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1. Galois extensions

Let S be the sphere spectrum. An S-algebra A is a monoid (A,µ : A ∧ A →
A, η : S → A) in a good symmetric monoidal category of spectra, such as the S-
modules of Elmendorf, Kriz, Mandell and May [EKMM], the symmetric spectra
of Jeff Smith [HSS], or the simplicial functors of Manos Lydakis [Ly]. When A is
commutative there is also the notion of an A-algebra (B,µ : B ∧A B → B, η : A→
B).

La A→ B be a map of commutative S-algebras. (Make the necessary cofibrancy
and fibrancy assumptions.) Let G be a grouplike topological monoid acting on B
through A-algebra maps.

Definition. A→ B is a G-Galois extension if

(1) G ≃ π0(G) is finite,
(2) A ≃ BhG = F (EG+, B)G, and
(3) B ∧A B ≃ F (G+, B).

A → B is a G-pro-Galois extension if G is a filtered limit G = limαGα, B is
a filtered colimit B = colimαBα and A → Bα is a Gα-Galois extension for each
α. Then A ≃ BhG and B ∧A B ≃ F (G+, B) where the homotopy fixed points and
function spectra are formed in a continuous sense.

Examples.

(1) The trivial G-Galois extension A → B = F (G+, A) takes A to constant
maps from G.

(2) When R → T is a G-Galois extension of commutative rings, the map of
Eilenberg–MacLane ring spectra HR → HT is a G-Galois extension (of
commutative S-algebras).

(3) Complexification KO → KU is a C2-Galois extension, and inclusion of the
p-local Adams summand L→ KU(p) is a (Z/p)∗-Galois extension.

(4) More generally EOn → En is a G-Galois extension when EOn = EhG
n for

G a maximal finite subgroup of Gn = Sn ⋊ Cn. Here Cn = Gal(Fpn/Fp) is
cyclic of order n and Sn is the nth Morava stabilizer group of automorphisms
of a height n formal group law defined over Fpn . The Lubin–Tate spectrum
En has homotopy En∗ = WFpn [[u1, . . . , un−1]][u, u

−1], where each ui has
degree 0 and u has degree 2, and Gn acts on En through S-algebra maps,
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cf. the works of Morava, Hopkins–Miller and Goerss–Hopkins [Mo], [Re],
[GH].

(5) The inclusion Jp → KUp is a Z∗

p-pro-Galois extension, with k ∈ Z∗

p acting

as the Adams operation ψk.
(6) More generally LK(n)S → En is (most likely) a Gn-pro-Galois extension.

The assertion LK(n)S ≃ EhGn
n is a version of the Morava change of rings

theorem, and the equivalence En ∧LK(n)S En ≃ F (Gn+, En) is a variation

on a result of Devinatz–Hopkins. (Needs some further checking.)

En KUp

MU // En

OO

KUp = E1

OO

EOn

dd■■■■■■■■■
Lp = EO1

∆

gg❖❖❖❖❖❖❖❖❖❖❖❖

LK(n)S

::✈✈✈✈✈✈✈✈✈

Gn

OO

Jp = LK(1)S

Γ

77♦♦♦♦♦♦♦♦♦♦♦

Γ′

OO

HQ

S //

OO

. . . // LnS //

OO

. . . // L1S //

OO

HQ = L0S

GQ

OO

(When the maximal finite subgroup of Gn used to form EOn is not normal, EOn

will not be Galois over LK(n)S.)

Proposition. Let A→ B be G-Galois, M an A-module, N a B-module.

(1) B is strongly dualizable as an A-module. So FA(B,A) ∧A M ≃ FA(B,M).
We write DA(B) = FA(B,A) for the A-dual of B.

(2) B is self-dual as an A-module. So B ≃ DA(B).
(3) A is B-complete, i.e., the map A → C(A → B) to the totalization of the

cosimplicial spectrum [q] 7→ B ∧A · · · ∧A B with (q + 1) copies of B is a

homotopy equivalence.

(4) B ∧A N ≃ F (G+, N).
(5) N ∧G+ ≃ FA(B,N). In particular B ∧G+ ≃ FA(B,B).

Question. What can be said when B = A ∧X for a spectrum X ? Is X suitably
self-dual ?

Question. Is B faithfully flat as an A-module ? That is, does B ∧A M ≃ ∗ imply
that M ≃ ∗ ?

This holds in many cases, including the trivial Galois extension, Galois extensions
of commutative rings, KO → KU , L→ KU(p), EO2 → E2 and Jp → KUp.

For example, if M is a KO-module with KU ∧KO M ≃ ∗ then from the cofiber
sequence ΣKO → KO → KU we get that η : ΣM →M is a homotopy equivalence.
But η is nilpotent, so M ≃ ∗. A similar argument works for EO2 → E2 ≃ EO2 ∧
DA(1).
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Definition. A commutative S-algebra A is connected if we can only factor A as
A ≃ A′ ×A′′ as commutative S-algebras when A′ or A′′ is contractible.

Definition. A connected commutative S-algebra A is separably closed if it admits
no connected G-Galois extension A → B with π0(G) nontrivial. We write A for a
separable closure of A.

2. Étale maps

Example. Let F → E be a G-Galois extension of number fields. Then the map
of number rings OF → OE is G-Galois if and only if F → E is unramified, i.e., if
and only if OF → OE is an étale map.

Definition. A map A→ B of S-algebras is formally étale if the topological André–
Quillen homology TAQ(B/A) ≃ ∗ is contractible.

One definition of TAQ(B/A) is as the B-module spectrum with nth space Sn⊗B
with the tensor product formed in the category of commutative A-algebras.

The lifts in the diagram

A //

��

C ∨M

��
B // C

where M is a C-module and M → C ∨ M → C a square-zero extension, are
the A-linear derivations DerA(B,M) of B with values in M , and DerA(B,M) ≃
FB(TAQ(B/A),M). Dually to the unique lifting property of covering spaces this
space is always contractible precisely when A→ B is formally étale.

The following criterion is useful.

Proposition. TAQ(B/A) ≃ ∗ if and only if B ≃ HHA(B).

Here HHA(B) is the realization of the simplicial spectrum [q] 7→ B ∧A · · · ∧A
B with (q + 1) copies of B and Hochschild-type face maps. The special case
THH(B) = HHS(B) is the topological Hochschild homology of B.

Proof. There is a spectral sequence from the symmetric B-algebra of TAQ(B/A)
to HHA(B), which when TAQ(B/A) ≃ ∗ collapses to B ≃ HHA(B).

Conversely the identity TAQ(HHA(B)/B) ≃ ΣTAQ(B/A) shows that B ≃
HHA(B) implies TAQ(B/A) ≃ ∗. �

Proposition. A G-Galois extension A→ B is formally étale.

Proof. B ∧A B ≃ F (G+, B) is a product of copies of B, so contains B as a re-

tract as a B ∧A B-module. The composite B → HHA(B) ≃ TorB∧AB(B,B) →

TorB∧AB(B ∧A B,B) ≃ B is an equivalence, and the right hand map is a split
injection. Hence all the maps are homotopy equivalences. �

The transitivity sequence for TAQ can be applied to show that A→ B is formally
étale (if and?) only if B ∧A THH(A) ≃ THH(B). Compare Geller and Weibel
[GW].

This much indicates that we have the beginnings of a good theory.
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3. Galois descent in algebraic K-theory

Let E be an S-algebra. Two important invariants of the category of E-module
spectra is the algebraic K-theory K(E) and the topological Hochschild homology
THH(E). When E is commutative, these are also commutative S-algebras.

What are the global structural properties of these invariants ?

Galois descent problem. La A→ B be a G-Galois extension of commutative S-
algebras. Does K(A)→ K(B)hG induce an equivalence (with suitable coefficients,
in sufficiently high degrees) ?

This is known to hold forA→ B a Galois extension of finite fields by Quillen [Q1],
for p-complete algebraic K-theory of p-local number fields (p odd) by Hesselholt
and Madsen [HM2], and for 2-local algebraic K-theory of number fields or 2-local
number fields by Voevodsky [V] and Rognes–Weibel [RW].

The separably closed case. Is K(A) simple to describe when A is separably
closed ?

Theorem (Quillen, Suslin).

(1) K(Fp)p ≃ HZp.

(2) K(Q)p ≃ kup.

Note that p−1HZp may deserve the name E0, and v
−1
1 kup = KUp = E1.

Questions. What is a separable closure En of En, or equivalently of LK(n)S ?
What does the “fundamental theorem of algebra” say in such an S-algebra ?

What is S ? If S = S this is the S-algebra version of Minkowski’s theorem
Z = Z, saying that every number ring other than Z is ramified somewhere.

I stated something like the following conjecture at Schloß Ringberg in January
1999.

Optimistic Conjecture. The k-connected covers of K(En)p and En+1 are ho-

motopy equivalent for k sufficiently large.

This would allow the recursive definition En+1 = LK(n+1)K(En), in the category
of commutative S-algebras.

When Galois descent holds, we get a spectral sequence

E2
st = H−s(G;Kt(B)) =⇒ Ks+t(A)

converging with suitable coefficients and in sufficiently high degrees. Then the
complexity of K(A) gets split between the group cohomology of G and the algebraic
K-theory of B. When B = A is separably closed, and if K(A) has a simple form,
then the complexity is all in the cohomology of the absolute Galois group GA =
Gal(A/A).

Conversely, if we can somehow compute K(A) we may estimate H∗(GA;−) and
K(A). (Differentials in the descent spectral sequence tend to make this harder.)
We shall elaborate on this in two examples later.

In the Hopkins–Miller example we are looking at spectral sequences

E2
st = H−s(Gn;Kt(En)) =⇒ Ks+t(LK(n)S) .
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The relation between LnS and LK(n)S is illuminated by Hopkins’ chromatic split-
ting conjecture. Letting n grow, we can hope to compare K(S) = A(∗) with
limnK(LnS), but it is not clear how algebraic K-theory interacts with the limit in
the chromatic tower.

4. Localization sequences

Here is one strategy for how to compute algebraic K-theory. The maps Fp =
Zp/p← Zp → p−1Zp = Qp induce a cofiber sequence of spectra K(Fp)→ K(Zp)→
K(Qp) due to Quillen [Q2].

Let kup be the connective p-complete topological K-theory spectrum, and ℓp its
Adams summand. So kup∗ = Zp[u] with |u| = 2, and ℓp = Zp[v1] with |v1| = 2p−2.

There are analogous maps HZp = kup/u← kup → u−1kup = KUp and HZp =

ℓp/v1 ← ℓp → v−1
1 ℓp = Lp inducing diagrams K(Zp) → K(kup) → K(KUp) and

K(Zp)→ K(ℓp)→ K(Lp).

Question. Are these cofiber sequences of spectra ? This requires identifying the
algebraic K-theory of u-torsion kup-modules or v1-torsion ℓp-modules with K(Zp).

Note that K(Zp) is known, by calculations of Bökstedt and Madsen for p odd
[BM] and by Rognes for p = 2 [R]. Thus if these diagrams are cofiber sequences
then it suffices to compute K(kup) or K(ℓp), and the transfer map from K(Zp),
in order to compute K(KUp) or K(Lp). This would in turn give an estimate on

GKUp
or GLp

, and thus a hint about the structure of KUp.
The spectra kup and ℓp are connective. This makes it significantly easier to com-

pute their algebraic K-theory, due to the possibility of comparing with topological
cyclic homology.

5. Topological cyclic homology

We briefly recall the topological cyclic homology of an S-algebra E, first con-
structed in [BHM] by Bökstedt, Hsiang and Madsen.
THH(E) = HHS(E) is the geometric realization of the simplicial spectrum

[q] 7→ E ∧E ∧ · · · ∧E with (q+1) copies of E and Hochschild-type face maps. This
is a cyclic object in the sense of Connes, and THH(E) admits an S1-action. Let
Cpn ⊂ S1 be the cyclic group of order pn. Then TC(E; p) is formed as a homotopy
limit:

TC(E; p) =

holim

(

. . .
R //
F

// THH(E)Cpn
R //
F

// THH(E)Cpn−1
R //
F

// . . .
R //
F

// THH(E)

)

The maps R and F are called restriction and Frobenius maps, respectively, by
analogy with similar maps among Witt rings of finite length.

The cyclotomic trace map is a natural transformation trc : K(E) → TC(E; p),
and the composite with the canonical map β : TC(E; p)→ THH(E) is the Dennis–
Bökstedt trace map tr = β ◦ trc : K(E)→ THH(E).

Theorem (Hesselholt–Madsen, Dundas, McCarthy). Let E be a connective

S-algebra with π0(E) a finite module over the Witt vectors of a perfect field of
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characteristic p, e.g. a finite Zp-module, then trc : K(E) → TC(E; p) identifies

K(E)p with the connective cover of TC(E; p)p.

In general TC(E; p)p is (−2)-connected, so the homotopy cofiber of trc has the
form Σ−1HA for a known group A.
H∗(THH(E);Fp) is generally quite accessible through the Bökstedt spectral

sequence
E2

s∗ = HHFp
s (H∗(E;Fp)) =⇒ H∗(THH(E);Fp) .

Supposing E is commutative, this is a spectral sequence of H∗(E;Fp)-algebras and
A∗-comodules, where A∗ is the dual Steenrod algebra.

We will eventually want to pass over the (inverse) limit defining TC(E; p). One
cannot expect to do this in homology, since the correspondence

H∗(TC(E; p);Fp)→ Rlim
n,R,F

(

H∗(THH(E)Cpn ;Fp)
)

rarely is an equivalence.
But limits interact well with homotopy, even with finite coefficients, i.e., with

coefficients in a finite CW-spectrum V . Let V∗(X) = π∗(V ∧X) be the V -homotopy
of X.

Examples.

(1) V = S = V (−1) gives ordinary homotopy.
(2) V = S/p = V (0) (the mod p Moore spectrum) gives mod p homotopy.
(3) For p odd the Smith–Toda complex V (1) is the homotopy cofiber of the

Adams map v1 : Σ
2p−2V (0) → V (0) inducing multiplication by v1 in BP -

homology and an isomorphism in topological K-theory. Then V (1)-homo-
topy may be thought of as mod p and v1 homotopy.

So we should choose V to match E so as to make V∗(THH(E)) computable
from H∗(THH(E);Fp). Presumably we can then also determine V∗(THH(E)Cpn )
for all n ≥ 1, and by forming the algebraic limit we obtain V∗(TC(E; p)). This is
essentially V∗(K(E)p) by the cited theorem.

In turn, knowing the V -homotopy of TC(E; p) suffices to detect, if not to con-
struct, a completed version of TC(E; p). If X → Y induces V∗(X) ∼= V∗(Y ) then
X ≃ Y if H∗(V ) is infinite, and Xp ≃ Yp if H∗(V ) contains nontrivial p-torsion.

Example. Bökstedt and Madsen considered the case E = HZp, p odd, using
V = S/p = V (0). Using the mod p homotopy of THH(Zp) they computed the mod
p homotopy of TC(Zp; p), and thus of K(Zp) and K(Qp). Then they (essentially)
produced a map

jp ∨ Σjp ∨ Σkup → K(Qp)p

inducing an isomorphism between the computed mod p homotopy groups, and could
conclude that the map is a homotopy equivalence.

Variants of this argument go through for p = 2, cf. [R].

6. Finitely presented spectra

The extraction of V -homotopy V∗(THH(E)) from homology H∗(THH(E);Fp)
is most plausible when H∗(V ∧ THH(E);Fp) has tiny projective dimension as an
A∗-comodule, e.g. when it is free, i.e., when V ∧THH(E) is a wedge of suspensions
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of HFp. For E commutative and V a ring spectrum, V ∧ THH(E) is a module
spectrum over V ∧ E, so this happens when V ∧ E is a wedge of suspensions of
HFp.

A related notion was considered by Mahowald and Rezk [MR]:

Definition. A bounded below, p-complete spectrum E is finitely presented (an
fp-spectrum) if H∗(E;Fp) is finitely presented as an A-module. Equivalently there
is a nontrivial finite CW spectrum F such that π∗(F ∧ E) = F∗(E) is finite. Then
there is a unique integer n, called the fp-type of E, such that F∗(E) is infinite if
F has chromatic type ≤ n (K(n)∗(F ) 6= 0), and F∗(E) is finite if F has chromatic
type > n (K(n)∗(F ) = 0).

We may also define a more refined notion:

Definition. E has pure fp-type n if furthermore F∗(E) is a free finitely generated
P (v)-module for some finite CW spectrum F of chromatic type n, with vn-map
v : ΣdF → F . (Then the mapping cone V = Cv has chromatic type (n + 1) and
V∗(E) is finite.)

These definitions are well behaved by thick subcategory considerations.
When E is a finitely presented ring spectrum of fp-type n we choose a finite CW

ring spectrum V (of chromatic type n + 1) making V∗(E) as simple as possible.
Then V∗(THH(E)) can be (relatively) easily read off from H∗(V ∧THH(E);Fp) ∼=
H∗(V ;Fp) ⊗H∗(THH(E);Fp), which is now a H∗(V ∧ E;Fp)-module. Then pro-
ceed as before to determine V∗(THH(E)Cpn ) and pass to the limit to obtain
V∗(TC(E; p)).

Examples.

(1) For E = HFp of fp-type −1 use V = S. Hesselholt and Madsen [HM1]
computed TC(Fp; p) ≃ HZp∨Σ

−1HZp recovering Quillen’s resultK(Fp)p ≃
HZp. The answer has pure fp-type 0, i.e., has no p-torsion.

(2) For E = HZp of fp-type 0 use V = S/p = V (0), at least for p odd. Bökstedt
and Madsen [BM1], [BM2] computed the mod p homotopy of TC(Zp; p) and
deduce K(Zp)p ≃ jp ∨ Σjp ∨ Σ3kup. Then answer has pure fp-type 1, i.e.,
its mod p homotopy has no v1-torsion. Similar results hold for p = 2 by [R].

(3) For E = ℓp = BP 〈1〉p of fp-type 1 use V = V (1) for p ≥ 5. Ausoni
and Rognes [AR] computed the mod p and v1 homotopy of TC(ℓp; p), and
similarly for K(ℓp)p. The result has pure fp-type 2, i.e., its V (1)-homotopy
is a free finitely generated P (v2)-module on 4p+ 4 generators.

(4) Other fp-spectra of fp-type 1 include kup, kop and jp.
(5) The connective topological modular forms spectrum eo2 with H∗(eo2;F2) =

A//A(2) has fp-type 2.
(6) The spectrum E = BP 〈n〉p has fp-type n, but is not known to be a com-

mutative S-algebra for n ≥ 2. The nth Smith–Toda complex V (n) with
BP∗(V (n)) = BP∗/(p, . . . , vn−1) makes V (n) ∧ BP 〈n〉p ≃ HFp, but is not
known to exist for n ≥ 4. (But other chromatic type (n + 1) ring spectra
certainly exist.)

7. Algebraic K-theory of topological K-theory

Theorem (Ausoni–Rognes). For p ≥ 5 let ℓp = BP 〈1〉p be the Adams summand
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of connective p-complete topological K-theory and let V (1) be the Smith–Toda com-

plex. Let v2 = [τ2] ∈ π2p2−2V (1). Then

V (1)∗(TC(ℓp; p)) ∼= E(λ1, λ2, ∂)⊗ P (v2)

⊕ E(λ2){t
eλ1 | 0 < e < p} ⊗ P (v2)

⊕ E(λ1){t
epλ2 | 0 < e < p} ⊗ P (v2)

is a free P (v2)-module on 4p + 4 generators. Here |∂| = −1, |λ1| = 2p − 1, |λ2| =
2p2 − 1 and |t| = −2.

There is an exact sequence

0→ Σ2p−3Fp
a
−→ V (1)∗K(ℓp)

trc
−−→ V (1)∗TC(ℓp; p)

∂
−→ Σ−1Fp → 0

determining the V (1)-homotopy of K(ℓp).

Corollary. TC(ℓp; p)p is a finitely presented spectrum of pure fp-type 2.

In this sense TC(ℓp; p) is like eo2, or BP 〈2〉p if the latter exists.
Recall thatK(Qp)p has mod p homotopy a free P (v1)-module on p+3 generators,

where

p+ 3 =

p−1
∑

i=1

∞
∑

n=0

dimFp
Hn(Gal(Q̄p/Qp);Fp(i)) ,

and K(Qp)p is constructed from p + 3 copies of BP 〈1〉p = ℓp up to extensions
involving Adams operations. A more precise statement can be obtained by taking
the degrees of the P (v1)-module generators into account.

Likewise we get that the cofiber of the transfer map K(Zp) → K(ℓp), which
most likely is K(Lp), has V (1)-homotopy a free P (v2)-module on 4p+4 generators,
where we estimate

4p+ 4 =

p2
−1

∑

i=1

∞
∑

n=0

dimFp
Hn(Gal(Lp/Lp;Fp2(i)) ,

and K(Lp) is constructed from 4p+4 copies of BP 〈2〉p, up to extensions involving
BP 〈2〉p-operations. Again a more precise statement can be obtained by taking the
degrees of the P (v2)-module generators into account.

Moral. Algebraic K-theory of topological K-theory is a form of elliptic cohomology.

These calculations generalize to determine V (n)∗K(BP 〈n〉p) if BP 〈n〉p exists
as a commutative S-algebra and V (n) exists as a ring spectrum, in which case the
result is of pure fp-type n+ 1. Hence we are led to the following:

Chromatic red-shift problem. Let E be an S-algebra of pure fp-type n. Does

TC(E; p) have pure fp-type n+ 1 ?

So far this is known to be correct for E = Hk with k a finite extension of Fp, for
E = HA with A the valuation ring of a finite extension of Qp, and for E = ℓp. One
might also consider E = S as a limiting case, of infinite fp-type. Then TC(S; p)
contains S ≃ THH(S) as a retract, so in this case the fp-type of the result is
∞+ 1 =∞.
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