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HOMOTOPY THEORY OF POSETS

GEORGE RAPTIS

(communicated by J. Daniel Christensen)

Abstract
This paper studies the category of posets Pos as a model for

the homotopy theory of spaces. We prove that: (i) Pos admits
a (cofibrantly generated and proper) model structure and the
inclusion functor Pos ↪→ Cat into Thomason’s model category
is a right Quillen equivalence, and (ii) there is a proper class
of different choices of cofibrations for a model structure on Pos
or Cat where the weak equivalences are defined by the nerve
functor. We also discuss the homotopy theory of posets from
the viewpoint of Alexandroff T0-spaces, and we apply a result
of McCord to give a new proof of the classification theorems of
Moerdijk and Weiss in the case of posets.

1. Introduction

This paper considers the category of posets from the viewpoint of homotopical
algebra and shows that it provides a model for the homotopy theory of spaces. An
elementary way to view the category of posets from a homotopical viewpoint is via the
correspondence between posets and abstract simplicial complexes. The collection of
chains in a poset defines an abstract simplicial complex and every weak homotopy type
can be canonically represented this way. Conversely, for every geometric simplicial
complex there is an associated poset of simplices that captures the homotopy type of
the complex. In this paper, we show that this correspondence can be enriched in the
following sense: the category of posets Pos admits the structure of a model category
that is Quillen equivalent with the model category of simplicial sets SSet. The theory
of model categories was introduced by Quillen [21] and it has successfully established
its importance in analysing homotopical phenomena. Modern treatments of the theory
can be found in the recent monographs by Hirschhorn [11] and Hovey [12].

The category Pos is a subcategory of the category of all small categories Cat.
Thomason [28] showed that Cat admits the structure of a model category where the
weak equivalences are defined by the nerve functor N : Cat→ SSet. The nerve of a
poset is precisely the simplicial set associated with the abstract simplicial complex
of its chains. In Section 2, we show that Thomason’s model category restricts to a
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(cofibrantly generated and proper) model structure on Pos and the inclusion functor
Pos ↪→ Cat is a right Quillen equivalence (see Theorem 2.6). In order to show this,
we will first briefly recall the proof of Thomason’s theorem to which our result is only
an additional remark.

In Section 3, we study other model structures on Cat and Pos that have the
same class of weak equivalences, but different cofibrations. More specifically, we apply
results from the theory of combinatorial model categories ([3, 22]) to show that every
adequate set of morphisms (see Definition 3.3) in Cat or Pos can be the generating
set of cofibrations for a (cofibrantly generated and left proper) model structure on
Cat or Pos (see Proposition 3.4). Furthermore, we show that there is a (cofibrantly
generated and proper) model structure associated to every regular cardinal µ, and it
has the property that every µ-presentable object is cofibrant (see Theorem 3.5).

A different link between posets and the homotopy theory of spaces is due to a theo-
rem by McCord [18] (see Theorem 4.5). The category Pos is well-known to be isomor-
phic with the category of topological spaces that are known as Alexandroff T0-spaces
(see Proposition 4.2). Under this correspondence, the subcategory of finite posets
is isomorphic with the category of T0-spaces with finitely many points. The homo-
topy theory of finite topological spaces has been studied by Stong [25] who reduced
the classification of their homotopy types to a completely combinatorial description
(see Theorem 4.12). McCord [18] showed that every geometric simplicial complex is
canonically weakly homotopy equivalent with the Alexandroff T0-space that is asso-
ciated with the poset of its simplices. From this it follows that two posets are weakly
equivalent if and only if the associated Alexandroff T0-spaces are weakly homotopy
equivalent. The theorems of Stong [25] and McCord [18] have been recently discussed
in the survey articles by May [16, 17]. Also, Barmak and Minian [2] introduced a
notion of simple-homotopy for finite spaces that lies strictly between homotopy and
weak homotopy and showed that it is a model for the simple-homotopy theory of
simplicial complexes. In Section 4, we will discuss how the model structure on Pos
can be interpreted in the category of Alexandroff T0-spaces.

In Section 5, we discuss a few more ways that posets appear naturally in the
homotopy theory of spaces. Since every CW-complex is homotopy equivalent to the
classifying space of a poset, homotopy classes of maps X → Y between CW-complexes
can be represented by homotopy classes of maps X → BJ for some poset J . In 5.1, we
give a new proof of the classification theorems of [20] and [29] restricted to the case of
posets. This says that homotopy classes of maps X → BJ correspond to concordance
classes of open coverings of X well-indexed by J (see Definition 5.1). In 5.2, we discuss
a useful well-known way to obtain a poset from an open covering of a space. In 5.3,
we remark that the cohomology of the topos of sheaves on a space is equivalent with
the cohomology of the topos of presheaves on a poset.

Notation

We recall some standard notation. ∆ will denote the category of finite ordinals
[n] = {0 < 1 < · · · < n} and order-preserving maps. ∆n denotes the n-dimensional
simplex, i.e., the functor ∆op → Set that is representable by [n]. Given a category
C and objects A and B, C(A,B) will denote the set of morphisms from A to B.
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T op, SSet, Cat and Pos will denote the categories of topological spaces, simplicial
sets, small categories and posets respectively. For every pair (C,W) of a category C
together with a subcategoryW, the localisation of C atW will be denoted by C[W−1].
If C is a model category, then we will write Ho C to denote the homotopy category.
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2. Thomason’s model category

The nerve functor N : Cat→ SSet defines a class of weak equivalences in Cat
which is of great interest in homotopy theory. We recall that the nerve NC of a small
category C is a simplicial set whose n-simplices are the sequences of n composable
arrows in C; i.e.,

NnC = Cat([n], C).

The face and degeneracy maps are given by the composition in C and the insertion
of identities respectively (or, in other words, by precomposition with the standard
inclusion ∆ ↪→ Cat).

A morphism f : C → D in Cat is called a weak equivalence if it induces a weak
homotopy equivalence Nf : NC → ND between the nerves of the categories. The
class of weak equivalences in Cat will be denoted by WCat.

The nerve functor admits a left adjoint cat : SSet→ Cat, called the categorical
realisation, which takes a simplicial set K to a category cat(K) with objects the
0-simplices of K and whose morphisms are freely generated by the 1-simplices of K
up to a “composition” relation for every 2-simplex1. Alternatively, cat can be regarded
as the cocontinuous extension of ∆ ↪→ Cat by the density of the Yoneda embedding
∆ ↪→ SSet. Clearly, catN = 1Cat and therefore N embeds Cat in SSet fully faithfully
as a reflective subcategory.

On the other hand, the unit transformation of the adjunction 1SSet → Ncat is
not even a weak homotopy equivalence in general and this can be testified by many
non-trivial examples. For example, note that cat(K) is completely determined by the
2-skeleton of K. However, the induced functor HoN : Cat[W−1

Cat]→ Ho(SSet) is an
equivalence of categories. This can be shown by constructing a homotopy inverse to
the nerve functor, that is: a functor Γ: SSet→ Cat together with a natural weak
homotopy equivalence NΓ→ 1SSet; see [10]. An example of such a functor comes
from the Grothendieck construction if we view a simplicial set K as a simplicial
category K. : [n] 7→ Kn with values in discrete categories.

Thomason [28] showed that it is possible to lift the model structure on SSet to
a model structure on Cat via an adjoint pair of functors and that, in addition, the
adjunction is a Quillen equivalence. The method of inducing model structures using

1The category cat(K) is also known as the fundamental category of K.
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pairs of adjoints is now a standard tool in the theory of model categories and it is
described in the following proposition.

Proposition 2.1. Let F : MÀ D : G be an adjunction. Assume that M is a cofi-
brantly generated model category with I and J sets of generating cofibrations and
trivial cofibrations respectively, and D is a category that admits all small limits and
colimits. Suppose that the following are satisfied:
(a) the domains of FI (resp. FJ) are small relative to FI-cellular (resp. FJ-

cellular) morphisms,
(b) G takes FJ-cellular morphisms to weak equivalences in M.

Then there exists a cofibrantly generated model structure on D, where
(i) f in D is a weak equivalence (resp. fibration) if G(f) is a weak equivalence (resp.

fibration),
(ii) the class of cofibrations is the class of morphisms that have the left lifting prop-

erty with respect to the trivial fibrations,
(iii) FI is a set of generating cofibrations and FJ is a set of generating trivial

cofibrations.
Moreover, the adjunction becomes a Quillen adjunction of model categories.

Proof. See [11, Theorem 11.3.2].

Thomason [28] considered the adjunction

catSd2 : SSet À Cat : Ex2N,

where Sd : SSet À SSet : Ex is an adjoint pair defined by Kan [13]. We recall the
definition of the subdivision functor Sd. Firstly, Sd is defined on ∆ as follows: for
every n > 0, Sd∆n is the nerve of the poset of the non-degenerate simplices of ∆n, i.e.,
the poset of non-empty subsets of [n] = {0 < 1 < · · · < n}. Then Sd : SSet→ SSet
is the Kan extension along the Yoneda embedding ∆ ↪→ SSet; i.e.,

SdK = colim∆↓K Sd∆n

for every simplicial set K. The elements of (SdK)n can be represented by equivalence
classes of pairs [x, θ] where x ∈ Km and θ ∈ (Sd∆m)n. Moreover, there is a natural
weak homotopy equivalence SdK → K for every simplicial set K. The extension
functor Ex is defined to be the right adjoint of Sd. Equivalently, the n-simplices
of ExK correspond to simplicial maps Sd∆n → K. It has the following important
properties that we mention without proof (see [9]):
(a) Ex preserves Kan fibrations,
(b) there is a natural weak homotopy equivalence X → ExX (and hence Sd a Ex

is a Quillen equivalence), and
(c) Ex∞K = colimn ExnK is a Kan (or fibrant) simplicial set.

Property (b) implies that a morphism f : C → D is a weak equivalence if and
only if Ex2Nf : Ex2NC → Ex2ND is a weak homotopy equivalence in SSet. A
morphism f : C → D is called a Thomason fibration if the simplicial map Ex2Nf is
a Kan fibration, and a Thomason cofibration if it has the left lifting property with



HOMOTOPY THEORY OF POSETS 215

respect to all trivial Thomason fibrations, i.e., the Thomason fibrations which are also
weak equivalences. Let CofT and FibT denote respectively the classes of Thomason
cofibrations and fibrations in Cat.

Theorem 2.2 (Thomason [28]). The classes weak equivalences :=WCat, cofibrations
:= CofT and fibrations := FibT define a proper cofibrantly generated model structure
on Cat and the adjunction

catSd2 : SSet À Cat : Ex2N

is a Quillen equivalence. Moreover, the sets

1. I = {catSd2∂∆n → catSd2∆n|n > 0}, and

2. J = {catSd2Λk
n → catSd2∆n|n > 0, 0 6 k 6 n}

are sets of generating cofibrations and trivial cofibrations respectively.

Let us recall the main idea of Thomason’s proof. The essential bulk of the proof
reduces to proving the following claim, which amounts to the non-trivial part of
condition (b) of Proposition 2.1: for every diagram

B
j← A→ C,

where j ∈ J , the canonical map NC → N(C ∪A B) is a weak homotopy equivalence.
This leads to the following definition of cofibrations in Cat.

Definition 2.3. An inclusion i : A→ B in Cat is called a formal cofibration if for
every diagram

B
i← A→ C

the canonical map NC ∪NA NB → N(C ∪A B) is a weak homotopy equivalence.

For example, the unique morphism ∅→ B is a formal cofibration for every small
category B. The class of formal cofibrations singles out a property that every candi-
date class of morphisms needs to satisfy in order to qualify as a class of cofibrations
for a left proper model structure on Cat whereWCat is the class of weak equivalences.
Thomason identified an auxiliary class of formal cofibrations called Dwyer morphisms.
A Dwyer morphism is an inclusion of a sieve i : A→ B such that there is a cosieve
W in B containing A and the inclusion j : A→W admits a right adjoint. Recall
that an inclusion functor i : A→ B is called a sieve if every morphism b→ i(a) in B
is also in A. A cosieve is the dual object: i : A→ B is a cosieve if iop : Aop → Bop

is a sieve. The class of Dwyer morphisms is closed under pushouts and transfinite
compositions [28], but not under retracts [6].

The concept of a Dwyer morphism corresponds intuitively to the topological notion
of an inclusion of spaces being a neighborhood deformation retract, but it is too
strong. A slightly weaker notion is needed and it was defined by Cisinski [6]: i : A→ B
is a pseudo-Dwyer morphism if it is an inclusion of a sieve, and there is a cosieve W in
B that contains A and a retraction r : W → A together with a natural transformation
η : ir → 1W such that η(a) = 1a for all a ∈ obA.
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Proposition 2.4.

(a) The class of Dwyer morphisms is closed under pushouts and transfinite compo-
sitions. The class of pseudo-Dwyer morphisms is closed under retracts, pushouts
and transfinite compositions.

(b) For every monomorphism K ↪→ L in SSet, the morphism

catSd2(K)→ catSd2(L)

is a Dwyer morphism. In particular, every morphism in I and J is a Dwyer
morphism.

(c) Every pseudo-Dwyer morphism is a formal cofibration. In particular, every mor-
phism in J is a formal cofibration.

Proof. For (a), see [6] and [28]. For (b), see [28, Proposition 4.2]. (c) is the main
technical fact required for the proof of Theorem 2.2, and it is also of independent
interest. A proof can be found in [28, Proposition 4.3] (see also [7, 5.2]).

Since every morphism in I is a Dwyer morphism, then Proposition 2.4(a) implies
that every Thomason cofibration is a pseudo-Dwyer morphism. Proposition 2.4(b)
reveals the point of considering the twofold composite Sd2: if one considers (catSd,
ExN) or (cat,N) instead, then property (b) of Proposition 2.1 is not true. In other
words, a comparison between the homotopy theory of simplicial sets and the homo-
topy theory of small categories should pay special attention to the homotopic effect
of taking pushouts in Cat. The nerve functor does not preserve pushout diagrams,
not even up to homotopy, even when the pushout is along a full inclusion (e.g.,
NcatSd(∆2/∂∆2) ∼= ∆1, whereas NcatSd∆2/NcatSd∂∆2 ' S2; see [10]). Thus it is
necessary to find sufficient conditions for a pushout diagram in Cat to be a homotopy
pushout diagram in SSet. By Proposition 2.4(c), this happens in the presence of a
pseudo-Dwyer morphism.

Let Pos denote the full subcategory of Cat whose objects are the partially ordered
sets (posets). The full inclusion i : Pos→ Cat admits a left adjoint pos : Cat→ Pos
called the posetal reflection. Given a small category C and a, b ∈ obC, we write a 6 b
if there is a morphism a→ b in C and a ∼ b if both a > b and a 6 b hold. Then pos(C)
is the partial order on the set of equivalence classes obC/∼ induced by 6.

Lemma 2.5. The inclusion i : Pos→ Cat preserves directed colimits and pushouts
along a Dwyer morphism.

Proof. This can be verified directly from the definition of colimits in Cat. Alterna-
tively, note that both Cat and Pos are locally finitely presentable categories. A right
adjoint between locally finitely presentable categories is an accessible functor, and it
preserves directed colimits if and only if its left adjoint preserves finitely presentable
objects [1, Theorem 1.66]. The functor pos : Cat→ Pos has this property because
a finitely presentable small category has a finite set of objects. Dwyer morphisms
mess with the order relation in a moderate way, so that the required pushouts are
preserved. More precisely, it is useful to know explicitly how to construct the pushout
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in Pos along a Dwyer morphism (or, more generally, along a sieve). Let

I

u

²²

f // P

²²
J // Q

be a pushout square of posets in Cat where u is a sieve. Then Q is naturally isomorphic
with the poset whose underlying set is obP t (ob J − ob I), and the order is induced
by the orders of P and J and a relation j > f(i) for every j > i in J .

It is natural to ask whether the adjunction pos : Cat À Pos : i induces a model
structure on Pos or, in other words, whether Thomason’s model structure restricts
to a model structure on Pos. For every simplicial set K, the category catSd2K is a
poset [28, Lemma 5.6]. When K comes from an abstract simplicial complex, catSd2K
is the poset of non-empty chains of simplices of K ordered by inclusion. In particular,
catSd2∆n is the poset of non-empty chains of subsets of [n] = {0 < 1 < · · · < n}.
Therefore there is an adjunction catSd2 : SSet À Pos : Ex2N .

Let us denote by WPos the class of weak equivalences in the category Pos. We are
going to use the same notation CofT and FibT to denote the classes of Thomason
cofibrations and Thomason fibrations between posets. It will be clear what underlying
category is considered each time. Note that the classes of Dwyer and pseudo-Dwyer
morphisms coincide in Pos.
Theorem 2.6. The classes weak equivalences :=WPos, cofibrations := CofT and
fibrations := FibT define a proper cofibrantly generated model structure on Pos. The
sets I and J are sets of generating cofibrations and trivial cofibrations respectively.
Moreover, the adjunction pos : Cat À Pos : i is a Quillen equivalence.

Proof. The only non-trivial part of the first claim is to show that the factorisations
exist in Pos. By Proposition 2.4(b), the morphisms in I and J are Dwyer morphisms
in Pos. By Lemma 2.5, the factorisations in Cat given by the small-object argument
applied to a morphism between posets stay inside Pos. It follows that there is a model
structure on Pos as claimed, and that I and J are sets of generating cofibrations
and trivial cofibrations respectively.

The model structure on Pos is left proper because Thomason’s model structure
is left proper and Lemma 2.5. It is right proper because Cat is right proper and
i : Pos→ Cat preserves pullbacks.

For the last claim, it suffices to recall that every cofibrant object in Cat is a
poset [28, Proposition 5.7]. Every cofibration ∅→ C is a retract of an I-cellular
morphism ∅→ C ′. By Lemma 2.5, if ∅→ C ′ is an I-cellular morphism, then C ′ is
a poset. Hence C is also a poset and the result follows.

Remark 2.7. The last theorem may be seen as an instance of the following more
general situation: let (M,W,Cof,Fib) be a cofibrantly generated model category with
I and J sets of generating cofibrations and trivial cofibrations respectively. Suppose C
is a full subcategory which has all small limits and colimits. Then (C,W|C ,Cof |C ,Fib|C)
is a model category if for every morphism i : X → Y inM that is either I-cellular or
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J-cellular and X ∈ C, then i is in C. Furthermore, if I and J are in C and they satisfy
the required smallness condition in C, then I and J are sets of generating cofibrations
and trivial cofibrations respectively for the induced model structure on C.

3. More about cofibrations in Cat and Pos

An unsatisfactory feature of Thomason’s model category is that the definition of
cofibrations does not carry a very intuitive meaning, besides perhaps being pseudo-
Dwyer morphisms. The introduction of Sd2 and Ex2 makes the cofibrations less appar-
ent and more difficult to describe explicitly. In this section, we will show that any set
of pseudo-Dwyer morphisms that contains I is equally good for generating a class of
cofibrations for a proper model structure on Cat or Pos.

Let us first recall some notation and terminology about cofibrant generation in
a cocomplete category C. A class of morphisms S in C is called cofibrantly closed
if it is closed under retracts, pushouts and transfinite compositions. The cofibrant
closure CofC(S) of a class of morphisms S in C is the smallest cofibrantly closed
class of morphisms that contains S. A cofibrantly closed class S is called cofibrantly
generated if there exists a set of morphisms I such that S = CofC(I).

The model categories Cat and Pos, besides being cofibrantly generated, are also
combinatorial because Cat and Pos are both locally (finitely) presentable.

Definition 3.1 (J.H. Smith). A model category M is called combinatorial if it is
cofibrantly generated and its underlying category is locally presentable.

For background in the theory of locally presentable categories, the reader should
consult the excellent monograph [1]. Combinatorial model categories have many use-
ful properties and they have been studied in [3, 8, 22]. We are going to need the
following important result.

Theorem 3.2. Let C be a locally presentable category, W a subcategory of C and I a
set of morphisms. Then the classes of morphisms W , Cof(I) and (Cof(I) ∩W )− inj
define classes of weak equivalences, cofibrations and fibrations for a cofibrantly gen-
erated model structure on C if and only if the following conditions are satisfied:
(i) W satisfies the two-out-of-three property;
(ii) I − inj ⊆W ;
(iii) Cof(I) ∩W is closed under transfinite compositions and pushouts;
(iv) W is accessible and accessibly embedded in C→.

Proof. By [1, Theorem 2.53], every accessible, accessibly embedded subcategory of
a locally presentable category is cone-reflective, hence it satisfies the solution set
condition at every morphism. Moreover, it is closed under retracts [3, Proposition
1.19]. Therefore the sufficiency of the conditions follows from J.H. Smith’s theorem [3,
Theorem 1.7]. The necessity of (i), (ii) and (iii) is obvious. The necessity of (iv) is
proved in [15, Corollary A.2.6.6], [22, Theorem 4.1].

Theorem 3.2 has an interesting application to the study of the cofibrations of a
combinatorial model category. Beke [4] used a similar method to show the existence



HOMOTOPY THEORY OF POSETS 219

of countably many different choices of cofibrations for a model structure on SSet with
the usual class of weak equivalences. In this section, we will apply it in the case of
the model categories Cat and Pos and the cofibrantly closed class of pseudo-Dwyer
morphisms to show that there is a proper class of different choices of cofibrations.

Definition 3.3. A set S of pseudo-Dwyer morphisms in Cat (resp. Pos) is called
adequate if S-inj ⊆ WCat (resp. S-inj ⊆ WPos).

For example, the set I of Theorem 2.2 is adequate. Note that there are formal cofi-
brations that are not pseudo-Dwyer morphisms. For example, for every pseudo-Dwyer
morphism i : A→ B, the opposite functor iop : Aop → Bop is a formal cofibration, but
not a pseudo-Dwyer morphism.

Proposition 3.4. Let S be an adequate set of pseudo-Dwyer morphisms in Cat (resp.
Pos). Then there is a left proper combinatorial model category CatS (resp. PosS)
where:
(a) the underlying category is Cat (resp. Pos),
(b) the class of cofibrations is CofCat(S) (resp. CofPos(S)), and
(c) the class of weak equivalences is WCat (resp. WPos).

Moreover, for every two adequate sets S ⊂ S′, the identity functor CatS → CatS′
(resp. PosS → PosS′) is a left Quillen equivalence.

Proof. It suffices to verify the conditions of Theorem 3.2: (i) is obvious and (ii)
holds by hypothesis. For (iii), note that the class Cof(S) ∩WCat is closed under
transfinite compositions since Cof(S) is closed under transfinite compositions and it
is well-known that a transfinite composition of trivial cofibrations in SSet is again
a weak homotopy equivalence. Also, since every pseudo-Dwyer morphism is a formal
cofibration, the class Cof(S) ∩WCat is closed under pushouts. Condition (iv) holds
because, by Theorem 2.2 and 3.2, WCat is accessible and accessibly embedded in
Cat→. The same argument applies to Pos.

The model structure is left proper for the same reason that the model structure of
Theorem 2.2 (resp. Theorem 2.6) is left proper. The last claim is self-evident.

Let µ be a regular cardinal, i.e., an infinite cardinal which is not a sum of a smaller
number of smaller cardinals. Consider the set I(µ) of all pseudo-Dwyer morphisms
between µ-presentable objects in Cat (resp. Pos). Note that a small category whose
set of morphisms has cardinality less than µ is µ-presentable. The converse is true
for posets, but not for small categories in general (e.g., a finitely presentable infinite
group is a finitely presentable object in Cat).
Theorem 3.5. The set I(µ) is adequate. The combinatorial model category CatI(µ)

(resp. PosI(µ)) is proper and every µ-presentable object is cofibrant. Moreover, for
every µ < µ′, the model categories CatI(µ) and CatI(µ′) (resp. PosI(µ) and PosI(µ′))
are different.

Proof. Thomason’s set of generating cofibrations I is a set of Dwyer morphisms
between finite posets; hence I ⊆ I(µ). Therefore we have that I(µ)− inj ⊆ I − inj ⊆
WCat; hence I(µ) is adequate.
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By Proposition 3.4, there is a left proper combinatorial model category CatI(µ)

(resp. PosI(µ)). It is also right proper because every fibration in CatI(µ) is also a
Thomason fibration. Note that the unique morphism ∅→ C is a pseudo-Dwyer mor-
phism for all C; hence every µ-presentable object C is cofibrant in CatI(µ).

For the second claim, note first that Lemma 2.5 implies that CofPos(I(µ)) ⊆
CofCat(I(µ)) for every µ. We claim that for every regular cardinal µ, there is a
poset Pµ with cardinality µ that is not cofibrant in CatI(µ). Then it will follow that
the model categories are different because every poset of cardinality less than µ′ is
µ′-presentable in Cat and therefore Pµ is cofibrant in both CatI(µ′) and PosI(µ′).

Recall that a cardinal is an ordinal with the property that it is the cardinality of
a set. Let Pµ be the poset with the reverse order of µ. Suppose that Pµ is cofibrant
in CatI(µ). This means that it is a retract of an I(µ)-cell P̃µ and let r : P̃µ → Pµ

denote the retraction. The object P̃µ can be presented by a sequence of pseudo-Dwyer
inclusions

∅ = Q0 ( Q1 ⊆ Q2 ⊆ · · · ⊂ Qλ ⊆ · · · ⊆ P̃µ,

where

(i) every Qα → Qα+1 is a pushout by a morphism in I(µ), and

(ii) for every limit ordinal λ, Qλ = colimα<λQα.

The cardinality of Q1 is less than µ and therefore Q1 6= P̃µ. The pseudo-Dwyer mor-
phism Q1 → P̃µ restricts to a pseudo-Dwyer morphism r(Q1)→ Pµ because pseudo-
Dwyer morphisms are closed under retracts by Proposition 2.4(a). Moreover, the
poset r(Q1) has cardinality less than µ. But this leads to a contradiction because
every sieve of Pµ is a cofinal sequence in µ and therefore its cardinality is µ, since µ
is regular.

Remark 3.6. Note that the model category CatI(ℵ0) is different from Thomason’s (see
Theorem 2.2) because every finite category is cofibrant in the former, but not in the
latter. We do not know if the analogous statement is true for Pos.

Corollary 3.7. The class of pseudo-Dwyer morphisms in Cat (resp. Pos) is not cofi-
brantly generated.

Proof. Every set of pseudo-Dwyer morphisms is a subset of I(µ) for some regular
cardinal µ. Therefore, by Theorem 3.5, it cannot generate the whole class of pseudo-
Dwyer morphisms.

Both categories Cat and Pos are cartesian closed. For every C and D in Cat, there
is a natural isomorphism Fun(C ×D,E) ∼= Fun(C,Fun(D,E)), where Fun(C,D) de-
notes the category of functors and natural transformations. Also, note there is a
natural isomorphism N Fun(C,D) ∼= Map(NC,ND).

It is natural to ask whether any of the model structures is compatible with the
closed monoidal pairing given by the product. It turns out that this is not true; i.e.,
none of the model categories above is a monoidal model category in the sense of [12,
Definition 4.2.6]. This can be seen by the following simple example. Consider the
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standard inclusion:
[0] ↪→ [1].

This is a Thomason cofibration because it is a retract of the inclusion

[0]→ catSd2(∆1).

For the claim, it suffices to show that the map

j : [0]× [1] ∪[0]×[0] [1]× [0]→ [1]× [1]

is not a Dwyer morphism. Diagrammatically, the map j is the inclusion of the white
dots in the following diagram:

◦ // •

◦

OO

// ◦.

OO

The cosieve generated by the image of the inclusion is clearly the whole poset [1]× [1],
but there can be no retraction because there is nowhere to send the element (1, 1).
This means that j is not a Dwyer morphism.

However, it is easy to see that for every small category C and pseudo-Dwyer mor-
phism i : D → D′, the map 1× i : C ×D → C ×D′ is again a pseudo-Dwyer mor-
phism. Hence for every µ-presentable C, the functor C ×− : CatI(µ) → CatI(µ) is a
left Quillen functor.

4. Posets and A-spaces

The category Pos of posets embeds in T op as the full subcategory of Alexandroff
T0-spaces.

Definition 4.1. A topological space X is called an Alexandroff T0-space (A-space)
if it is T0 and every intersection of open sets in X is open.

For example, every T0-space with finitely many points is an A-space. Let A denote
the category of A-spaces and continuous maps.

Proposition 4.2. There is an isomorphism of categories T : Pos À A : P.

Proof. The assertion is well-known. We recall the proof in order to fix some notation.
The functor T : Pos→ A is defined as follows: for a poset P , T (P ) is the set obP
of objects of P with the topology generated by a basis with sets Ua = {b : b > a} for
all a ∈ obP . The fact that the topology is T0 follows from the antisymmetry of the
order. It is an A-space because any intersection of basic open sets is also a union of
basic open sets; i.e., for every σ ⊂ P ,

Uσ :=
⋂
a∈σ

Ua =
⋃

b∈Uσ

Ub.

Moreover, every order-preserving map f : P → P ′ defines a continuous map

T (f) : T (P )→ T (P ′).

An inverse functor P is defined as follows: for an A-space X, we let P(X) be the
set X with an ordering defined so that x > y if every open set that contains y also
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contains x. The relation is clearly reflexive and transitive. It is antisymmetric because
the topology of X is T0.

Let T op0 denote the full subcategory of T op that consists of T0-spaces.

Proposition 4.3.

(a) The inclusion T op0 → T op has a left adjoint.
(b) The inclusion A → T op0 has a right adjoint.

Proof of (a). Let X ∈ T op. Define an equivalence relation on the points of X: x ∼ x′ if
x and x′ have exactly the same open neighborhoods. Then taking the quotientK(X) =
X/ ∼ defines a functor K : T op→ T op0 which is the left adjoint to the inclusion
functor. The space K(X) is known as the Kolmogoroff quotient of X.

Proof of (b). For every X ∈ T op0, let Λ∞(X) denote the A-space with underlying set
X and whose open sets are unions of arbitrary intersections of open sets in X. Then
Λ∞ : T op0 → A defines a functor and it is right adjoint to the inclusion functor.

Remark 4.4. The inclusion functor i : A → T op does not admit a right adjoint. This
can be verified by the fact that T0-spaces are not closed under pushout in T op in
general. However, they are closed under pushouts along Dwyer morphisms (compare
with Lemma 2.5).

The class of weak homotopy equivalences WA in A is a natural candidate class
to consider in order to define a homotopy theory in A. McCord [18] discovered a
surprising connection between the homotopy theory of A-spaces and simplicial com-
plexes. Recall that the classifying space functor B : Cat→ T op is the composition of
the nerve functor followed by the geometric realisation functor | · | : SSet→ T op. If
C is a poset, then BC is isomorphic with the geometric simplicial complex whose
poset of simplices is the poset of the chains in C ordered by inclusion.

Theorem 4.5 (McCord [18]). For every A-space X, there is a natural weak homo-
topy equivalence ψX : BP(X)→ X. Therefore WA =WPos.

Proof. We only reproduce a sketch of the proof. For the details, see [18] (also [16] for
a nice survey). Every point x ∈ BP(X) is an interior point of a simplex spanned by a
finite totally ordered subset {x1 < x2 < · · · < xn} ⊂ X. Define the map ψ by ψX(x) =
xn. It is continuous: for V open in X, ψ−1

X (V ) = ∪{star(v) : v ∈ V }. Also, ψ is clearly
functorial in X. The restriction ψ−1

X (Ux)→ Ux is a weak homotopy equivalence, since
both spaces are contractible (they both look like “cones”). Since {Ux}x∈X form an
(minimal) open covering forX, it follows that ψX is a weak homotopy equivalence.

Using Proposition 4.2 as a dictionary, one can also describe the Dwyer morphisms
in the category A as something analogous to the closed NDR-pairs in T op. In the
non-Hausdorff world of A-spaces, the role of the unit interval is given to the Sierpiński
space S, i.e., theA-space associated with the poset [1] = {0 < 1}. Then the description
of the Dwyer morphisms that is given in the following proposition is comparable with
the description of the closed (Hurewicz) cofibrations as closed NDR-pairs; see [26,
Theorem 2].
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Proposition 4.6.

(a) Let f : P → Q be a morphism in Pos. Then the following are equivalent:
(i) f is a sieve,
(ii) there is a morphism χ : Q→ S with χ−1(0) = P , and
(iii) the map T (f) : T (P )→ T (Q) is a closed inclusion of spaces.

(b) A morphism f : P → Q in Pos is a Dwyer morphism if and only if T (f) is
a closed inclusion and there is an open neighborhood U of T (P ) in T (Q) and
a “Sierpiński homotopy” H : U × S → T (Q) with H(u, 1) = u for all u ∈ U ,
H(u, 0) ∈ T (P ) and H(p, t) = p for all (p, t) ∈ T (P )× S.

Proof of (a). The proof of (a) is obvious.

Proof of (b). Open neighborhoods of T (Q) correspond exactly to the cosieves of
Q. A Sierpiński homotopy H gives rise to a retraction r : P(U)→ P , u 7→ H(u, 0),
together with a natural transformation r → 1 whose component at u ∈ P(U) is given
by H(u, 0 < 1), and vice-versa.

Therefore we can rephrase Theorem 3.5 for µ = ℵ0 by saying that there is a proper
cofibrantly generated model structure on A, where the class of weak equivalences
is WA and the class of cofibrations is generated by the set of maps between finite
A-spaces that satisfy the conditions of Proposition 4.6(b). There is a zig-zag of right
Quillen equivalences from A to T op:

A ∼=−→ Pos i−→ Cat Ex2 N−−−−→ SSet S∗←− T op,
and note that the inclusion i : A → T op induces an equivalence between the homotopy
categories by Theorem 4.5. Note also that A is a subcategory of T op that is locally
presentable.

Remark 4.7. Strøm [27] proved that there is a model structure on T op, where the
cofibrations are the closed (Hurewicz) cofibrations, the weak equivalences are the
homotopy equivalences and the fibrations are the Hurewicz fibrations. It was expected
that this model structure is not cofibrantly generated. In view of Proposition 4.6(a),
the arguments in the proof of Theorem 3.5 can be seen to confirm this. For every set of
closed cofibrations I in T op, there is a regular cardinal µ greater than the cardinalities
of all the spaces that appear in the set. It can then be argued, similarly to the proof of
Theorem 3.5, that the map ∅→ T (Pµ) is not in the cofibrant closure of I. But every
space is cofibrant in Strøm’s model structure, so it cannot be cofibrantly generated.

There is a stronger notion of weak equivalence in Pos (resp. Cat) that arises from
letting the natural transformations play the role of homotopies. More precisely, two
morphisms f, g : C → D in Cat are called strongly homotopic, denoted by f ' g, if
there is a zig-zag of natural transformations that connects them. The relation of
homotopy clearly defines an equivalence relation on the morphism sets of Cat and
the composition of functors respects it. A morphism f : C → D is a strong homotopy
equivalence if there is a morphism g : D → C such that fg ' 1D and gf ' 1C . The
quotient category Cat/' is the same as the localisation of Cat at the strong homotopy
equivalences. The class of strong homotopy equivalences in Cat has been studied
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by Minian [19] who showed that it supports a Λ-cofibration structure with natural
cylinders given by the zig-zag diagrams.

Proposition 4.8. Every morphism f : P → Q in Pos (resp. Cat) has a functorial
factorisation f = pi, where i a Dwyer morphism and p is a strong homotopy equiva-
lence.

Proof. This follows from the fact that Cat is a Λ-cofibration category [19]. We give
the construction of the factorisations in Pos in order to present a choice of cylinder
objects. Let f : P → Q be a map in Pos. Let Z2 denote the following zig-zag poset:

a0/1 a1/2

a0

<<zzzzzzzz
a1

<<zzzzzzzz

bbDDDDDDDD
a2.

bbEEEEEEEE

Note that this is just catSd2(∆1). The inclusion P × {a0}
∐
P × {a2} → P × Z2 is a

Dwyer morphism. Moreover, P × Z2 defines a cylinder object in PosI(µ) for every
poset P with cardinality less than µ. Define the “mapping-cylinder” Mf by the
pushout diagram

P
f //

²²

Q

²²
P × Z2

// Mf ,

analogously to the mapping-cylinder construction in the category of topological
spaces. Explicitly, the poset Mf has the underlying set

P × {a0, a0/1, a1, a1/2} ∪Q× {a2},
and the partial order is defined by

1. (p, x) 6 (p′, y) if p 6 p′ in P and x 6 y in {a0, a0/1, a1, a1/2},
2. (f(p), a2) 6 (p′, a1/2) if p 6 p′ in P ,
3. (q, a2) 6 (q′, a2) if q 6 q′ in Q.

The inclusion i : P →Mf , defined by p 7→ (p, a0), is a Dwyer morphism. There is also
a canonical morphism p : Mf → Q defined by

1. f on P × {x}, for x 6= a2, and
2. the identity on Q× {a2}

so that f = pi. The map p : Mf → Q has a homotopy inverse s : Q→Mf defined by
q 7→ (q, a2). The construction is clearly functorial in f . A similar construction gives
the analogous factorisations in Cat.
Remark 4.9. It is possible to define “higher” dimensional cylinders in Cat by using
the simplicial structure of the model category SSet together with the left Quillen
equivalence catSd2 : SSet→ Cat. For every small category C, the cosimplicial object
catSd2(NC ×∆.) is a cosimplicial resolution of C with respect to Thomason’s model
structure on Cat. For the theory of cosimplicial resolutions and their application to
homotopy colimits, see [11].
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Since we can identify the category of posets with a category of topological spaces,
we can also consider the class of topological homotopy equivalences, that is: mor-
phisms f : P → Q between posets that define a homotopy equivalence between the
associated A-spaces. It turns out that the two concepts of strong and topological
homotopy equivalence coincide for finite posets.

Proposition 4.10. A morphism f : P → Q between finite posets is a strong homo-
topy equivalence if and only if it is a topological homotopy equivalence.

Proof. A strong homotopy equivalence clearly induces a topological homotopy
equivalence. For the converse, it suffices to show that every two homotopic maps
f, g : T (P )→ T (Q) can be connected by a zig-zag of natural transformations. For
this we need to look closely at the space Map(T (P ), T (Q)) with the compact-open
topology. Since T (P ) is finite (and therefore locally compact), it turns out that
Map(T (P ), T (Q)) is an A-space and its topology is the same as that associated
with the poset Fun(P,Q); see [14, 17]. Moreover, a function H : T (P )× I → T (Q)
is continuous if and only if the adjoint path I → Map(T (P ), T (Q)) is continuous. Two
elements of an A-space are connected by a path if and only if they can be connected
by a zig-zag in the associated poset (this follows also from Theorem 4.5). Hence the
proposition follows.

Remark 4.11. The last proposition is not true for an arbitrary infinite poset. An
example is the infinite poset N , known as the Khalimsky half-line, whose objects
are the non-negative integers, and the order is defined by m < n if m is even and
|n−m| = 1. This looks like an infinite zig-zag diagram. It can be shown that it is
topologically contractible, but not strongly homotopy equivalent to a point (see [19,
Example 2.10] and [19, Remark 2.11]). At the heart of the comparison between
strong and topological homotopy equivalence is the delicate point-set topological fact
that the space of maps between A-spaces with the compact-open topology is not an
A-space in general; see [14].

The strong homotopy types of finite posets (or finite T0-spaces) were completely
classified by Stong [25] in terms of a simple combinatorial property (see [17] for a
nice survey). Given a poset P , an element p ∈ P is called an upbeat (resp. downbeat)
point2 if the set of all elements strictly greater (resp. lower) than p has a minimum
(resp. maximum); i.e., if there is a q ∈ P such that q > p (resp. p > q) and for every
q′ ∈ P with q′ > p (resp. p > q′), then q′ > q (resp. q > q′). The insertion or deletion
of upbeat or downbeat points does not change the strong homotopy type of P . Let
the core of P , core(P ) ⊂ P , be a deformation retract of P that is minimal ; i.e., it
contains neither upbeat nor downbeat elements. One can always reach core(P ) by
successively deleting beat points from P .

Theorem 4.12 (Stong [25]). Two finite posets P and Q are strongly homotopy equiv-
alent if and only if they have isomorphic cores.

2This terminology is due to J.P. May [17].
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5. Posets in homotopy theory

5.1. What does BC classify?
Answers to this question have been given in [5, Appendix], [20, 24, 29]. They

fall into two types: the first one ([5, Appendix], [24]) gives a C̆ech-homotopy style
interpretation of the set [X,BC] in terms of C-cocycles, whereas the second one ([20,
29]) provides a sheaf-theoretic description in terms of C-principal bundles (or C-
sheaves). Each of them generalises the case of G-cocycles and G-principal bundles
respectively, for G a (discrete) group.

Definition 5.1. Let J be a poset and X any topological space. An open covering
U = {Up}p∈J of X is said to be well-indexed by J if Up ⊆ Uq whenever p > q and, for
every x ∈ X, the subposet {p ∈ J : x ∈ Up} has a greatest element.

In other words, an open covering U of X well-indexed by J is a functor U : Jop →
O(X) into the poset of open subsets of X such that X =

⋃
p U(p) and for every

x ∈ X, there is px ∈ J such that px > q whenever x ∈ U(q). Let CovJ (X) denote the
set of open coverings of X that are well-indexed by J . The definition is natural in
X: every map f : X → X ′ induces a function CovJ(f) : CovJ (X ′)→ CovJ (X), by
post-composing with f−1 : O(X ′)→ O(X), in an obviously functorial way.

Proposition 5.2. For every topological space X and poset J , there is a natural bijec-
tion between T op(X, T (J)) and CovJ(X).

Proof. For every continuous map f : X → T (J), there is a diagram ψJ(f) : Jop →
O(X) defined by ψJ (f)(p) = f−1(Up) = {x ∈ X : f(x) > p}. This defines an open
covering well-indexed by J because, for every x ∈ X, the element f(x) is the great-
est element of the poset {p ∈ J : x ∈ ψJ(f)(p)}. On the other hand, given an open
covering U : Jop → O(X) well-indexed by J , there is a continuous map φJ(U) : X →
T (J) defined by φJ(U)(x) = px. The functions ψJ and φJ are mutual inverses and
they induce a bijection between CovJ (X) and T op(X, T (J)). The naturality state-
ment amounts to noticing that for every map f : X → Y , ψJf

∗ = CovJ (f)ψJ , where
f∗ : T op(Y, T (J))→ T op(X, T (J)) is given by precomposition with f .

Definition 5.3. Two open coverings U and V of X that are well-indexed by J are
called concordant if there is an open covering W of X × [0, 1] well-indexed by J that
restricts to U and V at X × {0} and X × {1} respectively.

Concordance generates an equivalence relation on CovJ(X). For the set of equiv-
alence classes, we will write [CovJ (X)]. Note that for every f : X → X ′, CovJ(f)
preserves the concordance relation.

Proposition 5.4. For every CW-complex X and poset J , there is a natural bijection
between [X,BJ ] and [CovJ (X)].

Proof. By Theorem 4.5, there is a natural weak homotopy equivalence ψ : BJ → T (J)
and therefore a bijection ψ∗ : [X,BJ ]→ [X, T (J)]. Note that, under the bijection of
Proposition 5.2, two maps X ⇒ T (J) are homotopic if and only if the associated
open coverings Jop ⇒ O(X) are concordant. Thus there is a natural bijection as
required.
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Remark 5.5. It is not difficult to see that Proposition 5.4 is the same with the classifi-
cation theorem by Weiss [29] restricted to the case of posets. There is a different, but
analogous, classification theorem due to Moerdijk [20] which makes the same claim
at least for finite posets (up to a different variance convention).

Corollary 5.6. A map of CW-complexes f : X → Y is a homotopy equivalence if
and only if [CovJ(f)] : [CovJ(Y )]→ [CovJ(X)] is a bijection for all posets J .

For a small category C, let Simp(C) denote the poset catSd2(NC). Then we also
have the following more general result.

Corollary 5.7. For every CW-complex X and small category C, there is a natural
bijection between [X,BC] and [CovSimp(C)(X)].

Proof. The natural transformation Sd→ 1SSet induces a natural weak equivalence
p : Simp(C)→ C. Therefore there is a bijection p∗ : [X,B Simp(C)]→ [X,BC]. Then
the result follows from Proposition 5.4.

5.2. Posets of coverings and manifolds
There is a standard way to produce posets from coverings of topological spaces.

Every numerable open covering U = {Uα}α∈I of a space X gives rise to two posets, a
topological one denoted by XU , and a discrete one denoted by IU . The space of objects
of XU is

∐
Uσ, over all finite subsets σ of the index set I such that Uσ = ∩α∈σUα

is non-empty. More precisely, an object is a pair (Uσ, x) where x ∈ Uσ, and there
is a unique morphism from (Uσ, x) to (Uσ′ , y) if and only if x = y and σ′ ⊂ σ. The
category IU is the discretisation of this category: its objects are the finite subsets σ
of the index set of the covering U such that Uσ 6= ∅ and its morphisms are given by
reverse inclusions of sets. If we view the covering as a IU -diagram in T op, then XU is
exactly the associated transport category, and BXU is the Bousfield-Kan model for
its homotopy colimit.

An open covering U is called good if all the finite intersections of its members are
either contractible or empty. When X is a smooth n-manifold, we reserve the notion
to mean that all the non-empty finite intersections are diffeomorphic to Rn.

Proposition 5.8 (Segal [23]). Let X be a paracompact space and U an open covering.
Then the canonical map pU : BXU → X is a homotopy equivalence. If the covering U
is good, then the projection qU : BXU → BIU is also a homotopy equivalence.

Let Mn denote the discrete monoid of smooth embeddings Rn → Rn. A good
covering U of a smooth n-dimensional manifold M produces a (non-canonical) dia-
gram FU : IU →Mn. This object separates the locally Euclidean structure of M from
its homotopy type. Moreover, it produces an invariant of M , in the sense that the
homotopy class of the map

M
'−→ BMU

'−→ BIU
B(FU )−−−−→ BMn

classifies the concordance class of the tangent bundle of M as a foliated smooth
microbundle; see [24]. Here the first two maps are the homotopy equivalences that
come from Proposition 5.8. It would be interesting to have a characterisation of the
posets IU and the diagrams FU that arise this way from a given manifold M .
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5.3. Sheaves on an A-space
Let X be an A-space and let Sh(X) denote the Grothendieck topos of sheaves

on X.

Proposition 5.9. There is an equivalence of categories between

Sh(X) and P̂(X)op := Fun(P(X),Set).

Proof. The restriction functor R : Sh(X)→ P̂(X)op that sends a sheaf F : O(X)op →
Set to R(F ) : P(X)→ Set, x 7→ F (Ux) (in the notation of Proposition 4.2) is an
equivalence of categories because {Ux}x∈X is a basis of minimal open sets for the
topology of X.

In view of Theorem 4.5, the last proposition has the following immediate conse-
quence. It is known that the singular cohomology H∗(X,G) of a CW-complex X with
coefficients in an abelian group G is isomorphic with the cohomology H∗(Sh(X),G)
of the topos of sheaves on X at the abelian sheaf that is constant at G. Every CW-
complex is homotopy equivalent to BJ for some poset J . Moreover, a homotopy
equivalence can be chosen canonically up to homotopy, as can be seen by the follow-
ing zig-zag of natural homotopy equivalences:

B(catSd2(S∗(X))) '←− |Sd2S∗(X)| '−→ |S∗(X)| '−→ X.

By Theorem 4.5, there is a weak homotopy equivalence f : X → T (J). Since both X
and T (J) have a basis of contractible open sets, it follows that the topoi Sh(X) and
Sh(T (J)) are weakly homotopy equivalent. (For a quick introduction in the homotopy
theory of topoi, see [20, I.4].) In particular, there is an isomorphism H∗(Sh(X),G) ∼=
H∗(Sh(T (J)),G). By Proposition 5.9, there is an equivalence between Sh(T (J)) and
SetJ , hence also an isomorphism H∗(Sh(T (J)),G) ∼= H∗(SetJ ,G). In summary, the
cohomology of the topos of sheaves on a (finite) CW-complex is isomorphic with the
cohomology of the topos of presheaves on a (finite) poset.
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