such that x E U cUe W Now (V; V) x U is an open neighborhood of(f, y). 
If(f', y') E (V; V) X U, then e(f', y') = f'(y') Ef'(U) c f'(U) c V, as desired. 
Therefore e is continuous. 

(ii) Assume that F#: Z --> X Y is continuous. It is easy to check that F is the 
composite 

F# X 1 e 
Z x Y )XY x Y----»X; 

since e is continuous, it follows that F is continuous. 
Conversely, assume that F is continuous. Observe first that if z E Z, then 

y 1--+ (z, y) is a continuous map l z : Y --> Z x Y and Fz = F 0 l z ; it follows that 
each Fz is continuous and that the target of F# is indeed X Y (not merely 
Hom(Y, X)). 

It suffices to prove that if z E Z and (K; U) is any sub-basic open neighbor-
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hood of F#(z) = Fz , then there exists an open neighborhood V of z with 
F#(V) c (K; U). Now Fz E (K; U) means that F(z, y) E U for every y E K; 
equivalently, F({z} x K) c U; continuity of F says that F- 1(U) is an open 
subset of Z x Y. Hence F-1(U) n (Z x K) is an open subset of Z x K contain­
ing {z} x K, and the tube lemma (Lemma 8.9') gives an open neighborhood 
V of z with V x K c F- 1 (U). It follows that F#(V) c (K; U), as desired. 0 

Corollary 11.2. Let X and Z be spaces, and let Y be locally compact Hausdorff. 
A function g: Z --+ X Y is continuous if and only if the composite e 0 (g x 1) is 
continuous. 

9 x 1 e 
Z x Y-XY x Y-X. 

PROOF. If this composite is denoted by F, then g is just its associate F#. D 

Remember the following commutative diagram: 

F# X 1 
Z x Y I X Y X Y 

~j, 
X. 

A thorough treatment of function spaces proves the exponential law: if 
X, Y, Z are spaces with Y locally compact Hausdorff, then F f--+ F# is a 
bijection XZ x Y --+ (XY)Z with inverse G f--+ Gil; indeed this bijection is a homeo­
morphism. 

Homotopy fits nicely into this setting. Assume that f, g: Y --+ X are homo­
topic maps, where Y is locally compact Hausdorff. For this remark, let a 
homotopy be a continuous function F: I x Y --+ X with Fo = f and Fl = g 
(usually, the domain of F is Y x I). The associate F# of F is a continuous map 
F#: I --+ X Y ; that is, F# is a path in X Y from f to g. Conversely, every path in 
X Y determines a homotopy. It follows that the homotopy classes are the path 
components of X Y: [Y, X] = 1to(XY). 

Group Objects and Cogroup Objects 

From concrete point-set topology, we now pass to categories. As we are 
interested in the homotopy category (actually, hTop*), a category with com­
plicated morphisms, this abstract approach is probably the simplest. 

Definition. An object A in a category C(f is an initial object if, for each object 
X in C(f, there exists a unique morphism A --+ X. An object Z in C(f is a terminal 
object if, for each object X in C(f, there exists a unique morphism X --+ Z. 
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It is plain that any two initial objects in a category, if such exist, are 
equivalent; similarly, terminal objects are unique. One can thus speak of the 
initial object and the terminal object (if either exists). 

EXAMPLE 11.1. In the category Sets, the empty set 0 is the initial object and 
a singleton set is the terminal object. 

EXAMPLE 11.2. The category of nonempty sets has no initial object. 

EXAMPLE 11.3. Let Sets* be the category of pointed sets. If { *} is a singleton, 
then A = ({ *}, *) is both an initial object and a terminal object. (An object 
that is both an initial object and a terminal object is called a zero object.) 

EXAMPLE 11.4. In Groups, the group of order 1 is a zero object. 

One can give a formal definition of duality in a category (we shall not do 
so). Suffice it to say that the dual of a commutative diagram is the commutative 
diagram obtained by (formally) reversing each of its arrows; the dual of an 
object that is defined by diagrams is the object defined by the dual diagrams. 
Thus initial and terminal objects are dual; another pair of dual notions is 
product and coproduct. 

Definition. If C1 and C2 are objects in a category, then their product is an 
object C1 x C2 together with morphisms N C1 x C2 ---+ Ci , for i = 1,2, called 
projections, such that, for every object X with morphisms qi: X ---+ Ci, there 
exists a unique morphism 0: X ---+ C1 X C2 making the following diagram 
commute: 

The map 0 is denoted by (ql' q2)' 

In the case of Sets, products are the usual cartesian products equipped 
with the usual projections onto the factors, and (ql, q2): X 1--+ (ql(X), q2(X», 
In particular, if C1 = C2 = C, say, then (lc, 1e): C ---+ C x C is the diagonal 
x 1--+ (x, x). In general, define the diagonal Llc: C ---+ C x C by Llc = (lc, 1e). 
Also, note that (Pi> P2) = 1cI xc2 ' 

Definition. If C1 and C2 are objects in a category, then their coproduct is an 
object C1 11 C2 together with morphismsj;: Ci ---+ C1 11 C2 , for i = 1,2, called 
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injections, such that, for every object X with morphisms ki : Ci --+ X, there exists 
a unique morphism (): C1 1L C2 --+ X making the following diagram commute: 

Cl 1L C2 

/!~ 
c'~r/c' 

X 

The map () is denoted by (kl' k2). 

In the case of Sets, co products are just disjoint unions equipped with the 
usual inclusions into the separate pieces, and (k 1 , k2 ) is the function whose 
restriction to Ci is ki for i = 1, 2. In particular, if C1 = C2 = C, say, then 
(lc, Ie): C 1L C --+ C maps each ofthe two copies of any c E C to itself; this map 
is often called the folding map. In general, define the codiagonal Vc: C 1L C --+ C 
by Vc = (lc, Ie). Also, note that (jl,j2) = ICdlc2 • 

Theorem 11.3. 

(i) Let C1 , C2 be objects in a category in which C1 x C2 exists. Then, for every 
object X, there is a natural bijection 

Hom(X, Cd x Hom(X, C2 ) .:; Hom(X, C1 x C2 ). 

(ii) Let C1 , C2 be objects in a category in which C1 1L C2 exists. Then, for every 
object X, there is a natural bijection 

Hom(C1 , X) x Hom(C2 , X)':; Hom(Cl 1L C2 , X). 

PROOF. (i) Define a function Hom(X, C1 ) x Hom(X, C2 ) --+ Hom(X, C1 x C2 ) 

by sending the ordered pair (flJ2) into the unique morphism (also denoted 
by (flJ2)!) which is guaranteed to exist by the definition of product. Define 
a function in the reverse direction as follows: to g: X --+ C1 X C2 associate the 
ordered pair (Plg, P2g), where Pi: C1 x C2 --+ Ci is the projection (for i = 1,2). 
It is easy to check that these functions are inverse, hence both are bijections. 
The check of naturality is also left to the reader: if h: X --+ Y is any morphism, 
then the following diagram commutes: 

Hom(X, C1 ) x Hom(X, C2 ) --+ Hom(X, C1 x C2 ) 

~x~1 I~ 
Hom(Y, C1 ) x Hom(Y, C2 ) --+ Hom(Y, C1 x C2 ). 

(ii) This proof is dual to that in the first part. o 
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The notation (/1'/2) for the morphism X --+ C1 X C2 (or for C1 11 C2 --+ X), 
though awkward in the proof of Theorem 11.3, is now seen to be convenient. 

EXERCISES 

11.1. (i) Let CI , C2 be sets. Define a new category Cfj as follows: its objects are all 
ordered triples (X, ql' q2)' where X is a set and qi: X --+ Ci (for i = 1,2) is a 
function; amorphism 8: (X, ql, q2) --+ (Y, rl , r2)is a function 8: X --+ Ymak­
ing the following diagram commute: 

composition is ordinary composition of functions. Prove that (CI x C2 , 

PI' P2) is a terminal object in Cfj. 

(ii) Given sets CI , C2 , construct a category in which their coproduct is an initial 
object. 

11.2. In Ab, show that product and coproduct coincide (CI x C2 = C1 EB C2 = 
CI 11 C2 )· In Groups, show that product is direct product and that coproduct 
is free product (and so product and coproduct are distinct). 

*11.3. (i) In Sets* and Top*, consider the objects (Ai' ai) for i = 1, 2. Their product 
is (AI x A2, (ai, a2 )) and their coproduct is the wedge (AI v A 2 , *), where 
* is the pair {ai' a2 } identified to a point. 

(ii) In Top*, show that AI v A2 is homeomorphic to the subset (AI x {a2}) U 
({ad x A 2 ) of AI x A 2 • (In general, the coproduct cannot be imbedded in 
the product; for example, if A 1 and A2 are finite groups with more than one 
element, then their free product (coproduct in Groups) is infinite while their 
direct product (product in Groups) is finite.) 

11.4. If products exist, then the associative and commutative laws hold; similarly for 
coproducts. (Warning: One needs an extra diagrammatic axiom to deduce the 
generalized associative law from the associative law involving three terms.) 

* 11.5. (i) If C1 x C2 and DI x D2 exist, and if /;: Ci --+ Di are morphisms for i = 1, 2, 
then there is a unique morphism JI x J2: C1 x C2 --+ DI X D2 making the 
diagrams (for i = 1, 2) commute (unlabeled arrows are projections): 

h 

(ii) There is a dual construction JI 11J2: CI 11 C2 --+ Dill D2· 
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*11.6. (i) If qi: X .... Ci are morphisms for i = 1,2, prove that 

(ql' q2) = (ql x q2)~X· 

(ii) If k i : Ci .... X are morphisms for i = 1, 2, prove that 

(kl' k2) = Vx(k1ll k2)· 

(iii) If A and B are abelian groups and f, 9 E Hom(A, B), then 

A xB=AEeB=AllB. 
and 

f + 9 = VB(f X g)~A-

*11.7. (i) If Z is the terminal object in a category rc and if X is any object in rc, 
then X x Z is equivalent to X via the projection X x Z .... X. (Hint: Let 
A: X x Z .... X and q: X x Z .... Z be the projections, and let 0 = (lx, w), 
where w: X .... Z is the unique morphism in Hom(X, Z). Then AO = 1x and 
OA = 1x x z, the latter equality arising from the fact that both morphisms 
complete the diagram 

XxZ 

/r~ 
X~!/z' 

XxZ 

where t is the unique morphism X x Z .... Z. 
(ii) If A is an initial object, then A II X is equivalent to X via the injection 

X .... AllX. 

The axioms in the definition of a group can be rewritten so that they become 
assertions that certain diagrams commute! There are two reasons for doing 
this: one can consider "group-like" objects in a category; one can reverse 
arrows to obtain the dual notion of "cogroup". 

Definition. Let Cfj be a category having (finite) products and a terminal object 
Z. A group object in Cfj is an object G and morphisms J.l: G x G --+ G (called 
multiplication), 1'/: G --+ G, and 8: Z --+ G such that the following diagrams 
commute (the morphisms f x g and (f, g) are defined in Exercises 11.5 and 
11.6). 

(i) Associativity: 

GxG 

j, 
GxG - G. 

Jl 
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(ii) Identity: 

GxZ ~ GxG ~ZxG 

~j/ 
G 

(A and p are the equivalences of Exercise 11.7(i) namely, the projections 
A: G x Z ~ G and p: Z x G ~ G). 

(iii) Inverse: 

(1, 1/) 
GxG 

(1/, 1) 
G ---> <----

j, jm 
Z ---> G <---- Z, 

B B 

where w: G ~ Z is the unique morphism to the terminal object. 

It is easy to see that a group object in Sets is a group and that a group 
object in Top is a topological group. In hTop, the weaker notion of a space X 
equipped with J1 and e satisfying condition (ii) is an H-space. 

Here is the dual of a group object. 

Definition. Let rc be a category having (finite) coproducts and an initial object 
A. A cogroup object in rc is an object C and morphisms m: C ~ C 11 C (called 
comultiplication), h: C ~ C, and e: C ~ A, such that the following diagrams 
commute (the morphism f llg is defined in Exercise 11.5). 

(i) Co-associativity: 

C 
m 

C11C ---> 

mj j l~m 
C11C ---> C11C11C. 

mlll 

(ii) Co-identity: 
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(iii) Co-inverse: 

A --- C __ A, 
e e 

where a: A -+ C is the unique morphism from A to C. 

We shall see that suspensions lead to cogroup objects in hTop*. 
Recall that if G is an object in a category re, then the (contravariant) functor 

Hom( ,G): re -+ Sets is defined on morphisms g: X -+ Yas g*: Hom(Y, G) -+ 

Hom(X, G), where g*:f f-4 fg. Similarly, (covariant) functor Hom(G, ): re -+ 

Sets is defined on gas g*: Hom(G, X) -+ Hom(G, Y), where g*:ff-4 gf. 
When we say that Hom( ,G) takes values in Groups, then it follows, of 

course, that Hom(X, G) is a group for every object X and g* is a homo­
morphism for every morphism g; a similar remark holds if Hom(G, ) takes 
values in Groups. 

Theorem 11.4. Let re be a category with (finite) products and a terminal object. 
An object G in re is a group object in re if and only if Hom( ,G) takes values 
in Groups. 

In this case, the multiplication 

Mx: Hom(X, G) x Hom(X, G) -+ Hom(X, G) 

is given by 

(f, g) f-4 Jl(f, g), 

where Jl is the multiplication on G and (f, g): X -+ G x G is the morphism of 
Theorem 1 1.3 (i). 

PROOF. Assume that G is a group object in re. By Theorem 1 1.3 (i), we identify 
Hom(X, G) x Hom(X, G) with Hom(X, G x G). Define Mx as in the state­
ment. For every fixed object X, apply Hom(X, ) to each of the three 
diagrams in the definition of group object. It follows that Hom(X, G) is a 
group object in Sets, hence is a group. It remains to show that if h: X -+ Y, 
then h*: Hom(Y, G) -+ Hom(X, G) is a homomorphism. If f, 9 E Hom(Y, G), 
then h* My(f, g) = h*(Jl(f, g» = Jl(f, g)h = Jl(fh, gh) = Jl(h* f, h*g) = 

Mx(h*f, h*g). Therefore, Hom( ,G) takes values in Groups. 
Conversely, for each object X, assume that there is some group operation 

Mx: Hom(X, G) x Hom(X, G) -+ Hom(X, G). 

Again, identify Hom(X, G) x Hom(X, G) with Hom(X, G x G), and now 
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specialize X to G x G. Thus 

MGxG : Hom(G x G, G x G) -4 Hom(G x G, G). 

Define 11 E Hom(G x G, G) as the image of the identity IG x G under the func­
tion M GX G' If'1x: Hom(X, G) -4 Hom(X, G)is inversion, set X = G and define 
'1 E Hom(G, G) as '1G(lG). Define e E Hom(Z, G), where Z is the terminal object 
in C(}, as the identity element of the group Hom(Z, G). One can also view e as 
an image of an identity morphism. For each object X, Hom(X, Z) is a single­
ton and there is a function ex: Hom(X, Z) -4 Hom(X, G) whose (unique) value 
is the identity element of the group Hom(X, G). Set X = Z, so the unique 
element of Hom(Z, Z) is l z ; then e = ez(1z). 

That G so equipped is a group object in C(} can be seen using the Yoneda 
lemma, Exercise 9.7. We prove associativity, but the similar proofs of the 
commutativity of the identity and inverse diagrams are left to the reader. 

By hypothesis, each Hom(X, G) is a group, and the associative law holds 
for its multiplication: there is a commutative diagram 

Hom(X, G) x Hom(X, G) x Hom(X, G) 
Mx xl 
---4 Hom(X, G) x Hom(X, G) 

1 < M, j j M, 

Hom(X, G) x Hom(X, G) Hom(X, G). 

By Theorem 11.3, we may rewrite this diagram as 

Hom(X, G x G x G) 
Mx xl 

Hom(X, G x G) ---4 

1 < M, j j M, 

Hom(X, G x G) ---4 Hom(X, G). 
Mx 

One checks easily that there is a natural transformation M: Hom( ,G x G)-4 
Hom( ,G) with M = (Mx ), that is, the appropriate diagrams commute. 
Write 11 = MGxG(IGXG) E Hom(G x G, G). By the Yoneda lemma, Exercise 
9.7(iv), for every object X and every morphism f: X -4 G x G, one has 

Mx(f) = 11 of 

The associativity diagram above can be used to show 

M(M x 1) = M(l x M): Hom( ,G x G x G) -4 Hom( ,G) 

is a natural transformation. If h: X -4 G x G x G, then the Yoneda lemma 
gives 

Mx(Mx x l)(h) = u 0 h, 

where u = MGxG(MGxG X 1)(IGxG x IG) EHom(G x G x G, G). Since 
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IGxG X IG = IGxGxG, one has 

u = MGXG(MGXG(1GxG) x IG) 

= MG x G(/l x IG) = /l(/l x IG)' by Eq. (*). 

Similarly, [M(l x M)Jx(h) = v 0 h, where v = /l(1G X /l). Taking X = G x 
G x G and h = IG x G x G, we see that u = v, i.e, /l(/l x 1) = /l(1 x /l), as desired. 

D 

Remark. Recall that if Pi' P2: G x G --+ G are the projections, then IGxG = 

(Pi' P2)· Therefore, /l = MG x G(1G x G) = MG x G(Pl, P2); that is, /l is the product 
(in the group Hom(G x G, G)) of the morphisms Pi and P2. 

There is a dual result. 

Theorem 11.4'. Let C(f be a category with (finite) coproducts and an initial object. 
An object G in C(f is a cogroup object in C(f if and only if Hom(G, ) takes values 
in Groups. 

In this case, the multiplication 

Px: Hom(G, X) x Hom(G, X) --+ Hom(G, X) 

is given by 

(f, g) f-+ (f, g)m, 

where m is the comultiplication of G and (f, g): G II G --+ X is the morphism of 
Theorem 11.3(ii). 

PROOF. The argument is similar (dual) to the one just given, but let us describe 
the co multiplication of G when Hom(G, ) takes values in Groups. For each 
object X, there is a multiplication 

Px: Hom(G, X) x Hom(G, X) --+ Hom(G, X). 

Identify Hom(G, X) x Hom(G, X) with Hom(G II G, X) as in Theorem 
11.3(ii). Now set X = G II G, so that 

PG 11 G: Hom( G II G, G II G) --+ Hom( G, G II G). 

Then the co multiplication m: G --+ G II G is the image of IG II Gunder P G II G· 
But (jl,j2) = IG lJG' wherejl andj2 are the injections ofthe coproduct G II G. 
Therefore, m is the product Ofjl andj2 in the group Hom(G, G II G). D 

EXERCISES 

11.8. Prove that a group object in Groups is an abelian group. 

11.9. In Sets and in Top, the only cogroup object is 0. 

11.10. In Sets* and in Top*, the only cogroup object is *. 
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* 11.11. (i) Let C6' be a category with (finite) products and a terminal object. If G and 
H are group objects in C6', call a morphism f: G ---> H special if the following 
diagram commutes: 

fxf 
----+ GxG HxH 

j j 
G ----+ 

f 
H, 

where the vertical arrows are the multiplications in G and in H. Show that 
all group objects in C6' and all special morphisms form a category. State 
and prove the analogous result for cogroups. 

(ii) If G and H are group objects in C6', then Hom(X, G) and Hom(X, H) are 
groups. Show that iff: G ---> H is special, thenf*: Hom(X, G) ---> Hom(X, H) 
is a homomorphism. 

11.12. Prove that every abelian group is both a group object in Ab and a cogroup 
object in Ab. 

11.13. Prove that every f.g. free group is a cogroup object in Groups. (One can 
dispense with the finiteness hypothesis.) 

11.14. Every topological group (with its identity element as basepoint) is a group 
object in hTop* and in Top*. 

Loop Space and Suspension 

The homotopy category hTop is the interesting category for us. It is easy to 
see that the empty set 0 is an initial object; because there are no (continuous) 
functions X --+ 0 when X is nonempty, there are no cogroups in hTop. If we 
consider pointed spaces, however, then we shall see that there are interesting 
cogroups in hTop*. 

Lemma 11.5. The category hTop* has a terminal object and an initial object 
(indeed it has a zero object), and it has (finite) products and (finite) coproducts. 

PROOF. Let * be a singleton, and let A = (* , *). If X is a pointed space (we do 
not display the basepoint), then there is a morphism from X to A, namely, 
[f], where f: X --+ * is the constant map. This morphism is unique, for any 
morphism [g]: X --+ A is a (pointed) homotopy class of pointed maps g: X --+ 

A; but the only such pointed map is the constant map. A similar argument 
shows that A is also an initial object, for the only pointed map A --+ (X, xo) is 
the function taking * to xo. 

If C1 and C2 are pointed spaces, let C1 x C2 (with projections pJ be their 
product in Top*. We claim that C1 x C2 with projections [pJ is their product 
in hTop*. Let [1;]: X --+ Ci be morphisms. In Top*, one can complete the 
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appropriate diagram with Ul,J2). Suppose that Fi:J; ~ J;' is a pointed homo­
topy X x I ~ Ci , for i = 1, 2. Then (Fl' F2): X x I ~ Cl X C2 is a pointed 
homotopy Ul,J2) ~ U{ ,1;). It follows that [Ul ,12)]: X ~ C 1 X C2 completes 
the appropriate diagram in hTop*. We let the reader prove uniqueness of this 
morphism. A similar argument shows that Cl v C2 is the coproduct in hTop*. 

o 

Notation. A pointed space (X, xo) may be denoted by X if there is no need to 
display the basepoint. In particular, if * is a singleton, then the pointed space 
(*, *) may be denoted by *. 

Definition. A pointed space (X, x o) is an H-group if there are continuous 
pointed maps p,: X x X ~ X and 11: X ~ X, and pointed homotopies: 

p,(lx x p,) ~ p,(p, x Ix) (associativity); 

P,jl ~ Ix ~ P,j2' 

wherejl,j2: X ~ X x X are "injections" defined by jl (x) = (x, xo) andh(x) = 
(xo, x); 

where c: X ~ X is the constant map at Xo. 

Before giving the dual definition, let us agree on notation. As in Exercise 
11.3 (ii), the wedge X v X is viewed as the subspace X x {xo} U {xo} x X of 
the product X x X. If Pi: X x X ~ X, for i = 1, 2, are the usual projections 
onto the first or second coordinates, respectively, then define "projections" 
qi: X v X ~ X, for i = 1,2, by qi = p;lX V X; each qi sends the appropriate 
copy of x E X, namely, (x, x o) or (xo, x), into itself. 

Definition. A pointed space (X, xo) is an H'-group if there are continuous 
pointed maps m: X ~ X v X and h: X ~ X, and there are pointed homo­
topies: 

(lx v m)m ~ (m v lx)m (co-associativity); 

where c: X ~ X is the constant map at Xo. 

Lemma 11.6. 

(i) For every pointed space (Z, zo), the maps (jl,j2) and (ql, q2): Z v Z ~ 
Z x Z are equal to k, the inclusion 

Z x {zo} U {zo} x Z c... Z x Z. 
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(ii) If (X, xo) is an H'-group with comultiplication m, then the following 
diagram commutes to homotopy (i.e., commutes in hTop*): 

X~XvX 

~l' 
Xxx. 

(iii) If (Y, Yo) is an H-group, with multiplication p" then the following diagram 
commutes to homotopy: 

YvY 

'l~ 
Yx Y ~ Y. 

f.l 

PROOF. (i) Both (jl,jZ) and k make the following diagram commute 

XvX 

XxX 

where i1, iz are the injections; uniqueness gives (j1,jZ) = k. 
A similar argument gives (ql' qz) = k, using the diagram 

XvX 

/i~ 
X~l/X 

X x x. 
(ii) This follows from qlm ~ Ix ~ qzm. 
(iii) This follows from P,jl ~ Iy ~ p,jz. D 

Lemma 11.7. The group objects in hTop* are the H-groups, and the cogroup 
objects in hTop* are the H'-groups. 
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PROOF. Suppose that (G, go) is a group object in hTop*. There is a commu­
tative diagram that surmounts the diagram of the identity axiom: 

G 

[~j (j,J 

G x {*} -----+ G x G, 
[1 x e] 

where A-1: gl--+(g, *). Lifting to Top*, (1 x e)A-1 ~jl' and so 141 ~ 
J.L(1 x e)A -1 ~ AA -1 ~ IG • The third homotopy in the definition exists because 
the composite eW in the diagram for inverse must be the constant map G -+ G 
at go. Since associativity holds, by hypothesis, G is an H-group. 

The routine argument that H-groups are group objects in hTop* (as well 
as the dual result for cogroups and H'-groups) is left to the reader. 0 

At last, here are the important examples. 

Definition. If (X, xo) is a pointed space, then its loop space, denoted by 
Q(X, xo), is the function space 

Q(X x ) = (X X )(I,i) ,0 ,0, 

topologized as a subspace of Xl (equipped with the compact-open topology). 
One usually chooses wo, the constant path at x o, as the basepoint ofQ(X, x o). 

Although the loop space does depend on the choice of basepoint, we often 
write QX instead of Q(X, xo). 

Theorem 11.8. Loop space defines a functor Q: hTop* -+ hTop*. 

PROOF. By Theorem 0.4, it suffices to prove that there is a functor Q: Top* -+ 

Top* with fo ~ fl implying Qfo ~ Qfl (pointed homotopies). Iff: X -+ Y is a 
pointed map, define Qf: QX -+ Q Y by W 1--+ fw, where W is a loop in X (at the 
basepoint). As QX is a subspace of Xl and Qf = f*IQX, it suffices to show 
that f* is continuous. Consider the commutative diagram 

Xl X I f* x 1 
-----+ yI X I 

,j j, 
X -----+ 

f 
y, 

where the maps e are evaluations. Since I is compact Hausdorff, e and hence 
fe are continuous, by Theorem 11.1 (i). Therefore e(f* xl) is continuous, and 
so f* is continuous, by Corollary 11.2. That Q so defined on objects and 
morphisms of Top* is a functor is left as a routine exercise. 
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Suppose that F: X x 1-+ Y is a pointed homotopy with Fo = fo and Fl = 

fl. Define <1>: OX x 1-+ OY by (w, t)f--+Ftw. It suffices to prove that <I> 
is continuous. Define u: Xl x I x I -+ Xl X I x I by (w, t, s) f--+ (w, s, t); of 
course, u is continuous. Consider the commutative diagram: 

Xl X I x I 
ell xl 

yI X I ------+ 

('" I). j j, 
X x I ------+ Y. 

F 

The counterclockwise composite is continuous (since the evaluation is), hence 
e(<I> x 1) is continuous; Corollary 11.2 now gives the result. D 

Theorem 11.9. If (X, xo) is a pointed space, then OX is an H-group. 

PROOF. Define Ji: OX x OX -+ OX by 

(w, w')f--+w*w', 

where, as usual, 

w*w t = 
, {W(2t) if ° :s; t :s; t 

( )( ) w' (2t - 1) if t :s; t :s; 1. 

To see that Ji is continuous, consider the composite 
~ x 1 e 

OX x OX x I ------+ OX x I ------+ X 

(remember that OX is a subspace of Xl). On OX x OX x [0, t], this com­
posite is equal to 

OX x OX x [O,t]~OX x I~X, 

where Pl is the first projection OX x OX -+ OX and q: t f--+ 2t. Since this latter 
map is continuous, so is e(Ji x 1); by Corollary 11.2, JiIOX x OX x [0, t] is 
continuous. A similar argument shows that JiIOX x nx x [t, 1] is con­
tinuous, hence Ji is continuous (because the two restrictions agree on the 
overlap). 

Let us prove homotopy associativity. To define G: OX x OX x OX x 1-+ 
OX, it suffices to define F: OX x OX x OX x I x I -+ X, to set G = F#, and 
to check that the image of F# in Xl actually lies in Ox. Let 

{

W(4S/t + 1) 

F(w, w', w", t, s) = w'(4s - t - 1) 

w"((4s - 2 - t)/(2 - t)) 

if ° :s; s :s; (t + 1)/4 

if (t + 1)/4 :s; s :s; (t + 2)/4 

if (t + 2)/4 :s; s :s; 1. 

Again, Corollary 11.2 shows that G is continuous and hence is a (pointed) 
homotopy Ji(Ji x 1) ~ Ji(1 x Ji). (These formulas are, of course, similar to 
those that show homotopy associativity of paths.) 
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Let Wo be the constant map at xo; we must show that the maps 
/1Jl: W 1---+ W * Wo and /1J2: W 1---+ Wo * ware each homotopic to the identity on 
Ox. Define F: OX x I -> OX by (w, t)l---+w t , where 

_ {W(2S/(t + 1)) if 0 ~ s ~ (t + 1}/2 
wt(s) = . 

Xo If(t+1)/2~s~1. 

Now F is continuous because e(F x 1) is, and so F is the desired homotopy. 
The argument for W 1---+ Wo * W is similar. 

Finally, define 17: OX -> OX by w(t) 1---+ w(1 - t); again, Corollary 11.2 can 
be used to prove continuity. Define a homotopy H: OX x I -> OX by defining 
K: OX x I x I -> X; let 

if 0 ~ s ~ tl2 

K(w, t, s) = 
w(2s - t) if tl2 ~ s ~ t 
w(2 - 2s - t) if t ~ s ~ (2 - t}/2 

Xo if (2 - t)/2 ~ s ~ 1. 

Again, continuity is proved by Corollary 11.2; details of the (now familiar) 
proofs are left to the reader. Hence w 1---+ f-/(w, 17(W)) is nullhomotopic, and 
a similar argument shows that w 1---+ f-/(17(W), w) is nullhomotopic. 0 

The homotopies are just those that arose in Theorem 3.2; the extra feature 
is their continuity as maps of function spaces. Note that we use both * and h: 
Top* (not merely Top) is needed so that f-/ is defined (the loops must be loops 
at the same point); hTop* is needed so that the axioms for a group object are 
satisfied. 

Recall that Hom(X, Y) in the homotopy category is denoted by [X, Y]. 
We use the same notation for Hom(X, Y) in hTop* when X and Yare pointed 
spaces. 

Corollary 11.10. For any pointed space X, [ ,OX] is a (contravariant) functor 
from hTop* into Groups. If Y is a pointed space, and if [f], [g] E [Y, OX], 
then their product is f-/(U], [g]) = U * g]. 

PROOF. By Lemma 11.7, OX is a group object in hTop*. Theorem 11.4 shows 
that [ ,OX] is group valued; the proof of this last theorem also exhibits the 
multiplication in [Y, OX]. 0 

Here is a related construction. Recall that if G: Z -> X Y, then G~: Z x Y -> X 
is defined by G~(z, y) = G(z)(y). In particular, G 1---+ G~ is a function (even a 
bijection) Hom(Z, Xl) -> Hom(Z x I, X). Let X and Z be pointed spaces (with 
respective base points xo, zo), and replace Xl by its subspace O(X, xo). This 
means that we restrict attention to those G such that G(zo) is the constant 
loop at Xo and such that G(z)(O) = Xo = G(z)(1). Therefore, for all z E Z and 
all tEl, 
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GI1(z, 0) = GI1(z, 1) = Xo = GI1(zo, t); 

that is, Gil sends (Z x i) u ({zo} x I) into xo' These remarks suggest the 
following definition. 

Definition. If (Z, zo) is a pointed space, then the suspension of Z, denoted by 
LZ, is the quotient space 

LZ = (Z x I)/((Z x i) u ({zo} x I)), 

where the identified subset is regarded as the basepoint of LZ. 

There is another notion of suspension in topology, namely, the double cone: 
the quotient space of Z x I in which Z x {O} is identified to a point and 
Z x {I} is identified to another point. 

double cone on Z. 

The suspension LZ just defined is often called the reduced suspension to 
distinguish it from the double cone. The picture of LZ is thus the following 
one with all points on the dashed line identified. 

(reduced) suspension kZ 

If (z, t) E Z x I, denote the corresponding element of LZ by [z, t]. Abuse 
notation and write Zo = [z,O] = [z, 1] = [zo, t] for all z E Z and tEl. 

Theorem 11.11. Suspension defines a functor L: hTop* -+ hTop*. 

PROOF. By Theorem 0.4, it suffices to show that L is a functor on Top* for 
which fo ~ f1 implies Lfo ~ Lf1 (pointed homotopies). It is routine to show 
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that L is a functor on Top* if, for f: Z ~ Y, we define Lf: LZ ~ LY by 
[z, t] 1---+ [f(z), t]. That Lfo ~ Lfl follows easily from Corollary 8.10. D 

One can define a comultiplication, a co-identity, and a co-inverse on every 
L(Z, zo), and one can show that LZ is always an H' -group. However, there is 
an intimate relationship between Land n (they form an adjoint pair of 
functors) that will allow us to see this painlessly. 

If d is a category, we sometimes write Homd(A, A') to denote the Hom 
set in d. 

Definition. Let F: d ~ rri and G: rri ~ d be functors. The ordered pair (F, G) 
is an adjoint pair if, for each object A in d and each object C in rri, there is a 
bijection 

, = 'AC: Hom'?f(F A, C) ~ Homd(A, GC), 

which is natural in each variable; that is, the following diagrams commute for 
all f: A' ~ A in d and g: C ~ C in rri: 

Hom'?f(FA, C) 
(Ff)* 

Hom'?f(FA', C) ----+ 

, j j, 
Homd(A, GC) ----+ Homd(A', GC); 

f* 

Hom'?f(FA, C) g* Hom'?f(F A, C) ----+ 

, j j, 
Homd(A, GC) ----+ Homd(A, GC). 

(Gg)* 

In short, , is a natural equivalence Hom'?f(F _, _) ~ Homd(---. G_) (if 
one makes the only reasonable definition of a functor of two variables). The 
reason for the name "adjoint" is quite formal. If V is an inner product space 
and if f: V ~ V is a linear transformation, then its adjoint is a linear trans­
formation g: V ~ V such that (fv, w) = (v, gw) for all vectors v, w E V. 

EXAMPLE 11.5. Let d = rri = Sets, and let Y be a fixed set. Define F: Sets ~ 
Sets by F = _ x Y, and define G: Sets ~ Sets by G = Hom(Y, ). For sets 
A, C, define 'Ac:Hom(A x Y,C)--+Hom(A,Hom(Y,C)) by GI---+G#, the 
associate of G. It is routine to check that (_ x Y, Hom(Y, )) is an adjoint 
pair. 

EXAMPLE 11.6. Let d = rri = Top. If Yand C are spaces, then Hom(Y, C) = 

CY, and one can use the exponential law to show that (_ x Y, ( )Y) is an 
adjoint pair when Y is locally compact Hausdorff. 
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EXERCISES 

*11.15. Let sf = C(j = Ab. For any abelian group Y, show that (_<8> Y, Hom(Y, )) 
is an adjoint pair. 

11.16. Let F: Ab -+ Sets be the forgetful functor (Example 0.8), and let G: Sets -+ Ab 
be the "free" functor: if X is a set, then GX is the free abelian group having 
basis X; if f: X -+ Y is a function, then Gf: GX -+ GY is the homomorphism 
obtained from f by extending by linearity. Prove that (G, F) is an adjoint pair. 

*11.17. If (F, G) is an adjoint pair, then F preserves coproducts and G preserves 
products. 

Exercise 11.17 is a special case of the main property of adjoint pairs: there 
is a notion of limit (inverse limit) and colimit (direct limit); if(F, G) is an adjoint 
pair, then F preserves co limits and G preserves limits (see [Rotman (1979), 
pp. 47, 55]). Examples of limits are products, pullbacks (defined below), ker­
nels, nested intersections, and completions; examples of colimits are coprod­
ucts, pushouts, cokernels, and ascending unions. 

Once we recall how suspension arose, the next result is almost obvious. 

Theorem 11.12. (L, Q) is an adjoint pair of functors on hTop*. 

PROOF. If X and Yare pointed spaces, define 

'Xy: [LX, Y] -+ [X, QY] 

by [F] f-+ [F#], where F# is the associate of F. Now 'Xy is well defined, 
because if H: LX x 1-+ Y is a (pointed) homotopy from Fo to FI , say, then 
H#: X x 1-+ QY, if continuous, is a (pointed) homotopy from Ft to Ft. But 
Theorem 11.1 (ii) shows that continuity of H implies that of H#. Each, Xy is 
a bijection (its inverse is [G] f-+ [GP]); we leave the routine check that the 
required diagrams commute to the reader. 0 

As we remarked earlier, there are various consequences of adjointness; 
for example, Exercise 11.17 gives L(X v Y) = LX v LY and Q(X x Y) = 
QX x Qy' 

Corollary 11.13. If X is a pointed space, then LX is a cogroup object in hTop*. 

PROOF. For every pointed space Y, adjointness gives a bijection, = 'Xy: 

[LX, Y] -+ [X, Qy], namely, [f] f-+ [f#], where f# is the associate of f 
Since QY is a group object in hTop*, [X, QY] is a group. We use, to define 
a group structure on [LX, Y]: if [f], [g] E [LX, y], then their product is 

[,u(f#, g#)] = [f# * g#]. 

Note that r is now an isomorphism of groups. 
We claim that the functor [LX, ] is group valued; if so, then the result 

follows from Theorem 11.4. It remains to prove that if tp: Y -+ Y' is a pointed 
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map, then [cp]* is a homomorphism. Consider the commutative diagram (in 
the definition of adjointness): 

[~X, Y] 
[cp ]* 

) [~X, y'] 

, I j , 
[X,OY] 

(n[cp])* 
) [X,OY']. 

Now O[cp]: OY --+ OY' is a special map (see Exercise 11.11) because 
Cp*(OH OJ') = CPOJ * CPOJ' for all OJ, OJ' E Ox. It follows from Exercise 11.11(ii) 
that (O[cp])* is a homomorphism, and the diagram above now shows that 
[cp]* is a homomorphism (because the vertical maps are isomorphisms). 0 

Remark. Here is an explicit formula for the comultiplication m: ~X --+ 

~X v ~X. In the proof of Theorem 11.4', we saw that m is the product of jl 
and j2 in the group [~X, ~X v ~X], where jl and j2 are the injections 
~X --+ ~X v ~X. If we regard ~X v ~X as a subspace of ~X x ~X (as in 
Exercise 11.3), then jl([X, t]) = ([x, t], *) and j2([X, t]) = (*, [x, t]). But it 
was shown in Corollary 11.13 that the product of j 1 and j2 is [jf * jt]. 
Recall that jf: X --+ O(~X v ~X) is given by jf(x) = ([x, ], *); there is a 
similar formula for jt. Therefore, 

m([x, t]) = {([X, 2t], *) ~fO ~ t ~! 
(*, [x, 2t - 1]) If! ~ t ~ 1. 

The comultiplication on the suspension ~X is thus obtained by "pinching". 

m .. 

In particular, for X = sn, the comultiplication m: ~sn --+ ~sn V ~sn may be 
viewed as the map sn+l --+ sn+1 V sn+l which identifies the equator to a point. 

o m - 8 
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The result linking this discussion to homotopy groups is that LSn ~ sn+1 

for all n 2 O. Explicit homeomorphisms can be given: see [Spanier, p. 42] 
or [Whitehead, p. 107], but we prefer another proof that we learned from 
M. Ramachandran. 

Definition. Let X be a locally compact Hausdorff space, and let 00 denote a 
point outside X. Then the one-point compactification of X, denoted by X OO , is 
the set XOO = XU { CfJ } equipped with the topology consisting of all open sets 
of X together with all sets of the form (X - K) U { 00 }, where K is a compact 
subset of X. We choose CfJ as the basepoint of XOO. 

EXERCISES 

*11.18. The one-point compactification of Rn is sn for all n ~ 1. (Hint: Stereo graphic 
projection.) 

*11.19. If J = [0, 1), then (Jnt' ~ In. 

*11.20. If X is a compact Hausdorff space and A is a closed subset, then, in Top*, 

X/A ~ (X _A)oo. 

Definition. If X and Yare pointed spaces, then their smash product, denoted 
by X 1\ Y (some authors write X # Y), is the pointed space 

X 1\ Y = (X x Y)j(X v Y) 

(where X v Y is regarded as a subspace of X x Y as in Exercise 11.3). 

The smash product does depend on the basepoint. For example, if 0 is 
chosen as basepoint of I, then I 1\ I is homeomorphic to I x I (one identifies 
two adjacent sides of I x I). On the other hand, if t is chosen as basepoint of 
I, then I 1\ I is homeomorphic to the wedge of four copies of I x I. 

Lemma 11.14. If X is a locally compact Hausdorff pointed space, then 

LX ~ X 1\ Sl. 

PROOF. Since X is locally compact Hausdorff, the map 1 x exp: X x I ~ 
X X Sl is an identification, by Lemma 8.9. If v: X x Sl ~ X 1\ Sl is the 
natural map, then h = v(1 x exp) is also an identification (Exercise 1.10). But 
it is easy to check that (X x I)jker h = LX, and so the result follows from 
Corollary 1.10. D 

Lemma 11.15. If X and Yare locally compact Hausdorff spaces, then 

XOO 1\ y oo ~ (X x Yr, 

where, in each case, 00 is chosen as basepoint of the one-point compactification. 

PROOF. By definition, XOO 1\ y oo = (XOO x YOO)j(XOO V yOO). Since the numera­
tor is compact and the denominator is closed, Exercise 11.20 shows that 
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Xoo /\ yoo is the one-point compactification of XOO x yoo - XOO v yoo. But 

Xoo x yoo = (X x Y) U ({ <Xl} X YOO) U (XOO x {<Xl}), 

while Exercise 11.3 shows that 

Xoo v yoo = ({ <Xl} X YOO) U (XOO x {<Xl}). 

Their difference is thus X x Y, as desired. 

Theorem 11.16. 'LSn ::::0 sn+l for all n :2:: o. 

o 

PROOF (M. Ramachandran). If n = 0, the result is easy and is left to the reader. 
If n :2:: 1, then Exercise 11.18 and the above lemma give 

'LSn = sn /\ SI = (Rnr /\ Roo = (Rn x Rr = (Rn+1r = sn+l. D 

Corollary 11.17. sn is a cogroup object in hTop* for all n :2:: 1. 

PROOF. Each such sphere is a suspension. D 

EXERCISES 

11.21. Prove that sm /\ sn ::::0 sm+n for all m, n ~ 1. 

11.22. Prove that In /\ I ::::0 In+1, where the origin is taken as the basepoint of In and 0 
is the basepoint of I. (Hint: Use Exercise 11.19.) 

Homotopy Groups 

For each pointed space X, we know that 

11:1 (X) = [St, X], 

where (1, 0) is the basepoint of SI. 

Convention. For every n :2:: 0, regard Sn = (1, 0, ... ,0) E Rn+1 as the basepoint 
of sn. 

Definition. For every pointed space (X, xo) and every n :2:: 0, 

1I:n(X, xo) = [(sn, sn)' (X, xo)]. 

We shall usually abbreviate 1I:n(X, xo) to 1I:n(X). When n :2:: 2, 1I:n(X) is called 
a (higher) homotopy group. Of course, 1I:n is a functor with domain hTop*. 

Theorem 11.18. For every pointed space X, 1I:o(X) is a pointed set, and 1I:n(X) is 
a group for all n :2:: 1. 
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PROOF. That [(SO, 1), (X, x o)] coincides with no(X) as defined in Chapter 1 is 
left to the reader; the basepoint of no (X) is the path component containing 
the basepoint of X. Ifn ~ 1, then the result is immediate from Corollary 11.17 
and Theorem 11.4'. 0 

What is the product of [f], [g] E nn(X)? If m: sn --+ sn V sn is the comulti­
plication (pinching), then 

[f] * [g] = ([f], [g])[m] = [U, g)m]. 

Suppose that X happens to be an H-group, with multiplication W X x X --+ X. 
Then Theorem 11.4 also equips nn(X) with a group structure, namely, 

[f] 0 [g] = [/l]([f], [g]) = [/l(j~ g)]. 

Theorem 11.19. If Q is an H'-group and P is an H-group, then the group 
operations on [Q, P] determined by the comultiplication m of Q and by the 
multiplication /l of P coincide. 

PROOF. Let f, g: Q --+ P. By Lemma 11.6, the following diagram commutes to 
homotopy: 

fvg 
------+ P v P 

j~ 
------+ P x P ------+ P. 
fxg j1 

But the multiplication determined by m is [fJ * [g] = [(I, g)m] = [V(f v g)m] 
(Exercise 11.6), and that determined by /l is [f] 0 [g] = [/l(f, g)] = 

[/lU x g)A]. Hence [f] * [g] = [f] 0 [g]. 0 

Theorem 11.20. If X is a pointed space, then 

nn(X) ~ nn_k(Ok X) 

for all 1 s k s n - 1 (where Ok is the composite of 0 with itself k times). In 
particular, if n ~ 2, 

nn(X) ~ n 1 (on-l X). 

PROOF. nn(X) = [sn, X] = [LnSO, X] 

= [Ln-kSO, Ok X] = [sn-k, Ok X] = nn_k(Ok X). 0 

Corollary 11.21. If X is a pointed space, then nn(X) is abelian for all n ~ 2. 

PROOF. By the theorem, nn(X) ~ n l (on-l X) if n ~ 2. But on-l X is a loop 
space, hence is an H-group, and hence is an H-space. By Theorem 3.20, 
n 1 (on-I X) is abelian. 0 
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The functors 1t" are defined on hTop* (with values in Sets* when n = 0, in 
Groups when n = 1, and in Ab when n ;:::: 2). Such functors can be viewed as 
functors on Top*, which satisfy the (pointed) homotopy axiom: if there is a 
pointed homotopy f ~ g of pointed maps, then the induced maps f* and g* 
are equal. 

If n ;:::: 2, it is plain that 1t,,(X) = 0 means that 1t,,(X) is the trivial group; we 
extend this notation to the case n = 1. Also, we write 1to(X) = 0 to mean that 
1to(X) has only one element (i.e., X is path connected). 

The following result is important even though it is easy. 

Theorem 11.22 (Dimension Axiom). If X is a singleton, then 1t,,(X) = 0 for all 
n;:::: o. 

PROOF. There is only one function from S" into X, namely, the constant 
function, and so [S", X] has only one element. 0 

There is a down-to-earth description of the multiplication in 1t,,(X), eschew­
ing functors and cogroup objects, which is a straightforward generalization 
of the multiplication in 1t1(X). We have already proved (in Corollary 11.13) 
that if [f], [g] E [~X, Y], then their product is [f# * g#], where f#: X -+ 

n Y is the associate of f In more detail, elements of ~X have the form [x, t], 
where x E X and tEl; if f: ~x -+ Y, then f# is given by f#(x) = f([x, ]); 
the star multiplication is the multiplication of paths in the loop space n Y. This 
discussion applies to 1t,,(X) = [S", X] upon recalling that S" = ~S"-l. 

Definition. Let I" be the cartesian product of n copies of I, and let i" = 
{(t1' ... ' tIl) E I": some ti E i}. 

If n ;:::: 1, then Exercise 11.20 shows that I"/i" ~ W - i")'" (one-point com­
pactification). But I" - i" ~ R", and (R")'" ~ S"; therefore I"Ii" ~ S"; choose 
homeomorphisms () = (),,: I"Ii"':::; S". Ifn ;:::: 2, we prove that there is a homeo­
morphism ({J = ({J,,: I"Ii" .:::; ~S"-l with 

({J,,: [t1' ... , t,,]t-+[(),,-1[t1, ... , t"-l]' tIl]' 

where [t l' ... , tIl] is the image of (t 1, ... , tIl) in I" Ii". Recall the identities i" = 
(i,,-l X I) U W-1 X i) and (1"-1 x 1)/(i,,-l X I) = (1"-1 1i,,-1) x I, and consider 
the diagram 

• 1"-1 X I 
W- 1 /1"-1) x I = 7. ---~ 

j 1,,-1 xl 

IJ x 1 

S,,-l X I 
S"-l X 1=...,.-----,---

{s,,-d x I 

S,,-l X I 
_ -,-_____ --:-_.-. = ~S"-l, 

, ({s,,-d X I)U(S,,-l x I) 
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where v and ~ are the natural maps. Define h = ~(8 x 1). Now 8 x 1 is an 
identification, by Lemma 8.9, and so h is an identification, by Exercise 1.10. 
Corollary 1.10 thus gives a homeomorphism ep making the following diagram 
commute 

(because In/in = (1"-1 x I/in- 1 X I)/ker h), and this says that ep: [t l' ... , t n ] ~ 
[8[t l' ... , tn-I], t.], as desired. 

Each function f: (In, i") -+ (X, xo) induces a pointed map J: In/in -+ X; 
moreover, Corollary 8.10 shows that if f, g are two such maps which are 
homotopic rei in, then there is a pointed homotopy .1 ::::: y. Therefore, there is 
a bijection 

b: [(In, in), (X, xo)] -+ [(LSn- 1 , *), (X, xo)] = nn(X, xo) 

given by [f] ~ [.Jcp-l]. This bijection equips [(I·, i"), (X, xo)] with a group 
structure: if f, g: (In, in) -+ (X, xo), define f + g: (In, in) -+ (X, xo) by 

f ) ( ) - {f(t l' ... , tn-I' 2tn) if 0 :;:; tn :;:; ! C +g t 1 ,···,tn - • 1 
g(t 1, ..• ,tn- 1,2tn-l) 1f 2 :;:;t.:;:;1. 

To see that [f] + [g] defined as [f + g] actually gives a group isomorphic 
to nn(X, xo), it suffices to show that b([f + g]) = b([f]) * b([g]). But 
b([f]) = [.Jcp-l], where .Jcp-l is defined on all [8[tl' ... , t.- 1 ], t.] E LSn- l . 

Our earlier discussion therefore shows that [.1ep -I] * [yep -I] corresponds to 
[(.Jcp-I)# *(yep-l)#], and 

(.Jep-l)# *(yep-l)#(O[t 1 , ..• , t.- 1 ]) 

as desired. 

= .1ep -I ([8[t l' ... , tn-I], _]) * yep -I (8[t 10 ... , tn-I]' _]) 

= .1([t1 , .•• , tn-I' _])*y([t l , •.. , t'_I' -]) 

= (f + g)(t 1 ,···, tn - 1,-) 

If n = 2, we may picture f + g schematically: 

The following figure in which the shaded regions are constant (from [White­
head, p. 125]) suggests a direct argument, using the above formula for f + g, 
that multiplication in nz(X) (and in all higher nn(X» is abelian. 
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_~_~_EJ_D 
~~UD 

There are two obvious questions. If X is path connected, are its homotopy 
groups independent ofthe choice of basepoint? If X and Yare path connected 
spaces having the same homotopy type, do X and Y have the same homo­
topy groups? As is true for fundamental groups, the answers are positive, but 
the proofs are more involved here. 

Definition. If X is a space, then a local system of groups is a family of groups 
{T(x): x E X} and a family of homomorphisms {T(<p): T(<p(O)) -+ T(<p(l))1 
every path <p} such that: 

(i) if <p ~ <p' reI i, then T(<p) = T(<p'); 
(ii) if ix is the constant path at x, then T(ix) is the identity map on T(x); 

(iii) if <p, IjI are paths in X with <p(l) = 1jI(0), then 

T(<p * 1jI) = T(IjI)T(<p). 

Denote the fundamental groupoid of X (see Theorem 3.2) by n(X). In 
Exercise 3.9, this groupoid was made into a category: define objects to be the 
points of X, and define morphisms to be the path classes. A local system is 
just a functor T: n(X) -+ Groups (condition (i) guarantees that T is well 
defined on morphisms). Since every morphism in n(X) is an equivalence (the 
inverse of [<p] is [<p-l]), every T(<p) is an isomorphism. We are going to see 
that if X is path connected, then there is a local system on X with T(x) = 

nn(X, x) for all x E X. 

Definition. Let F: In X I -+ X be a free homotopy. If ° = (0, ... , 0) denotes the 
origin in In, then <p = F(O, ) is a path in X; we say that F is a homotopy 
along <p. If F(u, t) = <pet) for all u E in, then we say that F is a level homotopy 
along <p. 

There is a retraction 

r: r x 1-+ W x {O}) U (in X I) 

(when n = 2, the right side is a box without a top). Regard r x I as imbedded 
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in Rn+l, and let p be a point above an interior point of I" x {I}; for example, 
let p = (t, ... , t, 2). If y E In X I, define r(y) to be the point where the line 
from p to y intersects (I" x {O}) U (in X I). Call r a stereographic retraction. 

In a similar manner, one sees that there is a retraction 

R: In X I X 1--+ (In X I X {o})u(in X I X I). 

Notation. Let Q(X, xo) denote the set of all maps oc: (In, in) --+ (X, xo). 

If «J is a path in X from Xo to Xl' and if oc E Q(X, xo), define 
L': (I~ {O}) U (in X I) --+ X by 

L'(u,O) = oc(u) if u E In 

and 

L'(u, t) = <p(t) if u E in and tEl 

(the formulas agree on in X {O} because oc E Q(X, xo)). Then 

L = L'r 

is a level homotopy along <p with L( ,0) = oc (where r: I" X I --+ (I" X {O}) U 
(in X I) is a stereo graphic retraction). 

Definition. If <p is a path in X from Xo to Xl' then 

is defined by 

Lemma 11.23. Let oc, f3 E Q(X, xo). 

(i) Let <p be a closed path in X at xo, and let F: oc ~ f3 be a level homotopy 
along <po If <p is nullhomotopic rel i, then 

oc ~ f3 rel in. 

(ii) Assume that <p, <p' are paths in X from Xo to Xl and that F: oc ~ f3 is a level 
homotopy along <p'. If <p ~ <p' reI t, then 

<P# (oc) ~ f3 rel tn. 

PROOF. (i) Let 11: I X I --+ X be a homotopy reI i showing that <p is null­
homotopic; thus, for all t, s E I, 

l1(t, 0) = <p(t) and l1(t, 1) = 11(0, s) = 11(1, s) = Xo' 

Define h: (In X I X {O}) U (in X I X I) --+ X by 

h(u, t, 0) = F(u, t) if u E In and tEl; 

h(u, t, S) = l1(t, s) if u E in and t, s E I 
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(note that these formulas agree on the overlap in X I X {O} because F is a level 
homotopy). 

Define H: I" X I x I~X by H = hR (where R: In X I X I~(I" X I X {O})U 
(in X I X I) is the retraction defined before this lemma), and define K: I" X I ~ 
Xby 

{

H(U' 0, 4t) if 0 ~ t ~ ± 
K(u, t) = H(u, 4t - 1, 1) if ± ~ t ~ t 

H(u, 1, 2 - 2t) if t ~ t ~ 1. 

One checks easily that the formulas agree on the overlaps I" X {±} and 
I" X {t}. Moreover, for u E 1", 

K(u, 0) = H(u, 0, 0) = F(u, 0) = ex(u) 

and 

K(u, 1) = H(u, 1,0) = F(u, 1) = f3(u), 

and for u E in, 

K(u, t) = Xo. 

(ii) Define K: In X I ~ X by 

K u t = ( ) {
L(U, 1 - 2t) if 0 ~ t ~ t 

, F(u, 2t - 1) if t ~ t ~ 1 

(both formulas agree on (u, t) with common value ex(u); the map L = L'r 
has been defined before this lemma). Now K: <P#(ex) ~ f3 is a level homotopy 
along <p -1 * <p'. Since <p -1 * <p' is nullhomotopic reI i, the first part gives 
<p# (ex) ~ f3 reI in. D 

Theorem 11.24. If X is path connected, then there is a local system T: II(X) ~ 
Groups with T(x) = nn(X, x) for all x E X, hence 

nn(X, xo) ~ nn(X, Xl) 

PROOF. We have already observed that every homomorphism T(<p) in a local 
system must be an isomorphism; therefore, if <p is a path in X from Xo to Xl> 

then T(<p): nn(X, xo) ~ nn(X, xd. 
Define T(<p): nn(X, xo) ~ nn(X, xd by 

To see that T(<p) is a well defined function, assume that F: ex ~ f3 is a homotopy 
reI in; that is, F is a level homotopy along the constant path e at Xo. Combining 
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F with the level homotopy L: fJ ~ ({J# (fJ) along ({J gives a level homotopy 
a ~ ({J# (fJ) along e * ({J. Since e * ({J ~ ({J rei i, Lemma I1.23(ii) gives ({J# (a) ~ 
({J# (fJ) reI in. 

To see that T(({J) is a homomorphism, it suffices to prove that ({J#(a * fJ) ~ 
({J# (a) * ({J# (fJ) reI in, where a, fJ E Q(X, xo) and ({J is a path with ((J(O) = Xo; by 
Lemma 1 1.23 (ii), it suffices to prove that there is a level homotopy a * fJ ~ 
({J# (a) * ({J# (fJ) along ({J. If L 1 : a ~ ({J# (a) and L 2 : fJ ~ ({J# (fJ) are the level 
homotopies along ({J, define G: I" x I ~ X by 

G( ) _ {Ll (t 1, ... , tn-I' 2tn, t) if 0 :$; tn :$; t 
tl,···,tn,t - . I 

L2(t1,···' tn-I, 2tn - 1, t) If"2:$; tn :$; 1. 

If tn = t, then (t l , ... , tn-I' 2tn) = (t l , ... , tn-I, 1) E in and (t l ,···, tn-I' 
2tn - 1) = (t l , ... , tn-I' 0) E in; it follows that both formulas give the same 
value for each tEl, namely, ({J(t), and so G is well defined. But G: a * fJ ~ 
({J# (a) * ({J# (fJ) is a level homotopy along ({J, as desired. 

We now verify the conditions in the definition of local system. If ({J ~ 
({J' reI i, then, for alIa E Q(X, xo), we have a ~ ({J# (a) along ({J'; Lemma 1 1.23 (ii) 
gives ({J#(a) ~ ((J#(a) rei in, that is, T(({J) = T(({J'). If e js the constant path at xo, 
then e # (a) ~ a, hence T(e) is the identity. Finally, if ljJ is a path in X with 
ljJ(O) = ({J(l), then there are level homotopies a ~ ({J# (a) along ({J and ({J# (a) ~ 
ljJ # (({J# (a)) along ljJ. Together, there is a level homotopy a ~ ljJ # (({J# (a)) along 
({J * ljJ. Lemma 1 1.23 (ii) gives (({J * ljJ)# (a) ~ ljJ # (({J# (a)) reI in; that is, T( ({J * ljJ) = 
T(ljJ)T(({J). D 

Lemma 11.25. Let f, g: X ~ X be maps, and let F:f ~ 9 be a free homotopy; 
if Xo E X, denote the path F(xo, ) from f(xo) to g(xo) by ({J. Then there is a 
commutative diagram 

PROOF. If a E Q(X, xo), then G: I" x I ~ X defined by 

G(u, t) = F(a(u), t) 

is a level homotopy along ({J with G:fa ~ ga. By Lemma l1.23(ii), ((J#(fa) ~ 
ga rei in, and this says that the diagram commutes. 0 

Corollary 11.26. If f: X ~ Y is a homotopy equivalence, then f*: 1!n(X, xo) ~ 
1!n(Y,f(xo}} is an isomorphism. 

PROOF. Repeat the argument of Theorem 3.10, using Lemma 11.25. 0 
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Corollary 11.27. Let X and Y be path connected spaces having the same 
homotopy type. Then, for every Xo E X and Yo E Y, 

nn(X, xo) ~ nn(Y, Yo)· 

PROOF. If f: X -+ Y is a homotopy equivalence, then f*: nn(X, xo) -+ 

nn(Y,f(xo)) is an isomorphism, by Corollary 11.26. But nn(Y,f(XO)) ~ 

nn(Y, Yo), by Theorem 11.24. D 

Corollary 11.28. If X is contractible, then nn(X, xo) = 0 for all n ;:::: O. 

PROOF. Immediate from Corollary 11.27 and the dimension axiom, Theorem 
11.22. D 

Here is a direct proof of this last result. If X is contractible, then Theorem 
1.13 says that every map f: sn -+ X is (freely) nullhomotopic; in particular, 
every pointed map f: (sn, sn) -+ (X, xo) is nullhomotopic. By Theorem 1.6, 
there is a pointed homotopy from f to the constant map at X o, hence [f] = 0 
in nn(X, xo). 

Remark. The fundamental group acts on the homotopy groups. If (X, xo) 
is a pointed space, if [<p] E n1(X, xo), and if [IX] E nn(X, xo), then define 
[<p]. [IX] = [<p#(IX)] E nn(X, xo), where <P# is the map occurring in the local 
system of Theorem 11.24. If n ;:::: 2 (so that nn(X, xo) is an abelian group), then 
this action shows that nn(X, xo) is a Znl (X, xo)-module, where Zn 1 (X, xo) 
denotes the integral group ring of the fundamental group. If n = 1, this 
action is conjugation by [<p]. 

Call a space X n-simple if the action of n1(X, xo) on nn(X, xo) is trivial, 
i.e., each [<p] E n1(X, xo) acts as the identity; simply connected spaces and 
H-spaces are n-simple for every n. If X is n-simple, then [(sn, sn), (X, xo)] = 

[sn, X], i.e., the pointed homotopy classes in hTop* coincide with the 
(unpointed) homotopy classes in hTop. See [Maunder, p. 266]. 

Theorem 11.29. If (X, p) is a covering space of X, then 

p*: nn(X) -+ nn(X) 

is an isomorphism for all n ;:::: 2. 

PROOF. Recall that if [j] E nn(X) = [sn, X], then p* [j] = [pj]. To see that 
p* is surjective, take [fJ E nn(X), and consider the diagram 

X 

jP 
sn ------.. X. 

f 
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Since n ~ 2, sn is simply connected (Corollary 7.6), and so the lifting criterion 
(more precisely, Corollary 10.14) provides a pointed map 1: sn ~ X with 
pJ = f; therefore p* [J] = [f]. 

To see that p* is injective, suppose that [pJ] = [pJ1], where j, J1: sn ~ X 
are pointed maps. Then pJ ~ ph, and the covering homotopy theorem 
(Theorem 10.5) says that their liftings are homotopic, that is, [J] = [J1]. 

o 
Theorem 11.30. nn(Sl) = 0 for all n ~ 2. 

PROOF. Since (R, exp) is a covering space of Sl, Theorem 11.29 applies and 
gives nn(R) ~ nn(Sl) for all n ~ 2. But R is contractible, so that the result 
follows from Corollary 11.28. D 

Since n 1 (Sl) = Z, all the homotopy groups of Sl are known. (One also 
knows that nn(sn) = Z for every n ~ 1 (see [Maunder, p. 288]).) This is the 
exception; one does not even know all np(sn) for n ~ 2! (It is a theorem of 
Serre that when n is odd, np(sn) is finite for p "# n, and when n is even, np(sn) 
is finite except for p = nand p = 2n - 1; moreover, n 2n- 1 (sn) is a f.g. abelian 
group of rank 1.) The only finite simply connected CW complexes all of whose 
homotopy groups are known are contractible. 

Theorem 11.31. If 0 < q < n, then nq(sn) = 0, and nn(sn) "# O. 

PROOF. By Theorem 7.5, every continuous map f: sq ~ sn is (freely) null­
homotopic; now apply Theorem 1.6. 

If f: X ~ Y is (freely) homotopic to a constant, then f*: Hn(X) ~ Hn(Y) 
(homology!) is the zero map for every n ~ O. Now the identity map 1 = 1sn 
induces 1*, the identity isomorphism on Hn(sn); since the latter group is 
nonzero, 1* "# 0, and so 1 is not (freely) homotopic to a constant; a fortiori, 
there is no pointed homotopy from 1 to a constant. Therefore [1] E [sn, sn] = 

nn(sn) is nontrivial. 0 

EXAMPLE 11.7. There are path connected spaces X and Y having the same 
homotopy groups that are not of the same homotopy type; indeed X and Y 
can have different homology groups. Let m > n > 1, let X = Rpm X sn, and 
let Y = Rpn x sm. Now n 1(X) ~ Zj2Z ~ n 1(y) (since n 1(Rpm) ~ Zj2Z, by 
Corollary 10.11), while nq(X) ~ nq(Y) for all q ~ 2 because sm x sn is a univer­
sal covering space of each (so that Theorem 11.29 applies). On the other hand, 
ifm is even and n is odd, then the Kiinneth formula (Theorem 9.37) shows that 
Hm+n(X) = 0 "# Hm+n(Y)' (In Example 11.14, we shall exhibit two spaces with 
the same homology groups and with different homotopy groups.) 

EXERCISES 

11.23. If f3: (X, x o) -> (Y, Yo) is freely nullhomotopic, then the induced homomorphism 
f3*: 1Cn(X, x o) -> 1Cn(Y, Yo) is trivial. 
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* 11.24. Prove that if X and Yare pointed spaces, then, for all n ~ 2, 

7l:n(X X Y);;; 7l:n(X) EEl 7l:n(Y) 

(direct sum of abelian groups). Conclude that the higher homotopy groups of 
the torus are trivial. (Hint: Use Exercise 11.17: n(X x Y) ~ nx x ny.) 

11.25. Prove that 7l:q(sn) ;;; 7l:q(Rpn) for all q ~ 2. 

11.26. Let X be a contractible locally path connected space, and let G be a group 
acting properly on X. Prove that 7l:n(XjG) = 0 for all n ~ 2. (Hint: Use 
Theorem 10.54.) 

*11.27. Let X and Ybe objects in a category, and let * and 0 be binary operations on 
Hom(X, Y) such that: 
(i) there is a common two-sided identity e E Hom(X, Y), that is, for all 

f E Hom(X, Y), 

e * f = f * e = f = e 0 f = foe; 

(ii) for all a, b, c, d E Hom(X, Y), 

(a * b) 0 (c * d) = (a 0 c) * (b 0 d). 

Prove that * and 0 coincide and that each is commutative. (Hint: To show 
that f * g = fog, evaluate (foe) * (e 0 g) in two ways; to prove commu­
tativity, evaluate (e 0 g) * (f 0 e).) Recall that identity (ii) arose in the proof 
of Theorem 10.42. 

11.28. (i) If Q is an H'-group and P is an H-space, then [Q, P] is an abelian 
group. (Hint: If II: P x P ---+ P is the multiplication and m: Q ---+ Q v Q 
is the comultiplication, then define [f] * [g] = [1I(f, g)] and [f] 0 [g] = 
[(f, g)m]. Show that [e] is a common two-sided identity (where e is the 
constant map), and verify condition (ii) of Exercise 11.27 by evaluating 
both sides on elements.) 

(ii) If X and Yare pointed spaces, prove that [~2 X, Y] is an abelian group. 
(Remark: This gives a second proof of Corollary 11.21. Groups of the form 
[~X, Y] are called track groups.) 

11.29. For every pointed space X, show that there is a homomorphism ~n: 7l:n(X)---+ 
7l:n+! (X) given by [f] 1-+ [~f]. (~n is called the suspension homomorphism.) 

11.30. If X and Yare compact pointed polyhedra, then [Y, X] is countable. (Hint: 
Use the simplicial approximation theorem.) Conclude that for every compact 
polyhedron X, 7l:n(X) is countable for every n ~ o. 

Exact Sequences 

Let (X, x o) be a pointed space, and let A be a subspace of X containing Xo (so 
that there is an inclusion (A, xo) 4 (X, xo), which is a pointed map). As in 
homology, there are relative homotopy groups nn(X, A), connecting homo­
morphisms nn(X, A) ~ nn-1 (A), and an exact sequence 
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... -> nn(A) -> nn(X) -> nn(X, A) -> nn-l (A) -> .... 

For small n, nn(X) and nn(X, A) are merely pointed sets (not groups), so that 
we must define exactness again. 

Definition. A sequence of pointed sets and pointed functions 

(X', x~) L (X, xo)!!. (X", x~) 
is exact in Sets* if imf = ker g, where ker g = g-l(X~). 

If the pointed sets are groups (with identity elements as basepoints) and if 
the pointed maps are homomorphisms, then this definition is the usual defini­
tion of exactness. The basepoint, which is often an annoyance, is now essential. 

There are computational proofs of the exact homotopy sequence using the 
description of nn as homotopy classes of maps with domain W, in) (see [Fuks 
and Rokhlin, Chap. 5J, [Hilton (1953), Chap. IVJ, or [Whitehead, p. 162J). 
We present a proof in the categorical style (elaborating the proof in [Dold 
(1966)J), which simultaneously gives the exact sequence of a fibration. 

The appropriate notion of exactness in hTop* corresponds to a familiar 
result in algebra. A sequence 

o -> A' -> A -> A" 

of abelian groups and homomorphisms is exact if and only if the sequence 

0-> Hom(G, A') -> Hom(G, A) -> Hom(G, A") 

is exact for every abelian group G. 

Definition. A sequence of pointed spaces and pointed maps 

is exact in hTop* if the induced sequence 

... -> [Z, Xn+1J -> [Z, XnJ -> [Z, Xn-1J -> ... 

is an exact sequence in Sets* for every pointed space Z. 

Definition. If f: (X, xo) -> (Y, Yo) is a pointed map, then its mapping fiber is 
the pointed space 

Mf = {(x, OJ) E X x yl: OJ(O) = Yo and OJ(l) = f(x)} 

(the basepoint is (xo, OJo), where OJo is the constant path at Yo). 

The elements of Mf are ordered pairs (x, OJ), where OJ is a path in Y from 
Yo to f(x). The subspace of Mf consisting of all such ordered pairs of the 
form (xo, OJ) is just the loop space !l(Y, Yo); more precisely, there is an injec­
tion k: !l(Y, Yo) -> Mf given by OJ~(xo, OJ). There is also an obvious map 
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1': Mf -+X, namely, the projection (x, w)t---+x. Both k and I' are pointed 
maps, and there is thus a sequence (which will be seen to be exact in hTop*) 

nf k f' f 
OX ---+ 0 Y ---+ Mf ---+ X ---+ Y. 

The construction of Mf can be repeated for I' ; it is a certain subspace of 
Mf x Xl, namely, 

Mf' = {(x, w, {3) E X X yI X Xl: w(O) = Yo, w(1) = f(x), 

{3(0) = xo, {3(1) = f'(x, w) = x}; 

there is an injectionj: 0(1', Yo) -+ Mf' given by 

j: w t---+ (xo, w, {30), 

where {30 is the constant path at Xo' 

Notation. If {3: I -+ X is a path and if s E I, then {3s is the path defined by 

{3s(t) = {3(st). 

In particular, if {3 is a path in X, then 

({3-1 )s(t) = P-1(st) = {3(1 - st). 

(Note that ({3s)-l(t) = {3s(1 - t) = {3(s(1 - t», so that ({3-1)s -=1= ({3.)-1; however, 
we shall use only the former construction ({3-1 )s.) 

Lemma 11.32. Let f: (X, xo) -+ (1', Yo) be a pointed map, let 1': Mf -+ X be 
the pointed map (x, w) t---+ x, and let j: 0(1', Yo) -+ Mf' be the pointed injection 
wt---+(xo, w, {30). Then 0(1', Yo) is a pointed deformation retract of Mf', hence 
[j]: 0(1', Yo) -+ Mf' is an equivalence in hTop*. 

PROOF. We define a continuous map F: Mf' x 1-+ Mf' such that 

F(x, w, {3, 0) = (x, w, {3), 

F(x, w, {3, 1)EjO(1', Yo), 

F(xo, wo, {30, s) = (xo, Wo, {30) 

for all (x, w, {3) E Mf' and all s E I. Build F in two stages. The first stage F1 
merely begins at (x, w, {3) and ends at (x, w * w 1, {3), where w 1 is the constant 
path at f(x). The second stage F2 is given by the formula 

F2 (x, W, {3, s) = ({3(1 - s), w * f({3-1 )" {31-.)' 

It is easy to see that im F2 eMf', that F2(x, w, {3, 0) = (x, w * w 1, {3), and 
that F2(x, w, {3, 1) = (xo, w * f{3-1, {30) E jO(1', Yo). Hence F defined by F = 

F1 * F2 has all the desired properties; in particular, (xo, wo, {30) does stay 
fixed throughout the homotopy because Wo * Wo = Wo (equal, not merely 
homotopic). 0 
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Lemma 11.33. If f: X -> Y is a pointed map, then the following diagram is 
commutative in hTop*: 

QX 
Of 

QY k 
Mf f' X 

f 
Y ---+ ---+ ---+ ---+ 

i'ij ij jl jl jl 

Mf" ---+ Mf' ---+ Mf ---+ X ---+ Y jlfl f" f' f 

where i: QX -> QX is the homeomorphism P ~ p-1 , and j' is defined below. 

PROOF. The second square commutes in Top* (and hence commutes in hTop*): 
recall that k: w~(xo, w), where w is a loop in Yat Yo, thatj: w~(xo, w, Po) 
for any path w in Y with w(O) = Yo, and that 1": (x, w, P)~(x, w). A simple 
evaluation shows that f"j = k. 

Here are the definitions of the maps in the first square. If P is a loop in X 
at xo, then Qf: P~ fP,j': P~(xo, wo, p, Yo) (where Yo is the constant loop at 
the basepoint of Mf), and f"': (x, w, p, y) ~ (x, w, p)(where y is a suitable path 
in Mf). Hencej(Qf): P~(xo,fP, Po) andf"'j'i: P~(xo, W o, P-l). 

Define F: Q(X, xo) x 1-> Mf' by 

F(P, s) = (P(1 - S),fPl-., (P-1 )s), 

where Pl-.(t) = P((1 - s)t) and (P-1 )s(t) = P(1 - st). Note that F is a continu­
ous map taking values in Mf', that F(P, 0) = (xo,fP, Po), and that F(P, 1) = 
(xo, wo, P), as desired. 0 

Remark. Note that [j] and [j'] are equivalences in hTop*, by Lemma 11.32; 
since i is a homeomorphism, [j'i] = [j'] [i] is also an equivalence in hTop*. 

The next result will be used in proving that the rows in the diagram of 
Lemma 11.33 are exact in hTop*. 

Lemma 11.34. Let f(X, xo) -> (Y, Yo) be a pointed map, and let q: Mf -> Y be 
defined by q: (x, w)~w(1). Then f is nullhomotopic reI Xo if and only if there 
exists a pointed map q> making the following diagram commute: 

PROOF. If f is nullhomotopic reI xo, then there is a continuous map 
F: X x 1-> Y with F(x, 0) = Yo for all x EX, F(x, 1) = f(x) for all x E X, and 
F(xo, t) = Yo for all tEl. Define q>: X -> Mf by 

q>(x) = (x, FJ, 
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where Fx: I --+ Y is given by FAt) = F(x, t). It is a simple matter to see that cp 
is a pointed map with qcp = f. 

Conversely, assume that such a map cp exists; thus cp(x) = (A(X), wx) E 

Mf c X X yI; that cp is a pointed map gives cp(xo) = (xo, wo), so that wXo = 

wo, the constant path at Yo; commutativity of the diagram gives wA1) = f(x). 
Define F: X x 1--+ Y by F(x, t) = wx(t). Another simple check shows that F 
is a pointed homotopy Wo ~ f. 0 

Lemma 11.35. Iff: X --+ Y is a pointed map, then the sequence 

MfLXLy 
is exact in hTop*. 

PROOF. Consider the sequence in Sets* (where Z is any pointed space): 

[Z, Mf] ~ [Z, X] ~ [Z, y]. 

The basepoint in [Z, Y] is the class of the constant map, so that the "kernel" 
of f* consists of all maps h: Z --+ X with fh nullhomotopic. 

imf~ c kerf*: Define cp: Mf --+ M(ff') by cp: (x, w) t---+ (x, W, w) (M(ff') c 

Mf x yI c X X yI X yI because ff': Mf --+ Y). It is easy to see that the 
diagram 

M(ff') 

y'~ 
M'f -----t Y 

ff' 

commutes, hence ff' is nullhomotopic, by Lemma 11.34. It follows that ff' g 
is nullhomotopic for every [g] E [Z, Mf], as desired. 

kerf* c imf~: Assume that [g] E [Z, X] and that fg is nullhomotopic, 
say, F:fg ~ c reI xo, where c is the constant map at Xo. The map cp: Z --+ 
M(fg) in the proof of Lemma 11.34, namely, cp(z) = (z, Fz ), makes the following 
diagram commute: 

M(fg) 

~/ ~ 
Z -----t Y. 

fg 

Now M(fg) c Z X yI, and it is easy to see that the restriction, call it r, of 
g x 1: Z x yI --+ X X yI is a map M(fg) --+ M(f). Thus rcp: Z --+ Mf, and one 
sees at once that f'rcp = g. Hence [g] E imf~, as desired. 0 

Corollary 11.36. Iff: X --+ Y is a pointed map, then the sequence 
f'" f" f' f 

... ---+ Mf" ---+ Mf' ---+ M f ---+ X ---+ Y 

is exact in hTop*. 
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PROOF. Iterate Lemma 11.35. o 

Corollary 11.37. Iff: X -+ Y is a pointed map, then the sequence 
o.f k l' f 

OX -----+ 0 Y -----+ Mf -----+ X -----+ Y 

is exact in hTop*. 

PROOF. Consider the diagram in hTop* (of Lemma 11.33): 

OX -----+ OY -----+ Mf -----+ X -----+ Y 

j j 1 1 1 
Mf" -----+ Mf' -----+ Mf -----+ X -----+ Y. 

This diagram commutes (Lemma 11.33), the vertical maps are equivalences 
(Lemma 11.32), and the bottom row is exact (Corollary 11.36). Apply the 
functor [Z, ] to this diagram (for any pointed space Z) to obtain a similar 
diagram in Sets*. A diagram chase shows that the top row is exact in Sets*, 
hence the top row of the original diagram is exact in hTop*. 0 

The next lemma will allow us to extend the sequence of Corollary 11.37 to 
the left. 

Lemma 11.38. If X' -+ X -+ X" is an exact sequence in hTop*, then so is the 
"looped" sequence 

OX' -+ OX -+ OX". 

PROOF. Use the adjointness of (.~:, 0): for every pointed space Z, there is a 
commutative diagram in which the vertical functions are pointed bijections: 

[~Z, X'] -----+ [~Z, X] -----+ [~Z, X"] 

j 1 j 
[Z, OX'] -----+ [Z,OX] -----+ [Z,OX"]. 

The top row is exact, by hypothesis, and so it follows that the bottom row is 
exact as well. 0 

Theorem 11.39 (Puppe Sequence). If f: X -+ Y is a pointed map, then the 
following sequence is exact in hTop*: 

o.2k 0.21' o.2f m 0.1' 
... -----+ 0 2 (Mf) -----+ 0 2 X -----+ 0 2 Y -----+ O(Mf) -----+ 

OX~OY~Mf--Lx~Y 
(of course, 0° X = X and 0"+1 X = O(O"X)). 
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PROOF. By Corollary 11.37, the sequence 

OX -+OY -+Mf -+X -+ Y 

is exact in hTop., and by Lemma 11.38, the looped sequence 

0 2 X -+ 0 2 Y -+ O(Mf) -+ OX -+ OY 

is exact in hTop •. Since these sequences overlap, they may be spliced together 
to form a longer exact sequence. The result now follows by induction. D 

Remark. There is another Puppe sequence, dual to this one. A sequence of 
pointed spaces and pointed maps 

... -+ X,,+1 -+ X" -+ X n - 1 -+ ... 

is called coexact in hTop. if the induced (reversed) sequence 

... -+ [X,,-l' Z] -+ [X"' Z] -+ [X"+l' Z] -+ ... 

is exact in Sets. for every pointed space Z. In place of the mapping fiber Mf 
of a pointed map f: X -+ Y, one works with the mapping cone Cf defined as 
follows. First define the (reduced) cone cX as the smash product X /\ I, and 
note that X can be identified with the closed subspace {[x, 1]: x E X}; then 
Cf is defined as the space obtained from Y by attaching cX via f: Cf = 
cX llr Y. One pictures Cf as a (creased) witch's hat: 

the cone cX surmounts the "brim" Y, and points in the shaded area are 
identified by [x, 1] = f(x) for all x E X. (One can show that this geometric 
construction corresponds to the algebraic mapping cone given in Chapter 9.) 
Using suspension in place of loop space, one obtains the coexact Puppe 
sequence (see [Atiyah], [Dyer], or [Spanier, p. 369]): 

X £ Y -+ Cf -+:EX -+:EY -+ :E(Cf) -+:E2 X -+:E2 Y -+ :E2(Cf) -+ .... 

This sequence is important, but it is less convenient for us than the sequence 
we have presented: its various constructions involve quotient spaces instead 
of subspaces, and so all maps and homotopies require more scrutiny to ensure 
that they are well defined and continuous. 

Corollary 11.40. Let (X, x o) be a pointed space, let A be a subspace of X 
containing xo, and let i: A 4 X be the inclusion. Then there is an exact sequence 
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in Sets*: 
(oni) (onk) (oni') 

... ~ nn+1 (A) ~ nn+! (X) ~ [SO, on(Mi)] ~ nn(A) ~ nn(X) ~ ... 

... ~ n l (A) ~ n l (X) ~ [SO, Mi] ~ nO (A) ~ no(X). 

PROOF. Apply the functor [SO, ] to the Puppe sequence of the inclusion 
i: A c.... X, and recall that nn+! (A) = n l (on A). 0 

This corollary is actually the long homotopy sequence once we replace 
the terms [SO, on Mi] = [sn, Mi] = nn(Mi), for n ~ 0, by something more 
manageable. We also want a good formula for the "connecting homomor­
phism" [SO, on Mi] ~ nn(A). 

Definition. Let (X, x o) be a pointed space. A pointed pair is an ordered pair 
(X, A) (often written (X, A, xo» in which A is a subspace of X that contains X o' 

Of course, the inclusion A c.... X is a pointed map when (X, A) is a pointed 
pair. 

Definition. Let (X, A, x o) and (Y, B, Yo) be pointed pairs. A pointed pair map 
f: (X, A) ~ (Y, B) is a pointed map f: X ~ Y with f(A) c B. If f, g: (X, A) ~ 
(Y, B), then a pointed pair homotopy F: f :::::: g is a continuous map F: X x I ~ Y 
with 

F(x, 0) = f(x) and F(x, 1) = g(x) for all x E X, 

F(xo, t) = Yo for all tEl, 

F(A x I) c B. 

Definition. If (Y, B) and (X, A) are pointed pairs, then 

[(Y, B, Yo), (X, A, x o)] 

is the set of all (pointed pair) homotopy classes of pointed pair maps p: 
(Y, B, Yo) ~ (X, A, xo). We often suppress basepoints and write [(Y, B), (X, A)]. 

There is an obvious basepoint in [(Y, B), (X, A)], namely, the class of the 
constant map at x o; thus [(Y, B), (X, A)] may be regarded as a pointed set. 

Definition. Let sn = (1, ... , 0, 0) E sn be the common basepoint of sn and of 
Dn+l. For n ~ 1, the relative homotopy group of the pointed pair (X, A) is 

nn(X, A, x o) = [(Dn, sn-I, Sn-I), (X, A, x o)] 

(we usually abbreviate nn(X, A, x o) to nn(X, A». 

This definition reminds us of characteristic maps and suggests that CW 
complexes are convenient for homotopy theory. Note that n l (X, A, xo) does 
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have genuine interest; for example, 1tl (X, A, xo) = 0 means that every path w 
in X with w(l) = Xo and w(O) E A is nullhomotopic in X (by a pointed pair 
homotopy). 

Since there is a homeomorphism (Dn, sn-l) -+ (In, in), one can also describe 
1tn(X, A) as [(In, in), (X, A)]. Moreover, using Corollary 8. t 0, one sees at once 
that "absolute" homotopy groups are special cases of relative ones: 

[(Dn, sn-l), (X, xo)] = [(Dn/sn- 1 , *), (X, xo)] = [(sn, *), (X, xo)] = 1tn(X, xo). 

Therefore one can identify the absolute group 1tn(X, xo) with the relative group 
1tn(X, X o, xo)· 

Calling 1tn(X, A) a group does not make it one; indeed 1tl (X, A) has no 
obvious group structure and it is merely a pointed set (with basepoint the 
class of the constant function). The next lemma will be used to identify 
[SO, on Mi] = [sn, Mi] with 1tn+1 (X, A), where i: A c... X is the inclusion. 

Lemma 11.41.2 Let Sn = (1, ... , 0, 0) and 0 = (0, ... , 0) be points of Dn+l. There 
is a continuous map F: Dn+1 x 1-+ Dn+1 such that 

F(z, 0) = z for all z E Dn+1 , 

F(u, t) = u for all u E sn and all tEl, 

F(O, t) = Sn. 

Remark. Thus F is a pointed pair homotopy IDn+l ~ ~, where ~(z) = F(z, 1). 

PROOF. Regard each point in sn as being connected to 0 by an elastic radius. 
The homotopy consists of pulling 0 toward Sn (along the radius). The picture 
at time t is thus 

D 

Lemma 11.42. Let (X, A) be a pointed pair, and let i: A c... X be the inclusion. 
Then there is a bijection () and a commutative diagram 

2 Cogniscenti will note that this lemma allows us to avoid reduced cones cS". 
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[SO, !r(Mi)] 

Im/ ~j), 
1[.+1 (X) e 1[n(A), 

~ / 
1[n+1(X, A) 

wherej* is induced by the inclusionj: (X, X o, xo) ---+ (X, A, xo) (after identifying 
the absolute group 1[n+1 (X, xo) with the relative group 1[n+1 (X, xo, xo)) and 
d: [g]f---+[glsn]. 

PROOF. First, adjointness of (L, n) allows us to replace [SO, nn Mi] with 
[sn, Mi]. Next, if h: sn ---+ Mi we must define a map h: (Dn+l, sn) ---+ (X, A). 
Now Mi = {(a, w) E A x Xl: w(O) = Xo and w(1) = a}. Hence for each u E sn, 
h(u) = (au, wu), where Wu E Xl is such that wu(O) = X o and wu(1) = au E A; also, 
if * (= sn) is the basepoint of sn, then h(*) = (xo, wo), where Wo is the constant 
path at X o' If p: Mi ---+ Xl is the projection (a, w)f---+w, then ph: sn ---+ Xl is a 
continuous map; by Theorem 11.1(ii), the map sn x I ---+ X defined by (u, t)f---+ 
wu(t) is continuous. But each Z E Dn+1 can be written z = tu, where tEl and 
u E sn, and this factorization is unique for t "# O. It follows that there is a 
continuous map h: Dn+1 ---+ X defined by h(tu) = wu(t) (note that h(O) is defined 
and is X o, because h(O) = wu(O) = Xo for all u E sn). Now h(u) = wu(1) = au E A, 
and h(*) = wo(1) = X o, so that h: (Dn+1, sn) ---+ (X, A) is a map of pointed pairs. 
Finally, define 8: [sn, Mi] ---+ 1[n+1 (X, A) by 8([h]) = [h]. 

We claim that 8 does not depend on the choice of h E [h]. Suppose that 
h' E [h] and that F: sn x 1---+ Mi is a pointed homotopy displaying h ~ h'. 
Thus 

F(u, 0) = h(u) and F(u, 1) = h'(u) for all u E sn; 

F( *, s) = (xo, wo) for all s E I. 

For each u E sn and s E I, let the second coordinate of F(u, s) be denoted by 
wu.s' As above, each Fs: sn ---+ Mi defines a continuous map F.: (Dn+l, sn)---+ 
(X, A), and hence a continuous map G: Dn+1 x I ---+ X, namely, G(z, s) = F.(z); 
hence G(z, s) = G(tu, s) = wu.s(t). It is routine to check that G is a pointed pair 
homotopy h ~ h'. Therefore 8 is a well defined function. 

To show that 8 is a bijection, we construct its inverse. Let f3: (Dn+1, sn) ---+ 
(X, A) be a pointed map, and assume further that f3(0) = X o (the basepoint of 
Dn+1 is not 0 but Sn E SO). If u E So, define Wu E Xl by wu(t) = f3(tu). Now wu(O) = 

f3(0) = X o, by our assumption, while wu(1) = f3(u) E A; thus (f3(u), wu) E Mi. It 
is routine to check that p: S" ---+ Mi, defined by Uf---+(f3(u), wu), is a continuous 
pointed map. Next, if y: (Dn+1 , SO) ---+ (X, A) is any pointed map, then Lemma 
11.41 shows that there is a pointed pair homotopy y ~ y~, and y~(O) = Xo' We 
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leave as an exercise that [{3] ~ [P] does not depend on the choice of {3 in [{3], 
and that both composites of this function with 0 are identities. 

Adjointness of (~, Q) gives a commutative diagram: 

[SO, Qn(QX)] 
(fl"k)* 

[SO, Qn(Mi)] 
(fl"i')* 

[SO, QnA] -----+ -----+ 

j j j 
[sn, QX] -----+ [sn, Mi] -----+ [sn, A]. 

k* i~ 

As there are now explicit (and simple) formulas for each function, it is straight­
forward to see that the diagram in the statement commutes. D 

Theorem 11.43 (Homotopy Sequence of a Pair). If (X, A) is a pointed pair, then 
there is an exact sequence 

d 
•.. --+ nn+1 (A) --+ nn+1 (X) --+ nn+1 (X, A) --+ nn(A) --+ nn(X) --+ •.. 

d 
.•. --+ n1(A) --+ n1(X) --+ n1(X, A) --+ nO (A) --+ no(X). 

Moreover, d: nn+1 (X, A) --+ nn(A) is the map [{3] ~ [{31 sn], while the other maps 
are induced by inclusions. 

PROOF. Immediate from Corollary 11.40 and Lemma 11.42. D 

Corollary 11.44. nn(X, A) is a group for all n ;::: 2, and it is an abelian group for 
all n ;::: 3. 

PROOF. The bijection 0: [sn, Mi] --+ nn+1 (X, A) is used to equip nn+1 (X, A) with 
a group structure when [sn, Mi] is a group. But [sn, Mi] = nn(Mi) is a group 
for n ;::: 1, and it is an abelian group for n ;::: 2. D 

What is the group multiplication in the relative homotopy group nn(X, A)? 
Recall that sn ~ {";in, and we saw (just after Theorem 11.22) that one can view 
the elements of the "absolute" homotopy group nn(X) = [sn, X] as being 
represented by continuous maps f: (In, in) --+ (X, XO). Now Dn+1 ~ {"+1, and 
one can show that elements of nn+1 (X, A) can be represented by continuous 
maps 

f:(I"+1,tn+1,(tn x I) U (I" x {l})--+(X,A, xo); 

moreover, the multiplication (really, addition, since most homotopy groups 
are abelian) is the same as in the absolute case: 

(f )( ) - {f(t1, ... , tn' 2tn+1) if 0 ~ tn+1 ~ 1 
+g t1,···,tn+1 - .1 

g(t1, ... , tn' 2tn+1 - 1) If"2 ~ tn+1 ~ 1. 

Theorem 11.45. Let f: (X, A) --+ (Y, B) be a map of pointed pairs. Then there is 
a commutative diagram with exact rows: 
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... -1t2(X, A) -1t1(A) -1t1(X) -1t1(X, A) -1to(A) - 1to(X) 
~ ~ ~ ~ ~ ~ 

... - 1t2(Y, B) - 1t1 (B) - 1t1 (Y) - 1t1 (Y, B) - 1to(B) - 1to(Y). 

PROOF. The easy verification is left to the reader. 

EXERCISES 

11.31. If r: X --+ A is a retraction, then there are isomorphisms, for all n ;;:: 2, 

n.(X) ~ n.(A) $ n.(X, A). 

(Hint: See Exercise 5.14(ii).) 
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D 

11.32. Let B c: A c: X be pointed spaces. Then there is an exact sequence of the triple 
(X, A, B): 

••• --+ n.+! (X, A) --+ n.(A, B) --+ n.(X, B) --+ n.(X, A) --+ n'-l (A, B) --+ •••• 

(Hint: Use remark (3) after Theorem 5.9.) 

*11.33. For every pointed space X, n.(X, X) = 0 for all n ;;:: 1. 

Fibrations 

Covering spaces arose from examining the proof that 1t1 (Sl) = Z; fibrations 
arise from examining a key property of cov~ring spaces (which occurs in other 
interesting contexts). It will be seen that fibk-ations determine exact homotopy 
sequences (the proof of exactness is an application of the Puppe sequence). 
A theorem of Milnor states that there is an analogue of the Eilenberg­
Steenrod axioms for homology that characterizes the homotopy groups. 

Definition. Let E and B be topological spaces (without chosen basepoints). A 
map p: E - B has the homotopy lifting property with respect to a space X if, 
for every two maps 1: X - E and G: X x I - B for which pj = Gi (where 
i: X - X x I is the map xt-+(x, 0)), there exists a continuous map G: X x 1-E 
making both triangles below commute. 

X ~E 

,[ }/[, 
X x I / ------+ B. 

G 

If one defines f: X - B by f(x) = G(x, 0), then j is a lifting of f; if one 
defines g: X - B by g(x) = G(x, 1), then G is a homotopy f ~ g. The map G 
is a homotopy j ~ g, where g = G(x, 1) is a lifting of g. Thus, if f ~ g and if 
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f has a lifting j, then the homotopy can be lifted, hence 9 has a lifting g with 
j~g. 

Definition. A map p: E ~ B is called a fibration (or Hurewicz fiber space) if it 
has the homotopy lifting property with respect to every space X. If bo E B, 
then p-l (b o) = F is called the fiber. 

We do not assert that different fibers of a fibration are homeomorphic, 
because this is not true (Exercise 11.38); however, Theorem 11.47 shows that 
all fibers do have the same homotopy type. 

EXAMPLE 11.8. Every covering projection p: J[ ~ X is a fibration (Theorem 
10.5) having a discrete fiber. 

EXAMPLE 11.9. If E = B x F, then the projection p: E ~ B defined by (b, x) I-> b 
(where b E B and x E F) is a fibration with fiber F. To see this, consider the 
commutative diagram 

X 
j 

-----+ BxF 

i I jP 
X x I -----+ 

G 
B, 

and define G: X x I ~ B x F by G(x, t) = (G(x, t), qj(x)), where q: B x F ~ F 
is the projection (b, x) I-> x. 

EXAMPLE 11.10. A fiber bundle p: E ~ B with B paracompact is a fibration 
(see [Spanier, p. 96] for definitions and proof). 

EXERCISES 

11.34. If B is a singleton, then every map p: E ---> B is a fibration. 

11.35. If p: E -> B has the homotopy lifting property with respect to a singleton, then 
every path (1) in B with (1)(0) E im P can be lifted to E. 

11.36. If p: E -> Band q: B -> B' are fibrations, then qp: E -> B' is a fibration. 

11.37. If Pi: Ei -> Bi is a fibration for i = 1,2, then PI x P2: EI x E2 -> BI X B2 is a 
fibration. 

*11.38. (i) Let E be the (two-dimensional) triangle in R2 having vertices (0, 0), (0,1), 
and (1, 0): 

E = {(x, Y) E R2: x E I and 0:-:; y:-:; 1 - x}. 

Show that p: E -> I, defined by (x, y) f-> x, is a fibration. (Hint: If j: X -> E 
and G: X x I -> I satisfy pj = Gi, where i: xf->(x, 0), define G: X x 1-> E 
by 
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G(x, t) = (G(x, t), min{l - G(x, t), qj(x)}), 

where q: E -> I is the map (x, Y)H y.) 
(ii) Show that the fibers in this case are not homeomorphic. 

357 

We are going to use the Puppe sequence to show that every fibration gives 
rise to an exact sequence of homotopy groups, for virtually all the work has 
already been done. Afterward, however, we shall weaken the notion of fibra­
tion, and we shall give a functor-free proof (independent of the next proof) 
that there is also an exact sequence in this more general case. 

If B is a pointed space with basepoint bo, then every map p: E --> B can be 
viewed as a pointed map if the basepoint of E is any point in the fiber over boo 

Lemma 11.46. Let p: (E, xo) --> (B, bo) be a fibration with fiber F = p-l(bo). 
Then F and the mapping fiber Mp have the same homotopy type. 

PROOF. 3 Recall that Mp = {(x, w) E E x BI: w(O) = bo and w(l) = p(x)}, and 
there is a commutative diagram 

E ------> B, 
p 

where p': (x, W)HX, q: (x, W)HW, and d: wHw(l). 
If x E F and Wo is the constant path at bo, then (x, wo) E Mp; define 

A: F --> Mp by XH(X, wo). We now construct a homotopy inverse of A. Con­
sider the map G: Mp x 1--> B defined by 

G(x, w, t) = w(l - t) 

(G is continuous, being the composite of the continuous maps (x, W, t)H 
(x, W, 1 - t)H(W, 1 - t)Hw(l - t); indeed G shows that pp' is nullhomo­
topic.) Since p: E --> B is a fibration, there is a map G: M p x 1--> E making the 
following diagram commute: 

p' 
Mp ------> E 

,I yl 
M p x I ------> B. 

G 

Hence G(x, w, 0) = p'(x, w) = x and pG(x, w, s) = G(x, w, s) = w(l - s) for 

3 The proof shows that the conclusion holds if p: E -> B has the homotopy lifting property with 
respect to the mapping fiber Mp. 
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all (x, OJ) E Mp and all s E I. In particular, pG(x, OJ, 1) = OJ(O) = bo, so that 
(x, OJ) f--+ G(x, OJ, 1) defines a continuous map 1': Mp --+ F. 

It is easy to see that G(A x 1) is a map F x 1--+ F (because pG(A x 1): 
(x, s) f--+ (x, OJo, s) f--+ OJo(1 - s) = bo) that is a homotopy 1F ~ yA. For the other 
composite AI', suppose that there were a map J: Mp x 1--+ BI such that, for 
all (x, OJ) E Mp and s E I, one has J(x, OJ, s): 1 f--+OJ(1 - s), J(x, OJ, 0) = OJ, and 
J(x, OJ, 1) = OJo. Then (x, OJ, s)f--+(G(x, OJ, s),J(x, OJ, s))isamapMp x 1--+ Mp 
that is a homotopy 1MP ~ AI'. Finally, one such J is given by J(x, OJ, s): tf--+ 
OJ(t(1 - s)). D 

Theorem 11.47. Let p: E --+ B be a fibration and let bo, bi E B. If B is path 
connected, then the fibers p-I(bo) and p-I(bI ) have the same homotopy type. 

PROOF. For i = 0, 1, let MiP denote the mapping fiber of p for the basepoint 
bi E B (our previous notation does not display the dependence on the base­
point). Since B is path connected, there is a path A in B from bi to bo, and it is 
easy to see that (e, OJ) f--+ (e, A * OJ) is a homotopy equivalence Mop --+ M IP. The 
result now follows from the lemma. D 

Theorem 11.48 (Homotopy Sequence of a Fibration). If p: E --+ B is a fibration 
with fiber F, then there is an exact sequence 

... --+ n 2 (E) ~ n 2 (B) --+ n I(F) --+ n I(E) ~ nl(B) --+ no(F) --+ no(E) ~ no(B). 

PROOF. By Lemma 11.46, Mp and F have the same homotopy type; by 
Corollary 11.26, [sn, Mp] ~ [sn, F] for all n ~ O. The result now follows by 
applying [SO, ] to the Puppe sequence of p (and using adjointness of (~, !l)). 

D 

Remarks. (1) Theorem 11.48 implies Theorem 11.29, for a covering projection 
is a fibration having a discrete fiber F, hence nn(F) = 0 for all n ~ 1. 

(2) In view of Exercise 11.24, the exact sequence arising from the projection 
of a product onto a factor is not interesting. 

There is an unpointed version of the mapping fiber which is useful. 

Definition. Let p: E --+ B be a map. Then the fiber product is the space 

Fp = {(x, OJ) E E x BI: OJ(1) = p(x)}. 

Of course, the mapping fiber M p is a subspace of Fp. 
The fiber product and the mapping fiber are special cases of a general 

(categorical) construction. 

Definition. Let p: E --+ Band q: D --+ B be morphisms in a category. A solution 
is an ordered triple (X,f, g), where f: X --+ E and g: X --+ Dare morphisms 
such that qg = pf; that is, the following diagram commutes: 
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X 
g 

D -------> 

Ij j q 

E -------> B. 
p 

A pullback is a solution (Z, r, s) that is "best" in the following sense: for any 
solution (X,f, g), there exists a unique morphism 8: X ~ Z giving commu­
tativity of the diagram 

E -----------+'B 
p 

Pullback is the dual of pushout. 

EXERCISES 

11.39. If the pullback of two morphisms p: E --> Band q: D --> B exists, then it is unique 
to equivalence. 

11.40. In Top, the pullback of p: E --> Band q: B' --> B (where q: W f-> w(l)) is Fp. 
(Hint: Define r: Fp --> E by (x, w)f->X and s: Fp --> B' by (x, w)f->w.) 

11.41. For every pointed map p: E --> B, show that Mp is a pullback in Top*. 

11.42. Define A: E --> Fp by A(X) = (x, wxl, where Wx is the constant path at p(x); define 
/I: Fp --> E by (x, w) f-> x. Show that /lA = 1 and that A/I ~ 1, hence A is a 
homotopy equivalence. 

11.43. (Hurewicz). Let p: (E, eo) --> (B, bo) be continuous, and define IT: Fp --> B by 
(x, w) f-> w(O). Show that IT is a fibration with fiber Mp. (Hint: To construct a map 
G: X x I --> Fp, it suffices to find a commutative diagram 

X x I 

j 
E 

---> B' 

j 
---> B.) 

p 

11.44. Every map h: X --> Y is the composite h = ITA, where A is an injection that is a 
homotopy equivalence and IT is a fibration. (Hint: Consider X --> Fh --> Y.) 

We merely mention a dual notion (see Dold (1966) for a discussion of the 
duality). 

Definition. A pair (X, A) has the homotopy extension property with respect to 
a space Yif, for every map f: X x {O} ~ Yand every map G: A x I ~ Y with 
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G(a, 0) = f(a, 0) for every a E A, there exists a map F: X x I -+ Y making the 
following diagram commute: 

x X I 

u 
x X {OJ U A X I --------4j: Y 

JUG 

The inclusion i: A 4 X is called a cofibration4 if (X, A) has the homotopy 
extension property with respect to every space Y. 

EXAMPLE 11.11. If X is a CW complex and A is a CW subcomplex, then 
i: A 4 X is a cofibration (Theorem 8.33). 

It can be shown (see [Spanier, p. 97]) that if g: A -+ X is a cofibration and 
if A and X are locally compact Hausdorff, then for every space Y, the map 
g*: yX -+ yA is a fibration. In particular, if X is a locally compact CW complex 
and A is a CW subcomplex, then the restriction map i*: yX -+ yA is a fibration. 

We now proceed to the generalized notion of fibration mentioned earlier. 

Definition. A map p: E -+ B is a weak fibration (or Serre fiber space) if it has 
the homotopy lifting property with respect to every cube I", n ~ 0 (by defini­
tion, 1° is a singleton). 

EXERCISE 

11.45. Let L be the portion ofthe graph y = x-I for x E I. If Z+ is the set of positive 
integers, define 

E= LU U (I x {lin}) 
neZ+ 

E= 

/ 
(i) Show that p: E -+ I, defined by (x, y) f-+ x, is a weak fibration. (Hint: One 

can cover homotopies G: X x 1 -+ 1 for every path connected space X.) 
(ii) Show that p-l(l) and p-l(O) do not have the same homotopy type (Exercise 

1.5). Use Theorem 11.47 to conclude that p: E -+ 1 is not a fibration. (Here 

4 More generally, one says that any map g: A -+ X (where A is not necessarily a subspace of X) 
is a co fibration if the definition above is modified to read "G(a, 0) = J(g(a), 0) for every a E A". 
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is an explicit homotopy that cannot be covered. Let X = p-l(1), let j: X -> 

E be the inclusion, and let G: X x I -> I be a homotopy from the constant 
function at 1 to the constant function at 0.) 

Theorem 11.49. A weak fibration p: E --+ B has the homotopy lifting property 
with respect to every CW complex X. 

PROOF. Since a CW complex has the weak topology determined by its skele­
tons, it suffices to prove that there exists a map Gn , for every n ;::.: 0, making 
the following diagram commute: 

x(n) ~E 

where j: X --+ E and G: X x I --+ B are given, and 1. and Gn are appropriate 
restrictions. We prove this by induction on n. Let n = O. For each x E X(O), 

there exists a continuous map hx: {x} x 1--+ E with hAx, 0) = jo(x) and phx = 
Go, because p: E --+ B is a weak fibration. Because X(O) is discrete, the function 
Go: X(O) x 1--+ E given by Go(x, t) = hAx, t) is continuous. Assume now that 
n > 0 and that Gn- 1: x(n-1) x I --+ E exists; let e be an n-cell in X, and let 
<l>e: (Dn, sn-1) --+ (e U x(n-1), x(n-1») be the characteristic map of e. Consider the 
diagram 

Dn x I ) B, 
G(ll>e x 1) 

where hlDn x {O} = j<l>e and hlSn - 1 x 1= Gn- 1 (<l>e x 1) (note that h is well 
defined because the two functions agree on the overlap sn-1 X {O}). There is 
a homeomorphism of the pairs (1"+1, In) and (Dn x I, Dn x {O} U sn-1 X I); 
therefore the given homotopy lifting property provides a continuous map 
1'e: Dn x 1--+ E making the above diagram commute. It is now routine to check 
that ge: e x 1--+ E defined by ge(x, t) = 1'e(u, t), where x E e and U E Dn satisfies 
<l>e(u) = x, is a well defined continuous function giving commutativity of the 
diagram 

e ~E 

j /j, 
exI ~ B. 

G 
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All the maps ge' as e varies over all n-cells in X, may be assembled 5 to form 
a function Gn : x(n) X 1-+ E with Gnle = ge. It is easy to see that Gn extends Gn- 1 

and that Gn makes the appropriate diagram commute; finally, Gn is continuous 
because its restriction to every closed cell in x(n) x I (namely,e x {O}, e x {I}, 
and e x I) is continuous. 0 

The proof ofthe exactness ofthe homotopy sequence of a fibration p: E -+ B 
was based on the Puppe sequence of p. The coming proof of the exactness of 
the homotopy sequence of a weak fibration p: E -+ B with fiber F is based on 
the sequence of the pair (E, F), that is, on the Puppe sequence of the inclusion 
Fc..E. 

Theorem 11.50 (Serre). Let p: E -+ B be a weak fibration with fiber F = p-l(bo) 
for some bo E B. Then p~: nn(E, F) -+ nn(B, bo) is a bijection for all n ~ 1, where 
p'j = p andj: (E, xo) c.. (E, F) is the inclusion. 

Remark. If n ~ 2, p* is an isomorphism because p* is a homomorphism; if 
n = 1, however, nl(E, F) has no obvious group structure. 

PROOF. An easy induction on n shows that the dashed arrow exists making 
both triangles commute (because p: E -+ B is a weak fibration) 

10 ------+ E 

j//j, 
In ------+ B. 

Suppose that [g] E nn(B, bo); we may regard g as a map of pairs g: (In, in) -+ 

(B, bo). Choose eo E F and define j: 10 -+ E by!(*) = eo. The first paragraph 
shows that there exists a map G: In -+ E with pG = g. Since g(in) = {bo}, it 
follows that G(in) c F, hence G: (In, in) -+ (E, F). Therefore [G] E nn(E, F), 
p*([G]) = [g], and p* is surjective. 

Assume that f: (Dn, S"-l) -+ (E, F) is such that pf (more precisely, the 
map D"/sn-l -+ B induced by pf) is nullhomotopic; we claim that f is null­
homotopic. There is a homotopy of pointed pairs G: (D" x I, S"-l X 1)-+ 
(B, bo) with G(z, 0) = pf(z) and G(z, 1) = bo for all z E Dn. Consider the diagram 

(D" x {O})U(S"-l x I) ~ E 

j /~//~j, 
Dn x I , B, 

G 

5 A family {Bj: i E I} of subsets of a topological space X is locally finite if each x E X has a 
neighborhood meeting only finitely many Bj ; if each Bj is closed, then it is easy to see that UjeIBj 
is also closed; moreover there is a gluing lemma for a locally finite closed cover of a space. 
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where h(z, 0) = f(z) for all z E Dn and h(u, t) = xo, where Xo E F is the base­
point of E, u E sn-I, and tEl. Note that h is well defined (i.e., h(u, 0) = Xo for 
all u E sn-1) and that the diagram commutes. Since (Dn x I, (Dn x {O}) U 
(sn-1 x I)) is homeomorphic to (1"+1, 1"), there is a map G: Dn x 1 -+ E making 
both triangles commute. The map G is easily seen to be a homotopy of pointed 
pairs G:f ~ g, where g: Dn -+ F. But this says that [f] = [g] is in the image 
nn(F, F) -+ nn(E, F) under the map induced by inclusion. Since nn(F, F) = 0, 
by Exercise 11.33, it follows that [f] = 0, as desired. 

Ifn 2: 2, then nn(E, F) is a group and p* is a homomorphism. The argument 
above shows that ker p* is trivial and so p* is injective. Finally, let n = 1, and 
assume that [f1], [f2] E n1(E, F) and that [pf1] = [pf2] in n1(B). For i = 1, 
2,/;: (I, i) -+ (E, F) is a path with/;(O) = xo, the basepoint in E; let h = f1- 1 * f2. 
Since ph is nullhomotopic, it follows that h is nullhomotopic. But f2 ~ f1 * h, 
hence f2 ~ f1' as desired. 0 

Theorem 11.51. (Homotopy Sequence of a Weak Fibration). Let p: E -+ B 
be a weak fibration. Choose basepoints Xo E E and bo = p(xo) E B, so that 
F = p-1(bo) is the fiber. Then there is an exact sequence 

... -+ n2(E) ~ n2(B) -+ n1(F) -+ n1(E) ~ n1(B) -+ no(F) -+ no(E). 

PROOF. In the exact sequence of the pair (E, F), replace the relative homotopy 
group nn(E, F) with nn(B) for all n 2: 1; the map nn(E) -+ nn(B) is the composite 
P'.,J* = p*, where j: (E, xo) -+ (E, F) is the inclusion and p': (E, F) -+ (B, bo) is 
the map p regarded as a map of pairs. D 

One needs examples of weak fibrations in order to use this last result. Here 
is the most useful generalization of covering spaces. 

Definition. A locally trivial bundle with fiber F is a map p: E -+ B for which 
there is an open cover 11 of B and homeomorphisms 

({Jv: V x F -+ p-1(V) 

for all V E 11 such that 

P({Jv(v, x) = v for all (v, x) E V x F. 

The open sets V E 11 are called coordinate neighborhoods. 

In a locally trivial bundle, all fibers (i.e., all subspaces of E of the form p-1 (b)) 
are homeomorphic to F. 

EXAMPLE 11.12. Every covering space p: X -+ X is a locally trivial bundle. Note 
first that the fibers p-1(XO), as Xo varies over X, are homeomorphic discrete 
spaces, anyone of which we may denote by F. Define the coordinate neighbor­
hoods to be the admissible open sets. Thus, if V is admissible and Xo E V then 
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where F = p-l(XO) and Sy is the sheet over V containing y. Finally, define 
({Jy: V x F -4 p-l(V) by (v, y)r--+(pISytl(V); it is easy to see that ({Jy is a homeo­
morphism and that P({Jy(v, y) = V. 

EXAMPLE 11.13. Let Band F be topological spaces, let E = B x F, and let 
p: E -4 B be the projection (b, x) r--+ b, where b E B and x E F. Then p: E -4 B 
is a locally trivial bundle. Indeed, p: E -4 B is called a trivial bundle. 

Theorem 11.52. A locally trivial bundle p: E -4 B with fiber F is a weak 
fibration. 6 

PROOF. Consider the commutative diagram 

In ~ 

I 
In+l -----+ B. 

G 

The family of open sets ofthe form G-1 (V), where V ranges over the coordinate 
neighborhoods, is an open cover of the compact metric space r+l. If A is the 
Lebesgue number of this cover, then any subset A of r+l of diameter < A lies 
in some G-1(V), that is, G(A) c V. Triangulate r (say, by iterated barycentric 
subdivision) so that every simplex a has diameter < A/2; choose points 
o = to < t 1 < ... < tm = 1 so that tj+1 - tj < A/2 for all 0 :::;; j < m; it is easy 
to see that diam(a x [tj, tj+l]) < A for every a and every j. It follows that, 
for each a and j, there exists a coordinate neighborhood V = V",j with 
G(a x [tj , tj +1 ]) c V. 

Let L denote the simplicial complex of the triangulation of r, and let Vk) 
denote its k-skeleton. We prove by induction on k ~ 0 that there exist con­
tinuous maps hk giving commutativity of 

j 
----+~ E 

and with hk+l extending hk (we abuse notation and denote restrictions of i, j, 
and G by the same letters). 

Let the projections V x F -4 V and V x F -4 F be denoted by Cty and f3y, 
respectively. If e E p-l V (for a coordinate neighborhood V). then ({J;;le = 
(Cty({J;;le, f3y({Jj; l e). Since P({Jy(v, x) = v, however, iffollows that Cty({Jj;le = pe; 

6 We remind the reader that a fiber bundle p: E ..... B with B paracompact is a fibration (Example 
11.10). 
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hence, for all e E p-1 V, 

({Jv(pe, PV({Jy1 e) = e. 

Ifu E Vert(L) = VOl, then there is a coordinate neighborhood V containing 
G( {u} x [0, h1J). Define hU: {u} x [0, t1J ~ p-1 VeE by hU(u, t) = ({Jv(G(u, t), 
PV({Jy1 l(u». Now phU(u, t) = G(u, t), while h"(u, 0) = ({Jv(G(u, 0), Pv({Jy1l(u» = 

((Jv(pl(u), PV({Jy1 j(u» = j(u). Since VOl is discrete, one may glue these maps hU 

together to obtain a continuous map ho: VOl x [0, tJ ~ E; the induction 
begins. 

For the inductive step, let (J be a (k + 1)-simplex in L, and let V be 
a coordinate neighborhood containing G((J x [0, t1J). Since (J ~ Ik+l, an 
obvious modification of a stereographic retraction Ik+1 x I ~ (Ik+1 X {O}) U 
(ik+1 X I) gives a retraction ru: (J x [0, t1J ~ ((J x {O}) U (0- x [0, t1J). Define 

vu:((J x {O}) U (0- x [0,t1J)~p-1V 

by vul(J X {O} = lil(J X {O} and vulo- x [0, t1J = hklo- x [0, t 1J, the latter map 
existing by induction. Finally, define 

hU: (J x [0, t1J ~ p-1 VeE 

by 

hU(u, t) = ({Jv(G(u, t), PV({Jy1 vuraCU, t», 

for u E (J and t E [0, t1]. We claim that hUlo- x [0, t1J = hklo- x [0, t1J and 
that the following diagram commutes 

j 
(J ) p-1 V 

Ij /j, 
(J x [0, t 1 J ----4 v. 

G 

Clearly, phU(u, t) = P({Jv(G(u, t), stuff) = G(u, t), so that the lower triangle 
commutes. If (u, t) E ((J X {O}) U (0- x [0, t 1J), then ru(u, t) = (u, t). If (u, t) E 
(J x to}, then G!u, t) = g(u, 0) = pl(u) and vu(u, t) = leu); hence _h(J(u, t) = 

((Jv(pf(u), PV({Jy1 feu»~ = feu). If (u, t) EO-X [0, t1J, then G(u, t) = phk(u, t) and 
- - 1 - -vu(u, t) = hk(u, t); hence, hU(u, t) = ({Jv(phk(u, t), Pv({Jy hk(u, t» = hk(u, t), as 

desired. Since simplexes in L intersect in lower dimensional faces, the gluing 
lemma allows us to assemble all the maps hU to obtain a continuous map 
hk+1: L(k+1) x [0, t1J ~ E, as desired. In particular, for k = n, there is a con­
tinuous map G1 = hn making the following diagram commute. 

~E 

j yjP 
----4 B. 

G 
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Now repeat this construction with [t1' t2J playing the role of [to, t1J (for 
to = 0) to obtain a map In X [t1' t2J --+ E agreeing with G1 on r x {td. These 
maps can be glued together to obtain a map G2 : r x [0, t 2 J --+ E making the 
appropriate diagram commute. Iterate to obtain G = Gm defined on In X 

[0, tmJ = r X I, as desired. D 

Recall the constructions of complex and quaternionic projective spaces 
(Exercises 8.6 and 8.7). There is a map p: s2n+1 --+ cpn given by 

where Zj = x 2j+1 + ix2j+2. Also, there is a map q: s4n+3 --+ Hpn given by 

(x 1, ... , X 4n+4) = (ho, ... , hn) f--+ [ho, ... , hnJ, 

Remark. The maps p and q are called Hopf fibrations. 

Theorem 11.53. The Hopf fibrations p: s2n+1 --+ cpn and q: s4n+3 --+ Hpn are 
locally trivial bundles with fiber Sl and S3, respectively. 

PROOF. We show that p is a locally trivial bundle; the proof for q is similar. 
For each j with ° -::;, j -::;, n, define 

lj = {[zo, ... , znJ E cpn: Zj -# o}; 

each lj is open because its complement is the image of a (closed, hence) com­
pact subset of s2n+1. Define qy lj X Sl --+ p-1lj C s2n+1 by 

!pi[zo, ... , znJ, u) = (1Izjllu/~)(Zj-1Z0' ... , zj1zn)· 

A short computation shows that if A E C and A -# 0, then !piCAzo, ... , AZnJ, u) = 

!Pj([zo, ... , znJ, u), hence !Pj is well defined. Since the inverse of!pj is (easily seen 
to be) the map p-llj --+ lj X Sl given by (zo, ... , zn) f--+ ([zo, ... , znJ, z)llzjll), it 
follows that !Pj is a homeomorphism. Since P!Pj([zo, ... , znJ, u) = [zo, ... , znJ, 
it follows that p is a locally trivial bundle. D 

Corollary 11.54. 

(i) 1l:n(S3) ~ 1l:n(S2) for all n ~ 3. 
(ii) 1l:n(S4) ~ 1l:n- 1 (S3) for 1 -::;, n -::;, 6. 

PROOF. (i) Recall Exercise 8.2: Cp1 ~ S2. Thus p: S3 --+ S2 is a locally trivial 
bundle with fiber Sl and hence is a weak fibration. Therefore, by Theorem 
11.30, 1l:n(Sl) = ° for all n ~ 2, so that the exact homotopy sequence of a weak 
fibration gives 1l:n(S3) ~ 1l:n(S2) for all n ~ 3. 

(ii) Recall Exercise 8.2: Hp1 ~ S4. Thus q: S7 --+ S4 is a locally trivial bundle 
with fiber S3 and hence is a weak fibration. Therefore, by Theorem 11.31, 
1l:n(S7) = ° for all n -::;, 6, and the result now follows from the exact homotopy 
~~~ D 
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PROOF. 7r3(S3) ~ 7r3(Sl), by Corollary 11.54, and 7r3(S3) i= 0, by Theorem 
11.31. 0 

Remark. There is a nonassociative real division algebra called the Cayley 
numbers with additive group RB; it can be used to construct a locally trivial 
bundle h: SiS -+ SB with fiber S7 (see [Hilton (1953), p. 54] or [Steenrod, 
p. 108]) (this map is also called a Hopf fibration). 

EXAMPLE 11.14. There are spaces X and Y having isomorphic homology 
groups but different homotopy groups (see also Example 11.7). 

Let X = Sl V S4 and let Y = Cpl. It is easy to see that Hn(X) ~ Hn(Y) for 
all n ~ 0 (Hn = Z for n = 0, 2, 4 and Hn = 0 otherwise). Since S4 is a retract 
of X, 7r4(S4) is a retract (direct summand) of 7r4(X), and so 7r4(X) i= O. On the 
other hand, since there is a locally trivial bundle sln+i -+ cpn with fiber Si, 
Theorem 11.51 yields 7rq(Sln+i) ~ 7rq(cpn) for all q ~ 3 (for 7rq(Sl) = 0 for 
all q ~ 2). In particular, 7r4(CPl) ~ 7r4(SS) = 0 (Theorem 11.31). Therefore 
7r4 (X) *- 7r4(Y). 

Homotopy groups do not behave like homology groups: they need not 
vanish in degrees above the dimension of the space. Indeed there is no exact 
homology sequence of a fibration, and there is no excision for homotopy 
groups. For example, Rl is a covering space of Si x Si with discrete fiber 
Z x Z, and exactness of 

... -+ Hl(Z x Z) -+ Hz(RZ) -+ HZ(Sl x Si) -+ Hi (Z X Z) -+ ... 

would give 0 = Hl(RZ) ~ HZ(Sl x Si), which contradicts the fact that 
Hl(Sl x Si) ~ Z. To see that excision fails for homotopy, it suffices to show 
that the Mayer-Vietoris sequence is not exact for homotopy groups. Write 
SZ = AO U W, where A is the complement of the north pole and B is the 
complement of the south pole. Note that the equator Si is a pointed defor­
mation retract of A n B (deform along longitudes; as usual, the basepoint is 
(1,0,0)); it follows that 7rn(A n B) ~ 7rn(Sl) for all n. The Mayer-Vietoris 
sequence in homotopy would say that there is an exact sequence 

... -+ 7r3(A n B) -+ 7r3(A) EB 7r3(B) -+ 7r3(A U B) -+ 7rz(A n B) -+ ... , 

that is, an exact sequence 

... -+ 7r3(Sl) -+ 7r3(A) EB 7r3(B) -+ 7r3(SZ) -+ 7rZ(Sl) -+ .... 

Since 7r3(Sl) = 0 = 7rZ(Sl), there is an isomorphism 7r3(A) EB 7r3(B) ~ 7r3(SZ). 
But both A and B are contractible, hence 7r3(A) EB 7r3(B) = 0 (Corollary 11.28), 
and this contradicts 7r3(SZ) i= O. 
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[Milnor (1956), p. 279] shows that there is an analogue for homotopy 
groups of the Eilenberg-Steenrod theorem: there is a unique sequence of 
functors nn: C(j -+ Sets, where C(j is the category of all pointed pairs of topo­
logical spaces, that is, all (X, A, xo), where Xo E A c X, which satisfies the 
Eilenberg-Steenrod axioms with excision replaced by the exact sequence 
of a weak fibration, and with no (X, xo) the set of path components of X. Two 

comments are needed. First, Milnor calls Ao -+ A1 L A2 -+ A3 exact in Sets if 
Ao and A3 singletons implies that f is a bijection (this definition is much 
weaker than our definition "exact in Sets*"). Second, the precise statement of 
the fibration axiom is: if Bo is a path component of B, if p: E -+ Bo is a weak 
fibration, and if (B, A) is a pointed pair, then p*: nn(E, p-1(A)) -+ niB, A) is a 
bijection for all n ~ 1 (Theorem 11.51 is the special case B = Bo and A = {xo}). 

EXERCISES 

11.46. If p: E ..... B is a weak fibration with fiber F, then 1t2 (E, F) is an abelian group. 

11.47. (i) If q ~ 3, then 1ticpn) ~ 1tq(S2n+1). 
(ii) If q :5: 4n + 2, then 1tq(Hpn) ~ 1tq-l (S3). 

11.48. If p: E ..... B is a weak fibration with simply connected fibers, then P.: 1t1 (E) ..... 
1tl (B) is an isomorphism. 

11.49. Prove that 1t2(S2) ~ Z. (Hint: Use the Hopffibration p: S3 ..... S2.) 

11.50. Let O(n) denote the orthogonal group consisting of all n x n real matrices A 
with AtA = E (At is the transpose of A and E is the identity matrix). If en is the 
(column) vector (0, ... ,0, 1), then Aen is a unit vector in Rn and hence lies in 
sn-l. Using the fact (see [Gray, p. 89]) that p: O(n) ..... sn-l (defined by A t-+ Aen) 

is a locally trivial bundle with fiber O(n - 1), show that 1tq( O(n - 1)) ~ 1ti O(n)) 
for q < n - 2. Conclude, for fixed q and m, n ~ q + 2, that 1tiO(n)) ~ 1tq(O(m)). 

• 11.51. If X is a convergent sequence with its limit and Y is a countable discrete space, 
then X and Y do not have the same homotopy type (Exercise 1.5), Hn(X) ~ 
Hn(Y) for all n ~ 0, and 1tn(X, xo) ~ 1tn(Y, Yo) for all n ~ 0 and all basepoints 
Xo E X and Yo E Y. 

A Glimpse Ahead 

In Chapter 4, we constructed the Hurewicz map 

cp: n1(X, xo) -+ H 1(X) 

(singular homology), and we proved in Theorem 4.29 that cp induces an 
isomorphism n 1 (X, XO)ab'::; H 1(X), where n 1(X, XO)ab denotes the quotient 
group of n1 (X, xo) modulo its commutator subgroup. 

Let hn : An -+ sn be the natural map, where we identify sn with the quotient 
space Anjiln. Then hn is an n-cycle and cIs hn is a generator of Hisn) = Z. If 
we regard the elements of nn(X, xo) as pointed homotopy classes [sn, X], then 
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the Hurewicz map 

<fJn: nn(X, xo) -4 Hn(X) 

is defined by [aJ f---+cls ahn. Replacing the homology group Hn(X) by the 
reduced homology group fIn(X) = Hn(X, xo), one sees that <fJn is a natural 
transformation nn -4 fIn (both are functors Top* -4 Ab). Call a space X 
n-connected if nq(X, xo) = 0 for all q ~ n. 

Hurewicz Theorem. If X is an n-connected space with n ~ 2, then fIq(X) = 0 
for all q ~ n and the Hurewicz map is an isomorphism 

nn+l (X, xo) ~ fIn+! (X). 

A complete proof can be found in [Spanier, pp. 387-400J; indeed a more 
general version of the Hurewicz theorem for relative homotopy groups and 
relative homology groups is proved there. A shorter proof, but only for CW 
complexes, can be found in [Bott and Tu, p. 225J, [Maunder, pp. 322-328J, 
or [Whitehead, pp. 174-180]. Since sn is (n - I)-connected, it follows at once 
that nn(sn) ~ Z (this last isomorphism can be established without the Hure­
wicz theorem: e.g., see [Maunder, p. 288J). 

Suppose that X is a CW complex, A is a CW subcomplex, and f: A -4 Y 
is a continuous map. If e is an n-cell in X with e c A, then fl e defines a certain 
element c(f, e) of nn-l (Y), called its obstruction, and f can be extended to 
AU e if and only if c(f, e) = o. If one knew everything about homotopy groups, 
then one could see whether f extends to X by checking one cell at a time. This 
same problem leads to cohomology groups Hn(x, A; nn-l (Y)) whose coeffi­
cient groups are homotopy groups! See [Hu (1959)] or [Spanier, Chap. 8]. 

A point Xo E X is called nondegenerate if the inclusion {xo} c.., X is a 
cofibration. By Theorem 8.33, every O-cell of a CW complex is nondegenerate; 
indeed Lemma 8.30 shows that every point in a CW complex is nondegenerate. 

Freudenthal Suspension Theorem. Let X be an (n - I)-connected space hav­
ing a nondegenerate basepoint. Then the suspension homomorphism nq(X) -4 

nq+l (:l:X) is an isomorphism for all q ~ 2n - 2 and is a surjection for q = 

2n - 1. 

For a proof, see [Gray, p. 145J or [Whitehead, p. 369]. Specializing to 
X = sn thus relates low-dimensional homotopy groups of sn and sn+l. 

Here is a theorem with a similar conclusion; it also gives a condition for 
excision to hold for homotopy groups. 

Blakers-Massey Theorem. Let X = X~ U X~, and let i: (Xl' Xl n X 2 ) c.., 

(Xl' X 2 ) be the (excision) inclusion. If (Xl' Xl nX2 ) is (n - I)-connected and 
(X2 , Xl n X 2 ) is (m - I)-connected, then i*: nq(Xl , Xl n X 2 ) -4 nq(X, X 2 ) is an 
isomorphism for q < m + n - 2 and is a surjection for q = m + n - 2. 
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A proof can be found in [Gray, p. 143]. 

There is a homotopy analogue of Theorem 8.41. Let X be a path connected 
CW complex with CW subcomplex A. If A is k-connected and 1tl (X, A) = 0, 
then 1tj(X, A) ~ 1tj(X/A) for all i with 1 ~ i ~ k - 1. For a proof of a more 
general result, see [Gray, p. 144]. 

The following theorem indicates the convenience of CW complexes (one 
should expect good results because homotopy groups are concerned with 
maps sn -+ X, relative homotopy groups are concerned with maps (Dn, sn-l) -+ 

(X, A), and CW complexes are constructed from relative homeomorphisms 
(Dn, sn-l) -+ (X, A)). 

Whitehead Theorem.7 If X and Yare connected CW complexes, and iff: X -+ Y 
is a continuous map such that f*: 1tn(X, xo) -+ 1tiY,f(xo)) is an isomorphism for 
all n, then f is a homotopy equivalence (so that X and Y have the same homotopy 
type). 

Corollary. A connected CW complex X is contractible if and only if 1tn(X) = 0 
for all n. 

If Y is a one-point space, then the (constant) map f: X -+ Y induces iso­
morphisms between the trivial groups 1tn(X) and 1tn(Y). 

A proof of Whitehead's theorem is in [Maunder, p. 300]. Note that one 
must assume that the isomorphisms are all induced by one continuous map 
lest Example 11.7 give a counterexample. One must also assume that both 
spaces X and Yare CW complexes: there is an example ([Maunder, p. 301]) 
ofa path connected space X (a certain subspace ofR2 ) that is not contractible 
and for which 1tn(X) = 0 for all n; also see Exercise 11.51. 

There is an inductive way of "killing" homotopy groups that is an iterative 
version of the construction of a universal covering space. 

Theorem. Given a CW complex X and an integer n, there exists a CW complex 
Y containing X as a CW subcomplex such that 1tiX) ~ 1tq(Y) for all q < nand 
1tiY) = 0 for all q ~ n. 

A proof can be found in [Maunder, p. 303]. Using this theorem, one can 
prove that if 1t 1 , 1t2 , ••• is a sequence of groups with 1tn abelian for all n ~ 2 
(actually, 1tn must be a Z1tl-module for all n ~ 2), then there exists a connected 
CW complex X with 1tiX) ~ 1tn for all n ~ 1 (see [Whitehead, p. 216]). Thus 
there are simply connected spaces whose higher homotopy groups can be any 
preassigned abelian groups. Also, given any integer n ~ 1 and any group 1t 
(abelian if n ~ 2), there exists a connected CW complex K with 1tn(K) = 1t and 

7 After J. H. C. Whitehead, who invented CW complexes and proved many of the fundamental 
theorems about them. 
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niK) = 0 for all q "# n. Such a space K is called an Eilenberg-Mac Lane space, 
and it is denoted by K(n, n). If X is a CW complex having a contractible 
universal covering space, then Theorem 11.29 show that X is a K(n, 1), where 
n is the fundamental group of X; Riemann surfaces are examples of such spaces 
X. For a fixed nand n, the Whitehead theorem can be used to prove that any 
two K(n, n)'s have the same homotopy type. These spaces arise in studying 
(contravariant) cohomology theory, for if X is a CW complex and G is an 
abelian group, then Hn(x; G) ~ [X, K(G, n)]. Now it follows from Theorem 
11.20 that nK(n, n) "is" K(n, n + 1). One defines an .a-spectrum as a sequence 
of pointed spaces En, n ~ 0, and pointed maps en: nEn -+ En+1 such that 
en*: [X, En+1] -+ [X, nEn] is a bijection for all CW complexes X. Since nEn 
is an H-group, [X, nEn] and hence [X, En+1] can be regarded as a group 
(indeed as an abelian group). The sequence of contravariant functors [ ,En] 
is called a generalized cohomology theory; it satisfies all the Eilenberg­
Steenrod axioms save the dimension axiom, so that it is an extraordinary 
cohomology theory. A theorem of E. H. Brown states that almost any extra­
ordinary cohomology theory arises from some n-spectrum. For a discussion 
of these ideas, see [Atiyah], [Dyer], and [Maunder, §8.4]. 

The homology groups of the Eilenberg-Mac Lane spaces K(n, 1) are the 
object of study of cohomology of groups (see [Brown]). The universal covering 
space X of K(n, 1) exists (Theorem 10.38) and is a CW complex (Theorem 
10.43). By definition, n1(X) = 0, while nn(X) ~ nn(K(n, 1)) = 0 for all n ~ 2 
(Theorem 11.29). It follows from the corollary to Whitehead's theorem that 
X is contractible. Now n ~ n1 (K(n, 1)) acts properly on X, and the orbit space 
Xln is homeomorphic to K(n, 1) (Lemma 10.49). But if G is an abelian group, 
then there are isomorphisms 

H"(Xln; G) ~ H"(n; G) 

(see [Mac Lane, p. 136]; the groups on the right-hand side are the cohomology 
groups of the group n, and these are defined purely algebraically; the groups 
on the left-hand side are cohomology groups of the space X In (with coefficients 
in G) and are discussed in Chapter 12). 

If X and Yare CW complexes with the same homology groups (Hn(X) ~ 
Hn(Y) for all n) and the same homotopy groups (nn(X) ~ nn(Y) for all n), then 
do X and Y have the same homotopy type? The answer is "no". However, 
two CW complexes have the same homotopy type if and only if they have the 
same homology groups, the same homotopy groups, and the same Postnikov 
invariants. 

After studying the fundamental group and computing n 1 (Sl), one can prove 
the fundamental theorem of algebra; after studying homology, one can, after 
computing H*(sn), prove interesting results about euclidean space. In Chapter 
12, we shall study cohomology; after computing the cohomology of Rpn 
mod 2, we shall prove more nice theorems about euclidean space. What are 
applications of homotopy groups? 

Homotopy theory enters into solutions of problems, but usually not as the 
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only ingredient of a proof. A real division algebra is a finite-dimensional real 
vector space equipped with a bilinear mUltiplication having a two-sided 
identity element and such that each nonzero element has a two-sided multi­
plicative inverse. Examples of real division algebras are the real numbers, 
the complex numbers, the real quaternions, and an eight-dimensional non­
associative algebra called the Cayley numbers. It is a theorem of J. F. Adams 
that there are no other examples. To each element of 1I:2ft- 1 (Sft), one can 
associate an integer called its Hopf invariant. It was known that if 1I:2ft- 1 (Sft) 
contains no elements of Hopf invariant one, then there is no real division 
algebra of dimension n; Adams proved that such elements exist only if n = 1, 
2,4,8; see [Atiyah, p. 137] for a much simpler proof using K-theory. (Unfor­
tunately for our point, there is an equivalent statement involving "cohomology 
operations", and Adams' proof contains only a bit of homotopy theory.) 

Algebraic K-theory is an area using homotopy theory in an essential way; 
here is one version of it. Let CC be an exact category; that is, CC is a full 
subcategory of Ab that is closed under extensions: if 

(1) 

is an exact sequence with A, C E Obj(CC), then BE Obj(CC). Grothendieck 
defined an abelian group Ko(re) as the abelian group having generators Obj(re) 
and relations A + C = B if there is an exact sequence (1). Later, in analogy 
with topological K -theory, Bass invented a group K 1 (re), the Whitehead group, 
and he constructed a 5-term exact sequence involving Ko(CC) and K1(CC). 
Quillen then constructed groups Kj(CC) for all i ~ 0 agreeing with the earlier 
groups when i = 0 and i = 1. To CC he first associated a new category QCC, the 
Q-construction, he then took its classifying space BQCC, which is a functorial 
CW-complex, and then defined 

Kj(re) = 1I:i+1 (BQCC). 



CHAPTER 12 

Cohomology 

Cohomology is a contravariant version of homology. Although it is not 
difficult to define, let us first give some background for it. 

Differential Forms 

Throughout this section, X shall denote an open connected subset of Rn. 
Recall that a function a: X --+ R is a COO-function if its partial derivatives 
aka/ax~, ... , aka/ax: exist for all k ~ 1. The family A(X) of all COO-functions 
on X is a commutative ring under pointwise operations: if a, f3 E A(X), then 
a + f3: x ~ a(x) + f3(x) and af3: x ~ a(x)f3(x); the unit is the constant function 
a(x) == 1. 

Definition. If A is a commutative ring with 1, an A-module is an abelian group 
M equipped with a scalar multiplication A x M --+ M, denoted by (a, m) ~ am, 
such that the following identities hold for all m, m' EM and a, a', 1 E A: 

(i) a(m + m') = am + am'; 
(ii) (a + a')m = am + a'm; 
(iii) (aa')m = a(a'm); 
(iv) 1m = m. 

If A = Z, then an A-module is merely an abelian group; if A is a field, 
then an A-module is a vector space over A. The ring A itself can be 
regarded as an A-module by taking scalar multiplication to be the given 
multiplication of A. 

Given A-modules M1 , ... , M n , forget the scalar mUltiplication for a 
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moment, and form the direct sum of the abelian groups M l' ... , Mn. Then 
M! EB ... EB Mn is an A-module, called the direct sum, if one defines 
a(ml' ... , mn) = (am!, ... , amn). In particular, the direct sum of n copies of 
A, denoted by A(n), is called a free A-module. If e; E A(n) is the n-tuple having 
1 in the ith position and zeros elsewhere, then it is easy to see that every 
mEA (n) has a unique expression of the form 

a;E A. 

Definition. A subset {b!, ... , bn} of An is an A-basis if each mEA (n) has a 
unique expression of the form m = I a;b; with a; E A. 

Thus {e 1 , ... , en} is an A-basis of A(n). Let A = A(X), the ring of 
COO-functions on X eRn. In A(x)(n), rename e; as dx;, so that each 
mE A(x)(n) has a unique expression of the form 

c(; E A(X). 

For integration, one needs expressions of the form dX l dX2··· dx p ; 

moreover, an expression of the form dx dx should be zero. 

Definition. If M is an A-module and p ~ 0, then the pth exterior power of 
M, denoted by i'tM, is the abelian group with the following presentation: 

Generators: A x M x ... x M (p factors M). 

Relations: For all a, a' E A and mi , m; E M, 

+ (a, m1 , ... , m;, ... , mp) for all i; 

(a + a', m1 , ... , mp) = (a, ml , ... , mp) + (a', ml , ... , mp); 

(aa', ml , ... , mi , ..• , mp) = (a, m1 , ... , a'm;, ... , mp) for all i; 

(a, m!, . .. , mp) = ° ifm; = mj for some i i= j. 

If p = 0, then /\oM = A, and if p = 1, then /\lM ~ M. If F is the free 
abelian group with basis A x M x ... x M and if S is the subgroup of F 
generated by the relations, then the coset (a, m1 , ... , mp) + S is denoted by 
am1 /\ ••• /\ mp. Thus every element of /\p M has an expression (not neces­
sarily unique) of the form Ij ajm{ /\ ... /\ m~, where aj E A and m{ E M. It is 
now plain that /\PM is an A-module, because we can multiply any element 
by a E A (and the axioms will be satisfied). 

Observe that m /\ m = ° for all m E M. Hence, for m, m' E M, 

° = (m + m') /\ (m + m') 

= m /\ m + m /\ m' + m' /\ m + m' /\ m' 

= m /\ m' + m' /\ m. 
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Therefore m' /\ m = - m /\ m' for all m, m' E M. A similar argument when 
p ~ 2 shows that interchanging two factors of m1 /\ •.• /\ mp reverses the 
sIgn. 

If M = A(n) is a free A-module, then /'tM is also a free A-module; indeed, 
if {e1, ... , en} is an A-basis of M, then {e i1 /\ ... /\ eip : 1 :s;; i1 < i2 < ... < 
ip:S;; n} is an A-basis of APM (see [Greub, p. 105]). Each element of Ap(A(n») 
thus has a unique expression 

L ail ... ipeil /\ ... /\ e ip ' 

where ai, ... ip E A and 1 :s;; i1 < i2 < ... < ip :s;; n. Furthermore, if p > n, then 
APM = O. It follows that a basis of Ap(A(n») has binomial coefficient G) 
elements. 

Definition. If X is a connected open subset of Rn and if p ~ 0, write 
QP(X) = Ap(A(x)(n»); an element OJ E QP(X) is called a differential p-form 
on X. 

Definition. The exterior derivative dP: QP(X) ~ QP+1(X) is defined induc­
tively. If 0( E QO(X) = A(X), then 0( is a COO-function, and 

dO(O() = t (~O()dXj; 
J=l uXj 

if p ~ 1, then OJ E QP(X) has the form OJ = L O(i, ... ip dXil /\ ... /\ dx ip ' and 

dP(OJ) = "dO(O(. .) /\ dx· /\ ... /\ dx· . i..J "1 ••• 1p"1 lp 

Note that one can rewrite dP(OJ) with subscripts in ascending order by 
repeated use of the identities dXi /\ dXi = 0 and dXj /\ dXi = - dXi /\ dxj . 

A connected open set X in Rn thus determines a sequence of 
homomorphisms 

dO d' dn- ' 0---+ QO(X) ---+ Q1(X) ---+ ... ---+ Qn(x) ---+ 0; 

moreover, there is a straightforward computation showing that dd = O. In 
other words, this sequence is a complex; its homology groups are called the 
de Rham cohomology of X (this discussion can be extended to differentiable 
n-manifolds X; see [Bott and Tu] or [Warner]). 

Consider the special case n = 3, so that the complex is 

o ~ QO(X) ~ Ql(X) ~ Q2(X) ~ Q3(X) ~ O. 

If OJ E QO(X), then OJ = O((x, y, z), a COO-function on X, and 

° 00( 00( 00( 
d OJ=-dx+-dy+-dz ax oy OZ' 

a 1-form resembling the gradient, grad 0(. If OJ E Ql(X), then OJ = ex dx + 
f3 dy + y dz, and a simple calculation (using dXi /\ dXi = 0 and dXj /\ dXi = 
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- dXi 1\ dxj ) gives 

dIw = (0/3 _ oa)dX 1\ dy + (OY _ o/3)dY 1\ dz + (oa _ OY)dZ 1\ dx, 
~ ~ ~ & & ~ 

a 2-form resembling curl w. If w E !}2(X), then w = A. dy 1\ dz + Il dz 1\ dx 
+ v dx 1\ dy, and 

2 (OA. Oil ov) 
d w = ox + oy + OZ dx 1\ dy 1\ dz, 

a 3-form resembling the divergence, div w. 
These are not mere resemblances. Since !}I(X) has an A(X)-basis 

{dx, dy, dz}, dOw is grad w when w is a O-form; since !}2(X) has an 
A(X)-basis {dx 1\ dy, dy 1\ dz, dz 1\ dx}, dIw is curl w when w is a i-form; 
since !}3(X) has an A(X)-basis {dx 1\ dy 1\ dz}, d2w is div w when w is a 
2-form. That dIdo = 0 and d2d I = 0 are therefore the familiar identities curl 
grad = 0 and div curl = O. 

In advanced calculus, a i-form w is called closed if dw = 0, and it is called 
exact if w = grad a for some COO-function a. In the language of cohomology, 
closed i-forms are i-cocycles and exact i-forms are i-coboundaries. The name 
"exact sequence" was suggested by this context, because every closed form is 
exact if and only if the corresponding cohomology group is zero. Similar 
remarks hold for 2-forms and 3-forms. 

Consider the special case n = 2; the complex of differentials is 

0-+ !}O(X) -+ !}I(X) -+ !}2(X) -+ o. 
If w is a O-form, then w is a COO-function a(x, y), and 

° oa oa 
d w = ox dx + oydy. 

If w = P dx + Q dy is a i-form, then 

dIw = (oQ _ OP)dX 1\ dy. 
ox oy 

The special case n = 1 is also of interest. If w = a(x) is a O-form, then 
dOw = (oa/ox) dx = (da/dx) dx. 

Each differential p-form w on X has a unique expression 

w = "a. . dx· 1\ ••• 1\ dx· L.... 11···1p 11 lp' 

where 1 ~ i l < i2 < ... < ip ~ nand ai, ... ip is a COO-function on X. Dif­
ferential forms are required for integration. A singular p-simplex a: /j'p -+ X 
determines n coordinate functions ai (if y E /jP, then a(y) = (al(y), ... , an(y)) E 

X eRn). Given a p-form wand a singular p-simplex a, define 
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where O"#w = L rli, ... ip O"J dXi, ... dXi)f 0" is differentiable and J is the Jacobian 
det(oO"i/oxi), and O"#w = 0 otherwise (if p ~ 2, the right side is a multiple 
integral). More generally, if c = L kiO"i is a p-chain (ki E Z), that is, c E Sp(X), 
then 

Thus every differential p-form W on X defines, via integration, a real-valued 
function on Sp(X). In fact, integration gives a homomorphism QP(X)--+ 
Hom(Sp(X), R), namely, a p-form w defines c 1--+ Ie win Hom(Sp(X), R). 

There is a generalized Stokes theorem (see [Bott and Tu, p. 31]). 

Theorem. If c is a (p + I)-chain and w is a differential p-form, then 

f dw = f W. 
e oe 

The classical Stokes theorem is the special case n = 3 and p = 2; 
Green's theorem is the case n = 2 and p = 1; the fundamental theorem 
of calculus is the case n = 1 and p = O. 

Cohomology Groups 

For a fixed abelian group G, recall that Hom( ,G): Ab --+ Ab is a con­
travariant functor: if cp: A --+ B is a homomorphism, then cp#: Hom(B, G)--+ 
Hom(A, G) is defined by cp#: fl--+ fcp (we have modified our usual notation by 
using superscript # instead of *). Also, Hom( ,G) is an additive functor, 
hence cp# is the zero map whenever cp is (Exercise 9.12). Recall that differential 
forms suggest the functor Hom ( ,R), because, as we observed earlier, inte­
gration defines a homomorphism QP(X) --+ Hom(Sp(X), R). 

Lemma 12.1. If (S*(X), 0) is the singular complex of a space X, then, for 
every abelian group G, 

ar af 
0----. Hom(So(X), G) ----. Hom(Sl(X), G) ----. Hom(S2(X), G) ----. ... 

is a complex (denoted by Hom(S*(X), G)). 

PROOF. For every n ~ 1, 

0;:+10;: = (OnOn+1)# = 0# = O. D 

Of course, the lemma holds if one begins with simplicial chains or with 
cellular chains. 

When F is a free abelian group with basis B, then the elements cp E 

Hom(F, G) are easy to describe; they correspond to functions B --+ G. Plainly, 
every homomorphism cp: F --+ G determines the function cplB; conversely, 
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Theorem 4.1 shows that every such function determines a unique homo­
morphism. In particular, Hom(Sp(X), G) corresponds to G-valued functions 
on the p-simplexes in X. 

Some notational changes are needed because of the contravariance of 
Hom( ,G), for the differentiations in a complex (A*, d) must lower degrees 
by 1; for all n, dn: An -+ An- 1. Applying Hom( ,G) to (S*(X), a) gives 

... +- Hom(Sn+1 (X), G) !f.:- Hom(Sn(X), G) !!- Hom(Sn_1 (X), G) +- .... 

If we write Hom(Sn(X), G) = A-n and a!t1 = d_n, then our notation is con­
sistent with the definition of complex: 

d_n +1 d_ n 
... --+ A-n+1 --+ A-n --+ A_n- 1 --+ ... , 

and (A*, d) is a complex all of whose nonzero terms have nonpositive degree. 
It is now clear how to define cycles, boundaries, and homology: 

H _n(Hom(S*(X), G)) = H -n(A*) = ker d_n/im d_n+1 = ker a:+1/im a:. 

However, negative indices are inconvenient, and one eliminates signs by 
raising indices. Thus we set 

An = A-n and ()n = d_n; 
that is, 

An = Hom(Sn(X), G), Hn(S*(X), G) = ker a:+dim a:, and ()n = 0:+1, 

We repeat the definition of (): if f: Sn(X) -+ G is a homomorphism, then 

()n(f) = fan+1 • 

Because the complex (Hom(S*(X), G), ()) involves contravariant functors, all 
the usual terms acquire the prefix "co". 

Definition. Let G be an abelian group and let X be a space. If n 2:': 0, then 
the group of (singular) n-cochains in X with coefficients G is Hom(Sn(X), G). 
The group of n-cocycles is ker ()n and is denoted by zn(x; G); the group of 
n-coboundaries is im ()n-1 and is denoted by Bn(x; G). The nth cohomology 
group of X with coefficients G is 

H"(X; G) = zn(x; G)/Bn(x; G) = ker {)n/im ()n-1 = ker a!tdim an #. 

An element of Hn(x; G) is a coset ( + Bn(x; G), where ( is an n-cocycle; it is 
called a cohomology class and it is denoted by cls (. 

Theorem 12.2. For each fixed n ~ 0 and each abelian group G, cohomology is 
a contravariant functor 

H"( ; G): Top -+ Ab. 

PROOF. We have already definedHn on objects. Iff: X -+ Yis continuous, then 
f#: S*(X) -+ S*(Y) is a chain map; that is, the following diagram commutes: 
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o 
. .. ----+ Sn(X) ----+ Sn-1 (X) ----+ '" 

If,,, If . 
... ----+ Sn(Y) ----+ Sn-1(Y) ----+ .... 

Applying the contravariant functor Hom( ,G) gives the commutative diagram 

~ Hom(Sn(X), G) 
<5 

Hom(Sn-1 (X), G) ~ ~ ... 

1 f' 
<5' 

1 f' 

~ Hom(Sn(Y), G) ~ Hom(Sn-1(Y)' G) ~ ... , 

where f#: h'r-+ hf # for every h: Sn(Y) -+ G. It is easy to see, as in Lemma 4.9, 
that f#(zn(y; G)) c zn(x; G) and f#(Bn(y; G)) c Bn(x; G). Hence f# In­

duces a homomorphism 

by 

( + Bn(y; G)'r-+ f#(O + Bn(x; G) = If# + Bn(x; G) 

(where (: Sn(Y) -+ G is a cocycle); that is, cls ('r-+cls«(f#). 
It is routine to see that (fg)* = g*f* and 1 * = 1. 

Theorem 12.3 (Dimension Axiom). If X is a one-point space, then 

HP(K G) = {G if p = 0 
, 0 if p > O. 

o 

PROOF. We saw in Theorem 4.12 that every Sn(X) ~ Z, that an = 0 when n is 
odd, and that an is an isomorphism when n is even and positive. It is now an 
easy exercise to prove that HP(X; G) = 0 for all p ~ 1. 

Let us compute HO(X; G). The end of the singular complex is 
0, 00 

Sl(X) -+ So(X) -+ 0, 

where Sl (X) ~ Z ~ So(X) and 01 = O. Applying Hom( ,G) gives 
0# 0# 

o ~ Hom(So(X), G) ~ Hom(Sl (X), G). 

Therefore, since 00 = 0, 

HO(X; G) = ker of' jim at = ker of' = Hom(So(X), G). 

But Hom(Z, G) ~ G (Example 9.2), so that HO(X; G) ~ G. 0 

Theorem 12.4 (Homotopy Axiom). If f, g: X -+ Yare homotopic, then they 
induce the same homomorphisms Hn(y; G) -+ Hn(x; G) for all n ~ O. 
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PROOF. In the proof of Theorem 4.23, the problem was normalized to show 
that Ao, Ai: X --+ X x I induce the same homomorphisms on homology 
groups (where Ao: x H (x, 0) and Ai: x H (x, 1)). This last fact was established 
by constructing a chain homotopy P = {Pn: Sn(X) --+ Sn+i(Y)}' that is, 

Ai# - )"0# = On+1 Pn + Pn-ion· 

Applying the functor Hom( ,G), however, shows that p# is a chain homo­
topy for At and At; the easy details are left to the reader. 0 

We must do a bit of algebra before we can define relative cohomology 
groups. The next property of the functor Hom( ,G) is called left exactness. 

Lemma 12.5. Let G be an abelian group. If A' ~ A .! A" --+ 0 is an exact 
sequence of abelian groups, then there is an exact sequence 

p# i# 
o ~ Hom(A", G) ~ Hom(A, G) ~ Hom(A', G). 

PROOF. p# is injective. Assume that f: A" --+ G satisfies 0 = p#(f) = fp; thus 
f annihilates im p. Since p is surjective, f = O. 

im p# c ker i#.1f f: A" --+ G, then i#p#(f) = fpi = 0 because pi = o. 
ker i# c im p#. Assume that g: A --+ G satisfies 0 = i#(g) = gi. Define 

g: A" --+ G by g(a") = g(a) if p(a) = a". Now 9 is well defined, because if 
p(ai ) = a", then a - a i E ker p = im i, and so a - ai = i(a') for some a' E A'. 
Therefore g(a - ad = gi(a') = 0, and so g(a) = g(ad. But p#(g) = gp = g, 
since gp(a) = g(a) for all a E A. 0 

Even if we assume that i is injective, it does not follow that i# is surjective, 
that is, applying Hom to a short exact sequence yields another short exact 
sequence. If the short exact sequence is split, however, then Exercise 9.13 shows 
that it does remain (split) exact after applying Hom( ,G). 

EXAMPLE 12.1. Let G = Z, and consider the exact sequence 
i o --+ Z 4 Q --+ Q/Z --+ O. 

Now i#: Hom(Q, Z) --+ Hom(Z, Z) cannot be surjective, because Hom(Q, Z) = 0 
and Hom(Z, Z) = Z =I o. 

Corollary 12.6. Let G be an abelian group. 

(i) Hom(Z, G) ~ G. 
(ii) Hom(Z/mZ, G) ~ G[m] = {x E G: mx = O}. 
(iii) Hom(Z/mZ, Z/nZ) ~ Z/dZ, where d = gcd{m, n}. 

PROOF. (i) In Example 9.2, we saw that B: fH f(1) is an isomorphism 
Hbm(Z, G) ~ G (which is a constituent of a natural equivalence). 
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(ii) Apply Hom( ,G) to the exact sequence 
m p o -+ Z -+ Z -+ Z/mZ -+ 0, 
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where the first map is multiplication by m, and the second map p is the natural 
map. There is an exact sequence 

p# m# 
0--+ Hom(Z/mZ, G) --+ Hom(Z, G) --+ Hom(Z, G). 

Hence Hom(Z/mZ, G):;:;; im p# = ker m#. But m# is also multiplication by 
m, and so the result follows from the commutative diagram 

p# 

Hom(Z/mZ, ~r G) 

G 
m 

-----+ 

Hom(Z, G) 

I" 
G. 

(iii) This is a consequence of part (ii), because (Z/nZ) [m] :;:;; Z/dZ. 0 

Corollary 12.7. If A and B are known fg. abelian groups, then Hom(A, B) is 
also known. 

PROOF. The fundamental theorem off.g. abelian groups says that such a group 
G is a direct sum 

G = F $ CI $ ... EB Ck , 

where F is free abelian of finite rank, Ci is cyclic of order mi , and mIl m2 1· . ·Imk ; 

moreover, these summands are uniquely determined to isomorphism. By 
Exercise 9.13, both functors Hom( ,B) and Hom(A, ) preserve finite direct 
sums, hence the determinatIOn of Hom(A, B) is reduced to the special case 
when both A and B are cyclic, namely, Corollary 12.6. 0 

Lemma 12.S. Let G be an abelian group and let A be a subspace of a space X. 
For every n ~ 0, there is an exact sequence of abelian groups 

Hence there is a short exact sequence of complexes 

PROOF. By Exercise 5.13, Sn(X)jSn(A) is a free abelian group. Hence 0-+ 
Sn(A) -+ Sn(X) -+ Sn(X)/Sn(A) -+ 0 is a split short exact sequence (Corollary 9.2 
and Exercise 9.10), and so Exercise 9.13(i) shows that the sequence remains 
exact after applying Hom( ,G). Finally, Exercise 5.8 shows that the sequence 
of complexes is exact. 0 

Definition. If A is a subspace of X and if G is an abelian group, then the nth 
relative cohomology group with coefficients G is 
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H"(X, A; G) = H_n Hom(S*(X)/S*(A), G)). 

Recall that an+1: Sn+l (X)/Sn+1 (A) --+ Sn(X)/Sn(A) is defined by c + Sn+1 (A) 1--+ 

0n+l C + Sn(A). Therefore 

H"(X, A; G) = ker(an+1)# /im(an)#. 

Since there is a short exact sequence of complexes 

0--+ Hom(S*(X)/S*(A), G) --+ Hom(S*(X), G) --+ Hom(S*(A), G) --+ 0, 

Lemma 5.5 applies at once to give a connecting homomorphism 

d: Hn(A; G) --+ H"+1(X, A; G). 

Theorem 12.9 (Long Exact Sequence). If A is a subspace of X and if G is an 
abelian group, there is an exact sequence 

d 0--+ HO(X, A; G) --+ HO(X; G) --+ HO(A; G) --+ Hl(X, A; G) --+ Hl(X; G) --+ .... 

Moreover, the connecting homomorphisms are natural. 

PROOF. Theorems 5.6 and 5.7. D 

Theorem 12.10 (Excision). Let X 1 and X z be subspaces of X with X = X? u xg. 
Then the inclusion j: (Xl' Xl n Xz) c... (X, Xz) induces isomorphisms for all 
n 2 0, 

PROOF. The straightforward adaptation of the proof of Theorem 6.17 is left to 
the reader. D 

It has now been shown that all the obvious analogues of the Eilenberg­
Steenrod axioms hold for cohomology. 

EXERCISES 

*12.1. IfGisan abelian group, then Hom(LA., G) ~ n Hom(A., G), where the group 
on the right consists of all elements in the cartesian product under coordinate­
wise addition. (Hint: If the projection LA. ---> A. is denoted by p. and if 
f: LA. ---> G, then ft->(pJ) is an isomorphism.) 

12.2. (i) If {X.: A E A} is the set of path components of X, prove that, for every n :2: 0, 

W(X; G) ~ n W(X.; G) . 
• 

(Hint: Use Exercise 12.1.) 
(ii) If X is a nonempty path conqected space, then HO(X; G) ~ G. 
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12.3. If X and Y have the same homotopy type, then 

W(X; G) ~ Wry; G) for all n ~ O. 

12.4. State and prove the Mayer-Vietoris theorem for cohomology. 

12.5. Compute HP(S"; G). 
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If X is a simplicial complex, then the two algebraic modifications (cohomol­
ogy and homology with coefficients) are defined as for the singular theory; 
merely replace the complex of singular chains S*(X) by the complex of 
simplicial chains. Similarly, if X is a CW complex, replace S*(X) by the 
complex of cellular chains. 

Universal Coefficients Theorems for Cohomology 

The homology groups of a space X are defined in two steps: a topological step 
that involves setting up a chain complex (S*(X) in the singular case) and an 
algebraic step that associates homology groups to a complex. Since cohom­
ology has been defined by modifying the algebraic half of the construction, it 
should not be surprising that there is an algebraic way of relating homology 
groups and cohomology groups. 

There are two universal coefficients theorems for cohomology: the first 
(Theorem 12.11) shows how W(X; G) is determined by H*(X); the second 
(Theorem 12.15) shows how W(X; G) is determined by H*(X) = H*(X; Z). 

Just as an investigation ofker(A' ® G -+ A ® G) yields Tor, so does investi­
gation of coker(Hom(A, G) -+ Hom(A', G)) yield Ext. 

Definition. For each abelian group A, choose an exact sequence 0 -+ R ~ F -+ 

A -+ 0 with F (and hence R) free abelian. For any abelian group G, define 

Ext(A, G) = coker i# = Hom(R, G)/i# Hom(F, G). 

Now Ext is actually a functor of two variables (having the same variances 
as Hom), and it is independent of the choice of presentation 0 -+ R -+ F -+ A -+ O. 
The "sophisticated" way we viewed Tor (in Chapter 9) can be adapted to give 
the definition of Ext on morphisms; in the discussion there, apply the functor 
Hom( ,G) instead of the tensor product functor. 

(The reader may want a less sophisticated description of Ext(A, G). Let 
Z(A, G) be the abelian group of all functions f: G x G -+ A (under pointwise 
addition) satisfying the following identities for all x, y, Z E G: 

f(x,O) = 0 = f(O, x); 

f(y, z) - f(x + y, z) + f(x, y + z) - f(x, y) = 0; 

f(x, y) = f(y, x). 
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Let B(A, G) be the set of all functions g: G x G -+ A of the form g(x, y) = 
oc(y) - oc(x + y) + oc(x), where oc: G -+ A is a function with oc(O) = O. Then 
B(A, G) is a subgroup of Z(A, G), and it can be shown that Ext(A, G) = 
Z(A, G)/B(A, G).) 

Before we give the basic properties of Ext, we introduce a class of groups. 

Definition. An abelian group G is divisible if, for every x E G and every integer 
n > 0, there exists y E G with ny = x. 

EXAMPLE 12.2. The following groups are divisible: 

Q; R; C; SI; Q/Z; R/Z. 

Proofs of the following facts can be found in any book on homological 
algebra. 

[Ext 1]. If 0 -+ A' -+ A -+ A" -+ 0 is a short exact sequence, then there is an 
exact sequence 

0-+ Hom(A", G) -+ Hom(A, G) -+ Hom(A', G) -+ Ext(A", G) -+ Ext(A, G) -+ Ext(A', G) -+ o. 

[Ext 1']. If 0 -+ G' -+ G -+ G" -+ 0 is a short exact sequence, then there is an 
exact sequence 

0-+ Hom(A, G') -+ Hom(A, G) -+ Hom(A, G") -+ Ext(A, G') -+ Ext(A, G) -+ Ext(A, G") -+ o. 

[Ext 2]. If F is free abelian, then 

Ext(F, G) = O. 

[Ext 2']. If D is divisible, then 

Ext(A, D) = O. 

If {Ai: j E J} is a family of abelian groups, then n Ai is the abelian group 
whose elements are all J-tuples (ai ) under coordinatewise addition (thus, L Ai 
is the subgroup of n Ai consisting of all J-tuples with only finitely many 
nonzero coordinates). When the index set J is finite, L Ai = n Ai. 

[Ext 3]. Ext(L Ai' G) ~ n Ext(Ai' G). 
[Ext 3']. Ext(A, n G) ~ n Ext(A, Gi )· 

[Ext 4]. Ext(Z/mZ, G) ~ G/mG. 

Using these properties, one can compute Ext(A, G) whenever A and G are 
f.g. abelian groups. 

Remark. The analogue of [Tor 5] (Tor(A, B) ~ Tor(B, A)) is false for Ext; it 
is easy to see that Ext(Z/mZ, Z) * Ext(Z, Z/mZ), for example. 
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Let A be an abelian group, and let 0 -+ R -+ F -+ A -+ 0 be an exact sequence 
with F free abelian. Since Ext(F, G) = 0, by [Ext 2], the exact sequence given 
in [Ext 1] shows that Ext(A, G) ~ coker(Hom(F, G) -+ Hom(R, G)); we have 
recaptured the definition of Ext. 

There is a cohomology version of the universal coefficients theorem 
(Theorem 9.32) that shows that the homology groups of a space determine 
its cohomology groups; there is also a cohomology version of the Kiinneth 
formula (Theorem 9.37). 

We begin by constructing the "obvious" homomorphism /3: Hn(Hom(S*, G))-+ 
Hom(Hn(S*), G), where (S*, 8) is a chain complex and G is an abelian group. 
Let cp be an n-cocycle, that is, cp E Hom(Sn, G) and 0 = (j(cp) = cp8n+1 • Now 
cp: Sn -+ G and 0 = cp(im 8n+d = cp(Bn). Thus cp induces a homomorphism 
Sn/Bn -+ G, and hence a homomorphism cp': Hn(S*) = Zn/Bn -+ G, namely, 
Zn + Bn ~ cp(zn)· Moreover, if cp is an n-coboundary, that is, cp = (j(t/I) = t/l8, 
then cp induces the map Zn + Bn ~ cp(zn) = t/l8(zn) = 0 (because Zn is a cycle). 
Thus there is a natural map 

defined by 

/3: cls cp ~ cp', 

Theorem 12.11 (Dual Universal Coefficients). 

(i) For every space X and every abelian group G, there are exact sequences for 
all n ~ 0: 

o -+ Ext(Hn_1 (X), G) -+ Hn(x; G) ! Hom(Hn(X), G) -+ 0, 

where /3 is the map defined above. 
(ii) This sequence splits; that is, there are isomorphisms for all n ~ 0, 

Hn(x; G) ~ Hom(Hn(X), G) EB Ext(Hn- 1 (X), G). 

PROOF. One proves a more general result: if(C*, 8) is a free chain complex, then 

Hn(Hom(C*, G)) ~ Hom(Hn(C*), G) EB Ext(Hn_1(C*), G); 

the theorem follows by specializing C* to S*(X). 
The proof of Theorem 9.32 can be adapted here: every occurrence there of 

the (covariant) functor _ ® G should be replaced by the contravariant functor 
Hom( ,G). The appearances of [Tor 1] and [Tor 2] are replaced by [Ext 1] 
and [Ext 2], respectively. 0 

Corollary 12.12. If F is a field of characteristic zero (e.g., Q, R, or C), then, for 
all n ~ 0, 

W(X; F) ~ Hom(Hn(X), F). 



386 12. Cohomology 

PROOF. The additive group of a field F of characteristic zero is divisible. By 
[Ext 2'], Ext(Hn _ 1 (X), F) = o. D 

Remark. One often abbreviates the notation for integral cohomology H*(X; Z) 
to H*(X). 

EXERCISES 

*12.6. Let K be a finite simplicial complex, and let C*(K) be its simplicial chain 
complex. 

(i) Show that Cn(K)/Bn(K) ~ Hn(K) EB (free abelian group). 
(Hint: The exact sequence 0 -+ Zn/Bn -+ Cn/Bn -+ Cn/Zn -+ 0 splits because 
Cn/Zn is isomorphic to the free abelian group Bn- I.) 

(ii) Show that Ext(Cn(K)/Bn(K), Z) ~ Ext(Hn(K), Z). 
(iii) Consider the diagram 

a. 
Cn(K) -----+ Cn - I (K) 

~ f'-l 
Bn-I(K), 

where Pn differs from an only in its target, and where in- I is inclusion. If 
Hn - I (K) is free abelian, prove that 

Bn(K, Z) = im pt. 

(Hint: Bn = im at = im pt it-I; but it_1 is surjective because its cokernel 
is isomorphic to Ext(Hn_1 (K), Z), which is zero here.) 

12.7. If A is an abelian group, then Hom(A, Z) # 0 if and only if A has an infinite 
cyclic direct summand. (Hint: Corollary 9.2.) 

12.8. Show that HP(sn; G) ~ Hp(sn; G) for all P ~ 0 and all n ~ o. 

12.9. (i) Prove that the direct sum and the direct product of (possibly infinitely 
many) divisible groups is divisible. 

(ii) Prove that a quotient group of a divisible group is divisible. 

12.10. Define the character group of an abelian group G, denoted by Gl., by 

Gl. = Hom(G, R/Z). 

Prove that H"(X; R/Z) ~ (Hn(X))l.. 

12.11. If X and Y are finite CW complexes, find Hn(x x Y). (Hint: Use the Kiinneth 
formula (Theorem 9.37) and the adjoint isomorphism (Exercise 11.15).) 

*12.12. (i) Prove that, when n is even, 

ifp = 0 

if p is even and 2 ~ p ~ n 

otherwise. 
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If n is odd, show that HP(Rpn) is as above except for p = n, when 
H"(Rpn) = Z. (Hint: Use Theorem 8.47.) 

(ii) Prove that, for all n :2: 1, 

W(Rpn; Z/2Z) = {OZ/2Z if 0 ~ p ~ n 
otherwise. 

(This result does not depend on the parity of n.) 

Theorem 12.11, the dual universal coefficients theorem, can be extended to 
an algebraic Kiinneth theorem (if S* and T* are chain complexes, there is a 
standard way of constructing a chain complex Hom(S*, T*)), but this is not 
so interesting for us because the Eilenberg-Zilber theorem has no analogue. 
Instead we present a purely cohomological universal coefficients theorem 
(i.e., there is no mixture of homology and cohomology, as in Theorem 12.11) 
and a Kiinneth formula based on it. 

Definition. A chain complex C* is of finite type if each of its terms Cn is f.g. A 
space X is of finite type if each of its homology groups Hn(X) is f.g. 

Every compact polyhedron, more generally, every compact CW complex, 
is a space of finite type; Rpoo is a space of finite type that is not compact. 

Lemma 12.13. If X is a space of finite type, then there exists a free chain 
complex C* of finite type such that C* is chain equivalent to S*(X). 

PROOF. Let Vn: Zn(X) -+ Hn(X) be the natural map. Since Hn(X) is f.g., there is 
a f.g. subgroup of Zn(X), say Fn, necessarily free abelian, with vnlFn: Fn -+ Hn(X) 
surjective; let F~ denote ker(vnlFn). Define 

for a E Fn and a' E F~-l' For each n, Cn is a free abelian group of finite rank; 
moreover, 

Hn(C*) = ker dn/im dn+1 = Fn/F~-l = Hn(X). 

Let us construct a chain map f: C* -+ S*(X). Since F~ is free abelian, 
Theorem 9.1 provides a homomorphism hn : F~ -+ Sn+l (X) with 8n+1 hn(a') = a' 
for all a' E F~. Define fn: Cn -+ Sn(X) by 

fn(a, a') = a + hn- 1 (a'), 

where a E Fn and a' E F~. Now f" is a chain map: 

8f(a, a') = 8(a + hn- 1 (a')) = 8a + 8hn- 1 (a') = a', 

because a E Fn c Zn(X) and the definition of hn- 1 • On the other hand, 
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fd(rx, rx') = f(rx', 0) = rx'. 

It follows from Theorem 9.8 that f is a chain equivalence. D 

Lemma 12.14. If C* is a free chain complex of finite type, then there is an 
isomorphism of chain complexes 

Hom(C*, Z)@ G ~ Hom(C*, G) 

for every abelian group G. 

PROOF. For each n, define 

J1n: Hom(Cn , Z) (8) G - Hom(Cn , G) 
by 

J1n(f (8) g): c t--> f(c)g 

(note that f(c) E Z, so that the right side makes sense). It is clear that J1 is a 
chain map. One proves that J1n is an isomorphism by induction on rank Cn. 
If this rank is 1, then Cn ~ Z, and the result follows from the identities 
Z (8) G = G and Hom(Z, G) = G. The inductive step follows from the identities 
Hom(A EB B, G) = Hom(A, G) EB Hom(B, G) and (A EB B) @ G = (A (8) G) EB 
~(8)0 0 

Before we proceed, note that if S* and C* are chain equivalent chain 
complexes, then for every abelian group G, the chain complexes S* @ G and 
C* (8) G are chain equivalent, as are the chain complexes Hom(S*, G) and 
Hom(C*, G). 

Theorem 12.15 (Universal Coefficients Theorems for Cohomology). 

(i) If X is a space of finite type and if G is an abelian group, then there is an 
exact sequence for every n ~ 0: 

0- W(X) (8) G ~ Hn(x; G) - Tor(W+1(X), G) _ 0, 

where 
rx: (cls z) (8) g t--> cls zg, 

where zg: at-->z(a)g for an n-simplex a in X (recall that z(a) E Z). 
(ii) This sequence splits; that is, 

W(X; G) ~ Hn(x) (8) G EB Tor(Hn+1(X), G). 

PROOF. Since X has finite type, Lemma 12.13 provides a free chain complex 
C* of finite type with H*(C*).= H*(X). If A* = Hom(C*, Z), then Theorem 
9.32, the universal coefficients theorem for homology, applies because A* 
is a free chain complex. (The device of raising indices and changing their 
sign converts the nonpositive chain complex Hom(C*, Z) into a nonnegative 
one, A *; indices on homology groups are similarly changed, giving cohomol-
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ogy groups.) There is thus a split short exact sequence 

0-+ Hn(A*) ® G ~ Hn(A* ® G) -+ Tor(Hn+1(A*), G) -+ O. 

Now Hn(A*) = Hn(Hom(C*, Z» = Hn(Hom(S*(X), Z» = Hn(x). Moreover, 
by Lemma 12.14, 

A* ® G = Hom(C*, Z) ® G ~ Hom(C*, G) ~ Hom(S*(X), G), 

so that Hn(A * ® G) ~ Hn(x; G), by Theorem 5.3. D 

Recall from Exercise 9.28 that Si(X) ® Sj(Y) is free abelian with basis 
all symbols (Ji ® Tj' where (Ji is an i-simplex in X and Tj is a j-simplex in Y 

Definition. Let R be a commutative ring. If q> E Hom(Sm(X), R) and () E 

Hom(Sn(Y), R), then define q> ® () E Hom(S*(X) ® S*(Y), R) by 

( ()( ) {
q>((Jm)()(Tn) if i = m and j = n 

q> ® (J. ® T· = 
, J 0 otherwise, 

where the right side is the product of two elements in the ring R. 

Theorem 12.16 (Kiinneth Formula for Cohomology). If X and Yare spaces 
of finite type, then there is a split short exact sequence 

0-+ L Hi(X) ® Hi(Y) ~ Hn(x x Y) -+ L Tor(HP(X), Hq(y» -+ 0, 
i+j=n p+q=n+l 

where a': cIs q>i ® cIs ()jf---+ cIs (#(q>i ® ()) (( is an Eilenberg-Zilber chain equi­
valence S*(X x Y) -+ S*(X) ® S*(Y». 

PROOF. Since X and Y have finite type, Lemma 12.13 gives chain complexes 
C* and E* of finite type chain equivalent to S*(X) and S*(Y), respectively. We 
let the reader prove that there is a commutative diagram 

rx.' -
rx.' -

with vertical map isomorphisms (note that C* ® E* is chain equivalent to 
S*(X) ® S*(Y»; it follows that we may work with the bottom row. However, 
Theorem 9.36 applies at once, because both Hom(C*, Z) and Hom(E*, Z) are 
free chain complexes (because C* and E* are of finite type). D 

Remark. If R is a commutative ring and A and Bare R-modules, then there 
is a tensor product over R, denoted by A ®R B; it is defined as the quotient of 
A ® B by all relations of the form 

(ra, b) = (a, rb) for all r E R, a E A, b E B. 

The abelian group A ®R B is an R-module; in particular, A ®R B is a vector 
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space over R when R is a field. There is also a version of Tor(A, B), now 
denoted by TorNA, B), defined as ker i ® 1B , where ° --+ C -4 F --+ A --+ ° is an 
exact sequence of R-modules and F is a free R-module. 

These constructions arise in cohomology as follows. If R is a field, then 
each Hom(Sp(X), R) is a vector space over R and the differentiations are 
R-linear transformations. It follows that cocycles and coboundaries are vector 
spaces and hence that each HP(X; R) is an R-vector space. It is natural to take 
this fact into account. For example, if R is any field and V and Ware 
finite-dimensional R-vector spaces of dimensions m and n, respectively, then 
one can prove that dim(V®R W) is mn; on the other hand, V ® W (no 
subscript R) is an infinite-dimensional R-vector space when R is the field of 
real numbers. 

There is an analogue of Theorem 12.16 for any principal ideal domain R: 
if X and Yare spaces of finite type, then there is a split short exact sequence 

° --+ I Hi(X; R) ®R Hj(y; R) ~ Hn(x x Y; R)--+ 
i+j=n 

--+ I Torf(HP(X; R), Hq(y; R» --+ 0. 
p+q~n+l 

If R is a field (of any characteristic), it is known that Torf(v, W) = ° for any 
pair of R-vector spaces V and W; in this case, therefore, the homomorphism 
rl is an isomorphism. 

Cohomology Rings 

The direct sum of all the cohomology groups of a space X with coefficients 
in a commutative ring can be equipped with a functorial ring structure (this 
is not so for homology groups). Here are some algebraic preliminaries. 

Definition. A ring R is a graded ring if there are additive subgroups R", n ~ 0, 
such that: 

(i) R = Ln:?:o R" (direct sum of additive groups); 
(ii) RnRm c R"+m for all n, m ~ 0, that is, if x E Rn and Y E Rm, then xy E Rn+m. 

EXAMPLE 12.3. If A is a commutative ring, then the polynomial ring R = A[x] 
is a graded ring if one sets R" = {axn: a E A}. 

EXAMPLE 12.4. If R = A[Xl' ... , xp] is the polynomial ring in several variables, 
then R is a graded ring if one sets 

R" = {Iax!"" x~P: a E A and Iei = n}. 

Thus R n is generated by all monomials of total degree n. 

EXAMPLE 12.5. If M is an A~module, then Lp:?:o!\P M is a graded ring if one 
defines 
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(ml A ... Amp)' (m~ A ... A m~) = m1 A ... A mp A m~ A ... A m~. 

I I\P M is denoted by 1\ M and is called the exterior algebra on M. 

Definition. An element x in a graded ring R = I Rn has degree n if x ERn; 
such elements are called homogeneous. A (two-sided) ideal lor a subring S is 
called homogeneous if it is generated by homogeneous elements. 

It is easy to see that an ideal I (or a subring S) of a graded ring R = I W 
is homogeneous if and only if I = I (I n W) (S = I (S n W)). 

Warning! The definition of degree in a graded ring differs from the usual 
definition in a polynomial ring. Both versions agree for monomials, but no 
other polynomial is provided with a degree in the sense of graded rings. Note 
also that the zero element has degree n for every n ;:::: O. 

The element 1 in R = I Rn must be homogeneous of degree O. If we assume 
1 = eo + ... + ek, where ei E Ri, and if an ERn, then 

an = eoan + ... + ekan E Rn n (Rn EB ... Ei3 Rn+k) = Rn; 

hence eian = 0 for all i ;:::: 1, and an = eoan; it follows that a = eoa for all a E R. 
A similar argument shows that a = aeo for every a E R, so that eo is a two-sided 
identity in R. But two-sided identities in a ring are unique, hence 1 = eo E RO. 

Lemma 12.17. If I is a homogeneous ideal in a graded ring R = IRn, then R/I 
is a graded ring; indeed 

R/I = I(W + 1)/1. 

PROOF. Since I is homogeneous, I = I (I n W). As abelian groups, R/ I = 

IRn/I(InW) ~ I(W/InRn) ~ I(Rn + 1)/1. Also, (W + I)/I'(Rm + 1)/1 c 
(WRm + 1)/1 (because I is an ideal), and (RnRm + 1)/1 c (Rn+m + 1)/1. D 

Every (commutative) ring R is an abelian group under its addition, so that 
Hn(x; R) makes sense. We are going to make H*(X; R) = I Hn(x; R) into a 
graded ring by equipping it with a multiplication, called cup product. The 
following technical lemma will be used in verifying elementary properties of 
this multiplication. 

Definition. If 0 :::;; i :::;; d, define (affine) maps Ai' Jli: l1 i -+ I1d by 

Ai: (to, ... , tJ f---+ (to, ... , ti, 0, ... , 0) 

and 

Jli: (to, ... , tJ f---+ (0, ... ,0, to, ... , tJ­
One calls Ai a front face and Jli a back face. 

A more complete notation for these maps, indicating their target, is At and 
Jlt. Note that A: and Jl: are both identities, while Ag has image (1,0, ... ,0) = eo 
and Jlg has image (0, ... ,0, 1) = ed ; remember that I1d = [eo, ... , ed ]. 
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Recall the face maps e1+1: Ad -+ A d +1, where 0::;; i ::;; d + 1: 

eo(to, ... , td) = (0, to, ... , td) = J-I:+1(to, ... , td); 

if 1 ::;; i ::;; d + 1, then 

Lemma 12.18. 

(i) Ife1+1: Ad -+ A d +1 is the ith face map, then 

if i::;; p 

if i;;::: p + 1; 

{ 
d+1 if' d d+1 d J-Iq I I::;; - q 

Bi J-Iq = d+1 q+l " 
J-Iq+1 Bi+q-d if I ;;::: d - q + 1. 

12. Cohomology 

PROOF. Routine. Note, in the last identity in (iii), that the case i = d - q + 1 
gives Bd- q+1J-1q = J-Iq = J-Iq+1eO' 0 

Notation. Given a space X and an abelian group G, write 

and 

S*(X, G) = L sn(x, G). 
n:2:0 

Notation. If cP E sn(x, G) and e E SiX), write 

(e, cp) = cp(e) E G. 

There are two important special cases. If e' E Sn+1 (X), then 

(e', <5(cp» = (ae', cp); 

if f: X -+ Y is continuous and cp E sn(y, R), then 

(e, f#(cp» = (f#e, cp). 

In particular, if e is an n-simplex (T, then 

Since SiX) has a basis comprised of n-simplexes, cp E sn(x, G) is deter­
mined by all «(T, cp) as (T ranges over the continuous maps An -+ X. 

Definition. Let X be a space, and let R be a commutative ring. If cp E sn(x, R) 
and () E sm(x, R), define their cup product cp U () E sn+m(x, R) by 
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for every (n + m)-simplex (J in X, where the right side is the product of two 
elements in the ring R. 

Of course, cup product defines a function 

S*(X, R) x S*(X, R) --+ S*(X, R) 

by defining 

(L: CPJ U (L: ej) = L CPi U ej, 
i,j 

Lemma 12.19. If X is a space and R is a commutative ring, then S*(X, R) = 

L: sn(x, R) is a graded ring under cup product. 

PROOF. To prove left distributivity, it suffices to show that cP U (e + 1/1) = 

(cp u e) + (cpU 1/1) when cP E sn(x, R) and e, 1/1 E sm(x, R). But if (J is an (n + m)­
simplex, 

((J, cP u (e + 1/1)) = ((JAn, CP)«(Jflm' e + 1/1) 

= ((JAn, CP)[((Jflm, e) + ((Jflm, 1/1)] 

= ((J, cP u e) + ((J, cP U 1/1). 

A similar calculation proves right distributivity. 
To prove associativity, let cP E sn(x, R), e E sm(x, R), and 1/1 E Sk(X, R). If 

(J is an (n + m + k)-simplex, then 

((J, cP u (e U 1/1)) = ((JAn, CP)«(Jflm+kAm, e)«(Jflm+kflk' 1/1) 

and 

((J, (cp u e) U 1/1) = ((JAn+mAn, CP)«(JAn+mflm' e)«(Jflk' 1/1). 

Thc:;se two products are equal, by Lemma 12.18(ii). 
Define e E SO(X, R) by 

(x, e) = 1 

for all x E X (recall that O-simplexes in X are identified with the points of X). 
It is easy to see that e is a (two-sided) identity in S*(X, R), hence S*(X, R) is 
a ring. It follows at once from the definition of cup product that S*(X, R) is 
a graded ring. 0 

The distributive laws give bilinearity of cup product S*(X, R) x S*(X, R) --+ 

S*(X, R); one may, therefore, regard cup product as a map 

U: S*(X, R) ® S*(X, R) --+ S*(X, R). 
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Lemma 12.20. If f: X -+ X' is a continuous map, then 

f#(rp U e) = f#(rp) U f#(e). 

12. Cohomology 

Moreover, if e E SO(X, R) is the unit «x, e) = 1 for all x E X), and if e' E 

SO (X', R) is defined by (x', e') = 1 for all x' E X', then 

f#(e') = e. 

PROOF. It suffices to assume that rp E SP(X', R) and e E sq(X', R). Now if U is 
a (p + q)-simplex in X, 

(u, f#(rp U e)} = (fu, rp U e) 

= (fUAp, rp}(fu/lq, e) 

= (UAp,f# rp}(U/lq,f#e) = (u,f# rp U f#e). 

If x E X, then (x, f#(e')} = (f(x), e') = 1. 0 

Corollary 12.21. For a given commutative ring R, S*( ,R) is a contravariant 
functor from Top to Graded Rings. 

PROOF. Immediate from Lemmas 12.19 and 12.20. 0 

The ring S*(X, R) has several disadvantages: its enormous size makes it 
almost impossible to compute; it does not satisfy the homotopy axiom; and 
it is "very" noncommutative. We shall now see that the ring structure on 
S*(X, R) is inherited by Ln;?:o Hn(x; R) and that these defects of S*(X, R) 
disappear in passing to cohomology. 

Lemma 12.22. If rp E SP(X, R) and e E sq(X, R), then 

b(rp U e) = brp U e + (-1)Prp U be. 

PROOF. Note that both sides have degree d = p + q + 1. If U is ad-simplex, 
then 

(U, brp U e + ( -1)Prp U be) 

= (UAp+l' brp}(U/lq, e) + (-1)P(UAp, rp}(U/lq+l, be) 

= (a(UAp+1)' rp}(U/lq, e) + (-1)P(UAp, rp}(a(u/lq+d, e) 
p+l q+l 

= L (_1)i(UAp+1 Bi' rp}(U/lq, e) + L (-1)j+P(UAp, rp}(U/lq+1 Bj' e). 
i=O j=O 

By Lemma 12.18(i), UAp+1Bp+l = UAp+1Ap = UAp and U/lq+1Bo = u/lq+1/lq = 
U/lq. It follows that term p + 1 of the first sum cancels term 0 of the second 
sum, and so the two sums equal 
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p q+l 
I (_1)i(o"Ap+1 Bi, cp)(O"llq, e) + I (-1)j+P(O"Ap, cp)(O"llq+1 Bj, e). 
i=O j=l 

On the other hand, 

(0", b(cp U e)) = (00", cP U e) 

d 

= L (_1)i(o"Bi' cpue) 
i=O 

d 

= I (_1)i(o"BiAp, CP)(O"Billq, e) 
i=O 

p d 

= I (-1)i(O"B;Ap, CP)(O"Billq, e)+ L (_1)i(o"B;Ap, CP)(O"Billq, e). 
i=O i=p+l 

Since d - q = p + 1, Lemma 12.18(iii) shows that this equals 

p d 

L (_1)i(o"Ap+1Bi' cp)(O"llq, e) + I (_1)i(o"Ap, CP)(0"Ilq+1Bi-P' e). 
i=O i=p+l 

But the index of summation in the second sum can be changed to j = i - p, 
giving Ii:!l (-1)j+P(O"Ap, CP)(O"llq+l Bj, e), as desired. 0 

Theorem 12.23. For any commutative ring R, H*( ; R) = Ip;:,o HP( ; R) is a 
contravariant functor hTop ~ Graded Rings. 

PROOF. Let Z*(X, R) = I ZP(X, R) and B*(X, R) = L BP(X, R). If cP E ZP and 
e E zq, then bcp = 0 = be, and 

b(cp U e) = bcp U e + (-!)Pcp u be = 0; 

hence cP U e is a cocycIe. It follows that Z* is a (homogeneous) subring of 
S*(X, R). 

If cP E ZP and e E Bq, then bcp = 0 and e = bl/l for some 1/1 E Sq-l(X, R). 
Hence 

cpue = cpUbl/l = ±(b(cpUI/I) - bcp U 1/1) 

= ± b(cp U 1/1), 

so that cp U e is a coboundary; similarly, e U cp is a co boundary. It follows that 
B* is a two-sided homogeneous ideal in Z*. By Lemma 12.17, H*(X; R) = 
Z* / B* is a graded ring. (Of course, multiplication in H* is given by 

cis cp U cis e = cis ( cp U 0).) 

That a continuous map f: X ~ Y yields a ring homomorphism f*: H*( Y; R) ~ 
H*(X; R), namely, f* cis cp = cis f# cp, follows easily from Lemma 12.20. 
Indeed the homotopy axiom for cohomology, Theorem 12.4, shows that this 
ring map is independent of the choice of continuous map homotopic to f 

The reader may now easily show that H* is a (contravariant) functor. D 



396 12. Cohomology 

Definition. The multiplication H*(X; R) ® H*(X; R) ~ H*(X; R) is also called 
cup product,l and one defines 

cIs cp U cIs 0 = cIs( cp U 0). 

Definition. If X is a space and R is a commutative ring, then the cohomology 
ring with coefficients R is 

H*(X; R) = L HP(X; R). 
p:?o 

The following discussion will show that cup product is essentially the only 
multiplication on H*(X; R) which extends the "obvious" ring structure on 
HO(X; R). 

Definition. A diagonal approximation is an augmentation preserving natural 
chain map :11:: S*(X) ~ S*(X) ® S*(X). 

In more detail, the augmentation of S*(X) is the homomorphism e: So(X) ~ 
Z with e(x) = 1 for all x E X, and the augmentation of S*(X) ® S*(X) is the 
homomorphism e': So(X) ® So(X) ~ Z with e'(x ® y) = 1 for all x, y E X; the 
condition is that e':II:o = e. 

Recall that an Eilenberg-Zilber natural chain map (: S*(X x X) ~ S*(X) ® 
S*(X) satisfies (0: (x, y)t---+x ® y for all x, y E X. It follows easily that (d# is 
a diagonal approximation for d: X ~ X x X the diagonal (augmentation 
preserving is thus a substitute for specifying (0)' The next result is that this 
example is essentially the only diagonal approximation. 

Theorem 12.24. Every two diagonal approximations are naturally chain homo­
topic, hence they induce the same homomorphisms in cohomology. 

PROOF. Let.,l{ = {AP: p ~ O} be a family of models in Top. That the functor 
E: Top ~ Comp with E(X) = S*(X) is free with base in .,I{ is contained in 
Example 9.4; moreover, each AP is totally E-acycIic because it is contractible 
and so all its reduced homology vanishes. In the proof ofthe Eilenberg-Zilber 
theorem, it was shown that the functor F: Top x Top ~ Comp with F(X, Y) = 

S*(X) ® S*(y) is free with base in the family of all models.,l{' = {(AP, Aq): p ~ 0, 

1 A geometric interpretation of cup product on manifolds as "intersection numbers" can be found 
in [Dold (1972), VII §4], [Greenberg and Harper, §31], [Munkres (1984), Chap. 8], or [Seifert 
and Threlfall, Chap. Xl There is an interpretation in terms of differential forms which is part of 
de Rham's theorem: if Q*(X) denotes the de Rham complex of a differentiable manifold X (see 
the first section of this chapter), then HP(Q*(X)) ~ HP(X; R) for all p ;:: 0; moreover, if WE QP(X) 
and w' E Qq(X) are closed differential forms, then 

cls W U cls w' = cls(w /\ w'), 

where W /\ W' is the wedge product in the exterior algebra L';o,o Q'(X) (see [Warner, 
pp.211-214]). 
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q ~ OJ; moreover, all such models are totally F-acyclic. It follows that the 
functor G: Top --+ Comp defined by G(X) = F(X, X) is free with base in .it 
and that all models in .it are totally G-acyclic. Corollary 9.13(i) applies at 
once to show that every two diagonal approximations are naturally chain 
~~~~ 0 

Diagonal approximations S*(X) --+ S*(X) ® S*(X) suggest multiplications 
on S*(X), better, on the homology groups of these chain complexes, but the 
arrow points in the wrong direction. Applying a contravariant functor corrects 
this, and we shall soon see cup product emerge. This discussion will then 
show that cup product is the unique multiplication on H*(X; R) arising from 
a diagonal approximation. (Incidentally, if a space X possesses a "nice" map 
/1: X x X --+ X (in place of the diagonal d: X --+ X x X), then /1#1/1: S*(X) ® 
S*(X) --+ S*(X) does lead to a product in homology, where 1/1 is a homotopy 
inverse of an Eilenberg-Zilber natural chain equivalence. In particular, for 
every H-space X, there is a graded ring structure on Lp~oHiX), called the 
Pontrjagin product.) 

We seek a formula for an Eilenberg-Zilber map (: S*(X x Y) --+ S*(X) ® 
S*(Y) (which will be specialized to the case Y = X). Now (0: So(X x Y)--+ 
So(X) ® So(Y) is given by (x, y)I--+X ® y. To find (1, let a: Al --+ X X Y be 
continuous with a(eo) = (xo, Yo) and a(ed = (Xl' yd. The map (1 must make 
the following square commute: 

where Dl is the usual differentiation on the tensor product (if oe E Si(X) and f3 E 

Sj(Y), then Di+j(oe ® f3) = ooe ® f3 + (-l)ioe ® of3). Now we see that (001 a = 
(0(a(e 1) - a(eo)) = (0((x1, yd - (xo, Yo)) = Xl ® Y1 - Xo ® Yo· If n' and n" 
are the projections of X x Y onto X and Y, respectively, let us write a' = n' a 
and a" = n" a for these I-simplexes in X and Y, respectively. A reasonable 
guess is to set 

(1 (a) = a' ® y + X ® a" 

for some X E X and y E Y. Since oy = 0 = ox (because all O-chains are cycles), 

Dl (1 (a) = (a'(ed - a'(eo)) ® y + X ® (a"(e1) - a"(eo)) 

= (Xl - x o) ® y + X ® (Y1 - Yo)· 

Hence, if we define 

(l(a) = a' ® Y1 + X o ® a", 

then D1 (1 = (00. The computation of (2 (a), for a: A2 --+ X X Y, is more com-
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plicated. A reasonable guess is 

(2(0') = a' ® y + a ® f3 + x ® a", 

where x E X, Y E Y, and a, f3 are 1-simplexes, and one can choose these so that 
D2 (2 = (1 a2 (the reader is invited to do the calculation). 

Theorem 12.25 (Alexander-Whitney). The map (: S*(X x Y) ~ S*(X) ® S*(Y) 
defined by 

("(a) = L a'A; ® a"j1j, 
i+j=n 

where a: 11" ~ X x Yand a' = n'a, a" = n"a (and where n', n" are the projec­
tions of X x Y onto X, Y, respectively), is a natural chain equivalence over 
(0: (x, y)f-->X ® y. 

PROOF. If ( is, in fact, a natural chain map, then Corollary 9.13(ii) gives the 
result, for the hypotheses of that corollary were verified in the proof of the 
Eilenberg-Zilber theorem. 

Recall that both chain complexes may be regarded as functors Top x 
Top ~ Comp, and morphisms in Top x Top are ordered pairs of continuous 
maps. It is routine to check naturality of (, that is, if f: X ~ X' and g: Y ~ Y', 
then the following diagram commutes: 

S*(X x Y) 
( 

S*(X) ® S*(Y) ----+ 

(f x g), j jf,®9, 
S*(X' x Y') ----+ S*(X') ® S*(Y'). 

( 

It remains to show that ( is a chain map. We normalize the problem. If 
d: 11" ~ 11" x 11" is the diagonal, and if a: 11" ~ X x Y is an n-simplex, then 

a = (a' x a")d. 

Suppose we prove that 

Then 

D((a) = D(((a' x a")d) 

= D((a' x a")#(d) 

= D(a# ® a#)((d) 

= (0'# ® a#)D((d) 

= (0'# ® a#)(a(d) 

(by naturality) 

(0'# ® 0'# in a chain map) 
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= (u' x u")#o(d) 

= (O(U' x u")#(d) 

= (O«U' x u")d) = (O(U), 

(by naturality) 

«u' x u")# is a chain map) 

as desired. 
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Let us now verify (*). 
If oc: /1i ~ /1n is an affine map with oc(ek) E {eo, ... , en} for all k, we shall 

denote oc by (oc(eo), oc(ed, ... , oc(ei». In particular, A.i = (eo, ... , ei) and Iln-i = 

(ei' ei+1, ... , en)· 
Now 

D(d) = D L (eo, ... , ei) ® (ei' ... , en) 
i 

= L [o(eo, ... , e;) ® (ei' ... , en) + (-l)i(eo, ... , ei) ® o(ei' ... , en)] 
i 

(note that the sign in the second sum is correct, because 
n-i n 

o(ei' ... , en) = L (-l)k(e;, ... , ei+k, ... , en) = L (-lY-i(ei, ... , ej, ... , en))· 
k=O j=i 

The portion ofthe first sum with j = i, namely, 
n 

L (-l)i(eo, ... , ei- 1) ® (ei' ... , en), 
i=1 

cancels the portion of the second sum with j = i, namely, 
n-1 
L (-l)i(eo,···, ei) ® (ei+l' ... , en)· 
i=O 

Therefore 

D(d) = L (-1)i(eo, ... , ej' ... , ei) ® (ei, ... , en) 
j<i 

On the other hand, the definition of (od) is 

n-1 
(n-1(od) = L (Od)'A.i®(od)"lln-H· 

i=O 

Recall that (od)' = 7t#(od), where 7t': /1n x /1n ~ /1n is the projection on the first 
factor. But 7t# is a chain map, so that 7t#(od) = o7t#(d) = o(7t'd) = o(!5n), where 
!5n is the identity map on /1n (for d is the diagonal map). Similar arguments 
show that (od)" = o(!5n) and that 8j = 8j = 8'] (where 8j is the jth face map 
/1n-1 ~ /1n). 
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For each j, Lemma 12.18(iii) gives 

'(s) = I SjA; ® Sjl1n-t-; 
; 

= L A; ® I1n-;Sj-i-l + I Ai+tSj ® I1n-;· 
i<j i>j 

In our earlier notation, 

'(S) = I (eo, ... , eJ ® (e;, ... , ej , ••• , en) 
i<j 

+ L (eo, ... , ej , ••• , eJ ® (e;, ... , en)· 
i>j 

Hence W3d) = I( -1)j'(sj) equals D,(d) computed earlier. 

Definition. Define a function 

n: S*(X, R) ® S*(Y, R) --+ Hom(S*(X) ® S*(Y), R) 

D 

as follows. If cP E sn(x, R) and 0 E sm(y, R), then there is a function defined on 
S*(X, R) x S*(Y, R), namely, (cp, O)I--+CP ® 0, where 

( ll) {(O";' cp)(,), 0) if i = nand j = m 
0"; ® T·, cp ® u = . 

J 0 otherwise. 

Since this function is bilinear (the proof of Lemma 12.19), it defines a homo­
morphism n on the tensor product. 

Definition. The (external) cross product is the map 

,#n: S*(X, R) ® S*(Y, R) --+ S*(X x Y, R). 

If cP E sn(x, R) and 0 E sm(y, R), then their cross product is denoted by 

cP x 0 E sn+m(x X Y, R). 

Of course, the cross product may be regarded as a map in cohomology 

H*(X; R) ® H*(Y; R) --+ H*(X x Y; R). 

It is the map IX' of the Kiinneth formula, Theorem 12.16. 

EXERCISES 

*12.13. Let f: X --+ X' and g: Y --+ Y' be continuous. If cis qJ E HP(X'; R) and cis 8 E 

Hq(y,; R), then (f x g)*(cls qJ x cis 8) = f* cis qJ x g* cis 8. 

*12.14. Show that the cross product is associative. 

Theorem 12.26. Cup product is the composite d#,#n: 

S*(X, R) Q9 S*(X, R) --+ Hom(S*(X) Q9 S*(X), R) --+ S*(X x X, R) --+ S*(X, R). 

PROOF. Let cP E sn(x, R), let 0 E sm(x, R), and let 0" be an (n + m)-simplex in 
X. Then 
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(a, d# (# qJ @ 8) = ((d#a, qJ ® 8) = (((da), qJ @ 8). 

Now the Alexander-Whitney formula gives 

n+m 
((da) = L (da)' Ai ® (da)" I1n+m-i' 

i;O 

Recall that (da)' = n'da and (da)" = n"da, where n' and n" are projections of 
X x X onto the first and second factors, respectively. Since d: X -+ X x X is 
the diagonal, however, both n'd and n" d equal the identity on X. Hence 

n+m 
((da) = L aAi ® al1n+m-i' 

i;O 

But qJ @ 8 vanishes off Sn(X) ® Sm(X), so that 

(((da), qJ ® 8) = (aAn ® al1m' qJ ® 8) 

= (aAn' qJ)(al1m' 8) = (a, qJ U 8). 

Corollary 12.27. If qJ E sn(x, R) and 8 E sm(x, R), then 

qJU8=d#(qJ x 8). 

D 

PROOF. Immediate from the theorem and the definition of cross product. D 

Lemma 12.28. If (S*' a) is a nonnegative chain complex, then the function 
t: S* ® S* -+ S* ® S* defined by 

t(a ® 13) = ( -l)pqf3 @ a, 

where a E Sp and 13 E Sq, is a natural chain equivalence. 

PROOF. If D is the usual differentiation on the tensor product, then 

Dt(a ® 13) = (-1)PqD(f3 ® a) = (-1)Pqaf3 @ a + (-1)Pq+qf3 @ aa. 

On the other hand, 

tD(a ® 13) = t(aa ® 13 + (-l)Pa ® af3) 

= (-l)(P-l)Qf3 ® aa + (-1)P+p(Q-l)af3 @ a 

= (-1)PQ-qf3 ® aa + (-1)PQaf3 @ a. 

Since (-l)Q = (-l)-Q, it follows that Dt = tD, that is, t is a chain map. It is 
easy to see that t is a natural isomorphism. 0 

Theorem 12.29 (Anticommutativity)2. If cIs qJ E HP(X; R) and cIs 8 E HQ(X; R), 

2 This result is more natural in light of the de Rham theorem (see the previous footnote) which 
shows that, for differentiable manifolds, cup product and wedge product (in the exterior algebra) 
coincide. 



402 12. Cohomology 

then 

cls <p U cls (J = ( -1)PQ cls (J U cls <po 

PROOF. Both (d# and t(d# are natural chain maps S*(X) --. S*(X) ® S*(X) 
over (od#o (recall that (od#o: X 1-+ x ® x). Since (od#o is a natural equivalence, 
acyclic models (Theorem 9.12(iii)) implies that (d# and t(d# are (naturally) 
chain equivalent. We conclude, after applying Hom( ,R), that both chain 
maps induce the same map in cohomology: cls d#(# = cls d#(#t#. The result 
now follows from Theorem 12.26, for cup product is just cls d#(#n. 0 

EXERCISES 

12.15. Show that every left or right homogeneous ideal in H*(X; R) is a two-sided 
ideal. 

12.16. Show that the graded ring S*(X, R) is not anticommutative in the sense of 
Theorem 12.29. 

*12.17. If the additive group of H*(X; R) has no elements of order 2, prove that if 
f3 E H*(X; R) has odd degree, then f3U f3 = o. 

12.18. Compute the ring H*(Rp2) = H*(Rp2; Z). 

12.19. Compute the ring H*(S"). 

Computations and Applications 

There are not many general results helping one to compute cohomology rings; 
one such is Theorem 12.31 below. 

Lemma 12.30. 

(i) If Rand S are rings, then there is a ring structure on R ® S with multiplication 

(r ® s)(r' ® s') = rr' ® ss', 

where r, r' E Rand s, s' E S. 
(ii) If Rand S are graded rings, then R ® S is a graded ring with multiplication 

(ri ® sj)(r; ® s~) = ( -1)jPrir; ® SjS~, 

where ri ER i , r; E R p , Sj E Sj' and s~ E Sq (of course, 

(R ® S)n = I Ri ® Sj). 
i+j=n 

PROOF. The formula for multiplication is well defined, since it is the composite 

R ® S ® R ® S 1 ® t ® 1 I R ® R ® S ® S Jl ® v I R ® S, 

where t: S ® R --. R ® S is the map s ® r 1-+ r ® s, and J1 and v are the given 
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multiplications in Rand S, respectively. Verification of the ring axioms is left 
as a routine exercise. The graded case is also left to the reader; the sign is 
present because of Lemma 12.28. 0 

It can be shown that R ® S is the coproduct of Rand S in the category of 
rings (or the category of graded rings). 

The sign in the definition of multiplication in the graded ring case forces 
anticommutativity; without the sign, the elements r ® 1 and 1 ® s commute. 

EXAMPLE 12.6. If Rand S are graded rings, then the two tensor products can 
differ. 

Let R = Z[x], polynomials over Z in one variable x, and let S = Z[y]. As 
(ungraded) rings, R ® S ~ Z[x, y], polynomials over Z in two (commuting) 
variables x and y (one identifies x with x ® 1 and y with 1 ® y). As graded 
rings, however, R ® S consists of all polynomials over Z in two variables x 
and y in which xy = - yx. 

EXAMPLE 12.7. If M and N are abelian groups, then there is a graded ring 
isomorphism of exterior algebras: 

/\ (M EB N) ~ /\ M ® /\ N 

(see [Greub, p. 121]). 

Theorem 12.31. 

(i) If X and Yare spaces, then cross product H*(X) ® H*(Y) --+ H*(X x Y) 
is a homomorphism of graded rings. 

(ii) If X and Yare spaces of finite type (for example, compact CW complexes) 
with Hn(X) free abelian for all n ~ 0, then cross product is an isomorphism. 

Remark. Recall that H*(X) = H*(X; Z). 

PROOF. The Kiinneth formula (Theorem 12.16) gives an exact sequence 

° --+ L Hi(X) ® Hj(Y) ~ Hn(x x Y) --+ L Tor(HP(X), Hq(y» --+ ° 
i+j=n p+q=n+l 

in which the map r1.' is the cross product. Now (ii) follows from (i) as follows. 
If Hn(X) is free abelian for all n ~ 0, then Theorem 12.11 shows that HP(X) is 
free abelian for all p ~ 0, and so the Tor term is zero. 

To prove (i), let cP E zn(x, R), cp' E ZP(X, R), fJ E zm(y, R), and fJ' E zq(Y, R); 
let u = cIs cp, u' = cIs cp', v = cIs (J, and v' = cIs (J'. It must be shown that 

a'«u ® v)(u' ® v'» = a'(u ® v) U a'(u' ® v'). 

To evaluate the left side, the definition of multiplication in tensor products 
of graded rings gives 

(u ® v)(u' ® v') = (-l)mp(u U u') ® (v U v'). 
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Since a'(u Q9 v) is the cross product u x v, it thus remains to prove that 

(_l)mp(u U u') X (v U v') = (u x v) U (u' x v'). 

Now there is a commutative diagram 

Xx 
dx x dy 

Y _ X x (X x Y) x Y 

d~ 11m1 
X x (Y x X) x y, 

where dx : X --+ X x X is the diagonal x H (x, x), and t: X x Y --+ Y x X is the 
map given by (x, Y)H(Y, x). 

Using Corollary 12.27 and Exercise 12.14 (associativity of cross product), 
we have 

(u x v)U(u' x v') = d;xy(u x v x u' x v') 

= (dx x dy)*(1 x t x 1)*(u x v x u' x v') 

= (dx x dy)*(u x t*(v x u') x v') (Exercise 12.13) 

= (-1rp(dx x dy)*(u x u' x v x v') (Lemma 12.28) 

= (-1)mpd;(u x u') x d:(v x v') 

= (_l)mp(u U u') X (v U v'). o 
Remarks. (1) H*(X) ® H*(Y) is always a subring of H*(X x Y); ifit is a proper 
sub ring, then it cannot be an ideal because it contains the unit. 

(2) Let R be a field. The version of the Kiinneth formula described after 
the proof of Theorem 12.16 shows that if X and Yare of finite type, if 
cohomology groups over Z are replaced by coefficients R, and if Q9 is replaced 
by Q9R' then cross product is necessarily an isomorphism. 

Corollary 12.32. If T r is an r-torus, that is, the cartesian product of r copies of 
Sl, then the cohomology ring H*(Tr) is isomorphic to the exterior algebra 
1\ (z(r», where z(r) denotes a free abelian group of rank r. 

PROOF. We do an induction on r ~ 1. When r = 1, then the additive structure 
of H*(Sl) = HO(Sl) EB Hl(Sl) = Z EB Z. Choose generators 1 E HO(Sl) and 
a E Hl(Sl); the multiplication is determined by 1 being the unit element and 
a2 = O. Ifr > 1, then T r = Sl X T r- 1 ; Theorem 12.31 applies to give H*(Tr) ~ 
H*(Sl) Q9 H*(T'-l). By induction, H*(Tr- 1) ~ 1\ (z(r-l», and so the result 
follows from Example 12.7. 0 

It follows that Hi(Tr) is free abelian of rank the binomial coefficient (D. 

Computation of cup products is difficult; let us therefore retreat from general 
spaces to polyhedra. Recall the construction of simplicial homology. If K is 
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an oriented simplicial complex (there is a partial order on Vert(K) whose 
restriction to the vertex set of any simplex is a linear order), then H*(K) = 
H*(C*(K)), where C*(K) is defined as follows. The qth term Cq(K) is the free 
abelian group with basis all symbols <Po, ... , pq)' where {Po, ... , pq} spans 
a q-simplex of K and Po < PI < ... < Pq. The differentiations Oq: Cq(K) --+ 

Cq - I (K) are the usual alternating sums: 

q 

o<Po, ... , Pq) = L (-1)i<po, ... , Pi' ... , Pq). 
i=O 

In Theorem 7.22, we proved that H*(C*(K)) ~ H*(IKI). More precisely, if 
jq: Cq(K) --+ Sq(IKI) is defined by 

U<po, ... , pq») = a, 

where a: M -+ I K I is the affine map L tiei f-+ L tiPi' then j is a chain map and 
j*: H*(C*(K)) -+ H*(IKI) is an isomorphism. By Theorem 9.8, it follows that 
j is a chain equivalence. 

Definition. If K is an oriented simplicial complex and G is an abelian group, 
then the simplicial cohomology groups of K with coefficients G are defined by 

Hn(K; G) = W(Hom(C*(K), G)). 

Since C*(K) and S*(IKI) are chain equivalent, it follows that Hom(C*(K), G) 
and Hom(S*(IKI), G) are chain equivalent and hence have the same cohomo­
logy groups (Exercise 9.14). Therefore simplicial cohomology groups are 
independent of orientation. 

Notation. If K is an oriented simplicial complex and R is a commutative ring, 
define 

cn(K, R) = Hom(Cn(K), R) 

and 

C*(K, R) = L cn(K, R). 
n;"O 

Definition. If K is an oriented simplicial complex and R is a commutative ring, 
define cup product as follows. If ({J E cn(K, R) and 8 E cm(K, R), then 

«Po, ... , Pn+m)' ({J U 8) = «Po, ... , Pn), ((J)( <Pn, ... , Pn+m), 8). 

Theorem 12.33. Let K be an oriented Simplicial complex and let R be a commuta­
tive ring. 

(i) H*(K; R) = Ln;"o Hn(K; R) inherits a ring structure from the cup product 
on simplicial cochains. 

(ii) The rings H*(K; R) and H*(IKI; R) are isomorphic (via the chain equiva­
lence of Theorem 7.22). 
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PROOF. (i) The argument of Lemma 12.19 shows that C*(K, R) is a graded 
ring; moreover, the argument of Lemma 12.22 carries over to C*(K, R). It 
follows that the co cycles form a graded subring, the coboundaries form a 
homogeneous two-sided ideal in the cocycles, and hence H*(K; R) is a graded 
ring. 

(ii) The explicit formula for the chain equivalence j: C*(K) -+ S*(\KI) shows 
thattheisomorphismj*: H*(\K\; R) -+ H*(K; R) preserves cup products. 0 

Corollary 12.34. The cohomology ring of an oriented simplicial complex K does 
not depend on the orientation. 

PROOF. The ring H*(\K\; R) does not depend on the orientation. 0 

EXERCISE 

*12.20. (i) If X 11 Y is a disjoint union, then there is a ring isomorphism 
H*(X 11 Y; R) ~ H*(X; R) x H*(Y; R). 

(ii) If X and Yare polyhedra with basepoints and X v Y is their wedge, then 
there is a ring isomorphism 

H*(X v Y; R) ~ H*(X; R) x H*(Y; R), 

where ii* is the ideal in H* generated by all terms of degree > 0 (ii* is a 
ring without unit!). 

EXAMPLE 12.8. Let X = S2 V Sl V Sl and let Y = Sl X Sl. In Exercise 9.47, 
we saw that X and Y have the same homology groups (hence the same 
cohomology groups) and the same fundamental group. We prove that X and 
Y do not have the same homotopy type by showing that their integral 
cohomology rings are not isomorphic (one can also show that 1t2 (X) -# 0 and 
1t2 (Y) = 0). 

By Exercise 12.20(ii), H*(X) ~ H*(S2) x H*(Sl) X H*(Sl) as graded rings. 
The elements of degree 1 lie in the direct product of the subrings H*(Sl) x 
H*(Sl) (because H1(S2) = 0); it follows that the cup product of any two 
elements of degree 1 is zero. On the other hand, H*(Y) is the exterior algebra 
1\ (Z(2»); if {a, b} is a basis of 1\1 (Z(2»), then a 1\ b -# O. The graded rings H*(X) 
and H*(Y) are not isomorphic, and so X and Y do not have the same 
homotopy type. 

A serious consequence of this example is that if X and Y have singular 
chain complexes which are chain equivalent, then they do have isomorphic 
homology and cohomology groups, but they may have nonisomorphic co­
homology rings. 

Remark. By Theorem 12.15, the (integral) cohomology groups H*(X) of a 
space X of finite type determine the cohomology groups H*(X; G) for every 
abelian group G. In contrast, the (integral) cohomology ring H*(X) does not 
determine the cohomology ring H*(X; R). If X = Rp3 and Y = Rp2 V S3, 
then it is shown in [Hilton and Wylie, p. 151] that the cohomology rings 
H*(X) and H*(Y) are isomorphic, but the rings H*(X; Z/2Z) and H*(Y; Z/2Z) 
are not isomorphic (Exercise 12.17 suggests a reason for this). 
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EXERCISES 

12.21. Show that Sl v S2 V S3 and Sl x S2 do not have the same homotopy type. 
12.22. Show that S· v sm is not a retract of S" x sm, where m, n 2 1. 

There are many difficulties in computing cohomology and cup product. At 
the most basic level, it is not obvious how to construct cocycles (other than 
co boundaries). Let us give a negative example in this regard. If F is a free 
abelian group with a finite basis B, then there is a dual basis of Hom(F, Z) 
consisting of all b* for b E B, where b*: F ~ Z is defined by 

b*(b) = 1 and b*(c) = ° for all c E B - {b}. 

If c = I mibi is a chain, then its dual is defined to be c* = I mibr It is easy 
to see that the dual basis is a basis of the free abelian group Hom(F, Z); hence, 
every cochain has a unique expression of the form c*. It is not true that the 
dual of a cycle is a cocycle. Consider the following simple example: 

b~a 

C~d 
Clearly, z = <a, b) + <b, c) - <a, c) is a 1-cycle. On the other hand, if 
U = <a, c, d), then 

(u, (jz*) = (au, z*) 

= «c, d) - <a, d) + <a, c), z*) = -1; 

therefore (u, (jz*) -# 0, so that (jz* -# ° and z* is not a cocycle. 
Let us illustrate how one can compute with simplicial cohomology. 

EXAMPLE 12.9. As usual, triangulate the torus T = Sl X Sl by first triangu­
lating the square: 

v~--~~--~----~v 

v "---~--""'-----' v 
C 

Linearly order the vertices: v, c, d, e, j, g, h, i, j. 
Since H 1(T) = Z E9 Z is free abelian, Exercise 12.6 applies to give 

B2(T, Z) = {CP02: cP E Hom(B1(T), Z)} 

= {C*02: c E B1(T)}. 

Every 2-cochain y in C 2,T, Z) has the form y = I miui*' where Ui is a 
2-simplex. We claim that y = I miut is a 2-coboundary if its coefficient sum 
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L m; is zero. Let r = <x, y, z) be a 2-simplex (with vertices ordered x < y < z). 
By our observation above, a typical generator of B2(T, Z) is b(or)* = 

«y, z)* - <x, z)* + <x, y)*)o. If a = <u, v, w) (with u < v < w), then 

(a, b(or)*) = (oa, (or)*) 

= «v, w) - <u, w) + <u, v), <y, z)* - <x, z)* + <x, y)*). 

It follows easily that (cr, b(or)*) = 0 unless a and r have a common edge. Write 
b(or)* = L m;a;*, where the a; are 2-simplexes. Since the dual basis behaves as 
an orthonormal basis, m; = (a;, b(or)*). But each edge of r is an edge of exactly 
one other 2-simplex, and it occurs there with opposite orientation. Hence, 
there are only four (oriented) 2-simplexes involved in the expression for (or)*, 
namely, a; = <x, y, z), <y, x, u), <z, y, w), and <x, z, v). 

u x v .------,..---"-7 

w 

Evaluating gives values m; = 3, -1, -1, and -1; the coefficient sum is thus 
O. Therefore, the coefficient sum of every 2-coboundary is zero. 

We conclude that, for every 2-simplex a in T, the 2-cocycle a* is not a 
co boundary (all2-cochains here are 2-cocycles); that is, cls a* =1= 0 in H2(T; Z). 
Indeed, one can show that cls a* is a generator of H2(T; Z). Note that if we 
are interested only in finding some generator of H2(T; Z), then we can invoke 
the universal coefficients theorem to see that H2(T; Z) ~ Hom(H2(T), Z) 
(since Ext(H1(T), Z) = 0 because H1(T) is free abelian). 

EXAMPLE 12.10. We have already computed the cohomology ring of T (with 
much algebra). Let us now give another proof of its most important feature: 
there are two cohomology classes of degree 1 whose cup product is nonzero. 

v d c v 

v d c v (3 
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Define 1-chains 

rx = <e, h) + <g, h) + <g, j) + <f, j) + <f, i) + <e, i) 

and 

{3 = - <c, d) - <c, g) - <f, g) - <f, j) - <i, j) + <d, i). 

Note that (oa, rx*) = 0 for a1l2-simplexes a having no edges in common with 
rx; in fact, a simple calculation shows that (a a, rx*) = 0 for every 2-simplex a, 
hence rx* is a cocycIe. Similarly, one can show that {3* is a cocycIe. 

Another easy calculation shows that 

rx* U {3* = - <f, i,j)*: 

for example, 

«f, g, j), rx* U {3*) = «f, g), rx*)«g, j), {3*) = 1; 

that (a, rx* U {3*) = 0 for every other 2-simplex a is left to the reader. By the 
previous example, 

cIs rx* U cIs {3* = cIs rx* U {3* = cIs<f, g, j)* =1= 0 in H2(T; Z). 

as desired. 

We saw in Chapter 11 that if v: E -+ B is a fibration with fiber F, then there 
is a relation between the homotopy groups of E, B, and F given by the exact 
sequence of a fibration. The cohomology rings of E, B, and F are also related, 
by the Leray~Serre spectral sequence (there is also a spectral sequence relating 
the homology groups). Specializing to fibrations with fiber sq and coefficient 
ring Z/2Z, one obtains the following result. 

Theorem (Gysin Sequence). Let v: E -+ B be a fibration with fiber sq, where 
q ~ O. Denote Z/2Z by 2. 

(i) There is an exact sequence 

... ---+ Hk(B; 2)~ Hk(E; 2)---+ Hk-q(B; 2)~ Hk+l(B; 2)~ 

---+ Hk+l(E; 2)---+ Hk+l-q(B; 2)---+··· 

which begins 

0---+ HO(B; 2)~ H-q(B; 2)~ Hl(E; 2)---+ Hl(B; 2)---+··· . 

(ii) If cIs e E HO(B; 2) is the unit of the cohomology ring H*(B; 2), write 

ilB = l/Io(cIs e) E Hq+1(B; 2) 

(ilB is called the characteristic class of thefibration). 

Then the map I/Ik: Hk-q(B; 2) -+ Hk+l (B; 2), for all k ~ 1, is given by 

{31-+ ilB U {3. 
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(iii) If Vi: £' -> B' is another fibration with fiber sq and if the following diagram 
commutes 

£' 

, j 
B'~B 

f ' 

For a proof without spectral sequences, see [Spanier, p. 260]; for a proof 
with spectral sequences, see [Spanier, p. 499] or [McCleary, p. 134]. 

Recall from Exercise 12.12(ii) that Hk(Rpn; Z/2Z) ~ Z/2Z for all k with 
o ~ k ~ n. Furthermore, the usual covering projection v: sn -> Rpn, which 
identifies antipodal points, is a fibration (Theorem 10.5) with fiber So. 

Theorem 12.35. The cohomology ring H*(Rpn; Z/2Z) is isomorphic to the 
polynomial ring (Z/2Z) [x] modulo the ideal (xn+I ). In particular, if On is the 
nonzero element of HI (Rpn; Z/2Z), then the nonzero element of Hk(Rpn; Z/2Z) 
(where 1 ~ k ~ m) is O~, the cup product of On with itself k times. 

PROOF3 . The Gysin sequence of the fibration v: sn -> Rr with fiber SO is 

... ---+ Hk(sn; 2) ---+ Hk(Rpn; 2) ~ Hk+I(Rpn; 2) ---+ Hk+I(sn; 2) ---+ ... 

(again, we have denoted Z/2Z by 2). Since Hk(sn; 2) = 0 unless k = 0 or k = n, 
it follows that I/Ik is an isomorphism if 0 < k < n - 1, 1/10 is a surjection, and 
I/In-I is an injection. Now 1/10 is always injective, so that 1/10 is an isomorphism. 
To see that I/In-I is surjective (hence is an isomorphism), consider the "end" of 
the Gysin sequence: 

W-I(Rpn; 2) ~ W(Rpn; 2) -> w(sn; 2) ~ Hn(Rr; 2) -> w+1(Rpn; 2). 

Now Hn+1 (Rpn; 2) = 0 because Rr is a polyhedron of dimension n; therefore 
v*: Hn(sn; 2) -> Hn(Rpn; 2) is surjective. As both groups have order 2, the map 
v* must be an isomorphism, hence v* is an injection. Exercise 5.2 now implies 
that I/In-I is a surjection. 

If On is the nonzero element of HI(Rpn; 2), then On is the characteristic class 
because 1/10 is an injection. Now statement (ii) of the Gysin sequence is that 
I/Ik([3) = On U [3. It follows easily by induction that O~ is the nonzero element 
of Hk if k ~ n. Since O~+1 = 0, the structure of H*(Rpn; 2) is as stated. D 

3 There are proofs of this theorem avoiding the Gysin sequence (all are long): see [Wallace, 
p. 127], [Dold (1972), p. 223], [Maunder, p. 348], or [Munkres (1984), p. 403]. 
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Corollary 12.36. Let n > m :2: 1, and let f: Rpn --+ Rpm be continuous. If Qm is 
the nonzero element of HI (Rpm; Z/2Z), then f*(Qm) = o. 

PROOF. Since f* is a map of graded rings, it follows that f*(Qm) = 0 or 
f*(Qm) = Qn (for H 1 (RP"; Z/2Z) has only two elements). In the latter case, 
f*(Q:;:+I) = Q;:'+I, and this gives a contradiction because f*(Q:;:+I) = 0 and 
Q;:,+1 =I o. D 

Theorem 12.37. If n > m :2: 1, then Rpm is not a retract of Rpn. 

PROOF. Let i: Rpm 4 Rpn be (any) injection, and assume that there is some 
retraction r: Rpn --+ Rpm, that is, ri = 1, the identity on Rpm. It follows that 
i*r* = 1, so that r*: H*(Rpm; 2) --+ H*(Rpn; 2) is an injection, and this con­
tradicts the corollary. D 

If n :2: m :2: 1, the usual imbedding i: Rpm 4 Rpn is given by [xo, ... , xm] f--+ 

[xo, ... , X m, 0, ... , 0] (where (xo, ... , xm) E sm and [xo, ... , xm] is the equiva­
lence class of (xo, ... , xm) obtained by identifying antipodal points). The 
following diagram commutes when i is the usual imbedding: 

where v', v are fibrations with fiber So, namely, (xo, ... , xm) f--+ [xo, ... , x m], 
and i: sm 4 sn is the imbedding (xo, ... , xm) f--+ (xo, ... , X m, 0, ... ,0). Part (iii) 
of the Gysin sequence thus says that 

i*(Qn) = Qm 

whenever i: Rpm 4 Rpn is the usual imbedding. 

EXERCISES 

*12.23. If n > m ~ 1 and i: Rpm 4 RP" is the usual imbedding, then it is true that 
i*: Hq(RP"; Z/2Z) ..... Hq(Rpm ; Z/2Z) is an isomorphism for all q :s:; m. 

*12.24. Let i: Rpl ..... RP" be the usual imbedding, where n ~ 2, and let v: Sl ..... Rpl 
be the fibration (xo, Xl) f-+ [Xo, Xl]. Show that [i 0 v] is a nontrivial element of 
1l: 1(RP", *). (Recall Corollary 10.11 that 1l:1(RP", *) ~ Z/2Z and that Rpl ;::; Sl.) 

Lemma 12.38. Let n > m :2: 1, and let f: RP" --+ Rpm be a continuous map. If 
v: sm --+ Rpm is the covering projection identifying antipodal points, then there 
exists a lifting 1: RP" --+ sm (i.e., vI = f). 
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PROOF. By the lifting criterion, Theorem 10.13, it is enough to show that the 
induced map f*: 7tl(Rpn, *) -+ 7tl(Rpm, *) is zero. 

Ifm = 1, then Rpm = Rpl = Sl and so 7tl(Rpl, *) ~ Z; since 7t 1(Rpn, *) ~ 
Z/2Z, it follows that f* = 0 in this case. We may therefore assume that m ~ 2. 
Now f*, the induced map in cohomology, satisfies f*(Om) = 0, by Corollary 
12.36. Hence, if i: Rpl 4 Rpn is the usual imbedding, 

o = i*f*(Om) = (f 0 i)*(Om). 

On the other hand, if j: Rpl 4 Rpm is the usual imbedding, then Exercise 
12.23 shows that j*(Om) "# 0 (because m ~ 2). It follows that the maps j and 
f 0 i from Rpl to Rpm are not homotopic. As Rpl = sl, however, these maps 
represent elements of 7t 1 (Rpm, *) ~ Z/2Z (again, we use m ~ 2). As j is not 
nullhomotopic (j* (Om) "# 0), it follows that f 0 i is nullhomotopic. By Exercise 
12.24, the nontrivial element of 7tl(Rpm, *) is [i 0 Vi], and so f*[i 0 Vi] = 
[f 0 i 0 Vi] = 0, as desired (where Vi: Sl -+ Rpl is as in Exercise 12.24). D 

Theorem 12.39. If n > m ~ 1, then there is no continuous map g: sn -+ sm with 
g( -x) = -g(x) for all x E sn. 

Remark. The special case m = 1 has been proved in Theorem 6.28. 

PROOF. If such a map g exists, then there exists a continuous map f making 
the following diagram commute: 

sn 9 sm -----+ 

.j j , 
Rpn -----+ 

I 
Rpm, 

where Vi, V are the covering projections. By the lemma, there is a lifting 
j: Rpn -+ sm with vj = f Now consider the diagram 

sm 

////'j, 
sn -----+ Rpm. 

lv' 
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Commutativity of the original diagram shows that both g and jv' are liftings 
offv': 

vg = fv' = vjv'. 

Choose Xo E So; by definition, v(g(xo)) = v( -g(xo)), and so the (two­
point) fiber over v(g(xo)) consists of {±g(xo)}. Now the point Jv'(xo) lies in 
this fiber (because vjv'(xo) = fv'(x o) = vg(xo)), so that either jv'(xo) = g(xo) or 
jv'(xo) = -g(xo). In the second case, 

jv'( -xo) = jv'(xo) = -g(xo) = g( -xo)' 

Hence, in either case, the liftings g and jv' agree at a point. The uniqueness 
theorem, Lemma 10.3, gives g = jv'. But this is a contradiction: for every 
XES·, we have v'( -x) = v' (x), and so jv'( -x) = jv'(x); on the other hand, 
g( -x) = -g(x). 0 

Corollary 12.40 (Borsuk-Ulam). If f: S· ~ R· is continuous and n ?: 1, then 
there exists XES· with f(x) = f( - x). 

PROOF. The case n = 1 was proved in Exercise 6.15, and so we may assume 
that n ?: 2. If no such x exists, then the map g: S" ~ S·-l given by 

f(x) - f( -x) 
g(x) = II f(x) - f( - x)11 

is a well defined continuous map, and g( -x) = -g(x) for every XES·, con­
tradicting the theorem. 0 

EXERCISES 

12.25. If f: S' -+ R' satisfies f( - x) = - f(x) for every XES', then there exists Xo E S· 
with f(x o) = O. 

12.26. Prove that R' contains no subspace homeomorphic to S'. 

12.27. Prove the Lusternik-Schnirelmann theorem: if S· is the union ofn + 1 closed 
subsets Fi , ... , F.+!, then at least one Fi contains a pair of antipodal points. (See 
Corollary 6.30.) 

Theorem 12.41 (Ham Sandwich Theorem). Let R· contain n bounded Lebesgue 
measurable subsets Ai' ... , A •. Then there exists a hyperplane that bisects every 
Aj , j = 1, ... , n (i.e., half the measure of each Aj lies on each side of the 
hyperplane). 

Remarks. (1) The name of the theorem comes from the case n = 3: given a 
piece of white bread, a piece of rye bread, and a piece of ham, one can slice 
the sandwich with one cut into two sandwiches, each having the same amounts 
of white bread, rye bread, and ham. 

(2) The alimentary example above is misleading, because the subsets Aj 

may intersect. 
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PROOF. We begin with some elementary geometry. As usual, regard Rn as 
imbedded in Rn+l as all (n + I)-tuples with last coordinate zero. Choose, once 
and for all, a point y E Rn+1 - Rn. If 0 is the origin and x E sn, let xO denote 
the line determined by x and O. There is a one-parameter family of hyperplanes 
perpendicular to xO; let n(x) denote that hyperplane in the family containing 
y. Note that 

n(x) = x~ + y, 

where x~ is the n-dimensional sub-vector-space of Rn +1: 

x~ = {z E Rn+l: (z, x) = O}. 

Here are three observations. 

(1) n(x) i= Rn (for y E n(x) and y if Rn). 
(2) x + y and -x + y lie on different sides of n(x). First, ±x + y if n(x); 

otherwise ±x + y = z + y for some z E x~; but then ±x = z and (x, x) = 

0, contradicting (x, x) = 1. But Y E n(x) is the midpoint of the line segment 
joining x + y and - x + y). 

(3) n(x) = n( -x) (the lines xO and -xO coincide). 

We now begin the proof proper. For each j with 1 ::;; j ::;; n, define uj : sn -+ R 
by setting uix) to be the measure of that portion of Aj lying on the same side 
of n(x) as x + y (should all of Aj lie on the other side, then uix) = 0 = f.1(0), 
where f.1 is Lebesgue measure). That uj is continuous follows from countable 
additivity of Lebesgue measure: if Xm -+ x and if Sm is the "slab" between n(xm ) 

and n(xm+1), then limm _ oo f.1(Aj n sm) = O. 
Define f: sn -+ Rn by f(x) = (u1 (x), ... , Un (x));f is continuous because each 

uj is continuous. By the Borsuk - Ulam theorem, there is Xo E sn with f(xo) = 

f( - xo); that is, uixo) = ui - xo) for j = 1, ... , n. For every x E sn, we have 

uix) + uj ( -x) = f.1(A); 
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this follows from (2), (3), and the additivity of 11. Therefore uj(xo) = !.u(Aj) 
for j = 1, ... , n. Finally, the required hyperplane in Rn is just n(xo) n Rn (which 
is a hyperplane in Rn by (1)). D 

For an elementary proof of the Borsuk-Ulam theorem when n = 2, see 
[Kosniowski, p. 157]; for elementary proofs of the ham sandwich theorem for 
n = 2 and n = 3, see [Kosniowski, pp. 64, 159]. 

The last problem we consider is whether a sphere sn can be an H-space. 

Definition. A graded co-ring is a graded abelian group B = Lp;"o BP with a 
homomorphism c: B -+ B ® B, called comultiplication, for which 

c(BP) C L Bi ® Bj. 
i+j=p 

Definition. A graded abelian group B = L BP is a Hopf algebra over Z if 

(i) B is a graded ring; 
(ii) B is a graded co-ring; 
(iii) the comuitiplication c: B -+ B ® B is a homomorphism of graded rings. 

Thus a Hopf algebra combines the two "dual" notions of graded ring and 
graded co-ring, with axiom (iii) as a compatibility condition. 

Definition. A co-unit of a graded co-ring B is a homomorphism e: B -+ Z 
making the following diagram commute: 

B®Z ~ B®B ~ Z®B. 

~l/ 
B 

where 1 and r are the isomorphisms defined by I: b 1-+ b ® 1 and r: b 1-+ 1 ® b. 

In the language of Chapter 11, a co-unit is a co-identity in the category of 
graded rings (for it is easy to see that Z, the graded ring having Z in degree 0 
and zero elsewhere, is an initial object). 

Definition. A Hopf algebra B = L BP is connected if 

(iv) B O is infinite cyclic with generator the unit e; 
(v) the map e: B -+ Z, defined by 

e(e) = 1 and e(b P) = 0 for all bP E BP, P ~ 1, 

is a co-unit. 

Connected Hopf algebras arise naturally. 
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Theorem 12.42. If X is a path connected H-space whose homology groups are 
fg. free abelian groups, then H*(X) is a connected Hopf algebra over Z. 

PROOF. As always, H*(X) is a graded ring under cup product. Since X is 
an H-space, there is a given continuous map Jl: X x X --+ X. By Theorem 
12.31, the hypotheses on X imply that cross product oc': H*(X) ® H*(X) --+ 

H*(X x X) is an isomorphism of graded rings. If f3 is its inverse, define 
c: H*(X) --+ H*(X) ® H*(X) as the composite 

H*(X)L H*(X x x)L H*(X) ® H*(X). 

As Jl* is a map of graded rings (Lemma 12.20), it follows that c is a homomor­
phism of graded rings, and so H*(X) is a Hopf algebra over Z. (Since every 
space X has continuous maps X x X --+ X, the connectedness of the Hopf 
algebra must be the crucial point where the hypothesis that X is an H-space 
is used.) Now X path connected implies that HO(X) ~ Z; it is easy to see that 
the unit e is a generator (e is defined by (x, e) = 1 for all x EX). 

Recall the definition of H-space. There is X o E X so that the following 
diagram commutes to homotopy: 

XxX 
(lxY j ~lx) 
X Jl ~X, 

~~l 
X 

where k: X --+ X is the constant map at Xo, (k, 1 x): x ~ (xo, x), and (1 x, k): x ~ 
(x, xo). Let i: {xo} c... X be the inclusion. 

Since H*( {xo}) = HO( {xo}), the map of graded rings i*: H*(X) --+ H*( {xo}) 
carries HP(X) into 0 for all p > 0, while i*(cls e) = cls eo, the unit of H*( {xo}), 
by Lemma 12.20. We identify H*( {xo}) with Z, and so i* is the map that must 
be shown to be a co-unit. 

Consider the following subdivision of the defining co-unit diagram: 

I ® i' .._______H*(X) @rX H*(X)~, ® I 

~ (l-,k)' P (k,lx)' ~ 
H*(X)@H*({xo}) +-- H*(X) ~ H*(X x X) ~ H*(X) ---+ H*({xo})@H*(X) 

~r~'~r 
H*(X) 

where 1: u ~ u ® cls eo and r: u ~ cls eo ® u. Since the composite f3Jl* is the 
comultiplication c, it suffices to show that each triangle in the diagram 
commutes (for then i* is a co-unit). Commutativity of the lower outside 
triangles is plain, while commutativity of the other two lower triangles results 
from applying the functor H* to the homotopy commutative diagram above. 
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It remains to prove that l(lx, k)* = (1 ® i*)f3 and r(k, lx)* = (i* ® 1)f3; since 
f3 is the inverse of ri, it suffices to prove that 

l(lx, k)*rx' = 1 ® i* and r(k, lx)*rx' = i* ® 1. 

Now i* (8) 1 maps HP(X) ® Hq(X) into HP( {xo}) ® Hq(X), and hence it is 
zero when p > 0. If p = 0, it suffices to look at (i* ® l)(cIs e ® cIs e) (for X 
path connected implies that cIs e generates HO(X», and 

(i* ® l)(cIs e ® cIs e) = cIs i# e ® cIs e 
= cIs eo ® cIs e. 

On the other hand, if qJ is a p-cocycIe and e is a q-cocycIe, then 
r(k, lx)*rx'(cIs qJ ® cIs e) = r(k, lx)*(cIs qJ x cIs e), by definition of cross pro­
duct. But (k, lx)* = d*(k x lx)*, where d: X --+ X x X is the diagonal, so that 
Exercise 12.13 gives 

r(k, lx)*(cIs qJ x cIs e) = rd*(k* cIs qJ x cIs e). 

It follows that this is zero for p > ° (because k is a constant map). If p = 0, we 
may again assume that qJ = e, and now 

rd*(k* cIs e x cIs e) = rd*(cIs e x cIs e) 

(for k: X --+ X implies that k* cIs e = cIs e). By Corollary 12.27, 

rd*(cIs e x cIs e) = r(cIs e U cIs e) 

= r cIs e = cIs eo ® cIs e, 
as desired. A similar argument handles 1 ® i*. D 

Remark. If one replaces Z by a field R throughout, then one obtains graded 
R-algebras instead of graded rings and connected Hopf algebras over R 
instead of over Z; the analogous result holds for any space X of finite type 
(whose homology groups need not be free abelian). 

Theorem 12.43 (Hopf). If n > ° is even,4 then sn is not an H-space. 

PROOF. We know that H*(sn) = HO EEl Hn, say, with generators e and x. It 
suffices to show that H*(sn) cannot be a connected Hopf algebra; let us assume 
otherwise. 

Now the comultiplication c: H* --+ H* ® H* is a map of graded rings. Since 
x has degree n, 

c(x) = re ® sx + ux ® ve, r, s, U, v E Z. 

If e: H* --+ Z is the co-unit, then (e ® l)c(x) = 1 ® x and (1 ® e)c(x) = x ® 1. 

4 It is known that S· is an H-space only for n = 0, 1, 3, and 7. 
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Since HO ® H" --+ Z (given by ae ® bx~ab) and H" ® HO --+ Z (given by 
bx ® ae ~ ab) are isomorphisms of abelian groups, I = rs = uv. Since 
re ® sx = e ® rsx = rse ® x, it follows that 

c(x) = e ® x + x ® e. 

Now x U x = 0 because its degree is 2n > n, and so c(x U x) = O. But c is 
multiplicative, so that 

o = c(x U x) = c(x)c(x) 

= (e ® x + x ® e)(e ® x + x ® e) 

= (e ® X)2 + (e ® x)(x ® e) + (x ® e)(e ® x) + (x ® e)2. 

Recall that multiplication in H* ® H* satisfies 

(a ® b)(y ® z) = (_l)degbdegY(a U y) ® (b U z). 

It follows that 

(e ® xf = e ® (x U x) and (x ® e)2 = (x U x) ® e, 

and each of these is zero because x U x = o. Also 

(x ® e)(e ® x) = x ® x 

because e has degree 0, while 

(e ® x)(x ® e) = (_1)"2x ® x. 

Since n is even, it follows from the above expansion of 0 = c(x U x) that 
2x ® x = 0 in H" ® H", hence x ® x = O. But x ® x -:f. 0, by Exercise 9.34. 
This contradiction completes the proof. 0 

It follows, of course, that S2" is never the underlying space of a topological 
group (when n > 0). 

You are now in the hands of [1. F. Adams]. 
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Notation 

C 
I 

Q 
R 
Z 
X 
XO 
(; 

IXI 
Rn 

sn 
Dn 

,:1n 

lA 
obj ~ 
Groups 
Sets 
Top 
Ab 
TOp2 

Sets* 
Top* 

f* 
f* or f# 
hTop 
X/A 

complex numbers 
closed unit interval [0, 1] 
rational numbers 
real numbers 
integers 
closure of X (as subspace of a larger space) 
interior of X (as subspace of a larger space) 
boundary of V (as subspace of a larger space) 
cardinal of a set X 
euclidean n-space 
n-sphere 1 
n-disk 2 
standard n-simplex 2 
identity function or identity morphism on A 6 
objects in a category ~ 6 
category of groups 7 
category of sets 7 
category of topological spaces 7 
category of abelian groups 8 
category of pairs (X, A), where X is a topological space and 
A is a subspace of X 8 
category of pointed sets 8 
category of pointed topological spaces 8 
map Hom(M, A) ~ Hom(M, B) induced by f: A ~ B 11 
map Hom(B, M) ~ Hom(A, M) induced by f: A ~ B 12 
homotopy category 16 
quotient space 20 
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hTop* 
a 
s*(X) 
f# 
cls Zn 

Comp 
s*(X) 
H*(x) 
Sd 
IKI 

step) 
x 
Igl 

K(q) 

C*(K) 
x(X) 
C*(K) 
XvY 
cpn 

H 
Hpn 
Rpn 
If or X 11.r Y 
X11Y 
X(q) 

IE'I 

W*(X) 
tr 
AU) 
(X, p) 
Gx 

Cov(X/X) 
f# 

OX 
LX 
XOO 
Mf 
f* 

Notation 

map induced on fundamental group or in homology 44, 
67 
pointed homotopy category 44 
alternating sum differentiation 64, 143 
singular chain complex 65 
induced chain map 66 
homology class of an n-cycle Zn 66, 87 
category of chain complexes 88 
augmented singular chain complex 102 
reduced homology 102,147 
subdivision 113,114,138 
geometric realization or underlying space of a simplicial 
complex K 132, 197 
all the proper faces of a simplex s 
open simplex s - lsi 
starofp 135 
category of simplicial complexes 137 
piecewise linear map between geometric realizations 
induced by simplicial map g 137 
q-skeleton of simplicial complex K 140 
simplicial chain complex 144 
Euler~Poincare characteristic 145,151,221 
augmented simplicial chain complex 147 
wedge 153, 196 
complex projective space 183 
quaternions 183 
quaternionic projective space 183 
real projective space 183 
attaching space 184, 187 
coproduct or disjoint union 184, 196 
q-skeleton of CW complex X 198 
union of all cells in E', where (X, E) is a CW complex and 
E' c E 200 
cellular chain complex 213 
trace 249 
Lefschetz number 250 
covering space 273 
stabilizer of x 280 
group of covering transformations 289 
associate of a function f of two variables 313 
loop space of a pointed space X 326 
suspension of a pointed space X 329 
one-point compactification 333 
mapping fiber 345 
map induced in cohomology 379 



Index 

A 
Absolute homology group 97 
Abstract simplicial complex 141 
Action 

group on set or space 280 
proper 310 
transitive 280 
without fixed points 311 

Acyclic carriers 246 
Acyclic complex 88 
Acyclic cover 155 
Acyclic models 242 
Acyclic space 69 
Adams 372, 418 
Additive functor 239 
Adequate subcomplex 158 
Adjoint pair of functors 330 
Admissible open set 273 
Affine chains 116 
Affine combination 31 
Affine independent 32 
Affine map 38 
Affine simplex 35 
Affine subset 31 
Alexander horned sphere 129 
Alexander-Veblen 152 
Alexander-Whitney 398 
Algorithm for simplicial homology 156 
Almost all 59 
Amalgam 179 
ANR212 
Anticommutativity 401 
Antipodal map 124, 252 

the antipodal map 121 

Antipode 2 
Associate of function of two variables 

313 
Attaching a 2-cell, simplicial178 
Attaching an n-cell187 
Attaching map 184 

simplicial 177 
Augmentation of nonnegative complex 

244 
Augmentation preserving chain map 244 
Augmented simplicial complex 148 
Augmented singular complex 102 

B 
Back face 391 
Barratt - Whitehead 107 
Barycenter 36 
Barycentric coordinates 35 
Barycentric subdivision 113, 114 

abstract simplicial complex 141 
simplicial complex 138 

Base of free functor 239, 240 
Basepoint 8, 44 

simplicial complex 166 
Basis 

free abelian group 59 
free group 168 
free module 374 
of topology 296 

Betti number 68 
Bilinear function 253 
Blakers-Massey 369 
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Borsuk-Ulam 125,413,415 
Boundaries 87 

relative 99 
simplicial 144 
singular 65 

Boundary of simplex 64 
Boundary operator 65 
Boundary points 128 
Bouquet of circles 178 
Brody 226 
Brouwer 119 
Brouwer fixed point theorem 5, 110, 252 
Brown 371 

C 
Category 6 

functor 230 
homotopy 16 
pairs 8 
pointed homotopy 44 
quotient 10 
small 230 

Cell = n-cell 186 
algebraic 159 
closed 126 

Cellular approximation theorem 227 
Cellular 

chain complex 213 
filtration 212, 213 
map 213 
space 213 

Chain complex 86 
cellular 213 
fini te type 387 
free 233 
nonnegative 242 

Chain equivalence 92 
Chain equivalent 92 
Chain homotopic 92 
Chain homotopy 92 
Chain map 88 

augmentation preserving 244 
over /238 

Chains 
affine 116 
simplicial144 
singular 64 

Character group 386 
Characteristic class 409 
Characteristic map 185, 188, 198 
Circuit 167 
Closed cell 126 
Closed edge path 164 

Closed path 41 
Closed relation 181 
Closed star 153 
Closure finite 199 
Co-associativity 319 
Co-identity 319 
Co-inverse 320 
Co-unit 415 
Coboundaries 378 
Cochains 378 
Cocycles 378 
Co diagonal 316 
Coefficient group 231 
Coexact sequence 350 
Co fibration 212, 360 
Cogroup object 319 
Cohomology class 378 

Index 

Cohomology group with coefficients 
378 

de Rham 376 
integral 386 
relative 381 
simplicial 406 

Cohomology ring 396 
product 403 
real projective space 410 
simplicial 406 
torus 404 
wedge 402 

Co kernel 238 
Commutative diagram 9 
Compact supports 71, 232 
Compact-open topology 312 
Compactly generated 203 
Complex projective space 183 

homology groups 192 
Complex = chain complex 86 

acyclic 88 
augmented singular 102 
direct sum 90 
finitely based 159 
quotient 89 
simplicial 144 
simplicial augmented 148 
singular 65 
zero 89 

Component 
path 26 
simplicial complex 166 

Composition (in category) 6 
Comultiplication 

cogroup object 319 
Hopf algebra 415 

Cone 23 



Index 

Cone construction 74 
Congruence (on category) 9 
Connected Hopf algebra 415 
Connected simplicial complex 166 
Connected sum 195 
Connecting homomorphism 94 

cohomology 382 
naturality 95 

Constant edge path 165 
Constant map 16 
Constant path 41 
Contiguous 152 
Continuation 296 
Contractible 18 
Contracting homotopy 92 
Contravariant functor 11 
Contravariant Hom functor 12 
Convex 18 
Convex combination 32 
Convex hull of X = convex set 

spanned by X 31 
Convex set spanned by X 31 
Coordinate neighborhoods 363 
Coproduct 

in category 315 
of spaces 184, 196 

Convariant functor 11 
Covariant Hom functor 11 
Cover (simplicial complex) 153 

acyclic 155 
Covering homotopy lemma 279 
Covering homotopy theorem 277 
Covering projection 273 
Covering space 273 

j-sheeted 282 
regular 283 
universal 288 

Covering spaces, equivalent 290, 308 
Covering transformation 288 
Cross product 400 
Crosscaps 195 
Cup product 392, 396 

simplicial 405 
CW complex 198 

dimension 204 
finite 199 
skeleton 198 

CW decomposition 198 
CW space 198 
CW subcomplex 200 
Cycles 87 

relative 99 
simplicial 144 
singular 65 

D 
de Rham cohomology 375 
de Rham theorem 396 

427 

Deck transformation = covering trans­
formation 288 

Deformation retract 29 
strong 209 

Degree 
homogeneous element in graded ring 

391 
fundamental group 52 
homology 119 

Diagonal approximation 396 
Diagonal map 315 
Diagonal of space 181 
Diagram chasing 93 
Differential form 375 
Differentiation 86 
Dimension axiom 

cohomology 379 
homology groups 68 
homotopy groups 336 

Dimension 
CW complex 204 
simplicial complex 136 

Direct sum of complexes 90 
Direct summand 4 
Disconnection 109 
Discrete space: every subset is 

closed 
Disk 2 
Divisible abelian group 384 
Dowker 207 
Dual basis 407 
Dual space functor 12 
Dual universal coefficients 385 
Dunce cap 164 

homology groups 164 

E 
E-acyclic object 242 
Edge 164 
Edge path 164 

closed 164 
constant 165 
homotopy of 165 
inverse 165 
length 164 
reduced 167 

Edge path class 165 
Edge path group 166 
Eilenberg-Mac Lane space 371 
Eilenberg-Steenrod 231 
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Eilenberg-Zilber 266 
End 

edge path 164 
path 41 

Equator 2 
Equivalence (in category) 12 
Equivalent covering spaces 290, 308 
Euclidean space 1 
Euler-Poincare characteristic 145, 146, 

152,221 
Evaluation map 313 
Evenly covered 273 
Exact sequence 

abelian groups 87 
(chain) complexes 89 
pointed homotopy category 345 
pointed sets 34 
short 87 
split 234 

Exact sequence of pair 
homology 96 
homotopy 354 

Exact sequence of triple 
homology 96 
homotopy 355 

Exact triangle 94 
Excision I 106 
Excision II 106 
Excision 

cellular 220 
cohomology 382 
simplicial 147 
singular 117 

Exponential law 314 
Ext 383 
Extending by linearity 60 
Exterior algebra 391 
Exterior derivative 375 
Exterior power 374 
Extraordinary homology theory 

232 

F 
F-model set 239 
Face map 64 
Face 

simplex 37, 131 
back 391 
front 391 
proper 131 

f.g. = finitely generated 
Fiber 21 

Fiber product 358 
Fibration 277, 356 

weak 360 
Filtration 212 

cellular 212,213 
Finite CW complex 199 
Finite type 

chain complex 387 
space 387 

Finitely based complex 159 
Finitely presented group 172 

Index 

First isomorphism theorem for com-
plexes 91 

Five lemma 98 
Flores 136 
Folding map 316 
Forgetful functor 11 
Free abelian group 59 
Free chain complex 233 
Free functor 239, 240 

base 239, 240 
Free group 168, 305 
Free homotopy 40 
Free module 374 
Free product 173 
Free product with amalgamated sub-

group 179 
Freedman 140 
Freudenthal suspension theorem 369 
Front face 391 
Full subcomplex 173 
Functor 11 

additive 239 
base of free 239, 240 
contravariant 11 
contravariant Hom 12 
covariant 11 
covariant Hom Ii 
dual space 12 
forgetful 11 
free 239, 240 
identity 11 

Functor category 230 
Fundamental group 44 

circle 52 
CW complex 227 
lens space 311 
polyhedron 172 
product 46 
real projective plane 282 
surfaces 195 
wedge 176 

Fundamental theorem of algebra 17, 53 
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Fundamental theorem of fg. abelian 
groups 155 

G 
G-equivariant map = G-map 290 
G-isomorphism 291 
G-map 290 
G-set 

left 281 
right 281 
transitive 280 

Gelfand-Kolmogoroff 13 
General position 34 
Generators and relations 

abelian group 60 
nonabelian group 169 

Genus 195 
Geometric realization 

finite simplicial complex 142 
infinite simplicial complex 197 

Gluing lemma 14, 15 
Graded ring 390 
Graph of relation 181 
Green's theorem 58, 377 
Group object 318 
Groupoid 42 
Gysin sequence 409 

H 
H' -group 324 
H-group 324 
H-space 55 
Hairy ball theorem 123 
Ham sandwich theorem 413, 415 
Handles 194 
Hauptvermutung 152 
Hirsch 3 
Hom functor 

contravariant 12 
covariant II 

Homogeneous 
element 391 
ideal 391 
subring 391 

Homology class 66, 87 
Homology group 87 

absolute 97 
cellular 213 
reduced simplicial 148 
reduced singular 102 
relative simplicial 145 
relative singular 96 

simplicial 144 
singular 66 
with coefficients 257 

Homology groups 
complex projective space 192 
dunce cap 164 
Klein bottle 194 
lens space 226 
product 270 
quaternionic projective space 192 
real projective plane 158, 193 
real projective space 224 
spheres 109 
torus 157, 193 
wedge 153 

Homology theory 231 
extraordinary 232 

Homomorphism, trivial 49 
Homotopic 14 
Homotopic edge paths 165 
Homotopy 14 

chain 92 
contracting 92 
free 40 
level alongf338 
pointed pair 351 
relative 40 

Homotopy axiom 75 
pairs 104 
cohomology 379 

Homotopy category 16 
Homotopy class 15 
Homotopy equivalence 16 
Homotopy extension property 359 
Homotopy extension theorem 212 
Homotopy group, relative 351 
Homotopy groups 334 

spheres 343 
Homotopy identity 55 
Homotopy lifting property 355 
Homotopy sequence 

fibration 358 
pair 354 
triple 355 
weak fibration 363 

Hopf 119 
Hopf algebra 415 

connected 415 
Hopf fibrations 366, 367 
Hu 231 
Hurewicz 359 
Hurewicz fiber space = fibration 

356 

429 
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Hurewicz map 80, 369 
Hurewicz theorem 82, 369 

I 
Identification 21 
Identity functor II 
Identity morphism 6 
Image subcomplex 89 
Independent 

affine 32 
subset of abelian group 61 

Induced orientation 63 
infinite simplicial complex 197 

geometric realization 197 
Infinite-dimensional real projective 

space 182 
homology groups 220 

Initial object 314 
Injections 316 
Integral cohomology groups 386 
Integration formula 74 
Intersection of subcomplexes 90 
Invariance of dimension 136 
Invariance of domain 129, 130 
Inverse edge path 165 
Inverse path 41 
Isomorphic functors 228 
Isomorphism 

abstract simplicial complexes 
141 

(chain) complexes 91 
homology theories 231 

Isotropy subgroup = stabilizer 2-80 

J 
j-sheeted covering space 282 
Jordan-Brouwer separation theorem 

128 

K 
Kernel 20 
Kernel subcomplex 89 
Klein bottle 134 

homology groups 164, 194 
Kuratowski 136 
Kiinneth formula 269 

cohomology 389 
Kiinneth theorem 268 

L 
Lakes of Wada 129 

Index 

Lebesgue number: If X is a compact 
metric space and if OU is an open 
cover of X, then there exists a posi­
tive number A such that every open 
ball of radius less than A lies in 
some element of OU. 

Lefschetz fixed point theorem 250 
Lefschetz number 250 
Left exactness 380 
Left G-set 281 
Length (edge path) 164 
Lens space 225 

fundamental group 311 
homology groups 226 

Leray 154 
Level homotopy alongf338 
Lie group 302 
Lifting 51 
Lifting criterion 284 
Lifting lemma 277 
Local homeomorphism 273 
Local system 338 
Locally compact 189 
Locally connected 29 
Locally contractible 211 
Locally finite 362 
Locally path connected 28 
Locally trivial bundle 363 
Loop space 326 
Lusternik-Schnirelmann 125,413 

M 
Maehara 6 
Manifold 195 
Map 

affine 38 
antipodal 121, 124,252 
attaching 177, 184 
cellular 213 
chain 88, 238, 244 
constant 16 
diagonal 315 
face 64 
folding 316 
G- 290 
natural 19, 91 
pairs 8 
pointed 8 
simplicial 136 

Mapping cone 236 
Mapping cylinder 30 
Mapping fiber 345 
Maximal tree 167 



Index 

Mayer-Vietoris 107 
cellular 220 
reduced homology 108 
simplicial 147 

Mesh 116 
simplicial complex 139 

Milnor 3, 152, 199,368 
Models 239 
Module 373 
Moise 152 
Monodromy group 284 
Monodromy theorem 279 
Monoid 9 
Morphism 6 

identity 6 
special 323 

Multiplication (group object) 318 
Multiplicity (covering space) 282 

N 
n-simple space 342 
Natural equivalence 228 
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