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Rational homotopy theory* 
By DANIEL QUILLEN 
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Rational homotopy theory is the study of the rational homotopy category, 
that is the category obtained from the category of 1-connected pointed spaces 
by localizing with respect to the family of those maps which are isomorphisms 
modulo the class in the sense of Serre of torsion abelian groups. As the 
homotopy groups of spheres modulo torsion are so simple, it is reasonable to 
expect that there is an algebraic model for rational homotopy theory which is 
much simpler than either of Kan's models of simplicial sets or simplicial 
groups. This is what is constructed in the present paper. We prove that 
rational homotopy theory is equivalent to the homotopy theory of reduced 
differential graded Lie algebras over Q and also to the homotopy theory of 
2-reduced differential graded cocommutative coalgebras over Q. 

In Part I we exhibit a chain of several categories connected by pairs of 
adjoint functors joining the category i2 of 1-connected pointed spaces with 
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206 DANIEL QUILLEN 

the categories (DGL), and (DGc)2 of reduced differential graded Lie algebras 
and 2-reduced differential graded cocommutative coalgebras over Q respec- 
tively. We prove that these functors induce an equivalence of the rational 
homotopy category HoQIT2 with both of the categories HO(DGL)1 and Ho(DGC)2 
obtained by localizing with respect to the maps which induce isomorphisms 
on homology. Moreover these equivalences have the property that the graded 
Lie algebra wr_1(X) ?& Q under Whitehead product and the homology co- 
algebra H. (X, Q) of a space X are canonically isomorphic to the homology of 
the corresponding differential graded Lie algebra and coalgebra respectively. 
An immediate corollary is that every reduced graded Lie algebra (resp. 2- 
reduced graded coalgebra) over Q occurs as the rational homotopy Lie algebra 
(resp. homology coalgebra) of some simply-connected space. This answers a 
question which is due, we believe, to Hopf. 

Part I raises some interesting questions such as how to calculate the maps 
in the category HO(DGL), say from one DG Lie algebra to another, and also 
whether or not there is any relation between fibrations of spaces and exact 
sequence of DG Lie algebras. In order to answer these questions, we intro- 
duced in [21] an axiomatization of homotopy theory based on the notion of a 
model category, which is short for a "category of models for a homotopy 
theory". A model category is a category endowed with three families of maps 
called fibrations, cofibrations, and weak equivalences satisfying certain 
axioms. To a model category C is associated a homotopy category Ho C, ob- 
tained by localizing with respect to the family of weak equivalences, and 
extra structure on Ho C such as the suspension and loop functors and the 
families of fibration and cofibration sequences. The homotopy category to- 
gether with this structure is called the homotopy theory of the model category 
e. In Part II we show that rational homotopy theory occurs as the homotopy 
theory of a closed model category, that all of the algebraic categories such as 
(DGL), and (DGc)2 occurring in the proof of Theorem I are closed model cate- 
gories in a natural way, and that the various adjoint functors induce equiv- 
alences of homotopy theories. Combining this result with Theorem I, we 
obtain a solution to the problem raised by Thom [29] of constructing a com- 
mutative cochain functor from the category of simply-connected pointed 
spaces to the category of (anti-) commutative DG algebras over Q, giving the 
rational cohomology algebra and having the right properties with respect to 
fibrations. 

Part II contains a number of results of independent interest. In ? 2 we 
show how the Serre mod C homotopy theory [27], where C is the class of S- 
torsion abelian groups and S is a multiplicative system in Z, can be realized 
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RATIONAL HOMOTOPY THEORY 207 

as the homotopy theory of a suitable closed model category of simplicial sets. 
In ? 3 we construct another model category for the same homotopy theory out 
of simplicial groups. In proving the axioms it was necessary to prove the 
excision property for the homology functor on the category of simplicial 
groups (II, 3.12). 

The category of reduced simplicial sets, with cofibrations defined to be 
infective maps and with weak equivalences defined to be maps which become 
homotopy equivalences after the geometric realization functor is applied, 
turned out to be a closed model category in which it is not true that the base 
extension of a weak equivalence by a fibration is a weak equivalence. This is 
reflected in the fact that there exist fibrations with the property that the 
fiber is not equivalent to the fiber of any weakly equivalent fibration of Kan 
complexes (II, 2.9). Since the base of such a fibration is never a Kan complex, 
it does not contribute fibration sequences to the associated homotopy theory. 
Thus these pathological fibrations are a curiosity forced upon us by the model 
category axioms. The same phenomenon occurs with DG coalgebras, but not 
with any of the group-like categories considered here. 

In Part II, ? 6, we give some applications of the theorems of this paper. 
In particular we use the DG Lie algebra and DG coalgebra models to derive 
certain spectral sequences (II, 6.6-6.9) for rational homotopy theory. Of 
special interest is an unstable rational version (II, 6.9) of the reverse Adams 
spectral sequence studied in [5]. This raises the question of whether such a 
spectral sequence holds in general. 

In addition to Part I and II, the paper contains two appendices. Appendix 
A contains the theory of complete Hopf algebras, which is the natural Hopf 
algebra framework for treating the Malcev completion [18] as well as groups 
defined by means of the Campbell-Hausdorff formula [17]. Appendix B con- 
tains an exposition of some results of DG mathematics in a form particularly 
suited for our purposes. The main result is that the generalization to DG Lie 
algebras of the procedure for calculating the homology of a Lie algebra pro- 
vides a functor C from DG Lie algebras to DG coalgebras whose adjoint 2 is 
the primitive Lie algebra of the cobar construction, and that the pair 2, C 
have the same properties of the functors G, W of Kan. 

Finally we would like to acknowledge the influence on this work of many 
conversations with Daniel Kan and E.B. Curtis; our debt to their work will 
be abundantly clear to anyone who reads the proof of Theorem I. 
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208 DANIEL QUILLEN 

PART I 

1. Statement of Theorem I 

If C is a category and S is a family of morphisms of C, then the localiza- 
tion [9, Ch. I]; [21, Ch. I, 1.11] of C with respect to S is a pair consisting of a 
category S-' and a functor 7:C'S-'C which carries the maps in S into iso- 
morphisms in S-' and which is universal with this property. In general there 
is a minor set-theoretic difficulty with the existence of S-' which may be 
avoided by use of a suitable set theory with universes. We shall therefore 
ignore this difficulty and assume the existence of S 'C; for the cases we need 
this can be verified (see Part II, 1.3a). 

Let 2, be the category of (r - l)-connected pointed topological spaces 
and continuous basepoint preserving maps. (The reason for the notation 2r 
is to save space in Part II. The subscript r should be read "begins in dimen- 
sion r.") We recall the following theorem of Serre [27]. 

PROPOSITION 1.1. The following assertions are equivalent for a map 
f: X Yin 22. 

( i) r*(f) ?& Q: w*(X) ?z Q wr*(Y) ?& Q is an isomorphism. 
(ii) H*(f, Q): H*(X, Q) - H*(X, Q) is an isomorphism. 
A map satisfying these conditions will be called a rational homotopy 

equivalence. The localization of 22 with respect to the family of rational 
homotopy equivalences will be denoted HOQ 22 and called the rational homo- 
topy category. The study of this category is what Serre calls homotopy 
theory modulo the class of torsion abelian groups. 

The objects of HoQ 22 are the same as those of {F2 namely 1-connected 
pointed spaces, however the morphisms are different. If f: X Y is a map in 
22, then f determines the map 7(f): X-) Y in HoQ.2- If f, g: X Y are 
homotopic, then 7(f) y(g). In effect consider the maps 

io 7 
X X A I >X 

where I is the unit interval X A I = X x I/{xo} x I and ij(x) = (x, j), j = 0,1 
and r(x, t) = x. As ic is a homotopy equivalence a(Z) is an isomorphism so 
y(io),7() = idx = y(i1)y(w) 7(io) = 7(i). Therefore if h: X A In Y is a 
homotopy from f to g, we have 

^y(f) = ^y(h)^y(io) = y(h)y(i1) = y(g), 

proving the assertion. 
As usual in homotopy theory two maps inducing the same map on the 
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RATIONAL HOMOTOPY THEORY 209 

functors w*(.) 03 Q or H.(., Q) do not give the same map in HoQ if2. It is 
possible to show that the rational homotopy category is equivalent to the full 
subcategory of the category of 1-connected pointed cw complexes and homo- 
topy classes of basepoint-preserving maps, consisting of X for which wUX is 
a torsion-free divisible abelian group (see Part II, 6.1); however we shall not 
need this here. 

All vector spaces, algebras, tensor products, etc. in this paper are to be 
understood as being over Q unless there is indication to the contrary. We 
shall consider differential graded (DG) vector spaces V = ED Vq, q e Z, where 
the differential is of degree -1 and where Vq = 0 for q < 0. By an element 
x of V we shall usually mean a homogeneous element whose degree will be 
denoted deg x. Let (DG) and (G) be the categories of DG and graded vector 

spaces where the morphisms are homogeneous of degree 0. The tensor product 

V ?g W and homology HV of DG vector spaces are defined as usual. There is 

a canonical isomorphism T: V 0 W > W 0 V called the interchange map 
given by T(x y y) - (-l)pq y x if p = deg x and q = deg y. In working 
with DG objects we shall rigidly adhere to the standard sign rule: whenever 
something of degree p is moved past something of degree q the sign (-_)pq 
accrues. 

A DG Lie algebra is a DG vector space L together with a map L (0 L -L 
denoted x 0 g L' [x, y] satisfying the antisymmetry and Jacobi identities with 
signs thrown in according to the sign rule. A DG coalgebra is a DG vector 
space C with a comultiplication map A: C-o C (0 C and an augmentation s: C 

Q[O] (Q[O] is the DG vector space with Q[O]q = Q if q = 0, and 0 if q # 0) such 
that A is coassociative, cocommutative (i.e., To A = A), and s is a two-sided 
counit for A. Let C = Ker s. A DG Lie algebra L (resp. DG coalgebra C) will 

be called r-reduced if Lq = 0 (resp. Cq = 0) for q < r. We say reduced instead 

of 1-reduced. We denote by (DGL)(resp. (DGL)r) and (DGC)(resp. (DGC)r) the 

categories of DG (resp. r-reduced DG) Lie algebras and DG (resp. r-reduced DG) 

coalgebras with the obvious morphisms. 

By virtue of the Kiinneth formula H(V 0 W) = HV 0& HW homology 

gives functors H: (DGL) - (GL) and H: (DGC) - (GC). We define a weak equiv- 
alence of DG objects to be a map f such that H, f is an isomorphism. The 

localizations of (DGL), and (DGc)2 with respect to their families of weak equiv- 

alences will be denoted Ho (DGL)1 and Ho (DGc)2 and called the homotopy cate- 

gories of reduced DG Lie algebras and 2-reduced DG coalgebras respectively. 

If X is an object of 'T2, then the (singular) homology of X with rational 

coefficients HI*(X, Q) is a 2-reduced graded coalgebra with comultiplication 
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210 DANIEL QUILLEN 

induced by the diagonal map X-~ X x X and the Kiinneth isomorphism. The 
rational homotopy groups u*X ?z Q may be made into a graded Lie algebra 
7cX in the following way. Let CqX = Wq+1X?X Q and let .: Wq+1X ~ 7CqX be 
given by zx = x 0 1. The Whitehead product is a natural bilinear trans- 
formation 

rp+lX X q?+lX 0 Wp+q+IX 

a,' )o [a, m] 

so there is a unique bilinear operation which we again denoted by [, on icX 
such that 

[Z-al Zrf] - (_1)degea4[, f] 

The anti-symmetry and Jacobi identities for the Whitehead product [101 
imply that 7cX is a graded Lie algebra. 

By the definition of HoQ 2 the functors X v-> H*(X, Q) and X- cX 
from f2 to (GC) and (GL) extend uniquely to functors H: HoQ 9f2 - (GC) and. 
c: HoQ f2 - (GL) respectively. Let r: Ho (DGL)1- (GL) and H: Ho (DGL)2 -(GC) 
be the unique extensions of the functors L v- HL and C + HC, respectively. 
We can now state the main result of this paper. 

THEOREM I. There exist equivalences of categories 

HOQ D'2 Ho (DGL)1 Ho (DGC)2D 

Moreover there are isomorphisms of functors 

cXX -- 7r(\X) HX - H(C\X) 

from HOQ IT2 to (GL) and (GC) respectively. 

COROLLARY. If L is a reduced graded Lie algebra, then L _ 7cX for 
some 1-connected pointed space X. If C is a 2-reduced graded coalgebra, then 
C - H*(X, Q) for some 1-connected pointed space X. 

PROOF. Consider L as a DG Lie algebra with all differentials zero. By 
the theorem there is a space X in f2 with XX L hence rX 7rXX -rL = L. 
The second statement is proved similarly. 

Remark. By duality one sees that if A = G Aq is a graded (anti-) 
commutative algebra over Q with Aq finite dimensional for each q and A1 = 0, 
A- Q, then A is isomorphic to the rational cohomology ring of a space in T2. 

This answers affirmatively a conjecture which is originally due, we believe, 
to Hopf. 
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11 G Q U N* 
~f2 2 ' >2 < (SGP)l k SCHA)1 (SLA), (DGL), (DGC)2 

E2 Sing W N e 
FIGURE 1 

HoQ J2 ' HOQ 52 5 Ho. (sGp)1 
L 

Ho (SCHA), (LO Ho (SLA), iLuz Ho (DGL), ( z Ho (DGC), 
(E2 Sing)- W N e 

FIGURE 2 

2. Outline of the proof of Theorem I 

The equivalence X will be the composition of several equivalences of 
categories, each equivalence coming by localization from a pair of adjoint 
functors. The categories and adjoint functors involved are indicated in Figure 
1 and listed below. Upon localizing with respect to a suitable family of maps 
in each category, we obtain Figure 2, where - and L are defined below. The 
part of Theorem I about the equivalence of categories results from the fact 
that each functor in Figure 2 is an equivalence of categories. Half of these 
equivalences are treated in Theorem 2.1. For the others we prove a general 
categorical result (2.3) whose hypotheses are verified for the remaining cases 
in ? 3 and ? 4. Thus the equivalence of categories assertion of Theorem I is 
proved by ? 4. The assertions about the homotopy and homology functors are 
proved in ? 5 and ? 6 respectively. 

We consider the following categories. 
S2 : The category of 1-connected pointed spaces and basepoint pre- 

serving continuous maps. 
S' 2 : The category of 2-reduced simplicial sets = full subcategory of 

the category of simplicial sets consisting of K such that Kq has a single ele- 
ment for q = 0,1. 

(SGp)1 : The category of reduced simplicial groups = full subcategory of 
the category of simplicial groups consisting of G such that G, = {e}. 

(SCHA)1: The category of reduced simplicial complete Hopf algebras over 
Q. For the definition of complete Hopf algebra see Appendix A. A simplicial 
CHA R is called reduced if Ro _ Q. 

(SLA)1: The category of reduced simplicial Lie algebras over Q. 
(DGL)1 : The category of reduced differential graded Lie algebras over Q. 
(DGC)2 : The category of 2-reduced differential graded (cocommutative 

coassociative) coalgebras over Q. 
We also consider the following pairs of adjoint functors. 
f 1, E2 Sing: I I is the geometric realization functor [19], [9, Ch. III]. Sing 
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212 DANIEL QUILLEN 

X is the singular complex of a space X; if K is a pointed simplicial set, then 
E2K is the Eilenberg subcomplex consisting of those simplices of K whose 1- 
skeleton is at the basepoint. 

G, W : If K is a reduced simplicial set, GK is the simplicial group con- 
structed by Kan [12] playing the role of the loop space of K. If G is a simplicial 
group, WG is the simplicial set which acts as its "classifying space" [3], [4], 
[12]. 

Q. 9 : If G is a group then QG is the complete Hopf algebra (Appendix A) 
obtained by completing the group ring QG by the powers of its augmentation 
ideal. If R is a CHA, then OR is its group of group-like elements. These 
functors are extended dimension-wise to simplicial groups and simplicial CHA's 
and denoted by the same letters. 

U, 9) : If g is a Lie algebra over Q, Ug is the CHA obtained by completing 
the universal enveloping algebra Ug by powers of its augmentation ideal. If 
R is a CHA, then CPR is its Lie algebra of primitive elements. These functors 
are applied dimension-wise to simplicial objects. 

N *, 1N: If L is a simplicial Lie algebra, its normalized chain complex NL 
is a DGL with bracket defined by means of the Eilenberg-Zilber map 0 (? 4). 
N * is the left adjoint of N and is constructed in ? 4. 

2, C : These functors are defined in Appendix B. If C is a DGC, then SC 
is the Lie algebra of the primitive elements of the cobar construction of C. 
CL is the obvious generalization to DG Lie algebras L of the DG homology co- 
algebra of a Lie algebra [15]. 

From each of the above categories we construct the following localiza- 
tions. 

HoQ Y2 = S'1T2, HoQ S2 = S ' 2, HoQ (SGp)1 = S'(SGp), 

where in each case S is the family of rational homotopy equivalences, i.e., 
maps f such that Wr*f ?& Q is an isomorphism. 

Ho (SCHA)1 = S-'(SCHA)1 where S is the set of maps f such that r*9f (or 
equivalently wr*9)f (3.2)) is an isomorphism. 

Ho (SLA), = S-'(SLA)1, Ho (DGL)l = S 1(DGL),, Ho (DGC)2= S-'(DGC)2, where 
in each case S is the set of weak equivalences, i.e., maps inducing isomor- 
phisms on homotopy in the case of simplicial Lie algebras and homology in the 
other cases. 

The following notations will be used in this paper. If 

F 

G 

This content downloaded from 129.105.215.146 on Tue, 1 Apr 2014 10:46:25 AM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


RATIONAL HOMOTOPY THEORY 213 

is a pair of adjoint functors, then the upper arrow F will always denote the 
left adjoint functor and the canonical adjunction morphisms will be denoted 

a: FG- ide2 A: idel - GF. 

If 7i: Cim Segi are localizations i = 1,2, and F: C1 -2 is a functor carrying 
S, into S2, then F induces a functor F: S1 -* S2-'C2 such that FP-f, =2F. 

We can now take up the easy part of Figure 2. 

THEOREM 2.1. Each of the adjoint functor pairs (I 1, E2 Sing), (G, W) and 

(2. 6) has the property that each functor carries the localizing family of its 
source into the localizing family of its target, and the property that the ad- 
junction morphisms are in the localizing families. Consequently the func- 
tors of Figure 2 induced by these functors are equivalences of categories. 

PROOF. (I I, E2 Sing): From the definition of the homotopy groups given 
by Kan [11], one sees that if K is a 1-connected pointed simplicial set satisfy- 
ing the extension condition, then the inclusion E2K-) K is a weak equivalence, 
i.e., it induces isomorphisms on homotopy groups. Now Milnor [19]; [9, VII, 3] 
has proved that K - Sing I K f is always a weak equivalence, hence combining 
this with Kan's formula wr(X) = wr(Sing X) one has wr(X) -_ r(E2 Sing X). 
The assertion of the theorem follows easily. 

(G, W): Kan [12], [4] has proved that WqK Wrq-,GK and that the maps 

G W(G) - G and K -e WGK are weak equivalences, yielding the result. 

(2, C): See Appendix B, 7.5. 
The last assertion of the theorem is proved as follows. Suppose that 

the adjoint functors are F and G. Then for every object X of C6, a defines 
an isomorphism 

FG(y2X) = 72(FGX) )2X. 

As X varies over Ob 62, this isomorphism gives an isomorphism of functors 

FGy2 - id 2, and hence by the following proposition an isomorphism FG 
id. Similarly , gives an isomorphism id Ox F and so F,. G are equivalences 
of categories. 

PROPOSITION 2.2. Let a: C S-'C be a categorical localization, and let 
F, G: S-'C -$~B be functors. Then 

Hom (F, G) - Hom (Fl, Gy) . 

PROOF. It follows immediately from the universal property of -/ that y 
is an isomorphism on objects and that every map in S-'C is a finite composi- 
tion of maps of the form v(g) or y(s)-1, where g is a map in C and s is in S. 
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214 DANIEL QUILLEN 

Let us assume, as is customary, that 6 and S-'6 have the same objects and 
that y is the identity on objects. Then a natural transformation from F1 to 
Ga is a collection of maps 0(X): F(X) - G(X) for all objects X such that 
OF(f ) = G(f )O for all f of the form a(g) where g is a map in C. This formula 
must also hold for f = y(s)-' and finite compositions, so therefore it is true for 
all maps f in S-'C, showing that 0 is a natural transformation from F to G, 
and proving the proposition. 

For the other pairs of adjoint functors we will not know that the functor 
F carries S, into S2, so we shall need the following definition and proposition 
to get the desired equivalence of categories. 

Let 6C, 62 be categories, let Si be a family of maps in 6i, and let vi: 6i 
S-r'i be the corresponding localization functors. If F: 6C 6C is a functor, 
then by LF we shall mean a functor from Sy-'C1 to S-1'62 together with a 
natural transformation s: (LF)y1 -2F having the following universal prop- 
erty: Given a functor G: S-'C, - S '62 and a natural transformation 7: G11 
y2F there is a unique natural transformation 0: G - LF such that r = s(O*z/), 
where O*y/: G-1 - (LF)y1 is the natural transformation given by (0*yI)(X) = 

0(y1X). The pair (LF, s) if it exists will be called the left derived functor of 
F with respect to Si and S2. It is clear that if F carries the maps of S1 into 
S2, then up to canonical isomorphism LF F. 

PROPOSITION 2.3. Suppose given localizations and adjoint functors 

F 
6 62 

G 
T1 8 p2 

S~l-ll S-1(22 

such that 
( i ) Si contains all isomorphisms of 6. If f, g are maps of 6C such that 

gf is defined, then if any two of the maps f, g, gf are in Si so is the third. 
(ii) A map f in 62 is in S2 if and only if Gf e Si. 
(iii) There exists a functor R: 6, -C 6 and a natural transformation 

: R. id such that for all X e Ob 6C the maps d: RX X and f: RX-* GFRX 
are in S. 

Then the left derived functor LF exists and is quasi-inverse to the 
functor G: S2-'62 S -S'C induced by G. In particular G and LF are equiva- 
lences of categories. 

PROOF. If f: X Y is in Si then by (i), (iii), and the diagram 
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RATIONAL HOMOTOPY THEORY 215 

X 2-RX GFRX 

{f {R jGFRf 

Y -RY GFRY 

one sees that Rf and GFRf are in S1. Thus the functor y2FR: 61 - S-1C2 
carries S1 into isomorphisms and so by the definition of localization there is a 
unique functor LF: Si1 -Vk S2-162 such that (LF)y1 = Y2FR. Let S: (LF)yj 
Y2F be the natural transformation Y2F(e): Y2FR Y2F. We claim that (LF, a) 
is a left derived functor of F. Indeed given H: Sy'61 - S2'62 and : H1 
Y2F consider the composition 

Hy1X -p HY1RX -7 y 2FRX = (LF'1X 

for each X c Ob 61. This composition is a natural transformation H-1 - (LF)y1 
so by (2.2) it defines a natural transformation 0: H - LF. It is easily seen 
that 0 satisfies s(0*y1) = 7 and is the unique natural transformation with this 
property. 

By (2.2) there are unique natural transformations P: id G(LF) and 
T: (LF)GO id given by the compositions 

7. 71(y_71R Y)1GF =G(LF)y, 

_____ ) rT (a) (LF)Gy2 =y2FRG y2) 2FG t- 2) 
By (iii) y(S) is an isomorphism, and so qP is an isomorphism of functors. In 
order to show T is an isomorphism we show that FRGY >;) FGY : Y is 
in S2 or by (ii) that G carries this map into S1. However this follows from (i) 
using the diagram 

RGY GY 

\id 

G(a)\ 
GFRGY oGFGY-( )-GY 

and the fact that the left f is in S, by (iii). Hence P, T are isomorphisms, 
LF and G are equivalences and the proposition is proved. 

3. Application of Curtis' convergence theorems 

This section is devoted to proving the hypotheses of (2.3) for the adjoint 
functor pairs Q, ( and U, Jo. 

If G is a simplicial group, then its qth homotopy group WqG may be defined 
either by the formula of Moore 
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w G = Ker {do: NqG N _1G} 
(3.1) q Im {d,: Nq+,G NqG} 

NqG fnl< j, Ker {dj: Gq o Gq-1} N_1G = G-i = {e} 
or by the formula of Kan [11] applied to G considered as a pointed simplicial 
set with basepoint at the identity. The group law on WqG for q > 1 is there- 
fore independent of the group law of G and moreover is abelian. 

If A is a simplicial complete Hopf algebra (SCHA for short, see Appendix 
A), then there is a canonical isomorphism of pointed simplicial sets given by 
the exponential 

exp: A- 9A W, 

hence we have 

PROPOSITION 3.2. If A is a SCHA, then the exponential induces an iso- 
morphism of homotopy groups Wq(9)A) > Wq(9A) for q > 1. 

C)A is a simplicial vector space over Q, hence so are its homotopy groups. 
Therefore 

COROLLARY 3.3. Wcq(9A) for q ? 1 is a torsion-free uniquely divisible 
abelian group and hence is a Q vector space. 

The following comparison theorem is what started this paper. Free sim- 
plicial algebraic objects are defined in [141; see also the proof of 4.4. 

THEOREM 3.4. If G is a connected free simplicial group, then the ad- 
junction map a induces an isomorphism 

r(G) ?& Q - r (9QG) . 

3.5. If g is a connected free simplical Lie algebra, then a induces an 
isomorphism 

w(g) -> w( Ug). 

3.6. If R is a connected free simplicial augmented associative algebra 
and R is the completion of R (A, 1.2), then there is an isomorphism 

7r(R) -7 zet) . 

The proof requires the following "convergence" or connectivity results 
based on the work of Curtis. 

THEOREM 3.7. Let G, g, and R be as in the preceding theorem, let Fr, be 
the lower central series filtrations of G and g and let R be the augmentation 
ideal of R. Then 
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Wrq(rG) Oz Q 0 

wq(rrg) 0 
Wq (Rr) - 0 

forr > q. 

PROOF. As pointed out in [7, Remark 4.10], the argument of ? 4 of 
that paper applies in great generality and not just for simplicial groups. By 
virtue of this argument it suffices to prove (3.7) where G (resp. g, R) is the 
free simplicial group (resp. Lie algebra, associative algebra) generated by the 
simplicial set K which is a finite wedge of 1-spheres A(1)/A(1), where the 
basepoint of K is set equal to the identity. Then R = T(QK), the tensor 
algebra on the reduced chains on K, so by Kiinneth w(Rr) = EDr T.(wcQK), 
and the connectivity assertion is clear. Also g = L(QK), where L is the free 
Lie algebra functor, so U(g) = T(QK) = R. Now g is a retract of U(g)(B, 3.6) 
in such a way that rrg is a retract of U(g)r, so the connectivity assertion 
for rrg follows from that of Rr. One can also use the main result of [6]. 
Finally for G = FK we have by the main result of [7](for another proof, 
see [24]) Wq(lirG) = 0 for r sufficiently large. Also rq(1irG/IFr+G) 0 Q - 
Wrq(Lr(Gab (0 Q)) = 0 for r > q by what we have just proved for g. Thus by 
descending induction on r we have Wq(rrG) 0 Q = 0 for q > r, and the proof 
of (3.7) is complete. 

The proof of 3.4-3.6 will also require the following. Here N is the set of 
integers ?0. 

PROPOSITION 3.8. Let {Gr, r e N; pr: Gr G- r > s} be an inverse system 
of simplicial groups such that pr is surjective. Then there is a canonical 
exact sequence 

0 , R' lim-invr (7rq+i(Gr)) w q(lim-invr Gr) lim-invr (Wrq(Gr)) I 0 

where R' lim-inv is the functor of an inverse system of abelian groups given 
by R1 lim-invr (Ar) = Coker {6: ll'Ar -) flAr} 0((ar)r6N) (ar - P r+l)reN. 

PROOF. Consider the maps 

lim-inv Gr HA flGr e IIGr 

where i is the natural inclusion and 

0((gr)r6N) = (gr r r+l)r-N 

6 is not a simplical group map, but it gives an isomorphism of the left coset 
simplicial set of II Gr by the subgroup lim-invr Gr with II GT, since pr is 
surjective. Thus 6 is a principal bundle map and gives rise to a homotopy long 
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exact sequence 

a U,(lim-inv G r ' 0 
I0~ 7ug(Gr) I 7ru q(Gr) 

where 0*((ar)reN) = (ar - w(pr,1)ar+,)reN. Taking into account the formula for 
R1 lim-inv, the proposition is proved. 

PROOF OF (3.4). Write G instead of 9QG, and let FrG be the filtration 
of G induced by the canonical filtration of QG. The adjunction map a: G G 
carries rrG to FrG and so induces a map of Lie algebras 

(3.9) grG0z Q > grG, 

which we will now show is an isomorphism. First note that the logarithm 
map yields an isomorphism gr G - gr 9PQG, and that the latter is by (A, 2.14) 
$P(gr QG) - 9(gr QG). Thus we have to show that gr G 0& Q - 9(gr QG) 
which is proved for any group in [23]. Here however things are simpler be- 
cause G is free, so gr QG is the tensor algebra on gr, QG and so 9P(gr QG) - 

L(gr1 QG). Also gr G 0 Q - L(gr1 G 0 Q), so the isomorphism in question 
follows from the canonical isomorphism gr1 G 0 Q - gr, QG. 

Consider the diagram 

> wq(grr G) 09 Q , Wq(G/rr+iG) 09 Q 7 7q(G/rrG) 0 Q 

> Wq(grr G) , Wq(G/Fr+iG) 7 Wq(G/FrG) > 

where the vertical maps are induced by a, where the tensor product is over 
Z and the top row is exact since Q is flat over Z, and where the first vertical 
arrow is an isomorphism by (3.9). By induction on r and the five lemma, a 
induces the isomorphism 

(3.10) Wq(G/rrG) 0 Q , Wq(G/FrG) 

By (3.7) the inverse system on the left is eventually constant, 
so R' lim-invr. Wq(G/FrG) = 0. As G _ lim-inv G/FrG, (3.8) shows that 
lim-invrwq(G/FrG) Wq(G). So taking the inverse limit of the isomorphisms 
(3.10), we have Wq(G) 0 Q - Wq(G), which proves (3.4). 

The proofs of (3.5) and (3.6) proceed by the same method, filtering so that 
the associated graded algebras are isomorphic, and passing to the inverse 
limit by means of (3.7) and (3.8). The details are omitted. 

We can now prove the hypotheses of (2.3) for the pair Q, q. Recall that 
we are localizing (sGp)1 (resp. (ScHA)1) with respect to maps f such that 
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(wf) 0z Q (resp. wref) is an isomorphism. Hypothesis (i) is therefore obvious. 
For (ii) we must show that if f: A -) B is a map in (SCHA)1, then wrf is an 
isomorphism if and only if 7cif 0z Q is an isomorphism. But this is true by 
(3.3), which implies that wSA - (w@A) ?z Q and similarly for B. For (iii) we 
may take R = G W and e = the adjunction map a. By Kan's work (see proof 
of 2.1) if G e Ob (SGp)1, ,: RG - G is a weak equivalence and hence a rational 

homotopy equivalence, so it remains to show that S: RG - QRG is a rational 
homotopy equivalence. Now RG is free and connected so (3.4) shows that ,' 
induces the isomorphism 6: r(RG) ?& Q > w(OQRG) given by 6(C 0 q) 
q .7w(,S), using the Q module structure of r(OQRG) afforded by (3.3). How- 
ever since Q 0& Q - Q, 6 is isomorphic to the map wr(f) 0 id: r(RG) ?z Q 
r(@QRG) ?& Q, and therefore f: RG - QRG is a rational homotopy equiva- 
lence. We have therefore verified the hypotheses of (2.3), so it follows that 
the functors LQ and 9 in Figure 2 are equivalences of categories. 

Remark 3.11. It is perhaps worthwhile to note that, with the exception 
of the last paragraph, the results of this section generalize immediately to 
the case where Q is replaced by a field K of characteristic zero. In fact all 
the equivalences of Figure 2 to the right of Ho (SCHA)1 are valid where 
algebra, Lie algebra, etc., are taken over K. However LK and j are no longer 
equivalences, the reason being that K ?& K > K only if K = Q. 

We now verify the hypotheses of (2.3) for the pair U, .1 using some 
results from the following section. Again (i) is trivial, while from (3.2) we 
have that a map f: A-)B in (scHA)1 is such that wrf is an isomorphism if and 
only if 7r9if is an isomorphism, proving (ii). For (iii) we shall take R = 
N*SCN and e to be the composite of the adjunction maps N*SBCN N*N 
id. If g is a reduced simplicial Lie algebra, then Ng is a reduced DG Lie 
algebra, so by the properties of S and C (B, ? 6, Th. 7.5), SCNg is a free re- 
duced DGL and a: SCNg -> Ng is a weak equivalence. By (4.5) S: SCNg 
NN*SCNg is a weak equivalence; it is now straightforward to verify that 
d: Rg - g is a weak equivalence. Moreover by (4.4) N*SCNg = Rg is a free 
reduced simplicial Lie algebra, so S: Rg- URg is a weak equivalence by (3.5). 
Therefore e and R satisfy (iii), and the functors L U and 9P of Figure 2 are 
equivalences of categories. 

4. DG and simplical Lie algebras 

In this section we shall retain our previous notation. However the 
results are valid with Q replaced by any field of characteristic zero. 
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Let 

N: (sV) - (DG) 

be the normalization functor from the category of simplicial vector spaces to 
the category of DG vector spaces. N is given by (3.1) so 

(4.1) w(V) = H(NV) . 

By Dold-Puppe [8], N is an equivalence of categories. We shall denote the 
inverse functor by N-'. Recall that a simplicial vector space V may be re- 
garded as a chain complex with differential d = Y((- 1)'di and that then NV 
is a subcomplex of V. 

Let V, W be simplicial vector spaces, and let V 0& W be their dimension- 
wise tensor product. If x e V, and y e Wq let x 0 y e (V 0 W)p+q be the ele- 

ment given by the Eilenberg-Zilber formula 

(4.2) X () y = p (, 2)S) q * * Sp X ? sp - * * s"y 

where (p, v) runs over all p, q shuffles, i.e., permutations ([, .. , [ V, I, ... *, 2q) 

of {0. * * *, p + q-1} such that ,1 < ... < ep and i1 < ... < 2q , and where 

s(p, v) is the sign of the permutation. The following properties of 0& are well 
known. 

(i ) d(x ($& y) - dx (& y + (-)deg.TX ( dy 

(ii) x ? (y X z) = (x y Y) ?9z 
(iii) If T: V? W >W? V is given by T(x 0 y) = y ?& x, then 

T(x 0 y) - (_ l)Pqy O& x if deg x = p and deg y = q. 
(iv) If xeNpVand yeNqW, then x&yeNp+q(V?W) andthemapof 

chain complexes 

(NV) 0 (NW) - N(V ? W) 
X, y X X0 Y 

is a chain homotopy equivalence (Eilenberg-Zilber theorem). 
Let g be a simplicial Lie algebra and if X e gp, Y e gq define [[x, y]] e gp7, 

to be the image of x 0 y under the bracket map g (0 g g. It follows easily 
from (i)-(iv) that g together with d and [[, ]] is a DG Lie algebra and that Ng 
is a sub-DG Lie algebra. We thus obtain a functor 

(4.3) N: (SLA) ) (DGL). 

Similarly 0 defines the structure of a (commutative) DG algebra on NR 

if R is a simplicial (commutative) algebra. 
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PROPOSITION 4.4. The functor N (4.3) has a left adjoint N*. N* carries 
free DG Lie algebras into free simplical Lie algebras. 

PROOF. If m is a DG Lie algebra, then considering it as a DG vector space, 
we may form the simplicial vector space N-'m and the simplicial Lie algebra 
LN-1m, where L is the free Lie algebra functor applied dimension-wise. If 
x e m (recall that we only consider homogeneous elements), then we let 
N-1x e N-'m c LN-'m be the element corresponding to x under the identifi- 
cation of m with NN-'m c N-'m. It is clear that if g is a simplicial Lie 
algebra, then there is a one-to-one correspondence between DG vector space 
maps a: mu Ng and simplicial Lie algebra maps 6: LN-'m g such that 
6(N-'x) = 9(x) for all x e in. Let 

N*m = LN-lm/I, 

where I is the smallest simplicial ideal of LN-1m containing the elements 
[[N-'x, N-1y]] - N-'[x, y] for x, y e m. Then 0 induces a map N*m o g if and 
only if cp is a Lie homomorphism. Hence there is a one-to-one correspondence 
between DG Lie algebra maps 9: m u Ng and simplicial Lie algebra maps 
6: N*mes, and so N* is a left adjoint functor to N. Note that the adjunction 
map ,: m NN*m is given by x -- N-'x + I. 

We recall that a map f: X - Y of simplicial objects over a category of 
universal algebras, in particular Lie algebras, is said to be free [14] if there 
are subsets 2q c Yq for each q such that I =U 2q is stable under the de- 
generacy operators of Y and such that Yq is the direct sum of Xq and the 
free algebra generated by the set Yq, fq: Xq Yq being the inclusion of a 
summand. It may be shown that the class of free maps is closed under direct 
sums, cobase extension and sequential composition (i.e., if X, X* * * are 
all free then X1 - dir lim Xi is free). Of course X is free if the map AP X is 
free where 9 is the initial object. 

Now let m be a free DG Lie algebra by which we mean that as a graded 
Lie algebra m is isomorphic to Lg(V) where V is a graded vector space and 
where L9 is the free graded Lie algebra functor (B, ? 2). Define m'k1 to be the 
subalgebra of m generated by Vi, i < k. Then m(kl is a sub-DG Lie algebra of 
m called the k skeleton. Let ej j e J be a basis of Vk; we wish to show that 
the k-skeleton of m is obtained from the k-1 skeleton by attaching the ej. 
Let S(k - 1)(resp. D(k)) be the DG vector space generated by an element Yk- 

of degree k - 1 with dYk-l 0 (resp. by an element Yk-i of degree k - 1 and an 
element Xk of degree k with dxk = Yk-i and dYkl = 0) and let S(k -1) - D(k) 
be the obvious inclusion. Then there is a cocartesian diagram 
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V jLg(S(k-1)) > V jL9(D(k)) 
Ia lb 

m(k-1) A _ m(k) 

in (DGL) where V denotes direct sum, where a (resp. b) restricted to the jth 

factor of the direct sum is given by aYkl = dej (resp. bXk = ej, bYk1 = dej). 
Since N* is a left adjoint functor it will commute with direct sums, co- 

base extension, etc., so N*m will be free if we know that N*LgS(k - 1) 
N*LgD(k) is free. Let A A(k - 1)/A(k - 1) (standard k - 1 simplex with 
boundary collapsed to a point), let B - A(k)/ V(k, 0) (standard k simplex with 
all faces but the last collapsed to a point) and let A B be the map induced 
by the inclusion of the last face. If X is a pointed simplicial set let Q(X) be 
the simplicial vector space generated by X with basepoint identified with 0. 
Then it is easy to see that N-'S(k - 1) , N'D(k) is isomorphic to QA , QB. 
Since N*L9 - LN-1, the map N*LgS(k - 1) , N*LgD(k) is isomorphic to 
LQA - LQB. But the latter is clearly free, the subsets S2q c LQBq being 
given by the elements of Bq which are not in Aq. Therefore we have shown 
that N*m is free and the proof of the proposition is complete. 

PROPOSITION 4.5. Let V be a DG vector space and define maps of graded 
Lie algebras 

Lo'(HV) 
a 

) H(L9 V) b ) 7F(LN-'V) 

as follows. a is the unnique graded Lie algebra map extending the map 
induced on homology by the inclusion of V in L9 V. As NLN-1 V is a DG 
Lie algebra, the map Vow NLN-1 V given by x -- N-'x extends to a map of 
DG Lie algebras L9 V E NLN-1 V, and b is the induced map on homology. 
Then the maps a and b are isomorphisms. 

PROOF. Consider the diagram 
a b 

LO(HV) - - H(L9 V) > r(LN- V 

il H(i)I H(p) 7r(i)I 7r(P) 
Tg(HV) - H( To V) > 7r( TN-1 V) 

where T 9 (resp. T) is the tensor algebra functor from DG (resp. simplicial) 
vector spaces to DG (resp. simplicial) algebras, where a', b' are defined simi- 
larly to a and b, where i is the inclusion of a DG or simplicial Lie algebra into 
its universal enveloping algebra, and where p is the canonical retraction 
(By 2.2) of the tensor algebra onto the free Lie algebra given by 
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1 
p(Xl g (g) X.) = -[X19 X[ * d] n 

a' and b' are isomorphisms by Kiinneth and Eilenberg-Zilber, hence a' and b' 
being retracts of isomorphisms are also isomorphisms, q.e.d. 

THEOREM 4.6. If m is a free reduced DG Lie algebra, then S: in - NN*uI 
is a weak equivalence. 

PROOF. Let 1rN*m be the lower central series filtration of N*uI. As 
[J N*m, JqN*m] Q Fp~qN*I1, it follows that [[NJpN*nu, NJqN*UI]] Q 

NIp+qN*In and hence that 8FimcNIrN*i-, where F9 is the lower central 
series filtration in the graded sense for ni. Consequently there is an 
induced map gr S: gr (m) N gr (N*i) , where we have used that N is exact. By 
(4.4) N*m is free so gr (N* nt) L(N*m)ab; similarly gr in = Lg(mab). But gr 1s 
induces an isomorphism mab N(N*m)ab; to see this, note that the canon- 

ical maps m - mab and m N(N*m)ab are both universal for DG Lie algebra 
maps from m to abelian DG Lie algebras, and hence are isomorphic. Thus gr fi 
is of the form L9 V - NLN-'V which by (4.5) is a weak equivalence. By the 
five lemma and induction, one sees that 

Hq(m/Frm) > Wq(N*Ut/FrN*1lt) 

For large enough r, (Irm)q = 0 as it is reduced, and wq(IrN*m) = 0 by (3.5) so 
Hq(m) w 7q(N*m) and the theorem is proved. 

It is now possible to check that the hypotheses of (2.3) hold for the 
functors N* ond N. Hypothesis (i) is trivial and (ii) follows from (4.1). For 
(iii) we take R = SC and d = the adjunction map a. By (B, 7.5) d is always a 
weak equivalence and the formulas for 2 and C show that 2SC is free and 
reduced if m is reduced. Thus by the above theorem A: Rm - NN*RuIT is a 
weak equivalence and (iii) holds. Therefore by (2.3) we have that the func- 
tors N and LN* in Figure 2 are equivalences of categories. 

Remark. One may show by essentially the same arguments used above 
that the normalization functor from the category of reduced simplicial commut- 
ative algebras to the category of reduced DG commutative algebras induces 
an equivalence of the corresponding homotopy categories. The filtration Ir is 
replaced by the powers P of the argumentation ideal which become higher 
connected with r by the same argument as (3.6)(see also [25]). Again the 
really key point is the fact that the symmetric algebra S V is a retract of TV 
and this uses essentially the fact that Q has characteristic zero. 
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5. The Whitehead product 

In this section we prove the part of Theorem I relating the rational 
homotopy Lie algebra of a space with the homology of the associated DG Lie 
algebra. 

Let X be a 1-connected pointed space and let q be the composition 

Wq+I(X) aWq(&2X) Hq(nXg Z) 

where a is the boundary operator for the path space fibration -2X EX X, 
and where H is the Hurewicz homomorphism. Samelson [26] has proved the 
formula 

9lU, V] = (-1)P[9u, WV] if p = degu, 

where the bracket on the left is the Whitehead product and on the right is 
the bracket associated to the Pontrjagin product on H*(flX, Z). Milnor- 
Moore [20, appendix] show that H induces an isomorphism of r(f2X) 0 Q with 
the primitive Lie algebra of the Hopf algebra H*(fX, Q). Combining these 
results with the definition of 7rX given in ? 1 we have 

PROPOSITION 5.1. There is a canonical graded Lie algebra isomorphism 
7r(X) - Im {w(OX) ?& Q - H*(X, Q)} = 9PHX(2X, Q). 

PROPOSITION 5.2. If K is a 2-reduced simplicial set, then there is a 
natural commutative diagram 

r(GK) - wr(ZGK) 

H 
i(fl IK 1) ) H(f2 K 1, Z) 

where h is the simplicial Hurewicz homomorphism and C is an isomorphism 
of algebras for the 0 product in r(ZGK) and the Pontrjagin product in 

H*(l KZ). 

PROOF. We recall that if K is a Kan complex with basepoint *, then the 
Hurewicz homomorphism h: r(K) - w(ZK) on the simplicial level is the map on 
homotopy induced by x - x - s (*) if deg x = n. It is easily seen that h is 
compatible with the topological Hurewicz homomorphism in the sense that 
the diagram 

w(X) - H*(XS Z) 

7r(Sing X) > 7r(Z Sing X) 
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is commutative, where 0 is the isomorphism induced by the map which sends 

a map u: A(q)/A(q)- Sing X into the composition Sq - A(q)/A(q) I 
U 

| Sing X I - X, where g is any orientation-preserving homotopy equivalence. 
Using this compatibility, the proposition reduces to showing that there is a 
natural commutative diagram 

h 
w7(GK) - 7:(ZGK) 

h 
r(Sing t2 | K1) - 7(Z Sing& 2 K ) 

where C is an algebra isomorphism for the ? products coming from the maps 
[: GK x GK -GK and v: a I K I x a I K I - a| K I furnished by group multi- 
plication and composition of paths. Therefore all we have to do is define in a 
natural way a homotopy equivalence of Sing |I K and GK which up to 
homotopy is compatible with pe and v. 

At this point we remark that EX is the space of paths in X ending at 
the basepoint, and that the map EX - X sends a path into its initial point. 
Then composition defines a right action of OX on EX. Let GK )K x rGK K 
be the universal principal GK bundle so that K x GK is acyclic. The geo- 
metric realization functor carries this fibration into a principal fibration with 
topological group I GK I (at least in the category of Kelley spaces which is 
sufficient for our purposes [9, Ch. III]). Hence there is a commutative diagram 

fl IK I , EIKI , JKJ 

PK- EK - 

JGK - 1KXrGKI KI 

where a exists by the covering homotopy theorem using the contractibility of 
E I K 1, and where p is induced by a. As I K x , GK I is contractible, a and 
hence p is a homotopy equivalence. Since we have arranged groups to act to 
the right for principal bundles, it is fairly easy to see that p is a map of H- 
spaces up to homotopy, so taking a homotopy inverse of p we obtain a homo- 

topy equivalence GK O Sing f2| K I, which up to homotopy is compatible with 
[e and v. This completes the proof of the proposition. 

PROPOSITION 5.3. If A is a simplicial CHA, let i: 9iA A be the inclu- 
sion map, and let j: OA ) A be the map ju = a - 1. Then the diagram 
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Wq(J'SA) -_2r(exp) 
7rq~g)A) 7Wq(9A) 

ST(i)\ /7r( j) 

WqA 

is commutative for q > 0. Moreover r(i) is injective. 

PROOF. W(i) is injective because there is a canonical retraction of a CHA 

onto its primitive subspace (A, 2.16). To show the diagram commutative, we 
must show that if an element of Wq(9PA) is represented by x C (Ng)A)q, then x 
and ex - 1 differ by a boundary in NA. Let Sq = A(q)/A(q), let a be the 
canonical q-simplex of Sq, and let QSq be the reduced chains on Sq. Then 
there is a unique map of SCHA'S TQSq = ULQS q )A which sends a to x. By 
naturality we may assume A = TQSq and x = a. But by (3.6) r(TQSq) - 

r(TQSq), which by Kiinneth is a tensor algebra on the class of a. In partic- 
ular one sees that if I is the augmentation ideal of TQSq, then WqI2 = 0. 

Therefore (e0 - 1) - a C (I2)q is a boundary and the proposition is proved. 
Combining these propositions we have the following isomorphism of func- 

tors from 5, to (GL): 

7r(j K)JIm {w(nj Kj)?Qc : H*(gf KjQ)} (5.1) 

Im {wc(GK) 0 Q - (QGK)} (5.2) 

- Im {w(gQGK) 7r(QGK)} (3.4), (3.6) 

- r(gQGK) (5.3) 
- H(NPQGK) . 

Therefore if X is the composition N9P(LQ)G(E2 Sing)-, we have a canonical iso- 
morphism of functors 7rX - 7rXX from HoQ ~Y2 to (GL) as asserted in Theorem I. 

6. The coproduct on homology 

In this section we prove the part of Theorem I relating the rational 
homology coalgebra of a space X with the homology of the DG coalgebra 
associated to X by the equivalences in Figure 2. The method is to obtain a 
formula (6.5) for the rational homology coalgebra of a reduced simplicial set 
K in terms of QGK. 

We begin by reviewing properties of the adjoint functors G and W be- 
tween the categories 3 of reduced simplicial sets and (SGp) the category of 
simplicial groups (see [12], [4]). We adhere to the convention adopted in 
Appendix B that a group acts to the right of a principal bundle; this causes 
only minor differences in the formulas used here with those of [12] and [4]. 

If q: E - K is principal fibration of simplicial sets with simplicial group 
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G and K is reduced, then a lifting function p: K - E is by definition a section 
of q which commutes with all degeneracy operators and with all faces but do. 
Defining z: K- G,-,, q > 0 by dopx = (pdox)z-x, one sees that z satisfies the 
formulas 

St:= Z'si+1 i?O 

(6.1) 7~~~sox =the identity in Gq if x C Kq 
(6.1) 

=~~~~dz-zd~ i >O 

zdzx (z-dox)(doz-x) 

Such a map z: K G will be called a twisting function and JY(K, G) will 
denote the set of twisting functions from K to G. JY(K, G) is a functor con- 
travariant in K c Ob 5, and covariant in G c Ob (SGp) and the functors G: 5, 
(SGp) and W: (SGp) - 51 are defined so that there are natural isomorphisms 

(6.2) Hom;1 (K, WG) - J(K, G) - Hom(S,,P) (GK, G) . 

If z: K- G is a twisting function and K is a Kan complex, then z induces 
a homomorphism wnK -r w,1G which will be denoted by ;e. If z arises from a 
principal G bundle E K with a lifting function, then F - D: wAK r"_-G, 

the boundary operator in the homotopy long exact sequence. 
If A, B are simplicial abelian groups, and A is reduced, then by a twisting 

homomorphism z: A - B we mean a twisting function such that z: Aq Bqi 
is a group homomorphism. For example if z: K G is a twisting function, 
then z induces a twisting homomorphism z': QK-) Gab 0 Q 1/12, where QK 
is the free simplicial Q module generated by K with basepoint set equal to 0, 
and where I is the augmentation ideal of QG. 

PROPOSITION 6.3. Let z: K-*GK be the canonical twisting function com- 

ing from (6.2). Then the twisting homomorphism z': QK 1/12 induces an 

isomorphism I': w7n(QK) -7r _w(I/I2) for n > 0. 

PROOF. If A is a reduced simplicial abelian group, then there is a canon- 
ical exact sequence 

0 - 2A - EA A -* 0 

defined as follows. (EA)q Aq,, and djd = dj+1a, sj= sj+1 a where if a C Aq,+, 
then d is the corresponding element of (EA)q. 0: EA A is given by Od = d0a 
and s2A = Ker S. Note that if p: A -EA is given by pa = (s0a)-, then p is a 
lifting function and the associated twisting homomorphism is given by z-a= 

(a - sodoa)-. As EA is contractible rF: wnA - 7 w-12A for n > 0. Taking A 
to be QK we have the commutative diagram 
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QK 

fQK > /2 

where q(d) = z'a is an isomorphism. In effect (GK)q is the free group gen- 
erated by the elements zx and (QQK)q is the free Q module generated by the 
elements x as x runs over the set Kq+- soKq. Therefore as q and z, induce 
isomorphisms on homotopy so does z', and the proposition follows. 

PROPOSITION 6.4. Let A, A' and B be simplicial abelian groups with 
A reduced, and let z: A )A' be a twisting homomorphism. Then 
z- 0 do: A 0& B - A'( 0B and do 0 z: B A B (0 A' are twisting homo- 

morphisms and we have the formulas 

(z&do)(a b) = zat$&b 
(dO z)(b a) = (-1)Pb za ifdegb = p . 

PROOF. The fact that do 0 z is a twisting function is straightforward. 
On the other hand if b C BP and a C Aq then with the notation of (4.2) 

(do 0) z)(b 0 a) = i s(e, 2)dos5q ... sb (0 z-s~p ... s1a 

BY (6.1) zsP ... saga = 0 if =0 and sup-, * Sul,-z-a if e, > 0, so 

(do 0 z,)(b 0 a) = ,(/b) s(ce, 5))SIq1 * sV2-1b 0) sTP_- ... sP1_ja 

= (-1)Pb &ra. 

The proof of the formula for z 0 do is similar, q.e.d. 
We shall denote the map on homotopy (do0z<:)- wn(A 0) B) -r w,1(A 0 B') 

by 1 0 z and similarly denote (z 0 do)4 by ; 0 1. Then from the proposition 
we have 

(F01)(a S) = ;Fa f 
(1 0)(fl@a) = ( -)q X Fa 

if a C rpA, f G C qB, where a&l e Wrp+q(A?B) is the class represented by a&b 
if a represents a and b represents F. Similarly if z1: A A' and z2: B B' 
are twisting homomorphisms EFl ?$, 7r w (A 0) B) - 7n-2(A' 0) B') is the 
homomorphism induced by a (0 b -d z-d~a (0 dIZ2b so that (;1 0F 2)( 0 (,) = 

(-1)Pr1a0 &2f if deg a = p. 

PROPOSITION 6.5. Let z: K-y G be a twisting function, let I = QG be the 
augmentation ideal of QG, and let z': QK 1/12 be the twisting homomor- 
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phism given by z'x = (x - 1) + 12 if x C K. Then the following diagram is 
commutative 

Zn(QK) - > Zn~~~~~~~~~l(1/12) 

(6.6) PrnA 

wn(QK 0) QK) - n2( 0 1)2 2(I/I)I 

where A is the map induced by the diagonal K-OK x K, m is induced by the 
multiplication in gr QG, and where a is the boundary homomorphism for 
the exact sequence 

0 - P2/1- - I/P3 I/P2 - . 

PROOF. Let a e w"(QK) be represented by an element z =Eazx x N(QK)I, 
where x runs over the elements of K, different from sll(*)(* = basepoint of 
K) and the ax are rational numbers. By definition the elements of K,,- 
different from so-'(*) form a basis for (QK),-1, so djz = Eaxdjx = 0 for 
j ? 0 implies that for any y ? s'-'(*), the sum of the ax with djx = y is zero. 
Consequently 

(6.7) ,ax(zdjx-1) = 0 in I, j > 0 . 

The image of a in wn_2(I2/I3) obtained by going on the lower path of (6.6) 
is represented by 

(6.8) E ax(z'dox)(doz'x) . 

To calculate the image by the upper path note that 

(O = La aX(Z.X _1) + I3 C (I/I3)ff_, 

is by (6.7) an element of N(I/I3)n-_ congruent mod 12 to z'z. Thus dow repre- 
sents ro'a. By (6.1) we have 

dos= E ax[(zdox)-'(zdx) - 1] + I3. 

Using the identity 

x'y -1 -(x-1) ? (y-1) ? (x-1)2-(x - 1)(y - 1) mod P 

in any group algebra and (6.7) we have 

dow= E ax[(z'dox)2 - (z'd0x)(z-'dx)] + I3 

= - E ax(z'd0x)(d0z'x) + I3 

since z'dlx = z'dox + doz'x. This is the negative of (6.8) so the proposition is 
proved. 

We shall need the following Whitehead-type theorem for simplicial CHA'S. 
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Recall that a CHA is said to be free (A, 2.11) if it is isomorphic to the com- 
pleted universal enveloping algebra of a free Lie algebra. 

PROPOSITION 6.9. Let q: A - B be a map of reduced simplicial CHA'S 
which are both free in every dimension. Then the following assertions are 
equivalent: 

( i ) gr1 9 is a weak equivalence 
(ii) P9) is a weak equivalence. 

PROOF. Consider the spectral sequence of homotopy groups which arises 
from the filtration on SPA induced by the standard filtration on A. This is a 

decreasing filtration so if we index correctly we get a homological type 
spectral sequence 

Epq =p+q(grq C?PA) Wp~q(Fj9A) dr Er - Ep-lq+r?7 

Using the fact that A is dimension-wise free, that A is reduced, and (4.5) one 
sees that this spectral sequence lies in the quadrant q > 0, p > 0. Hence the 

inverse system wr(j9A/Fr4)A) is eventually constant and so by (3.8) the 
spectral sequence is convergent. 

Consider the map Erq(p) induced by 9 from this spectral sequence to the 
similar one for B. As E2(9) = r(Lgr, A) = Lg(w(gr, p)), one sees that if gr1 9 
is a weak equivalence, then so must Pcp by the convergence of the spectral 

sequence. For the converse, note that if E;,(9) is an isomorphism for p < k, 
then so is Epq(9) for p < k and all q. Consequently by Zeeman's comparison 
theorem for spectral sequences, if Pcp is a weak equivalence, Epq(9) must be 
an isomorphism for all p and q and therefore gr, q is a weak equivalence, q.e.d. 

We are now in a position to prove the principal result of this section. Let 
A be a reduced SCHA which is free in each dimension, and let I be the aug- 
mentation ideal of A. Define 

(Q q=0 
(6.10) Hq (A) (II) 

and let v: Hq(A) l Wq-i(I/12) be 0 for q = 0 and the identity for q > 0. 
Define a comultiplication A on H*(A) by requiring the diagram 

H,(A) > - nwl(I/I2) 

(6.11) a 

o Hi(A) 0 Hn-i(A) i- 7_w4I/I2) 0 w=t1 ( I/I2) nw2(I/I) 

to be commutative where (as usual because a is of degree - 1)(u 0 u)(u 0 v) 
(- 1)P(au 0 UV) if p = deg u, where m is induced by the isomorphism 
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I/I2 0 1/12 12/13 (since A is free in each dimension) given by multiplication, 
and where a is the boundary operator for the exact sequence 0 - I12/13 I/3 
I/I2 0. It will be shown that A is coassociative and cocommutative in the 
proof of the following. 

THEOREM 6.12. The functor A F-+ H*(A) just defined on the full sub- 
category of (SCHA) consisting of dimension-wise free A extends uniquely up 
to canonical isomorphism to a functor 

H: Ho (SCHA)1 - (GC) . 

Moreover if H: HOQ 82 (GC) is the extension of the rational homology co- 
algebra functor K e H* (K, Q) then there is an isomorphism of functors 
H H(LQ)G. 

PROOF. We recall that H,(K, Q) = wr*(QK) with the comultiplication 
defined to be the composition 

wr.(QK) -( )w(QK 0 QK) - )* 7w(QK) 0 wr4QK), 

where Ax = x ? x for x e K, and where k is the (KUnneth) isomorphism induced 
by the 0 operation. By (6.3) we have a canonical isomorphism 

H.(K, Q) wr n(QK) 
: 

wn-(I/I2)--* Hn(QGK) for n > 0. 

By (6.5) and (6.11) we therefore have a canonical isomorphism of functors 
from 52 to (GC) 

H* (Kg Q) -_ H* (QGK) . 

This formula shows that H*(A) is cocommutative and coassociative if A is of 
the form QGK for some K. However given a dimension-wise free SCHA B, 
there is an adjunction map Ap: A B, where A = QGW'oB, which by (3.4) 
induces an isomorphism for the functor O and hence also for P by (3.2). Thus 
by (6.9), grl9 is a weak equivalence so H*(A) - H*(B) as graded co- 
algebras. Thus H*(B) is an object of (GC) for any reduced dimension-wise 
free SCHA B. 

H: Ho (SCHA)1 (GC) is unique up to canonical isomorphism because for 
any B e Ob (SCHA), we must have 

H(-/B) -_ H(-1QGW@oB) -_ H*(QGWWoB) -_ H*(W@oB9 Q). 

However by the universal property of a we can use these isomorphisms to 
define H. It is then clear that 

H(LQ)G(-K) = H(-QRGK) - H*(WoQRGK, Q) - H*(K, Q) = H(IK), 
and hence by (2.2) that H(LQ)G - H, proving the theorem. 
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PROPOSITION 6.13. There is a canonical isomorphism of functors from 
(DGC)2 to (GC) 

H*(C ) -- H*( UN*C ) . 

PROOF. If in is a free reduced DGL we may define a graded coalgebra 
H*(m) by imitating the definition of H*(A), namely Hq(M) - Hqi(grl Ug(m)) 
with A induced by 

a: Hq(gr, Ug(m)) Hq(gr2 Ug(m-)) 

via a diagram of the form (6.11). Similarly if g is a free reduced SLA we may 
define Hq(g) w 1ql(gri U(g)), etc. It is clear that there is a canonical coalgebra 
isomorphism 

(6.14) H*(g) - H*( U'g)) 

Let f': Ug(m)NU(N*m) be the obvious extension of i: m NN*m and 
filter NU(Nm) by N applied to the powers of the augmentation ideal. Then 
,G' is a map of filtered DG algebras. Moreover as in the proof of (4.6) one sees 
that grG' is a weak equivalence. Therefore gr, f' induces a coalgebra iso- 
morphism 

(6.15) H*(rm) H*(N*mi) . 

Finally let C G (DGc),, let z: C - C be the canonical twisting function, 
(B, 6.1) so that 

(6.16) dz + zd + m(z- )A = O. 

where m denotes multiplication in U(2C). It is an easy consequence of this 
formula and the multiplicative isomorphism U(2C) - T(&WO) that z induces 
as isomorphism 

H.(C ) >H,-,(gri Ug(2C )) -- H,,(2C ) 

Moreover comparing (6.16) and the diagram (6.11) which has been used to 
define A on Hj(2C), one sees z- induces a canonical coalgebra isomorphism 

(6.17) H* (C) -- H* (2C) 

Combining (6.14), (6.15), and (6.17) the proposition is proved. 
The part of Theorem I about homology coalgebras can now be proved. 

The isomorphism 

H*(X, Q) = H*(Sing X, Q) - H*(E2 Sing X, Q) 

shows that the H functors on HoQ ~T2 and HoQ 52 are isomorphic with respect 
to the equivalences of Figure 2. Theorem 6.12 shows that the H functors on 
HoQ 82 and Ho (SCHA), are isomorphic, while (6.13) shows that the H functors 
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on Ho (SCHA)1 and Ho (DGC)2 are isomorphic. Thus the H functors on HoQ ~T2 
and Ho (DGC)2 are isomorphic (in fact canonically isomorphic). The proof of 
Theorem I is now complete. 

PART II. 

The purpose of this part is to improve the equivalence of categories of 
Theorem I to an equivalence of homotopy theories. We use the axiomatization 
of homotopy theory presented in [21], which will be denoted [HA] in the follow- 
ing. A review of the basic definitions and theorems of [HA] is given in ? 1. 
Theorem II is proved in ?? 2-5. Some applications are presented in ? 6. 

All diagrams are commutative unless otherwise stated. 

1. Closed model categories and statement of Theorem II 

We begin by reviewing some of the definitions and theorems of [HA, Ch. I]. 
Definition. A closed model category is a category C endowed with three 

distinguished families of maps called cofibrations, fibrations, and weak equiv- 
alences satisfying the axioms CM1-CM5 below. 

CM1. C is closed under finite projective and inductive limits. 
CM2. If f and g are maps such that gf is defined, then if two of f, g, and 

gf are weak equivalences, so is the third. 
Recall that the maps in C form the objects of a category (iC having 

commutative squares for morphisms. We say that a map f in C is a retract 
of g if there are morphisms p: f-+ g and A: g ) f in (iC such that Aq = idf. 

CM3. If f is a retract of g and g is a fibration, cofibration, or weak equiv- 
alence, so is f. 

A map which is both a fibration (resp. cofibration) and weak equivalence 
will be called a trivial fibration (resp. trivial cofibration). 

CM4. (Lifting). Given a solid arrow diagram 

A )X 

(*) i{ 7^ {P 

B- yY 

the dotted arrow exists in either of the following situations: 
( i ) i is a cofibration and p is a trivial fibration, 
(ii) i is a trivial cofibration and p is a fibration. 

CM5. (Factorization). Any map f may be factored in two ways 
( i ) f = pi where i is a cofibration and p is a trivial fibration, 
(ii) f = pi where i is a trivial cofibration and p is a fibration. 
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We say that a map i: A m B in a category has the left lifting property 
(LLP) with respect to another map p: X - Y and p is said to have the right 
lifting property (RLP) with respect to i if the dotted arrow exists in any 
diagram of the form (*). 

Suppose now that C is a closed model category. 

PROPOSITION 1.1. The cofibrations (resp. trivial cofibrations) are pre- 
cisely those maps having the LLP with respect to all trivial fibrations (resp. 

fibrations.) The Jibrations (resp. trivial jibrations) are precisely those maps 
having the RLP with respect to all trivial cofibrations (resp. cofibrations). 

PROOF. CM4 says that a cofibration has the LLP with respect to any 
trivial fibration. Conversely if f has the LLP with respect to all trivial fibra- 
tions, and if f = pi is as in CM5(i), then f has the LLP with respect to p, so f 
is a retract of i and therefore f is a cofibration by CM3. The other possi- 
bilities are similar, q.e.d. 

COROLLARY 1.2. The class offibrations (resp. trivialfibrations) is closed 
under composition and base change and contains all isomorphisms. The 
class of cofibrations (resp. trivial cofibrations) is closed under composition 
and cobase change and contains all isomorphisms. 

An object X of C is called cofibrant if the map 9q X (q = initial object 
of C which exists by CM1) is a cofibration and fibrant if X - e (e = final object) 
is a fibration. If A V A, in,: A - A V A, i = 1,2, is the direct sum of two 
copies of A, we define a cylinder object for A to be an object A, together with 
maps at: Am AI, i = 0,1, and a: A, A such that a. + a,: A V A) Al is a 
cofibration, a is a weak equivalence and as, = id,, i = 0,1. Here a. + a, denotes 
the unique map with (a. + a1)ini = ai-,. If f, g c Hom (A, B), a left homotopy 
from f to g is defined to be a map h: A, I B, where A, is a cyclinder object for 
A, such that ha, = f and ha, = g. f is said to be left homotopic to g if such a 
left homotopy exists. When A is cofibrant, "is left homotopic to" is an equiv- 
alence relation (Lemma 4, ? 1, loc. cit.) on Hom (A, B). The notions of path 
object and right homotopy are defined in a dual manner. If A is cofibrant and 
B is fibrant, then the left and right homotopy relations on Hom (A, B) coincide 
and we denote the set of equivalence classes by [A, B]. We let wrC6f denote the 
category whose objects are the objects of C which are both fibrant, and cofibrant 
with Homec~f (A, B) = [A, B], and with composition induced from that of C. 

The homotopy category Ho C of a closed model category C is defined to be 
the localization of C with respect to the class of weak equivalences. The 
canonical functor a: C e Ho C induces a functor aZ: rCcf -p Ho C, and we have 
the following result (Theorem 1, ? 1 and Prop. 1, ? 5 loc. cit.). 
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THEOREM 1.3. (a) Ho e exists. 
( b) a7: TrCcf Ho 6 is an equivalence of categories. 
( c ) If A is cofibrant and B is fibrant, then 

a: [A, B] - HomHOC (TiA, 7B) . 

(d) a(f) is an isomorphism if and only if f is a weak equivalence. 
If the closed model category 6 is pointed, i.e., initial object - final object, 

then in ?? 2-3 loc. cit., we constructed loop and suspension functors and 
families of fibration and cofibration sequences in the category Ho 6. Such 
extra structure on the homotopy category is part of the homotopy theory of 
C. For the purposes of the present paper we shall define the homotopy theory 
of C to be the category Ho 6 together with the extra structure of loop and 
suspension functors and the families of fibrations and cofibration sequences. 
Then we have the following criterion for an equivalence of homotopy theories 
(? 4, loc. cit.). 

THEOREM 1.4. Let C, and 62 be closed model categories and let 
F 

el C2 
G 

be a pair of adjoint functors (upper arrow always the left adjoint functor) 
such that 

( i ) F carries cofibrations in C, into cofibrations in 62 and G carries 
fibrations in 62 into fibrations in 6C 

(ii) If f: A - B is a weak equivalence in C, and A and B are cofibrant, 
then F(f) is a weak equivalence in 62. 

(iii) If g: X-) Y is a weak equivalence in 62 and X and Y are fibrant, 
then G(g) is a weak equivalence in 62. 

(iv) If A is a cofibrant object in C, and X is a fibrant object in C2, then 
a map f: A GX is a weak equivalence if and only if the corresponding 
map fb: FA X is a weak equivalence. 

Then the derived functors (I, ? 2, 2.3), 
LF 

Ho C, < ' Ho 62 
RG 

are equivalences of categories. Moreover if C, and 62 are pointed, then this 
equivalence preserves the loop and suspension functors and the families of 
fibration and cofibration sequences. 

THEOREM II. On each of the categories '52 (SGP)1, (SCHA)1, (SLA)1, (DGL)1, 

and (DGC)2 it is possible to define closed model category structures in such a 
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way that 
(a) the families of weak equivalences are precisely as defined in Part 

I, ? 2, 

( b ) the adjoint functors in Figure 1, Part I, ? 2, satisfy the conditions 
of 1.4. Therefore the functors of Figure 2 to the right of HoQ 52 are equiv- 
alences of homotopy theories. 

This will be proved in ?? 2-5. The precise definitions of cofibrations, etc. 
for each of the categories will be given as they are treated; let us point out 
here that they are the natural ones. 

It is unfortunate that the category ~T2 of simply-connected spaces does 
not satisfy the axioms for the trivial reason that it is not closed under finite 
limits. However with suitable definitions the remaining axioms hold. This 
will be discussed in ? 6. 

2. Serre theory for simplicial sets 

Let S be a multiplicative system in Z. An abelian group A will be called 
S-divisible, S-torsion, S-torsion-free, or S-uniquely-divisible if the canonical 
map A +SK-'A is surjective, zero, infective, or bijective, respectively. In this 
section we construct a closed model category consisting of simplicial sets 
whose associated homotopy theory will be Serre mod C theory [27] where e is 
the class of S-torsion abelian groups. 

Let 5 be the category of simplicial sets. It is a closed model category 
[HA, Ch. II, ? 3] where the cofibrations are the maps which are infective (in 
each dimension), where the fibrations are the fiber maps in the sense of Kan, 
and where the weak equivalences are the maps which are carried into homo- 
topy equivalences by the geometric realization functor. The same is true for 
the category 30 of pointed simplicial sets. If X is a pointed simplicial set, we 
define its qth homotopy group (set if q = 0) WqX to be the qth homotopy group 
of its geometric realization or equivalently (see [13]) the Kan homotopy group 
7q Y where Y is a Kan complex and there is a weak equivalence X - Y. 
Using the equivalence of the homotopy theories of spaces and simplicial sets 
[19], [13], we have the following result of Serre. 

PROPOSITION 2.1. Let f: X - Y be a map of 1-connected pointed simpli- 
cial sets. The following are equivalent: 

(i ) S-"r*f: S-"r*x - S -11 Y 

( ii ) S-'H*f: S-'H*X S-'H* Y 

(iii) f*: H*(Y, A) - H*(X, A) for all S-uniquely-divisible abelian 
groups A. 
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A map satisfying these conditions will be called an S-equivalence. Let r 
be an integer > 1. A simplica.l set X will be called r-reduced if its (r - l)- 
skeleton is reduced to a point. Let 5. be the full subcategory of 5 consisting 
of the r-reduced simplicial sets. 

Suppose r, S given, and that S = {1} if r = 1. Let S(r, S) be the following 
candidate for a closed model category: S(r, S) is the category 5, and its weak 
equivalences and cofibrations are the S-equivalences and infective maps in Ar. 

The fibrations in S(r, S) are (as they must by 1.1) those maps in 5r with the 
RLP with respect to the injective S-equivalences in Art 

THEOREM 2.2. 5(r, S) is a closed model category. 

PROOF. The axioms CM1, CM2, CM3, and CM4 (ii) are clear. To prove 
CM5 (i), let f: X Y be a map in S and let X Z P. Y be a factoriza- 
tion of f in 5 where i is a cofibration and p is a trivial fibration. Give Z the 
basepoint i(x,) where x. is the basepoint of X, let ErZ be the Eilenberg sub- 
complex of Z consisting of those simplices of Z with their (r - l)-skeleton at 
the basepoint, and let X ) ErZ P Y be the maps induced by i and p. It 
is clear that i' is a cofibration in 5(r, S). It is also easily seen that p' has the 
RLP with respect to A(q) -> dA(q) q > 0, hence p' is a map in 5. which is a 
trivial fibration in 5 and a fortiori in 5(r, S), proving CM5 (i). Notice also 
that if f is a trivial fibration in 5(r, S), then applying CM2 to f = p'i' we find 
that i' is an S-equivalence, whence i' has the LLP with respect to f, f is a 
retract of p', and so f is a trivial fibration in S. Hence f has the RLP with 
respect to cofibrations, which is CM4 (i). We have thus proved CM4 and CM5 (i) 
as well as the following. 

PROPOSITION 2.3. The trivial fibrations in 5(r, S) are precisely those 
maps in 5r which are trivial fibrations in S5. 

The proof of CM5 (ii) is in two steps the first of which is the case where 
S'-1Wrf is surjective. This uses the theory of minimal fibrations [3]. 

PROPOSITION 2.4. The following conditions are equivalent for map f in 

(i ) f is a fibration in 5(r, S) and S-'zwf is surjective 
(ii) f is a fibration in 5 and z* Ker f is S-uniquely-divisible (Ker f 

fiber of f). 

PROOF. (ii) (i). First note that zrf is surjective because of the exact 
homotopy sequence for f and the fact that Kerf is r-reduced. If S = {1}, the 
result is clear, so we may assume r > 2. By the theory of minimal fibrations, 
f may be factored, f = pq, where q is a trivial fibration and p: X o Y is a 
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minimal fibration. p in turn may be factored into its Postnikov system 

*** >~ ~Xn Xn-1 ... - Xr_1 =Y 

X= lim, X, 
where Pin is a minimal fibration with fiber K(A, n), A = wIn Ker p w ,n Ker f. 
Let 

p(A, n): L(A, n) - K(A, n + 1) 

be the fibration which represents the following morphism of functors on 3: 

Cn(X, A) = normalized n-cochains on Xl 
iwith values in A f 

I coboundary 

f normalized n-cocycles on Xl 
Z+'(X, A) Jwith values in A 

Then if Z is 1-connected, we have 

Hn(Z, A) = [Z, K(A, n + 1)] 

(1) ~ fisomorphism classes of minimal 
'fibrations with base Z and fiber K(A, n) 

9 

where the last isomorphism is given by sending a map u to the induced fibra- 
tion u*q(A, n). It is clear that each Xn, is r-reduced hence 1-connected since 
r > 2, and hence pi, is induced from 9(A, n) where A is S-uniquely-divisible. 
To show that f has the RLP with respect to trivial fibrations in S(r, S), it 
suffices to show that p(A, n) does. But if h: U - V is an injective S-equiv- 

alence, h*: C*(V, A) C*(U, A) is a surjective weak equivalence of cochain 
complexes, hence 

C"(V, A) - C (UA) Xzn+l(U,A) Z +'(V, A) 

is surjective, and so p(A, n) has the RLP with respect to h by the definition 
of p. This proves (i). To finish the proof of 2.4 we need 

LEMMA 2.5. If f is a map in Sr such that S-17rrf is surjective, then f = 
pi where i is a trivial cofibration in S(r, S) and where p satisfies (ii) of 2.4. 

PROOF OF LEMMA. It suffices to factor f = pi in 'Sr where i is an S- 

equivalence and p satisfies (ii), for then if we write i = qj using CM5 (i), j is 

a trivial cofibration in S(r, S) by CM2 and so f = (pq)j is the factorization 
required for the lemma. 

Factor f = pi in S where i is a weak equivalence and p: X Y is a mini- 

mal fibration with fiber F. If S = {1} then 7CrP w Irrf is surjective so WrF = 0 

for q < r. As p is minimal, F is r-reduced and so X, which is a twisted carte- 

sian product of Y and F, is r-reduced. Then f = pi is a factorization of f in 
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3r where i is a weak equivalence and p satisfies (ii), and we are done. If S s 
{1}, then r > 2 and we construct by induction a ladder diagram 

- Xn Xn-1 X'_1 

(2) ijn jin-1 jr-1 

- > WnI > Wn-1 * * - Wr-1 

where the first row is the Postnikov system of p, where jn is an S-equivalence, 
and where qn is a minimal fibration with fiber K(S-'17rF, n). For n = r -1, 
we have exact sequences 

.. -* w 7rrX r >rw Y - 7rlF > 0 

0 - 7 >r _X7 r_ rpr-1 > w7 y - 7r_1F- - 0 
7rqpr -1 

WqXr1 - 7Cq Y q > r . 

By hypothesis S'w7rp - S'w7rf is surjective so Pr-, is an S-equivalence and 
we may take Wr- = Y, qr-1 = id,, and jr- = Pr-1. Assuming W., has been 
obtained, let A = wr"F, let u: Xn_- K(A, n + 1) be a classifying map for pn 
(i.e., pn u*9(A, n)), and let p: K(A, n + 1) K(S-1A, n + 1) be induced by 
the coefficient homomorphism A - S-1A. By the induction hypothesis jn-1 is 
an S-equivalence so by (1) with Z = Wnj and A replaced by S-1A, there is a 
map v: Wn_ - K(S'-A, n + 1) such that vj,_1 is homotopic to pu. Let 

qn: Wn Wn-j be the pull-back v*9(S-lA, n). Then 

jn*-jqn = (vjni-)*p(S-lA, n) - (pu)*9(S-lA, n) 

hence there is a map jn of fibrations 

K(A, n) - P. K(S-1A, n) 

in Xn _ Wn 

Pn qn 

Xn- - r-1I Wn_1 

The homotopy exact sequence and five lemma show that jn is an S-equiv- 
alence, which completes the inductive construction of (2). 

Let W= lim Wn,j= lim jn:X-W, and q = lim qr-1 qn: W-Y. 
It is clear that q is a map in 'Sr satisfying (ii); j is a map from the fibration p 
to the fibration q which induces S-equivalences on the base and fibers. Hence 
j is an S-equivalence. Thus f = q(ji) is the factorization of f required to 
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finish the proof of the lemma. 
(i) (ii). If f satisfies (i), write f = pi as in the lemma. Then i has the 

LLP with respect to f by the definition of fibration, so f is a retract of p and 
f satisfies (ii). This completes the proof of Proposition 2.4. 

COROLLARY 2.6. The fibrant objects of S(r, S) are the r-reduced Kan 
cornplexes whose homotopy groups are S-uniquely-divisible. 

LEMMA 2.7. Iff is a map in Sr then f = jg where j is an injective 
fibration in S(r, S) and where S-'wrg is surjective. 

PROOF. We only treat the case r > 2; the case r = 1 requires only minor 

modifications. The Hurewicz theorem asserts that w1.X-k HrX for any r- 
reduced simplicial set, hence 

(3) Hom 35r(X, K(A, r)) - Homab (7rX, A) 

Given a map f: X Y in Sr let f j,(f)f; be the factorization given by the 
diagram 

X 

K(Im S1ierrf, r) 

(4) f j1(f) {P 

\; ~ ~~aI 
Y-K(S-1 rrY, r) 

where the square is Cartesian and where a,,S, and p correspond under the 
bijection (3) to the obvious maps r. Ye S- 'r Y, rrX -Im S-'w7rf and 
Im S -lr Ja- S'-1r Y respectively. For U in Sr we have 

Hom 3r(Us K(A, r)) = Zr(U, A) Hr( U A), 
from which one sees that p has the RLP with respect to any weak equivalence 
in S(r, S) in addition to being injective. Moreover if i1(f) is an isomorphism, 
then we have a diagram 

S -rwY' -Y Im S'-17rf 

1e id 1 
S-7rw Y S 7lr Y 

which shows that S-'rrf is surjective. Now define by transfinite induction 
a factorization f = ja,(f)fa for each ordinal number a by 
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Ja+,(f) = i(f)ji(f) 

fa+i = (fa)' 

jf(f ) = lim-inv< sjrfi ) J() lmiv< :ia~f) if 8 is a limit ordinal 
ffi = lim-invf<i fa 

Clearly jr(f) is an injective fibration in S(r, S) for each a, and since the sub- 
objects of Y form a set, we have jl(fa) is an isomorphism for a sufficiently 
large, so Im S'W7rfa is surjective. This proves the lemma. 

To prove axiom CM5 (ii), let f be a map in Sr, write f = jg as in Lemma 
2.7 and write g = pi as in Lemma 2.5. By Proposition 2.4, p is a fibration and 
so f = (jp)i is a factorization of f as required by CM5 (ii). This completes the 
proof of Theorem 2.2. 

PROPOSITION 2.8. The homotopy category Ho 5(r, S) is equivalent to the 
category whose objects are those r-reduced Kan complexes with S-uniquely- 
divisible homotopy groups and whose morphisms are simplicial homotopy 
classes of simplicial set maps. 

PROOF. Every object of S(r, S) is cofibrant, hence the cofibrant and 
fibrant objects of 5(r, S) are the r-reduced Kan complexes with S-uniquely- 
divisible homotopy groups. If Y is an r-reduced Kan complex, let YA1' be 
the "path-space" complex of Y, let je: Y1 -1 Y e = 0,1, be the endpoint maps, 
and let s: Ye Y-'1* be the map induced by the unique map A(1)A(0). Then 
s is a trivial cofibration and (j,,j,): yA1 Y x Y is a fibration. As y'() is 
an (r - 1)-connected Kan complex, the inclusion Er YA'1) y(1 is a weak 
equivalence. Hence the map s: Y e Er y"1) is a weak equivalence. Clearly 

( joy j,): Er Yull) > Y x Y 
is a fibration in 'Sir so Er Y"l together with s, jo, j, is a path object Y, for Y 
in Sr* It follows that two simplicially homotopic maps from any X to Y in 3r 
are right homotopic. But it is a general fact for a closed model category that 
if f and g are two maps from a cofibrant object X to a fibrant object Y and 
if Y' is a path object for Y, then f and g are left (or right, it makes no dif- 
ference) homotopic if and only if there is an h: X ) Y' with joh = f and j1h = g 
[HA, I, 1, Lemma 5 (ii)]. Consequently [X, Y] = simplicial homotopy classes of 
maps from X to Y if Y is fibrant in 5(r, S). The proposition follows from 1.3 
(b). 

Remark 2.9. The category 5(1, {1}) is an example of a closed model cate- 
gory in which it is not true that the base extension of a weak equivalence by 
a fibration is a weak equivalence. For example, let K be the reduced sim- 
plicial set which is the following quotient of A(2) 
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all vertices 
a/ C \b identified 

a 

and let f: K K(Z, 1) be given by the normalized 1-cocycle f(a) = 1 and 
f(b) = 0. If L is the subcomplex isomorphic to a(1)/&(1) generated by b, then 
the following square is cartesian 

L f 0 

1 A 1P 
K-f K(Z, 1). 

Moreover f is a weak equivalence, p is a fibration, and f' is not a weak 
equivalence. 

Remark 2.10. Proposition 2.4 shows that the fibrations in 5(r, S) which 
are surjective look pretty much like fibrations ought to. On the other hand 
there are fibrations such as the inclusion * ,-* K in 5(1, {1}) of Remark 2.9 
which do not resemble ordinary fibrations at all. The following proposition 
shows that fibrations f: X Y in S(r, S) when Y is a Kan complex are more 
reasonable. 

PROPOSITION 2.11. Let f: X Y be a map in Sr. Then f is a fibration 
in S(r, S) and Y is a Kan complex if and only if f has the following prop- 
erties: 

( i ) r*(Kerf) is S-uniquely-divisible 
( ii) Coker wrf is S-torsion-free 
(iii) f: X ) fX is a fibration in 5 
(iv) Y o K (Coker wrrf, r) is a fibration in 5 with fiber fX. 

PROOF. Suppose f satisfies (i)-(iv). By (iv) Y is a Kan complex. By 2.4, 
(i) and (iii) imply that X fX is a fibration in S(r, S). Let A = Coker wrrf. 
Then there is a diagram 

fX > * -, * 

Y > K(A, r)- K(S -'A, r) 

in which the first square is cartesian by (iv) and the second is cartesian by 
(ii). As the last vertical map is a fibration in 3(r, S), so is fX Y, hence also 
f by composition. 

Suppose f is a fibration in S(r, S) where Y is a Kan complex. Let B be 
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the quotient of Coker wrf by its S-torsion subgroup. As Y is a Kan complex 
the canonical map Y o K(Wr Y,r) is a fibration in 5, and hence so is the 
composite map Y e K(rr Y, r) ) K(B, r) which we will denote by u. Let 
j: Z - Y be the inclusion of the fiber of u, and let g: X ) Z be the unique 
map with jg = f. As f is a fibration in S(r, S) and j is infective, one sees 
easily that g is also a fibration in $(r, S). By definition of B and U, S-'7rg is 
surjective, so by 2.4, g is a fibration in S. Thus g is surjective, so fX = Z = 
Ker u and g = the map f: X -fX, proving (iii). Also wr(Ker f) = wr(Ker g) 
is S-uniquely-divisible, proving (i). Finally wrX maps into WrfX which in turn 
maps onto Ker {7ru: Wrr Y-e A}, showing that A = Coker Wrf and proving (ii) 
as well as (iv). Thus the proof of the proposition is complete. 

When S = {1} there is a simpler characterization of fibrations in Sir with 
a Kan complex for the base. By V(n, k) denote the subcomplex of the standard 
n-simplex a(n) which is the union of all the faces but the kth; recall that a 
map in S is a fibration if and only if it has the RLP with respect to the inclu- 
sion map V(n, k) - A(n) for 0 < k < n > 0. 

Condition (ii) of the following is therefore a reasonable criterion for a 
fibration in 5r; however the Example 2.9 can be used to show that the hypoth- 
esis that Y is a Kan complex is essential. 

PROPOSITION 2.12. Let f: X-) Y be a map in Sr where Y is a Kan com- 
plex. The following conditions are equivalent. 

( i ) f is a fibration in Sr, 
(ii) f has the RLP with respect to the inclusion V(n, k) A(n) for 0 < 

k < n > r, 

(iii) the canonical map X Y x K(rlY,r) K(7rrX, r) is a fibration in S. 

PROOF. (iii) 7 (i). f is the composition 

X 0 BY X K(zrryr) K(7rXy r) 
Pi 

Y.@ 

The first map is a fibration in 'Sr by (iii) using 2.4, while the second is a base 
extension of K(WrrX, r) - K(Wr Y, r) which is also a fibration in .r. Thus f is 
a fibration in Sure 

(i) (ii). If K is a simplicial set, let K(r) be the r-reduced simplicial set 
obtained by shrinking the (r - l)-skeleton of K to a point. Clearly if L e Ob Sir 

Hobm3r (K(r), L) - Hom, (K, L), 

so to prove (ii) we must show that f has the RLP with respect to the map 
V(n, k)(r) A(-n)(r). But for r > n, this map is a weak equivalence since then 
V(n,k) contains the (r - 1)-skeleton of a(n). Thus this map is a trivial co- 
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fibration in Si and f has the RLP with respect to it. 
(ii) = (iii). First note that X is a Kan complex. In effect given 

a: V(n, k) - X, if n < r, then a is the "zero" map hence a extends to a(n) 
trivially; if n > r, then as Y is a Kan complex we may extend fa to ,8: a(n) ) 
X, and then use (ii) to obtain an extension a(n) A X of a. Let sx: X 
K(rrX,r) be the canonical map; to prove (iii) we must construct the dotted 
arrow y in any diagram of the form 

V(n, k) X 

(2.13) i (f ex) 

A(n) (,Z) Y x K(.rYr) K(7rrX, r) 
forO< k<n>O. If n<r, wemaytake O= O. If n>r, wecanby(ii) choose 
y so that vi = a and f-i = S. We assert that Age = z. In effect sx- and z are 
two maps A(n) - K(rrX, r) hence may be identified with r-cocycles of A(n) 
with values in WrX. These cocycles coincide on V(n, k), hence must be equal; 
for n > r + 1 this is trivial since then V(n, k) contains A(n) (r), but even for 
n = r + 1 it is true, because these cocycles coincide on all but one of the faces 
of A(n), and therefore on all by the cocycle formula. 

If n = r, then the map a is necessarily zero, and the map (8, z) is equiv- 
alent to an r-simplex y in Y and an element c of wr.X such that (wrf)(c) is the 
homotopy class of y. As X is a Kan complex c is represented an element x of 
Xr; then fx and y represent the same element of wr Y, so there exists an ele- 
ment ze Yr1 with doz = y, dlz = fx, and djz = * for 1 < j _ r + 1. Let 
d: A(r + 1) ) Y be the map which sends the canonical r + 1 simplex Ur+l 

to z, and let A: V(r + 1, 0) ) X be given by (dla) = x, 7(d a) = * for 
1 < j < r + 1. fA2 e restricted to V(r + 1, 0), so by hypothesis (ii) there is 
a map C: A(r + 1) X compatible with $ and A. Thus letting x' = doC(ar+), 
we have that fx' y and x' represents c. Therefore we obtain the desired 
dotted arrow y in (2.13) by letting -y be the map sending the canonical simplex 
to x'. The proof of the proposition is therefore complete. 

3. Serre theory for simplicial groups 

If G is a simplicial group, let N*G and r*G be the normalized complex 
and homotopy groups of G in the sense of Moore. The category 9 of sim- 
plicial groups is a closed model category, where the weak equivalences are 
the maps inducing isomorphisms on homotopy groups, where the fibrations 
are the maps f for which Njf is surjective for q > 0, and where the cofibra- 
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tions are the maps which are retracts of free simplicial group maps [HA, Ch. 
II, ? 3]. 

Let 
G 

be the pair of adjoint functors defined by Kan [12]. Then G preserves cofibra- 
tions, W preserves fibrations, both G and W preserve weak equivalences, and 
both adjunction morphisms X - WGX, G WH - H are weak equivalences. 
It follows from 1.4 that the homotopy theories of 5, and 9 are equivalent. 

A simplicial group is said to be connected if wrG = 0. A map f: G -SH of 
connected simplicial groups will be called an S-equivalence if S- 'rwf is an iso- 
morphism. Let 9, be the full subcategory of 9 consisting of the r-reduced 
simplicial groups (i.e., reduced to the identity in dimensions <Kr), and let 
9(r, S) r > 0 be the following candidate for a closed model category: the cate- 
gory gr with cofibrations and weak equivalences defined to be those maps in 
O. which are cofibrations and S-equivalences respectively in 9, and with fibra- 
tions defined to be those maps in gr with the RLP with respect to the maps 
which are both cofibrations and weak equivalences in 9(r, S). 

THEOREM 3.1. 9(r, S) is a closed model category. The adjoint func- 
tors 

G 
S(r + 1, S)< _ (r, S) 

establish an equivalence of the associated homotopy theories. 
The proof of the theorem uses the following proposition whose proof is 

deferred to the end of this section. 

PROPOSITION 3.2. Let 

H COG 

{f., {f' 

be a co-cartesian square in 9 where either i or f is a cofibration. If f is a 
weak equivalence, so is f'. If f is an S-equivalence and G is connected, then 
f' is an S-equivalence. 

PROOF OF THE THEOREM. The axioms CM1, CM2, CM3, and CM4 (ii) are 
clear. To prove CM4 (i), first note that if H is a simplicial group then the 
ad junction map GWH H is surjective. This is because of the diagram 
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(WH)q - *Hq_ 

1,// 

(G WH)q-1 

where z and z' are the canonical twisting functions, and the fact that z is 
the projection, (WH)q = H. x ... x Hq01 Hq,-. Any surjective map in 9 
is a fibration, hence G WH- H is a trivial fibration in g. Now given f: G .H 
in 9, let WG > ) X > - WH be a cofibration-trivial fibration factorization 
of Wf in S(r + 1, S). Then u is injective and v is a surjective weak equiv- 
alence, so we obtain a diagram 

GWG cof. GX surj. w. eq. 

w. eq. {i' {suri. w. eq. 
cof. _ - H 

G Z - H 
0 P 

where Z is defined so the first square is co-cartesian. By 3.2, ' is a weak 
equivalence, so p is also. Thus we have shown that f = pi in Or, where i is 
a cofibration and p is a trivial fibration in 9 and a fortiori in 9(r, S), prov- 
ing CM5 (i). But if f is a trivial fibration in 9(r, S), then writing f = pi as 
above we have that i is a trivial cofibration in 9(r, S) by CM2, whence i has 
the LLP with respect to f and f is a retract of p. This proves that f has the 
RLP with respect to the cofibrations in 9(r, S), which is CM4 (i), as well as 
the following 

PROPOSITION 3.3. The trivial fibrations in 9(r, S) are those maps in 9, 
which are surjective weak equivalences. 

It remains to prove CM5 (ii). 

PROPOSITION 3.4. The following assertions are equivalent for a map f 
in Or 

( i ) f is a fibration in 9(r, S), 
(ii) NJf is surjective for q > r, wc* Kerf is S-uniquely-divisible and 

Coker 7ruf is S-torsion-free. 

LEMMA 3.5. Any map f in 9r may be fadtored f = pi where i is a trivial 
cofibration in 9(r, S) and where p satisfies condition (ii) of 3.4. 

PROOF OF 3.5. Let f: H G and suppose first that S -'wrf is surjective. 
Let WH K v WG be a trivial cofibration-fibration factorization of Wf 
in 5(r + 1, S). Then u is an injective S-equivalence and v is a fibration in $ 
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whose fiber has S-uniquely-divisible homotopy groups (2.4). We claim that 
Gv is surjective and r* Ker Gv is S-uniquely-divisible. The surjectivity is 
clear since v is a fibration, and the rest follows by applying the five lemma to 
the map of fibrations 

Kerv v K v 
) WG 

WG v 
WKerGv - WGK - WGWG 

to show that Wrq Ker Gv = rq+?( W Ker Gv) _ Wrq+? Ker v. Thus if we form the 
diagram 

GWH cof GKGv GWG 

{w. eq. {surj. w. eq. 

H - --Z > G 
P 

so that the first square is co-cartesian, ' is a weak equivalence by 3.2, p is sur- 
jective, and r* Ker p 7r* Ker Gv is S-uniquely-divisible. Also i is an S-equiv- 
alence and a cofibration, so f = pi is the factorization required in the lemma. 

In case S-'rwf is not surjective, let A be the subgroup of wrG consisting 
of those elements a for which sa e Im wirf for some s e S and form the diagram 

H 

g 

a' K(A, r) 

(1) f\ 

G 3K(7r~, r) 

where the square is cartesian and a and f8 are the obvious maps. As a is 
surjective and wr Ker a= 0, the same is true for a', so the homotopy exact 

sequences of a and a' yield that w7rG' A, and that S-'rrg is surjective. 
We may then factor g = pi as above. We note that Nqj is an isomorphism 
for q > r and that Nqp is surjective for all q since p is. Thus p' = jp has Nqp' 
surjective for q > r and r* Ker p' = w,* Ker p is S-uniquely-divisible and 
Coker rrP' = Coker 7cri = (WCrG)/A is S-torsion-free. Thus f = p'i is the fac- 
torization of f required in the lemma. 

PROOF OF 3.4. (i) (ii). Let f be a fibration in 9(r, S) and write f = pi 
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as in 3.5. Then i has the LLP with respect to f, so f is a retract of p and so 
f satisfies (ii). 

(ii) (i). Let f = jg be the factorization of f given by diagram (1). Then 
A = Im Wrrf, since Coker rwf is S-torsion-free, so wrg is surjective. Also 
Nqg (Nqj)(Nqg) = Nqf is surjective for q > r, which together with the 
surjectivity of w7lg implies that Ng is surjective. Consequently g is surjec- 
tive with w* Ker g w 7,, Kerf S-uniquely-divisible, so Wg is a surjective fibra- 
tion in $ with w* Ker Wg S-uniquely-divisible, and so Wg is a fibration in 
$(r + 1, S) by 2.4. W carries the Cartesian square in (1) into the first square 
in the diagram 

WG' - K(A, r + 1) > K(S-1A, r + 1) 

WG ) K(7WrG, r + 1) > K(S-'WrG, r + 1) 

and the second square is also Cartesian since (7rG)/A is S-torsion-free. We 
have seen that the map labelled u is a fibration in $(r + 1, S), hence Wj is 
also. Therefore Wf = ( Wj)(Wg) is a fibration in $(r + 1, S), and so f has 
the RLP with respect to any map GK GL where K - L is an injective S- 
equivalence in 5,+,. Let i: H G be a trivial cofibration in 9(r, S) and con- 
sider the diagram 

GWH-H i GWG 

H 4 G \ 

Iq 

G 

where q is a weak equivalence by 3.2, hence q" is a trivial fibration since q' 
is; thus i has the LLP with respect to q" and i is a retract i". But we have 
just seen that i' has the LLP with respect to f, hence so does i" and i. Thus 
f is a fibration in 9(r, S) and the proof of Proposition 3.4 is complete. 

Combining 3.4 and 3.5 we find that 0(r, S) satisfies CM5 (ii) which com- 
pletes the proof that it is a closed model category. That G and W induce an 
equivalence between the homotopy theories of 9(r, S) and 9(r + 1, S) follows 
in a straightforward manner from 1.4. Thus Theorem 3.1 is proved. 

PROPOSITION 3.6. The fibrant objects of 9(r, S) are those r-reduced 

simplicial groups whose homotopy groups are S-uniquely-divisible. The 

This content downloaded from 129.105.215.146 on Tue, 1 Apr 2014 10:46:25 AM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


RATIONAL HOMOTOPY THEORY 249 

cofibrant objects are the r-reduced simplicial groups which are free. 
Ho 9(r, S) is equivalent to the category whose objects are r-reduced 
free simplicial groups with uniquely S-divisible homotopy groups and 
whose morphisms are simplicial homotopy classes of maps of simplicial 
groups. 

PROOF. The first statement results from 3.4, while the second results 
from the fact that any simplicial subgroup of a free simplicial group is free. 
The last statement is proved as 2.8 was. 

The rest of this section is devoted to the proof of 3.2 and some related 
results. 

If G is a simplicial group and M is a simplicial G module, we let Hq(G, M) 
be the (group) homology of G with values in M [HA, Ch. II, ? 6]. 

There are canonical isomorphisms 

Hq(GI M) _Wq(Z 0G P) -r q(Q 0G M) 

where P (resp. Q) is any simplicial G module endowed with a weak equivalence 
P- M (resp. Q - Z) which is flat over ZG in each dimension. Here Z denotes 
the constant simplicial abelian group which is the integers in each dimension 
with trivial G action. If A is a w0,G module and we also denote by A the sim- 
plicial G module which is A in each dimension with G action induced by the w0,G 
action in the obvious way, then we may take Q = Z WG and we have 

Hq(G, A) = Z7q(ZWG?GA) = Hq(WG, A), 

where the last group is the homology of WG with values in the local coefficient 
system coming from A. 

PROPOSITION 3.7. A map f: H- G of simplicial groups is a weak equiv- 
alence if and only if r0f: w0oH - wG is an isomorphism and 

H*(f, A): H*(H, A) -> H*(G, A) 

is an isomorphism for all wrG modules A (in fact A = Zw0,G is all that is 
required). 

PROOF. f is a weak equivalence if and only if Wf is a weak equivalence 
which by [HA, Ch. II, ? 3, Prop. 4 (vi)] is true if and only if r1Wf w 7rf is an 
isomorphism and H *( Wf, A) is an isomorphism for all local coefficient systems 
A on WG. But there are universal coefficient spectral sequences 

E2 = ExtzxOG (Hq(WG, ZroG), A) HPq( WG, A) 
Epq = TorzoG (Hq(WG, ZwroG), A) Hp+q(WG, A) 

which permit us to conclude H*(Wf, A) is an isomorphism for all A if and 
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only if H*(Wf, A) is an isomorphism for all A, in fact only for A = Zw0G, 
q.e.d. 

LEMMA 3.8. Let H be a group and let G be the free product of H and 
the free group with generators ai, i e I. Let IH and IG be the augmentation 
ideals of the group rings ZH and ZG. Then the map 

@IZG E ZG 0ZH IH- IG 
(ac) + a x E- Eai(( i -1) + ax 

is an isomorphism of left ZG modules. 
PROOF. Recall that if M is a G module, then a derivation D: G M is a 

set map such that D(g1g2) = Dg1 + g1Dg2, and that such derivations correspond 
in one-to-one fashion to left ZG module homomorphisms 0: IG - M via the 
formula Dg = 0(g - 1). Also such derivations D correspond one-to-one to 
homomorphisms s: G - M x , G such that pr2is = id via the formula sg = 
(Dg, g), where M x, G is the semi-direct product. Using the latter interpre- 
tation and the hypothesis on G, we see that derivations D correspond to 
derivations D': H M and elements zi e Mi e I via the formula D' = D I H, 
zi = Dai. Hence 

HomG (IG, M) Der (G, M) 
MI x HomH(IH, M) 
HomG (@I ZG & ZG0(Z IH, M) 

which proves the lemma. 
The lemma implies that IG/ZG.IH is a free left ZG module with basis 

a- 1. Changing ai to a-' and applying the canonical anti-automorphism of 
ZG we find 

COROLLARY 3.9. If H and G are as in 3.8, then IG/IH.ZG is a free right 
ZG module with basis A -1, i e I. 

PROOF OF 3.2. The case where f is both a cofibration and weak equiv- 
alence follows from the fact that 9 is a closed model category (1.1). The hard 
part is to show that the cobase extension f' of a weak equivalence f by a 
cofibration i is again a weak equivalence. We use the criterion 3.7. The 
functor w0: 9 ) (groups) is right exact since it is left adjoint to the constant 
simplicial group functor. Thus wxf' is the cobase extension of wxf, and so wjf' 
is an isomorphism. 

To show that f' induces an isomorphism on homology with twisted co- 
efficients, let A be a w0,G = w0,G' module and choose a free simplicial G (resp. G') 
module P (resp. P') with a trivial fibration Pa A (resp. P' A). Then P' 
A is trivial fibration of G modules so lifting in 
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P A 

we obtain a map P P' over A which is a di-homomorphism for f': G G'. 
Tensoring 

0 - IG/IH.ZG - ZG/IH.ZG - Z- > 0 

with P and doing similarly with primes, we obtain a map of exact sequences 

0- N?G P - (G/IH.ZG) 0G P - Z 0G P - 0 

(2) {U1 {U2 {U3 

o - N' 0G' P (ZG'/IH' ZG') 0G' P Z 0$:G' P 0 0 

where N = IG/IH.ZG and N' is similar. By definition 

w*(U3) = H*(f ', A): H*(G, A) -> H*(G', A) . 

U2 may be rewritten Z ?H P Z (D, P' which, since P is also a free H module 
resolution of A, shows that 

7 * (U2) = H*(f, A): H*(H, A) -> H*(H', A) . 

We now show that u1 is a weak equivalence. If i happens to be a free map 
of simplicial groups, then applying 3.8 dimension-wise, we see that N = 

IG/IH.ZG is a free simplicial right ZG module. In general i is a retract of a 
free map so in any case N is a (dimension-wise) flat right simplicial ZG 
module. But tensoring with a flat simplicial module preserves weak equiva- 
lences (this follows from [HA, Ch. II, ? 6, Th. 6 (a) + (b)]), hence N 0G P 

N ?G A is a weak equivalence. A similar assertion holds with primes so u, is 
weakly equivalent to the map N0G A - N' 0G,A. But this map is an iso- 
morphism. In effect we need only look at a fixed dimension in which case we 
may assume G (resp. G') is the free product of H (resp. H') and the free group 
with generators aj, whence by 3.9 N (resp. N') is the free right ZG (resp. 
ZG') module with basis qr - 1. Thus u, is a weak equivalence. By assumption 
f is a weak equivalence, so 1U2 is a weak equivalence, and so by (2) and the 
five lemma, U3 is a weak equivalence. Therefore r*'U3 = H*(f ', A) is an iso- 
morphism, which completes the proof that f ' is a weak equivalence. 

Before proving the part of 3.2 about S-equivalence we give a consequence 
of what has been proved so far. If G is a simplicial group, we let H*(G) = 

H*(G, Z). 

PROPOSITION 3.10. If i: H-> G is a cofibration with cofiber G//H, then 
there is an exact sequence 
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*r *q((GliH)ab) > Hq(H) Hq(G) - Wql((G//H)ab) ... 

which is natural in i. 
PROOF. This long exact sequence is the long exact homotopy sequence 

of the first row of (2) when A = Z, in which case N0G, P is weakly equivalent 
to IG/IH ZG 0G Z - (G//H)ab. The last isomorphism comes from the fact that 
both sides represent the functors "derivations of G vanishing on H with 
values in a G module with trivial action". The naturality of the sequence fol- 
lows from the fact that the choices of P, P', and the map P P' are unique 
up to simplicial homotopy. 

COROLLARY 3.11. If G is a free simplicial group 

Hq (G) = q= 
( q)Jl(Gab) q > O 

COROLLARY 3.12. If i: He G is a cofibration with cofiber G//H, then 
there is an exact sequence 

*. Hq(H) * Hq(G) RJ Hq(G//H) + Hq-i(H)'* 

natural in i. 
To prove a map f of connected groups is an S-equivalence, it suffices to 

show that S-'H*(f) is an isomorphism by virtue of the formulas WqG = 
Wcq+l(WG), H*(G) = H*(WG), and 2.1. The rest of 3.2 results then from ap- 
plying the exact sequences of 3.10 to i and i', and using the fact i and i' have 
the same cofiber. 

Remark 3.13. 3.11 is a formula of Kan and immediately implies 3.12 in 
the case that H is free. If we define H*(G, H) to be the relative homology 
H*(WG, WH) when H is a sub-simplicial group of G, then 3.12 implies (after 
analyzing the nature of the maps) that 

Hq(G, H) > Hq(G//H, {e}) 

when H > G is a cofibration. Thus we have proved the excision axiom for 
homology of simplicial groups. 

4. (s(&), as a closed model category 

Let CT be a category closed under finite limits and having sufficiently many 
projective objects (Appendix A, Introduction). The natural way of trying to 
define the structure of a closed model category on (sGT) is to define a map 
f: X o Y to be a fibration (resp. weak equivalence), if for every projective 
object P of (i, the induced map of simplicial sets Hom (P, X) - Hom (P, Y) is 
a fibration (resp. weak equivalence) in S. In [HA, Ch. II, ? 4, Th. 4] it was 
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shown that in this way (sd?) became a closed model category provided at least 
one of the following conditions was satisfied. 

( * ) For every projective object P of d? and X e Ob (sa) Hom (P, X) is a 
Kan complex. (This holds if every object of d is an effective quotient of a 
cogroup object by [HA, II, 4, Prop. 1]. 

(**) (i is closed under arbitrary limits and has a set of small projective 
generators. 

Suppose that (1 is a pointed category, and let (s&),. be the category of r- 
reduced simplicial objects over A, that is, the full subcategory of (s(G) consist- 
ing of simplicial objects isomorphic to the initial-final object in dimensions 
<r. We are going to prove (s(G), is a closed model category under hypothesis 
(*). We do not know if this remains true with hypothesis (**) and in fact to 
prove it when (i is the category of pointed sets (? 2), we used special features 
of simplicial sets (cohomology and Eilenberg-MacLane complexes). 

THEOREM 4.1. Let CT be a category closed under finite limits and having 
sufficiently many projective objects. Assume condition (*) holds, and call a 
map f: X - Y in (sa)r a fibration (resp. weak equivalence) if and only if 
for any projective object P of A, the induced map Hom (P, X) - Hom (P, Y) 
is a fibration (resp. weak equivalence) in 3r. Also define f to be a cofibration 
if and only if it has the LLP with respect to all trivial fibrations. Then 
(s&),r is a closed model category. 

PROOF. The axioms CM1, 2,3, and 4(i) are trivial. 
CM5 (i). By 2.3 a map in (sG.)r is a trivial fibration in (s),)r if and only if 

it is a trivial fibration in (se). Consider the method used in [HA, II, 4, Prop. 31 
to factor f: X - Y into a cofibration i: X - Y followed by a trivial fibration 
p: Z-o Y in (saf). i and p were obtained as the inductive limit of maps X-) Zn 

andZ - Y, where Z 'is obtained by attaching a "projective n-cell" P 0( A(n) 
to Zn-' via a map Pa 0& A(n) where Pa is some projective object of aC, and 
where Hom (Q, ZE) - Hom (Q, Y) has the RLP with respect to A(k) -+ A(k) 
for k ? n and any projective object Q. If Y is r-reduced, then we may take 
Pan= * for n < r in which case Zn, and hence Z is r-reduced. i is a cofibra- 
tion in (saf), a fortior i a cofibration in (Sa)C. and p is a trivial fibration in (s)3)r, 
proving CM5 (i). Note that if f is a cofibration in (Sa)r, then f has the LLP 

with respect to p; hence f is a retract of i and is therefore a cofibration in 
(sa). Thus we have proved 

PROPOSITION 4.2. A map in (saf)r is a cofibration, trivial jibration, or 
weak equivalence if and only if it is so as a map in (saf). 

CM5 (ii). If Z is a simplicial object over CT, define its rth "Eilenberg 
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subcomplex" by (E7Z), = nf Ker {9*: Zn -+ Zr-}, where p runs over all injec- 
tive monotone maps from [r - 11 to [nJ. We then have the formulas 

Hom(8,U) (Y, ErZ) - Hom(8a) (Y, Z) 
(4.3) Hom (P, E7Z) - Er Hom (P, Z) 

for any Ye Ob(s(G), and projective object P of CC. Given a map f: X Y in 
(s(3)7, factor f into a trivial cofibration i': X - Z followed by a fibration 
p': Z-) Y in (saf), and let i: X ErZ, p: ErZ )X be the induced maps. Using 
the above formulas it is easy to see that Hom (P, p) has the RLP for trivial 
cofibrations in Sir; hence p is a fibration in (sf)r. For a pointed (r - 1)-con- 
nected Kan complex K, the map ErK -g K is a weak equivalence. By hypoth- 
esis (*) Hom (P, Z) is a Kan complex, so the map E7Z Z is a weak 
equivalence. Therefore i is a weak equivalence so if we write i = qj using 
CM5 (i), in (sa)r, we have f = (pq)j where j is a trivial cofibration and pq is 
a fibration in (sa)r, proving CM5 (ii). 

CM4 (ii). We have to show that a trivial cofibration i: A B in (scf), has 
the LLP with respect to a fibration p: X - Y. By 4.2, i is a trivial cofibration 
in (saf) and by hypothesis (*) every object of (saf) is fibrant. By [HA, II, 2.5] 
i is a strong deformation retract map, i.e., there exist maps r: B - A and 
h: B ) B1B1) such that ri = id,, jlh = idB, joh = ir, and hi = ile()s. Here BA(1) is 
the path object of B [HA, II, ? 1] and s: B - B('l) (resp. j8: B'l) - B e = 0, 1) 
is induced by the unique map A(1) - A(0) (resp. the eth vertex map A(O) 
A(1)). Given a: A - X and A: B Y such that pa 1 Si consider the diagram 
of solid arrows 

A as E(X(1) 

,(4.4) 
, (jo, PtA() 

B ---*X XyEr(JY(l)) 

Assuming for the moment that the right hand vertical arrow is a trivial 
fibration, it follows that the dotted arrow k exists; setting a = j1k: B - X we 
have that pyr = R and yi =a, which proves CM4 (ii). To show that (jo, p"(11) 
is a trivial fibration, we may apply the functor Hom (P, *) and use formulas 
4.3 to reduce to the case of 3,.. We must therefore show that if p: X - Y is 
a fibration in 3,., then the arrow (jo, pA(l)) in 4.4 has the RLP with respect to 

A(n) ) \A(n) for all n > 0. For n < r this is trivial, and for n > r A(n)" con- 

tains the (r - l)-skeleton of A(n), so it suffices to show that 
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U09P pA(1) ) XA(1) > X X y y"(l) 

has the RLP with respect to A(n) A(n) for n > r. This is equivalent to 
showing that p has the RLP with respect to the injection 

A(n) x A(1) V A(n) X {O, z(n) x {O} > A(n) x A(1) 

for n > r. Denoting this injection by L K, as p is a fibration in 5,, it suf- 
fices to show that L/L(,r-1) K/K"') is a trivial cofibration. But this is clear 
since for n > r L contains the (r - 1)-skeleton K7r-1' of K. The proof of 
Theorem 4.1 is now complete. 

COROLLARY 4.5. The homotopy category Ho (5d)r is equivalent to the 
category whose objects are the r-reduced cofibrant simplicial objects over d 

and whose morphisms are simplicial homotopy classes of maps in (sG). 

The proof is the same as that of 2.8. 

Remark 4.6. If Cd is closed under arbitrary limits and has a small projective 
generator U, then in the construction of the factorization f = pi for CM5 (i) 
we could have taken Pn to be a direct sum of copies of U. Thus the map 
i: X Z is free [141 in the sense that it is the limit of maps X Zn where 
Zr-1 X and Z" is obtained by "attaching n-cells", i.e., copies of U? A(n), 
to Zni- via maps U? A(n)- Z"'-. Thus every cofibration in (SCf)r is a retract 
of a free map with all cells of dimension ? r and conversely. 

By Appendix A, 2.24, the category (CHA) is closed under limits and has a 
projective generator which is also a co-Lie algebra object. Therefore we may 
apply 4.1 to deduce 

THEOREM 4.7. The category (scHA)r of r-reduced simplicial complete 

Hopf algebras is a closed model category where a map is a jibration (resp. 
weak equivalence) if and only if Pf is a fibration (resp. weak equivalence) 
of simplicial vector spaces and where a map is a cofibration if and only if 
it is a retract of a free map. The homotopy category Ho (SCHA), is equiva- 
lent to the category whose objects are free simplicial CHA'S with all cells of 
dimension ?r and whose maps are simplicial homotopy classes of maps in 
(SCHA). 

We leave to the reader to formulate a similar theorem for (sLA)r. 

THEOREM 4.8. The adjoint functors Q and 9 establish an equivalence 
of the homotopy theory of (SCHA), with the rational homotopy theory of(sGp),. 
U and 9P establish an equivalence of the homotopy theories of (SCHA), and 
(SLA),. 

PROOF. It is only a matter of checking the hypotheses of 1.4. One shows 
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that 9 preserves fibrations using 3.4. The other hypotheses follows from 
Theorems 3.4 and 3.5 of Part I. 

3. (DGL), and (DGC)7_ 1 as closed model categories 

Let r be an integer >1. 

THEOREM 5.1. Define a map in (DGL), to be a weak equivalence if it 
induces isomorphisms on homology, a fibration if it is surjective in degrees 
> r, and a cofibration if it has the LLP with respect to all trivial fibrations. 
Then (DGL)r is a closed model category. 

THEOREM 5.2. Define a map in (DGC)r71 to be a weak equivalence if it 
induces isomorphisms on homology, a cofibration if it is injective, and a 
fibration if it has the RLP with respect to all trivial cofibrations. Then 
(DGC)r?1 is a closed model category. 

THEOREM 5.3. The adjoint functors ~2 and C establish an equivalence of 
the homotopy theories of (DGL)r and (DGC)r +1 

THEOREM 5.4. The adjoint functors N* and N establish an equivalence- 
of the homotopy theories of (SLA), and (DGL)r. 

PROOF OF 5.1. The axioms CM1, 2, 3, and 4 (i) are clear. To prove CM5, let 
S(q) (resp. D(q)) be the DG vector space having a basis over Q consisting of an 
element aq of degree q with daq = 0 (resp. elements Uq-1, zq of degrees q - 1 and 
q with d-q = aq__, daq1 -0). S(q) and D(q) play the role of the q-sphere and 
q-disk; let i: S(q-1) -D(q) be the obvious inclusion. Let us call a mapf: n--n 
in (DGL) free if as graded Lie algebras - is isomorphic to the direct sum of m 
and a free Lie algebra L(V) in such a way that f is isomorphic to the inclu- 
sion. Defining the n-skeleton sfta of f to be the graded sub-Lie-algebra of n 

generated by f(ixt) and the elements of V of degree < n, one sees that UIn) is 
obtained from itl ` by attaching n-cells, that is copies of LD(n) via attach- 
ing maps LS(n - 1) -t(n-). As LS(n - 1) - LD(n) n > r and 0 - LS(r) are 

clearly cofibrations in (DGL)r, it follows that any free map in (DGL), is a co- 
fibration. Now by imitating the procedure of attaching cells to kill homotopy 
groups, one may factor any map f in (DGL)r into f = pi, where i is free and p 
is a trivial fibration. Therefore we have proved CM5 (i). Moreover if f is 
already a cofibration, then f has the LLP with respect to p, so f is a retract 
of i and we have proved the following. 

PROPOSITION 5.5. A map in (DGL)r is a cofibration if and only if it is a 
retract of a free map. 

Remark. One may show that a sub-graded-Lie algebra of a free reduced 
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graded Lie algebra is again free. It follows that the cofibrations in (DGL)r are 
the free maps, but we shall not need this. 

To prove CM5 (ii), note that given f: m ---, we may let V be a huge direct 
sum of copies of D(n) for various n > er and obtain a map p: In \v L(V) X1, 
which is surjective in degrees > r and hence is a fibration. If i: t -ont V L(V) 
is the injection of a factor, then i is free and also i is a weak equivalence, 
since 

H(ml\ V L(V)) -- H(uii) V H(LV) -- H(iu) V L(HV) - Hin . 

Thus f = pi is the factorization required for CM5 (ii). Finally note that 0 
D(n) for n > r has the LLP with respect to fibrations and hence so does i. If 
f is a trivial cofibration, then p a is trivial fibration, so f has the LLP with 
respect to p; hence f is a retract of i and f has the LLP with respect to fibra- 
tions. This proves CM4 (ii) and completes the proof of 5.1. 

LEMMA 5.6. Let p: In ---E it be a sumjective map in (DGL), and let 

pr2 ( 

be a cartesian square in (DGC)r+,. Then if i is a weak equivalence, so is pr2. 

PROOF. Let a be the kernel of p, and let q: in a be a graded vector space 
retraction of In onto a. Then recalling (B, ? 6) that as coalgebras Cg = S(Zg), 
we see that p and q induce an isomorphism 0: 6(m) > C(n) 03 C(a). This 
shows that B, 7.1 can be applied to the maps Ca )-Cm--Cn to give a spectral 
sequence of coalgebras 

Epq1 = HC(u) 0 HqC(Q) Hp+qC(nit) . 

Recalling that 0& is the direct product in the category of coalgebras, the 
isomorphism 0 induces an isomorphism Z - Y (0 (a); so there is also by 
B, 7.1, a spectral sequence 

Epq = Hp Y ?& HqC(a) - Hp q(Z) 

as well as a map of this spectral sequence to the other one induced by e and 
pr2. As the map is an isomorphism on E2, it is also an isomorphism on the 
abutment, so pr2 is a weak equivalence and the lemma is proved. 

PROOF OF 5.2. The axioms CM1, 2, 3, and 4 (ii) are clear. 
CM5 (i). Given a map ff: X-* Y in (DGc),+1 use CM5 (i) for (DGL), to write 

2f = pi, where i: SX nm is a cofibration (hence injective by 5.5) and where 
p: Mn 2 Y is a trivial fibration hence surjective. Letting i= Y and e = the 
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adjunction map Y- Sw? Y, form the square of Lemma 5.6, and let j: X --> Z be 
be the unique map with pr1j -f and pr2j = the map X --, (Cti adjoint to i. 
As r > 1, It and Cp are weak equivalences (B, 7.5) and by the lemma so is pr2. 
Thus pr, is a weak equivalence. As S? carries cofibrations into cofibrations it 
follows that C(p) hence also pr, has the RLP with respect to all cofibrations; 
in particular pr, is a fibration in (DGC). L. ] is injective because pr2j is the 
composition of the injections X-+ CS'2X Cm; thus j is a cofibration in (DGC)r-, . 
Therefore f (pr1)j is the factorization required for CM5 (i). Moreover if f 
is already a trivial fibration, then j is a trivial cofibration by CM2; thus j has 
LLP with respect to f, so f is a retract of pr, and therefore f has the RLP with 
respect to all cofibrations. This proves CM4 (i). 

CM5 (ii). As in the proof of this axiom for jr we first consider the case 
where f: X Y is such that Hr l4 f - HA.f is surjective. Then He. Vf is surjec- 
tive so if we use CM5 (ii) for (DGL)r to write cf pi, where i is a trivial 
cofibration and p is a fibration, then p is surjective. Defining j: X-> Z, pr,: Zoo 
Y and pr2, as above, we have that pr1 is a fibration in (DGC)., . By the lemma 
pro is a weak equivalence; as i: fVX m is a weak equivalence so is pr2]: X 
Om. Thereforej is a trivial cofibration and f=(pr-)j is the factorization 
required for CM5 (ii). 

In case H, J is not surjective, we construct a factorization f- g, where 
j is an injective fibration and Hr.- 1g is surjective, by following the proof of 
2.7. If V is a vector space, let V[rj be the abelian DG Lie algebra having V 
in dimension r and zero elsewhere, and let K(V, r + 1) = C V(r). Define the 
factorization f = j](f)f1 by the diagram 

x \ 3 

If\ y1 + K(Im H,2f, r + 1) 

l Ijl(f) +1) 

a 
Y K(HrA?"Y,r+1) 

where the square is cartesian, where a is ad joint to the canonical map 'V Y 
Hr(tS Y)[rf, where , is adjoint to the map 

SX > ~HXVX)h? X l (Im HrVf )Jr' I 

and where p is the inclusion. It is clear that p is a fibration in (DGC)r i, 

hence so is ]j(f). Repeating this process as in 2.7 one obtains the required 
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factorization f - ig; as g may be factored according to the first part of the 
proof, we have proved CM5 (ii) and the proof of Theorem 5.2 is complete. 

Theorems 5.3 and 5.4 are now proved by verifying the hypotheses of 1.4 
using results of Appendix B, 4.4 and 4.6. The proof of Theorem II is now 
complete. 

6. Applications 

In this section we connect the preceding homotopy theories of algebraic 
objects with the rational homotopy theory of 1-connected pointed topological 
spaces, and use the algebraic models to derive results about rational homotopy 
theory. 

It is unfortunate that the category {f, of (r - 1)-connected topological 
spaces is not closed under finite limits, for this prevents us from making 'Tr 
into a closed model category for trivial reasons. However if r, S are as in ? 2, 
let us make the natural definitions and define T(r, S) to be the category Tr 
with the following three distinguished classes of maps. 

Cojibrations. These are maps f: X - Y which are cofibrations as maps 
of topological spaces in the sense of [HA, II, ? 3] i.e., f is a retract of a se- 
quential composition of cw maps (see proof of Lemma 3, loc. cit.). 

Weak equivalences. These are the S-equivalences, i.e., maps inducing 
isomorphisms for the functor S-'w*. 

Fibrations. These are Serre fibrations such that the fiber has S-uniquely- 
divisible homotopy groups. 

THEOREM 6.1. (a) With these definitions Sf(r, S) satisfies all of the 
axioms for a closed model category except CM1. 

(b) If Ho {-(r, S) is the localization of 2(r, S) with respect to the family 
of weak equivalences, then Ho T(r, S) is equivalent to the category whose 
objects are pointed (r - 1)-connected cw complexes with S-uniquely-divisible 
homotopy groups, and whose morphisms are homotopy classes of basepoint- 
preserving maps. 

(c) It is possible to define suspension and loop functors and families 
of fibration and cofibration sequences on the category Ho Sf(r, S) by using the 
fibrations and cofibrations in f(r, S) just as in [HA, I, ? 2-3]. 

(d) The functos j. *and Er Sing induce an equivalence of the homotopy 
theory of f(r, S) with the homotopy theory of e(r, S) as defined in ? 2. 

PROOF. The proof of (a) is formally similar to that of 3.1, using the 
functors j . I and E,. Sing instead of G and W. The only point is to show the 
analogue of 3.2, that the cobase extension of an S-equivalence by a cofibra- 
tion is again an S-equivalence. But any cofibration is a retract of a sequential 
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composition of cw maps. One therefore is reduced to the case where the co- 
fibration is the map obtained by attaching a single cell, in which case the proof 
is achieved by using the long exact sequence for homology and the five lemma. 

For (b), observe that since the adjunction maps for the functors I * I and 

E, Sing are always weak equivalences, they induce an equivalence of the 
categories Ho 'f (r, S) and Ho 5(r, S), and that the latter is by 2.8 and Milnor's 
theorem [19] equivalent to the category of cw complexes with S-uniquely- 

divisible homotopy groups and homotopy classes of maps. (c) is a matter of 
checking that the axiom CM1 enters into the construction of the suspension 
and loop functors and fibrations and cofibration sequences only in allowing one 
to form the fiber, pull-back, etc. of various maps. For the suspension functor 
and cofibration sequences there is no problem because one has only to work 

with cofibrant objects which have non-degenerate basepoints. For fibrations 
the problem comes from the fact that the fiber of a map in Tr is the (r - 1)- 
connected covering of the real fiber which need not exist. However one may 
always replace a fibration of spaces by a weakly equivalent map which is the 
geometric realization of a fibration f of simplicial sets [22]. If F is the fiber 
of f, then j ErF I can be used for the fiber of I f j in (Q,, and one may check 
that the construction of the loop functor and the family of fibration sequences 
on Ho f(r, S) still goes through. Finally (d) is proved by the same method as 
1.4 (see proof of [HA, I, ? 4, Th. 3]), using the fact that E, Sing preserves fi- 

brations and . preserves cofibrations, q.e.d. 
Taking r = 2 and S Z - {}, and combining the above with Theorem II we 

have 

COROLLARY 6.2. The adjoint functors of Figure 1, Part I, ? 2, induce 
an equivalence of rational homotopy theory, defined to be the homotopy theory 
of T(2, Z - {0}) constructed above, with the homotopy theories of reduced DG 
Lie algebras and 2-reduced DG coalgebras over Q. 

Remark 6.3. We claim now to have solved the problem raised by Thom 
in [29]. Suppose that F-g E m B is a fibration of 1-connected pointed spaces. 
The problem after translating from cohomology into homology, is to associate 
DG cocommutative coalgebras to F, E, and B in such a way that the Hirsch 
method for calculating the differentials in the homology spectral sequence 
can be applied. But this fibration defines a fibration sequence in rational 
homotopy theory which is equivalent by 6.2 to that of (DGL)1; hence this fibra- 
tion sequence corresponds to one in Ho (DGL)1 coming from an exact sequence 
of reduced DG Lie algebras 

This content downloaded from 129.105.215.146 on Tue, 1 Apr 2014 10:46:25 AM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


RATIONAL HOMOTOPY THEORY 261 

However Cf, Ce, Cb correspond under the equivalence of Theorem I to F, E, and 
B respectively, and Hirsch's methods apply to the homology spectral sequence 
of the maps Cf Ce Cb (in fact this is how the spectral sequence B, 7.1 is 
derived). 

Remark 6.4. We indicate briefly how 6.2 may be used to give an alter- 
native proof of the results of Part I, ?? 5-6, namely that the equivalences X 

and (S of Theorem I are compatible with the homotopy Lie algebra and the 
homology coalgebra functor. The first thing to show is that if V is a vector 
space and V[n] denotes the DG vector space which is V in dimension n and 
zero elsewhere, then there are canonical isomorphisms 

[L V [ni, ] Hom (V, Hug) g e Ob (DGL)1 

[C, CV[n - 1]] Hom (H.C, V) C e Ob (DGc)2 

where Hom is maps of vector spaces, and where [, ] denotes homotopy classes 
of maps as defined in ? 1, which by 1.3 is the same as maps in the homotopy 
category. Next one observes that there is an isomorphism of functors 

On: 7wn(X) 0 Q - He.-(XX) 

from '`)2 to vector spaces given by the chain of isomorphisms 

wCn(X) 0 Q 17X(K) 0 Q w 7n-1(GK) 0 Q 
wU,1(0QGK) - 7un-w1(QGK) w 7,jNsMPQGK) , 

where we have put K = E2 Sing X. 

The work of Part I, ? 5, went into showing that the collection 0 = {O} 
gave a Lie algebra isomorphism. However to prove the existence of a func- 
torial Lie algebra isomorphism of wr*(X) 0& Q with H*(XX), it is possible to 
use Hilton's theorem on homotopy operations [10] to show that for some 
choice of non-zero rational numbers cn the collection 

Clo0n: 7wC(X) 0 Q _ Hn-1(XX) 

is a Lie algebra isomorphism. 
When the Lie structure is taken care of, one may take care of the co- 

algebra structure as follows. First one uses the isomorphism wCn(X) (0 Q - 

Hn-1(XX) to establish an isomorphism in Ho (DGL)1 of XK( V, n) with V[n - 1], 
where K(V, n) is the appropriate Eilenberg-MacLane space, and where 
V[n - 1] is regarded as an abelian DG Lie algebra. It follows that there are 
canonical isomorphisms 
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H"(X, V) _IX, K(V, n)] [XX, V[n - 1]] 
[&xX, LVV[n - 1]] - Hom (HR6?xX), V), 

and hence a canonical isomorphism H.(XX, Q) - H.(CxX) of vector spaces. 
To prove this isomorphism is compatible with comultiplication, it suffices to 
show that Cx carries the cup product map fC: K(Q, p) x K(Q, q) - K(Q, p + q} 
into the corresponding map d': CQ[p - 1] x CQ[q - 1] - CQ[p + q - 1] deduced 
from the comultiplication on coalgebras. The point is that fC can be charac- 
terized in terms of the Whitehead product using a Toda bracket. In effect 
if a1p: S P- K(Q, p) is the canonical map giving the orientation of S P, if ,8 is 
the composition of the inclusion Sp V Sq -. Sp x Sq with ap, x aq, and if 

tip, iq]: Sp+q-l - Sp V Sq is the Whitehead product of the inclusions i1p: SP 0 

Sp V Sq and iq:SqSp V Sq, then the Toda bracket <[i ] iS], 3, fi> - apq with 
zero indeterminacy. A similar characterization holds for te' in terms of the 
bracket operation for DG Lie algebras. 6.2 implies that Cx will preserve Toda 
brackets since they are determined by the fibration and cofibration sequences 
[HA, I, ? 3]. Since X carries Whitehead product into Lie product, it follows 
that CX carries fC into _e'. 

Remark 6.5. The possibility of viewing rational homotopy theory in 
terms of both DG Lie algebras and DG coalgebras allows one to give a per- 
fectly Eckmann-Hilton dual treatment for rational homotopy theory. We 
illustrate this by means of four spectral sequences. Here X and Y are 1-con- 
nected pointed spaces, wrQ(f2X) = wr(QfX) 0& Q with Lie algebra structure 
given by Samelson product, and H*X = H*(X, Q). 

6.6 (Serre). If p: X-o Y is a Jibration with fiber F and 7w2p is surjec- 
tive, then there is a coalgebra spectral sequence 

E2 = H* Y HF=F = H*X . 

6.7. If i: Y X is a cofibration, then there is a Lie algebra spectral 
sequence 

E' = wQ(QX) V w?Q(s[(X/Y)) rQ(S2x) . 

6.8 (Curtis 171). There is a Lie algebra spectral sequence 

El = L(nf2H*X) 7CQ(f2X) . 

6.9. There is a coalgebra spectral sequence 

E 6 S(trQ(X)) a H*X s 

PROOFS. 6.6. Realize the fibration as an exact sequence of DG Lie 
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algebras, apply C, and use B, 7.1 (see 6.3). 
6.8. Take the spectral sequence associated to the lower central series 

filtration of XX. 
6.9. Take the spectral sequence associated to the primitive filtration of 

CxX. 

6.7. We may realize i as a cofibration i: g' g of free reduced DG Lie 
algebras. If g" is the cofibre of i, then as graded Lie algebras we may iden- 
tify g with the direct sum g' V g". Define a filtration of g by letting Fpg be 
the p-skeleton of g1 with respect to g', that is the subalgebra generated by g' 
and gi for i ? p. Then this filtration gives rise to a spectral sequence of Lie 
algebras. Note that 

E0 - (D Fpg/F.1g - g" V g' 

To calculate the differentials, let d, d', d" be the differentials of g, g', and g" 
respectively and identify g with g" V g'. Then d is uniquely determined by 
its restriction to g', which is d', and its restriction to g" which is a derivation 
d: - g"f V g' such that (d - d")g'f c Fp-2g. From this one calculates that d0 
is 0 on g" and d' on g' so that El g" V Hg', and that d' is d" on g" and 0 on 
Hg' so that 

2- Hg" V Hg' w Q(fl(X/Y)) V wrQ(fX). 

This proves 6.7. 

Remark 6.10. The spectral sequence 6.7 seems to be related to the one 
derived by Artin and Mazur in [2]. Note also that when X Y V Z then we 
have 

zQ(12(YV C)) 7Q(f2Y) V wr(f2C) 
showing that Hilton-Milnor formula holds for rational homotopy groups even 
if Y and C are not suspensions. 

The spectral sequence 6.9 may be rewritten 

E= H*(K(w(X)), Q) H* (X, Q) 

where K(7r(X)) is the product of the Eilenberg-MacLane spaces K(Wcq(X), ). 
We pose the question of whether such a spectral sequence holds with Q re- 
placed by an arbitrary coefficient group A. In the stable range there does 15]. 

Final remark 6.11. Combining Theorem I, and Theorems 1.3 and 5.1 of 
Part II, we obtain the following simple description of the rational homotopy 
category. It is equivalent to the category with 

Objects: free reduced DG Lie algebras over Q 
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Morphisms: homotopy classes of maps of DG Lie algebras, where two 
maps f, g z iu are said to be homotopic if and only if there exists a diagram 
of DG Lie algebras 

a - 

id + id h 

lV laf + ao 

where a is a weak equivalence. 

APPENDIX A. COMPLETE HOPF ALGEBRAS 

This appendix is an exposition of the results on complete Hopf algebras 
used in this paper. Complete Hopf algebras provide the Hopf algebra frame- 
work for handling the Malcev completion [18] of a nilpotent group as well as 
groups defined by the Campbell-Hausdorff formula [17, Ch. 1Il. In fact it was 
the proof of the Campbell-Hausdorff formula [28, LA 4.13] that led to the 
definition of complete Hopf algebras. 

Most of the work of this appendix goes into proving that the category 
(CHA) of complete Hopf algebras is closed under limits and has a projective 
generator, a result needed in Part II. We review the meanings of these terms. 
Following Grothendieck, we call a map f: X - Y in a category an effective 
epimorphism if for any object T, composition with f is a bijection of 
Hom (Y, T) with the subset of Hom (X, T) consisting of all maps q' with the 
following property. Given two maps u, v e Hom (Z, X) such that fu = fv, 
then wu = wv. We call an object P projective if Hom (P, X) - Hom (P, Y) is 
surjective for any effective epimorphism X - Y, and we say that P is small 
if the functor X Hom (P, X) commutes with filtered inductive limits. 
Finally a set 1.)n of objects is called a set of generators if for any object X 
there is an effective epimorphism Q > X where Q is a direct sum of members 
of OR. By a theorem of Lawvere [16] a category closed under limits and hav- 
ing a small projective generator is a category of universal algebras and con- 
versely. Therefore although (CHA) is not a category of universal algebras, it 
is not far from being one. 

The terminology of this appendix is the same as that of Part I with the 
exception that as we are not in the DG setting, a graded Lie algebra is a Lie 
algebra in the usual sense without the signs. 
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Al. Complete augmented algebras 

Let K be a field. All modules, tensor products and algebras in this section 
are to be understood as being over K unless there is mention to the contrary. 
The augmentation ideal of an augmented algebra R will be denoted R. 

By a filtrat ion of an algebra R we mean a decreasing sequence R 
F0R D F1RD ... of subspaces such that 1e F0R and FXR-FqR Fp qR. 
Then each FnR is a two-sided ideal in R and gr R = In , FnR/FnR has a 
natural structure as a graded algebra. By a complete augmented algebra we 
mean an augmented algebra R endowed with a filtration {FnR} such that 

(a) F1R= R 
( b ) gr R is generated as an algebra by grR 

( c ) R = lim-inv (R/FR). 
The class of complete augmented algebras forms a category (CAA), where 

a map f: R -f R' is a map of augmented algebras such that f(FnR) c FAR'. 
Condition (b) is easily seen to be equivalent to 

(1.1) Rn + F.R= FnR if X >n 

or equivalently that F,,,R is the closure of RI' for the topology defined by the 
filtration. 

Examples 1.2. If B is an augmented algebra, then B = lim-inv BIB" is 
a complete augmented algebra with FnB = Ker {B -B/B'}. Condition (b) fol- 
lows from the formula 

(1.3) gr B -grB _ ED B1lB 

It is clear that the functor B v- B is left adjoint to the functor (CAA) (AA) 
which forgets the filtration. 

1.4. If J is an ideal in a complete augmented algebra R such that J c R 
and J is closed for the topology defined by the filtration, then R/J is a com- 
plete augmented algebra with Fn(R/J) = (FR + J)IJ. Condition (b) follows 
from the formula 

(1.5) gr R/J = gr R/gr J 

where J is given the induced filtration. As for (c), first note that R/J is sepa- 
rated since J is closed, i.e., J f n(FnR -i- J). On the other hand, if ye, is a 
sequence in R/J with y, - y,, e FJ(R/J), then y,, - y = xO, + J with 

en c FER, so x x Xk converges in R and 

(X + J) - n Ek<n X'1 + Je F+j(R/J). 
Thus yn converges to x + J, and R/J is complete. 

PROPOSITION 1.6. The following conditions are equivalent for a map 
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f: R- -R' in (CAA). 
i ) grJf is surjective, 

(ii) f is surjective, 
(iii) f induces an isomorphism R/Ker f R' where R.Ker f is as iw 1.4. 

PROOF. If f is surjective, then f: R -K is surjective and so gr1 J is 
surjective. If gr, f is surjective, then gr f is surjective by condition (b), and 
so f is surjective by completeness. It is clear that (iii) implies (ii). For the 
converse, note that Ker f = J is closed since f is continuous, so R/J is defined 
by 1.5. Since the map R/J - R' is an isomorphism of augmented rings, we 
have only to show that the filtrations are the same. But FmR FmR' is 
surjective since the associated graded map is surjective (use (b)). Thus 

FmR' -_ FmR/FmR A J -_ FmR + J/J2- Fm,(R/J), q.e.d. 

If I is a set, then the algebra P = K<<X?>>i,, of formal power series in 
the non-commuting indeterminates Xi is a complete augmented algebra be- 
cause it is the completion of the polynomials in the Xi. If R is a complete 
augmented algebra and xi, i e I, is a family of elements of R such that 

xi + F2R is a basis for gr, R, then the unique homomorphism P-->R which sends 
Xi to xi is surjective by 1.6. Thus 

COROLLARY 1.7. Any complete augmented algebra R is the quotient of a 
(non-commutative) power series ring P by a closed ideal. Moreover P may 

be chosen so that gr, P - gr, R. 

PROPOSITION 1.8. The effective epimorphisms in (CAA) are the maps 
satisfying the conditions of 1.6. 

PROOF. The map z: R - R/J is an effective epimorphism because a map 
f: R - R' factors through r if and only if f(J) 0, and because any element 
of J is the image of X under a map K<<X>> R. Conversely any map f 
factors R > 

- R/Ker f - R', where g is injective and hence a mono- 
morphism. If f is an effective epimorphism, one sees easily that g is an iso- 
morphism, and so f is surjective. 

COROLLARY 1.9. The following conditions are equivalent for a complete 
augmented algebra R. 

( i ) R is a projective object of (CAA), 
(ii) R is isomorphic to a non-commutative power series ring, 
(iii) The natural map T(gr, R) gr R is an isomorphism, where T is the 

tensor algebra functor. 

PROOF. (ii) (i). There is a one-to-one correspondence between maps 
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u: K<<Xi>>i-, Y and families of elements yt e Y given by u(Xi) y yi. If 
v: X - Y is an effective eqimorphism, then X -. Y is surjective by 1.8, so 
there are elements xi e X with vxi - yi. Thus if w: K<<X?>>X is given by 
wXi = xi, then vw -u, proving (i). 

(ii) - (iii). If P is a power series ring, then P = TVA where V is the 
vector space having the indeterminates of P for its basis. Hence grP P 
gr TV = TV is the tensor algebra on gr, V. Conversely given R satisfying (iii) 
choose a surjection f: P R as in 1.7 such that grP - gr, R. Then gr f is 
an isomorphism, so f is an isomorphism by completeness. 

(i) (iii). Given a projective R, choose a surjection f : P -- R with gr, f 
an isomorphism. By 1.8, f is an effective epimorphism, so f has a section s. 
Hence gr f has a section gr s. But also (gr s)(gr f ) = id, since this is true in 
dimension 1 and gr P is generated by gr1 P. Hence gr R _ gr P is a tensor 
algebra, q.e.d. 

PROPOSITION 1.10. The category (CAA) is closed under arbitrary limbits 
and K<<X>> is a projective generator. 

PROOF. The second assertion is clear from 1.7-1.9. To prove the first, it 
suffices to show (CAA) closed under sums, cokernels, products, and kernels. 

Sums. If R. is a family write Ri = Pi/Ji where Pi is a power series ring 
and Ji is a closed ideal. Then the direct sum P = V Pi exists and is a power 
series ring whose set of indeterminates is the disjoint union of the set of 
indeterminates of the Pi. Let J be the closed ideal in P generated by E ini(Ji). 
Then ini induces a map ui: R. P/J, and the family {ui} is easily seen to make 
P/J a direct sum of the Xi. 

Cokernels. If f, g: R = R' are two maps, let J be the closed ideal in R' 
generated by (f - g)R. Then 7: R' R'/J is a cokernel for f, g. 

Kernels. If f, g: R zR' are two maps, let P be the power series ring with 
one indeterminate for each element of Ker (f, #), and let u: P R be the 
obvious map. We claim that the induced map u': P/Ker u - R is a kernel for 
f, g. Clearly fu' = g'. If v: X-R satisfies fv gv, then writingX - P'XJ', 
there is a map w: P' P such that ww = w' and w induces a map w': X 
P/Ker u such that v -i'w'. w' is unique because u' is a monomorphism, so 
U' = Ker (f, g). 

The existence of products is similar and left to the reader, q.e.d. 

Remark. If gr, R is finite dimensional, then FR -Rn. In effect R is a 
quotient of a power series ring P = K<<X1, * * *, X?>> by a closed ideal and 
FnR is a quotient of F,,P so one is reduced to the case R = P. But then if 
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f(X) e FnP, i.e., f(X) = IElaIXn aaXa (here a runs over finite sequences 
(it, * *,i7) of elements of {1, *n }, aI I r and X, = Xi, * * - Xi7), we have 

f(X) -i .. i 3 afi,..inX~)Xii * *. Xinl 

so f(X) e pa Thus the category of "finite type" complete augmented algebras 
is a full subcategory of the category of augmented algebras. 

1.11. By a filtration (N-sequence in the terminology of Lazard [17]) of a 
group G (resp. Lie algebra g), we mean a decreasing sequence of subgroups 
G = F1G D F2G D ... (resp. subspaces g = F1g D F2g D ...) such that 
(FpG, FqG) C Fp+qG (resp. [Fpg, Fqg] c Fp+qg). Then gr G (resp. gr g) has a 
canonical structure of graded Lie ring (resp. Lie algebra over K) where bracket 
is induced by commutator [28, LA, Ch. II]. 

If R is a complete augmented algebra let GmR be the group 1 + R under 
multiplication and let GaR be the Lie algebra R with [x, y] = xy - yx. Then 
there are adjoint functors 

K U 
(1.12) (gps) ( ' (CAA) ' (LA) 

Gm Ga 

where G - KG (resp. g Ug) is the group ring (resp. universal enveloping 
algebra) functor and where ̂ is completion (1.2). 

Letting Fn(GmR) -1 + FnR and Fn(GaR) = F,7R, we obtain filtrations of 
GmR and GaR such that 

(1.13) grGaR- ogrGmR 

as Lie algebras over Z(cf. [28]). In particular gr GmR has a Lie algebra 
structure over K. This isomorphism is induced by x v-- 1 + x, but it is also 
induced by x |-- f(x) where f(X) e K<<X>> is any power series with 
f(X) _ 1 + X mod X2. In particular if K is of characteristic zero, we may 
take the exponential series 

ex= LOO x~l 

which induces a map of sets 

exp: GaR GmR 

which is bijective since the inverse is given by the logarithmic series. We 
have 

(1.14) exey = ex+Y if [x, y] = 0 

but in general only the Campbell-Hausdorff formula. 
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Complete tensor product. If V = F0V D F1V D ... is a filtered vector 
space, let p,: Fn V-+ grn V be the canonical surjection. If W is another filter- 
ed vector space, then we filter V 0& W by 

F.(V 0 W) = El+j=n Fj V ?9 Fj W c V ? W, 

where we identify F, V ? Fj W with its image under the map Fp V?V& F j W 
V (? W, which is injective since K is a field. There is a canonical isomorphism 
of graded vector spaces 

grV grW- gr(V?W) 

given by ppx 0 py I, pp+q(X 0 y). 
If V and W are complete, we let V W be the completion of V IV W with 

respect to this filtration and denote the image of x 0 y under the map V? We 
V 0 W (which is injective) by x ? y. Then there is an isomorphism 

(1.15) gr V & gr W - gr (V ? W) 

given by ppx 0 piy g-, pp+q(X 0 y). 
As F2n( V (V W) c Fn V W + V 0 Fn W c Fn(V 0) W) 

V (8 W = lim-invn (Vn 0) Wn) 

where V1,, = V/Ft V, etc. If V' c V and W' c W are closed subspaces endowed 
with induced filtrations then by passing to the inverse limit in the exact 
sequence of surjective inverse systems 

> V. (0 W.' > V' C W. V. C) W.-> V. C W. 
> (V/V 1) - (W/ W ),n. > O 

one sees the validity of the formulas 

(V/V,') 0) (W/W') = (VO(8 W)/v 0 W' + V' W 
(1.16) (V W' I('llWy fV'lW'I * ~(V(& wf) n (V X W)=- va (9 W 

If R and R' are complete augmented algebras, then Fn(R 0) R') is a filtra- 
tion of R 0 R' so R 0 R' is an augmented algebra. By (1.15) we have 

(1.17) gr R & gr R' - gr (R ? R') 

which is an isomorphism of graded rings. From this we see gr (R ? R') is 
generated by gr, and so R 0 R' is a complete augmented algebra. The follow- 
ing properties of the complete tensor product R 0 R' are immediate. 

Universal mapping property. Given maps u: R-TS and v: R'->S in (CAA) 
such that [mx, vy] = 0 for all x e R and y e R', there is a unique map 
w: R (? RI S such that w(x ? 1) = ux and w(l y y) = vy. 

(1.18) A ? B = A?B if A, B are augmented algebras. 
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(1.19) (R/J) (0 (R'/J') = (R (0 R')/R 0 J' + J? R' if J and J' are closed 
ideals of R and R', respectively. 

A2. Complete Hopf algebras 

A complete Hopf algebra is a complete augmented algebra A endowed 
with a "diagonal" A: A A 0A, which is a map of complete augmented 
algebras and which is coassociative, cocommutative, and has the augmentation 
map A-m K as a counit. With the evident definition of morphisms the complete 
Hopf algebras form a category (CHA). 

Examples. 2.1. If A is a (coassociative, cocommutative, as always) Hopf 
algebra, then A (1.2) is a CHA with diagonal A: A - (A 0 A)1 A 0 A (1.18). 
In particular if G is a group and g is a Lie algebra, then KG and Ug are CHA'S. 

2.2. If A is a CHA and J is a closed Hopf ideal of A in the sense that 
AJ c( A 0 J + JO A, then the complete augmented algebra A/J (1.4) is a CHA 

with A induced by that of A using (1.19). 
2.3. If A and A' are CHA'S then so is A 0g A' in the obvious way. More- 

over if pr,: A 0 A' A and pr2: A 0 A' A' are the maps induced by the 
augmentations of A' and A respectively then A 0 A' with pr, and pr2 is the 
direct product of A and A' in the category (CHA). 

If A is a CHA, we set 

(2.4) PAW = AIAxA {xEAWA = x01 + 10X} 
(A = {x1 + A IAx x 8ZX} . 

PA, the set of primitive elements of A, is a Lie subalgebra of GaA, and OA, 
the set of group-like elements, is a subgroup of GiA (1.12). Letting K and 
U be the completed group and universal enveloping algebra functors with 
CHA structure as in (2.1), it is straightforward to verify the following. 

PROPOSITION 2.5. There are adjoint fmnctors 

K U 
(gps) i(CHA) ) (LA). 

For the rest of this section we suppose that K has characteristic zero. 
Then the exponential series ex is defined. 

PROPOSITON 2.6. x E 7PA ex e A. 
~~~~~~A A A A 

PROOF. x e APA Ax = x &1 + lgx eX - eX = Cx(&+lx = ex&l.el6x 

= (ex l)(10 ex) = ex Oex (using 1.14) ex e OA. 
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It follows that the exponential and logarithm functions give a canonical 
isomorphism of sets 

(2.7) exp: CA - OA 

satisfying (1.14). The following is immediate from (1.13). 

PROPOSITION 2.8. Let F,9A = {x E OA x x - 1 E F7A} and F4PA = 
9A n F7A. Then {Fr9A} and {F4PA} are filtrations (1.11) of 9A and CA 
respectively. Moreover the exponential induces an isomorphism 

(2.9) gr CA > gr OA 

of Lie rings and defines a K-module structure on gr OA compatible with its 
bracket. Finally 

(2.10) A -_ lim-inv (9A/Fr9A), OA - lim-inv (OA/FrOA). 

Example 2.11. Let S be a set, let FS be the free group generated by S, 
and let LKS be the free Lie algebra generated by S. Then by the iso- 
morphism of functors (2.7) and by (2.5), there are CHA isomorphisms 

KFS > K<<Xs>>r?e ULKS 

where K<<X?>> is the non-commutative power series ring with A defined so 
that the X. are primitive, and where q and 0 are determined by the for- 
mulas p(s) - exs, 0(s) = X, for s E S. Now ULKS = TKS where T = tensor 
algebra, so 9?( ULKS) = l Lr(KS), from which one deduces that 

gr 9(KFS) - gr ULKS -_ L(KS). 

The CHA K<<X,>>,e,, will be called the free CHA generated by the set S. 

The functor gr is compatible with tensor products (1.17), so if A is a CHA, 
then gr A is a graded Hopf algebra. gr A is primitively generated because it 
is generated by gr, A which consists only of primitive elements for dimensional 
reasons. By Milnor-Moore there is a Hopf algebra isomorphism. 

(2.12) U(g grA)- *grA. 

PROPOSITION 2.13. If A is a CHA, then the Lie algebra OP gr A is gen- 
erated by gr, A. 

PROOF. The canonical map UL(grj A) - T(grj A) U(9 gr A) is sur- 

jective. By the Poincare-Birkhoff-Witt theorem, any Lie algebra g is canon- 
ically a retract of U(g), so if q is a map of Lie algebras and Up is surjective, 
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then q is surjective. Thus L(gr, A) -) gr A is surjective, proving the propo- 
sition. 

THEOREM 2.14. The canonical map gr CPA - gr A is an isomorphism. 

PROOF. The map is injective since C9A has the filtration induced from 
that of A. By (2.13) it suffices to show that BfA N gr, A is surjective; in other 
words the theorem asserts that any CHA has many primitive and hence many 
group-like elements. 

Let S2A c A 0 A be the symmetric tensors, i.e., the image of the projec- 
tion operator x 0 y 1/2(x 0 y + y X X). This projection operator preserves 
filtration, so if S 2A is given the induced filtration, gr S 2A = S 2(gr A). The 
maps 

A j > S 2A 52 @ 
a Ax - x 01-10x 

82(X 0 Y) - &x 0 - X 01Y 

are compatible with filtrations, satisfy 6261 0, and are carried by gr into 
maps 

(2.15) gr A >S2(gr A) -* (gr A)?3 

given by similar formulas. 

LEMMA. The sequence (2.15) is exact. 

PROOF. The maps 6' use only the coalgebra structure of gr A which by 
(2.12) and the Poincare-Birkhoff-Witt theorem is coalgebra-isomorphic to 
S(9i gr A). Hence we may replace gr A by a commutative polynomial ring 
Q = K[Xi]iei whose coalgebra structure is given by the formula 

AX. = Ea +7=0X iX7 y 
where we use standard multi-index notation with Xoa = (a!)-lX. Suppose 

Z = , oacXiXc Xe G S2Q and 

32Z Epa7>Q (ap+a,. - ap,,+)Xp( 0X2 2 8 X, = 0 

Then ap+o,7 = ap,+, if p, a, z > 0, from which one sees that acf = acp if 

a?+ = a'?+ ' and Ia IS + 1,?1 > 3. Letu lz? bX, where b,= acp if 

a + i = v and a,iS > O. Then 

z-fu - St ajX 0 Xi -4 1 St aijXiXil 

since acf = afi,. Thus z E Im 81, proving the lemma. 
To prove the theorem, we must show that the map gr C9A -) gr A is 
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surjective. Given u E 9P gr, A we construct by induction on n a sequence x", 
in F7A such that bxy e F S2A. Start by choosing xr c F7A with prx, = u. If 
XI, has been obtained, then 6'(pa1x.) = p06,,x = O. so there is by the exactness 
of (2.15) an element y E FnA with pjiy - 'pn'y = pn&x,. We set x,+? = n-gy. 
As x,+ - e FnA the sequence xn is Cauchy and converges to an element 
x E F7A. Then b1x = 0 so x E CA and prx = u, which finishes the proof of the 
theorem. 

If W is a complete filtered vector space, let S W be the image of the 
symmetrization operator a on W 9 ... ** W, n times. a preserves filtration 
and by (1.15) gr So W - S n(gr W). Define SW = II' S W. If A is a complete 
Hopf algebra, define e: S&A A by requiring e to be linear, continuous, and 
such that e(u(xl 0 *. 0 x*)) = (n!)- E x,* X<, where a runs over the 
symmetric group of degree n and the xi e CiA. Passing to gr's we get the 
composition S(gr W9A) - S(@9 gr A) - gr A which is an isomorphism by (1.14), 
the Poincare-Birkhoff-Witt theorem for Y gr A, and (2.12). Thus by complete- 
ness we have the following Poincare-Birkhoff-Witt theorem for CHA'S. 

COROLLARY 2.16. e: S9PA A is an isomorphism of vector spaces. In 
particular JfA is canonically a vector space retract of A. 

COROLLARY 2.17. The following conditions are equivalent for a map 
f: A x A' of complete Hopf algebras. 

( i ) gr, f is surjective, 
(ii) FfJSf: FfJ'A - FNYA' is surjective for all n, 
(iii) gif is surjective, 
( ii)' F.9f is surjective for all n, 
(iii)' 9f is surjective, 
(iv) f induces an isomorphism A/Ker f > A' 

where A/Kerf is the complete Hopf algebra described in (2.2). 
PROOF. (i) (iv) follows easily from (1.6); (ii) (ii)' is because of the 

exponential isomorphism (2.7), and similarly for (iii) - (iii)'; (ii) (iii) is 
trivial; (iii) (i) because gr1A = uiA/F2,PA by the theorem; (i) (ii). By (2.13) 
and (2.14), L(gr1 A) - 9 gr A - gr WA is surjective. Hence gr, f surjective 
gr 9if surjective Fjiff surjective for all n, q.e.d. 

COROLLARY 2.18. f is an isomorphism if and only if 91f is. 

PROOF. If ??f is an isomorphism, then it is injective and so also is Ffif. 
By (2.17) F.,9f is also surjective so Ffgf is an isomorphism for all n. Thus 
gr iPf = cY(gr f) is an isomorphism so grf is an isomorphism (2.12) and f is an 
isomorphism. 
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PROPOSITION 2.19. The effective epimorphisms in (CHA) are the maps 
satisfying the equivalent conditions of (2.17). 

PROOF. Any map f factors into A - A/Ker f 9 A' where g is injec- 
tive and hence a monomorphism in (CHA). If f is an effective epimorphism, 
then g must be an isomorphism so f satisfies (2.17 (iv)). 

Conversely given f, let J be the closed ideal generated by Ker SPf. J is a 
closed Hopf ideal and the map f factors into A - A/J I A'. IT is an effec- 
tive epimorphism, because a map u: A - B factors through IT if and only if 
u(Ker SPf) = 0 and because each element of 9PA is the image of X under a map 
P A, where P = K<<X>>, AX = X 1 + 1 X. By (2.17) 97P is surjective 
and by the definition of J, Ker SPf ci Ker 97Pw. Thus Ker f = Ker 9Pwc and 9fg is 
injective. Now if f satisfies the conditions of (2.17) so that Pf and hence 9Pg 
is surjective, then 9Pg is an isomorphism. Thus g is an isomorphism by (2.18) 
and so f - IT is an effective epimorphism which finishes the proof of (2.19). 
We also have proved that Ker f = J = closed ideal generated by Ker SPf when 
f is surjective. 

If we factor a general map f into A - A/Ker f - - A', then by what 
we have just showed, Ker IT = closed ideal generated by Ker 9iPr. But g hence 
also 9Pg is injective, so Ker f = Ker 7c and Ker SPf = Ker 9iPw, and we obtain 
the following 

PROPOSITION 2.20. If f is any map of complete Hopf algebras, then Ker f 
is the closed ideal generated by Ker PJf. 

COROLLARY 2.21. f is injective if and only if SPf is injective. 

PROPOSITION 2.22. Any complete Hopf algebra A is isomorphic to the 
quotient of a free complete Hopf algebra P by a closed Hopf ideal. Moreover 
we may assume gr, P - gr, A in which case P is unique over A up to non- 
canonical isomorphism. 

PROOF. Choose a basis for gr, A and lift it to elements xi e C9A i e I by 
(2.14). Then there is a unique map u: P a V with u(Xi) = x. gr, u is an 
isomorphism, so by 2.17, A is isomorphic to A/Ker u. If v: P' - A is a sur- 
jective map, then by 2.17, fPt is surjective, so lifting each xi to an element of 
P' we obtain a map w: P a P' such that vw = u. If gr, v is an isomorphism 
and P' is free, then gr, w is an isomorphism so gr w = T(gr, w) is an isomor- 
phism and w is an isomorphism, q.e.d. 

From similar arguments one proves 

COROLLARY 2.23. The following conditions are equivalent for a complete 
Hopf algebra A. 
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( i ) A is a projective object of (CHA), 

( ii ) T(gr, A) > gr A, 
(iii) L(gr, A) - gr SPA, 
(iv) A is isomorphic to a complete Hopf algebra P. 

PROPOSITION 2.24. The category (CHA) is closed under arbitrary limits 
and has K<<X>>, AX = X 0 1 + 1 0 X as a projective generator. 

The proof is similar to (1.10). 

A3. The relation between complete Hopf algebras and Malcev groups 

Throughout this section K = Q, although those statements concerning only 
CHA'S and Lie algebras are valid for an arbitrary field of characteristic zero. 

Definition 3.1. By a Malcev group we mean a group G endowed with a 
filtration (1.11) G = FG D F2G D ... such that 

( i ) the associated graded Lie ring gr G is a uniquely divisible abelian 
group, hence gr G is a Lie algebra over Q. 

(ii) gr G is generated as a Lie algebra by gr, G. 
(iii) G - lim-inv, (G/F7G). 

Similarly a Malcev Lie algebra is a Lie algebra g with a filtration such that 
gr g is generated by gr, g and such that g is complete for the topology defined 
by the filtration. With the evident notion of morphisms, we obtain categories 
(MGp) and (MLA) respectively. 

The category of Malcev groups is the full subcategory of Lazard's cate- 
gory of R-groups [17] consisting of those R-groups for which the closures of 
the terms of the lower central series form a basis for the neighborhoods of 
the identity (this follows from (3.5)). 

Example 3.2. If A is a CHA, endow OA with the filtration induced by 
F7A. Then there are Lie algebra isomorphisms gr OA - gr C9A ci 9P gr A ((2.8), 
(2.14)) and 9P gr A is generated by gr, A (2.13). Thus OA is a Malcev group. 
Similarly C9A with the induced filtration is a Malcev Lie algebra. 

THEOREM 3.3. The functors 

(MGp) - (CHA) -1 (MLA) 

are equivalences of categories. 
The proof will occupy the rest of the section. It will be convenient on 

several occasions to refer to the following situation. Let H be a group en- 
dowed with a filtration, let j: H' H be a group map, and consider the dia- 
grams 
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1 F rmH'/Fm+iH' ) H'/Fm+,Hf ' H'/FmH' 1 

(3.4) 1grm j 1jM+1 1jA 
1 > FmH/Fm+iH ) H/Fm+,H > H/FmH 1 

induced by j depending on m. Typical diagram chasing arguments (e.g., 
serpent lemma) will then be applied. For example if gr j is surjective and jrn 
is an isomorphism for m large, it follows by descending induction on m that 
Jm is an isomorphism for all m. 

PROPOSITION 3.5. If G is a Malcev group, then 

(FrG) .FG = F7G for s > r. 

In particular if FG = {1} for some s, then FG = F7G for all r. 

PROOF. We apply the situation of diagram (3.4) where H' = H = G/FSG, 
j the identity, and where F7H = FG FSG/FsG. Then gr j is surjective by 
(3.1)(ii) and j = jm is an isomorphism for m > s; thus jrn is an isomorphism for 
all m and the proposition is proved. 

The key technical point in the proof of Theorem 3.3 is the following 
variant of Ado's theorem. 

PROPOSITION 3.6. (a) If G is a nilpotent group with no non-identity 
elements of finite order, then the canonical map G QG/QG" is injective 
for n > the class of G, and conversely. 

(b) If g is a nilpotent Lie algebra, then the canonical map go Ug/Ugn 
is infective for n> the class of G, and conversely. 

PROOF. The converse statements are trivial. (b): We may assume g 
finitely generated, in which case the Lie algebra gr g associated to the lower 
central series filtration of g is finite dimensional, and so g is finite dimensional. 
By Ado's theorem q has a faithful finite dimensional representation V whose 
composition quotients are trivial g modules. Let F be a flag in V stable under 
g, and let R be the augmented algebra of endomorphisms of V which preserve 
F and which induce the same scalar on each of the quotients of F. Then the 
g action on V defines an augmented algebra map Ug/Ugn R where n 
dim V; as g acts faithfully on V, the map - Ug/Ug" is infective. It remains 
to show this holds for all n > class of g. Let gr' g be the Lie algebra associated 
to the filtration Fg= g 0 ug" so that we have maps gr g gr'g - > gr Ug. 
Now we have seen (2.13) that 9P gr U(g) is generated as a Lie algebra by gr, g, 
hence these maps are surjective. To say g has class r means that grq g = 0 
for q > r; hence gr' g = 0 for q > r. As we have shown that F. g = 0 for n 
sufficiently large, it follows that F. 0 for n > r, proving (b). 
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(a): By the same arguments used for (b), one reduces to the case where 
G is finitely generated and to proving that G has a faithful finite dimensional 
representation V with trivial composition quotients. The only difference is 
that now grq G ?z Q gr' G ?z Q is surjective, whence for q > class of G, 
one may show by descending induction on q that FqG is a torsion group and 
hence the identity subgroup by the hypotheses on G. To construct V we 
proceed as in Ado's theorem. Since G is finitely generated and nilpotent, 
there is a chain {Gk} of normal subgroups in G such that the associated quo- 
tients are cyclic with trivial G action; we prove the existence of V by induc- 
tion on the length of this chain. Thus there is an exact sequence 

1 , G, > G , C , 1 

where C is cyclic and where the induction hypothesis applies to G1, so that the 
canonical map p: G, - QG,/QG4 is injective for some n. Write R for the 
target of p, let x be an element of G such that wx generates C, and let 0 denote 
both the automorphism y v-> xyx-' of G, and its obvious extension to R. The 
images of the subgroups Gk in gr1 QG1 generate a chain of subspaces on which 
G acts trivially; combining this with the QG1-adic filtration, one sees that R 
has a flag F stable under the left multiplication representation X of G1 and the 
conjugation action of G such that the associated quotients have trivial action. 
Consequently both 0 and x(G1) are contained in the group T of endomorphisms 
of R leaving F stable and inducing the identity on the quotients of F. 

If C is infinite cyclic, then we may define an action q' of G on R by the 
formula (p(yx') = x(y)Ot if y e G1. It is readily checked that q' is well-defined; 
as (p(G) c T, R becomes a representation of G faithful on G1 with trivial com- 
position quotients. Taking the direct sum of R and a faithful representation 
of C with trivial composition quotients, we obtain the desired V. On the 
other hand if C is cyclic of order k > 0, let u be the unique element of 1 + F? 
such that Uk - p(Xk), and define q by (p(yx') = p(y)ui if y e G1. It is readily 
verified that rp: G - 1 + R is a well-defined function; to show that it is a 
homomorphism one needs the formula 0(a) = ua-' for a e R. However a - Oa 
and a h-- uav-' are elements of T with the same ktl power, and as T is uniquely 
divisible, they coincide. Composing q with left multiplication we get a faith- 
ful action of G on R and R is the desired V. This completes the proof of (a) 
and the proposition. 

COROLLARY 3.7. Let G be a nilpotent group. The following conditions 
are equivalent. 

( i ) G is uniquely divisible (x I- x" is bijective for n # 0). 
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(ii) gr G is a Lie algebra over Q. 
(iii) G is a Malcev group with F7G = FG. 
(iv) G - QG. 

Moreover if these conditions hold, 

FG = {x e G x - 1 e QGr} - Fr9QG 

and gr G - gr 9QG - gr QG. 

PROOF. (iv) (i) and (ii) (iii) are trivial. 
Assume G uniquely divisible, let G = 9QG with its canonical filtration 

(3.2), and let j: G G be the canonical map, and consider the diagram (3.4). 
gr j: gr G gr G is surjective because the latter is generated by gr1 G (2.13) 
and because G uniquely divisible implies gr, G (gri G) 09 Q - gr, G is surjec- 
tive. By induction Im: G/FmG G/FmG is surjective for all m. For m> the 
class of G, grm G = 0, so FmG = 0 and j: G G is surjective. By (3.6)(a) 
j-'FmG = O, so j: G G is an isomorphism, proving (iv). Now by descending 
induction in the diagram grm j and im are isomorphisms, proving the "more- 
over" assertion of the corollary and the implication (iv) (iii). Finally sup- 
pose (ii) holds. Then G has no non-identity elements of finite order so j: G G 
is injective by (3.6)(a), and gr1G is divisible so gr G gr G is surjective. We 
have just seen how these two facts imply (iv), so the corollary is proved. 

COROLLARY 3.8. If G is a nilpotent group, let G = 9QG and let j: G > G 
be the canonical map. Then 

( 1 ) j is universal for maps of G into nilpotent uniquely divisible 
groups. 

( 2) j is characterized up to canonical isomorphism by the following 
properties 

(a) G is nilpotent and uniquely divisible. 
(b ) Ker j = the torsion subgroup of G. 
(c) xeG =xneIm jfor some n # 0. 

PROOF. (1) is immediate from (3.7). For (2) suppose j has properties (a), 
(b), (c) and that k: G H is another map with these properties. Then by (1) 
there is a map G H which one easily sees has properties (b) and (c) and 
therefore is an isomorphism by the unique divisibility of G and H. Hence k 
is isomorphic to j. It remains to show that j has properties (b) and (c). For 

(b) let G' be the quotient of G by its subgroup of elements of finite order (it 

is a subgroup since G is nilpotent). Then by (1) G > G', while by (3.6)(a) 
G'> G', hence Ker j torsion subgroup of G. For (c) we show by induction 
on m, that Im: G/FmG G/FmG has property (c) using the diagram (3.4). 

Assume jm has property (c) and let x e G/Fm+iG, so that there is a 
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y e G/Fm+iG and u e gr. G with u~jm+i(y) = Xk for some k # 0. Since 
(gr G) 0 Q - gr G is surjective, there is a v e grm G with jm+i(V) = u for 
some p # 0. As u is in the center of G/Fmi+G, we have that Xkp = - M+J(VYP), 

showing that jrn+i has property (c). Thus by induction, j has property (c) 
and the proof of the corollary is complete. 

COROLLARY 3.9. If g is a nilpotent Lie algebra, then g > IUg. More- 
over FRg = g f Ugr - Fr4Ug and grg - gr Ug - 9gr Ug. 

The proof is similar to that of (3.7) but easier. 

Remarks. 3.10. j: G G = 9QG is by (3.8) the Malcev completion of G 
in the sense of [18], [17]. 

3.11. The second assertion of (3.9) is valid even if g is not nilpotent. For a 
discussion of what happens in the group case and in particular a proof of the 
isomorphism (gr G) (0 Q -> gr QG in general see [23]. 

PROOF OF (3.3). Let us call a Malcev group G (resp. Malcev Lie algebra 
g, resp. complete Hopf algebra A) nilpotent if F7G (resp. Frg, resp. Fr4A) is 
zero for some r. It follows from (3.7) and (3.9) that the categories of nilpotent 
Malcev groups (nMGp) and Lie algebras (nMLA) are isomorphic to the cate- 
gories of nilpotent uniquely divisible groups and nilpotent Lie algebras respec- 
tively. Moreover the functors 

(3.12) (nMGp) (ncHA) (nMLA) 

are equivalences of categories, the quasi-inverse functors being Q and U 
respectively. Indeed G - 9QG by (3.7) and to show that Q9A - A it suf- 
fices by (2.7) and (2.18) to show that 9Q9A > WA; but this follows from 
(3.7), since the composition WA -_Q9A 9A is the identity. The case of 
Lie algebras is similar. Finally the fact that (3.12) are equivalences implies 
Theorem 3.3, because a Malcev group G (resp. CHA A) may be identified with 
the inverse system {G/FrG} (resp. A/A Fr4PA) in (nMGp) (resp. in (nCHA), 
q.e.d. 

APPENDIX B. DG LIE ALGEBRAS AND COALGEBRAS 

In this section we give an exposition of the results on DG Lie algebras 
and coalgebras that are used in the rest of the paper, in particular the func- 
tors 2 and C. Although the results are presumably well known, we have 
included proofs (in outline at least) because existing treatments do not direct- 
ly apply (e.g., in the basic reference [20] only Lie algebras with faithful re- 
presentation are considered), and because several technical lemmas required 
for the proofs are needed elsewhere in the paper. 
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1. Notation 

We work over a field K of characteristic zero fixed once and for all. Ex- 
cept in the last section DG objects may be infinite in both directions. The 
differential is always of degree -1. DG algebras are always associative with 
unit (a Lie algebra is not an algebra), and DG coalgebras are coassociative with 
counit and unless otherwise stated cocommutative. Here cocommutative 

means TA = A, where T: V ? W > W 0 V is the isomorphism T(v 0 w) 
(- 1)pqw v, if p = deg v and q = deg w. When defining maps we shall give 
formulas involving elements with ambiguous signs which have to be filled in 
by the standard sign rule. The upper sign is always the one if all elements 
are of even degree, e.g., [x, y] = xy T yx. 

The r-fold suspension rV(r e Z) of a DG vector space V is defined to be 
Yir (0 V, where Yr is the DG vector space with (Tr)q = 0 if q # r and (Zr)r = 
the one dimensional vector space over K with basis element er. We write ErX 

instead of er 0 x so that d~rx = ()r~rdx. A map of degree r from V to W 
is a map YrV W and may be identified with a collection f ={f: Vq Wq+r} 
such that df = (-1)rfd. 

A weak equivalence is a map inducing isomorphisms on homology. 

2. The homology of certain functors 

If V is a DG vector space, let T(V), S(V), and L(V) be the tensor algebra 
of, symmetric algebra of, and free Lie algebra generated by V respectively. 
The functors T, S, and L are left adjoint to the underlying DG vector space 
functor to (DG) from the categories of DG algebras, DG commutative algebras, 
DG Lie algebras, respectively, and so there are natural (DG) maps V - T(V), 
etc. These give rise to maps H(V) (H(T(V)), etc., and, as the homology 
of a DG algebra, etc. is a graded algebra, etc. to natural graded algebra maps 
T(H(V)) - H(T(V)), etc. 

If L is a DG Lie algebra, let U(L) be its universal enveloping algebra. U 
is the left adjoint of the underlying Lie algebra functor from DG algebras to 
DG Lie algebras. U(L) is a DG cocommutative Hopf algebra and there is a 
natural map U(H(L)) > H(U(L)) of graded Hopf algebras. 

PROPOSITION 2.1. If V is a DG vector space then the natural maps 
T(H(V)) H(T(V)) of graded algebras 
S(H(V)) H(S(V)) of graded commutative algebras 
L(H(V)) H(L(V)) of graded Lie algebras 

are isomorphisms. If L is a DG Lie algebra, then the natural map 
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of graded cocommutative Hopf algebras is an isomorphism. 

PROOF. The assertion for T(V) follows from the Kiinneth theorem. We 
note that S(V) = ( S (V) where Sqz,(V) is the quotient of V?n by the action 
of the symmetric group 2(n), where 2(n) permutes the factors of Vol". As the 
characteristic of K is zero, the symmetrization operator (n!)- 'E , a e (n) 
is defined on V?n and defines a section of the map V?) -f S,(V), allowing 
one to identify Sq,(V) with the image of the symmetrization operator. As 
homology is compatible with direct sums, and the Kiinneth isomorphism 
is compatible with the interchange map, one sees that both S,(H( V)) 
and H(SJ(V)) are the quotients of H(Vcn) - (H(V))`- by 2(n). Hence 
Sn(H(V)) - H(SJ(V)) and the assertion for S(V) is proved. 

The universal enveloping algebra of L(V) is clearly T(V). Assume for 
the moment the following 

LEMMA 2.2. The map p: T(V) L(V) given by 

fx1, *11x2 ... [xn-1, xn] * * *] > 
p(x10.. ?x.) 

O n=-nO 

is a left inverse for the map L(V) T(V). In particular L(V) T(V) is 
injective. 

Regarding L(V) as a sub-DG Lie algebra of T(V) by the lemma, we see 
that p is a projection onto L(V). But the formula for p is preserved by the 
Kiinneth isomorphism, hence L(H(V)) and H(L(V)) are both the images of p 
on T(H(V)), so the assertion of the proposition for L(V) is proved. 

To finish the proof of the proposition we need another fact. 

THEOREM 2.3 (Poincare-Birkhoff-Witt). Let L be a DG Lie algebra and let 
i: L - U(L) be the natural map. Let 

e: S(L) >U(L) 

be given by e(x, * * xn) = 1/n! -ae +-) ?i(x,,) ... i(x0n). Then e is an iso- 
morphism of DG coalgebras. 

It is clear that the following square is commutative 

S(H(L)) U(H(L)) 

I H(e) I 
H(S(L)) U f H( U(L)) 

and so the assertion for the functor U follows from the assertion for S. 
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Proposition 1 is therefore proved except for the lemmas. 

PROOF OF LEMMA 2.2. L( V) = (r=, L,( V) where Lr( V) is spanned by rth 
order brackets of elements of V. Hence L1(V) = V and [Lr(V), L,(V)] c 
Lr+s(V). Consequently the endomorphism of L(V) given by Dx = nx if 
x C L"( V) is a derivation, and we can form the semi-direct product L( V) 0 KD 
with bracket 

[x + aD, A + bD] = [x, y] + aDy - bDx if x, y E L(V), a, b E K. 

Then L(V) 0 KD is a L(V) module and hence a U(L(V)) = T(V) module. 
The map T(V) L(V) 0 KD induced by u uD is given by 

xi (9 * X. )nl [x1, ** [xn, D]] =[x1, * * * [X._19 aJ ..*.* 

if n>0 and xie V, whereas zE -Dz = nz if zeLJ(V). Hence p(z) z if 
z e L(V) and the lemma is proved. 

The proof of the PBW theorem will be given in the next section. 

3. Connected DG coalgebras and the proof of 
the Poineare-Birkhoff-Witt theorem 

Let C be a DG coalgebra with comultiplication A: C C 0 C and counit 
s: C K. C will be called connected if there is an element 10 E C such that 

Alc 1c 0 1c, e(1c) = 1K the unit of K and if C = U-=0 F7C, where FrC is 
the filtration of C defined recursively by the formulas 

FoC= K1c 
FrC = {x E C I Ax - x (0 1c - 10 (0 x E F71,C (0 F_1C}. 

This definition of connected coalgebras differs from that in [20], however if 
C is connected in the sense of [20], that is CO = K and C7 = 0 for all r < 0 or 
all r > 0, then C is connected in our sense. Let CI(C) = {x e C I Ax = 
1c 0 x + x 0 1c} be the DG subspace of primitive elements of C, so that 
FIC = K -Ic ()(C). 

PROPOSITION 3.1. If C' is a sub DG coalgebra of a connected DG coalgebra 
C, then C' is connected, FrC' = FrC n C' and 9P(C') = 9P(C) n C'. A quotient 
of a connected DG coalgebra is connected and the tensor product of connected 
DG coalgebras is connected. 

PROPOSITION 3.2. If 0: C-w C' is a map of DG coalgebras, and if C is 
connected, then 0 is injective if and only if 0 restricted to EP(C) is infective. 

PROOF. We first show that 10 e C'. Since x 0 1K = (id 0 s)Ax for all 
x C C', s: C' - K is surjective and there is an x C C with s(x) = 1K As C is 
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connected, there is an r such that x E FrC, and we may assume x chosen so 
that r is minimal. If r > 0, 

X( 1K = (id (&es)Ax = x 1K + 10 (0 1K + E xT ($ e(x") in C'O K, 

where x', x'' E FTIC'. Hence x =-E s(xn')x' e C' n FriC has s(f) = 1, and 
hence by minimality of r, r = 0 and so x = l, and 1T e C'. A straightforward 
induction shows that FrC' C' fl FrC where we take 1,, = 1 hence U FrC' = 
C' and C' is connected. This proves the first assertion of Proposition 3.1 and 
the other assertions are trivial. 

Proposition 3.2 is proved by inductively showing that 0 is injective on 
FrC hence also on all of C since C is connected. 

Remark. It follows from the first assertion of Proposition 3.1 that the 
element l is uniquely characterized by the formulas Al, = c 0 lc and 
slc= 1K. We shall abbreviate 10 by 1 from now on. 

Examples 3.3. Let A: T(V) - T(V) 0 T(V) be given by 

A (v, (89* v.) 
- @r=0 (v1 0 ... 0 V* ) 0 (V7+l 0 r 0 v)) e r v 0 V?- 

where the empty tensor product is to be interpreted as 1 e V?0 = K. Let 
s: T(V) - K be the projection onto V?0. Then A and s define a non-commu- 
tative coalgebra structure on T(V). (Warning: this is not the coalgebra 
structure obtained by regarding T(V) as the universal enveloping algebra of 
L(V).) It is easily shown that FrT(V) = (Dnlr V?n whence T(V) is con- 

nected. 

Let A: S(V) S(V) 0 S(V) be the algebra map given by Av = 

v 1 + 1 0 v and let s: S(V) K be the projection onto S0V = K. Then A 

and s define a commutative coalgebra structure on S(V), and a straight- 

forward calculation using shuffle permutations shows that the map N: S(V) 

T(V) given by 

(3.4) N(vl ... V L e V,10 (8 V,2 0 ... vn 

is an injective map of DG coalgebras. From Proposition 3.1 we conclude that 

F7S(V) = 0,5r SJ(V) whence S(V) is connected. In particular 9PS(V) = V. 

PROOF OF THE PBW THEOREM. e is clearly a DG map hence we may ignore 

differentials. A calculation with shuffle permutations shows that e is a map 

of graded coalgebras. Furthermore e is surjective because if we define a fil- 

tration on U(L) by Fr U(L) = the subspace of U(L) spanned by products 
i(x1) ... i(x^) with xi C L, n < r, then by induction on r, we have FrU(L) = 

e (g,:t Sn(L)). It remains to show that e is injective. By Proposition 3.2, it 
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suffices to show that e restricted to FJ'S(L) = L is injective, or equivalently, 
to show that the canonical map i: L o U(L) is injective. By Lemma 2.2 this 
is true if L is free, that is, of the form L( V) for some graded vector space V, 
consequently e is an isomorphism if L is free. 

Given an arbitrary graded Lie algebra L we construct a diagram of 
graded Lie algebras 

So 

Li )Lo I LL 
di 

where ds. = doso - id, pdo = pd1, and L., L1 are free, which is exact in the 
sense that p is a cokernel of the pair do, d1 in the category of graded Lie 
algebras. This may be done by choosing a surjection p: Lo L where L. is 

so (do, di) 
free, and then factoring Lo - Lo x 

L Lo into Lo -o L1 >' Lo X L Lo, 
where L1 is obtained by adding more generators to Lo so that (do, d1) is sur- 
jective. Consider the commutative diagram 

S(do) SWp 
S(Li) > S(Lo) >P S(L) 

S(d1) 

? e e e e 

U(do) U(p) e 
U(L1) -z> U(Lo) -> U(L) 

As S is a left adjoint functor, S(p) is a cokernel for S(do), S(d1) in the category 
of commutative graded algebras. Furthermore S(do) is surjective, because of 
S(sO), hence S(do) Ker S(d1) is an ideal in S(LO). It is easily seen that the 
natural map S(Lo) - S(LO)/S(do) Ker S(d1) is also a cokernel for S(do), S(d1), 
hence S(LO)/S(do) Ker S(d1) - S(L), and so the top row of the above diagram 
is exact in the category of graded vector spaces. Similar arguments show the 
same for the bottom row. As e is an isomorphism for Lo and L1 since they 
are free, the five lemma shows that e is an isomorphism for L, q.e.d. 

COROLLARY 3.5. U(L) is connected as a coalgebra and L > 9PU(L). 

COROLLARY 3.6. There is a canonical map of DG vector spaces r: U(L) 
L which is left inverse to the inclusion i: L - U(L) and which is functorial 
as L varies over the category of DG Lie algebras. 

Remarks 3.7. This map r is the composition U(L) - S(L) > L, where 
j is the projection onto the tensors of degree 1. If L is free, r is not the same 
as the map p of 2.2. 
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3.8. A curious consequence of the above proof is that e: S(L) - U(L) 
for any DG Lie algebra L over a ring K containing Q. In effect the reduction 
to the case where L is free did not use that K is a field, and the free case 
follows by base extension from Q. Consequently all examples of a Lie algebra 
g over a ring such that g o U(g) is not injective must occur in characteristic p. 

3.9. In the case of ordinary finite dimensional Lie algebras over R, the 
map e: S(L) - U(L) has the following agreeable interpretation. If G is a Lie 
group with Lie algebra L, then composition with the exponential map 
exp: L -OG yields a map from the ring of formal functions on G at the identity 
to the ring of formal functions on L at 0, that is, a homomorphism 
(exp)*: U(L)* S(L)* where * denotes dual. (exp)* is just the transpose of e. 

4. A universal coalgebra property of T(V) and S(V) 
and the theorem of Cartier, Milnor, and Moore 

Let N: S( V) - T( V) be the DG coalgebra map 3.4. Let j: T( V) - V and 
j: S( V) - V denote the projection onto the tensors of degree 1. 

PROPOSITION 4.1. If C is a connected DG coalgebra, then the map 8 H- jO 
is a bijection from the set of DG coalgebra maps 8: C-o T(V) to the set of DG 
vector space maps u: C - V such that u(1) = 0. 

If C is a connected co-commutative DG coalgebra, then the same is true 
for DG coalgebra maps C - S(V). 

PROOF. Let A(n): C -o COn be the composition C C?2 * * C?N where 
the map C?? _ C?r'+1' is any map of the form (id)?P 0 A 0 (id)?'r-'-1'. Since 
C is coassociative this composition is independent of any of these choices, and 
we have the formula 

(4.2) (A )A = (+q+ 
In particular if Ax = x 0 1 + 1 0 x + E x* 0 x;', 

A(r)- = (A(r-1) id)Ax = A'r-I)x 0 1 + 1?r $0 x + .j A'r-I)x. $0 X;!, 

and so by induction on r we conclude that if x C FrC, then A(r)x is a linear 
combination of terms of the form x, (0 ... 0 Xr where xj = 1 for some j. If 
u: C - V is a DG map with u(1) 0 then um?A("')x = 0 if x C F"_1C, hence 
since C U FrC, the map 8: C T(V) given by 

(4.3) Ox E- 0 
uni' x 

is well-defined. It is clear that 0 is a DG map and a computation using (4.2) 
shows that (0 0 O)A = AO. Hence 0 is a DG coalgebra map such that jO - u. 
It is not hard to show that (4.3) holds for any DG coalgebra map 8: Coo T(V), 
where u = jO, and so the first statement of Proposition 4.1 is proved. 
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If C is co-commutative, then the image of 0 is contained in the symmetric 
tensors in T(V), which is the image of N: S(V) - T(V). As N is injective 0 
factors uniquely 0 = NO where S: C - S(V) is a DG coalgebra map, and the 
second statement of Proposition 4.1 follows from the first, q.e.d. 

Let M be a DG comodule under the cocommutative DG coalgebra C, and 
let AM: M - M 0 C, A,: C - C 0 C be the comodule structure and coalgebra 
structure maps of M and C respectively. By a coderivation from M to C, we 
mean a DG map a: M-e C such that A,3 = (1 + T)(3 0 1)A\M where T is the 
interchange map (see ? 1). A degree r coderivation from M to C is a degree 
r map a: M e C of DG vector spaces such that the honest DG map y?M - C 
associated to a is a coderivation from 2rM to C. If we form the semi-direct 
product coalgebra M E C with comultiplication 

AM?C(m E c) 
= OEA fmeTAImez Cce(M0M) e(M 0C)E(C0M)e(C0C) 
= (M C)0(MD C), 

then a coderivation a from M to C may be identified with a DC coalgebra map 
M C C such that Oi = idc where i: C M e C is given by i(c) = 0 6 c. 
As My C is connected if C is, we obtain from Proposition 4.1 the following 

COROLLARY 4.4. If M is a DG comodule under the DG coalgebra S(V), 
then there is a one-to-one correspondence between degree r coderivations 
a: M-y S(V) and degree r maps v: M -V of DG vector spaces given by v = a. 

We say that a DG Hopf algebra U is co-commutative or connected if as a 
coalgebra U is co-commutative or connected. If U is a DG Hopf algebra, then 
9PU is a sub-DG Lie algebra of the underlying DG Lie algebra of the algebra 
structure of U. 

THEOREM 4.5. The fmnctor L I-- U(L) is an equivalence between the cate- 
gory of DG Lie algebras and the category of DG co-commutative connected 
Hopf algebras, the quasi-inverse functor being U H-- 9P U. 

PROOF. By the corollary to the PBW theorem we have that 9P U(L) - L so 
it remains to show that UC1(U) -> U, if U is cocommutative and connected. 
We may ignore the differentials. By 3.2 and 3.5, the natural map U(U) U) 
U is infective and hence there is a graded vector space map a: U - 9( U) such 
that the composition 

S(9( U)) -->U)( U) 
U a > 9) 

U) 

is the map j: S(FP(U)) - 9P(U). By Proposition 4.1 there is unique graded co- 
algebra map U 0 ) S()P( U)) such that jO = a. 0 is infective by Proposition 
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3.2 and the composition 

S(9( U)) Uf( u) -U S(f( U)) 

is the identity so UC)(U) -- U, q.e.d. 

5. Principal DG coalgebra bundles and twisting functions 

We retain the notation and conventions of the preceding sections with 
the exception that from now on all DG coalgebras will be assumed to be co- 
commutative and connected. By virtue of 3.1, the operations that we per- 
form will not lead us out of this category. In particular a DG Hopf algebra 
will be of the form U(L) by the Cartier-Milnor-Moore theorem. 

By a (right) action of a DG Lie algebra L on a DG coalgebra E we mean 
a right U(L) module structure on E such that the module structure map 
m: E ? U(L) - E is a map of DG coalgebras. By a principal L bundle with 
base C we mean a triple (E, m, w) where m is an action of L on E and w: E-m C 
is a map of DG coalgebras such that z(e . u) = r(e) -s(u) satisfying the follow- 
ing "local triviality" condition: there exists a graded coalgebra map p: C - E 
with wp = id,, which is not necessarily compatible with the differentials of C 
and E, such that the map ap: C ? U(L) - E given by 9(c u u) = p(c) *u is an 
isomorphism of graded coalgebras, and right U(L) modules. Such a map p 
will be called a local cross-section. 

Example. Let m denote the natural L action on the DG coalgebra 
C ? U(L), and let w be given by r(c ? u) = c (u). Then (C ?D U(L), m, w) 
is a principal U(L) bundle with base C and any other isomorphic to this one 
is said to be trivial. It is clear that a principal bundle (E, m, w) is trivial if 
and only if there exists a local cross section p: C - E such that dEP = pd,. 

A twisting function from a DG coalgebra C to a DG Lie algebra L is a 
linear map z-: C L of degree -1 such that 

Z(1) = 0 

(5.1) dj zd- ?![c +- ]? (9 Z) A=? 2 

This last equation may be written 

(5.2) dizc + zdcc + - i -(- ) zci, C] 
c 0 

2 

if Ac = A c' 0 c'. The following proposition determines the structure of 
principal bundles in terms of twisting functions. 

PROPOSITION 5.3. Let C be a DG coalgebra and let L be a DG Lie algebra. 
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( 1 ) If (E, m, 7r) is a principal L bundle with base C and p: C E is a 
local cross-section, then there is a unique twisting function z: C L such 
that the differential of E is given by 

(5.4) dE(pC'u) = (dEpC).U + ()dgepC *du(L)U 

(5.5) dEpC = p(d c) + E . 

(2) The mapping (E, m, it, p) l z defined by (1) yields a bijection from 
the set of isomorphism classes of principal L bundles with base C and given 
local cross section to the set of twisting functions from C to L. 

PROOF OF (1). Let it': E m U(L) be given by it'(pc u) = s(c)u and recall 
that 7t: E- C is given by ir(pc-u) = c-s(u). Then 

(5.6) idE m(ir (0 7C')AE . 

If D: C-IC is coderivation of arbitrary degree of the coalgebra E, i.e., 

(5.7) AED = (D 0 1 + 1 0 D)AE 

then by combining (5.6) and (5.7) we have 

(5.8) D = m(wD $& 7w' + wr 7'D)z\E. 

Setting z = i'dEp: C-o U(L), and taking D = dE in (5.8) we obtain the formula 

dEP = m(wdE (0 7r' + 7r (0 wr'D)(p 0) p)Ac 
= pdc + m(p 0 )AcI 

which is the same as (5.5). If c e C and Av0c = c' 0 c'', then we have the 
formulas 

AU(L)fZC = (t'o 0 w')(dE 0 1 + 1 0 dE)(P 0 P)ACC = Zc 0 1 + 1 0 ZC 

(5.9) w'd pc = w'dE(pdCc ? E (- 1)'gtpc, - Zc ) 
= zdcc + E (-1)de cizrctzC7 + du(L)zc 

The first formula shows that Im z c L. By virtue of d' = 0 and the co- 
commutativity of C, the second shows that T is a twisting function. We note 
that (5.4) follows from the fact that E in a DG U(L) module. Finally T is 
unique, since (5.5) implies that T = 7M'dEp; hence the proof of (1) is complete. 

PROOF OF (2). The infectivity of the map (E, m, it, p) v-- T is clear, since 
up to isomorphism we may assume that E is the coalgebra C 0 U(L), m is the 
natural U(L) module structure on E, it is given by 7r(c 0 u) = c s(u), and p 
is given by p(c) = c 0 1. Then the only thing needed to determine the iso- 
morphism class of the principal bundle with local cross section is the differ- 
ential of E, which is determined by z- via (5.4) and (5.5). It therefore suffices 
to show that for any twisting function zT, the endomorphism of C 0 U(L) 
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given by (5.4) and (5.5) completes C 0 U(L), m, w, and p and to a principal 
bundle. In other words we must show 

( i ) dE is a degree -1 coderivation of E, 
(ii) d2 =O, 

(iii) dE is compatible with the U(L) module structure on E, and 
(iv) WrdE= de. 

(iii) and (iv) are easy; assuming (i) we shall prove (ii). First note that 
d- = 4[dE, dEl is a degree -2 coderivation of E, so by (5.8) it is determined 
by wd' and y'd2. However wrd2 = d2 w = 0 by (iv). Since the proof (5.9) uses 
only (i) and (iii), we see that (5.9) holds, and wr'd2p =0 because z is a twisting 
function. But by (iii) d' (pc mu) = d pc mu + ?e dU =u d~pc mu and hence 
w'd1 = 0. Thus d' = 0 and so (ii) is proved. 

It remains to show (i). But the following formulas may be verified rather 
easily from (5.4). 

(dE ( 1 + 1 (0 dE)E(pC*U) = (dE X 1 + 1 0 dE)AEpC*AUU 

+ (-1) dAepcA *(du ? 1 + 1 ? du)Auu 

AEdE(pC*U) = AEdEPC*AUU + (-1)dg AEpc*Auduu I 

where * is also used to denote the natural action of U(L) 0& U(L) on E ? E. 
As the last terms of these expressions are equal since du is a coderivation of 
U(L), it suffices in order to show that dE is a coderivation, to show that 
(dE 09 1 + 1 0 dE).EPC = AEdEPC. With patience the following formulas may 
be deduced from (5.5). 

(dE( 1 + 10 dE)AzEP 
- [(p 0 p)(dc 0 1 + 1 0 dc)Ac + (n 0 p)(p0 0 1)(Ac 0 1)Ac 

+ (p 0 Mn)(1 0 p 0 Z.)(1 0C Ac)\c] 

AEdEP 

- [AEpdc + (m 0 p)(p 0 z 0 1)(1 0 T)(Ac 0 1)Ac 
+ (p 0 m)(1 0 P 0 Z)(AC 0 ')C], 

where T: C 0& C C 0& C is the interchange map. As A' is cocommutative 
and co-associative, and as dc is a coderivation of C, we see that these expres- 
sions are equal. Consequently dE is a coderivation, (2) is proved, and the 
proof of Proposition 5.3 is complete. 

6. Universal twisting functions 

Let f(C, L) be the set of twisting functions from the DG coalgebra C to 
the DG Lie algebra L. f(C, L) is a bifunctor covariant in L and contra- 
variant in C. If z E f(C, L), we let E(C, L, z) denote the principal L bundle 
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with base C and local cross-section p (unique up to isomorphism by 5.3) whose 
differential is given by (5.4) and (5.5). 

A DG coalgebra C will be called acyclic if the augmentation C K is a 
homology isomorphism. 

PROPOSITION 6.1. If C is a DG coalgebra, then the functor L f T(C, L) 
is represented by a universal twisting function zTo: C 2(C). Furthermore 
E(C, 2(C), zT,) is acyclic. 

PROPOSITION 6.2. If L is a DG Lie algebra, then the functor C H-- iT(C, L) 
is represented by a universal twisting function zL.: 6(L) L. Furthermore 
E(C(L), L, rL) is acyclic. 

PROOF. Let C = Ker {I: C K} and let 2 = F-1 (see ? 1), so that &2C is 
the (- 1)-fold suspension of the DG vector space C. Let L(f2C) be the free 
Lie algebra generated by 12C and let C: C - L(f2C) be given by TCx = hifrx, 
where w: Coo C is the natural projection. Finally let 2(C) be the DG Lie 
algebra which as a graded Lie algebra is L(&2C), but whose differential is 
given by 

(6.3) dk(c)7cx - -cdcx - - E (- 1)d'V7x, zx]. 
2 

This formula gives de(c) on &IC; it may then be extended uniquely to all of 
L(2C) as a degree -1 derivation. Assuming de(c) = 0 for the moment, we 
shall show that Tc: C 2(C) is a universal twisting function with source C. 
First of all z-c is a twisting function by (6.3). If v: C L is an arbitrary 
twisting function, then as z(1) 0 and L(fC) is a free Lie algebra, there is 
a unique homomorphism 0: L(nC) - L such that zc = zT. Now Ode(L) and dLO 

are degree -1 derivations of L(&W0) with values in L considered as an L(&2) 
module via 0; as z-c and T are twisting functions Ode(L) = dLO on &2C, hence 
identically. Thus 0: 2(C) L is a map of DG Lie algebras such that z>c = Z; 
as 0 is determined by z, we see that zc has the desired universal property. 

The universal enveloping algebra of L(&C) is T(2C), and the extension 
of de(c) to T(&2C) is the degree -1 derivation given by the formula 

(6.4) du(2(c,,7cx =-zdcx - . (XiTXi. 

by virtue of the cocommutativity of C. Consequently U(2(C)) is the cobar 
construction [1] of the DG coalgebra C. Hence d()) = 0, by coassociativity 
of C and so da(c) 0 0 as claimed above. Furthermore E(C, 2(C), zc) is the co- 
algebra C(? T(&iC) with differential given by 5.4, 5.5, and 6.4. Thus 
E(C, 2(C), zc) is the "total space" coalgebra for the cobar construction and is 
acyclic. In fact a contracting homotopy s is given by 
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s(px) = 0 
s(px *Tx1 *** ZTcXq) = (_ 1)degx(x)Sx, * ZCX2 ... ZcXq q > 1 

This concludes the proof of Proposition 6.1. 
Let EL # L be the DG Lie algebra constructed from the DG Lie algebra L 

in the following way. As a graded vector space EL # L = EL ? L, where the 
elements of EL are written Ex, and the elements of L are written Ox if x is 
an element of L. The bracket and differential of L are given by the formulas 

[x,y] = 0 d~x = Ox - Edx 
(6.5) [lx, Oy] = E[x, y] dOx = Odx 

[Ox, Oy] = O[x, y] 

EL # L has homology zero, since if h is given by hOx = Ex, hx = 0, then 
dh + hd = id. By Proposition 2.1, U(2L # L) is acyclic. 

Let 0: U(L) - U(2L # L) be the Hopf algebra extension of the injection 
of L into EL # L given by x I-, Ox. Then 0 is a DG Hopf algebra map and the 
right U(L) module structure on U(YL # L) determined by 0 is an action of L 
on U(2L # L). Let C(L) = U(L # L) 0U(L) K be the "orbit" DG coalgebra of 
this action, and let w: U(2L # L) C(L) be the natural surjection. By the PBW 

theorem we have a coalgebra isomorphism S(YL) 0 U(L) - U(2L # L) given 
by c &u - ic u, where i: S(EL) U(L # L) is the Hopf algebra map which 
extends the inclusion EL - 2L # L. (Note that i is not compatible with dif- 
ferentials.) Consequently wi: S(EL) - C(L) is a graded coalgebra isomorphism 
and the coalgebra map 

p: i(iri)`l: C(L) >U(YL # L) 

is a local cross-section for the action. Therefore U(2L # L) with this L action, 
w, and p is a principal L bundle with base C(L). Proposition 5.3 shows that 
the differential of U(2L # L) may be calculated by 5.4 and 5.5 in terms of a 
twisting function zTL:6(L) o L which we shall now determine. 

Let w': U(2L # L) o U(L) be the Hopf algebra map given by Ex O0 
Ox F- ,x. Then 5.5 implies zTL = W'dEp, so 

TL(IX1 * * * EXq) = 'E! +Ex * * * (Oxj-Edxj) .. 
1 * Xq 

1? q > 

- X1 q= 

Consequently zL: 6(L) L is the composition 

W(L) c n S(tLhe) EL L . 

We can now show that z-, has the desired universal property. In order to 

This content downloaded from 129.105.215.146 on Tue, 1 Apr 2014 10:46:25 AM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


292 DANIEL QUILLEN 

simplify the notation a bit we shall identify the coalgebras S(2L) and C(L) 
via the map wi in what follows. In particular ,L = fLj by the preceding calcu- 
lation. Let z: C - L be an arbitrary twisting function. By 4.1, there is a 
unique graded coalgebra map 0: C o S(YL) such that Or = zL. Now Od0 and 
de(L)0 are two degree -1 coderivations to C(L) from C, which is an S(YL) 
comodule via 0. But j~d0 = jde(L,)O, since z and ZL are twisting functions, 
hence Od0 = d(L,)O, by 4.4, so 0 is a DG coalgebra map from 6 to C(L) such that 
Or = rL. As 0 is determined by z, this proves that ZL is a universal twisting 
function with target L. Finally E(6(L), L,z-L) = U(2L # L) is acyclic, and so 
the proof of Proposition 6.2 is achieved. 

Remarks 6.6. 2(C) is the DG Lie algebra of primitive elements in the 
cobar construction of C. 

6.7. If g is an ordinary Lie algebra over K, and L is the differential 
graded Lie algebra which is g in dimension zero and zero in other dimensions, 
then C(L)q = A q g and the differential on C(L) is the standard one for comput- 
ing Lie algebra homology. This may be seen by noting that in the case at 
hand 6.5 is the well-known formulas [i(x), i(y)] = [d, 0(x)] = 0, [d, i(x)] = 0(x), 
[Ox, i(y)] = i([x, y]), etc. Therefore the functor C is the natural generalization 
to DG Lie algebras of the standard complex for calculating the homology of a 
Lie algebra [15]. 

7. Application of the comparison theorems for spectral sequences 

In this section we shall only consider DG objects which are zero in nega- 
tive dimensions. Recall that a DG coalgebra C (resp. DG Lie algebra L) is 
r-reduced if Cq = 0 (resp. Lq = 0) for q < r, that reduced = 1-reduced, and that 
(DGC)r (resp. (DGL)h) are the categories of r-reduced DG coalgebras (resp. Lie 
algebras). 

PROPOSITION 7.1. Given maps of DG coalgebras 

(7.2) Cf C C 

such that 

(a ) C is "locally" the product of Cb and Cf in the sense that there exists 
a coalgebra map A: C o Cf such that qpi = id and such that (r (8 q)A: C 
Cb 0 Cf is a coalgebra isomorphism, 

(b) C, Cf are reduced and Cb is 2-reduced. Then there is a coalgebra 
spectral sequence 

EPq2H =pH(Cb) 0 H,(Cf) - Hp+q(C) 

independent of the choice of q' and functorial in the diagram (7.2). 
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PROOF. Let FpCb = C I and let FpC be the inverse image FpCb 
under w of FpCb in the DG coalgebra sense, i.e., the cotensor product of FpCb 

and C over C b. We calculate the spectral sequence associated to this filtration 
of C. i induces an isomorphism 0: C f FC of DG coalgebras. Then 
((gr w) 0 0-')A is a canonical map 

(7.3) E?=grC- )C'oCf 
of coalgebras, which is an isomorphism by (a). To calculate the differentials 
we use the isomorphism (w 0D )A of (a) to identify C with Cb 0 Cf as co- 
algebras, in which case we have 

{(r (9 (q)Ac}(x (y) = x 0 y if xCb,ye Cf. 

Denoting the differentials of Cb, Cf, C by db, df, d respectively, using this 
formula and the fact that d is a coderivation for Ac one calculates the formula 

d(x 0 y) = dbx (0 y + E J 0 )degz d (xi' 0) y) 
where ax = 0ix' X x7'. If deg x' < deg x, then since C' 0, deg x' < deg x -2. 
Consequently if deg x = p 

d(x 0y) - dbx0y - (-1)Px dfyeFp2C, 

from which one calculates that Ep, - C I (D Hq(C t ) and Ep2, - Hp(C'b) 0 Hq(C f) 
These isomorphisms are induced by (7.3) which was independent of A, and so 
the proposition is proved. 

COROLLARY 7.4. Let L be reduced and C 2-reduced, and let (E, m, w) be 
a principal L bundle with base C. Then there is a coalgebra spectral 
sequence 

E~q =HpC (? Hq UL Hp+qE. 

PROOF. Apply the proposition to 

U(L) >E >C 

where i(u)= 1E * U. If p is a local cross-section, then by means of the coalgebra 
isomorphism C 0 U(L) o E given by c 0 u I-, pc . u, one may define the map 
a: E U(L) needed for a) by 

P(pc u) = 6(c)u . q.e.d. 

THEOREM 7.5. The adjoint functors 

(DGL)1 ', (DGC)2 
e 

carry weak equivalences into weak equivalences. Moreover the adjunction 
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maps a: SCL L and @: C CSC are always weak equivalences. 

PROOF. Let f: L L' be a weak equivalence and consider the map of 
spectral sequences 

HpCL Hq UL Hp+qE(CL, L, TL) 

1 ~ 1~ 
HpCL' 0 HqUL' Hp+qE(CL', L', EL') 

By 2.1 and 6.2 the map is an isomorphism on the "fiber" and "total space" so by 
the comparison theorems [30] for spectral sequences H~Cf is an isomorphism. 
Similarly by considering the map of spectral sequences induced by the map 
of principal bundles E(CL, 2L, L) - E(CL, L, TL) coming from a: SCL L, 
one sees that a is a weak equivalence. The other assertions of the theorem 
are proved the same way. 
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