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In this work we present a new approach to the theory of 
noncommutative motives and use it to explain the different 
flavors of algebraic K-theory of schemes and dg-categories. 
The work is divided into three main parts. In the first part 
we use the techniques of higher algebra developed in [63]
to provide a universal characterization for the symmetric 
monoidal (∞, 1)-category underlying the motivic stable A1-
homotopy theory of Morel–Voevodsky [107,67]. More precisely, 
given a symmetric monoidal model category V together with 
an object X ∈ V, we characterize the underlying symmetric 
monoidal (∞, 1)-category of the symmetric monoidal model 
category SpΣ(V, X) introduced by Hovey in [43], by means 
of a universal property amongst symmetric monoidal (∞, 1)-
categories. This characterization trivializes the problem of 
finding motivic monoidal realizations.
In the second part we introduce a new approach to the 
theory of noncommutative motives by constructing a stable 
motivic homotopy theory for the noncommutative spaces 
of Kontsevich [56,55,54]. The key ingredient is a notion of 
Nisnevich topology in the noncommutative setting,
compatible with the classical notion. This compatibility, 
together with the universal property proved in the first part, 
ensures the existence of a canonical monoidal map from the 
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stable motivic theory of Morel–Voevodsky towards these new 
noncommutative motives that allow us to compare the two 
theories.
In the last part of this paper we explain how this bridge 
can be used to explain the various flavors of algebraic 
K-theory of dg-categories. More precisely, we prove that 
the non-connective K-theory of dg-categories introduced 
by Schlichting [82] is the (non-commutative) Nisnevich 
sheafification of connective algebraic K-theory. Then we prove 
that its further (non-commutative) A1-localization is a tensor 
unit in our noncommutative motives. As a corollary we 
obtain a precise proof for an original conjecture of Kontsevich 
claiming that K-theory gives the correct mapping spaces 
in noncommutative motives. Our major application is the 
discovery of a canonical factorization of our motivic bridge 
through the (∞, 1)-category of modules over the commutative 
algebra object representing homotopy invariant algebraic 
K-theory of schemes. The results in [77] imply that this bridge 
is fully faithful over a field k with resolutions of singularities, 
so that, at the motivic level, no information (below K-theory) 
is lost by passing to the noncommutative world.

© 2014 Elsevier Inc. All rights reserved.
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1. Introduction

This paper is extracted from the author’s Phd Thesis [79] where the author aims to 
compare classical algebraic geometry with the new noncommutative algebraic geometry 
in the sense of Kontsevich [55,56,54]. More precisely, the motivic levels of both theories.

1.1. Background

1.1.1. Motives
In the original program envisioned by Grothendieck, the motive of a geometric object 

X (e.g. X a projective smooth variety) was a new mathematical object designed to ex-
press “the arithmetical content of X”.2 More precisely, in the sixties, Grothendieck and 
his collaborators started a quest to construct examples of the so-called Weil cohomology 
theories, designed to capture different arithmetic information about X. In the presence 
of many such theories he envisioned the existence of a universal one, which would gather 
all the arithmetic information. At that time, cohomology theories were formulated in 
a rather artificial way using abelian categories as the basic input. The notion of trian-
gulated categories appeared as an attemptive to provided a new, more natural setting 
for cohomology theories. Of course, the subject of motives followed these innovations [7]
and finally, in the 90’s, V. Voevodsky [105] constructed what became known as “motivic 
cohomology”. Many good introductory references to this arithmetic program are now 
available [68,1,65], together with the historical background given in the introduction of 
[23] as well as the recent course notes by B. Kahn [46].

In the late 90’s, Morel and Voevodsky [67] developed a more general theory of mo-
tives. In their theory, the motive of X is designed to be the cohomological skeleton 
of X, not only in the eyes of a Weil cohomology theory, but for all the generalized 
cohomology theories for schemes (like K-theory, algebraic cobordism and motivic co-
homology) at once. The inspiration comes from the stable homotopy theory of spaces 
where all generalized cohomology theories (of spaces) become representable. Such a set-
ting would provide easier definitions for the motivic cohomology, algebraic K-theory, 
algebraic cobordism, and so on, by merely providing their representing spectra. Their 
construction has two main steps: the first part mimics the homotopy theory of spaces 
and its stabilization; the second part forces the “Tate motive” to become invertible with 
respect to the monoidal multiplication. The final result is known as the motivic stable 
homotopy theory of schemes. Our first main goal in this work is to formulate a precise 
universal property for their construction.

1.1.2. Noncommutative algebraic geometry
In Algebraic Geometry, and specially after the works of Serre and Grothendieck, it 

became a common practice to study a scheme X via its abelian category of quasi-coherent 

2 For instance, it should capture the information underlying the L-function of X.
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sheaves Qcoh(X). The reason for this is in fact purely technical for at that time, abelian 
categories were the only formal background to formulate cohomology theories. In fact, the 
object Qcoh(X) turns out to be a very good replacement for the geometrical object X: 
thanks to [36,80] we know that X can be reconstructed from Qcoh(X). However, it 
happens that abelian categories do not provide a very natural framework for homological 
algebra. It was Grothendieck who first noticed that this natural framework would be, 
what we nowadays understand as, the homotopy theory of complexes in the abelian 
category. At that time, the standard way to deal with homotopy theories was to consider 
their homotopy categories – the formal strict inversion of the weak-equivalences. This is 
how we obtain the derived category of the scheme D(X). For many reasons, it was clear 
that the passage from the whole homotopy theory of complexes to the derived category 
loses too much information. The answer to this problem appeared from two different 
directions. First, from the theory of dg-categories [16,14,15]. More recently, an ultimately, 
with the theory of ∞-categories [2,11,59,63,86,98]. The first subject became very popular 
specially with all the advances in [17,19,28,29,49,89,96]. The second, although initiated in 
the 80s with the famous manuscript [40], only in the last ten years reached a state where 
its full potential can be explored. This is specially due to the tremendous efforts of [59,63]. 
Both subjects provide an appropriate way to encode the homotopy theory of complexes 
of quasi-coherent sheaves. In fact, the two approaches are related and, for our purposes, 
should give equivalent answers (see the recent results in [26] and our discussion in [79, 
Section 6.2]). Every scheme X (over a ring k) gives birth to a k-dg-category Lqcoh(X) – 
the dg-derived category of X – whose “zero level” recovers the classical derived category 
of X. For reasonable schemes, this dg-category has an essential property deeply related 
to its geometrical origin – it has a compact generator and the compact objects are the 
perfect complexes (see [19] and [94]). It follows that the smaller sub-dg-category Lpe(X)
spanned by the compact objects is “affine”, and enough to recover the whole Lqcoh(X).

In his works [56,55,54], Kontsevich initiated a systematic study of the dg-categories 
with the same formal properties of Lpe(X), with the observation that many different 
examples of such objects exist in nature: if A is an associative algebra then A can be 
considered as a dg-category with a single object and we consider L(A) the dg derived 
category of complexes of A-modules and take its compact objects. The same works with 
a differential graded algebra. The Fukaya category of a symplectic manifold is another 
example [57]. There are also examples coming from complex geometry [72], representation 
theory, matrix factorizations (see [32]), and also from the techniques of deformation 
quantization. This variety of examples with completely different origins motivated the 
understanding of dg-categories as natural noncommutative spaces. The study of these 
dg-categories can be systematized and the assignment X �→ Lpe(X) can be properly 
arranged as a functor

Lpe : Classical Schemes/k −→ Noncommutative Spaces/k (1.1)
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In fact, the functor Lpe is defined not only for schemes but for a more general class 
of geometrical objects, so-called derived stacks (see [100,9,60]). They are the natural 
geometric objects in the theory of derived algebraic geometry of [102,103,62,99]. For 
the purposes of noncommutative geometry, this fact is crucial: thanks to the results of 
Toën–Vaquié in [100], at the level of derived stacks, Lpe admits a right adjoint, providing 
a canonical mechanism to construct a geometric object out of a noncommutative one.

Kontsevich proposes also that similarly to schemes, these noncommutative spaces 
should admit a motivic theory. Our second main goal in this work is to provide a natural 
candidate for this theory, that extends in a natural way the theory of Morel–Voevodsky. 
The bridge between the two theories is a canonical extension of the map Lpe given by 
our universal characterization of the theory for schemes.

1.2. In this work

The motivic construction of Morel–Voevodsky was originally obtained using the tech-
niques of model category theory. Nowadays we know that a model category is merely 
strict presentation of a more fundamental object – an (∞, 1)-category. Every model 
category has an underlying (∞, 1)-category and the later is what really matters. It is 
important to say that the need for this passage overcomes the philosophical reasons and 
that thanks to the techniques of [59,63] we now have the ways to do and prove things 
which would remain out of range only with the highly restrictive techniques of model 
categories.

The first part of this work concerns the universal characterization of the (∞, 1)-cate-
gory underlying the stable motivic homotopy theory of schemes, as constructed by 
Voevodsky and Morel, with its symmetric monoidal structure. The characterization be-
comes relevant if we want to compare the motives of schemes with other theories. In our 
case, the goal is to conceive a theory of motives of noncommutative spaces and to relate 
it to the theory of Voevodsky–Morel. By providing such a universal characterization we 
will be able to ensure, for free, the existence of a (monoidal) dotted arrow at the motivic 
level

Classical Schemes/k NC-Spaces/k

Stable Motivic Homotopy/k NC-Stable Motivic Homotopy/k

(1.2)

In general, monoidal maps such as the one here presented are extremely hard to 
obtain only by constructive methods and the techniques of model category theory. Other 
important advantage is that it allows us to work over any base scheme, not necessarily 
a field.

At this point we should also emphasize that a different approach to non-commutative 
motives already exists in the literature, due to D.-C. Cisinski and G. Tabuada (see [90,
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25,93] and [91] for a pedagogical overview). Their approach is essentially of “‘cohomo-
logical nature’ ” while our method could be said “‘homological’ ” and follows the spirit 
of stable homotopy theory. In the appendix to this work (Appendix A) we systematize 
the comparison between the two approaches and unveal a form of duality between them. 
It is exactly this duality phenomenon that makes our new approach comparable to the 
theory of Morel–Voevodsky and allows the dotted monoidal map to exist in a natural 
way. The same duality blocks a direct comparison in their case. We should also mention 
that all our mathematical contents and proofs are independent of theirs.

To achieve the universal characterization we will need to rewrite the constructions of 
Morel–Voevodsky in the setting of ∞-categories. The dictionary between the two worlds 
is given by the techniques of [59] and [63]. In fact, [59] already contains all the necessary 
results for the characterization of the A1-homotopy theory of schemes and its stable 
non-motivic version. The problem concerns the description of the stable motivic world 
with its symmetric monoidal structure. This is our main contribution in this subject. 
The key ingredient is the following:

Insight 1.1. (See Theorem 2.26 for the precise formulation.) Let V be a combinatorial 
simplicial symmetric monoidal model category with a cofibrant unit and let C⊗ denote its 
underlying symmetric monoidal ∞-category. Let X be a cofibrant object in V satisfying 
the following condition:

(∗) the cyclic permutation of factors σ = (123) : X ⊗X ⊗X → X ⊗X ⊗X is equal to 
the identity map in the homotopy category of V.3

Then the underlying symmetric monoidal ∞-category of SpΣ(V, X) is the universal 
symmetric monoidal (∞, 1)-category equipped with a monoidal map from C⊗, sending X
to an invertible object.

It is the goal of Section 2 to prove this theorem. This extra assumption on X is not 
new. It is already present in the works of Voevodsky [107] and it also appears in [43]. We 
must point out that we believe our result to be true even without this extra assumption 
on X. We will explain this in Remark 2.27.

In Section 2.4 we apply the general results of Section 2 to the motivic stable homotopy 
theory of schemes:

Corollary 1.2. (See Corollary 2.39.) Let S be a base scheme and let Smft(S) denote the 
category of smooth separated schemes of finite type over S. The (∞, 1)-category SH(S)
underlying the stable motivic homotopy theory of schemes is stable, presentable and ad-
mits a canonical symmetric monoidal structure SH(S)⊗. Moreover, the construction of 

3 More precisely we demand the existence of a homotopy in V between the cyclic permutation and the 
identity.
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Morel–Voevodsky provides a functor Smft(S)× → SH(S)⊗ monoidal with respect to the 
cartesian product of schemes, and endowed with the following universal property:

(∗) for any pointed presentable symmetric monoidal (∞, 1)-category D⊗, the composition 
map

Fun⊗,L
(
SH(S)⊗,D⊗) → Fun⊗(Smft(S)×,D⊗) (1.3)

is fully faithful and its image consists of those monoidal functors Smft(S)× → D⊗ satisfy-
ing Nisnevich descent, A1-invariance and such that the cofiber of the image of the point 
at ∞, S

∞
P1
S is an invertible object in D⊗. Moreover, any pointed presentable 

symmetric monoidal (∞, 1)-category D⊗ admitting a monoidal map in this image, is 
necessarily stable.

This result trivializes the problem of finding motivic monoidal realizations. The exis-
tence of these have deep consequences. See [47] for an overview.

Example 1.3. Let S = Spec(k) be field of characteristic zero. The assignment X �→
Σ∞(X(C)) provides a functor Smft(S) → Sp with Sp the (∞, 1)-category of spectra 
(see below). This map is known to be monoidal, to satisfy all the descent conditions in 
the previous corollary and to invert P1 in the required sense. Therefore, it extends in 
an essentially unique way to a monoidal map of stable presentable symmetric monoidal 
(∞, 1)-categories SH(S)⊗ → Sp⊗;

Example 1.4. Again, let S = Spec(k). Another immediate example of a monoidal motivic 
realization is the Hodge realization. Properly constructed, the map X �→ CDR(X) send-
ing a scheme to its De Rham complex provides a functor Smft(S) → D(k) with D(k)
the (∞, 1)-derived category of k. This map is known to be monoidal with respect to the 
cartesian product of schemes (Kunneth formula), satisfies all the descent conditions and 
inverts P1 in the sense above. Because of the universal characterization, it extends in 
an essentially unique way to a monoidal motivic Hodge Realization SH(S)⊗ → D(k)⊗
(where on the left we have the monoidal structure induced by the derived tensor product 
of complexes). This example has recently been worked out in detail in the PhD thesis 
of B. Drew [27]. One of its corollaries is a new Riemann–Hilbert correspondence for 
holonomic D-modules (see [27, Thm. 3.4.1]).

Example 1.5. Our main theorem also provides a universal characterization for the 
G-equivariant version of motivic homotopy theory (in the sense of [45]). As proved in [45, 
Section 2.2, Lemma 2] we also fall in the situation of ⊗-inverting a symmetric object.

In the second part of this work we systematize the comparison between the commuta-
tive and noncommutative motivic worlds. After some preliminaries on dg-categories, we 
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introduce the (∞, 1)-category of smooth noncommutative spaces NcS(k) as the opposite 
of the (∞, 1)-category of idempotent dg-categories of finite type Dg(k)ft ⊆ Dg(k)idem
introduced by Toën–Vaquié in [100]. By introducing an appropriate noncommutative 
analogue for the Nisnevich topology (Definition 3.12) and considering the noncommuta-
tive version of the affine line Lpe(A1), we construct a new stable presentable symmetric 
monoidal (∞, 1)-category SHnc(S)⊗ encoding a stable motivic homotopy theory for these 
noncommutative spaces. This provides a new approach to noncommutative motives.

The first step to compare the commutative and the non-commutative world is to en-
code the map X �→ Lpe(X) as a functor Lpe from smooth affine schemes towards NcS(k)
(see Proposition 3.4). Our universal characterization of the stable motivic homotopy 
theory of schemes allows us to extend it to a monoidal colimit preserving functor

N (AffSmft(k))
Lpe

NcS(k)

SH(k) SHnc(k)

(1.4)

Finally in the last part of this work we explain how this bridge can now be used to 
understand the different versions of algebraic K-theories of dg-categories and schemes. 
To explain our main results in this topic we need some technical background. First, and 
as the reader shall later see (Section 2.4.4 and Remark 3.28), both SH(k)⊗ and SHnc(k)⊗
can be obtained as a sequence of monoidal reflexive localizations of (∞, 1)-categories of 
spectral presheaves, followed by the ⊗-inversion of the algebraic circle Gm. With this in 
mind, the construction of the comparison map in the previous commutative diagram can 
be explained in a sequence of steps

N (AffSmft(k))×

(Σ∞
+ ◦j)⊗

L⊗
pe

NcS(k)⊗

(Σ∞
+ ◦jnc)⊗

Fun(N (AffSmft(k))op,Sp)⊗

l⊗Nis

L
⊗
1 Fun(Dg(k)ft ,Sp)⊗

lnc,⊗
Nis

FunNis(N (AffSmft(k))op,Sp)⊗

l⊗
A1

L
⊗
2 FunNis(Dg(k)ft ,Sp)⊗

lnc,⊗
A1

FunNis,A1(N (AffSmft(k))op,Sp)⊗

Σ⊗
Gm

L⊗
3 FunNis,Lpe(A1)(Dg(k)ft ,Sp)⊗

∼

SH(k)⊗ L⊗

SHnc(k)⊗

(1.5)
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where each dotted map is induced by a universal property. By formal abstract nonsense 
these functors admit right-adjoints which we shall, respectively, denote as M1, M2, M3

and M.
This mechanism allows us to restrict noncommutative invariants to the commutative 

world.

Example 1.6. An important example of a noncommutative invariant is the Hochschild 
homology of dg-categories. Thanks to the works of B. Keller in [52] and as explained 
in Remark 3.29 this invariant can be completely encoded by means of an ∞-functor 
HH : Dg(k)ft → Ŝp. Another important example is the so-called periodic cyclic homology 
of dg-categories HP . It follows from the famous HKR theorem that the restriction of 
HP to the commutative world recovers the classical de Rham cohomology of schemes. 
For more details see the discussion in [12, Section 3.1].

Example 1.7. Another important example recently introduced by A. Blanc in his thesis 
[12] is the topological K-theory of dg-categories. This is a candidate for the non-
commutative version of the Betti realization.

In the last section we will be interested in the restriction of the various alge-
braic K-theories of dg-categories. As we shall explain, all of them live as objects in 
Fun(Dg(k)ft , ̂Sp). There are two of primary relevance to us:

• Kc – encoding the connective K-theory given by Waldhausen’s S-construction. See 
the discussion in Section 4.2.2 below.

• KS – encoding the non-connective K-theory of dg-categories as defined in [24] using 
the adaptation of the Schlichting framework of [82] to the context of dg-categories
(see the discussion in Section 4.2.3). By construction, this functor comes naturally 
equipped with a canonical natural transformation Kc → KS which is an equivalence 
in the connective part.

For the first one, it follows immediately from the spectral version of Yoneda lemma 
(see Remark 2.41) and from the definition in [94, Section 3] that M1(Kc) recovers the 
connective algebraic K-theory of schemes. The second one, by the comparison result 
[82, Theorem 7.1], recovers the non-connective K-theory of schemes of Bass–Thomason–
Trobaugh of [94]. The construction of KS in [24] using the methods of [82] is somehow 
ad-hoc. We explain how the non-connective version of K-theory KS can be canonically 
obtained from the connective version Kc as a result of enforcing our noncommutative-
world version of Nisnevich descent. The following theorem summarizes our main technical 
results in this topic:
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Theorem 1.8.

(i) (Theorem 4.4) The canonical morphism Kc → KS presents non-connective 
K-theory as the (noncommutative) Nisnevich sheafification of connective K-theory;

(ii) (Theorem 4.6) The further (noncommutative) A1-localization lnc
A1(KS) is a unit 1nc

for the monoidal structure in SHnc(k)⊗;
(iii) (Theorem 4.7) The image of lnc

A1(KS) along the right-adjoint M recovers the object 
KH in SH(k) representing A1-invariant algebraic K-theory of Weibel (also known 
as homotopy invariant K-theory) studied in [107] and in [22]. In particular, since M
is lax monoidal (it is right-adjoint to a monoidal functor) it sends the trivial algebra 
structure in 1nc to a commutative algebra structure in KH so that the monoidal map 
L⊗ factors as

SH(k)⊗
−⊗KH

ModKH (SH(k))⊗ SHnc(k)⊗

Let us emphasize that the part (i) of this theorem is not true if we restrict ourselves to 
the non-connective K-theory of schemes. The phenomenon that makes it possible in the 
noncommutative world is the fact the new notion of Nisnevich squares of noncommutative 
spaces combines at the same time coverings of geometrical origin (namely, those coming 
via Lpe from classical Nisnevich squares) and coverings of categorical origin, namely, the 
ones induced by exceptional collections.

The first part of this theorem is proved by showing that the Bass-construction (−)B
given in Thomason’s paper [94] is an explicit model for the (noncommutative) Nis-
nevich localization of presheaves with values in connective spectra and sending Nisnevich 
squares of noncommutative spaces to pullback squares in connective spectra. Recall that 
the inclusion of connective spectra in all spectra does not preserve pullbacks. More 
generally, we prove that the connective truncation functor induces an equivalence of 
(∞, 1)-categories between the (∞, 1)-category of Nisnevich local spectral presheaves and 
the (∞, 1)-category of spectral presheaves with values in connective spectra and satis-
fying connective Nisnevich descent. The (−)B-construction is an explicit inverse to this 
truncation. The second result uses a fundamental result of A. Blanc in his Phd The-
sis [12, Prop. 4.6], namely, that the split version of the Waldhausen S-construction is 
A1-homotopy equivalent to the full S-construction.

The following corollary provides a new version of a result understood by Kontsevich 
[55,54] long ago and also already satisfied by the formalism of Cisinski–Tabuada.

Corollary 1.9. (See Corollary 4.8.) Let X and Y be two noncommutative smooth spaces 
and assume that Y is smooth and proper. Then we have an equivalence of spectra

MapSHnc(k)(X,Y) � lnc
A1

(
KS

)(
X⊗ Yop)

where Yop is the dual of Y and we have identified X and Y with their images in SHnc(k).
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Finally, the following result is the main goal of this work. It follows from the previous 
theorem together with the results of J. Riou describing the compact generators in SH(k)
over a field with resolutions of singularities (see [76]).

Corollary 1.10. (See Corollary 4.12.) If k is a field admitting resolutions of singularities 
then the canonical factorization

ModKH (SH(k))⊗ SHnc(k)⊗

is fully faithful.

This result has been expected and known to some people after a while. I think par-
ticularly of B. Toen, M. Vaquié and G. Vezzosi and also D.-C. Cisinski and G. Tabuada.

1.3. Further applications

Let us provide some further applications of our work.
The first application we would like to mention concerns the study of motives of 

Deligne–Munford stacks. If X is a Deligne–Munford stack over a field k of character-
istic zero then our methods allow us to assign to it an object in SH(k). Namely, X has 
a naturally associated non-commutative motive – the non-commutative motive of the 
dg-category Lpe(X). Our framework allows us to restrict this object to the commutative 
world and produce a module over K-theory, M(Lpe(X)) ∈ SH(k). In particular, we hope 
that the decomposition of the inertia stack of X used in [95] can be also applied in this 
motivic context. This would provide a decomposition of the non-commutative motive of 
X in terms of pieces of geometric origin. The advantage of this decomposition is that it 
does not depend on any assumptions on the existence of semi-orthogonal decompositions 
for Lpe(X). The important new ingredient is the fully-faithfulness of the bridge between 
the two motivic worlds (Corollary 4.12).

The second application concerns the construction of a non-commutative mixed Hodge 
realization functor. In the commutative case this was studied in the [27] already using the 
new universal property proved in this work (Corollary 2.39). In [51], the authors intro-
duced the notion of a noncommutative Hodge Structure. Recall that thanks to the famous 
theorem HKR, the Periodic Cyclic Homology HP•(X) provides the correct noncom-
mutative analogue of the classical de Rham cohomology. They formulate the following 
conjecture:

(*) If X is a “good enough” noncommutative space then HP•(X) carries a noncommu-
tative Hodge Structure;

Said in a different way, HP• should provide a functor from noncommutative spaces to 
noncommutative Hodge-structures. We should then expect this functor to factor through 
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our new noncommutative version of the motivic stable homotopy theory because of its 
universal property. More generally, we expect our main commutative diagram to fit in a 
larger one

Classical Schemes/k
Lpe

HDR(−)

NC-Schemes/k
HP•(−)

Stable Motivic Homotopy/k
univ

prop.

NC-Stable Motivic Homotopy/k
univ

prop.

Classical Hodge-Structures NC-Hodge Structures

(1.6)

where the map from the classical to the noncommutative Hodge structures was intro-
duced in [51].4 The diagonal maps are known as the Hodge-realizations functors: the 
commutative case is known to the experts (see [78] for a survey of the main results); the 
noncommutative case is given by the conjecture (∗). This conjecture can be divided in 
two parts: the first concerns the de Rham part (see [48]) and the second is related to the 
Betti part. In his thesis A. Blanc constructed a candidate for the second [12].
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1.5. Notations and preliminaries

In this paper we will be using the theory of higher categories and the techniques of 
higher algebra as developed by J. Lurie in [59,63]. More precisely, the reader is assumed to 
be familiar with the theory of ∞-operads, symmetric monoidal (∞, 1)-categories, their 
theories of algebras and modules. For a review of the techniques necessary along the 
paper we address the reader to our preliminaries in [79]. We will also be using many 
preliminary results from [79] whose proof will not be given here. We summarize them 
below.

1.5.1. Universes
We start this section of preliminaries with some set theoretical considerations. In order 

to deal with the matters of size, we will follow the approach of Universes5 by fixing three 
of them U ∈ V ∈ W with V chosen conveniently large and W very large. We will denote 
by Δ̂ the category of simplicial sets. More precisely, we will be working with V-small 
simplicial sets and the U-small objects will be referred to simply as small. In order to 
simplify the notations we write Cat∞ (resp. S, Sp) to denote the (∞, 1)-category of 
small (∞, 1)-categories (resp. spaces, spectra). With our convenient choice for V, both 
of them are V-small. The third universe W is assumed to be sufficiently large so that we 
have W-small simplicial sets Catbig∞ (resp. Ŝ, Ŝp) to encode the (∞, 1)-category of all the 
V-small (∞, 1)-categories (resp. spaces, spectra).

1.5.2. From model categories to (∞, 1)-categories
For the bridge between the setting of model categories and the world of (∞, 1)-cate-

gories we address the reader to [63, 1.3.4] and to our discussion in [79, Section 2.2]. We 
recall that the nerve functor N : Cat → Δ̂ provides a natural way to understand a 
category as a simplicial set and that if M is a model category with weak-equivalences 
W , the underlying (∞, 1)-category associated to M is the quasi-category N(M)[W−1]
obtained by localizing the nerve N(M) along the weak-equivalences. This localization 
is performed in the setting of (∞, 1)-categories and it is well-defined up to equivalence. 
More precisely, it can be obtained as a fibrant-replacement for the pair (N(M), W ) in 
the model category of marked simplicial sets of [59, Chapter 3]. See the construction 

5 Our main reference being the Appendix by Nicolas Bourbaki in [3].
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[63, 4.1.3.1] for more details. We recall also that in the case of a simplicial model cat-
egory M, the quasi-category obtained as the simplicial nerve (which we will denote as 
NΔ) of the full simplicial subcategory of M spanned by the cofibrant–fibrant objects is 
a model for the underlying (∞, 1)-category of M (see [63, 1.3.4.20]).

When restricted to combinatorial model categories, this bridge sends Quillen functors 
to adjunctions between the underlying (∞, 1)-categories and Quillen equivalences to 
equivalences (see [63, 1.3.4.21]). More important to us is the link between combinatorial 
model categories and presentable (∞, 1)-categories.

Proposition 1.11. (See [59, A.3.7.4, A.3.7.6].) Let C be a big (∞, 1)-category. Then, C
is presentable if and only if there exists a big U-combinatorial simplicial model category 
M such that C is the underlying (∞, 1)-category of M. Moreover, if M is left-proper, left 
Bousfield localizations of M6 correspond bijectively to accessible reflexive localizations 
of C.

Thanks to the results of [30] we know that every combinatorial model category is 
Quillen equivalent (by a zig-zag) to a simplicial combinatorial model category. The propo-
sition implies that the underlying (∞, 1)-category of a combinatorial model category is 
always presentable. In particular, it admits all limits and colimits. By [63, 1.3.4.23, 
1.3.4.24] we know that homotopy limits and homotopy colimits in the model category 
correspond to the notions of limit and colimit in the underlying (∞, 1)-category. More-
over, combining [59, Thm. 4.2.4.4] again with the main result of [30] we find that for any 
combinatorial model category M and small discrete 1-category I, there is an equivalence

N
(
MI

)[
W−1

levelwise
]
� Fun

(
N(I), N(M)

[
W−1]) (1.7)

providing a strictification of diagrams. We will explicitly warn the reader everytime this 
strictification is being used.

To conclude, we ask the reader to recall the notion of a compactly generated model 
category and the fact (see [100, Prop. 2.2]) that in any such model category, any object 
is equivalent to a filtered colimit of strict finite I-cell objects. Moreover, if the (strict) 
filtered colimits in M are exact, an object X is homotopically finitely presented if and only 
if it is a retract of a strict finite I-cell object. This result, together with the results of [63]
described above, implies that if M is a combinatorial compactly generated model category 
where (strict) filtered colimits are exact, then the compact objects in the presentable 
(∞, 1)-category N(M)[W−1] are exactly the homotopically finitely presented objects 
in M. In this case we have a canonical equivalence N(M)[W−1] � Ind((N(M)[W−1])ω).

We will also use the monoidal extension of this bridge. If M is symmetric monoidal 
model category then the underlying ∞-category of M inherits a canonical symmetric 
monoidal structure which we denote here as N(M)[W−1]⊗ → N(Fin∗). It can be ob-

6 With respect to a class of morphisms of small generation.
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tained as follows: in a monoidal model category M, the collection of cofibrant objects is 
closed under the tensor structure and we assume by definition that the unit is cofibrant. 
In this case, the full subcategory Mc ⊆ M spanned by the cofibrant objects inherits the 
structure of a symmetric monoidal category. Moreover, restricted to this subcategory, 
the tensor product preserves weak-equivalences. By taking its operadic nerve (see [63, 
Def. 2.1.1.23]) we obtain a trivial symmetric monoidal (∞, 1)-category. The symmetric 
monoidal (∞, 1)-category associated to M is the monoidal localization (see [63, Construc-
tion 4.1.3.1, Prop. 4.1.3.4]) of this operadic nerve along the class of weak-equivalences 
in M. If M comes equipped with a compatible simplicial enrichment, then M◦, although 
not a simplicial monoidal category (because the product of fibrant objects is not fibrant 
in general), can be seen as the underlying category of a simplicial colored operad (M◦)⊗

where the colors are the cofibrant–fibrant objects in M and the operation space is given 
by

Map(M◦)⊗
(
{Xi}i∈I , Y

)
:= MapM

(⊗
i

Xi, Y

)
(1.8)

which is a Kan-complex because Y is fibrant and the product of cofibrant objects is cofi-
brant. With this, we consider the ∞-operad given by the operadic nerve N⊗

Δ((M◦)⊗)
(see [63, Def. 2.1.1.23]). By [63, 4.1.3.10], this ∞-operad is a symmetric monoidal 
(∞, 1)-category and the product of cofibrant–fibrant objects X, Y is given by the choice 
of a trivial cofibration X ⊗ Y → Z providing a fibrant replacement for the product 
in M. Moreover, by [63, 4.1.3.16] the symmetric monoidal (∞, 1)-category N⊗

Δ ((M◦)⊗) is 
monoidal equivalent to the underlying symmetric monoidal (∞, 1)-category of M. A par-
ticular instance of this is when M is a cartesian closed combinatorial simplicial model 
category with a cofibrant final object. In this case, it is a symmetric monoidal model 
category with respect to the product and we can consider its operadic nerve N⊗

Δ((M◦)×). 
From [63, Example 2.4.1.10], this is equivalent to a cartesian structure in the underlying 
∞-category of M – NΔ(M◦)×. To conclude we remark also that monoidal left Quillen 
functors induce strong monoidal functors between the underlying symmetric monoidal 
(∞, 1)-categories. See [63, Section 4.1.3] and our discussion in [79, Section 3.9].

1.5.3. Stable (∞, 1)-categories and compact generators
We will also need some results about stable (∞, 1)-categories and the existence of 

compact generators therein. First we recall that any stable (∞, 1)-category C is naturally 
enriched over spectra. This can be made precise using the universal property of the 
stabilization [63, 1.4.2.2]: it provides for any object X an essentially unique factorization 
of the functor MapC(X, −) : C → S as
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C
MapC(X,−)

MapSp
C (X,−)

S

Sp
Ω∞

(1.9)

with Ω∞ the ∞-looping functor.
Let κ be a regular cardinal. Recall that a presentable (∞, 1)-category C is said to 

be κ-compactly generated if there exists a small (∞, 1)-category D and an equivalence 
C � Indκ(D). For stable (∞, 1)-categories there is another possible notion of compact 
generation: if C is stable, its homotopy category is triangulated and therefore it makes 
sense to ask for a family of κ-compact generators in the sense of Neeman [70]. These two 
notions of compact generation are related. More precisely, one can prove the following 
version of the Proposition [63, 1.4.4.2] relating the two notions of compact generation:

Proposition 1.12. Let C be a stable (∞, 1)-category. Then, C is presentable if and only if 
the following conditions are satisfied:

(i) C has arbitrary small coproducts7;
(ii) the triangulated category h(C) is locally small;
(iii) there exists a regular cardinal κ and a (classical) family E (indexed by a small set) of 

κ-compact generators in h(C). In this case C is a presentable κ-compactly generated 
(∞, 1)-category.

Proof. The proof follows essentially by the same arguments as in [63, 1.4.4.2] and by 
comparison of the notions of compact generating families. For a detailed proof see [79, 
Prop. 2.1.2]. �

To conclude this section we present another useful result whose proof can be found in 
[79, Prop. 2.1.7]:

Proposition 1.13. Let f : C → D be colimit preserving functor between stable presentable 
(∞, 1)-categories. Assume that

(i) The (∞, 1)-category C has a family of ω-compact generators E in the sense of 
Proposition 1.12 (here we assume, without loss of generality, that E is closed un-
der suspensions and loopings8) and f is fully-faithful when restricted to the objects 
in this collection;

(ii) for any object E ∈ E, the object f(E) is ω-compact in D.

7 Since C is stable this is equivalent to ask for all small colimits.
8 We can always assume this because, as discussed in the previous footnote, suspensions of compact objects 

are compact.
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Then, f is fully-faithful. Moreover, if the image of the collection E in D is a family 
of ω-compact generators, then f is an equivalence.

1.5.4. Exact sequences and localizations
Recall now that a sequence of triangulated categories A → C → D is said to be exact 

if the composition is zero, the first map is fully-faithful and the inclusion from the Verdier 
quotient C/A ↪→ D is cofinal, meaning that every object in D is a direct summand of an 
object in B/A.

Following [13], we say that a sequence in PrLStb

A → C → D (1.10)

is exact if the composition is zero, the first map is fully-faithful and the diagram

A C

∗ D

(1.11)

is a pushout. Here we denote by ∗ the final object in PrLStb. As proved in [13, Prop. 4.5, 
Prop. 4.6], this notion of exact sequence can be reformulated using the language of 
localizations: if φ : A ↪→ C is a fully-faithful functor, the cofiber of φ can be identified 
with the accessible reflexive localization

D C (1.12)

with local equivalences given by the class of edges f in C with cofiber in the essential 
image of φ. In particular, an object x ∈ C is in D if and only if for every object a ∈ A

we have MapC(a, x) � ∗.

Remark 1.14. Let A ↪→ C → D be an exact sequence of presentable stable 
(∞, 1)-categories as above. If the homotopy category h(A) has a compact generator in 
the sense of Neeman, say k ∈ A, then for an object x ∈ C to be in D it is enough to have 
MapC(k, a) � ∗. This follows from the arguments in the proof of the Proposition 1.12: 
every object in A can be obtained as a colimit of suspensions of k.

Thanks to [13, Prop. 5.9] and to the arguments in the proof of [13, Prop. 5.13], 
this notion of exact sequence extends the notion given by Verdier in [104]: a sequence 
A ↪→ C → D in PrL is exact if and only if the sequence of triangulated functors h(A) ↪→
h(C) → h(D) is exact sequence in the classical sense and the inclusion h(C)/h(A) ↪→ h(D)
is an equivalence of triangulated categories. In the compactly generated case we have 
the following



416 M. Robalo / Advances in Mathematics 269 (2015) 399–550
Proposition 1.15. Let A ↪→ C → D be a sequence in PrLω,Stb. The following are equivalent:

1. the sequence is exact;
2. the induced sequence of triangulated functors h(A) ↪→ h(C) → h(D) is exact in the 

classical sense and the inclusion h(C)/h(A) ↪→ h(D) is an equivalence;
3. the sequence of triangulated functors induced between the homotopy categories of the 

associated stable subcategories of compact objects h(Aω) ↪→ h(Cω) → h(Dω) is exact 
in the classical sense.

Proof. The equivalence between 1) and 2) follows from the results of [13] discussed above. 
The equivalence between 2) and 3) follows from the results of B. Keller [52, Section 4.12, 
Corollary] and the fact that for any compactly generated stable (∞, 1)-category C we 
can identify h(Cω) with the full subcategory of compact objects (in the sense of Neeman) 
in h(C). �

The following result will become important in the last section of our work. It follows 
as general form of the usual Bondal–Van den Bergh argument:

Proposition 1.16. (See [79, Prop. 2.1.10].) Let

D

f

C
L

C0

(1.13)

be a diagram in PrLω,Stb such that

• The homotopy triangulated category h(D) has a compact generator in the sense of 
Neeman;

• The map L : C → C0 is an accessible reflexive localization of C obtained by killing a 
stable subcategory A ⊆ C such that h(A) has a compact generator (in the sense of 
Neeman) and the inclusion A ⊆ C is a map in PrLω,Stb.

Then:

1. the diagram admits a limit σ =

T D

f

C
L

C0

(1.14)

in PrLω,Stb;
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2. the diagram σ remains a pullback after the (non-full) inclusion PrLω,Stb ⊆ PrLStb;
3. the homotopy category h(T) has compact generator in the sense of Neeman.

Remark 1.17. The proof of Proposition 1.16 works mutatis mutandis if we replace the 
hypothesis of solo compact generators in A and D by the existence of compact generating 
families. More precisely, and using the same arguments and notations, if ED = {di}i∈I

and EA = {kj}j∈J are families of compact generators respectively in D and in A, we can 
prove that the family {k̃j ⊕ vi}(i,j)∈I×J is a family of compact generators in T.

In particular, we have the following immediate corollary, obtained as a degenerated 
case of Proposition 1.16 (together with Remark 1.17) where D = 0:

Corollary 1.18. Let σ =

A C

∗ C0

(1.15)

be an exact sequence in PrLω,Stb such that h(A) admits a family of compact generators in 
the sense of Neeman. Then, the diagram σ is a pullback in PrLω,Stb.

1.5.5. Higher algebra over k
In the second and third parts of this paper we will be working over a base commutative 

ring k. We denote by D(k) the derived (∞, 1)-category of k. By definition, it is the under-
lying (∞, 1)-category of the combinatorial model structure on complexes of k-modules, 
with the weak-equivalences given by the quasi-isomorphisms and fibrations given by 
the levelwise surjections. This model category admits a compatible tensor product [42, 
4.2.13] so that by the discussion above D(k) inherits a symmetric monoidal structure 
corresponding to the derived tensor product of complexes. Moreover, this monoidal struc-
ture is closed. We shall use that this (∞, 1)-category is stable and that it admits a natural 
both left and right complete t-structure where D(k)≥0 is the full subcategory spanned by 
those complexes with zero homology in negative degrees. Its heart D(k)♥ is the category 
of k-modules and the functors Hn := τ≤n ◦ τ≥n : D(k) → D(k)♥ correspond to the clas-
sical n-th-cohomology functors. Moreover, the general Kunneth formula for complexes 
implies that the monoidal structure is compatible with this t-structure.

Let Alg(D(k)) denote the (∞, 1)-category of associative algebra objects in D(k). It is 
equivalent to the underlying (∞, 1)-category associated to the model structure on strict 
algebra objects in the category of complexes of k-modules (also known as k-dg-algebras 
– see [63, 6.1.4.5]). We write Alg(D(k))cn for the full subcategory of Alg(D(k)) spanned 
by those algebra-objects whose underlying complex is in D(k)≥0. As the t-structure is 
compatible with the monoidal structure, D(k)≥0 is closed under tensor products and we 
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have an equivalence Alg(D(k)≥0) � Alg(D(k))cn . Finally, the left-completeness implies 
that for any ∞-operad O⊗, we have τ≤nAlgO(D(k))cn � AlgO(D(k)≥0 ∩ D(k)≤n) and 
that Postnikov towers converge (see [59, 5.5.6.23 and 5.5.6.26])

AlgO
(
D(k)

)cn � limnAlgO
(
D(k)≥0 ∩D(k)≤n

)
(1.16)

See [63, Sections 2.2.1, 7.1.1 and 7.1.2 ].

1.5.6. Cotangent complexes and square-zero extensions
In the last part of the paper we construct a functor Lpe connecting the classical the-

ory of schemes to the noncommutative world (see Proposition 3.4). The main step – 
Lemma 3.5 – is a noncommutative analogue of [103, Prop. 2.2.2.4] and [63, 7.4.3.18]. In 
order to prove this result we will need to say what is the cotangent complex of a con-
nective dg-algebra. This is a particular instance of the more general notion of cotangent 
complex given in [34] which has sense for any O-algebra object in a stable symmet-
ric monoidal (∞, 1)-category C⊗ compatible with small colimits. More precisely, let C⊗

be a stable symmetric monoidal (∞, 1)-category compatible with colimits. Let O⊗ be 
a κ-small coherent ∞-operad and let A ∈ AlgO(C) be an algebra-object in C. Given 
a module-object M ∈ ModO

A(C) and using the hypothesis that the monoidal structure 
is compatible with colimits, the direct sum A ⊕ M comes naturally equipped with the 
structure an O-algebra-object in C where the multiplication is determined by the multi-
plicative structure on A, the module action of A on M and the zero map M ⊗M → M . 
This new O-algebra-object comes naturally equipped with a morphism of O-algebras 
A ⊕M → A which we can informally describe via the formula (a, m) → a. Its fiber can 
be naturally identified with the module M . This construction provides a functor (see 
[34]-Theorem 3.4.2)

ModO
A(C) → AlgO(C)./A (1.17)

By definition, a derivation of A into M is the data of a morphism of O-algebras 
A → A ⊕M over A. It is an easy exercise to see that this notion recovers the classical 
definition using the Leibniz rule. We set Der(A, M) := MapAlgO(C)./A(A, A ⊕ M) to 
denote the space of derivations with values in M . The formula M �→ Der(A, M) provides 
a functor (ModO

A(C))op → S which, through the Grothendieck construction, corresponds 
to a left fibration over ModO

A(C). By definition, the (absolute) cotangent complex of A is 
an object LA ∈ ModO

A(C) which makes this left fibration representable. In other words, 
if it has the universal property

MapModO
A(C)(LA,M) � MapAlgO(C)./A(A,A⊕M) (1.18)

which allows us to understand the formula A �→ LA as a left adjoint LA to the functor in 
(1.17), evaluated in A. In particular, if C is presentable this left adjoint exists because of 
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the adjoint functor theorem together with the fact that (1.17) commutes with limits [34, 
Lemma 3.1.3]. Moreover, under the equivalence between modules and the stabilization 
of algebras, LA can be identified with the suspension functor Σ∞.

Example 1.19. When applied to the example C⊗ = D(k)⊗ and for E1 � Ass, this 
definition recovers the classical associative cotangent complex introduced by Quillen 
and studied in [58], given by the kernel of the multiplication map A ⊗k Aop → A

in the (∞, 1)-category ModAss
A (D(k)). Recall also that ModAss

A (D(k)) is equivalent to 

ABModA(D(k)) which by the strictification results [63, 4.3.3.15, 4.3.3.17] is equivalent 
to the underlying (∞, 1)-category of the model category of strict A-bimodules in the 
model category of complexes Ch(k). This example will play an important role in the last 
section of this paper.

Remark 1.20. The construction of cotangent complexes is well-behaved with respect to 
base-change. If f : A → A′ is a morphism of O-algebras we can put together the functors 
A ⊕− and A′ ⊕− in a diagram

ModO
A(C)

A⊕−
AlgO(C)./A

ModO
A′(C)

For

A′⊕−
AlgO(C)./A′

(−×A′A) (1.19)

where For is the map that considers an A′-module as an A-modules via f and the map 
(− ×′

AA) is obtained by computing the fiber product of a morphism C → A′ with respect 
to f . The fact that this diagram commutes follows from the equivalence relating modules 
and the stabilization of algebras and from the definition of tangent bundle studied in [63, 
Section 7.3.1]. Moreover, the commutativity of this diagram implies the commutativity 
of the diagram associated to the left adjoints

ModO
A(C)

A′⊗A−

AlgO(C)./A
LA

f◦−

ModO
A′(C) AlgO(C)./A′

LA′

(1.20)

where now A′ ⊗A − is the base change with respect to f and the (f ◦ −) is the map 
obtained by composing with f . In particular, we find that A′⊗A LA is equivalent to LA′

evaluated at f : A → A′.

We recall also that the notion of derivation can be presented using the idea of a 
square-zero extension. If d : A → A ⊕M is a derivation, we fabricate a new O-algebra Ã
as the pullback in AlgO(C)
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Ã
f

A

d

A
d00

A⊕M

(1.21)

where d0 : A → A ⊕M is the zero derivation a �→ (a, 0). Since the functor AlgO(C) →
C preserves limits, the diagram (1.21) provides a pullback diagram in C and given a 
morphism ∗ → A in C, we can identify the fiber Ã ×A ∗ in C with the loop Ω(M). 
Indeed, we have a pullback in C

Ã×A ∗
f

(A×A ∗) � ∗

d

∗ � (A×A ∗)
d0 (A⊕M) ×A ∗

(1.22)

and since the fiber of the canonical map A ⊕M → A can be identified with M , we find 
Ã×A ∗ � Ω(M).

Recall that a morphism of algebras B → A is said to be a square-zero extension of 
A by Ω(M) if there is a derivation d of A with values in M � Σ(Ω(M)) such that 
B � Ã. Thanks to [63, Theorem 7.4.1.26] if C⊗ is a stable presentable Ek-monoidal 
(∞, 1)-category with a compatible t-structure, then the formula (A → A ⊕M) �→ (f :
Ã → A) establishes an equivalence between the theory of derivations and the subcategory 
of Fun(Δ[1], AlgEk

(C)) spanned by the square-zero extensions (see [63, Section 7.4.1] for 
a precise formulation).

Remark 1.21. In the presence of a square-zero extension (1.21), every O-algebra B induces 
a pullback diagram of spaces

MapAlgO(C)(B, Ã) MapAlgO(C)(B,A)

MapAlgO(C)(B,A) MapAlgO(C)(B,A⊕M)

(1.23)

Let φ : B → A be a morphism of algebras. It follows that we can describe the fiber 
of the morphism MapAlgO(C)(B, Ã) → MapAlgO(C)(B, A) over the point corresponding 
to φ with the help of the cotangent complex of B. More precisely, we observe first that 
the mapping space MapAlgO(C)./A(B, A ⊕M) (where B is defined over A via φ) fits in a 
pullback diagram
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MapAlgO(C)./A(B,A⊕M) MapAlgO(C)(B,A⊕M)

Δ[0]
φ

MapAlgO(C)(B,A)

(1.24)

where the right vertical map is the composition with the canonical map A ⊕M → A. 
By tensoring with (− ×MapAlgO(C)(B,A) Δ[0]) the diagram (1.23) produces a new pullback 
diagram

MapAlgO(C)(B, Ã) ×MapAlgO(C)(B,A) Δ[0] MapAlgO(C)(B,A) ×MapAlgO(C)(B,A) Δ[0] � Δ[0]

MapAlgO(C)(B,A) ×MapAlgO(C)(B,A) Δ[0] � Δ[0] MapAlgO(C)./A(B,A⊕M)

(1.25)

so that the fiber MapAlgO(C)(B, Ã) ×MapAlgO(C)(B,A) Δ[0] becomes the space of paths 

in MapAlgO(C)./A(B, A ⊕ M) between the point B φ−→ A d−→ A ⊕ M and the point 

B
φ−→ A 

d0−→ A ⊕M . To conclude, we can use the adjunctions of Remark 1.20 to find 
equivalences

MapAlgO(C)./A(B,A⊕M) � MapModO
A(C)

(
LA(φ),M

)
� MapModO

A(C)(A⊗B LB ,M)

� MapModO
B(C)

(
LB , For(M)

)
(1.26)

so that we find an equivalence

MapAlgO(C)(B, Ã) ×MapAlgO(C)(B,A) Δ[0] � Ω0,d◦φMapModO
B(C)

(
LB ,For(M)

)
(1.27)

We now collect the last ingredient to prove Lemma 3.5:

Theorem 1.22. (See Lurie [63, Corollary 7.4.1.28].) Let C⊗ be a stable presentable sym-
metric monoidal (∞, 1)-category equipped with a compatible t-structure. Then for every 
k ≥ 0 and any algebra A ∈ AlgEk

(C)cn the morphisms in the Postnikov tower

... → τ≤2A → τ≤1A → τ≤0A (1.28)

are square-zero extensions. More precisely, for every n ≥ 0 the truncation map τ≤nA →
τ≤n−1A is a square-zero extension of τ≤n−1A by a module-structure in Hn(A)[n]. This 
is equivalent to the existence of a derivation dn : τ≤n−1A → τ≤n−1A ⊕Hn(A)[n + 1] and 
a pullback diagram of algebras
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τ≤nA τ≤n−1A

dn

τ≤n−1A τ≤n−1A⊕Hn(A)[n + 1]

(1.29)

2. A universal characterization of the motivic stable homotopy theory of schemes

In 2.1 we deal with the formal inversion of an object in a symmetric monoidal 
(∞, 1)-category. First we deal with the situation for small (∞, 1)-categories (Proposi-
tions 2.1 and 2.2) and then we extend the result to the presentable setting (Proposi-
tion 2.9). This method allow us to invert any object and the result is endowed with the 
expected universal property. In 2.2 we deal with the notion of spectrum-objects. Our 
main result (Corollary 2.22) is that if the object we want to invert satisfies a certain 
symmetry condition then the underlying (∞, 1)-category of the formal inversion is noth-
ing but the stabilization with respect to the chosen object. In 2.3 we prove our main 
theorem (see Theorem 2.26), which ensures that the familiar construction of symmetric 
spectrum objects with respect to a given symmetric object X together with the convo-
lution product, is the “model category” incarnation of our ∞-categorical phenomenon
of inverting X.

Finally, in Section 2.4 we use these results to provide a universal characterization for 
the Motivic Stable homotopy theory of Morel–Voevodsky.

2.1. Formal inversion of an object in a symmetric monoidal (∞, 1)-category

Let C⊗ be a symmetric monoidal (∞, 1)-category and let X be an object in C. We 
will say that X is invertible with respect to the monoidal structure if there is an object 
X∗ such that X ⊗ X∗ and X∗ ⊗ X are both equivalent to the unit object. Since the 
monoidal structure is symmetric, it is enough to have one of these conditions. It is an 
easy observation that this condition depends only on the monoidal structure induced 
on the homotopy category h(C), because equivalences are exactly the isomorphisms in 
h(C). Alternatively, we can see that an object X in C is invertible if and only if the 
map “multiplication by X” = (X ⊗ −) : C → C is an equivalence of (∞, 1)-categories. 
Indeed, if X has an inverse X∗ then the maps (X ⊗ −) and (X∗ ⊗ −) are inverses 
since the coherences of the monoidal structure can be used to fabricate the homotopies. 
Conversely, if (X ⊗−) is an equivalence, the essential surjectivity provides an object X∗

such that X ⊗X∗ � 1C. The symmetry provides an equivalence 1C � X∗ ⊗X.
Our main goal is to produce from the data of C⊗ and X ∈ C, a new symmetric 

monoidal (∞, 1)-category C⊗[X−1] together with a monoidal map C⊗ → C⊗[X−1] send-
ing X to an invertible object and universal with respect to this property. In addition, we 
would like this construction to hold within the world of presentable symmetric monoidal 
(∞, 1)-categories. Our steps follow the original ideas of [103], where the authors stud-
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ied the inversion of an element in a strictly commutative algebra object in a symmetric 
monoidal model category.

We start by analyzing the theory for a small symmetric monoidal (∞, 1)-category C⊗. 
In this case, and following [63, 2.4.2.6], C⊗ can be identified with an object in 
CAlg(Cat∞). The objects of ModC(Cat∞) can be identified with (∞, 1)-categories en-
dowed with an “action” of C and we will refer to them simply as C⊗-Modules. By 
[63, 3.4.1.7], CAlg(ModC⊗(Cat∞)) is equivalent to CAlg(Cat∞)C⊗/. where the objects 
are small symmetric monoidal (∞, 1)-categories D⊗ equipped with a monoidal map 
C⊗ → D⊗. We denote by CAlg(Cat∞)X

C⊗/. the full subcategory of CAlg(Cat∞)C⊗/.

spanned by the algebras C⊗ → D⊗ whose structure map sends X to an invertible object. 
The main observation is that the objects in CAlg(Cat∞)X

C⊗/. can be understood as local 
objects in CAlg(Cat∞)C⊗/. with respect to a certain set of morphisms: there is a forgetful 
functor

CAlg(Cat∞)C⊗/. � CAlg
(
ModC⊗(Cat∞)

)
→ ModC⊗(Cat∞) (2.1)

and since Cat×∞ is a presentable symmetric monoidal (∞, 1)-category, this functor admits 
a left adjoint FreeC⊗(−) assigning to each C⊗-module D the free commutative C⊗-algebra 
generated by D (see [63, 3.1.3.5]). We will denote by SX the collection of morphisms in 
CAlg(Cat∞)C⊗/. consisting of the single morphism

FreeC⊗(C)
Free

C⊗ (X⊗−)
FreeC⊗(C) (2.2)

where C is understood as a C⊗-module in the obvious way using the monoidal structure. 
We prove the following

Proposition 2.1. Let C⊗ be a symmetric monoidal (∞, 1)-category. Then the full subcate-
gory CAlg(Cat∞)X

C⊗/. coincides with the full subcategory of CAlg(Cat∞)C⊗/. spanned 

by the SX-local objects. Moreover, since Cat×∞ is a presentable symmetric monoidal 
(∞, 1)-category, the (∞, 1)-categories CAlg(Cat∞) and CAlg(Cat∞)C⊗/. are also pre-
sentable (see Corollary 3.2.3.5 of [63]) and the results of Proposition 5.5.4.15 in [59]
follow. We deduce the existence a left adjoint L⊗

(C⊗,X)

CAlg(Cat∞)SX-local
C⊗/ = CAlg(Cat∞)X

C⊗/ CAlg(Cat∞)C⊗/

L⊗
(C⊗,X)

(2.3)

In particular, the data of this adjunction provides the existence of a symmetric 
monoidal (∞, 1)-category L⊗

(C⊗,X)(C
⊗) equipped with a canonical monoidal map f : C⊗ →

L⊗
⊗ (C⊗) sending X to an invertible object.
(C ,X)
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Proof. The only thing to check is that both subcategories coincide. Let φ : C⊗ → D⊗

be a C-algebra where X is sent to an invertible object. By the definition of the functor 
FreeC⊗(C) we have a commutative diagram

MapCAlg(Cat∞)
C⊗/

(FreeC⊗(C),D⊗)

∼

MapCAlg(Cat∞)
C⊗/

(FreeC⊗(C),D⊗)

∼

MapMod
C⊗ (Cat∞)(C,D) MapMod

C⊗ (Cat∞)(C,D)

(2.4)

where the lower horizontal map is described by the formula α �→ α ◦ (X ⊗−). Since φ is 
monoidal, the diagram commutes

C
(X⊗−)

φ

C

φ

D
(φ(X)⊗−)

D

(2.5)

and the lower map is in fact homotopic to the one given by the formula α �→ (φ(X) ⊗
−) ◦α. Since φ(X) is invertible in D⊗, there exists an object λ in D such that the maps 
(φ(X) ⊗ −) and (λ ⊗ −) are inverses and therefore the lower map in (2.4), and as a 
consequence the top map, are isomorphisms of homotopy types.

Let now C⊗ → D⊗ be a C⊗-algebra, local with respect to SX . In particular, the map

MapMod
C⊗ (Cat∞)(C,D) → MapMod

C⊗ (Cat∞)(C,D) (2.6)

induced by the composition with (X ⊗−) is an isomorphism of homotopy types and in 
particular we have π0(MapMod

C⊗ (Cat∞)(C, D)) � π0(MapMod
C⊗ (Cat∞)(C, D)). We deduce 

the existence of a dotted arrow

D

φ

X⊗−
D

α

D

(2.7)

rendering the diagram of modules commutative and since α is a map of C⊗-modules and 
φ is monoidal we find φ(1 ) � α(X ⊗ 1 ) � φ(X) ⊗ α(1 ). Using the symmetry we find 
that α(1 ⊗X) � α(1 ) ⊗ φ(X) � 1 which proves that φ(X) has an inverse in D⊗. �

We will now study the properties of the base change along the morphism C⊗ →
L⊗

(C⊗,X)(C
⊗). In order to establish some insight, let us point out that everything fits in 

a commutative diagram
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CAlg(Cat∞)
L

⊗
(C⊗,X)

(C⊗)/.
� CAlg(Mod

L
⊗
(C⊗,X)

(C⊗)
(Cat∞)) CAlg(Mod

C⊗ (Cat∞)) � CAlg(Cat∞)
C⊗/.

Mod
L

⊗
(C⊗,X)

(C⊗)
(Cat∞)

f∗
Mod

C⊗ (Cat∞)

(2.8)

where the horizontal arrows are induced by the forgetful map given by the composition 
with C⊗ → L⊗

(C⊗,X)(C
⊗) and the vertical arrows are induced by the forgetful map pro-

duced by the change of ∞-operads Triv⊗ → Comm⊗. Since Cat∞ with the cartesian 
product is a presentable symmetric monoidal (∞, 1)-category, there is a base change 
functor

ModL⊗
(C⊗,X)

(C⊗)(Cat∞) ModC⊗(Cat∞)

L(C⊗,X)

(2.9)

and by the general theory we have an identification of f∗(L(C⊗,X)(M)) � M ⊗C⊗

(L⊗
(C⊗,X)(C

⊗)) given by the tensor product in ModC⊗(Cat∞). This map is monoidal 
and therefore induces a left adjoint

CAlg(Cat∞)L⊗
(C⊗,X)

(C⊗)/ CAlg(Cat∞)C⊗/

L̃(C⊗,X)

(2.10)

which fits in a commutative diagram

CAlg(Cat∞)L⊗
(C⊗ ,X)

(C⊗)/.  CAlg(ModL⊗
(C⊗ ,X)

(C⊗)(Cat∞))

forget

CAlg(ModC⊗ (Cat∞))  CAlg(Cat∞)C⊗/.

L̃(C⊗ ,X)

forget

ModL⊗
(C⊗ ,X)

(C⊗)(Cat∞) ModC⊗ (Cat∞)
L(C⊗ ,X)

(2.11)

where the vertical maps forget the algebra structure. We now prove the following state-
ment, which was originally proved in [103] in the context of model categories:

Proposition 2.2. Let C⊗ be a small symmetric monoidal (∞, 1)-category and X be an 
object in C. Let f : C⊗ → L⊗

⊗ (C⊗) be the natural map constructed above. Then
(C ,X)
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1. the composition map

CAlg(Cat∞)L⊗
(C⊗,X)

(C⊗)/. → CAlg(Cat∞)C⊗/. (2.12)

is fully faithful and its image coincides with CAlg(Cat∞)X
C⊗ ;

2. the forgetful functor

f∗ : ModL⊗
(C⊗,X)

(C⊗)(Cat∞) → ModC⊗(Cat∞) (2.13)

is fully faithful and its image coincides with the full subcategory of ModC⊗(Cat∞)
spanned by those C-modules where X acts as an equivalence.

A major consequence is that

Corollary 2.3. The left adjoint L̃(C⊗,X) provided by the base change is naturally equivalent 
to the left adjoint L⊗

(C⊗,X) provided by Proposition 2.1.

Moreover, since the diagram (2.11) commutes, we have the formula L(C⊗,X)(D) �
L⊗

(C⊗,X)(D
⊗)〈1〉 for any D⊗ ∈ CAlg(Cat∞)C⊗/.

In order to prove Proposition 2.2, we will need some preliminary steps. We start by 
recalling some notation: Let E⊗ be a symmetric monoidal (∞, 1)-category. A morphism 
of commutative algebras A → B in E is called an epimorphism (see [103]-Definition 
1.2.6.1-1) if for any commutative A-algebra C, the mapping space MapCAlg(E)(B, C)
is either empty or weakly contractible. In other words, the space of dotted maps of 
A-algebras

C

A B

(2.14)

rendering the diagram commutative is either empty or consisting of a unique map, up to 
equivalence. We can rewrite this definition in a different way. As a result of the general 
theory, if E⊗ is compatible with all small colimits, the ∞-category CAlg(E)A/ inherits a 
cocartesian tensor product (see [63, 3.2.4.7]) which we denote here as ⊗A. In this case 
it is immediate the conclusion that a map A → B is an epimorphism if and only if the 
canonical map B → B ⊗A B is an equivalence. Of course, this is happens if and only if 
the induced colimit map B ⊗A B → B is also an equivalence. We prove the following

Proposition 2.4. Let E⊗ be a symmetric monoidal (∞, 1)-category compatible with all 
small colimits and let f : A → B be a morphism of commutative algebras in E. The 
following are equivalent:
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1. f is an epimorphism;
2. The natural map f∗ : ModB(E) → ModA(E) is fully faithful;

Moreover, if these equivalent conditions are satisfied, the forgetful map

CAlg(E)B/. → CAlg(E)A/. (2.15)

is also fully faithful.

Proof. With the hypothesis that the monoidal structure is compatible with colimits, the 
general theory gives us a base-change functor

(−⊗A B) : ModA(E) → ModB(E) (2.16)

left adjoint to the forgetful map f∗. In this case f∗ will be fully faithful if and only if the 
counit of the adjunction is an equivalence. If the counit is an equivalence in particular 
we deduce that the canonical map B ⊗A B → B is an equivalence and therefore A → B

is an epimorphism. Conversely, if A → B is an epimorphism, for any B-module M we 
have

M ⊗A B �
(
(M ⊗B B) ⊗A B

)
�

(
M ⊗B (B ⊗A B)

)
� (M ⊗B B) � M (2.17)

It remains to prove the additional statement concerning the categories of algebras. 
Let us consider u : B → U , v : B → V two algebras over B. We want to prove that the 
canonical map

MapCAlg(E)B/.
(U, V ) → MapCAlg(E)A/.

(
f∗(U), f∗(V )

)
(2.18)

is an isomorphism of homotopy types. The points in MapCAlg(E)A/.
(f∗(U), f∗(V )) can be 

identified with commutative diagrams

U

A
f

u◦f

v◦f

B

v

u

V

(2.19)

and therefore we can rewrite MapCAlg(E)A/.
(f∗(U), f∗(V )) as a homotopy pullback dia-

gram

MapCAlg(E)
(
B, f∗(V )

)
×Map (A,f∗(V )) MapCAlg(E) (U, V ) (2.20)
A/ CAlg(E)A/. B/.
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which by the fact A → B is an epimorphism and MapCAlg(E)A/.
(A, f∗(V )) � ∗, is the 

same as MapCAlg(E)B/.
(U, V ). �

The following is the main ingredient in the proof of Proposition 2.2.

Proposition 2.5. Let C⊗ be a small symmetric monoidal ∞-category and let X be an 
object in C. Then, the canonical map C⊗ → L⊗

(C⊗,X)(C
⊗) is an epimorphism.

Proof. This is a direct result of the characterization of L⊗
(C⊗,X) as an adjoint in Proposi-

tion 2.1. Indeed, for any algebra φ : C⊗ → D⊗, either φ does not send X to an invertible 
object and in this case MapCAlg(Cat∞)

C⊗/.
(L⊗

(C⊗,X)(C
⊗), D⊗) is necessarily empty or, φ

sends X to an invertible object and we have by the universal properties

MapCAlg(Cat∞)
C⊗/.

(
L⊗

(C⊗,X)
(
C⊗),D⊗) � MapCAlg(Cat∞)

C⊗/.

(
C⊗,D⊗) � ∗ �

(2.21)

Proof of Proposition 2.2. By the results above we know that both maps are fully faithful. 
It suffices now to analyze their images.

1. If φ : C⊗ → D⊗ is in the image, D⊗ is an algebra over L⊗
(C⊗,X)(C

⊗), there exists a 
monoidal factorization

C⊗ φ
D⊗

L⊗
(C⊗,X)(C

⊗)

(2.22)

and therefore X is sent to an invertible object. Conversely, if φ : C⊗ → D⊗ sends 
X to an invertible object, φ : C⊗ → D⊗ is local with respect to FreeC⊗(X ⊗ −) :
FreeC⊗(C) → FreeC⊗(C) and therefore the adjunction morphisms of Proposition 2.1
fit in a commutative diagram

C⊗ φ
D⊗

∼

L⊗
(C⊗,X)(C

⊗)
L⊗

(C⊗,X)
(φ)

L⊗
(C⊗,X)(D

⊗)

(2.23)

where the right vertical map is an equivalence and we deduce the existence of a 
monoidal map presenting D⊗ as an L⊗

(C⊗,X)(C
⊗)-algebra, therefore being in the image 

of f∗.
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2. Again, it remains to prove the assertion about the image. If M is a C⊗-module 
in the image, by definition, its module structure is obtained by the composition 
C⊗×M → L⊗

(C⊗,X)(C
⊗) ×M → M and therefore the action of X on M is invertible. 

Conversely, let M be a C⊗-module where X acts as an equivalence. We want to show 
that M is in the image of the forgetful functor. Since we know it is fully faithful, this 
is equivalent to showing that the unit map of the adjunction

M → f∗
(
L(C⊗,X)(M)

)
� M ⊗C⊗ L⊗

(C⊗,X)
(
C⊗) (2.24)

is an equivalence. To prove this we will need a reasonable description of FreeC⊗(M) – 
the free C⊗ algebra generated by M . Following [63, 3.1.3.9, 3.1.3.14 ] we know that 
the underlying C⊗-module FreeC⊗(M)〈1〉 can be described as a coproduct

∐
n≥0

Symn(M)C⊗ (2.25)

where Symn(M)C⊗ is a colimit diagram in ModC⊗(Cat∞) which can be informally 
described as M⊗

C⊗/Σn where ⊗C⊗ refers to the natural symmetric monoidal struc-
ture in ModC⊗(Cat∞). Let us proceed.
• The general machinery tells us that FreeC⊗(M) exists in our case and by con-

struction it comes naturally equipped with a canonical monoidal map φ : C⊗ →
FreeC⊗(M). We remark that the multiplication map (φ(X) ⊗−) : FreeC⊗(M)〈1〉 →
FreeC⊗(M)〈1〉 can be identified with the image FreeC⊗(X ⊗ −)〈1〉 of the multi-
plication map (X ⊗ −) : M → M . Since this last one is an equivalence (by the 
assumption), we conclude that FreeC⊗(M) is in fact a C⊗ algebra where X is sent 
to an invertible object. This means that it is in fact an L⊗

(C⊗,X)(C
⊗)-algebra and 

therefore FreeC⊗(M)〈1〉 is in fact an L⊗
(C⊗,X)(C

⊗)-module, which means that the 
unit map

FreeC⊗(M)〈1〉 → f∗
(
L(C⊗,X)

(
FreeC⊗(M)〈1〉

))
� FreeC⊗(M)〈1〉 ⊗C⊗ L⊗

(C⊗,X)
(
C⊗)

(2.26)

is an equivalence.
• We observe now that we have a canonical map M → FreeC⊗(M)〈1〉 because 

Sym1(M) = M and that this map is obviously fully faithful. The unit of the 
natural transformation associated to the base-change gives us a commutative di-
agram

M M ⊗C⊗ L⊗
(C⊗,X)(C

⊗)

FreeC⊗(M)〈1〉
∼ FreeC⊗(M)〈1〉 ⊗C⊗ L⊗

(C⊗,X)(C
⊗)

(2.27)
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where the lower arrow is an equivalence from the discussion in the previous item. 
Since the monoidal structure is compatible with coproducts and using the identi-
fication Symn(M)C⊗ � M⊗n

C⊗/Σn, we have

FreeC⊗(M)〈1〉 ⊗C⊗ L⊗
(C⊗,X)

(
C⊗) � ∐[(

M⊗n
C⊗

)⊗
C⊗L

⊗
(C⊗,X)

(
C⊗)]/Σn (2.28)

and finally, using the fact C⊗ → L⊗
(C⊗,X)(C

⊗) is an epimorphism, we have

(
L⊗

(C⊗,X)
(
C⊗))⊗n

C⊗ � L⊗
(C⊗,X)

(
C⊗) (2.29)

for any n ≥ 0. We find an equivalence

FreeC⊗(M)〈1〉 ⊗C⊗ L⊗
(C⊗,X)

(
C⊗) � FreeC⊗

(
M ⊗C⊗ L⊗

(C⊗,X)
(
C⊗))

〈1〉 (2.30)

The first diagram becomes

M M ⊗C⊗ L⊗
(C⊗,X)(C

⊗)

FreeC⊗(M)〈1〉 =
∐

n≥0 Symn(M)C⊗
∼ ∐

n≥0 Symn(M ⊗C⊗ L⊗
(C⊗,X)(C

⊗))C⊗

(2.31)

where both vertical maps are now the canonical inclusions in the coproduct. There-
fore, since Cat∞ has disjoint coproducts (because coproducts can be computed 
as homotopy coproducts in the combinatorial model category of marked simpli-
cial sets and here coproducts are disjoint), we conclude that the canonical map 
M → M ⊗C⊗ L⊗

(C⊗,X)(C
⊗) is also an equivalence.

This concludes the proof. �
Our goal now is to extend our construction to the setting of presentable symmetric 

monoidal ∞-categories. The starting observation is that, if C⊗ is a small symmetric 
monoidal (∞, 1)-category the inversion of an object X can now be rewritten by means of 
a pushout square in CAlg(Cat∞): Since Cat∞ is a symmetric monoidal (∞, 1)-category 
compatible with all colimits, the forgetful functor

CAlg(Cat∞) → Cat∞ (2.32)

admits a left adjoint free⊗ which assigns to an ∞-category D, the free symmetric 
monoidal (∞, 1)-category generated by D. An object in C can be interpreted as a monoidal 
map free⊗(Δ[0]) → C⊗ where free⊗(Δ[0]) is the free symmetric monoidal category gener-
ated by one object ∗. By the universal property of L⊗

⊗ (free⊗(Δ[0])), a monoidal 
(free (Δ[0]),∗)
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map C⊗ → D⊗ sends X to an invertible object if and only if it factors as a commutative 
diagram

free⊗(Δ[0])

X

L⊗
(free⊗(Δ[0]),∗)(free

⊗(Δ[0]))

C⊗ D⊗

(2.33)

and by the combination of the universal properties, the pushout in CAlg(Cat∞)

C⊗
∐

free⊗(Δ[0])

L⊗
(free⊗(Δ[0]),∗)

(
free⊗

(
Δ[0]

))
(2.34)

is canonically equivalent to L⊗
(C⊗,X)(C

⊗). The existence of this pushout is ensured by 

the fact that Cat×∞ is compatible with all colimits (see [63, 3.2.3.2, 3.2.3.3])
We will use this pushout-version to construct the presentable theory. By [63, 4.8.1.10]

if C⊗ is a presentable symmetric monoidal (∞, 1)-category (not necessarily small) and 
X is an object in C, the universal monoidal property of presheaves ensures that any 
diagram like (2.33) factors as

free⊗(Δ[0])

j

L⊗
(free⊗(Δ[0]),∗)(free

⊗(Δ[0]))

j′

P(free⊗(Δ[0]))⊗ P(L⊗
(free⊗(Δ[0]),∗)(free

⊗(Δ[0])))⊗

C⊗ D⊗

(2.35)

where P⊗(−) is the natural extension of the symmetric monoidal structure to presheaves, 
the vertical maps j and j′ are the respective Yoneda embeddings (which are monoidal 
maps) and the dotted arrows are given by colimit-preserving monoidal maps obtained 
as left Kan extensions.

Definition 2.6. Let C⊗ be a presentable symmetric monoidal (∞, 1)-category and let X
be an object in C. The formal inversion of X in C⊗ is the new presentable symmetric 
monoidal (∞, 1)-category C⊗[X−1] defined by pushout

C⊗[X−1] := C⊗
∐

P(free⊗(Δ[0]))⊗
P
(
L⊗

(free⊗(Δ[0]),∗)
(
free⊗

(
Δ[0]

)))⊗ (2.36)

in CAlg(PrL).
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Remark 2.7. Recall that PrL,⊗ is compatible with colimits. By [63, 3.2.3.2, 3.2.3.3] the 
(∞, 1)-category CAlg(PrL) has all small colimits so that the previous definition makes 
sense.

Remark 2.8. Let C⊗ be a small symmetric monoidal (∞, 1)-category and let X be an 
object in C. Again by [63, 4.8.1.10], the monoidal structure in C extends to a monoidal 
structure in P(C) and it makes it a presentable symmetric monoidal (∞, 1)-category. It 
is automatic by the universal properties that the inversion P(C)⊗[X−1] in the setting of 
presentable (∞, 1)-categories is canonically equivalent to P(L⊗

(C⊗,X)(C
⊗))⊗.

As in the small context, we analyze the base change with respect to this map. Since 
(PrL)⊗ is compatible with all small colimits (see [63, 4.8.1.14, 4.8.1.17]), all the machin-
ery related to algebras and modules can be applied. The composition with the canonical 
map C⊗ → C⊗[X−1] produces a forgetful functor

ModC⊗[X−1]
(
PrL

)
→ ModC⊗

(
PrL

)
(2.37)

and the base-change functor LPr
(C⊗,X) := (− ⊗C⊗ C⊗[X−1]) exists, is monoidal and there-

fore induces an adjunction

CAlg(PrL)C⊗[X−1]/. CAlg(PrL)C⊗/.

L
Pr,⊗
(C⊗,X)

(2.38)

Our main result is the following:

Proposition 2.9. Let C⊗ be a presentable symmetric monoidal (∞, 1)-category. Then

1. the canonical map

CAlg
(
PrL

)
C⊗[X−1]/. → CAlg

(
PrL

)
C⊗/.

(2.39)

is fully faithful and its essential image consists of full subcategory spanned by the al-
gebras C⊗ → D⊗ sending X to an invertible object; In particular we have a canonical 
equivalence LPr,⊗

(C⊗,X)(C
⊗) � C⊗[X−1].

2. The canonical map

ModC⊗[X−1]
(
PrL

)
→ ModC⊗

(
PrL

)
(2.40)

is fully faithful and its essential image consists of full subcategory spanned by the 
presentable (∞, 1)-categories equipped with an action of C where X acts as an equiv-
alence.
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Proof. Since (PrL)⊗ is a closed symmetric monoidal (∞, 1)-category (see [63, 4.8.1.14]), 
it is compatible with all colimits and so the results of Proposition 2.4 can be applied. 
We prove that C⊗ → C⊗[X−1] is an epimorphism. Indeed, if φ : C⊗ → D⊗ does not send 
X to an invertible object, by the universal property of the C⊗[X−1] as a pushout, the 
mapping space MapCAlg(Cat∞)

C⊗/
(C⊗[X−1], D⊗) is empty. Otherwise if φ sends X to an 

invertible object, by the universal property of the pushout we have

MapCAlg
(
PrL

)
C⊗/

(
C⊗[X−1],D⊗) � MapCAlg(PrL)

(
C⊗[X−1],D⊗) (2.41)

and the last is given by the homotopy pullback of

MapCAlg(PrL)(P(L⊗
(free⊗(Δ[0]),∗)(free

⊗(Δ[0])))⊗,D⊗)

MapCAlg(PrL)(C⊗,D⊗) MapCAlg(PrL)(P⊗(free⊗(Δ[0])),D⊗)

(2.42)

which, by the universal property of P⊗(−) is equivalent to

MapCAlg(PrL)
(
C⊗,D⊗)

×MapCAlg(Cat∞)(free⊗(Δ[0]),D⊗) MapCAlg(Cat∞)
(
L⊗

(free⊗(Δ[0]),∗)
(
free⊗

(
Δ[0]

))
,D⊗)

(2.43)

and we use the fact that free⊗(Δ[0]) → L⊗
(free⊗(Δ[0]),∗)(free

⊗(Δ[0])) is an epimorphism 
to conclude the proof.

It remains now to discuss the images.

1. It is clear by the universal property of the pushout defining C⊗[X−1];
2. If M is in the image, the action of X is clearly invertible. Let M be a C⊗-module 

with an invertible action of X. By repeating exactly the same arguments as in the 
proof of Proposition 2.9 we get a commutative diagram in PrL

M M ⊗C⊗ L⊗
(C⊗,X)(C

⊗)

FreeC⊗(M)〈1〉 =
∐

n≥0 Symn(M)C⊗
∼ ∐

n≥0 Symn(M ⊗C⊗ L⊗
(C⊗,X)(C

⊗))C⊗

(2.44)

where the vertical maps are the canonical inclusions in the colimit and Symn(−)C⊗

is now a colimit in ModC⊗(PrL). We recall now that coproducts in PrL are com-
puted as products in PrR. Let u : A → B and v : X → Y be colimit preserv-



434 M. Robalo / Advances in Mathematics 269 (2015) 399–550
ing maps between presentable (∞, 1)-categories and assume the coproduct map 
u 
∐

v : A 
∐

X → B
∐

Y is an equivalence. The coproduct A 
∐

X is canonically 
equivalent to the product A ×X and we have commutative diagrams

A
u

i

B

j

A
∐

X
∼

u
∐

v
B
∐

Y

(2.45)

and

A B
ū

A
∐

X = A×X

p

B
∐

Y = B × Y
u
∐

v

q (2.46)

with i and j the canonical inclusions and p and q the projections. The maps in 
the second diagram are right adjoints to the maps in the first, with ¯u

∐
v � ū × v̄

and therefore u 
∐

v and ū × v̄ are inverses. Since the projections are essentially 
surjective, the inclusions i and j are fully faithful and we conclude that u has to be 
fully faithful and ū is essentially surjective. To conclude the proof is it enough to 
check that u is essentially surjective or, equivalently (because u is fully faithful), that 
ū is fully-faithful. This is the same as saying that for any diagram as in (2.76) with 
ū× v̄ fully faithful, ū is necessarily fully faithful. This is true because Y is presentable 
and therefore has a final object e and since v̄ commutes with limits, for any objects 
b0, b1 ∈ Obj(A) we have

MapB(b0, b1) � MapB(b0, b1) × MapY (e, e)

� MapA

(
ū(b0), ū(b1)

)
× MapX

(
v̄(e), v̄(e)

)
(2.47)

� MapA

(
ū(b0), ū(b1)

) � (2.48)

2.2. Connection with ordinary spectra and stabilization

In the previous section we studied the formal inversion of an object X in a symmetric 
monoidal (∞, 1)-category. Our goal for this section is to compare our formal inversion 
to the more familiar notion of (ordinary) spectrum-objects.

2.2.1. Stabilization
Let C be an (∞, 1)-category and let G : C → C be a functor with a right adjoint 

U : C → C. We define the stabilization of C with respect to (G, U) as the limit in Catbig∞
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Stab(G,U)(C) := Lim ...
U−→ C

U−→ C
U−→ C (2.49)

We will refer to the objects of Stab(G,U)(C) as spectrum objects in C with respect to 
(G, U). As a limit, we have a canonical functor “evaluation at level 0” which we will 
denote as Ω∞

C : Stab(G,U)(C) → C.

Remark 2.10. Let C is a presentable (∞, 1)-category together with a colimit preserving 
functor G : C → C. By the Adjoint Functor Theorem we deduce the existence a right 
adjoint U to G. Using the equivalence PrL � (PrR)op, and the fact that both inclusions 
PrL, PrR ⊆ Catbig∞ preserve limits, we conclude that Stab(G,U)(C) is equivalent to the 
colimit of

C
G−→ C

G−→ C
G−→ ... (2.50)

Example 2.11. The construction of spectrum objects provides a method to stabilize an 
∞-category: Let C be an (∞, 1)-category with final object ∗. If C admits finite limits and 
colimits we can construct a pair of adjoint functors ΣC : C∗/ → C∗/ and ΩC : C∗/ → C∗/
defined by the formula

ΣC(X) := ∗
∐
X

∗ (2.51)

and

ΩC(X) := ∗ ×X ∗ (2.52)

and by [63, Prop. 1.4.2.24] we can define the stabilization of C as the ∞-category

Stab(C) := Stab(ΣC,ΩC)(C∗/). (2.53)

By [63, Cor. 1.4.2.17], Stab(C) is a stable ∞-category and by [63, Corollary 1.4.2.23]
the functor Ω∞ : Stab(C) → C has a universal property: for any stable (∞, 1)-category 
D, the composition with Ω∞ induces an equivalence

Fun′(D,Stab(C)
)
→ Fun′(D,C) (2.54)

between the full subcategories of functors preserving finite limits. Suppose now that C is 
presentable. Since ΩC by definition commutes with all limits and PrR is closed under lim-
its, Stab(C) will also be presentable and Ω∞ will also commute with all limits. Therefore, 
by the Adjoint Functor Theorem it will admit a left adjoint Σ∞ : C → Stab(C). Using 
the equivalence PrL � (PrR)op we find (see [63, Cor. 1.4.4.5]) that Σ∞ is characterized 
by the following universal property: for every stable presentable (∞, 1)-category D, the 
composition with Σ∞ induces an equivalence

FunL
(
Stab(C),D

)
→ FunL(C,D) (2.55)
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Our goal for the rest of this section is to compare this notion of stabilization to 
something more familiar. Let us start with some precisions about the construction of 
limits in Cat∞. By [59, Thm. 4.2.4.1], the stabilization Stab(G,U)(C) can be computed 
as a homotopy limit for the tower

... U−−→ C� U−−→ C� U−−→ C� (2.56)

in the simplicial model category Δ̂+ of (big) marked simplicial sets of the [59, 
Prop. 3.1.3.7] (as a marked simplicial set, C� is the notation for the pair (C, W ) where 
W is the collection of all edges in C which are equivalences). By [59, Thm. 3.1.5.1], the 
cofibrant–fibrant objects in Δ̂+ are exactly the objects of the form C� with C a quasi-
category and, forgetting the marked edges provides a right-Quillen equivalence from Δ̂+
to Δ̂ with the Joyal model structure. Therefore, to obtain a model for the homotopy 
limit in Δ̂+ we can instead compute the homotopy limit in Δ̂ (with the Joyal structure).

Let now us recall the following result about homotopy limits in model categories.

Lemma 2.12. Let M be a simplicial model category and let T : Nop → M be tower in M

...
T3−−→ X2

T2−−→ X1
T1−−→ X0 (2.57)

with each Xn a fibrant object of M. In this case, the homotopy limit holim(Nop)Tn is 
weak-equivalent to the strict pullback of the diagram

∏
n X

Δ[1]
n

∏
n Xn

∏
n Xn ×Xn

(2.58)

where the vertical arrow is the fibration9 induced by the composition with the cofibration 
∂Δ[1] → Δ[1] and the horizontal map is the product of the compositions 

∏
n Xn →

Xn ×Xn+1 → Xn ×Xn where the last map is the product IdXn
× Tn. Notice that every 

vertice of the diagram is fibrant.

Proof. See [39]-VI-Lemma 1.12. �
Back to our situation, we conclude that the homotopy limit of

... U−−→ C� U−−→ C� U−−→ C� (2.59)

is given by the explicit strict pullback in Δ̂+

9 It is a fibration because of the simplicial assumption.
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∏
n(C�)Δ[1]�

∏
n C

�
∏

n C
� × C�

(2.60)

where Δ[1]	 is the notation for the simplicial set Δ[1] with all the edges marked and 
(C�)Δ[1]� is the coaction of Δ[1]	 on C�. In fact, it can be identified with the marked 
simplicial set Fun′(Δ[1], C)� where Fun′(Δ[1], C) corresponds to the full-subcategory of 
Fun(Δ[1], C) spanned by the maps Δ[1] → C which are equivalences in C.

Let us move further. Consider now a combinatorial simplicial model category M and 
let G : M → M be a left simplicial Quillen functor with a right adjoint U . Using 
the technique described in [59, 5.2.4.6], from the adjunction data we can extract an 
endo-adjunction of the underlying (∞, 1)-category of M

NΔ(M◦)
Ḡ

NΔ(M◦)
Ū

(2.61)

where Ū can be identified with the composition Q ◦ U with Q a simplicial10 cofibrant-
replacement functor in M, which we shall fix once and for all. We can consider the 
stabilization Stab(Ḡ,Ū)(NΔ(M◦)) given by the homotopy limit

... Ū−−→ NΔ
(
M◦)� Ū−−→ NΔ

(
M◦)� Ū−−→ NΔ

(
M◦)� (2.62)

which we now know, is weak-equivalent to the strict pullback of

∏
n Fun′(Δ[1], NΔ(M◦))�

∏
n NΔ(M◦)�

∏
n NΔ(M◦)� ×NΔ(M◦)�

(2.63)

and we know that its underlying simplicial set can be computed as a pullback in Δ̂ by 
ignoring all the markings. Moreover, by [59, Prop. 4.2.4.4], we have an equivalence of 
(∞, 1)-categories between

NΔ
((
MI

)◦) ∼−−→ NΔ
(
M◦)Δ[1] (2.64)

where I is the categorical interval and MI denotes the category of morphisms in M
endowed with the projective model structure (its cofibrant–fibrant objects are the arrows 

10 (See for instance Proposition 6.3 of [75] for the existence of simplicial factorizations in a simplicial 
cofibrantly generated model category.)
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f : A → B in M with both A and B cofibrant–fibrant and f a cofibration in M). 
Moreover, the equivalence above restricts to a new one between the simplicial nerve of 
(MI)◦triv (the full simplicial subcategory of (MI)◦ spanned by the arrows f : A → B which 
have A and B cofibrant–fibrant and f a trivial cofibration) and Fun′(Δ[1], NΔ(M◦)). 
Using this equivalence, we find an equivalence of diagrams

NΔ((MI)◦triv)
∼ Fun′(Δ[1], NΔ(M◦))

∏
n NΔ(M◦) ×NΔ(M◦) id ∏

n NΔ(M◦) ×NΔ(M◦)

∏
n NΔ(M◦) id ∏

n NΔ(M◦)

(2.65)

The homotopy pullbacks of both diagrams are weak-equivalent but since the vertical 
map on the left diagram is no longer a fibration, the associated strict pullback is no 
longer a model for the homotopy pullback. We continue: the simplicial nerve functor 
NΔ is a right-Quillen functor from the category of simplicial categories with the model 
structure of [10] to the category of simplicial sets with the Joyal structure. Therefore, it 
commutes with homotopy limits and so, the simplicial set underlying the pullback of the 
previous diagram is in fact given by the simplicial nerve of the homotopy pullback of

∏
n(MI)◦triv

∏
n M

◦ ∏
n M

◦ ×M◦

(2.66)

in the model category of simplicial categories.
Let us now progress in another direction. We continue with M a model category to-

gether with G : M → M a Quillen left endofunctor with a right adjoint U . We recall 
the construction of a category SpN(M, G) of spectrum objects in M with respect to 
(G, U): its objects are the sequences X = (X0, X1, ...) together with data of morphisms 
in M, σi : G(Xi) → Xi+1 (by the adjunction, this is equivalent to the data of morphisms 
σ̄i : Xi → U(Xi+1)). A morphism X → Y is a collection of morphisms in M, fi : Xi → Yi, 
compatible with the structure maps σi. If M is a cofibrantly generated model category 
(see Section 2.1 of [42]) we can equipped SpN(M, G) with a stable model structure. First 
we define the projective model structure: the weak equivalences are the maps X → Y

which are levelwise weak-equivalences in M and the fibrations are the levelwise fibra-
tions. The cofibrations are defined by obvious left-lifting properties. By Theorem 1.13 of 
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[43] these form a model structure which is again cofibrantly generated and by Proposi-
tion 1.15 of [43], the cofibrant–fibrant objects are the sequences (X0, X1, ...) where every 
Xi is fibrant–cofibrant in M, and the canonical maps G(Xi) → G(Xi+1) are cofibrations. 
We shall write SpN(M, G)proj to denote this model structure. The stable model structure, 
denoted as SpN(M, G)stable, is obtained as a Bousfield localization of the projective struc-
ture so that the new fibrant–cofibrant objects are the U -spectra, meaning, the sequences 
(X0, X1, ...) which are fibrant–cofibrant for the projective model structure and such that 
for every i, the adjoint of the structure map σi, Xi → U(Xi+1) is a weak-equivalence. 
(See Theorem 3.4 of [43].)

By [43, Thm. 6.3], this construction also works if we assume M to be a combinatorial 
simplicial model category and G to be a left simplicial Quillen functor.11 In this case, 
SpN(M, G) (both with the stable and the projective structures) is again a combinatorial 
simplicial model category with mapping spaces given by the pullback

∏
n MapM(Xi, Yi)

∏
n MapM(Xi, Yi)

∏
n MapM(Xi, U(Yi+1))

(2.67)

where

• the horizontal map is the product of the maps

MapM(Xi, Yi) → MapM

(
Xi, U(Yi+1)

)
(2.68)

induced by the composition with the adjoint σ̄i : Yi → U(Yi+1);
• The vertical map is the product of the compositions

MapM(Xi+1, Yi+1) → MapM

(
U(Xi+1), U(Yi+1)

)
→ MapM

(
Xi, U(Yi+1)

)
(2.69)

where the first map is induced by U and the second map is the composition with 
Xi → U(Xi+1).

Its points correspond to the collections f = {fi}i∈N for which the diagrams

11 The reader is left with the easy exercise of checking that the following conditions are equivalent for a 
Quillen adjunction (G, U) between simplicial model categories: (i) G is enriched; (ii) G is compatible with 
the simplicial action, meaning that for any simplicial set K and any object X we have G(K⊗X)  K⊗G(X); 
(iii) U is compatible with the coaction, meaning that any for any simplicial set K and object Y we have 
U(Y K)  U(Y )K ; (iv) U is enriched.
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Xi

fi

U(Xi+1)

U(fi+1)

Yi U(Yi+1)

(2.70)

commute.
As discussed in the preliminaries, the underlying (∞, 1)-categories of SpN(M, G)proj

and SpN(M, G)stable are given, respectively by the simplicial nerves NΔ((SpN(M, G)proj)◦)
and NΔ((SpN(M, G)stable)◦) and by construction the last appears as the full reflexive 
subcategory of the first, spanned by the U -spectrum objects.

Up to this point we have two different notions of spectrum-objects. Of course they 
are related. To understand the relation we observe first that SpN(M, G) fits in a strict 
pullback diagram of simplicial categories

SpN(M, G)
∏

n(MI)

∏
n M

∏
n M×M

(2.71)

where the top horizontal map is the product of all maps of the form (Xi)i∈N �→
(Xi → U(Xi+1)) and the vertical-left map sends a spectrum-object to its underlying 
sequence of objects. The right-vertical map sends a morphism in M to its respective 
source and target and the lower-horizontal map is the product of the compositions 
(Xi)i∈N �→ (Xi, Xi+1) �→ (X1, U(Xi+1)). All the maps in this diagram are compati-
ble with the simplicial enrichment. We fabricate a new diagram which culminates in 
(2.66).

∏
n(MI)◦triv

∏
n(MI)◦

SpN(M, G)◦stable

f

a′

SpN(M, G)◦proj

e

a

SpN(M, G)
x

y

∏
n(MI)

z

b ∏
n(MI)

∏
n M

◦

c

∏
n M w

∏
n M×M

∏
n M

◦ ×M◦

∏
n M

◦ ×Mfib
d

(2.72)
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where the maps

1. x, y, z, w are the maps in the diagram (2.71);
2. a is the restriction of the projection SpN(M, G) →

∏
n M (it is well-defined because 

the cofibrant–fibrant objects in SpN(M, G) are supported on sequences of cofibrant–
fibrant objects in M);

3. a′ is the composition of a with the canonical inclusion;
4. b is the product of the compositions

MI Q−−→ MI ×MI −→ MI (2.73)

where Q is the machine associated to our chosen simplicial functorial factorization of 
the form “(cofibration, trivial fibration)” (sending a morphism f : A → B in M to 
the pair (u : A → X, v : X → Y ) with u a cofibration and v a trivial fibration) and 
the second arrow is the projection in the first coordinate;

5. c is induced by composition of w with the canonical inclusion. Given a sequence of 
cofibrant–fibrant objects (Xi)i∈N, we have w((Xi)i∈N) = (Xi, U(Xi + 1))i∈N with 
Xi fibrant–cofibrant and U(Xi+1) fibrant (because U is a right-Quillen functor). 
Therefore, the composition factors through 

∏
n M

◦ ×Mfib and c is well-defined;
6. To obtain d, we consider first the composition

M◦ ×M −→ M◦ ×MI id×Q−−−−→ M◦ ×
(
MI ×MI

)
−→ M◦ ×MI −→ M◦ ×M

(2.74)

where the first arrow sends (X, Y ) �→ (X, ∅ → X), the third arrow is induced by the 
projection of MI×MI → MI on the first coordinate and the last arrow is induced by 
taking the source. All together, this composition is sending a pair (X, Y ) to the pair 
(X, Q(Y )) with Q a cofibrant-replacement of Y using the same factorization device 
of the item (4). In particular, if Y is already fibrant, Q(Y ) will be cofibrant–fibrant 
and we have a dotted arrow

M◦ ×M M◦ ×M

M◦ ×Mfib M◦ ×M◦

(2.75)

rendering the diagram commutative.
By definition, d is the product of all these dotted maps;

7. e is the map induced by composing b ◦ x with the canonical inclusion and it is 
well-defined for the reasons given also in (2);

8. f is deduced from e by restricting to the U -spectra objects: If (Xi)i∈N is a U -spectra, 
the canonical maps Xi → U(Xi+1) are weak-equivalences and therefore, when we 
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perform the factorization encoded in the composition b ◦x, the first map is necessarily 
a trivial cofibration and therefore f factors through 

∏
n(MI)◦triv.

Finally, the fact that everything commutes is obvious from the definition of factoriza-
tion system. All together, we found a commutative diagram

SpN(M, G)◦stable
∏

n(MI)◦triv

∏
n M

◦ ∏
n M

◦ ×M◦

(2.76)

In summary, the upper horizontal map sends a U -spectra X = (Xi)i∈N to the list 
of trivial cofibrations (Xi → Q(U(Xi+1)))i∈N and the left-vertical map sends X to its 
underlying sequence of cofibrant–fibrant objects. By considering the simplicial nerve of 
the diagram above and using the equivalence of diagrams in (2.65), we obtain, using the 
universal property of the strict pullback, a map

φ : NΔ
((

SpN(M, G)stable
)◦) → Stab(Ḡ,Ū)

(
NΔ

(
M◦)) (2.77)

where we identify Stab(Ḡ,Ū)(NΔ(M◦)) with the strict pullback of the diagram (2.63).
The following result clarifies this already long story:

Proposition 2.13. Let M be a combinatorial simplicial model category and let G : M → M

be a left simplicial Quillen functor with a right adjoint U . Let SpN(M, G)stable denote 
the combinatorial simplicial model category of [43] equipped the stable model structure. 
Then, the canonical map induced by the previous commutative diagram

φ : NΔ
((

SpN(M, G)stable
)◦) → Stab(Ḡ,Ū)

(
NΔ

(
M◦)) (2.78)

is an equivalence of (∞, 1)-categories.

Proof. We will prove this by checking the map is essentially surjective and fully-faithful. 
We start with the essential surjectivity. For that we can restrict ourselves to study of 
the map induced between the maximal ∞-groupoids (Kan-complexes) on both sides.

NΔ
((

SpN(M, G)stable
)◦) → Stab(Ḡ,Ū)

(
NΔ

(
M◦)) (2.79)

To conclude the essential surjectivity it suffices to check that the map induced between 
the π0’s

π0
(
NΔ

((
SpN(M, G)stable

)◦)) → π0
(
Stab(Ḡ,Ū)

(
NΔ

(
M◦))) (2.80)
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is surjective. We start by analyzing the right-side. First, the operation (−) commutes 
with homotopy limits. To see this, notice that both the (∞, 1)-category of homotopy 
types S and the (∞, 1)-category of small (∞, 1)-categories Cat∞ are presentable. The 
combinatorial simplicial model category of simplicial sets with the Quillen structure is a 
strict model for the first and Δ̂+ models the second. By combining Theorem 3.1.5.1 and 
Proposition 5.2.4.6 of [59], the inclusion S ⊆ Cat∞ is in fact a Bousfield (a.k.a. reflex-
ive) localization and its the left adjoint can be understood (by its universal property) 
as the process of inverting all the morphisms. By combining Proposition 3.3.2.5 and 
Corollaries 3.3.4.3 and 3.3.4.6 of [59], we deduce that the inclusion S ⊆ Cat∞ commutes 
with colimits. Since S and Cat∞ are presentable, by the Adjoint Functor Theorem (see 
Corollary 5.5.2.9 of [59]), the inclusion S ⊆ Cat∞ admits a right adjoint which, by its 
universal property can be identified with the operation (−). An immediate application 
of this fact is that π0(Stab(Ḡ,Ū)(NΔ(M◦))) is in bijection with the π0 of the homotopy 
limit of the tower of Kan-complexes

... Ū−−→ NΔ
(
M◦) Ū−−→ NΔ

(
M◦) Ū−−→ NΔ

(
M◦) (2.81)

Using the Reedy structure (on Δ̂ with the Quillen structure), we can find a morphism 
of towers

...
Ū

NΔ(M◦) Ū
NΔ(M◦) Ū

NΔ(M◦)

... T2 T1 T0

(2.82)

where the vertical maps are weak-equivalences of simplicial sets for the Quillen structure, 
every object is again a Kan-complex but this time the maps in the lower tower are 
fibrations. By the nature of the weak-equivalences, this morphism of diagrams becomes 
an isomorphism at the level of the π0’s

... π0(NΔ(M◦))
π0(Ū)

∼

π0(NΔ(M◦))

∼

π0(Ū)
π0(NΔ(M◦))

∼

... π0(T2) π0(T1) π0(T0)

(2.83)

and therefore the limits limNopπ0(NΔ(M◦)) and limNopπ0(Ti) are isomorphic. Finally, 
using the Milnor exact sequence associated to a tower of fibrations together with the 
fact that fibrations of simplicial sets are surjective (see Proposition VI-2.15 and Propo-
sition VI-2.12-2 in [39]) we deduce an isomorphism

π0(limNopTi) � limNopπ0(Ti) (2.84)
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and by combining everything we have

π0
(
Stab(Ḡ,Ū)

(
NΔ

(
M◦))) � limNopπ0

(
NΔ

(
M◦)) (2.85)

where the right hand side can be identified with the strict limit of the tower of sets

... −→ π0
(
NΔ

(
M◦)) π0(Ū)−−−−→ π0

(
NΔ

(
M◦)) π0(Ū)−−−−→ π0

(
NΔ

(
M◦)) (2.86)

and since Ū can be identified with Q ◦ U , the elements of the last can be presented 
as sequences ([Xi])i∈N with each [Xi] an equivalence class of an object Xi in NΔ(M◦), 
satisfying [QU(Xi+1)] = [Xi], which is the same as stating the existence of an equivalence 
in NΔ(M◦) between Xi and QU(Xi+1). Since we are dealing with cofibrant–fibrant 
objects, we can find an actual homotopy equivalence Xi → QU(Xi+1) and by choosing 
a representative for each [Xi] together with composition maps Xi → QU(Xi+1) →
U(Xi+1) we retrieve a U -spectra. This proves that the map is essentially surjective.

It remains to prove φ is fully-faithful. Given two U -spectrum objects X = (Xi)i∈N

and Y = (Yi)i∈N, the mapping space in NΔ((SpN(M, G)stable)◦) between X and Y is 
given by the pullback12 of the diagram

∏
n MapM(Xi, Yi)

∏
n MapM(Xi, Yi)

∏
n MapM(Xi, U(Yi+1))

(2.87)

All vertices in this diagram are given by Kan-complexes (because M is a simplicial 
model category, each Yi and Xi is cofibrant–fibrant and U is right-Quillen) and the 
vertical map is a fibration. Indeed, it can be identified with product of the compositions

MapM(Xi+1, Yi+1) → MapM

(
G(Xi), Yi+1

)
� MapM

(
Xi, U(Yi+1)

)
(2.88)

where the last isomorphism follows from the adjunction data and the first map is the 
fibration induced by the composition with structure maps G(Xi) → Xi+1 of X (which 
are cofibrations because X is a U -spectra). Therefore, the pullback square is a homotopy 
pullback.

At the same time, because of the equivalence of diagrams (2.65) the mapping spaces 
in Stab(Ḡ,Ū)(NΔ(M◦)) between the image of X and the image of Y can obtained13 as 
the homotopy pullback of

12 See the formula (2.67).
13 The mapping spaces in the homotopy pullback are the homotopy pullback of the mapping spaces.
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∏
n MapM(Xi, Yi)

U∏
n MapM(U(Xi), U(Yi))

Q∏
n MapM(QU(Xi), QU(Yi))

∏
n MapM(Xi, Yi)

∏
n MapM(Xi, QU(Yi+1))

(2.89)

To conclude the proof it suffices to produce a weak-equivalence between the formulas. 
Indeed, we produce a map from the diagram (2.89) to the diagram (2.87), using the 
identity maps in the outer vertices and in the corner we use the product of the maps 
induced by the composition with the canonical map QU(Yi+1) → U(Yi+1).

MapM

(
Xi, QU(Yi+1)

)
→ MapM

(
Xi, U(Yi+1)

)
(2.90)

Of course, this map is a trivial fibration: M is a simplicial model category, Xi is 
cofibrant and QU(Yi+1) → U(Yi+1) is a trivial fibration. �

In the situation of Proposition 2.13, with M a combinatorial simplicial model cat-
egory and G a left-simplicial Quillen functor, we know that SpN(M, G)◦stable is again 
combinatorial and simplicial and so, both the underlying (∞, 1)-categories NΔ(M◦) and 
NΔ(SpN(M, G)◦stable) are presentable (see Proposition A.3.7.6 of [59]). Finally, using Re-
mark 2.10 we deduce the existence of canonical equivalence between NΔ(SpN(M, G)◦stable)
and the colimit of the sequence

NΔ
(
M◦) Ḡ−−→ NΔ

(
M◦) Ḡ−−→ ... (2.91)

2.2.2. Stabilization and symmetric monoidal structures
Let us proceed. Our goal now is to compare the construction of spectra with the 

formal inversion C[X]⊗. The idea of a relation between the two comes from the following 
classical theorem:

Theorem 2.14. (See Theorem 4.3 of [107].) Let C be a symmetric monoidal category with 
tensor product ⊗ and unit 1. Let X be an object in C. Let StabX(C) denote the colimit 
of the sequence

...
X⊗−−−−−→ C

X⊗−−−−−→ C
X⊗−−−−−→ C

X⊗−−−−−→ ... (2.92)

in Cat (up to equivalence). Then, if the action of the cyclic permutation on X ⊗X ⊗X

becomes an identity map in C after tensoring with X an appropriate amount of times 
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(which is the same as saying it is the identity map in StabX(C)) the category StabX(C) ad-
mits a canonical symmetric monoidal structure and the canonical functor C → StabX(C)
is monoidal, sends X to an invertible object and is universal with respect to this property.

Proof. This is well-known. See [79, Prop. 4.2.5]. �
Remark 2.15. The condition on X appearing in the previous result is trivially satisfied 
if the action of the cyclic permutation (X ⊗ X ⊗ X)(1,2,3) is already an identity map 
in C. For instance, this particular situation holds when C is the pointed A1-homotopy 
category and X is P1 (see Theorem 4.3 and Lemma 4.4 of [107]).

Our goal now is to find an analogue for the previous theorem in the context of sym-
metric monoidal (∞, 1)-categories.

Definition 2.16. Let C⊗ be a symmetric monoidal (∞, 1)-category and let X be an object 
in C. We say that X is symmetric if there is a 2-equivalence in C between the cyclic 
permutation σ : (X ⊗X ⊗X)(1,2,3) and the identity map of X ⊗X ⊗X. In other words, 
we demand the existence of a 2-simplex in C

X ⊗X ⊗X
σ

id

X ⊗X ⊗X

X ⊗X ⊗X

id
(2.93)

providing a homotopy between the cyclic permutation and the identity. This is equivalent 
to the condition that σ is the identity of X ⊗X ⊗X in h(C).

This notion of symmetry is well behaved under equivalences. Moreover, it is immediate 
that monoidal functors map symmetric objects to symmetric objects.

Remark 2.17. Let V be a symmetric monoidal model category with a cofibrant unit 1. 
Recall that a unit interval I is a cylinder object for the unit of the monoidal structure 
I := C(1), together with a map I ⊗ I → I such that the diagrams

1 ⊗ I � I
π

∂0⊗IdI

1

∂0

I ⊗ I I

(2.94)
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I ⊗ 1 � I
π

IdI⊗∂0

1

∂0

I ⊗ I I

(2.95)

and

I ⊗ 1 � I

IdI

∂1⊗IdI

I ⊗ I I

(2.96)

commute, where ∂0, ∂1 : 1 → I and π : I → 1 are the maps providing I with a structure 
of cylinder object.

Recall also that two maps f, g : A → B are said to be homotopic with respect to a 
unit interval I if there is a map H : A ⊗ I → B rendering the diagram commutative

A � A⊗ 1

IdA⊗∂0

f

A⊗ I
H

B

A � A⊗ 1

idA⊗∂1

g

(2.97)

In [43, Defn. 10.2], the author defines an object X of V to be symmetric if it is cofibrant 
and if there is a unit interval I, together with a homotopy

H : X ⊗X ⊗X ⊗ I → X ⊗X ⊗X (2.98)

between the cyclic permutation σ and the identity map. We observe that if an object 
X is symmetric in the sense of [43] then it is symmetric as an object in the underly-
ing symmetric monoidal (∞, 1)-category of V in the sense of Definition 2.16. Indeed, 
since V is a symmetric monoidal model category with a cofibrant unit, the full subcate-
gory Vc of cofibrant objects is closed under the tensor product and therefore inherits 
a monoidal structure, which moreover preserves weak-equivalences in each variable. 
As explained in the preliminaries, let N((Vc)⊗)[W−1

c ] denote its underlying symmetric 
monoidal (∞, 1)-category. Its underlying (∞, 1)-category is N(Vc)[W−1] and its homo-
topy category is the classical localization in Cat. Moreover, it comes canonically equipped 
with a monoidal functor L : N⊗((Vc)⊗) → N⊗((Vc)⊗)[W−1

c ]. Now, if X is symmetric in 
V in the sense of [43], the homotopy H forces σ to become the identity in h(N(Vc)[W−1])
(because the classical localization functor is monoidal and the map I → 1 is a weak-
equivalence). The conclusion now follows from the commutativity of the diagram induced 
by the unit of the adjunction (h, N)
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N(Vc)

∼

N(Vc)[W−1]

N(h(N(Vc))) N(h(N(Vc)[W−1]))

(2.99)

and the fact that the both horizontal arrows are monoidal and therefore send the cyclic 
permutation of the monoidal structure in V to the cyclic permutation associated to the 
monoidal structure in N((Vc)⊗)[W−1

c ].

We now come to the generalization of Theorem 10.3 of [43]. The following results 
relate our formal inversion of an object to the construction of spectrum objects.

Remark 2.18. Let C⊗ be a small monoidal (∞, 1)-category and let M be an object in 
ModC⊗(Cat∞) (which we will understand as a left-module). Since Cat∞ admits classi-
fying objects for endomorphisms given by the categories of endofunctors, the data of M
is equivalent to the data of an (∞, 1)-category M := M(m) together with a monoidal 
functor T⊗ : C⊗ → End(M)⊗ where the last is endowed with the associative monoidal 
structure induced by the composition of maps of simplicial sets. If X is an object in C, 
the endofunctor T (X) : M → M corresponds to the action of X in M by means of the 
operation C ×M → M encoded in the module-structure. We will call it the multiplication 
by X.

Notice that if the monoidal structure C⊗ is symmetric, the map T (X) acquires 
the structure of a map of C-modules. Indeed, as T⊗ is monoidal, it will send an 
object (Y, X) ∈ C⊗

〈2〉 to (T (Y ), T (X)) in End(M)⊗〈2〉 and the twisting equivalence 
τY,X : (Y, X) � (X, Y ) to an equivalence (T (Y ), T (X)) � (T (X), T (Y )). By the def-
inition of cocartesian morphisms in End(M)⊗, the last equivalence provides a natural 
equivalence T (Y ) ◦ T (X) � T (X) ◦ T (Y ) that gives the coherence data making T (X) a 
map of modules. These coherences define commutative diagrams Δ[1] × Δ[1] → Cat∞
that we can informally describe as

M

T (X)

T (Y )
M

T (τY,X)
T (X)

M
T (Y )

M

(2.100)

More generally, the extra coherences that make T (X) a map of modules are given by 
the higher order cyclic permutations of factors in C⊗. The importance of this fact will 
become clear in the next proposition.

The following is our key result:
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Proposition 2.19. Let C⊗ be a small symmetric monoidal (∞, 1)-category and X be a sym-
metric object in C. Then, for any C⊗-module M , the colimit of the diagram of C⊗-modules

StabX(M) := colimitMod
C⊗ (Cat∞)

(
... −→ M

T (X)−−−−→ M
T (X)−−−−→ M

T (X)−−−−→ ...
)
(2.101)

is a C⊗-module where the multiplication by X is an equivalence.

Proof. Let d : N(Z) → ModC(Cat∞) be the diagram corresponding to the multiplication 
by X. Since Cat×∞ is compatible with all small colimits, Corollary 3.4.4.6 of [63]14 implies 
that d can be extended to a colimit diagram d′ : N(Z)� → ModC(Cat∞). Moreover, 
this extension is a colimit diagram if and only if the composition with the forgetful 
functor to Cat∞ is a colimit diagram. Let ∞ denote the new joint vertice in N(Z)�
and set StabX(M) := d′(∞). Moreover, let φi := d′(i → ∞). As a first step we need to 
understand how an object Y ∈ C acts on this new module StabX(M). For that purpose 
we observe that as the φi are, by definition, maps of modules, we have commutative 
diagrams

M
T (Y )

φi

M

φi

StabX(M) Y StabX(M)

and as the T (X)′s are maps of C-modules, this action of Y on StabX(M) appears as the 
canonical map (induced by the universal property of colimits) produced by the morphism 
of diagrams D′ : N(Z)� × Δ[1] → ModC(Cat∞) levelwise given by T (Y ). This can be 
obtained as follows: we consider the diagram D : N(Z) ×Δ[1] → ModC(Cat∞) obtained 
by composing the commutative diagrams described in Remark 2.18 side by side. This can 
also be written as D : N(Z) → Fun(Δ[1], ModC(Cat∞)). By [59, 5.1.2.3] this diagram 
admits a colimit cone D′ : N(Z)� → Fun(Δ[1], ModC(Cat∞)) characterized by the fact 
that both the source and target of D′(∞) are colimit cones of the restrictions to 1 and 0. 
This presents the action of Y on StabX(M) as a colimit of the actions of Y on M . More 
informally, we now can picture the situation as

StabX(M)

Y

... M

T (Y )

T (X)
M

T (τ)
T (Y )

T (X)
M

T (τ)
T (Y )

...

StabX(M) ... M
T (X)

M
T (X)

M ...

(2.102)

14 Since we are working the commutative setting, we could also refer to Corollary 4.2.3.5 of [63].
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Our goal now is to understand this action when Y = X. But before that it, is impor-
tant to understand the consecutive composition of two commutative diagrams

M

T (Y )

T (X)
M

T (τX,Y )
T (Y )

T (Z)
M

T (τZ,Y )
T (Y )

M
T (X)

M
T (Z)

M

(2.103)

This can be informally describe as a new commutative square

M

T (Y )

T (Z)◦T (X)
M

T (τZ,Y )◦T (τX,Y )
T (Y )

M
T (Z)◦T (X)

M

(2.104)

and our main observation is that the horizontal composition T (τZ,Y ) ◦ T (τY,X) can be 
identified with the natural transformation T (σZ,X,Y ) induced by the cyclic permutation 
σZ,X,Y : (Z, X, Y ) → (Y, Z, X) in C⊗

〈3〉. Indeed, T⊗ being monoidal, the equivalence 
σZ,X,Y produces an equivalence (T (Z), T (X), T (Y )) � (T (Y ), T (Z), T (X)) which by 
choosing cocartesian morphisms in End(M)⊗ over 〈3〉 → 〈1〉, give the commutativity 
T (Z) ◦ T (X) ◦ T (Y ) � T (Y ) ◦ T (Z) ◦ T (X). The key point to complete the argument is 
that the permutation σZ,X,Y : (Z, X, Y ) → (Y, Z, X) can be written as a composition of 
two consecutive twists, namely σZ,X,Y � (τZ,Y , idX) ◦(idZ , τX,Y ) and as T⊗ is functorial 
we have T (τZ,Y ) ◦ T (τX,Y ) � T (σZ,X,Y )

Let us now go back to the case when Y and Z are X. In this case, since by assump-
tion X is symmetric, there is a 2-simplex in C providing a homotopy between σ and the 
identity of X ⊗X ⊗X. In this case T (σ) is equivalent to the identity and the 2-simplex 
rendering the commutativity of the composition (2.104) are the identity faces. By con-
finality, the map StabX(M) → StabX(M) induced by the morphism of diagrams D is 
equivalent to the map induced by the Z-indexed diagram given by the composition of 
the commutative squares

...
T (X)

M
T (X)

T (X)

M
T (X)

T (X)
Id

M

Id
T (X)

T (X)
...

...
T (X)

M
T (X)

M
T (X)

M
T (X)

...

(2.105)

and therefore, by definition of colimit cone, it is an equivalence. �
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Remark 2.20. A similar argument shows that the same result holds if X is n-symmetric, 
meaning that, there exists n ∈ N, n ≥ 2 such that τn is equal to the identity map in h(C).

Remark 2.18 and Proposition 2.19 apply mutatis mutandis in the presentable setting. 
This is true because of the following result

Proposition 2.21. PrL admits classifying objects for endomorphisms. If M is a pre-
sentable (∞, 1)-category, EndL(M) is a classifying object for endomorphisms of M , with 
the associative monoidal structure given by the composition of functors.

Proof. See [79, Prop. 3.6.3] �
We can finally establish the connection between the adjoint LPr

(C⊗,X) and the notion 
of spectra.

Corollary 2.22. Let C⊗ be a presentable symmetric monoidal (∞, 1)-category and let X
be a symmetric object in C. Given a C⊗-module M , StabX(M) is a C⊗-module where X
acts as an equivalence and therefore the adjunction of Proposition 2.9 provides a map of 
C⊗-modules

LPr
(C⊗,X)(M) → StabX(M) (2.106)

This map is an equivalence. In particular, the underlying ∞-category of the formal 
inversion C⊗[X−1] is equivalent to the stabilization StabX(C).

Proof. The map can be obtained as a composition

LPr
(C⊗,X)(M) → LPr

(C⊗,X)
(
StabX(M)

)
→ StabX(M) (2.107)

where the first arrow is the image of the canonical map M → StabX(M) by the adjunction 
LPr

(C⊗,X) and the second arrow is the counit of the adjunction. In fact, with our hypothesis 
and because of the previous proposition, the action of X is invertible in StabX(M) and 
therefore, by Proposition 2.9 the second arrow is an equivalence It remains to prove that 
the first map is an equivalence. But now, since StabX(M) is a colimit and LPr

(C⊗,X) is a 
left adjoint and therefore commutes with colimits, we have a commutative diagram

LPr
(C⊗,X)(M) LPr

(C⊗,X)(StabX(M))

StabX(LPr
(C⊗,X)(M))

∼ (2.108)

where the diagonal arrow is the colimit map induced by the stabilization of LPr
(C⊗,X)(M). 

It is enough now to observe that if M is a C⊗-module where the action of X is already 
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invertible, then the canonical map M → StabX(M) is an equivalence of modules. The 2 
out of 3 argument concludes the proof. �

In particular

Corollary 2.23. Let C⊗ be a stable presentable symmetric monoidal (∞, 1)-category and 
let X be a symmetric object in C. Then C⊗[X−1] is again a stable presentable symmetric 
monoidal (∞, 1)-category.

Proof. If C⊗ is stable presentable, the multiplication by X is an exact functor. Moreover, 
since X is symmetric, the previous corollary provides an equivalence C[X−1] � StabX(C)
where the last is a colimit in PrL. Moreover, since the whole diagram is in PrLStb and the 
last has all colimits and the inclusion PrLStb ⊆ PrL commutes with them,15 we find that 
C[X−1] is stable. Moreover, since by construction C⊗[X−1] is a presentable symmetric 
monoidal (∞, 1)-category, we conclude it is a stable presentable symmetric monoidal 
(∞, 1)-category. �
Example 2.24. In [63] the author introduces the (∞, 1)-category of spectra Sp as the 
stabilization of the (∞, 1)-category of spaces. More precisely, following the notations of 
Example 2.11 it is given by

Sp := SpN
(ΣS,ΩS)(S∗/) (2.109)

where S denotes the (∞, 1)-category of spaces. By Propositions and 1.4.3.6 and 1.4.4.4 
of [63] this (∞, 1)-category is presentable and stable and by Proposition 4.8.2.18 of [63]
it admits a natural presentable stable symmetric monoidal structure Sp⊗ which can be 
described by means of a universal property: it is an initial object in CAlg(PrLStb). The 
unit of this monoidal structure is the sphere-spectrum.

Our Corollary 2.22 provides an alternative characterization of this symmetric 
monoidal structure. We start with S∗ the (∞, 1)-category of pointed spaces. Recall 
that this (∞, 1)-category is presentable and admits a monoidal structure given by the 
so-called smash product of pointed spaces (see Remark 4.8.2.14 of [63] and Section 2.4.2
below). We will denote it as S∧∗ . According to Proposition 6.3.2.11 of [63], S∧∗ has a uni-
versal property amongst the presentable pointed symmetric monoidal (∞, 1)-categories: 
it is an initial one. The unit of this monoidal structure is the pointed space S0 = ∗ 

∐
∗. 

We will see below (Corollary 2.34 and Remark 2.35) that S∧∗ is the underlying symmetric 
monoidal (∞, 1)-category of the combinatorial simplicial model category of pointed sim-
plicial sets Δ̂∗ equipped with the classical smash product of spaces. Since S1 is symmetric 

15 To see this we can use the equivalence between PrLStb and ModSp(PrL) [63, 4.8.2.18] and the identification 
of the inclusion PrLStb ⊆ PrL with the forgetful functor ModSp(PrL) → PrL. Now we use the fact that PrL,⊗

is compatible with colimits (its has internal-hom objects) and therefore colimits of modules are computed 
in PrL using the forgetful functor [63, 3.4.4.6].
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in Δ̂∗ with respect to this classical smash (see Lemma 6.6.2 of [42]), by Remark 2.17
it will also be symmetric in S∧∗ . Our inversion S∧∗ [(S1)−1] provides a new presentable 
symmetric monoidal (∞, 1)-category and because of the symmetry of S1, the fact that 
(S1 ∧ −) can be identified with ΣS and Corollary 2.22, we conclude that the under-
lying (∞, 1)-category of S∧∗ [(S1)−1] is the stabilization defining Sp and therefore that 
S∧∗ [(S1)−1] is a presentable stable symmetric monoidal (∞, 1)-category. By the universal 
property of Sp⊗ there is a unique (up to a contractible space of choices) monoidal map

Sp⊗ → S∧∗
[(
S1)−1] (2.110)

At the same time, since every stable presentable (∞, 1)-category is pointed, the uni-
versal property of S∧∗ ensures the existence of a canonical morphism

S∧∗ → Sp⊗ (2.111)

which is also unique up to a contractible space of choices. This morphism is just the 
canonical stabilization morphism and it sends S1 to the sphere-spectrum in Sp and 
therefore the universal property of the localization provides a factorization

S∧∗
[(
S1)−1] → Sp⊗ (2.112)

which is unique up to homotopy. By combining the two universal properties we find that 
these two maps are in fact inverses up to homotopy

Remark 2.25. The technique of inverting an object provides a way to define the monoidal 
stabilization of a pointed presentable symmetric monoidal (∞, 1)-category C⊗. It follows 
from Proposition 6.3.2.11 of [63] that for any such C⊗, there is an essentially unique 
(base-point preserving and colimit preserving) monoidal map f : S∧∗ → C⊗. Let f(S1)
denote the image of the topological circle through this map. The (presentable) universal 
property of inverting an object provides a homotopy commutative diagram of commu-
tative algebra objects in PrL

Sp⊗ � S∧∗ [(S1)−1] S∧∗

f

C⊗[f(S1)−1] C⊗

(2.113)

The monoidal map S∧∗ → Sp⊗ produces a forgetful functor

CAlg
(
PrL

)
Sp⊗/

→ CAlg
(
PrL

)
S∧
∗ /

(2.114)

which by Proposition 2.9 is fully faithful and admits a left adjoint given by the base-
change formula C⊗ �→ Sp⊗ ⊗S∧ C⊗. The combination of the universal property of the 
∗
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adjunction and the universal property of inverting an object ensures the existence of an 
equivalence of pointed symmetric monoidal (∞, 1)-categories

C⊗[f(S1)−1] � Sp⊗ ⊗S∧
∗ C⊗ (2.115)

Finally, combining this with Example 4.8.1.22 of [63] we deduce that the underlying 
(∞, 1)-category of C⊗[f(S1)−1] is the stabilization Stab(C).

Moreover, we deduce also that if C⊗ is a stable presentable symmetric monoidal 
(∞, 1)-category and X is any object in C, in order to conclude that the inversion C⊗[X−1]
is stable presentable it is enough to show that C[X−1] is pointed, thus extending the re-
sult 2.23. Indeed, by the previous discussion, C is stable if and only if f(S1) is invertible. 
Since the inversion functor C⊗ → C⊗[X−1] is monoidal, the image of f(S1) in C[X−1]
will again by invertible. Finally, if C[X−1] is pointed, the image of f(S1) will necessarily 
correspond to the image of S1 in C[X−1], which therefore will be invertible, and so, by 
the previous discussion, C[X−1] will be stable.

2.3. Connection with the symmetric spectrum objects of Hovey

We recall from [43] the construction of symmetric spectrum objects: Let V be a com-
binatorial simplicial symmetric monoidal model category and let M be a combinatorial 
simplicial V-model category. Following Theorem 8.11 of [43], for any object X in V we can 
produce a new combinatorial simplicial V-model category SpΣ(M, X) of spectrum ob-
jects in M endowed with the stable model structure and where X acts by an equivalence. 
In particular, by considering V as a V-model category (using the monoidal structure) 
the new model category SpΣ(V, X) inherits the structure of a combinatorial simplicial 
symmetric monoidal model category and there is left simplicial Quillen monoidal map 
V → SpΣ(V, X) sending X to an invertible object.

This general construction sends an arbitrary combinatorial simplicial V-model cate-
gory to a combinatorial simplicial V-model category where the action of X is invertible. In 
fact, by Theorem 8.11 of [43] SpΣ(M, X) is a combinatorial simplicial SpΣ(V, X)-model 
category. This is a first sign of the fundamental role of the construction of symmetric 
spectrum objects as an adjoint in the spirit of Section 2.1. We have canonical simplicial 
left Quillen maps

SpΣ(V, X) ∼−−→ SpN
(
SpΣ(V, X), X

) ∼−−→ SpΣ
(
SpN(V, X), X

)
←− SpN(V, X)

(2.116)

but in general the last map is not an equivalence. By Theorem 9.1 of [43] for the last 
map to be an equivalence we only need SpN(V, X) to be a V-model category where X
acts as an equivalence. This is exactly the functionality of the symmetric condition on X

(see Theorems 10.1 and 10.3 in [43]).
We now state our main result
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Theorem 2.26. Let V be a combinatorial simplicial symmetric monoidal model category 
whose unit is cofibrant and let X be a symmetric object in V in the sense of Remark 2.17. 
Let SpΣ(V, X) denote the combinatorial simplicial symmetric monoidal model category 
provided by Theorem 8.11 of [43], equipped the convolution product. Let C⊗ and SpΣ

X(C)⊗
denote their underlying presentable symmetric monoidal (∞, 1)-categories.16 The left-
Quillen monoidal map V → SpΣ(V, X) induces a monoidal functor C⊗ → SpΣ

X(C)⊗
which sends X to an invertible object, endowing SpΣ

X(C)⊗ with the structure of object in 
CAlg(PrL)X

C⊗/. In this case, the adjunction of Proposition 2.9 provides a monoidal map

C⊗[X−1] � L
Pr,⊗
(C⊗,X)

(
C⊗) → SpΣ

X(C)⊗ (2.117)

We claim that this map is an equivalence of presentable symmetric monoidal 
(∞, 1)-categories.

Proof. By Remark 2.17 if X is symmetric in the sense of [43] then it is symmetric in C⊗

in the sense of Definition 2.16.
By definition, the map is obtained as a composition

L
Pr,⊗
(C⊗,X)

(
C⊗) −→ L

Pr,⊗
(C⊗,X)

(
SpΣ

X(C)⊗
)
−→ SpΣ

X(C)⊗ (2.118)

where the last arrow is the counit of the adjunction of Proposition 2.9. To prove that 
this map is an equivalence it is enough to verify that the map between the underlying 
(∞, 1)-categories

LPr
(C⊗,X)(C) → SpΣ

X(C) (2.119)

is an equivalence. But now, by the combination of Corollary 2.22 with the main result 
of Corollary 10.4 in [43], we find a commutative diagram of equivalences

LPr
(C⊗,X)(C)

∼

SpΣ
X(C) = NΔ(SpΣ(V, X)◦)

∼

StabX(C) � NΔ(SpN(V, X)◦) ∼ StabX(NΔ(SpΣ(V, X)◦)) � NΔ(SpN(SpΣ(V, X), X)◦)

(2.120)

where the left vertical map is an equivalence because X is symmetric in C⊗; the equiva-
lence StabX(C) � NΔ(SpN(V, X)◦) follows from Proposition 2.13 with G = (X ⊗−) (it 
is a left Quillen functor because X is cofibrant), and the fact that C is presentable; the 

16 By Corollary 4.1.3.16 of [63] we have monoidal equivalences C⊗  N⊗
Δ((V◦)⊗) and SpΣ

X(C)⊗ 
N⊗

Δ ((SpΣ(V, X)◦)⊗) and therefore both C⊗ and SpΣ
X(C)⊗ are presentable symmetric monoidal 

(∞, 1)-categories.
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right vertical map is an equivalence because X is already invertible in NΔ(SpΣ(V, X)◦)
and because a Quillen equivalence between combinatorial model categories induces an 
equivalence between the underlying (∞, 1)-categories (see Lemma 1.3.4.21 of [63]). This 
same last argument, together with Corollary 10.4 of [43], justifies the fact that the lower 
horizontal map is an equivalence. �
Remark 2.27. In the proof of Theorem 2.26, we used the condition on X twice. The 
first using the result of [43] and the second with Proposition 2.13. We believe the use of 
this condition is not necessary. Indeed, everything comes down to prove an analogue of 
Proposition 2.13 for the construction of symmetric spectrum objects, replacing the natu-
ral numbers by some more complicated partially ordered set. If such a result is possible, 
then the construction of symmetric spectra in the combinatorial simplicial case can be 
presented as a colimit of a diagram of simplicial categories. In this case, Proposition 2.19
would follow immediately even without the condition on X. We will not pursue this topic 
here since it won’t be necessary for our goals.

Example 2.28. The combination of Theorem 2.26 together with Remark 2.17 and Exam-
ple 2.24 provides a canonical equivalence of presentable symmetric monoidal presentable 
(∞, 1)-categories Sp⊗ � N⊗

Δ (SpΣ(Δ̂∗, S1)).

2.4. A universal characterization of the motivic stable homotopy theory of schemes

Let U ∈ V ∈ W be universes. In the following sections, we shall write Smft(S) to 
denote the V-small category of smooth separated U-small schemes of finite type over a 
Noetherian U-scheme S.

2.4.1. A1-homotopy theory of schemes
The main idea in the subject is to “do homotopy theory with schemes” in more or less 

the same way we do with spaces, by thinking of the affine line A1 as an “interval”. One 
first difficulty is that the category of schemes does not admit all colimits. In [67], the 
authors constructed a place to realize this idea. The construction proceeds as follows: 
start from the category of schemes and add formally all the colimits. Then make sure 
that the following two principles hold:

I) the line A1 becomes contractible;
II) if X is a scheme and U and V are two open subschemes whose union equals X in 

the category of schemes then make sure that their union continues to be X in the 
new place;

The original construction in [67] was performed using the techniques of model category 
theory and this place is the homotopy category of a model category MA1 . During the 
last years their methods were revisited and reformulated in many different ways. In 
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[31], the author presents a “universal” characterization of the original construction using 
the theory of Bousfield localizations for model categories17 together with a universal 
characterization of the theory of simplicial presheaves, within model categories. The 
construction of [31] can be summarized by the expression

MA1 = LA1LHyperNis
((

SPsh
(
Smft(S)

)))
(2.121)

where SPsh(−) stands for simplicial presheaves with the projective model structure, 
LHyperNis corresponds the Bousfield localization with respect to the collection of the 
hypercovers associated to the Nisnevich topology (see below) and LA1 corresponds to the 
Bousfield localization with respect to the collection of all projection maps X ×A1 → X.

It is clear today that model categories should not be taken as fundamental objects, 
but rather, we should focus on their associated (∞, 1)-categories. In this section, we 
use the insights of [31] to perform the construction of an (∞, 1)-category H(S) directly 
within the setting of ∞-categories. By the construction, it will have a universal property 
and using the link described in Section 1.5.2 and the theory developed by J. Lurie in 
[59] relating Bousfield localizations to localizations of ∞-categories, we will be able to 
prove that H(S) is equivalent to the ∞-category underlying the A1 model category of 
Morel–Voevodsky.

The construction of H(S) proceeds as follows. We start from the category of smooth 
schemes of finite type over S−Smft(S) and consider it as a trivial V-small (∞, 1)-category 
N(Smft(S)). Together with the Nisnevich topology [71], it acquires the structure of an 
∞-site (see Definition 6.2.2.1 of [59]). By definition (see Def. 1.2 of [67]) the Nisnevich 
topology is the topology generated by the pre-topology whose covering families of an 
S-scheme X are the collections of étale morphisms {fi : Ui → X}i∈I such that for any 
x ∈ X there exists an i ∈ I and ui ∈ Ui such that fi induces an isomorphism between 
the residual fields k(x) � k(ui). Recall from [67] (Def. 1.3) that an elementary Nisnevich 
square is a commutative square of schemes

p−1(U) V

p

U
i

X

(2.122)

such that

a) i : U ↪→ X is an open immersion of schemes;
b) p : V → X is an étale map;
c) the square (2.122) is a pullback. In particular p−1(U) → V is also an open immersion;

17 See [41].
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d) the canonical projection p−1(X −U) → X −U is an isomorphism where we consider 
the closed subsets Z := X−U and p−1Z both equipped with the reduced structures 
of closed subschemes;

and from this we can easily deduce that

e) the square

V

p

p−1(Z)

X Z := X − U

(2.123)

is a pullback with both Z and p−1(Z) equipped with the reduced structures;
e) the square (2.122) is a pushout.

The crucial fact is that each family (V → X, U → X) as above forms a Nisnevich 
covering and the families of this form provide a basis for the Nisnevich topology (see 
Proposition 1.4 of [67]). We consider the very big (∞, 1)-category Pbig(N(Smft(S))) :=
Fun(N(Smft(S))op, ̂S) of presheaves of (big) homotopy types over N(Smft(S)) (see Sec-
tion 5.1 of [59]) which has the expected universal property (Thm. 5.1.5.6 of [59]): it is the 
free completion of N(Smft(S)) with V-small colimits (in the sense of ∞-categories). Using 
Proposition 4.2.4.4 of [59] we can immediately identify Pbig(N(Smft(S))) with the un-
derlying ∞-category of the model category of simplicial presheaves on Smft(S) endowed 
with the projective model structure. The results of [59] provide an ∞-analogue for the 
classical Yoneda embedding, meaning that we have a fully faithful map of ∞-categories 
j : N(Smft(S)) → Pbig(N(Smft(S))) and as usual we will identify a scheme X with its 
image j(X). We now restrict to those objects in Pbig(N(Smft(S))) which are sheaves 
with respect to the Nisnevich topology. Because the Nisnevich squares form a basis for 
the Nisnevich topology, an object F ∈ Pbig(N(Smft(S))) is a sheaf iff it maps Nisnevich 
squares to pullback squares. In particular, every representable j(X) is a sheaf (because 
Nisnevich squares are pushouts). Following [59, 5.5.4.15], the inclusion of the full subcat-
egory Shbig

Nis(Smft(S)) ⊆ Pbig(N(Smft(S))) admits a left adjoint (which is known to be 
exact – Lemma 6.2.2.7 of [59]) and provides a canonical example of an ∞-topos (see Defi-
nition 6.1.0.4 of [59]). More importantly to our needs, this is an example of a presentable 
localization of a presentable (∞, 1)-category.

Remark 2.29. When S is Noetherian of finite Krull dimension, the category of smooth 
schemes Smft(S) can be replaced by the category of affine smooth schemes of finite 
type over S, N (AffSmft)(S), and the resulting (∞, 1)-categories Shbig

Nis(Smft(S)) and 
Shbig

Nis(N (AffSmft)(S)) are equivalent. This follows because we can identify Smft(S) with 
a full subcategory of Pbig(N (AffSmft)(S)) using the map sending a smooth scheme X to 
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the representable functor Y ∈ N (AffSmft(k)) �→ HomSmft(S)(Y, X), and this identifica-
tion is compatible with the Nisnevich topologies. For more details see [66]. See also [61, 
Section 2].

Next step, we consider the hypercompletion of the ∞-topos Shbig
Nis(Smft(S)) (see Sec-

tion 6.5.2 of [59]). By construction, it is a presentable localization of Shbig
Nis(Smft(S))

and by Corollary 6.5.3.13 of [59] it coincides with Shbig
Nis(Smft(S))hyp: the localization of 

Pbig(N(Smft(S))) spanned by the objects which are local with respect to the class of 
Nisnevich hypercovers.

Finally, we reach the last step: We will restrict ourselves to those sheaves in 
Shbig

Nis(Smft(S))hyp satisfying A1-invariance, meaning those sheaves F such that for any 
scheme X, the canonical map induced by the projection F (X) → F (X×A1) is an equiv-
alence. More precisely, we consider the localization of Shbig

Nis(Smft(S))hyp with respect to 
the class of all projection maps {X×A1 → X}X∈Obj(Smft(S)). We will write H(S) for the 

result of this localization and write lA1 : Shbig
Nis(Smft(S))hyp → H(S) for the localization 

functor. Notice that H(S) is very big, presentable with respect to the universe V. It is 
also clear from the construction that H(S) comes naturally equipped with a universal 
characterization:

Theorem 2.30. Let Smft(S) be the category of smooth schemes of finite type over a 
base Noetherian scheme S and let L : N(Smft(S)) → H(S) denote the composition 
of localizations

N
(
Smft(S)

)
→ Pbig(N(

Smft(S)
))

→ Shbig
Nis

(
Smft(S)

)
→ Shbig

Nis
(
Smft(S)

)hyp → H(S)

(2.124)

Then, for any (∞, 1)-category D with all V-small colimits, the map induced by com-
position with L

FunL
(
H(S),D

)
→ Fun

(
N
(
Smft(S)

)
,D

)
(2.125)

is fully faithful and its essential image is the full subcategory of Fun(N(Smft(S)), D)
spanned by those functors satisfying Nisnevich descent and A1-invariance. The left-side 
denotes the full subcategory of Fun(H(S), D) spanned by the colimit preserving maps.

Proof. The proof follows from the combination of the universal property of presheaves 
with the universal properties of each localization in the construction and from the 
fact that for the Nisnevich topology in Smft(S), descent is equivalent to hyperdescent 
(see [106, Prop. 5.9] or [67, 3-1.16] or [61, Section 1]) and therefore the localization 
Shbig

Nis(Smft(S)) → Shbig
Nis(Smft(S))hyp is an equivalence. �

Our goal now is to provide the evidence that H(S) really is the underlying 
(∞, 1)-category of the A1- model category of Morel–Voevodsky. In fact, we already saw 
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that our first step coincides with the first step in the construction of MA1 – simplicial 
presheaves are a model for ∞-presheaves. It remains to prove that our localizations pro-
duce the same results as the Bousfield localizations. But of course, this follows from the 
results the appendix of [59] applied to the model category M := SPsh(Smft(S)).

Remark 2.31. It is important to remark that the sequence of functors in Theorem 2.30 can 
be promoted to a sequence of monoidal functors with respect to the cartesian monoidal 
structures

N
(
Smft(S)

)× → Pbig(N(
Smft(S)

))× → Shbig
Nis

(
Smft(S)

)×
�

(
Shbig

Nis
(
Smft(S)

)hyp)× → H(S)× (2.126)

The first is the Yoneda map which we know commutes with limits. The second map 
is the sheafification functor which we also know is left exact. The last functor is a 
monoidal localization because of the definition of the A1-equivalences. These localized 
monoidal structures are cartesian because of the existence of fully faithful right adjoints. 
Furthermore, they are presentable – this follows from the general results of [59,63]. See 
also our survey in [79, Remark 3.6.1]

2.4.2. The monoidal structure in H(S)∗
Let H(S) be the (∞, 1)-category introduced in the last section. Since it is presentable 

it admits a final object ∗ and the (∞, 1)-category of pointed objects H(S)∗ is also pre-
sentable (see [59, Prop. 5.5.2.10]). In this case, since the forgetful functor H(S)∗ → H(S)
commutes with limits, by the Adjoint Functor Theorem (see [59, Cor. 5.5.2.9]) it ad-
mits a left adjoint ()+ : H(S) → H(S)∗ which we can identify with the formula 
X �→ X+ := X

∐
∗. In order to follow the stabilization methods of Morel–Voevodsky 

we need to explain how the cartesian product in H(S) extends to a symmetric monoidal 
structure in H(S)∗ and how the pointing morphism becomes monoidal.

This problem fits in a more general setting. Recall that the (∞, 1)-category of spaces 
S is the unit for the symmetric monoidal structure PrL,⊗. In [63, Prop. 6.3.2.11] it is 
proved that the pointing morphism − 

∐
∗ : S → S∗ endows S∗ with the structure of an 

idempotent object in PrL,⊗ and proves that its associated local objects are exactly the 
pointed presentable (∞, 1)-categories. It follows from the general theory of idempotents 
that the product functor C �→ C ⊗S∗ is a left adjoint to the inclusion functor PrLPt ⊆ PrL. 
Also from the general theory, this left adjoint is monoidal. The final ingredient is that 
for any presentable (∞, 1)-category C there is an equivalence of (∞, 1)-categories C∗ �
C ⊗ S∗ (see [63, Example 4.8.1.20]) and via this equivalence, the pointing map C → C∗ is 
equivalent to the product map idC⊗ ()+ : C ⊗S → C ⊗S∗ where ()+ denotes the pointing 
map of spaces. Altogether, we have the following result

Corollary 2.32 (Lurie). The formula C �→ C∗ defines a monoidal left adjoint to the 
inclusion PrLPt ⊆ PrL and therefore induces a left adjoint to the inclusion CAlg(PrLPt) ⊆
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CAlg(PrL). In other words, for any presentable symmetric monoidal (∞, 1)-category 
C⊗, there exists a pointed presentable symmetric monoidal (∞, 1)-category C∧(⊗)

∗ whose 
underlying (∞, 1)-category is C∗, together with a monoidal functor C⊗ → C

∧(⊗)
∗ extending 

the pointing map C → C∗, and satisfying the following universal property:

(∗) for any pointed presentable symmetric monoidal (∞, 1)-category D⊗, the composition

Fun⊗,L
(
C
∧(⊗)
∗ ,D⊗) → Fun⊗,L

(
C⊗,D⊗) (2.127)

is an equivalence.

Remark 2.33. In the situation of the previous corollary, given a functor F : C → D with 
D being pointed, its canonical extension F̃

C D

C∗

F̃ (2.128)

is naturally identified with the formula (u : ∗ → X) �→ cofiberF (u) ∈ D.

The symmetric monoidal structure C∧(⊗)
∗ will be called the smash product induced 

by C⊗. Of course, if C⊗ is already pointed we have an equivalence C∧(⊗)
∗ � C⊗. In the 

particular case when C⊗ is cartesian, we will use the notation C∧
∗ := C

∧(×)
∗ .

Let us now progress in a different direction. Let M be a combinatorial simplicial 
model category. Assume also that M is cartesian closed and that its final object ∗ is 
cofibrant. This makes M a symmetric monoidal model category with respect to the 
cartesian product and we have a monoidal equivalence

N⊗
Δ
((
M◦)×) � NΔ

(
M◦)× (2.129)

Moreover, because the cartesian product provides a Quillen bifunctor, NΔ(M◦)× is 
a presentable symmetric monoidal (∞, 1)-category and therefore, using the Corollary 
above, we can equip NΔ(M◦)∗ with a canonical presentable symmetric monoidal struc-
ture NΔ(M◦)∧∗ for which the pointing map becomes monoidal

NΔ
(
M◦)× → NΔ

(
M◦)∧

∗ (2.130)

Independently of this, we can consider the natural model structure in M∗ (see Re-
mark 1.1.8 in [42]). Again, it is combinatorial and simplicial and comes canonically 
equipped with a left-Quillen functor (−)+ : M → M∗ defined by the formula X �→ X

∐
∗. 

Moreover, it acquires the structure of a symmetric monoidal model category via the usual 
definition of the smash product, given by the formula
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(X,x) ∧ (Y, y) := (X,x) × (Y, y)
(X,x) ∨ (Y, y) (2.131)

It is well-known that this formula defines a symmetric monoidal structure with unit 
given by (∗)+ and by Proposition 4.2.9 of [42] it is compatible with the model structure 
in M∗. Let N⊗

Δ (((M∗)◦)∧usual ) be its underlying symmetric monoidal (∞, 1)-category. The 
same result also tells us that the left-Quillen map M → M∗ is monoidal. By functoriality 
(see our discussion in [79, Prop. 3.9.2]), it induces a monoidal map between the underlying 
symmetric monoidal (∞, 1)-categories.

f⊗ : NΔ
(
M◦)× → N⊗

Δ
((

(M∗)◦
)∧usual) (2.132)

Of course, N⊗
Δ (((M∗)◦)∧usual ) is a pointed presentable symmetric monoidal (∞, 1)-

category and by the universal property defining the smash product we obtain a monoidal 
map

NΔ
(
M◦)∧(⊗)

∗ → N⊗
Δ
((

(M∗)◦
)∧usual) (2.133)

Corollary 2.34. The above map is an equivalence of presentable symmetric monoidal 
(∞, 1)-categories.

Proof. It is a simple exercise with the definitions. See [79, Cor. 5.2.3]. �
Remark 2.35. If M = Δ̂ is the model category of simplicial sets with the cartesian 
product, it satisfies the above conditions and we find a monoidal equivalence between 
S∧∗ and the underlying symmetric monoidal (∞, 1)-category of Δ̂∗ endowed with the 
classical smash product of pointed spaces.

Remark 2.36. If C is a simplicial category, the left-Quillen adjunction Δ̂ → Δ̂∗ extends 
to a left Quillen adjunction SPsh(C) → SPsh∗(C), where SPsh∗(C) corresponds to the 
category of presheaves of pointed simplicial sets over C, endowed with the projective 
model structure (see [59]-Appendix). It follows that SPsh(C) has all the good proper-
ties which intervene in the proof of Corollary 2.34 and we find a monoidal equivalence 
NΔ(SPsh(C)◦)∧∗ → N⊗

Δ ((SPsh∗(C)◦)∧usual ) where the last is the underlying symmetric 
monoidal (∞, 1)-category associated to the smash product in SPsh(C)∗.

Corollary 2.34 implies that

Corollary 2.37. Let H(S)× be the presentable symmetric monoidal (∞, 1)-category un-
derlying the model category MA1 encoding the A1-homotopy theory of Morel–Voevodsky 
together with the cartesian product. Let (MA1)∗ be its pointed version with the smash 
product given by Lemma 2.13 of [67]. Then, the canonical map induced by the universal 
property of the smash product
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H(S)∧∗ → N⊗
Δ
(((

(MA1)∗
)◦)∧) (2.134)

is an equivalence of presentable symmetric monoidal (∞, 1)-categories.

In other words and as expected, H(S)∧∗ is the underlying symmetric monoidal 
(∞, 1)-category of the classical construction.

2.4.3. The stable motivic theory
As in the original setting, we may now consider a stabilized version of the theory. 

In fact, two stabilizations are possible – one with respect to the topological circle S1 :=
Δ[1]/∂Δ[1] (pointed by the image of ∂Δ[1]) and another one with respect to the algebraic 
circle defined as Gm := A1−{0}. The motivic stabilization of the theory is by definition, 
the stabilization with respect to the product Gm ∧ S1 which we know is equivalent to 
(P1, ∞) in H(S)∗: consider the Nisnevich covering of (P1, 1) given by two copies of A1

both pointed at 1, together with the maps A1 → P1 sending x �→ (1 : x), respectively, 
x �→ (x : 1). Their intersection is A1−{0} (also pointed at 1). The result follows because 
this square is a pushout (as a consequence of forcing Nisnevich descent), because A1 is 
contractible in H(S)∗ (as a consequence of forcing A1-invariance and Remark 2.33) and 
finally, because the suspension H(S)∗ is canonically identified with the smash product 
with the circle (as explained by Example 2.24). The conclusion follows because (P1, ∞)
and (P1, 1) are A1-homotopic via the map x �→ (1 : x).

Definition 2.38. (See [107, Definition 5.7].) Let S be a base scheme. The stable motivic 
A1 ∞-category over S is the underlying (∞, 1)-category of the presentable symmetric 
monoidal ∞-category SH(S)⊗ defined by the formula

SH(S)⊗ := H(S)∧∗
[(
P1,∞

)−1] (2.135)

as in Definition 2.6.

The standard way to define the stable motivic theory is to consider the combi-
natorial simplicial symmetric monoidal model category SpΣ((MA1)∗, (P1, ∞)) where 
M∗ is equipped with the smash product. By [107, Lemma 4.4] together with Re-
mark 2.16, we know that (P1, ∞) is symmetric and consequently Theorem 2.26 ensures 
that SH(S)⊗ recovers the classical definition. In addition, since we have an equivalence 
(P1, ∞) � Gm ∧ S1, the universal properties provide canonical monoidal equivalences of 
presentable symmetric monoidal (∞, 1)-categories

SH(S)⊗ �
(
H(S)∧∗

)[(
Gm ∧ S1)−1] � (

H(S)∧∗
)[((

P1,∞
)
∧ S1)−1]

�
((
H(S)∧∗

)[(
S1)−1])[(

P1,∞
)−1] (2.136)

Since S1 is symmetric in S∧∗ (see [42, Lemma 6.6.2] together with Remark 2.17) it 
is also symmetric in H(S)∧∗ (because it is given by the image of the unique colimit 
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preserving monoidal map S∧∗ → H(S)∧∗ ). In this case, we can use Proposition 2.22 to 
deduce that the underlying ∞-category of (H(S)∧∗ )[(S1)−1] is equivalent to the stable 
∞-category Stab(H(S)). Plus, since (H(S)∧∗ )[(S1)−1] is presentable by construction, the 
monoidal structure is compatible with colimits, thus exact, separately on each variable. 
We conclude that it is a stable presentable symmetric monoidal (∞, 1)-category.

Finally, because (P1, ∞) is symmetric, Corollary 2.23 tells us that SH(S)⊗ is a sta-
ble presentable symmetric monoidal ∞-category. In particular its homotopy category is 
triangulated and inherits a canonical symmetric monoidal structure.

Corollary 2.39. Let S be a base scheme and Smft(S) denote the category of smooth 
schemes of finite type over S, together with the cartesian product. The composition of 
monoidal functors

θ⊗ : N
(
Smft(S)

)× → Pbig(N(
Smft(S)

))× → H(S)× → H(S)∧∗

→ H(S)∧∗
[(
S1)−1] → SH(S)⊗ (2.137)

satisfies the following universal property: for any pointed presentable symmetric monoidal 
(∞, 1)-category D⊗, the composition map

Fun⊗,L
(
SH(S)⊗,D⊗) → Fun⊗(N(

Smft(S)
)×

,D⊗) (2.138)

is fully faithful and its image consists of those monoidal functors N(Smft(S))× → D⊗

whose underlying functor satisfy Nisnevich descent, A1-invariance and such that the 
cofiber of the image of the point at ∞, S ∞−−→ P1 is an invertible object in D⊗. More-
over, any pointed presentable symmetric monoidal (∞, 1)-category D⊗ admitting such a 
monoidal functor is necessarily stable.

Proof. Here, N(Smft(S)) denotes the standard way to interpret an ordinary 1-category as 
an (∞, 1)-category using the nerve. The Yoneda map j : N(Smft(S)) →
Pbig(N(Smft(S))) extends to a monoidal map because of the monoidal universal property 
of presheaves (consult our introductory section on Higher Algebra). By Proposition 2.15 
p. 74 in [67], the localization functor Pbig(N(Smft(S))) → H(S) is monoidal with respect 
to the cartesian structure and therefore extends to a monoidal left adjoint to the inclu-
sion H(S)× ⊆ Pbig(N(Smft(S)))×. The result now follows from the discussion above, 
together with Corollaries 2.32 and 2.37, Corollary 2.23, Theorem 2.26 and Remark 2.33.

The last assertion follows from Remark 2.25, together with the fact that P1 mod out 
by the point at infinity is the tensor product of S1 and Gm, so that, since we are dealing 
with monoidal functors, the conditions defining the image of the composition map force 
the image S1 to be tensor invertible in D⊗. �

To conclude this section we recall a useful description of a family of compact generators 
in SH(S).
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Remark 2.40. Thanks to the results of [77] and to our discussion in Proposition 1.12, if k is 
a field admitting resolutions of singularities then the collection of objects generated by the 
image of smooth projective varieties is a family of compact generators in SH(S). In this 
case, these are also the dualizable objects in SH(k)⊗. In particular the (∞, 1)-category 
SH(k) is compactly generated by dualizable objects. See our discussion in [79, Section 4.4 
and Prop. 5.3.3] for a general discussion on the existence of compact generators in the 
stabilization.

2.4.4. Description using spectral presheaves
In this section we give an alternative description of the symmetric monoidal 

(∞, 1)-category SH(k)⊗ using presheaves of spectra.

Remark 2.41 (Spectral Yoneda’s lemma). Recall that any stable (∞, 1)-category has 
a natural enrichment over spectra, determined by means of a universal property [63, 
Chapter 1]. In this remark we recall how to use this universal property to deduce an 
enriched version of Yoneda’s lemma for spectral presheaves. More precisely, if C is a small 
(∞, 1)-category, we consider the composition of the Yoneda embedding with the pointing 
map followed by stabilization Σ∞

+ ◦ j : C ↪→ P(C) → P(C)∗ → Stab(P(C)) � Fun(Cop, Sp)
(because the stabilization is a limit). Now, given an object X in C, we can use Yoneda’s 
lemma for P(C) to construct a natural equivalence of functors MapFun(Cop,Sp)(Σ∞

+ ◦
j(X), −) → Ω∞ ◦ evX , where evX : Fun(Cop, Sp) → Sp is the evaluation map at X. This 
is possible because the delooping of presheaves is computed objectwise. To conclude, 
since the composition with Ω∞ induces an equivalence Exc∗(C, Sp) � Exc∗(C, S), we can 
lift the previous natural equivalence to a new one

MapSp
Fun(Cop,Sp)

(
Σ∞

+ ◦ j(X),−
)
→ evX (2.139)

which, when evaluated at F gives us the Yoneda formula we seek. This holds for any 
universe: if C is only V-small for some universe V we apply the same arguments as above 
to the V-small (∞, 1)-category of spectra obtained from the stabilization of the V-small 
(∞, 1)-category of spaces.

Now, we start from the (∞, 1)-category N(Smft(S)) and consider the very big 
(∞, 1)-category Fun(N(Smft(S))op, ̂Sp)18 which is canonically equivalent to
Stab(Pbig(N(Smft(S)))∗). Using Remark 2.25 we obtain a canonical monoidal struc-
ture Fun(N(Smft(S))op, ̂Sp)⊗ defined by the inversion Pbig(N(Smft(S)))∧(⊗)

∗ [(S1)−1]⊗
where Pbig(N(Smft(S)))∧(⊗)

∗ is the canonical monoidal smash structure given by Propo-
sition 2.32 extending the monoidal structure Pbig(N(Smft(S)))⊗ of [63, 4.8.1.10].

We proceed as before and perform the localization with respect to the Nisnevich topol-
ogy and A1. Extra care is needed, for the class of maps with respect to which we need to 

18 Here Ŝp denotes the big (∞, 1)-category of spectra, obtained from the stabilization of the big 
(∞, 1)-category of spaces Ŝ.
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localize is not the same as for presheaves of spaces. In order to describe these two classes 
we recall first that Fun(N(Smft(S))op, ̂Sp) is a stable presentable (∞, 1)-category and 
by the discussion in 1.5.3, for any G ∈ Fun(N(Smft(S))op, ̂Sp) we have a mapping spec-
trum functor MapSp(G, −) : Fun(N(Smft(S))op, ̂Sp) → Ŝp which when composed with 
Ω∞ recovers the mapping space functor in Fun(N(Smft(S))op, ̂Sp). Moreover, because 
of the universal property that defines it and because the composition Ω∞MapSp(G, −)
commutes with all limits, we conclude that MapSp(G, −) also commutes with all lim-
its. In particular, by the Adjoint functor theorem [59, 5.5.2.9], it admits a left adjoint 
which we shall denote as δG : Ŝp → Fun(N(Smft(S))op, ̂Sp) and for any K ∈ Ŝp and 
F ∈ Fun(N(Smft(S))op, ̂Sp) we have

MapSp
(
K,MapSp(G,F )

)
� MapFun(N(Smft(S))op,Ŝp)

(
δG(K), F

)
(2.140)

We can now use this to define the class of maps that generate the Nisnevich localiza-
tion. Namely, we localize with respect to the class of maps

δΣ∞
+ ◦j(U)(K)

∐
δΣ∞

+ ◦j(W )(K)

δΣ∞
+ ◦j(V )(K) → δΣ∞

+ ◦j(X)(K) (2.141)

given by the universal property of the pushout, with K in (Ŝp)ω 19 and W , V , U and X
part of a Nisnevich square.

For the A1 localization, we localize with respect to the class of all induced maps

δΣ∞
+ ◦j(X×A1)(K) → δΣ∞

+ ◦j(X)(K) (2.142)

with X in N(Smft(S))op and K ∈ (Ŝp)ω.
We observe that these localizations are monoidal.

3. Motivic stable homotopy theory of noncommutative spaces over a ring

3.1. Preliminaries on dg-categories

We will assume the reader is familiar with the theory of dg-categories. There are many 
nice expository introductions to the subject, for instance [53] and [6]. The author has 
also prepared a survey in [79, Sections 6.1 and 6.2] to which we address the reader. We 
shall merely recall here some notations. For a fixed commutative ring k we denote by 
CatCh(k) the 1-category of small k-dg-categories and by Dg(k) the (∞, 1)-category en-
coding the homotopy theory of small dg-categories up to quasi-equivalences. There is a 
natural functor Alg(Ch(k)) → CatCh(k) sending a k-dg-algebra A to the dg-category with 

19 Here (Ŝp)ω denotes the full subcategory of Ŝp spanned by the compact objects. Recall that Ŝp 
Ind((Ŝp)ω).
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one object and A as its complex of endomorphisms. This functor is compatible with the 
two notions of weak-equivalences and therefore induces a well-defined functor between 
the underlying (∞, 1)-categories (−)dg : Alg(D(k)) → Dg(k). We denote as Dg(k)idem
the presentable (∞, 1)-category of small dg-categories up to Morita equivalence. It has 
direct sums and a zero object. Both Dg(k)idem and Dg(k) can be obtained as the un-
derlying (∞, 1)-categories associated to combinatorial model structures on Ch(k) given 
in [89,88]. The (∞, 1)-category Dg(k) carries a natural symmetric monoidal structures 
induced by the derived tensor product of dg-categories. Moreover, this tensor structure 
is known to be closed and its internal-homs can be explicitly described [96]: given two 
small dg-categories T and T ′, the internal-hom RHom(T, T ′) is given by the full sub-dg-
category spanned by the right quasi-representable cofibrant T⊗L (T ′)op-dg-modules. One 
can easily check that the functor (−)dg is monoidal with respect to the natural monoidal 
structure on dg-algebras and this derived tensor product of dg-categories. We address the 
reader to our discussion in [79, Remark 6.1.11]. Ultimately this follows because the prod-
uct of cofibrant dg-algebras remains a dg-algebra with a cofibrant underlying complex 
(as proved in [83]).

It is also well-known that Dg(k)idem is a monoidal reflexive localization of Dg(k): there 
is a canonical fully faithful map Dg(k)idem ↪→ Dg(k) whose image is equivalent to the 
full subcategory of Dg(k) spanned by those small dg-categories T such that the canonical 
map T → T̂pe is an equivalence (also known as idempotent complete dg-categories). The 
monoidal left adjoint to this inclusion is given by the formula T �→ T̂pe. Here, for a 
small dg-category T we denote by T̂ the big dg-category of cofibrant T op-dg-modules 
and T̂pe denotes its full subcategory of perfect dg-modules, which we will understand by 
definition as homotopy compact objects.

Composing these two functors we obtain a monoidal functor Perf : Alg(D(k)) →
Dg(k)idem .

We recall also that a dg-category T ∈ Dg(k)idem is said to be of finite type [100]
if it is a compact object in the (∞, 1)-category Dg(k)idem. We let Dg(k)ft denote the 
full subcategory of Dg(k)idem spanned by the small dg-categories of finite type. As the 
Morita model structure on small dg-categories is compactly generated (again, see [100]), 
the natural induced map Ind(Dg(k)ft) → Dg(k)idem is an equivalence (see our discussion 
in [79, Sections 2.2.2 and 6.1.4]). In particular, this formula implies that Dg(k)ft is closed 
under finite direct products, pushouts and contains the zero object.

We will not review here the definition of a smooth/proper dg-category but we recall 
that T is simultaneously smooth and proper if and only if it is a dualizable object 
in Dg(k)idem with respect to the derived tensor product of dg-categories. It follows 
that smooth and proper dg-categories are of finite type. It can also be proved that any 
dg-category of finite type is smooth.

We recall also that a small dg-category T is said to have a compact generator if the 
homotopy category of T̂ has a compact generator in the sense of Neeman. Using the 
same methods as in [84], it can be proved that T has a compact generator if and only if 
it is in the essential image of Perf . For the “only if” direction we consider the dg-algebra 
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B given by the opposite algebra of endomorphisms of the compact generator in T̂ . For 
the “if” direction, if T � Perf (B) then B, seen as a dg-module over itself, is a compact 
generator.

Following [97] we also have the notion of presentable dg-categories. These are big dg-
categories which are obtained as Bousfield localizations of dg-categories of the form T̂ . 
Together with the colimit preserving maps these form an (∞, 1)-category which we will 
denote as Dg(k)lp. We will write Dg(k)c for its full subcategory spanned by the pre-
sentable dg-categories of the form T̂ for a small dg-category T and we write Dg(k)cc
for the (non-full) subcategory of Dg(k)c with all objects but only those maps that 
preserve compact objects. An object here will be referred to as a compactly generated 
dg-category. One can easily check that both these (∞, 1)-categories admit natural sym-
metric monoidal structures and that the assignment sending a small idempotent complete 
dg-category T ∈ Dg(k)idem to the big dg-category T̂ induces a monoidal equivalence of 
(∞, 1)-categories Dg(k)idem � Dg(k)cc.

To conclude this section we recall the existence of a dg-nerve functor Ndg : Ch(k) → Δ̂. 
It can be obtained by applying the Dold–Kan construction to the positive truncations 
of the enriching complexes followed by the simplicial nerve construction. It is a right-
Quillen functor [63, 1.3.1.20] (where Δ̂ is equipped with the Joyal model structure) and 
therefore induces an ∞-functor Dg(k) → Cat∞ that commutes with limits and preserves 
the associated homotopy 1-categories. This functor provides a bridge between compactly 
generated dg-categories and stable presentable (∞, 1)-categories. More precisely, there 
is a version of Ndg for big dg-categories Ndg : Dg(k)big → Catbig∞ and as explained in the 
proof of [97, Lemma 2.3] a big dg-category is locally presentable if and only if its dg-
nerve is a locally presentable (∞, 1)-category. This makes the restriction a well-defined 
functor NL

dg : Dg(k)lp → PrL. Moreover, one can also easily check that the image of 
this dg-nerve factors through PrLStb ⊆ PrL. Furthermore, new this functor is conserva-
tive and by the properties of the Dold–Kan correspondence and because of stability, 
reflects fully faithfulness. Moreover, it preserves the associated homotopy 1-categories 
[63, Remark 1.3.1.11] so that a dg-category T̂ has a compact generator if and only if the 
homotopy category h(NL

dg(T̂ )) has a compact generator.
One can restrict a bit further and obtain a well-defined map NL

dg : Dg(k)cc → PrLStb,ω
relating the notions of compactly generated categories and a homotopy commutative 
diagram

Dg(k)idem � Dg(k)cc
non-full

NL
dg

Dg(k)lp

NL
dg

PrLω,Stb
non-full

PrLStb

(3.1)

Remark 3.1. The composition Dg(k)idem � Dg(k)cc → PrLω,Stb has long been expected 
to provide an equivalence between the theory of small dg-categories up to Morita equiva-
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lence and the theory of k-linear stable presentable compactly generated (∞, 1)-categories. 
More precisely, if D(k)⊗ denotes the derived ∞-derived category of k with its natural 
derived tensor product, we can understand it as an object in CAlg(PrLω,Stb) and the map 
NL

dg was expected to factor as

Dg(k)cc → ModD(k)
(
PrLω,Stb

)
→ PrLω,Stb

with the last map being the forgetful functor. Moreover, the first map in this factorization 
was expected to be an equivalence. This result was recently established in [26].

See [79, Section 6.2] for a more detailed discussion.

3.2. From schemes to noncommutative spaces

Following [100], the notion of finite type should be understood as the correct notion 
of smoothness for noncommutative spaces, while the smooth dg-categories should only 
be understood as “formally smooth” noncommutative spaces. Finally, we are ready to 
introduce our smooth noncommutative geometric objects.

Definition 3.2. Let k be a ring. We define the (∞, 1)-category of smooth noncommutative 
spaces over k – NcS(k) – to be the opposite of Dg(k)ft . It has a natural symmetric 
monoidal structure NcS(k)⊗ induced from the one in Dg(k)ft,⊗, with unit object given 
by Lpe(k).

Notation 3.3. We will denote our smooth noncommutative spaces using caligraphic letters 
X, U, V, W, etc. For a smooth noncommutative space X ∈ NcS we will denote by TX

its associated dg-category of finite type and by AX a compact dg-algebra such that 
TX � Perf (AX).

We will say that a smooth noncommutative space X is smooth and proper if its as-
sociated dg-category TX is smooth and proper. We will let NcS(k)sp denote the full 
subcategory of NcS(k) spanned by the smooth and proper noncommutative spaces. Since 
the smooth and proper dg-categories correspond to the dualizable objects in Dg(k)ft, the 
subcategory NcS(k)sp is closed under tensor products.

It follows immediately from the properties of Dg(k)ft that NcS(k) admits pullbacks, 
together with finite direct sums and a zero object. Moreover, the tensor product com-
mutes with limits. In particular, if X and Y are two smooth noncommutative spaces, the 
mapping space MapNcS(k)(X, Y) is given by the ∞-groupoid pspe(AY, AX)∞ of pseudo-
perfect AY ⊗L Aop

X -dg-modules and equivalences between them.
We now explain how the formula X �→ Lpe(X) can be properly arranged as an 

∞-functor. We define it for the smooth affine schemes of finite type over k, whose 
1-category we denote by AffSmft(k). Recall that the full subcategory of 0-truncated 
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objects in CAlg(D(k))cn is equivalent to the nerve of the category of classical associative 
rings. In particular, we can identify the nerve of the category of commutative smooth 
k-algebras of finite type N(SmCommAlgk) � N (AffSmft(k))op with a full subcategory 
of CAlg(D(k))cn. Let L denote the composition

N(SmCommAlgk) CAlg
(
D(k)

)cn AlgAss
(
D(k)

)cn AlgAss
(
D(k)

) Perf
Dg(k)idem

(3.2)

where CAlg(D(k))cn → AlgAss(D(k))cn is the restriction of the forgetful functor to 
connective objects. The following is a key result:

Proposition 3.4. Let A be a classical commutative smooth k-algebra of finite type. Then, 
L(A) is a dg-category of finite type. In other words, L provides a well-defined functor 
N(SmCommAlgk) → Dg(k)ft.

In order to prove this result we will need the following noncommutative analogue of 
[103, Prop. 2.2.2.4] and [63, 7.4.3.18]:

Lemma 3.5. Let A be an object in Alg(D(k))cn. The following are equivalent:

1) A is an ω-compact object in Alg(D(k));
2) H0(A) is a finitely presented associative algebra over k and the cotangent complex 

LA is a compact object in ModAss
A (D(k)).

Proof. We ask the reader to recall our notations and preliminaries in 1.5.6.
We follow the same methods as in [103, Prop. 2.2.2.4]. We first prove that 1) implies 2).
The fact that H0(A) is finitely presented as an associative algebra follows from the 

fact that H0 commutes with colimits (it is a left adjoint), together with the fact that π0
commutes with colimits in the (∞, 1)-category of spaces. The fact that LA is compact 
follows from the universal property of the cotangent complex together with the following 
facts:

i) As explained before, the functor (A ⊕−) of (1.17) can be identified with a delooping 
functor Ω∞. Therefore it commutes with filtered colimits;

ii) by assumption, A is compact.

We now prove that 2) implies 1). To start with, we observe that since A is by as-
sumption connective, it is enough to check that A is compact in the full subcategory 
AlgAss(D(k))cn spanned by the connective objects. Indeed, recall that the truncation 
functor τ≤0 is a right adjoint to the inclusion AlgAss(D(k))cn ⊆ AlgAss(D(k)). We can 
easily check that τ≤0 commutes with filtered colimits (because the homology groups 
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commute with filtered colimits) so that for any filtered system {Ci}i∈I in AlgAss(D(k))
we have

MapAlgAss(D(k))(A, colimICi) � MapAlgAss(D(k))cn (A, τ≤0colimICi)

� MapAlgAss(D(k))cn (A, colimIτ≤0Ci) (3.3)

so that A is compact in AlgAss(D(k))cn if and only if it is compact in AlgAss(D(k)).
We start now by proving that A is almost compact, meaning that A is compact 

with respect to any filtered system in AlgAss(D(k))cn≤n, for every n ≥ 0. We proceed by 
induction. The case n = 0 follows by the hypothesis. Let us suppose we know this is 
true for n − 1 and prove it for n. Let {Ci}i∈I be a filtered system in AlgAss(D(k))cn≤n. 
The discussion in 1.5.5 together with Theorem 1.22 implies that for each i, Ci admits a 
Postnikov decomposition

Ci = τ≤n(Ci) → τ≤n−1(Ci) → ... → τ≤0(Ci) (3.4)

where each morphism is a square-zero extension providing a pullback diagram

Ci = (Ci)≤n (Ci)≤n−1

dn

(Ci)≤n−1 (Ci)≤n−1 ⊕Hn(Ci)[n + 1]

(3.5)

in AlgAss(D(k))cn where the lower horizontal map is the zero map and right vertical 
map corresponds to the canonical derivation dn associated to the square-zero extension 
Ci → τ≤n−1Ci. This diagram induces a pullback diagram of spaces

MapAlgAss(D(k))(A,Ci) MapAlgAss(D(k))(A, τ≤n−1(Ci))

MapAlgAss(D(k))(A, (Ci)≤n−1) MapAlgAss(D(k))(A, τ≤n−1(Ci) ⊕Hn(Ci)[n + 1])

(3.6)

and Remark 1.21 implies that the fiber of the map

MapAlgAss(D(k))(A,Ci) −→ MapAlgAss(D(k))
(
A, τ≤n−1(Ci)

)
(3.7)

over a map u : A → τ≤n−1(Ci) is given by the space of paths in MapModAss
A

(LA,

Hn(Ci)[n + 1]) between the zero derivation and the point corresponding to the com-
position dn ◦ u. This reduces everything to the analysis of the diagram
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colimIΩ0,dn◦uMapModAss
A

(D(k))(LA,Hn(Ci)[n + 1]) Ω0,dn◦uMapModAss
A

(D(k))(LA,Hn(colimICi)[n + 1])

colimIMapAlgAss(D(k))(A,Ci) MapAlgAss(D(k))(A, colimICi)

colimIMapAlgAss(D(k))(A, τ≤n−1(Ci)) MapAlgAss(D(k))(A, τ≤n−1(colimICi))

(3.8)

We observe that

a) The left column is a fiber sequence because filtered colimits are exact in the 
(∞, 1)-category of spaces. For the same reason, there is an equivalence between the 
top left entry in the diagram and

Ω0,dn◦ucolimIMapModAss
A (D(k))

(
LA,Hn(Ci)[n + 1]

)
. (3.9)

b) The right column is also a fiber sequence. This follows from the result of 1.22 and 
Remark 1.21 applied to the colimit algebra colimICi.

c) The top entry on the right is equivalent to

Ω0,dn◦uMapModAss
A (D(k))

(
LA, colimIHn(Ci)[n + 1]

)
. (3.10)

This is because the functor Hn is equivalent to the classical nth-homology functor 
and therefore commutes with filtered colimits.

Finally, the induction hypothesis together with the fact that (−)≤n is a left adjoint 
(and therefore commutes with colimits), implies that the lower horizontal arrow is an 
equivalence. The assumption that LA is compact implies that the top horizontal map is 
also an equivalence. It follows that the middle one is also an equivalence. This proves 
that A is almost compact in AlgAss(D(k))cn .

We now complete the proof by showing that A is compact. Since the (∞, 1)-category 
ModAss

A ((D(k))) is equivalent to the underlying (∞, 1)-category of the model structure 
on strict A-bimodules in Ch(k) (see 1.19) and the last is compactly generated, we know 
that LA is a compact object in ModAss

A ((D(k))) if and only if it is given by a finite 
strict cell object in the model category of bimodules. In this case, with our hypoth-
esis that LA is compact, we can find a natural number n0 ≥ 0 such that for any 
object M ∈ ModAss

A (D(k)) concentrated in degrees strictly bigger than n0 we have 
π0MapModAss

A (D(k))(LA, M) � 0. In particular, for any connective algebra C, the combi-
nation of the fiber sequence of Remark 1.21 and Theorem 1.22 implies that homotopy 
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classes of maps A → C are in bijection with homotopy classes of maps A → τ≤n0(C), In 
other words, we have

π0MapAlgAss(D(k))(A,C) � π0MapAlgAss(D(k))
(
A, τ≤n0(C)

)
(3.11)

We now use this to show that A is compact. Let {Ci}i∈I be a filtered system in 
AlgAss(D(k))cn . Using the fact that πn commutes with filtered homotopy colimits of 
spaces and that AlgAss(D(k))cn admits all limits (it is a co-reflexive localization of 
AlgAss(D(k))), we are reduced to showing that the natural map

colimIπ0MapAlgAss(D(k))
(
A,ΩnCi

)
→ π0MapAlgAss(D(k))

(
A, colimIΩ

nCi

)
(3.12)

is an equivalence. We show that the formula is true for any filtered system of algebras 
{Ui}i∈I , because we have a commutative diagram

colimIπ0MapAlgAss(D(k))(A,Ui)

∼

π0MapAlgAss(D(k))(A, colimIUi)

∼

colimIπ0MapAlgAss(D(k))(A, τ≤n0(Ui))
∼

π0MapAlgAss(D(k))(A, colimIτ≤n0(Ui))

(3.13)

where the vertical arrows are equivalences because of (3.11) together with fact that τ≤n0

is a left adjoint, and the lower horizontal map is an equivalence because A is almost 
compact. This concludes the proof. �
Proof of Proposition 3.4. If A is smooth as a classical commutative k-algebra it is smooth 
as a dg-category which by definition means it is compact as an A ⊗kA

op-dg-module. The 
category of A ⊗k A

op-dg-modules can of course be naturally identified with the category 
of A-bimodules BiMod(A, A)(Ch(k)). Using the strictification results of [63, 4.3.3.15 
and 4.3.3.17] the underlying (∞, 1)-category of BiMod(A, A)(Ch(k)) is equivalent to 

ABModA(D(k)) � ModAss
A (D(k)).

Of course, if A is compact in ModAss
A (D(k)) and since A ⊗k Aop is also compact (it 

is a generator), the kernel of the multiplication map I → A ⊗k Aop → A will also be 
compact. Following Example 1.19 we can now identify I with the relative cotangent 
complex LA/k ∈ ModAss

A (D(k)). Lemma 3.5 completes the proof. �
Using this, we define Lpe as the opposite of L

Lpe : N
(
AffSmft(k)

)
→ NcS(k) (3.14)

To conclude this section we observe that Lpe can be promoted to a monoidal functor

L⊗
pe : N

(
AffSmft(k)

)× → NcS(k)⊗ (3.15)
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where N (AffSmft(k))× is the cartesian structure in N (AffSmft(k)) which corresponds to 
the coproduct of classical commutative smooth k-algebras which is, well-known, given 
by the classical tensor product over k.

It follows as (−)dg is monoidal because the tensor product in D(k) is compatible with 
the t-structure, that the composition CAlg(D(k))cn → AlgAss(D(k))cn ⊆ AlgAss(D(k))
is monoidal. Moreover, the functor Perf is monoidal because it is the composition 
of monoidal functors. We are left to check that the inclusion N(SmCommAlgk) →
CAlg(D(k))cn is monoidal. In other words, that for a commutative smooth k-algebra 
of finite type over k, the classical tensor product agrees with the derived tensor product. 
But this is true since smooth k-algebras are flat over k.

3.3. The motivic A1-homotopy theory of Kontsevich’s noncommutative spaces over a 
ring k

We will now use our main results to fabricate a motivic A1-homotopy theory for 
smooth noncommutative spaces over a ring k. In this section we proceed in analogy with 
the construction of the motivic stable homotopy for schemes as described in the previous 
section of this work. Recall from Remark 2.29 that these constructions only depend on 
the category of affine smooth schemes of finite type over k.

Remark 3.6. There is a natural way to extend the functor Lpe to non-affine schemes. To 
do this, we observe that the classical category of schemes can be identified with a full 
subcategory of Pbig(N (AffSmft(k))), by the identification of a scheme with its “functor 
of points”. The universal property of (big) presheaves provides a colimit preserving map

N (AffSmft(k))
Lpe

NcS(k)

Pbig(N (AffSmft(k))) Pbig(NcS(k))

(3.16)

Lemma 3.27 in [100] implies that the image through this map of any smooth and 
proper scheme X over k is representable in Pbig(NcS(k)). This should remain true with-
out the properness condition.

To start with, we need to introduce an appropriate analogue for the Nisnevich topol-
ogy, for the interval A1 and for the projective space P1. For the last two we have natural 
choices – Lpe(A1) and Lpe(P1): the first is a dg-category of finite type because A1 is 
smooth affine over k; the second, Lpe(P1), is of finite type because the canonical mor-
phism P1 → Spec(k) is smooth and proper (see our discussion in [79, Section 6.3.2]). The 
analogue of the Nisnevich topology requires a more careful discussion.
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3.3.1. The noncommutative version of the Nisnevich topology
To obtain our noncommutative analogue for the Nisnevich topology we isolate the 

formal properties of the commutative squares in NcS(k)

Lpe(p−1(U)) Lpe(V )

Lpe(U) Lpe(X)

(3.17)

induced by the Nisnevich squares of schemes. Following the list of properties given in 
Section 2.4, we start with the notion of an open embedding. For that we need some 
preparations. Recall that an exact sequence in Dg(k)idem is the data of a commutative 
square

A
f

B

g

∗ C

(3.18)

where ∗ is the zero object in Dg(k)idem, such that f fully-faithful and the diagram 
is a pushout. Since Dg(k)idem is a reflexive localization of Dg(k), this pushout C is 
canonically equivalent to the idempotent completion of the pushout B/A computed in 
Dg(k). Of course, using the monoidal equivalence Dg(k)idem � Dg(k)cc, the previous 
diagram is an exact sequence if and only if the diagram

Â
f̂

B̂

ĝ

∗ Ĉ

(3.19)

is an exact sequence in Dgcc(k) in the same sense. Thanks to the works of B. Keller in 
[52], we know that this notion of exact sequence extends the notion given by Verdier 
[104].

Proposition 3.7. (See B. Keller [52].) The following conditions are equivalent:

1. a diagram as above is an exact sequence;
2. the functor f̂ induces an equivalence of [Â] with a triangulated subcategory of the 

triangulated category [B̂] and ĝ exhibits the homotopy category [Ĉ] as the Verdier 
quotient [B̂]/[Â];
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3. the functor f induces an equivalence of [A] with a triangulated subcategory of the 
triangulated category [B] and the canonical map from the Verdier quotient [B]/[A] ↪→
[C] is cofinal (see our discussion in 1.5.4).

Remark 3.8. We can use the functor NL
dg : Dgcc(k) → PrLω,Stb to relate exact sequences of 

dg-categories in the above sense to exact sequences of stable presentable (∞, 1)-categories 
in the sense of 1.5.4. Recall that NL

dg is conservative, preserves fully-faithfulness and 
preserves the notion of “homotopy category” (see Remark [63, 1.3.1.11]). This result, 
together with Propositions 3.7 and 1.15 implies that a sequence of dg-categories Â →
B̂ → Ĉ in Dgcc(k) is exact in the sense discussed in this section if and only if its image 
NL

dg(Â) → NL
dg(B̂) → NL

dg(Ĉ) in PrLω,Stb is exact in the sense discussed in 1.5.4. It follows 
also that Â has a compact generator if and only if h(NL

dg(Â)) has a compact generator.

Remark 3.9. It is common to find in the literature the terminology of strict exact sequence
to denote an exact sequence (3.18) in Dg(k)idem which, apart from being a pushout 
square, is also a pullback in Dg(k)idem. It follows again from the results of [52] that 
in terms of the associated homotopy triangulated categories this corresponds to the 
additional condition that [Â] is thick in [B̂]. It follows however that when working in 
Dg(k)idem this terminology is unnecessary because every exact sequence is strict. This 
follows from the properties of the functor NL

dg together with Corollary 1.18.

Let us now come back to the definition of open immersion. Thanks to the results 
of Thomason in [94, Section 5] and to the work of B. Keller in [52], we know that for 
a quasi-compact and quasi-separated scheme X with a quasi-compact open embedding 
j : U ↪→ X, the restriction map j∗ : Lqcoh(X) → Lqcoh(U) fits in a strict exact sequence 
in Dgcc(k)

Lqcoh(X)X−U Lqcoh(X)

j∗

∗ Lqcoh(U)

(3.20)

where Lqcoh(X)X−U is by definition the kernel of the restriction j∗. It is also well-known 
that this kernel has a compact generator (see the proof of [97, Prop. 3.9]). Of course, 
using the equivalence Dg(k)idem � Dgcc(k), we can reformulate this in terms of an exact 
sequence in Dg(k)idem

(Lqcoh(X)X−U )c Lpe(X)

j∗

∗ Lpe(U)

(3.21)

where (Lqcoh(X)X−U )c has a compact generator.
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Remark 3.10. More generally, and as explained in [33, Prop. 2.9], if T is a dg-category of 
finite type and k is an object in T , then quotient of T by the sub-dg-category generated 
by k is again a dg-category of finite type.

This motivates the following definition:

Definition 3.11. Let f : U → X be a morphisms of smooth noncommutative spaces 
over k. We say that f is an open immersion if there exists a dg-category with a compact 
generator KX−U ∈ Dg(k)idem together with a fully-faithful map KX−U ↪→ TX such that 
the opposite of f in Dg(k)ft fits in an exact sequence in Dg(k)idem :

KX−U TX

∗ TU

(3.22)

It follows from Remark 3.9 that this diagram is also a pullback square.

Definition 3.12. We will say that a commutative diagram in NcS(k)

W V

U X

(3.23)

is a Nisnevich square of smooth noncommutative spaces if the following conditions hold:

1. The maps U → X and W → V are open immersions;
2. The associated map TX → TV sends the compact generator of KX−U ⊆ TX to the 

compact generator of KV−W ⊆ TV and induces an equivalence KX−U � KV−W;
3. The diagram is a pushout.

Convention 3.13. We will adopt the convention that if X is a smooth noncommutative 
space whose underlying dg-category TX is a zero object of Dg(k)ft, the empty set forms 
a Nisnevich square of X.

Using the duality between smooth noncommutative spaces and dg-categories, a Nis-
nevich square corresponds to the data of a commutative diagram in Dg(k)idem
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KX−U ∗

TX TU

TV TW

KV−W ∗

(3.24)

where:

1) all TX, TU, TV and TW are of finite type;
2) Both KX−U and KV−W belong to Dg(k)idem , have a compact generator and the 

maps KX−U → TX and KV−W → TV are fully-faithful;
3) The associated map TX → TV sends the compact generator of KX−U ⊆ TX to the 

compact generator of KV−W ⊆ TV and induces an equivalence KX−U � KV−W;
4) the upper and lower squares are pushouts and pullbacks in Dg(k)idem (see Re-

mark 3.9) and the middle square is a pullback in Dg(k)ft and therefore in Dg(k)idem.

These conditions also imply that the middle square is a pushout in Dg(k)idem. Indeed, 
because the exterior diagrams are pushouts we can write TW � TV

∐
KV−W

∗ and TU �
TX

∐
KX−U

∗. Together with the fact that KX−U and KV−W are equivalent, we have

TV

∐
TX

TU � TV

∐
TX

(
TX

∐
KX−U

∗
)

� TV

∐
KX−U

∗ � TV

∐
KV−W

∗ � TW (3.25)

Corollary 3.14. Every Nisnevich square in NcS(k) is a pullback.

Remark 3.15. Let U → X be an open immersion of smooth noncommutative spaces. If 
the associated dg-category KX−U ∈ Dg(k)idem is of finite type we can then see it as the 
dg-category TZ = KX−U dual to a smooth noncommutative space Z. Of course, since 
the zero map TZ → ∗ is a quotient of TZ by itself, its dual ∗ → Z is an open immersion. 
Moreover, since the diagram KX−U ↪→ TX → TU is also a fiber sequence (see 3.9), the 
square of smooth noncommutative spaces

U X

∗ Z

(3.26)

is a pushout and therefore, Nisnevich.
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Example 3.16. The notions of semi-orthogonal decomposition and exceptional collection
for triangulated categories (see [18]) have an immediate translation to the setting of 
dg-categories in terms of split short exact sequence in Dg(k)idem . Recall that an exact 
sequence in Dg(k)idem

I
f

T

g

∗ I ′

(3.27)

is said to split if the functor f (resp. g) admits a right adjoint j (resp. fully-faithful 
right adjoint i). Following Remark 3.15 if X is a smooth noncommutative space, every 
semi-orthogonal decomposition of the associated dg-category TX given by dg-categories 
I, I ′ of finite type provides the data dual to a Nisnevich square

I ∗

TX I ′

(3.28)

Example 3.17. The previous example will be particularly important to us in the case 
X = Lpe(P1). Thanks to the results of [8] we know that Pn admits an exceptional 
collection generated by the twisting sheaves 〈O, ..., O(−n)〉. By the previous example, 
the diagram in Dg(k)idem associated to the split exact sequence

Perf (k) ∗

Lpe(P1) Perf (k)

(3.29)

provides the data of a Nisnevich square.

We now prove that our Nisnevich squares are compatible with the monoidal product 
of smooth noncommutative spaces. For that we will need the following preliminary result

Lemma 3.18. Let

W V

U X

(3.30)

be a Nisnevich square of smooth noncommutative spaces and let
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T̂X T̂U

T̂V T̂W

(3.31)

be its associated pullback diagram in Dgcc(k). Then the image of (3.31) through the 
(non-full) inclusion Dgcc(k) → Dgc(k) remains a pullback diagram.

Proof. The (∞, 1)-category Dglp(k) has all limits and the (non-full) inclusion Dglp(k) ⊆
Dg(k)big preserves them. This is because the same is true for the inclusions PrLStb ⊆
PrL ⊆ Catbig∞ and because of the properties of NL

dg.
By definition, Dgc(k) is the full subcategory of Dglp(k) spanned by the locally pre-

sentable dg-categories of the form T̂ for some small dg-category T . Therefore, we are 
reduced to showing that the (non-full) inclusion Dgcc(k) ⊆ Dglp(k) preserves the pull-
back diagrams (3.31) associated to Nisnevich squares. This statement is the dg-analogue 
of Proposition 1.16.

Following our preliminary discussion, the functor NL
dg provides a commutative square

Dg(k)idem � Dg(k)cc
non-full

NL
dg

Dg(k)lp

NL
dg

PrLω,Stb
non-full

PrLStb

(3.32)

As it was also explained, NL
dg preserves the notions of exact sequence and Â has a 

compact generator if and only if h(NL
dg(Â)) has a compact generator.

Consider now the pullback diagram (3.31) associated to a Nisnevich covering and 
let K̂ � K̂X−U � K̂V−W be the dg-category (with a compact generator) in Dgcc(k)
associated to the open immersions. We find a diagram in PrLω,Stb

NL
dg(T̂X) NL

dg(T̂U)

NL
dg(K̂) NL

dg(T̂V) NL
dg(T̂W)

(3.33)

Since NL
dg commutes with limits, this diagram remains a pullback in PrLω,Stb and we 

find ourselves facing the conditions of Proposition 1.16 so that the diagram remains a 
pullback after the inclusion in PrLStb. Finally, since NL

dg is conservative, the commutativity 
of (3.32) implies that (3.31) remains a pullback in Dg(k)lp. This concludes the proof. �

We can now state the main result:
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Proposition 3.19.

1) Let U → X be an open immersion of smooth noncommutative spaces. Then, for any 
smooth noncommutative space Y, the product map

U⊗ Y → X⊗ Y (3.34)

is also an open immersion;
2) Let

W V

U X

(3.35)

be a Nisnevich square of smooth noncommutative spaces. Then, for any smooth non-
commutative space Y, the square

W⊗ Y V⊗ Y

U⊗ Y X⊗ Y

(3.36)

remains a Nisnevich square.

Proof. To prove 1), let

KX−U TX

∗ TU

(3.37)

be the data in Dg(k)idem corresponding to the open immersion. We are reduced to prove 
that by tensoring with TY (in Dg(k)idem) the diagram

KX−U ⊗ TY TX ⊗ TY

∗ ⊗ TY TU ⊗ TY

(3.38)

remains the data of an open immersion. Observe first that since the monoidal structure 
in Dg(k)idem is compatible with colimits, ∗ ⊗ TY is again a zero object. To complete the 
proof it suffices to check that (i) KX−U ⊗ TY remains a dg-category having a compact 
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generator; (ii) the map KX−U ⊗ TY → TX ⊗ TY remains fully-faithful and (iii) the 
diagram (3.38) is a pushout. The first assertion follows because the tensor product of 
dg-categories with a compact generator has a compact generator (as Perf is monoidal). 
The second is obvious by the definition of fully-faithful and the construction of tensor 
products. The third follows from Proposition 1.6.3 in [29].

Let us now prove 2). It follows from 1) that both W ⊗ Y → V ⊗ Y and U ⊗ Y → X ⊗ Y

remain open immersions, corresponding the quotients by the subcategories KX−U ⊗ TY

and KV−W ⊗ TY. Since the map KX−U → KV−W is an equivalence, the tensor product 
with the identity of TY

KX−U ⊗ TY → KV−W ⊗ TY (3.39)

remains an equivalence. We are now left to prove that the diagram (3.36) remains a 
pushout. This is equivalent to prove that associated diagram of dg-categories

TX ⊗ TY TU ⊗ TY

TV ⊗ TY TW ⊗ TY

(3.40)

remains a pullback in Dg(k)ft. Since all the dg-categories in this diagram are of finite 
type we can find dg-algebras TX = Perf (AX), TV = Perf (AV), TU = Perf (AU), TW =
Perf (AW) and TY = Perf (AY). It follows that the previous diagram is a pullback if and 
only if the diagram

̂AX ⊗AY
̂AU ⊗AY

̂AV ⊗AY
̂AW ⊗AY

(3.41)

is a pullback in Dgcc(k). By the hypothesis, the diagram

ÂX ÂU

ÂV ÂW

(3.42)

is a pullback and so, thanks to [96, Theorem 7.2-1)] and to Lemma 3.18, we have equiv-
alences

̂AX ⊗AY � RHomc(ÂY, ÂX) � RHomc(ÂY, ÂV ×̂ ÂU) (3.43)

AW
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� RHomc(ÂY, ÂV) ×
RHomc(ÂY,ÂW) RHomc(ÂY, ÂU)

� ̂AV ⊗AY × ̂AW⊗AY

̂AU ⊗AY � (3.44)

Remark 3.20. It follows from the proof that TY does not need to be of finite type. It is 
enough the existence of a compact generator.

To conclude this section we prove that our notion of Nisnevich squares of smooth 
noncommutative spaces is compatible with the classical notion for schemes.

Proposition 3.21. If X is an affine smooth scheme of finite type over k and

p−1(U) V

p

U
i

X

(3.45)

is a Nisnevich square in N (AffSmft(k)), then the induced diagram in NcS(k)

Lpe(p−1(U)) Lpe(V )

Lpe(U) Lpe(X)

(3.46)

is a Nisnevich square of smooth noncommutative spaces.

Proof. Indeed, it is immediate that both maps Lpe(p−1(U)) → Lpe(V ) and Lpe(U) →
Lpe(X) are open immersions of smooth noncommutative spaces. This is exactly the ex-
ample that motivated the definition. They correspond to the quotient maps in Dg(k)idem

Lpe(X) −→ Lpe(X)/Lpe(X)X−U and Lpe(V ) −→ Lpe(V )/Lpe(V )V−p−1(U)

(3.47)

We are left to check that:

1) The square in Dg(k)idem

Lpe(X) Lpe(U)

Lpe(V ) Lpe(p−1(U))

(3.48)

is a pullback;
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2) the map Lpe(X) → Lpe(V ) in Dg(k)idem induces an equivalence Lpe(X)X−U �
Lpe(V )V−p−1(U).

The fact that (3.48) is a pullback follows from the fact that perfect complexes satisfy 
descent for the étale topology (which is a refinement of the Nisnevich topology). This 
result was originally proven by Hirschowitz and Simpson in [87]. See also [103] for further 
details.

The assertion 2) follows from 1) together with the fact that both Lpe(X)X−U and 
Lpe(V )V−p−1(U) are by definition, the kernels of the quotient maps (3.47). �
Remark 3.22. In fact, it can be proved that if a pullback diagram like (3.45) induces 
a Nisnevich square of smooth noncommutative spaces then it is a Nisnevich square 
in the classical sense. This can be deduced using the equivalence Lqcoh(X)X−U �
Lqcoh(V )p−1(X−U) together with the equivalences Lqcoh(X)X−U � Lqcoh(X̂X−U ) and 
Lqcoh(V )p−1(X−U) � Lqcoh(V̂p−1(X−U)) where X̂X−U , respectively, V̂p−1(X−U), denotes 
the formal completion of X (resp. V ) at the closed subset X − U (resp. p−1(X − U)) 
(see [37, Prop. 7.1.3 and Prop. 6.8.2]). In particular this shows that the new notion of 
Nisnevich square is not really a weaker form of the original notion.

Remark 3.23. This non-commutative incarnation of the Nisnevich topology is not an 
actual Grothendieck topology. The pushout of a Nisnevich covering of a dg-category of 
finite type T along a functor T → T ′ is not a Nisnevich covering of T ′ for it does not 
have remain a pullback.

3.3.2. The motivic stable homotopy theory of noncommutative spaces
Now that we have an analogue for the Nisnevich topology in the noncommutative 

setting, compatible with the classical notion for schemes, we can finally conclude our 
task. We apply the same formula that produces the theory of Morel–Voevodsky. We 
start with NcS(k)⊗ and consider its free cocompletion Pbig(NcS(k)) together with the 
natural unique monoidal product extending the monoidal operation in NcS(k), compat-
ible with colimits on each variable and making the inclusion j : NcS(k) → Pbig(NcS(k))
monoidal. In particular, j(Lpe(k)) is the unit object. Next step, consider the localization 
P

big
Nis(NcS(k)) of Pbig(NcS(k)) along the set of all edges j(U) 

∐
j(W) j(V) → j(X) running 

over all the Nisnevich squares of smooth noncommutative space

W V

U X

(3.49)

The theory of localization for presentable (∞, 1)-categories [59, 5.5.4.15] implies that 
P

big
Nis(NcS(k)) is an accessible reflexive localization of Pbig(NcS(k)). The same result, 
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together with the fact that the Nisnevich squares are pushouts squares, implies that every 
representable j(X) is in Pbig

Nis(NcS(k)). Moreover, and thanks to Proposition 3.19, we 
deduce that this localization is monoidal. Finally, and in analogy with the commutative 
case, we consider the localization

lnc
A1 : Pbig

Nis
(
NcS(k)

)
→ Hnc(k) (3.50)

taken with respect to the set of all maps

j(IdX) ⊗ j
(
Lpe(p)

)
: j(X) ⊗ j

(
Lpe

(
A1

k

))
−→ j(X) ⊗ j

(
Lpe

(
Spec(k)

))
(3.51)

with X running over NcS(k). Here, p : A1 → Spec(k) is the canonical projection and 
the tensor product is computed in Pbig

Nis(NcS(k)).20 Again, this is an accessible reflec-
tive localization of Pbig

Nis(NcS(k)) and it follows immediately from the definition of the 
localizing set that it is monoidal. With this we have a sequence of monoidal localizations

NcS(k)⊗ j−→ Pbig(NcS(k)
)⊗ −→ P

big
Nis

(
NcS(k)

)⊗ −→ Hnc(k)⊗ (3.52)

and by construction, Hnc(k) is a presentable symmetric monoidal (∞, 1)-category and 
has a final object which we can identify with the image of the zero object of NcS(k)
through the Yoneda map. Again, in analogy with the classical situation, we consider the 
universal pointing map

()nc
+ : Hnc(k)⊗ → Hnc(k)∧(⊗)

∗ (3.53)

which is an equivalence because of our Convention 3.13: when we localize with respect 
to the Nisnevich topology with Convention 3.13 the (∞, 1)-category Hnc(k) becomes 
pointed.

Finally, the compatibility between the classical and the new Nisnevich squares21

and the respective A1 and Lpe(A1)-localizations, we deduce the existence of uniquely 
determined monoidal colimit preserving functors that make the diagram homotopy com-
mutative

20 Of course, since j is monoidal and the representable objects are Nisnevich local, this is the same as 
localizing with respect to the class of all maps j(X ⊗ Lpe(A1

k)) −→ j(X ⊗ Lpe(Spec(k))).
21 Recall that the collection of classical Nisnevich squares forms a basis for the Nisnevich topology.
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N (AffSmft(k))×

j⊗

Lpe
NcS(k)⊗

j⊗

Pbig(N (AffSmft(k)))×
(Lpe)!

Pbig(NcS(k))⊗

Shbig
Nis(N (AffSmft(k)))×

l×
A1

P
big
Nis(NcS(k))⊗

lnc,⊗
A1

H(S)×

()+

Hnc(k)⊗

H(k)∧∗

ψ⊗

(3.54)

If we proceed according to the classical construction, the next step would be to sta-
bilize the theory, first with respect to S1 (the ordinary stabilization) and then with 
respect to the Tate circle. It happens that the inner properties of the noncommutative 
world make both these steps unnecessary.

Proposition 3.24. The presentable pointed symmetric monoidal (∞, 1)-category Hnc(k)⊗
is stable. Moreover, the Tate circle ψ(Gm) is already an invertible object.

Recall that in H(k)∧∗ we have an equivalence (P1, ∞) � S1∧Gm with Gm pointed at 1. 
Since the functor ψ⊗ is monoidal and commutes with colimits, we also have ψ((P1, ∞)) �
S1 ∧ ψ(Gm). In particular, Proposition 3.24 will follow immediately from the following 
lemma (using Remark 2.25).

Lemma 3.25. The object ψ((P1, ∞)) ∈ Hnc(k)⊗ is invertible and equivalent to a unit of 
the monoidal structure.

Proof. By definition, we have
(
P1,∞

)
:= cofiberH(k)

[
lA1

(
∞ : Spec(k) → P1)] (3.55)

where ∞ : Spec(k) → P1 is the point at infinity. By diagram chasing, the fact that 
Lpe(P1) is a dg-category of finite type, and the fact that all the relevant maps commute 
with colimits we find

ψ
((
P1,∞

))
� lnc

A1

(
cofiberPNis(NcS(k))

[
j
(
Lpe(∞)

)])
(3.56)

We claim that the last cofiber is the unit for the monoidal structure in Pbig
Nis(NcS(k)), 

which, because the Yoneda functor is monoidal, corresponds to j(Perf (k)). To see this, we 
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observe first that map Lpe(∞) : Perf (k) = Lpe(k) → Lpe(P1) in NcS(k) corresponds in 
fact to the pullback map Lpe(P1) → Perf (k) along ∞ in Dg(k)idem . Recall the existence 
of an exceptional collection in Lpe(P1) generated by the sheaves O and O(−1). Since the 
pullback preserves structural sheaves, the map Perf (k) → Lpe(P1) in NcS(k) fits in the 
Nisnevich square of Example 3.17

Perf (k) Lpe(P1)

∗ Perf (k)

(3.57)

dual to the split exact sequence provided by the exceptional collection. Finally, since in 
P

big
Nis(NcS(k)) every Nisnevich square is forced to become a pushout, we have

cofiberPNis(NcS(k))
[
j
(
Perf (k) → Lpe

(
P1))] � Perf (k) (3.58)

which concludes the proof. �
It also follows that we have a canonical equivalence

Hnc(k)⊗
[(
ψ
(
P1,∞

)−1)] � Hnc(k)⊗ (3.59)

and for this reason, we reset the notations to match the classical one

SHnc(k)⊗ := Hnc(k)⊗ (3.60)

Remark 3.26. Let C be an (∞, 1)-category with a zero object 0. Recall that a split exact 
sequence in C is the data of a pushout square

A
i

B

p

0 C

(3.61)

together with maps u : C → B and v : B → A in C with p ◦ u ∼ idC and v ◦ i ∼ idA. We 
easily see that if C is a stable (∞, 1)-category, the data of a split exact sequence provides 
an equivalence B � A ⊕ C.

Remark 3.27. Let X be smooth noncommutative space whose associated dg-category 
TX admits an exceptional collection generated by n + 1 elements. By Remark 3.16 and 
Example 3.17, this provides to the data of n different Nisnevich coverings. These are sent 
to split exact sequences in SHnc(k) which we now know is stable. Using Remark 3.26 we 
find that the image of X in SHnc(k) decomposes as a direct sum of n + 1 copies of the 
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unit 1 = lnc
A1(Perf (k)). In particular the smooth noncommutative space Lpe(Pn) becomes 

equivalent to the direct sum 1 ⊕ ...⊕ 1︸ ︷︷ ︸
n+1

in SHnc(k)⊗.

Finally, our universal property for inverting an object in a presentable symmetric 
monoidal (∞, 1)-category ensures the existence of a unique monoidal colimit map L⊗

extending the diagram (3.54) to

N (AffSmft(k))×
L⊗

pe
NcS(k)⊗

SH(k)⊗ L⊗

SHnc(k)⊗

(3.62)

relating the classical stable homotopy theory of schemes with our new theory. From now 
we assume k is Noetherian of finite Krull dimension.

Remark 3.28. Using the same arguments of 2.4.4 we can describe the symmetric monoidal 
(∞, 1)-category SHnc(k)⊗ using presheaves of spectra. More precisely, we can start 
from the (∞, 1)-category of smooth noncommutative spaces NcS(k) and consider the 
very big (∞, 1)-category Fun(NcS(k)op, ̂Sp). Using the equivalence Fun(NcS(k)op, ̂Sp) �
Stab(Pbig(NcS(k))∗) together with Remark 2.25 we obtain a canonical monoidal struc-
ture Fun(NcS(k)op, ̂Sp)⊗ defined by the inversion Pbig(NcS(k))∧(⊗)

∗ [(S1)−1]⊗. We pro-
ceed, and perform the localizations with respect to the noncommutative version of the 
Nisnevich topology and Lpe(A1). More precisely, and using the same notations as in 2.4.4
we localize with respect to the class of all canonical maps

δΣ∞
+ ◦j(U)(K)

∐
δΣ∞

+ ◦j(W)(K)

δΣ∞
+ ◦j(V)(K) → δΣ∞

+ ◦j(X)(K) (3.63)

with K in (Ŝp)ω and W, V, U and X part of a Nisnevich square of noncommutative smooth 
spaces. For the A1 localization, we localize with respect to the class of all induced maps

δΣ∞
+ ◦j(X⊗Lpe(A1))(K) → δΣ∞

+ ◦j(X)(K) (3.64)

with X in NcS(k) and K ∈ (Ŝp)ω. By the same argument, these are monoidal reflexive 
localizations. We denote the result as FunNis,Lpe(A1)(NcS(k)op, ̂Sp)⊗. It is a stable pre-
sentable symmetric monoidal (∞, 1)-category and by Proposition 3.24 and the universal 
properties involved, it is canonically monoidal equivalent to SHnc(k)⊗.

Using this equivalence and the definition of NcS(k), we can identify an object F ∈
SHnc(k)⊗ with a functor Dg(k)ft → Ŝp satisfying Lpe(A1)-invariance, having a descent 
property with respect to the Nisnevich squares and because of Convention 3.13, satisfying 
F (0) = ∗.
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Remark 3.29 (Strictification). It is also important to remark that an object F in 
Fun(Dg(k)ft , ̂Sp) can always be identified up to equivalence with an actual strict functor 
Fs from the category of dg-categories endowed with the Morita model structure of [88] to 
some combinatorial model category whose underlying (∞, 1)-category is Ŝp (for instance, 
the big model category of symmetric spectra SpΣ of [44]), with Fs sending Morita equiv-
alences to weak-equivalences and commuting with filtered homotopy colimits. Indeed, as 
mentioned in our fast survey, Dg(k)ft generates Dg(k)idem under filtered colimits. Since 
Sp admits all small filtered colimits, using [59, Thm. 5.3.5.10] we find an equivalence 
of (∞, 1)-categories between Fun(Dg(k)ft , ̂Sp) and Funω(Dg(k)idem, ̂Sp) – the full sub-
category of Fun(Dg(k)idem , ̂Sp) spanned by the functors that preserve filtered colimits. 
Moreover, we have also seen that Dg(k)idem is the underlying (∞, 1)-category of the 
Morita model structure for small dg-categories. Finally, with the appropriate universe 
considerations, we can use the strictification result of [63, 1.3.4.25] and the characteri-
zation of homotopy limits and colimits in a model category as limits and colimits in its 
underlying (∞, 1)-category [63, 1.3.4.24] to deduce the existence of a canonical equiva-
lence between Funω(Dg(k)idem, ̂Sp) and the localization along the levelwise equivalences 
of the category of strict functors from the category of dg-categories to the strict model 
for spectra SpΣ , which commute with filtered homotopy colimits and send Morita weak-
equivalences to weak-equivalences in SpΣ .

4. K-theory and noncommutative motives

4.1. Main results

The results in the previous section establish a homotopy commutative diagram of 
colimit preserving monoidal functors extending the functor Lpe

N (AffSmft(k))×

(Σ∞
+ ◦j)⊗

L⊗
pe

NcS(k)⊗

(Σ∞
+ ◦jnc)⊗

Fun(N (AffSmft(k))op, Ŝp)⊗

l⊗Nis

Fun(Dg(k)ft , Ŝp)⊗

lnc,⊗
Nis

FunNis(N (AffSmft(k))op, Ŝp)⊗

l⊗
A1

FunNis(Dg(k)ft , Ŝp)⊗

lnc,⊗
A1

FunNis,A1(N (AffSmft(k))op, Ŝp)⊗

Σ⊗
Gm

FunNis,Lpe(A1)(Dg(k)ft , Ŝp)⊗

∼

SH(k)⊗ L⊗

SHnc(k)⊗

(4.1)
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thus providing a canonical mechanism to compare the theory of Morel–Voevodsky with 
our new approach.

Our goal in this section is to explore how this bridge can be used to give a canonical 
interpretation to the various flavors of algebraic K-theory of schemes and dg-categories. 
In order to state our results, we observe first that, due to the Adjoint Functor Theorem 
[59, Corollary 5.5.2.9], each of the dotted monoidal functors in (4.1) has a right adjoint. 
This is because at each level, the source and target (∞, 1)-categories are presentable 
and each dotted map is, by construction, colimit-preserving. Furthermore, since each 
dotted map is monoidal, these right adjoints are lax-monoidal (see [63, 7.3.2.7]). In 
this case, together with the lax-monoidal inclusions associated to the reflexive monoidal 
localizations, we have a new commutative diagram of lax-monoidal functors

Fun(N (AffSmft(k))op, Ŝp)⊗ Fun(Dg(k)ft , Ŝp)⊗
M

⊗
1

FunNis(N (AffSmft(k))op, Ŝp)⊗ FunNis(Dg(k)ft , Ŝp)⊗
M⊗

2

FunNis,A1(N (AffSmft(k))op, Ŝp)⊗ FunNis,Lpe(A1)(Dg(k)ft , Ŝp)⊗
M⊗

3

SH(k)⊗
Ω∞,⊗

Gm

SHnc(k)⊗M⊗

∼

(4.2)

Let us present some remarks that will be useful along this section.

Remark 4.1. The first functor M1 commutes with small colimits. We can deduce this ei-
ther from the fact that colimits in Fun(N (AffSmft(k))op, ̂Sp) and in Fun(Dg(k)ft , ̂Sp) are 
computed objectwise (see [59, 5.1.2.3]) or from the spectral enriched version of Yoneda’s 
lemma (2.41).

Remark 4.2. All the symmetric monoidal (∞, 1)-categories appearing in the previous 
diagram are stable and presentable. Stability follows because pushouts of local objects 
remain local, thanks to the fact that all colimits are computed objectwise in spectra. 
Therefore all these are closed monoidal. In particular, recall that if C0 ⊆ C is a monoidal 
reflexive localization and if C admits internal-homs HomC then C0 admits internal-homs: 
given X and Y local, we can easily see that HomC(X, Y ) is also local and works as an 
internal-hom in C0.

We observe that each functor M∗ is compatible with the respective internal-homs, in 
the sense that at each level, for every object X on the left and F on the right, we have

M∗
(
Hom∗

(
L∗(X), F

))
� Hom∗

(
X,M∗(F )

)
(4.3)

where L∗ denotes the respective monoidal left adjoint appearing in the diagram (4.1).
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Remark 4.3. Thanks to the enriched version of Yoneda’s lemma for spectral presheaves 
(see Remark 2.41), given an object F ∈ Fun(Dg(k)ft , ̂Sp), we have for each scheme X
an equivalence of spectra

MapSp
Fun(N(AffSmft(k))op,Ŝp)

(
Σ∞

+ ◦ j(X),M1(F )
)

� MapSp
Fun(Dg(k)ft ,Ŝp)

(
Σ∞

+ ◦ jnc
(
Lpe(X)

)
, F

)
� F

(
Lpe(X)

)
(4.4)

so that M1(F ) can be thought of as a restriction of F to the commutative world. The 
same is valid for M2 and M3 because the upper vertical arrows are inclusions.

This mechanism allows us to restrict noncommutative invariants to the commutative 
world. In this section we will be interested in the restriction of the various algebraic 
K-theories of dg-categories. As we shall explain below, all of them live as objects 
in Fun(Dg(k)ft , ̂Sp). There are two of primary relevance to us, namely, Kc encoding 
Waldhausen’s connective K-theory (Section 4.2.2) and KS encoding the non-connective 
K-theory of dg-categories defined by means of Schlichting’s framework in [82] (Sec-
tion 4.2.3). By construction, the latest comes naturally equipped with a canonical natural 
transformation Kc → KS which is an equivalence in the connective part. For the first 
one, it follows immediately from the spectral version of Yoneda’s lemma and from the 
definition in [94, Section 3] that M1(Kc) recovers the connective algebraic K-theory of 
schemes. The second one, by the comparison result [82, Theorem 7.1], recovers the non-
connective K-theory of schemes of Bass–Thomason–Trobaugh of [94]. The construction
of KS in [24] using the methods of [82] is somehow ad-hoc. Our first main result ex-
plains how the non-connective version of K-theory KS can be canonically obtained from 
the connective version Kc as a result of forcing our noncommutative-world version of 
Nisnevich descent.

Theorem 4.4. The canonical morphism Kc → KS presents non-connective K-theory of 
dg-categories as the (noncommutative) Nisnevich localization of connective K-theory.

To prove this result we will first check that KS is Nisnevich local. This follows from 
the well-known localization theorem for non-connective K-theory (see Corollary 4.18
below). The rest of the proof will require a careful discussion concerning the behavior of 
the noncommutative Nisnevich localization. There are two main ingredients:

Step 1) Every Nisnevich local F : Dg(k)ft → Ŝp is determined by its connective part by 
means of the Bass exact sequences. More precisely, we show that every Nisnevich 
local functor F : Dg(k)ft → Ŝp satisfies the familiar Bass exact sequences for any 
integer n. We will see that the proof in [94] can be easily adapted to our setting. 
Namely, we start by showing that every Nisnevich local F satisfies the Projec-
tive Bundle Theorem. This result is central and appears as a consequence of one 
of the most important features of the noncommutative world, namely, the fact 
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that Nisnevich coverings of non-geometrical origin are allowed, in particular, 
those appearing from semi-orthogonal decompositions and exceptional collec-
tions. The projective bundle theorem is a direct consequence of the existence of 
an exceptional collection on Lpe(P1) generated by the sheaves OP1 and OP1(−1)
(see [8]). Its existence forces the image of Lpe(P1) in FunNis(Dg(k)ft , ̂Sp) to be-
come equivalent to the direct sum Lpe(k) ⊕ Lpe(k). To complete the proof we 
proceed as in [94, Theorem 6.1] and explain how this direct sum decomposition 
can be suitably adapted in order to extract the familiar Bass exact sequences 
out of the classical Nisnevich covering of P1 by two affine lines.

Step 2) The connective truncation of the localization map Kc → lnc
Nis(Kc) is an equiva-

lence.22 In other words, the information stored in the connective part of lNis(Kc)
remains the information of connective K-theory. We will prove something a bit 
more general, namely, that this property holds not only for Kc but for the 
whole class of functors F : Dg(k)ft → Ŝp satisfying the formal properties of 
Kc, namely, having values in connective spectra and sending Nisnevich squares 
of dg-categories to pullback squares of connective spectra (for Kc this follows 
from the fibration theorem of Waldhausen [108, 1.6.4] – see Proposition 4.16
below). These will be called connectively-Nisnevich local. We prove that the con-
nective truncation functor induces a canonical equivalence between the theory 
of connective-Nisnevich functors and that of Nisnevich functors (see Proposi-
tion 4.26). For this we will show that if F is connectively-Nisnevich local, its 
noncommutative Nisnevich localization lnc

Nis(F ) is equivalent to FB – the more 
familiar B-construction of Thomason of [94, Def. 6.4].

Remark 4.5. Since the functor M2 in the diagram (4.2) sends Nisnevich local objects to 
Nisnevich local objects, our Theorem 4.4 provides a new proof that the spectral presheaf 
giving the Bass–Thomason–Trobaugh K-theory of schemes satisfies Nisnevich descent.

We can now go one step further and consider the A1-localization of KS . We will prove 
that

Theorem 4.6. M3(lnc
A1(KS)) is the Nisnevich local A1-invariant spectral presheaf giving 

Weibel’s homotopy invariant K-theory of schemes of [109]. In particular, M(lnc
A1KS) is 

22 Recall that Ŝp has a natural t-structure (Ŝp≥0, Ŝp≤−1) with Ŝp≥0 the full subcategory spanned by 
connective spectra. As a consequence, the inclusion Ŝp≥0 ⊆ Ŝp (resp. Ŝp≤−1 ⊆ Ŝp) admits a right adjoint 
τ≥0 (resp. left adjoint τ≤−1). In particular, we have an induced adjunction

Fun(Dg(k)ft, Ŝp≥0) Fun(Dg(k)ft, Ŝp)
τ≥0

with τ≥0 a right adjoint to the inclusion.
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canonically equivalent to the object KH in SH(k) studied in [107] and in [22] representing 
homotopy invariant algebraic K-theory of schemes.

The proof of this result follows immediately from the results in [22] and from our 
Theorem 4.4 using a nice description of the A1-localization functors. This will be done 
in Section 4.4.

Our second main result in this section is a new representability theorem for K-theory.

Theorem 4.7. The further localization lnc
A1(KS) is a unit for the monoidal structure in 

SHnc(k)⊗.

In [12], the author constructs an A1-equivalence between the split and the stan-
dard versions of Waldhausen’s S-construction. In Section 4.5 we will explain how this 
A1-equivalence appears in our context and how the theorem follows as a consequence.

We deduce the following immediate corollaries

Corollary 4.8 (Kontsevich). Let X and Y be two noncommutative spaces with Y smooth 
and proper. Then, there is a natural equivalence of spectra

MapSp
SHnc(k)(X,Y) �

(
lnc
A1KS

)
(TX ⊗ ŤY) (4.5)

where we identify X and Y with their images in SHnc(k) and where TX (resp. ŤY) denotes 
the dg-category of finite type associated to X (resp. the dual of the dg-category associated 
to Y).

Proof. This follows directly from the spectral version of the Yoneda lemma and from our 
Theorems 4.4 and 4.7, together with the fact that a smooth and proper noncommutative 
space is dualizable. �
Remark 4.9. We direct the reader to [79, Prop. 9.3.4] for an extension of Theorem 4.7
and Corollary 4.8 to non-commutative motives over a more general base scheme.

Corollary 4.10. The object KH ∈ SH(k) representing homotopy algebraic K-theory is 
equivalent to M(1nc). In particular, for each scheme X we have an equivalence of spectra

KH (X) � MapSp
SH(k)

(
Σ∞

+ ◦ j(X),KH
)
� MapSp

SHnc(k)
(
Σ∞

+ ◦ jnc
(
Lpe(X)

)
, 1nc

)
(4.6)

At this point we should emphasize that a different representability result for connec-
tive K-theory is already known from the thesis of G. Tabuada [90] and for non-connective 
K-theory from his later works with D.C. Cisinski [24]. Our setting and proofs are indepen-
dent of theirs. In the appendix we explain the relation between the two approaches. The 
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main advantage of our theory is the existence of a canonical comparison with the original 
approach of Morel–Voevodsky and our new representability theorem brings some imme-
diate consequences to the nature of this comparison. Namely, since M is lax-monoidal 
[63, 7.3.2.7], the object KH � M(1nc) acquires a canonical structure of commutative 
algebra-object in SH(k) induced by the trivial algebra structure on the unit object 1nc. 
In this case, the comparison functor L⊗ : SH(k)⊗ → SHnc(k)⊗ admits a canonical 
colimit preserving monoidal factorization (see our discussion in [79, Section 3.3.9]):

SH(k)⊗ L⊗

−⊗KH

SHnc(k)⊗
(−⊗1nc)Id

−⊗L(KH)

ModKH(SH(k))⊗ ModL(KH)(SHnc(k))⊗
−⊗L(KH)1nc

Mod1nc(SHnc(k))⊗

(4.7)

where the first lower map is the monoidal functor induced by L at the level of modules 
and the last map is base-change with respect to the canonical morphisms of algebra 
objects given by the counit of the adjunction L(KH) � L ◦ M(1nc) → 1nc.23 We will 
write LKH for this factorization.

Warning 4.11. We will not prove here that the commutative algebra structure in KH

obtained from our arguments is the same as the one already appearing in the literature 
and deduced from different methods (for instance, see [38,69]). However, we believe that 
the arguments used in [69] also work in the ∞-categorical setting, so that our algebra 
structure should match the standard one.

Our representability result has the following corollary showing that under the existence 
of resolutions of singularities the passage to the noncommutative world produces no loss 
of information from the K-theoretic viewpoint.

Corollary 4.12. Let k be a field admitting resolutions of singularities. Then the canonical 
map

LKH : ModKH

(
SH(k)

)
→ SHnc(k) (4.8)

is fully faithful.

Proof. Thanks to the main results of [77] the family of dualizable objects in SH(k)
is a family of ω-compact generators for the stable (∞, 1)-category SH(k) in the sense 
of Proposition 1.12. One can now easily check that the collection of all objects in the 

23 Notice that the adjunction (L, M) extends to an adjunction between the (∞, 1)-categories of commu-
tative algebra-objects, so that this counit map is a morphism of algebras. In particular, we can perform 
base-change with respect to it.
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stable (∞, 1)-category ModKH(SH(k)) of the form X⊗KH with X dualizable in SH(k)
is again a family of ω-compact generators in the sense of Proposition 1.12. See [79, 
Prop. 3.8.3]. Since the functor (− ⊗KH) is monoidal, the objects X⊗KH are dualizable 
in ModKH(SH(k)) and as LKH is monoidal, their image in SHnc(k) is dualizable and 
therefore compact (using the fact the monoidal structure is compatible with colimits 
in each variable). By Proposition 1.13 we are now reduced to showing that LKH is 
fully faithful when restricted to the full subcategory spanned by all the objects of the 
form X ⊗ KH with X dualizable in SH(k). This follows from the canonical chain of 
equivalences

MapModKH(SH(k))(X ⊗KH,Y ⊗KH)

� MapSH(k)(X,Y ⊗KH) (4.9)

� MapSH(k)(X ⊗ Y̌ ,KH) � MapSHnc(k)
(
L(X ⊗ Y̌ ), 1nc

)
(4.10)

� MapSHnc(k)
(
L(X) ⊗ L(Y̌ ), 1nc

)
� MapSH(k)

(
L(X) ⊗ ˇL(Y ), 1nc

)
(4.11)

� MapSHnc(k)
(
L(X)⊗,L(Y )

)
(4.12)

where we use the adjunction properties, the fact that KH � M(1nc) and the fact that 
L is monoidal and therefore preserves dualizable objects. This concludes the proof. �

Although this result is new in the literature, its content has been known for a while. 
I think particularly of B. Toen, M. Vaquié and G. Vezzosi and also of D.-C. Cisinski and 
G. Tabuada.

4.2. Preliminaries on K-theory

4.2.1. Connective K-theory – a historical overview
K-theory was discovered by A. Grothendieck during his attempts to generalize the 

classical Riemann–Roch Theorem (see [20,35]). Given an abelian category E he was led 
to consider an abelian group K0(E) together with a map θ : Obj(E) → K0(E) universal 
with respect to the following property: for any exact sequence a → b → c in E we have 
θ(b) = θ(a) + θ(c).

The essential insight leading to the introduction of higher K-theory groups is the 
observation by Quillen [74] that the group law on K0(E) can be understood as the 
π0-reminiscent part of a grouplike homotopy commutative law on a certain space K(E). 
Following his ideas, for any “exact category” E we are able to define such a K-theory 
space K(E) whose homotopy groups πn(K(E)) we interpret as level n K-theoretic in-
formation. In particular, this methodology allows us to attach a K-theory space to every 
scheme X using the canonical structure of exact category on E = Vect(X).

An important step in this historical account is a theorem by Segal [85, 3.4] (and 
its later formulation in terms of model categories in [21]) establishing an equivalence 
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between the homotopy theory of grouplike homotopy commutative algebras in spaces 
and the homotopy theory of connective spectra. This is the reason why connective spec-
tra is commonly used as the natural target for K-theory and the origin of the term 
“connective”. In the modern days this equivalence can be stated by means of an equiv-
alence of (∞, 1)-categories, namely, between the (∞, 1)-category CAlggrplike(S) and the 
(∞, 1)-category Sp≥0 (see [63, Theorem 5.2.6.10 and Remark 5.2.6.26]).

In [108] Waldhausen extends the domain of K-theory from exact categories to what 
we nowadays call “Waldhausen categories”. Grosso modo, these are triples (C, W, Cof (C))
where C is a classical category having a zero object and both W and Cof (C) are classes of 
morphisms in C, respectively called “weak-equivalences” and “cofibrations”. These triples 
are subject to certain conditions which we will not specify here. Waldhausen constructs 
a K-theory space out of this data using is the algorithm known as the “S-construction” 
which we review here very briefly:

Construction 4.13 (S-construction). Let Ar[n] be the category of arrows in the linear 
category [n]. In more explicit terms it can be described as the category where objects 
are pairs (i, j) with i ≤ j and there is one morphism (i, j) → (l, k) everytime i ≤ l and 
j ≤ k. Let now (C, W, Cof (C)) be a Waldhausen category. We let Sn(C) denote the full 
subcategory of all functors Fun(Ar[n], C) spanned by those functors A verifying:

1. A(i, i) is a zero object of C for all 0 ≤ i ≤ n;
2. for any i the maps A(i, j) → A(i, k) with j ≤ k are cofibrations in C;
3. for any i ≤ j ≤ k the induced diagram

A(i, j) A(i, k)

0 = A(j, j) A(j, k)

(4.13)

is a pushout C.

In other words, the objects in Sn(C) can be identified with sequences of cofibrations 
of length n − 1 plus the data of the successive quotients. In particular, S0(C) is the 
category with a single object and S1(C) is equivalent to C. Moreover, the collection of 
categories {Sn(C)}n∈N assembles to form a simplicial category S•(C) carrying at each 
level a canonical structure of Waldhausen category whose weak-equivalences Wn are the 
levelwise weak-equivalences in C. By definition, the K-theory space of C is the simplicial 
set Kc(C) := Ω colimΔopN(Sn(C)Wn) where Sn(C)Wn denotes the subcategory of Sn(C)
containing all the objects and only those morphisms which are weak-equivalences and N
is the standard nerve functor. By iterating this procedure we can produce a connective 
spectrum. For the complete details see [108].
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There is a natural notion of exact functor between Waldhausen categories providing 
a category WaldClassic and the K-theory assignment can be understood as a functor

Kc
Wald : N(WaldClassic) −→ SpΣ (4.14)

where SpΣ is a model category for the (∞, 1)-category Sp.
Many Waldhausen categories used in practice appear as subcategories of a Quillen 

model category [73] with the cofibrations and weak-equivalences therein. We will de-
note by WaldModel

Classic the full subcategory of WaldClassic spanned by those Waldhausen 
categories falling into this list of examples. These Waldhausen categories have a spe-
cial advantage – the factorization axioms for the model category allow us to change 
Construction 4.13 to consider all morphisms in C, not only the cofibrations.

This first era of connective K-theory finishes with the works of Thomason–Trobaugh 
in [94] where the machinery of Waldhausen is applied to schemes and it is proven that 
the connective K-theory of a scheme X introduced by Quillen can be recovered from the 
K-theory attached to the Waldhausen structure on the category of perfect complexes on 
the scheme.

The current era begins with the observation that the K-theory of a Waldhausen da-
tum (C, W, Cof (C)) is not an invariant of the classical 1-categorical localization C[W−1]: 
there are examples of pairs of Waldhausen categories with the same homotopy cate-
gories but with different K-theory spaces (see [81]). The crucial results of Toën–Vezzosi 
in [101] allow us to identify the world of (∞, 1)-categories as the natural ultimate do-
main for K-theory. They prove that if the underlying (∞, 1)-categories associated to 
a pair of Waldhausen categories (via the ∞-localization) are equivalent then the as-
sociated K-theory spaces are equivalent. Moreover, in the same paper, the authors 
remark that the classical S-construction of Waldhausen can be lifted to the setting 
of (∞, 1)-categories. Following this insight, in [4] C. Barwick introduced the notion of a 
Waldhausen (∞, 1)-category (which, grosso modo are pairs of (∞, 1)-categories (A0, A)
with A0 a full subcategory of A containing its maximal ∞-groupoid, together with ex-
tra conditions on this pair) and develops this ∞-version of the S-construction. The 
collection of Waldhausen (∞, 1)-categories forms itself an (∞, 1)-category Wald∞ and 
the result of this new ∞-version of the S-construction can be encoded as an ∞-functor 
Kc

Barwick : Wald∞ → Sp≥0. Moreover, there is a canonical ∞-functor linking the classical 
theory to this new approach

N
(
WaldModel

Classic
)
−→ Wald∞ (4.15)

sending a classical Waldhausen datum (C, W, Cof (C)) to the ∞-localization N(C)[W−1]
together with its smallest subcategory containing the equivalences and the images of 
the cofibrations under the localization functor (see [4, Example 2.12]). Barwick then 
proves that the two S-constructions, respectively, the classical and the new ∞-version 
agree by means of this assignment and therefore produce the same K-theory [4, 10.6.2]. 
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Up to our days this framework seems to be the most natural and general domain for 
connective K-theory. However, we should remark that a different ∞-categorical domain 
has been established in the paper [13] where the authors study K-theory spaces as-
sociated to pointed (∞, 1)-categories having all finite colimits, whose collection forms 
an (∞, 1)-category Cat∞(ω)∗. They generalize the classical S-construction to this new 
domain obtaining a new ∞-functor Kc

BGT : Cat∞(ω)∗ → Sp≥0, and prove that for any 
Waldhausen category C with equivalences W (appearing as a subcategory of a model cat-
egory), the K-theory space which their method assigns to the ∞-localization N(C)[W−1]
is equivalent to the classical K-theory space attached to C through the classical meth-
ods of Waldhausen. This framework is of course related to the wider framework of [4]: 
following the example [4, 2.9], every pointed (∞, 1)-category with finite colimits has a 
naturally associated Waldhausen (∞, 1)-category. Again, this assignment can be properly 
understood as an ∞-functor

Ψ : Cat∞(ω)∗ −→ Wald∞ (4.16)

We summarize this fast historical briefing with the existence of a diagram of 
(∞, 1)-categories

Cat∞(ω)∗

Kc
B.G.T.

Ψ

N(WaldModel
Classic)

Kc
Wald

Wald∞

Kc
Barwick

Sp≥0

(4.17)

whose commutativity follows from the results in [4] and in [13] and from the agreement 
of the two ∞-categorical versions of the S-construction via Ψ . This agreement follows 
from the very definition of the two procedures. Consult [4, Section 5] and [13, Section 7.1]
for the complete details.

4.2.2. Connective K-theory of dg-categories
Our goal in this section is to explain how to define the connective K-theory of a 

dg-category and how to present this assignment as an ∞-functor Kc : Dg(k)idem →
Ŝp≥0 commuting with filtered colimits. One possible way is to use the classical the-
ory of Waldhausen categories. As discussed in Remark 3.29, the data of an object 
F ∈ Funω(Dg(k)idem, ̂Sp) corresponds in an essentially unique way to the data of an ac-
tual strict functor Fs from the category of small dg-categories CatCh(k) with the Morita 
model structure to some combinatorial model category whose underlying (∞, 1)-category 
is Ŝp such that 1) Fs sends Morita equivalences to weak-equivalences and 2) Fs preserves 
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filtered homotopy colimits. In the case of connective K-theory such a functor can be ob-
tained by composing the strict functor Kc

Wald : WaldClassic → SpΣ of the previous section 
with the functor CatCh(k) → WaldModel

Classic defined by sending a small dg-category T to 
the strict category of perfect cofibrant dg-modules (obtained by forgetting the dg-enrich-
ment), with its natural structure of Waldhausen category given by the weak-equivalences 
of T -dg-modules and the cofibrations of the module structure therein. This is well-defined 
because perfect modules are stable under homotopy pushouts and satisfy the “cube lem-
ma” [42, 5.2.6]. The conditions 1) and 2) are also well-known to be satisfied (for instance 
see [12, Section 2.2]). For the most part of this work it will be enough to work with 
the ∞-functor Kc : Dg(k)ft → Ŝp≥0 associated to this composition via Remark 3.29 or 
its canonical ω-continuous extension Dg(k)idem → Ŝp. However, some of our purposes 
(namely Theorem 4.7) will require an alternative approach. More precisely, and in the 
same spirit of [13, Section 7.1] for stable ∞-categories, we will need to have a description 
of the Waldhausen S-construction within the setting of dg-categories.

Construction 4.14. Let Ar[n]k be the dg-category obtained as the k-linearization of the 
category Ar[n] described in Construction 4.13. More precisely, its objects are the objects 
in Ar[n] and its complexes of morphisms are all given by k seen as a complex concen-
trated in degree zero. For each n the dg-category Ar[n]k is locally cofibrant (meaning, 
enriched over cofibrant complexes ) so that for any locally cofibrant dg-category T we 
have Ar[n]k ⊗L T � Ar[n]k ⊗ T .

Recall also from [96] that the symmetric monoidal (∞, 1)-category Dg(k)⊗ admits an 
internal-hom RHom(A, B) given by the full sub-dg-category of right-quasi-representable 
cofibrant A ⊗L Bop-dg-modules. If T is a locally cofibrant dg-category and T̂c is its 
idempotent-completion (which we can always assume to be locally cofibrant), we find a 

canonical equivalence in Dg(k) between RHom(A, T̂c) and ̂Aop ⊗L T pspe – the full sub-
dg-category of cofibrant pseudo-perfect A ⊗L T op-dg-modules (by definition, these are 
cofibrant dg-modules E such that for any object a ∈ A, the T op-module E(A, −) is per-
fect). With this, we have RHom(Ar[n]k, T̂c) � ̂Ar[n]opk ⊗L T

pspe
� ̂Ar[n]opk ⊗ T

pspe
so 

that the objects in this internal-hom can be identified with Ar[n]-indexed diagrams in the 
underlying strict category of perfect cofibrant T op-modules (obtained by forgetting the 
dg-enrichment). We now set Sdg

n (T ) to be the full sub-dg-category of RHom(Ar[n]k, T̂c)
spanned by those diagrams satisfying the conditions in Construction 4.13. These con-
ditions make sense for the same reasons the functor CatCh(k) → WaldModel

Classic of the 
previous section also makes sense (see [12, Section 2.2]). Again, the collection of dg-
categories Sdg

n (T ) for n ≥ 0 forms a simplicial object in dg-categories and by considering 
each level as a category (omitting its dg-enrichment) we can recover the K-theory of T
as Ω colimΔopN(Sdg

n (T )Wn) where Wn is the class of maps in Sdg
n (T ) given by the lev-

elwise weak-equivalences of dg-modules and Sdg
n (T )Wn is the full subcategory of Sdg

n (T )
spanned by all the objects and only those morphisms which are in Wn.

Let now [n]k be the dg-category obtained as the k-linearization of the ordered category 
[n] = {0 ≤ 1 ≤ .... ≤ n}. This dg-category is again locally cofibrant and for the same 
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reasons as above the underlying category obtained from RHom([n]k, T̂c) by forgetting the 
dg-enrichment is the category of sequences of perfect cofibrant T op-dg-modules of length 
n +1. As cofibers of maps are essentially uniquely determined up to isomorphism, we have 
a canonical equivalence of categories between Sdg

n (T ) and RHom([n − 1]k, T̂c). Since the 
model structure on T op-dg-modules satisfies the “cube lemma” [42, 5.2.6] (because Ch(k)
satisfies it for the projective model structure) this equivalence becomes an equivalence of 
pairs (Sdg

n (T ), Wn) and (RHom([n − 1]k, T̂c), W ′
n), where we consider both dg-categories 

as categories by forgetting the dg-enrichments and where W ′
n denotes the class of maps 

of sequences which are levelwise given by weak-equivalences of dg-modules. Thanks to 
this equivalence we find a homotopy equivalence of simplicial sets between N(Sdg

n (T )Wn)
and N(RHom([n −1]k, T̂c)W

′
n). This is a dg-version of [63, 1.2.2.4]. Finally, and thanks to 

the main theorem of [96] the latter is exactly the mapping space MapDg(k)([n − 1]k, T̂c)
which by adjunction is equivalent to MapDg(k)idem ( ̂([n− 1]k)c, T̂c). Under this chain of 
equivalences this family of mapping spaces for n ≥ 0 inherits the structure of a simplicial 
object in the (∞, 1)-category of spaces and the K-theory space of T can finally be 
rewritten as

Ω colim[n]∈ΔopMapDg(k)idem
( ̂(

[n− 1]k
)
c
, T̂c

)
(4.18)

This concludes the construction.

To conclude this section we remark two important properties of Kc. The first should 
be well known to the reader:

Proposition 4.15. (See [108].) The ∞-functor Kc : Dg(k)idem → Ŝp sends exact se-
quences of dg-categories to fiber sequences in Ŝp≥0.

Proof. This follows from the so-called Waldhausen’s Fibration Theorem [108, 1.6.4] and 
[94, 1.8.2], together with the dictionary between homotopy limits and homotopy colimits 
in the model category of spectra and limits and colimits in the (∞, 1)-category Ŝp (see 
[63, 1.3.4.23 and 1.3.4.24]). �

The second is a consequence of this first and will be very important to us:

Proposition 4.16. Kc sends Nisnevich squares of noncommutative smooth spaces to pull-
back squares of connective spectra.

Proof. Let

TX TU

TV TW

(4.19)
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be a Nisnevich square of dg-categories. By definition, there are dg-categories KX−U and 
KV−W in Dg(k)idem, having compact generators, and such that the maps TX → TU and 
TV → TW fit into strict short exact sequences in Dg(k)idem (see Definition 3.11 and 
Remark 3.9)

KX−U TX KV−W TV

0 TU 0 TW

(4.20)

Again by the definition of an open immersion and because of Proposition 4.15 we have 
pullback squares of connective spectra

Kc(KX−U) Kc(TX) Kc(KV−W) Kc(TV)

0 Kc(TU) 0 Kc(TW)

(4.21)

With these properties in mind, we aim to show that the diagram

Kc(TX) Kc(TU)

Kc(TV) Kc(TW)

(4.22)

is a pullback of connective spectra. For that purpose we consider the pullback squares

Kc(KX−U) Kc(KV−W) 0

Kc(TX) Kc(TV) ×Kc(TW) K
c(TU) Kc(TU)

Kc(TV) Kc(TW)

(4.23)

from which we extract a morphism of fiber sequences
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Kc(KX−U) Kc(KV−W)

Kc(TX) Kc(TV) ×Kc(TW) K
c(TU)

Kc(TU) Kc(TU)

(4.24)

To conclude, since the square (4.19) is Nisnevich, by definition, the canonical mor-
phism KX−U → KV−W is an equivalence in Dg(k)idem so that the top map is an 
equivalence Kc(KX−U) � Kc(KV−W). Using the associated long exact sequences we 
conclude that the canonical morphism

Kc(TX) Kc(TV) ×Kc(TW) K
c(TU) (4.25)

is also an equivalence, thus concluding the proof. �
4.2.3. Non-connective K-theory

The first attempts to define negative K-theory groups date back to the works of Bass 
in [5] and Karoubi in [50]. The motivation to look for these groups is very simple: the 
higher K-theory groups of an exact sequence of Waldhausen categories do not fit in a 
long exact sequence. The full solution to this problem appeared in the legendary paper of 
Thomason–Trobaugh [94] where the author provides a mechanism to extend the connec-
tive spectrum Kc of Waldhausen to a new non-connective spectrum KB whose connective 
part recovers the classical data. His attention focuses on the K-theory of schemes and 
recovers the negative groups of Bass (by passing to the homotopy groups). Moreover, it 
satisfies the property people were waiting for [94, Thm. 7.4]: for any reasonable scheme 
X with an open subscheme U ⊆ X with complement Z, there is a pullback–pushout 
sequence of spectra K(X on Z) → K(X) → K(U) where K(X on Z) is the K-theory 
spectrum associated to the category of perfect complexes on X supported on Z. More-
over, he proves that his non-connected version of K-theory satisfies descent with respect 
to the classical Nisnevich topology for schemes (see [94, Thm. 10.8]).

More recently, Schlichting [82] introduced a mechanism that allows us to define non-
connective versions of K-theory in a wide range of situations and in [25, Sections 6 and 7]
the authors applied this algorithm to the context of dg-categories. The result is a pro-
cedure that sends Morita equivalences of dg-categories to weak-equivalences of spectra 
and commutes with filtered homotopy colimits (for instance, see [12, 2.12]) and comes 
canonically equipped with a natural transformation from connective K-theory induc-
ing an equivalence in the connective part. By applying the arguments of Remark 3.29
their construction can be encoded in a unique way in the form of an ω-continuous 
∞-functor KS : Dg(k)idem → Ŝp together with a natural transformation Kc → KS

with τ≥0K
c � τ≥0K

S . The motto of non-connective K-theory can now be stated as
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Proposition 4.17. KS sends exact sequences in Dg(k)idem to cofiber/fiber sequences in Ŝp.

Proof. This follows from [82, 12.1 Thm. 9] and from the adaptation of the Schlichting
setup to dg-categories in [25, Section 6], together with the fact that our notion of exact 
sequences in Dg(k)idem agrees with the notion of exact sequences in [25] (see 3.7-(3)). 
To conclude use again the dictionary between homotopy limits and homotopy colimits 
in a model category and limits and colimits on the underlying (∞, 1)-category. �

Using the same arguments as in Proposition 4.16, we find

Corollary 4.18. KS is Nisnevich local.

The method of Thomason (the so-called B-construction) and the methods of Schlicht-
ing to create non-connective extensions of K-theory are somehow ad hoc. In this paper 
we show that these two constructions can both be understood as explicit models for the 
same process, namely, the Nisnevich “sheafification”24 in the noncommutative world.

4.3. Non-connective K-theory is the Nisnevich localization of connective K-theory

In this section we give the proof of Theorem 4.4. As explained in the introduc-
tion, it goes in two steps. First, in 4.3.1, we prove that every Nisnevich local functor 
F : Dg(k)ft → Ŝp satisfies the familiar Bass exact sequences for any integer n. The second 
step requires a more careful discussion. In 4.3.2 we introduce the notion of connective-
Nisnevich descent for functors F : Dg(k)ft → Ŝp with values in Ŝp≥0. We will see 

(Proposition 4.24 below) that the full subcategory FunNis≥0(Dg(k)ft , ̂Sp≥0) spanned by 
those functors satisfying this descent condition, is an accessible reflexive localization of 
Fun(Dg(k)ft , ̂Sp≥0)

FunNis≥0(Dg(k)ft , Ŝp≥0)
α Fun(Dg(k)ft , Ŝp≥0)

lnis≥0

(4.26)

and that as a consequence of the definition the connective truncation of a Nisnevich local 
is connectively-Nisnevich local, and we have a natural factorization τ≥0

Fun(Dg(k)ft , Ŝp≥0) Fun(Dg(k)ft , Ŝp)
τ≥0

FunNis≥0(Dg(k)ft , Ŝp≥0)

α

FunNis(Dg(k)ft , Ŝp)
τ≥0

β (4.27)

24 The noncommutative Nisnevich topology is not a Grothendieck topology.
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where α and β denote the inclusions. By abstract nonsense, the composition i! := lnc
nis◦i ◦α

provides a left adjoint to τ≥0 and, because the diagram of right adjoints commutes, the 
diagram of left adjoints

Fun(Dg(k)ft , Ŝp≥0)

lnis≥0

i Fun(Dg(k)ft , Ŝp)

lnc
nis

FunNis≥0(Dg(k)ft , Ŝp≥0)
i! FunNis(Dg(k)ft , Ŝp)

(4.28)

also commutes.
The second step in our strategy amounts to checking that the adjunction (i!, τ≥0)

is an equivalence of (∞, 1)-categories. At this point our task is greatly simplified by 
the first step: the fact that Nisnevich local objects satisfy the Bass exact sequences 
for any integer n implies that τ≥0 is conservative. Therefore, we are reduced to prove 
that the counit of the adjunction τ≥0 ◦ i! → Id is an equivalence of functors. In other 
words, if F is already connectively-Nisnevich local, its Nisnevich localization preserves 
the connective part. In order to achieve this we will need a more explicit description 
of the noncommutative Nisnevich localization of a connectively-Nisnevich local F . Our 
main result is that the more familiar (−)B construction of Thomason–Trobaugh (which 
we reformulate in our setting) provides such an explicit model, namely, we prove that 
if F is connectively-Nisnevich local, τ≥0(FB) is naturally equivalent to F and FB is 
Nisnevich local and naturally equivalent to lnc

nis(F ).

4.3.1. Nisnevich descent forces all the Bass exact sequences
In this section we prove that every Nisnevich local F : Dg(k)ft → Ŝp satisfies the 

familiar Bass exact sequences for any integer n. Our proof follows the arguments of 
[94, 6.1]. The first step is to show that every Nisnevich local F satisfies the Projective 
Bundle Theorem. As explained in the introduction, this follows from the existence of an 
exceptional collection in Lpe(P1) generated by the twisting sheaves OP1 and OP1(−1), 
which, following Example 3.17, provides a split short exact sequence of dg-categories

Lpe(k)
iO

P1

Lpe(P1)

0 Lpe(k)

iO
P1 (−1) (4.29)

where the map iO
P1

, resp. iO
P1 (−1), is the inclusion of the full triangulated subcategory 

generated by OP1 , respectively OP1(−1). In particular, since Dg(k)ft has direct sums, we 
extract canonical maps of dg-categories

Lpe(k) ⊕ Lpe(k) ψ−→ Lpe
(
P1) Lpe

(
P1) φ−→ Lpe(k) ⊕ Lpe(k) (4.30)
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We observe now that these maps become mutually inverse once we consider them 
in FunNis(Dg(k)ft , ̂Sp) via Yoneda’s embedding. Indeed, the split exact sequence in 
(4.29), or more precisely, its opposite in NcS(k), induces a split exact sequence in 
FunNis(Dg(k)ft , ̂Sp)

lnc
Nis ◦Σ∞

+ ◦ jnc(Lpe(k)) lnc
Nis ◦Σ∞

+ ◦ jnc(Lpe(P1))

0 lnc
Nis ◦Σ∞

+ ◦ jnc(Lpe(k))

(4.31)

This is because FunNis(Dg(k)ft , ̂Sp) is stable, together with the effects of the Nis-
nevich localization. Also because of stability we know that lnc

Nis preserves direct sums. In 
particular, we have canonical maps

lnc
Nis ◦Σ∞

+ ◦ j
(
Lpe

(
P1)) → lnc

Nis ◦Σ∞
+ ◦ jnc

(
Lpe(k)

)
⊕ lnc

Nis ◦Σ∞
+ ◦ jnc

(
Lpe(k)

)
(4.32)

lnc
Nis ◦Σ∞

+ ◦ jnc
(
Lpe(k)

)
⊕ lnc

Nis ◦Σ∞
+ ◦ jnc

(
Lpe(k)

)
→ lnc

Nis ◦Σ∞
+ ◦ j

(
Lpe

(
P1))

(4.33)

which can be identified with the image under Σ∞
+ ◦ jnc of the opposites of the canonical 

maps of dg-categories in (4.30), respectively. This is because in NcS(k) finite sums are 
the same as finite products (see the end of our discussion in [79, Section 6.1.2]), because 
Yoneda’s embedding commutes with finite products and because the pointing map S →
S∗ and the suspension Σ∞ commute with all colimits.

This time, and as explained in Remarks 3.26 and 3.27, because FunNis(Dg(k)ft , ̂Sp) is 
stable, these canonical maps are inverses to each other. In other words, we have a direct 
sum decomposition

lnc
Nis ◦Σ∞

+ ◦ j
(
Lpe

(
P1)) � lnc

Nis ◦Σ∞
+ ◦ jnc

(
Lpe(k)

)
⊕ lnc

Nis ◦Σ∞
+ ◦ jnc

(
Lpe(k)

)
� lnc

Nis ◦Σ∞
+ ◦ jnc

(
Lpe(k) ⊕ Lpe(k)

)
(4.34)

where the first (resp. second) component can be identified with the part of Lpe(P1)
generated by OP1 (resp. OP1(−1)).

In particular, if we denote by Hom the internal-hom in FunNis(Dg(k)ft , ̂Sp) we find

Corollary 4.19. Let F be a Nisnevich local functor Dg(k)ft → Ŝp. Then F satisfies the 
projective bundle theorem. In other words, we have

Hom
(
lnc
Nis ◦Σ∞

+ ◦ j
(
Lpe

(
P1)), F )

� Hom
(
lnc
Nis ◦Σ∞

+ ◦ j
(
Lpe(k)

)
, F

)
⊕ Hom

(
lnc
Nis ◦Σ∞

+ ◦ j
(
Lpe(k)

)
, F

)
� F ⊕ F
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As in [94, 6.1] we can now re-adapt this direct sum decomposition to a new one, 
suitably choosen to extract the Bass exact sequences out of the classical Zariski (therefore 
Nisnevich) covering of P1 given by

Gm
i

j

A1

α

A1 β
P1

(4.35)

The basic ingredient is the induced pullback diagram of dg-categories

Lpe(P1) α∗

β∗

Lpe(A1)

j∗

Lpe(A1) i∗

Lpe(Gm)

(4.36)

together with the composition

Lpe(k) ⊕ Lpe(k)
ψ

α∗◦ψ

β∗◦ψ
Lpe(P1) α∗

β∗

Lpe(A1)

j∗

Lpe(A1) i∗

Lpe(Gm)

(4.37)

More precisely, we will focus on the diagram in Fun(Dg(k)ft , ̂Sp) induced by the 
opposite of the above diagram, namely,

Σ∞
+ ◦ jnc(Lpe(Gm))

Lpe(i)

Lpe(j)

Σ∞
+ ◦ jnc(Lpe(A1))

Lpe(α)

Σ∞
+ ◦ jnc(Lpe(A1))

Lpe(β)
Σ∞

+ ◦ jnc(Lpe(P1))
Σ∞

+ ◦jnc(ψop)

Σ∞
+ ◦ jnc(Lpe(k) ⊕ Lpe(k))

(4.38)

Remark 4.20. It follows from Proposition 3.21, from the effects of the Nisnevich local-
ization and from the above discussion that the exterior commutative square in (4.38)
becomes a pushout–pullback square in FunNis(Dg(k)ft , ̂Sp).
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In order to extract the Bass exact sequences, we consider a different direct sum de-
composition of lnc

Nis ◦Σ∞
+ ◦ jnc(Lpe(P1)). For that purpose, let us start by introducing a 

bit of notation. We let i1, i2 denote the canonical inclusions Lpe(k) → Lpe(k) ⊕ Lpe(k)
in Dg(k)ft , and let π1, π2 denote the projections Lpe(k) ⊕Lpe(k) → Lpe(k). At the same 
time, let iop1 and iop2 denote the associated projections in NcS(k) and πop

1 and πop
2 the 

canonical inclusions. Since Yoneda’s map Σ∞
+ ◦jnc commutes with direct sums, the maps 

Σ∞
+ ◦ jnc(iop1 ) and Σ∞

+ ◦ jnc(iop1 ) can be identified with the canonical projections

Σ∞
+ ◦ jnc

(
Lpe(k)

)
⊕Σ∞

+ ◦ jnc
(
Lpe(k)

)
→ Σ∞

+ ◦ jnc
(
Lpe(k)

)
(4.39)

and Σ∞
+ ◦ jnc(πop

1 ) and Σ∞
+ ◦ jnc(πop

2 ) with the canonical inclusions

Σ∞
+ ◦ jnc

(
Lpe(k)

)
→ Σ∞

+ ◦ jnc
(
Lpe(k)

)
⊕Σ∞

+ ◦ jnc
(
Lpe(k)

)
(4.40)

in Fun(Dg(k)ft , ̂Sp).
Let us proceed. To achieve the new decomposition, we compose the decomposition we 

had before with an equivalence Θ in Fun(Dg(k)ft , ̂Sp)

Σ∞
+ ◦ jnc

(
Lpe(k)

)
⊕Σ∞

+ ◦ jnc
(
Lpe(k)

)
Θ−−→ Σ∞

+ ◦ jnc
(
Lpe(k)

)
⊕Σ∞

+ ◦ jnc
(
Lpe(k)

)
(4.41)

defined to be the map

Σ∞
+ ◦ jnc(Lpe(k))

Σ∞
+ ◦ jnc(Lpe(k)) ⊕Σ∞

+ ◦ jnc(Lpe(k))

δ1

δ2

Θ
Σ∞

+ ◦ jnc(Lpe(k)) ⊕Σ∞
+ ◦ jnc(Lpe(k))

Σ∞
+ ◦jnc(iop1 )

Σ∞
+ ◦jnc(iop2 )

Σ∞
+ ◦ jnc(Lpe(k))

(4.42)

obtained from the universal property of the direct sum, where:
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• δ1 it is the canonical dotted arrow in the diagram

Σ∞
+ ◦ jnc(Lpe(k))

Σ∞
+ ◦jnc(πop

1 )
id

Σ∞
+ ◦ jnc(Lpe(k)) ⊕Σ∞

+ ◦ jnc(Lpe(k)) Σ∞
+ ◦ jnc(Lpe(k))

Σ∞
+ ◦ jnc(Lpe(k))

Σ∞
+ ◦jnc(πop

2 )
0

(4.43)

• δ2 is the canonical map obtained from

Σ∞
+ ◦ jnc(Lpe(k))

Σ∞
+ ◦jnc(πop

1 )
id

Σ∞
+ ◦ jnc(Lpe(k)) ⊕Σ∞

+ ◦ jnc(Lpe(k)) Σ∞
+ ◦ jnc(Lpe(k))

Σ∞
+ ◦ jnc(Lpe(k))

Σ∞
+ ◦jnc(πop

2 )
−id

(4.44)

Of course, it follows from this definition that Θ is an equivalence with inverse equal 
to itself. Finally, we consider the composition

Σ∞
+ ◦ jnc(Lpe(Gm))

Lpe(i)

Lpe(j)

Σ∞
+ ◦ jnc(Lpe(A1))

Lpe(α)

Σ∞
+ ◦ jnc(Lpe(A1))

Lpe(β)
Σ∞

+ ◦ jnc(Lpe(P1))
Θ◦Σ∞

+ ◦jnc(ψop)

Σ∞
+ ◦ jnc(Lpe(k)) ⊕Σ∞

+ ◦ jnc(Lpe(k))

(4.45)

which again, as in Remark 4.20, provides a pushout–pullback square in
FunNis(Dg(k)ft , ̂Sp). The important point of this new decomposition is the fact that 
both maps Θ ◦ (Σ∞

+ ◦ jnc(ψop ◦ Lpe(α))) and Θ ◦ (Σ∞
+ ◦ jnc(ψop ◦ Lpe(β))) become sim-

pler. In fact, since α∗(OP1) = α∗(OP1(−1)) = β∗(OP1) = α∗(OP1(−1)) = OA1 , we find 
that
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• The composition Σ∞
+ ◦ jnc(iop1 ) ◦ Θ ◦ (Σ∞

+ ◦ jnc(ψop ◦ Lpe(α))) can be identified 
with the map Σ∞

+ ◦ jnc(Lpe(p)) induced by pullback along the canonical projection 
p : A1 → Spec(k). Indeed, we have

Σ∞
+ ◦ jnc

(
iop1

)
◦Θ ◦

(
Σ∞

+ ◦ jnc
(
ψop ◦ Lpe(α)

))
(4.46)

� δ1 ◦
(
Σ∞

+ ◦ jnc
(
ψop ◦ Lpe(α)

))
(4.47)

� δ1 ◦
(
Σ∞

+ ◦ jnc
(
πop

1 ◦ iop1 + πop
2 ◦ iop2

))
◦
(
Σ∞

+ ◦ jnc
(
ψop ◦ Lpe(α)

))
(4.48)

� Σ∞
+ ◦ jnc

(
iop1 ◦ ψop ◦ Lpe(α)

)
+ 0 (4.49)

� Σ∞
+ ◦ jnc

((
α∗ ◦ ψ ◦ i1

)op) (4.50)

� Σ∞
+ ◦ jnc

((
p∗
)op) (4.51)

� Σ∞
+ ◦ jnc

(
Lpe(p)

)
(4.52)

The same holds for the composition Σ∞
+ ◦ jnc(iop1 ) ◦Θ ◦ (Σ∞

+ ◦ jnc(ψop ◦ Lpe(β)));
• The maps Σ∞

+ ◦ jnc(iop2 ) ◦Θ ◦ (Σ∞
+ ◦ jnc(ψop ◦Lpe(α))) and Σ∞

+ ◦ jnc(iop2 ) ◦Θ ◦ (Σ∞
+ ◦

jnc(ψop ◦ Lpe(β))) are zero. Indeed, we have

Σ∞
+ ◦ jnc

(
iop2

)
◦Θ ◦

(
Σ∞

+ ◦ jnc
(
ψop ◦ Lpe(α)

))
(4.53)

� δ2 ◦
(
Σ∞

+ ◦ jnc
(
ψop ◦ Lpe(α)

))
(4.54)

� δ2 ◦
(
Σ∞

+ ◦ jnc
(
πop

1 ◦ iop1 + πop
2 ◦ iop2

))
◦
(
Σ∞

+ ◦ jnc
(
ψop ◦ Lpe(α)

))
(4.55)

� Id ◦
(
Σ∞

+ ◦ jnc
(
iop1 ◦ ψop ◦ Lpe(α)

))
+ (−Id) ◦

(
Σ∞

+ ◦ jnc
(
iop1 ◦ ψop ◦ Lpe(α)

))
(4.56)

� Σ∞
+ ◦ jnc

((
α∗ ◦ ψ ◦ i1

)op)−Σ∞
+ ◦ jnc

((
α∗ ◦ ψ ◦ i2

)op) (4.57)

But since α∗(OP1) = α∗(OP1(−1)) = OA1 , we have α∗ ◦ ψ ◦ i1 � α∗ ◦ ψ ◦ i2 so that 
the last difference is zero. The same argument holds for β∗.

From these two facts combined we conclude that Θ ◦ (Σ∞
+ ◦ jnc(ψop ◦ Lpe(α))) is 

equivalent to the sum Σ∞
+ ◦ jnc(Lpe(p)) ⊕ 0 so that the outer commutative square of the 

diagram (4.45) can now be written as

Σ∞
+ ◦ jnc(Lpe(Gm))

Lpe(i)

Lpe(j)

Σ∞
+ ◦ jnc(Lpe(A1))

Σ∞
+ ◦jnc(Lpe(p))⊕0

Σ∞
+ ◦ jnc(Lpe(A1))

Σ∞
+ ◦jnc(Lpe(p))⊕0

Σ∞
+ ◦ jnc(Lpe(k)) ⊕Σ∞

+ ◦ jnc(Lpe(k))

(4.58)

We are almost done. To proceed, we rewrite the diagram (4.45) as



510 M. Robalo / Advances in Mathematics 269 (2015) 399–550
Σ∞
+ ◦ jnc(Lpe(Gm)) Σ∞

+ ◦ jnc(Lpe(A1)) ⊕ Σ∞
+ ◦ jnc(Lpe(A1))

(Σ∞
+ ◦jnc(Lpe(α)),−Σ∞

+ ◦jnc(Lpe(β)))

(Σ∞
+ ◦jnc(Lpe(p)),−Σ∞

+ ◦jnc(Lpe(p)))⊕0

0 Σ∞
+ ◦ jnc(Lpe(P1))

Θ◦Σ∞
+ ◦jnc(ψop)

Σ∞
+ ◦ jnc(Lpe(k) ⊕ Lpe(k))

(4.59)

where of course, since Yoneda’s map Σ∞
+ ◦ jnc commutes with direct sums, we have

Σ∞
+ ◦ jnc

(
Lpe

(
A1))⊕Σ∞

+ ◦ jnc
(
Lpe

(
A1)) � Σ∞

+ ◦ jnc
(
Lpe

(
A1)⊕ Lpe

(
A1)) (4.60)

We observe that both the inner and the outer squares become pullback–pushouts once 
we pass to the Nisnevich localization. Moreover, the map Θ ◦ (Σ∞

+ ◦ jnc(ψop)) becomes 
an equivalence.

In a different direction, we also observe that the pullback map of dg-categories p∗ :
Lpe(k) → Lpe(A1) admits a left inverse s∗ : Lpe(A1) → Lpe(k) given by the pullback 
along the zero section s : Spec(k) → A1.25 In terms of noncommutative spaces, this can be 
rephrased by saying that Lpe(p) has a right inverse Lpe(s). We can use this right-inverse to 
construct a right inverse to the first projection of (Σ∞

+ ◦jnc(Lpe(p)), −Σ∞
+ ◦jnc(Lpe(p))) ⊕

0, namely, we consider the map (Σ∞
+ ◦ jnc(Lpe(s)), 0) induced by the universal property 

of the direct sum in Fun(Dg(k)ft , ̂Sp)

Σ∞
+ ◦ jnc(Lpe(A1))

Σ∞
+ ◦ jnc(Lpe(k))

Σ∞
+ ◦jnc(Lpe(s))

0

(Σ∞
+ ◦jnc(Lpe(s)),0)

Σ∞
+ ◦ jnc(Lpe(A1)) ⊕Σ∞

+ ◦ jnc(Lpe(A1))

Σ∞
+ ◦ jnc(Lpe(A1))

(4.61)

It is immediate to check that the composition Σ∞
+ ◦jnc(iop1 ) ◦((Σ∞

+ ◦jnc(Lpe(p)), −Σ∞
+ ◦

jnc(Lpe(p))) ⊕ 0) ◦ (Σ∞
+ ◦ jnc(Lpe(s)), 0) is the identity, so that Σ∞

+ ◦ jnc(iop1 ) ◦ ((Σ∞
+ ◦

jnc(Lpe(p)), −Σ∞
+ ◦ jnc(Lpe(p))) ⊕ 0) has a right inverse that we can picture as a dotted 

arrow

25 Which in terms of rings is given by the evaluation at zero ev0 : k[T ] → k.
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Σ∞
+ ◦ jnc(Lpe(Gm)) Σ∞

+ ◦ jnc(Lpe(A1)) ⊕ Σ∞
+ ◦ jnc(Lpe(A1))

(Lpe(α),−Lpe(β))

(Lpe(p),−Lpe(p))⊕0

0 Σ∞
+ ◦ jnc(Lpe(P1))

Θ◦(Σ∞
+ ◦jnc(ψop))

Σ∞
+ ◦ jnc(Lpe(k) ⊕ Lpe(k))

Σ∞
p

◦jnc(iop
1 )

Σ∞
+ ◦ jnc(Lpe(k))

(4.62)

At the same time, the preceding discussion implies that the second projection

Σ∞
+ ◦ jnc(Lpe(Gm)) Σ∞

+ ◦ jnc(Lpe(A1)) ⊕Σ∞
+ ◦ jnc(Lpe(A1))

(Lpe(α),−Lpe(β))

0

0 Σ∞
+ ◦ jnc(Lpe(P1))

Θ◦(Σ∞
+ ◦jnc(ψop))

Σ∞
+ ◦ jnc(Lpe(k) ⊕ Lpe(k))

Σ∞
+ ◦jnc(iop2 )

Σ∞
+ ◦ jnc(Lpe(k))

(4.63)

is just the zero map.
We now explain how to extract the familiar Bass exact sequence from these two 

diagrams. Given any object F ∈ Fun(Dg(k)ft , ̂Sp) and a noncommutative space X, we 
set the notation FX := Hom(Σ∞

+ ◦ jnc(X), F ). By enriched Yoneda, this is the functor 
given by F (X ⊗−). To proceed, we consider the image of the diagram (4.62) under the 
functor Hom(−, F ), to find a diagram

FLpe(k)  F
iF1

F ⊕ F  FLpe(k)⊕Lpe(k) FLpe(P1) FLpe(A1)⊕Lpe(A1)  FLpe(A1) ⊕ FLpe(A1)

0 FLpe(Gm)

(4.64)
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where the first map iF1 : F → F ⊕ F can be identified with the canonical inclusion in 
the first coordinate and the composition F FLpe(A1) ⊕ FLpe(A1) F is the 

identity.
From this we can produce a new commutative diagram by taking successive pushouts

F
iF1

F ⊕ F FLpe(P1) FLpe(A1) ⊕ FLpe(A1)

0 F F
∐

F⊕F FLpe(P1) FLpe(A1)
∐

F FLpe(A1)

0 FLpe(Gm)

(4.65)

and we notice that the vertical map F ⊕F → F can be identified with the projection in 
the second coordinate.

In particular, if we denote as U(F ) the pullback

U(F ) FLpe(A1)
∐

F FLpe(A1)

0 FLpe(Gm)

(4.66)

we find a canonical map

F
∐

F⊕F FLpe(P1) U(F ) (4.67)

induced from the diagram (4.65) using the universal property of the pullback.
At the same time, if we apply Hom(−, F ) to the diagram (4.63) we find a new com-

mutative diagram
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F

id

iF2

0

F ⊕ F FLpe(P1) FLpe(A1) ⊕ FLpe(A1)

F F
∐

F⊕F FLpe(P1) FLpe(A1)
∐

F FLpe(A1)

U(F )

0 FLpe(Gm)

(4.68)

and discover that the map F → F
∐

F⊕F FLpe(P1) → U(F ) admits a natural factorization

ΩFLpe(Gm) 0

F

σF

U(F ) FLpe(A1)
∐

F FLpe(A1)

0 FLpe(Gm)

(4.69)

because ΩFLpe(Gm) is the fiber of U(F ) → FLpe(A1)
∐

F FLpe(A1). This concludes the pre-
liminary steps.

From now on, we suppose that F is Nisnevich local. In this case, by Corollary 4.19, 
the map F ⊕ F → FLpe(P1) is an equivalence and the commutative square

FLpe(P1) FLpe(A1) ⊕ FLpe(A1)

0 FLpe(Gm)

(4.70)

is a pushout–pullback because the image of the square (4.35) under Lpe is a Nisnevich 
square of noncommutative spaces. Using these two facts we conclude that the canoni-
cal maps constructed above, F → F

∐
F⊕F FLpe(P1) and F

∐
F⊕F FLpe(P1) → U(F ) are 

equivalences so that the diagram
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F FLpe(A1)
∐

F FLpe(A1)

0 FLpe(Gm)

(4.71)

is a pullback–pushout. In particular, as in the diagram (4.69), we find the existence of a 
section

ΩFLpe(Gm) 0

F

σF

Id
F FLpe(A1)

∐
F FLpe(A1)

0 FLpe(Gm)

(4.72)

We are almost done. To conclude, we consider the induced pullback–pushout square

FLpe(A1)
∐

F FLpe(A1) 0

FLpe(Gm) ΣF

(4.73)

where now, the suspension Σ(σF ) makes Σ(F ) a retract of FLpe(Gm). We are done now. 
Since the evaluation maps commute with colimits and, by definition of F(−), we have for 
each TX ∈ Dg(k)ft a pullback–pushout diagram in Ŝp

F (Lpe(A1) ⊗ TX)
∐

F (TX) F (Lpe(A1) ⊗ TX) 0

F (Lpe(Gm) ⊗ TX) ΣF (TX)

(4.74)

and therefore a long exact sequence of abelian groups

... → πn

(
F
(
Lpe

(
A1)⊗ TX

) ∐
F (TX)

F
(
Lpe

(
A1)⊗ TX

))
→ πn

(
F
(
Lpe(Gm) ⊗ TX

))
→ πn

(
ΣF (TX)

)
= πn−1

(
F (TX)

)
→ ... (4.75)

and because of the existence of Σ(σF ), the maps πn(F (Lpe(Gm) ⊗TX)) → πn(ΣF (TX)) =
πn−1(F (TX)) are necessarily surjective, so that the long exact sequence breaks up into 
short exact sequences
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0 → πn

(
F
(
Lpe

(
A1)⊗ TX

) ∐
F (TX)

F
(
Lpe

(
A1)⊗ TX

))
→ πn

(
F
(
Lpe(Gm) ⊗ TX

))
→ πn

(
ΣF (TX)

)
= πn−1

(
F (TX)

)
→ 0 (4.76)

∀n ∈ Z.
At the same time, since the square

F
iF1

F ⊕ F FLpe(A1) ⊕ FLpe(A1)

0 FLpe(A1)
∐

F FLpe(A1)

(4.77)

is also a pullback–pushout and the top map F → FLpe(A1)⊕FLpe(A1) admits a left inverse, 
the associated long exact sequence

... → πn

(
F
(
Lpe

(
A1)⊗ TX

) ∐
F (TX)

F
(
Lpe

(
A1)⊗ TX

))
→ πn

(
F (TX)

)
→ πn

(
F
(
Lpe

(
A1)⊗ TX

)
⊕ F

(
Lpe

(
A1)⊗ TX

))
→ ... (4.78)

breaks up into short exact sequences

0 → πn

(
F (TX)

)
→ πn

(
F
(
Lpe

(
A1)⊗ TX

)
⊕ F

(
Lpe

(
A1)⊗ TX

))
→ πn

(
F
(
Lpe

(
A1)⊗ TX

) ∐
F (X)

F
(
Lpe

(
A1)⊗ TX

))
→ 0 (4.79)

Combining the two short exact sequences (4.76) and (4.79) we find the familiar exact 
sequences of Bass–Thomason–Trobaugh

0 → πn

(
F (TX)

)
→ πn

(
F
(
Lpe

(
A1)⊗ TX

)
⊕ F

(
Lpe

(
A1)⊗ TX

))
(4.80)

→ πn

(
F
(
Lpe(Gm) ⊗ TX

))
→ πn−1

(
F (TX)

)
→ 0 (4.81)

This concludes this section.

4.3.2. Nisnevich vs connective-Nisnevich descent and the Thomason–Trobaugh 
(−)B-construction

In this section we study the class of functors sharing the same formal properties of Kc, 
namely, the one of sending Nisnevich squares to pullback squares of connective spectra. 
This will take us through a small digression aiming to understand how the truncation 
functor τ≥0 interacts with the Nisnevich localization.
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Definition 4.21. Let F ∈ Fun(Dg(k)ft , ̂Sp≥0). We say that F is connectively-Nisnevich 
local if for any Nisnevich square of dg-categories

TX TU

TV TW

(4.82)

the induced square

F (TX) F (TU)

F (TV) F (TW)

(4.83)

is a pullback of connective spectra.

Remark 4.22. It follows that if F belongs to FunNis(Dgft , ̂Sp), its connective truncation 
τ≥0(F ) is connectively-Nisnevich local. This is because τ≥0 acts objectwise and is a right 
adjoint to the inclusion of connective spectra into all spectra, thus preserving pullbacks.

It is also convenient to isolate the following small technical remark:

Remark 4.23. Let C be a stable (∞, 1)-category and let C0 ⊆ C be a subcategory such 
that the inclusion preserves direct sums. Then, if

A
i

B

p

0 C

(4.84)

is a pullback square in C0 such that

• the map i admits a left inverse v;
• the map p admits a right inverse u;
• the sum i ◦ v + u ◦ p is homotopic to the identity,

we conclude, by the same arguments given in Remark 3.26, that B � A ⊕ C. Moreover, 
under the hypothesis that the inclusion preserves direct sums, the square remains a 
pullback after the inclusion C0 ⊆ C and therefore a pushout. In particular, it becomes a 
split exact sequence in C. This holds for any universe.

In particular, for any pullback square of dg-categories associated to a Nisnevich square 
of noncommutative spaces (4.82) such that TU is zero and the sequence splits, the induced 
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diagram of connective spectra (4.83) makes F (TV) canonically equivalent to the direct 
sum F (TX) ⊕ F (TW) in Ŝp.

We let FunNis≥0(Dg(k)ft , ̂Sp≥0) denote the full subcategory of Fun(Dg(k)ft , ̂Sp≥0)
spanned by the connectively-Nisnevich local functors. For technical reasons it is conve-
nient to observe that the inclusion FunNis≥0(Dg(k)ft , ̂Sp≥0) ⊆ Fun(Dg(k)ft , ̂Sp≥0) admits 
a left adjoint lnis≥0 . More precisely

Proposition 4.24. FunNis≥0(Dg(k)ft , ̂Sp≥0) is an accessible reflexive localization of 
Fun(Dg(k)ft , ̂Sp≥0).

Proof. We evoke Proposition 5.5.4.15 of [59] so that we are reduced to showing the 
existence of a small class of maps S in Fun(Dg(k)ft , ̂Sp≥0) such that an object F is 
connectively-Nisnevich local if and only if it is local with respect to the maps in S.

To define S, we ask the reader to bring back to recollect our discussion and notations 
in 2.4.4 and in Remark 3.28. Using the same notations, we define S to be the collection 
of all maps

δΣ∞
+ ◦jnc(U)(K)

∐
δΣ∞

+ ◦jnc(W)(K)

δΣ∞
+ ◦jnc(V)(K) → δΣ∞

+ ◦jnc(X)(K) (4.85)

given by the universal property of the pushout, this time with K in Ŝp≥0 ∩ (Ŝp)ω26 and 
W, V, U and X part of a Nisnevich square of noncommutative smooth spaces. As before, 
the fact that S satisfies the required property follows directly from the definition of the 
functors δΣ∞

+ ◦jnc(−) as left adjoints to MapSp and from the enriched version of Yoneda’s 
lemma. �

It follows directly from the definition of the class S in the previous proof and 
from the description of the class of maps that generate the Nisnevich localization in 
Fun(Dg(k)ft , ̂Sp) (see Remark 3.28) that the inclusion

i : Fun
(
Dg(k)ft , Ŝp≥0

)
↪→ Fun

(
Dg(k)ft , Ŝp

)
(4.86)

sends connective-Nisnevich local equivalences to Nisnevich local equivalences. In par-
ticular, the universal property of the localization provides us with a canonical colimit 
preserving map

26 Here (Ŝp)ω denotes the full subcategory of Ŝp spanned by the compact objects. Recall that Ŝp 
Ind((Ŝp)ω).
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Fun(Dg(k)ft , Ŝp≥0)

lnis≥0

i Fun(Dg(k)ft , Ŝp)

lnc
nis

FunNis≥0(Dg(k)ft , Ŝp≥0) FunNis(Dg(k)ft , Ŝp)

(4.87)

rendering the diagram commutative. Moreover, since the localizations are presentable, 
the Adjoint Functor Theorem implies the existence of a right adjoint which makes the 
associated diagram of right adjoints

Fun(Dg(k)ft , Ŝp≥0) Fun(Dg(k)ft , Ŝp)
τ≥0

FunNis≥0(Dg(k)ft , Ŝp≥0)

α

FunNis(Dg(k)ft , Ŝp)

β (4.88)

commute. At the same time, Remark 4.22 implies the existence of the two commutative 
diagrams (4.27) and (4.28). By comparison with the new diagrams, we find that the 

canonical colimit preserving map FunNis≥0(Dg(k)ft , Ŝp≥0) FunNis(Dg(k)ft , Ŝp)
can be identified with the composition i! := lnc

Nis ◦ i ◦ α and that its right adjoint can be 
identified with τ≥0, the restriction of the truncation functor τ≥0 to the Nisnevich local 
functors.

Our goal is to prove that this adjunction

FunNis≥0(Dg(k)ft , Ŝp≥0)
i!

FunNis(Dg(k)ft , Ŝp)

τ≥0

(4.89)

is an equivalence. Our results from 4.3.1 already provide one step towards this:

Proposition 4.25. The functor τ≥0 is conservative.

Proof. Recall from 4.3.1 that for any Nisnevich local F we can construct a pullback–
pushout square

FLpe(A1)
∐

F FLpe(A1) 0

FLpe(Gm) ΣF

(4.90)

such that for any TX ∈ Dg(k)ft , the associated long exact sequence of homotopy groups 
breaks up into short exact sequences for any n ∈ N
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0 → πn

(
F
(
Lpe

(
A1)⊗ TX

) ∐
F (TX)

F
(
Lpe

(
A1)⊗ TX

))
→ πn

(
F
(
Lpe(Gm) ⊗ TX

))

→ πn−1
(
F (TX)

)
→ 0 (4.91)

Therefore, given a morphism f : F → G in FunNis(Dg(k)ft , ̂Sp), we have an induced 
diagram

GLpe(A1)
∐

G GLpe(A1) 0

FLpe(A1)
∐

F FLpe(A1) 0

GLpe(Gm) ΣG

FLpe(Gm) ΣF

(4.92)

which induces natural maps of short exact sequences

πn(F (Lpe(A1) ⊗ TX)
∐

F (TX) F (Lpe(A1) ⊗ TX)) πn(F (Lpe(Gm) ⊗ TX)) πn−1(F (TX))

πn(G(Lpe(A1) ⊗ TX)
∐

G(TX) G(Lpe(A1) ⊗ TX)) πn(G(Lpe(Gm) ⊗ TX)) πn−1(G(TX))

(4.93)

In particular, if f is an equivalence in the connective part, by induction on n =
0, −1, −2, ..., we conclude that f is an equivalence. �

With this result, in order to prove that i! is an equivalence we are reduced to showing 
that the counit of the adjunction τ≥0◦i! → Id is a natural equivalence of functors. Notice 
that since α and i are fully-faithful, this amounts to show that for any F connectively-
Nisnevich local, the canonical map i ◦ τ≥0 ◦ lnc

Nis ◦ i ◦ α(F ) → i ◦ α(F ) is an equivalence. 
Of course, to achieve this we will need a more explicit description of the noncom-
mutative Nisnevich localization functor lnc

Nis restricted to connectively-Nisnevich local 
objects. There is a naive candidate, namely, the familiar (−)B construction of Thomason–
Trobaugh [94, 6.4]. Our goal to the end of this section is to prove the following proposition 
confirming that this guess is correct:
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Proposition 4.26. There is an accessible localization functor (−)B : Fun(Dg(k)ft , ̂Sp) →
Fun(Dg(k)ft , ̂Sp) encoding the B-construction of [94, 6.4] such that for any F ∈
FunNis≥0(Dg(k)ft , ̂Sp) we have:

• τ≥0(i ◦ α(F )B) � F .
• the object (i ◦ α(F ))B is Nisnevich local;
• there is a canonical equivalence (i ◦ α(F ))B � lnc

Nis(i ◦ α(F ));

In particular, the natural transformation τ≥0 ◦ i! → Id is an equivalence. Together 
with Proposition 4.25 we have an equivalence of (∞, 1)-categories between the theory 
of connectively-Nisnevich local functors and the theory of Nisnevich local functors.

With these results available we can already uncover the proof of our first main theo-
rem:

Proof of Theorem 4.4. Thanks to Corollary 4.18 we already know that KS is Nisnevich 
local. In this case, and by the universal property of the localization, the canonical map 
Kc → KS admits a canonical uniquely determined factorization

Kc

lnc
Nis(Kc) KS

(4.94)

so that we are reduced to showing that this canonical morphism lnc
Nis(Kc) → KS is an 

equivalence. But since these are Nisnevich local objects and since we now know by Propo-
sition 4.26 that the truncation functor τ≥0 is an equivalence when restricted to Nisnevich 
locals, it suffices to check that the induced map τ≥0l

nc
Nis(Kc) → τ≥0K

S is an equivalence. 
But this follows because all the morphisms in the image of the commutative diagram 
(4.94) become equivalences after applying τ≥0. This follows from the construction of KS

and again by the results in Proposition 4.26. �

We now start our small journey towards the proof of Proposition 4.26. To start with 
we need to specify how the B-construction of [94, 6.4] can be formulated in our setting:

Construction 4.27 (Thomason–Trobaugh (−)B-construction). We begin by asking the 
reader to recall the diagrams constructed in 4.3.1, or more precisely, that for any F ∈
Fun(Dg(k)ft , ̂Sp), we found a commutative diagram
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ΩFLpe(Gm) 0

F

σF

αF

U(F ) FLpe(A1)
∐

F FLpe(A1)

0 FLpe(Gm)

(4.95)

where both squares are pushout–pullbacks. Iterating this construction, we find a sequence 
of canonical maps

F
αF−−→ U(F ) αU(F )−−−−→ U

(
U(F )

) αU2(F )−−−−−→ .... (4.96)

and we define FB to be the colimit for sequence (which is of course unique up to 
canonical equivalence). The assignment F �→ FB provides an endofunctor (−)B of the 
(∞, 1)-category Fun(Dg(k)ft , ̂Sp). To see this we can use the fact the monoidal structure 
in Fun(Dg(k)ft , ̂Sp) admits internal-homs Hom. More precisely, we consider the diagram 
of natural transformations induced by the image of the diagram (4.62) under the first 
entry of Hom(−, −). With this, and keeping the notations we have been using, we define 
f1 to be the functor cofiber of Id = (−)Lpe(k) → (−)Lpe(A1) ⊕ (−)Lpe(A1). The universal 
property of the cofiber gives us a canonical natural transformation f1 → (−)Lpe(Gm) and 
define a new functor U as the fiber of this map (recall that colimits and limits in the 
category of functors are determined objectwise). Finally, we consider (−)B as the colimit 
of the natural transformations

Id α
U = Id ◦ U U2 = Id ◦ U2 ....

(−)B

(4.97)

We prove that for any F the object FB satisfies the exact sequences of Bass–
Thomason–Trobaugh for any n ∈ Z. The proof requires some technical steps which 
we summarize in the following lemma:

Lemma 4.28. We have:

1. The functor U commutes with small colimits;
2. The two maps U = Id ◦ U → U2 and U = U ◦ Id → U2 induced by the natural 

transformation Id → U , are homotopic;
3. The natural transformation (−)B ◦ Id → (−)B ◦ U is an equivalence;
4. The natural map (−)B ◦ U → U ◦ (−)B is an equivalence.
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Proof. These are routine exercises. See [79, Props. 7.2.10, 7.2.11, 7.2.12, 7.2.13]. �
We can now put these results together and show that

Corollary 4.29. For any object F ∈ Fun(Dg(k)ft , ̂Sp) the object FB satisfies the Bass–
Thomason–Trobaugh exact sequences for any n ∈ Z.

Proof. By combining Lemma 4.28-(3) and (4), we deduce that the canonical map FB →
U(FB) is an equivalence. Therefore, we have a pullback–pushout square

(FB)Lpe(A1)
∐

FB (FB)Lpe(A1) 0

(FB)Lpe(Gm) ΣFB

(4.98)

and using exactly the same arguments as in 4.3.1 we find that for any TX ∈ Dg(k)ft , the 
associated long exact sequence breaks up into short exact sequences

0 → πn

(
FB

(
Lpe

(
A1)⊗ TX

) ∐
FB(TX)

FB
(
Lpe

(
A1)⊗ TX

))
→ πn

(
FB

(
Lpe(Gm) ⊗ TX

))
→ πn−1

(
FB(TX)

)
→ 0 (4.99)

and again by the same arguments we are able to extract the familiar exact sequences of 
Bass–Thomason–Trobaugh, for all n ∈ Z. �
Remark 4.30. As the canonical map FB → U(FB) is an equivalence it follows from 
Construction 4.27 that when we construct the diagram (4.95) with FB

Ω(FB
Lpe(Gm)) 0

FB

σFB

U(FB) (FB)Lpe(A1)
∐

FB (FB)Lpe(A1)

0 (FB)Lpe(Gm)

(4.100)

the section σFB makes FB a retract of Ω(FB
Lpe(Gm)). In particular, by iteratively applying 

the construction Ω(−)Lpe(Gm) we find (because Σ∞
+ ◦jnc is monoidal) that for any n ≥ 1, 

the composition

FB → Ω
(
FB
L (G )

)
→ ... → Ωn

(
FB
L (G )⊗n

)
→ ... → Ω

(
FB
L (G )

)
→ FB (4.101)
pe m pe m pe m
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is the identity map so that, for any n ≥ 1, FB is a retract of Ωn(FB
Lpe(Gm)⊗n). Equiva-

lently, for any n ≥ 1, the suspension ΣnFB is a retract of (FB)Lpe(Gm)⊗n .

We will now show that the construction (−)B defines a localization:

Proposition 4.31. The functor (−)B : Fun(Dg(k)ft , ̂Sp) → Fun(Dg(k)ft , ̂Sp) of Construc-
tion 4.27 is an accessible localization functor.

This result follows from Lemma 4.28-(1) and (2) together with the following general 
result:

Lemma 4.32. Let C be a presentable (∞, 1)-category and let U : C → C be a colimit 
preserving endofunctor of C, together with a natural transformation f : IdC → U such 
that the two obvious maps U ◦ IdC → U2 and IdC ◦ U → U2 are equivalent. Let

Id

i0

f
U = IdC ◦ U

i1

U2 = IdC ◦ U2

i2

....

T

(4.102)

be a colimit cone for the horizontal sequence (indexed by N), necessarily in FunL(C, C). 
Then, the functor T : C → C provides a reflexive localization of C. Moreover, since T
commutes with small colimits the localization is accessible.

Proof. We will omit the proof here. The reader can find it in [79, Lemma 7.2.17]. �
Remark 4.33. It follows from Proposition 4.31 and from Construction 4.27 that an object 
F ∈ Fun(Dg(k)ft , ̂Sp) is local with respect to the localization (−)B if and only if the 
diagram

F FLpe(A1)
∐

F FLpe(A1)

0 FLpe(Gm)

(4.103)

is a pullback–pushout square. In particular, the discussion in 4.3.1 implies that any 
Nisnevich local object F is (−)B-local.

We now come to a series of technical steps in order prove each of the items in Propo-
sition 4.26. First thing, we give a precise sense to what it means for a functor F with 
connective values to satisfy all the Bass exact sequences for n ≥ 1.
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Definition 4.34. Let F ∈ Fun(Dg(k)ft , ̂Sp≥0) and consider its associated diagram (4.95)
(constructed in Fun(Dg(k)ft , ̂Sp), where we identify F with its inclusion). We say that 
F satisfies all Bass exact sequences for n ≥ 1 if the canonical induced map of connective 
functors F → τ≥0U(F ) is an equivalence, or, in other words, since τ≥0 commutes with 
limits and because of the definition of U(F ), if the diagram (4.103) is a pullback in 
Fun(Dg(k)ft , ̂Sp≥0).

Remark 4.35. Let F ∈ Fun(Dg(k)ft , ̂Sp≥0) and consider the pullback–pushout diagram 

in Fun(Dg(k)ft , ̂Sp)

Ω(FLpe(A1)
∐

F FLpe(A1)) Ω(FLpe(Gm))

0 U(F )

(4.104)

Since, τ≥0 preserves pullbacks, we obtain a pullback diagram in Fun(Dg(k)ft , ̂Sp≥0)

τ≥0Ω(FLpe(A1)
∐

F FLpe(A1)) τ≥0Ω(FLpe(Gm))

0 τ≥0U(F )

(4.105)

If F satisfies the condition in the previous definition, then the zero truncation of the 
composition

F
σF

Ω(FLpe(Gm)) U(F ) (4.106)

makes F a retract of τ≥0Ω(FLpe(Gm)). With this, and as before, once evaluated at TX ∈
Dg(k)ft , the long exact sequence associated to the pullback (4.105) splits up into short 
exact sequences

0 → πn

(
F
(
Lpe

(
A1)⊗ TX

) ∐
F (TX)

F
(
Lpe

(
A1)⊗ TX

))

→ πn

(
F
(
Lpe(Gm) ⊗ TX

))
→ πn−1

(
F (TX)

)
→ 0 (4.107)

∀n ≥ 1, and again by the same arguments, we can extract the exact sequences of Bass–
Thomason.

Lemma 4.36. If F ∈ Fun(Dg(k)ft , ̂Sp) has connective values and satisfies all the Bass 
exact sequences for n ≥ 1 (in the sense of Definition 4.34), then the canonical map 
F � τ≥0F → τ≥0F

B is an equivalence.
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Proof. Assuming that F satisfies the condition in Definition 4.34, meaning the canonical 
map F → τ≥0U(F ) is an equivalence, we will show that for any k ≥ 2, the canonical map 
F → τ≥0U

k(F ) is an equivalence. Once we have this, the conclusion of the lemma will 
follow from the fact τ≥0 commutes with filtered colimits (because the t-structure in Ŝp
is determined by the stable homotopy groups and these commute with filtered colimits), 
so that

τ≥0
(
FB

)
� τ≥0

(
colimi∈NU

i(F )
)
� colimi∈Nτ≥0

(
U i(F )

)
� colimi∈NF � F (4.108)

So, let us prove the assertion for k = 2. By definition, we have a pullback–pushout 
square in Fun(Dg(k)ft , ̂Sp)

U2(F ) U(F )Lpe(A1)
∐

U(F ) U(F )Lpe(A1)

0 U(F )Lpe(Gm)

(4.109)

and since τ≥0 preserves pullbacks, we find

τ≥0U
2(F ) � τ≥0

(
U(F )Lpe(A1)

∐
U(F )

U(F )Lpe(A1)

)
×τ≥0(U(F )Lpe(Gm)) 0 (4.110)

We observe that

(i) τ≥0(U(F )Lpe(Gm)) � FLpe(Gm).
(ii) τ≥0(U(F )Lpe(A1)

∐
U(F ) U(F )Lpe(A1)) � FLpe(A1)

∐
F FLpe(A1)

To deduce the first equivalence, we use the equivalence τ≥0U(F ) � F together with 
the fact that (−)Lpe(Gm) commutes with τ≥0. The second equivalence requires a more 

sophisticated discussion. Recall from Section 4.3.1 that for any G ∈ Fun(Dg(k)ft , ̂Sp) we 
are able to construct a pushout square in Fun(Dg(k)ft , ̂Sp)

G
iG1

G⊕G GLpe(P1) GLpe(A1) ⊕GLpe(A1)

0 GLpe(A1)
∐

G GLpe(A1)

(4.111)

such that the top horizontal composition admits a left inverse. Applying this construction 
to G = F and to G = U(F ), we construct a map between the associated pullback–
pushout squares



526 M. Robalo / Advances in Mathematics 269 (2015) 399–550
U(F ) U(F )Lpe(A1) ⊕ U(F )Lpe(A1)

F FLpe(A1) ⊕ FLpe(A1)

0 U(F )Lpe(A1)
∐

U(F ) U(F )Lpe(A1)

0 FLpe(A1)
∐

F FLpe(A1)

(4.112)

(obtained using the natural transformation Hom(−, F ) → Hom(−, U(F )) induced by 
canonical morphism F → U(F )).

Both the front and back faces are pullback–pushouts and both the top horizontal 
maps admit left-inverses.

Finally, since τ≥0U(F ) � F and because the top horizontal maps admit left-inverses, 
the long exact sequences associated to each square breaks up into short exact sequences, 
and for each n ≥ 0 and each TX ∈ Dg(k)ft we find natural maps of short exact sequences

πn(U(F )(TX)) πn((U(F )Lpe(A1) ⊕ U(F )Lpe(A1))(TX)) πn((U(F )Lpe(A1)
∐

U(F ) U(F )Lpe(A1))(TX))

πn(F (TX))

∼

πn((FLpe(A1) ⊕ FLpe(A1))(TX))

∼

πn((FLpe(A1)
∐

F FLpe(A1))(TX))

(4.113)

implying the equivalence in (ii).
Finally, we deal with the case k > 2. Applying the same strategy for G = F and 

G = Uk(F ), we consider the analogue of the diagram (4.112) induced by the canonical 
morphism F → Uk(F ). By induction, we deduce that τ≥0U

k+1(F ) � F . This concludes 
the proof. �
Proposition 4.37. Let F be a connectively-Nisnevich local object. Then, it satisfies the 
Projective Bundle Theorem and all the Bass exact sequences for n ≥ 1. In particular, by 
Lemma 4.36 we have F � τ≥0F � τ≥0F

B.

Proof. To start with, we prove that if is F connectively-Nisnevich local then it satisfies 
the Projective Bundle Theorem. Indeed, we can use the arguments used in 4.3.1 together 
with the definition of being connectively-Nisnevich local to construct a pullback diagram 
in Fun(Dg(k)ft , ̂Sp≥0)
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F � FLpe(k) FLpe(P1)

0 F � FLpe(k)

(4.114)

with splittings, which, as explained in Remark 4.23, provide a canonical equivalence 
FLpe(P1) � F ⊕ F in Fun(Dg(k)ft , ̂Sp). Secondly, and again by the definition of 
connectively-Nisnevich local, we can easily deduce that the canonical diagram

FLpe(P1) FLpe(A1) ⊕ FLpe(A1)

0 FLpe(Gm)

(4.115)

associated to the covering of P1 by two affine lines (4.35) is a pullback in
Fun(Dg(k)ft , ̂Sp≥0).

With these two ingredients we prove that if is F connectively-Nisnevich local then it 
satisfies all the Bass exact sequences for n ≥ 1 in the sense of Definition 4.34, namely, 
we show that the canonical map F � τ≥0F → τ≥0U(F ) is an equivalence, or, in other 
words, that the diagram (4.103) is a pullback within connective functors.

Consider the pushout squares in Fun(Dg(k)ft , ̂Sp) described in (4.65). More precisely, 
since F satisfies the Projective Bundle Theorem, we are interested in the pullback–
pushout square

F ⊕ F � FLpe(P1) FLpe(A1) ⊕ FLpe(A1)

F � F
∐

F⊕F FLpe(P1) FLpe(A1)
∐

F FLpe(A1)

(4.116)

which, in particular, is a pullback square in Fun(Dg(k)ft , ̂Sp≥0) once truncated at level 
zero. Combining with the pullback square (4.115) we find a series of pullback squares in 
Fun(Dg(k)ft , ̂Sp≥0).
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ΩF 0

Ω(FLpe(A1)
∐

F FLpe(A1)) Ω(FLpe(Gm)) 0

FLpe(P1) FLpe(A1) ⊕ FLpe(A1)

0 F FLpe(A1)
∐

F FLpe(A1)

(4.117)

Now comes the important ingredient: since the diagram (4.115) is a pullback, we can 
still deduce (as before) the existence of a canonical map σF such that the composition

F
σF

ΩFLpe(Gm) FLpe(P1) F (4.118)

is the identity. We now explain how the existence of this section allows us to prove 
that the diagram (4.103) is a pullback. More precisely, by using σF at each copy of F
in (4.103) and applying the construction Ω(−)Lpe(Gm) we find the square (4.103) as a 
retract of the square

ΩFLpe(Gm) (ΩFLpe(Gm))Lpe(A1)
∐

Ω(F )Lpe(Gm)
(ΩFLpe(Gm))Lpe(A1)

0 Ω(FLpe(Gm))Lpe(Gm)

(4.119)

but since both Ω and Hom(Σ∞
+ ◦jnc(Lpe(Gm)), −) commute with colimits, we can easily 

identify this last square with the image of the top left pullback square in (4.117) un-
der Hom(Σ∞

+ ◦ jnc(Lpe(Gm)), −) and conclude that this is also a pullback square. We 
conclude the proof using the fact that the retract of a pullback square is a pullback. �

We now address the second item of Proposition 4.26, namely,

Proposition 4.38. Let F ∈ FunNis≥0(Dg(k)ft , ̂Sp≥0). Then, the object (i ◦ α(F ))B is 
Nisnevich local.

The proof of this proposition is based on a very helpful criterium to decide if a given 
F is Nisnevich local by studying its truncations τ≥0Σ

nF , namely:

Lemma 4.39. Let F be any object in Fun(Dg(k)ft , ̂Sp). Then, if for any n ≥ 0 the 
truncations τ≥0Σ

nF are connectively-Nisnevich local, the object F itself is Nisnevich 
local.



M. Robalo / Advances in Mathematics 269 (2015) 399–550 529
This lemma follows from a somewhat more general situation, which we isolate in the 
following remark:

Remark 4.40. Let C be a stable (∞, 1)-category with a right-complete t-structure 
(C≥0, C≤0) and let τ≥n and τ≤n denote the associated truncation functors (see [63, Sec-
tion 1.2.1]). We observe that a commutative square

A B

C D

(4.120)

in C is a pullback (therefore pushout) if and only if for any n ≥ 0 the truncated squares

τ≥0Σ
nA τ≥0Σ

nB

τ≥0Σ
nC τ≥0Σ

nD

(4.121)

are pullbacks in C≥n. This is a simple exercise. See [79, Remark 7.5.25] for the details.

Proof of Lemma 4.39. Just apply Remark 4.40 to the commutative squares of spectra

F (TX) F (TU)

F (TV) F (TW)

(4.122)

induced by the Nisnevich squares of noncommutative spaces. The discussion therein 
works because the t-structure in Ŝp is known to be right-complete (see [63, 1.4.3.6]). �
Proof of Proposition 4.38. As explained in Remark 4.30, for any n ≥ 1, the sus-
pension ΣnFB is a retract of (FB)Lpe(Gm)⊗n . In particular, τ≥0Σ

nFB is a retract of 
τ≥0((FB)Lpe(Gm)⊗n) which is a mere notation for τ≥0Hom(Σ∞

+ ◦ jnc(Lpe(Gm)⊗n), FB)
so that

τ≥0
((
FB

)
Lpe(Gm)⊗n

)
� Hom

(
Σ∞

+ ◦ jnc
(
Lpe(Gm)⊗n

)
, τ≥0F

B
)

� Hom
(
Σ∞

+ ◦ jnc
(
Lpe(Gm)⊗n

)
, F

)
(4.123)

where the first equivalence follows because the t-structure in Fun(Dg(k)ft , ̂Sp) is deter-
mined objectwise by the t-structure in Sp and the second follows from Proposition 4.37. In 
particular, since F is connectively-Nisnevich local, Hom(Σ∞

+ ◦jnc(Lpe(Gm)⊗n), F ) is also 
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connectively-Nisnevich local so that τ≥0Σ
nFB is the retract of a connectively-Nisnevich 

local and therefore, it is itself local.27 We conclude using Lemma 4.39, observing that for 
n = 0 the condition follows by the hypothesis that F is connectively-Nisnevich local. �

Finally,

Corollary 4.41. Let F be any object in Fun(Dg(k)ft , ̂Sp). Then, there is a canonical 
equivalence

(
i ◦ α(F )

)B � lnc
Nis

(
i ◦ α(F )

)
(4.124)

Proof. This follows from Proposition 4.31, Remark 4.33 and Proposition 4.38, using the 
universal properties of the two localizations. �
Proof of Proposition 4.26. The three items correspond, respectively to Propositions 4.37, 
4.38 and to Corollary 4.41. The conclusion now follows from the universal property of 
the two localizations. �
4.4. Comparing the commutative and the noncommutative A1-localizations

In this section we prove Theorem 4.6. We start by asking the reader to recall the dia-
grams (4.1) and (4.2) and to recall that after Theorem 4.4, together with Yoneda’s lemma, 
M2(lnc

Nis(Kc)) is the Bass–Thomason–Trobaugh K-theory of schemes. Recall also that, 
by definition,28 Weibel’s homotopy invariant K-theory of [109] is the “commutative” 
localization lA1(M2(lnc

Nis(Kc))). With these ingredients the conclusion of Theorem 4.6
will follow if we prove that the commutative and noncommutative versions of the 
A1-localizations make the diagram

FunNis(N (AffSmft(k))op, Ŝp)

l
A1

FunNis(Dg(k)ft , Ŝp)

lnc
A1

M2

FunNis,A1(N (AffSmft(k))op, Ŝp) FunNis,Lpe(A1)(Dg(k)ft , Ŝp)
M3

(4.125)

commute. In fact, we will be able to prove something slightly more general. We begin by 
recalling a well-known explicit formula for the A1-localization of presheaves of spectra. 
Let ΔA1 be the cosimplicial affine scheme given by

Δn
A1 := Spec

(
k[t0, ..., tn]/(t0 + ... + tn − 1)

)
(4.126)

27 In general, the retract of a local object in a reflexive localization is local. This is, ultimately, because 
the retract of an equivalence is an equivalence.
28 Either we take it as a definition or as a consequence of the explicit formula given in this section.



M. Robalo / Advances in Mathematics 269 (2015) 399–550 531
Notice that at each level we have (non-canonical) isomorphisms Δn
A1 � (A1

k)n. After 
[22], the endofunctor of C = Fun(N (AffSmft(k))op, ̂Sp) defined by the formula

F �→ colimn∈ΔopHom
(
Δn

A1 , F
)

(4.127)

with Hom the internal-hom for presheaves of spectra, is an explicit model for the 
A1-localization in the commutative world. To see that this indeed gives something 
A1-local we use the A1-homotopy m : A1 ×A1 → A1 between the identity of A1 and the 
constant map at zero. The map m is given by the usual multiplication. It follows from 
this explicit description that the A1-localization preserves Nisnevich local objects (this 
is because in a stable context, sifted colimits commute with pullbacks and the Nisnevich 
local condition is determined by certain squares being pullbacks).

The important point now is that this mechanism applies mutatis mutandis in the 
noncommutative world. Indeed, by taking the composition

Δnc
A1 : Δ Δ

A1−−−→ N
(
AffSmft(k)

) Lpe−−−→ NcS(k) (4.128)

we obtain a cosimplicial noncommutative space and as Lpe is monoidal we get (Δnc,n
A1 ) �

Lpe(A1)⊗n . Moreover, we can use exactly the same arguments to prove that the endo-
functor of C = Fun(NcS(k)op, ̂Sp) defined by the formula

F �→ colimn∈ΔopHom
(
Δnc,n

A1 , F
)

(4.129)

is an explicit model for the noncommutative A1-localization functor on spectral 
presheaves and also by the same arguments, we conclude that Nisnevich local objects 
are preserved under this localization.

With this we can now reduce the proof that the diagram 4.125 commutes to the proof 
that the following diagram commutes

Fun(N (AffSmft(k))op, Ŝp)

l
A1

Fun(Dg(k)ft , Ŝp)

lnc
A1

M1

FunA1(N (AffSmft(k))op, Ŝp) FunLpe(A1)(Dg(k)ft , Ŝp)M′

(4.130)

where the lower part corresponds to the reflexive A1-localizations and M′ is the right 
adjoint of this context obtained by the same formal arguments as M2 and M3. The 
commutativity of this diagram is measured by the existence of a canonical natural trans-
formation of functors lA1 ◦M1 → M′◦lnc

A1 induced by the fact that M′ sends Lpe(A1)-local 
objects to A1-local objects, together with the universal property of lA1 . The diagram 
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commutes if and only if this natural transformation is an equivalence of functors. In 
particular, since the diagram of right adjoints commutes

Fun(N (AffSmft(k))op, Ŝp) Fun(Dg(k)ft , Ŝp)
M1

FunA1(N (AffSmft(k))op, Ŝp)

α

FunLpe(A1)(Dg(k)ft , Ŝp)

β

M′

(4.131)

and the vertical maps are fully-faithful, it will be enough to show that the induced natural 
transformation α ◦ lA1 ◦M1 → α ◦M′ ◦ lnc

A1 is an equivalence. But now, using our explicit 
descriptions for the A1-localization functors we know that for each F ∈ Fun(Dg(k)ft , Ŝp)
we have

α ◦ lA1
(
M1(F )

)
� colimn∈Δop Hom

(
Σ∞

+ ◦ j
(
A1)⊗n

,M1(F )
)

(4.132)

� colimn∈Δop M1
(
Hom

(
Σ∞

+ ◦ jnc
(
Lpe

(
A1))⊗n

, F
))

(4.133)

� M1
(
colimn∈Δop Hom

(
Σ∞

+ ◦ jnc
(
Lpe

(
A1))⊗n

, F
))

(4.134)

� M1
(
β ◦ lnc

A1(F )
)
� α ◦M′ ◦ lnc

A1(F ) (4.135)

where the first and penultimate equivalences follow from the explicit formulas for the 
A1-localizations, the middle equivalences follow, respectively, from Remarks 4.2 and 4.1
and the last equivalence follows from the commutativity of the diagram (4.131).

In particular, when applied to F = lNis(Kc) we conclude the proof of Theorem 4.6.

4.5. The A1-localization of non-connective K-theory is the unit non-commutative 
motive

In this section we prove Theorem 4.7. We start by gathering some necessary prelim-
inary remarks. To start with, and as explained in Remark 3.28 we have two different 
equivalent ways to construct SHnc(k): one by using presheaves of spaces, forcing Nis-
nevich descent and A1-invariance and a second one by using presheaves of spectra and 
forcing again the Nisnevich and A1-localizations. These two approaches are related by 
means of a commutative diagram of monoidal functors
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NcS(k)

Fun(Dg(k)ft , Ŝ)
Σ∞

+

lnc
0,Nis

Fun(Dg(k)ft , Ŝp)

lnc
Nis

FunNis(Dg(k)ft , Ŝ)
Σ∞

+,Nis

lnc
0,A1

FunNis(Dg(k)ft , Ŝp)

lnc
A1

SHnc(k) := FunNis,Lpe(A1)(Dg(k)ft , Ŝ) ∼

Σ∞
+,Nis,A1

FunNis,Lpe(A1)(Dg(k)ft , Ŝp)

(4.136)

induced by the universal properties involved and the last induced Σ∞
+,Nis,A1 is an equiv-

alence because of the results in Proposition 3.24. To be completely precise we have to 
check that the class of maps with respect to which we localize the theory of presheaves of 
spaces is sent to the class of maps with respect to which we localize spectral presheaves. 
Following the description of the last given in Remark 3.28 it is enough to see that for 
any representable object j(X) we have Σ∞

+ j(X) � δj(X)(S) where the S is the sphere 

spectrum. This is because MapSp(−) is an internal-hom in Ŝp and the sphere spectrum 
is a unit for the monoidal structure.

In this section we will be considering the associated commutative diagram of right 
adjoints

Fun(Dg(k)ft , Ŝ) Fun(Dg(k)ft , Ŝp)
Ω∞

FunNis(Dg(k)ft , Ŝ) FunNis(Dg(k)ft , Ŝp)
Ω∞

Nis

FunNis,Lpe(A1)(Dg(k)ft , Ŝ) FunNis,Lpe(A1)(Dg(k)ft , Ŝp)∼

Ω∞
Nis,A1

(4.137)

where again the last map is an equivalence. We will now explain how to use this 
diagram to reduce the proof that lnc

A1(KS) is unit for the monoidal structure in 
FunNis,Lpe(A1)(Dg(k)ft , ̂Sp) to the proof that lnc

0,A1(Ω∞(Kc)) is a unit for the monoidal 
structure in FunNis,Lpe(A1)(Dg(k)ft , ̂S). This will require some preliminaries. First we 
recall that thanks to Proposition 4.26 we have an equivalence

FunNis≥0
(
Dg(k)ft , Ŝp≥0

)
FunNis

(
Dg(k)ft , Ŝp

)∼
τ≥0

(4.138)
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This equivalence provides a compatibility for the A1-localizations, in the sense that 
the diagram

FunNis≥0(Dg(k)ft , Ŝp≥0)

lnc
≥0,A1

FunNis(Dg(k)ft , Ŝp)∼
τ≥0

lnc
A1

FunNis≥0,Lpe(A1)(Dg(k)ft , Ŝp≥0) FunNis,Lpe(A1)(Dg(k)ft , Ŝp)∼
τ≥0

(4.139)

commutes. Here lnc
≥0,A1 is the (noncommutative) A1-localization functor for connectively-

Nisnevich local presheaves.
The second preliminary result is a consequence of the equivalence between Ŝp≥0 and 

the (∞, 1)-category of grouplike commutative algebra objects CAlggrplike(Ŝ) (see [63, 
5.1.3.17]) and the equivalence of this last one with FunSegal-grplike(N(Fin∗), ̂S) – the full 
subcategory of the (∞, 1)-category Fun(N(Fin∗), ̂S) spanned by those functors satisfying 
the standard Segal condition and which are grouplike (see [63, 2.4.2.5]). See the final 
discussion in this section where this notion is discussed.

We can easily check that this equivalence induces equivalences

FunSegal-grplike(N(Fin∗),FunNis
(
Dg(k)ft , Ŝ

))
� FunNis≥0

(
Dg(k)ft , Ŝp≥0

)
(4.140)

and

FunSegal-grplike(N(Fin∗),FunNis,Lpe(A1)
(
Dg(k)ft , Ŝ

))
� FunNis≥0,Lpe(A1)

(
Dg(k)ft , Ŝp≥0

)
(4.141)

and we claim that the A1-localization functor lnc
≥0,A1 can be identified along this equiva-

lence with the functor induced by the levelwise application of the A1-localization functor 
for spaces lnc

0,A1 . To confirm that this is indeed the case we observe first that the compo-
sition with lnc

0,A1 produces a left-adjoint to the inclusion

Fun
(
N(Fin∗),FunNis,Lpe(A1)

(
Dg(k)ft , Ŝ

))
⊆ Fun

(
N(Fin∗),FunNis

(
Dg(k)ft , Ŝ

))
(4.142)

so that it suffices to check that this left-adjoint preserves Segal-grouplike objects. To 
prove this we will need an explicit description of the A1-localization functor of Nisnevich 
local objects Dg(k)ft → Ŝ. Unfortunately, the explicit formula (4.129) will not work 
directly in the unstable case because when we apply the formula to a Nisnevich object 
the result might not be Nisnevich local. In any case the formula defines a reflexive 
localization of Fun(Dg(k)ft , ̂S) so that we have the following situation: a presentable 
(∞, 1)-category C := Fun(Dg(k)ft , ̂S) together with two reflexive accessible localizations:
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C1
i1

C

L1

C2
i2

C

L2

with (L1, i1) corresponding to the localization produced by the formula (4.129) and 
(L2, i2) corresponding to the Nisnevich localization. Let f1 := i1◦L1 and f2 := i2◦L2. Our 
goal is to describe C1 ∩C2 as an accessible reflexive localization of C2 and to understand 
how the left adjoint L1 has to be modified in order to produce a left adjoint to the 
inclusion C1 ∩ C2 ⊆ C2. The idea is that the intersection localization functor can be 
obtained by an infinite iteration of the composition f2 ◦ f1. We observe that:

a) f1 commutes with colimits (his is because Lpe(A) is completely compact as an object 
in C and because sifted colimits commute with colimits);

b) f2 commutes with filtered colimits (this is because Nisnevich coverings are defined 
via a pullback condition and filtered colimits preserve pullbacks);

c) Let us denote by S12 the class of maps F → E in C2 such for any object X ∈ C1 ∩
C2 the composition Map(E, X) → Map(F, X) is an equivalence. As the generating 
A1-equivalences, by definition, live in the Nisnevich local category, S12 corresponds 
to the strongly saturated closured of this class (see [59, 55.4.15]). In particular, L2

sends f1-equivalences to maps in S12.

We will now follow [67, Lemma 1-3.20, Lemma 2.2.6] and produce a new localization 
of C that will give the right answer. We start by considering the endofunctor C defined 
by the formula

F �→ V (F ) := colimn∈N

(
(f2 ◦ f1) ◦ ... ◦ (f2 ◦ f1)︸ ︷︷ ︸

n

(F )
)

(4.143)

and we consider its restriction to C2 given by the composition

Ṽ : C2
i1

C
V

C
L2

C2

We have the following lemma:

Lemma 4.42. The endofunctor Ṽ : C2 → C2 is a localization functor of C2 with local 
objects corresponding to the intersection C1 ∩ C2.

Proof. This lemma was proved in [67, Lemma 1-3.20, Lemma 2.2.6] in the case where

C = Fun
(
N
(
AffSmft(k)

)op
, Ŝ
)
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with f1(F ) := colimn∈ΔopHom(Δn
A1 , F )29 and f2 is the endofunctor corresponding to the 

Nisnevich localization. As we shall now explain the same proof works also in our context.
The key ingredients to prove the lemma are the properties a)–c) above, together with 

the explicit description of f1. We will only sketch the main steps. We leave it to as an 
exercise to the reader to check that the formula (4.143) indeed defines a localization 
functor. We now need to prove that this localization indeed provides a left adjoint to the 
inclusion C1 ∩ C2 ⊆ C2. For this purpose we observe that the canonical map F → Ṽ (F )
is in S12 and that Ṽ (F ) is A1-Nisnevich-local. The first follows by the definition of 
A1-equivalence in C2: take X an object in C1∩C2 and it is immediate from the definitions 
to see that the composition map Map2(Ṽ (F ), X) → Map2(F, X) is an equivalence in C2. 
The second requires us to use the explicit description of f1: Lpe(A1) is an interval-object 
and each of the inclusions i0, i1 : Lpe(k) → Lpe(A1) admits a left inverse given by the 
projection p : Lpe(A1) → Lpe(k). In particular, for every non-commutative space X we 
have MapNis(X, Ṽ (F )) as a retract of MapNis(X ⊗ Lpe(A1), Ṽ (F )). It suffices then to 
show that the composition

MapNis
(
X⊗ Lpe

(
A1), Ṽ (F )

)
→ MapNis

(
X, Ṽ (F )

)
→ MapNis

(
X⊗ Lpe

(
A1), Ṽ (F )

)
is homotopic to the identity. As both X and Lpe(A1) are compact, this composition can 
be obtained as

colimn

(
MapC

(
X⊗ Lpe

(
A1), (f2 ◦ f1)n(i2F )

)
→ MapC

(
X, (f2 ◦ f1)n(i2F )

)
→ MapC

(
X⊗ Lpe

(
A1), (f2 ◦ f1)n(i2F )

))
To conclude we use the fact that the composition i ◦ p is strongly A1-homotopic 

to the identity so that f1(i ◦ p) � f1(idX⊗Lpe(A1)) and in particular, f2 ◦ f1(i ◦ p) �
f2 ◦ f1(idX⊗Lpe(A1)). Using this we see that the composition

MapC

(
X⊗ Lpe

(
A1), (f2 ◦ f1)n(i2F )

)
→ MapC

(
X, (f2 ◦ f1)n(i2F )

)
→ MapC

(
X⊗ Lpe

(
A1), (f2 ◦ f1)n(i2F )

)
→ MapC

(
X⊗ Lpe

(
A1), (f2 ◦ f1)n+1(i2F )

)
becomes the identity map when we take the colimit. �

This description can now be used to prove that the composition with lnc
0,A1 preserves 

the Segal-grouplike condition. Indeed, this follows immediately from 1) this explicit de-
scription together with 2) the fact that products in FunNis(Dg(k)ft , S) are computed 
objectwise in spaces; 3) the fact that in spaces both sifted and filtered colimits commute 

29 In the original formulation of this result the authors use a different description of f1(F ) that follows 
from the fact that the geometric realization of a simplicial space is homotopy equivalent to the diagonal of 
the underlying bisimplicial set.
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with finite products (see [59, 5.5.8.11, 5.5.8.12] for the sifted case) and finally 4), the fact 
that the Nisnevich localization commutes with finite products – this is a consequence of 
[59, 5.5.4.15] together with the fact that in Dg(k)idem finite products are the same as 
finite coproducts so that the product of a Nisnevich square of dg-categories of finite type 
with a dg-category of finite type remains of finite type.

Finally, the grouplike condition follows also from this, together with the functoriality 
of lnc

0,A1 . As a summary of this discussion, we concluded the existence of a commutative 
diagram

FunSegal-grplike(N(Fin∗),FunNis(Dg(k)ft , Ŝ))

(lnc
0,A1◦−)

FunNis≥0(Dg(k)ft , Ŝp≥0)
∼

lnc
≥0,A1

FunSegal-grplike(N(Fin∗),FunNis,Lpe(A1)(Dg(k)ft , Ŝ)) FunNis≥0,Lpe(A1)(Dg(k)ft , Ŝp≥0)
∼

(4.144)

Finally, combining the commutativity of this diagram with the diagram (4.139) we 
obtain the commutativity of the diagram

FunNis(Dg(k)ft , Ŝ)

lnc
0,A1

FunNis(Dg(k)ft , Ŝp)
Ω∞

Nis

lnc
A1

FunNis,Lpe(A1)(Dg(k)ft , Ŝ) FunNis,Lpe(A1)(Dg(k)ft , Ŝp)∼

Ω∞
Nis,A1

(4.145)

This follows because Ω∞
Nis can now be identified with the evaluation at 〈1〉 ∈ N(Fin∗)

by means of the commutativity and form of the diagrams (4.137), (4.139) and (4.144).
The following lemma is the last step in our preliminaries:

Lemma 4.43. Let F be a connectively-Nisnevich local object in Fun(Dg(k)ft , ̂Sp). 
Then, Ω∞(F ) is Nisnevich local and the canonical map Ω∞(F ) � lnc

0,Nis(Ω∞(F )) →
ΩNis(lnc

Nis(F )) is an equivalence in FunNis(Dg(k)ft , ̂S).

Proof. The proof depends on two observations. The first is that if F is connectively-
Nisnevich local, the looping Ω∞(F ) is Nisnevich local as a functor Dg(k)ft → Ŝ. This 
is because the composition Ŝp≥0 ↪→ Ŝp Ω∞−−−→ Ŝ preserves limits (one possible way to 
see this is to use the equivalence between connective spectra and grouplike commutative 
algebras in Ŝ for the cartesian product [63, Theorem 5.1.3.16 and Remark 5.1.3.17] and 
the fact that this equivalence identifies the looping functor Ω∞ with the forgetful functor 
which we know as a left adjoint and therefore commutes with limits). The conclusion 
now follows from the definition of connectively-Nisnevich local. The second observation 
is that the looping functor Ω∞ only captures the connective part of a spectrum. This 
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follows from the very definition of the canonical t-structure in Ŝp (see [63, 1.4.3.4]). In 
particular, since F is connectively-Nisnevich local, our Proposition 4.26 implies that the 
canonical morphism F → lnc

Nis(F ) is an equivalence in the connective part so that its 
image under Ω∞ is an equivalence. Putting together these two observations we have 
equivalences fitting in a commutative diagram

Ω∞(F )

∼
∼

lnc
0,Nis(Ω∞(F )) δ

Ω∞(lnc
Nis(F ))

(4.146)

so that the canonical map δ induced by the universal property of the localization is also 
an equivalence. �

Finally, we uncover the formulas

Ω∞
Nis,A1

(
lnc
A1

(
KS

))
� lnc

0,A1

(
Ω∞

Nis
(
KS

))
� l0,A1

(
Ω∞(

Kc
))

(4.147)

where the first equivalence follows from the preceding discussion and the last one follows 
from the previous lemma.

The first task is done. Now we explain the equivalence between l0,A1(Ω∞(Kc)) and 
the unit for the monoidal structure in FunNis,Lpe(A1)(Dg(k)ft , ̂S).

Our starting point is the formula (4.18) describing the K-theory space of an idem-
potent complete dg-category T by means of a colimit of mapping spaces. Since col-
imits and limits of functors are determined objectwise, the functor Ω∞Kc can it-
self be written as Ω colim[n]∈Δop Seq where Seq is the object in the (∞, 1)-category 

Fun(Δop, Fun(Dg(k)idem , ̂S)) resulting from the last stage of Construction 4.14.

Remark 4.44. More precisely, at the end Construction 4.14 we obtained a functor

N(CatCh(k)) → Fun
(
N
(
Δop), N(Δ̂big)

)
→ Fun

(
N
(
Δop), Ŝ) (4.148)

where the second map is induced by the localization functor N(Δ̂big) → Ŝ with Δ̂big

the very big category big of simplicial sets equipped with the standard model structure. 
By the description of each space at level n as a mapping space we conclude that this 
composition sends Morita equivalences of dg-categories to equivalences and therefore 
by the universal property the localization extends to a unique functor Dg(k)idem →
Fun(N(Δ)op, S) which, using the equivalence between Fun(Dg(k)idem , Fun(N(Δop), ̂S))
and Fun(N(Δop), Fun(Dg(k)idem, ̂S)) gives what we call Seq.

The value of Seq at zero is the constant functor with value ∗ and its value at n ≥ 1 is 
MapDg(k)idem ( ̂([n− 1]k)c, −). The boundary and degeneracy maps are obtained from the 
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S-construction as explained in Construction 4.14. We observe now that the dg-categories 
̂([n− 1]k)c, for any n ≥ 0, are of finite type so that each level of the simplicial ob-

ject Seq is in the full subcategory of ω-continuous functors. Moreover, we can think 
of the dg-categories (̂[n]k)c as non-commutative spaces In so that by means of the 
Yoneda map jnc : NcS(k) ↪→ Fun(Dg(k)ft , S) we can identify Seqn with the repre-
sentable MapNcS(k)(−, In−1). In particular, since the Yoneda map is fully-faithful, the 
simplicial object Seq is the image through jnc of a uniquely determined simplicial ob-
ject Seqnc ∈ Fun(Δop, NcS(k)) whose value at level n is the noncommutative space 
In−1. Finally, with these notations we can write Ω∞Kc as Ω colim[n]∈Δop jnc ◦ Seqnc so 
that our main goal is to understand the localization lnc

0,A1(Ω colim[n]∈Δop jnc ◦ Seqnc). 
As the zero level of the simplicial object jnc ◦ Seqnc is contractible, the realization 
colim[n]∈Δop jnc ◦ Seqnc is 1-connective.30

We have the following lemma:

Lemma 4.45. The canonical map

lnc
0,A1(Ω colim[n]∈Δop jnc ◦ Seqnc) → Ω lnc

0,A1(colim[n]∈Δop jnc ◦ Seqnc) (4.149)

is an equivalence.

Proof. The key observation is that the presheaf of spaces colim[n]∈Δop jnc ◦ Seqnc is the 
zero level of a presheaf of connective spectra (for instance, as constructed by Waldhausen 
in [108]). The important point is that this spectral presheaf satisfies Nisnevich descent as 
a result of the Waldhausen localization theorem [108, 1.6.4]. In particular, it is Nisnevich 
local. The result now follows from the commutativity of the diagram (4.145). �

Our main goal now is to understand the simplicial object Seq. Following Waldhausen 
[108] we recall the existence of a weaker version of the S-construction that considers only 
those sequence of cofibrations that split. More precisely, and using the same terminol-
ogy as in Construction 4.14 we denote by RHomsplit(Ar[n]k, T̂c) the full sub dg-category 
of RHom(Ar[n]k, T̂c) spanned by those Ar[n]-indexed diagrams satisfying the conditions 
given in Construction 4.13 and where the top sequence is given by the canonical inclusions 
E1 → E1 ⊕ E2 → E1 ⊕ E2 ⊕ E3 → ... → E1 ⊕ ... ⊕ En for some list of perfect mod-
ules (E1, ..., En). These are called split cofibrations. As in the standard S-construction, 
the categories subjacent to RHomsplit(Ar[n]k, T̂c) carries a notion of weak-equivalences 
W Split

n and assemble to form a simplicial space [n] → N(RHomsplit(Ar[n]k, T̂c)W
Split
n ).

As in Construction 4.14 we can now describe these spaces in a somewhat more 
simple form. As the dg-categories 1k are cofibrant (see [89]) they are also locally-
cofibrant and for any n ≥ 0 the coproduct 

∐n
i=1 1k is a homotopy coproduct. Moreover, 

for any locally-cofibrant dg-category T we have equivalences RHom(
∐n

i=1 1k, T̂c) �

30 Recall that a space is said to be n-connective if it is non-empty and all its homotopy groups for i < n
are zero.
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∏n
i=1

̂(1k ⊗L T )pspe �
∏n

i=1
̂(1k ⊗ T )pspe �

∏n
i=1 T̂c In this case, for every n ≥ 0 and 

for every dg-category T there is an equivalence between the category subjacent to 
RHomsplit(Ar[n]k, T̂c) and the category subjacent to RHom(

∐n
i=1 1k, T̂c), defined by 

sending a sequence E1 → E1⊕E2 → E1⊕E2⊕E3 → ... → E1⊕ ... ⊕En to the successive
quotients (E1, ..., En). This correspondence is functorial and defines an equivalence be-
cause of the universal property of direct sums. Moreover, and again thanks to the cube 
lemma, this equivalence preserves the natural notions of weak-equivalences. Finally, and 
again due to the main theorem of [96] we found the spaces N(RHomsplit(Ar[n]k, T̂c)W

Split
n )

and MapDg(k)idem (
⊕n

i=1 (̂1k)c, T̂c) to be equivalent so that by the same arguments as in 

Remark 4.44 we obtain a simplicial object Split ∈ Fun(N(Δ)op, Fun(Dg(k)idem , ̂S)), 
which, because the dg-categories 

⊕n
i=1 (̂1k)c are of finite type, lives in the full subcat-

egory of ω-continuous functors, therefore being an object in Fun(N(Δop), P(NcS(k))). 
Moreover, for each n ≥ 0 Splitn is representable by the noncommutative space associated 
to the dg-category 

⊕n
i=1 (̂1k)c so that by Yoneda the whole simplicial object Split is of 

the form jnc ◦Θ for a simplicial object Θ ∈ Fun(N(Δop), NcS(k)) with level n given by ⊕n
i=1 (̂1k)c.
Finally, the inclusion of split cofibrations into all sequences of morphisms pro-

vides a strict map of simplicial objects in the model category Δ̂ between [n] →
N(RHomsplit(Ar[n]k, T̂c)Wn) and [n] → N(Sdg

n (T )Wn) and we define λ

λ : jnc(Θ) � Split → Seq (4.150)

to be the image of this map under the composition in (4.148). This is where the result 
of [12] becomes crucial:

Proposition 4.46. (See [12, Prop. 4.6].) The map λ is a levelwise noncommutative 
A1-equivalence in Fun(Dg(k)ft , S).

Proof. In [12, Prop. 4.6] the author uses an inductive argument to prove that for any 
n ≥ 0 the map λn is an A1-equivalence.

For n = 1, λ1 is an equivalence. For n = 2 we need some further adaptation to our 
case. Namely, we are required to construct a noncommutative A1-homotopy between 
the identity of the noncommutative space I2−1 and the zero map. Such a homotopy 

corresponds to a co-homotopy in Dg(k)idem, namely, a map H : (̂[1]k)c → (̂[1]k)c ⊗L

Lpe(A1) in Dg(k)idem fitting in a commutative diagram
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(̂[1]k)c

(̂[1]k)c
H

Id

0

(̂[1]k)c ⊗L Lpe(A1)

ev1

ev0

(̂[1]k)c

(4.151)

Recall that Lpe(A1) is canonically equivalent to k̂[X]c – the idempotent completion of 
the dg-category with one object and k[X] concentrated in degree zero as endomorphisms. 
In this case the term in the middle is equivalent to ̂(([1]k) ⊗ k[X])c. We define H to be 

the map induced by the universal property of the idempotent completion (̂−)c : Dg(k) →
Dg(k)idem by means of the composition

(
[1]k

)
→

(
[1]k

)
⊗ k[X] ⊆ ̂((

[1]k
)
⊗ k[X]

)
c

(4.152)

where the first map is obtained from the strict dg-functor defined by the identity on the 
objects, by the inclusion k ⊆ k[X] on the endomorphisms of 0 and by the composition 
k ⊆ k[X] → k[X] on the complex of maps between 0 and 1 and on the endomorphisms 
of 1, where the last map is the multiplication by the variable X. This makes the diagram 
above commute and provides the required homotopy. We conclude as in [12, Prop. 4.6]
to find that λ2 is an A1-equivalence given by a strong A1-homotopy.

We now conclude with the induction step: it follows from the observation that the 
canonical map Seqn → Seqn−1×Seqn

Seq2 is an equivalence of presheaves. The conclusion 
now follows because the fiber product of strong A1-homotopy equivalences remains a 
strong A1-homotopy equivalence (it is easy to write down the homotopies for the fiber 
product). �

Finally, the fact that any colimit of A1-equivalences is an A1-equivalence gives us the 
following corollary:

Corollary 4.47. The map induced by λ between the colimits colimΔop jnc ◦ Θ →
colimΔop jnc ◦ Seqnc is an A1-equivalence. Moreover, and since lnc

0,A1 commutes with col-
imits and representable objects are Nisnevich local, we have equivalences

colimΔop lnc
0,A1 ◦ jnc ◦Θ � lnc

0,A1(colimΔop jnc ◦Θ) � lnc
0,A1(colimΔop jnc ◦ Seqnc)

� colimΔop lnc
0,A1 ◦ jnc ◦ Seqnc (4.153)

in SHnc(k).
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Our next move requires a small preliminary digression. To start with, recall that any 
(∞, 1)-category endowed with finite sums and an initial object or finite products and 
a final object, can be considered as a symmetric monoidal (∞, 1)-category with respect 
to these two operations, respectively denoted as C

∐
and C× (see [63, Sections 2.4.1 

and 2.4.3]). Monoidal structures appearing from this mechanism are called, respectively, 
cartesian and cocartesian. In particular, if C has direct sums and a zero object, these 
monoidal structures coincide C⊕ (this follows from Proposition [63, 2.4.3.19]). In this 
particular situation the theory of algebras over a given ∞-operad O⊗ gets simplified: the 
(∞, 1)-category of O-algebras on C⊕ is equivalent to a full subcategory of Fun(O⊗, C), 
spanned by a class of functors satisfying the standard Segal conditions (see [63, 2.4.2.1, 
2.4.2.5]). In the particular case of associative algebras, and since the category Δop is 
a “model” for the associative operad (see [63, 4.1.2.6, 4.1.2.10, 4.1.2.14] for the precise 
statement) an associative algebra in C⊕ is just a simplicial object in C satisfying the 
Segal condition.

AlgAss(C) � FunSegal(N(
Δop),C) (4.154)

We shall now come back to our situation and observe that

Lemma 4.48. The simplicial object Θ satisfies the Segal conditions.

Proof. As the Yoneda embedding preserves limits and is fully-faithful it suffices to check 
that Split satisfies the Segal conditions. But this is obvious from the definition of the 
simplicial structure given by the S-construction. At each level the map appearing in 
the Segal condition is the map sending a sequence of dg-modules E0 → E0 ⊕ E1 →
....E0 ⊕ ... ⊕ En−1 to the quotients (E0, ..., En−1). �

We now characterize the simplicial object Θ in a somewhat more canonical fashion. An 
important aspect of a cocartesian symmetric monoidal structure C

∐
is that any object X

in C admits a unique algebra structure, determined by the codiagonal map X
∐

X → X. 
More precisely (see [63, 2.4.3.16] for the general result), the forgetful map AlgAss(C) → C

is an equivalence of (∞, 1)-categories.31 By choosing an inverse to this equivalence and 
composing with the equivalence (4.154) we obtain an ∞-functor

C → AlgAss(C) � FunSegal(N(Δ)op,C
)

(4.155)

providing for any object in C a uniquely determined simplicial object, encoding the alge-
bra structure induced by the codiagonal.32 Because of the Segal condition this simplicial 
object is a zero object of C in degree zero, X in degree one and more generally is X

⊕
n

31 Recall that the associative operad is unital.
32 The fact that the multiplication can be identified with the codiagonal map follows from the simplicial 
identities and from the universal property defining the codiagonal.
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in degree n. We now apply this discussion to C = NcS(k) (it has direct sums and a zero 
object because Dg(k)idem has and the inclusion Dg(k)ft ⊆ Dg(k)idem preserves them) 
and to X = (̂1k)c. Since the simplicial object Θ satisfies the Segal condition and its 
first level is equivalent to X, the equivalence (4.155) tells us that it is necessarily the 
simplicial object codifying the unique associative algebra structure on X given by the 
codiagonal.

With Corollary 4.47 we are now reduced to study the colimit of the simplicial object 
lnc
A1 ◦ jnc ◦ Θ in SHnc(k). As the last is a stable (∞, 1)-category it has direct sums and 
therefore can be understood as the underlying (∞, 1)-category of a symmetric monoidal 
structure SHnc(k)⊕ which is simultaneously cartesian and cocartesian. As the canonical 
composition NcS(k) → SHnc(k) preserves direct sums (this follows from 1) the fact the 
Yoneda functor preserves limits; 2) the fact representables are Nisnevich local; 3) the 
fact the A1-localization preserves finite products (as explained when confirming that it 
preserves the Segal conditions) and finally 4) the fact that SHnc(k) is stable) it can 
be lifted in an essentially unique way to a monoidal functor NcS(k)⊕ → SHnc(k)⊕
[63, Cor. 2.4.1.8]. This monoidal map allows us to transport algebras and provides a 
commutative diagram

FunSegal(N(Δ)op,NcS(k))

ev[1]

∼

FunSegal(N(Δ)op, SHnc(k))

∼

ev[1]

AlgAss(NcS(k))

∼

AlgAss(SHnc(k))

∼

NcS(k) SHnc(k)

(4.156)

where the upper map is the composition with NcS(k) → SHnc(k). It follows from the 
description of Θ above and from the commutativity of this diagram that the simplicial 
object lnc

A1 ◦ jnc ◦Θ in SHnc(k) corresponds to the unique commutative algebra structure 
on 1nc := lnc

A1 ◦ jnc(Lpe(k)) created by the codiagonal.
Our next task is to study the theory of associative algebras on a stable (∞, 1)-category 

equipped with its natural simultaneously cartesian and cocartesian monoidal structure 
induced by the existence of direct sums. We recall some terminology. If C⊗ is a cartesian 
symmetric monoidal structure, an associative algebra on C is said to be grouplike if the 
simplicial object which codifies it A ∈ FunSegal(N(Δop), C) is a groupoid object in C in 
the sense of the definition [59, 6.1.2.7]. We let Alggrplike

Ass (C) denote the full subcategory 
of AlgAss(C) spanned by the grouplike associative algebras.

Let now Δop
+ be the standard augmentation of the category Δop. Following [59, 

6.1.2.11], an object U+ ∈ Fun(Δop
+ , C) is said to be a Cech nerve of the morphism 

U0 → U−1 if the restriction U+|N(Δop) is a groupoid object and the commutative dia-
gram
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U1 U0

U0 U−1

(4.157)

is a pullback diagram in C. Again by [59, 6.1.2.11], a Cech nerve U+ is determined by 
the map U0 → U−1 in an essentially unique way as the right-Kan extension along the 
inclusion N(Δop

+,≤0) ⊆ N(Δop
+ ).

We have the following lemma:

Lemma 4.49. Let C⊗ be a cartesian symmetric monoidal (∞, 1)-category whose underlying 
(∞, 1)-category is stable. Then

1. The inclusion Alggrplike(C) ⊆ Alg(C) is an equivalence;
2. For any object X in C the simplicial object associated to X by means of the compo-

sition (4.155) is a Cech nerve of the canonical morphism 0 → ΣX.

Proof. The first assertion is true because in any stable (∞, 1)-category every morphism 
f : X → Y has an inverse −f with respect to the additive structure.33 In particular, 
for any object X ∈ C there is map −IdX providing an inverse for the algebra structure 
given by the codiagonal map X ⊕X → X. More precisely, let X be an object in C and 
let UX be the simplicial object associated to X by means of the mechanism (4.155). By 
construction this simplicial object satisfies the Segal condition and in particular we have 
(UX)0 � 0 and (UX)1 � X. We aim to prove that this simplicial object is a groupoid 
object. For that we observe that for a simplicial object A to be a groupoid object it is 
equivalent to ask for A to satisfy the Segal conditions and to ask for the induced map

A
(
[2]

) A(∂1)×A(∂0)−−−−−−−−−→ A
(
[1]

)
×A

(
[1]

)
(4.158)

to be an equivalence. Indeed, if A is a groupoid object, by the description in [59, 
6.1.2.6-4”)] it satisfies these two requirements automatically. The converse follows by 
applying the same arguments as in the proof of [59, 6.1.2.6-4)’ implies 3)], together with 
the observation that for the induction step to work we don’t need the full condition in 4′)
but only the Segal condition. The induction basis is equivalent to the Segal conditions 
for n = 2 together with the condition that (4.158) is an equivalence.

In our case (4.158) is the map ∇ × idX : X ⊕X → X ⊕X where ∇ is the codiagonal
map X ⊕X → X. Of course, since the identity of X admits an inverse (−IdX) the map 
(∇ ◦ (IdX × (−IdX))) × IdX is an explicit inverse for ∇ × idX .

Let us now prove 2). Again by construction, we know that the colimit of the truncation 
(UX)|N(Δ≤1)op is canonically equivalent to the suspension ΣX. Therefore UX admits a 

33 More precisely π0Map(X, Y ) has a canonical structure of abelian group.
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canonical augmentation (UX)+ : N(Δop
+ ) → C with (UX)+−1 � ΣX. It follows from 1)

that U is a groupoid object and since C is stable, the diagram

(UX)1 � X (UX)0 � 0

(UX)0 � 0 (UX)−1 � ΣX

(4.159)

is a pullback so that (UX)+ is the Cech nerve of the canonical map 0 → ΣX. �
In particular, we find that the simplicial object lnc

0,A1 ◦ jnc ◦ Θ is a Cech nerve of the 
canonical map 0 → Σ1nc. Finally, recall that a morphism A → B is said to be an effective 
epimorphism if the colimit of its Cech nerve is B. The following lemma holds the final 
step

Lemma 4.50. Let C be a stable (∞, 1)-category. Then, for any object X in C, the canonical 
morphism 0 → X is an effective epimorphism.

Proof. Let U : N(Δop) → C be a simplicial object in C. Then the colimit of U can be 
computed as the sequential colimit of the successive colimits of its truncations U|N(Δop

≤n
)
. 

Using the descriptions of Cech nerves as right-Kan extensions (see above) we know that 
if U+ is the Cech nerve of the map 0 → X, its level n is given by the n-fold fiber product 
of 0 over X. As C is stable this n-dimensional limit cube will also be a colimit n-cube so 
that the colimit of the truncation at level n will necessarily be X (see Proposition [63, 
1.2.4.13]). Since this holds for every n ≥ 0 the colimit of the Cech nerve is necessarily 
canonically equivalent to X. �

We are done. Since SHnc(k) is stable we have colimΔop lnc
0,A1 ◦ jnc ◦Θ � Σ1nc so that, 

by Lemma 4.45 we have lnc
0,A1(Ω∞(Kc)) is equivalent to ΩΣ1nc � 1nc.

Appendix A. Comparison with the approach of Cisinski–Tabuada

In this appendix we explain the relation between our approach to noncommutative 
motives and the approach studied by G. Tabuada in [90,92] and Cisinski–Tabuada in [25,
24]. Both theories have the (∞, 1)-category Funω(Dg(k)idem , ̂Sp) as a common ground. 
To start with we observe that our version SHnc(k) can be identified with the full sub-
category spanned by those functors F sending Nisnevich squares of dg-categories to 
pullback–pushout squares in spectra and satisfying A1-invariance. Indeed, our original 
definition of SHnc(k) as a localization of Fun(Dg(k)ft .Ŝp) can be transported along the 
equivalence

Funω

(
Dg(k)idem , Ŝp

)
� Fun

(
Dg(k)ft , Ŝp

)
(A.1)
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Tabuada’s approach focuses on the full subcategory Funω,Loc(Dg(k)idem , ̂Sp) spanned 
by those functors sending exact sequences of dg-categories to fiber/cofiber sequences 
in spectra. His main theorem is the existence of a stable presentable (∞, 1)-category 
which we denote here as MTab

Loc , together with a functor Dg(k)idem → MTab
Loc preserv-

ing filtered colimits, sending exact sequences to fiber/cofiber sequences and universal 
in this sense. We can also easily see that MTab

Loc is a stable presentable symmetric 
monoidal (∞, 1)-category with the monoidal structure extending the monoidal structure 
in Dg(k)idem . This result was originally formulated using the language of derivators (see 
[64] for an introduction) but we can easily extend it to the setting of (∞, 1)-categories 
by applying the same construction and the general machinery developed by J. Lurie in 
[63,59]. In particular we have an equivalence of (∞, 1)-categories

Funω,Loc
(
Dg(k)idem , Ŝp

)
� FunL

(
MTab

Loc , Ŝp
)

(A.2)

As we can see this is a theorem about a specific class of objects inside
Funω(Dg(k)idem , ̂Sp), namely, those that satisfy localization. The comparison with our 
approach starts with the observation that any object F satisfying localization satisfies 
also our condition of Nisnevich descent so that we have an inclusion of full subcategories 
Funω,Loc(Dg(k)idem, ̂Sp) ⊆ Funω,Nis(Dg(k)idem , ̂Sp). In particular, we can identify

SHLoc
nc (k) := Funω,Loc,A1

(
Dg(k)idem, Ŝp

)
(A.3)

with a full subcategory of SHnc(S). We summarize this in the following diagram

Funω(Dg(k)idem , Ŝp)

Funω,Nis(Dg(k)idem, Ŝp) Funω,Loc(Dg(k)idem , Ŝp)

Funω,Nis,A1(Dg(k)idem , Ŝp) =: SHnc(k) SHLoc
nc (k)

(A.4)

The second observation is that the construction MTab
Loc of Tabuada and the formula 

(A.2) admits analogues adapted to each of the full subcategories in this diagram. More 
precisely one can easily show the existence of new stable presentable symmetric monoidal 
(∞, 1)-categories MTab

Nis , MTab
Nis,A1 , MTab

Loc,A1 all equipped with ω-continuous monoidal func-
tors from Dg(k)idem, universal with respect to each of the obvious respective properties. 
In particular we find an equivalence

FunL
(
MTab

Nis,A1 , Ŝp
)
� SHnc(k) (A.5)
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exhibiting the duality between our approach and the corresponding Nisnevich-A1-version 
of Tabuada’s construction (recall that the very big (∞, 1)-category of big stable pre-
sentable (∞, 1)-categories has a natural symmetric monoidal structure [63, 4.8.2.10, 
4.8.2.18 and 4.8.1.17] where the big (∞, 1)-category of spectra Ŝp is a unit and 
FunL(−, −) is the internal-hom). We redirect the reader to our discussion in [79, Chap-
ter 8] for further details about this comparison.

As emphasized before, the main advantage of our approach is the easy comparison with 
the motivic stable homotopy theory of schemes. The duality presented in this appendix 
explains why the original approach of Cisinski–Tabuada can’t have a direct compari-
son. A second main advantage of our methods is the interpretation of non-commutative 
K-theory as a Nisnevich sheafification of connective K-theory.
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