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Abstract. Simplicial sets are introduced in a way that should be pleasing to

the formally-inclined. Care is taken to provide both the geometric intuition

and the categorical details, laying a solid foundation for the reader to move on
to more advanced topological or higher categorical applications. The highlight,

and the only possibly non-standard content, is a unified presentation of every

adjunction whose left adjoint has the category of simplicial sets as its domain:
geometric realization and the total singular complex functor, the ordinary

nerve and its left adjoint, the homotopy coherent nerve and its left adjoint,

and subdivision and extension are some of the many examples that fit within
this framework.

1. Introduction

Simplicial sets, an extension of the notion of simplicial complexes, have appli-
cations to algebraic topology, where they provide a combinatorial model for the
homotopy theory of topological spaces. There are functors between the categories
of topological spaces and simplicial sets called the total singular complex functor
and geometric realization, which form an adjoint pair and give a Quillen equivalence
between the usual model structures on these categories.

More recently, simplicial sets have found applications in higher category theory
because simplicial sets which satisfy a certain horn lifting criterion (see Definition
5.7) provide a model for (∞, 1)-categories, in which every cell of dimension greater
than one is invertible. These categories again provide a natural setting for homotopy
theory; consequently, many constructions in this setting are motivated by algebraic
topology as well.

These important applications will not be discussed here1. Instead, we aim to
provide an elementary introduction to simplicial sets, accessible to anyone with a
very basic familiarity with category theory. In §2, we give two equivalent definitions
of simplicial sets, and in §3, we describe several examples. §4, which discusses
several important adjunctions that involve the category of simplicial sets, is the
heart of this paper. Rather than present the various adjunctions independently,
as is commonly done, we use a categorical construction to show how all of these
examples fit in the same general framework, greatly expediting the proof of the
adjoint relationship. Finally, in §5, we define simplicial spheres and horns, which are
the jumping off point for the applications to homotopy theory and higher category
theory mentioned above.

Date: Original Summer 2008. Revised August 30, 2011.
1Nor do we discuss the various model structures on the category of simplicial sets. See [DS95],

[Hov99], or the original [Qui67] for an introduction to model categories and a description of the
model structure relevant to topological spaces, and [Lur09] or [Rie08] for a description of the

model structure relevant to (∞, 1)-categories.
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Because particular simplical sets called the standard simplices are represented
functors, the Yoneda lemma plays an important role. We review several versions of
this result in §3. The left adjoints in 4 are defined by means of a rather intricate
colimit construction, though we give references for the more exotic colimits em-
ployed. Otherwise, comfort with the definitions of a category, functor, and natural
transformation should suffice as prerequisites.

The standard references for the theory of simplicial sets and some of their many
uses in algebraic topology are [GJ99] and [May67], though both sources quickly
move on to more advanced topics. A wealth of excellent material can also be found
in the classic [GZ67]. Less well known is a brief introduction given in [ML97, §7],
which may serve better for the reader interested in only the most rudimentary
definitions.

2. Definitions

Let ∆ be the category whose objects are finite, non-empty, totally ordered sets

[n] = {0, 1, . . . , n}
and morphisms are order preserving functions. Equivalently, ∆ is the full sub-
category of Cat whose objects are the posets defining finite, non-empty ordinals,
regarded as categories in the usual manner; here, we denote the ordinal n + 1
(above) by [n] to emphasize connections with topology, which will be expounded
upon below.

Definition 2.1. A simplicial set is a contravariant functor from ∆ to Set. More
generally, for any category C, a simplicial object in C is a functor X : ∆op → C.

Let X : ∆op → Set be a simplicial set. It is standard to write Xn for the
set X[n] and call its elements n-simplices. We visualize an n-simplex as an n-
dimensional tetrahedron with all of its lower-dimensional faces labeled by simplices
of the appropriate dimension and whose n+ 1 vertices are ordered 0, . . . , n. Unlike
an abstract simplicial complex [Hat??], the vertices (0-dimensional simplices) need
not be distinct nor necessarily determine the simplex spanning them.

We write sSet for the category of simplicial sets, which is simply the functor

category Set∆
op

. In particular, morphisms f : X → Y between simplicial sets are
natural transformations: a map of simplicial sets consists of maps Xn → Yn of
n-simplices that commute with the actions by morphisms of ∆. In fact, it suffices
to ask that these maps commute with the face and degeneracy maps defined in
(2.3) below.

The combinatorial data of a simplicial set has a simpler presentation that exploits
the fact that the category ∆ has a natural generating set of morphisms. For each
n ≥ 0 there are n+ 1 injections di : [n− 1]→ [n] called the coface maps and n+ 1
surjections si : [n+ 1]→ [n] called the codegeneracy maps, defined as follows:

di(k) =

{
k, k < i

k + 1, k ≥ i
and si(k) =

{
k, k ≤ i
k − 1, k > i

for 0 ≤ i ≤ n.2

The i-th coface map di misses the element i in the image, while the i-th codegen-
eracy map si sends two elements to i. These morphisms satisfy several obvious

2As is usual, the dependence on n is suppressed in this notation, as the codomain should be
clear from the context.
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relations:

djdi = didj−1, i < j

sjsi = sisj+1, i ≤ j

sjdi =


1, i = j, j + 1

disj−1, i < j

di−1sj , i > j + 1.

(2.2)

It is not difficult to verify that every morphism of ∆ can be expressed as a
composite of the coface and codegeneracy maps. If we impose further artificial
requirements specifying the order in which the generating morphisms should occur,
then each morphism of ∆ can be expressed uniquely as a composite of this particular
form. Details are left to the reader (or see [GZ67] or [ML97, §7.5]).

If X is a simplicial set, we write

di = Xdi : Xn → Xn−1 0 ≤ i ≤ n(2.3)

si = Xsi : Xn → Xn+1 0 ≤ i ≤ n
and call these the face and degeneracy maps respectively. The di and si will then
satisfy relations dual to (2.2). The face maps assign, to each x ∈ Xn, n+ 1 (n− 1)-
simplices d0(x), . . . , dn(x) ∈ Xn−1. By convention, the face di(x) is the one not
containing the i-th vertex of x. The relation didj = dj−1di for all i < j expresses
the fact that, as faces of a common n-simplex, the i-th and (j−1)-th faces of dj(x)
and di(x) agree.

To each x ∈ Xn, the degeneracy maps associate n+1 (n+1)-simplices s0(x), . . . , sn(x) ∈
Xn+1. The (n+ 1)-simplex si(x) has x as its i-th and (i+ 1)-th faces; the intuition
is that the projection that collapses the edge from the i-th to the (i+ 1)-th vertex
to a point returns the n-simplex x. We will be more precise about these projections
in the next section. We say a simplex x ∈ Xn is degenerate if it is the image of
some degeneracy map si and non-degenerate otherwise. By the Eilenberg-Zilber
lemma [GZ67, pp 26-27], each degenerate x ∈ Xn is uniquely expressible as (Xε)y
for some non-degenerate y ∈ Xm and epimorphism ε : [n]� [m] in ∆.

In fact, the data of a simplicial set is completely specified by the sets Xn and
the maps di, si in the sense of the following alternative definition:

Definition 2.4. A simplicial set X is a collection of sets Xn for each integer n ≥ 0
together with functions di : Xn → Xn−1 and si : Xn → Xn+1 for all 0 ≤ i ≤ n and
for each n satisfying the following relations:

didj = dj−1di, i < j

sisj = sj+1si, i ≤ j

disj =


1, i = j, j + 1

sj−1di, i < j

sjdi−1, i > j + 1.

(2.5)

This is the first definition given in [May67]. In practice, one usually specifies
a simplicial set X by describing the sets Xn of n-simplices and then defining the
required face and degeneracy maps. Mercifully, the required relations are often
obvious, and even if they are not, it is still advisable to assert that they are, after
privately verifying that they do in fact hold.
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3. Yoneda and Examples

The simplest examples of simplicial sets are the standard simplices ∆n for each
n ≥ 0, which are the represented functors for each object [n] ∈∆. Their universal
properties will follow immediately from the Yoneda lemma, which we briefly review.

For any small category C and any object c ∈ C, there is a represented functor

C(−, c) : Cop → Set

that takes an object b ∈ C to the set of arrows C(b, c). A morphism g : a → b in
C induces a function g∗ : C(b, c)→ C(a, c) defined by pre-composition. This defines
the functor C(−, c).

Furthermore, a morphism f : c→ d in C defines a natural transformation

f∗ : C(−, c)→ C(−, d)

defined pointwise by post-composition with f . This defines a functor

C ↪→ SetC
op

called the Yoneda embedding. One version of the Yoneda lemma says that this
functor is full and faithful, which means that natural transformations between rep-
resented functors uniquely correspond to morphisms between the representing ob-
jects.

Returning to simplicial sets, for each [n] ∈ ∆, we denote its image under the
Yoneda embedding

y : ∆ ↪→ Set∆
op

= sSet by ∆n := y[n] = ∆(−, [n]).

This is the simplicial set representing the standard n-simplex. From the definition,
∆n
k = ∆([k], [n]), i.e., k-simplices in ∆n are maps [k] → [n] in ∆. The face

and degeneracy maps di and si are given by pre-composition in ∆ by di and si,
respectively. Explicitly:

di : ∆n
k → ∆n

k−1 is the function [k]
f→ [n] 7→ [k − 1]

di→ [k]
f→ [n] and

si : ∆n
k → ∆n

k+1 is the function [k]
f→ [n] 7→ [n+ 1]

si→ [k]
f→ [n].

The simplicial set ∆n has a unique non-degenerate n-simplex, which corresponds
to the identity map at [n]. More generally, the non-degenerate k-simplices of ∆n

are precisely the injective maps [k]→ [n] in ∆.
The Yoneda lemma tells us that y is full and faithful, which means that simplicial

set maps f : ∆n → ∆m correspond bijectively to morphisms f : [n] → [m] in ∆;
as before, the functions f : ∆n

k → ∆m
k are defined by post-composition by f . We

drop the convention employed above and use the same notation for both maps.
For instance, the coface maps di : ∆n−1 → ∆n play an important role in defining
spheres and horns in §5.

A more robust version of the Yoneda lemma is the following.

Lemma 3.1 (Yoneda lemma). Let c ∈ C and X : Cop → Set. Natural trans-
formations C(−, c) → X correspond bijectively to elements of the set Xc and the
correspondence is natural in both variables.

In our case, the Yoneda lemma tells us that for any simplicial set X, there is a
natural bijective correspondence between n-simplices of X and morphisms ∆n → X
in sSet. More explicitly, an n-simplex x can be regarded as a map x : ∆n → X that
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sends the unique non-degenerate n-simplex in ∆n to x. Applying this notational
convention, if x is an n-simplex, the (n− 1)-simplex di(x) equals xdi:

x ∈ Xn! ∆n x→ X di(x) ∈ Xn−1 ! ∆n−1 di→ ∆n x→ X

This latter notation, which the author now prefers, can be a little tricky to become
accustomed to but is then extremely convenient. Indeed, the author now prefers to
think a simplicial set X as a graded set {Xn | n ∈ N} whose elements acted on the
right by morphisms in ∆. This way, the natural notation for right action of maps
in ∆ on simplices corresponds precisely to that of composition in the category sSet
and one need only ever set notation for maps in ∆ and have the relations (2.2) in
mind.

A simplicial set X has an associated category of elements elX, in this case called
the category of simplices, obtained by applying the Grothendieck construction to
the functor X : ∆op → Set. Objects of elX are simplices x ∈ Xn for some n. A
morphism x ∈ Xn → y ∈ Xm is given by a map f : [n] → [m] in ∆ such that
yf = x. The density theorem, dual in some sense to the Yoneda lemma, says
that any simplicial set is a colimit of standard simplices indexed by its category of
elements

colimx∈Xn
∆n ∼= X.

The map ∆n → X from the object in the colimit diagram indexed by x ∈ Xn is,
not surprisingly, x : ∆n → X.

For example, the map si : ∆n+1 → ∆n induced by the order-preserving surjection
si : [n + 1] → [n] that sends to elements to i ∈ [n] is a form of projection: the
standard simplex is mapped to one of lower dimension in such a way that the
ordering of the vertices is preserved. Hence, precomposing x : ∆n → X with this
yields an (n+1)-simplex xsi whose i-th and (i+1)-th faces xsidi and xsidi+1 equal
x by (2.2).

In the remainder of this section, we will give two further examples of simplicial
sets, which will be reintroduced in §4.

Example 3.2 (nerve of a category). Let C be any small category. Define the nerve
of C to be the simplicial set NC defined as follows:
NC0 = obC

NC1 = morC
NC2 = {pairs of composable arrows →→ in C}

...
NCn = {strings of n composable arrows →→ · · · → in C}.

The degeneracy map si : NCn → NCn+1 takes a string of n composable arrows

c0 → c1 → · · · → ci → · · · → cn

and obtains n + 1 composable arrows by inserting the identity at ci in the i-th
spot. The face map di : NCn → NCn−1 composes the i-th and i + 1-th arrows if
0 < i < n, and leaves out the first or last arrow for i = 0 or n respectively. One can
verify directly that these maps satisfy the relations from §2. However, we decline
to do so because this will become obvious once we redefine the nerve of a category
in §4.
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Example 3.3 (total singular complex of a space). To begin, we define a covariant
functor ∆: ∆→ Top that sends [n] to the standard topological n-simplex

∆n = {(x0, . . . , xn) ∈ Rn+1 | x0 + · · ·+ xn = 1, xi ≥ 0}.
The morphisms di : ∆n−1 → ∆n insert a zero in the i-th coordinate, while the
morphisms si : ∆n+1 → ∆n add the xi and xi+1 coordinates. Geometrically, di

inserts ∆n−1 as the i-th face of ∆n and si projects the n + 1 simplex ∆n+1 onto
the n-simplex that is orthogonal to its i-th face.

Let Y be any topological space. We define a simplicial set SY by defining SYn =
Top(∆n, Y ) to be the set of continuous maps from the standard topological n-
simplex to Y . Elements of this set are called n-simplices of Y in algebraic topology,
which coincides with our terminology. Pre-composition by di induces a map of sets

di : Top(∆n+1, Y )→ Top(∆n, Y ),

which obtains a singular n-simplex as the i-th face of a singular n + 1-simplex.
Similarly, pre-composition by si induces a map of sets

si : Top(∆n−1, Y )→ Top(∆n, Y ),

whose image consists of the degenerate singular n-simplices, which are continuous
functions ∆n → Y that factor through ∆n−1 along si. The morphisms di and si
will satisfy (2.5) because the di and si satisfy the dual relations (2.2). This makes
SY a simplicial set. It is called the total singular complex of a topological space.

In fact, both N and S are functors with a wide variety of applications. The
functor S is implicit in the definition of singular homology, the n-th homology
functor factoring as

Hn(−,Z) : Top
S→ sSet

F∗→ sAb
∑

i(−1)idi−→ ChZ
Hn→ Ab.

The first functor associates the total singular complex to each space. The second
maps this to the simplicial abelian group, with FSYk the free abelian group on
the k-simplices of SY . The third functor converts this into a chain complex with
differentials defined to be the alternating sum of the face maps of the simplicial
abelian group. The final functor takes homology of this chain complex, yielding the
homology of the space Y .

The functor N can be used to model the classifying space of a group G. First,
regard the group as a one object category (with the group elements as its mor-
phisms), then take its nerve, and then its geometric realization, defined in §4. This
construction is obviously functorial and also preserves finite products, making it a
useful model in many contexts.

4. A unified presentation of all3 adjunctions

In this section we will introduce several important pairs of adjoint functors with
sSet the domain of the left adjoint. For all these examples, the same category-
theoretic construction can be employed to define both left and right adjoints and
to establish the adjunction. This construction works equally well with any small
category in place of ∆, though we restrict ourselves to the level of generality needed
here. After presenting the general proof, we will describe the examples of interest.
First, recall

3whose left adjoint has domain sSet
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Definition 4.1. An adjunction L a R consists of a pair of functors L : sSet → E

and R : E→ sSet together with hom-set bijections

E(LX, e) ∼= sSet(X,Re)

for all x ∈ sSet and e ∈ E, natural in both X and e.

Let E be any cocomplete, locally small category and F : ∆ → E any covariant
functor. Using F , we may define a functor R : E → sSet by setting Re, for each
e ∈ E, to be the simplicial set with n-simplices

Ren = E(F [n], e),

the set of morphisms in E from F [n] to e. As in Example 3.3, di : Ren → Ren−1 is
given by pre-composition by Fdi and si : Ren → Ren+1 is given by pre-composition
by Fsi. By functoriality of F , the Fdi and Fsi satisfy (2.2), so by contravariant
functoriality of E(−, e), the di and si will satisfy (2.5). Thus, Re is a simplicial set.
Levelwise post-composition defines a map of simplicial sets for each e→ e′ ∈ E and
makes R a functor.

The functor R will be the right adjoint of a functor L : sSet → E, which is
most concisely described as the left Kan extension of F : ∆→ E along the Yoneda
embedding.

sSet

L

!!D
D

D
D

D

∆
F

//
- 

y
<<yyyyyyyy
⇑∼=

E

Explicitly, the value of L at a simplicial set X is a particular type of colimit called a
coend. As is the case for any colimit, coends can also be described as a coequalizer
between a pair of maps between certain coproducts, but this author believes the
coend description makes it easier to understand the conditions imposed by the
colimiting diagram.

For any set S and object e ∈ E, the copower or tensor of e by S, denoted S · e
is simply the coproduct

∐
S e of copies of e indexed by S. In particular, if X is a

simplicial set, we may form copowers

Xm · F [n]

for any n,m ∈ N. A morphism f : [n]→ [m] of ∆ induces a map

f∗ : Xm · F [n]→ Xm · F [m],

which applies Ff to the copy of F [n] in the component corresponding to x ∈ Xm

and includes it in the component corresponding to x in Xm ·F [m], and also a map

f∗ : Xm · F [n]→ Xn · F [n],

which maps the component corresponding to x ∈ Xm to the component correspond-
ing to xf ∈ Xn.

Definition 4.2. Consider the diagram whose objects are copowers Xm · F [n] for
m,n ∈ N and whose arrows consist of morphisms f∗ and f∗ for each f ∈ mor ∆. A
wedge under this diagram is an object e of E together with maps γn : Xn ·F [n]→ e
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such that the squares

(4.3) Xm · F [n]
f∗ //

f∗

��

Xm · F [m]

γm

��
Xn · F [n]

γn
// e

commute for each f . The coend, written
∫ n

Xn · F [n], is defined to be a universal

wedge. Equivalently,
∫ n

Xn · F [n] is a coequalizer of the diagram

∐
f : [n]→[m]Xm · F [n]

f∗ //
f∗
// ∐

[n]Xn · F [n] //___
∫ n

Xn · F [n]

On objects, the functor L : sSet→ E is given by this coend:

LX : =

∫ n

Xn · F [n].

If α : X → Y is a map of simplicial sets, then α induces a wedge from the diagram
(4.3) for X to the object LY ; hence, the universal property of the coend defines a
map

Lα : LX → LY.

This defines the functor L on morphisms. Uniqueness of the universal property will
imply that L is functorial, as is always the case when one uses a colimit construction
to define a functor.

It follows from the Yoneda lemma (or really, just from the fact that y is full and
faithful) that L∆n ∼= F [n]. The map ∆n

m · F [m] → F [n] is defined to be Ff at
the component corresponding to f : [m] → [n]. It follows from functoriality of F
that these define a wedge to F [n]. Given another wedge γm : ∆n

m · F [m] → e the
component of γn and the identity 1: [n]→ [n] defines a map γ : F [n]→ e.

At the component corresponding to f , ∆n
m · F [m] → F [n] → e is γ · Ff , which

equals γm at f because the γm form a wedge. This is obviously the only thing that
works at the identity component.

It remains to show that L is left adjoint to R. Immediately from the definitions,
we have hom-set isomorphisms

(4.4) sSet(∆n, Re) ∼= Ren = E(F [n], e) ∼= E(L∆n, e),

the first by an application of the Yoneda lemma. A companion result to the Yoneda
lemma, the density theorem mention in §3, says that every simplicial set is canon-
ically a colimit of the standard simplices. Since L is defined by a colimit formula,
it commutes with colimits. Hence the functor L is completely determined by its
value on the ∆n, and the full adjoint correspondence follows from (4.4).

We can also describe the adjoint correspondence more constructively. A mor-
phism γ : X → Re of simplicial sets consists of maps γn : Xn → E(F [n], e) for each
n. We can use this to define morphisms γn : Xn ·F [n]→ e in E by applying γn(x) to
the component of the copower corresponding to the element x ∈ Xn. We claim that
the γn form a wedge under the diagram for X to the element e; we must show that
(4.3) commutes for each f ∈ mor ∆. Unravelling the definitions, this is equivalent
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to commutativity of

Xm
γm //

Xf

��

E(F [m], e)

(Ff)∗

��
Xn γn

// E(F [n], e)

which is true by naturality of γ. The universal property of the coend, then gives
us a map γ[ : LX → e, which we use to define a map

φ : γ 7→ γ[ : sSet(X,Re)−→E(LX, e).

Conversely, given an arrow h : LX → e in E, we have maps

Xn · F [n]
ωn−→ LX

h−→ e

for each n, where the ωn are the maps of the coend wedge. We can use these to
define functions

h]n : Xn → E(F [n], e)

which take x ∈ Xn to the map induced by hωn on the corresponding component
of the coproduct. We claim that h] : X → Re is a map of simplicial sets. As noted
above, the left hand square below commutes if and only if the right hand one does:

Xm

Xf

��

h]
m // E(F [m], e)

(Ff)∗

��

Xm · F [n]
f∗ //

f∗

��

Xm · F [m]

hωm

��
Xn

h]
n

// E(F [n], e) Xn · F [n]
hωn

// e

So h] is natural, since hω is a wedge, and this defines a map

ψ : h 7→ h] : E(LX, e) −→ sSet(X,Re).

It is easy to see that both φ and ψ are natural in X and e and are inverses. This
shows that L is left adjoint to R, as desired.

Example 4.5. Post-composition turns the total singular complex defined in Example
3.3 into a functor S : Top→ sSet. Following the above prescription, its left adjoint
| − | : sSet→ Top is defined on objects by

|X| =
∫ n

Xn ×∆n = colim

 ∐
f : [n]→[m]

Xm ×∆n

f∗ //
f∗
//
∐
[n]

Xn ×∆n


and is called the geometric realization of the simplicial set X. The copower Xn ·∆n

of topological spaces is equivalent to the cartesian product Xn ×∆n where the set
Xn is given the discrete topology. This coend is also knows as the tensor product

of the functors ∆op X→ Set
D→ Top and ∆

∆→ Top, which is commonly denoted by
X ⊗∆ ∆, ignoring the discrete topological space functor D. Such a tensor product
can be defined more generally for any pair of functors F : Cop → D and G : C→ D

where D has some monoidal product ⊗ to play the role of the cartesian product in
Top and provided the desired copowers and coends exist in D.
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Example 4.6. The construction of the nerve of a category in Example 3.2 gives
a functor Cat → sSet. Let F : ∆ → Cat be the functor that sends [n] to the
category

n
:

= · → · → · · · → ·

with n+1 objects and n generating non-identity arrows, as well as their composites
and the requisite identities. Each order-preserving map in ∆ uniquely determines a
functor between categories of this type by prescribing the object function, and the
object functions of all such functors give rise to order preserving maps. Thus F is
actually an embedding ∆ ↪→ Cat. In this example, the right adjoint is commonly
called the nerve functor N : Cat→ sSet, with

NCn = Cat(n
:
,C),

or, more colloquially, the set of strings of n composable arrows in C. The map
si : NCn → NCn+1 inserts the appropriate identity arrow at the i-th place, and
di : NCn → NCn−1 leaves off an outside arrow if i = 0 or n and composes the i-th
and (i+ 1)-th arrows otherwise.

The left adjoint is typically denoted τ1 : sSet → Cat for first truncation. Sur-
prisingly, the image of a simplicial setX under this functor is completely determined
by its 0-, 1-, and 2-simplices and the maps between them. This becomes obvious
when we give an alternate description of τ1. Given a simplicial set X, define ob τ1X
to be X0. Morphisms in τ1X are freely generated by the set X1 subject to rela-
tions given by elements of X2 in the sense described below. The degeneracy map
s0 : X0 → X1 picks out the identity morphism for each object. The face maps
d1, d0 : X1 → X0 assign a domain and codomain, respectively, to each arrow. To
obtain τ1X, we begin by taking the free graph on X0 generated by the arrows X1

and then impose the relation h = gf if there exists a 2-simplex x ∈ X2 such that
xd2 = f, xd0 = g, and xd1 = h:

1
g

��>>>>>>>>

0

f
@@��������

h
// 2

Composition is associative already in the free graph. The degenerate 2-simplices in
the image of the maps s0 and s1 give witness to the fact that the identity arrows
behave like identities with respect to composition. This makes τ1X a category.

It is not hard to verify explicitly that this definition of τ1 gives a left adjoint to
N ; then the fact that left adjoints of a given functor must necessarily be naturally
isomorphic gives an economical verification that this definition of τ1 is compatible
with the definition given above.

Example 4.7. This construction can also be used to show that sSet is cartesian
closed, i.e., for every simplicial set Y , the functor −× Y : sSet→ sSet has a right
adjoint. This is true for all categories of presheaves on a small category, and the
construction of the right adjoint given here is the usual one.

Fix a simplicial set Y and let F : ∆→ sSet be given on objects by

[n] 7→ ∆n × Y
and on morphisms by f 7→ f × 1Y . Recall that we mentioned that the functor L
is defined to be the left Kan extension of F along the Yoneda embedding. In this
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case, F is the composite of the Yoneda embedding with the functor −× Y , so L is
the functor −× Y 4.

The right adjoint R is traditionally denoted [Y,−] or (−)Y and sometimes re-
ferred to as an internal hom. For a simplicial set Z, the above construction gives

RZn = [Y,Z]n = sSet(∆n × Y,Z);

that is, n-simplices [Y,Z]n are natural transformations ∆n × Y → Z. [Y,Z] is a
simplicial set with face and degeneracy maps

di : [Y,Z]n → [Y,Z]n−1 given by pre-composition by di × 1: ∆n−1 × Y → ∆n × Y
si : [Y,Z]n → [Y,Z]n+1 given by pre-composition by si × 1: ∆n+1 × Y → ∆n × Y

These definitions give us the desired adjunction

sSet(X × Y,Z) ∼= sSet(X, [Y,Z]).

In fact, this bijection is natural in all three variables, which is easily verified.

There are several other examples of adjoint pairs of functors involving sSet that
fit into the above template that we choose not to define here but list in case the
reader may encounter these elsewhere. Descriptions of the first two can be found
in [GJ99]; the third is defined in [Lur09].

Example 4.8. Groupoids can be regarded as categories where every morphism is an
isomorphism; in fact the inclusion Gpd ↪→ Cat is reflective (i.e., has a left adjoint)
and, more unusually, coreflective (has a right adjoint). Using inclusion and its left
adjoint, the nerve functor for groupoids has the same form as above, yielding an
adjunction

Π1 : sSet
//

⊥ Gpd : Noo

The left adjoint Π1 gives the fundamental groupoid of a simplicial set.

Example 4.9. Subdivision of a simplicial set gives a functor sd: sSet→ sSet such
that |sd ∆n| is the barycentric subdivision of |∆n|. This functor has a right adjoint

sd: sSet
//

⊥ sSet : Exoo

Example 4.10. Let sCat denote the category of small categories enriched in sSet
and simplicially enriched functors. The simplicial nerve of a simplicially enriched
category (which is different from the nerve functor of Example 4.6) has a left adjoint

C : sSet
//

⊥ sCat : Noo

which, when restricted to the representable simplicial sets, can be regarded as a
simplicial thickening or cofibrant replacement of the categories n

:
. See [Rie11] for a

considerably more detailed description of this adjunction.

4Alternatively, one can check directly that X×Y is a universal wedge under the diagram (4.3),
with the limiting cone defined by the Yoneda lemma.
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5. Spheres and Horns

We say a simplicial set Y is a subset of a simplicial set X if there is a monomor-
phism Y → X, i.e., if Yn ⊂ Xn for all [n] ∈∆ and if

Xf
∣∣
Yn

= Y f

for all f : [m]→ [n] in ∆. This second condition says that the subsets Yn are closed
under the right action by the face and degeneracy operations and furthermore that
these operations agree with their definitions for X. In the presence of a simplicial
set X, we often specify a simplicial subset by giving a set of generators, which will
typically have the form of a subset S ⊂ Xn for some n. The simplicial set generated
by S is then the smallest simplicial subset of X that contains S. Its k-simplices
will be those k-simplices of X that are in the image of S under the right action by
some f : [k]→ [n] in ∆.

There are a number of important simplicial subsets of the simplicial set ∆n.

Definition 5.1. The i-th face ∂i∆
n of ∆n is the simplicial subset generated by

di ∈ ∆n
n−1. Equivalently,

∂i∆
n ∼= ∆n−1 di→ ∆n.

Definition 5.2. The simplicial n-sphere ∂∆n is the simplicial subset of ∆n given
by the union of the faces ∂0∆n, . . . , ∂n∆n. Equivalently, it is the simplicial subset
generated by {d0, . . . , dn} ⊂ ∆n

n−1. Alternatively, it is the colimit of the diagram
consisting of the faces ∂i∆

n together with the morphisms that include each of the
(n−2)-simplices that form their boundary into both of the faces in which each one
is contained.

The sphere ∂∆n has the property that (∂∆n)k = ∆n
k for all k < n; all higher

simplices of ∂∆n are degenerate. In otherwords, ∂∆n is the (n− 1)-skeleton of ∆n.

More generally, a n-sphere in X is a map ∂∆n → X of simplical sets.

Definition 5.3. The simplicial horn Λnk is the union of all of the faces of ∆n except
for the k-th face; equivalently, it is the simplicial subset of ∆n generated by the
set {d0, . . . , dk−1, dk+1, . . . , dn}. Alternatively, it can be described as a colimit in
sSet, analogous to that for ∂∆n described above, except with the face ∂k∆n left
out of the colimiting diagram.

The horn Λnk has the property that (Λnk )j = ∆n
j for j < n − 1 and (Λnk )n−1 =

∆n
n−1\{dk}, with higher simplices again being degenerate.

More generally, a horn in X is a map Λnk → X of simplicial sets.

Remark 5.4. For each of these simplicial sets, their geometric realization is the
topological object suggested by their name; |∂i∆n| is the i-th face of the standard
topological n-simplex ∆n = |∆n|, |∂∆n| is its boundary, and |Λnk | is the union of
all faces but the k-th.

There are certain special types of simplicial sets, which are defined by various
“horn filling” conditions. We give only the basic definitions and list a few sources
for the interested reader.

Definition 5.5. A Kan complex is a simplicial set X such that every horn has a
filler (which is not assumed to be unique). This means that for each horn Λnk → X
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in X there exists an extension along the inclusion Λnk ↪→ ∆n as shown

Λnk
//

_�

��

X

∆n

>>}
}

}
}

By the Yoneda lemma, the map ∆n → X identifies an n-simplex in X whose faces
agree with those specified by the horn.

Lemma 5.6. If X is a topological space, then SX is a Kan complex.

Proof. By the adjunction (4.5), the diagram

Λnk_�

��

// SX

∆n

==z
z

z
z

in sSet corresponds to

|Λnk |_�

��

// X

|∆n|

>>|
|

|
|

in Top.

A topological (n, k)-horn is a deformation retract of the standard n-simplex ∆n =
|∆n|, so the lift on the right hand side exists. The adjunct to this map gives us the
desired lift on the left. �

Kan complexes play an important role in studying the homotopy theory of sSet,
which is closely linked to the homotopy theory of Top via the adjunction (4.5). For
more details see [GJ99] or [May67].

Definition 5.7. A quasi-category or ∞-category is a simplicial set X such that
every inner horn, i.e., horn Λnk with 0 < k < n, has a filler.

Example 5.8. For any category C, its nerve NC is a quasi-category. In fact, it is a
quasi-category with the special property that every inner horn has an unique filler.
Conversely, any quasi-category such that every inner horn has a unique filler is
isomorphic to the nerve of a category.

We won’t give formal proofs of these facts here (instead see [Lur09]) but we will
at least provide some intuition for why the nerve of a category has a unique filler
for horns Λ2

1 → NC. This horn is often represented by the following picture:

x1

g

!!CCCCCCCC x1

!!CCCCCCCC

x0

f
==||||||||

⊂

x2 x0

==|||||||| // x2

Here f, g ∈ NC1 are morphisms in C and x0, x1, x2 ∈ NC0 are objects in C. fd1 = x0

and fd0 = x1, colloquially, x0 is the domain of f and x1 is its codomain, and
similarly for g. The essential point that this picture communicates is that if f and
g are the generating 1-simplices of a horn Λ2

1 → NC, then f and g are a composable
pair of arrows in C. The statement that this horn can be filled then simply expresses
the fact that this pair necessarily has a composite gf . Composition is unique in a
category, so this horn can be filled uniquely5.

5However, in many higher categorical settings, composition is not required to be unique. This
example gives a glimpse of why horn filling conditions and quasi-categories in particular are so

useful for studying higher categories.
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However, it will not necessarily be true that outer horns Λ2
0 → NC and Λ2

2 →
NC will have fillers. Indeed, asking the (2, 2)-horn depicted below has a filler is
equivalent to asking that the arrow f have a right inverse, which is certainly not
true in general.

x1

f

!!CCCCCCCC x1

!!CCCCCCCC

x2
1

//

⊂

x2 x2

==|||||||| // x2

It turns out that if C is a groupoid, then these outer horns will have fillers. In fact
all outer horns will have fillers, which says that the nerve of a groupoid is a Kan
complex.

Quasi-categories were first defined by Boardman and Vogt in [BV73] under the
name weak Kan complexes. In recent years, their theory has been developed exten-
sively by André Joyal (see [Joy02] and, if you can find it, [Joy08]) and Jacob Lurie
[Lur09].
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