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Abstract. We begin with the basic definitions and ideas of model categories,
giving complete arguments in order to make this accessible to the novice. We

go on to develop all of the homotopy theory that we need for our localization

results.
Our localization results are in Part 1, while Part 2 is written to be a

reference for techniques of homotopy theory in model categories. Part 2 log-
ically precedes Part 1; we begin it with the definition of a model category,
and discuss lifting properties, homotopy relations, and fibrant and cofibrant

approximations, and then use these ideas to construct the homotopy category
of a model category. We go on to discuss simplicial model categories, proper
model categories, cofibrantly generated model categories, and the model cate-

gory of diagrams in a cofibrantly generated model category. We define cellular
model categories, which are cofibrantly generated model categories with the
technical properties needed for our localization results. The class of cellular

model categories includes most model categories that come up in practice.
Also in Part 2 we discuss the Reedy model category structure, examples of

which are the model categories of simplicial objects and of cosimplicial objects

in a model category. This enables us to define cosimplicial and simplicial
resolutions of an object in a model category, which we use for our development

of the Dwyer-Kan homotopy function complex between two objects of a model
category. We present a self contained development of these homotopy function

complexes, which serve as a replacement in a general model category for the

additional structure present in a simplicial model category. We end Part 2
with a discussion of homotopy colimits and homotopy limits.

We discuss localizing model category structures in Part 1. We define a

localization of a model category with respect to a class of maps to be a mor-
phism to a new model category that is initial among those that invert the

images of those maps in the homotopy category. There are two types of mor-
phisms of model categories, left Quillen functors and right Quillen functors,
and so there are two types of localizations, left localizations and right localiza-

tions. We also define a left Bousfield localization, which is a left localization

constructed by defining a new model category structure on the original under-
lying category. We define right Bousfield localizations dually. In a Bousfield

localization, all of the old weak equivalences and all of the maps with respect

to which you are localizing are weak equivalences in the new model category
structure.

We show that an arbitrary left proper cellular model category has a left
Bousfield localization with respect to an arbitrary set of maps. We show that

Dror Farjoun’s A-cellular equivalences (for a CW-complex A) are the weak

equivalences of a right Bousfield localization, and we show that this exists for
an arbitrary object A of an arbitrary right proper cellular model category.
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Introduction

Model categories and their homotopy categories

A model category is Quillen’s axiomatization of a place in which you can “do
homotopy theory” [52]. Homotopy theory often involves treating homotopic maps
as though they were the same map, but a homotopy relation on maps is not the
starting point for abstract homotopy theory. Instead, homotopy theory comes from
choosing a class of maps, called weak equivalences, and studying the passage to
the homotopy category, which is the category obtained by localizing with respect
to the weak equivalences, i.e., by making the weak equivalences into isomorphisms
(see Definition 8.3.2). A model category is a category together with a class of
maps called weak equivalences plus two other classes of maps (called cofibrations
and fibrations) satisfying five axioms (see Definition 7.1.3). The cofibrations and
fibrations of a model category allow for lifting and extending maps as needed to
study the passage to the homotopy category.

The homotopy category of a model category. Homotopy theory origi-
nated in the category of topological spaces, which has unusually good technical
properties. In this category, the homotopy relation on the set of maps between two
objects is always an equivalence relation, and composition of homotopy classes is
well defined. In the classical homotopy theory of topological spaces, the passage
to the homotopy category was often described as “replacing maps with homotopy
classes of maps”. Most work was with CW-complexes, though, and whenever a
construction led to a space that was not a CW-complex the space was replaced by
a weakly equivalent one that was. Thus, weakly equivalent spaces were recognized
as somehow “equivalent”, even if that equivalence was never made explicit. If in-
stead of starting with a homotopy relation we explicitly cause weak equivalences
to become isomorphisms, then homotopic maps do become the same map (see
Lemma 8.3.4) and in addition a cell complex weakly equivalent to a space becomes
isomorphic to that space, which would not be true if we were simply replacing maps
with homotopy classes of maps.

In most model categories, the homotopy relation does not have the good prop-
erties that it has in the category of topological spaces unless you restrict yourself
to the subcategory of cofibrant-fibrant objects (see Definition 7.1.5). There are ac-
tually two different homotopy relations on the set of maps between two objects X
and Y : Left homotopy, defined using cylinder objects for X, and right homotopy,
defined using path objects for Y (see Definition 7.3.2). For arbitrary objects X
and Y these are different relations, and neither of them is an equivalence relation.
However, for cofibrant-fibrant objects, the two homotopy relations are the same,
they are equivalence relations, and composition of homotopy classes is well defined
(see Theorem 7.4.9 and Theorem 7.5.5). Every object of a model category is weakly

vii
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equivalent to a cofibrant-fibrant object, and we could thus define a “homotopy cat-
egory of cofibrant-fibrant objects” by taking the cofibrant-fibrant objects of the
model category as our objects and homotopy classes of maps as our morphisms.
Since a map between cofibrant-fibrant objects is a weak equivalence if and only if it
is a homotopy equivalence (see Theorem 7.5.10 and Theorem 7.8.5), this would send
weak equivalences to isomorphisms, and we define the classical homotopy category
of a model category in exactly this way (see Definition 7.5.8).

The classical homotopy category is inadequate, though, because most work
in homotopy theory requires constructions that create objects that may not be
cofibrant-fibrant, even if we start out with only cofibrant-fibrant objects. Thus, we
need a “homotopy category” containing all of the objects of the model category.
We define the Quillen homotopy category of a model category to be the localization
of the category with respect to the class of weak equivalences (see Definition 8.3.2).
For the class of weak equivalences of a model category, this always exists (see
Remark 8.3.3 and Theorem 8.3.5). Thus, the Quillen homotopy category of a model
category contains all of the objects of the model category. The classical homotopy
category is a subcategory of the Quillen homotopy category, and the inclusion of
the classical homotopy category in the Quillen homotopy category is an equivalence
of categories (see Theorem 8.3.9). We refer to the Quillen homotopy category as
simply the homotopy category.

Homotopy function complexes. Homotopy theory involves the construc-
tion of more than just a homotopy category. Dwyer and Kan [31, 32, 33] construct
the simplicial localization of a category with respect to a class of weak equivalences
as the derived functor of the functor that constructs the homotopy category. This
is a simplicial category, i.e., a category enriched over simplicial sets, and so for each
pair of objects there is a simplicial set that is the “function complex” of maps be-
tween the objects. These function complexes capture the “higher order structure”
of the homotopy theory, and taking the set of components of the function com-
plex of maps between two objects yields the set of maps in the homotopy category
between those objects.

Dwyer and Kan show that if you start with a model category, then simplicial sets
weakly equivalent to those function complexes can be constructed using cosimplicial
or simplicial resolutions (see Definition 16.1.2) in the model category. We present a
self-contained development of these homotopy function complexes (see Chapter 17).
Constructing homotopy function complexes requires making an arbitrary choice of
resolutions, but we show that the category of possible choices has a contractible
classifying space (see Theorem 17.5.28), and so there is a distinguished homotopy
class of homotopy equivalences between the homotopy function complexes resulting
from different choices (see Theorem 17.5.29 and Theorem 17.5.30).

Homotopy theory in model categories. Part 2 of this book studies model
categories and techniques of homotopy theory in model categories. Part 2 is in-
tended as a reference, and it logically precedes Part 1. We cover quite a bit of
ground, but the topics discussed in Part 2 are only those that are needed for the
discussion of localization in Part 1, fleshed out to give a reasonably complete de-
velopment. We begin Part 2 with the definition of a model category and with the
basic results that are by now standard (see, e.g., [52, 54, 14, 35]), but we give
complete arguments in an attempt to make this accessible to the novice. For a
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more complete description of the contents of Part 2, see the summary on page 103
and the introductions to the individual chapters. For a description of Part 1, which
discusses localizing model category structures, see below, as well as the summary
on page 3.

Prerequisites. The category of simplicial sets plays a central role in the homo-
topy theory of a model category, even for model categories unrelated to simplicial
sets. This is because a homotopy function complex between objects in a model
category is a simplicial set (see Chapter 17). Thus, we assume that the reader has
some familiarity with the homotopy theory of simplicial sets. For readers without
the necessary background, we recommend the works by Curtis [18], Goerss and
Jardine [39], and May [49].

Localizing model category structures

Localizing a model category with respect to a class of maps does not mean
making the maps into isomorphisms; instead, it means making the images of those
maps in the homotopy category into isomorphisms (see Definition 3.1.1). Since the
image of a map in the homotopy category is an isomorphism if and only if the
map is a weak equivalence (see Theorem 8.3.10), localizing a model category with
respect to a class of maps means making maps into weak equivalences.

Localized model category structures originated in Bousfield’s work on local-
ization with respect to homology ([8]). Given a homology theory h∗, Bousfield
established a model category structure on the category of simplicial sets in which
the weak equivalences were the maps that induced isomorphisms of all homology
groups. A space (i.e., a simplicial set) W was defined to be local with respect
to h∗ if it was a Kan complex such that every map f : X → Y that induced
isomorphisms f∗ : h∗X ≈ h∗Y of homology groups also induced an isomorphism
f∗ : π(Y,W ) ≈ π(X,W ) of the sets of homotopy classes of maps to W . In Bous-
field’s model category structure, a space was fibrant if and only if it was local with
respect to h∗.

The problem that led to Bousfield’s model category structure was that of con-
structing a localization functor for a homology theory. That is, given a homology
theory h∗, the problem was to define for each space X a local space Lh∗X and a
natural homology equivalence X → Lh∗X. There had been a number of partial
solutions to this problem (perhaps the most complete being that of Bousfield and
Kan [14]), but each of these was valid only for some special class of spaces, and
only for certain homology theories. In [8], Bousfield constructed a functorial h∗-
localization for an arbitrary homology theory h∗ and for every simplicial set. In
Bousfield’s model category structure, a fibrant approximation to a space (i.e., a
weak equivalence from a space to a fibrant space) was exactly a localization of that
space with respect to h∗.

Some years later, Bousfield [9, 10, 11, 12] and Dror Farjoun [20, 22, 24]
independently considered the notion of localizing spaces with respect to an arbitrary
map, with a definition of “local” slightly different from that used in [8]: Given a
map of spaces f : A→ B, a space W was defined to be f-local if f induced a weak
equivalence of mapping spaces f∗ : Map(B,W ) ∼= Map(A,W ) (rather than just a
bijection on components, i.e., an isomorphism of the sets of homotopy classes of
maps), and a map g : X → Y was defined to be an f-local equivalence if for every f -
local space W the induced map of mapping spaces g∗ : Map(Y,W )→ Map(X,W )
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was a weak equivalence. An f-localization of a space X was then an f -local space
LfX together with an f -local equivalence X → LfX. Bousfield and Dror Farjoun
constructed f -localization functors for an arbitrary map f of spaces.

Given a map f : A → B of spaces, we construct in Chapters 1 and 2 an f -
local model category structure on the category of spaces. That is, we construct a
model category structure on the category of spaces in which the weak equivalences
are the f -local equivalences, and in which an f -localization functor is a fibrant
approximation functor for the f -local model category. In Chapter 4 we extend this
to establish S-local model category structures for an arbitrary set S of maps in a left
proper (see Definition 13.1.1) cellular model category (see page xi and Chapter 12).

Constructing the localized model category structure. Once we’ve es-
tablished the localized model category structure, a localization of an object in the
category will be exactly a fibrant approximation to that object in the localized
model category, but it turns out that we must first define a natural localization of
every object in order to establish the localized model category structure. The rea-
son for this is that we use the localization functor to identify the local equivalences:
A map is a local equivalence if and only if its localization is a weak equivalence (see
Theorem 3.2.18).

The model categories with which we work are all cofibrantly generated model
categories (see Definition 11.1.2). That is, there is a set I of cofibrations and a set
J of trivial cofibrations such that

• a map is a trivial fibration if and only if it has the right lifting property
with respect to every element of I,
• a map is a fibration if and only if it has the right lifting property with

respect to every element of J , and
• both of the sets I and J permit the small object argument (see Defini-

tion 10.5.15).
For example, in the category Top of (unpointed) topological spaces (see Nota-
tion 1.1.4), we can take for I the set of inclusions Sn−1 → Dn for n ≥ 0 and for J
the set of inclusions

∣∣Λ[n, k]
∣∣→ ∣∣∆[n]

∣∣ for n > 0 and 0 ≤ k ≤ n. The left Bousfield
localization LfTop of Top with respect to a map f in Top (see Definition 3.3.1)
will have the same class of cofibrations as the standard model category structure
on Top, and so the set I of generating cofibrations for Top can serve as a set of gen-
erating cofibrations for LfTop. The difficulty lies in finding a set Jf of generating
trivial cofibrations for LfTop.

A first thought might be to let Jf be the collection of all cofibrations that are
f -local equivalences, since the fibrations of LfTop are defined to be the maps with
the right lifting property with respect to all such maps, but then Jf would not be
a set. The problem is to find a subcollection Jf of the class of all cofibrations that
are f -local equivalences such that

• a map has the right lifting property with respect to every element of Jf if
and only if it has the right lifting property with respect to every cofibration
that is an f -local equivalence, and
• the collection Jf forms a set.

That is the problem that is solved by the Bousfield-Smith cardinality argument.

The Bousfield-Smith cardinality argument. Every map in Top has a cofi-
brant approximation (see Definition 8.1.22) that is moreover an inclusion of cell
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complexes (see Definition 10.7.1 and Proposition 11.2.8). Since Top is left proper
(see Definition 13.1.1), this implies that for a map to have the right lifting property
with respect to all cofibrations that are f -local equivalences, it is sufficient that it
have the right lifting property with respect to all inclusions of cell complexes that
are f -local equivalences (see Proposition 13.2.1).

If we choose a fixed cardinal γ, then the collection of homeomorphism classes
of cell complexes of size no larger than γ forms a set. The cardinality argument
shows that there exists a cardinal γ such that a map has the right lifting property
with respect to all inclusions of cell complexes that are f -local equivalences if and
only if it has the right lifting property with respect to all such inclusions between
cell complexes of size no larger than γ. Thus, we can take as our set Jf a set of
representatives of the isomorphism classes of such “small enough” inclusions of cell
complexes.

Our localization functor Lf is defined by choosing a set of inclusions of cell
complexes Λ{f} and then attaching the codomains of the elements of Λ{f} to a
space by all possible maps from the domains of the elements of Λ{f}, and then
repeating this an infinite number of times (see Section 1.3). In order to make the
cardinality argument, we need to find a cardinal γ such that

(1) if X is a cell complex, then every subcomplex of its localization LfX of
size at most γ is contained in the localization of a subcomplex of X of size
at most γ, and

(2) if X is a cell complex of size at most γ, then LfX is also of size at most
γ.

We are able to do this because
(1) every map from a closed cell to a cell complex factors through a finite

subcomplex of the cell complex (see Corollary 10.7.7), and
(2) given two cell complexes, there is an upper bound on the cardinal of the

set of continuous maps between them, and this upper bound depends only
on the size of the cell complexes

(see Section 2.3).

Cellular model categories. Suppose now that M is a cofibrantly generated
model category and that we wish to localize M with respect to a set S of maps in
M (see Definition 3.3.1). If I is a set of generating cofibrations for M, then

• we define a relative cell complex to be a map built by repeatedly attach-
ing codomains of elements of I along maps of their domains (see Defini-
tion 10.5.8),
• we define a cell complex to be the codomain of a relative cell complex

whose domain is the initial object of M, and
• we define an inclusion of cell complexes to be a relative cell complex whose

domain is a cell complex.
(If M = Top, the category of topological spaces, our set I of generating cofibrations
is the set of inclusions Sn−1 → Dn for n ≥ 0, and so a cell complex is a space built by
repeatedly attaching disks along maps of their boundary spheres.) In such a model
category, every map has a cofibrant approximation (see Definition 8.1.22) that is an
inclusion of cell complexes (see Proposition 11.2.8). Thus, if we assume that M is
left proper (see Definition 13.1.1), then for a map to have the right lifting property
with respect to all cofibrations that are S-local equivalences, it is sufficient that it
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have the right lifting property with respect to all inclusions of cell complexes that
are S-local equivalences (see Proposition 13.2.1). In order to make the cardinality
argument, though, we need to assume that maps between cell complexes in M are
sufficiently well behaved; this leads us to the definition of a cellular model category
(see Definition 12.1.1).

A cellular model category is a cofibrantly generated model category with addi-
tional properties that ensure that

• the intersection of a pair of subcomplexes (see Definition 12.2.5) of a cell
complex exists (see Theorem 12.2.6),

• there is a cardinal σ (called the size of the cells of M; see Definition 12.3.3)
such that if X is a cell complex of size τ , then any map from X to a
cell complex factors through a subcomplex of size at most στ (see Theo-
rem 12.3.1), and
• if X is a cell complex, then there is a cardinal η such that if Y is a cell

complex of size ν (ν ≥ 2), then the set M(X,Y ) has cardinal at most νη

(see Proposition 12.5.1).

Fortunately, these properties follow from a rather minimal set of conditions on the
model category M (see Definition 12.1.1), satisfied by almost all model categories
that come up in practice.

Left localization and right localization. There are two types of morphisms
of model categories: Left Quillen functors and right Quillen functors (see Defini-
tion 8.5.2). The localizations that we have been discussing are all left localizations,
because the functor from the original model category to the localized model cate-
gory is a left Quillen functor that is initial among left Quillen functors whose total
left derived functor takes the images of the designated maps into isomorphisms in
the homotopy category (see Definition 3.1.1). There is an analogous notion of right
localization.

Given a CW-complex A, Dror Farjoun [20, 21, 23, 24] defines a map of
topological spaces f : X → Y to be an A-cellular equivalence if the induced map
of function spaces f∗ : Map(A,X) → Map(A, Y ) is a weak equivalence. He also
defines the class of A-cellular spaces to be the smallest class of cofibrant spaces that
contains A and is closed under weak equivalences and homotopy colimits. We show
in Theorem 5.1.1 and Theorem 5.1.6 that this is an example of a right localization,
i.e., that there is a model category structure in which the weak equivalences are
the A-cellular equivalences and in which the cofibrant objects are the A-cellular
spaces. In fact, we do this for an arbitrary right proper cellular model category
(see Theorem 5.1.1 and Theorem 5.1.6).

The situation here is not as satisfying as it is for left localizations, though.
The left localizations that we construct for left proper cellular model categories
are again left proper cellular model categories (see Theorem 4.1.1), but the right
localizations that we construct for right proper cellular model categories need not
even be cofibrantly generated if not every object of the model category is fibrant.
However, if every object is fibrant, then a right localization will again be right
proper cellular with every object fibrant; see Theorem 5.1.1.



ACKNOWLEDGMENTS xiii

Acknowledgments

I am grateful to the M.I.T. Mathematics Department for putting up with me
over all these years, and making me always feel welcome. Although there has been
a gradual change in the group of topologists there since I was a graduate student,
what has been constant is the warm, supportive attitude that has allowed me always
to think of it as home.

This project grew out of my reading an early draft of Emmanuel Dror Farjoun’s
book [24]; I am grateful to him for his preprints and helpful communications.

Drafts of this book been have been circulating for a number of years, originally
under the title Localization, Cellularization, and Homotopy Colimits and more re-
cently as Localization of Model Categories, and a number of people have provided
helpful comments. Paul Goerss helped correct a problem with the proof of the
existence of the localization model category structure for cellular model categories.
Garth Warner gave several early drafts an amazingly careful review; he found many
obscurities and outright errors, and provided a level of analysis that usually takes
several years and a group of reviewers. Daniel Biss, Dan Christensen, Dan Dug-
ger, Bill Dwyer, Lars Hesselholt, Mike Hopkins, Mark Hovey, Dan Isaksen, Haynes
Miller, George Peschke, Charles Rezk, and Jeff Smith offered corrections and help-
ful suggestions. Of course, any mistakes or omissions that remain are entirely my
responsibility.

Above all, though, I owe a great deal of thanks to Dan Kan. He is responsible
for my first becoming interested in this subject, and I am indebted to him for
countless helpful conversations and suggestions. His view of mathematics has been
a lasting influence upon me, and it is a pleasure to thank him for his support and
encouragement over the years.





Part 1

Localization of Model Category
Structures





Summary of Part 1

Part 1 contains our discussion of localization of model categories. Throughout
Part 1 we freely use the results of Part 2, which is our reference for techniques of
homotopy theory in model categories, and which logically precedes Part 1.

In Chapters 1 and 2 we discuss localization in a category of spaces. We work
in parallel in four different categories:

• The category of (unpointed) topological spaces.
• The category of pointed topological spaces.
• The category of (unpointed) simplicial sets.
• The category of pointed simplicial sets.

Given a map f , in Chapter 1 we discuss f -local spaces, f -local equivalences, and
f -localizations of spaces. We construct an f -localization functor, as well as a con-
tinuous version of the f -localization functor. We discuss commuting localizations
with the total singular complex and geometric realization functors, and compare
localizations in a category of pointed spaces with localizations in a category of
unpointed spaces.

In Chapter 2 we establish a model category structure on the category of spaces
in which the weak equivalences are the f -local equivalences and the fibrant ob-
jects are the f -local spaces. This requires a careful analysis of the cell complexes
constructed by the f -localization functor defined in Chapter 1, and the main argu-
ment involves studying the cardinality of the set of cells in the localization of a cell
complex.

In Chapter 3 we define left and right localizations of a model category M with
respect to a class C of maps in M. A left localization of M with respect to C is a
left Quillen functor defined on M that is initial among those that take the images
in the homotopy category of the elements of C into isomorphisms. A right locali-
zation is the analogous notion for right Quillen functors. We also define Bousfield
localizations, which are localizations obtained by constructing a new model cate-
gory structure on the original underlying category. (The localization of Chapter 2
is a left Bousfield localization.) We discuss local objects, local equivalences, and
localization functors in this more general context.

Chapter 4 contains our main existence results for left localizations. We show
that if M is a left proper cellular model category, then the left Bousfield localization
of M with respect to an arbitrary set S of maps in M exists. The proof requires
that we first define an S-localization functor for objects of M, and then carefully
analyze the cardinality of the set of cells in the localization of a cell complex.

Chapter 5 contains our main existence results for right localizations. If M is
a model category and K is a set of objects of M, then a map f : X → Y in M is
defined to be a K-colocal equivalence if for every object A in K the induced map of
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4 SUMMARY OF PART 1

homotopy function complexes f∗ : map(A,X) → map(A, Y ) is a weak equivalence
(see Definition 3.1.8). We show that if M is a right proper cellular model category
and K is an arbitrary set of objects of M, then the right Bousfield localization of
M with respect to the class of K-colocal equivalences exists.

In Chapter 6 we study fiberwise localizations in a category of spaces. If M is
a category of unpointed spaces and S is a set of maps in M, then for every map
p : X → Z in M we construct a “fiberwise S-localization” p̂ : X̂ → Z of p, which is
a map X → X̂ over Z such that the induced map from the homotopy fiber of p to
that of p̂ is an S-localization. We do this by constructing an appropriate localized
model category structure on the model category of spaces over Z.



CHAPTER 1

Local Spaces and Localization

We describe our categories of spaces in Section 1.1. In Section 1.2 we define
local spaces and local equivalences, and in Sections 1.3 and 1.4 we define a func-
torial localization and establish some of its properties. In Section 1.5 we show that
Postnikov approximations to a space are examples of localizations of the space. In
Section 1.6 we investigate localizations in the categories of simplicial sets and of
topological spaces, and the relationship between them. In Section 1.7 we construct
a continuous variant of our localization functor, and in Section 1.8 we describe the
relationship between localizations of pointed spaces and of unpointed spaces.

1.1. Definitions of spaces and mapping spaces

In Chapters 1 and 2 we will be discussing categories of spaces, where by a space
we mean either a topological space or a simplicial set. We will be working simul-
taneously in several different categories of spaces (topological spaces or simplicial
sets, pointed or unpointed), and a central question will be whether a map of spaces
induces a weak equivalence of mapping spaces. In order to discuss all of these
categories simultaneously, we will refer uniformly to the simplicial mapping space
(i.e., the simplicial set of maps) between two spaces no matter what the category
of spaces. Section 1.1.1 describes exactly what we will mean by a topological space,
Section 1.1.3 describes the various categories of topological spaces or of simplicial
sets that we will consider, and Definition 1.1.6 describes the simplicial mapping
space for each of these categories.

1.1.1. Definition of a topological space. There are several different cate-
gories of topological spaces in common use, and any of these is acceptable for our
purposes.

Notation 1.1.2. We will use Top to denote some category of topological spaces
with the following properties:

(1) Top is closed under small colimits and small limits.
(2) Top contains among its objects the geometric realizations of all simplicial

sets.
(3) If X and Y are objects of Top and K is a simplicial set, then there is a

natural isomorphism of sets

Top(X ×
∣∣K∣∣, Y ) ≈ Top

(
X,Y |K|

)
.

Thus, the reader is invited to assume that Top denotes, e.g.,
• the category of compactly generated Hausdorff spaces (see, e.g., [62]), or
• the category of compactly generated weak Hausdorff spaces (see, e.g., [37,

Appendix A1]), or
• some other category of spaces with our three properties (see, e.g., [63])

5



6 1. LOCAL SPACES AND LOCALIZATION

(see also Section 7.10.1).

1.1.3. Our categories of spaces. We will be working with both topological
spaces (see Section 1.1.1) and simplicial sets, and for each of these we will consider
both the category of pointed spaces and the category of unpointed spaces. In order
to keep the terminology concise, the word space will be used to mean either a
topological space or a simplicial set, and we will use the following notation for our
categories of spaces.

Notation 1.1.4. We will use the following notation for our categories of spaces:

SS : The category of simplicial sets.
SS∗ : The category of pointed simplicial sets.
Top : The category of topological spaces (see Section 1.1.1).
Top∗: The category of pointed topological spaces.

Since much of our discussion will apply to more than one of these categories, we
will use the following notation:

SS(∗) : Either SS or SS∗.
Top(∗): Either Top or Top∗.
Spc : A category of unpointed spaces, i.e., either Top or SS.
Spc∗ : A category of pointed spaces, i.e., either Top∗ or SS∗.
Spc(∗): Any of the categories SS, SS∗, Top, or Top∗.

1.1.5. Simplicial mapping spaces. Each of our categories of spaces is a
simplicial model category (see Definition 9.1.6), and our localization results will
make use of the simplicial mapping space between objects in these categories. We
will sometimes refer to the simplicial mapping space between two objects as the
function complex between those objects.

Definition 1.1.6 (Simplicial mapping spaces).

• If X and Y are objects of SS, then Map(X,Y ) is the simplicial set with n-
simplices the simplicial mapsX×∆[n]→ Y and face and degeneracy maps
induced by the standard maps between the ∆[n] (see Example 9.1.13).
• If X and Y are objects of SS∗, then Map(X,Y ) is the simplicial set with
n-simplices the basepoint preserving simplicial maps X ∧∆[n]+ → Y and
face and degeneracy maps induced by the standard maps between the
∆[n] (see Example 9.1.14).
• If X and Y are objects of Top, then Map(X,Y ) is the simplicial set

with n-simplices the continuous functions X ×
∣∣∆[n]

∣∣ → Y and face and
degeneracy maps induced by the standard maps between the ∆[n] (see
Example 9.1.15).
• If X and Y are objects of Top∗, then Map(X,Y ) is the simplicial set

with n-simplices the continuous functions X ∧
∣∣∆[n]

∣∣+ → Y and face and
degeneracy maps induced by the standard maps between the ∆[n] (see
Example 9.1.16).

Note that, in all cases, Map(X,Y ) is an unpointed simplicial set.
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1.1.7. Total singular complex and geometric realization.

Definition 1.1.8. If X and Y are objects of Spc(∗) (see Notation 1.1.4) and
K is a simplicial set, then X ⊗K and Y K will denote the objects of Spc(∗) defined
by the simplicial model category structure on Spc(∗) (see Example 9.1.13, Exam-
ple 9.1.14, Example 9.1.15, and Example 9.1.16), which are characterized by the
natural isomorphisms of sets

Spc(∗)(X ⊗K,Y ) ≈ SS
(
K,Map(X,Y )

)
≈ Spc(∗)(X,Y

K)

(see Definition 9.1.6). Thus,

If Spc(∗) = SS, then X ⊗K = X ×K and XK = Map(K,X).
If Spc(∗) = SS∗, then X ⊗K = X ∧K+ and XK = Map∗(K+, X).
If Spc(∗) = Top, then X ⊗K = X ×

∣∣K∣∣ and XK = map
(∣∣K∣∣, X)

.
If Spc(∗) = Top∗, then X ⊗K = X ∧

∣∣K∣∣+ and XK = map∗
(∣∣K∣∣+, X)

.

(see Definition 18.2.1).

Lemma 1.1.9. Let K be an unpointed simplicial set.

(1) If X is a topological space (either pointed or unpointed), then there is a
natural isomorphism of (pointed or unpointed) simplicial sets Sing(XK) ≈
(SingX)K .

(2) If L is a simplicial set (either pointed or unpointed), then there is a natural
homeomorphism of (pointed or unpointed) topological spaces

∣∣L ⊗K∣∣ ≈∣∣L∣∣⊗K.

Proof. If X is a pointed topological space, then there are natural isomor-
phisms (

Sing(XK)
)
n

= Top∗
(∣∣∆[n]

∣∣+, XK
)

= Top∗
(∣∣∆[n]

∣∣+,map∗(
∣∣K∣∣+, X)

)
≈ Top∗

(∣∣∆[n]
∣∣+ ∧ ∣∣K∣∣+, X)

≈ Top∗
(∣∣∆[n]+ ∧K+

∣∣, X)
≈ SS∗(∆[n]+ ∧K+,SingX)

≈ SS∗
(
∆[n]+, (SingX)K

)
≈

(
(SingX)K

)
n

.

The proof for the unpointed case is similar.
If L is a pointed simplicial set, then there are natural homeomorphisms∣∣L⊗K∣∣ =

∣∣L ∧K+
∣∣

≈
∣∣L∣∣ ∧ ∣∣K∣∣+

=
∣∣L∣∣⊗K .

The proof for the unpointed case is similar. �

Lemma 1.1.10. If L is a simplicial set and W is a topological space (either
both pointed or both unpointed), then the standard adjunction of the geometric
realization and total singular complex functors extends to a natural isomorphism
of simplicial mapping spaces

Map
(∣∣L∣∣,W )

≈ Map(L,SingW ) .
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Proof. This follows from the natural homeomorphism
∣∣L⊗∆[n]

∣∣ ≈ ∣∣L∣∣⊗∣∣∆[n]
∣∣

(see Lemma 1.1.9). �

Proposition 1.1.11. If A and X are objects of SS(∗) and X is fibrant, then
there is a natural weak equivalence of simplicial sets

Map(A,X) ∼= Map
(∣∣A∣∣, ∣∣X∣∣) .

Proof. Since all simplicial sets are cofibrant, the natural map X → Sing
∣∣X∣∣

induces a weak equivalence Map(A,X) ∼= Map
(
A,Sing

∣∣X∣∣) (see Corollary 9.3.3).
The proposition now follows from Lemma 1.1.10. �

Proposition 1.1.12. If A and X are objects of Top(∗) and A is cofibrant, then
there is a natural weak equivalence of simplicial sets

Map(A,X) ∼= Map(SingA,SingX) .

Proof. Since all topological spaces are fibrant, the natural map
∣∣SingA

∣∣→ A

induces a weak equivalence Map(A,X) ∼= Map
(∣∣SingA

∣∣, X)
(see Corollary 9.3.3).

The proposition now follows from Lemma 1.1.10. �

Definition 1.1.13. Each of our categories of spaces has a functor to SS, and
each of these functors has a left adjoint SS→ Spc(∗), i.e., for an unpointed simplicial
set K and an object X of Spc(∗), we have natural isomorphisms

SS(K,X) ≈ SS(K,X)

SS∗(K+, X) ≈ SS(K,X−)

Top
(∣∣K∣∣, X)

≈ SS(K,SingX)

Top∗
(∣∣K∣∣+, X)

≈ SS(K,SingX−)

where “X−” means “forget the basepoint of X”. If K is an (unpointed) simplicial
set, then we will use Spc(∗)(K) to denote the image of K in Spc(∗) under this left
adjoint. Thus,

If Spc(∗) = SS, then Spc(∗)(K) = K.
If Spc(∗) = SS∗, then Spc(∗)(K) = K+.
If Spc(∗) = Top, then Spc(∗)(K) =

∣∣K∣∣.
If Spc(∗) = Top∗, then Spc(∗)(K) =

∣∣K∣∣+.

Example 1.1.14. In the standard model category structure on Spc(∗), a map
is a fibration if it has the right lifting property (see Definition 7.2.1) with respect
to the maps Spc(∗)(Λ[n, k]) → Spc(∗)(∆[n]) for all n > 0 and 0 ≤ k ≤ n (see
Theorem 7.10.10, Theorem 7.10.11, Theorem 7.10.12, and Theorem 7.10.13).

1.2. Local spaces and localization

1.2.1. f-local spaces and f-local equivalences.

Definition 1.2.2. Let Spc(∗) be one of our categories of spaces (see Nota-
tion 1.1.4) and let f : A→ B be a map between cofibrant spaces in Spc(∗).

(1) A space W is f-local if W is fibrant and the induced map of simplicial sets
f∗ : Map(B,W )→ Map(A,W ) is a weak equivalence. If f is a map ∗ →
A, then an f -local space will also be called A-local or A-null. Bousfield
([11]) has used the term A-periodic for what we here call A-local.
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(2) A map g : X → Y is an f-local equivalence if there is a cofibrant ap-
proximation g̃ : X̃ → Ỹ to g (see Definition 8.1.22) such that for every
f -local space W the induced map of simplicial sets g̃∗ : Map(Ỹ ,W ) →
Map(X̃,W ) is a weak equivalence. (Proposition 9.7.2 implies that if this
is true for any one cofibrant approximation to g then it is true for every
cofibrant approximation to g.)

If Spc(∗) = SS(∗) then every space is cofibrant, and so a map g : X → Y is an f -
local equivalence if and only if for every f -local spaceW the map g∗ : Map(Y,W )→
Map(X,W ) is a weak equivalence. If Spc(∗) = Top(∗) then all CW-complexes are
cofibrant, and so a CW-replacement for a space serves as a cofibrant approximation
to that space.

A paraphrase of Definition 1.2.2 is that a fibrant space is f -local if it makes f
look like a weak equivalence (see Corollary 9.3.3) and a map is an f -local equivalence
if all f -local spaces make it look like a weak equivalence. In Theorem 2.1.3 we show
that there is a model category structure on Spc(∗) in which the fibrant objects are
the local spaces (see Proposition 2.1.4) and the weak equivalences are the f -local
equivalences. For a discussion of the relation of our definition of f -local equivalence
to earlier definitions, see Remark 1.2.14.

1.2.3. Local spaces.

Proposition 1.2.4. Let Spc(∗) be one of our categories of spaces (see Nota-

tion 1.1.4) and let f : A→ B be a map of cofibrant spaces. If X and Y are fibrant
spaces and g : X → Y is a weak equivalence, then X is f -local if and only if Y is
f -local.

Proof. We have a commutative diagram

Map(B,X) //

∼=
��

Map(A,X)

∼=
��

Map(B, Y ) // Map(A, Y )

in which the vertical maps are weak equivalences (see Corollary 9.3.3). Thus, the top
map is a weak equivalence if and only if the bottom map is a weak equivalence. �

Proposition 1.2.5. Let Spc(∗) be one of our categories of spaces and let
f : A → B be a map between cofibrant spaces. If X is an f -local space and Y
is a retract of X, then Y is f -local.

Proof. Axiom M3 (see Definition 7.1.3) implies that Y is fibrant and the map
f∗ : Map(B, Y )→ Map(A, Y ) is a retract of the weak equivalence f∗ : Map(B,X)→
Map(A,X) and is thus a weak equivalence. �

Lemma 1.2.6. Let Spc(∗) be one of our categories of spaces and let f : A→ B be
a map between cofibrant spaces. If X is an f -local space, then any space consisting
of a nonempty union of path components of X is an f -local space.

Proof. A nonempty union of path components of a cofibrant space is a retract
of that space, and so the result follows from Proposition 1.2.5. �
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1.2.7. Changing the map f .

Proposition 1.2.8. Let Spc(∗) be one of our categories of spaces (see Nota-

tion 1.1.4) and let both f and f ′ be maps between cofibrant spaces. If the class of
f -local spaces equals the class of f ′-local spaces, then the class of f -local equiva-
lences equals the class of f ′-local equivalences.

Proof. This follows directly from the definitions. �

Example 1.2.9. Let A be a simplicial set if Spc(∗) = SS(∗) or a cell complex if
Spc(∗) = Top(∗) (see Notation 1.1.4), and let CA be the cone on A. If f : ∗ → A is
the inclusion of a vertex and f ′ : A → CA is the standard inclusion, then a space
is f -local (i.e., A-local; see Definition 1.2.2) if and only if it is f ′-local, and so the
class of f -local equivalences equals the class of f ′-local equivalences.

Proposition 1.2.10. Let Spc(∗) be one of our categories of spaces (see Nota-

tion 1.1.4) and let both f : A → B and f ′ : A′ → B′ be maps between cofibrant
spaces. If there are weak equivalences A→ A′ and B → B′ such that the square

A
f
//

∼=
��

B

∼=
��

A′
f ′
// B′

commutes, then

(1) the class of f -local spaces equals the class of f ′-local spaces and
(2) the class of f -local equivalences equals the class of f ′-local equivalences.

Proof. Proposition 1.2.8 implies that part 1 implies part 2, and so it is suffi-
cient to prove part 1.

If W is a fibrant space, then we have the commutative square

Map(B′,W )
(f ′)∗

//

∼=
��

Map(A′,W )

∼=
��

Map(B,W )
f∗
// Map(A,W )

in which the vertical maps are weak equivalences (see Corollary 9.3.3). Thus, f∗ is
a weak equivalence if and only if (f ′)∗ is a weak equivalence, and so W is f -local if
and only if it is f ′-local. �

Remark 1.2.11. Proposition 1.2.10 (see also Proposition 11.2.8) implies that
we can always replace our map f : A → B with an inclusion of simplicial sets
(if Spc(∗) = SS(∗)) or an inclusion of cell complexes (if Spc(∗) = Top(∗)) without
changing the class of f -local spaces or the class of f -local equivalences. We will often
assume that we have done this, and we will summarize this assumption by saying
that f is an inclusion of cell complexes. (This usage is consistent with the definition
of cell complex in a cofibrantly generated model category (see Definition 11.1.4).)
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1.2.12. f-localization.

Definition 1.2.13. Let Spc(∗) be one of our categories of spaces (see Nota-
tion 1.1.4), and let f : A→ B be a map between cofibrant spaces.

(1) An f-localization of a space X is an f -local space X̂ (see Definition 1.2.2)
together with an f -local equivalence jX : X → X̂. We will sometimes
use the phrase f-localization to refer to the space X̂ without explicitly
mentioning the f -local equivalence j. A cofibrant f-localization of X is
an f -localization in which the f -local equivalence is also a cofibration.

(2) An f-localization of a map g : X → Y is an f -localization (X̂, jX) of X,
an f -localization (Ŷ , jY ) of Y , and a map ĝ : X̂ → Ŷ such that the square

X
g
//

jX
��

Y

jY
��

X̂ ĝ
// Ŷ

commutes. We will sometimes use the term f-localization to refer to the
map ĝ without explicitly mentioning the f -localizations (X̂, jX) of X and
(Ŷ , jY ) of Y .

We will show in Corollary 1.4.13 that all spaces and maps have f -localizations.
The reader should note the similarity between the definitions of f -localization

and fibrant approximation (see Definition 8.1.2 and Definition 8.1.22). In Theo-
rem 2.1.3, we prove that there is an f -local model category structure on Spc(∗) in
which the fibrant objects are the local spaces and the weak equivalences are the
f -local equivalences. In the f -local model category, an f -localization of a space or
map is exactly a fibrant approximation to that space or map.

Remark 1.2.14. In most earlier work on localization [22, 20, 25, 24, 11, 16]
an f -local equivalence was defined to be a map g : X → Y such that for every f -
local space W the map of function spaces g∗ : Map(Y,W )→ Map(X,W ) is a weak
equivalence. In fact, this earlier work considered only the subcategory of cofibrant
spaces. Since a cofibrant space is a cofibrant approximation to itself, this earlier
definition coincides with ours.

1.2.15. f-local equivalences.

Proposition 1.2.16. Let Spc(∗) be one of our categories of spaces (see No-

tation 1.1.4). If f : A → B is a map between cofibrant spaces, then every weak
equivalence is an f -local equivalence.

Proof. Since a cofibrant approximation to a weak equivalence must also be a
weak equivalence, this follows from Corollary 9.3.3. �

Proposition 1.2.17. Let Spc(∗) be one of our categories of spaces (see Nota-

tion 1.1.4). If f : A→ B is a map between cofibrant spaces, then the class of f -local
equivalences satisfies the “two out of three” axiom, i.e., if g and h are composable
maps and if two of g, h, and hg are f -local equivalences, then so is the third.
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Proof. Given maps g : X → Y and h : Y → Z, we can apply a functorial
cofibrant approximation (see Proposition 8.1.17) to g and h to obtain the diagram

X̃
g̃
//

��

Ỹ
h̃ //

��

Z̃

��

X g
// Y

h
// Z

in which g̃, h̃, and h̃g̃ are cofibrant approximations to g, h, and hg, respectively.
If W is a fibrant space, then two of the maps g̃∗ : Map(Ỹ ,W ) → Map(X̃,W ),
h̃∗ : Map(Z̃,W ) → Map(Ỹ ,W ), and (h̃g̃)∗ : Map(Z̃,W ) → Map(X̃,W ) are weak
equivalences, and so the third is as well. �

Proposition 1.2.18. Let Spc(∗) be one of our categories of spaces (see Nota-

tion 1.1.4). If f : A → B is a map between cofibrant spaces, then a retract (see
Definition 7.1.1) of an f -local equivalence is an f -local equivalence.

Proof. If g : X → Y is an f -local equivalence and h : V → W is a retract of
g, then we apply a functorial cofibrant approximation (see Proposition 8.1.17) to
obtain cofibrant approximations g̃ : X̃ → Ỹ to g and h̃ : Ṽ → W̃ such that h̃ is a
retract of g̃. If Z is an f -local space, then h̃∗ : Map(W̃ , Z)→ Map(Ṽ , Z) is then a
retract of the weak equivalence g̃∗ : Map(Ỹ , Z)→ Map(X̃, Z), and so h̃∗ is a weak
equivalence. �

Proposition 1.2.19. Let Spc(∗) be one of our categories of spaces (see Nota-

tion 1.1.4) and let f : A→ B be a map of cofibrant spaces. If g : X → Y is a cofi-
bration of cofibrant spaces, then g is an f -local equivalence if and only if it has the
left lifting property (see Definition 7.2.1) with respect to the map W∆[n] →W ∂∆[n]

for all n ≥ 0 and all f -local spaces W .

Proof. This follows from Proposition 9.4.5 and Lemma 9.4.7. �

Proposition 1.2.20. Let Spc(∗) be one of our categories of spaces (see Nota-

tion 1.1.4) and let f : A→ B be a map of cofibrant spaces. If T is a totally ordered
set and X : T → Spc(∗) is a functor such that if s, t ∈ T and s ≤ t then Xs → Xt

is a cofibration of cofibrant spaces that is an f -local equivalence, then for every
s ∈ T the map Xs → colimt≥s Xt is an f -local equivalence.

Proof. This follows from Proposition 1.2.19, Lemma 10.3.5, and Proposi-
tion 10.3.6. �

Proposition 1.2.21. Let Spc(∗) be one of our categories of spaces (see Nota-

tion 1.1.4) and let f : A → B be a map of cofibrant spaces. If g : C → D is a
cofibration between cofibrant spaces that is also an f -local equivalence and if the
square

C //

g

��

X

h

��

D // Y

is a pushout, then h is an f -local equivalence.
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Proof. Factor the map C → X as C u−→ P
v−→ X, where u is a cofibration

and v is a trivial fibration. If we let Q be the pushout D qC P , then we have the
commutative diagram

C
u //

g

��

P
v //

k

��

X

h

��

D s
// Q

t
// Y

in which u and s are cofibrations, and so P and Q are cofibrant. Since k is a cofibra-
tion, we are in a proper model category (see Theorem 13.1.11 and Theorem 13.1.13),
and Proposition 7.2.14 implies that Y is the pushout QqP X, the map t is a weak
equivalence. Thus, k is a cofibrant approximation to h (see Definition 8.1.22), and
so it is sufficient to show that k induces a weak equivalence of mapping spaces to
every f -local space. Since g is a cofibration and an f -local equivalence and k is a
cofibration, this follows from Proposition 1.2.19 and Lemma 7.2.11. �

Proposition 1.2.22. Let Spc(∗) be one of our categories of spaces (see Nota-

tion 1.1.4) and let f : A→ B be an inclusion of cell complexes (see Remark 1.2.11).
If I is a set of f -local equivalences that are cofibrations between cofibrant spaces,
then a transfinite composition of pushouts of elements of I is also an f -local equiv-
alence.

Proof. Proposition 1.2.21 implies that every pushout of an element of I is an
f -local equivalence. If λ is an ordinal and

X0 → X1 → X2 → · · · → Xβ → · · · (β < λ)

is a λ-sequence of pushouts of elements of I, then Proposition 17.9.4 implies that
we can find a λ-sequence of cofibrations together with a map of λ-sequences

X̃0
//

��

X̃1
//

��

X̃2
//

��

· · · // X̃β
//

��

· · ·

X0
// X1

// X2
// · · · // Xβ // · · ·

such that
(1) each vertical map X̃β → Xβ is a cofibrant approximation to Xβ ,
(2) each map X̃β → X̃β+1 is a cofibration, and
(3) the map colimβ<λ X̃β → colimβ<λXβ is a cofibrant approximation to

colimβ<λXβ .

IfW is an f -local space then Map(colimβ<λ X̃β ,W ) is isomorphic to limβ<λ Map(X̃β ,W ).
Since each Xβ → Xβ+1 is an f -local equivalence and each X̃β → X̃β+1 is a cofibra-
tion, each Map(X̃β+1,W )→ Map(X̃β ,W ) is a trivial fibration. Thus,

Map(X̃0,W )← Map(X̃1,W )← Map(X̃2,W )← · · · ← Map(X̃β ,W )← · · ·
is a tower of trivial fibrations of simplicial sets, and so the composition

Map(colim
β<λ

X̃β ,W )→ lim
β<λ

Map(X̃β ,W )→ Map(X̃0,W )

is a weak equivalence, and so the composition X0 → colimβ<λXβ is an f -local
equivalence. �
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1.2.23. f-local Whitehead theorems.

Lemma 1.2.24. Let Spc(∗) be one of our categories of spaces (see Notation 1.1.4)
and let f : A → B be a map between cofibrant spaces. If W is an f -local space
and g : X → Y is an f -local equivalence of cofibrant spaces, then g induces an
isomorphism of the sets of simplicial homotopy classes of maps g∗ : [Y,W ] ≈ [X,W ].

Proof. This follows from Proposition 9.5.10. �

Theorem 1.2.25 (Strong f -local Whitehead theorem). Let Spc(∗) be one of

our categories of spaces (see Notation 1.1.4) and let f : A → B be a map between
cofibrant spaces. If X and Y are cofibrant f -local spaces and g : X → Y is an
f -local equivalence, then g is a simplicial homotopy equivalence.

Proof. This follows from Lemma 1.2.24 and Proposition 9.6.9. �

Theorem 1.2.26 (Weak f -local Whitehead theorem). Let Spc(∗) be one of our

categories of spaces (see Notation 1.1.4) and let f : A → B be a map between
cofibrant spaces. If X and Y are f -local spaces and g : X → Y is an f -local
equivalence, then g is a weak equivalence.

Proof. Choose a cofibrant approximation g̃ : X̃ → Ỹ to g such that jX : X̃ →
X and jY : Ỹ → Y are trivial fibrations (see Proposition 8.1.23). Proposition 1.2.4
implies that X̃ and Ỹ are f -local spaces, and Proposition 1.2.16 and Proposi-
tion 1.2.17 imply that g̃ is an f -local equivalence. Theorem 1.2.25 and Theo-
rem 7.8.5 now imply that g̃ is a weak equivalence, which implies that g is a weak
equivalence. �

1.2.27. Characterizing f-local spaces and f-local equivalences.

Theorem 1.2.28. Let Spc(∗) be one of our categories of spaces (see Nota-

tion 1.1.4) and let f : A→ B be a map between cofibrant spaces. If X is a fibrant

space and j : X → X̂ is an f -localization of X (see Definition 1.2.13), then j is a
weak equivalence if and only if X is f -local.

Proof. If X is f -local, then Theorem 1.2.26 implies that j is a weak equiva-
lence. Conversely, if j is a weak equivalence, then Proposition 1.2.4 implies that X
is f -local. �

Theorem 1.2.29. Let Spc(∗) be one of our categories of spaces (see Nota-

tion 1.1.4) and let f : A→ B be a map between cofibrant spaces. If ĝ : X̂ → Ŷ is an
f -localization of g : X → Y (see Definition 1.2.13), then g is an f -local equivalence
if and only if ĝ is a weak equivalence.

Proof. Proposition 1.2.17 implies that g is an f -local equivalence if and only
if ĝ is an f -local equivalence, and Theorem 1.2.26 and Proposition 1.2.16 imply
that ĝ is an f -local equivalence if and only if it is a weak equivalence. �

If Spc(∗) is one of our categories of spaces (see Notation 1.1.4) and f : A → B
is a map between cofibrant spaces, then in Definition 1.4.11 we define a functorial
f -localization (Lf , j). Theorem 1.2.28 then implies that a fibrant space X is f -
local if and only if the localization map j(X) : X → LfX is a weak equivalence
(see Theorem 1.4.14), and Theorem 1.2.29 implies that a map g : X → Y is an
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f -local equivalence if and only if Lf (g) : LfX → LfY is a weak equivalence (see
Theorem 1.4.15).

1.2.30. Topological spaces and simplicial sets.

Proposition 1.2.31. Let f : A → B be a map between cofibrant spaces in
Top(∗) (see Notation 1.1.4).

(1) A space is f -local if and only if it is
∣∣Sing f

∣∣-local.

(2) A map g : X → Y is an f -local equivalence if and only if it is a
∣∣Sing f

∣∣-
local equivalence.

Proof. This follows from Proposition 1.2.10 and Proposition 1.2.8. �

Proposition 1.2.32. Let f : A→ B be a map in SS(∗) (see Notation 1.1.4).

(1) A space is f -local if and only if it is
(
Sing

∣∣f ∣∣)-local.

(2) A map g : X → Y is an f -local equivalence if and only if it is a
(
Sing

∣∣f ∣∣)-
local equivalence.

Proof. Since every simplicial set is cofibrant, this follows from Proposition 1.2.10
and Proposition 1.2.8. �

Proposition 1.2.33. If f : A→ B is a map in SS(∗) (see Notation 1.1.4), then

a topological space W in Top(∗) is
∣∣f ∣∣-local if and only if SingW is f -local.

Proof. Lemma 1.1.10 gives us the commutative square

Map
(∣∣B∣∣,W )

//

≈
��

Map
(∣∣A∣∣,W )
≈
��

Map(B,SingW ) // Map(A,SingW )

in which the vertical maps are isomorphisms, from which the proposition follows.
�

Proposition 1.2.34. If f : A → B is a map in SS(∗) (see Notation 1.1.4) and

K is a fibrant simplicial set in SS(∗), then K is f -local if and only if
∣∣K∣∣ is

∣∣f ∣∣-local.

Proof. Since K is fibrant the natural map K → Sing
∣∣K∣∣ is a weak equivalence

of fibrant spaces, and so we have the commutative square

Map(B,K) //

≈
��

Map(A,K)

≈
��

Map
(
B,Sing

∣∣K∣∣) // Map
(
A,Sing

∣∣K∣∣)
in which the vertical maps are weak equivalences (see Corollary 9.3.3). Thus, K
is f -local if and only if Sing

∣∣K∣∣ is f -local, and so the proposition follows from
Proposition 1.2.33. �

Proposition 1.2.35. If f : A → B is a map in SS(∗) (see Notation 1.1.4),
then the map g : C → D in SS(∗) is an f -local equivalence if and only if the map∣∣g∣∣ : ∣∣C∣∣→ ∣∣D∣∣ in Top(∗) is a

∣∣f ∣∣-local equivalence.
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Proof. Since every simplicial set is cofibrant, g is an f -local equivalence if and
only if for every f -local simplicial setK the map of simplicial sets g∗ : Map(D,K)→
Map(C,K) is a weak equivalence. If K is an f -local simplicial set then K is fibrant,
and so Corollary 9.3.3 implies that g is an f -local equivalence if and only if, for
every f -local simplicial set K, the map of simplicial sets g∗ : Map

(
D,Sing

∣∣K∣∣) →
Map

(
C,Sing

∣∣K∣∣) is a weak equivalence. Lemma 1.1.10 implies that this is true
if and only if Map

(∣∣D∣∣, ∣∣K∣∣) → Map
(∣∣C∣∣, ∣∣K∣∣) is a weak equivalence. Proposi-

tion 1.2.33 and Proposition 1.2.34 imply that this is true if and only if for every
∣∣f ∣∣-

local topological space W the map Map
(∣∣D∣∣,W )

→ Map
(∣∣C∣∣,W )

is a weak equiv-
alence. Since

∣∣C∣∣ and
∣∣D∣∣ are cofibrant, this is true if and only if

∣∣g∣∣ : ∣∣C∣∣→ ∣∣D∣∣ is
a

∣∣f ∣∣-local equivalence. �

Proposition 1.2.36. If f : A→ B is a map in SS(∗) (see Notation 1.1.4), then

the map g : X → Y in Top(∗) is a
∣∣f ∣∣-local equivalence if and only if the map

(Sing g) : SingX → Sing Y in SS(∗) is an f -local equivalence.

Proof. The map
∣∣Sing g

∣∣ : ∣∣SingX
∣∣ → ∣∣Sing Y

∣∣ is a cofibrant approximation
to g (see Definition 8.1.22), and so g is a

∣∣f ∣∣-local equivalence if and only if, for
every

∣∣f ∣∣-local topological space W , the map of simplicial sets Map
(∣∣Sing Y

∣∣,W )
→

Map
(∣∣SingX

∣∣,W )
is a weak equivalence. Lemma 1.1.10 implies that this is true if

and only if, for every
∣∣f ∣∣-local topological spaceW , the map Map(Sing Y,SingW )→

Map(SingX,SingW ) is a weak equivalence. If K is an f -local simplicial set, then
K is fibrant, and so the natural map K → Sing

∣∣K∣∣ is a weak equivalence of fi-
brant objects. Thus, Corollary 9.3.3 and Proposition 1.2.34 imply that g is a∣∣f ∣∣-local equivalence if and only if, for every f -local simplicial set K, the map
Map

(
Sing Y,Sing

∣∣K∣∣)→ Map
(
SingX,Sing

∣∣K∣∣) is a weak equivalence. Since every
simplicial set is cofibrant, this completes the proof. �

1.3. Constructing an f-localization functor

If Spc(∗) is one of our categories of spaces (see Notation 1.1.4) and f : A → B
is a map between cofibrant spaces, we describe in this section how to construct a
functorial f -localization on Spc(∗) (see Definition 1.2.13). The construction that
we present is essentially the one used by Bousfield in [9].

1.3.1. Horns on f . If Spc(∗) is one of our categories of spaces (see Nota-
tion 1.1.4) and f : A→ B is a map between cofibrant spaces, we want to construct
a functorial f -localization (see Definition 1.2.13) on Spc(∗). That is, for every space
X we want to construct a natural f -local space X̂ together with a natural f -local
equivalence X → X̂. Remark 1.2.11 implies that we can assume that f is an
inclusion of cell complexes, and we will assume that f is such an inclusion.

If X̂ is to be an f -local space, then it must first of all be fibrant. Thus, the
map X̂ → ∗ must have the right lifting property with respect to the inclusions
Spc(∗)(Λ[n, k])→ Spc(∗)(∆[n]) (see Definition 1.1.13) for all n > 0 and n ≥ k ≥ 0.

If X̂ is a fibrant space, then f∗ : Map(B, X̂)→ Map(A, X̂) is already a fibration
of simplicial sets (see Proposition 9.3.1). Thus, if X̂ is fibrant, then the assertion
that X̂ is f -local is equivalent to the assertion that f∗ is a trivial fibration of
simplicial sets. Since a map of simplicial sets is a trivial fibration if and only if
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it has the right lifting property with respect to the inclusions ∂∆[n] → ∆[n] for
n ≥ 0, this implies that a fibrant space X̂ is f -local if and only if the dotted arrow
exists in every solid arrow diagram of the form

∂∆[n] //

��

Map(B, X̂)

��

∆[n] //

99

Map(A, X̂) ,

and the isomorphisms of Definition 1.1.8 imply that this is true if and only if the
dotted arrow exists in every solid arrow diagram of the form

A⊗∆[n]qA⊗∂∆[n] B ⊗ ∂∆[n] //

��

X̂

��
B ⊗∆[n] //

55

∗ .

Thus, a space X̂ is f -local if and only if the map X̂ → ∗ has the right lifting
property with respect to the maps Spc(∗)(Λ[n, k])→ Spc(∗)(∆[n]) for all n > 0 and
n ≥ k ≥ 0 and the maps A⊗∆[n] qA⊗∂∆[n] B ⊗ ∂∆[n] → B ⊗∆[n] for all n ≥ 0.
This is the motivation for the following definition of Λ{f}, the augmented set of
f-horns.

Definition 1.3.2. Let Spc(∗) be one of our categories of spaces (see Nota-
tion 1.1.4) and let f : A→ B be an inclusion of cell complexes (see Remark 1.2.11).

• The set Λ{f} of horns on f is the set of maps

Λ{f} = {A⊗∆[n]qA⊗∂∆[n] B ⊗ ∂∆[n]→ B ⊗∆[n]
∣∣ n ≥ 0} .

If Spc(∗) = Spc∗ and f is the map f : ∗ → A, then Λ{f} is the set of maps

Λ{A} = {A⊗ ∂∆[n]→ A⊗∆[n]
∣∣ n ≥ 0} ,

and it will also be called the set of horns on A.
• The augmented set of f-horns Λ{f} is the set of maps

Jf = Λ{f} ∪ {Spc(∗)(Λ[n, k])→ Spc(∗)(∆[n])
∣∣ n > 0, n ≥ k ≥ 0}

(see Definition 1.1.13).

Proposition 1.3.3. If Spc(∗) is one of our categories of spaces (see Nota-

tion 1.1.4) and f : A → B is an inclusion of cell complexes (see Remark 1.2.11),
then a space X is f -local if and only if the map X → ∗ has the right lifting property
with respect to every element of the augmented set of f -horns (see Definition 1.3.2).

Proof. This follows from the discussion preceding Definition 1.3.2. �

We will construct the map X → X̂ as a transfinite composition (see Defini-
tion 10.2.2) of inclusions of cell complexes X = E0 → E1 → E2 → · · · → Eβ →
· · · (β < λ), where X̂ = colimβ<λ Eβ . To ensure that X̂ is f -local, we will
construct the Eβ so that if the map C → D is an element of Λ{f} then

(1) for every map h : C → X̂ there is an ordinal α < λ such that h factors
through the map Eα → X̂, and
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(2) for every ordinal α < λ the dotted arrow exists in every solid arrow
diagram of the form

C //

��

Eα // Eα+1

D

66

.

Thus, if the map C → D is an element of Λ{f}, then the dotted arrow will exist in
every solid arrow diagram of the form

C //

��

X̂

D

??

and so the map X̂ → ∗ will have the right lifting property with respect to every
element of Λ{f} (see Proposition 1.3.3).

1.3.4. Choice of the ordinal λ. If A and B are finite complexes, then we
let λ be the first infinite cardinal. Otherwise, we let λ be the first cardinal greater
than that of the set of simplices (or cells) of AqB (in which case λ is a successor
cardinal). In either case, λ is a regular cardinal (see Proposition 10.1.14).

Suppose we now construct a λ-sequence (see Definition 10.2.1) of inclusions of
cell complexes

X = E0 → E1 → E2 → · · · → Eβ → · · · (β < λ)

and let X̂ = colimβ<λ Eβ . If A⊗∆[n]qA⊗∂∆[n] B ⊗ ∂∆[n]→ X̂ is any map, then
for each simplex (or cell) of A⊗∆[n]qA⊗∂∆[n]B⊗ ∂∆[n] there is an ordinal β < λ

such that that simplex (or cell) lands in Eβ . (If Spc(∗) = Top(∗), then this follows
from Corollary 10.7.5.) If we let α be the union of the ordinals β obtained in this
way for each simplex (or cell) in A⊗∆[n]qA⊗∂∆[n] B ⊗ ∂∆[n], then the regularity
of λ ensures that α < λ. Thus, our map factors through Eα. The same argument
applies to maps Spc(∗)(Λ[n, k])→ X̂.

1.3.5. Constructing the sequence. We begin the sequence by letting E0 =
X. If β < λ and we have constructed the sequence through Eβ , we let

Cβ =
∐

(C→D)∈Λ{f}
Spc(∗)(C,E

β)

C and Dβ =
∐

(C→D)∈Λ{f}
Spc(∗)(C,E

β)

D .

We then have a natural map Cβ → Eβ , and we define Eβ+1 by letting the square

Cβ //

��

Eβ

��

Dβ // Eβ+1

be a pushout. If γ is a limit ordinal, we let Eγ = colimβ<γ Eβ . We let X̂ =
colimβ<λ Eβ .
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It remains only to show that the map X → X̂ that we have constructed is an
f -local equivalence. This will follow from Theorem 1.3.11.

1.3.6. Horns on f and f-local equivalences.

Proposition 1.3.7. If Spc(∗) is one of our categories of spaces (see Nota-

tion 1.1.4) and f : A → B is an inclusion of cell complexes (see Remark 1.2.11),
then every horn on f (see Definition 1.3.2) is an f -local equivalence.

Proof. Since every horn on f is a cofibration between cofibrant spaces, this
follows from Proposition 9.4.5 and Proposition 9.4.8. �

Definition 1.3.8. Let Spc(∗) be one of our categories of spaces (see Nota-
tion 1.1.4). If f : A→ B is an inclusion of cell complexes (see Remark 1.2.11), then
a relative Λ{f}-cell complex is defined to be a map that can be constructed as a
transfinite composition (see Definition 10.2.2) of pushouts (see Definition 7.2.10)
of elements of Λ{f} (see Definition 1.3.2). If the map from the initial object to a
space X is a relative Λ{f}-cell complex, then X will be called a Λ{f}-cell complex.

Theorem 1.3.9. Let Spc(∗) be one of our categories of spaces (see Notation 1.1.4).

If f : A→ B is an inclusion of cell complexes (see Remark 1.2.11), then every rela-

tive Λ{f}-cell complex is both a cofibration and an f -local equivalence.

Proof. Since every element of Λ{f} is a cofibration and cofibrations are closed
under both pushouts and transfinite compositions (see Proposition 10.3.4), every
relative Λ{f}-cell complex is a cofibration, and Proposition 1.2.22 implies that a
relative Λ{f}-cell complex is an f -local equivalence. �

Proposition 1.3.10. Let Spc(∗) be one of our categories of spaces (see Nota-

tion 1.1.4). If f : A → B is an inclusion of cell complexes (see Remark 1.2.11),

then for every space X the map X → X̂ constructed in Section 1.3.5 is a relative
Λ{f}-cell complex.

Proof. The mapX → X̂ is constructed as a transfinite composition of pushouts
of coproducts of elements of Λ{f}, and so the result follows from Proposition 10.2.14.

�

Theorem 1.3.11. Let Spc(∗) be one of our categories of spaces (see Nota-

tion 1.1.4). If f : A → B is an inclusion of cell complexes (see Remark 1.2.11),

then for every space X the map X → X̂ constructed in Section 1.3.5 is a natural
f -localization of X.

Proof. This follows from Proposition 1.3.10, Theorem 1.3.9, Proposition 1.3.3,
and the discussion following Proposition 1.3.3. �

1.4. Concise description of the f-localization

1.4.1. f-cofibrations and f-injectives.

Definition 1.4.2. Let Spc(∗) be one of our categories of spaces (see Nota-
tion 1.1.4) and let f : A→ B be an inclusion of cell complexes (see Remark 1.2.11).
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(1) A Λ{f}-injective is defined to be a map that has the right lifting property
(see Definition 7.2.1) with respect to every element of Λ{f} (see Defini-
tion 1.3.2). A space X will be called a Λ{f}-injective if the map X → ∗
is a Λ{f}-injective. If f is a cofibration f : ∗ → A, then a Λ{f}-injective
will also be called a Λ{A}-injective.

(2) A Λ{f}-cofibration is defined to be a map that has the left lifting property
with respect to all Λ{f}-injectives. If the map from the initial object to
a space X is a Λ{f}-cofibration, then X will be called Λ{f}-cofibrant. If
f is a cofibration f : ∗ → A, then a Λ{f}-cofibration will also be called a
Λ{A}-cofibration, and a Λ{f}-cofibrant space will also be called a Λ{A}-
cofibrant space.

Remark 1.4.3. The term Λ{f}-injective comes from the theory of injective
classes ([36]). A space X is a Λ{f}-injective if and only if it is injective in the sense
of [36] relative to the elements of Λ{f}, and we will show in Proposition 1.4.5 that
a map p : X → Y is a Λ{f}-injective if and only if, in the category (Spc(∗) ↓Y ) of
spaces over Y (see Definition 11.8.1), the object p is injective relative to the class
of maps whose image under the forgetful functor (Spc(∗) ↓Y )→ Spc(∗) is a relative
Λ{f}-cell complex (see Definition 1.3.8).

Proposition 1.4.4. Let Spc(∗) be one of our categories of spaces (see Nota-

tion 1.1.4). If f : A → B is an inclusion of cell complexes (see Remark 1.2.11),

then a map p : X → Y is a Λ{f}-injective if and only if it is a fibration with the
homotopy right lifting property with respect to f .

Proof. This follows from Lemma 9.4.7. �

Proposition 1.4.5. Let Spc(∗) be one of our categories of spaces (see Nota-

tion 1.1.4). If f : A→ B is an inclusion of cell complexes (see Remark 1.2.11), then

every relative Λ{f}-cell complex (see Definition 1.3.8) is a Λ{f}-cofibration.

Proof. This follows from Proposition 1.4.4. �

Proposition 1.4.6. Let Spc(∗) be one of our categories of spaces (see Nota-

tion 1.1.4). If f : A→ B is an inclusion of cell complexes (see Remark 1.2.11), then

every trivial cofibration is a Λ{f}-cofibration.

Proof. This follows from Proposition 7.2.3. �

Proposition 1.4.7. Let Spc(∗) be one of our categories of spaces (see Nota-

tion 1.1.4). If f : A→ B is an inclusion of cell complexes (see Remark 1.2.11), then

a space X is a Λ{f}-injective if and only if it is f -local (see Definition 1.2.2).

Proof. This follows from Proposition 9.4.5 and Proposition 1.4.4. �

1.4.8. The functorial localization.

Proposition 1.4.9. Let Spc(∗) be one of our categories of spaces (see Nota-

tion 1.1.4) and let f : A→ B be an inclusion of cell complexes (see Remark 1.2.11).

If j : X → X̂ is a relative Λ{f}-cell complex and X̂ is a Λ{f}-injective, then the

pair (X̂, j) is a cofibrant f -localization of X.
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Proof. This follows from Proposition 1.4.7 and Theorem 1.3.9. �

Theorem 1.4.10. Let Spc(∗) be one of our categories of spaces (see Nota-

tion 1.1.4). If f : A → B is an inclusion of cell complexes (see Remark 1.2.11),
then there is a natural factorization of every map X → Y as

X
j−→ Ef

p−→ Y

in which j is a relative Λ{f}-cell complex (see Definition 1.3.8) and p is a Λ{f}-
injective (see Definition 1.4.2).

Proof. This follows from Proposition 10.5.16. �

Definition 1.4.11. Let Spc(∗) be one of our categories of spaces (see Nota-
tion 1.1.4) and let f : A→ B be an inclusion of cell complexes (see Remark 1.2.11).
The f-localization of a space X is the space LfX obtained by applying the fac-
torization of Theorem 1.4.10 to the map X → ∗ from X to the terminal object of
Spc(∗). This factorization defines a natural transformation j : 1 → Lf such that
jX : X → LfX is a relative Λ{f}-cell complex.

Theorem 1.4.12. Let Spc(∗) be one of our categories of spaces (see Nota-

tion 1.1.4). If f : A → B is an inclusion of cell complexes (see Remark 1.2.11),
then for every space X the f -localization jX : X → LfX (see Definition 1.4.11) is
a cofibrant f -localization of X.

Proof. This follows from Proposition 1.4.9. �

Corollary 1.4.13. Let Spc(∗) be one of our categories of spaces (see Nota-

tion 1.1.4). If f : A→ B is an inclusion of cell complexes (see Remark 1.2.11), then
every space has an f -localization.

Proof. This follows from Theorem 1.4.12. �

Theorem 1.4.14. Let Spc(∗) be one of our categories of spaces (see Nota-

tion 1.1.4) and let f : A→ B be an inclusion of cell complexes (see Remark 1.2.11).
If X is a fibrant space, then X is f -local if and only if the f -localization map
jX : X → LfX is a weak equivalence.

Proof. This follows from Theorem 1.2.28. �

Theorem 1.4.15. Let Spc(∗) be one of our categories of spaces (see Nota-

tion 1.1.4) and let f : A→ B be an inclusion of cell complexes (see Remark 1.2.11).
A map g : X → Y is an f -local equivalence if and only if its f -localization Lf (g) : LfX →
LfY is a weak equivalence.

Proof. This follows from Theorem 1.2.29. �

Proposition 1.4.16. Let Spc(∗) be one of our categories of spaces (see No-

tation 1.1.4). If f : A → B is an inclusion of cell complexes (see Remark 1.2.11),

then every Λ{f}-cofibration (see Definition 1.4.2) is a retract of a relative Λ{f}-cell
complex.

Proof. This follows form Theorem 1.4.10 and the retract argument (see Prop-
osition 7.2.2). �
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Corollary 1.4.17. Let Spc(∗) be one of our categories of spaces (see Nota-

tion 1.1.4). If f : A→ B is an inclusion of cell complexes (see Remark 1.2.11), then

every Λ{f}-cofibration is an f -local equivalence.

Proof. This follows from Proposition 1.4.16, Theorem 1.3.9, and Proposi-
tion 1.2.18. �

1.4.18. The localization of a cofibration.

Lemma 1.4.19. Let Spc(∗) be one of our categories of spaces (see Notation 1.1.4)

and let f : A → B be an inclusion of cell complexes (see Remark 1.2.11). Let
X → X ′ and Y → Y ′ be cofibrations and let the square

X //

��

Y

��

X ′ // Y ′

be commutative. If we apply the factorization of Theorem 1.4.10 to each of the
horizontal maps to obtain the commutative diagram

X //

��

Ef //

��

Y

��

X ′ // E′f // Y ′ ,

then the map Ef → E′f is a cofibration.

Proof. Using Lemma 7.2.15, one can check inductively that at each stage in
the construction of the factorization we have a cofibration Eβ → (Eβ)′. �

Proposition 1.4.20. Let Spc(∗) be one of our categories of spaces (see Nota-

tion 1.1.4) and let f : A→ B be an inclusion of cell complexes (see Remark 1.2.11).
If g : X → Y is a cofibration, then so is Lf (g) : LfX → LfY (see Definition 1.4.11).

Proof. This follows from Lemma 1.4.19. �

1.5. Postnikov approximations

In this section we show that the Postnikov approximations to a space can be
obtained as localizations of that space.

Proposition 1.5.1. If n ≥ 0 and fn : Sn+1 → Dn+2 is the standard inclusion
in Top, then a space X is fn-local if and only if πiX ≈ 0 for i > n and every choice
of basepoint in X.

Proof. If k ≥ 0 then the inclusion Sn+1 ⊗∆[k]qSn+1⊗∂∆[k] D
n+2 ⊗ ∂∆[k]→

Dn+2 ⊗ ∆[k] is a relative CW-complex that attaches a single cell of dimension
n + k + 2. Thus, any map Sn+1 ⊗ ∆[k] qSn+1⊗∂∆[k] D

n+2 ⊗ ∂∆[k] → X can be
extended over Dn+2⊗∆[k] if and only if πn+k+1X ≈ 0 for every choice of basepoint
in X. The result now follows from Proposition 1.3.3. �
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Proposition 1.5.2. Let n ≥ 0 and let fn : Sn+1 → Dn+2 be the standard
inclusion in Top. If a map g : X → Y induces isomorphisms g∗ : πiX ≈ πiY for
i ≤ n and every choice of basepoint in X, then it is an fn-local equivalence.

Proof. If g : X → Y induces isomorphisms g∗ : πiX ≈ πiY for i ≤ n and every
choice of basepoint in X, then we can choose a cofibrant approximation g̃ : X̃ → Ỹ
to g such that

(1) Ỹ is a CW-complex,
(2) g̃ is the inclusion of a subcomplex that contains the n-skeleton of Ỹ , and
(3) every (n+ 1)-cell of Ỹ − X̃ is attached via a constant map of Sn.

If k = 0 then the map X̃ ⊗∆[k] qX̃⊗∂∆[k] Ỹ ⊗ ∂∆[k] → Ỹ ⊗∆[k] is just the map

X̃ → Ỹ , and if k > 0 it is the inclusion of a subcomplex that contains the (n+ k)-
skeleton. Thus, if Z is an f -local space, then Proposition 1.5.1 implies that every
map X̃ ⊗∆[k]qX̃⊗∂∆[k] Ỹ ⊗ ∂∆[k]→ Z can be extended over Ỹ ⊗∆[k], and so g
is an fn-local equivalence (see Proposition 9.3.10). �

Theorem 1.5.3. If n > 0 and fn : Sn+1 → Dn+2 is the standard inclusion in
Top, then the projection of a space onto its n-th Postnikov approximation is an
fn-localization map.

Proof. This follows from Proposition 1.5.1 and Proposition 1.5.2. �

Proposition 1.5.4. Let n ≥ 0 and let fn : Sn+1 → Dn+2 be the standard in-
clusion in Top. If g : X → Y is an fn-local equivalence, then g induces isomorphisms
g∗ : πiX ≈ πiY for i ≤ n and every choice of basepoint in X.

Proof. Theorem 1.5.3 and Theorem 1.2.29 imply that the induced map of
n-th Postnikov approximations Png : PnX → PnY is a weak equivalence. Thus, for
every i ≤ n and every choice of basepoint in X we have a commutative diagram

πiX
g∗ //

��

πiY

��

πiPnX // πiPnY

in which every map except the top one is an isomorphism, and so g∗ : πiX → πiY
is also an isomorphism. �

1.5.5. The Postnikov tower.

Lemma 1.5.6. Let f : A→ B and f̃ : Ã→ B̃ be maps between cofibrant spaces.
If f is an f̃ -local equivalence, then every f -local equivalence is an f̃ -local equiva-
lence.

Proof. Since f is an f̃ -local equivalence, every f̃ -local space is f -local. �

Lemma 1.5.7. Let f : A→ B and f̃ : Ã→ B̃ be maps between cofibrant spaces.
If f is an f̃ -local equivalence, then for every object X the f -localization map X →
LfX is an f̃ -local equivalence.

Proof. This follows from Lemma 1.5.6. �
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Proposition 1.5.8. For all n ≥ 0 let fn : Sn+1 → Dn+2 be the standard
inclusion in Top. If i > j ≥ 0 then for every space X an fi-localization map is an
fj-local equivalence.

Proof. This follows from Lemma 1.5.7 and Theorem 1.5.3. �

Proposition 1.5.9. If for all n ≥ 0 we let PnX denote the n-th Postnikov
approximation of the space X, then for all i > j ≥ 0 there is a map PiX → PjX,
unique up to simplicial homotopy, that makes the triangle

X //

!!C
CC

CC
CC

C PiX

��

PjX

commute up to simplicial homotopy.

Proof. This follows from Proposition 1.5.8 and Lemma 1.2.24. �

1.6. Topological spaces and simplicial sets

The main results of this section (Corollary 1.6.5 and Corollary 1.6.7) imply,
roughly speaking, that when using the localization functor of Definition 1.4.11,
one can pass freely through the geometric realization and total singular complex
functors at the cost of only a natural weak equivalence.

Lemma 1.6.1. Let K and C be simplicial sets and let X be is a topological
space.

(1) A map of topological spaces
∣∣K∣∣→ X defines a simplicial map Map(C,K)→

Map
(∣∣C∣∣, X)

that is natural in C and in the map
∣∣K∣∣→ X.

(2) A map of simplicial setsK → SingX defines a simplicial map Map(C,K)→
Map

(∣∣C∣∣, X)
that is natural in C and in the map K → SingX.

Proof. The map of part 1 is defined as the composition

Map(C,K)→ Map
(∣∣C∣∣, ∣∣K∣∣)→ Map

(∣∣C∣∣, X)
and the map of part 2 is defined as the composition

Map(C,K)→ Map(C,SingX)→ Map
(∣∣C∣∣, X)

.

�

Proposition 1.6.2. Let C → D be a map of simplicial sets. If K → L is a
map of simplicial sets, X → Y is a map of topological spaces, and∣∣K∣∣ //

��

X

��∣∣L∣∣ // Y
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is a commutative square, then there is a natural map from the geometric realization
of the pushout P in the diagram

C ×
(
Map(C,K)×Map(C,L) Map(D,L)

)
//

��

K //

��

P

��

D ×
(
Map(C,K)×Map(C,L) Map(D,L)

)
//

33

L

to the pushout Q in the diagram∣∣C∣∣× ∣∣Map
(∣∣C∣∣, X)

×Map(|C|,Y ) Map
(∣∣D∣∣, Y )∣∣ //

��

X //

��

Q

��∣∣D∣∣× ∣∣Map
(∣∣C∣∣, X)

×Map(|C|,Y ) Map
(∣∣D∣∣, Y )∣∣ //

33

Y

that makes the diagram ∣∣K∣∣ //

��

∣∣P ∣∣ //

��

∣∣L∣∣
��

X // Q // Y

commute.

Proof. Since the geometric realization functor commutes with pushouts, this
follows from Lemma 1.6.1. �

Proposition 1.6.3. If K → L is a map of simplicial sets, X → Y is a map of
topological spaces, and

K //

��

SingX

��

L // Sing Y

a commutative square, then there is a natural map from the pushout P in the
diagram

C ×
(
Map(C,K)×Map(C,L) Map(D,L)

)
//

��

K //

��

P

��

D ×
(
Map(C,K)×Map(C,L) Map(D,L)

)
//

33

L

to the total singular complex of the pushout Q in the diagram∣∣C∣∣× ∣∣Map
(∣∣C∣∣, X)

×Map(|C|,Y ) Map
(∣∣D∣∣, Y )∣∣ //

��

X //

��

Q

��∣∣D∣∣× ∣∣Map
(∣∣C∣∣, X)

×Map(|C|,Y ) Map
(∣∣D∣∣, Y )∣∣ //

33

Y
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that makes the diagram

K //

��

P //

��

L

��

SingX // SingQ // Sing Y

commute.

Proof. This follows from Lemma 1.6.1, using the natural map from the pushout
of the total singular complexes to the total singular complex of the pushout. �

Theorem 1.6.4. Let f : A → B be a cofibration of simplicial sets and let
g : X → Y be a map of topological spaces. If Ef (Sing g) is the simplicial set obtained
by applying the factorization of Theorem 1.4.10 to the map Sing g : SingX →
Sing Y and E|f |g is the topological space obtained by applying the factorization of

Theorem 1.4.10 (with respect to the map
∣∣f ∣∣ : ∣∣A∣∣→ ∣∣B∣∣) to the map g, then there

is a natural map
∣∣Ef (Sing g)

∣∣→ E|f | g that makes the diagram∣∣SingX
∣∣ //

��

∣∣Ef (Sing g)
∣∣ //

��

∣∣Sing Y
∣∣

��

X // E|f | g // Y

commute.

Proof. Using Proposition 1.6.2 we can construct the map inductively at each
stage in the construction of the factorization. �

Corollary 1.6.5. If f : A→ B is a cofibration of simplicial sets, then for every
topological space X there is a natural weak equivalence

∣∣Lf SingX
∣∣→ L|f |X that

makes the square ∣∣SingX
∣∣ //

��

X

��∣∣Lf SingX
∣∣ // L|f |X

commute.

Proof. The existence of the natural map follows from Theorem 1.6.4. Propo-
sition 1.2.34 implies that

∣∣Lf SingX
∣∣ is

∣∣f ∣∣-local, and so Proposition 1.2.35 implies
that our natural map is a

∣∣f ∣∣-localization of the weak equivalence
∣∣SingX

∣∣ → X
(see Definition 1.2.13). Proposition 1.2.16 and Theorem 1.2.29 now imply that our
natural map is a weak equivalence. �

Theorem 1.6.6. Let f : A → B be a cofibration of simplicial sets and let
g : K → L be a map of simplicial sets. If Ef g is the simplicial set obtained by
applying the factorization of Theorem 1.4.10 to the map g and E|f |

∣∣g∣∣ is the topo-
logical space obtained by applying the factorization of Theorem 1.4.10 (with respect
to the map

∣∣f ∣∣ : ∣∣A∣∣→ ∣∣B∣∣) to the map
∣∣g∣∣ : ∣∣K∣∣→ ∣∣L∣∣, then there is a natural map
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Ef g → E|f |
∣∣g∣∣ that makes the diagram

K //

��

Ef g //

��

L

��

Sing
∣∣K∣∣ // Sing E|f |

∣∣g∣∣ // Sing
∣∣Y ∣∣

commute.

Proof. Using Proposition 1.6.3 we can construct the map inductively at each
stage in the construction of the factorization. �

Corollary 1.6.7. If f : A → B is a cofibration of simplicial sets, then for
every simplicial set K there is a natural simplicial homotopy equivalence LfK →
Sing L|f |K that makes the square

K //

��

Sing
∣∣K∣∣
��

LfK // Sing L|f |
∣∣K∣∣

commute.

Proof. The existence of the natural map follows from Theorem 1.6.6. Prop-
osition 1.2.33 implies that Sing L|f |

∣∣K∣∣ is f -local, and Proposition 1.2.17, Proposi-
tion 1.2.16, and Proposition 1.2.36 imply that our natural map is an f -local equiv-
alence of cofibrant f -local spaces. The result now follows from Theorem 1.2.25. �

Proposition 1.6.8. If f : A→ B is a cofibration in SS(∗) (see Notation 1.1.4),
(Mf , j : 1→ Mf ) is a functorial cofibrant f -localization on SS(∗), and (N|f |, k : 1→
N|f |) is a functorial cofibrant

∣∣f ∣∣-localization on Top(∗), then for every topological

space X there is a map
∣∣Mf SingX

∣∣ → N|f |X, unique up to simplicial homotopy,
that makes the square

(1.6.9)
∣∣SingX

∣∣ //

��

X

��∣∣Mf SingX
∣∣ // N|f |X

commute, and any such map is a weak equivalence. (Since
∣∣Mf SingX

∣∣ is cofibrant

and N|f |X is fibrant, all notions of homotopy of maps
∣∣Mf SingX

∣∣→ N|f |X coin-
cide and are equivalence relations (see Proposition 9.5.24).) This map is natural
up to homotopy, i.e., if g : X → Y is a map of topological spaces, then the square∣∣Mf SingX

∣∣ //

��

N|f |X

��∣∣Mf Sing Y
∣∣ // N|f |Y

commutes up to homotopy.
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Proof. Since Proposition 1.2.35 implies that the map
∣∣SingX

∣∣→ ∣∣Mf SingX
∣∣

is a
∣∣f ∣∣-local equivalence, the existence and uniqueness of the map follow from

Lemma 1.2.24. Since Proposition 1.2.34 implies that
∣∣Mf SingX

∣∣ is
∣∣f ∣∣-local, The-

orem 1.2.26 implies that the map is a weak equivalence.
For the naturality statement, we note that we have the cube∣∣SingX

∣∣ //

))TTTTT

��

X

%%KK
KKK

K

��

∣∣Sing Y
∣∣ //

��

Y

��

∣∣Mf SingX
∣∣ //

))TTT
N|f |X

%%KK
K∣∣Mf Sing Y

∣∣ // N|f |Y

in which the top and side squares commute and the front and back squares commute
up to simplicial homotopy. This implies that the composition∣∣SingX

∣∣→ ∣∣Mf SingX
∣∣→ ∣∣Mf Sing Y

∣∣→ N|f |Y

is simplicially homotopic to the composition∣∣SingX
∣∣→ ∣∣Mf SingX

∣∣→ N|f |X → N|f |Y ,

and so the result follows from Lemma 1.2.24. �

Proposition 1.6.10. If f : A→ B is a cofibration in SS(∗) (see Notation 1.1.4),
(Mf , j : 1→ Mf ) is a functorial cofibrant f -localization on SS(∗), and (N|f |, k : 1→
N|f |) is a functorial cofibrant

∣∣f ∣∣-localization on Top(∗), then for every simplicial

set K there is a map MfK → Sing N|f |
∣∣K∣∣, unique up to homotopy, that makes

the square

(1.6.11) K //

��

Sing
∣∣K∣∣
��

MfK // Sing N|f |
∣∣K∣∣

commute, and any such map is a homotopy equivalence. (Since every simplicial set
is cofibrant and Sing N|f |

∣∣K∣∣ is fibrant, all notions of homotopy of maps MfK →
Sing N|f |

∣∣K∣∣ coincide and are equivalence relations (see Proposition 9.5.24).) This
map is natural up to homotopy, i.e., if g : K → L is a map of simplicial sets, then
the square

MfK //

��

Sing N|f |
∣∣K∣∣

��

MfL // Sing N|f |
∣∣L∣∣

commutes up to homotopy.

Proof. Proposition 1.2.36 implies that the map Sing
∣∣K∣∣ → Sing N|f |

∣∣K∣∣ is
an f -local equivalence and Proposition 1.2.33 implies that Sing N|f |

∣∣K∣∣ is f -local.
Since every simplicial set is cofibrant, the existence and uniqueness of the map
now follows from Lemma 1.2.24, and Theorem 1.2.25 implies that it is a homotopy
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equivalence. The naturality statement follows as in the proof of Proposition 1.6.8.
�

1.7. A continuous localization functor

Let Spc(∗) be one of our categories of spaces (see Notation 1.1.4), and let
f : A → B be an inclusion of cell complexes (see Remark 1.2.11). In this section,
we will define a variant Lcont

f of the f -localization functor Lf (see Definition 1.4.11)
that is “continuous”. If we were using topological spaces of functions (instead
of simplicial sets of functions; see Section 1.1.5) then we would want to define a
function

(1.7.1) Map(X,Y )→ Map(LfX,LfY )

that is a continuous function of topological spaces. Since we are considering Spc(∗)
as a simplicial model category (see Definition 9.1.6), we want to define Lcont

f to be
a simplicial functor, i.e., we want a functor Lcont

f that defines a map of simplicial
sets (1.7.1) (see [52, Chapter II, Section 1]). Note that not every functor can be
extended to a simplicial functor; for a counterexample, see Example 9.8.7.

1.7.2. Construction of the sequence. We follow the procedure described
in Section 1.3, using the same ordinal λ, except that we use a new construction
to define the space Eβ+1 in terms of the space Eβ (see Section 1.3.5). We first
define a localization functor Lcont

f that is a variant of the functor Lf defined in
Definition 1.4.11 (see Theorem 1.7.4), and then we show that Lcont

f can be extended
to be a simplicial functor (see Theorem 1.7.5).

As in Section 1.3.5, we begin the sequence by letting E0 = X. If β < λ and we
have constructed the sequence through Eβ , we let

Ccont
β =

∐
(C→D)∈Λ{f}

C ⊗Map(C,Eβ)

Dcont
β =

∐
(C→D)∈Λ{f}

D ⊗Map(C,Eβ) .

We then have a natural map Ccont
β → Eβ , and we define Eβ+1 by letting the square

Ccont
β

//

��

Eβ

��

Dcont
β

// Eβ+1

be a pushout. If γ is a limit ordinal, we let Eγ = colimβ<γ Eβ . We let Lcont
f X =

colimβ<λ Eβ .

Proposition 1.7.3. Let Spc(∗) be one of our categories of spaces (see Nota-

tion 1.1.4). If f : A→ B is an inclusion of cell complexes and K is a simplicial set,
then the maps(

A⊗∆[n]qA⊗∂∆[n] B ⊗ ∂∆[n]
)
⊗K →

(
B ⊗∆[n]

)
⊗K for n ≥ 0
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and

Spc(∗)(Λ[n, k])⊗K → Spc(∗)(∆[n])⊗K for n > 0 and 0 ≤ k ≤ n

are all both cofibrations and f -local equivalences.

Proof. Proposition 9.3.9 implies that the maps Spc(∗)(Λ[n, k])⊗K → Spc(∗)(∆[n])⊗
K are trivial cofibrations. The result now follows from Proposition 1.2.16, Corol-
lary 10.2.21, and Proposition 1.3.7. �

Theorem 1.7.4. Let Spc(∗) be one of our categories of spaces (see Notation 1.1.4)

and let f : A → B be an inclusion of cell complexes (see Remark 1.2.11). If X is
a space, then the map X → Lcont

f X constructed in Section 1.7.2 is a cofibrant
f -localization of X.

Proof. Proposition 1.7.3 and Proposition 1.2.22 imply that the map X →
Lcont
f X is both a cofibration and an f -local equivalence, and so it remains only to

show that Lcont
f X is f -local. The 0-skeleton of Map(C,Eβ) is Spc(∗)(C,E

β), and so
C ⊗Map(C,Eβ) contains

C ⊗ Spc(∗)(C,E
β) ≈

∐
Spc(∗)(C,E

β)

C

as a subcomplex. The discussion in Section 1.3.4 now explains why the space
Lcont
f X is a Λ{f}-injective, and so the map X → Lcont

f X is a functorial cofibrant
f -localization of X. �

Theorem 1.7.5. The functor Lcont
f defined in Section 1.7.2 can be extended to

a simplicial functor.

Proof. If C and X are spaces and K is a simplicial set, then there is a
natural map Map(C,X)⊗K → Map(C,X ⊗K) that takes the n-simplex (α : C ⊗
∆[n] → X, τ) of Map(C,X) ⊗K to the n-simplex σ(α, τ) : C ⊗∆[n] → X ⊗K of
Map(C,X ⊗K) that is the composition

C ⊗∆[n] 1C⊗D−−−−→ C ⊗ (∆[n]×∆[n]) ≈−→ (C ⊗∆[n])⊗∆[n] α⊗iτ−−−→ X ⊗K

where D : ∆[n] → ∆[n] ×∆[n] is the diagonal map and iτ : ∆[n] → K is the map
that takes the nondegenerate n-simplex of ∆[n] to τ . This natural map σ has the
properties required by Theorem 9.8.5, and so we can use it to inductively define
σ for all the spaces used in the construction of the localization (see Section 1.7.2).
The theorem now follows from Proposition 9.8.9 and Theorem 9.8.5. �

1.8. Pointed and unpointed localization

There is a functor from the category of pointed spaces to the category of un-
pointed spaces that forgets the basepoint, and so there are two different notions of
localization that we can define on a category of pointed spaces. If f : A → B is a
cofibration of cofibrant pointed spaces, then

(1) we can consider the notions of pointed f -local spaces and pointed f -local
equivalences in Spc∗ (see Notation 1.1.4), or
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(2) we can still consider spaces with basepoint (i.e., spaces in Spc∗) but con-
sider the notions of unpointed f -local spaces and unpointed f -local equiv-
alences in Spc by forgetting the basepoints.

Definition 1.8.1. If f : A→ B is a cofibration of cofibrant pointed spaces and
X is a pointed space, then we will say that

(1) X is pointed f-local if it is an f -local space in Spc∗, and
(2) we will say that X is unpointed f-local if X is an f -local space in Spc

when we forget the basepoints of all the spaces involved.
Similarly, a map f : X → Y will be called

(1) a pointed f-local equivalence if it is an f -local equivalence in Spc∗, and
(2) an unpointed f-local equivalence if it is an f -local equivalence in Spc after

forgetting all basepoints.

Notation 1.8.2. In this section, if X and Y are objects of Spc∗ (see Nota-
tion 1.1.4), then

(1) Map(X,Y ) will continue to denote the unpointed simplicial set of maps
between the pointed spaces X and Y , and

(2) UMap(X,Y ) will denote the unpointed simplicial set of maps between the
unpointed spaces obtained from X and Y by forgetting the basepoints.

Thus, Definition 1.8.1 implies that if f : A→ B is a cofibration of cofibrant pointed
spaces then a fibrant pointed space X is

(1) pointed f-local if f∗ : Map(B,X) → Map(A,X) is a weak equivalence of
(unpointed) simplicial sets and it is

(2) unpointed f-local if f∗ : UMap(B,X) → UMap(A,X) is a weak equiva-
lence of (unpointed) simplicial sets.

Similarly, a map g : Y → Z of pointed spaces is

(1) a pointed f-local equivalence if there is a cofibrant approximation g̃ : Ỹ →
Z̃ to g such that for every pointed f -local space W the induced map of
simplicial sets g̃∗ : Map(Z̃,W ) → Map(Ỹ ,W ) is a weak equivalence and
it is

(2) an unpointed f-local equivalence if there is a cofibrant approximation
g̃ : Ỹ → Z̃ to g such that for every unpointed f -local space W the in-
duced map of simplicial sets g̃∗ : UMap(Z̃,W )→ UMap(Ỹ ,W ) is a weak
equivalence

Proposition 1.8.3. Let A be a cofibrant object of Spc∗ and let X be a fibrant
object of Spc∗.

(1) If Spc∗ = SS∗, then there is a natural fibration of unpointed simplicial
sets

Map(A,X)→ UMap(A,X)→ X .

(2) If Spc∗ = Top∗, then there is a natural fibration of unpointed simplicial
sets

Map(A,X)→ UMap(A,X)→ SingX .

Proof. Since ∗ → A is a cofibration of pointed spaces and X is a fibrant
pointed space, ∗ → A is also a cofibration of unpointed spaces (after forgetting the
basepoints) and X is also a fibrant pointed space (after forgetting the basepoint).
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Thus, Proposition 9.3.1 implies that we have a natural fibration of simplicial sets
UMap(A,X) → UMap(∗, X). The fiber of this fibration is Map(A,X). If Spc∗ =
SS∗, then UMap(∗, X) is naturally isomorphic to the unpointed simplicial set X. If
Spc∗ = Top∗, then UMap(∗, X) is naturally isomorphic to the unpointed simplicial
set SingX. �

Proposition 1.8.4. Let A → B be a map of cofibrant pointed spaces and let
W be a fibrant pointed space.

(1) If UMap(B,W ) → UMap(A,W ) (see Notation 1.8.2) is a weak equiva-
lence, then Map(B,W )→ Map(A,W ) is a weak equivalence.

(2) If W is path connected and Map(B,W )→ Map(A,W ) is a weak equiva-
lence, then UMap(B,W )→ UMap(A,W ) is a weak equivalence.

Proof. This follows from Proposition 1.8.3 and the long exact sequence of
homotopy groups of a fibration. �

Proposition 1.8.5. Let f : A→ B be a cofibration of cofibrant pointed spaces
and let X be a pointed space.

(1) If X is an unpointed f -local space, then it is also a pointed f -local space.
(2) If X is a path connected pointed f -local space, then it is also an unpointed

f -local space.

Proof. This follows from Proposition 1.8.4. �

Corollary 1.8.6. Let f : A→ B be a cofibration of cofibrant pointed spaces.
If X is a path connected pointed space, then X is pointed f -local if and only if it
is unpointed f -local.

Proof. This follows from Proposition 1.8.5. �

Lemma 1.8.7. If A is a path connected pointed space, X is a pointed space,
and Xb is the path component of X containing the basepoint, then the natural map
Map(A,Xb)→ Map(A,X) is an isomorphism.

Proof. Since the image of a path connected space is path connected, for every
n ≥ 0 the image of a pointed map from A⊗∆[n] to X is contained in Xb. �

Theorem 1.8.8. If f : A → B is a map of path connected cofibrant pointed
spaces and X is a pointed space, then the following are equivalent:

(1) X is pointed f -local.
(2) Every path component of X is fibrant and the path component of X

containing the basepoint is pointed f -local.
(3) Every path component of X is fibrant and the path component of X

containing the basepoint is unpointed f -local.

Proof. This follows from Lemma 1.8.7 and Corollary 1.8.6. �

Corollary 1.8.9. If f : A → B is a map of path connected cofibrant pointed
spaces and X is a fibrant pointed space, then X is unpointed f -local if and only
if every path component of X is pointed f -local when you choose a basepoint for
each path component.
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Proof. If the path components ofX are {Xs}s∈S , then we have a commutative
square

UMap(B,X)

��

∐
s∈S

UMap(B,Xs)

��

≈oo

UMap(A,X)
∐
s∈S

UMap(A,Xs)oo
≈
oo

(see Notation 1.8.2) in which the horizontal maps are isomorphisms. The result
now follows from Corollary 1.8.6. �

Corollary 1.8.10. If f : A→ B is a map of path connected cofibrant pointed
spaces, X is a pointed space, and Xb is the path component of X containing the
basepoint, then the natural map

(X −Xb)q LfXb → LfX

is a weak equivalence (where Lf denotes pointed f -localization).

Proof. This follows from Theorem 1.8.8, Lemma 1.8.7, and Theorem 1.2.26.
�

Proposition 1.8.11. Let f : A → B be a map of cofibrant pointed spaces. If
X → Y is an unpointed f -local equivalence of path connected pointed spaces, then
it is also a pointed f -local equivalence.

Proof. If X̃ → Ỹ is a pointed cofibrant approximation (see Definition 8.1.22)
to X → Y , then it is also an unpointed cofibrant approximation. If W is a
pointed f -local space, let Wb be the path component of W containing the base-
point. Lemma 1.2.6 and Proposition 1.8.5 imply that Wb is an unpointed f -local
space, and so the map UMap(Ỹ ,Wb) → UMap(X̃,Wb) is a weak equivalence.
Proposition 1.8.4 now implies that the map Map(Ỹ ,Wb)→ Map(X̃,Wb) is a weak
equivalence. Lemma 1.8.7 implies that the horizontal maps in the commutative
square

Map(Ỹ ,Wb) //

��

Map(Ỹ ,W )

��

Map(X̃,Wb) // Map(X̃,W )

are isomorphisms, and so the map Map(Ỹ ,W )→ Map(X̃,W ) is a weak equivalence.
�

Theorem 1.8.12. If f : A→ B is a cofibration of cofibrant pointed spaces and
X is a path connected pointed space, then a pointed f -localization of X is also an
unpointed f -localization of X.

Proof. Let X → Y be the unpointed f -localization of X. Proposition 1.8.5
implies that Y is pointed f -local and Proposition 1.8.11 implies that the map
X → Y is a pointed f -local equivalence. �
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Theorem 1.8.13. If f : A → B is a cofibration of path connected cofibrant
pointed spaces and X is a pointed space, then the unpointed f -localization of X
is weakly equivalent to the space obtained by choosing a basepoint for each path
component of X and taking the pointed f -localization of each path component.

Proof. Let {Xs}s∈S be the set of path components of X. If for every s ∈ S
we choose a basepoint for Xs and let Xs → LfXs be the pointed f -localization
of Xs, then Corollary 1.8.9 implies that

∐
s∈S LfXs is an unpointed f -local space.

Theorem 1.8.12 implies that for every s ∈ S the map Xs → LfXs is an unpointed f -
local equivalence. Let X̃s → L̃fXs be the geometric realization of the total singular
complex of Xs → LfXs if our “spaces” are topological spaces and let it be the map
Xs → LfXs itself if our “spaces” are simplicial sets. In either case,

∐
s∈S X̃s →∐

s∈S L̃fXs is a cofibrant approximation to
∐
s∈S Xs →

∐
s∈S LfXs, and if W is

an unpointed f -local space the map Map
(∐

s∈S L̃fXs,W
)
→ Map

(∐
s∈S X̃s,W

)
is isomorphic to the map

∏
s∈S Map(L̃fXs,W ) →

∏
s∈S Map(X̃s,W ). This last

map is a product of weak equivalences of fibrant simplicial sets and is thus a weak
equivalence. Thus, the map

∐
s∈S Xs →

∐
s∈S LfXs is an unpointed f -local equiv-

alence. �



CHAPTER 2

The Localization Model Category for Spaces

2.1. The Bousfield localization model category structure

In this section, we show that for every map f : A → B in Spc(∗) (see Nota-
tion 1.1.4) there is a model category structure on Spc(∗) in which the weak equiv-
alences are the f -local equivalences (see Definition 1.2.2) and the fibrant objects
are the f -local spaces (see Theorem 2.1.3 and Proposition 2.1.4). This is a general-
ization of the h∗-local model category structure for a generalized homology theory
h∗ on the category of simplicial sets defined by A.K. Bousfield in [8]. It is also an
example of a left Bousfield localization (see Definition 3.1.1). This model category
structure has also been obtained by Bousfield in [12] for the category of simpli-
cial sets, where he deals as well with localizing certain proper classes of maps of
simplicial sets.

2.1.1. Statements of the theorems.

Definition 2.1.2. Let f : A→ B be a map between cofibrant spaces in Spc(∗).
(1) An f-local weak equivalence is defined to be an f -local equivalence (see

Definition 1.2.2).
(2) An f-local cofibration is defined to be a cofibration.
(3) An f-local fibration is defined to be a map with the right lifting prop-

erty (see Definition 7.2.1) with respect to all maps that are both f -local
cofibrations and f -local weak equivalences. If the map from a space to
a point is an f -local fibration, then we will say that the space is f-local
fibrant.

Theorem 2.1.3. If f : A → B is a map between cofibrant spaces in Spc(∗),
then there is a simplicial model category structure on Spc(∗) in which the weak
equivalences are the f -local weak equivalences, the cofibrations are the f -local cofi-
brations, the fibrations are the f -local fibrations, and the simplicial structure is the
usual simplicial structure on Spc(∗).

Proposition 2.1.4. If f : A → B is an inclusion of cell complexes (see Re-
mark 1.2.11), then a space is f -local if and only if it is fibrant in the f -local model
category structure of Theorem 2.1.3.

The main difficulty in the proof of Theorem 2.1.3 lies in finding a set Jf of gen-
erating trivial cofibrations for the f -local model category structure. The augmented
set of f -horns Λ{f} (see Definition 1.3.2) is a set of cofibrations such that every
Λ{f}-cofibration is a trivial cofibration in the f -local model category structure (see
Corollary 1.4.17), and Proposition 1.4.7 implies that the set Λ{f} does suffice to
determine the f -local spaces, but it is not true that the class of f -local trivial cofi-
brations must equal the class of Λ{f}-cofibrations (see Example 2.1.6). Thus, the

35
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proof of Theorem 2.1.3 will use the following proposition, the proof of which we
will present in Section 2.3 after some necessary preparatory work in Section 2.2.

Proposition 2.1.5. If f : A → B is a map of cofibrant spaces in Spc(∗), then

there is a set Jf of inclusions of cell complexes (see Remark 1.2.11) such that

(1) every map in Jf is an f -local equivalence, and
(2) the class of Jf -cofibrations (see Definition 10.5.2) equals the class of cofi-

brations that are also f -local equivalences.

We will present the proof of Proposition 2.1.5 in Section 2.3, after some neces-
sary preparatory work in Section 2.2.

We present here an example (due to A. K. Bousfield) of a map f such that,
among the cofibrations that are f -local equivalences, there are maps that are not
Λ{f}-cofibrations.

Example 2.1.6. Let Spc(∗) = Top∗, let n > 0, and let f : A → B be the
inclusion Sn → Dn+1. The path space fibration p : PK(Z, n)→ K(Z, n) is a Λ{f}-
injective (see Definition 1.4.2), and so every Λ{f}-cofibration has the left lifting
property with respect to p. The cofibration ∗ → Sn does not have the left lifting
property with respect to p, and so it is not a Λ{f}-cofibration. However, since
both the composition ∗ → Sn → Dn+1 and f itself are f -local equivalences (see
Proposition 1.2.16), the “two out of three” property of f -local equivalences (see
Proposition 1.2.17) implies that the inclusion ∗ → Sn is an f -local equivalence.
Thus, ∗ → Sn is both a cofibration and an f -local equivalence, but it is not a
Λ{f}-cofibration.

2.1.7. Proofs.

Proof of Theorem 2.1.3. We begin by using Theorem 11.3.1 to show that
there is a cofibrantly generated model category structure on Spc(∗) with weak equiv-
alences, cofibrations, and fibrations as described in the statement of Theorem 2.1.3.

Proposition 1.2.17 implies that the class of f -local equivalences satisfies the
“two out of three” axiom, and Proposition 1.2.18 implies that it is closed under
retracts.

Let I be the set of maps

I = {Spc(∗)(∂∆[n])→ Spc(∗)(∆[n])
∣∣ n ≥ 0}

(see Definition 1.1.13) and let Jf be the set of maps provided by Proposition 2.1.5.
Since every map in either I or Jf is an inclusion of simplicial sets (if Spc(∗) =
SS(∗)) or an inclusion of cell complexes (if Spc(∗) = Top(∗)), Example 10.4.4 and
Example 10.4.5 imply that condition 1 of Theorem 11.3.1 is satisfied.

The subcategory of I-cofibrations is the subcategory of cofibrations in the usual
model category structure in Spc(∗), and the I-injectives are the usual trivial fi-
brations. Thus, Proposition 2.1.5 implies that condition 2 of Theorem 11.3.1 is
satisfied.

Since the Jf -cofibrations are a subcategory of the I-cofibrations, every I-
injective must be a Jf -injective. Proposition 1.2.16 implies that every Jf -injective
is an f -local equivalence, and so condition 3 is satisfied.

Proposition 2.1.5 implies that condition 4a of Theorem 11.3.1 is satisfied, and
so Theorem 11.3.1 now implies that we have a model category.
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To show that our model category is a simplicial model category, we note that,
since the simplicial structure is the usual one, axiom M6 of Definition 9.1.6 holds
because it does so in the usual simplicial model category structure on Spc(∗). For
axiom M7 of Definition 9.1.6, we note that the class of f -local cofibrations equals
the usual class of cofibrations and the class of f -local fibrations is contained in the
usual class of fibrations. Thus, the first requirement of axiom M7 is clear. In the
case that the map p is an f -local equivalence, the rest of axiom M7 follows from the
fact that, since the class of f -local cofibrations equals the usual class of cofibrations,
the class of f -local trivial fibrations equals the usual class of trivial fibrations (see
Proposition 7.2.3).

In the case that the map i is an f -local equivalence, we choose a cofibrant
approximation ı̃ : Ã → B̃ to i such that ı̃ is a cofibration (see Proposition 8.1.23).
Proposition 9.4.5 and Proposition 9.4.8 imply that, for every n ≥ 0, the map
Ã⊗∆[n]qÃ⊗∂∆[n] B̃ ⊗ ∂∆[n]→ B̃ ⊗∆[n] is also an f -local equivalence, and so it
has the left lifting property with respect to the map p. Lemma 9.4.7 now implies
that the map ı̃ has the left lifting property with respect to the map X∆[n] →
Y ∆[n] ×Y ∂∆[n] X∂∆[n] for every n ≥ 0. Since Spc(∗) is a left proper model category
(see Theorem 13.1.11 and Theorem 13.1.13), Proposition 13.2.1 implies that the
map i has the left lifting property with respect to the map X∆[n] → Y ∆[n] ×Y ∂∆[n]

X∂∆[n] for every n ≥ 0, and so the result follows from Lemma 9.4.7. �

Proof of Proposition 2.1.4. If W is fibrant in the f -local model category
structure, then the map W → ∗ has the right lifting property with respect to every
cofibration that is an f -local equivalence. Proposition 1.3.7 implies that every horn
on f is both a cofibration and an f -local equivalence, and so Proposition 1.3.3
implies that W is f -local.

Conversely, assume that W is f -local. If i : A → B is both a cofibration and
an f -local equivalence, then Proposition 8.1.23 implies that there is a cofibrant
approximation ı̃ : Ã → B̃ to i such that ı̃ is a cofibration, and Proposition 13.2.1
and Proposition 7.2.3 imply that it is sufficient to show that ı̃ has the left lifting
property with respect to the mapW → ∗. Proposition 1.2.16 and Proposition 1.2.17
imply that ı̃ is an f -local equivalence, and so Proposition 9.4.5 and Proposition 9.4.3
imply that ı̃ has the left lifting property with respect to the map W → ∗. �

2.2. Subcomplexes of relative Λ{f}-cell complexes

The proof of Proposition 2.1.5 (in Section 2.3) will require a careful analysis
of the localization of a space. Since the localization map is a relative Λ{f}-cell
complex, we need to study subcomplexes of relative Λ{f}-cell complexes.

Definition 2.2.1. Let f : A → B be an inclusion of cell complexes (see Re-
mark 1.2.11).

• If C → D is an element of Λ{f} (see Definition 1.3.2), then D will also
be called a Λ{f}-cell, C will be called the boundary of the Λ{f}-cell, and
D − C will be called the interior of the Λ{f}-cell. (The interior of a
Λ{f}-cell is not, in general, a subcomplex.)
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• If C → D is a map in Λ{f} and

C //

��

X

��

D // Y

is a pushout, then we will refer to the image of D in Y as a Λ{f}-cell.

2.2.2. Presentations of relative Λ{f}-cell complexes. A relative Λ{f}-
cell complex is a map that can be constructed as a transfinite composition of
pushouts of elements of Λ{f} (see Definition 1.3.8). To consider subcomplexes
of a relative Λ{f}-cell complex, we need to choose a particular such construction.

Definition 2.2.3. If g : X → Y is a relative Λ{f}-cell complex (see Defini-
tion 1.3.8), then a presentation of g is a pair consisting of a λ-sequence

X = X0 → X1 → X2 → · · · → Xβ → · · · (β < λ)

(for some ordinal λ) and a set of ordered triples{
(T β , eβ , hβ)

}
β<λ

such that
(1) the composition of the λ-sequence is the map g : X → Y ,
(2) each T β is a set,
(3) each eβ is a function eβ : T β → Λ{f} (see Definition 1.3.2),
(4) for every β < λ, if i ∈ T β and eβi is the Λ{f}-cell Ci → Di, then hβi is a

map hβi : Ci → Xβ , and
(5) every Xβ+1 is the pushout∐

Tβ

Ci //

∐
hβ

i

��

∐
Tβ

Di

��

Xβ // Xβ+1 .

Definition 2.2.4. Let g : X → Y be a relative Λ{f}-cell complex with presen-
tation

(
X = X0 → X1 → X2 → · · · → Xβ → · · · (β < λ), {T β , eβ , hβ}β<λ

)
.

(1) If e is a Λ{f}-cell of g (see Definition 1.3.2), the presentation ordinal of e
is defined to be the first ordinal β such that e is in Xβ .

(2) If β < λ, then the β-skeleton of g is defined to be Xβ . We will sometimes
abuse language and refer to the image of Xβ in Y as the β-skeleton of g.

2.2.5. Constructing a subcomplex of a relative Λ{f}-cell complex.

Definition 2.2.6. If g : X → Y is a relative Λ{f}-cell complex with presenta-
tion

(
X = X0 → X1 → X2 → · · · → Xβ → · · · (β < λ), {T β , eβ , hβ}β<λ

)
, then a

subcomplex of g relative to that presentation consists of a family of sets {T̃ β}β<λ
such that

(1) for every β < λ, the set T̃ β is a subset of T β ,
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(2) there is a λ-sequence

X = X̃0 → X̃1 → X̃2 → · · · → X̃β → · · · (β < λ)

(called the λ-sequence associated with the subcomplex) and a map of
λ-sequences

X X̃0
//

��

X̃1
//

��

X̃2
//

��

· · ·

X X0
// X1

// X2
// · · ·

such that, for every β < λ and every i ∈ T̃ β , the map hβi : Ci → Xβ

factors through the map X̃β → Xβ , and
(3) for every β < λ, the square∐

T̃β

Ci //

��

∐
T̃β

Di

��

X̃β
// X̃β+1.

is a pushout.

Remark 2.2.7. Although a subcomplex of a relative Λ{f}-cell complex can
only be defined relative to some particular presentation of that relative Λ{f}-cell
complex, we will often discuss subcomplexes of a relative Λ{f}-cell complex with-
out explicitly mentioning the presentation relative to which the subcomplexes are
defined.

Remark 2.2.8. Although a subcomplex of a relative Λ{f}-cell complex with
some particular presentation is defined to be a family of sets {T̃ β}β<λ (see Defi-
nition 2.2.6), we will often abuse language and refer to the λ-sequence associated
with the subcomplex, or the composition of that λ-sequence, as a “subcomplex”.

Remark 2.2.9. Note that the definition of a subcomplex implies that the maps
X̃β → Xβ are all relative Λ{f}-cell complexes. Since a relative Λ{f}-cell complex is
a monomorphism, the factorization of each hβi through X̃β → Xβ is unique. Thus,
a subcomplex of a relative Λ{f}-cell complex is itself a relative Λ{f}-cell complex
with a natural presentation.

Proposition 2.2.10. Given a relative Λ{f}-cell complex X → Y with presen-
tation

(
X = X0 → X1 → X2 → · · · → Xβ → · · · (β < λ), {T β , eβ , hβ}β<λ

)
, an

arbitrary subcomplex can be constructed by the following inductive procedure.

(1) Choose an arbitrary subset T̃ 0 of T 0.

(2) If β < λ and we have defined {T̃ γ}γ<β , then we have determined the

space X̃β and the map X̃β → Xβ (where X̃β is the space that appears in
the λ-sequence associated to the subcomplex). Consider the set

{i ∈ T β
∣∣ hβi : Ci → Xβ factors through X̃β → Xβ}
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Choose an arbitrary subset T̃ β of this set. For every i ∈ T̃ β , there is a

unique map h̃βi : Ci → X̃β that makes the diagram

Ci
hβ

i

  A
AA

AA
AA

A

h̃β
i

��

X̃β
// Xβ

commute. We let X̃β+1 be the pushout∐
T̃β

Ci //

∐
h̃β

��

∐
T̃β

Di

��

X̃β
// X̃β+1

Proof. This follows directly from the definitions. �

Proposition 2.2.11. Let g : X → Y be a relative Λ{f}-cell complex with pre-
sentation

(
X = X0 → X1 → X2 → · · · → Xβ → · · · (β < λ), {T β , eβ , hβ}β<λ

)
. If{

{T̃ βu }β<λ
}
u∈U is a set of subcomplexes of g, then the intersection {T̃ β}β<λ of the

set of subcomplexes (where T̃ β =
⋂
u∈U T̃

β
u for every β < λ) is a subcomplex of g.

Proof. It is sufficient to show that, if β < λ and we have constructed the
β-skeleton of the associated λ-sequence X = X̃0 → X̃1 → X̃2 → · · · → X̃β , then,
for every i ∈ T̃ β , the map hβi : Ci → Xβ factors through X̃β → Xβ . If i ∈ T̃ β , then
i ∈ T̃ βu for every u ∈ U , and so hβi factors uniquely through X̃u

β → Xβ for every
u ∈ U . Since X̃β is the limit of the diagram that contains the map X̃u

β → Xβ for
every u ∈ U , the map hβi factors uniquely through X̃β → Xβ . �

Corollary 2.2.12. Let g : X → Y be a relative Λ{f}-cell complex with pre-
sentation

(
X = X0 → X1 → X2 → · · · → Xβ → · · · (β < λ), {T β , eβ , hβ}β<λ

)
. If

e is an f -cell of g, then there is a smallest subcomplex of g that contains e, i.e., a
subcomplex of g containing e that is a subcomplex of every subcomplex of g that
contains e.

Proof. Proposition 2.2.11 implies that we can take the intersection of all
subcomplexes of g that contain e. �

Definition 2.2.13. If e is a Λ{f}-cell of the relative Λ{f}-cell complex g : X →
Y with some particular presentation, then the smallest subcomplex of g that con-
tains e (whose existence is guaranteed by Corollary 2.2.12) will be called the sub-
complex generated by e.

2.2.14. Subcomplexes of the localization. If f : A → B is an inclusion
of cell complexes (see Remark 1.2.11), then for every space X, the localization
jX : X → LfX has a natural presentation as a relative Λ{f}-cell complex. When
we discuss subcomplexes of jX , it will be with respect to that natural presentation.

Lemma 2.2.15. Let f : A → B be an inclusion of cell complexes (see Re-
mark 1.2.11), and let X be a simplicial set (or a cell complex). If W is a subcomplex
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ofX, then LfW is naturally isomorphic (or homeomorphic) to a subcomplex of LfX
(where by “naturally” we mean that this isomorphism is a functor on the category
of subcomplexes of X).

Proof. The construction of LfX from X defines an obvious presentation of
the relative Λ{f}-cell complex jX : X → LfX. Since an inclusion of a subcomplex
is a monomorphism, the construction of LfW from W defines an obvious natural
isomorphism of the relative Λ{f}-cell complex W → LfW with a subcomplex of
j(X). �

Proposition 2.2.16. Let f : A → B be an inclusion of cell complexes (see
Remark 1.2.11). IfX is a simplicial set (or a cell complex) andW is a subcomplex of
X, then LfW is naturally isomorphic (or homeomorphic) to the subcomplex of LfX
consisting of those Λ{f}-cells of LfX for which the zero skeleton of the subcomplex

of LfX generated by that Λ{f}-cell (see Definition 2.2.13) is a subcomplex of W .

Proof. We identify LfW with a subcomplex of LfX as in Lemma 2.2.15,
and we will show by transfinite induction on the presentation ordinal (see Defini-
tion 2.2.4) of the Λ{f}-cell that a Λ{f}-cell of LfX is in LfW if and only if the
zero skeleton of the subcomplex of LfX generated by that Λ{f}-cell (see Defini-
tion 2.2.13) is a subcomplex of W .

If e is a Λ{f}-cell of presentation ordinal 1, then the subcomplex of LfX
generated by e consists of the union of e and the subcomplexes of X generated by
those simplices (or cells) of X whose interiors intersect the image of the attaching
map of e. Thus, the zero skeleton of the subcomplex of LfX generated by e is a
subcomplex of W if and only if the attaching map of e factors through the inclusion
W → X, which is true if and only if e is contained in LfW .

Since there are no Λ{f}-cells whose presentation ordinal is a limit ordinal,
we assume that β + 1 < λ and that the assertion is true for all Λ{f}-cells of
presentation ordinal less than or equal to β. Let e be a Λ{f}-cell of presentation
ordinal β + 1. The subcomplex of LfX generated by e consists of the union of
e and the subcomplexes of LfX generated by those Λ{f}-cells and simplices (or
cells) of X whose interiors intersect the image of the attaching map of e. Each of
those Λ{f}-cells is of presentation ordinal at most β, and so it is in LfW if and
only if the zero skeleton of the subcomplex of LfX it generates is contained in W ,
and the inductive hypothesis implies that this is true if and only if that Λ{f}-cell
is in LfW . Thus, the subcomplex of LfX generated by e is contained in LfW if
and only if the attaching map for e factors through Wβ → Xβ , i.e., if and only if e
is in LfW . �

Proposition 2.2.17. Let f : A → B be an inclusion of cell complexes (see
Remark 1.2.11). If X is a simplicial set (or a cell complex) and {Ws}s∈S is a family
of subcomplexes of X, then Lf (

⋂
s∈SWs) =

⋂
s∈S LfWs.

Proof. This follows from Proposition 2.2.16. �

Proposition 2.2.18. Let f : A → B be an inclusion of cell complexes (see
Remark 1.2.11). If X is a simplicial set (or a cell complex) and W0 ⊂ W1 ⊂
W2 ⊂ · · · ⊂ Wβ ⊂ · · · (β < λ) is a λ-sequence of subcomplexes of X (where
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λ is the ordinal chosen in Section 1.3.4), then the natural map colimβ<λ LfWβ →
Lf colimβ<λWβ is an isomorphism (or a homeomorphism).

Proof. Proposition 2.2.16 implies that the map is an isomorphism onto a
subcomplex; it remains only to show that every Λ{f}-cell of Lf colimβ<λWβ is
contained in some LfWβ . We will do this by a transfinite induction on the presen-
tation ordinal of the Λ{f}-cell (see Definition 2.2.4).

If e is a Λ{f}-cell of Lf colimβ<λWβ of presentation ordinal 1, then its attaching
map is a map to colimβ<λWβ , and the discussion in Section 1.3.4 explains why there
is an ordinal β < λ such that the image of the attaching map is contained in Wβ .
Thus, the Λ{f}-cell is in LfWβ .

Since there are no Λ{f}-cells of presentation ordinal equal to a limit ordinal,
we now let γ be an ordinal such that γ + 1 < λ, and we assume that the assertion
is true for all Λ{f}-cells of presentation ordinal less than or equal to γ. If e is a
Λ{f}-cell of presentation ordinal γ+1, then e has fewer than λ simplices (or cells).
Thus, the image of the attaching map of e is contained in the interiors of fewer
than λ many Λ{f}-cells, each of presentation ordinal less than or equal to γ. (If
Spc(∗) = Top(∗), then this follows from Corollary 10.7.5.) The induction hypothesis
implies that each of these is contained in some LfWβ . Since λ is a regular cardinal,
there must exist β < λ such that the union of these Λ{f}-cells is contained in
LfWβ , and so e is also contained in LfWβ . �

2.3. The Bousfield-Smith cardinality argument

The proof of Proposition 2.1.5 is at the end of this section. The cardinality
argument that we use here was first used by A. K. Bousfield [8] to define a model
category structure on the category of simplicial sets in which a weak equivalence was
a map that induced a homology isomorphism (for some chosen homology theory).
This was extended to more general localizations of cofibrantly generated model
categories (see Definition 11.1.2) by J. H. Smith. We are indebted to D. M. Kan
for explaining this argument to us.

We will prove Proposition 2.1.5 by showing that there is a set Jf of cofibra-
tions that are f -local equivalences such that every cofibration that is an f -local
equivalence has the left lifting property (see Definition 7.2.1) with respect to every
Jf -injective. Proposition 2.1.5 will then follow from Corollary 10.5.22.

We will find the set Jf by showing (in Proposition 2.3.8) that there is a cardinal
γ such that if a map has the right lifting property with respect to all inclusions of
simplicial sets (or of cell complexes) that are f -local equivalences between complexes
of size no larger than γ, then it has the right lifting property with respect to
all cofibrations that are f -local equivalences. (By the “size” of a simplicial set
(or a cell complex) X we mean the cardinal of the set of simplices (or cells) of
X; see Definition 2.3.2.) We will then let Jf be a set of representatives of the
isomorphism classes of of these “small enough” inclusions of complexes that are
f -local equivalences.

We must first deal with an inconvenient aspect of the categories Top and Top∗:
Not all spaces are cell complexes. This requires Lemma 2.3.1, which shows that
for a fibration to have the right lifting property (see Definition 7.2.1) with respect
to all cofibrations that are f -local equivalences, it is sufficient for it to have the
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right lifting property with respect to all such cofibrations that are inclusions of cell
complexes.

Lemma 2.3.1. Let f : A→ B be a map of cofibrant spaces in Top(∗). If p : E →
B is a fibration with the right lifting property with respect to all inclusions of cell
complexes that are f -local equivalences, then it has the right lifting property with
respect to all cofibrations that are f -local equivalences.

Proof. Let g : X → Y be a cofibration that is an f -local equivalence. Propo-
sition 11.2.8 implies that there is a cofibrant approximation (see Definition 8.1.22)
g̃ to g such that g̃ is an inclusion of cell complexes, and Proposition 1.2.16 and
Proposition 1.2.17 imply that g̃ is an f -local equivalence. Since Top(∗) is a left
proper model category (see Theorem 13.1.11), the lemma now follows from Propo-
sition 13.2.1. �

We can now restrict our attention to inclusions of simplicial sets (if Spc(∗) =
SS(∗)) or inclusions of cell complexes (if Spc(∗) = Top(∗)). We need to find a cardinal
γ with two properties:

(1) The cardinal γ is “large enough” in that for every complex X, every sub-
complex of LfX of size no greater than γ is contained in the localization
of a subcomplex of X of size no greater than γ.

(2) The cardinal γ is “stable” in that if X is a complex of size no greater than
γ, then LfX will also have size no greater than γ.

Once we have such a cardinal γ, Proposition 2.3.7 (which uses Lemma 2.3.5) will
show that any inclusion of complexes that is an f -local equivalence can be built out
of ones of size no greater than γ. This will be used in Proposition 2.3.8 to show
that if a map has the right lifting property with respect to all “small” inclusions of
complexes that are f -local equivalences then it has the right lifting property with
respect to all inclusions of complexes that are f -local equivalences. We define our
cardinal γ in Definition 2.3.4.

Definition 2.3.2. If the set of simplices (or cells) of the complexX has cardinal
κ, then we will say that X is of size κ.

Lemma 2.3.3. Let f : A→ B be an inclusion of cell complexes (see Remark 1.2.11),
and let λ be the first infinite cardinal greater than that of the simplices (or cells)
of A q B. For any complex X, we have LfX ≈ colim LfXs, where Xs varies over
the subcomplexes of X of size less than λ.

Proof. Proposition 2.2.16 implies that each LfXs is a subcomplex of LfX,
and so we need only show that every Λ{f}-cell of LfX is contained in LfXs for
some small subcomplex Xs of X. We will do this by a transfinite induction on the
presentation ordinal of the Λ{f}-cell (see Definition 2.2.4). To ease the strain of
terminology, for the remainder of this proof, the word “small” will mean “of size
less than λ”.

The induction is begun by noting that the zero skeleton of X → LfX equals
X. Since there are no Λ{f}-cells of presentation ordinal equal to a limit ordinal,
we need only consider the case of successor ordinals.

Now let β + 1 < λ, and assume that each Λ{f}-cell of presentation ordinal
less than or equal to β is contained in LfXs for some small subcomplex Xs of
X. Any Λ{f}-cell of presentation ordinal β + 1 must be attached by a map of its
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boundary to the β-skeleton of LfX (see Definition 2.2.4). Since the boundary of
an Λ{f}-cell has size less than λ, the image of the attaching map can intersect the
interiors of fewer than λ other simplices (or cells), each of which is either in X or
in an Λ{f}-cell of sequential dimension less than or equal to β. (If Spc(∗) = Top(∗),
then this uses Corollary 10.7.5.) Thus, our Λ{f}-cell is attached to the union of
X with some Λ{f}-cells, each of which is contained in the localization of a small
subcomplex of X. If we let Z be the union of those small subcomplexes of X and
the subcomplexes of X generated by the (fewer than λ) simplices (or cells) of X in
the image of the attaching map of our Λ{f}-cell, then Z is the union a collection
of size less than λ of subcomplexes of X, each of which is of size less than λ. Since
λ is a regular cardinal (see Proposition 10.1.14 and Example 10.1.12), this implies
that Z is of size less than λ, and our Λ{f}-cell is contained in LfZ. �

Definition 2.3.4. We let c denote the cardinal of the continuum, i.e., c is the
cardinal of the set of real numbers. We let λ denote the ordinal (which is also a
cardinal) selected in Section 1.3.4, i.e., if f : A → B, then λ is the first infinite
cardinal greater than that of the set of simplices (or cells) of AqB. We now define
γ as

γ =

{
λλ if Spc(∗) = SS(∗)

(λc)λc if Spc(∗) = Top(∗) .

Thus, if Spc(∗) = Top(∗), then γ = (λc)λc = max(λλ, cc) = (λλ)(cc) (since the
maximum of two infinite cardinals equals their product (see, e.g., [29, Chapter 2]
or [17, page 70])).

Lemma 2.3.5. Let f : A→ B be an inclusion of cell complexes (see Remark 1.2.11),
and let X be a simplicial set (or a cell complex). If Z is a subcomplex of LfX of
size less than or equal to γ, then there exists a subcomplex W of X, of size less
than or equal to γ, such that Z ⊂ LfW .

Proof. Lemma 2.3.3 implies that each simplex (or cell) of Z is contained in the
localization of some subcomplex of X of size less than λ, and so Proposition 2.2.16
implies that Z is contained in the localization of the union of those subcomplexes.
Since λ < γ (see Definition 2.3.4), λ× γ = γ, and so that union of subcomplexes is
of size less than or equal to γ. �

Lemma 2.3.6. Let f : A→ B be an inclusion of cell complexes (see Remark 1.2.11).
If X is a simplicial set (or a cell complex) of size less than or equal to γ (see Defi-
nition 2.3.4), then LfX has size less than or equal to γ.

Proof. Let X = X0 → X1 → X2 → · · · → Xβ → · · · (β < λ) be the
λ-sequence that is part of the natural presentation of the relative Λ{f}-cell com-
plex X → LfX (see Definition 2.2.3). We will prove by transfinite induction
that, for every β < λ, the complex Xβ has size less than or equal to γ. Since
LfX = colimβ<λXβ and Succ(γ) (see Definition 10.1.10) is a regular cardinal (see
Definition 10.1.14), this will imply the lemma.

We begin the induction by noting that X0 = X. If we now assume that Xβ

has size less than or equal to γ, then (since the boundary of a Λ{f}-cell is of
size less than λ) there are fewer than γλ = γ (if Spc(∗) = SS(∗)) or γλc = γ (if
Spc(∗) = Top(∗)) (see Proposition 10.1.15) many maps from the boundary of a



2.3. THE BOUSFIELD-SMITH CARDINALITY ARGUMENT 45

Λ{f}-cell to Xβ . Since there are only countably many Λ{f}-cells, there are fewer
than γ many Λ{f}-cells attached to Xβ to form Xβ+1. Since each Λ{f}-cell has
fewer than λ many simplices (or cells), Xβ+1 has size less than or equal to γ.

If β is a limit ordinal, then Xβ is a colimit of complexes, each of which is of
size less than or equal to γ. Since β < λ < γ, this implies that Xβ has size less
than or equal to γ. �

The following proposition will be used in Proposition 2.3.8 to extend a map over
an arbitrary inclusion of a subcomplex that is an f -local equivalence by extending
it over a subcomplex of size no greater than γ.

Proposition 2.3.7. Let f : A → B be an inclusion of cell complexes (see Re-
mark 1.2.11), and let D be a simplicial set (or a cell complex). If i : C → D is
the inclusion of a proper subcomplex and an f -local equivalence, then there is a
subcomplex K of D such that

(1) the subcomplex K is not contained in the subcomplex C,
(2) the size of K is less than or equal to γ (see Definition 2.3.4), and
(3) the inclusions K ∩C → K and C → C ∪K are both f -local equivalences.

Proof. Since i : C → D is the inclusion of a subcomplex and an f -local equiv-
alence, Lemma 2.2.15 and Theorem 1.4.15 imply that Lf (i) : LfC → LfD is a
trivial cofibration of fibrant spaces, and so it is the inclusion of a strong defor-
mation retract (see Corollary 9.6.5). We choose a strong deformation retraction
R : LfD ⊗ I → LfD (where I = ∆[1]), which will remain fixed throughout this
proof.

We will show that there exists a subcomplex K of D of size less than or equal
to γ such that

(1) K is not contained in C,
(2) R|LfK⊗I is a deformation retraction of LfK to Lf (K ∩ C), and
(3) R|Lf (C∪K)⊗I is a deformation retraction of Lf (C ∪K) to LfC.

We will do this by constructing a λ-sequence

K0 ⊂ K1 ⊂ K2 ⊂ · · · ⊂ Kβ ⊂ · · · (β < λ)

(where λ is as in Definition 2.3.4) of subcomplexes of D such that, for every β < λ,
(1) Kβ has size less than or equal to γ,
(2) R(LfKβ ⊗ I) ⊂ LfKβ+1,

and such that no Kβ is contained in C. If we then let K =
⋃
β<λKβ , then Propo-

sition 2.2.18 will imply that K has the properties that we require.
We begin by choosing a simplex (or cell) of D that isn’t contained in C, and

letting K0 equal the subcomplex generated by that simplex (or cell).
For successor ordinals, suppose that β + 1 < γ and that we’ve constructed

Kβ . Lemma 2.3.6 implies that LfKβ has size less than or equal to γ, and so
R(LfKβ ⊗ I) is contained in a subcomplex of LfD of size less than or equal to
γ. (If Spc(∗) = Top(∗), then this uses Corollary 10.7.7.) Lemma 2.3.5 now implies
that we can find a subcomplex Zβ of D, of size less than or equal to γ, such that
R(LfKβ ⊗ I) ⊂ LfZβ . We let Kβ+1 = Kβ ∪ Zβ . It is clear that Kβ+1 has the
properties required of it, and so the proof is complete. �

Proposition 2.3.8. Let f : A → B be an inclusion of cell complexes (see Re-
mark 1.2.11). If p : X → Y has the right lifting property with respect to those
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inclusions of subcomplexes i : C → D that are f -local equivalences and such that
the size of D is less than or equal to γ (see Definition 2.3.4), then p has the right
lifting property with respect to all inclusions of subcomplexes that are f -local equiv-
alences.

Proof. Let i : C → D be an inclusion of a subcomplex that is an f -local
equivalence, and let the solid arrow diagram

C
h //

i

��

X

p

��

D

>>

k
// Y

be commutative; we must show that there exists a dotted arrow making both tri-
angles commute. To do this, we will consider the subcomplexes of D over which
our map can be defined and use Zorn’s lemma to show that we can define it over
all of D.

Let S be the set of pairs (Ds, gs) such that
(1) Ds is a subcomplex of D containing C such that the inclusion is : C → Ds

is an f -local equivalence, and
(2) gs is a function Ds → X such that gsis = h and pgs = k|Ds .

We define a preorder on S by defining (Ds, gs) < (Dt, gt) if Ds ⊂ Dt and gt|Ds
= gs.

If S′ ⊂ S is a chain (i.e., a totally ordered subset of S), letDu = colim(Ds,gs)∈S′ Ds

and define gu : Du → X by gu = colim(Ds,gs)∈S′ gs. The universal mapping prop-
erty of the colimit implies that guiu = h and pgu = k|Du , and Proposition 1.2.20
implies that the map C → Du is an f -local equivalence. Thus, (Du, gu) is an el-
ement of S, and so it is an upper bound for S′. Zorn’s lemma now implies that
S has a maximal element (Dm, gm). We will complete the proof by showing that
Dm = D.

If Dm 6= D, then Proposition 2.3.7 implies that there is a subcomplex K of D
such that K is not contained in Dm, the size of K is less than or equal to γ, and the
inclusions K ∩Dm → K and Dm → Dm ∪K are both f -local equivalences. Thus,
there is a map gK : K → X such that pgK = k|K and gK |K∩Dm

= gm|K∩Dm
, and so

gm and gK combine to define a map gmK : K∪Dm → X such that pgmK = k|K∪Dm

and gmKi = h. Thus, (K ∪ Dm, gmK) is an element of S strictly greater than
(Dm, gm). This contradicts (Dm, gm) being a maximal element of S, and so our
assumption that Dm 6= D must have been false, and the proof is complete. �

Proof of Proposition 2.1.5. Let Jf be a set of representatives of the iso-
morphism classes of inclusions of subcomplexes that are f -local equivalences of
complexes of size less than or equal to γ. Proposition 2.3.8, Corollary 10.5.22 and
Lemma 2.3.1 (if Spc(∗) = Top(∗)) imply that the Jf -cofibrations are exactly the
cofibrations that are f -local equivalences. �



CHAPTER 3

Localization of Model Categories

The purpose of a model category is to serve as a presentation of its homotopy
theory, and so a “localization” of a model category should be a construction that
adds inverses for maps in the homotopy category, rather than one that adds inverses
for maps in the underlying category. If M is a model category and C is a class of
maps in M, a localization of M with respect to C will be a map of model categories
F: M→ N such that the images in Ho M of the elements of C go to isomorphisms in
Ho N and such that F is initial among such maps of model categories. Since there
are two different varieties of maps of model categories, left Quillen functors and
right Quillen functors (see Definition 8.5.2), we will define two different varieties
of localizations of model categories, left localizations and right localizations (see
Definition 3.1.1).

If F: M→ N is a left Quillen functor, g : X → Y is a map in M, and [g] : X → Y
is the image of g in HoM, then the total left derived functor LF: HoM → Ho N

of F (see Definition 8.4.7) takes [g] to the image in Ho N of F(g̃) for some cofibrant
approximation g̃ to g. Thus, if LF[g] is to be an isomorphism for every element
g of C, then Theorem 8.3.10 and Proposition 8.1.24 imply that F must take every
cofibrant approximation to an element of C into a weak equivalence. Thus, if C

is a class of maps in M, then a left localization of M with respect to C will be a
left Quillen functor that takes cofibrant approximations to elements of C into weak
equivalences and is initial among such left Quillen functors (see Theorem 3.1.6).
Similarly, a right localization of M with respect to C will be a right Quillen functor
that takes fibrant approximations to elements of C into weak equivalences and is
initial among such right Quillen functors.

In Section 3.1 we define left and right localizations of model categories, and
explain the connection between left localizations, local objects, and local equiv-
alences (and, dually, the connection between right localizations, colocal objects,
and colocal equivalences). In Section 3.2 we establish some properties of (co)local
objects and (co)local equivalences, and in Section 3.3 we discuss (left and right)
Bousfield localizations of categories, a special case of left and right localizations
(see Theorem 3.3.19). (The localizations that we construct in Chapters 4 and 5
are Bousfield localizations.) In Section 3.4 we discuss left Bousfield localizations
of left proper model categories (and right Bousfield localizations of right proper
model categories), and in Section 3.5 we establish a method for detecting (co)local
equivalences.

3.1. Left localization and right localization

Definition 3.1.1. Let M be a model category and let C be a class of maps in
M.

47
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(1) A left localization of M with respect to C is a model category LCM together
with a left Quillen functor (see Definition 8.5.2) j : M→ LCM such that
(a) the total left derived functor Lj : Ho M → Ho LCM (see Defini-

tion 8.4.7) of j takes the images in Ho M of the elements of C into
isomorphisms in Ho LCM, and

(b) if N is a model category and ϕ : M→ N is a left Quillen functor such
that Lϕ : HoM → Ho N takes the images in HoM of the elements
of C into isomorphisms in Ho N, then there is a unique left Quillen
functor δ : LCM→ N such that δj = ϕ.

(2) A right localization of M with respect to C is a model category RCM

together with a right Quillen functor j : M→ RCM such that
(a) the total right derived functor Rj : Ho M → Ho RCM of j takes the

images in HoM of the elements of C into isomorphisms in Ho RCM,
and

(b) if N is a model category and ϕ : M→ N is a right Quillen functor such
that Rϕ : Ho M → Ho N takes the images in Ho M of the elements
of C into isomorphisms in Ho N, then there is a unique right Quillen
functor δ : LCM→ N such that δj = ϕ.

Proposition 3.1.2. Let M be a model category and let C be a class of maps
in M. If a (left or right) localization of M with respect to C exists, it is unique up
to a unique isomorphism.

Proof. The standard argument applies. �

3.1.3. C-local objects and C-local equivalences. Given a left (respectively,
right) Quillen functor F, we need to be able to describe when the total left (respec-
tively, right) derived functor of F inverts a map in the homotopy category by exam-
ining F itself. We will do this in Theorem 3.1.6, using the notions of C-local object
and C-local equivalence (respectively, C-colocal object and C-colocal equivalence)
(see Definition 3.1.4).

Definition 3.1.4. Let M be a model category and let C be a class of maps in
M.

(1) (a) An object W of M is C-local if W is fibrant and for every element
f : A → B of C the induced map of homotopy function complexes
f∗ : map(B,W )→ map(A,W ) (see Notation 17.4.2) is a weak equiv-
alence. (Theorem 17.5.31 implies that if this is true for any one ho-
motopy function complex then it is true for every homotopy function
complex.) If C consists of the single map f : A → B then a C-local
object will also be called f-local, and if C consists of the single map
from the initial object of M to an object A then a C-local object will
also be called A-local or A-null.

(b) A map g : X → Y in M is a C-local equivalence if for every C-
local object W the induced map of homotopy function complexes
g∗ : map(Y,W )→ map(X,W ) (see Notation 17.4.2) is a weak equiv-
alence. (Theorem 17.5.31 implies that if this is true for any one
homotopy function complex then it is true for every homotopy func-
tion complex.) If C consists of the single map f : A → B then a
C-local equivalence will also be called an f-local equivalence, and if C
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consists of the single map from the initial object of M to an object A
then a C-local equivalence will also be called an A-local equivalence.

(2) (a) An object W of M is C-colocal if W is cofibrant and for every ele-
ment f : A → B of C the induced map of homotopy function com-
plexes f∗ : map(W,A)→ map(W,B) (see Notation 17.4.2) is a weak
equivalence. (Theorem 17.5.31 implies that if this is true for any
one homotopy function complex then it is true for every homotopy
function complex.)

(b) A map g : X → Y in M is a C-colocal equivalence if for every C-
colocal object W the induced map of homotopy function complexes
g∗ : map(W,X)→ map(W,Y ) (see Notation 17.4.2) is a weak equiv-
alence. (Theorem 17.5.31 implies that if this is true for any one ho-
motopy function complex then it is true for every homotopy function
complex.)

Proposition 3.1.5. If M is a model category and C is a class of maps in M then
every weak equivalence is both a C-local equivalence and a C-colocal equivalence.

Proof. This follows from Theorem 17.6.3. �

Theorem 3.1.6. Let M and N be model categories and let F: M � N :U be a
Quillen pair.

(1) If C is a class of maps in M, then the following are equivalent:
(a) The total left derived functor LF: HoM→ Ho N (see Definition 8.4.7)

of F takes the images in Ho M of the elements of C into isomorphisms
in Ho N.

(b) The functor F takes every cofibrant approximation (see Definition 8.1.22)
to an element of C into a weak equivalence in N.

(c) The functor U takes every fibrant object of N into a C-local object
of M.

(d) The functor F takes every C-local equivalence between cofibrant ob-
jects into a weak equivalence in N.

(2) If C is a class of maps in N, then the following are equivalent:
(a) The total right derived functor RU: HoN → Ho M (see Defini-

tion 8.4.7) of U takes the images in Ho N of the elements of C into
isomorphisms in Ho M.

(b) The functor U takes every fibrant approximation (see Definition 8.1.22)
to an element of C into a weak equivalence in M.

(c) The functor F takes every cofibrant object of M into a C-colocal
object of N.

(d) The functor U takes every C-colocal equivalence between fibrant ob-
jects into a weak equivalence in M.

Proof. We will prove part 1; the proof of part 2 is dual.
(a) is equivalent to (b): If g : X → Y is a map in M, then the total left de-

rived functor of F takes the image of g in Ho M to the image in Ho N

of F(g̃) for some cofibrant approximation g̃ to g (see the proof of Prop-
osition 8.4.4). Since a map in N is a weak equivalence if and only if its
image in Ho N is an isomorphism (see Theorem 8.3.10), Proposition 8.1.24
implies that (a) is equivalent to (b).
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(b) is equivalent to (c): If f : A → B is an element of C, then Proposi-
tion 8.1.24 implies that F takes every cofibrant approximation to f into a
weak equivalence if and only if F takes at least one cofibrant approx-
imation to f into a weak equivalence. If f̃ : Ã → B̃ is a cosimpli-
cial resolution of f in M, then f̃0 : Ã0 → B̃0 is a cofibrant approxima-
tion to f and F(f̃) : F(Ã) → F(B̃) is a cosimplicial resolution in N of
F(f̃0) : F(Ã0) → F(B̃0) (see Proposition 16.2.1). Theorem 17.7.7 implies
that the map of simplicial sets N

(
F(B̃),W

)
→ N

(
F(Ã),W

)
is a weak

equivalence for every fibrant object W in N if and only if F(f̃0) is a weak
equivalence. The adjointness of F and U now implies that the map of
simplicial sets M

(
B̃,U(W )

)
→ M

(
Ã,U(W )

)
is a weak equivalence for

every fibrant object W of N if and only if F(f̃0) is a weak equivalence,
and so (b) is equivalent to (c).

(c) is equivalent to (d): If W is a fibrant object of N and Ŵ is a simplicial
resolution of W in N, then U(Ŵ ) is a simplicial resolution of U(W ) in
M (see Proposition 16.2.1). Thus, U(W ) is C-local if and only if the map
of simplicial sets g∗ : M

(
B,U(Ŵ )

)
→M

(
A,U(Ŵ )

)
is a weak equivalence

for every C-local equivalence between cofibrant objects g : A→ B. Theo-
rem 17.7.7 implies that F(g) : F(A) → F(B) is a weak equivalence if and
only if the map of simplicial sets F(g)∗ : N

(
F(B), Ŵ

)
→ M

(
F(A), Ŵ

)
is

a weak equivalence for every fibrant object W , and so the result follows
from the adjointness of the pair (F,U).

�

3.1.7. Cellularization.

Definition 3.1.8. Let M be a model category and let K be a set of objects in
M.

(1) A map g : X → Y will be called a K-colocal equivalence or a K-cellular
equivalence if for every element A of K the induced map of homotopy
function complexes g∗ : map(A,X) → map(A, Y ) (see Notation 17.4.2)
is a weak equivalence. (Theorem 17.5.31 implies that if this is true for
any one homotopy function complex, then it is true for every homotopy
function complex.) If K consists of the single object A, then a K-colocal
equivalence will also be called an A-colocal equivalence or an A-cellular
equivalence.

(2) If C is the class of K-colocal equivalences, then a C-colocal object (see
Definition 3.1.4) will also be called K-colocal.

Remark 3.1.9. Earlier work on colocalization was exclusively in a category of
pointed spaces ([20, 21, 23, 24]) and was called cellularization. Given a pointed
spaceA, anA-cellular equivalence of pointed spaces was defined to be a map g : X →
Y for which the induced map g∗ : Map(A,X) → Map(A, Y ) (see Definition 1.1.6)
is a weak equivalence, and the class of A-cellular spaces was defined to be the
smallest class of cofibrant spaces containing A and closed under homotopy colimits
and weak equivalences. Since this earlier work considered only the subcategory of
fibrant objects (or worked entirely in the category of pointed topological spaces,
in which every object is fibrant), this earlier definition of an A-cellular equivalence
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coincides with our definition of an A-colocal equivalence (see Example 17.1.4 and
Example 17.2.4). We will show in Theorem 5.1.5 that this earlier definition of an
A-cellular space also coincides with our definition of an A-colocal space.

Remark 3.1.10. If M = Spc (a category of unpointed spaces; see Nota-
tion 1.1.4) and A is a non-empty space, then a one point space is a retract of
A, and so every space X is a retract of the space of maps XA. This implies that
if K is a set of nonempty spaces, then a K-colocal equivalence of unpointed spaces
must actually be a weak equivalence. Thus, to consider the notion of K-colocal
equivalence of unpointed spaces would be pointless.1

3.1.11. Localization and Quillen functors. Let M and N be model cate-
gories and let F: M � N :U be a Quillen pair. If g is a map in M with respect
to which we intend to localize M, then the corresponding localization of N would
not be with respect to Fg. This is because the image in Ho N of Fg does not, in
general, equal the image in Ho N under LF (see Definition 8.4.7) of the image in
Ho M of g; that is, the square

M
F //

��

N

��

Ho M
LF
// Ho N

does not, in general, commute. If g is a map in M and g̃ is a cofibrant approximation
to g, then Fg̃ is a map in N whose image in Ho N is isomorphic to the image under
LF of the image of g in HoM. Thus, if C is a class of maps in M with respect to
which we will left localize M, then the corresponding class of maps in N is LFC

(see Definition 8.5.11).

Proposition 3.1.12. Let M and N be model categories and let F: M � N :U
be a Quillen pair.

(1) If C is a class of maps in M and W is a fibrant object of N, then W is
LFC-local (see Definition 8.5.11) if and only if UW is C-local.

(2) If C is a class of maps in N and W is a cofibrant object of M, then W is
RUC-colocal if and only if FW is C-colocal.

Proof. We will prove part 1; the proof of part 2 is dual.
If i : A→ B is a cofibrant approximation to an element of C and ı̃ : Ã→ B̃ is a

cosimplicial resolution of i, then Fı̃ : FÃ→ FB̃ is a cosimplicial resolution of LFi.
The result now follows because the map of simplicial sets N(FB̃,W )→ N(FÃ,W )
is isomorphic to the map of simplicial sets M(B̃,UW )→M(Ã,UW ). �

3.2. C-local objects and C-local equivalences

Theorem 3.1.6 implies that to understand a left localization with respect to C

we must understand C-local objects and C-local equivalences, and to understand a
right localization with respect to C we must understand C-local objects and C-local
equivalences.

1According to E. Dror Farjoun, this joke is due to W. G. Dwyer.
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Lemma 3.2.1. Let M be a model category and let C be a class of maps in M.

(1) If X and Y are fibrant objects of M and g : X → Y is a weak equivalence,
then X is C-local (see Definition 3.1.4) if and only if Y is C-local.

(2) IfX and Y are cofibrant objects of M and g : X → Y is a weak equivalence,
then X is C-colocal if and only if Y is C-colocal.

Proof. We will prove part 1; the proof of part 2 is dual.
If f : A→ B is an element of C, then we have the commutative diagram

map(B,X) //

≈
��

map(A,X)

≈
��

map(B, Y ) // map(A, Y )

in which the vertical maps are weak equivalences (see Theorem 17.6.3). Thus, the
top map is a weak equivalence if and only if the bottom map is a weak equivalence.

�

Proposition 3.2.2. Let M be a model category and let C be a class of maps
in M.

(1) If X and Y are fibrant objects that are weakly equivalent (see Defini-
tion 7.9.2), then X is C-local if and only if Y is C-local.

(2) If X and Y are cofibrant objects that are weakly equivalent, then X is
C-colocal if and only if Y is C-colocal.

Proof. This follows from Lemma 3.2.1. �

Proposition 3.2.3. Let M be a model category and let C be a class of maps
in M.

(1) The class of C-local equivalences (see Definition 3.1.4) satisfies the “two
out of three” axiom, i.e., if g and h are composable maps and if two of g,
h, and hg are C-local equivalences, then so is the third.

(2) The class of C-colocal equivalences satisfies the “two out of three” axiom,
i.e., if g and h are composable maps and if two of g, h, and hg are C-colocal
equivalences, then so is the third.

Proof. We will prove part 1; the proof of part 2 is dual.
Given maps g : X → Y and h : Y → Z, we can apply a functorial cofibrant

approximation (see Proposition 8.1.17) to g and h to obtain the diagram

X̃
g̃
//

��

Ỹ
h̃ //

��

Z̃

��

X g
// Y

h
// Z

in which g̃, h̃, and h̃g̃ are cofibrant approximations to g, h, and hg, respectively.
If W is a C-local object, Ŵ is a simplicial resolution of W , and two of the maps
g̃∗ : M(Ỹ , Ŵ ) → M(X̃, Ŵ ), h̃∗ : M(Z̃, Ŵ ) → M(Ỹ , Ŵ ), and (h̃g̃)∗ : M(Z̃, Ŵ ) →
M(X̃, Ŵ ) are weak equivalences, then the third is as well. �
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Proposition 3.2.4. Let M be a model category and let C be a class of maps
in M.

(1) The class of C-local equivalences is closed under retracts (see Defini-
tion 7.1.1).

(2) The class of C-colocal equivalences is closed under retracts.

Proof. We will prove part 1; the proof of part 2 is dual.
If g : X → Y is a C-local equivalence and h : V → W is a retract of g, then we

can apply a functorial factorization to the maps from the initial object to each of
X, Y , V , and W to obtain cofibrant approximations g̃ : X̃ → Ỹ to g and h̃ : Ṽ → W̃

to h such that h̃ is a retract of g̃. If Z is a C-local object and Ẑ is a simplicial
resolution of Z, then h̃∗ : M(W̃ , Ẑ)→M(Ṽ , Ẑ) is a retract of the weak equivalence
g̃∗ : M(Ỹ , Ẑ)→M(X̃, Ẑ), and so h̃∗ is a weak equivalence. �

Lemma 3.2.5. Let M be a model category, let C be a class of maps in M, let D

be a small category, and let g : X → Y is a map of D-diagrams in M.

(1) If the map gα : Xα → Y α is a C-local equivalence between cofibrant
objects for every object α of D, then the induced map of homotopy colimits
hocolim g : hocolim X → hocolim Y is a C-local equivalence.

(2) If the map gα : Xα → Y α is a C-colocal equivalence between fibrant
objects for every object α of D, then the induced map of homotopy limits
holim g : holim X → hocolim Y is a C-colocal equivalence.

Proof. We will prove part 1; the proof of part 2 is dual.
Let W be a C-local object. Since map(hocolim Xα,W ) is naturally weakly

equivalent to holim map(Xα,W ) (see Theorem 19.4.4), our map is naturally weakly
equivalent to the map holim map(Y α,W )→ holim map(Xα,W ). Since for each α
the map Xα → Y α is a C-local equivalence, the result follows from Theorem 19.4.2.

�

Lemma 3.2.6. Let M be a model category and let C be a class of maps in M.

(1) If i : A→ B is a cofibration of cofibrant objects, then i is a C-local equiv-
alence if and only if it has the left lifting property (see Definition 7.2.1)

with respect to the map X̂∆[n] → X̂∂∆[n] for every simplicial resolution

X̂ of every C-local object X and every n ≥ 0.
(2) If p : X → Y is a fibration of fibrant objects, then p is a C-colocal equiv-

alence if and only if it has the right lifting property with respect to the

map B̃ ⊗ ∂∆[n]→ B̃ ⊗∆[n] for every cosimplicial resolution B̃ of every
C-colocal object B and every n ≥ 0.

Proof. This follows from Proposition 17.8.5 and Proposition 17.8.8. �

Proposition 3.2.7. Let M be a model category, let C be a class of maps in M,
and let T be a totally ordered set.

(1) If W : T →M is a functor such that, if s, t ∈ T and s ≤ t, then W s →W t

is both a cofibration of cofibrant objects and a C-local equivalence, then
for every s ∈ T the map W s → colimt≥s W t is both a cofibration of
cofibrant objects and a C-local equivalence.

(2) If W : T op →M is a functor such that, if s, t ∈ T and s ≤ t, then W t →
W s is both a fibration of fibrant objects and a C-colocal equivalence, then



54 3. LOCALIZATION OF MODEL CATEGORIES

for every s ∈ T the map limt≥s W t → W s is both a fibration of fibrant
objects and a C-colocal equivalence.

Proof. We will prove part 1; the proof of part 2 is dual.
Part 1 follows from Lemma 3.2.6, Lemma 10.3.5, and Proposition 10.3.6. �

Lemma 3.2.8. Let M be a simplicial model category and let C be a class of
maps in M. If f : A→ B is a cofibration between cofibrant objects in M that is a
C-local equivalence and K is a simplicial set, then the map f⊗1K : A⊗K → B⊗K
is also a cofibration between cofibrant objects that is a C-local equivalence.

Proof. If X is a C-local object then we have a commutative square

Map(B ⊗K,X) ≈ //

��

Map
(
K,Map(B,X)

)
��

Map(A⊗K,X) ≈
// Map

(
K,Map(A,X)

)
in which the horizontal maps are isomorphisms. Since X is C-local the map
Map(B,X) → Map(A,X) is a trivial fibration of simplicial sets, and so the map
on the right is also a trivial fibration of simplicial sets. �

3.2.9. Left proper model categories.

Proposition 3.2.10. Let M be a left proper model category, and let C be a set
of maps in M. If g : C → D is a cofibration that is also a C-local equivalence, then
any pushout of g is also a C-local equivalence.

Proof. This follows from Proposition 17.8.5 and Proposition 17.8.16. �

Proposition 3.2.11. If M is a left proper model category and C is a class
of maps in M, then a transfinite composition of maps, each of which is both a
cofibration and a C-local equivalence, is both a cofibration and a C-local equivalence.

Proof. Let λ be an ordinal and let

X0 → X1 → X2 → · · · → Xβ → · · · (β < λ)

be a λ-sequence of maps that are both cofibrations and C-local equivalences. Propo-
sition 10.3.4 implies that the composition of that λ-sequence is a cofibration, and so
it remains only to show that it is a C-local equivalence. Proposition 17.9.4 implies
that we can find a λ-sequence of cofibrations together with a map of λ-sequences

X̃0
//

��

X̃1
//

��

X̃2
//

��

· · · // X̃β
//

��

· · ·

X0
// X1

// X2
// · · · // Xβ // · · ·

such that each vertical map X̃β → Xβ is a cofibrant approximation to Xβ and
colimβ<λ X̃β → colimβ<λXβ is a cofibrant approximation to colimβ<λXβ . If W is
a C-local object and Ŵ is a simplicial resolution of W , then, since each Xβ → Xβ+1

is a C-local equivalence and each X̃β → X̃β+1 is a cofibration, each M(X̃β+1, Ŵ )→
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M(X̃β , Ŵ ) is a trivial fibration of simplicial sets (see Theorem 17.8.4). Thus,

M(X̃0, Ŵ )←M(X̃1, Ŵ )←M(X̃2, Ŵ )← · · · ←M(X̃β , Ŵ )← · · ·

is a tower of trivial fibrations of simplicial sets, and so the projection limβ<λ M(X̃β , Ŵ )→
M(X̃0, Ŵ ) is a weak equivalence. Since M(colimβ<λ X̃β , Ŵ ) is isomorphic to
limβ<λ M(X̃β , Ŵ ), this implies that the composition X0 → colimβ<λXβ is a C-
local equivalence. �

3.2.12. C-(co)local Whitehead theorems.

Theorem 3.2.13 (Weak C-(co)local Whitehead theorem). Let M is a model
category and let C be a class of maps in M.

(1) If X and Y are C-local objects and g : X → Y is a C-local equivalence,
then g is a weak equivalence.

(2) If X and Y are C-colocal objects and g : X → Y is a C-colocal equivalence,
then g is a weak equivalence.

Proof. This follows from Proposition 17.7.6. �

Theorem 3.2.14 (Strong C-(co)local Whitehead theorem). Let M be a model
category and let C be a class of maps in M.

(1) If X and Y are cofibrant C-local objects and g : X → Y is a C-local
equivalence, then g is a homotopy equivalence.

(2) If X and Y are fibrant C-colocal objects and g : X → Y is a C-colocal
equivalence, then g is a homotopy equivalence.

Proof. This follows from Theorem 3.2.13 and Theorem 7.5.10. �

3.2.15. C-localization of objects and maps.

Definition 3.2.16. Let M be a model category and let C be a class of maps
in M.

(1) (a) A C-localization of an object X is a C-local object X̂ (see Defini-
tion 3.1.4) together with an C-local equivalence j : X → X̂. We will
sometimes use the phrase C-localization to refer to the object X̂,
without explicitly mentioning the C-local equivalence j. A cofibrant
C-localization of X is a C-localization in which the C-local equivalence
j is also a cofibration.

(b) A C-localization of a map g : X → Y is a C-localization (X̂, jX) of
X, a C-localization (Ŷ , jY ) of Y , and a map ĝ : X̂ → Ŷ such that the
square

X
g
//

jX
��

Y

jY
��

X̂ ĝ
// Ŷ

commutes. We will sometimes use the term C-localization to refer to
the map ĝ, without explicitly mentioning the C-localizations (X̂, jX)
of X and (Ŷ , jY ) of Y .
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(2) (a) A C-colocalization of an object X is a C-colocal object X̃ (see Def-
inition 3.1.8) together with a C-colocal equivalence i : X̃ → X. We
will sometimes use the phrase C-colocalization to refer to the object
X̃, without explicitly mentioning the C-colocal equivalence i. A fi-
brant C-colocalization ofX is a C-colocalization in which the C-colocal
equivalence is also a fibration.

(b) A C-colocalization of a map g : X → Y is a C-colocalization (X̃, iX)
of X, a C-colocalization (Ỹ , iY ) of Y , and a map g̃ : X̃ → Ỹ such that
the square

X̃
g̃
//

iX

��

Ỹ

iY

��

X g
// Y

commutes. We will sometimes use the term C-colocalization to refer
to the map g̃, without explicitly mentioning the C-colocalizations
(X̃, iX) of X and (Ỹ , iY ) of Y .

Theorem 3.2.17. Let M be a model category and let C be a class of maps in
M.

(1) If X is a fibrant object and j : X → X̂ is a C-localization of X (see
Definition 3.2.16), then j is a weak equivalence if and only if X is C-local.

(2) If X is a cofibrant object and i : X̃ → X is a C-colocalization of X (see
Definition 3.2.16), then i is a weak equivalence if and only ifX is C-colocal.

Proof. We will prove part 1; the proof of part 2 is dual.
If X is C-local then Theorem 3.2.13 implies that j is a weak equivalence. Con-

versely, if j is a weak equivalence then Lemma 3.2.1 implies that X is C-local. �

Theorem 3.2.18. Let M be a model category and let C be a class of maps in
M.

(1) If ĝ : X̂ → Ŷ is a C-localization of g : X → Y , then g is a C-local equiva-
lence if and only if ĝ is a weak equivalence.

(2) If g̃ : X̃ → Ỹ is a C-colocalization of g : X → Y , then g is a C-colocal
equivalence if and only if g̃ is a weak equivalence.

Proof. We will prove part 1; the proof of part 2 is dual.
Proposition 3.1.5 and Proposition 3.2.3 imply that g is a C-local equivalence if

and only if ĝ is an C-local equivalence. Since X̂ and Ŷ are C-local, Theorem 3.2.13
and Proposition 3.1.5 imply that ĝ is a C-local equivalence if and only if it is a weak
equivalence. �

If M is a left proper cellular model category (see Definition 12.1.1) and S is
a set of maps in M, then in Definition 4.3.2 we define a functorial S-localization
(LS , j). Theorem 3.2.17 then implies that a fibrant object X is S-local if and only if
the S-localization map j(X) : X → LSX is a weak equivalence (see Theorem 4.3.5),
and Theorem 3.2.18 implies that a map g : X → Y is an S-local equivalence if and
only if LS(g) : LSX → LSY is a weak equivalence (see Theorem 4.3.6).
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Proposition 3.2.19. Let M be a model category and let C be a class of maps
in M.

(1) (a) If both X and X̂ are cofibrant and j : X → X̂ is a C-localization of X,
then for every C-local object W the map j induces an isomorphism

of the sets of homotopy classes of maps j∗ : π(X̂,W ) ≈ π(X,W ).
(b) If X is cofibrant and j : X → X̂ is a cofibrant C-localization of X,

then for every C-local object W and every map f : X → W there is

a map g : X̂ →W , unique up to homotopy, such that gj = f .

(2) (a) If both X̃ and X are fibrant and i : X̃ → X is a C-colocalization of X,
then for every C-colocal object B the map i induces an isomorphism

of the sets of homotopy classes of maps i∗ : π(B, X̃) ≈ π(B,X).
(b) If X is fibrant and i : X̃ → X is a fibrant C-colocalization of X, then

for every C-colocal object B and every map f : B → X there is a

map g : B → X̃, unique up to homotopy, such that ig = f .

Proof. We will prove part 1; the proof of part 2 is dual.
Part 1a follows from Proposition 17.7.4. Part 1b follows from part 1a and

Proposition 7.3.13. �

3.3. Bousfield localization

The (left and right) localizations (see Definition 3.1.1) that we will construct
will actually be new model category structures on the underlying category of the
given model category. Since model category structures such as these were originally
constructed in the foundational work of Bousfield [8, 9, 10, 11, 12], we call these
(left and right) Bousfield localizations.

Definition 3.3.1. Let M be a model category and let C be a class of maps in
M.

(1) The left Bousfield localization of M with respect to C (if it exists; see Re-
mark 3.3.2) is a model category structure LCM on the underlying category
of M such that
(a) the class of weak equivalences of LCM equals the class of C-local

equivalences of M,
(b) the class of cofibrations of LCM equals the class of cofibrations of M,

and
(c) the class of fibrations of LCM is the class of maps with the right lifting

property with respect to those maps that are both cofibrations and
C-local equivalences.

(2) The right Bousfield localization of M with respect to C (if it exists; see Re-
mark 3.3.2) is a model category structure RCM on the underlying category
of M such that
(a) the class of weak equivalences of RCM equals the class of C-colocal

equivalences of M,
(b) the class of fibrations of RCM equals the class of fibrations of M, and
(c) the class of cofibrations of RCM is the class of maps with the left

lifting property with respect to those maps that are both fibrations
and C-colocal equivalences.
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Remark 3.3.2. We are not asserting that if M is a model category and C is a
class of maps in M then the left (or right) Bousfield localization of M with respect
to C exists; that is, the three classes of maps described in Definition 3.3.1 part 1
(or part 2) might not constitute a model category structure on M. However, we
will show in Theorem 3.3.19 that if a Bousfield localization of M with respect to
C exists (i.e., if the three classes of maps do constitute a model category structure
on M), then it is a localization of M with respect to C (see Definition 3.1.1). Our
existence theorem for left Bousfield localizations is Theorem 4.1.1 and our existence
theorem for right Bousfield localizations is Theorem 5.1.1.

Proposition 3.3.3. Let M be a model category, and let C be a class of maps
in M.

(1) If LCM is the left Bousfield localization of M with respect to C, then
(a) every weak equivalence of M is a weak equivalence of LCM,
(b) the class of trivial fibrations of LCM equals the class of trivial fibra-

tions of M,
(c) every fibration of LCM is a fibration of M, and
(d) every trivial cofibration of M is a trivial cofibration of LSM.

(2) If RCM is the right Bousfield localization of M with respect to C, then
(a) every weak equivalence of M is a weak equivalence of RCM,
(b) the class of trivial cofibrations of RCM equals the class of trivial

cofibrations of M,
(c) every cofibration of RCM is a cofibration of M, and
(d) every trivial fibration of M is a trivial fibration of M.

Proof. This follows from Proposition 3.1.5 and Proposition 7.2.3. �

Proposition 3.3.4. Let M be a model category and let C be a class of maps
in M.

(1) If j : M → LCM is the left Bousfield localization of M with respect to C,
then the identity functors 1M : M � LCM : 1M are a Quillen pair (see
Definition 8.5.2).

(2) If j : M → RCM is the right Bousfield localization of M with respect to
C, then the identity functors 1M : RCM � M :1M are a Quillen pair.

Proof. This follows from Proposition 3.3.3. �

Proposition 3.3.5. Let M be a model category and let C be a class of maps
in M.

(1) If LCM is the left Bousfield localization of M with respect to C, f : X → Z
and g : Y → Z are fibrations in LCM, and h : X → Y is a weak equivalence
in LCM that makes the triangle

X
h //

f
  

@@
@@

@@
@ Y

g
��~~

~~
~~

~

Z

commute, then h is a weak equivalence in M.
(2) If RCM is the right Bousfield localization of M with respect to C, f : A→

B and g : A → C are cofibrations in RCM, and h : B → C is a weak
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equivalence in RCM that makes the triangle

A
g

��
@@

@@
@@

@
f

��~~
~~

~~
~

B
h

// C

commute, then h is a weak equivalence in M.

Proof. We will prove part 1; the proof of part 2 is dual.
If we let h̃ : X̃ → Ỹ be a fibrant cofibrant approximation to h in M (see

Proposition 9.1.9), then we have the diagram

X̃
h̃ //

jX

��

Ỹ

jY

��

X
h //

f
  

@@
@@

@@
@ Y

g
��~~

~~
~~

~

Z

in which X̃ and Ỹ are cofibrant in M and jX and jY are trivial fibrations. Thus,
fjX : X̃ → Z and gjY : Ỹ → Z are fibrations in LCM (see Proposition 3.3.3), h̃ is
a weak equivalence in LCM (see Proposition 3.1.5), and it is sufficient to show that
h̃ is a weak equivalence in M.

Since h̃ is a weak equivalence of cofibrant-fibrant objects in (LCM ↓Z) (see
Theorem 7.6.5), it is a homotopy equivalence in (LCM ↓Z) (see Proposition 8.3.26).
Thus, there is a map k̃ : Ỹ → X̃ in (LCM ↓Z) such that h̃k̃ ' 1Ỹ in (LCM ↓Z) and
k̃h̃ ' 1X̃ in (LCM ↓Z). Since the trivial fibrations of LCM are the trivial fibrations

of M, Proposition 8.3.20 and Proposition 8.4.4 imply that h̃k̃
l' 1Ỹ in M and k̃h̃

l'
1X̃ in M. If γ : M→ Ho M is the natural functor from M to its homotopy category
(see Definition 9.6.2), then Lemma 9.6.3 implies that γ(k̃) ◦ γ(h̃) = 1γ(Ỹ ) and

γ(h̃)◦γ(k̃) = 1γ(X̃), and so Theorem 9.6.9 implies that h̃ is a weak equivalence. �

Proposition 3.3.6. Let M be a model category and let C be a class of maps
in M.

(1) If X is a fibrant object of M, j : X → X̂ is a cofibrant C-localization of
X (see Definition 3.2.16), and LCM is the left Bousfield localization of M

with respect to C, then the following are equivalent:
(a) The object X is C-local.

(b) The C-localization map j : X → X̂ is a weak equivalence in M.

(c) The C-localization map j : X → X̂ is a homotopy equivalence in
(X ↓M).

(d) The C-localization map j : X → X̂ is the inclusion of a strong defor-
mation retract (see Definition 7.6.10).

(2) If X is a cofibrant object of M, i : X̃ → X is a fibrant C-colocalization of
X, and RCM is the right Bousfield localization of M with respect to C,
then the following are equivalent:
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(a) The object X is C-colocal.

(b) The C-colocalization map i : X̃ → X is a weak equivalence in M.

(c) The C-colocalization map i : X̃ → X is a homotopy equivalence in
(M ↓X).

(d) The C-colocalization map i : X̃ → X has a right inverse s : X → X̃
such that si is homotopic to 1X̃ in (M ↓X) (that is, it is the dual of
a strong deformation retraction).

Proof. We will prove part 1; the proof of part 2 is dual.
A cofibrant C-localization of an object is a C-local trivial cofibration to an

C-local fibrant object (see Definition 3.3.1 and Proposition 3.4.1). Thus, Propo-
sition 7.6.11 implies that condition 1 implies condition 4. It follows immediately
from the definitions that condition 4 implies condition 3 and Theorem 7.8.5 implies
that condition 3 implies condition 2. Finally, Lemma 3.2.1 implies that condition 2
implies condition 1. �

3.3.7. C-local objects. For an explanation of the motivation of the definition
of a horn, see Section 1.3.

Definition 3.3.8. Let M be a model category.

(1) If f : A→ B is a map in M, then a horn on f is a map constructed by
(a) choosing a cosimplicial resolution f̃ : Ã→ B̃ (see Definition 16.1.20)

of f such that f̃ is a Reedy cofibration,
(b) choosing an integer n ≥ 0, and then
(c) constructing the map Ã⊗∆[n]qÃ⊗∂∆[n] B̃ ⊗ ∂∆[n]→ B̃ ⊗∆[n].

If C is a class of maps in M then a horn on C is a horn on some element
of C.

(2) If f : A→ B is a map in M, then a cohorn on f is a map constructed by
(a) choosing a simplicial resolution f̂ : Â → B̂ (see Definition 16.1.20)

of f such that f̂ is a Reedy fibration,
(b) choosing an integer n ≥ 0, and then
(c) constructing the map Â∆[n] → B̂∆[n] ×B̂∂∆[n] Â∂∆[n].

If C is a class of maps in M then a cohorn on C is a cohorn on some
element of C.

Proposition 3.3.9. If M is a model category and C is a class of maps in M,
then

(1) every horn on C is a cofibration, and
(2) every cohorn on C is a fibration.

Proof. This follows from Proposition 16.3.10. �

Proposition 3.3.10. Let M be a model category and let C be a class of maps
in M. If every element of C is a weak equivalence, then

(1) every horn on C is a trivial cofibration, and
(2) every cohorn on C is a trivial fibration.

Proof. This follows from Proposition 16.1.24 and Proposition 16.3.10. �

Lemma 3.3.11. Let M be a model category and let C be a class of maps in M.
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(1) An objectW of M is C-local if and only ifW is fibrant and the mapW → ∗
(where ∗ is the terminal object of M) has the right lifting property with
respect to every horn on C (see Definition 3.3.8).

(2) An object W of M is C-colocal if and only if W is cofibrant and the map
∅ → W (where ∅ is the initial object of M) has the left lifting property
with respect to every cohorn on C (see Definition 3.3.8).

Proof. This follows from Proposition 17.8.5 and Proposition 17.8.8. �

Lemma 3.3.12. Let M and N be model categories and let F: M � N :U be a
Quillen pair.

(1) If g : A → B is a map of cofibrant objects in M and h : C → D is a horn
on g (see Definition 3.3.8), then F(h) is a horn on F(g).

(2) If p : X → Y is a map of fibrant objects in N and q : W → Z is a cohorn
on p (see Definition 3.3.8), then U(q) is a cohorn on U(p).

Proof. Since the left adjoint F commutes with colimits and the right adjoint
U commutes with limits, this follows from Corollary 16.2.2. �

Lemma 3.3.13. Let M be a model category and let C be a class of maps in M.

(1) If LCM is the left Bousfield localization of M with respect to C, f : A→ B

is a map in M, and f̃ : Ã → B̃ is a cosimplicial resolution of f over M

such that f̃ is a Reedy cofibration, then f̃ is also a cosimplicial resolution
of f over LCM such that f̃ is a Reedy cofibration.

(2) If RCM is the right Bousfield localization of M with respect to C, f : A→
B is a map in M, and f̂ : Â → B̂ is a simplicial resolution of f over M

such that f̂ is a Reedy fibration, then f̂ is also a simplicial resolution of

f over RCM such that f̂ is a Reedy fibration.

Proof. Part 1 follows because every cofibration of M is a cofibration of LCM

and every weak equivalence of M is a weak equivalence of LCM. Part 2 follows
because every fibration of M is a fibration of RCM and every weak equivalence of
M is a weak equivalence of RCM. �

Proposition 3.3.14. Let M be a model category and let C be a class of maps
in M.

(1) If LCM is the left Bousfield localization of M with respect to C, Y is C-
local, and there is a map g : X → Y that is a fibration in LCM, then X is
C-local.

(2) If RCM is the right Bousfield localization of M with respect to C, A is
C-colocal, and there is a map g : A → B that is a cofibration in RCM,
then B is C-colocal.

Proof. We will prove part 1; the proof of part 2 is dual.
Since fibrations in LCM are fibrations in M, the composition X → Y → ∗ is

a fibration in M, and so Lemma 3.3.11 implies that it is sufficient to show that
the map X → ∗ has the right lifting property with respect to every horn on C. If
α : A → B is a horn on C and s : A → X is a map, then we have the solid arrow
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diagram

A
s //

α

��

X

g

��

B

u

>>

t
//

  A
AA

AA
AA

A Y

��
∗ .

Since Y is C-local, Lemma 3.3.11 implies that there is a map t : B → Y such that
tα = gs. Proposition 3.3.10 and Lemma 3.3.13 imply that α is a trivial cofibration
in LCM, and so there is a map u : B → X such that uα = s and gu = t. �

Proposition 3.3.15. Let M be a model category and let C be a class of maps
in M.

(1) If LCM is the left Bousfield localization of M with respect to C, f : X → Z
is a fibration in M, g : Y → Z is a fibration in LCM, and h : X → Y is a
weak equivalence in M that makes the triangle

X
h //

f
  

@@
@@

@@
@ Y

g
��~~

~~
~~

~

Z

commute, then f is also a fibration in LCM.
(2) If RCM is the right Bousfield localization of M with respect to C, f : A→

B is a cofibration in RCM, g : A→ C is a cofibration in M, and h : B → C
is a weak equivalence in M that makes the triangle

A
f

��~~
~~

~~
~

g

��
@@

@@
@@

@

B
h

// C

commute, then g is also a cofibration in RCM.

Proof. We will prove part 1; the proof of part 2 is dual.
Proposition 7.2.3 implies that it is sufficient to show that if i : A → B is both

a cofibration and a C-local equivalence then f has the right lifting property with
respect to i. If we have the solid arrow diagram

A
t //

i

��

X
h //

f

  
@@

@@
@@

@ Y

g
��~~

~~
~~

~

B u
//

w

>>

v

44

Z

then, since g is a fibration in LCM, there is a map v : B → Y such that vi = ht and
gv = u. Thus, in the category (A ↓M ↓Z) of objects of M under A and over Z (see
Theorem 7.6.5), there is a map from B to Y . Since B is cofibrant in (A ↓M ↓Z) and
h : X → Y is a weak equivalence of fibrant objects in (A ↓M ↓Z), Corollary 7.7.5
implies that there is also a map w : B → X in (A ↓M ↓Z), i.e., a map w : B → X
in M such that wi = t and fw = u. Thus, f is a fibration in LCM. �
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Proposition 3.3.16. Let M be a model category and let C be a class of maps
in M.

(1) If LCM is the left Bousfield localization of M with respect to C and X and
Y are C-local objects in M then a map f : X → Y is a fibration in LCM

if and only if it is a fibration in M.
(2) If RCM is the right Bousfield localization of M with respect to C and X

and Y are C-colocal objects in M then a map f : X → Y is a cofibration
in RCM if and only if it is a cofibration in M.

Proof. We will prove part 1; the proof of part 2 is dual.
Since every fibration in LCM is a fibration in M, we assume that f is a fibration

in M and we will show that it is a fibration in LCM. If we factor f as X i−→W
p−→ Y

where i is a trivial cofibration in LCM and p is a fibration in LCM, then we have
the diagram

X
i //

f
  

@@
@@

@@
@ W

p
~~}}

}}
}}

}}

Y .
Proposition 3.3.14 implies that W is C-local, and so the weak C-local Whitehead
theorem (see Theorem 4.1.10) implies that i is a weak equivalence. The result now
follows from Proposition 3.3.15. �

3.3.17. Bousfield localization is a localization.

Proposition 3.3.18. Let M be a model category and let C be a class of maps
in M.

(1) If LCM is the left Bousfield localization of M with respect to C, N is a
model category, and F: M→ N is a left Quillen functor that takes every
cofibrant approximation to an element of C into a weak equivalence in N,
then F is a left Quillen functor when considered as a functor LCM→ N.

(2) If RCM is the right Bousfield localization of M with respect to C, N is a
model category, and U: M→ N is a right Quillen functor that takes every
fibrant approximation to an element of C into a weak equivalence in N,
then U is a right Quillen functor when considered as a functor RCM→ N.

Proof. We will prove part 1; the proof of part 2 is dual.
Since the underlying category of LCM equals that of M, F has a right adjoint

whether we consider it to be a functor F: M→ N or a functor F: LCM→ N. Let
U: N→ LCM be a right adjoint to F. Proposition 8.5.4 implies that it is sufficient
to show that U preserves fibrations between fibrant objects and all trivial fibrations.
Since the class of trivial fibrations of LCM equals the class of trivial fibrations of M

and U is a right Quillen functor when viewed as a functor U: N→M, U preserves
all trivial fibrations when viewed as a functor U: N→ LCM.

If X and Y are fibrant objects of N and p : X → Y is a fibration in N, then
Theorem 3.1.6 implies that UX and UY are C-local objects of M. Since Up : UX →
UY is a fibration in M, Proposition 3.3.16 implies that it is also a fibration in
LCM. �

Theorem 3.3.19. Let M be a model category and let C be a class of maps in
M.
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(1) If LCM is the left Bousfield localization of M with respect to C then the
identity functor M → LCM is a left localization of M with respect to C

(see Definition 3.1.1).
(2) If RCM is the right Bousfield localization of M with respect to C then the

identity functor M→ RCM is a right localization of M with respect to C.

Proof. We will prove part 1; the proof of part 2 is dual.
Let LCM be the left Bousfield localization of M with respect to C, let j : M→

LCM be the identity functor, and let F: M � N :U be a Quillen pair such that
the total left derived functor LF: Ho M → Ho N takes the images in Ho M of the
elements of C into isomorphisms in Ho N. Since j is the identity functor, the functor
F: LCM → N is the unique functor such that F ◦ j = F, and Proposition 3.3.18
shows that F: LCM→ N is a left Quillen functor. �

Theorem 3.3.20. Let M and N be model categories and let F: M � N :U be
a Quillen pair.

(1) If C is a class of maps in M, LCM is the left Bousfield localization of M

with respect to C, and LLFCN is the left Bousfield localization of N with
respect to LFC (see Definition 8.5.11), then
(a) (F,U) is also a Quillen pair when considered as functors F: LCM �

LLFCN :U between the localizations of M and N, and
(b) if (F,U) is a pair of Quillen equivalences when considered as functors

F : M � N : U, then (F,U) is also a pair of Quillen equivalences
when considered as functors F : LCM � LLFCN : U between the
localizations of M and N.

(2) If C is a class of maps in N, RCN is the right Bousfield localization of N

with respect to C, and RRUCM is the right Bousfield localization of M

with respect to RUC (see Definition 8.5.11), then
(a) (F,U) is also a Quillen pair when considered as functors F : RRUCM �

RCN :U between the localizations of M and N, and
(b) if (F,U) is a pair of Quillen equivalences when considered as functors

F : M � N : U, then (F,U) is also a pair of Quillen equivalences
when considered as functors F : RRUCM � RCN : U between the
localizations of M and N.

Proof. We will prove part 1; the proof of part 2 is dual.
Proposition 3.3.18 implies that the composition M

F−→ N
1N−−→ LLFCN is a left

Quillen functor when considered as a functor LCM→ LLFCN, which proves part 1a.
For part 1b, we must show that if X is cofibrant in LCM and Y is fibrant in

LLFCN then a map g : X → UY in LCM is a C-local equivalence if and only if the
corresponding map g] : FX → Y in LLFCN is an LFC-local equivalence. Given such
a map g, we factor it in M as X h−→ Ỹ

k−→ UY where h is a cofibration in M and
k is a trivial fibration in M. Both X and Ỹ are cofibrant, and since k is a weak
equivalence in M, g is a C-local equivalence if and only if h is a C-local equivalence.

The corresponding factorization of g] in N is FX Fh−−→ FỸ k]

−→ Y , and since (F,U) is
a pair of Quillen equivalences between M and N, the map k] is a weak equivalence
in N. Thus, both FX and FỸ are cofibrant, and g] is an LFC-local equivalence
if and only if Fh is an LFC-local equivalence. It remains only to show that h is a
C-local equivalence if and only if Fh is an LFC-local equivalence.
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The map Fh is an LFC-local equivalence if and only if for every LFC-local
object W in N and every simplicial resolution Ŵ of W in N the map of simplicial
sets N(FỸ , Ŵ )→ N(FX, Ŵ ) is a weak equivalence. This map of simplicial sets is
isomorphic to the map M(Ỹ ,UŴ ) → M(X,UŴ ), and so Theorem 17.6.3 implies
that it is sufficient to show that every C-local object Z of M is weakly equivalent
in M to an object of the form UW for some LFC-local object W of N. Thus,
Proposition 3.1.12 and Lemma 3.2.1 imply that it is sufficient to show that every
C-local object Z of M is weakly equivalent to an object of the form UW for some
fibrant object W of N. Given such an object Z, we can choose a trivial fibration
Z̃ → Z in M with Z̃ cofibrant in M and then choose a trivial cofibration FX̃ →W
in N with W fibrant in N. Since Z̃ is cofibrant in M, W is fibrant in N, and F : M �
N :U is a pair of Quillen equivalences, the map Z̃ → UW is a weak equivalence in
M, and so we have the zig-zag of weak equivalences Z ← Z̃ → UW . �

3.4. Bousfield localization and properness

Proposition 3.4.1. Let M be a model category and let C be a class of maps
in M.

(1) If M is left proper and LCM is the left Bousfield localization of M with
respect to C, then an object W of M is C-local if and only if it is a fibrant
object in LCM.

(2) If M is right proper and RCM is the right Bousfield localization of M with
respect to C, then an object W of M is C-colocal if and only if it is a
cofibrant object in RCM.

Proof. We will prove part 1; the proof of part 2 is dual.
If W is a fibrant object of LCM then Theorem 3.1.6 applied to the Quillen pair

1M : M � LCM :1LCM implies that W is C-local.
Conversely, assume that W is C-local. Proposition 7.2.3 implies that it is suffi-

cient to show that if i : A→ B is both a cofibration and an C-local equivalence then
the map W → ∗ has the right lifting property with respect to i. Proposition 16.1.22
implies that we can choose a cosimplicial resolution ı̃ : Ã → B̃ of i such that ı̃ is
a Reedy cofibration, and Proposition 17.8.5 and Proposition 17.8.9 imply that the
map W → ∗ has the right lifting property with respect to ı̃0 : Ã0 → B̃0. Since M

is left proper, Proposition 13.2.1 and Proposition 16.1.5 now imply that the map
W → ∗ has the right lifting property with respect to i. �

Lemma 3.4.2. Let M be a model category and let C be a class of maps in M.

(1) If M is left proper and LCM is the left Bousfield localization of M with
respect to C, g : A → B is a weak equivalence in LCM, h : A → X is a
map, at least one of g and h is a cofibration, and the square

(3.4.3) A
h //

g

��

X

k

��

B
j
// Y

is a pushout, then k is a weak equivalence in LCM.
(2) If M is right proper and RCM is the right Bousfield localization of M with

respect to C, k : X → Y is a weak equivalence in RCM, j : B → Y is a



66 3. LOCALIZATION OF MODEL CATEGORIES

map, at least one of j and k is a fibration, and the square (3.4.3) is a
pullback, then g is a weak equivalence in RCM.

Proof. This follows from Proposition 17.8.5 and Proposition 17.8.16. �

Proposition 3.4.4. Let M be a model category and let C be a class of maps
in M.

(1) If M is left proper and LCM is the left Bousfield localization of M with
respect to C, then LCM is left proper.

(2) If M is right proper and RCM is the right Bousfield localization of M with
respect to C, then RCM is right proper.

Proof. This follows from Lemma 3.4.2. �

3.4.5. Fibrations in LCM and cofibrations in RCM.

Proposition 3.4.6. Let M be a model category and let C be a class of maps
in M.

(1) If M is left proper, LCM is the left Bousfield localization of M with respect
to C, f : X → Z and g : Y → Z are fibrations in M, and h : X → Y is a
weak equivalence in M that makes the triangle

X
h //

f
  

@@
@@

@@
@ Y

g
��~~

~~
~~

~

Z

commute, then f is a fibration in LCM if and only if g is a fibration in
LCM.

(2) If M is right proper, RCM is the right Bousfield localization of M with
respect to C, f : A→ B and g : A→ C are cofibrations in M, and h : B →
C is a weak equivalence in M that makes the triangle

A
g

��
@@

@@
@@

@
f

��~~
~~

~~
~

B
h

// C

commute, then f is a cofibration in RCM if and only if g is a cofibration
in RCM.

Proof. We will prove part 1; the proof of part 2 is dual.
If g is a fibration in LCM then Proposition 3.3.15 implies that f is also a

fibration in LCM.
Conversely, assume that f is a fibration in LCM. Proposition 7.2.3 and Proposi-

tion 13.2.1 imply that it is sufficient to show that if i : A→ B is a trivial cofibration
in LCM and A is cofibrant, then g has the right lifting property with respect to i.
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Suppose that we have the solid arrow diagram

A
v //

i

��

t

$$

X
h //

f
  

@@
@@

@@
@ Y

g
��~~

~~
~~

~

B u
//

w

>>

Z .

Since A is cofibrant in (M ↓Z) and h : X → Y is a weak equivalence of fibrant
objects in (M ↓Z), Corollary 8.5.4 implies that there is a map v : A→ X in (M ↓Y )
such that hv ' t in (M ↓Z). Thus, fv = ui in M and, since f is a fibration in
LCM, there is a map w : B → X in M such that wi = v and fw = u. Since
hwi = hv ' t in (M ↓Z), i : A → B is a cofibration in (M ↓Z), and Y is fibrant
in (M ↓Z), Proposition 8.3.7 implies that we can find a map s : B → Y in (M ↓Z)
such that s ' hw and si = t. Thus, si = t and gs = u, and so s is the map we
require, and so g is a fibration in LCM. �

Proposition 3.4.7. Let M be a model category and let C be a class of maps
in M.

(1) If M is right proper, LCM is the left Bousfield localization of M with
respect to C, f : X → Y is a fibration in M, and there is a homotopy fiber
square (see Definition 13.3.12) in M

X
jX //

f

��

X̂

f̂

��

Y
jY
// Ŷ

in which X̂ and Ŷ are C-local and jX and jY are C-local equivalences,
then f is a fibration in LCM.

(2) If M is left proper, RCM is the right Bousfield localization of M with
respect to C, f : A → B is a cofibration in M, and there is a homotopy
cofiber square in M

Ã
iA //

f̃

��

A

f

��

B̃ iB
// B

in which Ã and B̃ are C-colocal and iA and iB are C-colocal equivalences,
then f is a cofibration in RCM.

Proof. We will prove part 1; the proof of part 2 is dual.
If we factor f̂ as X̂ i−→ W

p−→ Ŷ where i is an trivial cofibration in LCM and p
is a fibration in LCM, then p is a fibration in M and so Proposition 13.3.7 implies
that the natural map X → Y ×Ŷ W is a weak equivalence. The result now follows
from Proposition 3.3.15. �

Proposition 3.4.8. Let M be a model category and let C be a class of maps
in M.
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(1) If LCM is the left Bousfield localization of M with respect to C, both M

and LCM are right proper, f : X → Y is a fibration in M, and f̂ : X̂ → Ŷ
is a C-localization of f (see Definition 3.2.16), then f is a fibration in LCM

if and only if the square

(3.4.9) X
jX //

f

��

X̂

f̂

��

Y
jY
// Ŷ

is a homotopy fiber square (see Definition 11.2.12) in M.
(2) If RCM is the right Bousfield localization of M with respect to C, both M

and RCM are left proper, f : X → Y is a cofibration in M, and f̃ : X̃ → Ỹ
is a C-colocalization of f (see Definition 3.2.16), then f is a cofibration in
RCM if and only if the square

X̃
iX //

f̃

��

X

f

��

Ỹ iY
// Y

is a homotopy cofiber square in M.

Proof. We will prove part 1; the proof of part 2 is dual.
If Diagram 3.4.9 is a homotopy fiber square then Proposition 3.4.7 implies that

f is a fibration in LCM.
Conversely, assume that f is a fibration in LCM. If we factor f̂ as X̂ i−→W

p−→ Ŷ
where i is a trivial cofibration in LCM and p is a fibration in LCM, then we have
the diagram

X
jX //

f

��

u

##G
GGGGGGGG X̂

i

��
Y ×Ŷ W

s //

t
{{wwwwwwwww

W

p

��

Y
jY

// Ŷ

and we must show that the natural map u : X → Y ×Ŷ W is a weak equivalence in
M. Since LCM is right proper, s is a weak equivalence in LCM, and so the “two
out of three” property of weak equivalences implies that u is a weak equivalence
in LCM. Since t is a pullback of a fibration in LCM, our result now follows from
Proposition 3.3.5. �

3.5. Detecting equivalences

Lemma 3.5.1. Let M be a model category and let C be a class of maps in M.
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(1) If LCM is the left Bousfield localization of M with respect to C, X is a
cofibrant object of M, and Y is a C-local object of M, then two maps from
X to Y are homotopic in M if and only if they are homotopic in LCM.

(2) If RCM is the right Bousfield localization of M with respect to C, A is a
C-colocal object of M, and B is a fibrant object of M, then two maps from
A to B are homotopic in M if and only if they are homotopic in RCM.

Proof. This follows from Proposition 8.5.16, Proposition 3.4.1, and Proposi-
tion 3.3.4. �

Lemma 3.5.2. Let M be a model category and let C be a class of maps in M.

(1) If LCM is the left Bousfield localization of M with respect to C, X is a
cofibrant object of M, and Y is a C-local object of M, then the set π(X,Y )
of homotopy classes of maps from X to Y is independent of whether we
consider the homotopy relation in M or in LCM.

(2) If RCM is the right Bousfield localization of M with respect to C, A is a
C-colocal object of M, and B is a fibrant object of M, then the set π(A,B)
of homotopy classes of maps from A to B is independent of whether we
consider the homotopy relation in M or in RCM.

Proof. This follows from Lemma 3.5.1. �

Proposition 3.5.3. Let M be a model category and let C be a class of maps
in M.

(1) If M is left proper, LCM is the left Bousfield localization of M with respect
to C, and X and Y are cofibrant objects of M, then a map g : X → Y is a
C-local equivalence if and only if for every C-local object W the induced
map g∗ : πM(Y,W ) → πM(X,W ) of sets of homotopy classes of maps in
M is an isomorphism.

(2) If M is right proper, RCM is the right Bousfield localization of M with
respect to C, and X and Y are fibrant objects of M, then a map g : X → Y
is a C-colocal equivalence if and only if for every C-colocal object W the
induced map g∗ : πM(W,X) → πM(W,Y ) of sets of homotopy classes of
maps in M is an isomorphism.

Proof. We will prove part 1; the proof of part 2 is dual.
Theorem 7.8.6 and Proposition 3.4.1 imply that g is a C-local equivalence if and

only if for every C-local objectW the induced map g∗ : πLCM(Y,W )→ πLCM(X,W )
of sets of homotopy classes of maps in LCM is an isomorphism; the result now follows
from Lemma 3.5.2. �





CHAPTER 4

Existence of Left Bousfield localizations

The main result of this chapter is Theorem 4.1.1, which is our existence theorem
for left Bousfield localizations (see Definition 3.3.1). The proof of Theorem 4.1.1 is
in Section 4.6.

The main difficulty in establishing the localized model category structure lies
in finding a set of generating trivial cofibrations (see Definition 11.1.2). That is, we
need to find a set JS of maps such that a map has the right lifting property with
respect to every element of JS if and only if it has the right lifting property with
respect to all cofibrations that are S-local equivalences. Since M is left proper, it
is sufficient to find a set JS of inclusions of cell complexes (see Definition 11.1.4)
such that a map with the right lifting property with respect to every element of JS
will have the right lifting property with respect to every inclusion of cell complexes
that is an S-local equivalence (see Lemma 4.5.2). We will do this by showing that
there is a cardinal γ such that if a map has the right lifting property with respect
to all S-local equivalences that are inclusions of cell complexes of size at most γ,
then it has the right lifting property with respect to all S-local equivalences that
are inclusions of cell complexes (see Proposition 4.5.6).

In order to make this cardinality argument, we must first define a localization
functor for objects in our model category M. Section 4.2 has some technical results
(motivated by the discussion of Section 1.3) needed for the construction of a func-
torial cofibrant localization in Section 4.3 (see Definition 4.3.2 and Theorem 4.3.3).
We will then use our localization functor to identify the S-local equivalences (see
Theorem 4.3.6). Section 4.4 contains some results about the localization functor
and subcomplexes of a cell complex needed for the cardinality argument in Sec-
tion 4.5, and the proof of Theorem 4.1.1 is in Section 4.6.

Theorem 4.2.9 might lead one to hope that the factorization of Theorem 4.3.1
would serve as the required factorization into an S-local trivial cofibration followed
by an S-local fibration (see Definition 7.1.3). Unfortunately, Example 2.1.6 shows
that not all S-local trivial cofibrations need be Λ̃S-cofibrations, and so there may
be Λ̃S-injectives that are not S-local fibrations. Thus, we must establish Proposi-
tion 4.5.1, which shows that there is a set JS of generating trivial cofibrations (see
Definition 11.1.2) for the S-local model category structure on M.

4.1. Existence of left Bousfield localizations

Although the axioms for a model category are self dual, the actual model
categories in which we work have properties (e.g., cofibrant generation (see Defi-
nition 11.1.2)) that are not self dual. Thus, it should not be surprising that our
existence theorems for left and right localizations differ.

71
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Theorem 4.1.1. Let M be a left proper cellular model category (see Defini-
tion 13.1.1 and Definition 12.1.1) and let S be a set of maps in M.

(1) The left Bousfield localization of M with respect to S exists (see Defi-
nition 3.3.1). That is, there is a model category structure LSM on the
underlying category of M in which
(a) the class of weak equivalences of LCM equals the class of C-local

equivalences of M,
(b) the class of cofibrations of LCM equals the class of cofibrations of M,

and
(c) the class of fibrations of LCM is the class of maps with the right lifting

property with respect to those maps that are both cofibrations and
C-local equivalences.

(2) The fibrant objects of LSM are the S-local objects of M (see Defini-
tion 3.1.4).

(3) LSM is a left proper cellular model category.
(4) If M is a simplicial model category, then that simplicial structure gives

LSM the structure of a simplicial model category.

The proof of Theorem 4.1.1 is in Section 4.6.

Definition 4.1.2. Let M be a model category and let S be a set of maps in
M.

(1) An S-local weak equivalence is defined to be an S-local equivalence (see
Definition 3.1.4).

(2) An S-local cofibration is defined to be a cofibration.
(3) An S-local fibration is defined to be a map with the right lifting property

(see Definition 7.2.1) with respect to all maps that are both S-local cofi-
brations and S-local weak equivalences. If the map X → ∗ from an object
X to the terminal object of M is an S-local fibration, then we will say
that X is S-local fibrant.

Thus, Theorem 4.1.1 asserts that if M is a left proper cellular model category
and S is a set of maps in M, then the classes of S-local weak equivalences, S-local
cofibrations, and S-local fibrations form a model category structure on M.

4.1.3. Examples of left proper cellular model categories.

Proposition 4.1.4. The categories SS, Top, SS∗, and Top∗ are left proper
cellular model categories.

Proposition 4.1.5. If M is a left proper cellular model category and C is
a small category, then the diagram category MC is a left proper cellular model
category.

Proposition 4.1.6. If M is a left proper cellular model category and Z is an
object of M, then the overcategory (M ↓Z) is a left proper cellular model category.

Proposition 4.1.7. If M is a left proper cellular simplicial model category and
C is a small simplicial category, then the category MC of simplicial diagrams is a
left proper cellular model category.
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Proposition 4.1.8. If M is a pointed left proper cellular model category with
an action by pointed simplicial sets, then the category of spectra over M (as in
[13]) is a left proper cellular model category.

Proposition 4.1.9. If M is a pointed left proper cellular model category with
an action by pointed simplicial sets, then J. H. Smith’s category of symmetric
spectra over M [61, 43] is a left proper cellular model category.

4.2. Horns on S and S-local equivalences

Definition 4.2.1. If M is a model category and C is a class of maps in M,
then a full class of horns on C is a class Λ(C) of maps obtained by choosing, for
every element f : A → B of C, a cosimplicial resolution f̃ : Ã → B̃ of f (see
Definition 16.1.20) such that f̃ is a Reedy cofibration (see Proposition 16.1.22) and
letting Λ(C) be the class of maps

Λ(C) = {Ã⊗∆[n]qÃ⊗∂∆[n] B̃ ⊗ ∂∆[n]→ B̃ ⊗∆[n]
∣∣ (A→ B) ∈ S, n ≥ 0}

(see Definition 3.3.8). We will use the symbol Λ(C) to denote some full class of
horns on C even though it depends on the choices of cosimplicial resolutions of the
elements of C.

Definition 4.2.2. Let M be a cofibrantly generated model category with gen-
erating cofibrations I and generating trivial cofibrations J . If S is a set of maps of
M, then an augmented set of S-horns is a set Λ(S) of maps

Λ(S) = Λ(S) ∪ J

for some full set of horns Λ(S) on S (see Definition 4.2.1).

Proposition 4.2.3. If M is a left proper cellular model category and S is a
set of maps in M, then every element of an augmented set of horns on S (see
Definition 4.2.2) is an S-local equivalence.

Proof. This follows from Proposition 17.8.5 and Proposition 17.8.14. �

Proposition 4.2.4. Let M be a left proper cellular model category and let S
be a set of maps in M. An object X of M is S-local if and only if the map X → ∗
(where ∗ is the terminal object of M) has the right lifting property with respect to
every element of an augmented set of S-horns (see Definition 4.2.2).

Proof. This follows from Proposition 11.2.1 and Lemma 3.3.11. �

Proposition 4.2.5. If M is a left proper cellular model category with gener-

ating cofibrations I and S is a set of maps in M, then there is a set Λ̃S of relative
I-cell complexes with cofibrant domains such that

(1) every element of Λ̃S is an S-local equivalence, and
(2) an object X of M is S-local if and only if the map X → ∗ (where ∗ is the

terminal object of M) is a Λ̃S-injective.

Proof. Choose a full set of horns on S (see Definition 4.2.1.) Factor each

element g : C → D of Λ(S) as C
g̃−→ D̃

p−→ D where g̃ is a relative I-cell complexes
and p is a trivial fibration (see Corollary 11.2.6). The retract argument (see Prop-
osition 7.2.2) implies that g is a retract of g̃. Since p and g are S-local equivalences
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(see Proposition 3.1.5 and Proposition 4.2.3), Proposition 3.2.3 implies that g̃ is an
S-local equivalence.

Proposition 11.2.9 implies that there is a set J̃ of generating trivial cofibrations
for M such that every element of J̃ is a relative I-cell complex with cofibrant
domain. We let

Λ̃S = J̃ ∪ {g̃}g∈Λ(S).

It remains only to show that condition 2 is satisfied. If the map X → ∗ is a
Λ̃S-injective, then Proposition 4.2.4 and Lemma 7.2.8 imply that X is S-local.
Conversely, if X is S-local, then X is fibrant and every element of Λ̃S is a cofibra-
tion between cofibrant objects, and so Proposition 17.8.5, Theorem 16.6.9, Proposi-
tion 16.6.7, and Proposition 17.8.8 imply that the map X → ∗ is a Λ̃S-injective. �

Definition 4.2.6. If M is a left proper cellular model category and S is a set
of maps in M, then a relative Λ̃S-cell complex is a map that can be constructed as
a transfinite composition (see Definition 10.2.2) of pushouts (see Definition 7.2.10)
of elements of Λ̃S (see Proposition 4.2.5).

Proposition 4.2.7. Let M be a left proper cellular model category, and let S
be a set of maps in M. An object X of M is S-local if and only if the map X → ∗
(where ∗ is the terminal object of M) has the right lifting property with respect to

all relative Λ̃S-cell complexes.

Proof. This follows from Proposition 4.2.5, Lemma 7.2.11, and Lemma 10.3.1.
�

4.2.8. Regular Λ̃S-cofibrations and S-local equivalences. The main re-
sult of this section is Theorem 4.2.9, which asserts that if M is a left proper cellular
model category and S is a set of maps in M, then every relative Λ̃S-cell complex is
an S-local equivalence.

Theorem 4.2.9. If M is a left proper cellular model category and S is a set

of maps in M, then every relative Λ̃S-cell complex (see Definition 4.2.6) is both a
cofibration and an S-local equivalence.

Proof. This follows from Proposition 3.2.10 and Proposition 3.2.11. �

Proposition 4.2.10. Let M be a left proper cellular model category, and let

S be a set of maps in M. If j : X → X̂ is a relative Λ̃S-cell complex and X̂ is a

Λ̃S-injective, then the pair (X̂, j) is a cofibrant S-localization of X.

Proof. This follows from Theorem 4.2.9 and Proposition 4.2.5. �

Theorem 4.2.9, Proposition 3.2.4, and Corollary 10.5.23 imply that every Λ̃S-
cofibration is an S-local equivalence. Example 2.1.6 shows that, among the cofibra-
tions that are S-local equivalences, there can be maps that are not Λ̃S-cofibrations.

4.3. A functorial localization

Theorem 4.3.1. If M is a left proper cellular model category and S is a set of
maps in M, then there is a natural factorization of every map X → Y in M as

X
j−→ ES

p−→ Y
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in which j is a relative Λ̃S-cell complex (see Definition 4.2.6) and p is a Λ̃S-injective.

Proof. Proposition 4.2.5 and Theorem 12.4.3 imply that the domains of the
elements of Λ̃S are small relative to the subcategory of relative Λ̃S-cell complexes,
and so Lemma 10.4.6 implies that there is a cardinal κ such that the domain of every
element of Λ̃S is κ-small relative to the subcategory of relative Λ̃S-cell complexes.
We let λ = Succ(κ) (see Definition 10.1.10), so that λ is a regular cardinal (see
Proposition 10.1.14). The result now follows from Corollary 10.5.21. �

Definition 4.3.2. Let M be a left proper cellular model category, and let
S be a set of maps in M. The S-localization of an object X is the object LSX
obtained by applying the factorization of Theorem 4.3.1 to the map X → ∗ (where
∗ is the terminal object of M). This factorization defines a natural transformation
j : 1→ LS such that j(X) : X → LSX is a relative Λ̃S-cell complex for every object
X of M.

Theorem 4.3.3. If M is a left proper cellular model category and S is a set
of maps in M, then, for every object X, the S-localization j(X) : X → LSX (see
Definition 4.3.2) is a cofibrant S-localization of X.

Proof. This follows from Proposition 4.2.10. �

Corollary 4.3.4. If M is a left proper cellular model category and S is a set
of maps in M, then every object has an S-localization.

Proof. This follows from Theorem 4.3.3. �

Theorem 4.3.5. Let M be a left proper cellular model category, and let S be
a set of maps in M. If X is a fibrant object, then X is S-local if and only if the
S-localization map j(X) : X → LSX (see Definition 4.3.2) is a weak equivalence.

Proof. This follows from Theorem 3.2.17. �

Theorem 4.3.6. Let M be a left proper cellular model category, and let S be
a set of maps in M. The map g : X → Y is an S-local equivalence if and only if its
S-localization LS(g) : LSX → LSY (see Definition 4.3.2) is a weak equivalence.

Proof. This follows from Theorem 3.2.18. �

4.3.7. Simplicial localization functors. In this section we show that if M

is a left proper cellular model category that is a simplicial model category and if S
is a set of maps in M, then we can define a cofibrant S-localization on M that is a
simplicial functor (see Section 9.8). To do this, we will modify the construction of
our localization functor (see Definition 4.3.2) in a manner analogous to the way in
which the functor of Example 9.8.7 was modified to become the simplicial functor
of Example 9.8.8. Definition 4.3.2 uses the factorization of Proposition 10.5.16 in
the case in which Y is the terminal object of M, which constructs pushouts of
diagrams involving a coproduct indexed by the set of maps between objects Ai and
Eβ (see Diagram 10.5.17). We will construct our simplicial localization functor by
replacing the coproduct

∐
M(Ai,Eβ)Ai with Ai ⊗Map(Ai, Eβ).

Theorem 4.3.8. If M is a left proper simplicial cellular model category and S
is a set of maps in M, then there is a cofibrant S-localization functor on M that is
a simplicial functor.
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Proof. Let Λ̃S be a set of relative I-cell complexes as in Proposition 4.2.5, and
let λ be a regular cardinal such that the domains of the elements of Λ̃S are λ-small
with respect to the subcategory of cofibrations of M (see Theorem 12.4.3). For each
object X of M we will define a λ-sequence X = E0 → E1 → E2 → · · · → Eβ → · · ·
(β < λ) whose composition will be our simplicial localization functor X → Lcont

S X.
We begin by letting E0 = X. If β < λ and we have constructed the sequence

through Eβ , we let

Ccont
β =

∐
(C→D)∈Λ̃S

C ⊗Map(C,Eβ)

Dcont
β =

∐
(C→D)∈Λ̃S

D ⊗Map(C,Eβ)

and we define Eβ+1 via the pushout square

Ccont
β

//

��

Eβ

��

Dcont
β

// Eβ+1

in which the top map on each factor is the natural map that is adjoint to the
identity map of Map(C,Eβ). If γ is a limit ordinal, we let Eγ = colimβ<γ E

β . We
let Lcont

S X = colimβ<γ E
β .

Lemma 3.2.8, Proposition 3.2.10, and Proposition 3.2.11 imply that the map
X → Lcont

S X is an S-local equivalence.
For every element C → D of Λ̃S and every β < λ, the 0-skeleton of Map(C,Eβ)

is M(C,Eβ), and so for every map C → Eβ the composition C → Eβ → Eβ+1 can
be factored through C → D. Since C is λ-small with respect to the subcategory
of cofibrations of M, this implies that Lcont

S X is a Λ̃S-injective, and so Lcont
S X is

S-local.
The proof that the functor Lcont

S can be extended to a simplicial functor is as
in the proof of Theorem 1.7.5: If C and X are objects in M and K is a simplicial
set, then there is a natural map Map(C,X)⊗K → Map(C,X ⊗K) that takes the
n-simplex (α : C ⊗∆[n]→ X, τ) of Map(C,X)⊗K to the n-simplex σ(α, τ) : C ⊗
∆[n]→ X ⊗K of Map(C,X ⊗K) that is the composition

C ⊗∆[n] 1C⊗D−−−−→ C ⊗ (∆[n]×∆[n]) ≈−→ (C ⊗∆[n])⊗∆[n] α⊗iτ−−−→ X ⊗K

(where D : ∆[n]→ ∆[n]×∆[n] is the diagonal map and iτ : ∆[n]→ K is the map
that takes the nondegenerate n-simplex of ∆[n] to τ). This natural map σ has the
properties required by Theorem 9.8.5, and so we can use it to inductively define σ
for all the objects in the construction of the localization functor. The theorem now
follows from Proposition 9.8.9 and Theorem 9.8.5. �

4.4. Localization of subcomplexes

This section contains some technical results on the S-localization functor (see
Definition 4.3.2) that are needed for the cardinality argument of Section 4.5.



4.4. LOCALIZATION OF SUBCOMPLEXES 77

Proposition 4.4.1. Let M be a left proper cellular model category, and let S
be a set of maps in M. If g : X → Y is the inclusion of a subcomplex, then so is
LS(g) : LSX → LSY (see Definition 4.3.2).

Proof. This follows from Proposition 12.4.7. �

Remark 4.4.2. If we take S to be the empty set, then LSX is a functorial
fibrant approximation to X (see Definition 8.1.2). In this case, Proposition 4.4.1
asserts that if W is a subcomplex of X, then this fibrant approximation to W is a
subcomplex of this fibrant approximation to X.

Proposition 4.4.3. Let M be a left proper cellular model category and let S
be a set of maps in M. If g : X → Y is the inclusion of a subcomplex, then it
is an S-local equivalence if and only if its localization LS(g) : LSX → LSY is the
inclusion of a strong deformation retract (see Definition 7.6.10).

Proof. If LS(g) is the inclusion of a strong deformation retract, then it is a
weak equivalence, and so Theorem 4.3.6 implies that g is an S-local equivalence.

Conversely, if g is an S-local equivalence, then Theorem 4.3.6 and Proposi-
tion 4.4.1 imply that LS(g) is a trivial cofibration of fibrant objects, and so Corol-
lary 9.6.5 implies that it is the inclusion of a strong deformation retract. �

Proposition 4.4.4. Let M be a left proper cellular model category and let
S be a set of maps in M. If X is a cell complex and K0 ⊂ K1 ⊂ K2 ⊂ · · · ⊂
Kβ ⊂ · · · (β < λ) is a λ-sequence of subcomplexes (see Remark 10.6.8) of X
(where λ is the ordinal chosen in the proof of Theorem 4.3.1), then the natural
map colimβ<λ LSKβ → LS colimβ<λKβ is an isomorphism.

Proof. Proposition 4.4.1 implies that the map is an isomorphism onto a sub-
complex, and so it remains only to show that every Λ̃S-cell of LS colimβ<λKβ is
contained in some LSKβ . We will do this by a transfinite induction on the presen-
tation ordinal of the Λ̃S-cell (see Definition 10.6.4).

Since there are no Λ̃S-cells of presentation ordinal equal to a limit ordinal,
we let γ be an ordinal such that γ + 1 < λ and we assume that the assertion is
true for all Λ̃S-cells of presentation ordinal at most γ. This assumption implies
that the γ-skeleton of LS colimβ<λKβ is isomorphic to colimβ<λ

(
(LSKβ)γ

)
. Thus,

the γ-skeleta of the LSKβ form a λ-sequence whose colimit is the γ-skeleton of
LS colimβ<λKβ . If e is a Λ̃S-cell of LS colimβ<λKβ of presentation ordinal γ + 1,
then the attaching map of e must factor through (LSKβ)γ for some β < λ, and so
e is contained in LSKβ . �

Proposition 4.4.5. Let M be a left proper cellular model category and let S
be a set of maps in M. If X is a cell complex and A and B are subcomplexes of
X, then the natural map LS(A ∩ B)→ (LSA) ∩ (LSB) (see Proposition 4.4.1 and
Theorem 12.2.6) is an isomorphism.

Proof. Proposition 4.4.1 implies that the natural map LS(A∩B)→ (LSA)∩
(LSB) is an isomorphism onto a subcomplex, and so it remains only to show that
every Λ̃S-cell of (LSA)∩(LSB) is contained in LS(A∩B). We will do this by a trans-
finite induction on the presentation ordinal of the Λ̃S-cell (see Definition 10.6.4).

Since there are no Λ̃S-cells of presentation ordinal equal to a limit ordinal,
we let γ be an ordinal such that γ + 1 < λ (where λ is the ordinal chosen in the
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proof of Theorem 4.3.1) and we assume that the assertion is true for all Λ̃S-cells of
presentation ordinal at most γ. This assumption implies that the γ-skeleton

(
LS(A∩

B)
)γ of LS(A∩B) equals the intersection of γ-skeleta (LSA)γ ∩ (LSB)γ . Thus, if e

is a Λ̃S-cell of (LSA)∩ (LSB) of presentation ordinal γ+1, then Proposition 12.2.3
implies that the attaching map of e factors through

(
LS(A ∩ B)

)γ , and so e is
contained in LS(A ∩B). �

4.5. The Bousfield-Smith cardinality argument

The purpose of this section is to prove the following proposition, which will be
used in Section 4.6 to prove Theorem 4.1.1.

Proposition 4.5.1. If M is a left proper cellular model category and S is a set
of maps in M, then there is a set JS of inclusions of cell complexes such that the
class of JS-cofibrations (see Definition 10.5.2) equals the class of cofibrations that
are also S-local equivalences.

The proof of Proposition 4.5.1 is at the end of this section (on page 81). The
set JS will serve as our set of generating trivial cofibrations (see Definition 11.1.2)
for the S-local model category structure on M (see Theorem 4.1.1 and Section 4.6).

We will prove Proposition 4.5.1 by showing that there is a set JS of cofibra-
tions that are S-local equivalences such that every cofibration that is an S-local
equivalence is a JS-cofibration (see Definition 10.5.2). Proposition 4.5.1 will then
follow from Corollary 10.5.23.

We will find the set JS by showing (in Proposition 4.5.6) that there is a cardinal
γ (see Definition 4.5.3) such that if a map has the right lifting property with respect
to all inclusions of cell complexes that are S-local equivalences between complexes of
size at most γ, then it has the right lifting property with respect to all cofibrations
that are S-local equivalences. Since the collection of isomorphism classes of cell
complexes of size at most γ is a set, we can then let JS be a set of representatives
of the isomorphism classes of of these “small enough” inclusions of cell complexes
that are S-local equivalences.

We begin with the following lemma, which implies that it is sufficient to find
a set JS such that the JS-injectives have the right lifting property with respect to
all inclusions of cell complexes that are S-local equivalences.

Lemma 4.5.2. Let M be a left proper cellular model category and let S be a set
of maps in M. If p : E → B is a fibration with the right lifting property with respect
to all inclusions of cell complexes that are S-local equivalences, then it has the right
lifting property with respect to all cofibrations that are S-local equivalences.

Proof. Let g : X → Y be a cofibration that is an S-local equivalence. Propo-
sition 11.2.8 implies that there is a cofibrant approximation (see Definition 8.1.22)
g̃ to g such that g̃ is an inclusion of cell complexes. Proposition 3.1.5 and Propo-
sition 3.2.3 imply that g̃ is an S-local equivalence, and so the lemma now follows
from Proposition 13.2.1. �

Definition 4.5.3. If M is a left proper cellular model category and S is a set
of maps in M, we let ξ is the smallest cardinal that is at least as large as each of
the following cardinals:

(1) the size of the cells of M (see Definition 12.3.3),
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(2) a cardinal η such that the domain of every element of I is η-compact (see
Proposition 11.4.6),

(3) the cardinal λ selected in the proof of Theorem 4.3.1,
(4) the cardinal κ described in Proposition 12.5.3 for the set Λ̃S, and
(5) the cardinal κ described in Proposition 12.5.7,

and we let γ denote the cardinal γ = ξξ.

Lemma 4.5.4. Let M be a left proper cellular model category and let S be a
set of maps in M. If X is a cell complex of size at most γ (see Definition 4.5.3),
then LSX (see Definition 4.3.2) has size at most γ.

Proof. This follows from Proposition 12.5.3 and conditions 3 and 4 of Defi-
nition 4.5.3. �

The following proposition will be used in Proposition 4.5.6 to show that a
fibration that has the right lifting property with respect to all “small enough”
inclusions of cell complexes that are S-local equivalences must actually have the
right lifting property with respect to all inclusions of cell complexes that are S-local
equivalences.

Proposition 4.5.5. Let M be a left proper cellular model category, let S be a
set of maps in M, and let D be a cell complex. If i : C → D is the inclusion of a
proper subcomplex and an S-local equivalence, then there is a subcomplex K of D
such that

(1) the subcomplex K is not contained in the subcomplex C,
(2) the size of K is at most γ (see Definition 4.5.3), and
(3) the inclusions K ∩C → K (see Theorem 12.2.6) and C → C ∪K are both

S-local equivalences.

Proof. Since i : C → D is an inclusion of a subcomplex and an S-local equiv-
alence, Proposition 4.4.3 implies that LS(i) : LSC → LSD is the inclusion of a
deformation retract. Thus, there is a retraction r : LSD → LSC, and Proposi-
tion 7.4.7 implies that we can choose a homotopy R : CylM(LSD) → LSD (see
Definition 12.5.5) from the identity map of LSD to LS(i) ◦ r.

We will show that there exists a subcomplex K of D, of size at most γ, such
that

(1) K is not contained in C,
(2) the restriction R|CylM(LSK) of R to LSK (see Definition 12.5.6) is a de-

formation retraction of LSK onto LS(K ∩ C), and
(3) the restriction R|CylM(LS(C∪K)) of R to LS(C ∪ K) is a deformation re-

traction of LS(C ∪K) onto LSC.
We will do this by constructing a λ-sequence K0 ⊂ K1 ⊂ K2 ⊂ · · · ⊂ Kβ ⊂ · · ·
(β < λ) of subcomplexes of D (where λ is the ordinal selected in the proof of
Theorem 4.3.1) such that, for every β < λ,

(1) Kβ has size at most γ,
(2) the restriction R|CylM(LSKβ) of R to LSKβ factors through the subcomplex

LSKβ+1 of LSD (see Proposition 4.4.1),
and such that no Kβ is contained in C. If we then let K =

⋃
β<λKβ , then Propo-

sition 4.4.4 will imply that LSK ≈ colimβ<λ LSKβ . Thus, R|CylM(LSK) will factor
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through LSK, r|LSK will factor through (LSK) ∩ (LSC) = LS(K ∩C) (see Propo-
sition 4.4.5), R|CylM(LSK) will be a deformation retraction of LSK onto LS(K∩C),
and R|CylM(C∪K) will be a deformation retraction of LS(C ∪K) onto LSC.

We begin by choosing a cell of D that isn’t contained in C. Since the domains
of the elements of I are γ-compact (see condition 2 of Definition 4.5.3), we can
choose a subcomplex K0 of D, of size at most γ, through which the inclusion of
that cell factors.

For successor ordinals, suppose that β + 1 < γ and that we’ve constructed
Kβ . Lemma 4.5.4 implies that LSKβ has size at most γ. Proposition 12.5.7 and
condition 5 of Definition 4.5.3 then imply that CylM(LSKβ) has size at most γ,
and so Definition 12.3.3 implies that R|CylM(LSKβ) factors through a subcomplex
of LSD of size at most σγ = γ where σ is the size of the cells of M (see condition 1
of Definition 4.5.3). The zero skeleton of this subcomplex is a subcomplex Zβ
of D, of size at most γ, such that R|CylM(LSKβ) factors through LSZβ . We let
Kβ+1 = Kβ ∪ Zβ . It is clear that Kβ+1 has the properties required of it, and so
the proof is complete. �

Proposition 4.5.6. Let M be a left proper cellular model category and let S be
a set of maps in M. If p : X → Y has the right lifting property with respect to those
inclusions of subcomplexes i : C → D that are S-local equivalences and such that
the size of D is at most γ (see Definition 4.5.3), then p has the right lifting property
with respect to all inclusions of subcomplexes that are S-local equivalences.

Proof. Let i : C → D be an inclusion of a subcomplex that is an S-local
equivalence, and let the solid arrow diagram

C
h //

i

��

X

p

��

D

>>

k
// Y

be commutative; we must show that there exists a dotted arrow making both tri-
angles commute. To do this, we will consider the subcomplexes of D over which
our map can be defined, and use Zorn’s lemma to show that it can be defined over
all of D.

Let T be the set of pairs (Dt, gt) such that
(1) Dt is a subcomplex of D containing C such that the inclusion it : C → Dt

is an S-local equivalence and
(2) gt is a function Dt → X such that gtit = h and pgt = k|Dt

.
We define a preorder on T by defining (Dt, gt) < (Du, gu) if Dt ⊂ Du and gu|Dt

=
gt. If T ′ ⊂ T is a chain (i.e., a totally ordered subset of T ), letDu = colim(Dt,gt)∈T ′ Dt

and define gu : Du → X by gu = colim(Dt,gt)∈T ′ gt. The universal mapping property
of the colimit implies that guiu = h and pgu = k|Du , and Proposition 3.2.7 implies
that the map C → Du is an S-local equivalence. Thus, (Du, gu) is an element of
T , and so it is an upper bound for T ′. Zorn’s lemma now implies that T has a
maximal element (Dm, gm). We will complete the proof by showing that Dm = D.

If Dm 6= D, then Proposition 4.5.5 implies that there is a subcomplex K of D
such that K is not contained in Dm, the size of K is at most γ, and the inclusions
K ∩Dm → K and Dm → Dm ∪K are both S-local equivalences. Thus, there is a
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map gK : K → X such that pgK = k|K and gK |K∩Dm
= gm|K∩Dm

, and so gm and
gK combine to define a map gmK : K ∪Dm → X such that pgmK = k|K∪Dm and
gmKi = h. Thus, (K ∪Dm, gmK) is an element of T strictly greater than (Dm, gm).
This contradicts (Dm, gm) being a maximal element of T , and so our assumption
that Dm 6= D must have been false. �

Proof of Proposition 4.5.1. Let JS be a set of representatives of the iso-
morphism classes of inclusions of subcomplexes that are S-local equivalences of
complexes of size at most γ (see Definition 4.5.3). Proposition 4.5.6, Lemma 4.5.2,
and Corollary 10.5.22 imply that the JS-cofibrations are exactly the cofibrations
that are S-local equivalences, and so the proof is complete. �

4.6. Proof of the main theorem

This section contains the proof of Theorem 4.1.1.

4.6.1. Proof of part 1. We will use Theorem 11.3.1. Proposition 3.2.3 im-
plies that the class of S-local equivalences satisfies the “two out of three” axiom,
and Proposition 3.2.4 implies that it is closed under retracts.

Let JS be the set of maps provided by Proposition 4.5.1, and let I be the
set of generating cofibrations of the original cofibrantly generated model category
structure on M. Condition 1 of Theorem 11.3.1 is thus satisfied for I and, since
every element of JS has a cofibrant domain, Theorem 12.4.3 implies that condition 1
of Theorem 11.3.1 is satisfied for J .

The subcategory of I-cofibrations is the subcategory of cofibrations in the given
model category structure in M, and the I-injectives are the trivial fibrations in that
model category. Thus, Proposition 4.5.1 implies that condition 2 of Theorem 11.3.1
is satisfied.

Since the JS-cofibrations are a subcategory of the I-cofibrations, every I-
injective must be a JS-injective. Proposition 3.1.5 implies that every JS-injective
is an S-local equivalence, and so condition 3 is satisfied.

Proposition 4.5.1 implies that condition 4a of Theorem 11.3.1 is satisfied, and
so Theorem 11.3.1 now implies that we have a model category LSM, and the proof
of part 1 is complete.

4.6.2. Proof of part 2. This follows from Proposition 3.4.1.

4.6.3. Proof of part 3. Condition 1 of Definition 12.1.1 is satisfied because
the class of generating cofibrations of LSM equals that of M. Since the gener-
ating trivial cofibrations of LSM are inclusions of cell complexes, condition 2 of
Definition 12.1.1 follows from Lemma 12.4.1. Condition 3 is satisfied because the
class of cofibrations of LSM equals that of M, and so LSM is cellular. Finally,
Proposition 3.4.4 implies that the localization is left proper.

4.6.4. Proof of part 4. Axiom M6 of Definition 9.1.6 holds for LSM because
it holds for M.

For axiom M7, if i : A → B is a cofibration in LSM and p : X → Y is a
fibration in LSM then i is a cofibration in M and p is a fibration in M, and so the
map Map(i, p) : Map(B,X) → Map(A,X) ×Map(A,Y ) Map(B, Y ) is a fibration of
simplicial sets. If p is also a weak equivalence in LSM, then p is a trivial fibration
in LSM, and thus also in M, and so Map(i, p) is a trivial fibration of simplicial
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sets. Thus, it remains only to deal with the case in which i is a trivial cofibration
in LSM and p is a fibration in LSM.

If i is a trivial cofibration in LSM and p is a fibration in M, then Theo-
rem 17.8.10 implies that (i, p) is a homotopy orthogonal pair. Let ı̃ : Ã → B̃ be a
cofibrant approximation to i in M such that ı̃ is a cofibration in M. Example 16.6.13
implies that if Ã and B̃ are the cosimplicial objects in M such that Ãn = Ã⊗∆[n]
and B̃n = B̃ ⊗ ∆[n] and Ã → B̃ is the map induced by ı̃, then Ã → B̃ is a
cosimplicial resolution of ı̃ in M such that Ã → B̃ is a Reedy cofibration in M∆.
Corollary 16.2.2 and Proposition 3.3.4 imply that Ã → B̃ is also a cosimplicial
resolution of ı̃ in LSM such that Ã→ B̃ is a Reedy cofibration in (LSM)∆, and so
Proposition 16.3.10 implies that the map Ã⊗∆[n]qÃ⊗∂∆[n] B̃⊗∂∆[n]→ B̃⊗∆[n]
is a trivial cofibration in LSM for every n ≥ 0. Since p : X → Y is a fibration
in LSM, Lemma 9.4.7 now implies that the map ı̃ : Ã → B̃ has the homotopy left
lifting property with respect to p, and so Corollary 13.2.2 implies that the map
i : A→ B has the homotopy left lifting property with respect to p.



CHAPTER 5

Existence of Right Bousfield Localizations

This chapter contains the statement and proof of our existence theorem for
right Bousfield localization (see Definition 3.3.1). The statement is Theorem 5.1.1,
and it is proved in Section 5.4 after some preparatory work in Sections 5.2 and 5.3.
Theorem 5.1.5 shows that the class of K-colocal objects (which is the class of
cofibrant objects of the localization; see Theorem 5.1.1) equals the class of K-
cellular objects of Dror Farjoun ([20, 21, 23, 24]).

5.1. Right Bousfield localization: Cellularization

Theorem 5.1.1. Let M be a right proper cellular model category, let K be a set
of objects in M, and let C be the class of K-local equivalences (see Definition 3.1.8).

(1) The right Bousfield localization of M with respect to C exists (see Defi-
nition 3.3.1). That is, there is a model category structure RCM on the
underlying category of M in which
(a) the class of weak equivalences of RCM equals the class of C-colocal

equivalences of M,
(b) the class of fibrations of RCM equals the class of fibrations of M, and
(c) the class of cofibrations of RCM is the class of maps with the left

lifting property with respect to those maps that are both fibrations
and C-colocal equivalences.

(2) The cofibrant objects of RCM are the C-local objects of M (see Defini-
tion 3.1.4).

(3) RCM is a right proper model category. If every object of M is fibrant,
then RCM is a right proper cellular model category in which every object
is fibrant.

(4) If M is a simplicial model category, then that simplicial structure gives
RCM the structure of a simplicial model category.

The proof of Theorem 5.1.1 is in Section 5.4. Theorem 5.1.1 for the case in which
M is the category of pointed topological spaces was first obtained by Nofech [51].

Remark 5.1.2. The model category structure RCM of Theorem 5.1.1 exists
for a larger class of model categories M than just the right proper cellular ones.
Although the proof of Theorem 5.1.1 does use the right properness of M, the only
use made of the assumption that M is cellular is to deduce that

(1) there is a set J of generating trivial cofibrations, and
(2) the domains of the elements of Λ(K) (see Definition 5.2.1) are small rel-

ative to Λ(K), and so Λ(K) permits the small object argument (see Def-
inition 10.5.15).

83
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Thus, if M is a right proper model category with a set J of generating trivial
cofibrations such that, e.g., every object of M is small relative to the subcategory
of cofibrations, then the model category of Theorem 5.1.1 exists.

Definition 5.1.3. Let M be a model category, and let K be a set of objects
in M.

(1) A K-colocal weak equivalence is defined to be a K-colocal equivalence (see
Definition 3.1.8).

(2) A K-colocal fibration is defined to be a fibration.
(3) A K-colocal cofibration is defined to be a map with the left lifting property

with respect to all maps that are both fibrations and K-colocal weak
equivalences.

Thus, Theorem 5.1.1 asserts that if M is a right proper cellular model category
and K is a set of objects in M, then the classes of K-colocal weak equivalences,
K-colocal cofibrations, and K-local fibrations form a model category structure on
M.

Definition 5.1.4. Let M be a model category. If K is a set of cofibrant
objects of M, then the class of K-cellular objects is defined to be the smallest class
of cofibrant objects of M that containsK and is closed under homotopy colimits and
weak equivalences. If K consists of a single object A, then the class of K-cellular
objects will also be called the class of A-cellular objects.

Theorem 5.1.5. Let M be a model category. If K is a set of cofibrant objects
of M, then the class of K-cellular objects (see Definition 5.1.4) equals the class of
K-colocal objects (see Definition 3.1.8).

The proof of Theorem 5.1.5 is in Section 5.5.

Theorem 5.1.6. Let M be a right proper cellular model category and let K be
a set of cofibrant objects of M. If C is the class of K-cellular equivalences, then the
class of cofibrant objects of RCM (see Theorem 5.1.1) equals the class of K-cellular
objects (see Definition 5.1.4).

Proof. This follows from Theorem 5.1.5 and part 2 of Theorem 5.1.1. �

5.1.7. Examples of right proper cellular model categories.

Proposition 5.1.8. The categories SS, Top, SS∗, and Top∗ are right proper
cellular model categories.

Proposition 5.1.9. If M is a right proper cellular model category and C is
a small category, then the diagram category MC is a right proper cellular model
category.

Proposition 5.1.10. If M is a right proper cellular model category and Z is
an object of M, then the overcategory (M ↓Z) is a right proper cellular model
category.

Proposition 5.1.11. If M is a right proper cellular simplicial model category
and C is a small simplicial category, then the category MC of simplicial diagrams
is a right proper cellular model category.
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5.2. Horns on K and K-colocal equivalences

Definition 5.2.1. Let M be a right proper cellular model category with gen-
erating cofibrations I and generating trivial cofibrations J , and let K be a set of
objects of M.

• A full set of horns on K is a set Λ(K) of maps obtained by choosing a
cosimplicial resolution Ã of every element A of K and letting

Λ(K) = {Ã⊗ ∂∆[n]→ Ã⊗∆[n]
∣∣ A ∈ S, n ≥ 0}.

(This is exactly a full set of horns on the maps from the initial object of
M to the elements of K; see Definition 4.2.1.) If K consists of the single
object A, then Λ(K) is the set of maps

Λ{A} = {Ã⊗ ∂∆[n]→ Ã⊗∆[n]
∣∣ n ≥ 0}

for some cosimplicial resolution Ã of A, and it will also be called a full
set of horns on A.
• An augmented set of K-horns is a set Λ(K) of maps

Λ(K) = Λ(K) ∪ J

for some full set of horns Λ(K) on K. If K consists of the single object
A, then Λ(K) will also be denoted Λ{A}, and will be called an augmented
set of A-horns.

Definition 5.2.2. Let M be a right proper cellular model category and let K
be a set of objects of M.

• A Λ(K)-injective (see Definition 5.2.1) is a map with the right lifting
property with respect to every element of Λ(K).

• A Λ(K)-cofibration (see Definition 10.5.2) is a map with the left lifting
property with respect to every Λ(K)-injective.

• A relative Λ(K)-cell complex (see Definition 10.5.8) is a transfinite com-
position of pushouts of elements of Λ(K).

• An object of M is a Λ(K)-cell complex if the map to it from the initial
object of M is a relative Λ(K)-cell complex.

Proposition 5.2.3. Let M be a right proper cellular model category. If K is
a set of objects of M, then there is a functorial factorization of every map X → Y

as X
p−→W

q−→ Y where p is a relative Λ(K)-cell complex and q is a Λ(K)-injective.

Proof. This follows from Proposition 12.4.6. �

Proposition 5.2.4. Let M be a right proper cellular model category and let
K be a set of objects of M. If Y is a fibrant object of M, then a map g : X → Y is
a Λ(K)-injective if and only if it is both a fibration and a K-colocal equivalence.

Proof. Definition 11.1.2 implies that g is a fibration if and only if it is a J-
injective. If this is the case, then X is also fibrant, and so Proposition 16.4.5 implies
that g is a K-colocal equivalence if and only if it is a Λ(K)-injective. �

The requirement in Proposition 5.2.4 that Y be fibrant is essential; see Exam-
ple 5.2.7.
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Proposition 5.2.5. Let M be a right proper cellular model category. If K is
a set of objects of M, then a relative Λ(K)-cell complex is a K-colocal cofibration.

Proof. Let f : A→ B be a relative Λ(K)-cell complex; we must show that if
g : X → Y is both a K-colocal weak equivalence and a K-colocal fibration then f
has the left lifting property with respect to g. Proposition 8.1.23 implies that we
can choose a fibrant approximation ĝ to g such that ĝ is a fibration, and Proposi-
tion 13.2.1 implies that it is sufficient to show that f has the left lifting property
with respect to ĝ. Since Proposition 5.2.4 implies that ĝ is a Λ(K)-injective, the
result follows from Proposition 10.5.10. �

Proposition 5.2.6. Let M be a right proper cellular model category and let K
be a set of objects of M. If every object of M is fibrant and Λ(K) is an augmented

set of K-horns, then every Λ(K)-injective is both a fibration and a K-colocal equiv-

alence and every relative Λ(K)-cell complex is a K-colocal cofibration.

Proof. This follows from Proposition 5.2.4 and Proposition 5.2.5. �

Example 5.2.7. We present here an example of an Λ(K)-injective that is not a
K-colocal equivalence. Let M = SS∗ (the category of pointed simplicial sets), and
letK = {A}, where A is the quotient of ∆[1] obtained by identifying the two vertices
of ∆[1] (so that the geometric realization of A is homeomorphic to a circle). Let Y
be ∂∆[2], i.e., let Y consist of three 1-simplices with vertices identified so that its
geometric realization is homeomorphic to a circle. Let X be the simplicial set built
from six 1-simplices by identifying vertices so that the geometric realization of X is
homeomorphic to a circle and there is a map g : X → Y whose geometric realization
is the double cover of the circle. The map g is a fibration, since it is a fiber bundle
with fiber two discrete points (see [4, Section IV.2] or [49, Lemma 11.9]).

Since no nondegenerate 1-simplex of X has its vertices equal, the only pointed
map from A to X is the constant map to the basepoint. One can now show by
induction on n that the only pointed map from A ∧ ∆[n]+ to X is the constant
map to the basepoint. Thus, Map(A,X) has only one simplex in each dimension.
Similarly, Map(A, Y ) has only one simplex in each dimension, and so the map
g∗ : Map(A,X)→ Map(A, Y ) is an isomorphism. Thus, g is a Λ(K)-injective.

To see that g is not an A-colocal equivalence, we note that Sing
∣∣g∣∣ : Sing

∣∣X∣∣→
Sing

∣∣Y ∣∣ is a fibrant approximation to g, and the map Map
(
A,Sing

∣∣X∣∣) →
Map

(
A,Sing

∣∣Y ∣∣) is isomorphic to the map Map
(∣∣A∣∣, ∣∣X∣∣) → Map

(∣∣A∣∣, ∣∣Y ∣∣) (see
Lemma 1.1.10). Since the map

∣∣g∣∣ : ∣∣X∣∣ → ∣∣Y ∣∣ is homeomorphic to the double
covering map of the circle, the induced map Map

(∣∣A∣∣, ∣∣X∣∣)→ Map
(∣∣A∣∣, ∣∣Y ∣∣) is not

surjective on the set of components, and so g is not an A-colocal equivalence.

Remark 5.2.8. Example 5.2.7 shows that, if M = SS∗, then not every Λ(K)-
injective need be a K-colocal weak equivalence. Since the Λ(K)-cofibrations are
exactly the maps with the left lifting property with respect to all Λ(K)-injectives,
this implies that theK-colocal cofibrations must consist of more than just the Λ(K)-
cofibrations (see Proposition 5.2.5). However, if M is a right proper cellular model
category in which every object is fibrant (e.g., if M = Top∗), then Proposition 5.2.4
implies that the K-colocal cofibrations are exactly the Λ(K)-cofibrations. This is
why the K-colocal model category structure on M is cellular if every object of M

is fibrant (see Theorem 5.1.1 part 3).
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5.3. K-colocal cofibrations

The main results of this section are Proposition 5.3.3 and Proposition 5.3.5,
which together provide the factorizations needed for the proof of Theorem 5.1.1 in
Section 5.4.

Lemma 5.3.1. Let M be a right proper cellular model category. If K is a set of
objects of M, then every K-colocal cofibration is a cofibration.

Proof. This follows from Proposition 7.2.3 and Proposition 3.1.5. �

Lemma 5.3.2. Let M be a right proper cellular model category. If K is a set of
objects of M, then a map g : X → Y is both a K-colocal cofibration and a K-colocal
weak equivalence if and only if it is a trivial cofibration.

Proof. If g is a trivial cofibration then Proposition 3.1.5 implies that it is
a K-colocal weak equivalence and Proposition 7.2.3 implies that it is a K-colocal
cofibration.

Conversely, let g : X → Y be both aK-colocal cofibration and aK-colocal weak
equivalence. If we factor g as X

p−→W
q−→ Y where p is a trivial cofibration and q is

a fibration, then Proposition 3.1.5 and the “two out of three” property of K-colocal
equivalences (see Proposition 3.2.3) imply that q is a K-colocal equivalence. Thus,
p has the left lifting property with respect to q, and so the retract argument (see
Proposition 7.2.2) implies that g is a retract of the trivial cofibration p and is thus
a trivial cofibration (see axiom M3 of Definition 7.1.3). �

Proposition 5.3.3. Let M be a right proper cellular model category. If K is a
set of objects of M, then there is a functorial factorization of every map g : X → Y

in M as X
p−→ W

q−→ Y in which p is both a K-colocal cofibration and a K-colocal
weak equivalence and q is a K-colocal fibration.

Proof. This follows from Lemma 5.3.2 and the existence of the functorial
factorization into a trivial cofibration followed by a fibration. �

Lemma 5.3.4. Let M be a right proper cellular model category and let K be a
set of objects of M. If g : A→ B is a cofibration, h : B → C is a weak equivalence,
and the composition hg : A → C is a K-colocal cofibration, then g is a K-colocal
cofibration.

Proof. If f : X → Y is both a K-colocal weak equivalence and a K-colocal fi-
bration, then Proposition 8.1.23 implies that we can choose a fibrant approximation
f̂ : X̂ → Ŷ to f such that f̂ is a fibration. Proposition 3.1.5 and Proposition 3.2.3
imply that f̂ is a K-colocal weak equivalence, and (since M is a right proper model
category) Proposition 13.2.1 implies that it is sufficient to show that g has the left
lifting property with respect to f̂ .
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Suppose that we have the commutative solid arrow diagram

A
s //

g

��

X̂

f̂

��

B
t //

h

��

Ŷ

C

j

??

k

GG

.

In the category (A ↓M) of objects of M under A, the map h is a weak equivalence of
cofibrant objects (see Lemma 5.3.1) and Ŷ is fibrant. Thus, Corollary 7.7.4 implies
that there is a map j : C → Ŷ in (A ↓M) such that jh ' t in (A ↓M). Since hg is a
K-colocal cofibration and f̂ is both a K-colocal weak equivalence and a K-colocal
fibration, there exists a map k : C → X̂ such that khg = s and f̂k = j.

Since f̂kh = jh ' t in (A ↓M), if we let u = kh, then u : B → X̂, and f̂u ' t

in (A ↓M). Since B is cofibrant in (A ↓M) and f̂ is a fibration, the homotopy
lifting property of fibrations (see Proposition 7.3.11) implies that there is a map
v : B → X̂ in (A ↓M) such that v ' u and f̂v = t. The map v satisfies vg = s and
f̂v = t, and so g has the left lifting property with respect to f̂ . �

Proposition 5.3.5. !colocal Let M be a right proper cellular model category.
If K is a set of objects of M, then there is a functorial factorization of every map

g : X → Y in M as X
p−→ W

q−→ Y in which p is a K-colocal cofibration and q is
both a K-colocal weak equivalence and a K-colocal fibration.

Proof. Choose a functorial cofibrant fibrant approximation j : Y → Ŷ to Y .
Proposition 5.2.3 implies that there is a functorial factorization of the composition
jg : X → Ŷ as X r−→ Ŵ

s−→ Ŷ in which r is a relative Λ(K)-cell complex and s is a
Λ(K)-injective. If we let Z be the pullback Y ×Ŷ Ŵ , then we can factor the natural
map X → Z in M as X

p−→ W
u−→ Z where p is a cofibration and u is a trivial

fibration. If we let q = vu, then we have the diagram

X r

��

p

  
@@

@@
@@

@@

g

--

W
u //

q

��
??

??
??

??
Z

t //

v

��

Ŵ

s

��

Y
j
// Ŷ .

Since j is a weak equivalence, s is a fibration, and M is a right proper model cat-
egory, t is a weak equivalence. Thus, the composition tu is a weak equivalence,
and so s is a fibrant approximation to q. Since Proposition 5.2.4 implies that s
is a K-colocal equivalence, q (which is the composition of two fibrations) is both
a K-colocal weak equivalence and a K-colocal fibration. Since r is a K-colocal
cofibration (see Proposition 5.2.5), Lemma 5.3.4 implies that p is a K-colocal cofi-
bration. �
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Proposition 5.3.6. Let M be a right proper cellular model category with gen-
erating cofibrations I. If K is a set of objects of M, then a map is a K-colocal
cofibration if and only if it is a retract of a relative I-cell complex X → Y in M for
which there is a weak equivalence Y → Z in M such that the composition X → Z
is a relative Λ(K)-cell complex.

Proof. This follows from the factorization constructed in the proof of Propo-
sition 5.3.5 and the retract argument (see Proposition 7.2.2). �

Corollary 5.3.7. Let M be a right proper cellular model category. If K is a
set of objects of M, then an object is K-colocal if and only if it is a retract of an
object X such that

(1) X is a cell complex in M, and

(2) there is a Λ(K)-complex Y and a weak equivalence X → Y in M.

Proof. This follows from Proposition 3.4.1 and Proposition 5.3.6. �

5.4. Proof of the main theorem

This section contains the proof of Theorem 5.1.1.

5.4.1. Proof of part 1. We must show that axioms M1 through M5 of Defi-
nition 7.1.3 are satisfied.

Axiom M1 is satisfied because it is satisfied in M, axiom M2 follows from
Proposition 3.2.3, and axiom M3 follows from Proposition 3.2.4 and Lemma 7.2.8.
Axiom M4 part (1) follows from the definition of K-colocal cofibration, and ax-
iom M4 part (2) follows from Lemma 5.3.2. Axiom M5 part (1) follows from
Proposition 5.3.5, and axiom M5 part (2) follows from Proposition 5.3.3.

5.4.2. Proof of part 2. This follows from Proposition 3.4.1.

5.4.3. Proof of part 3. Proposition 3.4.4 implies that RCM is right proper.
Suppose now that every object of M is fibrant. Since the classes of fibrations

and trivial cofibrations of RCM equal those of M, a set J of generating trivial
cofibrations of M serves as a set of generating trivial cofibrations of RCM. Thus,
Proposition 5.2.6 implies that if Λ(K) is an augmented set of horns onK, then RCM

is a cofibrantly generated model category with generating cofibrations Λ(K) and
generating trivial cofibrations J (see Definition 11.1.2). Since the class of fibrations
of RCM equals that of M, every object of RCM is fibrant, and so it remains only
to show that RCM is cellular.

Since the domains and codomains of the elements of Λ(K) are cofibrant in M

and every cofibration of RCM is a cofibration of M, Corollary 12.3.4 implies that
condition 1 of Definition 12.1.1 is satisfied. Theorem 12.4.4 implies that condi-
tion 2 is satisfied, and condition 3 is satisfied because every cofibration of RCM is
a cofibration of M.

5.4.4. Proof of part 4. Axiom M6 of Definition 9.1.6 holds in RCM because
it holds in M.

For axiom M7, if i : A → B is a cofibration in RCM and p : X → Y is a
fibration in RCM then i is a cofibration in M and p is a fibration in M and so the
map Map(i, p) : Map(B,X) → Map(A,X) ×Map(A,Y ) Map(B, Y ) is a fibration of
simplicial sets. If i is also a weak equivalence in RCM then i is a trivial cofibration
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in RCM and thus also in M, and so Map(i, p) is a trivial fibration of simplicial sets.
Thus, it remains only to deal with the case in which i is a cofibration in RCM and
p is a trivial fibration in RCM.

If i is a cofibration in RCM and p is a trivial fibration in RCM then Theo-
rem 17.8.10 implies that (i, p) is a homotopy orthogonal pair. Let p̂ : X̂ → Ŷ be a
fibrant approximation to p in M such that p̂ is a fibration in M. Example 16.6.13
implies that if X̂ and Ŷ are the simplicial objects in M such that X̂n = X̂∆[n] and
Ŷ n = Ŷ ∆[n] and X̂ → Ŷ is the map induced by p, then X̂ → Ŷ is a simplicial res-
olution of p̂ in M such that X̂ → Ŷ is a Reedy fibration in M∆op

. Corollary 16.2.2
and Proposition 3.3.4 imply that X̂ → Ŷ is also a simplicial resolution of p̂ in RCM

such that X̂ → Ŷ is a Reedy fibration in (RCM)∆
op

, and so Proposition 16.3.10
implies that the map X̂∆[n] → Ŷ ∆[n] ×Ŷ ∂∆[n] X̂

∂∆[n] is a trivial fibration in RCM

for every n ≥ 0. Since i : A→ B is a cofibration in RCM, Lemma 9.4.7 now implies
that the map p̂ : X̂ → Ŷ has the homotopy right lifting property with respect to i,
and so Corollary 13.2.2 implies that the map p : X → Y has the homotopy right
lifting property with respect to i.

5.5. K-colocal objects and K-cellular objects

This section contains the proof of Theorem 5.1.5.

Proposition 5.5.1. Let M be a right proper cellular model category. If K is
a set of objects in M, then the homotopy colimit of a diagram of K-colocal objects
is a K-colocal object.

Proof. Let C be a small category and let B : C→M be a diagram such that
Bα is K-colocal for every object α of C. Theorem 19.4.1 implies that hocolim B is
cofibrant. If p : X → Y is a K-colocal equivalence and p̂ : X̂ → Ŷ is a fibrant ap-
proximation to p, then Theorem 19.4.4 implies that the map map(hocolim B, X̂)→
map(hocolim B, Ŷ ) is weakly equivalent to the map holim map(B, X̂)→ holim map(B, Ŷ ).
Theorem 19.4.2 implies that this map is a weak equivalence, and so Theorem 17.6.3
implies that map(hocolim B, X)→ map(hocolim B, Y ) is a weak equivalence. �

Lemma 5.5.2. Let M be a right proper cellular model category and let K be
a set of objects in M. If X is an K-colocal object of M and L is a simplicial set,
then the object X ⊗ L is K-colocal.

Proof. This follows from Proposition 5.5.1, Theorem 19.9.1, Proposition 15.10.4,
and Lemma 3.2.1. �

Proposition 5.5.3. Let M be a right proper cellular model category and let
K be a set of cofibrant objects of M. If C is a class of cofibrant objects of M that
contains K and is closed under homotopy colimits and weak equivalences, then C

contains all Λ(K)-cell complexes (see Definition 5.2.2).

Proof. We will prove this by a transfinite induction on the ordinal indexing
the λ-sequence whose colimit is the Λ(K)-cell complex. Lemma 5.5.2 implies that
C contains Ã ⊗ ∂∆[n] for every n ≥ 0 and every cosimplicial resolution Ã of
every element A of K, and so the inductive step for successor ordinals follows from
Proposition 5.5.1 and Proposition 19.9.4. The induction step for limit ordinals
follows from Proposition 5.5.1 and Theorem 19.9.1. �
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Proof of Theorem 5.1.5. Proposition 5.5.1 and Lemma 3.2.1 imply that
the class of K-colocal objects is closed under homotopy colimits and weak equiva-
lences. If C is a class of cofibrant objects of M that contains K and is closed under
homotopy colimits and weak equivalences, then Proposition 5.5.3 implies that C

contains all Λ(K)-cell complexes, and Proposition 19.9.3 implies that C contains
all retracts of Λ(K)-cell complexes, and so the result follows from Proposition 3.4.1
and Proposition 5.3.6. �





CHAPTER 6

Fiberwise Localization

If M is one of our categories of spaces (see Section 1.1.3), C is a class of maps
in M, and p : Y → Z is a fibration in M, then a fiberwise C-localization of p should
be a map from p to another fibration q over Z

Y
i //

p
��

??
??

??
?? Ŷ

q
����

��
��

��

Z

that “localizes the fibers of p”, i.e., for every point z in Z the map p−1(z)→ q−1(z)
should be a C-localization of p−1(z). The actual definition is a generalization of
this that deals with maps p that may not be fibrations (see Definition 6.1.1).

In this chapter, we show that if M is a category of unpointed spaces (see Sec-
tion 1.1.3) and S is a set of maps in M, then every map p : Y → Z in M has a
natural fiberwise S-localization Y → Ŷ → Z. We also show that if p : Y → Z is
a map in M and Y → Ŷ ′ → Z is some other fiberwise S-localization of p, then
there is a map Ŷ → Ŷ ′ under Y and over Z, unique up to simplicial homotopy
in (Y ↓M ↓Z) (see Definition 11.8.1 and Definition 11.8.3), and any such map is a
weak equivalence.

We construct our fiberwise localization for the categories of unpointed spaces
Top and SS (see Notation 1.1.4). Since the pointed localization of a connected
space is weakly equivalent to its unpointed localization (see Theorem 1.8.12), our
construction will also serve as a fiberwise pointed localization for fibrations with
connected fibers. This is the strongest possible result; in Proposition 6.1.4, we show
that it is not possible to construct a fiberwise pointed localization for fibrations with
fibers that are not connected.

6.1. Fiberwise localization

Definition 6.1.1. Let Spc(∗) be one of our categories of spaces (see Nota-
tion 1.1.4) and let C be a class of maps in Spc(∗). If p : Y → Z is a map in Spc(∗),

then a fiberwise C-localization of p is a factorization Y i−→ Ŷ
q−→ Z of p such that

(1) q is a fibration, and
(2) for every point z of Z the induced map of homotopy fibers (see Defi-

nition 13.4.3) HFibz(p) → HFibz(q) is a C-localization of HFibz(p) (see
Definition 3.2.16).

Proposition 6.1.2. Let Spc(∗) be one of our categories of spaces (see Nota-

tion 1.1.4). If C is a class of maps in Spc(∗), p : Y → Z is a fibration in Spc(∗),

93
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and Y
i−→ Ŷ

q−→ Z is a factorization of p, then this factorization is a fiberwise
C-localization of p if and only if

(1) q is a fibration, and
(2) for every point z of Z the induced map of fibers p−1(z) → q−1(z) is a

C-localization of p−1(z).

Proof. This follows from Proposition 13.4.6. �

The following theorem summarizes the main results of this chapter.

Theorem 6.1.3. If Spc is a category of unpointed spaces (see Notation 1.1.4)
and S is a set of maps in Spc, then there is a natural factorization of every map

p : X → Z as X
i−→ L̃SX

q−→ Z such that

(1) q is a fibration with S-local fibers,
(2) for every point z in Z the induced map of homotopy fibers HFibz(p) →

HFibz(q) (see Definition 13.4.3) is an S-localization of HFibz(p),
(3) i is both a cofibration and an S-local equivalence,
(4) if we have a solid arrow diagram

X

j

##

i
//

p
!!C

CC
CC

CC
CC

L̃SX k
//

q

��

W

r
}}zz

zz
zz

zz
z

Z

in which r is a fibration with S-local fibers, then there is a map k : L̃SX →
W , unique up to simplicial homotopy in (X ↓Spc ↓Z), such that ki = j,
and

(5) if we have a diagram as in the previous part such that for every point z
in Z the map HFibz(p)→ HFibz(r) of homotopy fibers over z induced by
j is an S-local equivalence (i.e., if j is another fiberwise S-localization of
p), then the map k is a weak equivalence.

Proposition 6.1.4. Let f : A → B be the inclusion S2 → D3 in Top∗, the
category of pointed topological spaces. If X = S2 × R, Z = S1, and p : X → Z
is the composition of the projection S2 × R → R with the universal covering map
R → S1, then there is no fiberwise f -localization of p in the category Top∗ of
pointed spaces.

Proof. The fiber F of p is a countable disjoint union of copies of S2, and so
if there were a fiberwise pointed localization of p, its fiber would have countably
many path components: one contractible, and the others weakly equivalent to S2

(see Corollary 1.8.10).
To see that this is not possible, note that π1Z acts transitively on π0F , and

so π1Z would act transitively on the path components of the fiber of any fiberwise
localization of p. Since π1Z acts on the fiber through (unpointed) weak equiva-
lences, this is impossible, and so there does not exist a fiberwise pointed localization
of p. �
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6.2. The fiberwise local model category structure

Definition 6.2.1. Let S be a set of maps in Spc. If Z is a space in Spc, then
we define FibZ(S) (which we call the set of elements of S fiberwise over Z) to be
the set of maps in (Spc ↓Z)

A
f

//

��
@@

@@
@@

@ B

��~~
~~

~~
~

Z

where f : A→ B is an element of S and the images of the maps A→ Z and B → Z
are a single point of Z.

Proposition 6.2.2. If Z is a space in Spc, then the category (Spc ↓Z) of
objects of Spc over Z is a left proper cellular model category.

Proof. This follows from Proposition 4.1.6. �

Theorem 6.2.3. Let Z be a space in Spc, and let S be a set of maps in Spc.
If we define

(1) a fiberwise over Z S-local equivalence to be a FibZ(S)-local equivalence
in (Spc ↓Z) (see Definition 3.1.4),

(2) a fiberwise over Z S-local cofibration to be a FibZ(S)-local cofibration,
and

(3) a fiberwise over Z S-local fibration to be a FibZ(S)-local fibration,

then there is a simplicial model category structure on (Spc ↓Z) in which the weak
equivalences are the fiberwise over Z S-local equivalences, the cofibrations are the
fiberwise over Z S-local cofibrations, and the fibrations are the fiberwise over Z
S-local fibrations.

Proof. This follows from Theorem 4.1.1 and Proposition 6.2.2. �

Proposition 6.2.4. If S is a set of maps in Spc and Z is a space in Spc, then
an object of (Spc ↓Z) is fibrant in the fiberwise over Z S-local model category
structure if and only if it is a fibration and the fiber over every point of Z is an
S-local space.

Proof. This follows from Proposition 3.4.1. �

6.3. Localizing the fiber

The purpose of this section is to prove the following theorem.

Theorem 6.3.1. If S is a set of maps in Spc, Z is a space in Spc, and

X //

p
  

@@
@@

@@
@ Y

q
��~~

~~
~~

~

Z

is a Λ
(
FibZ(S)

)
-cofibration (see Definition 4.2.1), then for every point z of Z the

induced map of homotopy fibers HFibz(p)→ HFibz(q) is an S-local equivalence.

The proof of Theorem 6.3.1 is at the end of this section, on page 98.
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Proposition 6.3.2. If q : X → Z is a map of simplicial sets and z is a point
in Z, then there is a contractible simplicial set C (which depends naturally on the
pair (Z, z)) and a natural (∆C)-diagram (see Definition 15.1.16) of simplicial sets
F : (∆C)→ SS such that

(1) for every simplex σ of C there is a simplex τ of Z such that F (σ) = q̃(τ)
(see Example 18.9.6), and

(2) there is a natural weak equivalence hocolim F ∼= HFibz(q) (where HFibz(q)
is the homotopy fiber of q over z).

By “natural” we mean that the simplicial set C is a functor of the pair (Z, z) and,
for a fixed pair (Z, z), the diagram F is a functor of the object q : X → Z of
(SS ↓Z).

Proof. If ∗ → Z is the map to the point z in Z, let ∗ → C
p−→ Z be a natural

factorization of it into a trivial cofibration followed by a fibration. The homotopy
fiber of q over z is then naturally weakly equivalent to the pullback of the diagram
C

p−→ Z
q←− X (see Proposition 13.3.7). If we let F be that pullback and r : F → C

its projection onto C, then the construction of Example 18.9.6 applied to r yields
a diagram F : (∆C) → SS that satisfies condition 1. Proposition 18.9.7 implies
that F is Reedy cofibrant, and so condition 2 follows from Theorem 19.9.1 and the
natural isomorphism colim F ≈ F . �

Proposition 6.3.3 (E. Dror Farjoun, [23]). Let S be a set of maps in SS, let
Z be a simplicial set, let p : X → Z and q : Y → Z be objects of (SS ↓Z), and let

X
g

//

p
  

@@
@@

@@
@ Y

q
��~~

~~
~~

~

Z

be a map in (SS ↓Z). If for every simplex σ of Z the induced map p̃(σ)→ q̃(σ) (see
Example 18.9.6) is an S-local equivalence, then for every point z in Z the induced
map of homotopy fibers HFibz(p)→ HFibz(q) is an S-local equivalence.

Proof. This follows from Proposition 6.3.2 and Lemma 3.2.5. �

Lemma 6.3.4. If f : A→ B is a cofibration in SS, Z is a space in Top,

X
g

//

p
  

@@
@@

@@
@ Y

q
��~~

~~
~~

~

Z

is a map in (Top ↓Z), and z is a point in Z, then the induced map of homo-
topy fibers HFibz(p) → HFibz(q) is a

∣∣f ∣∣-local equivalence if and only if the in-
duced map of the corresponding homotopy fibers of (Sing p) : SingX → SingZ and
(Sing q) : Sing Y → SingZ is an f -local equivalence.

Proof. Proposition 13.4.10 implies that the “homotopy fiber” and “total sin-
gular complex” functors commute up to a natural weak equivalence, and so the
result follows from Proposition 1.2.36. �
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Proposition 6.3.5. Let f : A → B be an inclusion of cell complexes in Spc,
and let Z be a space in Spc. If the map

X
g

//

p
  

@@
@@

@@
@ Y

q
��~~

~~
~~

~

Z

in (Spc ↓Z) is a pushout of an element of Λ
(
FibZ{f}

)
(see Definition 4.2.1), then g

is both a cofibration and an f -local equivalence in Spc, and for every point z in Z
the induced map of homotopy fibers HFibz(p)→ HFibz(q) is an f -local equivalence.

Proof. There are two types of maps in the set Λ
(
FibZ{f}

)
. The first type is

an element of Λ
(
FibZ{f}

)
(see Definition 4.2.1); a map of this type is an S-local

equivalence in Spc, and its domain and codomain lie over a single point z of Z.
The second type is a generating trivial cofibration of Spc. If Y is obtained from X
by pushing out a map of the second type, then the map g is a weak equivalence,
and so the induced map of homotopy fibers is a weak equivalence. Thus, we need
only consider the case in which Y is obtained from X by pushing out an element
of Λ

(
FibZ{f}

)
.

If Spc = SS, then for each simplex σ of Z, the map p̃(σ) → q̃(σ) (see Exam-
ple 18.9.6) is obtained by pushing out one copy of our element of Λ

(
FibZ{f}

)
for

each vertex of σ that equals z. Thus, p̃(σ) → q̃(σ) is an S-local equivalence, and
so the lemma follows from Proposition 6.3.3. Thus, we need only consider the case
Spc = Top.

If Spc = Top, then Proposition 1.2.36 and Proposition 1.2.10 imply that it
is sufficient to show that Sing

(
HFibz(p)

)
→ Sing

(
HFibz(q)

)
is a (Sing f)-local

equivalence, and Proposition 13.4.10 implies that this is equivalent to showing that
HFibz(Sing p) → HFibz(Sing q) is a (Sing f)-local equivalence (where we also use
the symbol z to denote the vertex of SingZ corresponding to the point z of Z).

Let A×
∣∣∆[n]

∣∣qA×|∂∆[n]|B×
∣∣∂∆[n]

∣∣→ B×
∣∣∆[n]

∣∣ be the element of Λ
(
FibZ{f}

)
in the pushout that transforms X into Y . We have a pushout square

A×
∣∣∆[n]

∣∣qA×|∂∆[n]| B ×
∣∣∂∆[n]

∣∣ //

��

X

��

B ×
∣∣∆[n]

∣∣ // Y

and Proposition 13.5.5 implies that Sing Y is weakly equivalent to the pushout

Sing
(
A×

∣∣∆[n]
∣∣qA×|∂∆[n]| B ×

∣∣∂∆[n]
∣∣) //

��

SingX

��

Sing
(
B ×

∣∣∆[n]
∣∣) // Y ′

If we let q′ : Y ′ → Z be the structure map of Y ′ in
(
SS ↓ (SingZ)

)
, then for every

simplex σ ∈ SingZ the map ˜(Sing p)(σ)→ q̃′(σ) (see Example 18.9.6) is obtained by
pushing out one copy of Sing

(
A×

∣∣∆[n]
∣∣qA×|∂∆[n]|B×

∣∣∂∆[n]
∣∣)→ Sing

(
B×

∣∣∆[n]
∣∣)



98 6. FIBERWISE LOCALIZATION

for each vertex of σ that equals the image of Sing
(
B ×

∣∣∆[n]
∣∣) in SingZ. Proposi-

tion 1.2.36 implies that this is a (Sing f)-local equivalence, and so Proposition 6.3.3
implies that HFibz(Sing p) → HFibz(q′) is a (Sing f)-local equivalence. This im-
plies that HFibz(Sing p) → HFibz(Sing q) is a (Sing f)-local equivalence, and the
proof is complete. �

Proof of Theorem 6.3.1. Every FibZ(S)-cofibration is a retract of a trans-
finite composition of pushouts of elements of Λ

(
FibZ(S)

)
(see Corollary 10.5.22).

Since S-local equivalences are closed under retracts, Proposition 13.4.9 implies that
a retract of a map in (Spc ↓Z) inducing an S-local equivalence of homotopy fibers
over z must also induce an S-local equivalence of homotopy fibers over z. Thus, it
is sufficient to show that if

X0
//

p0

((QQQQQQQQQQQQQQQQ X1
//

p1

!!B
BB

BB
BB

B X2
//

p2

��

· · · // Xβ //

pβ

vvmmmmmmmmmmmmmmm · · · (β < λ)

Z

is a transfinite composition of pushouts of elements of Λ
(
FibZ(S)

)
, then the induced

map of homotopy fibers HFibz(p0)→ HFibz(colimβ<λ pβ) is an S-local equivalence.
If Spc = SS, then we choose a factorization ∗ s−→ C

t−→ Z of the map ∗ → Z
whose image is z such that s is a trivial cofibration and t is a fibration, and
Proposition 13.4.9 implies that each HFibz(Xβ) is naturally weakly equivalent
to C ×Z Xβ . Each map C ×Z Xβ → C ×Z Xβ+1 is an inclusion (and, thus,
a cofibration), and Proposition 6.3.5 implies that it is an S-local equivalence.
Thus, it is a trivial cofibration in the S-local model category structure on SS (see
Theorem 4.1.1). Proposition 10.3.4 now implies that the transfinite composition
C ×Z X0 → colimβ<λ(C ×Z Xβ) ≈ C ×Z (colimβ<λXβ) is an S-local equiva-
lence, and Proposition 13.4.9 implies that this is weakly equivalent to the map
HFibz(p0)→ HFibz(colimβ<λ pβ).

If Spc = Top, then Proposition 13.4.10 and Proposition 1.2.36 imply that it
is sufficient to show that the induced map of homotopy fibers of total singular
complexes HFibz(p0) → HFibz(colimβ<λ Sing pβ) ≈ HFibz(Sing colimβ<λ pβ) is a
(SingS)-local equivalence (where (SingS) = {Sing f

∣∣ f ∈ S} and we use the
symbol z to also denote the vertex of SingZ corresponding to z). We choose a
factorization ∗ s−→ C

t−→ SingZ in SS of the map ∗ → SingZ whose image is z such
that s is a trivial cofibration and t is a fibration, and the argument proceeds as in
the case Spc = SS. �

6.4. Uniqueness of the fiberwise localization

Proposition 6.4.1. If S is a set of maps in Spc(∗), p : X → Z is an object

of (Spc ↓Z), q : Y → Z is a fibration with S-local fibers, g : X → Y is a map in

(Spc ↓Z) and X → L̃SX is the fiberwise S-localization of X over Z, then the dotted
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arrow exists in the diagram

X

g

##
//

p
!!C

CC
CC

CC
CC

L̃SX //

��

Y

q
}}{{

{{
{{

{{
{

Z

and it is unique up to simplicial homotopy in (Spc ↓Z).

Proof. Since q : Y → Z is a (FibZS)-injective, this follows from Proposi-
tion 9.6.1. �

Theorem 6.4.2 (Uniqueness of fiberwise localization). Let S be a set of maps
in Spc(∗). If q : Y → Z is a fibration in Spc with S-local fibers and

X //

p
  

@@
@@

@@
@ Y

q
��~~

~~
~~

~

Z

is a map in (Spc ↓Z) such that for every point z of Z the induced map of homotopy

fibers HFibz(p) → HFibz(q) is an S-local equivalence, then the map L̃SX → Y of
Proposition 6.4.1 is a weak equivalence.

Proof. Since for every point z ∈ Z the induced map from the homotopy fiber
of L̃SX → Z over z to the homotopy fiber of q over z is an S-local equivalence
between S-local spaces, Theorem 3.2.13 implies that it is a weak equivalence. The
theorem now follows from the exact homotopy sequence of a fibration applied over
each path component of Z. �





Part 2

Homotopy Theory in Model
Categories





Summary of Part 2

In Chapters 7 and 8 we present the basic definitions and ideas of model cate-
gories. We begin Chapter 7 with the definition of a model category, and then discuss
the lifting and extension properties of maps that follow from the axioms. We define
the left and right homotopy relations for maps, and show that for maps between
cofibrant-fibrant objects these are the same relation and are equivalence relations.
This enables us to define the classical homotopy category of a model category as
the category whose objects are the cofibrant-fibrant objects and whose maps are
homotopy classes of maps. We also show that a map between cofibrant-fibrant
objects is a weak equivalence if and only if it is a homotopy equivalence.

The classical homotopy category is often useful, but it is not sufficient for
many purposes since it does not contain all of the objects of the model category.
In Chapter 8 we discuss cofibrant and fibrant approximations, which we then use
to construct the Quillen homotopy category of a model category. (The Quillen
homotopy category is referred to simply as the homotopy category.)

A cofibrant approximation to an object is a cofibrant object together with a
weak equivalence to the object. Dually, a fibrant approximation to an object is a
fibrant object together with a weak equivalence from the object. The importance
of cofibrant and fibrant approximations to an object is that

• they are isomorphic in the homotopy category to the original objects, and
• maps that are “expected” to exist may exist only when the domain is

cofibrant and the codomain is fibrant.

In Chapter 8 we construct the homotopy category of a model category by taking
as objects the objects of the model category and as morphisms between objects
X and Y the homotopy classes of maps between cofibrant-fibrant objects weakly
equivalent to X and Y .

In Chapter 8 we also define Quillen functors, which are the interesting functors
between model categories. If M and N are model categories and F: M � N :U is
an adjoint pair of functors, then the left adjoint F is called a left Quillen functor
and the right adjoint U is called a right Quillen functor if

• the left adjoint F preserves cofibrations and trivial cofibrations and
• the right adjoint U preserves fibrations and trivial fibrations.

We define the total left derived functor LF: HoM → Ho N of F and the total
right derived functor RU: N →M of U, and show that these form an adjoint pair
LF : Ho M � Ho N :RU. We also define what it means for Quillen functors to
be Quillen equivalences, and we show that the total derived functors of Quillen
equivalences are equivalences of categories between the homotopy categories.
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In Chapter 9 we discuss simplicial model categories. A simplicial model cate-
gory is a model category together with an enrichment of the category over simpli-
cial sets, with a suitable interaction between the model structure and the simplicial
structure. Thus, for every pair of objects there is a simplicial set of morphisms,
the vertices of which are the maps in the underlying category.

In Chapter 10 we discuss several constructions needed for our discussions of
cofibrantly generated model categories in Chapter 11 and of cellular model cate-
gories in Chapter 12. The main idea is that of a transfinite composition of maps;
this is the “composition” of an infinitely long sequence of maps indexed by an ordi-
nal. It is used in the small object argument, which is a method of factoring a map
into factors with specified lifting properties.

If λ is an ordinal, then a λ-sequence consists of objects Xα for α < λ and maps
Xα → Xα+1 for all α for which α + 1 < λ such that if β is a limit ordinal and
β < λ, then Xβ = colimα<β Xα (see Definition 10.2.1). The natural map X0 →
colimβ<λXβ is called the composition of the λ-sequence. An object W is said to be
small with respect to a subcategory D if for every large enough regular cardinal λ
(see Definition 10.1.11) and every λ-sequence X0 → X1 → X2 → · · · → Xβ → · · ·
(β < λ) in D (see Definition 10.2.2) the natural map of sets colimβ<λ M(W,Xβ)→
M(W, colimβ<λXβ) is an isomorphism (see Definition 10.5.12), that is, if every map
from W to the colimit of the λ-sequence factors “essentially uniquely” through some
object Xβ in the λ-sequence.

If I is a set of maps, then we define a relative I-cell complex to be a map that
can be constructed by repeatedly attaching codomains of elements of I along maps
of their domains, and we define an I-cell complex to be an object for which the
map from the initial object is a relative I-cell complex (see Definition 10.5.8). For
example, in the category Top of topological spaces, if we let I be the set of inclusions
Sn−1 ⊂ Dn for n ≥ 0, then the I-cell complexes include the CW-complexes, but they
also include cell complexes in which the attaching maps of the cells do not factor
through a subcomplex of lower dimensional cells. We say that a set I of maps
permits the small object argument if the domains of the elements of I are small
relative to the subcategory of relative I-cell complexes (see Definition 10.5.15),
in which case the small object argument (see Proposition 10.5.16) constructs a
factorization of every map into a relative I-cell complex followed by a map with the
right lifting property with respect to every element of I (see Proposition 10.5.16
and its proof).

In Chapter 11 we discuss cofibrantly generated model categories. A cofibrantly
generated model category (see Definition 11.1.2) is a model category in which

• there is a set I of maps (called a set of generating cofibrations) that permits
the small object argument and such that a map is a trivial fibration if and
only if it has the right lifting property with respect to every element of I
and
• there is a set J of maps (called a set of generating trivial cofibrations) that

permits the small object argument and such that a map is a fibration if
and only if it has the right lifting property with respect to every element
of J .

In a cofibrantly generated model category, both of the factorizations required by
the model category axioms can be constructed using the small object argument
(see Proposition 10.5.16). The small object argument and the retract argument
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(see Proposition 7.2.2) then imply that the cofibrations are the relative I-cell com-
plexes and their retracts and that the trivial cofibrations are the relative J-cell
complexes and their retracts. If M is a cofibrantly generated model category and
we have selected a set I of generating cofibrations, then we will refer to relative
I-cell complexes simply as relative cell complexes, and to I-cell complexes simply
as cell complexes. We also show in Chapter 11 that there is a cofibrantly gener-
ated model category structure on a category of diagrams in a cofibrantly generated
model category.

A notion related to smallness is compactness. If W is an object, I is a set of
maps, and γ is a cardinal, then we will say that W is γ-compact relative to I if
every map from W to the codomain of a relative I-cell complex factors through
a sub-relative I-cell complex of size at most γ, and we will say that it is compact
relative to I if it is γ-compact for some cardinal γ (see Definition 10.8.1). If I is
a set of generating cofibrations, then an object that is compact relative to I will
be called simply compact. If M is a cofibrantly generated model category in which
cofibrations are monomorphisms, then compact objects are also small relative to I
(see Proposition 10.8.7).

In Chapter 12 we discuss cellular model categories. These are cofibrantly gen-
erated model categories in which the cell complexes are well enough behaved to
allow the localization arguments of Part 1. In particular, we show that in a cellular
model category the intersection of a pair of subcomplexes of a cell complex exists,
and that there is a cardinal σ such that a cell complex of size τ is στ -compact.

In Chapter 13 we discuss properness. A model category is left proper if the
pushout of a weak equivalence along a cofibration is a weak equivalence, and it
is right proper if the pullback of a weak equivalence along a fibration is a weak
equivalence. We discuss homotopy pullbacks and homotopy fibers in right proper
model categories and homotopy pushouts in left proper model categories.

In Chapter 14 we discuss the classifying space of a small category. Given a
small category C its classifying space BC is a simplicial set such that

• the vertices of BC are the objects of C,
• the 1-simplices of BC are the morphisms of C, and
• the n-simplices of BC for n ≥ 2 are the strings of n composable morphisms

in C.

If the classifying space of a small category is contractible, then any two objects of
the category are connected by an essentially unique zig-zag of morphisms in the
category (see Definition 14.4.2 and Theorem 14.4.5). There is also an extension of
this that applies to categories that may not be small.

Our main use for this will be to prove the essential uniqueness of various con-
structions. For example, if X is an object of a model category then there is a
category whose objects are cofibrant approximations to X and whose morphisms
are weak equivalences of cofibrant approximations. We show that this category has
a contractible classifying space, which implies that any two cofibrant approxima-
tions to X are connected by an essentially unique zig-zag of weak equivalences.

In Chapter 15 we discuss the Reedy model category structure. This is a com-
mon generalization of the model categories of simplicial objects in a model category
and of cosimplicial objects in a model category. A Reedy category is a common gen-
eralization of the indexing category for simplicial objects and the indexing category
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for cosimplicial objects; the objects of a Reedy category have degrees, and the de-
grees define a filtration of the Reedy category. The Reedy model category structure
on a category of diagrams in a model category indexed by a Reedy category is based
on defining diagrams inductively over the filtrations of the Reedy category.

In Chapter 16 we discuss cosimplicial and simplicial resolutions. If M is a
simplicial model category and W → X is a cofibrant approximation to X, then the
cosimplicial object X̃ in which X̃n = W ⊗∆[n] is a cosimplicial resolution of X.
Dually, if M is a simplicial model category and Y → Z is a fibrant approximation
to Y , then the simplicial object Ŷ in which Ŷ n = Z∆[n] is a simplicial resolution of
Y . In this chapter, we define cosimplicial and simplicial resolutions in an arbitrary
model category (see Definition 16.1.2), and establish a number of their technical
properties. These will be used in Chapter 17 to define homotopy function complexes
and in Chapter 19 to define homotopy colimits and homotopy limits.

In Chapter 17 we define homotopy function complexes. A homotopy function
complex between two objects in a model category is a simplicial set whose set of
components is the set of maps in the homotopy category between those objects.
These serve as replacements in a general model category for the enrichment over
simplicial sets that is part of a simplicial model category. There are three types of
homotopy function complexes: left homotopy function complexes, defined by resolv-
ing the first argument (see Definition 17.1.1), right homotopy function complexes,
defined by resolving the second argument (see Definition 17.2.1), and two-sided
homotopy function complexes, defined by resolving both arguments (see Defini-
tion 17.3.1). Each of these requires making choices, but there is a distinguished
transitive homotopy class of homotopy equivalences connecting any two homotopy
function complexes (see Theorem 17.5.30).

Chapters 18 and 19 discuss homotopy colimits and homotopy limits. An object-
wise weak equivalence between diagrams does not generally induce a weak equiva-
lence of colimits; the homotopy colimit functor repairs this problem, at least for ob-
jectwise cofibrant diagrams. Similarly, the homotopy limit functor takes objectwise
weak equivalences between objectwise fibrant diagrams into weak equivalences. In
Chapter 18 we discuss homotopy colimits and homotopy limits in simplicial model
categories, which allows for simpler formulas. In Chapter 19 we generalize this to
arbitrary model categories.



CHAPTER 7

Model Categories

We define a model category in Section 7.1 (see Definition 7.1.3). We point out
in Proposition 7.1.9 that the axioms for a model category are self dual, i.e., if M

is a model category, then there is a model category structure on Mop in which the
weak equivalences are the opposites of the weak equivalences of M, the cofibrations
are the opposites of the fibrations of M, and the fibrations are the opposites of
the cofibrations of M. Thus, any theorem about model categories implies a “dual
theorem” in which cofibrations are replaced by fibrations, fibrations are replaced
by cofibrations, colimits are replaced by limits, and limits are replaced by colimits.

In Section 7.2 we discuss lifting and extending maps, including a technique
called the retract argument (see Proposition 7.2.2). Together with axiom M3 of
Definition 7.1.3, this is often used to show that a map is a cofibration, trivial
cofibration, fibration, or trivial fibration based on its lifting properties (see Propo-
sition 7.2.3).

In Section 7.3 we discuss the left and right homotopy relations. Left homotopy
is defined using a cylinder object (see Definition 7.3.2) for the domain. Cylinder
objects exist for any object (see Lemma 7.3.3), but there is no distinguished one.
Dually, right homotopy is defined using a path object (see Definition 7.3.2) for
the codomain. Path objects exist for any object (see Lemma 7.3.3), but there
is no distinguished one. Two maps are called homotopic if they are both left
homotopic and right homotopic (see Definition 7.3.2). We establish the homotopy
extension property of cofibrations for right homotopies when the codomain is fibrant
(see Definition 7.1.5 and Proposition 7.3.10) and the homotopy lifting property of
fibrations for left homotopies when the domain is cofibrant (see Definition 7.1.5 and
Proposition 7.3.11).

If we make no assumptions about our objects being cofibrant or fibrant, then
left and right homotopy need not be the same relation, and neither of them need
be an equivalence relation. In Section 7.4 we show that:

• If X is cofibrant, then
– left homotopy is an equivalence relation on the set of maps from X

to Y (see Proposition 7.4.5) and
– if f, g : X → Y are left homotopic then they are also right homo-

topic, and there exists a right homotopy between them using any
path object for Y (see Proposition 7.4.7).

• If Y is fibrant, then
– right homotopy is an equivalence relation on the set of maps from X

to Y (see Proposition 7.4.5) and
– if f, g : X → Y are right homotopic then they are also left homotopic,

and there exists a left homotopy between them using any cylinder
object for X (see Proposition 7.4.7).
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This implies that if X is cofibrant and Y is fibrant, then the left and right homotopy
relations coincide and are equivalence relations on the set of maps from X to Y
(see Theorem 7.4.9), and that if f, g : X → Y are homotopic, then there is a left
homotopy between them using any cylinder object for X and a right homotopy
using any path object for Y (see Proposition 7.4.10).

In Section 7.5 we show that composition of homotopy classes of maps is well
defined for maps between cofibrant-fibrant objects (see Theorem 7.5.5). This al-
lows us to define the classical homotopy category of a model category M to be
the category with objects the cofibrant-fibrant objects of M and with morphisms
from X to Y the homotopy classes of maps from X to Y (see Definition 7.5.8).
(This is not the homotopy category of M; for that, see Definition 8.3.2). We also
prove a Whitehead theorem: If a map between cofibrant-fibrant objects is a weak
equivalence, then it is a homotopy equivalence (see Theorem 7.5.10).

In Section 7.6 we discuss the model category of objects under a fixed object of
a model category (and, dually, the model category of objects over a fixed object of
a model category). This enables us to prove the uniqueness up to homotopy of the
lifts guaranteed by axiom M4 of Definition 7.1.3 (see Proposition 7.6.13).

The main result of Section 7.7 is Kenny Brown’s lemma (see Lemma 7.7.1). This
is a key result that allows us to show that a weak equivalence between cofibrant
objects has many of the properties of a trivial cofibration between cofibrant objects
(with a dual statement about a weak equivalence between fibrant objects); see, e.g.,
Corollary 7.7.2, Corollary 7.7.4, Proposition 8.5.7, and Corollary 9.3.3.

In Section 7.8 we show that a homotopy equivalence between cofibrant-fibrant
objects is a weak equivalence (see Theorem 7.8.5), and in Section 7.9 we describe
the equivalence relation generated by “weak equivalence”. Since a weak equivalence
need not have an inverse unless its domain and codomain are cofibrant-fibrant, we
define a “zig-zag” of weak equivalences, and we use this to say what it means for two
functors to a model category to be naturally weakly equivalent (see Definition 7.9.2).

In Section 7.10 we describe the model category structures on the categories of
topological spaces and of simplicial sets.

7.1. Model categories

We adopt the definition of a model category used in [30]. This is a strengthening
of Quillen’s axioms for a closed model category (see [54, page 233]) in that it requires
the category to contain all small limits and colimits (rather than just the finite ones),
and it requires the factorizations described in the fifth axiom to be functorial.

Definition 7.1.1. If there is a commutative diagram

A //

f

��

GF ED
1A

��

C //

g

��

A

f

��

B //@A BC
1B

OOD // B

then we will say that the map f is a retract of the map g.

Definition 7.1.2. Let C be a category.
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(1) C is complete if it is closed under small limits, i.e., if limD F exists for
every small category D and every functor F: D→ C.

(2) C is cocomplete if it is closed under small colimits, i.e., if colimD F exists
for every small category D and every functor F: D→ C.

Definition 7.1.3. A model category is a category M together with three classes
of maps (called the weak equivalences, the cofibrations, and the fibrations), satisfying
the following five axioms:

M1: (Limit axiom) The category M is complete and cocomplete (see Defini-
tion 7.1.2).

M2: (Two out of three axiom) If f and g are maps in M such that gf is defined
and two of f , g, and gf are weak equivalences, then so is the third.

M3: (Retract axiom) If f and g are maps in M such that f is a retract of
g (in the category of maps of M; see Definition 7.1.1) and g is a weak
equivalence, a fibration, or a cofibration, then so is f .

M4: (Lifting axiom) Given the commutative solid arrow diagram in M

A //

i

��

X

p

��

B

>>

// Y

the dotted arrow exists if either
(1) i is a cofibration and p is a trivial fibration (i.e., a fibration that is

also a weak equivalence) or
(2) i is a trivial cofibration (i.e., a cofibration that is also a weak equiv-

alence) and p is a fibration.
M5: (Factorization axiom) Every map g in M has two functorial factorizations:

(1) g = qi, where i is a cofibration and q is a trivial fibration (i.e., a
fibration that is also a weak equivalence), and

(2) g = pj, where j is a trivial cofibration (i.e., a cofibration that is also
a weak equivalence) and p is a fibration.

Remark 7.1.4. Once we have defined the homotopy relations (see Defini-
tion 7.3.2), the lifting axiom will imply both the homotopy extension property of
cofibrations (see Proposition 7.3.10) and the homotopy lifting property of fibrations
(see Proposition 7.3.11).

Definition 7.1.5. Let M be a model category.
(1) A trivial fibration is a map that is both a fibration and a weak equivalence.
(2) A trivial cofibration is a map that is both a cofibration and a weak equiv-

alence.
(3) An object is cofibrant if the map to it from the initial object is a cofibra-

tion.
(4) An object is fibrant if the map from it to the terminal object is a fibration.
(5) An object is cofibrant-fibrant if it is both cofibrant and fibrant.

Remark 7.1.6. The axioms imply that any two of the three classes of maps
cofibrations, fibrations, and weak equivalences determine the third (see Proposi-
tion 7.2.7). This was the reason for the use of the name “closed model category”
for what we call simply a “model category”.
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Proposition 7.1.7. If S is a set and for every element s of S we have a model
category Ms, then the category

∏
s∈S M is a model category in which a map is a

cofibration, a fibration, or a weak equivalence if each of its components is, respec-
tively, a cofibration, a fibration, or a weak equivalence.

Proof. This follows directly from the definitions. �

7.1.8. Duality in model categories. The axioms for a model category are
self dual.

Proposition 7.1.9. If M is a model category, then its opposite category Mop

is a model category such that

• the weak equivalences in Mop are the opposites of the weak equivalences
in M,
• the cofibrations in Mop are the opposites of the fibrations in M, and
• the fibrations in Mop are the opposites of the cofibrations in M.

Proof. This follows directly from the definitions. �

Remark 7.1.10. Proposition 7.1.9 implies that any statement that is proved
true for all model categories implies a dual statement in which cofibrations are
replaced by fibrations, fibrations are replaced by cofibrations, colimits are replaced
by limits, and limits are replaced by colimits.

7.2. Lifting and the retract argument

Definition 7.2.1. If i : A→ B and p : X → Y are maps for which the dotted
arrow exists in every solid arrow diagram of the form

A //

i

��

X

p

��

B

??

// Y ,

then
(1) (i, p) is called a lifting-extension pair,
(2) i is said to have the left lifting property with respect to p, and
(3) p is said to have the right lifting property with respect to i.

Thus, axiom M4 (see Definition 7.1.3) says that cofibrations have the left lifting
property with respect to trivial fibrations and that fibrations have the right lifting
property with respect to trivial cofibrations. The next proposition is known as the
retract argument. Together with axiom M3, it will be used in Proposition 7.2.3 to
show that these lifting properties characterize the cofibrations and the fibrations in
a model category.

Proposition 7.2.2 (The retract argument). Let M be a model category and
let g : X → Y be a map in M.

(1) If g can be factored as g = pi where p has the right lifting property with
respect to g, then g is a retract of i.

(2) If g can be factored as g = pi where i has the left lifting property with
respect to g, then g is a retract of p.
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Proof. We will prove part 1; the proof of part 2 is dual.
We have the solid arrow diagram

X
i //

g

��

Z

p

��

Y

q
>>

Y .

Since p has the right lifting property with respect to g, the dotted arrow q exists.
This yields the commutative diagram

X

g

��

X

i

��

X

g

��

Y q
//@A BC
1Y

OOZ p
// Y ,

and so g is a retract of i. �

Proposition 7.2.3. Let M be a model category.

(1) The map i : A → B is a cofibration if and only if it has the left lifting
property with respect to all trivial fibrations.

(2) The map i : A → B is a trivial cofibration if and only if it has the left
lifting property with respect to all fibrations.

(3) The map p : X → Y is a fibration if and only if it has the right lifting
property with respect to all trivial cofibrations.

(4) The map p : X → Y is a trivial fibration if and only if it has the right
lifting property with respect to all cofibrations.

Proof. We will prove part 1; the proofs of the other parts are similar.
One direction is part of axiom M4 (see Definition 7.1.3). For the converse,

axiom M5 implies that we can factor i as i = pj where p is a trivial fibration and j
is a cofibration. Proposition 7.2.2 implies that i is a retract of j, and so the result
follows from axiom M3 (see Definition 7.1.3). �

Proposition 7.2.4. If M is a model category, then the classes of cofibrations
and of fibrations are closed under compositions.

Proof. This follows from Proposition 7.2.3. �

Proposition 7.2.5. Let M be a model category.

(1) The class of cofibrations is closed under coproducts.
(2) The class of trivial cofibrations is closed under coproducts.
(3) The class of fibrations is closed under products.
(4) The class of trivial fibrations is closed under products.

Proof. This follows from Proposition 7.2.3. �

Proposition 7.2.6. If M is a model category, then a map in M is a weak
equivalence if and only if it can be factored as a trivial cofibration followed by a
trivial fibration.
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Proof. Any map that can be factored as a trivial cofibration followed by a
trivial fibration is a composition of weak equivalences, and is thus a weak equiva-
lence.

Conversely, if g : X → Y is a weak equivalence, then we can factor it as X h−→
W

k−→ Y with h a trivial cofibration and k a fibration. The “two out of three”
axiom then implies that k is actually a trivial fibration. �

Proposition 7.2.7. If M is a model category, then any two of the classes of
cofibrations, fibrations, and weak equivalences determine the third.

Proof. Proposition 7.2.3 implies that
• the cofibrations and weak equivalences determine the fibrations, and that
• the fibrations and weak equivalences determine the cofibrations.

Proposition 7.2.4 implies that the trivial cofibrations and trivial fibrations deter-
mine the weak equivalences, and Proposition 7.2.3 implies that the cofibrations de-
termine the trivial fibrations and the fibrations determine the trivial cofibrations.
Thus,

• the cofibrations and fibrations determine the weak equivalences.
�

Lemma 7.2.8. Let M be a model category, and let p : X → Y is a map in M.

(1) The class of maps with the left lifting property with respect to p is closed
under retracts.

(2) The class of maps with the right lifting property with respect to p is closed
under retracts.

Proof. We will prove part 1; the proof of part 2 is dual.
Suppose that f : A→ B is a retract of g : C → D, and that g has the left lifting

property with respect to p; we must show that the dotted arrow φ exists in any
solid arrow diagram of the form

A
iA //

GF ED
1A

��

f

��

C
rA //

g

��

A
s //

f

��

X

p

��

B
iB
//@A BC
1B

OOD rB

//

ψ

77

B
t
//

φ

>>

Y

Since g has the left lifting property with respect to p, there exists a map ψ : D → X
such that ψg = srA and pψ = trB ; we define φ : B → X by letting φ = ψiB . We
then have φf = ψiBf = ψgiA = srAiA = s and pφ = pψiB = trBiB = t. �

7.2.9. Pushouts and pullbacks.

Definition 7.2.10. If the square

A
h //

f

��

C

g

��

B
k
// D
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is a pushout, then the map g will be called the pushout of f along h. If the square
is a pullback, then the map f will be called the pullback of g along k.

Lemma 7.2.11. Let M be a model category, and let p : X → Y be a map in M.

(1) The class of maps with the left lifting property with respect to p is closed
under pushouts.

(2) The class of maps with the right lifting property with respect to p is closed
under pullbacks.

Proof. We will prove part 1; the proof of part 2 is dual.
We must show that if i : A→ B has the left lifting property with respect to p

and we have a solid arrow diagram

A
s //

i

��

C
u //

j

��

X

p

��

B
t
//

ψ

77

D v
//

φ

>>

Y

in which the square on the left is a pushout, then the dotted arrow φ exists. Since
i has the left lifting property with respect to p, there is a map ψ : B → X such
that ψi = us and pψ = vt. Since D is the pushout B qA C, this induces a map
φ : D → X such that φj = u and φt = ψ. We then have pφt = pψ = vt and
pφj = pu = vj, and so the universal mapping property of the pushout implies that
pφ = v. �

Proposition 7.2.12. Let M be a model category.

(1) The class of cofibrations is closed under pushouts.
(2) The class of trivial cofibrations is closed under pushouts.
(3) The class of fibrations is closed under pullbacks.
(4) The class of trivial fibrations is closed under pullbacks.

Proof. This follows from Proposition 7.2.3 and Lemma 7.2.11. �

Lemma 7.2.13. If h : E → F is a pushout (see Definition 7.2.10) of g : C → D
and k : G→ H is a pushout of h, then k is a pushout of g.

Proof. In the commutative diagram

C //

g

��

E //

h

��

G

k

��

D // F // H

if the two squares are pushouts, then the rectangle is a pushout. �

Proposition 7.2.14. Consider the commutative diagram

C
s //

f

��

E
t //

g

��

G

h

��

D u
// F v

// H

(1) If H is the pushout DqC G and F is the pushout DqC E, then H is the
pushout F qE G.
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(2) If C is the pullback D×H G and E is the pullback F ×H G, then C is the
pullback D ×F E.

Proof. We will prove part 1; the proof of part 2 is dual.
If W is an object and j : F → W and k : G→ W are maps such that jg = kt,

then kts = jgs = juf . Since H is the pushout D qC G, there exists a unique map
l : H → W such that lvu = ju and lh = k. Since F is the pushout D qC E and
the maps j and lv satisfy both (lv)u = (j)u and (j)g = kt = lht = (lv)g, we have
j = lv. Thus, the map l satisfies lh = k and lv = j. To see that l is the unique such
map, note that if l̃ were another map satisfying l̃h = k and l̃v = j, then l̃vu = ju,
and so the universal property of D qC G implies that l̃ = l. �

Lemma 7.2.15 (C. L. Reedy, [57]). Let M be a model category. If we have a
commutative diagram in M

A //

  A
AA

��

B fB

!!B
BB

��

A′ //

��

B′

��

C //

  A
AA

D fD

!!B
BB

C ′ // D′

in which the front and back squares are pushouts and both fB and C qA A′ → C ′

are cofibrations, then fD is a cofibration.

Proof. It is sufficient to show that fD has the left lifting property with respect
to all trivial fibrations (see Proposition 7.2.3). If we have a commutative diagram

D //

fD

��

X

p

��

D′ // Y

in which p is a trivial fibration, then we also have a similar diagram with fB in place
of fD. Since fB is a cofibration, there is a map hB : B′ → X making both triangles
commute. Composing hB with A′ → B′ yields a map hA : A′ → X that also makes
both triangles commute. This induces a map C qA A′ → X. Since C qA A′ → C ′

is a cofibration, there is a map C ′ → X making everything commute, and so there
is an induced map D′ = C ′ qA′ B′ → X making both triangles commute, and the
proof is complete. �

7.2.16. Adjointness.

Proposition 7.2.17. Let M and N be categories and let F : M � N :U be
adjoint functors. If i : A → B is a map in M and p : X → Y is a map in N, then
(Fi, p) is a lifting-extension pair (see Definition 7.2.1) if and only if (i,Up) is a
lifting-extension pair.
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Proof. The adjointness of F and U implies that there is a one to one corre-
spondence between solid arrow diagrams of the forms

FA //

Fi

��

X

p

��

FB //

h

==

Y

and A //

i

��

UX

Up

��

B //

h̃

==

UY .

The adjointness also implies that, under this correspondence, the dotted arrow h
exists if and only if the dotted arrow h̃ exists. �

Proposition 7.2.18. Let M and N be model categories and let F: M � N :U
be adjoint functors.

(1) The left adjoint F preserves cofibrations if and only if the right adjoint U
preserves trivial fibrations.

(2) The left adjoint F preserves trivial cofibrations if and only if the right
adjoint U preserves fibrations.

Proof. This follows from Proposition 7.2.3 and Proposition 7.2.17. �

7.3. Homotopy

7.3.1. Left homotopy, right homotopy, and homotopy.

Definition 7.3.2. Let M be a model category and let f, g : X → Y be maps
in M.

(1) A cylinder object for X is a factorization

X qX i0qi1−−−→ Cyl(X)
p−−−→ X

of the fold map 1X q 1X : X qX → X (so that the compositions pi0 and
pi1 both equal the identity map of X) such that i0 q i1 is a cofibration
and p is a weak equivalence. Note that, although we will often use the
notation Cyl(X) for a cylinder object for X, we do not mean to suggest
that this is a functor of X, or that there is any distinguished choice of
cylinder object for X.

(2) A left homotopy from f to g consists of a cylinder object X q X i0qi1−−−→
Cyl(X)

p−→ X for X and a map H : Cyl(X) → Y such that Hi0 = f and
Hi1 = g. If there exists a left homotopy from f to g, then we say that f

is left homotopic to g (written f
l' g).

(3) A path object for Y is a factorization

Y
s−−−−→ Path(Y )

p0×p1−−−−→ Y × Y

of the diagonal map (so that the compositions p0s and p1s both equal the
identity map of Y ) 1Y ×1Y : Y → Y ×Y such that s is a weak equivalence
and p0 × p1 is a fibration. Note that, although we will often use the
notation Path(Y ) for a path object for Y , we do not mean to suggest that
this is a functor of Y , or that there is any distinguished choice of path
object for Y .
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(4) A right homotopy from f to g consists of a path object Y s−→ Path(Y )
p0×p1−−−−→

Y ×Y for Y and a mapH : X → Path(Y ) such that p0H = f and p1H = g.
If there exists a right homotopy from f to g, then we say that f is right
homotopic to g (written f

r' g).
(5) If f is both left homotopic and right homotopic to g, then we say that f

is homotopic to g (written f ' g).

Lemma 7.3.3. Let M be a model category.

(1) Every object X of M has a cylinder object X qX i0qi1−−−→ Cyl(X)
p−→ X in

which p is a trivial fibration.

(2) Every object X of M has a path object X
s−→ Path(X)

p0×p1−−−−→ X ×X in
which s is a trivial cofibration.

Proof. For part 1, factor the map 1X q 1X : X qX → X into a cofibration
followed by a trivial fibration. For part 2, factor the map 1X × 1X : X → X ×X
into a trivial cofibration followed by a fibration. �

Proposition 7.3.4. Let M be a model category.

(1) If f, g : X → Y are left homotopic and Y is fibrant, then there is a cylinder

object X qX → Cyl(X)
p−→ X in which p is a trivial fibration and a left

homotopy H : Cyl(X)→ Y from f to g.
(2) If f, g : X → Y are right homotopic and X is cofibrant, then there is a

path object Y
s−→ Path(Y )→ Y ×Y in which s is a trivial cofibration and

a right homotopy H : X → Path(Y ) from f to g.

Proof. We will prove part 1; the proof of part 2 is dual.

If X qX → Cyl(X)′
p′−→ X is a cylinder object for X such that there is a left

homotopy H ′ : Cyl(X)′ → Y from f to g, then we factor p as Cyl(X)′
j−→ Cyl(X)

p−→
X where j is a cofibration and p is a trivial fibration. The “two out of three” axiom
for weak equivalences (see Definition 7.1.3) implies that j is a trivial cofibration,
and so the dotted arrow exists in the diagram

Cyl(X)′ H′
//

j

��

Y

��
Cyl(X) //

H

<<

∗

which constructs our left homotopy H. �

Proposition 7.3.5. Let M be a model category and let f, g : X → Y be maps
in M.

(1) The maps f and g are left homotopic if and only if there is a factorization

X qX i0qi1−−−→ C
p−→ X of the fold map 1X q 1X : X qX → X such that

p is a weak equivalence and a map H : C → Y such that Hi0 = f and
Hi1 = g.

(2) The maps f and g are right homotopic if and only if there is a factorization

Y
s−→ P

p0×p1−−−−→ Y × Y of the diagonal map 1Y × 1Y : Y → Y × Y such
that s is a weak equivalence and a map H : X → P such that p0H = f
and p1H = g.
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Proof. We will prove part 1; the proof of part 2 is dual.
The necessity of the condition follows directly from the definition. Conversely,

assume the condition is satisfied. If we factor i0q i1 as XqX i′0qi
′
1−−−→ C ′

q−→ C where

i′0 q i′1 is a cofibration and q is a trivial fibration, then X qX i′0qi
′
1−−−→ C ′

pq−→ X is a
cylinder object for X and Hq : C ′ → Y is a left homotopy from f to g. �

Lemma 7.3.6. Let M be a model category and let X be an object of M.

(1) If X is cofibrant, then the injections i0, i1 : X → X qX are cofibrations.
(2) If X is fibrant, then the projections p0, p1 : X ×X → X are fibrations.

Proof. We will prove part 1; the proof of part 2 is dual.
Since the diagram

∅ //

��

X

i1

��

X
i0
// X qX

(where ∅ is the initial object of M) is a pushout, the lemma follows from Proposi-
tion 7.2.12. �

Lemma 7.3.7. Let M be a model category and let X be an object of M.

(1) If XqX i0qi1−−−→ Cyl(X)
p−→ X is a cylinder object for X, then the injections

i0, i1 : X → Cyl(X) are weak equivalences. If X is cofibrant, then they
are trivial cofibrations.

(2) If X
s−→ Path(X)

p0×p1−−−−→ X×X is a path object for X, then the projections
p0, p1 : Path(X) → X are weak equivalences. If X is fibrant, then they
are trivial fibrations.

Proof. This follows from the “two out of three” axiom for weak equivalences
(see Definition 7.1.3) and Lemma 7.3.6. �

Lemma 7.3.8. Let M and N be model categories and let ϕ : M → N be a
functor.

(1) If ϕ takes trivial cofibrations between cofibrant objects in M to weak
equivalences in N, f, g : X → Y are left homotopic maps in M, and X is
cofibrant, then ϕ(f) is left homotopic to ϕ(g).

(2) If ϕ takes trivial fibrations between fibrant objects in M to weak equiva-
lences in N, f, g : X → Y are right homotopic maps in M, and Y is fibrant,
then ϕ(f) is right homotopic to ϕ(g).

Proof. We will prove part 1; the proof of part 2 is dual.
Since f and g are left homotopic, there is a cylinder object X q X

i0qi1−−−→
Cyl(X)

p−→ X for X and a map H : Cyl(X) → Y such that Hi0 = f and Hi1 = g.
Since pi0 = 1X , we have ϕ(p)ϕ(i0) = 1ϕ(X), and, since i0 is a trivial cofibration
(see Lemma 7.3.7), the “two out of three” property of weak equivalences (see Defi-
nition 7.1.3) implies that ϕ(p) is a weak equivalence. The result now follows from
Proposition 7.3.5. �

Lemma 7.3.9. Let M be a model category, let C be a category, and let ϕ : M→ C

be a functor.
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(1) If ϕ takes trivial cofibrations between cofibrant objects in M to isomor-
phisms in C, f, g : X → Y are left homotopic maps in M, and X is cofi-
brant, then ϕ(f) = ϕ(g).

(2) If ϕ takes trivial fibrations between fibrant objects in M to isomorphisms
in C, f, g : X → Y are right homotopic maps in M, and Y is fibrant, then
ϕ(f) = ϕ(g).

Proof. We will prove part 1; the proof of part 2 is dual.
Since f and g are left homotopic, there is a cylinder object X q X

i0qi1−−−→
Cyl(X)

p−→ X for X and a map H : Cyl(X) → Y such that Hi0 = f and Hi1 = g.
Since pi0 = 1X , we have ϕ(p)ϕ(i0) = 1ϕ(X), and, since i0 is a trivial cofibration (see
Lemma 7.3.7), ϕ(i0) is an isomorphism, and so ϕ(p) is an isomorphism. Since pi0 =
1X = pi1, ϕ(i0) =

(
ϕ(p)

)−1 = ϕ(i1). Thus, ϕ(f) = ϕ(H)ϕ(i0) = ϕ(H)ϕ(i1) =
ϕ(g). �

Proposition 7.3.10 (Homotopy extension property of cofibrations). Let M be
a model category, let X be fibrant, and let k : A→ B be a cofibration. If f : A→ X

is a map, f̃ : B → X is an extension of f , X
s−→ Path(X)

p0×p1−−−−→ X ΠX is a path
object for X, and H : A → Path(X) is a right homotopy of f (i.e., a map H such

that p0H = f), then there is a map H̃ : B → Path(X) such that p0H̃ = f̃ and

H̃k = H.

Proof. We have the solid arrow diagram

A
H //

k

��

Path(X)

p0

��

B
f̃

//

H̃
;;

X

and Lemma 7.3.7 implies that p0 is a trivial fibration. �

Proposition 7.3.11 (Homotopy lifting property of fibrations). Let M be a
model category, let A be cofibrant, and let k : X → Y be a fibration. If f : A→ Y

is a map, f̃ : A→ X is a lift of f , AqA i0qi1−−−→ Cyl(A)
p−→ A is a cylinder object for

A, and H : Cyl(A)→ Y is a left homotopy of f (i.e., a map H such that Hi0 = f),

then there is a map H̃ : Cyl(A)→ X such that H̃i0 = f̃ and kH̃ = H.

Proof. We have the solid arrow diagram

A
f̃
//

i0
��

X

k

��

Cyl(A)
H
//

H̃

;;

Y

and Lemma 7.3.7 implies that i0 is a trivial cofibration. �

Corollary 7.3.12. Let M be a model category.

(1) Let X be fibrant and let k : A → B be a cofibration. If f : A → X and

g : B → X are maps such that gk
r' f , then there is a map g′ : B → X

such that g′
r' g and g′k = f .
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(2) Let A be cofibrant and let k : X → Y be a fibration. If f : A → X and

g : A → Y are maps such that kf
l' g, then there is a map f ′ : A → X

such that f ′
l' f and kf ′ = g.

Proof. Part 1 follows from Proposition 7.3.10 and part 2 follows from Prop-
osition 7.3.11. �

Proposition 7.3.13. Let M be a model category.

(1) If i : A → B is a cofibration, X is fibrant, and i induces an isomorphism
i∗ : πr (B,X) ≈ πr (A,X), then for every map f : A → X there is a map
g : B → X, unique up to right homotopy, such that gi = f .

(2) If A is cofibrant, p : X → Y is a fibration, and p induces an isomorphism
p∗ : πl(A,X) ≈ πl(A, Y ), then for every map f : A → Y there is a map
g : A→ X, unique up to left homotopy, such that pg = f .

Proof. We will prove part 1; the proof of part 2 is dual.
Since i∗ : πr (B,X)→ πr (A,X) is surjective there is a map h : B → X such that

hi
r' f . Corollary 7.3.12 now implies that there exists a map g : B → X such that

gi = f , and the uniqueness up to right homotopy follows because i∗ : πr (B,X) →
πr (A,X) is injective. �

7.4. Homotopy as an equivalence relation

The main results of this section are
• Proposition 7.4.5, which asserts that if X is cofibrant, then left homotopy

is an equivalence relation on the set of maps from X to Y , and, dually,
that if Y is fibrant, then right homotopy is an equivalence relation on the
set of maps from X to Y , and
• Theorem 7.4.9, which asserts that if X is cofibrant and Y is fibrant, then

the left and right homotopy relations coincide on the set of maps from X
to Y .

7.4.1. Left and right homotopy as equivalence relations. We begin with
Lemma 7.4.2, which shows that if X is cofibrant, then two cylinder objects for X
can be “composed” to produce a cylinder object that we will use in Proposition 7.4.5
to show that left homotopy is an equivalence relation when the domain is cofibrant.
Dually, Lemma 7.4.2 also shows that if Y is fibrant, then two path objects for Y can
be “composed” to produce a path object that we will use in Proposition 7.4.5 to
show that right homotopy is an equivalence relation when the codomain is fibrant.

Lemma 7.4.2. Let M be a model category and let X and Y be objects in M.

(1) If X is cofibrant and X q X
i0qi1−−−→ Cyl(X)

p−→ X and X q X
i′0qi

′
1−−−→

Cyl(X)′
p′−→ X are cylinder objects for X, then there is a cylinder object

X qX i′′0qi
′′
1−−−−→ Cyl(X)′′

p′′−→ X for X in which

(a) Cyl(X)′′ is the pushout of the diagram Cyl(X) i1←− X i′0−→ Cyl(X)′,
(b) i′′0 : X → Cyl(X)′′ is the composition X

i0−→ Cyl(X)→ Cyl(X)′′, and

(c) i′′1 : X → Cyl(X)′′ is the composition X
i′1−→ Cyl(X)′ → Cyl(X)′′.
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(2) If Y is fibrant and Y
s−→ Path(Y )

p0×p1−−−−→ Y ×Y and Y
s′−→ Path(Y )′

p′0×p
′
1−−−−→

Y×Y are path objects for Y , then there is a path object Y
s′′−→ Path(Y )′′

p′′0×p
′′
1−−−−→

Y × Y for Y in which

(a) Path(Y )′′ is the pullback of the diagram Path(Y )
p1−→ Y

p′0←− Path(Y )′,
(b) p′′0 : Path(Y )′′ → Y is the composition Path(Y )′′ → Path(Y )

p0−→ Y ,
and

(c) p′′1 : Path(Y )′′ → Y is the composition Path(Y )′′ → Path(Y )′
p′1−→ Y .

Proof. We will prove part 1; the proof of part 2 is dual.
We have the commutative diagram

X

i0

��

X
i1 //

i′0

��

Cyl(X)

�� p

��

X
i′1

// Cyl(X)′ //

p′
--

Cyl(X)′′
p′′

##H
HHHHHHHH

X

Lemma 7.3.7 and Proposition 7.2.12 imply that i′′0 and i′′1 are trivial cofibrations.
Together with the “two out of three” property of weak equivalences (see Defini-
tion 7.1.3), this implies that p′′ is a weak equivalence.

It remains only to show that the map X qX i′′0qi
′′
1−−−−→ Cyl(X)′′ is a cofibration.

This map equals the composition

X qX i0q1X−−−−→ Cyl(X)qX j0qj1i
′
1−−−−−→ Cyl(X)′′.

The first of these is the pushout of i0 : X → Cyl(X) along the first inclusion
X → X qX, and so Lemma 7.3.7 and Proposition 7.2.12 imply that it is a trivial
cofibration. The second is the pushout of i′0qi′1 along i1q1X : XqX → Cyl(X)qX,
and so Proposition 7.2.12 implies that it is a cofibration. Proposition 7.2.4 now im-
plies that i′′0 q i′′1 is a cofibration. �

Definition 7.4.3. Let M be a model category and let X and Y be objects in
M.

(1) If X is cofibrant, XqX i0qi1−−−→ Cyl(X)
p−→ X and XqX i′0qi

′
1−−−→ Cyl(X)′

p′−→
X are cylinder objects for X, H : Cyl(X) → Y is a left homotopy from
f : X → Y to g : X → Y , and H ′ : Cyl(X)′ → Y is a left homotopy from
g to h : X → Y , then the composition of the left homotopies H and H ′ is
the left homotopy H ·H ′ : Cyl(X)′′ → Y from f to h (where Cyl(X)′′ is
as in Lemma 7.4.2) defined by H and H ′.

(2) If Y is fibrant, Y s−→ Path(Y )
p0×p1−−−−→ Y × Y and Y

s′−→ Path(Y )′
p′0×p

′
1−−−−→

Y ×Y are path objects for Y , H : X → Path(Y ) is a right homotopy from
f : X → Y to g : X → Y , and H ′ : X → Path(Y )′ is a right homotopy
from g to h : X → Y , then the composition of the right homotopies H
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and H ′ is the right homotopy H ·H ′ : X → Path(Y )′′ from f to h (where
Path(Y )′′ is as in Lemma 7.4.2) defined by H and H ′.

Definition 7.4.4. Let M be a model category and let X and Y be objects in
M.

(1) If XqX i0qi1−−−→ Cyl(X)
p−→ X is a cylinder object for X and H : Cyl(X)→

Y is a left homotopy from f : X → Y to g : X → Y , then the inverse
of H is the left homotopy H−1 : Cyl(X)−1 → Y from g to f where X q

X
i−1
0 qi−1

1−−−−−→ Cyl(X)−1 p−1

−−→ X is the cylinder object for X defined by
Cyl(X)−1 = Cyl(X), i−1

0 = i1, i−1
1 = i0, and p−1 = p, and the map H−1

equals the map H.
(2) If Y s−→ Path(Y )

p0×p1−−−−→ Y ×Y is a path object for Y andH : X → Path(Y )
is a right homotopy from f : X → Y to g : X → Y , then the inverse
of H is the right homotopy H−1 : X → Path(Y )−1 from g to f where

Y
s−1

−−→ Path(Y )−1 p−1
0 ×p

−1
1−−−−−−→ Y × Y is the path object for Y defined by

Path(Y )−1 = Path(Y ), p−1
0 = p1, p−1

1 = p0, and s−1 = s, and the map
H−1 equals the map H.

Proposition 7.4.5. Let M be a model category, and let X and Y be objects
in M.

(1) IfX is cofibrant, then left homotopy (see Definition 7.3.2) is an equivalence
relation on the set of maps from X to Y .

(2) If Y is fibrant, then right homotopy (see Definition 7.3.2) is an equivalence
relation on the set of maps from X to Y .

(3) If X is cofibrant and Y is fibrant, then homotopy (see Definition 7.3.2) is
an equivalence relation on the set of maps from X to Y .

Proof. We will prove part 1; the proof of part 2 is dual, and part 3 follows
from parts 1 and 2.

Since there is a cylinder object for X in which Cyl(X) = X, left homotopy
is reflexive. The inverse of a left homotopy (see Definition 7.4.4) implies that left
homotopy is symmetric. Finally, the composition of left homotopies (see Defini-
tion 7.4.3) implies that left homotopy is transitive. �

7.4.6. Relations between left homotopy and right homotopy.

Proposition 7.4.7. Let M be a model category and let f, g : X → Y be maps
in M.

(1) If X is cofibrant, f is left homotopic to g, and Y
s−→ Path(Y )

p0×p1−−−−→ Y ×Y
is a path object for Y , then there is a right homotopy H : X → Path(Y )
from f to g.

(2) If Y is fibrant, f is right homotopic to g, and X qX i0qi1−−−→ Cyl(X)
p−→ X

is a cylinder object for X, then there is a left homotopy H : Cyl(X)→ Y
from f to g.

Proof. We will prove part 1; the proof of part 2 is dual.
Since f is left homotopic to g, there is a cylinder object XqX i0qi1−−−→ Cyl(X)

p−→
X for X and a left homotopy G : Cyl(X)→ Y from f to g. Thus, we have the solid
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arrow diagram

X
sf

//

i0

��

Path(Y )

(p0,p1)

��

Cyl(X)
(fp,G)

//

h

99

Y × Y

in which (p0, p1) is a fibration. Since X is cofibrant, Lemma 7.3.7 implies that i0
is a trivial cofibration, and so the dotted arrow h exists. If we let H = hi1, then H
is the right homotopy we require. �

Proposition 7.4.8. Let M be a model category and let f, g : X → Y be maps
in M.

(1) If X is cofibrant and f
l' g (see Definition 7.3.2), then f

r' g.
(2) If Y is fibrant and f

r' g, then f
l' g.

Proof. This follows from Lemma 7.3.3 and Proposition 7.4.7. �

Theorem 7.4.9. Let M be a model category. If X is cofibrant and Y is fibrant,
then the left homotopy, right homotopy, and homotopy relations coincide and are
equivalence relations on the set of maps from X to Y .

Proof. This follows from Proposition 7.4.8 and Proposition 7.4.5. �

Proposition 7.4.10. Let M be a model category. IfX is cofibrant, Y is fibrant,
and f, g : X → Y are homotopic maps, then

(1) if X qX → Cyl(X) → X is a cylinder object for X, then there is a left
homotopy H : Cyl(X)→ Y from f to g, and

(2) if Y → Path(Y ) → Y × Y is a path object for Y , then there is a right
homotopy H : X → Path(Y ) from f to g.

Proof. This follows from Proposition 7.4.7. �

7.5. The classical homotopy category

Theorem 7.4.9 implies that for cofibrant-fibrant objects, all notions of homo-
topy coincide and are equivalence relations. The main result of this section is
Theorem 7.5.5, which implies that composition of homotopy classes of maps is well
defined for cofibrant-fibrant objects. We also prove a Whitehead theorem, which
asserts that a weak equivalence between cofibrant-fibrant objects is a homotopy
equivalence (see Theorem 7.5.10).

7.5.1. Composing homotopy classes of maps.

Notation 7.5.2. Let M be a model category and let X and Y be objects of
M.

(1) If X is cofibrant, we let πl(X,Y ) denote the set of left homotopy classes
of maps from X to Y (see Proposition 7.4.5).

(2) If Y is fibrant, we let πr (X,Y ) denote the set of right homotopy classes
of maps from X to Y (see Proposition 7.4.5).

(3) If X is cofibrant and Y is fibrant, we let π(X,Y ) denote the set of homo-
topy classes of maps from X to Y (see Proposition 7.4.5).
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Proposition 7.5.3. Let M be a model category and let f, g : X → Y be maps
in M.

(1) If f
l' g (see Definition 7.3.2) and h : Y → Z is a map, then hf

l' hg.
(2) If f

r' g (see Definition 7.3.2) and k : W → X, then fk
r' gk.

Proof. We will prove part 1; the proof of part 2 is dual.
If X qX → Cyl(X) → X is a cylinder object for X and F : Cyl(X) → Y is a

left homotopy from f to g, then hF is a left homotopy from hf to hg. �

Corollary 7.5.4. Let M be a model category and let f, g : X → Y be maps
in M.

(1) If f
l' g (see Definition 7.3.2) and h : Y → Z is a map, then composition

with h induces a well defined function h∗ : πl(X,Y )→ πl(X,Z).
(2) If f

r' g (see Definition 7.3.2) and k : W → X, then composition with k
induces a well defined function k∗ : πr (X,Y )→ πr (W,Y ).

Proof. This follows from Proposition 7.5.3. �

Theorem 7.5.5. Let M be a model category, let X, Y , and Z be cofibrant-
fibrant objects of M, and let f, g : X → Y and h, k : Y → Z be maps. If f ' g and
h ' k, then hf ' kg, and so composition is well defined on homotopy classes of
maps between cofibrant-fibrant objects.

Proof. This follows from Corollary 7.5.4 and Theorem 7.4.9. �

7.5.6. The classical homotopy category.

Proposition 7.5.7. If M is a model category, then there is a category whose
objects are the cofibrant-fibrant objects in M, whose maps are homotopy classes of
maps in M, and whose composition of maps is induced by composition of maps in
M.

Proof. This follows from Theorem 7.5.5. �

Definition 7.5.8. If M is a model category, then (following D. M. Kan) we
define the classical homotopy category πMcf of M to be the category with objects
the cofibrant-fibrant objects of M, and with morphisms from X to Y the homotopy
classes of maps from X to Y (see Proposition 7.5.7).

Note that the classical homotopy category of a model category does not contain
all of the objects of the model category, and it is not what is known as the homotopy
category of the model category. For the homotopy category of a model category,
see Definition 8.3.2.

Proposition 7.5.9. Let M be a model category.

(1) If A is cofibrant and p : X → Y is a trivial fibration, then p induces an
isomorphism of the sets of left homotopy classes of maps p∗ : πl(A,X)→
πl(A, Y ) (see Corollary 7.5.4).

(2) If X is fibrant and i : A → B is a trivial cofibration, then i induces an
isomorphism of the sets of right homotopy classes of maps i∗ : πr (B,X)→
πr (A,X) (see Corollary 7.5.4).
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Proof. We will prove part 1; the proof of part 2 is dual.
If g : A → Y is a map and ∅ is the initial object of M, then axiom M4 (see

Definition 7.1.3) implies that the dotted arrow exists in the diagram

∅ //

��

X

p

��

A g
//

f
??

Y,

and so p∗ is surjective. To see that p∗ is injective, let f, g : A → X be maps such

that pf
l' pg. There is then a cylinder object AqA→ Cyl(A)→ A for A and a left

homotopy F : Cyl(A)→ Y from pf to pg, and so we have the solid arrow diagram

AqA
fqg
//

��

X

p

��

Cyl(A)
F
//

G

;;

Y.

Axiom M4 implies that the dotted arrow G exists, and G is a left homotopy from
f to g. �

Theorem 7.5.10 (Whitehead theorem). Let M be a model category. If f : X →
Y is a weak equivalence between cofibrant-fibrant objects, then it is a homotopy
equivalence.

Proof. If we factor f into a cofibration followed by a trivial fibration to ob-
tain X

p−→ W
q−→ Y , then W is also cofibrant-fibrant, and the “two out of three”

axiom (see Definition 7.1.3) implies that p is also a weak equivalence. Since a com-
position of homotopy equivalences between cofibrant-fibrant objects is a homotopy
equivalence (see Theorem 7.5.5), it is sufficient to show that a trivial cofibration or
trivial fibration between cofibrant-fibrant objects is a homotopy equivalence. We
will show this for the trivial cofibration p; the proof for the trivial fibration q is
dual.

We have the solid arrow diagram

X

p

��

X

��

W //

r

>>

∗

(in which ∗ denotes the terminal object), and so there exists a dotted arrow r
such that rp = 1X . Proposition 7.5.9 implies that p induces an isomorphism
p∗ : πr (W,W ) ≈ πr (X,W ), and, since p∗[pr] = [prp] = [p][rp] = [p][1X ] = [p] =
p∗[1W ], this implies that pr

r' 1W . Thus, r is a homotopy inverse for p (see Theo-
rem 7.4.9), and so p is a homotopy equivalence. �

Proposition 7.5.11. Let M be a model category, let W , X, Y , and Z be
cofibrant-fibrant objects, and let f, g : X → Y be a pair of maps.

(1) If there is a weak equivalence h : Y → Z such that hf ' hg, then f ' g.
(2) If there is a weak equivalence k : W → X such that fk ' gk, then f ' g.
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Proof. We will prove part 1; the proof of part 2 is similar.
Theorem 7.5.10 implies that there is a map h̃ : Z → Y such that h̃h ' 1Y .

Thus, f ' 1Y f ' h̃hf ' h̃hg ' 1Y g ' g. �

Proposition 7.5.12. Let M be a model category. If X and Y are cofibrant-
fibrant objects in M, then a map g : X → Y is a homotopy equivalence if either of
the following two conditions is satisfied:

(1) The map g induces isomorphisms of the sets of homotopy classes of maps
g∗ : π(X,X) ≈ π(X,Y ) and g∗ : π(Y,X) ≈ π(Y, Y ).

(2) The map g induces isomorphisms of the sets of homotopy classes of maps
g∗ : π(Y,X) ≈ π(X,X) and g∗ : π(Y, Y ) ≈ π(X,Y ).

Proof. We will prove this using condition 1; the proof using condition 2 is
similar.

The isomorphism g∗ : π(Y,X) ≈ π(Y, Y ) implies that there is a map h : Y → X
such that gh ' 1Y . Theorem 7.5.5 and the isomorphism g∗ : π(X,X) ≈ π(X,Y )
now imply that h induces an isomorphism h∗ : π(X,Y ) ≈ π(X,X), and so there is
a map k : X → Y such that hk ' 1X . Thus, h is a homotopy equivalence and g is
its inverse, and so g is a homotopy equivalence as well. �

7.6. Relative homotopy and fiberwise homotopy

If M is a model category and A is an object of M, then the category (A ↓M) of
objects of M under A has objects the maps A → X and morphisms commutative
triangles (see Definition 7.6.1). If A → X is the inclusion of a subobject, then
homotopy of maps from A→ X to A→ Y corresponds to homotopy of maps from
X to Y relative to A. Dually, the category (M ↓A) of objects of M over A has objects
the maps X → A and morphisms commutative triangles (see Definition 7.6.2). If
X → A and Y → A are fibrations, then homotopy of maps from X → A to Y → A
corresponds to fiberwise homotopy over A.

Definition 7.6.1. If M is a category and A is an object of M, then the category
(A ↓M) of objects of M under A is the category in which

• an object is a map A→ X in M,
• a map from A → X to A → Y is a map X → Y in M such that the

triangle

A

��
@@

@@
@@

@

~~~~
~~

~~
~

X // Y

commutes, and
• composition of maps is defined by composition of maps in M.

Definition 7.6.2. If M is a category and A is an object of M, then the category
(M ↓A) of objects of M over A is the category in which

• an object is a map X → A in M,
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• a map from X → A to Y → A is a map X → Y in M such that the
triangle

X //

  
@@

@@
@@

@ Y

��~~
~~

~~
~

A

commutes, and
• composition of maps is defined by composition of maps in M.

Definition 7.6.3. If M is a category and A and B are objects of M, then the
category (A ↓M ↓B) of objects of M under A and over B is the category in which

• an object is a diagram A→ X → B in M,
• a map from A → X → B to A → Y → B is a map X → Y in M such

that the diagram

A

~~~~
~~

~~
~

  
@@

@@
@@

@

X //

  
@@

@@
@@

@@
Y

~~~~
~~

~~
~

B

commutes, and
• composition of maps is defined by composition of maps in M.

Definition 7.6.1 is a special case of Definition 11.8.3, and Definition 7.6.2 is a
special case of Definition 11.8.1.

7.6.4. Homotopy in undercategories and overcategories.

Theorem 7.6.5. Let M be a model category.

(1) If A is an object of M, then the category (A ↓M) of objects of M under
A (see Definition 7.6.1) is a model category in which a map is a weak
equivalence, fibration, or cofibration if it is one in M.

(2) If X is an object of M, then the category (M ↓X) of objects of M over
X (see Definition 7.6.2) is a model category in which a map is a weak
equivalence, fibration, or cofibration if it is one in M.

(3) If A and B are objects in M, then the category (A ↓M ↓B) of objects of
M under A and over B (see Definition 7.6.3) is a model category in which
a map is a weak equivalence, fibration, or cofibration if it is one in M.

Proof. This follows directly from the definitions. �

Lemma 7.6.6. Let C be a category and let g : X → Y be a map in C.

(1) The functor (X ↓C) → (Y ↓C) that takes the object X → Z of (X ↓C)
to its pushout along g is left adjoint to the functor g∗ : (Y ↓C)→ (X ↓C)
that takes the object Y →W of (Y ↓C) to its composition with g.

(2) The functor (C ↓Y )→ (C ↓X) that takes the object W → Y of (C ↓Y ) to
its pullback along g is right adjoint to the functor g∗ : (C ↓X) → (C ↓Y )
that takes the object Z → X of (C ↓X) to its composition with g.



7.6. RELATIVE HOMOTOPY AND FIBERWISE HOMOTOPY 127

Proof. This follows directly from the universal mapping properties that define
the pushout and the pullback. �

Definition 7.6.7. Let M be a model category, and let A be an object of M.
(1) If A→ X and A→ Y are objects of the category (A ↓M) of objects of M

under A, then maps f, g : X → Y in (A ↓M) will be called left homotopic
under A, right homotopic under A, or homotopic under A if they are,
respectively, left homotopic, right homotopic, or homotopic as maps in
(A ↓M). A map will be called a homotopy equivalence under A if it is a
homotopy equivalence in the category (A ↓M).

(2) If X → A and Y → A are objects of the category (M ↓A) of objects of
M over A, then maps f, g : X → Y will be called left homotopic over A,
right homotopic over A, or homotopic over A if they are, respectively, left
homotopic, right homotopic, or homotopic as maps in (M ↓A). A map will
be called a homotopy equivalence over A if it is a homotopy equivalence
in the category (M ↓A).

Proposition 7.6.8. Let M be a model category, and let A be an object of M.

(1) If maps are left homotopic, right homotopic, or homotopic under A, then
they are, respectively, left homotopic, right homotopic, or homotopic.

(2) If maps are left homotopic, right homotopic, or homotopic over A, then
they are, respectively, left homotopic, right homotopic, or homotopic.

Proof. This follows from Proposition 7.3.5. �

Corollary 7.6.9. Let M be a model category, and let A be an object of M. If
a map is a homotopy equivalence under A or a homotopy equivalence over A, then
it is a homotopy equivalence in M.

Proof. This follows from Proposition 7.6.8. �

Definition 7.6.10. If M is a model category, then a map i : A → B will be
called the inclusion of a deformation retract (and A will be called a deformation
retract of B) if there is a map r : B → A such that ri = 1A and ir ' 1B . A
deformation retract will be called a strong deformation retract if ir ' 1B under A.

Proposition 7.6.11. Let M be a model category.

(1) If i : A → B is a trivial cofibration of fibrant objects, then A is a strong
deformation retract ofB (see Definition 7.6.10), i.e., there is a map r : B →
A such that ri = 1A and ir ' 1B under A.

(2) If p : X → Y is a trivial fibration of cofibrant objects, then there is a map
s : Y → X such that ps = 1Y and sp ' 1X over Y .

Proof. We will prove part 1; the proof of part 2 is dual.
We have the solid arrow diagram

A

i

��

A

��

B //

r

??

∗

in (A ↓M) (see Theorem 7.6.5) in which i is a trivial cofibration and the map on
the right is a fibration. Thus, there exists a map r : B → A in (A ↓M) such that
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ri = 1A. Since i∗(1B) = i = iri = i∗(ir), Proposition 7.5.9 implies that 1B
r' ir in

(A ↓M). Since both A and B are both cofibrant-fibrant in (A ↓M), Theorem 7.4.9
implies that 1B ' ir in (A ↓M). �

7.6.12. Homotopy uniqueness of lifts.

Proposition 7.6.13. Let M be a model category, and let the solid arrow dia-
gram

A //

i

��

X

p

��

B //

h1

>>

h2

>>

Y

be such that either

(1) i is a cofibration and p is a trivial fibration, or
(2) i is a trivial cofibration and p is a fibration.

If h1 and h2 are maps each of which makes both triangles commute, then h1 ' h2

as maps in (A ↓M ↓Y ), the category of objects of M under A and over Y .

Proof. We will assume that condition 1 holds; the proof in the case that
condition 2 holds is similar.

Factor the map B qA B → B as B qA B
j−→ C

r−→ B where j is a cofibration
and r is a trivial fibration. We now have the solid arrow diagram

B qA B
h1qh2 //

j

��

X

p

��

C //

H

66

B // Y

in which j is a cofibration and p is a trivial fibration, and so there exists a dotted
arrow H making both triangles commute. In the category (A ↓M ↓Y ) of objects
of M under A and over Y (see Theorem 7.6.5), B qA B → C → B is a cylinder
object for B (see Definition 7.3.2) and H is a left homotopy from h1 to h2. Since
B is cofibrant and X is fibrant in (A ↓M ↓Y ), Proposition 7.4.8 implies that h1 is
also right homotopic to h2, and so h1 is homotopic to h2 in (A ↓M ↓Y ). �

Proposition 7.6.14. Let M be a model category. If the solid arrow diagram

A
j
//

i

��

X

p

��

B q
//

h

>>

Y

is such that either

(1) i and j are cofibrations and p and q are trivial fibrations, or
(2) i and j are trivial cofibrations and p and q are fibrations,

then there exists a map h : B → X making both triangles commute, unique up to ho-
motopy in (A ↓M ↓Y ), and any such map is a homotopy equivalence in (A ↓M ↓Y ).

Proof. This follows from Proposition 7.6.13. �
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7.7. Weak equivalences

The main result of this section is Kenny Brown’s lemma (see Lemma 7.7.1).
This asserts that a weak equivalence between cofibrant objects can be factored into
a trivial cofibration followed by a map that has a trivial cofibration as a one sided
inverse (with a dual statement for weak equivalences between fibrant objects). This
implies that a functor between model categories that takes trivial cofibrations into
weak equivalences must also take weak equivalences between cofibrant objects into
weak equivalences (see Corollary 7.7.2), which will be important for our discussion
of Quillen functors (see Definition 8.5.2).

Lemma 7.7.1 (K. S. Brown, [15]). Let M be a model category.

(1) If g : X → Y is a weak equivalence between cofibrant objects in M then
there is a functorial factorization of g as g = ji where i is a trivial cofi-
bration and j is a trivial fibration that has a right inverse that is a trivial
cofibration.

(2) If g : X → Y is a weak equivalence between fibrant objects in M then there
is a functorial factorization of g as g = ji where i is a trivial cofibration
that has a left inverse that is a trivial fibration and j is a trivial fibration.

Proof. We will prove part 1; the proof of part 2 is dual.
Since X and Y are cofibrant, both of the injections X → XqY and Y → XqY

are cofibrations. If we factor the map g q 1Y : X q Y → Y as

X q Y k−→ Z
j−→ Y

where k is a cofibration and j is a trivial fibration, then both compositions X →
X q Y → Z and Y → X q Y → Z are cofibrations. Since g and j are weak
equivalences, axiom M2 (see Definition 7.1.3) implies that the cofibration X → Z
is a weak equivalence, and the composition of cofibrations Y → X q Y → Z is a
right inverse to the trivial fibration j. �

Corollary 7.7.2. Let M and N be model categories, and let F: M→ N be a
functor.

(1) If F takes trivial cofibrations between cofibrant objects in M to weak
equivalences in N, then F takes all weak equivalences between cofibrant
objects to weak equivalences in N.

(2) If F takes trivial fibrations between fibrant objects in M to weak equiva-
lences in N, then F takes all weak equivalences between fibrant objects to
weak equivalences in N.

Proof. This follows from Lemma 7.7.1 and the “two out of three” property
of weak equivalences. �

Corollary 7.7.3. Let M be a model category, let C be a category, and let
F: M→ C be a functor.

(1) If F takes trivial cofibrations between cofibrant objects in M to isomor-
phisms in C, then F takes all weak equivalences between cofibrant objects
to isomorphisms.

(2) If F takes trivial fibrations between fibrant objects in M to isomorphisms
in C, then F takes all weak equivalences between fibrant objects to iso-
morphisms.
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Proof. This follows from Lemma 7.7.1. �

Corollary 7.7.4. Let M be a model category.

(1) If g : C → D is a weak equivalence between cofibrant objects in M and
X is a fibrant object of M, then g induces an isomorphism of the sets of
homotopy classes of maps g∗ : π(D,X) ≈ π(C,X).

(2) If g : X → Y is a weak equivalence between fibrant objects in M and C
is a cofibrant object of M, then g induces an isomorphism of the sets of
homotopy classes of maps g∗ : π(C,X) ≈ π(C, Y ).

Proof. This follows from Lemma 7.7.1, Proposition 7.5.9, and Theorem 7.4.9.
�

Corollary 7.7.5. Let M be a model category.

(1) If g : C → D is a weak equivalence between cofibrant objects in M and X
is a fibrant object of M, then there is a map C → X in M if and only if
there is a map D → X in M.

(2) If g : X → Y is a weak equivalence between fibrant objects in M and C is
a cofibrant object of M, then there is a map C → X in M if and only if
there is a map C → Y in M.

Proof. This follows from Corollary 7.7.4. �

Proposition 7.7.6. Let M be a model category, and let f, g : X → Y be maps.

If f
l' g or f

r' g, then f is a weak equivalence if and only if g is a weak equivalence.

Proof. We will consider the case f
l' g; the case f

r' g is dual.

Since f
l' g, there is a cylinder object X qX i0qi1−−−→ Cyl(X)

p−→ X for X and a
map H : Cyl(X) → Y such that hi0 = f and hi1 = g. Lemma 7.3.7 and the “two
out of three” property of weak equivalences imply that f is a weak equivalence if
and only if H is a weak equivalence, and that this is true if and only if g is a weak
equivalence. �

Lemma 7.7.7. Let M and N be model categories, let g0, g1 : X → Y be maps
in M, and let F: M→ N be a functor.

(1) If F takes trivial cofibrations between cofibrant objects in M into weak
equivalences in N, the object X is cofibrant, and g0 is left homotopic to g1,
then F(g0) is a weak equivalence if and only if F(g1) is a weak equivalence.

(2) If F takes trivial fibrations between fibrant objects in M into weak equiv-
alences in N, the object Y is fibrant, and g0 is right homotopic to g1 (see
Definition 7.3.2), then F(g0) is a weak equivalence if and only if F(g1) is
a weak equivalence.

Proof. This follows from Lemma 7.3.8 and Proposition 7.7.6. �

7.8. Homotopy equivalences

The main result of this section is Theorem 7.8.5, which asserts that a homo-
topy equivalence between cofibrant-fibrant objects is a weak equivalence. We also
prove that a map between cofibrant-fibrant objects that is both a cofibration and
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a homotopy equivalence is the inclusion of a strong deformation retraction (see
Proposition 7.8.2).

Lemma 7.8.1. Let M be a model category and let X and Y be cofibrant-fibrant
objects in M.

(1) Let X q X
i0qi1−−−→ Cyl(X)

p−→ X be a cylinder object for X and let
H : Cyl(X) → Y be a left homotopy from the map f : X → Y to the
map g : X → Y . If H ′′ is the composition (see Definition 7.4.3) of H and
H−1 (see Definition 7.4.4), then H ′′ is homotopic in

(
(X qX) ↓M

)
to the

constant left homotopy (i.e., the composition Cyl(X)′′
p′′−→ X

f−→ Y ).

(2) Let Y
s−→ Path(Y )

p0×p1−−−−→ Y × Y be a path object for Y and let H : X →
Path(Y ) be a right homotopy from the map f : X → Y to the map g : X →
Y . If H ′′ is the composition (see Definition 7.4.3) of H and H−1 (see
Definition 7.4.4), then H ′′ is homotopic in

(
M ↓ (Y Π Y )

)
to the constant

right homotopy (i.e., the composition X
f−→ Y

s′′−→ Cyl(Y )′′).

Proof. We will prove part 1; the proof of part 2 is dual.
Let Y s−→ Path(Y )

p0×p1−−−−→ Y ×Y be a path object for Y (see Lemma 7.3.3). We
have the solid arrow diagram

X
sf

//

i0

��

Path(Y )

(p0,p1)

��

Cyl(X)
(fp,H)

//

K

77

Y × Y

in which i0 is a trivial cofibration (see Lemma 7.3.7) and (p0, p1) is a fibration, and
so the dotted arrow K exists. If we let the map K ′ : Cyl(X)′ → Path(Y ) equal the
map K, then K and K ′ combine to define a map K ′′ : Cyl(X)′′ → Path(Y ) that
makes the diagram

X qX
sfqsf

//

i′′0qi
′′
1

��

Path(Y )

(p0,p1)

��

Cyl(X)′′
(fp′′,H′′)

//

K′′
77oooooooooooo
Y × Y

commutes. Thus, K ′′ is a right homotopy (see Definition 7.3.2) from the map
fp′′ : Cyl(X)′′ → Y to the map H ′′ : Cyl(X)′′ → Y in the category

(
(X qX) ↓M

)
of objects of M under X qX. Since Cyl(X)′′ is cofibrant in

(
M ↓ (X qX)

)
and Y

is fibrant in
(
M ↓ (X qX)

)
, Theorem 7.4.9 implies that fp′′ is also left homotopic

to H ′′ in
(
M ↓ (X qX)

)
, and so fp′′ is homotopic to H ′′ in

(
M ↓ (X qX)

)
. �

Proposition 7.8.2. Let M be a model category and let f : X → Y be a map
between cofibrant-fibrant objects.

(1) If f is both a cofibration and a homotopy equivalence, then f is the
inclusion of a strong deformation retract, i.e., there is a map g : Y → X
such that gf = 1X and fg ' 1Y in (X ↓M).
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(2) If f is both a fibration and a homotopy equivalence, then f is the dual
of a strong deformation retract, i.e., there is a map g : Y → X such that
fg = 1Y and gf ' 1X in (M ↓Y ).

Proof. We will prove part 1; the proof of part 2 is dual.
Since f is a homotopy equivalence, there is a map h : Y → X such that fh ' 1Y

and hf ' 1X . The homotopy extension property of cofibrations (see Proposi-
tion 7.3.10) implies that h is homotopic to a map g : Y → X such that gf = 1X
and fg ' 1Y (see Proposition 7.5.3). Let Y s−→ Path(Y )

p0×p1−−−−→ Y × Y be a path
object for Y and let H : Y → Path(Y ) be a right homotopy from fg to 1Y . The
compositionHf : X → Path(Y ) is then a right homotopy from fgf = f to 1Y f = f .
The composite homotopy (Hfg) ·H−1 : Y → Path(Y )′′ (see Definition 7.4.3) com-
posed with f is the composite homotopy (Hf) · (Hf)−1 : X → Path(Y )′′, and
Lemma 7.8.1 implies that (Hf) · (Hf)−1 is homotopic in

(
M ↓ (Y × Y )

)
to the

constant homotopy s′′f : X → Path(Y )′′. The homotopy extension property of
cofibrations now implies that (Hfk) ·H−1 is homotopic in

(
M ↓ (Y × Y )

)
to a right

homotopy K : Y → Path(Y )′′ such that Kf : X → Path(Y )′′ equals s′′f , i.e., K is
a homotopy from gf to 1Y in (X ↓M). �

Proposition 7.8.3. Let M be a model category and let X and Y be cofibrant-
fibrant objects in M.

(1) If g : X → Y is both a cofibration and a homotopy equivalence, then g is
a weak equivalence.

(2) If g : X → Y is both a fibration and a homotopy equivalence, then g is a
weak equivalence.

Proof. We will prove part 1; the proof of part 2 is dual.
If we factor g as X i−→ W

p−→ Y where i is a trivial cofibration and p is a
fibration, then the retract axiom (see Definition 7.1.3) implies that it is sufficient
to show that g is a retract of i. If we can show that the dotted arrow q exists in
the diagram

(7.8.4) X
i //

g

��

W

p

��

Y

q
>>

Y

then we would have the diagram

X

g

��

X

i

��

X

g

��

Y q
//@A BC
1Y

OOW p
// Y

which would show that g is a retract of i. Thus, it is sufficient to find the dotted
arrow q in Diagram 7.8.4. Proposition 7.8.2 implies that there is a map h : Y → X
such that hg = 1X and gh ' 1Y in (X ↓M). If we let k : Y → W be defined by
k = ih, then kg = i, and pk = pih = gh ' 1Y in (X ↓M). The homotopy lifting
property (see Proposition 7.3.11) of the fibration p in the category (X ↓M) now
implies that k is homotopic in (X ↓M) to a map q : Y →W such that pq = 1Y . �
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Theorem 7.8.5. Let M be a model category. If X and Y are cofibrant-fibrant
objects in M and g : X → Y is a homotopy equivalence, then g is a weak equivalence.

Proof. If we factor g as X h−→ W
k−→ Y where h is a cofibration and k is a

trivial fibration, then the “two out of three” property of weak equivalences implies
that it is sufficient to show that h is a weak equivalence. Since W is also cofibrant-
fibrant, Proposition 7.8.3 implies that it is sufficient to show that h is a homotopy
equivalence.

If g−1 : Y → X is a homotopy inverse for g, then let r : W → X be defined by
r = g−1k. Since rh = g−1kh = g−1g ' 1X , it is sufficient to show that hr ' 1W .
Proposition 7.5.9 and Theorem 7.4.9 imply that k induces an isomorphism of sets
k∗ : π(X,W ) ≈ π(X,Y ). Since khr = gr = gg−1k ' k, this implies that hr '
1W . �

Theorem 7.8.6. Let M be a model category and let f : X → Y be a map in
M.

(1) If X and Y are cofibrant, then f is a weak equivalence if and only if for
every fibrant object Z of M the induced map of homotopy classes of maps
f∗ : π(Y,Z)→ π(X,Z) (see Notation 7.5.2) is an isomorphism.

(2) If X and Y are fibrant, then f is a weak equivalence if and only if for
every cofibrant object W of M the induced map of homotopy classes of
maps f∗ : π(W,X)→ π(W,Y ) is an isomorphism.

Proof. We will prove part 1; the proof of part 2 is dual.
One direction of part 1 follows from Corollary 7.7.4. For the converse, let

f̂ : X̂ → Ŷ be a cofibrant fibrant approximation to f (see Definition 8.1.22). Prop-
osition 7.5.9 implies that f̂ : X̂ → Ŷ also induces an isomorphism of homotopy
classes of maps f̂∗ : π(Ŷ , Z) → π(X̂, Z) for every fibrant object Z of M, and the
“two out of three” axiom for weak equivalences (see Definition 7.1.3) implies that
it is sufficient to show that f̂ is a weak equivalence. This follows from Proposi-
tion 7.5.12 and Theorem 7.8.5. �

7.9. The equivalence relation generated by “weak equivalence”

The equivalence relation on objects of a model category generated by the re-
lation “there is a weak equivalence from the first object to the second object” is
made concrete by the notion of a zig-zag of weak equivalences (see Definition 7.9.1
and Definition 7.9.2). Zig-zags can also used to describe the maps in the localized
category (see [5, Appendix]).

Definition 7.9.1. Let K be a category and let W be a class of maps in K.
(1) If X and Y are objects in K and n ≥ 0, then a zig-zag of elements of W

of length n from X to Y is a diagram of the form

X
f1−→W1

f2←−W2
f3−→ · · · fn−1←−−−Wn−1

fn−→ Y

where
(a) each fi is an element of W,
(b) each fi can point either to the left or to the right, and
(c) consecutive fi’s can point in either the same direction or in opposite

directions.
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(2) If X, Y , and Z are objects in K and

X
f1−→W1

f2←− · · · fn−1←−−−Wn−1
fn−→ Y and Y

g1−→ V1
g2←− · · · gk−1←−−− Vk−1

gk−→ Z

are, respectively, a zig-zag in W from X to Y and a zig-zag in W from Y
to Z, then the composition of those zig-zags is the zig-zag in W of length
n+ k from X to Z

X
f1−→W1

f2←− · · · fn−1←−−−Wn−1
fn−→ Y

g1−→ V1
g2←− · · · gk−1←−−− Vk−1

gk−→ Z

Definition 7.9.2. Let M be a model category.
(1) If X and Y are objects in M, then X and Y are weakly equivalent if there

is a zig-zag of weak equivalences from X to Y (see Definition 7.9.1).
(2) If C is a category and F and G are functors from C to M, then F and G

are naturally weakly equivalent if there is an integer n ≥ 0 and functors
W1, W2, . . . , Wn from C to M such that for every object A in C there is
a natural zig-zag of weak equivalences

F(A)
∼=−→W1(A)

∼=←−W2(A)
∼=−→W3(A)

∼=←− · · ·
∼=−→Wn(A)

∼=←− G(A)

from F(A) to G(A).

7.10. Topological spaces and simplicial sets

7.10.1. Categories of topological spaces. There are several different cat-
egories of topological spaces in common use, and any of these is acceptable for our
purposes.

Notation 7.10.2. We will use Top to denote some category of topological
spaces with the following properties:

(1) Top is closed under small colimits and small limits.
(2) Top contains among its objects the geometric realizations of all simplicial

sets.
(3) If X and Y are objects of Top and K is a simplicial set, then there is a

natural isomorphism of sets

Top(X ×
∣∣K∣∣, Y ) ≈ Top

(
X,Y |K|

)
.

Thus, the reader is invited to assume that Top denotes, e.g.,
• the category of compactly generated Hausdorff spaces (see, e.g., [62]), or
• the category of compactly generated weak Hausdorff spaces (see, e.g., [37,

Appendix A1]), or
• some other category of spaces with our three properties (see, e.g., [63]).

The category of all topological spaces has Properties 1 and 2 of Notation 7.10.2,
but not Property 3. Property 3 is needed only when we want to assume that Top
is a simplicial model category (see Definition 9.1.6), though, and so if we want to
consider Top as only a model category, then the reader can also choose to let Top
denote the category of all topological spaces. Chapters 1 and 2 assume that Top
is a simplicial model category, and so, technically, the category of all topological
spaces is not acceptable there. In fact, though, the work in Chapters 1 and 2 only
requires that the adjointness isomorphism in Property 3 exists for finite simplicial
sets K. Since the realization of a finite simplicial set is locally compact, this makes
the category of all topological spaces an acceptable definition of Top for Chapters
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1 and 2 (see, e.g., [29, page 265] or [50, page 287]), although many arguments
would have to be rephrased so as not to claim that the adjointness isomorphism in
Property 3 exists for an arbitrary simplicial set K.

Remark 7.10.3. Our definition of a simplicial model category (see Defini-
tion 9.1.6) differs from that of Quillen ([52]) in that we require that we have the
adjointness isomorphism in Property 3 of Notation 7.10.2 for all simplicial sets K,
while Quillen requires it only for finite simplicial sets K. Quillen proves that with
his definition the category of all topological spaces is a simplicial model category
[52, Chapter II, Section 3].

7.10.4. The model category structures. We will be working both with
topological spaces and with simplicial sets, and for each of these we will consider
both the category of pointed spaces and the category of unpointed spaces.

Notation 7.10.5. We will use the following notation for our categories of
spaces:

SS : The category of (unpointed) simplicial sets.
SS∗ : The category of pointed simplicial sets.
Top : The category of (unpointed) topological spaces.
Top∗: The category of pointed topological spaces.

There is a model category structure on each of these categories of spaces:

Definition 7.10.6. If f : X → Y is a map of topological spaces, then
• f is a weak equivalence if f induces an isomorphism of path components

and an isomorphism of homotopy groups f∗ : πn(X,x0) ≈ πn(Y, f(x0)) for
all n ≥ 1 and every choice of basepoint x0 in X,
• f is a fibration if it is a Serre fibration, and
• f is a cofibration if it has the left lifting property with respect to all maps

that are both fibrations and weak equivalences.

Definition 7.10.7. If f : X → Y is a map of pointed topological spaces, then
• f is a weak equivalence if it is a weak equivalence of unpointed topological

spaces when you forget about the basepoints,
• f is a fibration if it is a fibration of unpointed topological spaces when

you forget about the basepoints, and
• f is a cofibration if it has the left lifting property with respect to all maps

that are both fibrations and weak equivalences.

Definition 7.10.8. If f : X → Y is a map of simplicial sets, then
• f is a weak equivalence if its geometric realization

∣∣f ∣∣ : ∣∣X∣∣ → ∣∣Y ∣∣ is a
weak equivalence of topological spaces,
• f is a fibration if it is a Kan fibration, i.e., if it has the right lifting property

with respect to the map Λ[n, k]→ ∆[n] for all n > 0 and 0 ≤ k ≤ n, and
• f is a cofibration if it has the left lifting property with respect to all maps

that are both fibrations and weak equivalences.

Definition 7.10.9. If f : X → Y is a map of pointed simplicial sets, then
• f is a weak equivalence if it is a weak equivalence of unpointed simplicial

sets when you forget about the basepoints,
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• f is a fibration if it is a fibration of any simplicial set when you forget
about the basepoints, and

• f is a cofibration if it has the left lifting property with respect to all maps
that are both fibrations and weak equivalences.

The following four theorems assert the existence of the standard model category
structures for the categories of topological spaces and simplicial sets (both pointed
and unpointed). The proofs are surprisingly long, and we will not present them
here. The original proofs are due to Quillen [52, Chapter II, Section 3], but more
detailed and readable versions can be found in the works by Hovey [42, Section 2.4
and Chapter 3], Dwyer and Spalinski [35, Section 8], and Goerss and Jardine [39,
Chapter I].

Theorem 7.10.10. The category Top (see Notation 7.10.5) with weak equiva-
lences, fibrations, and cofibrations as in Definition 7.10.6 is a model category. In
this model category,

• a map is a fibration if and only if it has the right lifting property with
respect to the maps

∣∣Λ[n, k]
∣∣→ ∣∣∆[n]

∣∣ for all n > 0 and 0 ≤ k ≤ n, and
• a map is a trivial fibration if and only if it has the right lifting property

with respect to the maps
∣∣∂∆[n]

∣∣→ ∣∣∆[n]
∣∣ for all n ≥ 0.

Theorem 7.10.11. The category Top∗ (see Notation 7.10.5) with weak equiv-
alences, fibrations, and cofibrations as in Definition 7.10.7 is a model category. In
this model category,

• a map is a fibration if and only if it has the right lifting property with
respect to the maps

∣∣Λ[n, k]
∣∣+ → ∣∣∆[n]

∣∣+ for all n > 0 and 0 ≤ k ≤ n,
and
• a map is a trivial fibration if and only if it has the right lifting property

with respect to the maps
∣∣∂∆[n]

∣∣+ → ∣∣∆[n]
∣∣+ for all n ≥ 0.

Theorem 7.10.12. The category SS (see Notation 7.10.5) with weak equiva-
lences, fibrations, and cofibrations as in Definition 7.10.8 is a model category. In
this model category,

• a map is a fibration if and only if it has the right lifting property with
respect to the maps Λ[n, k]→ ∆[n] for all n > 0 and 0 ≤ k ≤ n, and
• a map is a trivial fibration if and only if it has the right lifting property

with respect to the maps ∂∆[n]→ ∆[n] for all n ≥ 0.

Theorem 7.10.13. The category SS∗ (see Notation 7.10.5) with weak equiva-
lences, fibrations, and cofibrations as in Definition 7.10.9 is a model category. In
this model category,

• a map is a fibration if and only if it has the right lifting property with
respect to the maps Λ[n, k]+ → ∆[n]+ for all n > 0 and 0 ≤ k ≤ n, and
• a map is a trivial fibration if and only if it has the right lifting property

with respect to the maps ∂∆[n]+ → ∆[n]+ for all n ≥ 0.



CHAPTER 8

Fibrant and Cofibrant Approximations

A cofibrant approximation to an object X is a cofibrant object X̃ weakly equiv-
alent to X; dually, a fibrant approximation to an object Y is a fibrant object Ŷ
weakly equivalent to Y (see Definition 8.1.2). Cofibrant and fibrant approximations
are among the most fundamental tools in homotopy theory because

• maps that are “expected” to exist often exist only when the domain is
cofibrant and the codomain is fibrant and,
• since weak equivalences become isomorphisms in the homotopy category,

a cofibrant or fibrant approximation to an object is isomorphic to that
object in the homotopy category.

For example, (left or right) homotopy is an equivalence relation on the set of maps
from X to Y when X is cofibrant and Y is fibrant (see Theorem 7.4.9), and we use
this in Section 8.3 to construct the homotopy category HoM of a model category
M by defining HoM(X,Y ) to be the set of homotopy classes of maps in M from X ′

to Y ′, where X ′ and Y ′ are cofibrant-fibrant objects weakly equivalent to X and
Y respectively (see the proof of Theorem 8.3.5).

In the category of topological spaces every object is fibrant, and a CW-approx-
imation to a space X (i.e., a CW-complex weakly equivalent to X) is a cofibrant
approximation to X. In the category of simplicial sets every object is cofibrant, and
a Kan complex weakly equivalent to X (e.g., the total singular complex of the geo-
metric realization of X) is a fibrant approximation to X. When doing homological
algebra, a resolution of an object is a cofibrant or fibrant approximation in a model
category of simplicial or cosimplicial objects (see, e.g., [55] or [52, Chapter II,
Section 4]). When constructing function complexes in a model category (see Chap-
ter 17), a resolution of an object is a cofibrant or fibrant approximation in yet a
different model category of cosimplicial or simplicial objects (see Definition 16.1.2).

In Section 8.1 we define cofibrant and fibrant approximations and show that
they are unique up to a weak equivalence (see Proposition 8.1.9 and Proposi-
tion 8.1.19); stronger uniqueness theorems will follow in Chapter 14 (see Prop-
osition 14.6.3 and Theorem 14.6.9). We discuss approximations and homotopy
relations in Section 8.2, and in Section 8.3 we construct the homotopy category of
a model category.

In Section 8.4 we discuss (left and right) derived functors, which are func-
tors induced on the homotopy category of a model category by a functor on the
model category. In Section 8.5 we discuss Quillen functors, which are the use-
ful functors between model categories. Quillen functors arise in adjoint pairs (see
Definition 8.5.2); the left Quillen functor induces a total left derived functor (see
Definition 8.4.7) between the homotopy categories and the right Quillen functor
induces a total right derived functor in the opposite direction. We show that the

137
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total left derived functor of the left Quillen functor and the total right derived
functor of the right Quillen functor are an adjoint pair of functors between the
homotopy categories (see Theorem 8.5.18). We also define Quillen equivalences,
which are Quillen functors satisfying an additional condition (see Definition 8.5.20)
that implies that their total derived functors are equivalences of categories between
the homotopy categories.

8.1. Fibrant and cofibrant approximations

8.1.1. Approximations to objects.

Definition 8.1.2. Let M be a model category.
(1) (a) A cofibrant approximation to an object X is a pair (X̃, i) where X̃ is

a cofibrant object and i : X̃ → X is a weak equivalence.
(b) A fibrant cofibrant approximation to X is a cofibrant approximation

(X̃, i) such that the weak equivalence i is a trivial fibration.
We will sometimes use the term cofibrant approximation to refer to

the object X̃ without explicitly mentioning the weak equivalence i.
(2) (a) A fibrant approximation to an object X is a pair (X̂, j) where X̂ is

a fibrant object and j : X → X̂ is a weak equivalence.
(b) A cofibrant fibrant approximation to X is a fibrant approximation

(X̂, j) such that the weak equivalence j is a trivial cofibration.
We will sometimes use the term fibrant approximation to refer to the

object X̂ without explicitly mentioning the weak equivalence j.

Proposition 8.1.3. If M is a model category, then every object X has both a

fibrant cofibrant approximation i : X̃ → X and a cofibrant fibrant approximation

j : X → X̂.

Proof. Factor the map ∅ → X (where ∅ is the initial object of M) into a
cofibration followed by a trivial fibration and factor the map X → ∗ (where ∗ is
the terminal object of M) into a trivial cofibration followed by a fibration. �

Definition 8.1.4. Let M be a model category and let X be an object of M.
(1) If (X̃, i) and (X̃ ′, i′) are cofibrant approximations to X, a map of cofibrant

approximations from (X̃, i) to (X̃ ′, i′) is a map g : X̃ → X̃ ′ such that
i′g = i.

(2) If (X̂, j) and (X̂ ′, j′) are fibrant approximations to X, a map of fibrant
approximations from (X̂, j) to (X̂ ′, j′) is a map g : X̂ → X̂ ′ such that
gj = j′.

Lemma 8.1.5. Let M be a model category and let X be an object of M.

(1) If (X̃, i) and (X̃ ′, i′) are cofibrant approximations to X and g : X̃ → X̃ ′

is a map of cofibrant approximations, then g is a weak equivalence.

(2) If (X̂, j) and (X̂ ′, j′) are fibrant approximations to X and g : X̂ → X̂ ′ is
a map of fibrant approximations, then g is a weak equivalence.

Proof. This follows from the “two out of three” axiom for weak equivalences
(see Definition 7.1.3). �

Lemma 8.1.6. Let M be a model category and let X be an object of M.
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(1) If (X̃, i) is a fibrant cofibrant approximation to X (see Definition 8.1.2)
and g : W → X is a map from a cofibrant object W , then there is a map

φ : W → X̃, unique up to homotopy over X (see Definition 7.6.7), such
that iφ = g.

(2) If (X̂, j) is a cofibrant fibrant approximation to X and g : X → Y is a

map to a fibrant object Y , then there is a map φ : X̂ → Y , unique up to
homotopy under X, such that φj = g.

Proof. This follows from Proposition 7.6.13. �

Proposition 8.1.7. Let M be a model category and let X be an object of M.

(1) If (X̃, i) is a cofibrant approximation toX and (X̃ ′, i′) is a fibrant cofibrant
approximation to X, then there is a map of cofibrant approximations

g : X̃ → X̃ ′, unique up to homotopy over X (see Definition 7.6.7), and
any such map g is a weak equivalence.

(2) If (X̂, j) is a cofibrant fibrant approximation to X and (X̂ ′, j′) is a fi-
brant approximation to X, then there is a map of fibrant approximations

g : X̂ → X̂ ′, unique up to homotopy under X, and any such map g is a
weak equivalence.

Proof. This follows from Proposition 8.1.6 and Lemma 8.1.5. �

Corollary 8.1.8. Let M be a model category and let X be an object of M.

(1) If (X̃, i) and (X̃ ′, i′) are fibrant cofibrant approximations to X, then there

is a map of cofibrant approximations g : X̃ → X̃ ′, unique up to homotopy
over X (see Definition 7.6.7), and any such map g is a homotopy equiva-
lence over X.

(2) If (X̂, j) and (X̂ ′, j′) are cofibrant fibrant approximations to X, then there

is a map of fibrant approximations g : X̂ → X̂ ′, unique up to homotopy
under X, and any such map g is a homotopy equivalence under X.

Proof. This follows from Proposition 8.1.7. �

Proposition 8.1.9. Let M be a model category and let X be an object of M.

(1) If (X̃, i) and (X̃ ′, i′) are cofibrant approximations to X, then X̃ and X̃ ′

are weakly equivalent (see Definition 7.9.2) over X.

(2) If (X̂, j) and (X̂ ′, j′) are fibrant approximations to X, then X̂ and X̂ ′ are
weakly equivalent under X.

Proof. This follows from Proposition 8.1.3 and Proposition 8.1.7. �

Remark 8.1.10. We will show in Proposition 14.6.3 that there is an essen-
tially unique zig-zag (see Definition 14.4.2) of weak equivalences between any two
cofibrant approximations to the same object (or between any two fibrant approxi-
mations to the same object).

8.1.11. Augmented and coaugmented functors.

Definition 8.1.12. Let M be a model category.
(1) An augmented functor on M is a pair (F, i) where F is a functor F: M→M

and i is a natural transformation i : F→ 1.
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(2) A coaugmented functor on M is a pair (G, j) where G is a functor G: M→
M and j is a natural transformation j : 1→ G.

Definition 8.1.13. Let M be a model category.

(1) An augmented functor (F, i) on M will be called homotopy idempotent if
for every object X in M the natural maps iFX ,F(iX) : FFX → FX are
homotopic over X (see Definition 7.6.7) and are homotopy equivalences
over X.

(2) A coaugmented functor (G, j) on M will be called homotopy idempotent if
for every object X in M the natural maps jGX ,G(jX) : GX → GGX are
homotopic under X (see Definition 7.6.7) and are homotopy equivalences
under X.

Remark 8.1.14. Definition 8.1.13 is the lifting to M of J. F. Adams’ notion of
an idempotent functor on the homotopy category of M (see [2]).

Definition 8.1.15. Let M be a model category.

(1) (a) A functorial cofibrant approximation on M is an augmented functor
(F, i) on M such that iX : FX → X is a cofibrant approximation to
X for every object X of M.

(b) A functorial fibrant cofibrant approximation on M is a functorial cofi-
brant approximation such that iX is a trivial fibration for every object
X of M.

(c) If K is a subcategory of M, then a functorial cofibrant approximation
on K is a pair (F, i) in which F: K→M is a functor and i is a natural
transformation such that iX : FX → X is a cofibrant approximation
to X for every object X of K.

(2) (a) A functorial fibrant approximation on M is a coaugmented functor
(G, j) on M such that jX : X → GX is a fibrant approximation to X
for every object X of M.

(b) A functorial cofibrant fibrant approximation on M is a functorial fi-
brant approximation such that jX is a trivial cofibration for every
object X of M.

(c) If K is a subcategory of M, then a functorial fibrant approximation on
K is a pair (G, j) in which G: K→M is a functor and j is a natural
transformation such that jX : X → GX is a fibrant approximation
to X for every object X of K.

Proposition 8.1.16. Let M be a model category.

(1) A functorial fibrant cofibrant approximation (F, i) on M is homotopy
idempotent.

(2) A functorial cofibrant fibrant approximation (G, j) on M is homotopy
idempotent.

Proof. We will prove part 1; the proof of part 2 is dual.
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Since i is a natural transformation, for every object X of M we have a commu-
tative square

FFX
iFX //

F(iX)

��

FX

iX

��

FX
iX

// X .

Since iX is a trivial fibration and FFX is cofibrant, Proposition 7.5.9 implies that

iFX
l' F(iX) in (M ↓X). Since both of FX and FFX are both cofibrant and

fibrant in (M ↓X), Theorem 7.4.9 implies that iFX ' F(iX) in (M ↓X), and so
Theorem 7.5.10 implies that iFX and F(iX) are homotopy equivalences in (M ↓X).

�

Proposition 8.1.17. If M is a model category and K is a subcategory of
M, then there is a functorial fibrant cofibrant approximation on K (see Defini-
tion 8.1.15) and a functorial cofibrant fibrant approximation on K.

Proof. This follows from applying part 1 of the factorization axiom (see Defi-
nition 7.1.3) to the map from the initial object and part 2 of the factorization axiom
to the map to the terminal object. �

Definition 8.1.18. Let M be a model category and let K be a subcategory of
M.

(1) If (F, i) and (F′, i′) are functorial cofibrant approximations on K (see
Definition 8.1.15), a map of functorial cofibrant approximations from (F, i)
to (F′, i′) is a natural transformation φ : F→ F′ such that i′φ = i.

(2) If (G, j) and (G′, j′) are functorial fibrant approximations on K (see Def-
inition 8.1.15), a map of functorial fibrant approximations from (G, j) to
(G′, j′) is a natural transformation φ : G→ G′ such that φj = j′.

Proposition 8.1.19. Let M be a model category and let K be a subcategory
of catM .

(1) If i1(X) : C̃1(X) → X and i2(X) : C̃2(X) → X are natural cofibrant ap-

proximations defined on K, then C̃1(−) and C̃2(−) are naturally weakly
equivalent (see Definition 7.9.2).

(2) If j1(X) : X → F̂1(X) and j2(X) : X → F̂2(X) are natural fibrant ap-

proximations defined on K, then F̂1(−) and F̂2(−) are naturally weakly
equivalent.

Proof. We will prove part 1; the proof of part 2 is dual.
If we choose a natural fibrant cofibrant approximation i(X) : C̃(X) → X for

every object X in K (see Proposition 8.1.17), then it is sufficient to show that each
of C̃1(−) and C̃2(−) is naturally weakly equivalent to C̃(−). We will do this for
C̃1(−); the proof for C̃2(−) is the same.
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For every object X in K, we construct the pullback square

P1(X)
j(X)

//

j1(X)

��

C̃1(X)

i1(X)

��

C̃(X)
i(X)

// X

and then we choose a functorial cofibrant approximation k(X) : P̃1(X)→ P1(X) to
P1(X). Since i(X) is a trivial fibration, so is j(X), and so the “two out of three”
axiom (see Definition 7.1.3) implies that j1(X) is also a weak equivalence. Thus,

C̃1(X)
j(X)k(X)←−−−−−− P̃1(X)

j2(X)k(X)−−−−−−−→ C̃(X) is a natural zig-zag of weak equivalences
of cofibrant approximations to X. �

Remark 8.1.20. We will show in Theorem 14.6.9 that any two functorial cofi-
brant approximations are connected by an essentially unique zig-zag (see Defini-
tion 14.4.2) of weak equivalences.

8.1.21. Approximations to maps.

Definition 8.1.22. Let M be a model category.

(1) (a) A cofibrant approximation to a map g : X → Y consists of a cofibrant
approximation (X̃, iX) toX (see Definition 8.1.2), a cofibrant approx-
imation (Ỹ , iY ) to Y , and a map g̃ : X̃ → Ỹ such that iY g̃ = giX .

(b) A fibrant cofibrant approximation to a map g : X → Y is a cofibrant
approximation to g in which the cofibrant approximations (X̃, iX)
and (Ỹ , iY ) are fibrant cofibrant approximations.
We will sometimes use the term cofibrant approximation to refer to the

map g̃ without explicitly mentioning the cofibrant approximations (X̃, iX)
and (Ỹ , iY ).

(2) (a) A fibrant approximation to a map g : X → Y consists of a fibrant
approximation (X̂, jX) to X (see Definition 8.1.2), a fibrant approx-
imation (Ŷ , jY ) to Y , and a map ĝ : X̂ → Ŷ such that ĝjX = jY g.

(b) A cofibrant fibrant approximation to a map g : X → Y is a fibrant
approximation to g in which the fibrant approximations (X̂, jX) and
(Ŷ , jY ) are cofibrant fibrant approximations.
We will sometimes use the term fibrant approximation to refer to the

map ĝ without explicitly mentioning the fibrant approximations (X̂, jX)
and (Ŷ , jY ).

Proposition 8.1.23. Let M be a model category.

(1) Every map g : X → Y has a natural fibrant cofibrant approximation

g̃ : X̃ → Ỹ such that g̃ is a cofibration.
(2) Every map g : X → Y has a natural cofibrant fibrant approximation

ĝ : X̂ → Ŷ such that ĝ is a fibration.

Proof. We will prove part 1; the proof of part 2 is similar.



8.1. FIBRANT AND COFIBRANT APPROXIMATIONS 143

Choose a natural fibrant cofibrant approximation (X̃, iX) toX, and then choose

a natural factorization of the composition giX : X̃ → Y as X̃
g̃−→ Ỹ

iY−→ Y where g̃
is a cofibration and iY is a trivial fibration. �

Proposition 8.1.24. Let M and N be model categories, let g : X → Y be a
map in M, and let F: M→ N be a functor.

(1) If F takes trivial cofibrations between cofibrant objects in M into weak

equivalences in N and there is a cofibrant approximation g̃ : X̃ → Ỹ to g
(see Definition 8.1.22) such that F(g̃) is a weak equivalence, then F takes
every cofibrant approximation to g into a weak equivalence.

(2) If F takes trivial fibrations between fibrant objects in M into weak equiv-

alences in N and there is a fibrant approximation ĝ : X̂ → Ŷ to g (see
Definition 8.1.22) such that F(ĝ) is a weak equivalence, then F takes ev-
ery fibrant approximation to g into a weak equivalence.

Proof. We will prove part 1; the proof of part 2 is dual.
Proposition 8.1.23 implies that we can choose a cofibrant approximation g̃′ : X̃ ′ →

Ỹ ′ to g such that the weak equivalences i′X : X̃ ′ → X and i′Y : Ỹ ′ → Y are trivial
fibrations. It is sufficient to show that if g̃ : X̃ → Ỹ is some other cofibrant ap-
proximation to g, then F(g̃) is a weak equivalence if and only if F(g̃′) is a weak
equivalence.

If g̃ : X̃ → Ỹ is some other cofibrant approximation to g, then we have the solid
arrow diagram

X̃ ′
g̃′

//

i′X

  
AA

AA
AA

A Ỹ ′

i′Y

��~~
~~

~~
~

X
g
// Y

X̃

hX

OO

iX

>>}}}}}}}}

g̃
// Ỹ

iY

__@@@@@@@@

hY

OO

in which i′X and i′Y are trivial fibrations and iX and iY are weak equivalences. Prop-
osition 8.1.7 implies that there are weak equivalences hX : X̃ → X̃ ′ and hY : Ỹ → Ỹ ′

such that i′XhX = iX and i′Y hY = iY . Thus, i′Y g̃
′hX = gi′XhX = giX = iY g̃ =

i′Y hY g̃. Since i′Y is a trivial fibration and X̃ is cofibrant, Proposition 7.5.9 implies
that g̃′hX is left homotopic to hY g̃, and so Lemma 7.7.7 implies that F(g̃′hX) is a
weak equivalence if and only if F(hY g̃) is a weak equivalence. Since Corollary 7.7.2
implies that F(hX) and F(hY ) are weak equivalences, the “two out of three” axiom
for weak equivalences (see Definition 7.1.3) implies that F(g̃′) is a weak equivalence
if and only if F(g̃) is a weak equivalence. �

Proposition 8.1.25. Let M be a model category.

(1) If g : X → Y is a map in M, X̃ → X is a cofibrant approximation to X,

and Ỹ → Y is a fibrant cofibrant approximation to Y , then there exists a

cofibrant approximation g̃ : X̃ → Ỹ to g, and g̃ is unique up to homotopy
over Y .

(2) If g : X → Y is a map in M, X → X̂ is a cofibrant fibrant approximation

to X, and Y → Ŷ is a fibrant approximation to Y , then there exists a
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fibrant approximation ĝ : X̂ → Ŷ to g, and ĝ is unique up to homotopy
under X.

Proof. This follows from Proposition 7.6.13. �

Definition 8.1.26. Let M be a model category and let g : X → Y be a map
in M.

(1) If
(
(X̃, iX), (Ỹ , iY ), g̃ : X̃ → Ỹ

)
and

(
(X̃ ′, i′X), (Ỹ ′, i′Y ), g̃′ : X̃ ′ → Ỹ ′

)
are

cofibrant approximations to g, then a map of cofibrant approximations
from

(
(X̃, iX), (Ỹ , iY ), g̃ : X̃ → Ỹ

)
to

(
(X̃ ′, i′X), (Ỹ ′, i′Y ), g̃′ : X̃ ′ → Ỹ ′

)
consists of maps hX : X̃ → X̃ ′ and hY : Ỹ → Ỹ ′ such that the diagram

X̃
g̃

//

iX

  
AA

AA
AA

AA

hX

��

Ỹ
iY

��~~
~~

~~
~~

hY

��

X
g
// Y

X̃ ′
i′X

>>}}}}}}}

g̃′
// Ỹ ′

i′Y

__@@@@@@@

commutes.
(2) If

(
(X̂, jX), (Ŷ , jY ), ĝ : X̂ → Ŷ

)
and

(
(X̂ ′, j′X), (Ŷ ′, j′Y ), ĝ′ : X̂ ′ → Ŷ ′

)
are

fibrant approximations to g, then a map of fibrant approximations from(
(X̂, jX), (Ŷ , jY ), ĝ : X̂ → Ŷ

)
to

(
(X̂ ′, j′X), (Ŷ ′, j′Y ), ĝ′ : X̂ ′ → Ŷ ′

)
consists

of maps hX : X̂ → X̂ ′ and hY : Ŷ → Ŷ ′ such that the diagram

X̂
ĝ

//

hX

��

Ŷ

hY

��

X
g
//

jX
``AAAAAAAA

j′X~~}}
}}

}}
}

Y

jY

??~~~~~~~~

j′Y ��
@@

@@
@@

@

X̂ ′
ĝ′

// Ŷ ′

commutes.

Remark 8.1.27. We will show in Proposition 14.6.6 that any two cofibrant ap-
proximations (or fibrant approximations) to a map are connected by an essentially
unique zig-zag of weak equivalences.

8.2. Approximations and homotopic maps

Lemma 8.2.1. Let M be a model category, let X q X → Cyl(X) → X be a
cylinder object for X, and let X → Path(X)→ X ×X be a path object for X.

(1) If i : X̃ → X is a fibrant cofibrant approximation to X, then
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(a) there is a cylinder object X̃qX̃ → Cyl(X̃)→ X̃ for X̃ and a diagram

X̃ q X̃ //

iqi

��

Cyl(X̃) //

Cyl(i)

��

X̃

i

��

X qX // Cyl(X) // X

such that Cyl(i) : Cyl(X̃) → Cyl(X) is a fibrant cofibrant approxi-
mation to Cyl(X), and

(b) there is a path object X̃ → Path(X̃)→ X̃× X̃ for X̃ and a diagram

(8.2.2) X̃ //

i

��

Path(X̃) //

Path(i)

��

X̃ × X̃

i×i
��

X // Path(X) // X ×X

such that Path(i) : Path(X̃) → Path(X) is a fibrant cofibrant ap-
proximation to Path(X) and the right hand square of Diagram 8.2.2
is a pullback.

(2) If j : X → X̂ is a cofibrant fibrant approximation to X, then

(a) there is a cylinder object X̂qX̂ → Cyl(X̂)→ X̂ for X̂ and a diagram

(8.2.3) X qX //

jqj

��

Cyl(X) //

Cyl(j)

��

X

j

��

X̂ q X̂ // Cyl(X̂) // X̂

such that Cyl(j) : Cyl(X) → Cyl(X̂) is a cofibrant fibrant approx-
imation to Cyl(X) and the left hand square of Diagram 8.2.3 is a
pushout, and

(b) there is a path object X̂ → Path(X̂)→ X̂ × X̂ for X̂ and a diagram

X //

j

��

Path(X) //

Path(j)

��

X ×X

j×j
��

X̂ // Path(X̂) // X̂ × X̂

such that Path(j) : Path(X) → Path(X̂) is a cofibrant fibrant ap-
proximation to Path(X).

Proof. We will prove part 1; the proof of part 2 is dual.

Factor the composition X̃qX̃ → XqX → Cyl(X) as X̃qX̃ k−→ Cyl(X̃)
Cyl(i)−−−−→

Cyl(X) where k is a cofibration and Cyl(i) is a trivial fibration. Since i is a trivial
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fibration, the dotted arrow q exists in the solid arrow diagram

X̃ q X̃

k

��

1
X̃
q1

X̃ // X̃

i

��

Cyl(X̃) //

q

55

Cyl(X) // X

and the “two out of three” axiom for weak equivalences (see Definition 7.1.3) implies
that q is a weak equivalence.

If we let Path(X̃) be the pullback Path(X)×(X×X) (X̃ × X̃), then we have the
solid arrow diagram

X̃
r //

i

��

GF ED
1

X̃
×1

X̃

��

Path(X̃) //

Path(i)

��

X̃ × X̃

i×i
��

X // Path(X) // X ×X

and the universal mapping property of the pullback implies that the dotted arrow
r exists. Since i is a trivial fibration, so is i× i, and so Path(i) (which is a pullback
of i× i) is a trivial fibration. The “two out of three” axiom for weak equivalences
(see Definition 7.1.3) now implies that r is a weak equivalence. �

Proposition 8.2.4. Let M be a model category, and let f, g : X → Y be maps.

(1) If f̃ , g̃ : X̃ → Ỹ are fibrant cofibrant approximations to, respectively, f and
g, and if f and g are left homotopic, right homotopic, or homotopic, then
f̃ and g̃ are, respectively, left homotopic, right homotopic, or homotopic.

(2) If f̂ , ĝ : X̂ → Ŷ are cofibrant fibrant approximations to, respectively, f and
g, and if f and g are left homotopic, right homotopic, or homotopic, then

f̂ and ĝ are, respectively, left homotopic, right homotopic, or homotopic.

Proof. We will prove part 1; the proof of part 2 is dual.
If f and g are left homotopic, let X q X → Cyl(X) → X be a cylinder

object for X such that there is a left homotopy H : Cyl(X) → Y from f to g. If
X̃ q X̃ → Cyl(X̃) → X̃ is the cylinder object of Lemma 8.2.1, then we have the
solid arrow diagram

X̃ q X̃

��

f̃qg̃
// Ỹ

��

Cyl(X̃) //

H̃

55

Cyl(X)
H
// Y

Since Ỹ → Y is a trivial fibration, the dotted arrow H̃ exists, and is a left homotopy
from f̃ to g̃.

If f and g are right homotopic, let Y → Path(Y ) → Y × Y be a path object
for Y such that there is a right homotopy K : X → Path(Y ) from f to g. If
Ỹ → Path(Ỹ )→ Ỹ × Ỹ is the path object of Lemma 8.2.1, then we have the solid
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arrow diagram

X̃
K̃ //

��

GF ED
f̃×g̃

��

Path(Ỹ ) //

��

Ỹ × Ỹ

��

X
K
// Path(Y ) // Y × Y

Since the right hand square is a pullback, the dotted arrow K̃ exists and is a right
homotopy from f̃ to g̃. �

8.3. The homotopy category of a model category

Definition 8.3.1. If M is a category and W is a class of maps in M, then a
localization of M with respect to W is a category LWM and a functor γ : M→ LWM

such that
(1) if w ∈W, then γ(w) is an isomorphism, and
(2) if N is a category and ϕ : M → N is a functor such that ϕ(w) is an

isomorphism for every w in W, then there is a unique functor δ : LWM→
N such that δγ = ϕ.

The usual argument shows that if a localization of M with respect to W exists,
then it is unique up to a unique isomorphism. Thus, we will speak of the localization
of M with respect to W. We will often refer to the category LWM as the localization
of M with respect to W, without explicitly mentioning the functor γ.

Definition 8.3.2. If M is a model category, then the Quillen homotopy cate-
gory of M (which we will also call the homotopy category of M) is the localization of
M with respect to the class of weak equivalences, which we denote by γ : M→ Ho M.

Remark 8.3.3. If M is a small category, then the localization of M with respect
to any class W of maps in M exists. This is because we can construct the maps of
the localization using generators and relations to add inverses for the elements of
W, and we can be sure that there will only be a set of maps between two objects of
M because there is only a set of maps in all of M to begin with. If M is not small,
though, then using generators and relations might lead to a proper class of maps
between some pair of objects, in which case we would not have a category.

Restating this in terms of universes (see, e.g., [60, page 17]): If we start in a
fixed universe U, then we can attempt to construct the localization of a U-category
M with respect to a class of maps W using generators and relations. If M is not
small, though, then we could only be sure of constructing a category in some higher
universe U′. The statement that “the localization of M with respect to W exists”
is the statement that there is a category in our original universe U that is the
localization of M with respect to W.

We will show that the Quillen homotopy category of a model category M exists
(see Theorem 8.3.5) and that it is equivalent to the classical homotopy category of
M (see Definition 7.5.8 and Theorem 8.3.9). To do this, we will not use the method
of generators and relations. Instead, we will construct the set of maps between two
objects in the localization by starting with the set of maps between two objects in
the original category, and dividing that set by an equivalence relation. Thus, we
will be sure of having only a set of maps between any pair of objects.
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Lemma 8.3.4. Let M be a model category, let N be a category, and let ϕ : M→
N be a functor that takes weak equivalences in M to isomorphisms in N. If

f, g : X → Y are maps in M such that either f
l' g or f

r' g (see Definition 7.3.2),
then ϕ(f) = ϕ(g).

Proof. We will consider the case f
l' g; the case f

r' g is similar.

If f
l' g, then there is a cylinder object (see Definition 7.3.2) X q X i0qi1−−−→

Cyl(X)
p−→ X for X and a map H : Cyl(X) → Y such that Hi0 = f and Hi1 = g.

Since p is a weak equivalence, ϕ(p) is an isomorphism. Since pi0 = pi1, this implies
that ϕ(i0) = ϕ(i1). Thus, ϕ(f) = ϕ(H)ϕ(i0) = ϕ(H)ϕ(i1) = ϕ(g). �

Lemma 8.3.4 implies that a functor ϕ : M → N that takes weak equivalences
to isomorphisms must identify homotopic maps. Thus, when searching for the
Quillen homotopy category of M (see Definition 8.3.2), a natural object to consider
is the classical homotopy category of M (see Definition 7.5.8). Theorem 7.5.10
implies that if we restrict ourselves to the full subcategory of M spanned by the
cofibrant-fibrant objects, then identifying homotopic maps turns weak equivalences
into isomorphisms, and so the classical homotopy category has the required univer-
sal property restricted to this subcategory.

To deal with objects that are not cofibrant-fibrant, we note that if X̃ is weakly
equivalent to X and Ỹ is weakly equivalent to Y , then in any category in which
weak equivalences have become isomorphisms the set of maps from X to Y will be
isomorphic to the set of maps from X̃ to Ỹ . This suggests that we should choose
X̃ and Ỹ to be cofibrant-fibrant objects weakly equivalent to X and Y respectively
and define Ho M(X,Y ) to be the set of homotopy classes of maps from X̃ to Ỹ in
M. This is what we shall do to define HoM.

Theorem 8.3.5. If M is a model category, then the Quillen homotopy category
of M (see Definition 8.3.2) exists.

Proof. Choose a functorial fibrant cofibrant approximation iX : C̃X → X and
a functorial cofibrant fibrant approximation jX : X → F̂X for every object X in M

(see Proposition 8.1.17). We define the category HoM as follows:

(1) The objects of Ho M are the objects of M.
(2) If X and Y are objects in M, then Ho M(X,Y ) = π(F̂C̃X, F̂C̃Y ) (see

Notation 7.5.2).
(3) If X, Y , and Z are objects in M, then the composition

Ho M(Y, Z)×Ho M(X,Y )→ Ho M(X,Z)

is the composition of homotopy classes of maps between cofibrant-fibrant
objects in M

π(F̂C̃Y, F̂C̃Z)× π(F̂C̃X, F̂C̃Y )→ π(F̂C̃X, F̂C̃Z)

(see Theorem 7.5.5).

We define the functor γ : M→ Ho M to be the identity on the class of objects and to
take the map f : X → Y to the homotopy class of the map F̂C̃(f) : F̂C̃X → F̂C̃Y .

If f : X → Y is a weak equivalence in M, then the “two out of three” property
of weak equivalences (see Definition 7.1.3) implies that F̂C̃(f) is a weak equivalence,
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and so Theorem 7.5.10 implies that F̂C̃(f) is a homotopy equivalence, i.e., γ(f) is
an isomorphism.

It remains only to show that if ϕ : M→ N is a functor that takes weak equiv-
alences in M to isomorphisms in N, then there is a unique functor δ : Ho M → N

such that δγ = ϕ. Let ϕ : M→ N be such a functor. For every object X of Ho M,
we let δ(X) = ϕ(X). If g : X → Y is a map in HoM, then g is a homotopy class of
maps F̂C̃X → F̂C̃Y in M. Lemma 8.3.4 implies that ϕ takes all elements of that
homotopy class to the same map of N, and so we can let

δ(g) = ϕ(iY )
(
ϕ(jC̃Y )

)−1
ϕ(g)ϕ(jC̃X)

(
ϕ(iX)

)−1

(where by ϕ(g) we mean ϕ applied to some map in the homotopy class g). To see
that δ is a functor, we note that an identity map in Ho M is a homotopy class of
maps in M containing an identity map, and composition of maps between cofibrant-
fibrant objects of M is well defined on homotopy classes (see Theorem 7.5.5). Thus,
δ is a functor.

To see that δγ = ϕ, we note that γ is the identity on objects, and δ was
defined to agree with ϕ on objects. If f : X → Y is a map in M, then we have the
commutative diagram

F̂C̃X
F̂C̃(f)

// F̂C̃Y

C̃X

jC̃X

OO

C̃(f)
//

iX

��

C̃Y

jC̃Y

OO

iY

��

X
f

// Y.

Since ϕ takes weak equivalences to isomorphisms in N, we have

ϕ(f) = ϕ(iY )
(
ϕ(jC̃Y )

)−1
ϕ
(
F̂C̃(f)

)
ϕ(jC̃X)

(
ϕ(iX)

)−1
.

Since γ(f) is the homotopy class of F̂C̃(f), this implies that δγ(f) = ϕ(f).
Finally, to see that δ is the unique functor satisfying δγ = ϕ, we note that

every map of Ho M is a composition of maps in the image of γ and inverses of the
image under γ of weak equivalences of M. �

Theorem 8.3.6. If M is a model category, then there is a construction of the
Quillen homotopy category of M (see Definition 8.3.2) γ : M → Ho M such that if
X and Y are cofibrant-fibrant objects in M, then Ho M

(
γ(X), γ(Y )

)
is the set of

homotopy classes of maps in M from X to Y .

Proof. For every cofibrant object X, let C̃X = X and let iX : C̃X → X
be the identity map. For every non-cofibrant object X, factor the map from the
initial object to X into a cofibration followed by a trivial fibration to obtain a
cofibrant object C̃X and a trivial fibration iX : C̃X → X. (In the terminology of
Definition 8.1.2, we have chosen a fibrant cofibrant approximation to X.)

For every fibrant object X, let F̂X = X and let jX : X → F̂X be the identity
map. For every non-fibrant object X, factor the map from X to the terminal object
into a trivial cofibration followed by a fibration to obtain a fibrant object F̂X and
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a trivial cofibration jX : X → F̂X. (In the terminology of Definition 8.1.2, we have
chosen a cofibrant fibrant approximation to X.)

We define the category HoM as follows:
(1) The objects of Ho M are the objects of M.
(2) If X and Y are objects in M, then Ho M(X,Y ) = π(F̂C̃X, F̂C̃Y ) (see

Notation 7.5.2).
(3) If X, Y , and Z are objects in M, then the composition

Ho M(Y,Z)×Ho M(X,Y )→ Ho M(X,Z)

is the composition of homotopy classes of maps between cofibrant-fibrant
objects in M

π(F̂C̃Y, F̂C̃Z)× π(F̂C̃X, F̂C̃Y )→ π(F̂C̃X, F̂C̃Z)

(see Theorem 7.5.5).
We now define the functor γ : M→ Ho M. We let γ be the identity on the class

of objects. For every map f : X → Y in M, we have the solid arrow diagram

∅ //

��

C̃Y

iY

��

C̃X iX
//

C̃(f)

77

X
f
// Y

(where ∅ denotes the initial object of M), and we can choose a dotted arrow C̃(f)
that makes the diagram commute. (In the terminology of Definition 8.1.22, C̃(f) is
a cofibrant approximation to f .) Proposition 7.5.9 implies that C̃(f) is well defined
up to left homotopy, and so Proposition 7.4.8 implies that it is well defined up to
right homotopy. We now have the solid arrow diagram

C̃X
C̃(f)

//

jC̃X

��

C̃Y
jC̃Y // F̂C̃Y

��

F̂C̃X //

F̂C̃(f)

66

∗

(where ∗ denotes the terminal object of M), and we can choose a dotted arrow
F̂C̃(f) that makes the diagram commute. Proposition 7.5.9 implies that F̂C̃(f) is
well defined up to homotopy, and we define γ(f) to the the element of π(F̂C̃X, F̂C̃Y )
represented by F̂C̃(f) (see Theorem 7.4.9).

To see that γ is a functor, we note that for every objectX in M Proposition 7.5.9

implies that C̃(1X)
l' 1C̃X , and so C̃(1X)

r' 1C̃X , and so F̂C̃(1X) ' 1F̂C̃X . Simi-
larly, if f : X → Y and g : Y → Z are maps in M, then Proposition 7.5.9 implies

that C̃(g)C̃(f)
l' C̃(gf), and so F̂C̃(g)F̂C̃(g) ' F̂C̃(gf). Thus, we have defined the

category HoM and the functor γ : M → Ho M. The proof that γ has the required
universal property is identical to the proof in the case of Theorem 8.3.5. �

Proposition 8.3.7. If M is a model category, then there is a unique isomor-
phism from the category Ho M constructed in Theorem 8.3.5 to the category Ho M

constructed in Theorem 8.3.6 that commutes with the functors from M.

Proof. This follows from the universal property of the functors from M. �
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Theorem 8.3.8. If M is a model category, then the classical homotopy category
of M (see Definition 7.5.8) is naturally isomorphic to the full subcategory of the
Quillen homotopy category of M spanned by the cofibrant-fibrant objects.

Proof. This follows from Theorem 8.3.6. �

Theorem 8.3.9. If M is a model category, then the classical homotopy category
of M is equivalent to the Quillen homotopy category of M.

Proof. Let ν denote the embedding πMcf → Ho M described in Theorem 8.3.6.
To define η : Ho M → πMcf , let C̃ and F̂ be as in the proof of Theorem 8.3.6. If
X is an object of Ho M, let η(X) = F̂C̃X. If X and Y are objects of Ho M, then
Ho M(X,Y ) = π(F̂C̃X, F̂C̃Y ), and we let η be the “identity map” from Ho M(X,Y )
to πMcf(F̂C̃X, F̂C̃Y ).

Since ην is the identity functor of πMcf , it remains only to define a natu-
ral equivalence θ from the identity functor of Ho M to νη. If X is an object
of Ho M, then νη(X) = F̂C̃X, and so Ho M

(
X, νη(X)

)
= Ho M(X, F̂C̃X) =

π(F̂C̃X, F̂C̃F̂C̃X) = π(F̂C̃X, F̂C̃X); we let θ(X) : X → νηX be the homotopy
class of the identity map of F̂C̃X in M. �

Theorem 8.3.10. Let M be a model category and let γ : M → Ho M be the
canonical functor to it’s homotopy category. If g : X → Y is a map in M, then g is
a weak equivalence if and only if γ(g) is an isomorphism in Ho M.

Proof. If g is a weak equivalence, then the definition of Ho M implies that
γ(g) is an isomorphism. Conversely, if γ(g) is an isomorphism, then F̂C̃(g) (see
the proof of Theorem 8.3.5) is a homotopy equivalence, and so Theorem 7.8.5 and
the “two out of three” property of weak equivalences implies that g is a weak
equivalence. �

8.4. Derived functors

Definition 8.4.1. Let M be a model category, let C be a category, and let
ϕ : M→ C be a functor.

(1) A left derived functor of ϕ is a functor Lϕ : Ho M → C together with
a natural transformation ε : Lϕ ◦ γ → ϕ such that the pair (Lϕ, ε) is
“closest to ϕ from the left”, i.e., such that if G: HoM → C is a functor
and ζ : G ◦ γ → ϕ is a natural transformation, then there is a unique
natural transformation θ : G→ Lϕ such that ζ = ε(θ ◦ γ).

(2) A right derived functor of ϕ is a functor Rϕ : Ho M → C together with
a natural transformation ε : ϕ → Rϕ ◦ γ such that the pair (Rϕ, ε) is
“closest to ϕ from the right”, i.e., such that if G: Ho M→ C is a functor
and ζ : ϕ → G ◦ γ is a natural transformation, then there is a unique
natural transformation θ : Rϕ→ G such that ζ = (θ ◦ γ)ε.

Remark 8.4.2. The usual argument shows that if a left derived functor of ϕ
exists, then it is unique up to a unique natural equivalence. Thus, we will speak of
the left derived functor of ϕ. A similar remark applies to right derived functors.

Remark 8.4.3. The left derived functor of ϕ : M → C is also known as the
right Kan extension of ϕ along γ : M→ Ho M (see [47, page 232–236]). (Note the
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reversal of left and right.) Similarly, the right derived functor of ϕ : M→ C is also
known as the left Kan extension of ϕ along γ : M→ Ho M.

Proposition 8.4.4. Let M be a model category, let C be a category, and let
ϕ : M→ C be a functor.

(1) If ϕ takes trivial cofibrations between cofibrant objects to isomorphisms
in C, then the left derived functor of ϕ exists.

(2) If ϕ takes trivial fibrations between fibrant objects to isomorphisms in C,
then the right derived functor of ϕ exists.

Proof. We will prove part 1; the proof of part 2 is dual.
Let C̃ be as in the proof of Theorem 8.3.5. We define a functor D: M → C

as follows: If X is an object of M we let D(X) = ϕ(C̃X), and if f : X → Y is
a map in M we let D(f) = ϕ

(
C̃(f)

)
. To see that D is a functor, we note that

C̃(1X) = 1C̃X and so D(1X) = 1DX , and if f : X → Y and g : Y → Z are maps in
M, then C̃(g)C̃(f) = C̃(gf), and so D(g)D(f) = D(gf).

If f : X → Y is a weak equivalence in M, then C̃(f) is a weak equivalence
between cofibrant objects, and so Corollary 7.7.3 implies that D(f) is an iso-
morphism. Thus, the universal property of HoM (see Definition 8.3.2 and Def-
inition 8.3.1) implies that there is a unique functor Lϕ : Ho M → C such that
Lϕ ◦ γ = D. We define a natural transformation ε : Lϕ ◦ γ → ϕ by letting
ε(X) = ϕ(iX) : Lϕ ◦ γ(X) = D(X) = ϕ(C̃X) → ϕ(X). We will show that the
pair (Lϕ, ε) is the left derived functor of ϕ.

If G: Ho M → C is a functor and ζ : G ◦ γ → ϕ is a natural transformation,
then we have the solid arrow diagram

(8.4.5) G ◦ γ(C̃X)
ζ(C̃X)

//

(G◦γ)(iX)

��

ϕ(C̃X) = (Lϕ ◦ γ)(X)

ϕ(iX)=ε(X)

��

G ◦ γ(X)
ζ(X)

//

θ(X)
55

ϕ(X)

and so we define a natural transformation θ : G→ Lϕ by letting θ(X) =
(
ζ(C̃X)

)
◦(

(G ◦ γ)(iX)
)−1. If X is cofibrant, then ϕ(iX) is an isomorphism, and so θ(X)

is the only possible map that makes Diagram 8.4.5 commute. Since C̃X ≈ X for
every object X in HoM, this implies the uniqueness of θ in general. �

8.4.6. Total derived functors.

Definition 8.4.7. Let M and N be model categories and let ϕ : M → N be a
functor.

(1) A total left derived functor of ϕ is a left derived functor (see Defini-
tion 8.4.1) of the composition M

ϕ−→ N
νN−−→ Ho N. Thus, a total left

derived functor of ϕ is a functor Lϕ : HoM→ Ho N together with a nat-
ural transformation ε : Lϕ ◦ νM → νN ◦ ϕ such that the pair (Lϕ, ε) is
“closest to νN ◦ ϕ from the left” (see Definition 8.4.1). We will often re-
fer to Lϕ : HoM → Ho N as the total left derived functor of ϕ, without
explicitly mentioning the natural transformation ε.
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(2) A total right derived functor of ϕ is a right derived functor of the com-
position M

ϕ−→ N
νN−−→ Ho N. Thus, a total right derived functor of ϕ

is a functor Rϕ : HoM → Ho N together with a natural transformation
ε : νN ◦ϕ→ Rϕ ◦ νM such that the pair (Rϕ, ε) is “closest to νN ◦ϕ from
the right” (see Definition 8.4.1). We will often refer to Rϕ : HoM→ Ho N

as the total right derived functor of ϕ, without explicitly mentioning the
natural transformation ε.

Proposition 8.4.8. Let M and N be model categories and let ϕ : M → N be
a functor.

(1) If ϕ takes trivial cofibrations between cofibrant objects in M into weak
equivalences in N, then the total left derived functor Lϕ : Ho M → Ho N

exists.
(2) If ϕ takes trivial fibrations between fibrant objects in M into weak equiv-

alences in N, then the total right derived functor Rϕ : Ho M → Ho N

exists.

Proof. This follows from Proposition 8.4.4 and Theorem 8.3.10. �

8.5. Quillen functors and total derived functors

8.5.1. Quillen functors.

Definition 8.5.2. Let M and N be model categories and let F: M � N :U be
a pair of adjoint functors. We will say that

(1) F is a left Quillen functor,
(2) U is a right Quillen functor, and
(3) (F,U) is a Quillen pair,

if
(1) the left adjoint F preserves both cofibrations and trivial cofibrations, and
(2) the right adjoint U preserves both fibrations and trivial fibrations.

Proposition 8.5.3. If M and N are model categories and F: M � N :U is a
pair of adjoint functors, then the following are equivalent:

(1) The pair (F,U) is a Quillen pair.
(2) The left adjoint F preserves both cofibrations and trivial cofibrations.
(3) The right adjoint U preserves both fibrations and trivial fibrations.
(4) The left adjoint F preserves cofibrations and the right adjoint U preserves

fibrations.
(5) The left adjoint F preserves trivial cofibrations and the right adjoint U

preserves trivial fibrations.

Proof. This follows from Proposition 7.2.18. �

The following strengthening of Proposition 8.5.3, due to D. Dugger [26], is
useful when dealing with localizations of model category structures (see, e.g., Prop-
osition 3.3.18).

Proposition 8.5.4 (D. Dugger). If M and N are model categories and F : M �
N :U is a pair of adjoint functors, then the following are equivalent:

(1) The pair (F,U) is a Quillen pair.



154 8. FIBRANT AND COFIBRANT APPROXIMATIONS

(2) The left adjoint F preserves cofibrations between cofibrant objects and all
trivial cofibrations.

(3) The right adjoint U preserves fibrations between fibrant objects and all
trivial fibrations.

Proof. It follows directly from the definition that condition 1 implies both
condition 2 and condition 3. We will show that condition 2 implies condition 1; the
proof that condition 3 implies condition 1 is dual.

Assume that F preserves cofibrations between cofibrant objects and all trivial
cofibrations; Proposition 8.5.3 implies that it is sufficient to show that U preserves
all trivial fibrations. Let p : X → Y be a trivial fibration in N; Proposition 7.2.18
implies that Up : UX → UY is a fibration, and so we need only show that it is a
weak equivalence.

Proposition 8.1.23 implies that we can choose a fibrant cofibrant approximation
p′ : X ′ → Y ′ to Up such that p′ is a cofibration, and so we have the diagram

(8.5.5) X ′
j
//

p′

��

UX

Up

��

Y ′
k
// UY

in which X ′ and Y ′ are cofibrant, j and k are trivial fibrations, and p′ is a cofibra-
tion. We will complete the proof by showing that the image of p′ in Ho M is an
isomorphism. This will imply that p′ is a weak equivalence (see Theorem 8.3.10),
and the “two out of three” axiom (see Definition 7.1.3) will then imply that Up is
a weak equivalence.

The adjoint of Diagram 8.5.5 is the solid arrow diagram

FX ′
j]

//

Fp′

��

X

p

��

FY ′
k]

//

g
==

Y

in which Fp′ is a cofibration and p is a trivial fibration. Thus, there is a map
g : FY ′ → X such that g(Fp′) = j] and pg = k]. If g[ : Y ′ → UX is the adjoint of
g, then we have the solid arrow diagram

X ′

p′

��

X ′

j

��

Y ′
g[

//

s

==

UX

in which p′ is a cofibration and j is a trivial fibration, and so there is a map
s : Y ′ → X ′ such that sp′ = 1X′ and js = g[. We also have

kp′s = (Up)js = (Up)g[ = k = k1Y ′ .

Since k is a trivial fibration and Y ′ is cofibrant, Proposition 7.5.9 implies that

p′s
l' 1Y ′ , and so Lemma 8.3.4 implies that the image of p′s in Ho M is the identity
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map of Y ′. Since we also have sp′ = 1X′ , the image of p′ in Ho M is thus an
isomorphism, and so p′ is a weak equivalence. �

8.5.6. Total derived functors of Quillen functors.

Proposition 8.5.7. If M and N are model categories and F: M � N :U is a
Quillen pair, then

(1) F takes weak equivalences between cofibrant objects of M into weak equiv-
alences in N and

(2) U takes weak equivalences between fibrant object of N into weak equiva-
lences in M.

Proof. This follows from Corollary 7.7.2. �

Theorem 8.5.8. If M and N are model categories and F : M � N : U is a
Quillen pair, then

(1) the total left derived functor (see Definition 8.4.7) LF: HoM→ Ho N of
F exists and

(2) the total right derived functor (see Definition 8.4.7) RF: Ho M → Ho N

of U exists.

Proof. This follows from Proposition 8.4.8 and Proposition 8.5.7. �

Lemma 8.5.9. Let M and N be model categories.

(1) If F: M→ N is a left Quillen functor and g : X → Y is a map in M, then
the total left derived functor LF: HoM→ Ho N of F (see Definition 8.4.7)
takes the image in Ho M of g to the image in Ho N of F(g̃) for some

cofibrant approximation g̃ : X̃ → Ỹ to g.
(2) If F: M → N is a right Quillen functor and g : X → Y is a map in

M, then the total right derived functor RF: Ho M → Ho N of F (see
Definition 8.4.7) takes the image in Ho M of g to the image in Ho N of

F(ĝ) for some fibrant approximation ĝ : X̂ → Ŷ to g.

Proof. This follows from the proof of Proposition 8.4.4. �

Proposition 8.5.10. Let M and N be model categories.

(1) If F: M→ N is a left Quillen functor and g : X → Y is a map in M, then
the following are equivalent:
(a) The total left derived functor LF: Ho M → Ho N of F (see Theo-

rem 8.5.18) of F takes the image in Ho M of g to an isomorphism in
Ho N.

(b) The functor F takes some cofibrant approximation to g to a weak
equivalence in N.

(c) The functor F takes every cofibrant approximation to g to a weak
equivalence in N.

(2) If F: M → N is a right Quillen functor and g : X → Y is a map in M,
then the following are equivalent:
(a) The total right derived functor RF: HoM → Ho N of F (see Theo-

rem 8.5.18) of F takes the image in Ho M of g to an isomorphism in
Ho N.
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(b) The functor F takes some fibrant approximation to g to a weak equiv-
alence in N.

(c) The functor F takes every fibrant approximation to g to a weak equiv-
alence in N.

Proof. This follows from Lemma 8.5.9, Theorem 8.3.10, and Proposition 8.1.24.
�

Definition 8.5.11. Let M and N be model categories, let F: M → N be a
functor, and let g : X → Y be a map in M.

(1) If C̃ is the fibrant cofibrant approximation on M used to construct HoM

(see the proof of Theorem 8.3.5 and the proof of Theorem 8.3.6), then
we will abuse language and let LF(g) denote F

(
C̃(g)

)
, and we will call it

the left derived functor of F on g. Note that LF(g) is actually a map in
N whose image in Ho N is isomorphic to the image under the total left
derived functor LF: HoM → Ho N of F of the image in HoM of g, and
that LF(g) depends on the choice of cofibrant approximation C̃.

(2) If F̂ is the cofibrant fibrant approximation on M used to construct HoM,
then we will abuse language and let RF(g) denote F

(
F̂(g)

)
, and we will

call it the right derived functor of F on g. Note that RF(g) is actually a
map in N whose image in HoN is isomorphic to the image under the total
right derived functor RF: HoM→ Ho N of F of the image in Ho M of g,
and that RF(g) depends on the choice of fibrant approximation F̂.

8.5.12. Quillen functors and homotopy classes of maps.

Lemma 8.5.13. Let M be a model category and let iX : C̃X → X and jX : X →
F̂X be the constructions used in the proof of Theorem 8.3.5.

(1) If W is cofibrant and X is fibrant, then iX induces an isomorphism of

the sets of homotopy classes of maps (iX)∗ : π(W, C̃X)→ π(W,X) that is
natural in both W and X.

(2) If X is cofibrant and Z is fibrant, then jX induces an isomorphism of

the set of homotopy classes of maps (jX)∗ : π(F̂X,Z) → π(X,Z) that is
natural in both X and Z.

Proof. This follows from Proposition 7.5.9. �

Lemma 8.5.14. Let M and N be model categories, and let F: M � N :U be a
Quillen pair (see Definition 8.5.2).

(1) If B is a cofibrant object of M and B q B → Cyl(B) → B is a cylinder
object for B, then FB q FB → F

(
Cyl(B)

)
→ FB is a cylinder object for

FB.
(2) If X is a fibrant object of N and X → Path(X)→ X×X is a path object

for X, then UX → U
(
Path(X)

)
→ UX ×UX is a path object for UX.

Proof. We will prove part 1; the proof of part 2 is dual.
Since B is cofibrant, Lemma 7.3.7 and the “two out of three” property of

weak equivalences (see Definition 7.1.3) imply that the map F
(
Cyl(B)

)
→ FB

is a weak equivalence. Since F is a left adjoint, F(B q B) ≈ FB q FB, and so
FB q FB → F

(
Cyl(B)

)
→ FB is a cylinder object for FB. �
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Lemma 8.5.15. Let M and N be model categories and let F: M � N :U be a
Quillen pair (see Definition 8.5.2).

(1) If f, g : A → B are left homotopic maps in M and A is cofibrant, then
F(f) is left homotopic to F(g).

(2) If f, g : X → Y are right homotopic maps in N and Y is fibrant, then U(f)
is right homotopic to U(g).

Proof. This follows from Lemma 8.5.14. �

Proposition 8.5.16. Let M and N be model categories, and let F: M � N :U
be a Quillen pair (see Definition 8.5.2). If X is a cofibrant object of M and Y is a
fibrant object of N, then the adjointness isomorphism between F and U induces a
natural isomorphism of the sets of homotopy classes of maps π(FX,Y ) ≈ π(X,UY ).

Proof. The adjointness of F and U gives us a natural isomorphism of sets of
maps N(FX,Y ) ≈M(X,UY ); we must show that this passes to homotopy classes.
Theorem 7.4.9 implies that the left and right homotopy relations coincide for these
sets of maps, and Lemma 8.5.14 implies that if two maps X → UY in M are left
homotopic then the corresponding maps FX → Y are left homotopic and that if two
maps FX → Y in N are right homotopic then the corresponding maps X → UY
are right homotopic. �

8.5.17. Adjunction of total derived functors.

Theorem 8.5.18. Let M and N be model categories. If F: M � N :U is a
Quillen pair (see Definition 8.5.2), then

(1) the total left derived functor LF: HoM→ Ho N of F exists,
(2) the total right derived functor RU: Ho N→ Ho M of U exists, and
(3) the functors LF and RU are an adjoint pair.

Proof. The existence of the functors LF and RU follows from Theorem 8.5.8.
To see that LF and RU are adjoint, let X be an object of M, let Y be an object
of N, let C̃ and F̂ be the constructions in M as in the proof of Theorem 8.3.5,
and let C̃′ and F̂′ be the corresponding constructions in N; then we have natural
isomorphisms

Ho N(LFX,Y ) = Ho N
(
F(C̃X), Y

)
= π

(
F̂′C̃′F(C̃X), F̂′C̃′Y

)
≈ π

(
F(C̃X), F̂′C̃′Y

)
(see Corollary 7.7.4)

≈ π
(
F(C̃X), F̂′Y

)
(see Corollary 7.7.4)

≈ π
(
C̃X,U(F̂′Y )

)
(see Proposition 8.5.16)

≈ π
(
F̂C̃X,U(F̂′Y )

)
(see Lemma 8.5.13)

≈ π
(
F̂C̃X, F̂C̃U(F̂′Y )

)
(see Corollary 7.7.4)

= Ho M
(
X,U(F̂′Y )

)
= Ho M(X,RUY ).

�
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8.5.19. Quillen equivalences.

Definition 8.5.20. Let M and N be model categories and let F: M � N :U
be a Quillen pair (see Definition 8.5.2). We will say that

(1) F is a left Quillen equivalence,
(2) U is a right Quillen equivalence, and
(3) (F,U) is a pair of Quillen equivalences

if for every cofibrant object B in M, every fibrant object X in N, and every map
f : B → UX in M, the map f is a weak equivalence in M if and only if the
corresponding map f ] : FB → X is a weak equivalence in N.

Example 8.5.21. The geometric realization functor from SS to Top (see No-
tation 7.10.5) and the total singular complex functor from Top to SS are Quillen
equivalences.

Example 8.5.22. The geometric realization functor from SS∗ to Top∗ (see
Notation 7.10.5) and the total singular complex functor from Top∗ to SS∗ are
Quillen equivalences.

Theorem 8.5.23. Let M and N be model categories and let F: M � N :U be
a Quillen pair. If (F,U) is a pair of Quillen equivalences (see Definition 8.5.20),
then the total derived functors LF: Ho M � Ho N :RU (see Theorem 8.5.18) are
equivalences of the homotopy categories Ho M and Ho N.

Proof. Theorem 8.5.18 implies that we have adjoint functors LF: Ho M �
Ho N :RU; we must show that

(1) for every object X in HoM the natural map ηX : X → RU ◦LF(X) is an
isomorphism, and

(2) for every object Y in Ho N, the natural map εY : LF ◦RU(Y )→ Y is an
isomorphism.

We will prove part 1; the proof of part 2 is similar.
If X is an object of Ho M, then the map ηX : X → RU◦LF(X) corresponds to

the identity map 1LF(X) : LF(X)→ LF(X) under the adjunction of Theorem 8.5.18,
and that identity map is the homotopy class of the identity map of F̂′C̃′F(C̃X).
The “two out of three” property of weak equivalences implies that the correspond-
ing element of π

(
F(C̃X), F̂′F(C̃X)

)
(see the proof of Theorem 8.5.18) consists of

weak equivalences, and so our hypotheses implies that the corresponding element
of π

(
C̃X,U(F̂′F(C̃X))

)
also consists of weak equivalences. The “two out of three”

property now implies that the corresponding element of π
(
F̂C̃X, F̂C̃U(F̂′F(C̃X))

)
consists of weak equivalences, and is thus an isomorphism in Ho M. �



CHAPTER 9

Simplicial Model Categories

A simplicial category (see Definition 9.1.2) is a category M that is enriched over
simplicial sets, i.e., that comes with a simplicial set of maps Map(X,Y ) for every
pair of objects X and Y , the vertices of which are the maps from X to Y in M. A
simplicial model category M is a simplicial category that is also a model category
for which there are natural constructions of objects X ⊗ K and XK in M for X
an object of M and K a simplicial set, satisfying two axioms (see Definition 9.1.6).
The first of these axioms (M6) describes adjointness relations between X⊗K, Y K ,
and Map(X,Y ), and the second (M7) is the homotopy lifting extension theorem
for the simplicial mapping space Map(X,Y ).

We define simplicial model categories in Section 9.1, and in Section 9.2 we
discuss commuting function complexes with colimits and limits. In Section 9.3
we discuss when a map induces a weak equivalences of mapping spaces and, via
adjointness, obtain results on the tensor product and exponential constructions. In
Section 9.4 we discuss the homotopy left lifting property and the homotopy right
lifting property (see Definition 9.4.2), which are analogous to the left lifting property
and the right lifting property in not necessarily simplicial model categories.

In Sections 9.5 and 9.6 we discuss the simplicial homotopy relation for maps
in a simplicial model category. Neither the left homotopy relation nor the right
homotopy relation is well behaved for maps between objects that are not cofibrant
or fibrant. The simplicial homotopy relation, however, is an equivalence relation
by definition (see Definition 9.5.2), and it behaves well with respect to composi-
tion even when the objects are neither cofibrant nor fibrant (see Corollary 9.5.4).
Simplicial homotopy implies both left homotopy and right homotopy (see Proposi-
tion 9.5.23), and it agrees with both left homotopy and right homotopy when the
domain is cofibrant and the codomain is fibrant (see Proposition 9.5.24).

In Section 9.7 we discuss detecting when a map is a weak equivalence by exam-
ining whether it induces weak equivalences of mapping spaces, and in Section 9.8
we discuss when a functor between the underlying categories of two simplicial cat-
egories can be extended to a simplicial functor.

9.1. Simplicial model categories

9.1.1. Simplicial categories.

Definition 9.1.2. A simplicial category (or a category enriched over simplicial
sets) M is a category together with

(1) for every two objects X and Y of M a simplicial set Map(X,Y ) (which we
will call the simplicial set of maps from X to Y or the function complex
from X to Y or the simplicial mapping space from X to Y ),

159
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(2) for every three objects X, Y , and Z of M a map of simplicial sets

cX,Y,Z : Map(Y,Z)×Map(X,Y )→ Map(X,Z)

(which we will call the composition rule),
(3) for every object X of M a map of simplicial sets iX : ∗ → Map(X,X)

(where “∗” is the simplicial set consisting of a single point), and
(4) for every two objects X and Y of M an isomorphism Map(X,Y )0 ≈

M(X,Y ) that commutes with the composition rule

such that for all objects W , X, Y , and Z of M the following three diagrams com-
mute:

(
Map(Y, Z)×Map(X,Y )

)
×Map(W,X)

≈
��

cX,Y,Z×1Map(W,X)
// Map(X,Z)×Map(W,X)

cW,X,Z

��

Map(Y, Z)×
(
Map(X,Y )×Map(W,X)

)
1Map(Y,Z)×cW,Y,Z

��

Map(Y, Z)×Map(W,Y )
cW,Y,Z

// Map(W,Z)

(Associativity)

∗ ×Map(X,Y )
iY ×1Map(X,Y )

//

≈
((PPPPPPPPPPPP

Map(Y, Y )×Map(X,Y )

cX,Y,Y
uukkkkkkkkkkkkkk

Map(X,Y ) .

(Left unit)

Map(X,Y )× ∗
1Map(X,Y )×iX

//

≈
((PPPPPPPPPPPP

Map(X,Y )×Map(X,X)

cX,X,Y
uukkkkkkkkkkkkkkk

Map(X,Y )

(Right unit)

Proposition 9.1.3. Let M be a simplicial category.

(1) For each object X of M the simplicial mapping space defines a functor
Map(X,−) : M → SS that takes the object Y of M to Map(X,Y ) and
the map g : Y → Z to the map g∗ : Map(X,Y )→ Map(X,Z) that is the
composition

Map(X,Y ) ≈ ∗ ×Map(X,Y )
ig×1Map(X,Y )−−−−−−−−−→ Map(Y, Z)×Map(X,Y )

cX,Y,Z−−−−→ Map(X,Z)

where ig : ∗ → Map(Y,Z) takes the vertex of ∗ to g.
(2) For each object Y of M the simplicial mapping space defines a functor

Map(−, Y ) : Mop → SS that takes the object X of M to Map(X,Y ) and
the map f : W → X to the map f∗ : Map(X,Y ) → Map(W,Y ) that is
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the composition

Map(X,Y ) ≈ Map(X,Y )× ∗
1Map(X,Y )×if−−−−−−−−−→ Map(X,Y )×Map(W,X)

cW,X,Y−−−−−→ Map(W,Y )

where if : ∗ → Map(W,X) takes the vertex of ∗ to f .

Proof. This follows directly from the definitions. �

Example 9.1.4. Let SS denote the category of simplicial sets.
• If X and Y are simplicial sets, we let Map(X,Y ) be the simplicial set

that in degree n is the set of maps of simplicial sets from X ×∆[n] to Y ,
with face and degeneracy maps induced by the standard maps between
the ∆[n].
• If X is a simplicial set and K is a simplicial set, then we let X ⊗ K be
X ×K and we let XK be Map(K,X).

This gives SS the structure of a simplicial category.

9.1.5. Simplicial model categories.

Definition 9.1.6. A simplicial model category is a model category M that is
also a simplicial category (see Definition 9.1.2) such that the following two axioms
hold:

M6: For every two objects X and Y of M and every simplicial set K there
are objects X ⊗ K and Y K of M such that there are isomorphisms of
simplicial sets

Map(X ⊗K,Y ) ≈ Map
(
K,Map(X,Y )

)
≈ Map(X,Y K)

(see Example 9.1.4) that are natural in X, Y , and K.
M7: If i : A→ B is a cofibration in M and p : X → Y is a fibration in M, then

the map of simplicial sets

Map(B,X)
i∗×p∗−−−−→ Map(A,X)×Map(A,Y ) Map(B, Y )

(see Proposition 9.1.3) is a fibration that is a trivial fibration if either i or
p is a weak equivalence.

Remark 9.1.7. Axiom M7 of Definition 9.1.6 is the homotopy lifting extension
theorem, which was originally a theorem of D. M. Kan for categories of simplicial
objects (see [45]).

Proposition 9.1.8. Let M be a simplicial model category. If X and Y are
objects of M and K is a simplicial set, then there are natural isomorphisms of
simplicial sets

Map(X ⊗K,Y ) ≈ Map
(
K,Map(X,Y )

)
≈ Map(X,Y K)

which, in simplicial degree zero, yield natural isomorphisms of the sets of maps

M(X ⊗K,Y ) ≈ SS
(
K,Map(X,Y )

)
≈M(X,Y K) .

Proof. This follows from Definition 9.1.2 and axiom M6 of Definition 9.1.6.
�
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Proposition 9.1.9. Let M be a simplicial model category. If X and Y are
objects of M, then for every n ≥ 0 the set of n-simplices of Map(X,Y ) is naturally
isomorphic to the set of maps M(X ⊗∆[n], Y ).

Proof. Since the set of n-simplices of a simplicial set K is naturally isomor-
phic to the set of maps SS(∆[n],K), axiom M6 of Definition 9.1.6 yields natural
isomorphisms

Map(X,Y )n ≈ SS
(
∆[n],Map(X,Y )

)
≈ Map

(
∆[n],Map(X,Y )

)
0

≈ Map(X ⊗∆[n], Y )0
≈M(X ⊗∆[n], Y ) .

�

Proposition 9.1.10. If M is a simplicial model category, then for every object
X of M there are natural isomorphisms

X ⊗∆[0] ≈ X and X∆[0] ≈ X .

Proof. There are natural isomorphisms M(X ⊗ ∆[0], Y ) ≈ Map(X,Y )0 ≈
M(X,Y ) for every object Y of M (see Proposition 9.1.9), and the Yoneda lemma
implies that the composition of these is induced by a unique natural isomorphism
X ≈ X ⊗∆[0]. The second isomorphism follows in a similar manner. �

Proposition 9.1.11. If M is a simplicial model category, then for all objects
X of M and all simplicial sets K and L there are natural isomorphisms

X ⊗ (K × L) ≈ (X ⊗K)⊗ L and X(K×L) ≈ (XK)L .

Proof. Proposition 9.1.8 implies that for every object Y of M we have natural
isomorphisms

M
(
X ⊗ (K × L), Y

)
≈ SS

(
K × L,Map(X,Y )

)
≈ SS

(
L,Map

(
K,Map(X,Y )

))
≈ SS

(
L,Map(X ⊗K,Y )

)
≈M((X ⊗K)⊗ L, Y )

and the Yoneda lemma implies that the composition of these is induced by a unique
natural isomorphism X ⊗ (K × L) ≈ (X ⊗ K) ⊗ L. The proof for the second
isomorphism is similar. �

9.1.12. Examples.

Example 9.1.13. Let SS denote the model category of simplicial sets (see
Theorem 7.10.12), and give SS the simplicial category structure of Example 9.1.4.
With these definitions, SS has the structure of a simplicial model category (see [42,
Theorem 3.6.5]), or [39, Chapter I]), or [52, Chapter II, Section 3].

Example 9.1.14. Let SS∗ denote the model category of pointed simplicial sets
(see Theorem 7.10.13).

• If X and Y are pointed simplicial sets, we let Map(X,Y ) be the (un-
pointed) simplicial set that in degree n is the set of maps of pointed
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simplicial sets from X ∧ (∆[n]+) to Y , with face and degeneracy maps
induced by the standard maps between the ∆[n].
• If X is a pointed simplicial set and K is a simplicial set, then we let X⊗K

be X ×K+ and we let XK be Map(K+, X).

With these definitions, SS∗ has the structure of a simplicial model category (see
[42, Corollary 3.6.6]), or [39, Chapter I]), or [52, Chapter II, Section 3].

Example 9.1.15. Let Top denote the model category of topological spaces (see
Theorem 7.10.10).

• If X and Y are topological spaces, we let Map(X,Y ) be the simplicial
set that in degree n is the set of continuous maps from X ×

∣∣∆[n]
∣∣ to Y ,

with face and degeneracy maps induced by the standard maps between
the ∆[n].
• If X is a topological space and K is a simplicial set, then we let X ⊗K

be X ×
∣∣K∣∣ and we let XK be the space of maps from

∣∣K∣∣ to X.

With these definitions, Top has the structure of a simplicial model category (see
[42, Theorem 2.4.19]) or [52, Chapter II, Section 3].

Example 9.1.16. Let Top∗ denote the model category of pointed topological
spaces (see Theorem 7.10.11).

• If X and Y are pointed topological spaces, we let Map(X,Y ) be the
(unpointed) simplicial set that in degree n is the set of continuous maps
from X ∧

∣∣∆[n]+
∣∣ to Y , with face and degeneracy maps induced by the

standard maps between the ∆[n].
• If X is a pointed topological space and K is a simplicial set, then we let
X ⊗K be X ×

∣∣K∣∣+ and we let XK be the space of maps from
∣∣K∣∣+ to

X.

With these definitions, Top∗ has the structure of a simplicial model category (see
[42, Corollary 2.4.20]) or [52, Chapter II, Section 3].

9.2. Colimits and limits

Lemma 9.2.1. Let C be a small category and let M be a simplicial model cate-
gory.

(1) If X is a C-diagram in M and K a simplicial set, then there is a natural
isomorphism

(colim X)⊗K ≈ colim(X ⊗K) .

(2) If X is an object of M and K is a C-diagram of simplicial sets, then there
is a natural isomorphism

X ⊗ (colim K) ≈ colim(X ⊗K) .

Proof. We will prove part 1; the proof of part 2 is similar.
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If Y is an object of M, then Proposition 9.1.8 implies that we have natural
isomorphisms

M
(
(colim X)⊗K,Y

)
≈M(colim X, Y K)

≈ lim M(X, Y K)

≈ lim M(X ⊗K,Y )

≈M
(
colim(X ⊗K), Y

)
,

and the Yoneda Lemma implies that the composition of these must be induced by
a natural isomorphism (colim X)⊗K ≈ colim(X ⊗K). �

Proposition 9.2.2. If M is a simplicial model category, C is a small category, X
is a C-diagram in M, and Y is an object of M, then there are natural isomorphisms
of simplicial sets

Map(colim X, Y ) ≈ lim Map(X, Y )

Map(Y, lim X) ≈ lim Map(Y,X) .

Proof. We will prove that the first isomorphism exists; the proof that the
second exists is similar.

For every n ≥ 0, Proposition 9.1.9 and Lemma 9.2.1 yield natural isomorphisms

Map(colim X, Y )n ≈M
(
(colim X)⊗∆[n], Y

)
≈M

(
colim(X ⊗∆[n]), Y

)
≈ lim M(X ⊗∆[n], Y )

≈ lim Map(X, Y )n .

�

Corollary 9.2.3. Let M be a simplicial model category and let Y be an object
of M. If S is a set and Xs is an object of M for every s ∈ S, then there is a natural
isomorphism of simplicial sets

Map
(∐
s∈S

Xs, Y
)
≈

∏
s∈S

Map(Xs, Y ) .

Proof. This follows from Proposition 9.2.2. �

9.3. Weak equivalences of function complexes

Proposition 9.3.1. Let M be a simplicial model category.

(1) If i : A→ B is a cofibration in M and X is a fibrant object of M, then the
map i∗ : Map(B,X)→ Map(A,X) is a fibration of simplicial sets.

(2) If A is cofibrant in M and p : X → Y is a fibration in M, then the map
p∗ : Map(A,X)→ Map(A, Y ) is a fibration of simplicial sets.

Proof. This follows from axiom M7 (see Definition 9.1.6). �

Proposition 9.3.2. Let M be a simplicial model category and let X, Y , and
Z be objects of M.

(1) If X is cofibrant and g : Y → Z is a trivial fibration, then g induces a
trivial fibration of simplicial sets g∗ : Map(X,Y )→ Map(X,Z).
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(2) If Z is fibrant and h : X → Y is a trivial cofibration, then h induces a
trivial fibration of simplicial sets h∗ : Map(Y, Z)→ Map(X,Z).

Proof. This follows from axiom M7 (see Definition 9.1.6). �

Corollary 9.3.3. Let M be a simplicial model category and let X, Y , and Z
be objects of M.

(1) If X is cofibrant and g : Y → Z is a weak equivalence of fibrant objects,
then g induces a weak equivalence of simplicial sets g∗ : Map(X,Y ) →
Map(X,Z).

(2) If Z is fibrant and h : X → Y is a weak equivalence of cofibrant objects,
then h induces a weak equivalence of simplicial sets h : Map(Y, Z) →
Map(X,Z).

Proof. This follows from Proposition 9.3.2 and Corollary 7.7.2. �

9.3.4. Consequences of adjointness.

Definition 9.3.5. Let M be a simplicial model category, let A → B and
X → Y be maps in M, and let L→ K be a map of simplicial sets.

(1) The map of simplicial sets

Map(B,X) −→ Map(A,X)×Map(A,Y ) Map(B, Y )

will be called the pullback corner map of the maps A→ B and X → Y .
(2) The map

A⊗K qA⊗L B ⊗ L −→ B ⊗K
will be called the pushout corner map of the maps A→ B and L→ K.

(3) The map
XK −→ XL ×Y L Y K

will be called the pullback corner map of the maps X → Y and L→ K.

Lemma 9.3.6. Let M be a simplicial model category. If A→ B and X → Y are
maps in M and L→ K is a map of simplicial sets, then the following are equivalent:

(1) The dotted arrow exists in every solid arrow diagram of the form

L //

��

Map(B,X)

��

K //

55

Map(A,X)×Map(A,Y ) Map(B, Y ) .

(2) The dotted arrow exists in every solid arrow diagram of the form

A //

��

XK

��

B //

99

XL ×Y L Y K .

(3) The dotted arrow exists in every solid arrow diagram of the form

A⊗K qA⊗L B ⊗ L //

��

X

��

B ⊗K //

77

Y .
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Proof. This follows from Definition 9.1.6. �

Proposition 9.3.7. If M is a both a model category and a simplicial category
and M satisfies axiom M6 of Definition 9.1.6, then the following are equivalent:

(1) M satisfies axiom M7 of Definition 9.1.6 (i.e., M is a simplicial model
category).

(2) If i : A→ B is a cofibration in M and p : X → Y is a fibration in M, then
the pullback corner map Map(B,X)→ Map(A,X)×Map(A,Y ) Map(B, Y )
is a fibration of simplicial sets that is a trivial fibration if either i or p is
a weak equivalence.

(3) If i : A → B is a cofibration in M and j : L → K is an inclusion of
simplicial sets, then the pushout corner map A⊗KqA⊗LB⊗L→ B⊗K
is a cofibration in M that is a trivial cofibration if either i or j is a weak
equivalence.

(4) If j : L→ K is an inclusion of simplicial sets and p : X → Y is a fibration
in M, then the pullback corner map XK → XL ×Y L Y K is a fibration in
M that is a trivial fibration if either j or p is a weak equivalence.

Proof. Condition 2 is the definition of condition 1. The equivalence of con-
ditions 2, 3, and 4 follows from Proposition 7.2.3 and Lemma 9.3.6. �

Proposition 9.3.8. Let M be a simplicial model category.

(1) If i : A → B is a cofibration in M and j : L → K is an inclusion of
simplicial sets, then the pushout corner map A⊗KqA⊗LB⊗L→ B⊗K
is a cofibration in M that is a trivial cofibration if either i or j is a weak
equivalence.

(2) If j : L→ K is an inclusion of simplicial sets and p : X → Y is a fibration
in M, then the pullback corner map XK → XL ×Y L Y K is a fibration in
M that is a trivial fibration if either j or p is a weak equivalence.

Proof. This follows from Proposition 9.3.7. �

Proposition 9.3.9. Let M be a simplicial model category.

(1) (a) If B is a cofibrant object of M and j : L → K is an inclusion of
simplicial sets, then the map 1B⊗ j : B⊗L→ B⊗K is a cofibration
in M that is a weak equivalence if j is a weak equivalence.

(b) If i : A→ B is a cofibration in M and K is a simplicial set, then the
map j ⊗ 1K : A ⊗K → B ⊗K is a cofibration in M that is a weak
equivalence if i is a weak equivalence.

(2) (a) IfX is a fibrant object of M and j : L→ K is an inclusion of simplicial
sets, then the map (1X)j : XK → XL is a fibration in M that is a
weak equivalence if j is a weak equivalence.

(b) If p : X → Y is a fibration in M and K is a simplicial set, then the
map p(1K) : XK → Y K is a fibration in M that is a weak equivalence
if p is a weak equivalence.

Proof. This follows from Proposition 9.3.8. �

Proposition 9.3.10. Let M be a simplicial model category.

(1) If i : A → B is a cofibration and X is fibrant, then i induces a weak
equivalence of function complexes i∗ : Map(B,X) ≈ Map(A,X) if and
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only if every map A ⊗ ∆[n] qA⊗∂∆[n] B ⊗ ∂∆[n] → X can be extended
over B ⊗∆[n] for every n ≥ 0.

(2) If B is cofibrant and p : X → Y is a fibration, then p induces a weak equiv-
alence of function complexes if and only if every map B → X∂∆[n]×Y ∂∆[n]

Y ∆[n] can be factored through X∆[n] for every n ≥ 0.

Proof. We will prove part 1; the proof of part 2 is similar.
Proposition 9.3.1 implies that i∗ is a fibration, and so it is a weak equivalence

if and only if it is a trivial fibration. Since a map of simplicial sets is a trivial
fibration if and only if it has the right lifting property with respect to the maps
∂∆[n]→ ∆[n] for all n ≥ 0, the result follows from Lemma 9.3.6. �

9.4. Homotopy lifting

If M is a model category, i : A → B is a cofibration in M, p : X → Y is
a fibration in M, and at least one of i and p is also a weak equivalence, then
axiom M4 (see Definition 7.1.3) implies that (i, p) is a lifting-extension pair (see
Definition 7.2.1), i.e., that the map of sets

M(B,X) −→M(A,X)×M(A,Y ) M(B, Y )

is surjective. If M is a simplicial model category, then a stronger statement is
possible: Axiom M7 (see Definition 9.1.6) implies that, under the same hypotheses
on i and p, the map of simplicial sets

(9.4.1) Map(B,X) −→ Map(A,X)×Map(A,Y ) Map(B, Y )

is a trivial fibration. This analog for simplicial model categories of being a lifting-
extension pair is called being a homotopy lifting-extension pair (see Definition 9.4.2).

Definition 9.4.2. Let M be a simplicial model category. If i : A → B and
p : X → Y are maps for which the map of simplicial sets (9.4.1) is a trivial fibration,
then

• (i, p) is called a homotopy lifting extension pair,
• i is said to have the homotopy left lifting property with respect to p, and
• p is said to have the homotopy right lifting property with respect to i.

Proposition 9.4.3. Let M be a simplicial model category. If i : A → B and
p : X → Y are maps in M such that (i, p) is a homotopy lifting-extension pair (see
Definition 9.4.2), then (i, p) is a lifting-extension pair (see Definition 7.2.1).

Proof. This follows because a trivial fibration of simplicial sets is surjective
on the set of vertices. �

Proposition 9.4.4. Let M be a simplicial model category.

(1) A map is a cofibration if and only if it has the homotopy left lifting
property with respect to all trivial fibrations.

(2) A map is a trivial cofibration if and only if it has the homotopy left lifting
property with respect to all fibrations.

(3) A map is a fibration if and only if it has the homotopy right lifting property
with respect to all trivial cofibrations.

(4) A map is a trivial fibration if and only if it has the homotopy right lifting
property with respect to all cofibrations.
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Proof. This follows from axiom M7 (see Definition 9.1.6), Proposition 9.4.3,
and Proposition 7.2.3. �

Proposition 9.4.5. Let M be a simplicial model category and let A, B, X,
and Y be objects of M.

(1) If B is cofibrant and p : X → Y is a fibration, then p has the homotopy
right lifting property with respect to the map from the initial object to B
if and only if p induces a weak equivalence p∗ : Map(B,X) ∼= Map(B, Y ).

(2) If X is fibrant and i : A→ B is a cofibration, then i has the homotopy left
lifting property with respect to the map from X to the terminal object if
and only if i induces a weak equivalence i∗ : Map(B,X) ∼= Map(A,X).

Proof. Proposition 9.3.1 implies that both p∗ and i∗ are fibrations of simplicial
sets, and so each of p∗ and i∗ is a weak equivalence if and only if it is a trivial
fibration. �

9.4.6. Closure properties of homotopy lifting properties.

Lemma 9.4.7. Let M be a simplicial model category. If i : A→ B and p : X →
Y are maps in M, then the following are equivalent:

(1) The pair (i, p) is a homotopy lifting-extension pair (see Definition 9.4.2).
(2) For every pair of simplicial sets (K,L), the map p has the right lifting

property with respect to the pushout corner map

A⊗K qA⊗L B ⊗ L −→ B ⊗K .

(3) For every n ≥ 0, the map p has the right lifting property with respect to
the pushout corner map

A⊗∆[n]qA⊗∂∆[n] B ⊗ ∂∆[n] −→ B ⊗∆[n] .

(4) For every pair of simplicial sets (K,L), the map i has the left lifting
property with respect to the pullback corner map

XK −→ Y K ×Y L XL .

(5) For every n ≥ 0, the map i has the left lifting property with respect to
the pullback corner map

X∆[n] −→ Y ∆[n] ×Y ∂∆[n] X∂∆[n] .

Proof. Since a map of simplicial sets is a cofibration if and only if it is an
inclusion and a trivial fibration if and only if it has the right lifting property with
respect to the maps ∂∆[n] → ∆[n] for n ≥ 0, this follows from Lemma 9.3.6 and
Proposition 7.2.3. �

Proposition 9.4.8. Let M be a simplicial model category.

(1) If i : A→ B has the homotopy left lifting property with respect to p : X →
Y and (K,L) is a pair of simplicial sets, then the pushout corner map
A⊗K qA⊗L B ⊗L→ B ⊗K has the homotopy left lifting property with
respect to p.

(2) If p : X → Y has the homotopy right lifting property with respect to
i : A→ B and (K,L) is a pair of simplicial sets, then the pullback corner
map XK → Y K ×Y L XL has the homotopy right lifting property with
respect to i.
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Proof. We will prove part 2; the proof of part 1 is dual.
Lemma 9.4.7 implies that it is sufficient to show that the map

XK −→ Y K ×Y L XL

has the right lifting property with respect to the map

A⊗∆[n]qA⊗∂∆[n] B ⊗ ∂∆[n] −→ B ⊗∆[n] .

Lemma 9.3.6 implies that this is equivalent to showing that the map p : X → Y
has the right lifting property with respect to the map

(A⊗∆[n]qA⊗∂∆[n] B ⊗ ∂∆[n])⊗K q(A⊗∆[n]qA⊗∂∆[n]B⊗∂∆[n])⊗L (B ⊗∆[n])⊗ L
−→ (B ⊗∆[n])⊗K .

Lemma 9.2.1 and the isomorphisms of axiom M6 (see Definition 9.1.6) imply that
that map is isomorphic to the map

B ⊗ (∂∆[n]×K q∂∆[n]×L ∆[n]× L)qA⊗(∂∆[n]×Kq∂∆[n]×L∆[n]×L) A⊗ (∆[n]×K)

−→ B ⊗ (∆[n]×K) ,

and Lemma 9.4.7 implies that that map has the left lifting property with respect
to p. �

Lemma 9.4.9. Let M be a simplicial model category and let p be a map in M.

(1) The class of maps with the homotopy left lifting property with respect to
p is closed under pushouts.

(2) The class of maps with the homotopy right lifting property with respect
to p is closed under pullbacks.

Proof. This follows from Lemma 9.4.7 and Lemma 7.2.11. �

Lemma 9.4.10. Let M be a simplicial model category and let p be a map in M.

(1) The class of maps with the homotopy left lifting property with respect to
p is closed under retracts.

(2) The class of maps with the homotopy right lifting property with respect
to p is closed under retracts.

Proof. This follows from Lemma 9.4.7 and Lemma 7.2.8. �

9.4.11. Homotopy lifting and lifting.

Proposition 9.4.12. Let M be a simplicial model category and let C be a class
of maps in M.

(1) If every map g : X → Y in M can be factored as X
j−→ W

p−→ Y where p
is in C and j has the homotopy left lifting property with respect to every
map in C, then a map has the left lifting property with respect to every
map in C if and only if it has the homotopy left lifting property with
respect to every map in C.

(2) If every map g : X → Y in M can be factored as X
j−→W

p−→ Y where j is
in C and p has the homotopy right lifting property with respect to every
map in C, then a map has the right lifting property with respect to every
map in C if and only if it has the homotopy right lifting property with
respect to every map in C.
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Proof. We will prove part 1; the proof of part 2 is dual.
Proposition 9.4.3 implies that if a map has the homotopy left lifting property

with respect to every map in C then it has the left lifting property with respect to
every map in C.

Conversely, if the map g : X → Y has the left lifting property with respect to
every map in C, factor g as X

j−→ W
p−→ Y where p is in C and j has the homotopy

left lifting property with respect to every map in C. The retract argument (see
Proposition 7.2.2) implies that g is a retract of j, and so the result follows from
Lemma 9.4.10. �

9.5. Simplicial homotopy

9.5.1. Definitions. If X is cofibrant and Y is fibrant then all notions of ho-
motopy for maps from X to Y coincide and are equivalence relations (see Propo-
sition 9.5.24), but this is not true for arbitrary objects X and Y . Thus, it is often
useful to consider the simplicial homotopy relation (see Definition 9.5.2). The sim-
plicial homotopy relation is an equivalence relation by definition, it is always well
behaved under composition (see Corollary 9.5.4), and simplicial homotopy implies
both left homotopy and right homotopy (see Proposition 9.5.23). In addition, sim-
plicially homotopic maps of simplicial sets induce simplicially homotopic maps in
a simplicial model category (see Lemma 9.5.17).

Definition 9.5.2. Let M be a simplicial model category, let X and Y be
objects of M, and let g and h be maps from X to Y (i.e., vertices of Map(X,Y );
see Definition 9.1.6 and Definition 9.1.2).

(1) g is strictly simplicially homotopic to h (denoted g
ss' h) if there is a 1-

simplex of Map(X,Y ) whose initial vertex is g and whose final vertex is
h, i.e., if there is a map F : X ⊗ ∆[1] → Y such that the composition
X ≈ X ⊗ ∆[0] 1X⊗i0−−−−→ X ⊗ ∆[1] F−→ Y equals g and the composition
X ≈ X ⊗∆[0] 1X⊗i1−−−−→ X ⊗∆[1] F−→ Y equals h (see Proposition 9.1.9).

(2) g and h are simplicially homotopic (denoted g
s' h) if they are equivalent

under the equivalence relation generated by the relation of strict simplicial
homotopy.

Proposition 9.5.3. Let M be a simplicial model category and let X and Y be

objects of M. If g and h are maps from X to Y , then g
s' h if and only if g and h

are in the same component of the simplicial set Map(X,Y ).

Proof. This follows directly from the definitions. �

Corollary 9.5.4. Let M be a simplicial model category and let W , X, Y , and
Z be objects of M. If g, h : X → Y are simplicially homotopic maps and j : W → X

and k : Y → Z are maps, then kg
s' kh and gj

s' hj.

Proof. This follows from Proposition 9.5.3. �

Definition 9.5.5. A generalized interval is a simplicial set that is a union of
finitely many one simplices with vertices identified so that its geometric realization
is homeomorphic to a unit interval. If J is a generalized interval, we will let i0 and
i1 denote the inclusions of ∆[0] into J at the two end vertices of J .
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Proposition 9.5.6. Let M be a simplicial model category and let X and Y
be objects of M. If g and h are maps from X to Y , then g and h are simplicially
homotopic if and only if there is a generalized interval J (see Definition 9.5.5) and
a map of simplicial sets J → Map(X,Y ) taking the ends of J to g and h.

Proof. This follows from Proposition 9.5.3. �

Definition 9.5.7. A map J → Map(X,Y ) as in Proposition 9.5.6 will be
called a simplicial homotopy from g to h. The maps X⊗J → Y and X → Y J that
correspond under the isomorphisms of Definition 9.1.6 will also be called simplicial
homotopies from g to h.

Definition 9.5.8. Let M be a simplicial model category. The map g : X → Y

is a simplicial homotopy equivalence if there is a map h : Y → X such that gh
s' 1Y

and hg
s' 1X .

In general, strict simplicial homotopy need not be an equivalence relation, since
Map(X,Y ) need not be a fibrant simplicial set. In Top(∗), however, Map(X,Y ) is
isomorphic to the total singular complex of the topological space (in our category
of spaces) of continuous functions from X to Y , and so it is always a fibrant sim-
plicial set. (Strict simplicial homotopy in Top(∗) is exactly the classical definition
of homotopy which is, of course, always an equivalence relation.) In SS(∗) every
space is cofibrant, and so Map(X,Y ) will be a fibrant simplicial set if Y is a fibrant
space.

9.5.9. Isomorphisms of simplicial homotopy classes of maps.

Proposition 9.5.10. Let M be a simplicial model category, let g : X → Y be
a map in M, and let W be an object of M.

(1) If g induces a weak equivalence of simplicial mapping spaces

g∗ : Map(W,X) ∼= Map(W,Y ) ,

then g induces an isomorphism of the sets of simplicial homotopy classes
of maps g∗ : [W,X] ≈ [W,Y ].

(2) If g induces a weak equivalence of simplicial mapping spaces

g∗ : Map(Y,W ) ∼= Map(X,W ) ,

then g induces an isomorphism of the sets of simplicial homotopy classes
of maps g∗ : [Y,W ] ≈ [X,W ].

Proof. This follows from Proposition 9.5.3. �

Corollary 9.5.11. Let M be a simplicial model category and let X, Y , and
W be objects of M.

(1) IfW is cofibrant and g : X → Y is a trivial fibration, then g induces an iso-
morphism of the sets of simplicial homotopy classes of maps g∗ : [W,X] ≈
[W,Y ].

(2) IfW is fibrant and g : X → Y is a trivial cofibration, then g induces an iso-
morphism of the sets of simplicial homotopy classes of maps g∗ : [Y,W ] ≈
[X,W ].

Proof. This follows from Proposition 9.3.2 and Proposition 9.5.10. �
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Corollary 9.5.12. Let M be a simplicial model category and let X, Y , and
W be objects of M.

(1) If W is cofibrant and g : X → Y is a weak equivalence of fibrant objects,
then g induces an isomorphism of the sets of simplicial homotopy classes
of maps g∗ : [W,X] ≈ [W,Y ].

(2) If W is fibrant and g : X → Y is a weak equivalence of cofibrant objects,
then g induces an isomorphism of the sets of simplicial homotopy classes
of maps g∗ : [Y,W ] ≈ [X,W ].

Proof. This follows from Corollary 9.3.3 and Proposition 9.5.10. �

9.5.13. Simplicial homotopy, left homotopy, and right homotopy.

Lemma 9.5.14. Let M be a simplicial model category and let J be a generalized
interval (see Definition 9.5.5) with endpoint inclusions i0 : ∆[0]→ J and i1 : ∆[0]→
J .

(1) If X is a cofibrant object of M, then

X qX ≈ (X ⊗∆[0])q (X ⊗∆[0])
(1X⊗i0)q(1X⊗i1)−−−−−−−−−−−→ X ⊗ J → X ⊗∆[0] ≈ X

is a cylinder object for X (see Definition 7.3.2).
(2) If Y is a fibrant object of M, then

Y ≈ Y ∆[0] → Y J
(1Y )i0×(1Y )i1

−−−−−−−−−→ Y ∆[0] × Y ∆[0] ≈ Y × Y

is a path object for Y (see Definition 7.3.2).

Proof. We will prove part 1; the proof of part 2 is dual.
Since ∆[0] q∆[0] i0qi1−−−→ J is a cofibration of simplicial sets, Proposition 9.3.9

implies that our mapXqX → X⊗J is a cofibration. Since the inclusion i0 : ∆[0]→
J is a trivial cofibration of simplicial sets, Proposition 9.3.9 also implies that the
map X ⊗ ∆[0] → X ⊗ J is a trivial cofibration, and so the “two out of three”
property of weak equivalences (see axiom M2 of Definition 7.1.3) implies that the
composition X ⊗ J → X ⊗∆[0] ≈ X is a weak equivalence. �

Lemma 9.5.15. Let M be a simplicial model category and let X and Y be
objects of M. If f, g : X → Y are simplicially homotopic maps, then f and g
represent the same map in the homotopy category of M.

Proof. If f and g are simplicially homotopic, then there is a generalized
interval J (see Definition 9.5.5) and a simplicial homotopy H : X → Y J such
that ev0H = f and ev1H = g. If we choose fibrant cofibrant approximations
pX : X̃ → X and pY : Ỹ → Y (see Definition 8.1.2), then we have the solid arrow
diagram

Ỹ J

(pY )(1J )

��

X̃ pX

//

H̃

77

X
H
// Y J

in which (pY )(1J ) : Ỹ J → Y J is a trivial fibration (see Proposition 9.3.9) and X̃

is cofibrant. Thus, the dotted arrow H̃ exists, and we can define f̃ , g̃ : X̃ → Ỹ by
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letting f̃ = ev0 H̃ and g̃ = ev1 H̃. We then have fpX = ev0HpX = ev0(pY )(1J )H̃ =
pY ev0 H̃ = pY f̃ and so fpX = pY f̃ . Similarly, gpX = pY g̃.

Since X̃ is cofibrant, X̃ ⊗ J is a cylinder object for X̃ (see Lemma 9.5.14),
and so if we let H̃ad : X̃ ⊗ J → Ỹ be the map adjoint to H̃ : X̃ → Ỹ J then
H̃ad is a left homotopy from f̃ to g̃. Thus, if we use square brackets to denote
the image of a map in Ho M, then Lemma 8.3.4 implies that [f̃ ] = [g̃]. Thus,
we have [pY ]−1[f ][pX ] = [pY ]−1[g][pX ] and, since [pX ] and [pY ] are isomorphisms,
[f ] = [g]. �

Proposition 9.5.16. If M is a simplicial model category, then a simplicial
homotopy equivalence in M is a weak equivalence in M.

Proof. If f : X → Y is a simplicial homotopy equivalence in M then there is
a map g : Y → X such that gf

s' 1X and fg
s' 1Y . Lemma 9.5.15 implies that

the images of f and g in the homotopy category of M are isomorphisms, and so
Theorem 8.3.10 implies that f and g are weak equivalences. �

Lemma 9.5.17. Let M be a simplicial model category. If K and L are simplicial
sets and f, g : K → L are simplicially homotopic maps, then for every object X of
M

(1) the induced maps 1X ⊗ f, 1X ⊗ g : X ⊗ K → X ⊗ L are simplicially
homotopic, and

(2) the induced maps (1X)f , (1X)g : XL → XK are simplicially homotopic.

Proof. Let J be a generalized interval (see Definition 9.5.5) such that there
is a simplicial homotopy H : K ⊗ J → L from f to g (see Definition 9.5.7). The
map 1X ⊗H : X ⊗ (K × J) = (X ⊗K)⊗ J → X ⊗L is then a simplicial homotopy
from 1X ⊗ f to 1X ⊗ g and the map (1X)H : XL → X(K×J) = (XK)J is then a
simplicial homotopy from (1X)f to (1X)g. �

Proposition 9.5.18. Let M be a simplicial model category. If K and L are
simplicial sets and f : K → L is a simplicial homotopy equivalence, then for every
object X of M

(1) the induced map 1X ⊗ f : X ⊗ K → X ⊗ L is a simplicial homotopy
equivalence, and

(2) the induced map (1X)f : XL → XK is a simplicial homotopy equivalence.

Proof. This follows from Lemma 9.5.17. �

Lemma 9.5.19. If n ≥ 0, then the inclusion of ∆[0] into ∆[n] as either the initial
vertex or the final vertex is the inclusion of a simplicial strong deformation retract.

Proof. We will prove this for the inclusion as the initial vertex; the proof for
the inclusion as the final vertex is similar.

We will define a homotopy H : ∆[n] × ∆[1] → ∆[n] such that the restriction
of H to the initial end of ∆[1] is the constant map from ∆[n] to its initial vertex
and the restriction of H to the terminal end of ∆[1] is the identity map of ∆[n].
If k ≥ 0 then a k-simplex of ∆[n] is a (k + 1)-tuple of integers (i0, i1, . . . , ik) such
that 0 ≤ i0 ≤ i1 ≤ · · · ≤ ik ≤ n. Thus, a k-simplex of ∆[n] × ∆[1] is an ordered
pair

(
(i0, i1, . . . , ik), (j0, j1, . . . , jk)

)
such that 0 ≤ i0 ≤ i1 ≤ · · · ≤ ik ≤ n and there

is an integer `, 0 ≤ ` ≤ k + 1, such that jm = 0 for m < ` and jm = 1 for m ≥ `,
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and we let H
(
(i0, i1, . . . , ik), (j0, j1, . . . , jk)

)
= (0, 0, 0, . . . , 0, i`, i`+1, . . . , ik). (That

is, we replace im by 0 for every m such that jm = 0.) It follows directly from
the definition that H commutes with face and degeneracy operators and that its
restrictions to the two ends of ∆[1] are as required. �

Proposition 9.5.20. If M is a simplicial model category, X is an object of M,
and n ≥ 0, then the maps X ⊗∆[0] → X ⊗∆[n] and X∆[n] → X∆[0] induced by
the inclusion of ∆[0] as the initial vertex of ∆[n] are weak equivalences.

Proof. Lemma 9.5.19 and Proposition 9.5.18 imply that these maps are sim-
plicial homotopy equivalences, and so the result follows from Proposition 9.5.16. �

Lemma 9.5.21. If J is a generalized interval (see Definition 9.5.5) then the
inclusion of ∆[0] into J at any vertex of J is a simplicial homotopy equivalence.

Proof. This follows from Lemma 9.5.19 by induction on the number of non-
degenerate 1-simplices of J . �

Lemma 9.5.22. Let M be a simplicial model category and let J be a generalized
interval (see Definition 9.5.5). If X is an object of M, then

(1) a map X → X ⊗ J induced by the inclusion of ∆[0] as a vertex of J is a
weak equivalence, and

(2) a map XJ → X induced by the inclusion of ∆[0] as a vertex of J is a
weak equivalence.

Proof. This follows from Lemma 9.5.21, Proposition 9.5.18, and Proposi-
tion 9.5.16. �

Proposition 9.5.23. Let M be a simplicial model category and let X and Y
be objects of M. If f, g : X → Y are maps that are simplicially homotopic, then
they are both left homotopic and right homotopic.

Proof. If f and g are simplicially homotopic, then there is a generalized in-
terval J and simplicial homotopies H : X ⊗ J → Y and H ′ : X → Y J from f
to g (see Definition 9.5.7). The result now follows from Proposition 7.3.5 and
Lemma 9.5.22. �

Proposition 9.5.24. Let M be a simplicial model category and let X and Y
be objects of M.

(1) If g, h : X → Y are simplicially homotopic then they are both left homo-
topic and right homotopic.

(2) If X is cofibrant and Y is fibrant, then the strict simplicial, simplicial, left,
and right homotopy relations on the set of maps from X to Y coincide
and are equivalence relations.

Proof. This follows from Proposition 9.5.23, Lemma 9.5.14, Proposition 7.4.7,
and Theorem 7.4.9. �
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9.6. Uniqueness of lifts

Proposition 9.6.1. Let M be a simplicial model category. If we have the solid
arrow diagram

A //

i

��

X

p

��

B //

h

>>

Y

in M and if i : A → B has the homotopy left lifting property with respect to
p : X → Y (see Definition 9.4.2), then there exists a map h : B → X making both
triangles commute, and the map h is unique up to simplicial homotopy.

Proof. This follows from Definition 9.4.2 and Proposition 9.5.3. �

Corollary 9.6.2. Let M be a simplicial model category. If we have the solid
arrow diagram

A
j
//

i

��

C

p

��

B q
//

h

>>

D

in M and if both i and j have the homotopy left lifting property with respect to each
of p and q, then there exists a map h : B → C, unique up to simplicial homotopy,
such that hi = j and ph = q, and any such map is a simplicial homotopy equivalence.

Proof. This follows from Proposition 9.6.1. �

Lemma 9.6.3. If M is a simplicial model category, then an isomorphism in M

has both the homotopy left lifting property and the homotopy right lifting property
with respect to every map in M.

Proof. This follows from the fact that an isomorphism induces an isomor-
phism of the simplicial set of maps from (or to) any fixed object. �

Proposition 9.6.4. Let M be a simplicial model category and let g : X → Y
be a map in M.

(1) If g has the homotopy left lifting property with respect to the maps from
each of X and Y to the terminal object of the category, then g is the
inclusion of a strong deformation retract, i.e., there is a map r : Y → X

such that rg = 1X and gr
s' 1Y , where the simplicial homotopy (see

Definition 9.5.7) is constant on X.
(2) If g has the homotopy right lifting property with respect to the maps from

the initial object of the category to each of X and Y , then there is a map

s : Y → X such that gs = 1Y and sg
s' 1X , where the simplicial homotopy

(see Definition 9.5.7) lies over the identity map of Y .

Proof. We will prove part 1; the proof of part 2 is similar.
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We have the solid arrow diagram

X

g

��

X

��

Y

r

>>

// ∗

(in which “∗” is the terminal object of the category), and so Corollary 9.6.2 and
Lemma 9.6.3 imply that there exists a map r : Y → X such that rg = 1X . Thus,
we can construct the solid arrow diagram

X ⊗∆[1]qX⊗∂∆[1] Y ⊗ ∂∆[1] //

��

Y

��
Y ⊗∆[1]

s

66

// ∗

in which the top map is the composition X ⊗ ∆[1] → X ⊗ ∆[0] ≈ X
g−→ Y on

X⊗∆[1] and grq1Y on Y ⊗∂∆[1]. Proposition 9.4.8 implies that the vertical map
on the left has the homotopy left lifting property with respect to the vertical map on
the right, and so Proposition 9.4.3 implies that the dotted arrow s : Y ⊗∆[1]→ Y
exists. �

Corollary 9.6.5. Let M be a simplicial model category and let g : X → Y be
a map in M.

(1) If both X and Y are fibrant and g is a trivial cofibration, then g is a
simplicial homotopy equivalence. In particular, g is the inclusion of a
strong deformation retract.

(2) If both X and Y are cofibrant and g is a trivial fibration, then g is a
simplicial homotopy equivalence. In particular, g has a right inverse that
is a simplicial homotopy inverse.

Proof. This follows from Proposition 9.6.4. �

9.6.6. Weak equivalences of simplicial mapping spaces. It should be
noted that none of the results of this section make any assumption that any object
is cofibrant or fibrant.

Proposition 9.6.7. Let M be a simplicial model category and let W , X, and

Y be objects of M. If g, h : X → Y are simplicially homotopic maps, then g∗
s'

h∗ : Map(W,X)→ Map(W,Y ) and g∗
s' h∗ : Map(Y,W )→ Map(X,W ).

Proof. Let X → Y J be a simplicial homotopy from g to h (where J is
a generalized interval; see Definition 9.5.7). This induces the map of simplicial
sets Map(W,X) → Map(W,Y J), which corresponds to a map Map(W,X) →
Map(W ⊗ J, Y ), which corresponds to a map Map(W,X) → Map

(
J,Map(W,Y )

)
,

which corresponds to a map Map(W,X) ⊗ J → Map(W,Y ), which is a simplicial
homotopy from g∗ to h∗.

The second assertion is proved similarly, starting with a simplicial homotopy
X ⊗ J → Y . �

Corollary 9.6.8. Let M be a simplicial model category and let X and Y be
objects of M. If g : X → Y is a simplicial homotopy equivalence, then for any
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object W of M the maps g∗ : Map(W,X) → Map(W,Y ) and g∗ : Map(Y,W ) →
Map(X,W ) are simplicial homotopy equivalences of simplicial sets.

Proof. This follows from Proposition 9.6.7. �

Proposition 9.6.9. Let M be a simplicial model category. If g : X → Y is a
map in M, then g is a simplicial homotopy equivalence if either of the following two
conditions is satisfied:

(1) The map g induces isomorphisms of the sets of simplicial homotopy classes
of maps g∗ : [X,X] ≈ [X,Y ] and g∗ : [Y,X] ≈ [Y, Y ].

(2) The map g induces isomorphisms of the sets of simplicial homotopy classes
of maps g∗ : [Y,X] ≈ [X,X] and g∗ : [Y, Y ] ≈ [X,Y ].

Proof. We will prove this using condition 1; the proof using condition 2 is
similar.

The isomorphism g∗ : [Y,X] ≈ [Y, Y ] implies that there is a map h : Y → X

such that gh
s' 1Y . Corollary 9.5.4 and the isomorphism g∗ : [X,X] ≈ [X,Y ] now

imply that h induces an isomorphism h∗ : [X,Y ] ≈ [X,X], and so there is a map
k : X → Y such that hk

s' 1X . Thus, g = g1X
s' ghk

s' 1Y k = k, and so g is a
simplicial homotopy equivalence whose inverse is h. �

Proposition 9.6.10. Let M be a simplicial model category. If g : X → Y is
a map in M, then g is a simplicial homotopy equivalence if either of the following
two conditions is satisfied:

(1) The map g induces weak equivalences of simplicial sets g∗ : Map(X,X) ∼=
Map(X,Y ) and g∗ : Map(Y,X) ∼= Map(Y, Y ).

(2) The map g induces weak equivalences of simplicial sets g∗ : Map(Y,X) ∼=
Map(X,X) and g∗ : Map(Y, Y ) ∼= Map(X,Y ).

Proof. This follows from Proposition 9.6.9 and Proposition 9.5.10. �

9.7. Detecting weak equivalences

Proposition 9.7.1. Let M be a simplicial model category. If g : X → Y is a
map in M, then g is a weak equivalence if either of the following two conditions is
satisfied:

(1) For every fibrant object Z the map of function spaces g∗ : Map(Y, Z) →
Map(X,Z) is a weak equivalence of simplicial sets.

(2) For every cofibrant objectW the map of function spaces g∗ : Map(W,X)→
Map(W,Y ) is a weak equivalence of simplicial sets.

Proof. We will prove part 1; the proof of part 2 is dual.
Choose cofibrant fibrant approximations (see Definition 8.1.2) jX : X → X̂ and

jY : Y → Ŷ and a fibrant approximation ĝ : X̂ → Ŷ to g (see Definition 8.1.22). If
Z is a fibrant object, then we have the commutative square

Map(Ŷ , Z)
ĝ∗
//

(jY )∗

��

Map(X̂, Z)

(jX)∗

��

Map(Y, Z)
g∗
// Map(X,Z)
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in which all the maps except ĝ∗ are weak equivalences of simplicial sets (see Prop-
osition 9.3.2). This implies that ĝ∗ is also a weak equivalence, and so Proposi-
tion 9.6.10 implies implies that ĝ is a simplicial homotopy equivalence. Thus, ĝ is a
weak equivalence, and so the “two out of three” property implies that g is a weak
equivalence. �

Proposition 9.7.2. Let M be a simplicial model category, let g : X → Y be a
map in M, and let W be an object of M.

(1) IfW is cofibrant and if ĝ : X̂ → Ŷ is a fibrant approximation to g (see Defi-

nition 8.1.22) such that the induced map of simplicial sets ĝ∗ : Map(W, X̂)→
Map(W, Ŷ ) is a weak equivalence, then for any other fibrant approxima-

tion ĝ′ : X̂ ′ → Ŷ ′ to g the induced map of simplicial sets ĝ′∗ : Map(W, X̂ ′)→
Map(W, Ŷ ′) is a weak equivalence.

(2) IfW is fibrant and if g̃ : X̃ → Ỹ is a cofibrant approximation to g (see Defi-

nition 8.1.22) such that the induced map of simplicial sets g̃∗ : Map(Ỹ ,W )→
Map(X̃,W ) is a weak equivalence, then for any other cofibrant approxima-

tion g̃′ : X̃ ′ → Ỹ ′ to g the induced map of simplicial sets (g̃′)∗ : Map(Ỹ ′,W )→
Map(X̃ ′,W ) is a weak equivalence.

Proof. This follows from Proposition 8.1.24 and Proposition 9.3.2. �

Proposition 9.7.3. Let M be a simplicial model category, let f : X → Y be a
map in M, and let W be an object of M.

(1) If X and Y are fibrant and W̃ → W is a cofibrant approximation to W

such that the induced map of simplicial sets f∗ : Map(W̃ ,X)→ Map(W̃ , Y )
is a weak equivalence, then for any other cofibrant approximation W̃ ′ →
W toW the induced map of simplicial sets f∗ : Map(W̃ ′, X)→ Map(W̃ ′, Y )
is a weak equivalence.

(2) If X and Y are cofibrant and W → Ŵ is a fibrant approximation to W

such that the induced map of simplicial sets f∗ : Map(Y, Ŵ )→ Map(X, Ŵ )
is a weak equivalence, then for any other fibrant approximation W → Ŵ ′

to W the induced map of simplicial sets f∗ : Map(Y, Ŵ ′)→ Map(X, Ŵ ′)
is a weak equivalence.

Proof. We will prove part 1; the proof of part 2 is dual.
Choose a fibrant cofibrant approximationW →W toW (see Proposition 8.1.17).

There are maps of cofibrant approximations (see Definition 8.1.4) W̃ → W and
W̃ ′ → W , both of which are weak equivalences (see Proposition 8.1.7). Thus, we
have the diagram

Map(W̃ ′, X)

��

Map(W,X)
∼=oo

��

∼= // Map(W̃ ,X)

��

Map(W̃ ′, Y ) Map(W,Y )∼=
oo

∼=
// Map(W̃ , Y )

and Corollary 9.3.3 implies that all the horizontal maps are weak equivalences. �



9.8. SIMPLICIAL FUNCTORS 179

Theorem 9.7.4. If g : X → Y is a map in a simplicial model category, then the
following are equivalent:

(1) The map g is a weak equivalence.

(2) For some fibrant approximation ĝ : X̂ → Ŷ to g (see Definition 8.1.22) and

every cofibrant object W the map of simplicial sets ĝ∗ : Map(W, X̂) →
Map(W, Ŷ ) is a weak equivalence.

(3) For every fibrant approximation ĝ : X̂ → Ŷ to g and every cofibrant object

W the map of simplicial sets ĝ∗ : Map(W, X̂) → Map(W, Ŷ ) is a weak
equivalence.

(4) For some cofibrant approximation g̃ : X̃ → Ỹ to g (see Definition 8.1.22)

and every fibrant object Z the map of simplicial sets g̃∗ : Map(Ỹ , Z) →
Map(X̃, Z) is a weak equivalence.

(5) For every cofibrant approximation g̃ : X̃ → Ỹ to g and every fibrant object

Z the map of simplicial sets g̃∗ : Map(Ỹ , Z) → Map(X̃, Z) is a weak
equivalence.

Proof. Proposition 9.7.2 implies that 2 is equivalent to 3 and that 4 is equiv-
alent to 5. Proposition 9.7.1 implies that any of 2, 3, 4, or 5 implies 1, and Corol-
lary 9.3.3 implies that 1 implies both 2 and 4. �

Corollary 9.7.5. Let M be a simplicial model category and let g : X → Y be
a map in M.

(1) If X and Y are fibrant, then g is a weak equivalence if and only if for
every cofibrant object W in M the map g∗ : Map(W,X)→ Map(W,Y ) is
a weak equivalence of simplicial sets.

(2) If X and Y are cofibrant, then g is a weak equivalence if and only if for
every fibrant object Z in M the map g∗ : Map(Y,Z) → Map(X,Z) is a
weak equivalence of simplicial sets.

Proof. This follows from Theorem 9.7.4. �

9.8. Simplicial functors

Definition 9.8.1. If M and N are simplicial model categories, then a simplicial
functor F from M to N consists of

(1) an object F(X) of N for every object X of M and
(2) for every two objects X and Y of M a map of simplicial sets

FX,Y : Map(X,Y )→ Map(FX,FY )

such that for all objects X, Y , and Z of M the following two diagrams
commute:

Map(Y,Z)×Map(X,Y )
cX,Y,Z

//

FY,Z×FX,Y

��

Map(X,Z)

FX,Z

��

Map(FY,FZ)×Map(FX,FY )
cFX,FY,FZ

// Map(FX,FZ)
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∗ iX //

iFX %%K
KKKKKKKKKK Map(X,X)

FX,Xvvnnnnnnnnnnnn

Map(FX,FX) .

If M and N are simplicial model categories and F: M→ N is a functor between
the underlying categories of M and N, then we often want to consider whether F
can be extended to a simplicial functor, i.e., whether the definition of F can be
extended to define a natural map of simplicial sets

(9.8.2) Map(X,Y )→ Map(FX,FY )

that is compatible with composition and with the isomorphisms Map(X,Y )0 ≈
M(X,Y ) and Map(FX,FY )0 ≈ N(FX,FY ).

If F is to be a simplicial functor, then given an n-simplex in Map(X,Y ), i.e.,
a map α : X ⊗ ∆[n] → Y (see Proposition 9.1.9), we must assign to it an n-
simplex of Map(FX,FY ), i.e., a map FX ⊗ ∆[n] → FY . We can attempt to use
F(α) : F(X ⊗∆[n])→ FY , but then we need a map

σ : FX ⊗∆[n]→ F(X ⊗∆[n])

to compose with F(α). If we ensure that σ yields a natural isomorphism σ : FX ⊗
∆[0] ≈ F(X⊗∆[0]) that commutes with the natural isomorphisms FX⊗∆[0] ≈ FX
and X ⊗ ∆[0] ≈ X (see Proposition 9.1.10), then the map (9.8.2) would be an
extension of F on Map(X,Y )0 ≈M(X,Y ). This would allow us to define the map
(9.8.2) for each pair of objects X and Y , but even if we require that σ be natural
in both X and ∆[n], we still could not be sure that the function (9.8.2) commutes
with composition of functions, i.e., that the diagram

Map(X,Y )×Map(Y, Z) //

��

Map(X,Z)

��

Map(FX,FY )×Map(FY,FZ) // Map(FX,FZ)

commutes. For this, σ must have an additional property.
Given n-simplices α ∈ Map(X,Y )n and β ∈ Map(Y, Z)n, i.e., functions α : X⊗

∆[n] → Y and β : Y ⊗∆[n] → Z, their composition in Map(X,Z)n is the compo-
sition

X ⊗∆[n] 1⊗D−−−→ X ⊗ (∆[n]×∆[n]) ≈ (X ⊗∆[n])⊗∆[n] α⊗1−−−→ Y ⊗∆[n]
β−→ Z

(where D : ∆[n] → ∆[n] ×∆[n] is the diagonal map). If we apply F and compose
with the natural transformation σ, then we get the n-simplex

FX ⊗∆[n] σ−→ F(X ⊗∆[n])
F(1⊗D)−−−−−→ F

(
X ⊗ (∆[n]×∆[n])

)
≈ F

(
(X ⊗∆[n])⊗∆[n]

)
F(α⊗1)−−−−−→ F(Y ⊗∆[n])

F(β)−−−→ F(Z)
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of Map(FX,FZ). Since σ is natural, this can also be written as the composition

(9.8.3) FX ⊗∆[n] 1⊗D−−−→ FX ⊗ (∆[n]×∆[n])
σ−→ F

(
X ⊗ (∆[n]×∆[n])

)
≈ F

(
(X ⊗∆[n])⊗∆[n]

)
F(α⊗1)−−−−−→ F(Y ⊗∆[n])

F(β)−−−→ F(Z)

If we start with the same n-simplices α and β, apply F to each, and compose
each with the natural transformation σ, then we get the pair of simplices

FX ⊗∆[n] σ−→ F(X ⊗∆[n])
F(α)−−−→ FY

FY ⊗∆[n] σ−→ F(Y ⊗∆[n])
F(β)−−−→ FZ

in Map(FX,FY )n ×Map(FY,FZ)n. If we compose these, then we get the element

FX ⊗∆[n] 1⊗D−−−→ FX ⊗ (∆[n]×∆[n])

≈ (FX ⊗∆[n])⊗∆[n] σ⊗1−−−→ F(X ⊗∆[n])⊗∆[n]
F(α)⊗1−−−−−→ FY ⊗∆[n] σ−→ F(Y ⊗∆[n])

F(β)−−−→ FZ

of Map(FX,FZ)n. Since σ is natural, this can also be written as the composition

(9.8.4) FX ⊗∆[n] 1⊗D−−−→ FX ⊗ (∆[n]×∆[n])

≈ (FX ⊗∆[n])⊗∆[n] σ⊗1−−−→ F(X ⊗∆[n])⊗∆[n]
σ−→ F

(
(X ⊗∆[n])⊗∆[n]

) F(α⊗1)−−−−−→ F(Y ⊗∆[n])
F(β)−−−→ FZ

Since we want the composition (9.8.3) to equal the composition (9.8.4), we must
require that the diagram

FX ⊗ (∆[n]×∆[n])

σ

��

≈ // (FX ⊗∆[n])⊗∆[n]

σ⊗1

��

F(X ⊗∆[n])⊗∆[n]

σ

��

F
(
X ⊗ (∆[n]×∆[n])

)
≈
// F

(
(X ⊗∆[n])⊗∆[n]

)
commute.

This leads us to the following theorem.

Theorem 9.8.5. Let M and N be simplicial model categories. A functor
F: M → N can be extended to a simplicial functor if and only if for every fi-
nite simplicial set K and object X of M there is a map σ : FX ⊗K → F(X ⊗K),
natural in both X and K, such that
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(1) for every object X of M, σ defines an isomorphism σ : (FX) ⊗ ∆[0] ≈
F(X ⊗∆[0]) such that the triangle

(FX)⊗∆[0] ≈ //

≈
&&LLLLLLLLLL

F(X ⊗∆[0])

≈
xxrrrrrrrrrr

FX

commutes, and
(2) for every object X of M and finite simplicial sets K and L, the diagram

FX ⊗ (K × L)

σ

��

≈ // (FX ⊗K)⊗ L

σ⊗1

��

F(X ⊗K)⊗ L

σ

��

F
(
X ⊗ (K × L)

)
≈
// F

(
(X ⊗K)⊗ L

)
commutes.

Proof. We have isomorphisms

Map(X,Y )n ≈ SS
(
∆[n],Map(X,Y )

)
≈M(X ⊗∆[n], Y )

that are natural in X, Y , and ∆[n], and so we can define F: Map(X,Y )n →
Map(FX,FY )n as the composition

M(X ⊗∆[n], Y )
F(−,−)−−−−−→ N

(
F(X ⊗∆[n]),FY

) σ∗−→ N(FX ⊗∆[n],FY ) .

The discussion preceding the statement of the theorem explains why this yields a
simplicial functor.

Conversely, if F: M→ N is simplicial, then we can define σ as the map corre-
sponding to the composition

K → Map(X,X ⊗K)
F(−,−)−−−−−→ Map

(
FX,F(X ⊗K)

)
(where the first map above is adjoint to the identity map of X ⊗ K) under the
isomorphism

SS
(
K,Map

(
FX,F(X ⊗K)

))
≈ N

(
FX ⊗K,F(X ⊗K)

)
.

�

Example 9.8.6. Let M be a simplicial model category. If W is an object of
M, then the functor Map(W,−) : M → SS is simplicial. In this case, for (f, k) ∈(
Map(W,X) ⊗ K

)
n

we have σ(f, k) = f × k̄, where k̄ is the composition of the
projection W ⊗∆[n]→ ∆[n] with the map ∆[n]→ K that takes the nondegenerate
n-simplex of ∆[n] to k.

Example 9.8.7 (Counterexample to continuity). If A is any nonempty space
in Top, we define a functor WA : Top→ Top by WAX =

∐
A→X A, that is, we take

the disjoint union of one copy of A for each continuous function g : A → X. This
defines a functor in which the copy of A corresponding to g as above maps under
WA(f) : WAX → WAY by the identity map to the copy corresponding to f ◦ g,
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but WA cannot be extended to a simplicial functor. To see this, take X = A and
Y = A× I. The simplicial set Map(X,Y ) = Map(A,A× I) has vertices (i.e., maps
A → A × I) the inclusions i0 and i1 (where i0(a) = (a, 0) and i1(a) = (a, 1)), and
these vertices of Map(A,A × I) are connected by a 1-simplex A × ∆[1] → A × I
of Map(A,A× I). The functions WA(i0) and WA(i1), however, take each point of
WAA into different components of WA(A× I), and so there can be no 1-simplex of
Map

(
WAA,WA(A× I)

)
connecting these vertices.

Example 9.8.8. If we change Example 9.8.7 slightly, we can construct a func-
tor that is continuous. Define W c

A by W c
AX = XA×A (where XA is the compactly

generated topological space of continuous functions A → X). We have a natu-
ral transformation WA → W c

A such that WAX → W c
AX is always a continuous

bijection, but it is not, in general, a homeomorphism.

Proposition 9.8.9. Let M and N be simplicial model categories, let C be a
small category, and let X be a C-diagram of functors M → N and natural trans-
formations between them. If for each α ∈ C there is a map σα as in Theorem 9.8.5
that is natural in α and that extends Xα to a simplicial functor, then there is a
map σ that extends colimα∈C Xα to a simplicial functor.

Proof. Let σ = colimα∈C σα. �





CHAPTER 10

Ordinals, Cardinals, and Transfinite Composition

The main subject of this chapter is a rigorous treatment of the idea of an infin-
itely long sequence of maps, and of the composition of such a sequence. These are
the ideas used in the small object argument (see Proposition 10.5.16), which is a
fundamental method of constructing factorizations of maps needed both to estab-
lish model category structures (see Theorem 11.3.1) and to construct localization
functors (see Section 1.3 and Section 4.3).

If λ is an ordinal, then a λ-sequence X in a category C is a “sequence” of maps
in C indexed by the ordinal λ (see Definition 10.2.1); that is, there are objects Xβ

of C for β < λ, for every ordinal β such that β + 1 < λ there is a map Xβ → Xβ+1

in C, and we require that if β is a limit ordinal then Xβ = colimα<β Xα. We define
the composition of the λ-sequence to be the natural map X0 → colimβ<λXβ . A
composition of a λ-sequence is called a transfinite composition.

An object W in a category C is said to be small with respect to a class D of
maps in C if for every large enough regular cardinal (see Definition 10.1.11) λ and
every λ-sequence all of whose maps are elements of D, every mapW → colimβ<λXβ

from W to the colimit of the sequence factors essentially uniquely through some
earlier stage Xβ in the sequence (see Definition 10.4.1). The small object argument
is a method of factoring maps into factors that have appropriate lifting properties,
and it can be done when the domains of a set of maps are small with respect to the
class of pushouts of those maps (see Definition 10.5.15 and Proposition 10.5.16).

We discuss ordinals and cardinals in Section 10.1, transfinite compositions in
Section 10.2, and the lifting properties of transfinite compositions in Section 10.3.
We discuss small objects in Section 10.4.

Given a set I of maps in a category C, we define a relative I-cell complex in
Section 10.5 to be a map that can be constructed as a transfinite composition
of pushouts of elements of I (see Definition 10.5.8). (If C = Top, the category of
topological spaces, and I is the set of inclusions Sn−1 → Dn for n ≥ 0, then a relative
I-cell complex is a map that can be constructed as a transfinite composition of maps
that attach a single cell along a map of its boundary sphere.) This allows us to
describe the small object argument in Proposition 10.5.16. We discuss subcomplexes
of relative I-cell complexes in Section 10.6. In Section 10.7 we discuss cell complexes
in the category of topological spaces. This class of spaces includes the class of CW-
complexes, but it also contains spaces built by attaching cells via maps that do not
factor through a subcomplex of lower dimensional cells.

In Section 10.8 we discuss compactness, which is a variation on the notion of
smallness: An object W is compact relative to a set I of maps if every map from
W to an I-cell complex factors through a subcomplex of bounded size (see Defi-
nition 10.8.1). If relative I-cell complexes are monomorphisms, then compactness
implies smallness (see Proposition 10.8.7). In Section 10.9 we discuss what it means

185
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for a map to be an effective monomorphism (see Definition 10.9.1). In the category
of sets the effective monomorphisms are the monomorphisms, but the two notions
do not agree in general. We will use this to define cellular model categories in
Chapter 12 (see Definition 12.1.1).

10.1. Ordinals and cardinals

For a thorough discussion of the definitions and basic properties of ordinals and
cardinals, see, e.g., [29, Chapter II], [17, Chapters 4 and 5], or [40, Chapter 6].

10.1.1. Ordinals.

Definition 10.1.2.
(1) A preordered set is a set with a relation that is reflexive and transitive.
(2) A partially ordered set is a preordered set in which the relation is also

antisymmetric.
(3) A totally ordered set is a partially ordered set in which every pair of

elements is comparable.
(4) A well ordered set is a totally ordered set in which every nonempty subset

has a first element.

We adopt the definition of ordinals that arranges it so that an ordinal is the
well ordered set of all lesser ordinals, and every well ordered set is isomorphic to a
unique ordinal (see, e.g., [29, Chapter II], [17, page 47], or [40, page 202]). Thus,
the union of a set of ordinals is an ordinal, and it is the least upper bound of the
set.

Remark 10.1.3. We will often consider a preordered set to be a small category
with objects equal to the elements of the set and a single morphism from the object
s to the object t if s ≤ t.

Definition 10.1.4. If S is a totally ordered set and T is a subset of S, then T
will be called right cofinal (or terminal) in S if for every s ∈ S there exists t ∈ T
such that s ≤ t.

Theorem 10.1.5. If C is a cocomplete category, S is a totally ordered set, T
is a right cofinal subset of S, and X : S → C is a functor, then the natural map
colimT X → colimS X is an isomorphism.

Proof. We will construct a map colimS X → colimT X that is an inverse to
the natural map colimT X → colimS X. For every s ∈ S we choose an element
t of T such that s ≤ t and define a map Xs → colimT X as the composition
Xs → Xt → colimT X. If we choose a different element t′ of T such that s ≤ t′

then either t ≤ t′ or t′ ≤ t, and so our map Xs → colimT X is independent of
the choice of the element t. Similarly, if s′ ∈ S is such that s ≤ s′, then for
t ∈ T satisfying s′ ≤ t the composition Xs → Xs′ → Xt → colimT X equals the
composition Xs → Xt → colimT X, and so the maps Xs → colimT X combine to
define a map colimS X → colimT X.

If s ∈ S, then the composition Xs → colimS X → colimT X → colimS X
equals the map Xs → colimS X, and so the composition colimS X → colimT X →
colimS X is the identity map. Similarly, the composition colimT X → colimS X →
colimT X is the identity map. �
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Proposition 10.1.6. If S is a totally ordered set, then there is a right cofinal
subset T of S that is well ordered.

Proof. We will prove the proposition by considering the set of well ordered
subsets of S. We will show that this set has a maximal element, and that a maximal
element must be right cofinal in S.

Let U be the set of pairs (λ, f : λ→ S) where λ is an ordinal and f is a one to
one order preserving function. We define a preorder on U by defining (λ, f) ≤ (κ, g)
if λ ≤ κ and f = g|λ. If U ′ ⊂ U is a chain (i.e., a totally ordered subset of U), let
λ =

⋃
(λu,fu)∈U ′ λu and define f : λ→ S to be the colimit of the fu for (λu, fu) ∈ U ′.

The pair (λ, f) is an element of U , and it is an upper bound for the chain. Thus,
Zorn’s lemma implies that U has a maximal element, and it remains only to show
that a maximal element of U must be right cofinal.

If (λm, fm) is a maximal element of U and the image of fm : λm → S is not
right cofinal, then there is an element s of S such that fm(β) < s for all β ∈ λm.
Thus, we can define g : (λm + 1) → S by extending fm to include s in its image.
This would imply that (λm, fm) was not a maximal element of U , and so the image
of fm : λm → S must actually be a right cofinal well ordered subset of S. �

10.1.7. Cardinals.

Definition 10.1.8. A cardinal is an ordinal that is of greater cardinality than
any lesser ordinal.

Definition 10.1.9. If X is a set, then the cardinal of X is the unique cardinal
whose underlying set has a bijection with X.

Definition 10.1.10. If γ is a cardinal, then by Succ(γ) we will mean the
successor of γ, i.e., the first cardinal greater then γ.

Definition 10.1.11. A cardinal γ is regular if, whenever A is a set whose
cardinal is less than γ and for every a ∈ A there is a set Sa whose cardinal is less
than γ, the cardinal of the set

⋃
a∈A Sa is less than γ.

Example 10.1.12. The countable cardinal ℵ0 is a regular cardinal. This is just
the statement that a finite union of finite sets is finite.

Proposition 10.1.13. The product of two cardinals, at least one of which is
infinite, equals the greater of the two cardinals.

Proof. See [29, page 53], [17, page 69], or [40, page 227]. �

Proposition 10.1.14. If γ is infinite and a successor cardinal, then γ is regular.

Proof. Let β be the cardinal such that γ = Succ(β); if a set has cardinal
less than γ, then its cardinal is less than or equal to β. Let B be a set whose
cardinal is β and for every b ∈ B let Sb be a set whose cardinal is β. Then, if
we have sets A and Sa for a ∈ A all of whose cardinals are less than γ, then
card(

⋃
a∈A Sa) ≤ card(

⋃
b∈B Sb) ≤ β × β = β < γ. �

Proposition 10.1.15. If µ is an infinite cardinal and γ = µµ, then γµ = γ.

Proof. γµ = (µµ)µ = µ(µ×µ) = µµ = γ. �
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Lemma 10.1.16. Let ν be a cardinal with ν ≥ 2 and let S be a set whose
cardinal is ν. If µ is a cardinal, then the collection T of subsets of S whose cardinal
is at most µ has cardinal at most νµ.

Proof. Choose a bijection between S and the cardinal ν. This induces a well
ordering of every subset of S under which every such subset U is order isomorphic
to a unique ordinal η(U) ≤ ν. This defines a one to one correspondence between T
and a subset of the set of functions from µ to S, under which a subset U corresponds
to the function that takes η(U) isomorphically onto U and takes every element of
µ − η(U) to the first element of U . Thus, there is a subset of νµ that maps onto
T . �

Lemma 10.1.17. Let M be a category and let X, Y , and Z be objects of M. If
X is a retract of Y , then

(1) the cardinal of M(X,Z) is less than or equal to the cardinal of M(Y, Z),
and

(2) the cardinal of M(Z,X) is less than or equal to the cardinal of M(Z, Y ).

Proof. If i : X → Y and r : Y → X are maps such that ri = 1X , then
(ri)∗ : M(X,Z) → M(X,Z) is the identity map. Thus, i∗ : M(Y, Z) → M(X,Z) is
a surjection. Similarly, r∗ : M(Z, Y )→M(Z,X) is a surjection. �

10.2. Transfinite composition

Definition 10.2.1. Let C be a category that is closed under colimits.

(1) If λ is an ordinal, then a λ-sequence in C is a functor X : λ → C (see
Remark 10.1.3) (i.e., a diagram

X0 → X1 → X2 → · · · → Xβ → · · · (β < λ)

in C) such that for every limit ordinal γ < λ the induced map colimβ<γ Xβ →
Xγ is an isomorphism.

(2) The composition of the λ-sequence is the map X0 → colimβ<λXβ .

Definition 10.2.2. Let C be a category that is closed under colimits.

(1) If D is a class of maps in C and λ is an ordinal, then a λ-sequence of maps
in D is a λ-sequence X0 → X1 → X2 → · · · → Xβ → · · · (β < λ) in C

such that the map Xβ → Xβ+1 is in D for β + 1 < λ.
(2) If D is a class of maps in C, then a transfinite composition of maps in D is

a map in C that is the composition of a λ-sequence in D (for some ordinal
λ, possibly finite).

(3) If D is a subcategory of C, then a transfinite composition of maps in D is
a transfinite composition of maps in the class of maps of D.

10.2.3. Reindexing. If λ is an ordinal and C is a category, then not every
functor from λ to C is a λ-sequence in C, since Definition 10.2.1 requires that at
every limit ordinal γ < λ the functor take the value of the colimit of that functor
restricted to γ. However, if λ is a limit ordinal, then any functor from λ to C can
be reindexed to define a λ-sequence in C with the same composition as that of the
original functor (see Definition 10.2.5).
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Lemma 10.2.4. Let C be a category, let λ be a limit ordinal, and let X : λ→ C

be a functor. If the functor Y : λ→ C is defined by

Y0 = X0

Yβ+1 = Xβ if β + 1 < λ

Yβ = colim
γ<β

Xγ if β < λ and β is a limit ordinal

then Y is a λ-sequence in C and colimβ<λXβ = colimβ<λ Yβ .

Proof. This follows from the universal mapping property of the colimit. �

Definition 10.2.5. If C is a category, λ is a limit ordinal, and X : λ→ C is a
functor, then the λ-sequence Y obtained from the functor X as in Lemma 10.2.4
will be called the reindexing of X.

Proposition 10.2.6. Let C be a category that is closed under colimits, let D

be a class of maps in C, and let f : P → Q be a map in C. If there is an ordinal γ
and a function X : γ → C such that

• X0 = P ,
• colimβ<γ Xβ = Q,
• the natural map to the colimit P = X0 → colimβ<γ Xβ = Q is the map
f , and
• for every β + 1 < γ the map colimα≤β Xα → Xβ+1 is an element of D,

then the map f is a transfinite composition of elements of D. If γ is infinite, then
it is a transfinite composition indexed by an ordinal whose cardinal equals that of
γ.

Proof. If γ is a limit ordinal then let δ = γ; otherwise, let δ be the first
limit ordinal greater than γ. We can extend X to a functor X : δ → C by letting
Xβ → Xβ+1 be an identity map for γ ≤ β + 1 < δ and then reindex X (see
Definition 10.2.5) to obtain a δ-sequence Y . If we let λ be the smallest ordinal
such that the map Yβ → Yβ+1 is an identity map for λ ≤ β + 1 < δ, then the
restriction of Y to λ is a λ-sequence whose composition is f : P → Q and is such
that Yβ → Yβ+1 is an element of D for every β + 1 < λ. �

Proposition 10.2.7. If C is a category, S is a set, and gs : Cs → Ds is a map in
C for every s ∈ S, then the coproduct qgs : qCs → qDs is a transfinite composition
of pushouts of the gs. If S is infinite, then it is a transfinite composition indexed
by an ordinal whose cardinal equals that of S.

Proof. Choose a well ordering of the set S. There is a unique ordinal λ that
is isomorphic to the ordered set S (see, e.g., [29, Chapter II], [17, page 47], or [40,
page 202]), and we will identify S with λ. We define a functor X : λ + 1 → C by
letting

Xβ =
( ∐
α<β

Dα

)
q

( ∐
β≤α<λ+1

Cα

)
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for all β ≤ λ, with the maps in the sequence being the obvious ones. For each
β + 1 < λ we have a pushout diagram

Cβ

��

gβ
// Dβ

��

Xβ // Xβ+1

and for each limit ordinal β ≤ λ we have a pushout diagram

Cβ

��

gβ
// Dβ

��
colim
α<β

Xα // Xβ .

The result now follows from Proposition 10.2.6. �

Proposition 10.2.8. Let C be a category. If the mapX → Y is the composition
of the λ-sequence

(10.2.9) X = X0 → X1 → X2 → · · · → Xβ → · · · (β < λ)

(for some ordinal λ) in which each map Xβ → Xβ+1 is the composition of the
γβ-sequence

(10.2.10) Xβ = W β
0 →W β

1 →W β
2 → · · · →W β

α → · · · (α < γβ)

(for some ordinal γβ), then the set P = {(β, α)
∣∣ β < λ, α < γβ} is well ordered by

the dictionary order, i.e.,

(β1, α1) < (β2, α2) if β1 < β2 or β1 = β2 and α1 < α2.

We define a quotient P̃ of P as follows: For each γβ that is a successor ordinal we

let γ̄β be the ordinal such that γ̄β + 1 = γβ (and, thus, W β
γ̄β

= W β+1
0 ), and we

identify (β, γ̄β) with (β + 1, 0). The well ordering on P induces a well ordering on

P̃ , and so there is a unique ordinal κ for which there is an isomorphism of ordered

sets f : κ ≈ P̃ , and this isomorphism is also unique. If we define a functor Y : κ→ C

by Y (γ) = W
(
f(γ)

)
, then Y is a κ-sequence in C.

Proof. We need only show that if γ < κ and γ is a limit ordinal, then Y (γ) =
colimα<γ Y (α). This follows from the universal mapping property of the colimit.

�

Definition 10.2.11. The κ-sequence of Proposition 10.2.8 will be said to have
been obtained by interpolating the sequences (10.2.10) into the sequence (10.2.9).

Proposition 10.2.12. The λ-sequence of (10.2.9) is right cofinal (see Defini-
tion 10.1.4) in the κ-sequence of Proposition 10.2.8.

Proof. This follows directly from the definition. �

Lemma 10.2.13. Let C be a category, let D be a class of maps in C, and let
λ be an ordinal. If the map X → Y is the composition of a λ-sequence X =
X0 → X1 → X2 → · · · → Xβ → · · · (β < λ) in which each map Xβ → Xβ+1 is
a transfinite composition of maps in D, then interpolating (see Definition 10.2.11)



10.2. TRANSFINITE COMPOSITION 191

the sequences for each Xβ → Xβ+1 into the original λ-sequence gives a κ-sequence
(for some ordinal κ) of maps in D whose composition is the map X → Y .

Proof. This follows directly from the definitions. �

Proposition 10.2.14. Let C be a category, and let D be a class of maps in
C. If the map g : X → Y is a transfinite composition of pushouts of coproducts of
elements of D, then g is a transfinite composition of pushouts of elements of D.

Proof. This follows from Proposition 10.2.7 and Lemma 10.2.13. �

Proposition 10.2.15. Let C be a category, let I be a class of maps in C, and
let λ be a regular cardinal (see Definition 10.1.11). If the map X → Y is the
composition of a λ-sequence

(10.2.16) X = X0 → X1 → X2 → · · · → Xβ → · · · (β < λ)

in which each map Xβ → Xβ+1 is a transfinite composition, indexed by an ordinal
whose cardinal is less than λ, of pushouts of coproducts of elements of I, then
interpolating the sequences for the Xβ → Xβ+1 into the sequence (10.2.16) (see
Definition 10.2.11) yields a λ-sequence (indexed by the same ordinal λ) of pushouts
of coproducts of elements of I.

Proof. Lemma 10.2.13 implies that there is an ordinal κ such that the map
X → Y is the composition of a κ-sequence of pushouts of coproducts of elements
of I, and so it remains only to show that the ordinal κ constructed in the proof of
Lemma 10.2.13 equals λ. Since the cardinal of κ equals that of a union, indexed by
λ, of sets of cardinal less than λ, the cardinal of κ equals λ. Since any ordinal less
than κ is contained within a subunion indexed by an ordinal less than λ of sets of
cardinal less than λ, and λ is a regular cardinal, that subunion would have cardinal
less than λ, i.e., κ is the first ordinal having its cardinal, and so κ is a cardinal, and
so κ = λ. �

10.2.17. Simplicial model categories.

Proposition 10.2.18. If K is a simplicial set and L is a subcomplex of K,
then the inclusion L → K is a transfinite composition of pushouts of the maps
{∂∆[n]→ ∆[n]

∣∣ n ≥ 0}

Proof. For each integer n ≥ 0 let Sn be the set of nondegenerate n-simplices
of K that are not in L, and choose a well ordering of each set Sn. Let T =

⋃
n≥0 Sn

and let T be ordered by the “dictionary order”, i.e., if σ, τ ∈ T , then σ < τ if either

• σ is an n-simplex, τ is a k-simplex, and n < k, or
• σ and τ are both n-simplices and σ < τ in the well ordering of Sn.

The set T is then a well ordered set and is thus isomorphic to a unique ordinal γ (see,
e.g., [29, Chapter II], [17, page 47], or [40, page 202]). We define a functor X : γ+
2 → SS by letting Xβ (for β ≤ γ + 1) be the union of L with the nondegenerate
simplices of K − L of index less than β and their degeneracies. Proposition 10.2.6
now implies that there is an ordinal λ and a λ-sequence Y0 → Y1 → Y2 → · · · →
Yβ → · · · (β < λ) whose composition is the inclusion L → K and such that each
Yβ → Yβ+1 (for β + 1 < λ) attaches a single nondegenerate simplex, and is thus
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the bottom arrow of a pushout square

∂∆[n] //

��

∆[n]

��

Yβ // Yβ+1 .

�

Lemma 10.2.19. Let M be a simplicial category and let f : A→ B be a map in
M. If M → L→ K are maps of simplicial sets, then the square

A⊗ LqA⊗M B ⊗M //

��

B ⊗ L

��

A⊗K qA⊗M B ⊗M // A⊗K qA⊗L B ⊗ L

is a pushout.

Proof. For the square to be a pushout, the lower right hand corner must be
the colimit of the diagram

B ⊗ L

A⊗ L

��

99sssssssss
A⊗Moo

OO

// B ⊗M

eeKKKKKKKKKK

A⊗K A⊗Moo // B ⊗M .

The colimit of that diagram is isomorphic to the colimit of the diagram

B ⊗ L

A⊗K A⊗ Loo

99ttttttttt
A⊗Moo

OO

// B ⊗M ,

eeKKKKKKKKKK

which the universal mapping property of the colimit implies is isomorphic to A ⊗
K qA⊗L B ⊗ L (see Theorem 14.2.5). �

Proposition 10.2.20. Let M be a simplicial model category and let f : A→ B
be a map in M. If (K,L) is a pair of simplicial sets, then the map

A⊗K qA⊗L B ⊗ L→ B ⊗K
is a transfinite composition of pushouts of the maps A⊗∆[n]qA⊗∂∆[n]B⊗∂∆[n]→
B ⊗∆[n] for various values of n.

Proof. The inclusion L → K can be written as a transfinite composition
of pushouts of the inclusions ∂∆[n] → ∆[n] for various values of n (see Proposi-
tion 10.2.18), and so the result follows from Lemma 10.2.19. �

Corollary 10.2.21. Let M be a simplicial model category. If f : A → B is a
map in M, K is a simplicial set, and n ≥ 0, then the map(

A⊗∆[n]qA⊗∂∆[n] B ⊗ ∂∆[n]
)
⊗K →

(
B ⊗∆[n]

)
⊗K
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is a transfinite composition of pushouts of the maps A⊗∆[m]qA⊗∂∆[m]B⊗∂∆[m]→
B ⊗∆[m] for various values of m.

Proof. Lemma 9.2.1 and axiom M6 (see Definition 9.1.6) imply that the map(
A⊗∆[n]qA⊗∂∆[n] B ⊗ ∂∆[n]

)
⊗K →

(
B ⊗∆[n]

)
⊗K

is isomorphic to the map

A⊗
(
∆[n]×K

)
qA⊗(∂∆[n]×K) B ⊗

(
∂∆[n]×K

)
→ B ⊗

(
∆[n]×K

)
,

and so the result follows from Proposition 10.2.20. �

10.3. Transfinite composition and lifting in model categories

Lemma 10.3.1. If M is a category and p : X → Y is a map in M, then the class
of maps with the left lifting property with respect to p is closed under transfinite
composition (see Definition 10.2.2).

Proof. Given a λ-sequence of maps with the left lifting property with respect
to p and a lifting problem for the composition of the λ-sequence, a lift can be
constructed by a transfinite induction. �

Proposition 10.3.2. If M is a category and p : X → Y is a map in M, then
the class of maps with the left lifting property with respect to p is closed under
pushouts, transfinite composition, and retracts.

Proof. This follows from Lemma 7.2.11, Lemma 10.3.1, and Lemma 7.2.8. �

Proposition 10.3.3. If M is a simplicial model category and C is a class of maps
in M, then the class of maps in M that have the homotopy left lifting property with
respect to every element of C is closed under pushouts, transfinite compositions,
and retracts.

Proof. This follows from Lemma 9.4.7 and Proposition 10.3.2. �

Proposition 10.3.4. If M is a model category, then the classes of cofibrations
and of trivial cofibrations are closed under pushouts, transfinite compositions, and
retracts.

Proof. This follows from Proposition 7.2.3 and Proposition 10.3.2. �

Lemma 10.3.5. Let M be a model category and let p : X → Y be a map in M.
If S is a totally ordered set and W : S → M is a functor such that if s, t ∈ S and
s ≤ t, then W s →W t has the left lifting property with respect to p, then for every
s ∈ S the map W s → colimt≥s W t has the left lifting property with respect to p.

Proof. Proposition 10.1.6 implies that we can choose a right cofinal subset T
of {t ∈ S

∣∣ t ≥ s} such that T is well ordered. There is a unique ordinal λ that
is isomorphic to T (see, e.g., [29, Chapter II], [17, page 47], or [40, page 202]),
and so we have a right cofinal functor λ → M. If we reindex this functor (see
Definition 10.2.5), then we have a λ-sequence of maps with the left lifting property
with respect to p. The lemma now follows from Lemma 10.3.1 and Theorem 10.1.5.

�
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Proposition 10.3.6. Let M be a model category, and let S be a totally ordered
set. If W : S →M is a functor such that, if s, t ∈ S and s ≤ t, then W s →W t is
a cofibration, then, for every s ∈ S, the map W s → colimt≥s W t is a cofibration.

Proof. This follows from Proposition 7.2.3 and Lemma 10.3.5. �

10.4. Small objects

Definition 10.4.1. Let C be a cocomplete category and let D be a subcategory
of C.

(1) If κ is a cardinal, then an object W in C is κ-small relative to D if, for
every regular cardinal (see Definition 10.1.11) λ ≥ κ and every λ-sequence
(see Definition 10.2.1)

X0 → X1 → X2 → · · · → Xβ → · · · (β < λ)

in C such that the map Xβ → Xβ+1 is in D for every ordinal β such that
β+1 < λ, the map of sets colimβ<λ C(W,Xβ)→ C(W, colimβ<λXβ) is an
isomorphism.

(2) An object is small relative to D if it is κ-small relative to D for some
cardinal κ, and it is small if it is small relative to C.

Example 10.4.2. In the category SS(∗), every simplicial set with finitely many
nondegenerate simplices is ℵ0-small relative to the subcategory of inclusions of
simplicial sets (where ℵ0 is the first infinite cardinal).

Example 10.4.3. LetX be a finite cell complex in Top(∗) (see Definition 10.7.1).
Corollary 10.7.7 implies X is ℵ0-small relative to the subcategory of inclusions of
cell complexes (where ℵ0 is the first infinite cardinal).

Example 10.4.4. Let X be an object of SS(∗). If κ is the first infinite cardinal
greater than the cardinal of the set of nondegenerate simplices of X, then X is
κ-small relative to the subcategory of inclusions (see Proposition 10.1.14). Thus,
every simplicial set is small relative to the subcategory of inclusions.

Example 10.4.5. Let X be a cell complex in Top(∗) (see Definition 10.7.1).
If κ is the first infinite cardinal greater than the cardinal of the set of cells of X
(see Proposition 10.1.14), then Proposition 10.7.4 implies that X is κ-small relative
to the subcategory of relative cell complexes. Thus, every cell complex is small
relative to the subcategory of relative cell complexes.

Lemma 10.4.6. If C is a cocomplete category, D is a subcategory of C, and I
is a set of objects in C that are small relative to D, then there is a cardinal κ such
that every element of I is κ-small relative to D.

Proof. For every object A of I let κA be a cardinal such that A is κA-small
relative to D. If we let κ be the union

⋃
A∈I κA, then every object of I is κ-small

relative to D. �

Proposition 10.4.7. Let C be a cocomplete category and let D be a subcate-
gory of C. If κ is a cardinal and X is an object of C that is κ-small relative to D,
then any retract of X is κ-small relative to D.
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Proof. Let i : W → X and r : X → W be maps such that ri = 1W . If λ is a
regular cardinal such that λ ≥ κ and Z0 → Z1 → Z2 → · · · → Zβ → · · · (β < λ) is
a λ-sequence in D, then we have the commutative diagram

colim
β<λ

C(W,Zβ)

��

colim r∗ //

1colim C(W,Zβ)

++

colim
β<λ

C(X,Zβ)

��

colim i∗ // colim
β<λ

C(W,Zβ)

��

C(W, colim
β<λ

Zβ) r∗ //

1C(W,colim Zβ)

33

C(X, colim
β<λ

Zβ) i∗ // C(W, colim
β<λ

Zβ)

Thus, the map colimβ<λ C(W,Zβ)→ C(W, colimβ<λ Zβ) is a retract of the isomor-
phism colimβ<λ C(X,Zβ)→ C(X, colimβ<λ Zβ), and is thus an isomorphism. �

Proposition 10.4.8. Let C be a cocomplete category and let D be a subcate-
gory of C. If I is a small category and W : I→ C is a diagram in C such that W i is
small relative to D for every object i in I, then colimi∈I W i is small relative to D.

Proof. Let γ be a cardinal such that W i is γ-small relative to D for every
object i in I (see Lemma 10.4.6), let δ be the cardinal of the set of morphisms
in I, and let κ be the first cardinal greater than both γ and δ; we will show that
colimi∈I W i is κ-small relative to D.

Let λ be a regular cardinal such that λ ≥ κ, and let

X0 → X1 → X2 → · · · → Xβ → · · · (β < λ)

be a λ-sequence in C such that the map Xβ → Xβ+1 is in D for all β < λ.
If we have a map f : colimi∈I W i → colimβ<λXβ , then for every object j in I

the composition of f with the natural map W j → colimi∈I W i defines a map
fj : W j → colimβ<λXβ . Since W j is small relative to D and λ is a large enough
regular cardinal, there exists an ordinal βj < λ such that fj factors through Xβj .
If we let β̃ =

⋃
j∈Ob I βj , then (since λ is a regular cardinal) β̃ < λ, and the dotted

arrow g̃j exists in the diagram

W j

fj

$$I
IIIIIIII

g̃j

��

Xβ̃
// colim
β<λ

Xβ

for every object j in I.
If s : j → k is a morphism in I, then the composition W j

W s−−→W k
g̃k−→ Xβ̃ need

not equal the map g̃j : W j → Xβ̃ , but their compositions with the natural map
Xβ̃ → colimβ<λXβ are equal. Since the natural map of sets colimβ<λ C(W j , Xβ)→
C(W j , colimβ<λXβ) is an isomorphism, there must exist an ordinal β̂s < λ such
that their compositions with the map Xβ̃ → Xβ̂s

are equal. If we let β̂ =⋃
(s : j→k)∈I β̂s, then (since λ is a regular cardinal) we have β̂ < λ. If, for every

object j of I, we let ĝj equal the composition W j
g̃j−→ Xβ̃ → Xβ̂ , then for every
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morphism s : j → k in I the triangle

W j
W s //

ĝj !!C
CC

CC
CC

C W k

ĝk

��

Xβ̂

commutes, and so the ĝj define a map g : colimi∈I W i → Xβ̂ whose composition
with the natural map Xβ̂ → colimβ<λXβ equals f . Thus, the map

colim
β<λ

C(colim
i∈I

W i, Xβ)→ C(colim
i∈I

W i, colim
β<λ

Xβ)

is surjective.
To show that that map is also injective, let g′ : colimi∈I W i → Xβ̄ be a map

whose composition with the natural map Xβ̄ → colimβ<λXβ equals f . For every
object j in I the compositions

W j → colim
i∈I

W i
g−→ Xβ̂ → colim

β<λ
Xβ

and

W j → colim
i∈I

W i
g′−→ Xβ̄ → colim

β<λ
Xβ

are equal, and so there exists an ordinal αj < λ such that the compositions

W j → colim
i∈I

W i
g−→ Xβ̂ → Xαj

and

W j → colim
i∈I

W i
g′−→ Xβ̄ → Xαj

are equal. If we let α =
⋃
j∈Ob(I) αj , then α < λ, and the compositions colimi∈I W i →

Xβ̂ → Xα and colimi∈I W i → Xβ̄ → Xα are equal, and so the map

colim
β<λ

C(colim
i∈I

W i, Xβ)→ C(colim
i∈I

W i, colim
β<λ

Xβ)

is an isomorphism. �

Corollary 10.4.9. Let C be a cocomplete category, let D be a subcategory of
C, and let I be a set of maps in C whose domains and codomains are small relative
to D. If X is small relative to D and the map X → Y is a transfinite composition
of pushouts of elements of I, then Y is small relative to D.

Proof. This follows from Proposition 10.4.8, using a transfinite induction. �

10.5. The small object argument

10.5.1. Injectives, cofibrations, and relative cell complexes.

Definition 10.5.2. Let C be a category, and let I be a set of maps in C.
(1) The subcategory of I-injectives is the subcategory of maps that have the

right lifting property (see Definition 7.2.1) with respect to every element
of I.
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(2) The subcategory of I-cofibrations is the subcategory of maps that have the
left lifting property (see Definition 7.2.1) with respect to every I-injective.
An object is I-cofibrant if the map to it from the initial object of C is an
I-cofibration.

Remark 10.5.3. The term I-injective comes from the theory of injective classes
([36]). The map p : X → Y is an I-injective if and only if, in the category (C ↓Y )
of objects over Y , the object p is injective relative to the class of maps whose image
under the forgetful functor (C ↓Y )→ C is an element of I. The term I-cofibration
comes from Proposition 11.2.1, which asserts that if I is the set of generating
cofibrations of a cofibrantly generated model category (see Definition 11.1.2), then
the I-cofibrations are the cofibrations of the model category.

Example 10.5.4. If I is the set of inclusions ∂∆[n] → ∆[n] in SS, then the
I-injectives are the trivial fibrations, and the I-cofibrations are the inclusions of
simplicial sets (see Proposition 7.2.3).

Example 10.5.5. If J is the set of inclusions Λ[n, k]→ ∆[n] in SS, then the J-
injectives are the Kan fibrations, and the J-cofibrations are the trivial cofibrations
(see Proposition 7.2.3).

Proposition 10.5.6. Let C be a category and let J and K be sets of maps in
C. If every J-injective is a K-injective, then every K-cofibration is a J-cofibration.

Proof. This follows directly from the definitions (see Definition 10.5.2). �

Proposition 10.5.7. Let C be a category and let J and K be sets of maps in
C. If the subcategory of J-injectives equals the subcategory of K-injectives, then
the subcategory of J-cofibrations equals the subcategory of K-cofibrations.

Proof. This follows from Proposition 10.5.6. �

Definition 10.5.8. If C is a category that is closed under small colimits and
I is a set of maps in C, then

(1) the subcategory of relative I-cell complexes (also known as the subcate-
gory of regular I-cofibrations) is the subcategory of maps that can be con-
structed as a transfinite composition (see Definition 10.2.2) of pushouts
(see Definition 7.2.10) of elements of I,

(2) an object is an I-cell complex if the map to it from the initial object of C

is a relative I-cell complex, and
(3) a map is an inclusion of I-cell complexes if it is a relative I-cell complex

whose domain is an I-cell complex.

Remark 10.5.9. Note that Definition 10.5.8 defines a relative I-cell complex
to be a map that can be constructed as a transfinite composition of pushouts of
elements of I, but it does not assume that there is any preferred such construction.
In Definition 10.6.3 we define a presented relative I-cell complex to be a relative
I-cell complex together with a choice of such a construction.

Proposition 10.5.10. If C is a category and I is a set of maps in C, then every
relative I-cell complex is an I-cofibration (see Definition 10.5.2).

Proof. This follows from Lemma 7.2.11 and Lemma 10.3.1. �
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Proposition 10.5.11. If M is a category and I is a set of maps in M, then a
retract of a relative I-cell complex is an I-cofibration.

Proof. This follows from Proposition 10.5.10 and Lemma 7.2.8. �

Definition 10.5.12. Let M be a cocomplete category and let I be a set of
maps in M.

(1) If κ is a cardinal, then an object is κ-small relative to I if it is κ-small rel-
ative to the subcategory of relative I-cell complexes (see Definition 10.4.1
and Definition 10.5.8).

(2) An object is small relative to I if it is κ-small relative to I for some cardinal
κ.

Proposition 10.5.13. Let C be a cocomplete category and let I be a set of
maps in C. If K is a set of relative I-cell complexes, then an object that is small
relative to I is also small relative to K.

Proof. Since every relative K-cell complex is also a relative I-cell complex,
a λ-sequence of relative K-cell complexes is also a λ-sequence of relative I-cell
complexes. The result now follows from Proposition 10.2.12 and Theorem 10.1.5.

�

10.5.14. The small object argument.

Definition 10.5.15. If M is a category and I is a set of maps in M, then
(following D. M. Kan) we say that I permits the small object argument if the
domains of the elements of I are small relative to I (see Definition 10.5.12 and
Definition 10.5.8).

Proposition 10.5.16 (The small object argument). If C is a cocomplete cat-
egory and I is a set of maps in C that permits the small object argument (see
Definition 10.5.15), then there is a functorial factorization of every map in C into
a relative I-cell complex (see Definition 10.5.8) followed by an I-injective (see Def-
inition 10.5.2).

Proof. Lemma 10.4.6 implies that we can choose a regular cardinal λ such
that every domain of an element of I is λ-small relative to the subcategory of
relative I-cell complexes. If g : X → Y is a map in C, then we will factor g as
X

j−→ EI
p−→ Y , where j is the transfinite composition of a λ-sequence

X = E0 //

p0

((RRRRRRRRRRRRRRRR E1 //

p1

  A
AA

AA
AA

A E2 //

p2

��

· · · // Eβ //

pβ

vvnnnnnnnnnnnnnnn · · · (β < λ)

Y

in which each Eβ → Eβ+1 is a pushout of a coproduct of elements of I, each
Eβ comes with a map pβ : Eβ → Y such that all the triangles commute, and
p = colimβ<λ pβ .
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We begin by letting E0 = X and letting p0 : E0 → Y equal g. Given Eβ , we
have the solid arrow diagram

(10.5.17)
∐

(Ai→Bi)∈I
M(Ai,E

β)×M(Ai,Y )M(Bi,Y )

Ai //

��

Eβ //

pβ

��

Eβ+1

pβ+1

��∐
(Ai→Bi)∈I

M(Ai,E
β)×M(Ai,Y )M(Bi,Y )

Bi //

77

Y

and we let Eβ+1 be the pushout (
∐
Bi) q(

∐
Ai) Eβ . If γ is a limit ordinal, we

let Eγ = colimβ<γ Eβ , and we let EI = colimβ<λ Eβ . The construction of the
factorization X → EI → Y makes it clear that it is functorial. Proposition 10.2.7,
Lemma 7.2.13, and Lemma 10.2.13 imply that X → EI is a relative I-cell complex,
and so it remains only to show that EI → Y is an I-injective.

Given an element A→ B of I and a solid arrow diagram

(10.5.18) A //

��

EI

��

B //

>>

Y

we must show that the dotted arrow exists. Since EI = colimβ<λ Eβ and A is
λ-small relative to I, the natural map of sets colimβ<λ M(A,Eβ)→M(A,EI) is an
isomorphism. Thus, the map A → EI factors through Eβ → EI for some β < λ,
and we have the solid arrow diagram

A //

��

Eβ //

��

Eβ+1 //

||yyyyyyyy
EI

uulllllllllllllllll

B //

66

Y

The construction of Eβ+1 implies that the dotted arrow exists, and this dotted
arrow defines the dotted arrow in Diagram 10.5.18. �

Definition 10.5.19. Let C be a cocomplete category, let I be a set of maps
in C, and let λ be an ordinal. If we apply the construction in the proof of Propo-
sition 10.5.16 to a map g : X → Y using the set I and the ordinal λ to obtain the
factorization X → EI → Y , then we will call EI the object obtained by applying
the small object factorization with the set I and the ordinal λ to the map g.

Proposition 10.5.20. Let C be a cocomplete category, let I be a set of maps in

C, and let λ be an ordinal. If the map g : X → Y is a retract of the map g̃ : X̃ → Ỹ
and we apply the small object factorization to both g and g̃ using the set I and the
ordinal λ (see Definition 10.5.19), then the factorization X → EI → Y obtained

from g is a retract of the factorization X̃ → ẼI → Ỹ obtained from g̃.

Proof. At each step in the construction of EI and ẼI , the factorization X →
Eβ → Y is a retract of the factorization X̃ → Ẽβ → Ỹ . �
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Corollary 10.5.21. Let C be a cocomplete category and let I be a set of maps
in C. If κ is a regular cardinal such that the domains of the elements of I are κ-
small relative to I, then there is a functorial factorization of every map in C into
the composition of a κ-sequence of pushouts of coproducts of elements of I followed
by an I-injective.

Proof. This is identical to the proof of Proposition 10.5.16 if we choose the
cardinal λ in that proof to equal κ. �

Corollary 10.5.22. If C is a cocomplete category, I is a set of maps in C

that permits the small object argument, and g : X → Y is an I-cofibration (see
Definition 10.5.2), then g is a retract of a relative I-cell complex.

Proof. If we apply the factorization of Proposition 10.5.16 to g, we obtain
X

j−→ EI
p−→ Y in which j is a relative I-cell complex and p is an I-injective. The

result now follows from the retract argument (see Proposition 7.2.2). �

Corollary 10.5.23. Let C be a cocomplete category. If I is a set of maps
in C that permits the small object argument, then the class of I-cofibrations (see
Definition 10.5.2) equals the class of retracts of relative I-cell complexes (see Defi-
nition 10.5.8).

Proof. This follows from Proposition 10.5.10, Proposition 10.5.11, and Corol-
lary 10.5.22. �

10.5.24. Smallness and cofibrations.

Lemma 10.5.25. Let C be a cocomplete category, let I be a set of maps in M

that permits the small object argument (see Definition 10.5.15), and let κ be a
regular cardinal such that the domain of every element of I is κ-small relative to
I (see Lemma 10.4.6). If λ is an ordinal and X0 → X1 → X2 → · · · → Xβ → · · ·
(β < λ) is a λ-sequence of I-cofibrations, then there is a λ-sequence X̃0 → X̃1 →
X̃2 → · · · → X̃β → · · · (β < λ) of relative I-cell complexes and maps of λ-sequences

(10.5.26) X0
σ0 //

i0

��

X1
σ1 //

i1

��

X2
σ2 //

i2

��

· · · // Xβ
σβ
//

iβ

��

· · ·

X̃0

τ0 //

r0

��

X̃1

τ1 //

r1

��

X̃2

τ2 //

r2

��

· · · // X̃β

τβ
//

rβ

��

· · ·

X0
σ0 // X1

σ1 // X2
σ2 // · · · // Xβ

σβ
// · · ·

such that, for every β < λ,

(1) the composition rβiβ is the identity map of Xβ , and

(2) the map τβ : X̃β → X̃β+1 is the composition of a κ-sequence of pushouts
of coproducts of elements of I.

Proof. We let X̃0 = X0, and we let both i0 and r0 be the identity map of
X0. If β is an ordinal such that β + 1 < λ and we’ve defined the sequence through
X̃β , then we apply the factorization of Corollary 10.5.21 to the map σβrβ : X̃β →
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Xβ+1 to obtain X̃β
τβ−→ X̃β+1

rβ+1−−−→ Xβ+1, in which τβ is the composition of a
κ-sequence of pushouts of coproducts of elements of I and rβ+1 is an I-injective.
Since rβ+1τβiβ = σβrβiβ = σβ , we now have the solid arrow diagram

Xβ
τβiβ
//

σβ

��

X̃β+1

rβ+1

��

Xβ+1

iβ+1
;;

Xβ+1

in which σβ is an I-cofibration and rβ+1 is an I-injective, and so there exists a
dotted arrow iβ+1 such that iβ+1σβ = τβiβ and rβ+1iβ+1 = 1Xβ+1 .

For every limit ordinal γ such that γ < λ, we let X̃γ = colimβ<γ X̃β , iγ =
colimβ<γ iβ , and rγ = colimβ<λ rβ . �

Theorem 10.5.27. Let C be a cocomplete category and let I be a set of maps
in C that permits the small object argument (see Definition 10.5.15). If W is an
object that is small relative to I, then it is small relative to the subcategory of all
I-cofibrations.

Proof. Let µ be a cardinal such that W is µ-small relative to I. Lemma 10.4.6
implies that there is a cardinal κ such that the domain of every element of I is κ-
small relative to I. If ν is the first cardinal greater than both µ and κ, then we will
show that W is ν-small relative to the subcategory of I-cofibrations.

Let λ be a regular cardinal such that λ ≥ ν and let X0 → X1 → X2 → · · · →
Xβ → · · · (β < λ) be a λ-sequence of I-cofibrations. Lemma 10.5.25 implies that
there is a λ-sequence X̃0 → X̃1 → X̃2 → · · · → X̃β → · · · (β < λ) of relative I-cell
complexes and maps of λ-sequences as in Diagram 10.5.26 satisfying the conclusion
of Lemma 10.5.25. Proposition 10.2.15 implies that, after interpolations, the λ-
sequence X̃0 → X̃1 → X̃2 → · · · → X̃β → · · · (β < λ) is a λ-sequence of relative
I-cell complexes, and so Proposition 10.2.12 and Theorem 10.1.5 imply that the
map of sets colimβ<λ M(W, X̃β) → M(W, colimβ<λ X̃β) is an isomorphism. Since
the map of sets colimβ<λ M(W,Xβ) → M(W, colimβ<λXβ) is a retract of this
isomorphism, it is also an isomorphism. �

10.6. Subcomplexes of relative I-cell complexes

If C is a cocomplete category and I is a set of maps in C, then a relative I-cell
complex is a map that can be constructed as a transfinite composition of pushouts
of coproducts of elements of I (see Definition 10.5.8 and Proposition 10.2.14). To
consider “subcomplexes” of a relative I-cell complex, we need to choose a “presen-
tation” of it (see Definition 10.6.2), i.e., a particular such construction. In Defi-
nition 10.6.3, we define a presented relative I-cell complex to be a relative I-cell
complex together with a chosen presentation.

10.6.1. Presentations of relative I-cell complexes.

Definition 10.6.2. Let C be a cocomplete category and let I be a set of maps
in C. If f : X → Y is a relative I-cell complex (see Definition 10.5.8), then a
presentation of f is a pair consisting of a λ-sequence

X = X0 → X1 → X2 → · · · → Xβ → · · · (β < λ)
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(for some ordinal λ) and a sequence of ordered triples{
(T β , eβ , hβ)

}
β<λ

such that
(1) the composition of the λ-sequence is isomorphic to f , and
(2) for every β < λ

• T β is a set,
• eβ is a function eβ : T β → I,
• if i ∈ T β and eβi is the element Ci → Di of I, then hβi is a map
hβi : Ci → Xβ such that there is a pushout diagram∐

Tβ

Ci //

∐
hβ

i

��

∐
Tβ

Di

��

Xβ // Xβ+1 .

If the map f : ∅ → Y (where ∅ is the initial object of C) is a relative I-cell complex,
then a presentation of f will also be called a presentation of Y .

Definition 10.6.3. If C is a cocomplete category and I is a set of maps in
C, then a presented relative I-cell complex is a relative I-cell complex f : X → Y
together with a particular presentation

(
X = X0 → X1 → X2 → · · · → Xβ →

· · · (β < λ), {T β , eβ , hβ}β<λ
)

of it (see Definition 10.6.2). A presented relative
I-cell complex in which X = ∅ (the initial object of C) will be called a presented
I-cell complex.

Definition 10.6.4. Let C be a cocomplete category and let I be a set of
maps in C. If (f : X → Y,X = X0 → X1 → X2 → · · · → Xβ → · · · (β <
λ), {T β , eβ , hβ}β<λ) is a presented relative I-cell complex (see Definition 10.6.3),
then

(1) the presentation ordinal of f is λ,
(2) the set of cells of f is

∐
β<λ T

β ,
(3) the size of f is the cardinal of the set of cells of f ,
(4) if e is a cell of f , the presentation ordinal of e is the ordinal β such that

e ∈ T β , and
(5) if β < λ, then the β-skeleton of f is Xβ .

Proposition 10.6.5. If C is a cocomplete category and I is a set of maps in C,
then a presented relative I-cell complex is entirely determined by its presentation
ordinal λ (see Definition 10.6.4) and its sequence of triples {(T , eβ , hβ)}β<λ.

Proof. This follows directly from the definitions. �

10.6.6. Subcomplexes of relative I-cell complexes.

Definition 10.6.7. Let C be a cocomplete category and let I be a set of
maps in C. If (f : X → Y,X = X0 → X1 → X2 → · · · → Xβ → · · · (β <
λ), {T β , eβ , hβ}β<λ) is a presented relative I-cell complex, then a subcomplex of f
consists of a presented relative I-cell complex (f̃ : X → Ỹ ,X = X̃0 → X̃1 → X̃2 →
· · · → X̃β → · · · (β < λ), {T̃ β , ẽβ , h̃β}β<λ) such that
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(1) for every β < λ the set T̃ β is a subset of T β and ẽβ is the restriction of
eβ to T̃ β , and

(2) there is a map of λ-sequences

X
1X //

1X

��

X̃0
//

��

X̃1
//

��

X̃2
//

��

· · ·

X
1X

// X0
// X1

// X2
// · · ·

such that, for every β < λ and every i ∈ T̃ β , the map h̃βi : Ci → X̃β is a
factorization of the map hβi : Ci → Xβ through the map X̃β → Xβ .

Remark 10.6.8. Although a subcomplex of a cell complex is defined to be a
presented relative I-cell complex, we will often abuse language and refer to the
λ-sequence associated with the subcomplex, or the colimit of that λ-sequence, as
the subcomplex.

10.6.9. The case of monomorphisms.

Proposition 10.6.10. If C is a cocomplete category and I is a set of maps in C

such that relative I-cell complexes (see Definition 10.5.8 and Proposition 10.2.14)
are monomorphisms, then a subcomplex of a presented relative I-cell complex (see

Definition 10.6.7) is entirely determined by its set of cells {T̃ β}β<λ (see Defini-
tion 10.6.4).

Proof. The definition of a subcomplex implies that the maps X̃β → Xβ are all
inclusions of subcomplexes. Since inclusions of subcomplexes are monomorphisms,
there is at most one possible factorization h̃βi of each hβi through X̃β → Xβ . �

Proposition 10.6.11. Let C be a cocomplete category and let I be a set of maps
in C such that relative I-cell complexes are monomorphisms. If (f : X → Y,X =
X0 → X1 → X2 → · · · → Xβ → · · · (β < λ), {T β , eβ , hβ}β<λ) is a presented
relative I-cell complex, then an arbitrary subcomplex of f can be constructed by
the following inductive procedure:

(1) Choose an arbitrary subset T̃ 0 of T 0.

(2) If β < λ and we have defined {T̃ γ}γ<β , then we have determined the

object X̃β and the map X̃β → Xβ (where X̃β is the object that appears
in the λ-sequence associated with the subcomplex). Consider the set

{i ∈ T β
∣∣ hβi : Ci → Xβ factors through X̃β → Xβ}

Choose an arbitrary subset T̃ β of this set. For every i ∈ T̃ β there is a

unique map h̃βi : Ci → X̃β that makes the diagram

Ci
hβ

i

  A
AA

AA
AA

A

h̃β
i

��

X̃β
// Xβ
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commute. Let X̃β+1 be defined by the pushout diagram∐
T̃β

Ci //

∐
h̃β

��

∐
T̃β

Di

��

X̃β
// X̃β+1 .

Proof. This follows directly from the definitions. �

Remark 10.6.12. If C is a cocomplete category, I is a set of maps in C such
that relative I-cell complexes are monomorphisms, and (f : X → Y,X = X0 →
X1 → X2 → · · · → Xβ → · · · (β < λ), {T β , eβ , hβ}β<λ) is a presented relative
I-cell complex, then not every sequence {T̃ β}β<λ of subsets of {T β}β<λ determines
a subcomplex of f . Given such a sequence {T̃ β}β<λ, it determines a subcomplex of
f if and only if it satisfies the inductive conditions described in Proposition 10.6.11.

10.7. Cell complexes of topological spaces

A cell complex in Top(∗) is a topological space built by a sequential process of
attaching cells. The class of cell complexes includes the class of CW-complexes, but
the attaching map of a cell in a cell complex need not be contained in a union of cells
of lower dimension. Thus, while a CW-complex can be built by a countable process
of attaching coproducts of cells, a general cell complex may require an arbitrarily
long transfinite construction.

The main disadvantage of using cell complexes that are not CW-complexes
is that the cell structure cannot be used to compute the homology groups of the
space. Cell complexes, however, have all the convenient mapping properties of
CW-complexes, and the small object factorization (see Definition 10.5.19) produces
cell complexes. Cell complexes and their retracts are the cofibrant objects in the
standard model category of topological spaces (see Example 11.1.8, Example 11.1.9,
and Corollary 11.2.2).

Definition 10.7.1. Let Top denote our category of (unpointed) topological
spaces and let Top∗ denote our category of pointed topological spaces.

• A relative cell complex in Top is a map that is a transfinite composition
(see Definition 10.2.2) of pushouts (see Definition 7.2.10) of maps of the
form

∣∣∂∆[n]
∣∣→ ∣∣∆[n]

∣∣ for n ≥ 0. The topological space X in Top is a cell
complex if the map ∅ → X is a relative cell complex, and it is a finite cell
complex if the map ∅ → X is a finite composition of pushouts of maps of
the form

∣∣∂∆[n]
∣∣→ ∣∣∆[n]

∣∣ for n ≥ 0.
• A relative cell complex in Top∗ is a map that is a transfinite composition

of pushouts of maps of the form
∣∣∂∆[n]

∣∣+ → ∣∣∆[n]
∣∣+ for n ≥ 0. The

topological space X in Top∗ is a cell complex if the map ∗ → X is a
relative cell complex, and it is a finite cell complex if the map ∗ → X is
a finite composition of pushouts of maps of the form

∣∣∂∆[n]
∣∣+ → ∣∣∆[n]

∣∣+
for n ≥ 0.

Example 10.7.2. A relative CW-complex in Top(∗) is a relative cell complex,
and a CW-complex in Top(∗) is a cell complex.
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Remark 10.7.3. Definition 10.7.1 implies that a relative cell complex in Top(∗)
is a map that can be constructed as a transfinite composition of pushouts of in-
clusions of the boundary of a cell into that cell, but there will generally be many
different possible such constructions. When dealing with a topological space that
is a cell complex or a map that is a relative cell complex, we will often assume that
we have chosen some specific such construction. Furthermore, we may choose a
construction of the map as a transfinite composition of pushouts of coproducts of
cells, i.e., we will consider constructions as transfinite compositions in which more
than one cell is attached at a time (see Proposition 10.2.7).

Proposition 10.7.4. If X → Y is a relative cell complex in Top(∗), then a
compact subset of Y can intersect the interiors of only finitely many cells of Y −X.

Proof. Let C be a subset of Y ; we will show that if C intersects the interi-
ors of infinitely many cells of Y − X, then C has an infinite subset that has no
accumulation point (which implies that C is not compact).

Suppose now that C intersects the interiors of infinitely many cells of Y −X.
We construct a subset P of C by choosing one point of C from the interior of each
cell whose interior intersects C. We will now show that this infinite subset P of C
has no accumulation point in C. We will do this by showing that for every point
c ∈ C there is an open subset U of Y such that c ∈ U and U ∩ P is either empty
or contains the one point c.

Let ec be the unique cell of Y −X that contains c in its interior. Since there is
at most one point of P in the interior of any cell of Y −X, we can choose an open
subset Uc of the interior of ec that contains no points of P (except for c, if c ∈ P ).
We will use Zorn’s lemma to show that we can enlarge Uc to an open subset of Y
that contains no points of P (except for c, if c ∈ P ).

Let α be the presentation ordinal (see Definition 10.6.4) of the cell ec. If the
presentation ordinal of the relative cell complex X → Y is γ, consider the set T of
ordered pairs (β, U) where α ≤ β ≤ γ and U is an open subset of Y β such that
U ∩Y α = Uc and U contains no points of P except possibly c. We define a preorder
on T by defining (β1, U1) < (β2, U2) if β1 < β2 and U2 ∩ Y β1 = U1.

If {(βs, Us)}s∈S is a chain in T , then (
⋃
s∈S βs,

⋃
s∈S Us) (see Section 10.1.1)

is an upper bound in T for the chain, and so Zorn’s lemma implies that T has a
maximal element (βm, Um). We will complete the proof by showing that βm = γ.

If βm < γ, then consider the cells of presentation ordinal βm + 1. Since Y
has the weak topology determined by X and the cells of Y − X, we need only
enlarge Um so that its intersection with each cell of presentation ordinal βm + 1
is open in that cell, and so that it still contains no points of P except possibly c.
If h : Sn−1 → Y βm is the attaching map for a cell of presentation ordinal βm + 1,
then h−1Um is open in Sn−1, and so we can “thicken” h−1Um to an open subset of
Dn, avoiding the (at most one) point of P that is in the interior of the cell. If we
let U ′ equal the union of Um with these thickenings in the interiors of the cells of
presentation ordinal βm + 1, then the pair (βm + 1, U ′) is an element of T greater
than the maximal element (βm, Um) of T . This contradiction implies that βm = γ,
and so the proof is complete. �

Corollary 10.7.5. A compact subset of a cell complex in Top(∗) can intersect
the interiors of only finitely many cells.
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Proof. This follows from Proposition 10.7.4. �

Proposition 10.7.6. Every cell of a cell complex in Top(∗) is contained in a
finite subcomplex of the cell complex.

Proof. If we choose a presentation of the cell complexX (see Definition 10.6.2),
then the proposition follows from Corollary 10.7.5, using a transfinite induction on
the presentation ordinal of the cell. The attaching map of any cell intersects the
interiors of only finitely many cells, each of which (by the induction hypothesis) is
contained in a finite subcomplex of X. �

Corollary 10.7.7. A compact subset of a cell complex in Top(∗) is contained
in a finite subcomplex of the cell complex.

Proof. This follows from Corollary 10.7.5 and Proposition 10.7.6. �

10.8. Compactness

Definition 10.8.1. Let C be a cocomplete category and let I be a set of maps
in C.

(1) If γ is a cardinal, then an object W in C is γ-compact relative to I if, for
every presented relative I-cell complex f : X → Y (see Definition 10.6.3),
every map from W to Y factors through a subcomplex of f of size (see
Definition 10.6.4) at most γ.

(2) An object W in C is compact relative to I if it is γ-compact relative to I
for some cardinal γ.

Example 10.8.2. If C = SS(∗) and I is the set of inclusions {∂∆[n] → ∆[n]
∣∣

n ≥ 0}, then every finite simplicial set is ω-compact relative to I (where ω is the
countable cardinal). If γ is an infinite cardinal and X is a simplicial set of size γ,
then X is γ-compact relative to I.

Example 10.8.3. If C = Top(∗) and I is the set of inclusions
{∣∣∂∆[n]

∣∣ →∣∣∆[n]
∣∣ ∣∣ n ≥ 0

}
, then Corollary 10.7.7 implies that every finite cell complex is ω-

compact relative to I (where ω is the countable cardinal). If γ is an infinite cardinal
and X is a cell complex of size γ, then Corollary 10.7.7 implies that X is γ-compact
relative to I.

Proposition 10.8.4. Let C be a cocomplete category and let I be a set of maps
in C. If γ is a cardinal and an object W is γ-compact relative to I, then any retract
of W is γ-compact relative to I.

Proof. Let i : V → W and r : W → V be maps such that ri = 1V . If
f : X → Y is a relative I-cell complex and f : V → Y is a map, then the map
fr : W → Y must factor through some subcomplex Z of Y of size at most γ. Thus,
fri : V → Y factors through Z, and fri = f . �

Proposition 10.8.5. Let C be a cocomplete category and let I be a set of maps
in C. If κ and λ are cardinals such that κ < λ, then any object that is κ-compact
relative to I is also λ-compact relative to I.

Proof. This follows directly from the definitions. �
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Proposition 10.8.6. If C is a cocomplete category, I is a set of maps in C, and
S is a set of objects that are compact relative to I, then there is a cardinal γ such
that every element of S is γ-compact relative to I.

Proof. For each element X of S, let γX be a cardinal such that X is γX -
compact relative to I. If γ is the cardinal of

⋃
X∈S γX , then Proposition 10.8.5

implies that every element of S is γ-compact relative to I. �

Proposition 10.8.7. Let C be a cocomplete category and let I be a set of maps
in C such that relative I-cell complexes are monomorphisms. If γ is a cardinal and
W is an object that is γ-compact relative to I (see Definition 10.8.1), then W is
(γ + 1)-small relative to I.

Proof. Let λ be a regular cardinal such that λ > γ and let X0 → X1 →
X2 → · · · → Xβ → · · · (β < λ) be a λ-sequence of inclusions of relative I-cell
complexes. Since inclusions of relative I-cell complexes are monomorphisms, the
map colimβ<λ C(W,Xβ) → C(W, colimβ<λXβ) is injective, and it remains only to
show that it is surjective.

If W → colimβ<λXβ is a map, then (since W is γ-compact) there is a subcom-
plex K of colimXβ , of size at most γ, such that the map factors through K. For
each cell of K there is an ordinal β < λ such that that cell is contained in Xβ . Since
λ is a regular cardinal, the union µ of these β is less than λ, and K is contained in
Xµ. �

Proposition 10.8.8. Let C be a cocomplete category and let I be a set of
maps in C such that relative I-cell complexes are monomorphisms. If D is a small
category and X : D → C is a diagram such that Xα is compact relative to I for
every object α of D, then colimD X is compact relative to I.

Proof. Let κ be a cardinal such that Xα is κ-compact relative to I for every
object α of D (see Proposition 10.8.6), let µ be the cardinal of the set of objects of
D, and let γ = κµ; we will show that colimD X is γ-compact relative to I.

If f : X → Y is a relative I-cell complex and g : colimD X → Y is a map, then
for every object β of D the composition Xβ → colimD X

g−→ Y factors through
some sub relative I-cell complex X →Wβ of f of size at most κ. If W is the union
of the Wβ , then W is of size at most κµ = γ. If s : α→ β is a map in D, then the
triangle

Xα

  A
AA

AA
AA

A

X(s)

��

Xβ // Y

commutes; since the inclusion W → Y is a monomorphism, the triangle

Xα

!!B
BB

BB
BB

B

X(s)

��

Xβ // W

must commute as well, and so the maps Xα →W define the map colimD X →W
that we require. �
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10.9. Effective monomorphisms

Definition 10.9.1. Let C be a category that is closed under pushouts. The
map f : A→ B in C is an effective monomorphism if f is the equalizer of the pair
of natural inclusions B ⇒ B qA B.

Remark 10.9.2. An effective monomorphism is dual to what Quillen has called
an effective epimorphism (see [52, Part II, page 4.1]). Effective monomorphisms
have also been called regular monomorphisms (see [1, page 2]), and effective epi-
morphisms have also been called regular epimorphisms (see [6, Definition 4.3.1]).

Example 10.9.3. If C is the category of sets, then the class of effective monomor-
phisms is the class of injective maps.

Proposition 10.9.4. If C is a category that is closed under pushouts, then a
map is an effective monomorphism if and only if it is the equalizer of some pair of
parallel maps.

Proof. If f : A → B is an effective monomorphism, then it is defined to be
the equalizer of a particular pair of maps. Conversely, if f : A→ B is the equalizer

of the maps B
g

⇒
h
W , then the maps g and h factor as

B
i0 //

i1
// B qA B

gqh
// W ,

and we must show that f is the equalizer of i0 and i1. Since (g q h)i0 = g and
(g q h)i1 = h, this follows directly from the definitions. �

Proposition 10.9.5. if C is a category that is closed under pushouts, then an
effective monomorphism is a monomorphism.

Proof. Let f : A→ B be an effective monomorphism and let g : W → A and
h : W → A be maps such that fg = fh. If i0 and i1 are the natural maps from B
to B qA B, then i0f = i1f , and so i0fg = i1fg and i0fh = i1fh. The uniqueness
requirement in the definition of equalizer now implies that g = h. �

Proposition 10.9.6. If C is a category that is closed under pushouts, then the
class of effective monomorphisms is closed under retracts.

Proof. If f : A→ B is a retract of g : C → D, then we have the diagram

A //

f

��

C //

g

��

A

f

��

B //

i1

��

i0

��

D //

j1

��

j0

��

B

i1

��

i0

��

B qA B // D qC D // B qA B
in which all of the horizontal compositions are identity maps. If g is an effective
monomorphism then g is the equalizer of j0 and j1, and a diagram chase then shows
that f is the equalizer of i0 and i1. �



CHAPTER 11

Cofibrantly Generated Model Categories

A model category structure on a category consists of three classes of maps
(the weak equivalences, the cofibrations, and the fibrations) satisfying five axioms
(see Definition 7.1.3). Any two of these classes determine the third (see Propo-
sition 7.2.7), but there are other ways to determine the three classes of maps as
well. For example, the fibrations are the maps with the right lifting property (see
Definition 7.2.1) with respect to all trivial cofibrations (see Proposition 7.2.3), and
so the class of trivial cofibrations determines the class of fibrations. Similarly, the
trivial fibrations are the maps with the right lifting property with respect to all
cofibrations (see Proposition 7.2.3), and so the class of cofibrations determines the
class of trivial fibrations. Since the weak equivalences are the maps that can be
written as the composition of a trivial cofibration followed by a trivial fibration (see
Proposition 7.2.6), this shows that the classes of cofibrations and of trivial cofibra-
tions entirely determine the model category structure. In some model categories,
this leads to a convenient description of the model category structure.

For example, the standard model category structure on the category of simpli-
cial sets can be described as follows:

• A map is a cofibration if it is a retract of a transfinite composition (see
Definition 10.2.2) of pushouts of the maps ∂∆[n]→ ∆[n] for all n ≥ 0.
• A map is a trivial fibration if it has the right lifting property with respect

to the maps ∂∆[n]→ ∆[n] for all n ≥ 0.
• A map is a trivial cofibration if it is a retract of a transfinite composition

(see Definition 10.2.2) of pushouts of the maps Λ[n, k]→ ∆[n] for all n ≥ 1
and 0 ≤ k ≤ n.
• A map is a fibration if it has the right lifting property with respect to the

maps Λ[n, k]→ ∆[n] for all n ≥ 1 and 0 ≤ k ≤ n.
• A map is a weak equivalence if it is the composition of a trivial cofibration

followed by a trivial fibration.

These ideas lead to the notion (due to D. M. Kan) of a cofibrantly generated model
category (see Definition 11.1.2).

We define cofibrantly generated model categories in Section 11.1; this requires
the notions of transfinite composition (see Definition 10.2.2) and smallness (see
Definition 10.4.1) discussed in Chapter 10. In Section 11.2 we discuss cofibrations,
trivial cofibrations, and smallness in cofibrantly generated model categories.

In Section 11.3 we prove two theorems useful for establishing cofibrantly gen-
erated model category structures: The first is a set of sufficient conditions to have
a cofibrantly generated model category structure on a category, and the second
provides for “lifting” a cofibrantly generated model category structure from one

209
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category to another via a pair of adjoint functors. In Section 11.4 we discuss com-
pactness (see Definition 10.8.1) in a cofibrantly generated model category.

In the remainder of the chapter we study categories of diagrams, i.e., functor
categories (see Definition 11.5.2). If M is a cofibrantly generated model category
and C is a small category, then there is a cofibrantly generated model category
structure on the category of C-diagrams in M, i.e., the category of functors from
C to M (see Theorem 11.6.1). In Section 11.5 we describe free diagrams, which
are diagrams constructed via the left adjoint to the functor that evaluates a C-
diagram at a fixed object of C (see Proposition 11.5.8 and Proposition 11.5.26),
and free cells, which are maps of C-diagrams in M constructed by applying the free
diagram functor to the generating cofibrations of M (see Definition 11.5.30). The
free cells will be the generating cofibrations for the model category of C-diagrams
in M. In Section 11.6 we establish the model category of diagrams in a cofibrantly
generated model category, and in Section 11.7 we show that if M is a cofibrantly
generated model category that is also a simplicial category, then the model category
of C-diagrams in M is also simplicial.

In Section 11.8 we define overcategories and undercategories, and we use them
in Section 11.9 to define extensions of diagrams, which generalize the idea of a free
diagram (see Definition 11.9.1).

11.1. Cofibrantly generated model categories

11.1.1. Definitions.

Definition 11.1.2. A cofibrantly generated model category is a model category
M such that

(1) there exists a set I of maps (called a set of generating cofibrations) that
permits the small object argument (see Definition 10.5.15) and such that
a map is a trivial fibration if and only if it has the right lifting property
with respect to every element of I, and

(2) there exists a set J of maps (called a set of generating trivial cofibrations)
that permits the small object argument and such that a map is a fibration
if and only if it has the right lifting property with respect to every element
of J .

Remark 11.1.3. Although the sets I and J of Definition 11.1.2 are not part of
the structure of a cofibrantly generated model category, we will often assume that
some particular set I of generating cofibrations has been chosen.

Definition 11.1.4. Let M be a cofibrantly generated model category with
generating cofibrations I (see Remark 11.1.3).

(1) A relative I-cell complex (see Definition 10.5.8) will be called a relative
cell complex, and an I-cell complex (see Definition 10.5.8) will be called a
cell complex.

(2) If X is a cell complex and g : X → Y is a relative cell complex, then g will
be called an inclusion of a subcomplex.

(3) If ∅ → X (where ∅ is the initial object of M) is a finite composition of
pushouts of elements of I, then X will be called a finite cell complex.

We will show in Proposition 11.2.1 that in a cofibrantly generated model cate-
gory the class of cofibrations equals the class of retracts of relative cell complexes
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and the class of trivial cofibrations equals the class of retracts of relative J-cell
complexes.

11.1.5. Examples.

Example 11.1.6. The model category SS is cofibrantly generated. The gener-
ating cofibrations are the inclusions ∂∆[n] → ∆[n] for n ≥ 0, and the generating
trivial cofibrations are the inclusions Λ[n, k]→ ∆[n] for n > 0 and 0 ≤ k ≤ n.

Example 11.1.7. The model category SS∗ is cofibrantly generated. The gener-
ating cofibrations are the inclusions ∂∆[n]+ → ∆[n]+ for n ≥ 0, and the generating
trivial cofibrations are the inclusions Λ[n, k]+ → ∆[n]+ for n > 0 and 0 ≤ k ≤ n.

Example 11.1.8. The model category Top is cofibrantly generated. The gener-
ating cofibrations are the inclusions

∣∣∂∆[n]
∣∣→ ∣∣∆[n]

∣∣ for n ≥ 0, and the generating
trivial cofibrations are the inclusions

∣∣Λ[n, k]
∣∣→ ∣∣∆[n]

∣∣ for n > 0 and 0 ≤ k ≤ n.

Example 11.1.9. The model category Top∗ is cofibrantly generated. The gen-
erating cofibrations are the inclusions

∣∣∂∆[n]
∣∣+ → ∣∣∆[n]

∣∣+ for n ≥ 0, and the
generating trivial cofibrations are the inclusions

∣∣Λ[n, k]
∣∣+ → ∣∣∆[n]

∣∣+ for n > 0
and 0 ≤ k ≤ n.

Proposition 11.1.10. If S is a set and for every element s of S we have a
cofibrantly generated model category Ms with generating cofibrations Is and gen-
erating trivial cofibrations Js, then the model category structure on

∏
s∈S Ms of

Proposition 7.1.7 is cofibrantly generated with generating cofibrations I and gen-
erating trivial cofibrations J where

I =
⋃
s∈S

(Is ×
∏
t6=s

1φt)

J =
⋃
s∈S

(Js ×
∏
t6=s

1φt)

and where 1φt is the identity map of the initial object of Mt.

Proof. This follows directly from the definition (see Definition 11.1.2), since
a map has the right lifting property with respect to Is ×

∏
t6=s 1φt if and only if

its s-component is a trivial fibration and a map has the right lifting property with
respect to Js ×

∏
t6=s 1φt

if and only if its s-component is a fibration. �

11.2. Cofibrations in a cofibrantly generated model category

Proposition 11.2.1. Let M be a cofibrantly generated model category (see
Definition 11.1.2) with generating cofibrations I and generating trivial cofibrations
J .

(1) The class of cofibrations of M equals the class of retracts of relative I-cell
complexes (see Definition 10.5.8), which equals the class of I-cofibrations
(see Definition 10.5.2).

(2) The class of trivial fibrations of M equals the class of I-injectives (see
Definition 10.5.2).

(3) The class of trivial cofibrations of M equals the class of retracts of rela-
tive J-cell complexes, which equals the class of J-cofibrations (see Defini-
tion 10.5.2).
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(4) The class of fibrations of M equals the class of J-injectives.

Proof. This follows from Proposition 7.2.3, Proposition 10.5.11, and Corol-
lary 10.5.22. �

Corollary 11.2.2. If M is a cofibrantly generated model category with gener-
ating cofibrations I, then every cofibrant object of M is a retract of a cell complex
(see Definition 11.1.4).

Proof. This follows from Proposition 11.2.1. �

Proposition 11.2.3. Let M be a cofibrantly generated model category with
generating cofibrations I. If W is an object that is small relative to I, then it is
small relative to the subcategory of all cofibrations.

Proof. This follows from Theorem 10.5.27 and Proposition 11.2.1. �

Corollary 11.2.4. Let M be a cofibrantly generated model category with
generating cofibrations I. If the codomains of the elements of I are small relative
to I, then every cofibrant object of M is small relative to the subcategory of all
cofibrations.

Proof. This follows from Corollary 10.4.9, Corollary 11.2.2, Proposition 10.4.7,
and Proposition 11.2.3. �

Proposition 11.2.5. If M is a cofibrantly generated model category and I is
a set of generating cofibrations for M, then there is a regular cardinal κ such that
the domain of every element of I is κ-small relative to I.

Proof. This follows from Lemma 10.4.6. �

Corollary 11.2.6. Let M be a cofibrantly generated model category. If I is
a set of generating cofibrations for M and κ is a regular cardinal such that the
domain of every element of I is κ-small relative to I (see Proposition 11.2.5), then
there is a functorial factorization of every map in M into a cofibration that is the
composition of a κ-sequence of pushouts of coproducts of elements of I followed by
a trivial fibration.

Proof. This follows from Corollary 10.5.21 and Proposition 11.2.1. �

Proposition 11.2.7. If M is a cofibrantly generated model category with gen-
erating cofibrations I, then every object X has a fibrant cofibrant approximation

ı̃ : X̃ → X such that X̃ is a cell complex.

Proof. This follows from Proposition 10.5.16, Proposition 10.5.10, and Prop-
osition 11.2.1. �

Proposition 11.2.8. If M is a cofibrantly generated model category with gen-
erating cofibrations I, then every map g : X → Y has a cofibrant approxima-

tion g̃ : X̃ → Ỹ such that g̃ : X̃ → Ỹ is an inclusion of a subcomplex and both

iX : X̃ → X and iY : Ỹ → Y are trivial fibrations.

Proof. Choose a cofibrant approximation iX : X̃ → X such that X̃ is a cell
complex and iX is a trivial fibration (see Proposition 11.2.7). We can then factor

the composition X̃
iX−−→ X

g−→ Y as X̃
g̃−→ Ỹ

iY−→ Y where g̃ is a relative I-cell
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complex and iY is a trivial fibration (see Proposition 10.5.16). The result now
follows from Proposition 10.5.10 and Proposition 11.2.1. �

Proposition 11.2.9. Let M be a cofibrantly generated model category, and
let I be a set of generating cofibrations for M. If J is a set of generating trivial

cofibrations for M, then there is a set J̃ of generating trivial cofibrations for M such
that

(1) there is a bijection between the sets J and J̃ under which corresponding
elements have the same domain, and

(2) the elements of J̃ are relative I-cell complexes.

Proof. Factor each element j : C → D of J as C
̃−→ D̃

p−→ D where ̃ is
a relative I-cell complex and p is a trivial fibration (see Corollary 11.2.6). The
retract argument (see Proposition 7.2.2) implies that j is a retract of ̃. Since j and
p are weak equivalences, ̃ is also a weak equivalence, and so ̃ is a trivial cofibration.
Thus, if we let J̃ = {̃}j∈J , then J̃ satisfies conditions 1 and 2, and it remains only
to show that J̃ is a set of generating trivial cofibrations for M.

Proposition 10.5.7 implies that it is sufficient to show that the subcategory of J̃-
injectives equals the subcategory of J-injectives (i.e., of fibrations). Since every ̃ is
a trivial cofibration, Proposition 7.2.3 implies that every J-injective is a J̃-injective,
and since every j is a retract of ̃, Lemma 7.2.8 implies that every J̃-injective is a
J-injective. �

Proposition 11.2.10. Let M be a cofibrantly generated model category with
generating cofibrations I. If relative I-cell complexes are effective monomorphisms
(see Definition 10.9.1), then all cofibrations are effective monomorphisms.

Proof. This follows from Proposition 11.2.1 and Proposition 10.9.6. �

Proposition 11.2.11. Let M be a cofibrantly generated model category with
generating cofibrations I. If relative I-cell complexes are monomorphisms, then all
cofibrations are monomorphisms.

Proof. Since a retract of a monomorphism is a monomorphism, this follows
from Proposition 11.2.1. �

11.3. Recognizing cofibrantly generated model categories

In this section we present two theorems of D. M. Kan that are used to establish
a cofibrantly generated model category structure on a category. Theorem 11.3.1 is
a recognition theorem that gives sufficient conditions to have a cofibrantly gener-
ated model category structure on a category. Theorem 11.3.2 is a lifting theorem
that gives sufficient conditions for a pair of adjoint functors to “lift” a cofibrantly
generated model category structure from one category to another.

Theorem 11.3.1 (D. M. Kan). Let M be a category that is closed under small
limits and colimits and let W be a class of maps in M that is closed under retracts
and satisfies the “two out of three” axiom (axiom M2 of Definition 7.1.3). If I and
J are sets of maps in M such that

(1) both I and J permit the small object argument (see Definition 10.5.15),
(2) every J-cofibration is both an I-cofibration and an element of W ,
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(3) every I-injective is both a J-injective and an element of W , and
(4) one of the following two conditions holds:

(a) a map that is both an I-cofibration and an element of W is a J-
cofibration, or

(b) a map that is both a J-injective and an element ofW is an I-injective,

then there is a cofibrantly generated model category structure (see Definition 11.1.2)
on M in which W is the class of weak equivalences, I is a set of generating cofibra-
tions, and J is a set of generating trivial cofibrations.

Proof. We define the weak equivalences to be the elements of W , the cofibra-
tions to be the I-cofibrations, and the fibrations to be the J-injectives. We must
show that axioms M1 through M5 are satisfied (see Definition 7.1.3).

Axioms M1 and M2 are part of our assumptions, and axiom M3 follows from
the assumptions on W , the definition of I-cofibration (see Definition 10.5.2), and
Lemma 7.2.8.

If we apply the small object argument (Proposition 10.5.16) to the set I, then
assumption 3 implies that this satisfies axiom M5 part 1, and if we apply the small
object argument to the set J , then assumption 2 implies that this satisfies axiom
M5 part 2.

It remains only to show that axiom M4 is satisfied. The proof of axiom M4
depends on which part of assumption 4 is satisfied. If assumption 4a is satisfied,
then axiom M4 part 2 is clear. For axiom M4 part 1, if f : X → Y is both a
fibration and a weak equivalence, we can factor it as X

g−→ Z
h−→ Y where g is an

I-cofibration and h is an I-injective. Axiom M2 and assumption 3 imply that g
is also a weak equivalence, and so assumption 4a implies that g is a J-cofibration.
Since f is a J-injective, the retract argument (Proposition 7.2.2) implies that f is
a retract of h, and is thus an I-injective (see Lemma 7.2.8). This proves axiom M4
part 1, and so the proof in the case that assumption 4a is satisfied is complete. The
proof in the case in which assumption 4b is satisfied is similar. �

Theorem 11.3.2 (D. M. Kan). Let M be a cofibrantly generated model cat-
egory (see Definition 11.1.2) with generating cofibrations I and generating trivial
cofibrations J . Let N be a category that is closed under small limits and colimits,
and let F: M � N :U be a pair of adjoint functors. If we let FI = {Fu

∣∣ u ∈ I}
and FJ = {Fv

∣∣ v ∈ J} and if

(1) both of the sets FI and FJ permit the small object argument (see Defi-
nition 10.5.15) and

(2) U takes relative FJ-cell complexes (see Definition 10.5.8) to weak equiv-
alences,

then there is a cofibrantly generated model category structure on N in which FI is
a set of generating cofibrations, FJ is a set of generating trivial cofibrations, and
the weak equivalences are the maps that U takes into a weak equivalence in M.
Furthermore, with respect to this model category structure, (F,U) is a Quillen pair
(see Definition 8.5.2).

Proof. Let W be the class of maps in N that U takes to a weak equivalence
in M; we will show that W , FI, and FJ satisfy the conditions of Theorem 11.3.1.

Since any functor preserves retract and compositions, W is closed under retracts
and satisfies the “two out of three” axiom.
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Part 1 of Theorem 11.3.1 is one of our assumptions about the sets FI and FJ .
For part 2 of Theorem 11.3.1, our assumptions imply that relative FJ-cell com-

plexes are elements ofW , and so Corollary 10.5.22 implies that every FJ-cofibration
is an element of W . Since every I-injective is a J-injective, Proposition 7.2.17 im-
plies that every FI-injective is an FJ-injective, and so Proposition 10.5.6 implies
that every FJ-cofibration is an FI-cofibration.

For part 3 of Theorem 11.3.1, we showed in the last paragraph that every
FI-injective is an FJ-injective, and Proposition 7.2.17 implies that U takes every
FI-injective to a trivial fibration in M.

For part 4 of Theorem 11.3.1, we will show that condition b holds. If g : X → Y
is both an FJ-injective and an element of W , then Proposition 7.2.17 implies that
Ug is both a J-injective and a weak equivalence in M. Thus, Ug is a trivial fibration
in M, and so it is an I-injective. Proposition 7.2.17 now implies that g is an FI-
injective.

Finally, since left adjoints preserve all colimits, F takes all relative I-cell com-
plexes to relative FI-cell complexes and all relative J-cell complexes to relative
FJ-cell complexes. Since every functor preserves retracts, Proposition 11.2.1 im-
plies that F is a left Quillen functor, and so Proposition 8.5.3 implies that (F,U)
is a Quillen pair. �

11.4. Compactness

Definition 11.4.1. Let M be a cofibrantly generated model category with
generating cofibrations I.

(1) If γ is a cardinal, then an object W in M is γ-compact if it is γ-compact
relative to I (see Definition 10.8.1).

(2) An object W in M is compact if there is a cardinal γ for which it is
γ-compact.

Example 11.4.2. If M = SS(∗), then every finite simplicial set is ω-compact
(where ω is the countable cardinal). If γ is an infinite cardinal and X is a simplicial
set of size γ, then X is γ-compact.

Example 11.4.3. If M = Top(∗), then Corollary 10.7.7 implies that every finite
cell complex is ω-compact (where ω is the countable cardinal). If γ is an infinite
cardinal and X is a cell complex of size γ, then Corollary 10.7.7 implies that X is
γ-compact.

Proposition 11.4.4. Let M be a cofibrantly generated model category with
generating cofibrations I. If γ is a cardinal and an object W in M is γ-compact,
then any retract of W is γ-compact.

Proof. This follows from Proposition 10.8.4. �

Proposition 11.4.5. Let M be a cofibrantly generated model category with
generating cofibrations I. If κ and λ are cardinals such that κ < λ, then any object
of M that is κ-compact is also λ-compact.

Proof. This follows directly from the definitions. �

Proposition 11.4.6. If M is a cofibrantly generated model category with gen-
erating cofibrations I and S is a set of objects that are compact, then there is a
cardinal γ such that every element of S is γ-compact.
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Proof. This follows from Proposition 10.8.6. �

Proposition 11.4.7. Let M be a cofibrantly generated model category in which
cofibrations are monomorphisms and let I be a set of generating cofibrations for
M. If the domains and codomains of the elements of I are compact (see Defini-
tion 11.4.1), then every cofibrant object is compact.

Proof. Since an I-cell complex is the colimit of a λ-sequence of codomains
of elements of I, the result follows from Proposition 10.8.8, Corollary 11.2.2, and
Proposition 11.4.4. �

Proposition 11.4.8. Let M be a cofibrantly generated model category in which
cofibrations are monomorphisms. If γ is a cardinal and K is a set of cofibrations
whose domains are γ-compact (see Definition 11.4.1), then every K-cell of a relative
K-cell complex (see Definition 10.5.8) is contained in a sub relative K-cell complex
(see Definition 10.6.7) of size (see Definition 10.6.4) at most γ.

Proof. If f : X → Y is a relative K-cell complex, then we can write f as the
composition of a λ-sequence X = X0 → X1 → X2 → · · · → Xβ → · · · (β < λ) in
which each map Xβ → Xβ+1 is a pushout of an element of K. We will show by
induction on β that the attaching map of each K-cell factors through a sub relative
K-cell complex of size at most γ. The induction is begun because the attaching
map of the K-cell of presentation ordinal 1 has codomain X = X0.

We now assume that α < λ and that every K-cell of X → Xα is contained in
a subcomplex of size at most γ. Let C → D be the element of K such that Xα+1

is constructed as a pushout
C //

hα

��

D

��

Xα
// Xα+1 ;

we must show that hα factors through a sub relative K-cell complex of size at most
γ. Lemma 10.5.25 implies that we can find a diagram

X0
σ0 //

i0
��

X1
σ1 //

i1
��

X2
σ2 //

i2
��

· · · // Xα

iα
��

X̃0

τ0 //

r0

��

X̃1

τ1 //

r1

��

X̃2

τ2 //

r2

��

· · · // X̃α

rα

��

X0
σ0 // X1

σ1 // X2
σ2 // · · · // Xα

such that rβiβ = 1Xβ
for β ≤ α and every τβ is a relative I-cell complex (where

I is the set of generating cofibrations for M). Thus, the composition X̃0 → X̃α

is a relative I-cell complex, and so the composition iαh
α : C → X̃α must factor

through some sub relative I-cell complex X̃0 → C of X̃0 → X̃α of size at most
γ. We will complete the proof by showing that the composition V → X̃α → Xα

factors through a sub relative K-cell complex of X0 → Xα of size at most γ.
For each I-cell of V there is exactly one β < α such that that cell is a part of

τβ , and (by the induction hypothesis) the corresponding relative K-cell σβ : Xβ →
Xβ+1 is contained in a sub relative K-cell complex of X0 → Xα of size at most
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γ. If we take the union Z of these sub relative K-cell complexes, then the relative
K-cell complex X0 → Z has size at most γ × γ = γ (since γ is infinite), and the
composition V → X̃α → Xα factors through the inclusion Z → Xα. �

Proposition 11.4.9. Let M be a cofibrantly generated model category in which
cofibrations are monomorphisms and let K be a set of cofibrations with compact
domains (see Definition 11.4.1). If an object W of M is compact, then it is compact
relative to K.

Proof. Let γ be an infinite cardinal such that W and the domains of the
elements of K are γ-compact (see Proposition 11.4.6); we will show that W is
γ-compact relative to K.

Let X = X0 → X1 → X2 → · · · → Xβ → · · · (β < λ) be a λ-sequence of
pushouts of elements of K, let Xλ = colimβ<λXβ be the colimit of that sequence,
and let g : W → Xλ be a map; we will show that g factors through a sub relative
K-cell complex of f : X0 → Xλ of size at most γ.

Lemma 10.5.25 implies that we can find a diagram

X0
σ0 //

i0

��

X1
σ1 //

i1

��

X2
σ2 //

i2

��

· · · // Xβ

iβ

��

// · · ·

X̃0

τ0 //

r0

��

X̃1

τ1 //

r1

��

X̃2

τ2 //

r2

��

· · · // X̃β

rβ

��

// · · ·

X0
σ0 // X1

σ1 // X2
σ2 // · · · // Xβ // · · ·

such that rβiβ = 1Xβ
for β ≤ λ and every τβ is a relative I-cell complex (where I

is the set of generating cofibrations for M). Thus, the composition X̃0 → X̃λ is a
relative I-cell complex, and so the composition iλg : W → X̃λ must factor through
some sub relative I-cell complex X̃0 → V of X̃0 → X̃λ of size at most γ. We
will complete the proof by showing that the composition V → X̃λ → Xλ factors
through a sub relative K-cell complex of X0 → Xλ of size at most γ.

For each I-cell of V there is exactly one β < λ such that that cell is a part of
τβ , and Proposition 11.4.8 implies that the corresponding relative K-cell σβ : Xβ →
Xβ+1 is contained in a sub relative K-cell complex of X0 → Xλ of size at most
γ. If we take the union Z of these sub relative K-cell complexes, then the relative
K-cell complex X0 → Z has size at most γ × γ = γ (since γ is infinite), and the
composition V → X̃λ → Xλ factors through the inclusion Z → Xλ. �

11.5. Free cell complexes

11.5.1. Diagram categories.

Definition 11.5.2. Let C and M be categories.
(1) A C-diagram in M is a functor from C to M.
(2) a map of C-diagrams in M from the diagram X to the diagram Y is a

natural transformation of functors from X to Y .
(3) If C is a small category, then the category of C-diagrams in M is the

category in which the class of objects is the class of functors from C to
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M and in which the set of morphisms between two functors is the set of
natural transformations between those functors.

Remark 11.5.3. If C is not small, then there may be a proper class of natural
transformations between two functors from C to M, and so the collection of all
functors from C to M and all natural transformations between them may not form
a category (except possibly in some higher universe; see, e.g., [60, page 17]).

Definition 11.5.4. Let C be a category and let M be a model category.
(1) If X is a C-diagram in M, then X is

• objectwise cofibrant if Xα is a cofibrant object of M for every object
α of C and
• objectwise fibrant if Xα is a fibrant object of M for every object α of

C.
(2) If X and Y are C-diagrams in M, then a map of diagrams f : X → Y is

• an objectwise cofibration if fα : Xα → Y α is a cofibration for every
object α of C,
• an objectwise fibration if fα : Xα → Y α is a fibration for every object
α of C, and
• an objectwise weak equivalence if fα : Xα → Y α is a weak equivalence

for every object α of C,

Definition 11.5.5. Let M be a category, let C and D be small categories, and
let F: C→ D be a functor. If X is a D-diagram in M (see Definition 11.5.2), then
composition with F defines a C-diagram F∗X = X ◦F in M, which we will call the
C-diagram in M induced by F:

• If α is an object of C then (F∗X)α = XFα, and
• if σ : α→ α′ is a map in C then (F∗X)σ = XFσ : XFα →XFα′ .

In Section 11.6 we will show that if C is a small category and M is a cofibrantly
generated model category, then there is a model category structure on the category
of C-diagrams in M (and that this model category of diagrams is also cofibrantly
generated). The cofibrant objects in this model category will be the free cell com-
plexes (see Definition 11.5.35) and their retracts. Among the examples of free cell
complexes are the Cop-diagram of simplicial sets B(−↓C)op (see Definition 14.7.2)
and the C-diagram of simplicial sets B(C ↓−) (see Definition 14.7.8), and the fact
that these are cofibrant diagrams will imply the homotopy invariance of the homo-
topy colimit and homotopy limit functors (see Theorem 18.5.3 and Theorem 19.4.2).

11.5.6. Free diagrams of sets. In this section, we define free diagrams of
sets. This will be used in the next section to define free diagrams in a category of
diagrams, which will be used in Section 11.5.29 to define free cell complexes in a
category of diagrams in a cofibrantly generated model category.

Definition 11.5.7. Let C be a small category.
(1) If α is an object of C, then the free C-diagram of sets generated at position

α is the C-diagram of sets Fα∗ for which
• Fα∗ (β) = C(α, β) for β an object of C and
•

(
Fα∗ (g)

)
(h) = gh for h ∈ Fα∗ (β) and g : β → γ in C.

(2) A free C-diagram of sets is a C-diagram of sets that is a coproduct of
C-diagrams of the form Fα∗ .
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Proposition 11.5.8 (The Yoneda lemma). If C is a small category and α is an
object of C, then for every C-diagram of sets S there is a natural isomorphism

SetC(Fα∗ ,S) ≈ Sα .

Proof. This is the Yoneda lemma (see, e.g., [6, page 11] or [47, page 61]).
If g ∈ SetC(Fα∗ ,S), then g is a map of diagrams from Fα∗ to S, and so gα is a

function from Fα∗ (α) = C(α, α) to Sα; we define a function φ : SetC(Fα∗ ,Sα)→ Sα

by letting φ(g) = gα(1α).
To see that φ is injective, let g and h be elements of SetC(Fα∗ ,S) such that

φ(g) = φ(h). If β is an object of C and σ ∈ Fα∗ (β) = C(α, β), then

gβ(σ) = gβ(σ ◦ 1α)

= gβ
(
(Fα∗ (σ))(1α)

)
=

(
S(σ)

)(
gα(1α)

)
=

(
S(σ)

)(
φ(g)

)
=

(
S(σ)

)(
φ(h)

)
=

(
S(σ)

)(
hα(1α)

)
= hβ

(
(Fα∗ (σ))(1α)

)
= hβ(σ ◦ 1α)

= hβ(σ) .

Thus, g = h.
To see that φ is surjective, let s ∈ Sα. If β is an object of C and σ ∈ Fα∗ (β) =

C(α, β), then S(σ) is a function from Sα to Sβ . Thus, we can define gβ : Fα∗ (β)→
Sβ by letting gβ(σ) =

(
S(σ)

)
(s). If β and γ are objects of C and τ ∈ C(β, γ), then

for every σ ∈ Fα∗ (β) we have(
S(τ)

)(
gβ(σ)

)
=

(
S(τ)

)(
(S(σ))(s)

)
= S(τσ)(σ)

= gγ(τσ)

= gγ
(
(Fα∗ (τ))(σ)

)
and so we have a well defined map of diagrams g : Fα∗ → S for which φ(g) =
gα(1α) =

(
S(1α)

)
(s) = 1Sα(s) = s. �

Example 11.5.9. The diagram of sets A → B is free if and only if the map
A→ B is an inclusion.

Example 11.5.10. The diagram of sets A → C ← B is free if and only if the
maps A→ C and B → C are inclusions with disjoint images in C.

Example 11.5.11. The diagram of sets A1 → A2 → A3 → · · · is free if and
only if all of the maps in the diagram are inclusions.

Example 11.5.12. The diagram of sets A1 ← A2 ← A3 ← · · · is free if and
only if all of the maps are inclusions and the inverse limit of the diagram is empty.

Example 11.5.13. If a discrete group G is considered to be a category with
one object and morphisms equal to the elements of G, then a free G-diagram of
sets is what classically is called a free G-set.
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Example 11.5.14. If C is a small category and P : C → Set is the constant
diagram at a point, then P is free if and only if each connected component of C

has an initial object.

Example 11.5.15. Let ∆ be the cosimplicial indexing category (i.e., for every
nonnegative integer n let [n] denote the ordered set (0, 1, 2, . . ., n) and let ∆ be the
category with objects {[n]

∣∣ n ≥ 0} and with ∆
(
[n], [k]

)
the weakly monotone maps

from [n] to [k]). If C = ∆op, then a C-diagram of sets is a simplicial set. The free
C-diagram of sets generated at position [n] is the standard n-simplex ∆[n]. Thus,
the set of k-simplices of ∆[n] equals the set ∆op

(
[n], [k]

)
= ∆

(
[k], [n]

)
.

Example 11.5.16. If C is the category ∆op, so that F [n]
∗ is the standard n-

simplex ∆[n] (see Example 11.5.15), then Proposition 11.5.8 is the statement that
for every simplicial set X the set of simplicial maps SS(∆[n], X) is naturally iso-
morphic to the set of n-simplices of X.

Definition 11.5.17. If C is a small category and S is a set, the free C-diagram
of sets on the set S generated at position α is the C-diagram of sets FαS =

∐
S Fα∗ .

Thus, for every object β in C,

FαS(β) =
∐
s∈S

C(α, β).

Proposition 11.5.18. If C is a small category and α is an object of C, then
the functor Fα− : Set → SetC (see Definition 11.5.17) is left adjoint to the functor

SetC → Set that evaluates at α, i.e., for every set S and every C-diagram of sets T
there is a natural isomorphism SetC(FαS ,T ) ≈ Set(S,T α).

Proof. Since FαS is a coproduct of diagrams of the form Fα∗ , this follows from
Proposition 11.5.8. �

Definition 11.5.19. If C is a small category, Cdisc is the discrete category with
objects equal to the objects of C, and S is an object of Set(C

disc), then the free
C-diagram of sets generated by S is defined by

F(S) =
∐

α∈Ob(C)

FαSα

(see Definition 11.5.17), so that for every object β of C we have(
F(S)

)
β

=
∐

α∈Ob(C)

∐
s∈Sα

C(α, β) .

Theorem 11.5.20. If C is a small category and Cdisc is the discrete category

with objects equal to the objects of C, then the functor F : Set(C
disc) → SetC of

Definition 11.5.19 is left adjoint to the forgetful functor U : SetC → Set(C
disc), i.e., if

S is an object of Set(C
disc) and T is an object of SetC, there is a natural isomorphism

SetC
(
F(S),T

)
≈ Set(C

disc)
(
S,U(T )

)
.

Proof. Since F(S) is a coproduct of diagrams of the form FαSα
, this follows

from Proposition 11.5.18. �
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11.5.21. Free diagrams. In this section, we define free diagrams in a cate-
gory of diagrams (see Definition 11.5.25). In section Section 11.5.29, we will apply
this to the generating cofibrations (see Definition 11.1.2) of a cofibrantly generated
model category M to obtain the free cells, which are the generating cofibrations in
the category of C-diagrams in M.

Definition 11.5.22. Let M be a cocomplete category (see Definition 7.1.2). If
X is an object of M and S is a set, then by X ⊗ S we will mean the object of M

obtained by taking the coproduct, indexed by S, of copies of X; i.e., X⊗S ≈
∐
S X.

Remark 11.5.23. If the cocomplete category M of Definition 11.5.22 is actually
a simplicial category (see Definition 9.1.2) and we view the set S as a discrete
simplicial set, then the object X⊗S defined by the simplicial structure is naturally
isomorphic to the object defined in Definition 11.5.22.

Definition 11.5.24. If C is a small category, M is a cocomplete category, S
is a C-diagram of sets, and X is an object of M, then by X ⊗ S we will mean the
C-diagram in M such that

(X ⊗ S)α = X ⊗ Sα

for every object α in C (see Definition 11.5.22).

Definition 11.5.25. If C is a small category, α is an object of C, M is a
cocomplete category, andX is an object of M, then the free diagram on X generated
at α is the C-diagram in M defined by FαX = X ⊗ Fα∗ (see Definition 11.5.24 and
Definition 11.5.7). Thus, if β is an object of C, then FαX(β) =

∐
C(α,β)X.

We have the following variant of the Yoneda lemma (see Proposition 11.5.8)
for free diagrams in M.

Proposition 11.5.26. If C is a small category, α is an object of C, and M is a
cocomplete category, then the functor Fα− : M→MC (see Definition 11.5.25) is left

adjoint to the functor MC → M that evaluates at α, i.e., for every object X in M

and every diagram Y in MC there is a natural isomorphism

MC(FαX ,Y ) ≈M(X,Y α) .

Proof. We define φ : MC(FαX ,Y ) → M(X,Y α) by letting φ(g) be the com-
position

X
i(1α)−−−→

∐
C(α,α)

X = FαX(α)
ga−→ Y α .

The remainder of the proof is similar to that of the Yoneda lemma (see Proposi-
tion 11.5.18). �

Definition 11.5.27. If C is a small category, Cdisc is the discrete category with
objects equal to the objects of C, M is a cocomplete category, and X is an object
of M(Cdisc), then the free C-diagram in M generated by X is defined by

F(X) =
∐

α∈Ob(C)

FαXα
=

∐
α∈Ob(C)

Xα ⊗ Fα∗

(see Definition 11.5.25), so that for every object β of C we have(
F(X)

)
β

=
∐

α∈Ob(C)

∐
C(α,β)

Xα .
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Theorem 11.5.28. If C is a small category and M is a cocomplete category, then

the functor F : M(Cdisc) → MC of Definition 11.5.27 is left adjoint to the forgetful

functor U : MC →M(Cdisc), i.e., if X is an object of M(Cdisc) and Y is an object of
MC, then there is a natural isomorphism

MC
(
F(X),Y

)
≈M(Cdisc)(X,UY ) .

Proof. Since F(X) is a coproduct of diagrams of the form FαX , this follows
from Proposition 11.5.26. �

11.5.29. Free cell complexes. Relative free cell complexes are the analogues
for diagrams of topological spaces of relative cell complexes for topological spaces
(see Definition 10.7.1). In a cofibrantly generated model category with generating
cofibrations I, the relative I-cell complexes play that role, as do the free relative
I-cell complexes for a category of diagrams in a cofibrantly generated model cat-
egory. Relative free cell complexes and their retracts will be the cofibrations in
the model category of C-diagrams in a cofibrantly generated model category (see
Theorem 11.6.1).

We first describe free cells, which will be the generating cofibrations (see Defi-
nition 11.1.2) in this model category structure.

Definition 11.5.30. Let C be a small category and let α be an object of C. If
M is a model category and I is a set of maps in M, then a free I-cell generated at
α in MC is a map of the form

FαA → FαB
(see Definition 11.5.25) where A → B is an element of I. At every object β in C,
this is the map ∐

C(α,β)

A→
∐

C(α,β)

B.

Example 11.5.31. Let C be a small category and let α be an object of C.

• A free cell generated at α in TopC is a map of the form∣∣∂∆[n]
∣∣⊗ Fα∗ →

∣∣∆[n]
∣∣⊗ Fα∗

(see Definition 11.5.24) for some n ≥ 0.
• A free cell generated at α in TopC

∗ is a map of the form∣∣∂∆[n]
∣∣+ ⊗ Fα∗ →

∣∣∆[n]
∣∣+ ⊗ Fα∗

(see Definition 11.5.24) for some n ≥ 0.
• A free cell generated at α in SSC is a map of the form

∂∆[n]⊗ Fα∗ → ∆[n]⊗ Fα∗

(see Definition 11.5.24) for some n ≥ 0.
• A free cell generated at α in SSC

∗ is a map of the form

∂∆[n]+ ⊗ Fα∗ → ∆[n]+ ⊗ Fα∗

(see Definition 11.5.24) for some n ≥ 0.
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Lemma 11.5.32. Let C be a small category and let M be a model category. If
g : A→ B is a map in M, α is an object of C, and the square

FαA //

��

FαB

��

X // Y

is a pushout diagram in MC, then for every object β of C there is a pushout diagram
in M

C //

��

D

��

Xβ // Y β

in which the map C → D is a coproduct of copies of g.

Proof. This follows because pushouts in MC are constructed componentwise
and the map (FαA)β → (F α

B)β is the map
∐

C(α,β)A→
∐

C(α,β)B. �

Definition 11.5.33. If M is a model category, C is a small category, and K is
a set of maps of M, then FC

K will denote the set of maps of MC of the form

FαAk
→ FαBk

(see Definition 11.5.25) where Ak → Bk is an element of K and α is an object of C.

Proposition 11.5.34. If M is a category, C is a small category, and K is a set of
maps in M, then the map g : X → Y in MC is an FC

K-injective (see Definition 10.5.2)
if and only if gα : Xα → Y α is a K-injective for every object α of C.

Proof. This follows from Proposition 11.5.26. �

Definition 11.5.35. If M is a cofibrantly generated model category and C is
a small category, then

• a relative free cell complex in MC is a map that is a transfinite composition
(see Definition 10.2.2) of pushouts (see Definition 7.2.10) of free cells (see
Definition 11.5.30),
• a free cell complex in MC is a diagram X such that the map from the

initial object of MC to X is a relative free cell complex, and
• an inclusion of free cell complexes is a relative free cell complex whose

domain is a free cell complex.

The relative free cell complexes and their retracts will be the cofibrations in
the model category of C-diagrams in a cofibrantly generated model category M (see
Theorem 11.6.1).

Proposition 11.5.36. If M is a cofibrantly generated model category, C is a
small category, and f : X → Y is a relative free cell complex in MC, then fα : Xα →
Y α is a cofibration in M for every object α of C.

Proof. This follows from Lemma 11.5.32, Proposition 7.2.5, and Proposi-
tion 7.2.12. �
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11.6. Diagrams in a cofibrantly generated model category

Theorem 11.6.1. If C is a small category and M is a cofibrantly generated
model category (see Definition 11.1.2) with generating cofibrations I and generating
trivial cofibrations J , then the category MC of C-diagrams in M is a cofibrantly
generated model category with generating cofibrations FC

I (see Definition 11.5.33)

and generating trivial cofibrations FC
J . In this model category structure, a map

X → Y is

• a weak equivalence if Xα → Y α is a weak equivalence in M for every
object α of C,
• a fibration if Xα → Y α is a fibration in M for every object α of C, and
• a cofibration if it is a retract of a transfinite composition of pushouts of

elements of FC
I .

Proof. If Cdisc is the discrete category with objects equal to the objects of
C, then M(Cdisc) =

∏
Ob(C) M, and so Proposition 11.1.10 gives us a cofibrantly

generated model category structure on M(Cdisc). We will show that the adjoint
functors of Theorem 11.5.28 satisfy the conditions of Theorem 11.3.2 and thus
define a cofibrantly generated model category structure on MC.

For every object α of C let Iα be the set of maps in M(Cdisc) given by

Iα = I ×
∏

β∈Ob(C)
β 6=α

1φ

that is, the product of the identity map of the initial object of M at every object
β of C other than α with an element of I at α. If we let IOb(C) =

⋃
α∈Ob(C) Iα and

JOb(C) =
⋃
α∈Ob(C) Jα (where the definition of Jα is analogous to that of Iα), then

Proposition 11.1.10 implies that the cofibrantly generated model category structure
on M(discC) has IOb(C) as a set of generating cofibrations and JOb(C) as a set of
generating trivial cofibrations. If g : A → B is a map in M, then the functor F of
Definition 11.5.27 takes g×

∏
β 6=α 1φ to the map FαA → FαB , and so F (IOb(C)) = FC

I

and F (JOb(C)) = FC
J .

Proposition 11.5.26, Lemma 11.5.32, and Theorem 10.5.27 imply that FC
I per-

mits the small object argument. Similarly, FC
J permits the small object argument.

Finally, Lemma 11.5.32 implies that a relative FC
J -cell complex is a relative J-cell

complex at every object α of C, and is thus a weak equivalence at every object α
of C. �

Proposition 11.6.2. If C is a small category and M is a cofibrantly generated
model category, then a free cell complex (see Definition 11.5.35) in MC is cofibrant
in the model category structure of Theorem 11.6.1.

Proof. This follows from Theorem 11.6.1. �

Proposition 11.6.3. If C is a small category and is a cofibrantly generated
model category, then a cofibration in the model category structure on MC of The-
orem 11.6.1 is also an objectwise cofibration.

Proof. This follows from Theorem 11.6.1 and Proposition 11.5.36. �
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Lemma 11.6.4. Let M and N be categories and let F: M � N :U be a pair of
adjoint functors. If C is a small category, then there is a pair of adjoint functors
between diagram categories FC : MC � NC :UC where FC(X) = F◦X for X : C→
M and UC(Y ) = U ◦ Y for Y : C→ N.

Proof. Let φX,Y : M(X,UY ) → N(FX,Y ) be an adjunction isomorphism
(where X is an object of M and Y is an object of N). We define an adjunc-
tion isomorphism φC : MC(X,UCY ) → NC(FCX,Y ) (where X : C → M and
Y : C → N are diagrams) by letting φC(f) on an object α of C be (φCf)α =
φXα,Y α

(fα) : (FCX)α = F(Xα)→ Y α for f ∈MC(X,UCY ). �

Theorem 11.6.5. Let M and N be cofibrantly generated model categories and
let F: M � N :U be a Quillen pair (see Definition 8.5.2).

(1) If C is a small category, then the adjoint pair FC : MC � NC :UC (see
Lemma 11.6.4) is a Quillen pair (see Theorem 11.6.1).

(2) If C is a small category and (F,U) is a pair of Quillen equivalences (see
Definition 8.5.20), then (FC,UC) is a pair of Quillen equivalences.

Proof. Since fibrations and weak equivalences in MC and NC are defined
objectwise (see Theorem 11.6.1), UC preserves both fibrations and trivial fibrations,
and so part 1 follows from Proposition 8.5.3. Since weak equivalences in MC and
NC are defined objectwise, part 2 follows from Proposition 11.5.36. �

Example 11.6.6. If C is a small category, then the geometric realization and
total singular complex functors extend to Quillen equivalences between SSC and
TopC (see Notation 7.10.5).

Example 11.6.7. If C is a small category, then the geometric realization and
total singular complex functors extend to Quillen equivalences between SSC

∗ and
TopC

∗ (see Notation 7.10.5).

Theorem 11.6.8. If C is a small category and M is a cofibrantly generated
model category, then

(1) the colimit functor MC →M and the constant diagram functor M→MC

are a Quillen pair, and
(2) the colimit functor MC →M takes objectwise weak equivalences between

cofibrant C-diagrams in M into weak equivalences between cofibrant ob-
jects in M.

Proof. The colimit and constant diagram functors are an adjoint pair for all
categories M and small categories C. Since fibrations and weak equivalences are
defined objectwise in MC, the constant diagram functor preserves both fibrations
and trivial fibrations, and so Proposition 8.5.3 implies that this adjoint pair is a
Quillen pair. Part 2 follows from part 1 and Proposition 8.5.7. �

11.7. Diagrams in a simplicial model category

Definition 11.7.1. Let M be a simplicial model category, let C be a small
category, let X : C→M be a C-diagram in M, and let K be a simplicial set.

(1) The C-diagram X ⊗K in M is defined by letting (X ⊗K)α = Xα ⊗K
for every object α of C and, if σ : α → α′ is a map in C, by letting
(X ⊗K)σ = Xσ ⊗ 1K .
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(2) The C-diagram XK in M is defined by letting (XK)α = (Xα)K for every
object α of C and, if σ : α → α′ is a map in C, by letting (XK)σ =
(Xσ)(1K).

Definition 11.7.2. Let M be a simplicial model category. If C is a small
category and X,Y : C → M are C-diagrams in M, then Map(X,Y ) is defined
to be the simplicial set whose set of n-simplices is the set of maps of diagrams
X ⊗ ∆[n] → Y (see Definition 11.7.1) and whose face and degeneracy maps are
induced by the standard maps between the ∆[n].

Theorem 11.7.3. If C is a small category and M is a simplicial cofibrantly
generated model category, then the model category structure of Theorem 11.6.1
with the simplicial structure of Definition 11.7.1 and Definition 11.7.2 makes MC a
simplicial model category.

Proof. Definition 11.7.1 and Definition 11.7.2 satisfy axiom M6 (see Defini-
tion 9.1.6) because the constructions are all done objectwise and M is a simplicial
model category. For axiom M7, Proposition 9.3.7 implies that it is sufficient to show
that if j : K → L is an inclusion of simplicial sets and p : X → Y is a fibration
in MC, then XL → XK ×Y K Y L is a fibration that is also a weak equivalence if
either j or p is a weak equivalence. Since both fibrations and weak equivalences in
MC are defined objectwise, this follows from the assumption that M is a simplicial
model category. �

11.8. Overcategories and undercategories

If C and D are categories and F: C→ D is a functor, then for each object α of
D we define the category (α ↓F) of objects of C under α and the category (F ↓α)
of objects of C over α. These reduce to Definition 7.6.2 and Definition 7.6.1 when
C = D and F is the identity functor.

These more general notions will be used in Section 11.9 to define extensions
of diagrams (see Definition 11.9.1), in Chapter 15 to define the Reedy model cate-
gory structure (see Section 15.2), and in in Chapters 18 and 19 to define homotopy
colimit and homotopy limit functors (see Definition 18.1.2, Definition 18.1.8, Defi-
nition 19.1.2, and Definition 19.1.5).

Definition 11.8.1. If C and D are categories, F: C→ D is a functor, and α is
an object of D, then the category (F ↓α) of objects of C over α is the category in
which an object is a pair (β, σ) where β is an object of C and σ is a map Fβ → α in
D, and a morphism from the object (β, σ) to the object (β′, σ′) is a map τ : β → β′

in C such that the triangle

Fβ Fτ //

σ
  

AA
AA

AA
AA

Fβ′

σ′
~~||

||
||

||

α

commutes.
If C = D and F is the identity functor, then we use (C ↓α) to denote the

category (F ↓α). An object of (C ↓α) is a map β → α in C, and a morphism from
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β → α to β′ → α is a map β → β′ in C such that the triangle

β //

��
>>

>>
>>

>>
β′

����
��

��
��

α

commutes.

Example 11.8.2. Let C and D be categories and let F: C → D be a functor.
If α is an object of C, then there is a functor F∗ : (C ↓α)→ (F ↓Fα) that takes the
object σ : β → α of (C ↓α) to the object (β,Fσ : Fβ → Fα) of (F ↓Fα) and the
morphism τ : β → β′ from σ : β → α to σ′ : β′ → α to the morphism τ : β → β′

from (β,Fσ : Fβ → α) to (β′,Fσ′ : Fβ′ → Fα).

Definition 11.8.3. If C and D are categories, F: C→ D is a functor, and α is
an object of D, then the category (α ↓F) of objects of C under α is the category in
which an object is a pair (β, σ) where β is an object of C and σ is a map α→ Fβ in
D, and a morphism from the object (β, σ) to the object (β′, σ′) is a map τ : β → β′

in C such that the triangle

α

σ′

!!B
BB

BB
BB

B
σ

~~}}
}}

}}
}}

Fβ
Fτ

// Fβ′

commutes. The opposite (α ↓F)op is the category in which an object is a pair (β, σ)
where β is an object of C and σ is a map α→ Fβ in D, and a morphism from the
object (β, σ) to the object (β′, σ′) is a map τ : β′ → β in C such that the triangle

α

σ′

!!B
BB

BB
BB

B
σ

~~}}
}}

}}
}}

Fβ Fβ′
Fτ

oo

commutes.
If C = D and F is the identity functor, then we use (α ↓C) to denote the

category (α ↓F). An object of (α ↓C) is a map α → β in C, and a morphism from
α→ β to α→ β′ is a map β → β′ in C such that the triangle

α

��
@@

@@
@@

@

����
��

��
��

β // β′

commutes. The opposite (α ↓C)op is the category in which an object is a map
α → β in C, and a morphism from α → β to α → β′ is a map β′ → β in C such
that the triangle

α

��
@@

@@
@@

@

����
��

��
��

β β′oo

commutes.
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Example 11.8.4. Let C and D be categories and let F: C → D be a functor.
If α is an object of C, then there is a functor F∗ : (α ↓C)op → (Fα ↓F)op that takes
the object σ : α→ β of (α ↓C)op to the object (β,Fσ : Fα→ Fβ) of (Fα ↓F)op and
the morphism τ : β′ → β from σ : α→ β to σ′ : α→ β′ to the morphism τ : β → β′

from (β,Fσ : Fα→ Fβ) to (β′,Fσ′ : Fα→ Fβ′).

Proposition 11.8.5. If C and D are small categories, F: C → D is a functor,
and Fop : Cop → Dop is the opposite of F, then for every object α of D there is a
natural isomorphism of categories

(α ↓F)op ≈ (Fop ↓α) .

Proof. An object of (Fop ↓α) is a map α→ Fβ in D for some object β of C,
and a morphism in (Fop ↓α) from α → Fβ to α → Fβ′ is a map σ : β′ → β in C

such that the triangle

(11.8.6) α

~~}}
}}

}}
}}

!!B
BB

BB
BB

B

Fβ Fβ′
Fσ

oo

commutes. An object of (α ↓F) is a map α→ Fβ in D for some object β of C, and
a morphism in (α ↓F) from α→ Fβ to α→ Fβ′ is a map τ : β → β′ in C such that
the triangle

α

~~}}
}}

}}
}}

!!B
BB

BB
BB

B

Fβ
Fτ

// Fβ′

commutes. Thus, an object of (α ↓F)op is a map α→ Fβ in D and a morphism in
(α ↓F)op from α→ Fβ to α→ Fβ′ is a map σ : β′ → β in C such that the triangle
(11.8.6) commutes. �

Corollary 11.8.7. If C is a small category and α is an object of C, then there
is a natural isomorphism of categories

(α ↓C)op ≈ (Cop ↓α)

Proof. This follows from Proposition 11.8.5. �

11.9. Extending diagrams

If 1 is the category with one object and with no non-identity maps, then an
object X of a category M can be identified with a functor iX : 1 → M. If C is a
small category, α is an object of C, and iα : 1 → C is the functor that takes the
object of 1 to α, then, for a diagram X : C→M, evaluation of X at α is equivalent
to composing X with iα. In this setting, Proposition 11.5.26 says that there is a
natural isomorphism

MC(FαX ,Y ) ≈M1(X,Y ◦ iα) .
In this section, we will obtain a similar result for functors of indexing categories
more general than iα : 1→ C.

Let C be a small category, let B be a subcategory of C, and let i : B → C

be the inclusion functor. If M is a cocomplete category (see Definition 7.1.2) and
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X : B → M is a diagram, we want to “extend” X to a diagram LX : C → M so
that if Y : C→M is a diagram and i∗Y = Y ◦ i is its “restriction” to B, we have
a natural isomorphism

MC(LX,Y ) ≈MB(X, i∗Y ) .

If α is an object of C, then we must define (LX)α so that for every object β
of B and every map σ : i(β) → α in C we have a map (LX)σ : Xβ → (LX)α. If
τ : β′ → β is a map in B, then we must ensure that the triangle

Xβ′
Xτ //

(LX)(στ) ##H
HH

HH
HH

HH
Xβ

(LX)σ{{ww
ww

ww
ww

w

(LX)α

commutes. This suggests that we define (LX)α to be a colimit indexed by (i ↓α),
the category of objects of B over α (see Definition 11.8.1). In fact, this construction
works well for an arbitrary functor between small categories i : B→ C.

Definition 11.9.1. Let i : B→ C be a functor between small categories, let M

be a cocomplete category (see Definition 7.1.2), and let X : B → M be a functor.
The extension LX of X to C is the functor LX : C→M that on an object α of C

is defined by
(LX)α = colim

(β,σ)∈Ob (i↓α)
Xβ

(see Definition 11.8.1) and on a map τ : α→ α′ in C is the natural map of colimits
induced by τ∗ : (i ↓α) → (i ↓α′) (where τ∗ takes the object (β, σ) of (i ↓α) to the
object (β, τσ) of (i ↓α′)).

Remark 11.9.2. In the setting of Definition 11.9.1, the functor LX is known
as the left Kan extension of X along i (see, e.g., [6, Section 3.7] or [47, Chapter X]).

Theorem 11.9.3. Let i : B → C be a functor between small categories, let M

be a cocomplete category, and let X : B→M be a functor. If LX is the extension
of X to C (see Definition 11.9.1), then for every functor Y : C → M there is an
isomorphism

MC(LX,Y ) ≈MB(X, i∗Y )
(where i∗Y = Y ◦ i) that is natural in both X and Y .

Proof. We will define natural maps φ : MC(LX,Y ) → MB(X, i∗Y ) and
ψ : MB(X, i∗Y ) → MC(LX,Y ) that are inverses to each other. If F: LX → Y
is a natural transformation, we let (φF): X → i∗Y be the natural transformation
that on an object γ of B is the composition

Xγ

i(γ,1i(γ))−−−−−→ colim
(β,σ)∈Ob (i↓i(γ))

Xβ = (LX)i(γ)
F−→ Y i(γ) = (i∗Y )γ .

If G: X → i∗Y is a natural transformation, we let (ψG): LX → Y be the natural
transformation that on an object α of C is the composition

(LX)α = colim
(β,σ)∈Ob (i↓α)

Xβ
colim G−−−−−→ colim

(β,σ)∈Ob (i↓α)
(i∗Y )β = colim

(β,σ)∈Ob (i↓α)
Y i(β) → Y α

where the last map in the composition is the natural map from the colimit. The
compositions φψ and ψφ are identity natural transformations, and so φ and ψ are
isomorphisms. �
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Theorem 11.9.4. If M is a cofibrantly generated model category and i : B→ C

is a functor between small categories, then the adjoint functors L : MB � MC :i∗

of Theorem 11.9.3 are a Quillen pair.

Proof. Since fibrations and weak equivalences in both MB and MC are defined
objectwise (see Theorem 11.6.1), the right adjoint i∗ preserves both fibrations and
trivial fibrations. The result now follows from Proposition 8.5.3. �



CHAPTER 12

Cellular Model Categories

A cellular model category is a cofibrantly generated model category (see Defi-
nition 11.1.2) in which the cell complexes (see Definition 11.1.4) are well behaved
(see Definition 12.1.1). Most of the model categories with which I am acquainted
are cellular model categories (but not all; see Example 12.1.7).

We define cellular model categories in Section 12.1. In Section 12.2 we show
that the intersection of two subcomplexes of a cell complex in a cellular model
category always exists, and in Section 12.3 we prove that the cell complexes in a
cellular model category are uniformly compact, i.e., that there is a cardinal σ (called
the “size of the cells”; see Definition 12.3.3) such that if τ is a cardinal and X is a
cell complex of size τ , then X is στ -compact (see Theorem 12.3.1).

In Section 12.4 we discuss smallness, and prove that every cofibrant object
in a cellular model category is small relative to the class of all cofibrations (see
Theorem 12.4.3). The main result of Section 12.5 is Proposition 12.5.3, which
asserts that if a small object factorization (see Definition 10.5.19) is applied to a
map between large enough cell complexes, then the resulting cell complex is no
larger than those with which you started.

12.1. Cellular model categories

Definition 12.1.1. A cellular model category is a cofibrantly generated (see
Definition 11.1.2) model category M for which there are a set I of generating cofi-
brations and a set J of generating trivial cofibrations such that

(1) both the domains and the codomains of the elements of I are compact
(see Definition 11.4.1),

(2) the domains of the elements of J are small relative to I (see Defini-
tion 10.5.12), and

(3) the cofibrations are effective monomorphisms (see Definition 10.9.1).

Remark 12.1.2. Although the sets I and J in Definition 12.1.1 are not part
of the structure of a cellular model category, we will generally assume that some
specific sets I and J satisfying the conditions of Definition 12.1.1 have been chosen.

12.1.3. Examples of cellular model categories.

Proposition 12.1.4. The categories SS, SS∗, Top, and Top∗ are cellular model
categories.

Proof. This follows from Example 9.1.13, Example 9.1.14, Example 9.1.15,
and Example 9.1.16. �

231
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Proposition 12.1.5. If M is a cellular model category and C is a small category,
then the diagram category MC with the model category structure of Theorem 11.6.1
is a cellular model category.

Proof. This follows from Theorem 11.6.1. �

Proposition 12.1.6. If M is a cellular model category and Z is an object of M,
then the overcategory (M ↓Z) (see Definition 11.8.1) is a cellular model category.

Proof. This follows from Theorem 7.6.5. �

We are indebted to Carlos Simpson for the following example.

Example 12.1.7 (C. Simpson). We present here an example of a cofibrantly
generated model category that fails to be a cellular model category. Let M be the
category of sets, let the weak equivalences be the isomorphisms, and let both the
cofibrations and the fibrations be all the maps in M. We let I be the set containing
the two maps ∅ → ∗ (where ∅ is the empty set and ∗ is the one point set) and ∗∗ → ∗
(where ∗∗ is the two point set). We let J be the set containing as its only element
the identity map of the empty set. The cofibrantly generated model category M is
not cellular because not all elements of I are monomorphisms.

12.1.8. Recognizing cellular model categories.

Theorem 12.1.9. If M is a model category, then M is a cellular model category
if there are sets I and J of maps in M such that

(1) a map is a trivial fibration if and only if it has the right lifting property
with respect to every element of I,

(2) a map is a fibration if and only if it has the right lifting property with
respect to every element of J ,

(3) the domains and codomains of the elements of I are compact relative to
I,

(4) the domains of the elements of J are small relative to I, and
(5) relative I-cell complexes are effective monomorphisms (see Definition 10.9.1).

Proof. Proposition 10.8.7 and Proposition 10.9.5 imply that I permits the
small object argument (see Definition 10.5.15), and so I is a set of generating
cofibrations for M. Proposition 11.2.3 now implies that J is a set of generating
trivial cofibrations for M, and so the theorem follows from Proposition 11.2.10. �

12.2. Subcomplexes in cellular model categories

Proposition 12.2.1. If M is a cellular model category, then a subcomplex
of a presented relative cell complex is entirely determined by its set of cells (see
Definition 10.6.4).

Proof. This follows from Proposition 10.6.10 and Proposition 10.6.11. �

Thus, if f : X → Y is a presented relative cell complex, then the union of a set
of subcomplexes of f is well defined. The intersection of a family of subcomplexes
would also be well defined if it was known to exist, i.e., if it was known that the
attaching maps of the cells factored as necessary to build the subcomplex. We will
show in Theorem 12.2.6 that the intersection of any two subcomplexes does exist.
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12.2.2. Intersections of subcomplexes. The main result of this section
is Theorem 12.2.6, which asserts that the intersection of two subcomplexes of a
presented cell complex always exists. We have not been able to determine whether
an arbitrary intersection of subcomplexes must exist.

Proposition 12.2.3. Let M be a cellular model category and let X be a pre-
sented cell complex. If K and L are subcomplexes of X such that their intersection
K ∩ L exists (see Remark 10.6.12), then the pushout square

K ∩ L //

��

K

v

��

L u
// K ∪ L

is a pullback square.

Proof. If f : W → L and g : W → K are maps such that vg = uf , then we
have the solid arrow diagram

W
g

&&

h

##

f

��

K ∩ L t //

s

��

K

v

��

i0 //

i1
// K qK∩L K

r

��

L u
// K ∪ L

i′0 //

i′1

// (K ∪ L)qL (K ∪ L)

in which the left hand square commutes, ri0 = i′0v, and ri1 = i′1v. We now have
ri0g = i′0vg = i′0uf = i′1uf = i′1vg = ri1g; since r is an inclusion of a subcomplex, it
is a monomorphism (see Proposition 10.9.5), and so i0g = i1g. Since t is an inclusion
of a subcomplex (and, thus, an effective monomorphism), this implies that there is
a unique map h : W → K∩L such that th = g. Since ush = vth = vg = uf and u is
an inclusion of a subcomplex (and, thus, a monomorphism; see Proposition 10.9.5),
we have sh = f . �

Theorem 12.2.4. Let M be a cellular model category and let
(
X, ∅ = X0 →

X1 → X2 → · · · → Xβ → · · · (β < λ), {T β , eβ , hβ}β<λ
)

be a presented cell

complex. If {Uβ}β<λ and {V β}β<λ are subcomplexes of X (see Remark 10.6.12),

then the sequence {T̃ β}β<λ such that T̃ β = Uβ ∩ V β for all β < λ determines a
subcomplex of X.

Proof. We must show that the sequence {T̃ β}β<λ can be constructed by the
inductive procedure of Proposition 10.6.11. Since Proposition 10.6.11 allows T̃ 0 to
be any subset of T 0, the induction is begun.

Suppose now that β is an ordinal such that β < λ and that the condition is
satisfied for T̃ γ for all γ < β. We must show that if i ∈ T̃ β then hβi : Ci → Xβ factors
through X̃β → Xβ . Since T̃ β = Uβ ∩ V β , this follows from Proposition 12.2.3. �

Definition 12.2.5. The subcomplex {T̃ β}β<λ of Theorem 12.2.4 will be called
the intersection of the subcomplexes {Uβ}β<λ and {V β}β<λ.
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Theorem 12.2.6. Let M be a cellular model category and let X be a cell
complex. If K and L are subcomplexes (see Remark 10.6.8) of X (relative to some
presentation of X), then the subcomplex K ∩ L of X exists.

Proof. This follows from Theorem 12.2.4. �

12.3. Compactness in cellular model categories

Theorem 12.3.1 (Uniform compactness). If M is a cellular model category
then there is a cardinal σ such that if τ is a cardinal and X is a cell complex of size
τ , then X is στ -compact (see Definition 11.4.1).

Proof. Since the domains and codomains of the elements of I are compact,
we can choose an infinite cardinal σ such that each of these domains and codomains
is σ-compact (see Proposition 11.4.6).

If τ is a cardinal and X is a cell complex of size τ , then we can choose a
presentation of X (see Definition 10.6.2), indexed by an ordinal λ whose cardinal is
τ , that has no two cells with the same presentation ordinal (see Definition 10.6.4).
Thus, we have a λ-sequence ∅ = X0 → X1 → X2 → · · · → Xβ → · · · (β < λ) whose
colimit is X and such that every Xβ+1 (for β + 1 < λ) is obtained as a pushout

(12.3.2) Cβ+1 //

��

Dβ+1

��

Xβ // Xβ+1

for some element Cβ+1 → Dβ+1 of I. If Y is a presented cell complex and f : X → Y
is a map, then we must show that there is a subcomplex K of Y of size at most
στ through which f factors. We will do this by showing (by induction on β) that
for every β < λ the composition Xβ → X → Y factors through a subcomplex
Kβ of Y of size at most στ . The map f will then factor through the union of
the {Kβ}β<λ (since the inclusion of that union into Y is a monomorphism; see
Proposition 10.9.5), which is of size at most (στ)τ = στ .

The induction is begun by noting that X0 = ∅ (the initial object of M). If
β + 1 < λ and the composition Xβ → X → Y factors through a subcomplex Kβ of
Y of size at most στ , then the composition of the attaching map Dβ+1 → Xβ+1 →
X → Y (see Diagram 12.3.2) also factors through a subcomplex of size at most στ ,
and (since σ is infinite) the union of these subcomplexes will be of size at most στ
(see Proposition 10.1.13). Finally, if β is a limit ordinal such that β < λ and for
every α < β the composition Xα → X → Y factors through a subcomplex Kα of Y
of size at most στ , then the composition Xβ → X → Y factors through the union⋃
α<βKα, which is of size at most στ . �

Definition 12.3.3. If M is a cellular model category, then the smallest cardinal
σ satisfying the conclusion of Theorem 12.3.1 will be called the size of the cells of
M.

Corollary 12.3.4. If M is a cellular model category and X is a cofibrant
object of M, then X is compact.

Proof. This follows from Theorem 12.3.1, Proposition 10.8.4, and Corol-
lary 11.2.2. �
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12.4. Smallness in cellular model categories

The main result of this section is Theorem 12.4.3, which asserts that all cofi-
brant objects in a cellular model category are small relative to the subcategory of
all cofibrations.

Lemma 12.4.1. If M is a cellular model category with generating cofibrations
I, then every cell complex (see Definition 11.1.4) is small relative to I.

Proof. This follows from Proposition 10.8.7 and Corollary 10.4.9. �

Lemma 12.4.2. If M is a cellular model category with generating cofibrations
I, then every cofibrant object of M is small relative to I.

Proof. This follows from Corollary 11.2.2, Proposition 10.4.7 and Lemma 12.4.1.
�

Theorem 12.4.3. If M is a cellular model category, then every cofibrant object
is small relative to the subcategory of cofibrations.

Proof. This follows from Lemma 12.4.2 and Proposition 11.2.3. �

Theorem 12.4.4. If M is a cellular model category and J is a set of gener-
ating trivial cofibrations for M as in Definition 12.1.1, then the domains and the
codomains of the elements of J are small relative to the subcategory of all cofibra-
tions.

Proof. Proposition 11.2.3 implies that the domains are small relative to the
subcategory of all cofibrations. Since every element of J is a cofibration (and thus
a retract of a relative I-cell complex), Corollary 10.4.9, Proposition 10.4.7, and
Proposition 10.8.7 imply that the codomains are small relative to the subcategory
of all cofibrations. �

Corollary 12.4.5. If M is a cellular model category and J is a set of generating
trivial cofibrations for M as in Definition 12.1.1, then the domains and codomains
of the elements of J are small relative to J .

Proof. Since every element of J is a cofibration, this follows from Theo-
rem 12.4.4. �

Proposition 12.4.6. Let M be a cellular model category. If S is a set of
cofibrations with cofibrant domains and J is a set of generating trivial cofibrations
for M as in Definition 12.1.1, then there is a functorial factorization of every map

X → Y as X
p−→ W

q−→ Y where p is a relative (S ∪ J)-cell complex and q is an
(S ∪ J)-injective.

Proof. Theorem 12.4.3 and Theorem 12.4.4 imply that the domains of the
elements of S ∪ J are small relative to S ∪ J , and so the result follows from Prop-
osition 10.5.16. �

Proposition 12.4.7. Let M be a cellular model category, and let S be a set
of inclusions of subcomplexes. If X → X ′ is the inclusion of a subcomplex and
we apply a small object factorization using the set S and some ordinal λ (see
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Definition 10.5.19) to both of the maps X → ∗ and X ′ → ∗ to obtain the diagram

X //

��

ES //

��

∗

��

X ′ // E′S // ∗

then the map ES → E′S is the inclusion of a subcomplex.

Proof. Using Proposition 10.9.5, one can check inductively that, at each stage
in the construction of the factorization, the map Eβ → (Eβ)′ is the inclusion of a
subcomplex. �

12.5. Bounding the size of cell complexes

The main result of this section is Proposition 12.5.3, which asserts that if a
small object factorization (see Definition 10.5.19) is applied to a map between
“large enough” cell complexes, then the resulting cell complex is no larger than the
ones with which you started.

Proposition 12.5.1. Let M be a cellular model category. If X is a cell complex
(see Definition 11.1.4), then there is a cardinal η such that if ν is a cardinal, ν ≥ 2,
and Y is a cell complex of size ν, then the set M(X,Y ) has cardinal at most νη.

Proof. Let σ be the size of the cells of M (see Definition 12.3.3) and let τ
be the size of X. The collection of isomorphism classes of cell complexes of size at
most στ is a set, and so we can choose a set {Yα}α∈A of representatives of those
isomorphism classes. We let η be an infinite cardinal at least as large as the set(∐

α∈A M(X,Yα)
)
× (στ).

Let ν be a cardinal such that ν ≥ 2 and let Y be a cell complex of size ν. Every
map from X to Y must factor through a subcomplex of Y that is isomorphic to one
of the Yα (see Theorem 12.3.1). The set of such subcomplexes of Y has cardinal
at most νστ ≤ νη (see Proposition 10.6.10 and Lemma 10.1.16), and so the set
M(X,Y ) has cardinal at most η × (νη) = max(η, νη) = νη. �

Corollary 12.5.2. Let M be a cellular model category. If X is a cofibrant
object then there is a cardinal η such that if ν is a cardinal, ν ≥ 2, and Y is a cell
complex of size ν, then the set M(X,Y ) has cardinal at most νη.

Proof. This follows from Proposition 12.5.1, Lemma 10.1.17, and Corol-
lary 11.2.2. �

Proposition 12.5.3. Let M be a cellular model category with generating cofi-
brations I. If K is a set of relative I-cell complexes with cofibrant domains and κ
is an infinite cardinal that is at least as large as each of the following cardinals:

• for each domain of an element of K, the cardinal η as in Corollary 12.5.2,
• for each codomain of an element ofK, the cardinal η as in Corollary 12.5.2,
• for each relative I-cell complex in K, the cardinal of the set of cells in

that relative I-cell complex, and
• the cardinal of the set K,
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then if g : X → Y is a map of cell complexes of size at most κκ (or if X is a cell
complex of size at most κκ and Y is the terminal object of M) and EK is the
object constructed by applying the small object factorization with the set K and
an ordinal µ ≤ κκ to the map g (see Definition 10.5.19), then EK is a cell complex
of size at most κκ.

Proof. Let µ be an ordinal such that µ ≤ κκ, let g : X → Y be a map of cell
complexes of size at most κκ, and let X = X0 → X1 → X2 → · · · → Xβ → · · ·
(β < µ) be the µ-sequence constructed by applying the small object factorization
with the set K and the ordinal µ to g. We will show by transfinite induction that for
β < µ the complex Xβ has size at most κκ. Since Succ(κκ) (see Definition 10.1.10)
is a regular cardinal (see Proposition 10.1.14), this will imply the proposition.

We begin the induction by noting that X0 = X. If we now assume that β is an
ordinal such that β + 1 < µ and that Xβ has size at most κκ, then the domain of
each element of K has at most (κκ)κ = κ(κ×κ) = κκ maps to Xβ , the codomain has
at most (κκ)κ = κ(κ×κ) = κκ maps to Y , and there are at most κ elements of K.
Thus, Xβ+1 is built from Xβ by pushing out at most (κκ) × (κκ) × κ = κκ maps,
each of which attaches at most κ cells to Xβ , and so Xβ+1 has size at most κκ.

If β is a limit ordinal such that β < µ, then Xβ is a colimit of complexes of size
at most κκ. Since β < µ ≤ κκ, this implies that Xβ is of size at most κκ. �

12.5.4. Natural cylinder objects.

Definition 12.5.5. Let M be a cellular model category with generating cofi-
brations I and let ρ be the smallest regular cardinal such that the domains of the
elements of I are ρ-small relative to I (see Definition 10.5.12). We define a natural
cylinder object (see Definition 7.3.2) X qX → CylM(X) → X on M by applying
the small object factorization with the set I and the ordinal ρ to the fold map
1X q 1X : X qX → X (see Definition 10.5.19).

Definition 12.5.6. Let M be a cellular model category. If X is a cell com-
plex, H : CylM(X) → Y (see Definition 12.5.5) is a homotopy of maps from X
to Y , and K is a subcomplex of X (see Definition 10.6.7), then we will use
H|CylM(K) : CylM(K)→ Y to denote the composition CylM(K)→ CylM(X) H−→ Y ,
and we will call this composition the restriction of the homotopy H to the subcom-
plex K.

Proposition 12.5.7. If M is a cellular model category with generating cofibra-
tions I and κ is an infinite cardinal that is at least as large as each of the following
cardinals:

• for each domain of an element of I, the cardinal η as in Corollary 12.5.2,
• for each codomain of an element of I, the cardinal η as in Corollary 12.5.2,
• the cardinal ρ described in Definition 12.5.5, and
• the cardinal of the set I,

and if X is a cell complex of size at most κκ, then the natural cylinder object
CylM(X) (see Definition 12.5.5) is of size at most κκ.

Proof. This follows from Proposition 12.5.3. �





CHAPTER 13

Proper Model Categories

A model category is left proper if weak equivalences are preserved by pushing
them out along cofibrations, and it is right proper if they are preserved by pulling
them back along fibrations (see Definition 13.1.1). Many model categories that come
up in practice are left proper, right proper, or proper (i.e., both left proper and
right proper), and even more model categories have homotopy theories equivalent
to the homotopy theory of a proper model category (see, e.g., [59]).

In Section 13.1 we define properness and show that our categories of topological
spaces and of simplicial sets are proper model categories. In Section 13.2 we prove a
result relating lifting in left or right proper model categories and cofibrant or fibrant
approximations that will be important for our localization results. In Sections 13.3
and 13.4 we discuss homotopy pullbacks and homotopy fibers in a right proper
model category, and in Section 13.5 we discuss homotopy pushouts in a left proper
model category.

13.1. Properness

Definition 13.1.1. Let M be a model category.

(1) The model category M will be called left proper if every pushout of a weak
equivalence along a cofibration (see Definition 7.2.10) is a weak equiva-
lence.

(2) The model category M will be called right proper if every pullback of
a weak equivalence along a fibration (see Definition 7.2.10) is a weak
equivalence.

(3) The model category M will be called proper if it is both left proper and
right proper.

The following proposition of C. L. Reedy shows that for weak equivalences
between cofibrant objects, it follows from the definition of a model category that a
pushout along a cofibration must be a weak equivalence (and, dually, that for weak
equivalences between fibrant objects, a pullback along a fibration must be a weak
equivalence).

Proposition 13.1.2 (C. L. Reedy, [57]). Let M be a model category.

(1) Every pushout of a weak equivalence between cofibrant objects along a
cofibration (see Definition 7.2.10) is a weak equivalence.

(2) Every pullback of a weak equivalence between fibrant objects along a
fibration (see Definition 7.2.10) is a weak equivalence.

Proof. We will prove part 1; the proof of part 2 is dual.

239
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If we have a pushout diagram

A
i //

f

��

C

g

��

B
j
// D

in which f is a weak equivalence, A and B are cofibrant, and i is a cofibration,
then we must show that g is a weak equivalence. Since C and D are cofibrant (see
Proposition 7.2.12), Theorem 7.8.6 implies that it is sufficient to show that if Z is
a fibrant object of M then g induces an isomorphism of homotopy classes of maps
g∗ : π(D,Z) ≈ π(C,Z).

To see that g∗ is an epimorphism, let s : C → Z be a map. Corollary 7.7.4
implies that there is a map t : B → Z such that tf ' si. Since i is a cofibration,
Proposition 7.3.10 and Theorem 7.4.9 imply that there is a map s′ : C → Z such
that s′ ' s and s′i = tf . The maps s′ and t combine to define u : D → Z such that
ug = s′, and so ug ' s, and g∗ is an epimorphism.

To see that g∗ is a monomorphism, let u and u′ be maps from D to Z such that
ug ' u′g. Proposition 7.4.7 and Theorem 7.4.9 imply that there is a path object
Z

s−→ Path(Z)
p0×p1−−−−→ Z × Z for Z and a map v : C → Path(Z) such that p0v = ug

and p1v = u′g. Thus, we have the diagram

A
i //

f

��

C
v //

g

��

Path(Z)

p0×p1
��

B
j
// D

u×u′
// Z × Z .

In the category (M ↓Z × Z) of object of M over Z × Z (see Theorem 7.6.5), the
object Path(Z) is fibrant (see Definition 7.3.2), and so Corollary 7.7.4 implies that
there is a map w : B → Path(Z) in (M ↓Z × Z) such that wf ' vi in (M ↓Z × Z).
Proposition 7.3.10 implies that there is a map v′ : C → Path(Z) in (M ↓Z × Z)
such that v′ ' v in (M ↓Z × Z) and v′i = wf , and the pair (v′, w) induces a map
H : D → Path(Z) such that p0H = u and p1H = u′, i.e., a right homotopy from u
to u′. �

Corollary 13.1.3. Let M be a model category.

(1) If every object of M is cofibrant, then M is left proper.
(2) If every object of M is fibrant, then M is right proper.
(3) If every object of M is both cofibrant and fibrant, then M is proper.

Proof. This follows from Proposition 13.1.2. �

Corollary 13.1.4. The categories SS and SS∗ (see Notation 7.10.5) are both
left proper.

Proof. This follows from Corollary 13.1.3. �

Corollary 13.1.5. The categories Top and Top∗ (see Notation 7.10.5) are
both right proper.

Proof. This follows from Corollary 13.1.3. �
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We will show in Theorem 13.1.10 that Top and Top∗ are proper and in Theo-
rem 13.1.13 that SS and SS∗ are proper.

13.1.6. Topological spaces and simplicial sets.

Lemma 13.1.7. Let f : X → Y be a map of path connected topological spaces.
If f induces an isomorphism of fundamental groups f∗ : π1(X,x0) ≈ π1

(
Y, f(x0)

)
for

some point x0 ∈ X and an isomorphism of homology f∗ : H∗(X; f∗A) ≈ H∗(Y ;A)
for every local coefficient system A on Y , then f is a weak equivalence.

Proof. It is sufficient to show that the induced map of total singular complexes
is a weak equivalence. Since this is a map of connected simplicial sets inducing
an isomorphism of fundamental groups, it is sufficient to show that it induces
isomorphisms of all higher homotopy groups, and for this it is sufficient to show
that the induced map of universal covers S̃ing f : S̃ingX → S̃ing Y induces an
isomorphism of all homology groups. Since the homology groups of the universal
cover H∗(S̃ingX) are naturally isomorphic to the local coefficient homology groups
H∗

(
SingX; Z[π1X]

)
, this follows from our assumptions. �

Theorem 13.1.8. A map of topological spaces f : X → Y is a weak equivalence
if and only if it induces an isomorphism of the sets of path components f∗ : π0X ≈
π0Y and, for each path component of X and the corresponding path component of
Y , isomorphisms of fundamental groups and of homology with all local coefficient
systems.

Proof. The conditions are clearly necessary, and the converse follows from
Lemma 13.1.7. �

Proposition 13.1.9. Let f : X → Y be a weak equivalence of topological

spaces. If n ≥ 0 and α : Sn → X is a map, then the induced map f̂ : X ∪α Dn+1 →
Y ∪fα Dn+1 is a weak equivalence.

Proof. We will use Theorem 13.1.8. It follows immediately that f̂ induces an
isomorphism on the set of path components.

If n = 0 or n = 1, then the van Kampen theorem implies that f̂ induces an
isomorphism on the fundamental group of each path component. If n > 1, then the
fundamental groups of the components of X and Y were unchanged when the cells
were attached.

To see that f̂ induces an isomorphism of homology with arbitrary local coeffi-
cients, we let

Tn+1 = {x ∈ Rn+1
∣∣ 0 <

∣∣x∣∣ ≤ 1}

X̃ = X ∪f Tn+1

X̂ = X ∪f Dn+1

and let Ỹ and Ŷ be the corresponding constructions for Y . Since X is a deformation
retract of X̃ and Y is a deformation retract of Ỹ , the induced map f̃ : X̃ → Ỹ is a
weak equivalence. If Bn+1 is the interior of Dn+1, then the subsets X̃ and Bn+1 of
X̂ are an excisive pair, and so a Mayer-Vietoris argument shows that f̂ induces an
isomorphism of homology with arbitrary local coefficients. �
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Theorem 13.1.10. The categories Top and Top∗ (see Notation 7.10.5) are both
left proper.

Proof. Let f : X → Y be a weak equivalence of topological spaces, let s : X →
W is a cofibration, and let the square

X
s //

f

��

W

g

��

Y // Z

is a pushout; we must show that g is a weak equivalence. The cofibration smust be a
retract of a relative cell complex t : X → U (see Proposition 11.2.1, Example 11.1.8,
and Example 11.1.9). If

X
t //

f

��

U

h

��

Y // V

is a pushout, then g is a retract of h, and so it is sufficient to show that h is a
weak equivalence. If we write t as a transfinite composition of maps, each of which
attaches a single cell, then a transfinite induction using Proposition 13.1.9 and
Proposition 10.7.4 implies that h is a weak equivalence. �

Theorem 13.1.11. The categories Top and Top∗ (see Notation 7.10.5) are
proper model categories.

Proof. Right properness follows from Corollary 13.1.3 and left properness
follows from Theorem 13.1.10. �

Proposition 13.1.12. The geometric realization functor commutes with finite
limits.

Proof. See [38, page 49]. �

Theorem 13.1.13. The categories SS and SS∗ (see Notation 7.10.5) are proper
model categories.

Proof. Left properness follows from Corollary 13.1.3. Right properness fol-
lows from the right properness of Top and Top∗ (see Theorem 13.1.11) and the
facts that

(1) the geometric realization functor commutes with pullbacks (see Proposi-
tion 13.1.12) and

(2) the geometric realization of a fibration of simplicial sets is a fibration of
topological spaces (see [53]).

�

Theorem 13.1.14. Let C be a small category and let M be a cofibrantly gen-
erated model category. If M is left proper, right proper, or proper, then the model
category structure on MC of Theorem 11.6.1 is, respectively, left proper, right
proper, or proper.
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Proof. Pullbacks in MC are constructed objectwise. Since fibrations in MC

are objectwise fibrations and weak equivalences in MC are objectwise weak equiva-
lences, if M is right proper then the pullback of a weak equivalence along a fibration
is an objectwise weak equivalence, and so MC is right proper.

Pushouts in MC are also constructed objectwise. Since Proposition 11.6.3 im-
plies that a cofibration in MC is an objectwise cofibration, if M is left proper then
the pushout of an objectwise weak equivalence along a cofibration is an objectwise
weak equivalence, and so MC is left proper. �

13.2. Properness and lifting

We are indebted to D. M. Kan for the following proposition.

Proposition 13.2.1. Let M be a model category.

(1) Let M be left proper, let g : A → B be a cofibration, let p : X → Y be

a fibration, and let g̃ : Ã → B̃ be a cofibrant approximation (see Defini-
tion 8.1.22) to g such that g̃ is a cofibration. If p has the right lifting
property with respect to g̃, then p has the right lifting property with
respect to g.

(2) Let M be right proper, let g : A → B be a cofibration, let p : X → Y be

a fibration, and let p̂ : X̂ → Ŷ be a fibrant approximation (see Defini-
tion 8.1.22) to p such that p̂ is a fibration. If g has the left lifting property
with respect to p̂, then g has the left lifting property with respect to p.

Proof. We will prove part 2; the proof of part 1 is dual.
We have the diagram

A //

g

��

X
iX //

p

��

X̂

p̂

��

B // Y
iY
// Ŷ

in which both iX and iY are weak equivalences. If we let P be the pullback Y ×Ŷ X̂,
then we have the diagram

A //

g

��

X
iX //

k %%LLLLLL

p

��

X̂

p̂

��

P
h

99rrrrrr

j
yyrrrrrr

B // Y
iY

// Ŷ

and, since g has the left lifting property with respect to p̂, it also has the left lifting
property with respect to j (see Lemma 7.2.11).

If we now consider the category (A ↓M ↓Y ) of objects of M under A and over
Y , then B, X, and P are objects in this category. Since g has the left lifting
property with respect to j, we know that there is a map in this category from B to
P , and we must show that there is a map in this category from B to X.

The category of objects under A and over Y is a model category in which a
map is a cofibration, fibration, or weak equivalence if and only if it is one in M (see
Theorem 7.6.5). Since j is a pullback of the fibration p̂, it is also a fibration, and so
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X and P are fibrant objects in our category, and B is a cofibrant object. If we knew
that k was a weak equivalence, then the result would follow from Corollary 7.7.5.

Since iY is a weak equivalence, p̂ is a fibration, and M is a right proper model
category, the map h is also a weak equivalence. Since iX = hk and both iX and h
are weak equivalences, k is also a weak equivalence, and the proof is complete. �

Corollary 13.2.2. Let M be a simplicial model category.

(1) Let M be left proper, let g : A → B be a cofibration, let p : X → Y be

a fibration, and let g̃ : Ã → B̃ be a cofibrant approximation (see Defini-
tion 8.1.22) to g such that g̃ is a cofibration. If p has the homotopy right
lifting property with respect to g̃ (see Definition 9.4.2), then p has the
homotopy right lifting property with respect to g.

(2) Let M be right proper, let g : A → B be a cofibration, let p : X → Y

be a fibration, and let p̂ : X̂ → Ŷ be a fibrant approximation (see Defi-
nition 8.1.22) to p such that p̂ is a fibration. If g has the homotopy left
lifting property with respect to p̂ (see Definition 9.4.2), then g has the
homotopy left lifting property with respect to p.

Proof. This follows from Proposition 13.2.1 and Lemma 9.4.7. �

13.3. Homotopy pullbacks and homotopy fiber squares

If all objects in a model category M were fibrant, then we would define homo-
topy pullbacks and homotopy fibers in terms of the homotopy limit functor (see
Definition 19.1.5). Unfortunately, homotopy limits are homotopy invariant only for
diagrams of fibrant objects (see Theorem 19.4.2). However, in a right proper model
category (see Definition 13.1.1), we can define a homotopy pullback functor (see
Definition 13.3.2) that is always homotopy invariant (see Proposition 13.3.4) and
that is naturally weakly equivalent to the homotopy limit when all the objects in
the diagram are fibrant (see Proposition 19.5.3).

13.3.1. Homotopy pullbacks. If M is a right proper model category (see
Definition 13.1.1), then the homotopy pullback of the diagram X

g−→ Z
h←− Y is

constructed by replacing g and h by fibrations and then taking a pullback (see
Definition 13.3.2). In order to have a well defined functor, we need to choose a
fixed functor to convert our maps into fibrations. We will show, however, that any
other factorization into a weak equivalence followed by a fibration yields an object
naturally weakly equivalent to the homotopy pullback and that, in fact, only one of
the maps must be converted to a fibration (see Proposition 13.3.7). Thus, if either
of the maps is already a fibration, then the pullback is naturally weakly equivalent
to the homotopy pullback (see Corollary 13.3.8).

Definition 13.3.2. Let M be a right proper model category and let E be an

arbitrary but fixed functorial factorization of every map g : X → Y into X
ig−→

E(g)
pg−→ Y , where ig is a trivial cofibration and pg is a fibration. The homotopy

pullback of the diagram X
g−→ Z

h←− Y is defined to be the pullback of the diagram
E(g)

pg−→ Z
ph←− E(h).

Lemma 13.3.3. Let M be a right proper model category. If g : X → Y is a
weak equivalence and h : W → Z is a fibration, then, for any map k : Y → Z, the
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natural map from the pullback of the diagram X
kg−→ Z

h←− W to the pullback of

the diagram Y
k−→ Z

h←−W is a weak equivalence.

Proof. We have the commutative diagram

X ×Z W //

��

Y ×Z W //

��

W

h

��

X g
// Y

k
// Z

in which the vertical maps are all fibrations. Since g is a weak equivalence, the
result follows from Proposition 7.2.14. �

Proposition 13.3.4 (Homotopy invariance of the homotopy pullback). Let M

be a right proper model category. If we have the diagram

X
g
//

��

Z

��

Y
hoo

��

X̃ g̃
// Z̃ Ỹ

h̃

oo

in which the vertical maps are weak equivalences, then the induced map of homo-
topy pullbacks

E(g)×Z E(h)→ E(g̃)×Z̃ E(h̃)

is a weak equivalence.

Proof. It is sufficient to show that if g, h, g̃, and h̃ are fibrations, then the
map of pullbacks X ×Z Y → X̃ ×Z̃ Ỹ is a weak equivalence. This map equals the
composition

X ×Z Y → (X̃ ×Z̃ Z)×Z Y ≈ X̃ ×Z̃ Y → X̃ ×Z̃ Ỹ .

Since M is a right proper model category, the map X → X̃ ×Z̃ Z is a weak equiv-
alence, and Lemma 13.3.3 implies that the last map in the composition is a weak
equivalence. �

Corollary 13.3.5. Let M be a right proper model category. If k : W → X is

a weak equivalence, then the homotopy pullback of the diagram X
g−→ Z

h←− Y is

naturally weakly equivalent to the homotopy pullback of the diagram W
gk−→ Z

h←−
Y .

Proof. We have the commutative diagram

W
gk
//

k

��

Z Y
hoo

X g
// Z Y

h
oo

in which the vertical maps are weak equivalences, and so the result follows from
Proposition 13.3.4. �
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Corollary 13.3.6. Let M be a right proper model category. If the maps
r, s : X → Z are left homotopic (see Definition 7.3.2), right homotopic, or (if M

is a simplicial model category) simplicially homotopic (see Definition 9.5.2), then

the homotopy pullback of the diagram X
r−→ Z

h←− Y is weakly equivalent to the

homotopy pullback of the diagram X
s−→ Z

h←− Y .

Proof. We will prove this in the case that r and s are left homotopic; the proof
in the case that they are right homotopic is similar, and either of these cases implies
the corollary in the case that they are simplicially homotopic, since maps that are
simplicially homotopic are both left and right homotopic (see Proposition 9.5.24).

If r and s are left homotopic, there is a diagram

X
i0 //

i1
// C

H // Z

such that Hi0 = r, Hi1 = s, and both i0 and i1 are weak equivalences. The
corollary now follows from Corollary 13.3.5. �

Proposition 13.3.7. Let M be a right proper model category. If X
jg−→Wg

qg−→
Z and Y

jh−→Wh
qh−→ Z are factorizations of, respectively, g : X → Z and h : Y → Z,

jg and jh are weak equivalences, and qg and qh are fibrations, then the homotopy

pullback of the diagram X
g−→ Z

h←− Y is naturally weakly equivalent to each of
Wg ×Z Wh, Wg ×Z Y , and X ×Z Wh.

Proof. If E is the natural factorization used in Definition 13.3.2, then
Lemma 13.3.3 implies that the homotopy pullback E(g)×Z E(h) is naturally weakly
equivalent to both E(g) ×Z Y and X ×Z E(h). Lemma 13.3.3 implies that these
are naturally weakly equivalent to E(g) ×Z Wh and Wg ×Z E(h) respectively, and
that these are naturally weakly equivalent to X ×Z Wh and Wg ×Z Y , respec-
tively. Lemma 13.3.3 implies that both of these are naturally weakly equivalent to
Wg ×Z Wh.

�

Corollary 13.3.8. Let M be a right proper model category. If at least one
of the maps g : X → Z and h : Y → Z is a fibration, then the pullback X ×Z Y is

naturally weakly equivalent to the homotopy pullback of the diagram X
g−→ Z

h←− Y .

Proof. This follows from Proposition 13.3.7. �

In Proposition 19.5.3, we show that if M is a right proper model category
and X, Y , and Z are fibrant, then the homotopy pullback of the diagram X →
Z ← Y is naturally weakly equivalent to the homotopy limit of that diagram (see
Definition 19.1.5).

Proposition 13.3.9. Let M be a right proper model category. If the vertical
maps in the diagram

X //

��

Z

��

Yoo

��

X̃ // Z̃ Ỹoo
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are weak equivalences and at least one map in each row is a fibration, then the map

of pullbacks X ×Z Y → X̃ ×Z̃ Ỹ is a weak equivalence.

Proof. This follows from Corollary 13.3.8 and Proposition 13.3.4. �

Proposition 13.3.10. Let M be a right proper model category. If we have

a diagram X
g−→ Z

h←− Y in which at least one of g and h is a fibration and if

ĥ : Ŷ → Ẑ is a fibrant approximation to h, then the pullback of h along g has a

fibrant approximation that is a pullback of ĥ.

Proof. We have the diagram

W //

k

��

Y
iY //

h

��

Ŷ

ĥ
��

X g
// Z

iZ
// Ẑ

in which W is the pullback X ×Z Y and iY and iZ are weak equivalences, and we
must show that there is a pullback of ĥ that is a fibrant approximation to k. If
we factor the composition iZg : X → Ẑ as X iX−−→ X̂

ĝ−→ Ẑ where iX is a trivial
cofibration and ĝ is a fibration, then we can let Ŵ = X̂ ×Ẑ Ŷ and we have the
diagram

W //

iW
!!B

BB

k

��

Y
��

>>
>

h

��

Ŵ
//

k̂

��

Ŷ

ĥ

��

X
g

//

!!B
BB

Z
iZ ��

??
?

X̂ ĝ
// Ẑ

in which the front and back squares are pullbacks. Proposition 13.3.9 now implies
that iW is a weak equivalence, and so the pullback k̂ of ĥ is a fibrant approximation
to k. �

13.3.11. Homotopy fiber squares.

Definition 13.3.12. If M is a right proper model category, then a square

A //

��

C

��

B // D

will be called a homotopy fiber square if the natural map from A to the homotopy
pullback (see Definition 13.3.2) of the diagram B → D ← C is a weak equivalence.
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Proposition 13.3.13. If M is a right proper model category and we have the
diagram

A //

fA
  A

AA

��

B
fB
!!B

BB

��

A′ //

��

B′

��

C //

fC   A
AA

D
fD !!B

BB

C ′ // D′

in which fA, fB , fC , and fD are weak equivalences, then the front square is a
homotopy fiber square if and only if the back square is a homotopy fiber square.

Proof. If P is the homotopy pullback of the diagram C → D ← B and P ′ is
the homotopy pullback of the diagram C ′ → D′ ← B′, then we have the diagram

A //

fA

��

P

fP

��

A′ // P ′

and Proposition 13.3.4 implies that fP is a weak equivalence. Since fA is a weak
equivalence, this implies that the top map is a weak equivalence if and only if the
bottom map is a weak equivalence. �

Proposition 13.3.14. Let M be a right proper model category. If the front
and back squares of the diagram

A //

fA
  A

AA

��

B
fB
!!B

BB

��

A′ //

��

B′

��

C //

fC   A
AA

D
fD !!B

BB

C ′ // D′

are homotopy fiber squares and if fB , fC , and fD are weak equivalences, then fA
is a weak equivalence.

Proof. This follows from Proposition 13.3.4. �

Proposition 13.3.15. Let M be a right proper model category. If the right
hand square in the diagram

A //

��

B //

��

C

��

D // E // F

is a homotopy fiber square, then the left hand square is a homotopy fiber square if
and only if the combined square is a homotopy fiber square.
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Proof. Factor C → F as C i−→ G
p−→ F where i is a trivial cofibration and p is

a fibration, and let P = E ×F G and P ′ = D ×F G. We now have the diagram

A //

k

��

B //

j∼=
��

C

i∼=
��

P ′ //

��

P //

q

��

G

p

��

D // E // F

and Proposition 13.3.7 implies that j is a weak equivalence. Proposition 7.2.14
implies that P ′ is the pullback D ×E P , and so Proposition 13.3.7 implies that k
is a weak equivalence if and only if the (original) left hand square is a homotopy
fiber square. Since Proposition 13.3.7 implies that k is a weak equivalence if and
only if the (original) combined square is a homotopy fiber square, the proof is
complete. �

13.4. Homotopy fibers

The homotopy fiber of the map X → Y over a point (see Definition 13.4.1) of
Y will be defined so that it is a fibrant object weakly equivalent to the homotopy
pullback of the diagram X → Y ← ∗ (where “∗” denotes the terminal object of M)
(see Definition 13.4.3 and Remark 13.4.5).

Definition 13.4.1. If M is a model category and Z is an object of M, then by
a point of Z we will mean a map ∗ → Z (where “∗” is the terminal object of M).

Definition 13.4.2. If M is a model category, g : Y → Z is a map, and z : ∗ → Z
is a point of Z (see Definition 13.4.1), then the fiber of g over z is the pullback of
the diagram ∗ z−→ Z

g←− Y .

Definition 13.4.3. Let M be a right proper model category. If g : Y → Z is a
map and z : ∗ → Z is a point of Z, then the homotopy fiber HFibz(g) of g over z is
the pullback of the diagram ∗ z−→ Z

pg←− E(Y ) (see Definition 13.3.2).

Proposition 13.4.4. If M is a right proper model category, g : Y → Z is a
map in M, and z : ∗ → Z is a point of Z, then the homotopy fiber of g over Z is a
fibrant object of M that is naturally weakly equivalent to the homotopy pullback

of the diagram ∗ z−→ Z
g←− Y .

Proof. This follows from Proposition 7.2.12 and Proposition 13.3.7. �

Remark 13.4.5. The homotopy fiber of the map g : Y → Z over a point z : ∗ →
Z was not defined to be the homotopy pullback of the diagram ∗ z−→ Z

g←− Y because
that homotopy pullback need not be a fibrant object of M.

Proposition 13.4.6. Let M be a right proper model category. If g : Y → Z
is a fibration and z : ∗ → Z is a point of Z, then the fiber of g over z is naturally
weakly equivalent to the homotopy fiber of g over z.

Proof. This follows from Proposition 13.4.4 and Corollary 13.3.8. �
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Proposition 13.4.7. Let M be a right proper model category. If g : Y → Z
is a map and z : ∗ → Z and z′ : ∗ → Z are points of Z that are (either left or
right) homotopic, then the homotopy fiber of g over z is weakly equivalent to the
homotopy fiber of g over z′.

Proof. This follows from Proposition 13.4.4 and Corollary 13.3.6. �

Corollary 13.4.8. If h : Y → Z is a map in Spc and z and z′ are points in
the same path component of Z, then the homotopy fiber of h over z is weakly
equivalent to the homotopy fiber of h over z′.

Proof. This follows from Proposition 13.4.7. �

Proposition 13.4.9. Let M be a right proper model category. If Z is an object
of M, z : ∗ → Z is a point of Z, and ∗ → P → Z is a factorization of z into a weak
equivalence followed by a fibration, then the homotopy fiber of any map h : Y → Z
over z is naturally weakly equivalent to P ×Z Y .

Proof. This follows from Proposition 13.3.7. �

Proposition 13.4.10. If h : Y → Z is a map in Top and z is a point of Z, then
the total singular complex of the homotopy fiber of h over z is naturally homotopy
equivalent to the corresponding homotopy fiber of (Sing h) : Sing Y → SingZ.

Proof. If E is the factorization in Top of Definition 13.3.2 and iz : ∗ → Z
is the constant map to z, then Sing(∗) → Sing E(iz) → SingZ is a factorization
of Sing(∗) → SingZ into a weak equivalence followed by a fibration. Since the
total singular complex functor commutes with pullbacks and all the simplicial sets
involved are fibrant, the result now follows from Proposition 13.4.9. �

Proposition 13.4.11. If h : Y → Z is a map in SS and z is a vertex of Z,
then the geometric realization of the homotopy fiber of h over z is naturally weakly
equivalent to the corresponding homotopy fiber of

∣∣h∣∣ : ∣∣Y ∣∣→ ∣∣Z∣∣.
Proof. Since the geometric realization functor commutes with pullbacks (see

[38, page 49]), this is similar to the proof of Proposition 13.4.10. �

13.5. Homotopy pushouts and homotopy cofiber squares

Most of the definitions and results of this section are dual to those of Sec-
tion 13.3.

13.5.1. Homotopy pushouts.

Definition 13.5.2. Let M be a left proper model category and let E be an

arbitrary but fixed functorial factorization of every map g : X → Y into X
ig−→

E(g)
pg−→ Y , where ig is a cofibration and pg is a trivial fibration. The homotopy

pushout of the diagram X
g←− Z

h−→ Y is defined to be the pushout of the diagram

E(g)
ig←− Z ih−→ E(h).
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Proposition 13.5.3 (Homotopy invariance of the homotopy pushout). Let M

be a left proper model category. If we have the diagram

X

��

Z
g
oo

��

h // Y

��

X̃ Z̃g̃
oo

h̃

// Ỹ

in which the vertical maps are weak equivalences, then the induced map of homo-
topy pushouts E(g)qZ E(h)→ E(g̃)qZ E(h̃) is a weak equivalence.

Proof. This follows from Proposition 13.3.4 and Proposition 7.1.9 (see Re-
mark 7.1.10). �

Proposition 13.5.4. Let M be a left proper model category. If the vertical
maps in the diagram

Z

��

Xoo

��

// Y

��

Z̃ X̃oo // Ỹ

are weak equivalences and at least one map in each row is a cofibration, then the

induced map of pushouts Z qX Y → Z̃ qX̃ Ỹ is a weak equivalence.

Proof. This follows from Proposition 13.3.9 and Proposition 7.1.9 (see Re-
mark 7.1.10). �

Proposition 13.5.5. If we have a pushout diagram in Top(∗)

A
i //

��

B

��

C // D

in which the map i is a cofibration, then the natural map of simplicial sets

(SingC)q(SingA) (SingB)→ SingD

is a weak equivalence.

Proof. Since left adjoints commute with pushouts, there is a natural home-
omorphism

∣∣(SingC) q(SingA) (SingB)
∣∣ ≈ ∣∣SingC

∣∣ q| SingA|
∣∣SingB

∣∣, and so it is
sufficient to show that the map

∣∣SingC
∣∣ q| SingA|

∣∣SingB
∣∣ → ∣∣SingD

∣∣ is a weak
equivalence. We have the diagram∣∣SingC

∣∣
��

∣∣SingA
∣∣oo //

��

∣∣SingB
∣∣

��

C Aoo // B

and (since both the geometric realization and total singular complex functors pre-
serve cofibrations) Proposition 13.5.4 implies that the map

∣∣SingC
∣∣q| SingA|

∣∣SingB
∣∣→

D is a weak equivalence. Since this map factors through the weak equivalence
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∣∣→ D, the result follows from the “two out of three” axiom for weak equiv-

alences. �

Proposition 13.5.6. Let M be a left proper model category. If we have a

diagram Y
g←− X

h−→ W in which at least one of g and h is a cofibration and if

g̃ : X̃ → Ỹ is a cofibrant approximation to g, then the pushout of g along h has a
cofibrant approximation that is a pushout of g̃.

Proof. This follows from Proposition 13.3.10 and Proposition 7.1.9 (see Re-
mark 7.1.10). �

13.5.7. Homotopy cofiber squares.

Definition 13.5.8. If M is a left proper model category, then a square

A //

��

C

��

B // D

will be called a homotopy cofiber square if the natural map to D from the homotopy
pushout (see Definition 13.5.2) of the diagram B ← A→ C is a weak equivalence.

Proposition 13.5.9. If M is a left proper model category and we have the
diagram

A //

fA
  A

AA

��

B
fB
!!B

BB

��

A′ //

��

B′

��

C //

fC   A
AA

D
fD !!B

BB

C ′ // D′

in which fA, fB , fC , and fD are weak equivalences, then the front square is a
homotopy cofiber square if and only if the back square is a homotopy cofiber square.

Proof. This follows from Proposition 13.3.13 and Proposition 7.1.9 (see Re-
mark 7.1.10). �

Proposition 13.5.10. Let M be a left proper model category. If the front and
back squares of the diagram

A //

fA
  A

AA

��

B
fB
!!B

BB

��

A′ //

��

B′

��

C //

fC   A
AA

D
fD !!B

BB

C ′ // D′

are homotopy cofiber squares and if fA, fB , and fC are weak equivalences, then fD
is a weak equivalence.

Proof. This follows from Proposition 13.3.14 and Proposition 7.1.9 (see Re-
mark 7.1.10). �



CHAPTER 14

The Classifying Space of a Small Category

The classifying space (or nerve) of a small category C is a simplicial set BC in
which

• the vertices of BC are the objects of C,
• the 1-simplices of BC are the morphisms of C, and
• the n-simplices of BC for n ≥ 2 are the strings of n composable morphisms

in C.

We will often want to know whether a category “has a contractible classifying
space”. If C is not small then the class of objects is not a set and so there can-
not exist a simplicial set BC except possibly in some higher universe, but we are
still able to describe what it means to say that “C has a contractible classifying
space” by considering the classifying spaces of the small subcategories of C (see
Definition 14.3.1). Our main use for this will be to prove the “essential unique-
ness” of a construction that requires making choices: We build a category C whose
objects are the possible outcomes and whose morphisms are equivalences between
them. The assertion that C has a contractible classifying space then implies that
any two outcomes are connected by an “essentially unique” zig-zag of equivalences
(see Theorem 14.4.5).

We define the classifying space of a small category in Section 14.1. In Sec-
tion 14.2 we define what it means for a functor between small categories to be
left (or right) cofinal (see Definition 14.2.1). Our definition is in terms of whether
the classifying spaces of the overcategories (or undercategories) are non-empty and
connected, and we show in Theorem 14.2.5 that this is the “correct” notion for
discussing limits (or colimits) of diagrams indexed by these categories. (We define
the analogous notions of homotopy left (or right) cofinal in Definition 19.6.1 in
terms of whether those classifying spaces are contractible, and we show in Theo-
rem 19.6.13 that this is the “correct” notion for discussing homotopy limits and
homotopy colimits.)

In Section 14.3 we discuss what it means to say that a category has a contractible
classifying space. If C is a small category, then this just means that the simplicial set
BC is contractible. For categories C that may not be small, we define this in terms
of the classifying spaces of the small subcategories of C (see Definition 14.3.1). In
Section 14.4 we define equivalent zig-zags in a category, and we say that there is an
essentially unique zig-zag connecting two objects if the objects are connected by a
zig-zag, any two of which are equivalent. We then show that if C has a contractible
classifying space, then any pair of objects of C are connected by an essentially
unique zig-zag in C.

In Section 14.5 we discuss the situation in which we have categories K and L

and our interest is in the functors from K to L. If K is not small then there is

253
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no “category of all functors from K to L and all natural transformations between
them”, and so we consider collections of functors from K to L and natural trans-
formations between them that do form categories. The main result is a sufficient
condition for every small category of functors over a fixed functor to be contained
in one with a contractible classifying space (see Theorem 14.5.4). Section 14.6
contains uniqueness results for cofibrant and fibrant approximations as our first
application of contractible classifying spaces. Similar results for resolutions and
homotopy function complexes will follow in Chapter 16 and Chapter 17.

In Sections 14.7 and 14.8 we discuss diagrams of classifying spaces of over-
categories and undercategories. In Section 14.7 we describe the Dop-diagrams of
opposites of undercategories and the D-diagram of overcategories defined by a func-
tor of small categories F: C→ D. If we take the classifying spaces of the opposites
of undercategories (or of the overcategories), then we obtain Dop-diagrams (or D-
diagrams) of simplicial sets, and we show in Section 14.8 that they are free cell
complexes (see Proposition 14.8.5). Thus, they are cofibrant objects in the model
category of Dop-diagrams (or D-diagrams) of simplicial sets. These diagrams will
be used in Chapters 18 and 19 to define homotopy colimit and homotopy limit
functors.

14.1. The classifying space of a small category

Definition 14.1.1. If C is a small category, then the classifying space of C

(also called the nerve of C) is the simplicial set BC in which an n-simplex σ is a
diagram in C of the form

α0
σ0−→ α1

σ1−→ · · · σn−1−−−→ αn

and the face and degeneracy maps are defined by

diσ =


α1

σ1−→ α2
σ2−→ · · · σn−1−−−→ αn if i = 0

α0
σ0−→ · · · σi−2−−−→ αi−1

σiσi−1−−−−→ αi+1
σi+1−−−→ · · · σn−1−−−→ αn if 0 < i < n

α0
σ0−→ α1

σ1−→ · · · σn−2−−−→ αn−1 if i = n

(14.1.2)

siσ = α0
σ0−→ · · · σi−1−−−→ αi

1αi−−→ αi
σi−→ αi+1

σi+1−−−→ · · · σn−1−−−→ αn .

If F: C→ D is a functor between small categories, then F induces a map of simplicial
sets BF: BC→ BD defined by

BF(α0
σ0−→ α1

σ1−→ · · · σn−1−−−→ αn) = Fα0
Fσ0−−→ Fα1

Fσ1−−→ · · · Fσn−1−−−−→ Fαn .

Example 14.1.3. For every integer n ≥ 0 let [n] denote the category with
objects {0, 1, 2, . . . , n} and with a single morphism from i to j when i ≤ j. There
is a natural isomorphism of simplicial sets B[n] ≈ ∆[n] that takes the k-simplex
i0 → i1 → i2 → · · · → ik of B[n] to the simplex [i0, i1, i2, . . . , ik] of ∆[n].

Let O denote the category with objects the [n] for n ≥ 0 and with O
(
[n], [k]

)
the functors from [n] to [k]. O is a skeletal subcategory of the category of finite
ordered sets, and we have a functor B: O → SS whose image is isomorphic to the
subcategory of SS consisting of the standard simplices ∆[n] for n ≥ 0 and the
standard maps between them.
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Example 14.1.4. Let G be a discrete group. If we consider G to be a category
with one object and with morphisms equal to the group G, then BG is the standard
classifying space of the group G, i.e., π1BG ≈ G and πiBG ≈ 0 for i 6= 1.

Proposition 14.1.5. If C and D are small categories, then there is a natural
isomorphism of simplicial sets B(C×D) ≈ BC× BD.

Proof. This follows directly from the definitions. �

Although there is an obvious one to one correspondence between the simplices of
BC and the simplices of BCop, this does not define a map of simplicial sets because it
does not commute with the face and degeneracy operators. It does, however, define
a homeomorphism between the geometric realizations of these simplicial sets.

Proposition 14.1.6. If C is a small category, then there is a natural homeo-
morphism of topological spaces

∣∣BC
∣∣ ≈ ∣∣BCop

∣∣.
Proof. We define φ :

∣∣BC
∣∣ → ∣∣BCop

∣∣ by letting φ take the realization of the
simplex α0

σ0−→ α1
σ1−→ · · · σn−1−−−→ αn of BC to the realization of the simplex αn

σn−1←−−−
αn−1

σn−2←−−− · · · σ0←− α0 of BCop, reversing the orientation of the simplex. This
commutes with the realizations of the face and degeneracy operators and so we
have a map

∣∣BC
∣∣→ ∣∣BCop

∣∣ that has an obvious inverse. �

Example 14.1.7. Let C and D be small categories, let F: C→ D be a functor,
and let α be an object of C.

(1) If n ≥ 0 then an n-simplex σ of B(F ↓α) (see Definition 11.8.1) is a pair

(
(β0

σ0−→ β1
σ1−→ · · · σn−1−−−→ βn), τ : Fβn → α

)
where β0

σ0−→ β1
σ1−→ · · · σn−1−−−→ βn is a string of composable maps in C and

τ : Fβn → α is a map in D. The face and degeneracy maps on the simplex
σ are

diσ =



(
(β1

σ1−→ β2
σ2−→ · · · σn−1−−−→ βn), τ : Fβn → α

)
if i = 0(

(β0
σ0−→ · · · σi−2−−−→ βi−1

σiσi−1−−−−→ βi+1
σi+1−−−→ · · · σn−1−−−→ βn), τ : Fβn → α

)
if 0 < i < n(

(β0
σ0−→ β1

σ1−→ · · · σn−2−−−→ βn−1), τ ◦ (Fσn−1) : Fβn−1 → α
)

if i = n

siσ =
(
(β0

σ0−→ · · · σi−1−−−→ βi
1βi−−→ βi

σi−→ βi+1
σi+1−−−→ · · · σn−1−−−→ βn), τ : Fβn → α

)
.

(2) If n ≥ 0 then an n-simplex σ of B(α ↓F)op (see Definition 11.8.3) is a pair

(
(β0

σ0←− β1
σ1←− · · · σn−1←−−− βn), τ : α→ Fβn

)
where β0

σ0←− β1
σ1←− · · · σn−1←−−− βn is a string of composable maps in C and

τ : α→ Fβn is a map in D. The face and degeneracy maps on the simplex



256 14. THE CLASSIFYING SPACE OF A SMALL CATEGORY

σ are

diσ =



(
(β1

σ1←− β2
σ2←− · · · σn−1←−−− βn), τ : α→ Fβn

)
if i = 0(

(β0
σ0←− · · · σi−2←−−− βi−1

σi−1σi←−−−− βi+1
σi+1←−−− · · · σn−1←−−− βn), τ : α→ Fβn

)
if 0 < i < n(

(β0
σ0←− β1

σ1←− · · · σn−2←−−− βn−1), (Fσn−1) ◦ τ : α→ Fβn−1

)
if i = n

siσ =
(
(β0

σ0←− · · · σi−1←−−− βi
1βi←−− βi

σi←− βi+1
σi+1←−−− · · · σn−1←−−− βn), τ : α→ Fβn

)
.

Example 14.1.8. Let C and D be small categories, let F: C→ D be a functor,
and let α be an object of C.

(1) The map of simplicial sets BF∗ : B(C ↓α)→ B(F ↓Fα) (see Example 11.8.2)
takes the n-simplex

(
(β0

σ0−→ β1
σ1−→ · · · σn−1−−−→ βn), τ : βn → α

)
of B(C ↓α)

to the simplex
(
(β0

σ0−→ β1
σ1−→ · · · σn−1−−−→ βn),Fτ : Fβn → Fα

)
of B(F ↓Fα).

(2) The map of simplicial sets BF∗ : B(α ↓C)op → B(Fα ↓F)op (see Exam-
ple 11.8.4) takes the n-simplex

(
(β0

σ0←− β1
σ1←− · · · σn−1←−−− βn), τ : α→ βn

)
of B(C ↓α) to the simplex

(
(β0

σ0←− β1
σ1←− · · · σn−1←−−− βn),Fτ : Fα→ Fβn

)
of B(F ↓Fα).

14.2. Cofinal functors

If C and D are small categories and F: C → D is a functor, then for ev-
ery cocomplete and complete category M and every diagram X : D → M there
is an induced C-diagram F∗X and natural maps colimC F∗X → colimD X and
limD X → limC F∗X. The main result of this section is Theorem 14.2.5, which
characterizes those functors F for which that natural map of colimits or that nat-
ural map of limits is always an isomorphism.

Definition 14.2.1. Let C and D be small categories and let F: C → D be a
functor.

• The functor F is left cofinal (or initial) if for every object α of D the clas-
sifying space B(F ↓α) of the overcategory (F ↓α) (see Definition 11.8.1)
is non-empty and connected. If in addition F is an inclusion of a sub-
category, then we will say that C is a left cofinal subcategory (or initial
subcategory) of D.
• The functor F is right cofinal (or terminal) if for every object α of D

the classifying space B(α ↓F) of the undercategory (α ↓F) (see Defini-
tion 11.8.3) is non-empty and connected. If in addition F is an inclusion
of a subcategory, then we will say that C is a right cofinal subcategory (or
terminal subcategory) of D.

There are differing uses of the above terms in the literature; see Remark 19.6.2.

Remark 14.2.2. We will show in Theorem 14.2.5 that left cofinal and right
cofinal are the “correct” notions when considering colimits and limits of functors.
In Definition 19.6.1 we will define a functor between small categories to be homotopy
left cofinal or homotopy right cofinal if the classifying spaces of the overcategories
(or undercategories) are contractible, rather than just non-empty and connected.
We show in Theorem 19.6.13 that these are the “correct” notions when considering
homotopy colimits and homotopy limits.
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Lemma 14.2.3. Let C be a small category. If α is an object of C and Fα∗ is the
free C-diagram of sets generated at α (see Definition 11.5.7), then colimC Fα∗ is a
set with one element.

Proof. If β is an object of C and h ∈ Fα∗ (β) = C(α, β), then
(
Fα∗ (h)

)
(1α) =

h ◦ 1α = h. That is, Fα∗ (h) takes 1α ∈ Fα∗ (α) = C(α, α) to h ∈ Fα∗ (β), and so h and
1α represent the same element of colimC Fα∗ . �

Lemma 14.2.4. Let C and D be small categories and let G: C→ D be a func-
tor. If α is an object of D and Fα∗ is the free D-diagram of sets generated at α
(see Definition 11.5.7), then there is a natural one to one correspondence between
colimC G∗Fα∗ and the components of B(α ↓G).

Proof. There is a natural one to one correspondence between the vertices
of B(α ↓G) and the set

∐
σ∈Ob(C) F

α
∗
(
G(σ)

)
=

∐
σ∈Ob(C)(G

∗Fα∗ )(σ). Under this
correspondence, there is a 1-simplex from the vertex f : α → F(σ) to the vertex
g : α → G(τ) if and only if there is a map h : σ → τ in C such that F(h) ◦ f = g.
Thus, two vertices of B(α ↓F) are in the same component of B(α ↓G) if and only
if they represent the same element of colimC G∗Fα∗ . �

Theorem 14.2.5. Let C and D be small categories and let G: C → D be a
functor.

(1) The functor G is right cofinal (see Definition 14.2.1) if and only if for every
cocomplete category M and every diagram X : D → M the natural map
colimC G∗X → colimD X is an isomorphism.

(2) The functor G is left cofinal (see Definition 14.2.1) if and only if for every
complete category M and every diagram X : D → M the natural map
limD X → limC G∗X is an isomorphism.

Proof of part 1: Let G be right cofinal, let M be a cocomplete category, and
let X : D → M be a diagram; we will define a map ψ : colimD X →
colimC G∗X that is an inverse to the natural map φ : colimC G∗X →
colimD X. If α is an object of D, we can choose an object σ of C and
a map f : α → G(σ) (since B(α ↓G) is nonempty) and define a map

Xα → colimC G∗X as the composition Xα
f∗−→ XG(σ) = (G∗X)σ →

colimC G∗X. If h : σ → τ is a map in C then the map (G∗X)σ →
colimC G∗X equals the composition (G∗X)σ

h∗−→ (G∗X)τ → colimC G∗X.
Since B(α ↓G) is connected, this implies that our map Xσ → colimCG

∗X
is independent of the choices. If k : α → β is a map in D, then it also
implies that the map Xα → colimC G∗X equals the composition Xα

k∗−→
Xβ → colimC G∗X, and so we have an induced map ψ : colimD X →
colimC G∗X. The composition Xα → colimD X

ψ−→ colimC G∗X
φ−→

colimD X equals the map Xα → colimD X, and so φψ = 1colimD X .

Similarly, the composition (G∗X)σ → colimC G∗X
φ−→ colimD X

ψ−→
colimC G∗X equals the map (G∗X)σ → colimC G∗X, and so ψφ = 1colimC G∗X .

If G is not right cofinal, then we can choose an object α of D such
that B(α ↓G) is either empty or not connected. If we let Fα∗ be the free D-
diagram of sets generated at α (see Definition 11.5.7), then colimD Fα∗ is
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a set with one element (see Lemma 14.2.3) but colimC G∗Fα∗ has as many
elements as the number of components of B(α ↓G) (see Lemma 14.2.4).

Proof of part 2: Proposition 11.8.5 implies that the functor G is left cofinal
if and only if B(α ↓Fop)op is nonempty and connected for every object
α of D, and Proposition 14.1.6 implies that this is true if and only if
B(α ↓Fop) is nonempty and connected for every object α of D. Part 1 im-
plies that this is true if and only if for every cocomplete category Mop and
every diagram Xop : Dop →Mop the natural map colimCop(Gop)∗Xop →
colimDop Xop is an isomorphism, and this is true if and only if for every
complete category M and every diagram X : D → M the natural map
limD X → limC G∗X is an isomorphism.

14.3. Contractible classifying spaces

If C is a small category, then its classifying space BC (see Definition 14.1.1)
exists and is a simplicial set, and it makes sense to ask whether BC is contractible.
If C is not small, though, then there is no simplicial set BC unless we are working
in a universe U from which we can pass to a higher universe U′ and construct the
simplicial set BC in U′. Definition 14.3.1 allows us to say what we mean by “C

has a contractible classifying space” without assuming that there exists a simplicial
set BC. Proposition 14.3.3 shows that this definition is equivalent to our intuitive
notion of having a simplicial set BC that is contractible.

Definition 14.3.1. If C is a category (that is not necessarily small), then we
will say that C has a contractible classifying space if for every small subcategory D

of C there is a small subcategory D′ of C such that D ⊂ D′ and BD′ is a contractible
simplicial set.

Remark 14.3.2. If C is a small category, then Definition 14.3.1 is equivalent
to the assertion that BC is a contractible simplicial set. However, if a category C

is not small, then there is no simplicial set BC unless we are working in a universe
from which we can pass to a higher universe in which the class of objects of C is a
set (see, e.g., [60, page 17]), so that BC is a simplicial set in that higher universe.
For this situation, see Proposition 14.3.3.

Proposition 14.3.3. If C is a category in a universe U and U′ is a higher
universe in which BC is a simplicial set, then BC is contractible in the sense of
Definition 14.3.1 if and only if BC is a contractible simplicial set in U′.

Proof. If BC is contractible in the sense of Definition 14.3.1 and if f : Sn →∣∣BC
∣∣ is a map of topological spaces in U′, then the image of f factors through the

image of
∣∣BD

∣∣ → ∣∣BC
∣∣ for some small (in U) subcategory D of C. There is then a

small (in U) subcategory D′ of C such that D ⊂ D′ and BD′ is contractible, and so
the map f is nullhomotopic.

Conversely, let BC be contractible in U′ and let D be a small (in U) subcategory
of C. We will inductively define a sequence D = D0 ⊂ D1 ⊂ D2 ⊂ · · · of small
(in U) subcategories of C such that for every k ≥ 0, n ≥ 0, and map Sk →

∣∣BDn

∣∣,
the composition Sk →

∣∣BDn

∣∣ ⊂ ∣∣BDn+1

∣∣ is nullhomotopic. If we then let D′ =⋃
n≥0 Dn, then BD′ will be contractible (because any map from a sphere to

∣∣BD′
∣∣

must factor through
∣∣BDn

∣∣ for some n ≥ 0 and will thus be nullhomotopic in∣∣BDn+1

∣∣).
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If n ≥ 0 and we have defined Dn, then for every k ≥ 0 there is a set (in U)
of maps f : Sk →

∣∣BDn

∣∣, and for each of these maps there is a nullhomotopy of
the composition Sk →

∣∣BDn

∣∣ ⊂ ∣∣BC
∣∣. The image of each of these nullhomotopies

is contained in some finite subcomplex of
∣∣BC

∣∣ and the union of all of these finite
subcomplexes of

∣∣BC
∣∣ is a small subcomplex of

∣∣BC
∣∣. We can thus find a small

subcategory Dn+1 of C such that BDn+1 contains both BDn and the image of all
of the nullhomotopies. �

Proposition 14.3.4. Let K and L be categories. If both BK and BL are
contractible (see Definition 14.3.1), then for every small subcategory D of K × L

there are small subcategories D′K of K and D′L of L such that

(1) BD′K and BD′L are contractible and
(2) D ⊂ D′K ×D′L.

Proof. If D is a small subcategory of K×L, let DK be the image of D under
prK : K×L→ K and let DL be the image of D under prL : K×L→ L. Both DK

and DL are small, and so there exist small subcategories D′K of K and D′L of L

such that DK ⊂ D′K, DL ⊂ D′L, and both BD′K and BD′L are contractible. �

Proposition 14.3.5. Let K and L be categories. If both BK and BL are
contractible (see Definition 14.3.1), then B(K× L) is contractible.

Proof. This follows from Proposition 14.3.4 and Proposition 14.1.5. �

14.3.6. Homotopic maps of classifying spaces.

Proposition 14.3.7. If C is a small category then there is a natural isomor-
phism

B
(
C× [1]

)
≈ (BC)×∆[1]

(where [1] is the category of Example 14.1.3).

Proof. This follows from Proposition 14.1.5 and Example 14.1.3. �

Lemma 14.3.8. Let [1] be the category of Example 14.1.3. If C is a small
category, then

• the objects of the category C× [1] consist of two objects (α, 0) and (α, 1)
for every object α of C, and
• the morphisms of C × [1] consist of three morphisms (σ, 10), (σ, 11), and

(σ, 0 → 1) for every morphism σ of C (where 0 → 1 is the unique non-
identity map of [1]).

Proof. This follows directly from the definitions. �

Lemma 14.3.9. Let C and D be categories, let F,G: C→ D be functors from C

to D, and let [1] be the category of Example 14.1.3. If i0 : C→ C× [1] is the functor
that takes an object α to (α, 0) and a morphism g to (g, 10) and i1 : C→ C× [1] is
the functor that takes an object α to (α, 1) and a morphism g to (g, 11), then there
is a natural transformation φ : F→ G if and only if there is a functor Φ: C×[1]→ D

such that Φi0 = F and Φi1 = G.

Proof. If φ : F→ G is a natural transformation, then we define Φ by letting
• Φ(α, 0) = F(α) and Φ(α, 1) = G(α) for every object α of C, and
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• Φ(σ, 10) = F(σ), Φ(σ, 11) = G(σ), and Φ(σ, 0 → 1) = φ(σ) for every
morphism σ of C (see Lemma 14.3.8).

Conversely, if Φ: C × [1] → D is a functor such that Φi0 = F and Φi1 = G,
define a natural transformation φ : F→ G by letting φ(α) = Φ(α, 0→ 1) for every
object α of C. �

Proposition 14.3.10. Let C and D be small categories and let F,G: C → D

be functors from C to D. If there is a natural transformation from F to G, then
the induced maps of classifying spaces BF,BG: BC→ BD are homotopic.

Proof. This follows from Lemma 14.3.9 and Proposition 14.3.7. �

Definition 14.3.11. If C and D are categories and α is an object of D, then
the constant functor from C to D at α is the functor that takes every object of C

to α and every morphism of C to 1α.

Corollary 14.3.12. Let C be a category and let α be an object of C.

(1) If there is a natural transformation from the identity functor of C to the
constant functor from C to C at α (see Definition 14.3.11), then BC is
contractible (see Definition 14.3.1).

(2) If there is a natural transformation from the constant functor from C to
C at α (see Definition 14.3.11) to the identity functor of C, then BC is
contractible (see Definition 14.3.1).

Proof. We will prove part 1; the proof of part 2 is similar.
If D is a small subcategory of C, let D′ be the subcategory of C consisting

of D, the object α, and the maps {φ(β)
∣∣ β ∈ Ob(D)}. D′ is also small, and

Proposition 14.3.10 implies that BD′ is contractible. �

Proposition 14.3.13. Let C be a category.

(1) If α is an initial object of C, then there is a natural transformation from
the constant functor at α (see Definition 14.3.11) to the identity functor
of C.

(2) If α is a terminal object of C, then there is a natural transformation
from the identity functor of C to the constant functor at α (see Defini-
tion 14.3.11).

Proof. We will prove part 1; the proof of part 2 is dual.
For every object β of C, let φ(β) be the unique map from α to β. Since α is an

initial object of C, it follows that φ is a natural transformation, and so the result
follows from Corollary 14.3.12. �

Proposition 14.3.14. If the small category C has either a terminal or an initial
object, then BC is contractible (see Definition 14.3.1.)

Proof. This follows from Corollary 14.3.12 and Proposition 14.3.13. �

14.4. Uniqueness of weak equivalences

Definition 14.4.1. Let C be a category. If X and Y are objects of C, then
two zig-zags (see Definition 7.9.1) in C from X to Y are equivalent if one can be
changed into the other by a finite sequence of the following transformations and
their inverses:
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(1) If two consecutive arrows in a zig-zag point in the same direction, compose
them; i.e.,

X →W1 ← · · · →Wk−1
αk−−→Wk

αk+1−−−→Wk+1 ← · · · → Y

is equivalent to

X →W1 ← · · · →Wk−1
αk+1αk−−−−−→Wk+1 ← · · · → Y

and

X →W1 ← · · · →Wk−1
βk←−W ′k

βk+1←−−−Wk+1 ← · · · → Y

is equivalent to

X →W1 ← · · · →Wk1

βkβk+1←−−−−−Wk+1 ← · · · → Y .

(2) If an arrow is immediately followed by the same arrow pointing in the
opposite direction, remove the pair; i.e., both

X →W1 ← · · · →Wk−1
αk−−→Wk

αk←−−Wk−1 ← · · · → Y

and

X →W1 ← · · · →Wk−1
βk←−W ′k

βk−→Wk−1 ← · · · → Y

are equivalent to

X →W1 ← · · ·Wk−2 →Wk−1 ←Wk+2 · · · → Y .

Definition 14.4.2. Let C be a category and let X and Y be objects of C. If
any two zig-zags in C from X to Y are equivalent (see Definition 14.4.1), then we
will say that there is an essentially unique zig-zag in C from X to Y .

Proposition 14.4.3. Let M be a model category and let K be a small and
full subcategory of M. If X, Y , and Z are objects in K, then composition of
zig-zags of weak equivalences (see Definition 7.9.1) passes to equivalence classes of
zig-zags of weak equivalences in K (see Definition 14.4.1) to define the composition
of an equivalence class of zig-zags of weak equivalences from X to Y in K with an
equivalence class of zig-zags of weak equivalences from Y to Z in K.

Proof. This follows directory from the definitions. �

Proposition 14.4.4. Let K be a small category. If X and Y are objects of K,
then the set of equivalence classes of zig-zags in K from X to Y is isomorphic to
the set of maps from X to Y in the edge path groupoid of BK.

Proof. This almost follows directly from the definitions. If α and β are com-
posable maps in K, then there is a 2-simplex in BK with faces α, β, and β ◦α, and
so the definition of the edge path groupoid contains the relation (β ◦α)−1 ·β = α−1,
which is not part of the definition of equivalence of zig-zags. However, this relation
is a consequence of the definition of equivalence of zig-zags because (β ◦ α)−1 · β =
α−1 · β−1 · β = α−1 (and similarly for the other relations derived from the 2-
simplex). �

Theorem 14.4.5. Let C be a category and let X and Y be objects of C. If BC

is contractible (see Definition 14.3.1), then there is an essentially unique zig-zag in
C from X to Y (see Definition 14.4.2).

Proof. This follows from Proposition 14.4.4. �
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14.4.6. Homotopy equivalences.

Proposition 14.4.7. Let M be a model category, let C be a category, and let
F: C → M be a functor such that F(α) is a weak equivalence between cofibrant-
fibrant objects of M for every map α of C. If

X
α1−→W1

α2←−W2
α3−→ · · · αn−1←−−−Wn−1

αn−−→ Y

is a zig-zag in C from X to Y , then we can choose a homotopy inverse gk to F(αk)
for each αk that points to the left and let gk = F(αk) for each αk that points to the
right and the composition gngn−1 · · · g1 : X → Y will be a homotopy equivalence
whose homotopy class is independent of the choices made.

Proof. This follows from Theorem 7.5.10. �

Definition 14.4.8. If M is a model category, C is a category, F: C → M is a
functor such that F(α) is a weak equivalence between cofibrant-fibrant objects of
M for every map α of C, and if

X
α1−→W1

α2←−W2
α3−→ · · · αn−1←−−−Wn−1

αn−−→ Y

is a zig-zag in C from X to Y , then any homotopy equivalence from F(X) to F(Y )
that is homotopic to one obtained from the zig-zag as in Proposition 14.4.7 will be
called a homotopy equivalence determined by that zig-zag.

Lemma 14.4.9. Let M be a model category, let C be a category, and let F: C→
M be a functor such that F(α) is a weak equivalence between cofibrant-fibrant
objects of M for every map α of C. If X and Y are objects of C and we have
two equivalent zig-zags (see Definition 14.4.1) from X to Y , then those zig-zags
determine (see Definition 14.4.8) the same homotopy class of homotopy equivalences
from F(X) to F(Y ).

Proof. This follows immediately from the definitions. �

Proposition 14.4.10. Let M be a model category, let C be a category, and let
F: C → M be a functor such that F(α) is a weak equivalence between cofibrant-
fibrant objects of M for every map α of C. If there is an essentially unique zig-zag
(see Definition 14.4.2) in C from X to Y then the zig-zags from X to Y determine
(see Definition 14.4.8) a homotopy class of homotopy equivalences from F(X) to
F(Y ).

Proof. This follows from Lemma 14.4.9. �

Proposition 14.4.11. Let M be a model category, let C be a category, and let
F: C → M be a functor such that F(α) is a weak equivalence between cofibrant-
fibrant objects of M for every map α of C. If there is an essentially unique zig-zag
(see Definition 14.4.2) in C between any two objects of C, then for any two objects
X and Y of C those zig-zags define a homotopy class of homotopy equivalences
hXY : F(X) → F(Y ) such that if X, Y , and Z are objects of C, then hY ZhXY =
hXZ .

Proof. This follows from Proposition 14.4.10. �
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14.5. Categories of functors

In this section, we consider a situation in which we have categories K and L and
a functor X : K→ L. We would like to discuss what would be called “subcategories
of the overcategory (LK ↓X)” (see Definition 11.8.1), where LK is the “category of
functors from K to L”, but we cannot do this because the collection of functors from
K to L and all natural transformations between them might not form a category.
This is because if K is not small, then there might be a proper class of natural
transformations between any pair of functors from K to L.

There are two ways to deal with this situation. The first is to work in a universe
that allows us to pass, temporarily, to a “higher universe” (see, e.g., [60, page 17]) in
which K and L are small and so there is a category of “all functors from K to L and
all natural transformations between them”. We could pass to such a higher universe,
prove theorems there, and then state the implications of those theorems for our
original universe. The second is to work with subcollections of those functors and
natural transformations, restricting ourselves to those subcollections that do form
categories, and draw our results from the relationships between those categories of
functors and natural transformations. This second method is the one that we shall
use (see Definition 14.5.2 and Remark 14.5.3). We are indebted to D. Dugger for
suggesting this approach.

Definition 14.5.1. Let K and L be categories, let W be a class of maps in L,
and let X : K→ L be a functor.

(1) A functor over X relative to W is a pair (X̃, i) in which X̃ : K→ L is a
functor and i : X̃ → X is a natural transformation such that iα : X̃α →
Xα is in W for every object α of K.

(2) A functor under X relative to W is a pair (X̂, j) in which X̂ : K→ L is a
functor and j : X → X̂ is a natural transformation such that jα : Xα →
X̂α is in W for every object α of K.

Definition 14.5.2. Let K and L be categories, let W be a class of maps in L,
and let X : K→ L be a functor.

(1) A category of functors over X relative to W is a category C such that
(a) every object of C is a functor over X relative to W (see Defini-

tion 14.5.1),
(b) if (X̃, i) and (X̃ ′, i′) are objects of C, then C

(
(X̃, i), (X̃ ′, i′)

)
is a set

of natural transformations φ : X̃ → X̃ ′ such that i′φ = i,
(c) if (X̃, i) is an object of C, then the identity natural transformation

of X̃ is an element of C
(
(X̃, i), (X̃, i)

)
, and

(d) composition of morphisms in C is defined by composition of natural
transformations.

(2) A category of functors under X relative to W is a category C such that
(a) every object of C is a functor under X relative to W (see Defini-

tion 14.5.1),
(b) if (X̂, j) and (X̂ ′, j′) are objects of C, then C

(
(X̂, j), (X̂ ′, j′)

)
is a

set of natural transformations φ : X̂ → X̂ ′ such that φj = j′,
(c) if (X̂, j) is an object of C, then the identity natural transformation

of X̂ is an element of C
(
(X̂, j), (X̂, j)

)
, and
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(d) composition of morphisms in C is defined by composition of natural
transformations.

Remark 14.5.3. If K is a small category and L is a category, then there is a
category LK with objects all the functors from K to L and morphisms all natural
transformations between such functors. In this case, a category of functors over X
is just a subcategory of (LK ↓X) (see Definition 11.8.1) and a category of functors
under X is just a subcategory of (X ↓LK) (see Definition 11.8.3). If K is not small,
however, then the collection of natural transformations between two functors may
not be a set, and so there may not be a “category of all functors and all natural
transformations” except in a universe higher than the one in which we work.

We are indebted to D. M. Kan for the following theorem.

Theorem 14.5.4. Let K and L be categories, let X : K→ L be a functor, and
let W be a class of maps in L that is closed under composition.

(1) If there is an augmented functor (see Definition 8.1.12) (F, p) on L such
that pY : FY → Y is in W for every object Y of L, then for every small
category D of functors over X relative to W (see Definition 14.5.2) there
is a small category D′ of functors over X relative to W such that D ⊂ D′

and BD′ is contractible.
(2) If there is a coaugmented functor (see Definition 8.1.12) (G, q) on L such

that qY : Y → GY is in W for every object Y of L, then for every small
category D of functors under X relative to W (see Definition 14.5.2) there
is a small category D′ of functors under X relative to W such that D ⊂ D′

and BD′ is contractible.

Proof. We will prove part 1; the proof of part 2 is dual.
Let D be a small category of functors over X relative to W. If we let D′ be

the category generated by
• D,
• the objects {(FX̃, i ◦ pX̃)

∣∣ (X̃, i) ∈ Ob(D)},
• the object (FX, pX),
• the maps {F(g)

∣∣ g is a map in D},
• the maps {F(i) : (FX̃, i ◦ pX̃)→ (FX, pX)

∣∣ (X̃, i) ∈ Ob(D)}, and
• the maps {pX̃

∣∣ (X̃, i) ∈ Ob(D)},
then D′ is a small category and D ⊂ D′. We will show that BD′ is contractible by
showing that there is a subcategory D̃ ⊂ D′ such that

(1) D̃ has a terminal object (and so BD̃ is contractible; see Proposition 14.3.14),
and

(2) BD̃ is a deformation retract of BD′.

Let D̃ be the subcategory of D′ generated by

• the objects {(FX̃, i ◦ pX̃)
∣∣ (X̃, i) ∈ Ob(D)},

• the object (FX, pX),
• the maps {F(g)

∣∣ g is a map in D}, and
• the maps {F(i) : (FX̃, i ◦ pX̃)→ (FX, pX)

∣∣ (X̃, i) ∈ Ob(D)}.
The object (FX, pX) is a terminal object of D̃, and so it remains only to show that
BD̃ is a deformation retract of BD′.
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We define a retraction F̃ : D′ → D̃ by letting

F̃(X̃, i) = (FX̃, i ◦ pX̃) for (X̃, i) ∈ Ob(D),

F̃
(
g : (X̃, i)→ (X̃ ′, i′)

)
= F(g) : (FX̃, i ◦ pX̃)→ (FX̃ ′, i′ ◦ pX̃′) for g a map in D,

F̃
(
pX̃ : (FX̃, i ◦ pX̃)→ (X̃, i)

)
= 1(FX̃,i◦p

X̃
) for (X̃, i) ∈ Ob(D),

and by letting F̃ be the identity on the subcategory D̃. Proposition 14.3.10 implies
that it is sufficient to construct a natural transformation φ from F̃ to 1D′ . We do
this by letting φ(X̃, i) = pX̃ for (X̃, i) ∈ Ob(D) and by letting φ take every object
of D̃ to the identity map of that object. �

Theorem 14.5.5. Let K and L be categories, let X : K→ L be a functor, and
let W be a class of maps in L that is closed under composition.

(1) If there is an augmented functor (see Definition 8.1.12) (F, p) on L such

that pY : FY → Y is in W for every object Y of L and if (X̃ : K →
L, i : X̃ → X) and (X̃ ′ : K → L, i′ : X̃ ′ → X) are functors over X
relative to W (see Definition 14.5.1), then there is an essentially unique
zig-zag (see Definition 14.4.2) of natural transformations of functors over

X relative to W from X̃ to X̃ ′.
(2) If there is a coaugmented functor (see Definition 8.1.12) (G, q) on L such

that qY : Y → GY is in W for every object Y of L and if (X̂ : K →
L, j : X → X̂) and (X̂ ′ : K → L, j′ : X → X̂ ′) are functors under X
relative to W (see Definition 14.5.1), then there is an essentially unique
zig-zag (see Definition 14.4.2) of natural transformations of functors under

X relative to W from X̂ to X̂ ′.

Proof. This follows from Proposition 14.5.7 and Theorem 14.5.4. �

Theorem 14.5.6. Let C be a category and let W be a class of maps in C that
is closed under composition.

(1) Let X be an object of C and let C̃X be the full subcategory of (C ↓X)
determined by the objects X̃ → X that are in W. If there is an augmented
functor (see Definition 8.1.12) (F, i) on C such that iY : FY → Y is in W

for every object Y of C, then BC̃X is contractible (see Definition 14.3.1).

(2) Let X be an object of C and let ĈX be the full subcategory of (X ↓C)
determined by the objectsX → X̂ that are in W. If there is a coaugmented
functor (see Definition 8.1.12) (G, j) on C such that jY : Y → GY is in W

for every object Y of C, then BĈX is contractible.

Proof. If we let K be the category with one object and one (identity) map,
then this follows from Theorem 14.5.4. �

Proposition 14.5.7. Let K and L be categories, let W be a class of maps in
L, and let X : K→ L be a functor.

(1) If every small category D of functors over X relative to W (see Defini-
tion 14.5.2) is contained in a small category D′ of functors over X relative
to W such that BD′ is contractible, then there is an essentially unique zig-
zag (see Definition 14.4.2) of natural transformations of functors over X
relative to W connecting any two functors over X.
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(2) If every small category D of functors under X relative to W (see Def-
inition 14.5.2) is contained in a small category D′ of functors under X
relative to W such that BD′ is contractible, then there is an essentially
unique zig-zag (see Definition 14.4.2) of natural transformations of func-
tors under X relative to W connecting any two functors under X.

Proof. This follows from Theorem 14.4.5. �

14.6. Cofibrant approximations and fibrant approximations

Definition 14.6.1. Let M be a model category.
(1) If X is an object of M, we let CofAp(X) denote the category whose

objects are cofibrant approximations toX (see Definition 8.1.2) and whose
morphisms are maps of cofibrant approximations (see Definition 8.1.4).

(2) IfX is an object of M, we let FibAp(X) denote the category whose objects
are fibrant approximations to X and whose morphisms are maps of fibrant
approximations.

Theorem 14.6.2. Let M be a model category.

(1) If X is an object of M, then B CofAp(X) is contractible (see Defini-
tion 14.3.1).

(2) If X is an object of M, then B FibAp(X) is contractible (see Defini-
tion 14.3.1).

Proof. We will prove part 1; the proof of part 2 is dual.
If we let W be the class of weak equivalences in M with cofibrant domain, then

the result follows from Theorem 14.5.6 and Proposition 8.1.17. �

Proposition 14.6.3. Let M be a model category and let X be an object of M.

(1) If (X̃, i) and (X̃ ′, i′) are cofibrant approximations to X, then there is an
essentially unique zig-zag (see Definition 14.4.2) of weak equivalences of

cofibrant approximations to X from (X̃, i) to (X̃ ′, i′).
(2) If (X̂, j) and (X̂ ′, j′) are fibrant approximations to X, then there is an

essentially unique zig-zag (see Definition 14.4.2) of weak equivalences of

fibrant approximations to X from (X̂, j) to (X̂ ′, j′).

Proof. This follows from Theorem 14.4.5 and Theorem 14.6.2. �

Definition 14.6.4. Let M be a model category.
(1) If g : X → Y is a map in M, we let CofAp(g) denote the category whose

objects are cofibrant approximations to g (see Definition 8.1.22) and whose
morphisms are maps of cofibrant approximations (see Definition 8.1.26).

(2) If g : X → Y is a map in M, we let FibAp(g) denote the category whose
objects are fibrant approximations to g and whose morphisms are maps
of fibrant approximations.

Proposition 14.6.5. Let M be a model category.

(1) If g : X → Y is a map in M, then B CofAp(g) is contractible (see Defini-
tion 14.3.1).

(2) If g : X → Y is a map in M, then B FibAp(g) is contractible.
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Proof. We will prove part 1; the proof of part 2 is dual.
Let K be the category of maps in M, in which a map from f : A → B to

f ′ : A′ → B′ is a commutative square

A
s //

f

��

A′

f ′

��

B
t
// B′ ,

and let W be the class of maps for which both s and t are weak equivalences with
cofibrant domains. If (F, i) is a functorial cofibrant approximation on M, then (F, i)
defines a functorial cofibrant approximation on K, and so the result follows from
Theorem 14.5.6. �

Proposition 14.6.6. Let M be a model category and let f : X → Y be a map
in M.

(1) If
(
(X̃, iX), (Ỹ , iY ), g̃ : X̃ → Ỹ

)
and

(
(X̃ ′, i′X), (Ỹ ′, i′Y ), g̃′ : X̃ ′ → Ỹ ′

)
are

cofibrant approximations to g, then they are connected by an essentially
unique zig-zag (see Definition 14.4.2) of weak equivalences of cofibrant
approximations to g.

(2) If
(
(X̂, jX), (Ŷ , jY ), ĝ : X̂ → Ŷ

)
and

(
(X̂ ′, j′X), (Ŷ ′, j′Y ), ĝ′ : X̂ ′ → Ŷ ′

)
are

fibrant approximations to g, then they are connected by an essentially
unique zig-zag (see Definition 14.4.2) of weak equivalences of fibrant ap-
proximations to g.

Proof. This follows from Theorem 14.4.5 and Proposition 14.6.5. �

Definition 14.6.7. Let M be a model category and let K be a subcategory of
M.

(1) A category of functorial cofibrant approximations on K is category of
functors from K to M over the inclusion functor with respect to those
maps in M that are weak equivalences with cofibrant domains (see Defi-
nition 14.5.2).

(2) A category of functorial fibrant approximations on K is category of func-
tors from K to M under the inclusion functor with respect to those
maps in M that are weak equivalences with fibrant codomains (see Defi-
nition 14.5.2).

Theorem 14.6.8. Let M be a model category and let K be a subcategory of
M.

(1) For every small category D of functorial cofibrant approximations on K

(see Definition 14.6.7) there is a small category D′ of functorial cofibrant
approximations on K such that D ⊂ D′ and BD′ is contractible.

(2) For every small category D of functorial fibrant approximations on K

(see Definition 14.6.7) there is a small category D′ of functorial fibrant
approximations on K such that D ⊂ D′ and BD′ is contractible.

Proof. This follows from Theorem 14.5.4 and Proposition 8.1.17. �

Theorem 14.6.9. Let M be a model category and let K be a subcategory of
M.
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(1) If (X̃, i) and (X̃ ′, i′) are functorial cofibrant approximations on K, then
there is an essentially unique zig-zag of weak equivalences of functorial

cofibrant approximations on K from (X̃, i) to (X̃ ′, i′).
(2) If (X̂, j) and (X̂ ′, j′) are functorial fibrant approximations on K, then

there is an essentially unique zig-zag of weak equivalences of functorial

fibrant approximations on K from (X̂, j) to (X̂ ′, j′).

Proof. This follows from Proposition 14.5.7 and Theorem 14.6.8. �

14.7. Diagrams of undercategories and overcategories

In this section, for every small category C we define a natural Cop-diagram of
simplicial sets B(−↓C)op that will be used to define the homotopy colimit of a
C-diagram in a model category (see Definition 18.1.2 and Definition 19.1.2) and
a natural C-diagram of simplicial sets B(C ↓−) that will be used to define the
homotopy limit of a C-diagram in a model category (see Definition 18.1.8 and Defi-
nition 19.1.5). We also derive a relation between them (see Corollary 14.7.13) that
we will use to obtain a relation between the homotopy colimit and the homotopy
limit functors (see Theorem 18.1.10). We will show in Proposition 14.8.5 that these
diagrams are free cell complexes (see Definition 11.5.35).

14.7.1. Diagrams of undercategories.

Definition 14.7.2. If C and D are small categories and F: C→ D is a functor,
then for every object α of D we have the category (α ↓F)op, the opposite of the
category of objects of C under α (see Definition 11.8.3). If σ : α → α′ is a map in
D, then σ induces a functor σ∗ : (α′ ↓F)op → (α ↓F)op, defined on objects by

σ∗(α′ τ−→ Fβ) = α
τσ−−→ Fβ.

If we take the classifying space (see Definition 14.1.1) of each undercategory, we
obtain the Dop-diagram of simplicial sets B(−↓F)op that on the object α of D

takes the value B(α ↓F)op. Thus, an n-simplex of B(−↓F)op(α) = B(α ↓F)op is a
pair (

(β0
σ0←− β1

σ1←− · · · σn−1←−−− βn), τ : α→ Fβn
)

where β0
σ0←− β1

σ1←− · · · σn−1←−−− βn is a string of composable maps in C and τ : α →
Fβn is a map in D, with face and degeneracy maps defined as in (14.1.2).

As in Definition 11.8.3, if C = D and F is the identity functor, then we use
B(−↓C)op to denote the diagram of classifying spaces of the opposites of the un-
dercategories, and an n-simplex of B(−↓C)op(α) = B(α ↓C)op is a commutative
diagram in C

α

}}zz
zz

zz
zz

��

τ

((RRRRRRRRRRRRRRR

α0 α1σ0
oo · · ·

σ1
oo αnσn−1

oo

with face and degeneracy maps defined as in (14.1.2).

Lemma 14.7.3. If C and D are small categories and F: C→ D is a functor, then
for every object α of C there is a map of simplicial sets F∗ : B(α ↓C)op → B(Fα ↓F)op

that takes the simplex(
(α0

σ0←− α1
σ1←− · · · σn−1←−−− αn), τ : α→ αn

)
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of B(α ↓C)op to the simplex(
(α0

σ0←− α1
σ1←− · · · σn−1←−−− αn),Fτ : Fα→ Fαn

)
of B(Fα ↓F).

Proof. This follows directly from the definitions. �

Lemma 14.7.4. If C is a small category and α is an object of C, then B(α ↓C)op

is contractible.

Proof. This follows from Proposition 14.3.14, since (α ↓C)op has the terminal
object 1α : α→ α. �

The Cop-diagram B(−↓C)op will be used to define the homotopy colimit functor
(see Definition 18.1.2 and Definition 19.1.2). Lemma 14.7.4 implies that, in the
model category of Cop-diagrams of simplicial sets (see Theorem 11.6.1), the Cop-
diagram B(−↓C)op is weakly equivalent to the constant diagram at a point. We
will show in Corollary 14.8.8 that B(−↓C)op is also a free cell complex, and so
B(−↓C)op is a cofibrant approximation to the constant diagram at a point (see
Definition 8.1.2). This will imply (in Theorem 19.4.7) that if we use a different
cofibrant approximation to the constant diagram at a point in the definition of the
homotopy colimit of a diagram, then for objectwise cofibrant diagrams we will get
a functor naturally weakly equivalent to the homotopy colimit functor.

Proposition 14.7.5. If C and D are small categories and F: C→ D is a func-
tor, then the colimit of the Dop-diagram of classifying spaces of undercategories
colimDop B(−↓F) is naturally isomorphic to BC.

Proof. We define a map colimDop B(−↓F)→ BC by taking the simplex (β0 →
β1 → · · · → βn, σ : α→ Fβ0) of B(α ↓F) to the simplex β0 → β1 → · · · → βn of BC.
This map is onto because the simplex β0 → β1 → · · · → βn of BC is in the image of
(β0 → β1 → · · · → βn, 1Fβ0 : Fβ0 → Fβ0), and it is one to one because the simplex
(β0 → β1 → · · · → βn, σ : α → Fβ0) of B(α ↓F) is identified with the simplex
(β0 → β1 → · · · → βn, 1Fβ0 : Fβ0 → Fβ0) of B(Fβ0 ↓F) in colim B(−↓F). �

Remark 14.7.6. We will show in Proposition 14.8.5 that the Dop-diagram
B(−↓F) is also a free cell complex (see Definition 11.5.35). It will then follow
from Proposition 18.9.4 that the natural map hocolim B(−↓F)→ colim B(−↓F) is
a weak equivalence, and so hocolim B(−↓F) is naturally weakly equivalent to BC

(see Proposition 18.9.5).

14.7.7. Diagrams of overcategories.

Definition 14.7.8. If C and D are small categories and F: C→ D is a functor,
then for every object α of D we have the category (F ↓α), the category of objects
of C over α (see Definition 11.8.1). If σ : α → α′ is a map in D, then σ induces a
functor σ∗ : (F ↓α)→ (F ↓α′), defined on objects by

σ∗(Fβ
τ−→ α) = Fβ στ−−→ α′.

If we take the classifying space of each overcategory (see Definition 14.1.1), we
obtain the D-diagram of simplicial sets B(F ↓−) that on the object α of D takes
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the value B(F ↓α). Thus, an n-simplex of B(F ↓−)(α) = B(F ↓α) is a pair(
(β0

σ0−→ β1
σ1−→ · · · σn−1−−−→ βn), τ : Fβn → α

)
where β0

σ0−→ β1
σ1−→ · · · σn−1−−−→ βn is a string of composable maps in C and τ : Fβn →

α is a map in D, with face and degeneracy maps defined as in (14.1.2).
As in Definition 14.7.2, if C = D and F is the identity functor, then we use

B(C ↓−) to denote the diagram of overcategories, and an n-simplex of B(C ↓−)(α) =
B(C ↓α) is a commutative diagram in C

α0
σ0 //

!!D
DD

DD
DD

D α1
σ1 //

��

· · ·
σn−1

// αn

τ

vvmmmmmmmmmmmmmmm

α

with face and degeneracy maps defined as in (14.1.2).

Lemma 14.7.9. If C and D are small categories and F: C→ D is a functor, then
for every object α of C there is a map of simplicial sets F∗ : B(C ↓α) → B(F ↓Fα)
that takes the simplex(

(α0
σ0−→ α1

σ1−→ · · · σn−1−−−→ αn), τ : αn → α
)

of B(α ↓C)op to the simplex(
(α0

σ0−→ α1
σ1−→ · · · σn−1−−−→ αn),Fτ : Fαn → Fα

)
of B(Fα ↓F).

Proof. This follows directly from the definitions. �

Lemma 14.7.10. If C is a small category and α is an object of C, then B(C ↓α)
is contractible.

Proof. This follows from Proposition 14.3.14, since (C ↓α) has the terminal
object 1α : α→ α. �

The C-diagram B(C ↓−) will be used to define the homotopy limit functor
(see Definition 18.1.8 and Definition 19.1.5). Lemma 14.7.10 implies that in the
model category of C-diagrams of simplicial sets (see Theorem 11.6.1), the C-diagram
B(C ↓−) is weakly equivalent to the constant diagram at a point. We will show
in Corollary 14.8.8 that B(C ↓−) is also a free cell complex, and so B(C ↓−) is a
cofibrant approximation to the constant diagram at a point (see Definition 8.1.2).
This will imply (in Theorem 19.4.7) that if we use a different cofibrant approxima-
tion to the constant diagram at a point in the definition of the homotopy limit of
a diagram, then, for objectwise fibrant diagrams, we will get a functor naturally
weakly equivalent to the homotopy limit functor.

14.7.11. Relations.

Proposition 14.7.12. If C is a small category, then the isomorphism (α ↓C)op ≈
(Cop ↓α) of Corollary 11.8.7 is natural in the object α of C.

Proof. This follows directly from the definitions. �
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Corollary 14.7.13. If C is a small category, then there is a natural isomor-
phism of Cop-diagrams of simplicial sets

B(−↓C)op ≈ B(Cop ↓−) .

Proof. This follows from Proposition 14.7.12. �

14.8. Free cell complexes of simplicial sets

In this section, we characterize those diagrams of simplicial sets that are free
cell complexes (see Theorem 14.8.4). Our main application of this will be to the di-
agrams of opposites of undercategories and of overcategories (see Proposition 14.8.5
and Corollary 14.8.8), which will be used to define the homotopy colimit and homo-
topy limit functors (see Definition 18.1.2, Definition 18.1.8, Definition 19.1.2, and
Definition 19.1.5).

Proposition 14.8.1. If C is a small category and X is a C-diagram of simplicial
sets, then X is a free cell complex if and only if there is a sequence S = {S0, S1,
S2, . . .} of Cdisc-diagrams of sets (where Cdisc is the discrete category with objects
equal to the objects of C) such that

(1) for n ≥ 0 and α an object of C, the set Sn
α is a subset of the set of

n-simplices of Xα,
(2) for 0 ≤ i ≤ n and α an object of C, we have si(Sn

α) ⊂ Sn+1
α (i.e., S is

closed under degeneracies), and
(3) for n ≥ 0 the natural map F(Sn) → Xn (see Theorem 11.5.20) is an

isomorphism of C-diagrams of sets (where Xn is the C-diagram of n-
simplices of Xα at every object α of C).

Proof. We first assume that there is a sequence {S0, S1, S2, . . .} of Cdisc-
diagrams of sets satisfying conditions 1 through 3, and we will show that the n-
skeleton Xn of X can be obtained from the (n − 1)-skeleton Xn−1 of X as a
pushout of a coproduct of free cells. Proposition 10.2.14 will then imply that X is
a free cell complex.

We begin by noting that X0 = ∆[0] ⊗ F(S0) (see Definition 11.5.19 and Def-
inition 11.5.24). We now assume that n is a positive integer. If α is an object of
C, let S̃n

α ⊂ Sn
α be the subset of nondegenerate simplices. If σ ∈ S̃n

α, then all faces
of σ are contained in Xn−1

α , and so σ defines a map ∂σ : ∂∆[n]→Xn−1
α . Proposi-

tion 11.5.26 implies that this defines a map of C-diagrams ∂σ⊗Fα∗ : ∂∆[n]⊗Fα∗ →
Xn−1, and we can take the coproduct of these to obtain∐

σ∈S̃n
α

∂σ ⊗ Fα∗ :
∐
σ∈S̃n

α

∂∆[n]⊗ Fα∗ = ∂∆[n]⊗ Fα
S̃n

α
→Xn−1 .

If we combine these for all objects α of C, we obtain the map∐
α∈Ob(C)

∂∆[n]⊗ Fα
S̃n

α
= ∂∆[n]⊗ F(S̃n)→Xn−1
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(see Definition 11.5.19), and condition (3) implies that the square

∂∆[n]⊗ F(S̃n) //

��

Xn−1

��

∆[n]⊗ F(S̃n) // Xn

is a pushout, which completes the first direction of the proof.
We now assume that X is a free cell complex. If γ is an ordinal and

∅ →X1 →X2 → · · · →Xβ → · · · (β < γ)

is a presentation of X as a transfinite composition of pushouts of free cells, then
for every β < γ there is an integer n ≥ 0, an object αβ of C, and a pushout diagram

∂∆[n]⊗ Fαβ
∗ //

��

Xβ

��

∆[n]⊗ Fαβ
∗ // Xβ+1 .

For every object α of C let Sα be the union over all β for which αβ = α of the images
in X of δn ⊗ 1αβ

and its degeneracies (where δn is the nondegenerate n-simplex of
∆[n] and we mean the image under the composition δn ⊗ 1α ⊂ ∆[n]⊗ Fαβ

∗ (αβ)→
(Xβ+1)α). Let Sn

α be the set of n-simplices in Sα. Since for every 0 ≤ β < γ the
diagram X is enlarged by adding the free diagram of simplices generated by the
images of δn⊗1αβ

and its degeneracies, it follows that the sets Sn satisfy conditions
(1) through (3). �

Definition 14.8.2. If C is a small category and X is a C-diagram of simplicial
sets that is a free cell complex, then a sequence {S0,S1,S2, . . .} as in Proposi-
tion 14.8.1 will be called a basis for X, and an element of an Sn

α will be called
a generator of the free cell complex X. We will use S to denote the sequence
{S0,S1,S2, . . .}. We will let S̃n

α ⊂ Sn
α be the subset of nondegenerate simplices,

and we will call an element of an S̃n
α a nondegenerate generator of X. An element

of an Sn
α − S̃n

α will be called a degenerate generator.

Remark 14.8.3. The reader should note the similarity between the free cell
complexes among diagrams of simplicial sets and the free simplicial groups among
simplicial groups (see, e.g., [46, Section 5]). Since a C-diagram of simplicial sets
is equivalently a simplicial object in the category of C-diagrams of sets, we are
comparing the definitions of free simplicial groups and free simplicial C-diagrams of
sets. This similarity can be made more precise by noting that a group is an algebra
over the “underlying set of the free group” triple on the category of sets (see,
e.g., [3, page 339] or [48, pages 176–177]), while a C-diagram of sets is an algebra
over the “underlying Cdisc-diagram of sets on the free C-diagram of sets” triple on
the category of Cdisc-diagrams of sets. The sequence S in Proposition 14.8.1 is
the analogue for C-diagrams of simplicial sets of a basis of a free simplicial group
(see Definition 14.8.2). Free cell complexes are also free objects in the category of
simplicial C-diagrams of sets in the sense of [45, Definition 5.1].
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Theorem 14.8.4. Let C be a small category and let X be a C-diagram of
simplicial sets. If S = {S0,S1,S2, . . .} is a sequence of Cdisc-diagrams of sets, then
X is a free cell complex with basis S (see Definition 14.8.2) if and only if:

(1) for n ≥ 0 and α an object of C, the set Sn
α is a subset of the set of

n-simplices of Xα,
(2) for 0 ≤ i ≤ n and α an object of C, we have si(Sn

α) ⊂ Sn+1
α (i.e., S is

closed under degeneracies), and
(3) if n ≥ 0, β is an object of C, and τ is an n-simplex of Xβ , then there exist

an object α of C, an element σ of Sn
α, and a map γ : α→ β in C such that

Xγ(σ) = τ , and such a triple (α, σ, γ) is unique.

Proof. This follows directly from Proposition 14.8.1 and Definition 11.5.19.
�

Proposition 14.8.5. Let C and D be small categories and let F: C→ D be a
functor.

(1) The Dop-diagram of simplicial sets B(−↓F)op (see Definition 14.7.2) is
a free cell complex with a basis (see Definition 14.8.2) consisting of the
simplices of the form

(14.8.6)
(
(β0

σ0←− β1
σ1←− · · · σn−1←−−− βn), 1Fβn

: Fβn → Fβn
)

(see Definition 14.7.2).
(2) The Dop-diagram of simplicial sets B(−↓F) is a free cell complex with a

basis consisting of the simplices of the form(
(β0

σ0−→ β1
σ1−→ · · · σn−1−−−→ βn), 1Fβn

: Fβn → Fβn
)

.

(3) The D-diagram of simplicial sets B(F ↓−) (see Definition 14.7.8) is a free
cell complex with a basis consisting of the simplices of the form

(14.8.7)
(
(β0

σ0−→ β1
σ1−→ · · · σn−1−−−→ βn), 1Fβn : Fβn → Fβn

)
(see Definition 14.7.8).

Proof. We will prove part 1; the proof of the other parts are similar.
For every object α of D and every n ≥ 0, let Sn

α be the set of n-simplices of the
form (14.8.6) for which Fβn = α; the result now follows from Theorem 14.8.4. �

Corollary 14.8.8. If C is a small category, then

• the Cop-diagram of simplicial sets B(−↓C)op (see Definition 14.7.2) and
• the C-diagram of simplicial sets B(C ↓−) (see Definition 14.7.8)

are both free cell complexes.

Proof. This follows from Proposition 14.8.5. �

Proposition 14.8.9. Let C be a small category.

(1) The Cop-diagram of simplicial sets B(−↓C) (see Definition 14.7.2) is a
cofibrant approximation (see Theorem 11.6.1) to the constant Cop-diagram
at a point.

(2) The C-diagram of simplicial sets B(C ↓−) (see Definition 14.7.8) is a cofi-
brant approximation (see Theorem 11.6.1) to the constant diagram at a
point.
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Proof. This follows from Corollary 14.8.8, Proposition 11.6.2, Lemma 14.7.4,
and Lemma 14.7.9. �

Corollary 14.8.10. Let C and D be small categories and let F: C → D be a
functor.

(1) (a) There is a basis for the free cell complex B(−↓F)op in SSDop
con-

sisting of the simplices of the form

(14.8.11)
(
(β0

σ0←− β1
σ1←− · · · σn−1←−−− βn), 1Fβn

: Fβn → Fβn
)

(where (β0
σ0←− β1

σ1←− · · · σn−1←−−− βn) is a string of n composable maps
in C). The simplex of (14.8.11) is a nondegenerate generator when
none of the maps σ0, σ1, . . . , σn−1 is an identity map.

(b) There is a basis for the free cell complex B(−↓C)op in SSCop
consist-

ing of the simplices of the form

(14.8.12)
(
(β0

σ0←− β1
σ1←− · · · σn−1←−−− βn), 1βn

: βn → βn
)

(where (β0
σ0←− β1

σ1←− · · · σn−1←−−− βn) is a string of n composable maps
in C). The simplex of (14.8.12) is a nondegenerate generator when
none of the maps σ0, σ1, . . . , σn−1 is an identity map.

(c) The maps of simplicial sets F∗ of Lemma 14.7.3 induce a natural
one to one correspondence F∗ from the set of simplices in the basis
of B(−↓F)op to the set of simplices in the basis of B(−↓C)op that
takes the simplex of (14.8.11) to the simplex of (14.8.12). This
one to one correspondence restricts to a one to one correspondence
between the sets of nondegenerate generators. Furthermore, if γ is
the simplex of (14.8.11) and i < n, then diF∗(γ) = F∗di(γ), and if γ
is a nondegenerate generator then there is a nondegenerate (n − 1)-
dimensional generator η such that dn(γ) = σ∗n−1(η) and F∗dn(γ) =
(Fσn−1)∗

(
F∗(η)

)
= dnF∗(γ)

(2) (a) There is a basis for the free cell complex B(F ↓−) in SSD consisting
of the simplices of the form

(14.8.13)
(
(β0

σ0−→ β1
σ1−→ · · · σn−1−−−→ βn), 1Fβn

: Fβn → Fβn
)

(where (β0
σ0−→ β1

σ1−→ · · · σn−1−−−→ βn) is a string of n composable maps
in C). The simplex of (14.8.13) is a nondegenerate generator when
none of the maps σ0, σ1, . . . , σn−1 is an identity map.

(b) There is a basis for the free cell complex B(C ↓−) in SSC consisting
of the simplices of the form

(14.8.14)
(
(β0

σ0−→ β1
σ1−→ · · · σn−1−−−→ βn), 1βn

: βn → βn
)

(where (β0
σ0−→ β1

σ1−→ · · · σn−1−−−→ βn) is a string of n composable maps
in C). The simplex of (14.8.14) is a nondegenerate generator when
none of the maps σ0, σ1, . . . , σn−1 is an identity map.

(c) The maps of simplicial sets F∗ of Lemma 14.7.9 induce a natural
one to one correspondence F∗ from the set of simplices in the ba-
sis of B(F ↓−) to the set of simplices in the basis of B(C ↓−) that
takes the simplex of (14.8.13) to the simplex of (14.8.14). This
one to one correspondence restricts to a one to one correspondence
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between the sets of nondegenerate generators. Furthermore, if γ
is the simplex of (14.8.13) and i < n, then diF∗(γ) = F∗di(γ),
and if γ is a nondegenerate generator then there is a nondegener-
ate (n − 1)-dimensional generator η such that dn(γ) = (σn−1)∗(η)
and F∗dn(γ) = (Fσn−1)∗

(
F∗(η)

)
= dnF∗(γ)

Proof. This follows from Proposition 14.8.5 and Example 14.1.8. �

Proposition 14.8.15. Let C be a small category, let X be a C-diagram of
simplicial sets that is a free cell complex with basis {S0,S1,S2, . . .} (see Defini-
tion 14.8.2), and for every n ≥ 0 let Xn be the C-diagram of n-skeletons of X (i.e.,
let Xn

α be the n-skeleton of Xα for every object α of C). If Y is a C-diagram of
simplicial sets and g : Xn → Y is a map of C-diagrams, then extensions of g to the

(n+ 1)-skeleton of X correspond to maps of Cdisc-diagrams h : S̃n+1 → Y n+1 such
that dihα = gαdi for every object α of C and every 0 ≤ i ≤ n+ 1.

Proof. This follows from Theorem 14.8.4. �

Proposition 14.8.16. Let C be a small category.

(1) If X is a C-diagram of unpointed simplicial sets that is a free cell complex,
then X+ : C→ SS∗ (defined by X+

α = (Xα)+ for every object α of C) is
a free cell complex of pointed simplicial sets.

(2) If X is a C-diagram of (pointed or unpointed) simplicial sets that is a free
cell complex, then

∣∣X∣∣ : C → Top(∗) (defined by
∣∣X∣∣

α =
∣∣Xα

∣∣) is a free

cell complex of (pointed or unpointed) topological spaces.

Proof. This follows from the definition of free cell complex and the facts that
if

(14.8.17) ∂∆⊗ Fα∗ //

��

Xβ

��

∆⊗ Fα∗ // Xβ+1

is a pushout of C-diagrams of (pointed or unpointed) simplicial sets, then

∂∆⊗ (Fα∗ )
+ //

��

X+
β

��

∆⊗ (Fα∗ )
+ // X+

β+1

is a pushout of C-diagrams of pointed simplicial sets, and if Diagram 14.8.17 is a
pushout of C-diagrams of unpointed simplicial sets, then∣∣∂∆

∣∣⊗ Fα∗ //

��

∣∣Xβ

∣∣
��∣∣∆∣∣⊗ Fα∗ //

∣∣Xβ+1

∣∣
is a pushout of C-diagrams of (pointed or unpointed) topological spaces. �





CHAPTER 15

The Reedy Model Category Structure

The model category structures on a category of simplicial objects in a model
category and a category of cosimplicial objects in a model category of [14, Chap-
ter X], [57, Section 1], [13, Theorem B.6], and [34, Section 2.4] have a common
generalization: the Reedy model category structure on a category of diagrams
in a model category indexed by a Reedy category. A Reedy category (see Defini-
tion 15.1.2) is D. M. Kan’s generalization of both the indexing category for simplicial
objects and the indexing category for cosimplicial objects (see Definition 15.1.8).
The Reedy model category structure will be defined for diagrams in a model cat-
egory indexed by a Reedy category (see Definition 15.3.3). The main examples of
Reedy categories are the cosimplicial and simplicial indexing categories (see Defi-
nition 15.1.8) and, more generally, the category of simplices of a simplicial set (see
Definition 15.1.16) and its opposite.

If C is a Reedy category and M is a cofibrantly generated model category,
then we have already defined a model category structure on MC, the category
of C-diagrams in M (see Theorem 11.6.1). The Reedy model category structure
on MC has the same weak equivalences as that model category structure but has
more cofibrations (see Proposition 15.6.3 and Corollary 15.9.11) and, thus, fewer
fibrations (see Proposition 7.2.3).

Most of the definitions and results of this chapter are due to D. M. Kan.
In Section 15.1 we define Reedy categories and describe the main examples.

In Section 15.2 we describe how to construct a diagram indexed by a Reedy cat-
egory inductively over the filtrations of the Reedy category. This leads us to the
definition of the latching and matching categories of a Reedy category (see Def-
inition 15.2.3) and the latching and matching objects of a diagram indexed by a
Reedy category (see Definition 15.2.5). We also show how maps between diagrams
indexed by a Reedy category are naturally analyzed inductively over the filtrations
(see Section 15.2.11).

In Section 15.3 we define the Reedy model category structure and prove that
it is a model category. In Section 15.4 we show that if F: M � N :U is a Quillen
pair and C is a Reedy category, then the induced functors FC : MC � NC :UC form
a Quillen pair and that FC and UC are Quillen equivalences if F and U are Quillen
equivalences. In Section 15.5 we discuss diagrams indexed by a product of Reedy
categories, and show that the various possible model category structures are the
same. In Section 15.6 we discuss diagrams in a cofibrantly generated model category
indexed by a Reedy category, and we show that the two possible model category
structures are different, although they are Quillen equivalent. We also show that
the Reedy model category structure is also cofibrantly generated. In Section 15.7
we show that the model category of diagrams in a cellular model category indexed
by a Reedy category is a cellular model category.

277
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We discuss the model category of bisimplicial sets (i.e., simplicial simplicial sets)
in Section 15.8 and the model category of cosimplicial simplicial sets in Section 15.9.
In Section 15.10 we discuss Reedy categories with fibrant constants, which are Reedy
categories for which an objectwise weak equivalence of cofibrant diagrams induces
a weak equivalence of their colimits, and Reedy categories with cofibrant constants,
which have the dual property. We will show in Theorem 19.9.1 that if C is a Reedy
category with fibrant constants and X is a cofibrant C-diagram in a model category,
then the homotopy colimit of X is naturally weakly equivalent to the colimit of X
(with a dual statement for Reedy categories with cofibrant constants).

In Section 15.11 we discuss bisimplicial sets. We define the realization of a
bisimplicial set and show that it is isomorphic to the diagonal, and we show that a
levelwise weak equivalence of bisimplicial sets induces a weak equivalence of their
realizations.

15.1. Reedy categories

15.1.1. Reedy categories.

Definition 15.1.2. A Reedy Category is a small category C together with two
subcategories

−→
C (the direct subcategory) and

←−
C (the inverse subcategory), both

of which contain all the objects of C, in which every object can be assigned a
nonnegative integer (called its degree) such that

(1) Every non-identity morphism of
−→
C raises degree.

(2) Every non-identity morphism of
←−
C lowers degree.

(3) Every morphism g in C has a unique factorization g = −→g←−g where −→g is
in
−→
C and ←−g is in

←−
C .

Remark 15.1.3. According to Definition 15.1.2, a Reedy category consists of
a category and two subcategories, subject to certain conditions. The function that
assigns to each object its degree is not a part of the structure, but we will often
implicitly assume that a degree function has been chosen.

Remark 15.1.4. It is possible to use a more general definition of a Reedy
category in which the degree function takes values that are ordinal, rather than
just positive integers. All of the results of this chapter would go through, although
some arguments would have to be rephrased slightly to be correct for limit ordinals.

Proposition 15.1.5. If C is a Reedy category, then Cop is a Reedy category in

which
−→
Cop = (

←−
C )op and

←−
Cop = (

−→
C )op.

Proof. A degree function for C will serve as a degree function for Cop. �

Proposition 15.1.6. If C and D are Reedy categories, then C×D is a Reedy

category with
−−−→
C×D =

−→
C ×

−→
D and

←−−−
C×D =

←−
C ×

←−
D .

Proof. If we have chosen degree functions for C and D, we define a degree
function for C×D by deg(X × Y ) = degX + deg Y . The existence and uniqueness
of the required factorization of maps in C×D follows from that of C and D. �

15.1.7. Examples: The simplicial and cosimplicial indexing categories.

Definition 15.1.8 (The cosimplicial and simplicial indexing categories). If n is
a nonnegative integer, we let [n] denote the ordered set (0, 1, 2, . . . , n). The category
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∆ is the category with objects the [n] for n ≥ 0 and with morphisms ∆([n], [k])
the weakly monotone functions [n]→ [k], i.e., the functions σ : [n]→ [k] such that
σ(i) ≤ σ(j) for 0 ≤ i ≤ j ≤ n.

(1) The cosimplicial indexing category is the category ∆.
(2) The simplicial indexing category is the category ∆op.

Remark 15.1.9. The cosimplicial indexing category ∆ (see Definition 15.1.8)
is a skeletal subcategory of the category whose objects are the finite ordered sets
and whose morphisms are the weakly monotone maps.

Definition 15.1.10. Let M be a category.
(1) A simplicial object in M is a functor ∆op →M.
(2) A cosimplicial object in M is a functor ∆→M.

Notation 15.1.11. Let M be a category.
(1) If X is a simplicial object in M, we will usually denote the object X [n]

by Xn.
(2) If X is a cosimplicial object in M, we will usually denote the object X [n]

by Xn.

Example 15.1.12. The cosimplicial indexing category ∆ (see Definition 15.1.8)
is a Reedy category in which the object [n] has degree n, the direct subcategory
consists of the injective maps, and the inverse subcategory consists of the surjective
maps.

Example 15.1.13. The simplicial indexing category ∆op (see Definition 15.1.8)
is a Reedy category in which the object [n] has degree n, the direct subcategory
consists of the opposites of the surjective maps, and the inverse subcategory consists
of the opposites of the injective maps (see Proposition 15.1.5).

15.1.14. Example: The category of simplices of a simplicial set. If X
is a simplicial set, we will define a category ∆X whose objects are the simplices
of X and whose morphisms from the simplex σ to the simplex τ are the simplicial
operators that take τ to σ (see Definition 15.1.16). Note the reversal of direction:
If diτ = σ, then di corresponds to a morphism that takes σ to τ . This is because
a simplicial set is a functor ∆op → Set, while ∆X is defined as an overcategory
using a covariant functor ∆ → SS. A diagram indexed by ∆X is a sort of gener-
alized cosimplicial object, and a diagram indexed by ∆opX is a sort of generalized
simplicial object (see Example 15.1.18 and Definition 15.1.10).

Definition 15.1.15. The cosimplicial standard simplex is the cosimplicial sim-
plicial set ∆: ∆ → SS (see Definition 15.1.10) that takes the object [n] of ∆ to
the standard n-simplex ∆[n]. The simplicial set ∆[n] has as k-simplices the weakly
monotone functions [k]→ [n], i.e., ∆[n]k = ∆([k], [n]).

Definition 15.1.16. Let ∆ be the cosimplicial indexing category (see Defini-
tion 15.1.8), and let ∆: ∆ → SS be the cosimplicial standard simplex (see Defini-
tion 15.1.15).

(1) If K is a simplicial set, then ∆K, the category of simplices of K, is defined
to be the overcategory (∆ ↓K) (see Definition 11.8.1). Thus, ∆K is the
category with objects the simplicial maps ∆[n] → K (for some n ≥ 0)



280 15. THE REEDY MODEL CATEGORY STRUCTURE

and with morphisms from σ : ∆[n]→ K to τ : ∆[k]→ K the commutative
triangles of simplicial maps

∆[n] //

σ
!!C

CC
CC

CC
C

∆[k]

τ
}}{{

{{
{{

{{

K .

(2) if K is a simplicial set, then ∆opK is defined to be (∆K)op, the opposite
of the category of simplices of K.

Proposition 15.1.17. If K is a simplicial set, then there is a natural isomor-
phism of sets Ob(∆K) ≈

∐
n≥0Kn. If τ is an n-simplex (for some n > 0), k is

an integer satisfying 0 ≤ k ≤ n, and dkτ = σ, then dk corresponds under this
isomorphism to a morphism from χσ : ∆[n− 1]→ K to χτ : ∆[n]→ K (where the
characteristic map χτ of an n-simplex τ of K is the unique map ∆[n] → K that
takes the non-degenerate n-simplex of ∆[n] to τ ; see Example 11.5.16).

Proof. This follows from the one to one correspondence between n-simplices
of K and maps of simplicial sets ∆[n]→ K (see Example 11.5.16). �

Example 15.1.18. If K is the one point simplicial set (i.e., Kn = ∗ for all
n ≥ 0), then ∆K is the cosimplicial indexing category ∆ (see Definition 15.1.8).

Example 15.1.19. If X is a simplicial set, then the category ∆X of simplices
of X (see Definition 15.1.16) is a Reedy category in which the degree of an object
is the dimension of the simplex of X to which it corresponds, the direct subcate-
gory consists of the morphisms corresponding to iterated face maps in X, and the
inverse subcategory consists of the morphisms corresponding to iterated degener-
acy maps of X. Note that Example 15.1.12 is a special case of this example (see
Example 15.1.18).

Proposition 15.1.20. If K is a simplicial set and G: ∆K → SS is the ∆K-
diagram of simplicial sets that takes the object σ : ∆[n]→ K of ∆K to ∆[n], then
there is a natural isomorphism colim∆K G ≈ K.

Proof. The objects σ : ∆[n] → K of ∆K come with natural maps G(σ) →
K that commute with the structure maps of G, and so there is a natural map
colim∆K G → K. Since every n-simplex σ of K defines an object χσ : ∆[n] → K
of ∆K for which the image of the natural map G(χσ) → K contains σ, the map
colim∆K G→ K is surjective.

To show that the map colim∆K G → K is injective, assume that there are
objects σ : ∆[m] → K and τ : ∆[n] → K of ∆K together with a k-simplex η of
∆[m] and a k-simplex µ of ∆[n] such that the image in K of η under G(σ) → K
equals the image in K of µ under G(τ) → K. Example 11.5.16 implies that there
is a commutative square in SS

∆[k]
χµ
//

χη

��

∆[n]

τ

��

∆[m]
σ

// K



15.2. DIAGRAMS INDEXED BY A REEDY CATEGORY 281

which we can regard as a diagram in ∆K. This diagram in ∆K implies that the
image of η in colim∆K G equals the image of µ in colim∆K G, and so the natural
surjection colim∆K G→ K is a natural isomorphism. �

15.1.21. Filtrations. Most arguments involving diagrams indexed by a Reedy
category are done inductively on the degree of the object in the Reedy category.
We define the filtrations of a Reedy category in order to facilitate such arguments.

Definition 15.1.22. If C is a Reedy category with a degree function (see Re-
mark 15.1.3) and n is a nonnegative integer, the n-filtration FnC is the full sub-
category of C whose objects are the objects of C of degree less than or equal to
n.

Example 15.1.23. If C is a Reedy category, then the 0-filtration of C is a
category with no non-identity maps.

Example 15.1.24. If X is a simplicial set and C = ∆X (see Example 15.1.19),
then the n-filtration Fn∆X of ∆X is not the same as ∆(Xn), the category of
simplices of the n-skeleton of the simplicial set X. This is because Fn∆X has
no objects of degree greater than n, while ∆(Xn) has among its objects the high
dimensional simplices of X that are degeneracies of simplices of dimension less than
or equal to n.

Proposition 15.1.25. If C is a Reedy category, then each of its filtrations FnC
(see Definition 15.1.22) is a Reedy category with

−−→
FnC =

−→
C ∩ (FnC) and

←−−
FnC =

←−
C ∩ (FnC), and C equals the union of the increasing sequence of subcategories
F0C ⊂ F1C ⊂ F2C ⊂ · · · .

Proof. This follows directly from the definitions. �

15.2. Diagrams indexed by a Reedy category

Diagrams indexed by a Reedy category and maps of such diagrams are most
naturally analyzed inductively on the degree of the object. In this section, we
assume that we have a Reedy category with a degree function (see Remark 15.1.3),
and we describe how to define a diagram indexed by the Reedy category by defining
it inductively over the filtrations of the Reedy category (see Definition 15.1.22 and
Proposition 15.1.25). In Remark 15.2.10, we summarize this description in terms
of the latching objects and matching objects of the diagram, which we define in
Definition 15.2.5. In Section 15.2.11, we will describe how to define a map between
two such diagrams. We will use this analysis in Section 15.3 to define a model
category structure on a category of diagrams in a model category indexed by a
Reedy category.

Since the 0-filtration of a Reedy category (see Definition 15.1.22) contains no
non-identity maps, we can define a diagram X : F0C → M by choosing an object
Xα of M for each object α of C of degree 0.

Suppose that we have a diagram X : Fn−1C → M indexed by the (n − 1)-
filtration of a Reedy category C, and we wish to extend it to a diagram X : FnC→
M. We begin by choosing an object Xα in M for each object α of C of degree
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n. For each object β of Fn−1C and map β → α in FnC, we must choose a map
Xβ →Xα in M. We must do this so that if β → β′ is a map in Fn−1C and

β //

��
>>

>>
>>

>>
β′

����
��

��
��

α

is a commutative triangle in FnC, then the triangle in M

Xβ //

!!D
DD

DD
DD

D
Xβ′

||zz
zz

zz
zz

Xα

commutes. If In : Fn−1C → FnC is the inclusion functor, then this is equiva-
lent to choosing a map colim(In↓α) X → Xα (see Definition 11.8.1). (The object
colim(In↓α) X is the value on α of the left Kan extension of X : Fn−1C→M along
the inclusion Fn−1C → FnC (see Remark 8.4.3 and [47, page 232–236]).) We will
show in Proposition 15.2.8 that this colimit is actually independent of the choice
of degree function (see Remark 15.1.3).

Similarly, for each object γ of Fn−1C and map α→ γ in FnC, we must choose
a map Xα →Xγ such that if γ → γ′ is a map in Fn−1C and

α

��
??

??
??

??

����
��

��
��

γ // γ′

is a commutative triangle in FnC, then the triangle in M

Xα

""D
DD

DD
DD

D

}}zz
zz

zz
zz

Xγ
// Xγ′

commutes. This is equivalent to choosing a map Xα → lim(α↓In) X (see Defini-
tion 11.8.3). (The object lim(α↓In) X is the value on α of the right Kan extension
of X : Fn−1C → M along the inclusion Fn−1C → FnC (see Remark 8.4.3 and [47,
page 232–236]).) We will show in Proposition 15.2.8 that this limit is actually
independent of the choice of degree function.

The maps colim(In↓α) X → Xα and Xα → lim(α↓In) X cannot be totally
arbitrary. If β → γ is a map in Fn−1C and

α

��
??

??
??

??

β

??��������
// γ
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is a commutative triangle in FnC, then the triangle in M

Xα

!!D
DD

DD
DD

D

Xβ

==zzzzzzzz
// Xγ

must commute. This is equivalent to requiring that the composition

colim
(In↓α)

X →Xα → lim
(α↓In)

X

be a factorization of the natural map

colim
(In↓α)

X → lim
(α↓In)

X .

We will now show that the definition of a Reedy category implies that this last
condition suffices to construct an extension of X from Fn−1C to FnC.

Theorem 15.2.1. Let C be a Reedy category, let M be a category closed
under limits and colimits, let n be a positive integer, and let X : Fn−1C → M

be a diagram. If for every object α of C of degree n we choose an object Xα

of M and a factorization colim(In↓α) X → Xα → lim(α↓In) X of the natural
map colim(In↓α) X → lim(α↓In) X, then this uniquely determines an extension
X : FnC→M of the diagram X.

Proof. The discussion above explains why our choices determine everything
except the maps Xα → Xα′ for a map α → α′ in FnC between objects of de-

gree n. Given such a map, if α
←−g−→ β

−→g−→ α′ is the factorization described
in Definition 15.1.2, then we must define Xα → Xα′ to be the composition
Xα → Xβ → Xα′ . It remains only to show that, if α → α′ → α′′ are com-
posable maps in FnC between objects of degree n, then the triangle

Xα

""F
FFFFFFF

||yy
yy

yy
yy

Xα′
// Xα′′

commutes.
Let α

←−g−→ β
−→g−→ α′ and α′

←−
h−→ β′

−→
h−→ α′′ be the factorization of Definition 15.1.2

applied to α→ α′ and α′ → α′′, respectively. If the factorization of Definition 15.1.2

applied to
←−
h−→g←−g : α → β′ is α

←−
k−→ β′′

−→
k−→ β′, then we have the commutative

diagram
α

←−
k
��

←−g

~~~~
~~

~~
~~

β
−→g

����
��

��
��

β′′

−→
k
��

α′
←−
h // β′

−→
h // α′′ .

Since
−→
h
−→
k
←−
k =

−→
h
←−
h−→g←−g and

−→
h
−→
k is in

−→
C , the factorization α

←−
k−→ β′′

−→
h
−→
k−−−→ α′′ must

be the factorization of α→ α′′ described in Definition 15.1.2. Thus, it is sufficient to
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show that the composition Xα

←−
k ∗−−→Xβ′′

−→
k ∗−−→Xβ′ equals the composition Xα

←−g ∗−−→

Xβ

−→g ∗−−→ Xα′

←−
h ∗−−→ Xβ′ . Since both of the maps Xα → Xβ′ and Xα → Xβ are

defined as the composition of our map Xα → lim(α↓In) X with a projection from
the limit, the first of these maps equals the composition

Xα → lim
(α↓In)

X →Xβ′′

−→
k ∗−−→Xβ′

while the second equals the composition

Xα → lim
(α↓In)

X →Xβ

−→g ∗−−→Xα′

←−
h ∗−−→Xβ′ .

The universal property of the limit implies that these are equal. �

15.2.2. Latching objects and matching objects. In this section, we show
that the colimits and limits used in Section 15.2 to construct diagrams indexed by
a Reedy category (which will also be used in Section 15.2.11 to construct maps of
such diagrams) are independent of the choice of degree function (see Remark 15.1.3)
and have a particularly convenient form. These colimits and limits are the latching
objects and matching objects (see Definition 15.2.5). We continue to assume that
we have chosen a degree function for our Reedy category (see Remark 15.1.3).

Definition 15.2.3. Let C be a Reedy category and let α be an object of C.

(1) The latching category ∂(
−→
C ↓α) of C at α is the full subcategory of (

−→
C ↓α)

containing all the objects except the identity map of α.
(2) The matching category ∂(α ↓

←−
C ) of C at α is the full subcategory of (α ↓

←−
C )

containing all the objects except the identity map of α.

Proposition 15.2.4. Let C be a Reedy category and let α be an object of C.

(1) The opposite of the latching category of C at α is naturally isomorphic to
the matching category of Cop at α (see Proposition 15.1.5).

(2) The opposite of the matching category of C at α is naturally isomorphic
to the latching category of Cop at α.

Proof. This follows from Corollary 11.8.7. �

Definition 15.2.5. Let C be a Reedy category, let M be a model category, let
X be a C-diagram in M, and let α be an object of C. We use X to denote also the
induced ∂(

−→
C ↓α)-diagram (defined on objects by X(β→α) = Xβ) and the induced

∂(α ↓
←−
C )-diagram (defined on objects by X(α→β) = Xβ).

(1) The latching object of X at α is LαX = colim
∂(
−→
C ↓α)

X and the latching
map of X at α is the natural map LαX → Xα. We will sometimes use
LC
αX to denote LαX when we want to emphasize the indexing category

C.
(2) The matching object of X at α is MαX = lim

∂(α↓
←−
C )

X and the matching
map of X at α is the natural map Xα → MαX. We will sometimes use
MC
αX to denote MαX when we want to emphasize the indexing category

C.
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Matching objects were first defined for cosimplicial simplicial sets, in [14,
page 274], where they were called matching spaces. The following proposition shows
that the definition used there agrees with Definition 15.2.5.

Proposition 15.2.6. Let M be a model category.

(1) If X is a simplicial object in M (see Definition 15.1.10) and n ≥ 2, then
the latching object of X at [n] is the colimit of the diagram obtained by

restricting X (see Definition 15.2.5) to the full subcategory of ∂(
−−→
∆op ↓ [n])

(see Definition 15.1.10) with objects the maps [k]→ [n] with k = n− 1 or
k = n− 2.

(2) If X is a cosimplicial object in M and n ≥ 2, then the matching object of
X at [n] is the limit of the diagram obtained by restricting X to the full

subcategory of ∂([n] ↓
←−
∆) with objects the maps [n]→ [k] with k = n− 1

or k = n− 2.

Proof. We will prove part 1; the proof of part 2 is dual.
Let D denote the full subcategory of ∂(

−−→
∆op ↓ [n]) with objects the maps [k]→

[n] with k = n− 1 or k = n− 2; we will show that the inclusion D→ ∂(
−−→
∆op ↓ [n])

is right cofinal (see Theorem 14.2.5).
If k = n − 1 or k = n − 2 then the identity map of [k] is an initial object of(

[k] ↓D
)
, and so B

(
[k] ↓D

)
is connected. If k < n − 2, then there are morphisms

from the object si1si2 · · · sin−k−1 : [k]→ [n− 1] to each of the objects

s0si1si2 · · · sin−k−1 : [k]→ [n],

s1si1si2 · · · sin−k−1 : [k]→ [n], . . . , and

sn−1si1si2 · · · sin−k−1 : [k]→ [n],

and so it is sufficient to show that the object si1si2 · · · sin−k−1 is connected to the
object (s0)n−k : [k]→ [n]. Since si1si2 · · · sin−k−1 is connected to

s0(si1si2 · · · sin−k−1) = si1+1si2+1 · · · sin−k−1+1s0

which is connected to

s0si2+1 · · · sin−k−1+1s0 = si2+2si3+2 · · · sin−k−1+2(s0)2

which is connected to . . . which is connected to

s0sin−k−1+n−k−2(sn−k−2
0 ) = sin−k−1+n−k−1(s0)n−k−1

which is connected to (s0)n−k, the proof is complete. �

Definition 15.2.7. If C is a Reedy category and α is an object of C of degree
n, then

(1) ∂(α ↓FnC) is the full subcategory of (α ↓FnC) with objects the maps α
g−→

β for which there is a factorization α
←−g−→ γ

−→g−→ β with ←−g ∈
←−
C , −→g ∈

−→
C ,

and ←−g 6= 1α, and
(2) ∂(FnC ↓α) is the full subcategory of (FnC ↓α) with objects the maps β

g−→
α for which there is a factorization β

←−g−→ γ
−→g−→ α with ←−g ∈

←−
C , −→g ∈

−→
C ,

and −→g 6= 1α.
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The objects colim(In↓α) X and lim(α↓In) X (where In : Fn−1C → FnC is the
inclusion functor and X is a diagram defined on Fn−1C) were used in Section 15.2 to
construct diagrams indexed by a Reedy category. The objects colim∂(FnC↓α) X and
lim∂(α↓FnC) X (where X is a diagram defined on FnC) will be used in Section 15.2.11
to analyze maps between such diagrams. Corollary 15.2.9 shows that all of these
colimits are latching objects of X and all of these limits are matching objects of
X.

Proposition 15.2.8. Let C be a Reedy category, let α be an object of C of
degree n, and let In : Fn−1C→ FnC be the inclusion functor.

(1) The latching category ∂(
−→
C ↓α) is a right cofinal subcategory (see Defini-

tion 19.6.1) of both (In ↓α) and ∂(FnC ↓α) (see Definition 15.2.7).

(2) The matching category ∂(α ↓
←−
C ) is a left cofinal subcategory of both

(α ↓ In) and ∂(α ↓FnC) (see Definition 15.2.7).

Proof. We will prove part 1; the proof of part 2 is dual.
Let Jn : ∂(

−→
C ↓α)→ (In ↓α) be the inclusion functor. If g : β → α is an object

of (In ↓α), then we can factor it as β
←−g−→ β′

−→g−→ α where ←−g ∈
←−
C and −→g ∈

−→
C . This

gives us the object

β
←−g

//

��
>>

>>
>>

>>
β′

−→g
����

��
��

��

α

of ((β → α) ↓ Jn); we will show that there is a map from this object to every other
object of ((β → α) ↓ Jn), which will imply that ((β → α) ↓ Jn) is nonempty and
connected (see Definition 14.2.1).

Any object of ((β → α) ↓ Jn) is of the form β
h−→ γ

−→
k−→ α where

−→
k ∈
−→
C ,
−→
k 6= 1α,

and the composition
−→
k h equals our map β → α. If we factor h as h =

−→
h
←−
h , then

the uniqueness of the factorization in Definition 15.1.2 implies that
←−
h = ←−g and

−→
k
−→
h = −→g , i.e.,

−→
h is a map from β

←−g−→ β′
−→g−→ α to β h−→ γ

−→
k−→ α.

The proof that ∂(
−→
C ↓α) is right cofinal in ∂(FnC ↓α) is identical to this. �

Corollary 15.2.9. Let C be a Reedy category, let M be a model category, let α
be an object of C of degree n, and let X be a C-diagram in M. If In : Fn−1C→ FnC
is the inclusion functor, then there are natural isomorphisms

colim
(In↓α)

X ≈ LαX ≈ colim
∂(FnC↓α)

X and lim
(α↓In)

X ≈ MαX ≈ lim
∂(α↓FnC)

X

(see Definition 15.2.7).

Proof. This follows from Proposition 15.2.8 and Theorem 14.2.5. �

Remark 15.2.10. In light of Definition 15.2.5 and Corollary 15.2.9, the discus-
sion in Section 15.2 can be summarized as follows: If C is a Reedy category, M is a
model category, X : Fn−1C → M is a diagram indexed by the (n − 1)-filtration of
C, and α is an object of C of degree n, then there is a natural map LαX → MαX
from the latching object of X at α to the matching object of X at α. Extending
X to a diagram FnC→M is equivalent to choosing, for every object α of degree n,
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an object Xα and a factorization LαX → Xα → MαX of that natural map, and
this can be done independently for each of the objects of degree n.

15.2.11. Maps between diagrams. Maps between diagrams indexed by a
Reedy category are most naturally defined inductively over the filtrations of the
Reedy category (see Definition 15.1.22). We assume that we have chosen a degree
function for our Reedy category (see Remark 15.1.3).

Let C be a Reedy category, let M be a model category, and let X and Y be
C-diagrams in M. Since the 0-filtration (see Definition 15.1.22) of a Reedy category
contains no non-identity maps, a map f : X|F0C → Y |F0C is determined by choosing
a map Xα → Y α for every object α of degree 0.

Suppose that f : X|Fn−1C → Y |Fn−1C is a map of the restrictions of the dia-
grams to the (n − 1)-filtration of C. For every object α of C of degree n we have
the solid arrow diagram

colim
(In↓α)

X //

��

Xα
//

��

lim
(α↓In)

X

��

colim
(In↓α)

Y // Y α
// lim
(α↓In)

Y

(where In : Fn−1C→ FnC is the inclusion functor) and Corollary 15.2.9 implies that
this diagram is isomorphic to the diagram

colim
∂(FnC↓α)

X //

��

Xα
//

��

lim
∂(α↓FnC)

X

��

colim
∂(FnC↓α)

Y // Y α
// lim
∂(α↓FnC)

Y .

Thus, extensions of f to the n-filtration of C correspond to a choice, for every object
α of degree n, of a dotted arrow that makes both squares commute. Corollary 15.2.9
implies that this diagram is also isomorphic to the diagram

LαX //

��

Xα
//

��

MαX

��

LαY // Y α
// MαY .

Thus, if A, B, X, and Y are C-diagrams in M and we have a diagram

(15.2.12) A //

��

X

��

B //

h

>>

Y

in which the dotted arrow h is defined only on the restriction of B to the (n− 1)-
filtration of C, then for every object α of C of degree n we have an induced solid
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arrow diagram
Aα qLαA LαB //

��

Xα

��

Bα
//

88

Y α ×MαY MαX

and there is a map Bα → Xα for every object α of degree n that makes both
triangles commute if and only if h can be extended over the restriction of B to the
n-filtration of C so that both triangles in Diagram 15.2.12 commute. This is the
motivation for the definitions of the relative latching map and relative matching map
(see Definition 15.3.2) and their appearance in the definitions of Reedy cofibration
and Reedy fibration (see Definition 15.3.3).

15.3. The Reedy model category structure

If C is a Reedy category and M is a model category, we will define a model
category structure on MC, the category of C-diagrams in M, called the Reedy model
category structure. If M is a simplicial model category, then we will show that
the simplicial structure of Definition 11.7.1 and Definition 11.7.2 makes the Reedy
model category structure on MC a simplicial model category.

If M is a cofibrantly generated model category, then the Reedy model category
structure will have the same weak equivalences as the model category structure
of Theorem 11.6.1, but it will have a larger class of cofibrations (see Proposi-
tion 15.6.3). Thus, free cell complexes and their retracts will be cofibrant in the
Reedy model category structure, as will some diagrams that are not retracts of free
cell complexes.

15.3.1. Statement of the theorem.

Definition 15.3.2. Let C be a Reedy category, let M be a model category, let
X and Y be C-diagrams in M, and let f : X → Y be a map of C-diagrams.

(1) If α is an object of C, then the relative latching map of f at α is the map
Xα qLαX LαY → Y α (see Definition 15.2.5).

(2) If α is an object of C, then the relative matching map of f at α is the map
Xα → Y α ×MαY MαX.

Definition 15.3.3. Let C be a Reedy category, let M be a model category, and
let X,Y : C→M be C-diagrams in M.

(1) A map of diagrams f : X → Y is a Reedy weak equivalence if, for every
object α of C, the map fα : Xα → Y α is a weak equivalence in M.

(2) A map of diagrams f : X → Y is a Reedy cofibration if, for every object
α of C, the relative latching map (see Definition 15.3.2)

Xα qLαX LαY → Y α

is a cofibration in M.
(3) A map of diagrams f : X → Y is a Reedy fibration if, for every object α

of C, the relative matching map (see Definition 15.3.2)

Xα → Y α ×MαY MαX

is a fibration in M.
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Theorem 15.3.4 (D. M. Kan). Let C be a Reedy category and let M be a
model category.

(1) The category MC of C-diagrams in M with the Reedy weak equivalences,
Reedy cofibrations, and Reedy fibrations (see Definition 15.3.3) is a model
category.

(2) If M is a left proper, right proper, or proper model category (see Defini-
tion 13.1.1), then the model category of part 1 is, respectively, left proper,
right proper, or proper.

(3) If M is a simplicial model category (see Definition 9.1.6), then the model
category of part 1 with the simplicial structure defined in Definition 11.7.1
and Definition 11.7.2 is a simplicial model category.

The proof of Theorem 15.3.4 is in Section 15.3.16.

Example 15.3.5. If M is a model category, then the category M∆op
of simplicial

objects in M has a model category structure from the Reedy category structure of
∆op (see Definition 15.1.10 and Proposition 15.1.5).

Example 15.3.6. If M is a model category, then the category M∆ of cosimpli-
cial objects in M has a model category structure from the Reedy category structure
of ∆.

Lemma 15.3.7. Let C be a Reedy category, let M be a model category, and let
X be a C-diagram in M.

(1) If X is Reedy cofibrant then for every object α of C the restriction of X

to ∂(
−→
C ↓α) (see Definition 15.2.3) is Reedy cofibrant.

(2) If X is Reedy fibrant then for every object α of C the restriction of X to

∂(α ↓
←−
C ) (see Definition 15.2.3) is Reedy fibrant.

Proof. We will prove part 1; the proof of part 2 is similar.
If β → α is an object of ∂(

−→
C ↓α), then the latching category of β in C equals

the latching category of β in ∂(
−→
C ↓α), and so the latching map of the restriction

of X at β → α equals the latching map of X at β. �

15.3.8. Trivial cofibrations and trivial fibrations. In order to prove The-
orem 15.3.4, we need to identify those maps of diagrams that are both Reedy
cofibrations and Reedy weak equivalences and those maps that are both Reedy
fibrations and Reedy weak equivalences. In this section, we will show that f is
both a Reedy cofibration and a Reedy weak equivalence if and only if each of the
maps Xα qLαX LαY → Y α is a trivial cofibration in M, and that f is both a
Reedy fibration and a Reedy weak equivalence if and only if each of the maps
Xα → Y α ×MαY MαX is a trivial fibration in M (see Theorem 15.3.15). We will
use this theorem in Section 15.3.16 to prove Theorem 15.3.4.

Lemma 15.3.9. Let C be a Reedy category, let M be a model category, let
f : X → Y be a map of C-diagrams in M, let α be an object of C, and let S be a
class of maps in M.

(1) If for every object β of C whose degree is less than that of α the relative
latching map

Xβ qLβX LβY → Y β
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has the left lifting property (see Definition 7.2.1) with respect to every
element of S, then the induced map of latching objects LαX → LαY has
the left lifting property with respect to every element of S.

(2) If for every object β of C whose degree is less than that of α the relative
matching map

Xβ → Y β ×MβY MβX

has the right lifting property (see Definition 7.2.1) with respect to every
element of S, then the induced map of matching objects MαX → MαY
has the right lifting property with respect to every element of S.

Proof. We will prove part 1; the proof of part 2 is dual. We assume that we
have chosen a degree function for C (see Remark 15.1.3).

There is a filtration of the category ∂(
−→
C ↓α) in which Fk∂(

−→
C ↓α) is the full

subcategory of ∂(
−→
C ↓α) whose objects are the maps β → α in

−→
C such that the

degree of β is less than or equal to k. Thus, F0∂(
−→
C ↓α) has no non-identity maps,

and Fdeg(α)−1∂(
−→
C ↓α) = ∂(

−→
C ↓α). If E → B is an element of S and we have the

solid arrow diagram

LαX //

��

E

��

LαY //

h

==

B

then we will define the map h by defining it inductively over colim
Fk∂(

−→
C ↓α)

Y .

For objects β → α of (
−→
C ↓α) such that β is of degree zero, the latching objects

LβX and LβY are the initial object of M, and so the map Xβ → Y β equals the
relative latching map Xβ qLβX LβY → Y β , which we have assumed has the left
lifting property with respect to E → B. Thus, there exists a dotted arrow h that
makes both triangles commute in the diagram

Xβ //

��

E

��
Y β //

h

>>

B

Since F0∂(
−→
C ↓α) has no non-identity maps, this defines h on F0∂(

−→
C ↓α).

For the inductive step, we assume that 0 < k < deg(α) and that the map
has been defined on colim

Fk−1∂(
−→
C ↓α)

Y . Let β → α be an object of ∂(
−→
C ↓α) such

that β is of degree k. The map β → α defines a functor ∂(
−→
C ↓β)→ Fk−1∂(

−→
C ↓α)

which, defines the map h on LβY . Thus, we have the commutative diagram

Xβ qLβX LβY //

��

E

��
Y β // B

and the vertical map on the left is assumed to have the left lifting property with
respect to E → B. This implies that the map h can be defined on Y β , and the
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discussion in Section 15.2.11 explains why this can be done independently for the
various objects of degree k. This completes the induction, and the proof. �

Lemma 15.3.10. Let C be a Reedy category, let M be a model category, let
f : X → Y be a map of C-diagrams in M, and let S be a class of maps in M.

(1) If for every object α of C the relative latching map

Xα qLαX LαY → Y α

has the left lifting property with respect to every element of S, then for
every object α of C the map fα : Xα → Y α has the left lifting property
with respect to every element of S.

(2) If for every object α of C the relative matching map

Xα → Y α ×MαY MαX

has the right lifting property with respect to every element of S, then for
every object α of C the map fα : Xα → Y α has the right lifting property
with respect to every element of S.

Proof. We will prove part 1; the proof of part 2 is dual.
The map fα : Xα → Y α equals the composition Xα →XαqLαX LαY → Y α.

Since the first of these maps is the pushout of LαX → LαY along LαX → Xα,
the result follows from Lemma 15.3.9 and Lemma 7.2.11. �

Proposition 15.3.11. Let C be a Reedy category, let M be a model category,
and let f : X → Y be a map of C-diagrams in M.

(1) If f is a Reedy cofibration, then for every object α of C both the map
fα : Xα → Y α and the induced map of latching objects LαX → LαY are
cofibrations in M.

(2) If f is a Reedy fibration, then for every object α of C both the map
fα : Xα → Y α and the induced map of matching objects MαX → MαY
are fibrations in M.

Proof. This follows from Lemma 15.3.9, Lemma 15.3.10, and Proposition 7.2.3.
�

Corollary 15.3.12. Let C be a Reedy category, let M be a model category,
and let X be a C-diagram in M.

(1) If X is Reedy cofibrant, then for every object α of C both the object Xα

and the latching object LαX are cofibrant objects of M.
(2) If X is Reedy fibrant, then for every object α of C both the object Xα

and the matching object MαX are fibrant objects of M.

Proof. This follows from Proposition 15.3.11. �

Proposition 15.3.13. Let C be a Reedy category, let M be a model category,
and let f : X → Y be a map of C-diagrams in M.

(1) If for every object α of C the relative latching map Xα qLαX LαY →
Y α is a trivial cofibration, then for every object α of C both the map
fα : Xα → Y α and the induced map of latching objects LαX → LαY are
trivial cofibrations.
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(2) If for every object α of C the relative matching map Xα → Y α×MαY MαX
is a trivial fibration, then for every object α of C both the map fα : Xα →
Y α and the induced map of matching objects MαX → MαY are trivial
fibrations.

Proof. This follows from Lemma 15.3.9, Lemma 15.3.10, and Proposition 7.2.3.
�

Proposition 15.3.14. Let C be a Reedy category, let M be a model category,
and let f : X → Y be a map of C-diagrams in M.

(1) If f is both a Reedy cofibration and a Reedy weak equivalence, then for
every object α of C the map fα : Xα → Y α, the induced map of latching
objects LαX → LαY , and the relative latching map XαqLαXLαY → Y α

are trivial cofibrations.
(2) If f is both a Reedy fibration and a Reedy weak equivalence, then for

every object α of C the map fα : Xα → Y α, the induced map of matching
objects MαX → MαY , and the relative matching map Xα → Y α ×MαY

MαX are trivial fibrations.

Proof. We will prove part 1; the proof of part 2 is dual. We assume that we
have chosen a degree function for C (see Remark 15.1.3).

Proposition 15.3.11 implies that fα is a cofibration for every object α in C.
Since f is a Reedy weak equivalence, this implies that fα is a trivial cofibration for
every object α of C.

We will prove that the maps LαX → LαY and Xα qLαX LαY → Y α are
trivial cofibrations for every object α of C by induction on the degree of α. If
LαX → LαY is a trivial cofibration in M for some particular object α of C, then,
since Xα →XαqLαX LαY is a pushout of LαX → LαY , this map is also a trivial
cofibration. Since the weak equivalence fα : Xα → Y α equals the composition
Xα → Xα qLαX LαY → Y α, this implies that the cofibration Xα qLαX LαY →
Y α is actually a trivial cofibration.

If α is of degree 0, then LαX and LαY are both the initial object of M, and
so LαX → LαY is the identity map, which is certainly a trivial cofibration.

We now assume that n is a positive integer, LβX → LβY is a trivial cofibration
for all objects β of degree less than n, and α is an object of degree n. The discussion
above explains why our inductive hypothesis implies that Xβ qLβX LβY → Y β is
a trivial cofibration for all objects β of degree less than n, and so Lemma 15.3.9
and Proposition 7.2.3 imply that LαX → LαY is a trivial cofibration. �

Theorem 15.3.15. Let C be a Reedy category, let M be a model category, and
let f : X → Y be a map of C-diagrams in M.

(1) The map f is both a Reedy cofibration and a Reedy weak equivalence if
and only if for every object α of C the relative latching map Xα qLαX

LαY → Y α is a trivial cofibration in M.
(2) The map f is both a Reedy fibration and a Reedy weak equivalence if

and only if for every object α of C the relative matching map Xα →
Y α ×MαY MαX is a trivial fibration in M.

Proof. This follows from Proposition 15.3.13 and Proposition 15.3.14. �



15.3. THE REEDY MODEL CATEGORY STRUCTURE 293

15.3.16. Proof of Theorem 15.3.4. For part 1, we must show that axioms
M1 through M5 of Definition 7.1.3 are satisfied. Axioms M1 and M2 follow from
the fact that limits, colimits, and weak equivalences of diagrams are all defined
objectwise.

Axiom M3 follows from the observation that if the map g : X → Y is a retract
of the map h : W → Z, then for every object α of C the relative latching map
XαqLαXLαY → Y α is a retract of the relative latching map W αqLαW LαZ → Zα

and the relative matching map Xα → Y α ×MαY MαX is a retract of the relative
matching map W α → Zα ×MαZ MαW .

If we choose a degree function for C (see Remark 15.1.3), then the maps required
by axiom M4 are constructed inductively on the degree of the objects of C, using
Theorem 15.3.15 (see the discussion in Section 15.2.11).

The factorizations required by axiom M5 are also constructed inductively on
the degree of the objects of C. For axiom M5 part 1, if g : X → Y is a map in MC,
then, for every object α of degree zero of C, we have a functorial factorization of gα
in M as Xα

i−→ Zα
h−→ Y α with i a cofibration and h a trivial fibration. If we now

assume that g has been factored on all objects of degree less than n and that α is an
object of degree n, then we have an induced map XαqLαX LαZ → Y α×MαY MαZ.
We can factor this map (functorially) in M as

Xα qLαX LαZ
i−→ Zα

h−→ Y α ×MαY MαZ

with i a cofibration and h a trivial fibration to obtain Zα. This completes the
construction, and Theorem 15.3.15 implies that it has the required properties. The
proof for axiom M5 part 2 is similar, and so MC is a model category, and the proof
of part 1 is complete.

For part 2, Proposition 15.3.11 implies that a Reedy cofibration is an objectwise
cofibration and a Reedy fibration is an objectwise fibration. Since weak equivalences
are defined objectwise and both pushouts and pullbacks are constructed objectwise,
the conditions of Definition 13.1.1 follow if they hold in M.

For part 3, if M is a simplicial model category, then axiom M6 of Definition 9.1.6
follows because the constructions are all done objectwise and M is a simplicial
model category, and so it remains only to show that axiom M7 follows as well.
Proposition 9.3.7 implies that it is sufficient to show that if i : A → B is a Reedy
cofibration and j : K → L is a cofibration of simplicial sets, then A⊗LqA⊗K B⊗
K → B⊗L is a Reedy cofibration that is also a weak equivalence if either i or j is
a weak equivalence. Thus, we must show that for every object α of C the map

(A⊗ LqA⊗K B ⊗K)α qLα(A⊗LqA⊗KB⊗K) Lα(B ⊗ L)→ (B ⊗ L)α

is a cofibration in M that is also a weak equivalence if either i or j is a weak
equivalence. Since each latching object is a colimit, Lemma 9.2.1 implies that this
map is isomorphic to the map

(Bα ⊗K)q(LαBqLαAAα)⊗K
(
(LαB qLαA Aα)⊗ L

)
→ Bα ⊗ L.

Since i : A → B is a Reedy cofibration and M is a simplicial model category, this
map is a cofibration that is a weak equivalence if either i or j is a weak equivalence,
and so the proof is complete.
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15.4. Quillen functors

Proposition 15.4.1. Let C be a Reedy category and let M and N be model
categories.

(1) If F: M � N :U is a Quillen pair (see Definition 8.5.2), then the induced
functors FC : MC � NC :UC form a Quillen pair.

(2) If (F,U) is a pair of Quillen equivalences, then so is the induced pair
(FC,UC).

Proof. The induced functors FC and UC are adjoint (see Lemma 11.6.4),
and so for part 1 it is sufficient to show that FC preserves both cofibrations and
trivial cofibrations (see Proposition 8.5.3). If f : A → B is a cofibration or a
trivial cofibration in MC, then for every object α of C the relative latching map
LαBqLαA Aα → Bα is, respectively, a cofibration or a trivial cofibration in M (see
Theorem 15.3.15). Since the latching objects LαA and LαB are defined as colimits
(see Definition 15.2.5) and left adjoints commute with colimits, the relative latching
map LαFBqLαFAFAα → FBα is isomorphic to the map F(LαBqLαAAα)→ FBα,
and is thus, respectively, a cofibration or a trivial cofibration in N. Thus, FC is
a left Quillen functor. Part 2 follows immediately, since weak equivalences in MC

and NC are defined objectwise in C. �

Corollary 15.4.2. Let C be a Reedy category, let M and N be model cate-
gories, and let F: M � N :U be a Quillen pair.

(1) If B : C → M is a cofibrant C-diagram in M, then FB : C → N is a
cofibrant C-diagram in N.

(2) If X : C → N is a fibrant C-diagram in N, then UX : C → M is a fibrant
C-diagram in M.

Proof. This follows from Proposition 15.4.1. �

15.5. Products of Reedy categories

In this section, we show that if C and D are Reedy categories and M is a model
category, then the three possible Reedy model category structures on MC×D are
all the same (see Theorem 15.5.2).

Lemma 15.5.1. Let C and D be Reedy categories, let M be a model category,
and let X be a C×D-diagram in M.

(1) For every object (α, β) of C × D (see Proposition 15.1.6) the latching

object LC×D
(α,β)X is naturally isomorphic to the pushout LC

αX(−,β)qLC
αLD

β X

LD
β X(α,−).

(2) For every object (α, β) of C×D the matching object MC×D
(α,β)X is naturally

isomorphic to the pullback MC
αX(−,β) ×MC

αMD
β X MD

β X(α,−).

Proof. We will prove part 1; the proof of part 2 is similar.
We begin by defining a map LC

αX(−,β) → LC×D
(α,β)X. We define an embedding of

∂(
−→
C ↓α) in ∂(

−−−→
C×D ↓ (α, β)) by taking the object f : α′ → α of ∂(

−→
C ↓α) to (f, 1β)

in ∂(
−−−→
C×D ↓ (α, β)). This defines a map LC

αX(−,β) → LC×D
(α,β)X. Similarly, we have

an embedding of ∂(
−→
D ↓β) in ∂(

−−−→
C×D ↓ (α, β)) that defines a map LD

β X(α,−) →



15.5. PRODUCTS OF REEDY CATEGORIES 295

LC×D
(α,β)X. We have natural isomorphisms

LC
αLD

β X = colim
(α′→α)∈Ob ∂(

−→
C ↓α)

(
LD
β X(α′,−)

)
≈ colim

(α′→α)∈Ob ∂(
−→
C ↓α)

(
colim

(β′→β)∈Ob ∂(
−→
D↓β)

X(α′,β′)

)
≈ colim

(α′→α,β′→β)∈Ob(∂(
−→
C ↓α)×∂(

−→
D↓β))

X(α′β′)

and natural maps LC
αX(−,β) ← LC

αLD
β X → LD

β X(α,−) such that the composition
LC
αLD

β X → LC
αX(−,β) → LC×D

(α,β) equals the composition LC
αLD

β X → LD
β X(α,−) →

LC×D
(α,β). Thus, we have a well defined map LC

αX(−,β)qLC
αLD

β X LD
β X(α,−) → LC×D

(α,β)X.

The latching object LC×D
(α,β)X is a colimit indexed by pairs (f, g) ∈ Ob

(
∂(
−→
C ↓α)×

∂(
−→
D ↓β)

)
in which at least one of f and g is not an identity map. The pushout

LC
αX(−,β)qLC

αLD
β X LD

β X(α,−) is the same coproduct with the indexing category par-
titioned into three subcategories according to whether f 6= 1α and g = 1β , f 6= 1α
and g 6= 1β , or f = 1α and g 6= 1β , and so our map is an isomorphism. �

Theorem 15.5.2. If C and D are Reedy categories and M is a model category,
then the category MC×D of (C ×D)-diagrams in M has the same model category
structure when viewed as either

(1) diagrams in M indexed by the Reedy category (C × D) (see Proposi-
tion 15.1.6),

(2) the category (MD)C, i.e., diagrams in MD indexed by the Reedy category
C, or

(3) the category (MC)D, i.e., diagrams in MC indexed by the Reedy category
D.

Proof. We will prove that the model category structure of 1 equals that of 2;
the proof that the model category structure of 1 equals that of 3 is similar.

Since the weak equivalences of both MC×D and (MD)C are defined objectwise,
these two model categories have he same weak equivalences. Thus, Proposition 7.2.3
implies that it is sufficient to show that they have the same cofibrations.

A map f : X → Y is a cofibration in (MD)C if and only if, for every object α
of C, the relative latching map Xα qLC

αX LC
αY → Y α is a cofibration in MD. This

is the case if and only if, for every object β of D, the relative latching map

(15.5.3) (Xα qLC
αX LC

αY )β qLD
β (XαqLC

αX
LC

αY ) LD
β Y α → Y (α,β)

is a cofibration in M. Since colimits commute, the domain of this map is isomorphic
to

(X(α,β) qLC
αXβ

LC
αY β)q(LD

β XαqLD
β

LC
αX

LD
β LC

αY ) LD
β Y α ,
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which is the colimit of the diagram

X(α,β) LC
αXβ

oo // LC
αY β

LD
β

OO

$$I
IIIIIIIII LD
β LC

αXoo

OO

//

��

LD
β LC

αY

yyttttttttt

OO

LD
β Y α .

This is isomorphic to the pushout

X(α,β) q(LD
β XαqLD

β
LC

αX
LC

αXβ) (LD
β Y α qLD

β LC
αY LC

αY β) ,

and so Lemma 15.5.1 implies that the map (15.5.3) is isomorphic to the map
X(α,β)qLC×D

(α,β)X
LC×D

(α,β)Y → Y (α,β), which is the relative latching map of f at (α, β)

in MC×D. Thus, the class of cofibrations of (MD)C equals that of MC×D. �

15.6. Reedy diagrams in a cofibrantly generated model category

If C is a Reedy category and M is a cofibrantly generated model category (see
Definition 11.1.2), then we have two model category structures on MC, the category
of C-diagrams in M: The first is constructed using the cofibrantly generated model
category structure on M (see Theorem 11.6.1), and the second is constructed using
the Reedy category structure on C (see Theorem 15.3.4). Although these two
model category structures have the same class of weak equivalences, they are not,
in general, equal (see Example 15.6.2).

We begin by showing (in Section 15.6.1) that although these two model cate-
gory structures are not, in general, equal, they are always Quillen equivalent (see
Theorem 15.6.4). In Section 15.6.22 we will show that the Reedy model category
structure on MC is nearly always cofibrantly generated (see Theorem 15.6.27).

15.6.1. Two model category structures. We begin with an example that
shows that if M is a cofibrantly generated model category and C is a Reedy cat-
egory, then the two model category structures on MC (see Theorem 11.6.1 and
Theorem 15.3.4) are not, in general, equal. In Theorem 15.6.4 we will show that
these two model category structures are always Quillen equivalent.

Example 15.6.2. Let C be ∆op, the simplicial indexing category (see Exam-
ple 15.1.13), and let M be the standard model category of simplicial sets. If X
is a simplicial object in M, then X is fibrant in the cofibrantly generated model
category structure on M∆op

whenever Xn is a fibrant simplicial set for all n ≥ 0.
However, for X to be fibrant in the Reedy structure the map X1

d0×d1−−−−→X0 ×X0

must be a fibration, which is a strictly stronger requirement. (For example, let Z
be a nontrivial fibrant simplicial set and let X be the constant simplicial object at
Z. The map X1

d0×d1−−−−→ X0 ×X0 is then the diagonal map Z → Z × Z, which is
not, in general, a fibration.)
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Proposition 15.6.3. Let C be a Reedy category, let M be a cofibrantly gen-
erated model category (see Definition 11.1.2), and let X and Y be C-diagrams in
M.

(1) If the map f : X → Y is a Reedy fibration (see Definition 15.3.3) then it
is also a fibration in the cofibrantly generated model category structure
on MC (see Theorem 11.6.1).

(2) If the map f : X → Y is a cofibration in the cofibrantly generated model
category structure on MC then it is a Reedy cofibration.

Proof. Part 1 follows from Proposition 15.3.11.
Part 2 follows from part 1 and Proposition 7.2.3, since the weak equivalences

are the same in both model category structures. �

Theorem 15.6.4. If C is a Reedy category and M is a cofibrantly generated
model category, then the identity functor of MC is a left Quillen equivalence (see
Definition 8.5.20) from the cofibrantly generated model category structure (see
Theorem 11.6.1) to the Reedy model category structure (see Theorem 15.3.4) and
a right Quillen equivalence in the opposite direction.

Proof. This follows from Proposition 15.6.3. �

Corollary 15.6.5. If C is a Reedy category, M is a cofibrantly generated
model category, X and Y are C-diagrams in M, and f : X → Y is a relative free
cell complex (see Definition 11.5.35), then f is a Reedy cofibration.

Proof. This follows from Theorem 11.6.1 and Proposition 15.6.3. �

Corollary 15.6.6. Let C be a Reedy category, let M be a cofibrantly generated
model category, and let X be a C-diagram in M. If X is a free cell complex (see
Definition 11.5.35) then X is Reedy cofibrant.

Proof. This follows from Corollary 15.6.5. �

Corollary 15.6.7. If C is a Reedy category then the Cop-diagram of simplicial
sets B(−↓C)op and the C-diagram of simplicial sets B(C ↓−) (see Section 14.7) are
Reedy cofibrant diagrams.

Proof. This follows from Corollary 14.8.8 and Corollary 15.6.6. �

Corollary 15.6.8. Let C be a Reedy category.

(1) The Cop-diagram of simplicial sets B(−↓C)op is a Reedy cofibrant approx-
imation to the constant Cop-diagram at a point.

(2) The C-diagram of simplicial sets B(C ↓−) is a Reedy cofibrant approxi-
mation to the constant C-diagram at a point.

Proof. Corollary 15.6.7 implies that these diagrams are Reedy cofibrant, and
Lemma 14.7.4 and Lemma 14.7.10 imply that for every object α of C the maps from
B(α ↓C)op and B(C ↓α) to a point are weak equivalences. �

15.6.9. An adjoint to the matching object. If C is a Reedy category, α is
an object of C, and M is a category, then we construct in this section a left adjoint
to the matching object functor Mα : MC → M (see Proposition 15.6.20). This will
be used in Section 15.6.22 to show that the Reedy model category structure is
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cofibrantly generated if M is almost any cofibrantly generated model category (see
Theorem 15.6.27).

Definition 15.6.10. If C is a Reedy category and α and β are objects of C

then the boundary ∂C(α, β) of C(α, β) is the set of maps g : α→ β for which there
is a factorization g = −→g←−g with −→g ∈

−→
C , ←−g ∈

←−
C , and ←−g 6= 1α. That is, ∂C(α, β) is

the set of maps from α to β that factor through an object of degree less than that
of α.

Lemma 15.6.11. Let C be a Reedy category. If α, β, and γ are objects of C,
g ∈ ∂C(α, β), and h : β → γ is any map, then hg ∈ ∂C(α, γ).

Proof. Let g = −→g←−g with −→g ∈
−→
C , ←−g ∈

←−
C , and ←−g 6= 1α. The composition

(h−→g ) has a factorization (h−→g ) =
−→
k
←−
k with

−→
k ∈

−→
C and

←−
k ∈

←−
C , and so the

composition (hg) has the factorization (hg) =
−→
k (
←−
k←−g ) with

−→
k ∈

−→
C and (

←−
k←−g ) ∈

←−
C , and (

←−
k←−g ) 6= 1α because ←−g 6= 1α. �

Proposition 15.6.12. If C is a Reedy category and α is an object of C then
there is a sub-diagram of Fα∗ , the free C-diagram of sets generated at α (see Defi-
nition 11.5.7), that on an object β of C equals ∂C(α, β).

Proof. This follows from Lemma 15.6.11. �

Definition 15.6.13. If C is a Reedy category and α is an object of C then the
C-diagram of sets described in Proposition 15.6.12 will be called the boundary ∂Fα∗
of Fα∗ .

Example 15.6.14. If C = ∆op (the simplicial indexing category (see Defini-
tion 15.1.8)) and n ≥ 0, then F[n]

∗ is the simplicial set ∆[n] (see Example 11.5.15)
and ∂F[n]

∗ is what is commonly called ∂∆[n].

Proposition 15.6.15. If C is a Reedy category and α is an object of C then ∂Fα∗
(see Definition 15.6.13) is naturally isomorphic to the colimit of the ∂(α ↓

←−
C )op-

diagram (see Definition 15.2.3) of C-diagrams of sets that takes the object g : α→ β

of ∂(α ↓
←−
C )op to the diagram Fβ∗ (see Definition 11.5.7) and the morphism

(15.6.16) α
g

����
��

��
��

h

��
??

??
??

??

β γ
k

oo

from g : α → β to h : α → γ in ∂(α ↓
←−
C )op to the map of diagrams k∗ : Fβ∗ → Fγ∗

determined (see Proposition 11.5.8) by the element k : γ → β of Fγ∗(β).

Proof. If g : α → β is an object of ∂(α ↓
←−
C )op, then composition with g

defines a map of diagrams g∗ : Fβ∗ → Fα∗ whose image is contained in ∂Fα∗ (see
Lemma 15.6.11). For each morphism (15.6.16) of ∂(α ↓

←−
C )op, the map k∗ : Fβ∗ → Fγ∗

is defined by composition with k. Since kh = g, we have k∗h∗ = g∗, and so we have
a well defined map of diagrams

(15.6.17) colim
∂(α↓

←−
C )op

F−∗ → ∂Fα∗ .
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The map (15.6.17) is surjective because if g : α → β is an element of ∂Fα∗ (β),
then we can factor g as α h−→ γ

k−→ β with h ∈
←−
C , k ∈

−→
C , and h 6= 1α, and g is in

the image of k under h∗ : Fγ∗ → ∂Fα∗ .
To see that the map (15.6.17) is injective, suppose that g : α→ β and h : α→ γ

are objects of ∂(α ↓
←−
C )op and s ∈ Fβ∗ (δ) and t ∈ Fγ∗(δ) are elements such that

g∗(s) = h∗(t). We then have sg = th. If we factor s : β → δ as β
←−s−→ η

−→s−→ δ

with ←−s ∈
←−
C and −→s ∈

−→
C and factor t : γ → δ as γ

←−
t−→ µ

−→
t−→ δ with

←−
t ∈

←−
C and

−→
t ∈

−→
C , then −→s (←−s g) = sg = th =

−→
t (
←−
t h), and so (−→s )(←−s g) and (

−→
t )(
←−
t h) are

two factorizations of the same map into a map in
←−
C followed by a map in

−→
C . By

the uniqueness of such factorizations, we must have −→s =
−→
t and ←−s g =

←−
t h (and,

of course, η = µ), and so we have the diagram

α
g

����
��

��
��

h

��
??

??
??

??

β

←−s
��

>>
>>

>>
>>

δ γ .

←−
t����

��
��

��

η

−→s −→
t

OO

Thus (
←−
t )∗ : Fη∗ → Fγ∗ takes −→s =

−→
t to

−→
t
←−
t = t and (←−s )∗ : Fη∗ → Fβ∗ takes −→s =

−→
t

to −→s←−s = s, and so s and t represent the same element of colim
∂(α↓

←−
C )op

F−∗ , and
the map (15.6.17) is injective. �

Definition 15.6.18. If C is a Reedy category, M is a cocomplete category, X is
an object of M, and α is an object of C, then the boundary ∂FαX of the free diagram
on X generated at α is the C-diagram ∂FαX = X ⊗ ∂Fα∗ (see Definition 15.6.13,
Definition 11.5.25, Definition 11.5.24, and Definition 11.5.7).

Proposition 15.6.19. Let M be a cocomplete category and let C be a Reedy
category. If X is an object of M and α is an object of C, then ∂FαX (see Defini-

tion 15.6.18) is naturally isomorphic to the colimit of the ∂(
−→
C ↓α)op-diagram of

C-diagrams in M that takes the object g : α→ β of ∂(
−→
C ↓α)op to the diagram FβX

(see Definition 11.5.25) and the morphism

α

h

��
??

??
??

??
g

����
��

��
��

β γ
k

oo

from g : α → β to h : α → γ in ∂(
−→
C ↓α)op to the map of diagrams k∗ : FβX → FγX

determined (see Proposition 11.5.8) be the element k : γ → β of Fγ∗(β).

Proof. This follows from Proposition 15.6.15. �

Proposition 15.6.20. Let C be a Reedy category and let M be a model cate-
gory. For every object α of C the functor M→MC that takes the object X of M to
the C-diagram ∂FαX (see Definition 15.6.18) is left adjoint to the matching object
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functor Mα : MC → M (see Definition 15.2.5), i.e., for every C-diagram Y there is
a natural isomorphism of sets

MC(∂FαX ,Y ) ≈M(X,MαY ) .

Proof. We have natural isomorphisms

MC(∂FαX ,Y ) = MC
(

colim
(α→β)∈Ob ∂(

−→
C ↓α)op

FβX ,Y
)

(see Proposition 15.6.19)

≈ lim
(α→β)∈Ob ∂(

−→
C ↓α)

MC(FβX ,Y )

≈ lim
(α→β)∈Ob ∂(

−→
C ↓α)

M(X,Y β)

≈M(X, lim
(α→β)∈Ob ∂(

−→
C ↓α)

Y β)

= M(X,MαY ) .

�

Corollary 15.6.21. Let C be a Reedy category and let M be a model category.
If A→ B is a map in M and X → Y is a map of C-diagrams in M, then for every
object α of C the following are equivalent:

(1) The dotted arrow exists in every solid arrow diagram of the form

A //

��

Xα

��

B //

88

Y α ×MαY MαX .

(2) The dotted arrow exists in every solid arrow diagram of the form

FαA q∂Fα
A

∂FαB //

��

X

��

FαB //

99

Y .

Proof. This follows from Proposition 15.6.20. �

15.6.22. Cofibrant generation of the Reedy model category struc-
ture. In this section, we show that if C is a Reedy category and M is a cofibrantly
generated model category in which both the domains and the codomains of the el-
ements of I are small relative to I and both the domains and the codomains of the
elements of J are small relative to J , then the Reedy model category structure on
MC (see Theorem 15.3.4) is cofibrantly generated (see Theorem 15.6.27). Although
this seems to be a restriction on the class of cofibrantly generated model categories
to which our results apply, it includes all cofibrantly generated model categories of
which I am aware.

Definition 15.6.23. If C is a Reedy category, M is a model category, and K
is a set of maps in M, then RFC

K will denote the set of maps in MC of the form

FαAk
q∂Fα

Ak
∂FαBk

→ FαBk
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(see Definition 11.5.25 and Definition 15.6.13) for α an object of C and Ak → Bk
an element of K.

Proposition 15.6.24. If C is a Reedy category and M is a cofibrantly generated
model category with generating cofibrations I and generating trivial cofibrations J ,
then a map of C-diagrams in M is a Reedy fibration if and only if it has the right
lifting property with respect to every element of RFC

J (see Definition 15.6.23) and
it is a Reedy trivial fibration if and only if it has the right lifting property with
respect to every element of RFC

I .

Proof. This follows from Corollary 15.6.21 and Theorem 15.3.15. �

Lemma 15.6.25. If C is a Reedy category, M is a cocomplete category, and I is
a set of maps in M, then for every object β of C and every element FαAq∂Fα

A
∂FαB →

FαB of RFC
I (see Definition 15.6.23) the map

FαA q∂Fα
A

∂FαB(β)→ FαB(β)

is a relative I-cell complex.

Proof. If A→ B is a map in M and α and β are objects of C, then the map
∂FαA(β)→ FαA(β) is the inclusion of a summand. Thus, the pushout FαA(β)q∂Fα

A(β)

∂FαB(β) is isomorphic to the coproduct
(∐

(Fα
∗ (β)−∂Fα

∗ (β))A
)
q

(∐
∂Fα

∗ (β)B
)

and
the map FαA(β) q∂Fα

A(β) ∂FαB(β) → FαB(β) is isomorphic to the coproduct of the
identity map of

∐
∂Fα

B(β)B with the map
∐

(Fα
∗ (β)−∂Fα

∗ (β))A→
∐

(Fα
∗ (β)−∂Fα

∗ (β))B.
Proposition 10.2.7 now implies that the map FαA(β) q∂Fα

A(β) ∂FαB(β) → FαB(β) is
a transfinite composition of pushouts of the map A→ B. �

Lemma 15.6.26. Let C be a Reedy category and let M be a cocomplete category.
If I and K are sets of maps in M such that the domains and codomains of the
elements of K are small relative to I, then the domains and codomains of the
elements of RFC

K (see Definition 15.6.23) are small relative to RFC
I .

Proof. Proposition 10.5.13, Proposition 11.5.26, and Lemma 15.6.25 imply
that if A is a domain or a codomain of an element of K and α is an object of C

then FαA is small relative to RFC
I . Proposition 10.4.8 and Proposition 15.6.15 now

imply that the domains and codomains of the elements of RFC
K are small relative

to RFC
I . �

The next theorem may seem to be weak in that it applies only to those cofi-
brantly generated model categories M for which there are a set I of generating
cofibrations whose domains and codomains are small relative to I and a set J of
generating trivial cofibrations whose domains and codomains are small relative to
J . However, this is a property shared by every cofibrantly generated model category
of which I am aware.

Theorem 15.6.27. Let M be a cofibrantly generated model category for which
there are a set I of generating cofibrations whose domains and codomains are small
relative to I (see Definition 10.5.12) and a set J of generating trivial cofibrations
whose domains and codomains are small relative to J . If C is a Reedy category then
the Reedy model category structure on MC is cofibrantly generated with generating
cofibrations RFC

I (see Definition 15.6.23) and generating trivial cofibrations RFC
J .
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Proof. This follows from Proposition 15.6.24, Lemma 15.6.25, and
Lemma 15.6.26.

�

15.7. Reedy diagrams in a cellular model category

In this section we show that if C is a Reedy category and M is a cellular model
category (see Definition 12.1.1), then the Reedy model category structure on MC

(see Theorem 15.3.4) is a cellular model category (see Theorem 15.7.6).

Proposition 15.7.1. If M is a cellular model category and C is a Reedy cat-
egory, then the cofibrations of the Reedy model category structure on MC (see
Theorem 15.3.4) are effective monomorphisms.

Proof. Let f : X → Y be a Reedy cofibration in MC. Proposition 15.3.11
implies that for every object α of C the map fα : Xα → Y α is a cofibration in M,
and so fα is an effective monomorphism. Thus, for every object α of C the map
fα : Xα → Y α is the equalizer of the natural inclusions Y α ⇒ Y α qXα Y α. Since
the pushout Y qX Y on an object α of C is Y αqXα Y α, this implies that the map
f : X → Y is the equalizer of the natural inclusion Y ⇒ Y qX Y . �

Corollary 15.7.2. If M is a cellular model category and C is a Reedy cat-
egory, then the cofibrations of the Reedy model category structure on MC (see
Theorem 15.3.4) are monomorphisms.

Proof. This follows from Proposition 15.7.1 and Proposition 10.9.5. �

Corollary 15.7.3. If M is a cellular model category with generating cofi-
brations I and C is a Reedy category then the relative RFC

I -cell complexes (see
Definition 15.6.23) are monomorphisms.

Proof. This follows from Corollary 15.7.2 and Theorem 15.6.27. �

Lemma 15.7.4. Let M be a cellular model category with generating cofibrations
I and let C be a Reedy category. If β is an object of C and W is an object of M

that is compact relative to I, then FβW (see Definition 11.5.25) is compact relative

to RFC
I .

Proof. Proposition 11.5.26 and Proposition 11.4.9 imply that it is sufficient
to show that for every element A → B of I and every object α of C the map
(FαA q∂Fα

A
∂FαB)(β) → FαB(β) is a cofibration whose domain is compact relative

to I. Lemma 15.6.25 implies that that map is a cofibration, and (since (FαA q∂Fα
A

∂FαB)(β) = FαA(β) q∂Fα
A(β) ∂FαB(β) and both A and B are compact relative to I)

Proposition 10.8.8 implies that its domain is compact relative to I. �

Proposition 15.7.5. If M is a cellular model category with generating cofibra-
tions I and C is a Reedy category, then the domains and codomains of the elements
of RFC

I (see Definition 15.6.23) are compact relative to RFC
I .

Proof. Since the domains and codomains of the elements of I are compact
relative to I, this follows from Proposition 15.6.15, Proposition 10.8.8, Corol-
lary 15.7.3, and Lemma 15.7.4. �
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Theorem 15.7.6. If M is a cellular model category and C is a Reedy category
then the Reedy model category structure on MC (see Theorem 15.3.4) is a cellular
model category.

Proof. This follows from Theorem 15.6.27, Proposition 15.7.5, Lemma 15.6.26,
Corollary 12.4.5, and Proposition 15.7.1. �

15.8. Bisimplicial sets

There are two possible Reedy model category structures on the category of
bisimplicial sets, obtained by viewing a bisimplicial set as a simplicial object in the
category of simplicial sets in two different ways. We show in Proposition 15.8.1 that
these model category structures have different classes of weak equivalences. (This
does not contradict Theorem 15.5.2 because the category of simplicial sets is not a
Reedy model category structure obtained from some model category of sets.) We
also show (in Theorem 15.8.7) that in either of these model category structures the
cofibrations are the monomorphisms.

Proposition 15.8.1. The two possible Reedy model category structures on
the category of bisimplicial sets (obtained by viewing a bisimplicial set as either a
horizontal simplicial object in the category of vertical simplicial sets or as a vertical
simplicial object in the category of horizontal simplicial sets) are not the same.

Proof. We will show that these two model category structures have different
classes of weak equivalences. Let X be the bisimplicial set such that Xn,∗ = ∆[1],
with all horizontal face and degeneracy maps equal to the identity, let Y be the
bisimplicial set such that Y n,k is a single point for all n ≥ 0 and k ≥ 0, and let
f : X → Y be the unique map from X to Y .

As a map of horizontal simplicial objects in the category of vertical simplicial
sets, f is a weak equivalence, because for every n ≥ 0 the map of simplicial sets
Xn,∗ → Y n,∗ is the map ∆[1] → ∆[0], which is a weak equivalence of simplicial
sets. However, as a map of vertical simplicial objects in the category of horizontal
simplicial sets, f is not a weak equivalence, because (for example) the map of
simplicial sets f∗,0 : X∗,0 → Y ∗,0 is the map (∆[0] q∆[0]) → ∆[0], which is not a
weak equivalence of simplicial sets. �

Lemma 15.8.2. Let X be a simplicial set, let n ≥ 0, and let σ and τ be el-
ements of Xn for which there are iterated degeneracy operators si1si2 · · · sik and
sj1sj2 · · · sjk such that si1si2 · · · sik(σ) = sj1sj2 · · · sjk(τ). If σ is nondegenerate,
then so is τ .

Proof. If τ = smν for some 0 ≤ m ≤ n− 1, then

σ = dik · · · di2di1si1si2 · · · sikσ
= dik · · · di2di1sj1sj2 · · · sjkτ
= dik · · · di2di1sj1sj2 · · · sjksmν ,

and this last expression for σ has k face operators and (k + 1)-degeneracy opera-
tors. The simplicial identities would then imply that σ was degenerate, which was
assumed not to be the case. �
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Lemma 15.8.3. If M is a category and X is a simplicial object in M, then
every iterated degeneracy operator Xn → Xn+k in X has a unique expression in
the form si1si2 · · · sik with i1 > i2 > · · · > ik.

Proof. Such an iterated degeneracy operator corresponds to an epimorphism
α : [n + k] → [n] in ∆ (see Definition 15.1.8), and the set {i1, i2, . . . , ik} is the set
of integers i in [n+ k] such that α(i+ 1) = α(i). �

Lemma 15.8.4. If X is a simplicial set and µ is a degenerate simplex of X, then
there is a unique nondegenerate simplex ν of X and a unique iterated degeneracy
operator α such that α(ν) = µ.

Proof. Lemma 15.8.2 implies that it is sufficient to show that
(1) if n ≥ 0 and σ and τ are nondegenerate n-simplices such that some degen-

eracy of σ equals some (possibly different) degeneracy of τ , then σ = τ ,
and

(2) if σ is a nondegenerate simplex and α and β are iterated degeneracy
operators such that α(σ) = β(τ), then α = β.

For assertion 1, let k be the smallest positive integer for which there are iterated
degeneracy operators si1si2 · · · sik with i1 > i2 > · · · > ik and sj1sj2 · · · sjk with
j1 > j2 > · · · > jk (see Lemma 15.8.3) such that si1si2 · · · sik(σ) = sj1sj2 · · · sjk(τ).
If we apply the face operator di1 to both sides of this equation, we obtain

si2si3 · · · sik(σ) = di1sj1sj2 · · · sjk(τ) ,

and the simplicial identities imply that the right hand side is either a (k − 1)-fold
iterated degeneracy of τ or a k-fold iterated degeneracy of a face of τ . Lemma 15.8.2
implies that it cannot be the latter, and so our assumption that k was the smallest
positive integer of its type implies that k = 1, i.e., si1σ = sj1τ . If i1 > j1, then
σ = di1+1si1σ = di1+1sjτ = sjdi1τ , which is impossible because σ is nondegenerate.
Similarly, we cannot have i1 < j1. Thus, i1 = j1, and so σ = τ (because degeneracy
operators have left inverses).

For assertion 2, let k be the smallest positive integer for which there are iterated
degeneracy operators si1si2 · · · sik with i1 > i2 > · · · > ik and sj1sj2 · · · sjk with
j1 > j2 > · · · > jk such that si1si2 · · · sik(σ) = sj1sj2 · · · sjk(σ) (see Lemma 15.8.3).
Because k is the smallest such integer and degeneracy operators have left inverses,
we must have i1 6= j1. If i1 > j1, then we can apply di1+1 to obtain

si2si3 · · · sik(σ) = di1+1sj1sj2 · · · sjk(σ)

= sj1sj2 · · · sjkdi1+1−k(σ)

which contradicts Lemma 15.8.2. Similarly, we cannot have i1 < j1. Thus, i1 = j1,
and so si2si3 · · · sik(σ) = sj2sj3 · · · sjk(σ), which implies that k = 1 (or else we have
contradicted our assumption that k is the smallest positive integer of its type). �

Lemma 15.8.5. Let X be a simplicial set. If n ≥ 0 and σ is an n-simplex of X,
then σ is nondegenerate if and only if no two of the simplices s0σ, s1σ, . . ., snσ are
equal.

Proof. If σ is degenerate, then σ = siτ for some 0 ≤ i < n and some (n− 1)-
simplex τ , and so si+1σ = si+1siτ = sisiτ = siσ.

Conversely, if siσ = sjσ for 0 ≤ i < j ≤ n, then σ = ∂isiσ = ∂isjσ = sj−1∂iσ,
and so σ is degenerate. �
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Proposition 15.8.6. If ∆op is the indexing category for simplicial sets (see

Example 15.1.13 and Definition 15.1.10) and X is an object of SS∆op
(i.e., a bisim-

plicial set, which we view as a “horizontal” simplicial object in the category of
“vertical” simplicial sets, so that the object of degree n is the simplicial set Xn,∗),
then for n ≥ 0 the latching object LnX of X at n (see Definition 15.2.5) is naturally
isomorphic to the subcomplex of Xn,∗ consisting of those simplices that are in the
image of a horizontal degeneracy operator.

Proof. For every k ≥ 0 there is a natural map from the set (LnX)k of k-
simplices of LnX onto the set of “horizontally” degenerate k-simplices of the “hori-
zontal” simplicial set X∗,k; we must show that this map is one to one. Lemma 15.8.4
implies that for every horizontally degenerate simplex σ ∈ Xn,k there is a unique
horizontally nondegenerate simplex τ ∈Xm,k (for some m < n) and a unique hor-
izontal iterated degeneracy operator α such that α(τ) = σ, and that if µ is any
other simplex for which there is an iterated horizontal degeneracy operator β such
that β(µ) = σ then there is an iterated horizontal degeneracy operator γ such that
γ(τ) = µ and γβ = α. �

Theorem 15.8.7. In the Reedy model category structure on SS∆op
(the cat-

egory of simplicial simplicial sets; see Example 15.1.13 and Definition 15.1.10) a
map f : X → Y of simplicial simplicial sets is a cofibration if and only if it is a
monomorphism.

Proof. Proposition 15.3.11 implies that if f is a Reedy cofibration, then for
every n ≥ 0 the map fn : Xn → Y n is a cofibration (i.e., a monomorphism) of
simplicial sets.

Conversely, assume that fn : Xn → Y n is a monomorphism of simplicial sets
for every n ≥ 0. Proposition 15.8.6 implies that each latching object LnX is a
subcomplex of Xn and that each LnY is a subcomplex of Y n, and Lemma 15.8.5
implies that the intersection of Xn and LnY in Y n is LnX. Thus, XnqLnXLnY →
Y n is an inclusion of simplicial sets, and so f : X → Y is a Reedy cofibration. �

Corollary 15.8.8. A simplicial object in the category of simplicial sets is
always Reedy cofibrant.

Proof. This follows from Theorem 15.8.7. �

15.9. Cosimplicial simplicial sets

As a result of Lemma 15.8.4, the cofibrations in the Reedy model category struc-
ture on simplicial simplicial sets are the monomorphisms (see Theorem 15.8.7), and
every object is cofibrant (see Corollary 15.8.8). The precise analogue of Lemma 15.8.4
for cosimplicial simplicial sets is false, because there can be simplices of codegree
zero whose images under the coface operators d0 and d1 coincide. Thus, we de-
fine the maximal augmentation (see Definition 15.9.2) of a cosimplicial simplicial
set to be the subspace of simplices of codegree 0 with this property, and we es-
tablish Lemma 15.9.5 as our replacement for Lemma 15.8.4. We then show in
Theorem 15.9.9 and Corollary 15.9.10 that, except for the special attention re-
quired by the maximal augmentation, the situation for cosimplicial simplicial sets
is as convenient as that for simplicial simplicial sets.
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Lemma 15.9.1. If M is a category and X is a cosimplicial object in M, then
every iterated coface operator Xn → Xn+k in X has a unique expression in the
form di1di2 · · · dik with i1 > i2 > · · · > ik.

Proof. Such an iterated coface operator corresponds to a monomorphism
[n] → [n + k] in ∆, the cosimplicial indexing category (see Definition 15.1.8),
and the set {i1, i2, . . . , ik} is the complement of the image of [n] in [n+ k]. �

Definition 15.9.2. If X is a cosimplicial simplicial set, then the maximal
augmentation of X is the simplicial set that is the equalizer of the coface operators
d0 and d1 from X0 to X1. That is, an n-simplex of the maximal augmentation of
X is an n-simplex σ of X0 such that d0σ = d1σ.

If X is a cosimplicial set, then by the maximal augmentation of X we mean
the maximal augmentation of the cosimplicial discrete simplicial set determined by
X.

Definition 15.9.3. If X is a cosimplicial set, n ≥ 0, and σ ∈Xn, then we will
say that σ is a coface if σ is in the image of some coface operator, and that σ is a
non-coface if σ is not in the image of any coface operator.

Lemma 15.9.4. Let X be a cosimplicial set, let n ≥ 0, and let σ and τ be
elements of Xn for which there are iterated coface operators di1di2 · · · dik and
dj1dj2 · · · djk such that di1di2 · · · dikσ = dj1dj2 · · · djkτ . If σ is a non-coface (see
Definition 15.9.3), then so is τ .

Proof. If τ = dmν, then

σ = sik−1 · · · si2−1si1−1di1di2 · · · dik(σ)

= sik−1 · · · si2−1si1−1dj1dj2 · · · djk(τ)

= sik−1 · · · si2−1si1−1dj1dj2 · · · djkdm(ν) ,

and this last expression for σ has k codegeneracy operators and (k + 1) coface
operators. The cosimplicial identities would then imply that σ was a coface, which
was assumed not to be the case. �

Lemma 15.9.5. If X is a cosimplicial set, n ≥ 0, and µ is an element of Xn that
is not the image of an element of the maximal augmentation (see Definition 15.9.2)
under an iterated coface operator, then there is a unique non-coface σ (see Defini-
tion 15.9.3) and a unique iterated coface operator α such that α(σ) = µ.

Proof. Lemma 15.9.4 implies that it is sufficient to show that
(1) if m ≥ 0 and σ and τ are non-coface elements of Xm for which some

iterated coface of σ equals some (possibly different) iterated coface of
τ , then either σ = τ or one of σ and τ is an element of the maximal
augmentation, and

(2) if σ is not a coface and not an element of the maximal augmentation and
α and β are iterated coface operators such that α(σ) = β(σ), then α = β.

For assertion 1, let k be the smallest positive integer for which there are iterated co-
face operators di1di2 · · · dik and dj1dj2 · · · djk with i1 > i2 > · · · > ik and j1 > j2 >
· · · > jk (see Lemma 15.9.1) such that di1di2 · · · dik(σ) = dj1dj2 · · · djk(τ). If we ap-
ply the operator si1−1 to both sides of this equation, the we obtain di2di3 · · · dik(σ) =
si1−1dj1dj2 · · · djk(τ) and the cosimplicial identities imply that the right hand side
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is either a (k − 1)-fold iterated coface of τ or a k-fold iterated coface of a code-
generacy of τ . Lemma 15.9.4 implies that it cannot be the latter, and so our
assumption that k was the smallest positive integer of its type implies that k = 1,
i.e., di1(σ) = dj1(τ). If i1 = j1, then σ = τ (because coface operators have left
inverses) and we are done. If i1 6= j1, then we assume that i1 > j1 (the case i1 < j1
is similar).

• If si1 is defined on di1(σ), then σ = si1di1(σ) = si1dj1(τ) = dj1si1−1(τ),
which contradicts Lemma 15.9.4.
• If i1 > j1 + 1, then σ = si1−1di1(σ) = si1−1dj1(τ) = dj1si1−2(τ), which

contradicts Lemma 15.9.4.
• If j1 > 0, then τ = sj1−1dj1(τ) = sj1−1di1(σ) = di1−1sj1−1(σ), which

contradicts Lemma 15.9.4.
Thus, we must have j1 = 0, i1 = 1, and m = 0; that is, σ, τ ∈ X0 and d1σ = d0τ .
Thus, σ = s0d

1σ = s0d0τ = τ , i.e., d0σ = d1σ, and so σ is an element of the
maximal augmentation.

For assertion 2, let k be the smallest positive integer for which there are iterated
coface operators di1di2 · · · dik with i1 > i2 > · · · > ik and dj1dj2 · · · djk with j1 >
j2 > · · · > jk such that di1di2 · · · dik(σ) = dj1dj2 · · · djk(σ) (see Lemma 15.9.1).
Applying si1−1 to both sides of this equation, we obtain

di2di3 · · · dik(σ) = si1−1dj1dj2 · · · djk(σ) .

The right hand side of this equation is either a (k − 1)-fold coface of σ or a k-fold
coface of a codegeneracy of σ. The latter would contradict Lemma 15.9.4, and so
we must have k = 1, i.e., di1(σ) = dj1(σ), and we must show that i1 = j1. If not,
then we’ll assume that i1 > j1 (the other case is similar). If i1 > j1 + 1, then
σ = si1−1di1(σ) = si1−1dj1(σ) = dj1si1−2(σ), which contradicts out assumption
about σ. Thus, i1 = j1 + 1. Similarly, j1 = 0 and i1 = n+ 1, i.e., σ ∈ X0, i1 = 1,
and j1 = 0. This would imply that σ is an element of the maximal augmentation,
which was assumed not to be the case, and so we are done. �

Proposition 15.9.6. Let X be a cosimplicial simplicial set (i.e., an object of

SS∆).

(1) If n ≥ 2, then the latching object LnX of X at codegree n is naturally
isomorphic to the subcomplex of Xn consisting of those simplices that are
in the image of a coface operator.

(2) The latching object L1X of X at codegree 1 is naturally isomorphic to
the pushout C1XqN1X C1X where C1X is the subspace of X1 consisting
of the simplices that are cofaces (see Definition 15.9.3) and N1X is the
subspace of C1X consisting of those cofaces that are not in the image of
the maximal augmentation (see Definition 15.9.2) under a coface operator.

(3) The latching object L0X of X at codegree 0 is the empty simplicial set.

Proof. This follows from Lemma 15.9.5. �

Lemma 15.9.7. Let X be a cosimplicial set. If n ≥ 1 and σ is an element
of Xn, then σ is a non-coface (see Definition 15.9.3) if and only if no two of the
elements d0σ, d1σ, . . ., dn+1σ of Xn+1 are equal.

Proof. If σ is a coface, then σ = diτ for some τ ∈ Xn−1 and 0 ≤ i ≤ n, and
so di+1σ = di+1diτ = didiτ = diσ.
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Conversely, suppose diσ = djσ for 0 ≤ i < j ≤ n + 1. There are three (non-
exclusive) cases:

• If j < n+ 1, then σ = sjdjσ = sjdiσ = disj−1σ.
• If i < j − 1, then σ = sj−1djσ = sj−1diσ = disjσ.
• If j = n + 1 and i = j − 1, then i = n; since n ≥ 1, σ = si−1diσ =
si−1djσ = dj−1si−1σ.

Thus, in each case, σ is a coface. �

Remark 15.9.8. The assertion of Lemma 15.9.7 for n = 0 is false; this is why
we needed Definition 15.9.2.

Theorem 15.9.9. In the Reedy model category structure on SS∆ (the category
of cosimplicial simplicial sets; see Definition 15.1.8 and Example 15.1.12), a map
f : X → Y of cosimplicial simplicial sets is a cofibration if and only if it is a
monomorphism that takes the maximal augmentation (see Definition 15.9.2) of X
isomorphically onto that of Y .

Proof. If f is a cofibration, then Proposition 15.3.11 implies that fn : Xn →
Y n is a monomorphism for every n ≥ 0. Since the relative latching map X1 qL1X

L1Y → Y 1 is a monomorphism, Proposition 15.9.6 implies that f must map the
maximal augmentation of X isomorphically onto that of Y .

Conversely, if f is a monomorphism, then Proposition 15.9.6 and Lemma 15.9.7
imply that for n 6= 1, the intersection of Xn and LnY in Y n is LnX, and so the
relative latching map Xn qLnX LnY → Y n is a monomorphism. If f takes the
maximal augmentation of X isomorphically onto that of Y , then Proposition 15.9.6
implies that the relative latching map X1 qL1Y L1Y → Y 1 is a monomorphism,
and so f is a cofibration. �

Corollary 15.9.10. A cosimplicial simplicial set is Reedy cofibrant if and only
if its maximal augmentation (see Definition 15.9.2) is empty.

Proof. This follows from Theorem 15.9.9. �

Corollary 15.9.11. The cosimplicial standard simplex (see Definition 15.1.15)
is a Reedy cofibrant cosimplicial set.

Proof. This follows from Corollary 15.9.10. �

Corollary 15.9.12. The cosimplicial standard simplex (see Definition 15.1.15)
is a Reedy cofibrant approximation (see Definition 8.1.2) to the constant ∆-diagram
at a point.

Proof. Since for every n ≥ 0 the map from ∆[n] to a point is a weak equiva-
lence, this follows from Corollary 15.9.11. �

15.10. Cofibrant constants and fibrant constants

Some Reedy categories C have the property that, for every model category M,
the colimit of an objectwise weak equivalence of Reedy cofibrant C-diagrams in M is
a weak equivalence of cofibrant objects. These are the Reedy categories with fibrant
constants (see Definition 15.10.1 and Theorem 15.10.9). Dually, a Reedy category
C with cofibrant constants has the property that, for every model category M, the
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limit of an objectwise weak equivalence of Reedy fibrant C-diagrams in M is a weak
equivalence of fibrant objects.

Definition 15.10.1. Let C be a Reedy category.
(1) We will say that C has cofibrant constants if for every model category

M and every cofibrant object B of M the constant C-diagram at B is
cofibrant in the Reedy model category structure on MC.

(2) We will say that C has fibrant constants if for every model category M

and every fibrant object X of M the constant C-diagram at X is fibrant
in the Reedy model category structure on MC.

Proposition 15.10.2. Let C be a Reedy category.

(1) The Reedy category C has cofibrant constants (see Definition 15.10.1)
if and only if for every object α of C the latching category (see Defini-
tion 15.2.3) of C at α is either connected or empty.

(2) The Reedy category C has fibrant constants if and only if for every object
α of C the matching category of C at α is either connected or empty.

Proof. We will prove part 1; the proof of part 2 is dual.
If M is a model category, B is an object of M, X : C → M is the constant

diagram at B, and α is an object of C, then the latching object of X at α (see
Definition 15.2.5) is the colimit of a diagram in which every map is the identity
map of B, and so it is isomorphic to a coproduct, indexed by the components of
∂(
−→
C ↓α), of copies of B. Thus, if ∂(

−→
C ↓α) is either connected or empty for every

object α of C, then the latching map of X at α is either the identity map of B or
the map ∅ → B (where “∅” is the initial object of M) for every object α of C, and
so if B is cofibrant then so is X.

Conversely, if there is an object α of C such that ∂(
−→
C ↓α) has more than one

component, B is a nonempty simplicial set, and X : C→ SS is the constant diagram
at B, then the latching map of X at C will not be a monomorphism. �

Proposition 15.10.3. If C is a Reedy category, then C has cofibrant constants
if and only if Cop has fibrant constants.

Proof. This follows from Proposition 15.10.2 and Proposition 15.2.4. �

Proposition 15.10.4. If C is the category of simplices of a simplicial set (see
Definition 15.1.16), then

(1) the category C has fibrant constants (see Definition 15.10.1), and
(2) the category Cop has cofibrant constants.

Proof. Proposition 15.10.3 implies that it is sufficient to prove part 1. Let
K be a simplicial set such that C = ∆K. If σ is a nondegenerate simplex of K,
then ∂(α ↓

←−
C ) is empty. If σ is a degenerate simplex of K, then there is a unique

nondegenerate simplex τ such that σ is the image of τ under a degeneracy operator
(see Lemma 15.8.4), and the map σ → τ is a terminal object of ∂(α ↓

←−
C ). The

proposition now follows from Proposition 15.10.2. �

Corollary 15.10.5. The cosimplicial indexing category (see Definition 15.1.8)
is a Reedy category with fibrant constants and the simplicial indexing category is
a Reedy category with cofibrant constants.
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Proof. This follows from Proposition 15.10.4 and Example 15.1.18. �

Proposition 15.10.6. Let C be a Reedy category and let α be an object of C.

(1) The latching category ∂(
−→
C ↓α) of C at α is a Reedy category with fibrant

constants in which
−−−−−−→
∂(
−→
C ↓α) = ∂(

−→
C ↓α) and

←−−−−−−
∂(
−→
C ↓α) has only identity

maps.

(2) The matching category ∂(α ↓
←−
C ) of C at α is a Reedy category with cofi-

brant constants in which
←−−−−−−
∂(α ↓

←−
C ) = ∂(α ↓

←−
C ) and

−−−−−−→
∂(α ↓

←−
C ) has only

identity maps.

Proof. We will prove part 1; the proof of part 2 is dual.
The restriction of a degree function for C yields a degree function for ∂(

−→
C ↓α),

and so ∂(
−→
C ↓α) is a Reedy category. Since the matching category at every object

of ∂(
−→
C ↓α) is empty, the result follows from Proposition 15.10.2. �

Proposition 15.10.7. Let C be a Reedy category.

(1) The Reedy category C has cofibrant constants if and only if the C-diagram
of simplicial sets that is a single point at every object of C is a Reedy
cofibrant diagram.

(2) The Reedy category C has fibrant constants if and only if the Cop-diagram
of simplicial sets that is a single point at every object of Cop is a Reedy
cofibrant diagram.

Proof. We will prove part 1; part 2 will then follow from part 1 and Propo-
sition 15.10.3.

Definition 15.10.1 implies one direction of part 1. Conversely. if the constant
diagram at a point is cofibrant, then every latching object is the domain of a
cofibration with codomain a single point. Thus, every latching object is either
empty or a single point, and so every latching category is either empty or connected.
The result now follows from Proposition 15.10.2. �

Theorem 15.10.8. Let C be a Reedy category.

(1) The Reedy category C has cofibrant constants if and only if, for every
model category M, the constant diagram functor M→MC and the limit
functor MC →M are a Quillen pair (see Definition 8.5.2).

(2) The Reedy category C has fibrant constants if and only if, for every model
category M, the colimit functor MC → M and the constant diagram
functor M→MC are a Quillen pair (see Definition 8.5.2).

Proof. We will prove part 1; part 2 will then follow from Proposition 15.10.3,
Proposition 15.10.2, and Proposition 15.2.4.

The colimit and constant diagram functors are an adjoint pair for all categories
M and small categories C. Proposition 15.10.7 implies that if the constant diagram
functor is a left Quillen functor, then C has cofibrant constants. For the converse,
Proposition 15.10.2 implies that if C has cofibrant constants, i : A→ B is a cofibra-
tion in a model category M, and α is an object of C, then the relative latching map
(see Definition 15.3.2) at α of the induced map of constant C-diagrams is either the
identity map of B or is isomorphic to the map i, and is thus a cofibration. �

Theorem 15.10.9. Let M be a model category and let C be a Reedy category.
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(1) If C has cofibrant constants, then the limit functor limC : MC →M takes
Reedy fibrant diagrams to fibrant objects of M and takes objectwise weak
equivalences between Reedy fibrant diagrams to weak equivalences be-
tween fibrant objects of M.

(2) If C has fibrant constants, then the colimit functor colimC : MC →M takes
Reedy cofibrant diagrams to cofibrant objects of M and takes objectwise
weak equivalences between Reedy cofibrant diagrams to weak equivalences
between cofibrant objects of M.

Proof. This follows from Theorem 15.10.8 and Corollary 7.7.2. �

Proposition 15.10.10. Let M be a model category and let

(15.10.11) A
i //

fA
  A

AA

��

B fB

!!B
BB

p
��

A′
i′ //

��

B′

p′

��

C //

fC
  A

AA
D fD

!!B
BB

C ′ // D′

be a diagram in M.

(1) If all of the objects of Diagram 15.10.11 are cofibrant, the front and back
squares are pushouts, i and i′ are cofibrations, and all of fA, fB , and fC
are weak equivalences, then fD is a weak equivalence.

(2) If all of the objects of Diagram 15.10.11 are fibrant, the front and back
squares are pullbacks, p and p′ are fibrations, and all of fB , fC ,and fD
are weak equivalences, then fA is a weak equivalence.

Proof. We will prove part 1; the proof of part 2 is dual.
Let C be the Reedy category with three objects and two non-identity maps

γ ← α → β, in which we let deg(α) = 2, deg(β) = 3, and deg(γ) = 1. The
Reedy category C has fibrant constants (see Proposition 15.10.2), and we have an
objectwise weak equivalence of Reedy cofibrant C-diagrams in M

C

fC

��

Aoo i //

fA

��

B

fB

��

C ′ A′oo

i′
// B′ .

Theorem 15.10.9 now implies that the induced map of pushouts fD : D → D′ is a
weak equivalence. �

Proposition 15.10.12. Let M be a model category.

(1) If we have a map of sequences in M

X0
i0 //

f0

��

X1
i1 //

f1

��

X2
i2 //

f2

��

· · ·

Y0 j0
// Y1 j1

// Y2 j2
// · · ·
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in which all of the objects are cofibrant, the maps in and jn are cofibrations
for all n ≥ 0, and the maps fn are weak equivalences for all n ≥ 0, then
the induced map of colimits colim fn : colimXn → colimYn is a weak
equivalence.

(2) If we have a map of towers in M

· · · p3 // X2
p2 //

f2

��

X1
p1 //

f1

��

X0

f0

��

· · ·
q3
// Y2 q2

// Y1 q1
// Y0

in which all of the objects are fibrant, the maps pn and qn are fibrations
for all n > 0, and the maps fn are weak equivalences for all n ≥ 0, then
the induced map of limits lim fn : limXn → limYn is a weak equivalence.

Proof. This follows from Theorem 15.10.9. �

15.11. The realization of a bisimplicial set

Definition 15.11.1. If X is a simplicial object in the category of simplicial
sets (i.e., a bisimplicial set), then the realization

∣∣X∣∣ of X is the simplicial set
built from X and the cosimplicial standard simplex (see Definition 15.1.15) as the
coequalizer of the diagram∐

(α : [n]→[k])∈∆op

Xn ×∆[k]
φ
//

ψ
//

∐
n≥0

Xn ×∆[n]

where the map φ on the summand α : [n]→ [k] is 1Xn
×α∗ : Xn×∆[k]→Xn×∆[n]

composed with the natural injection into the coproduct and the map ψ on the
summand α : [n]→ [k] is α∗ × 1∆[k] : Xn ×∆[k]→ Xk ×∆[k] composed with the
natural injection into the coproduct.

Remark 15.11.2. The realization of a bisimplicial set is an example of a tensor
product of functors; see Definition 18.3.2.

Definition 15.11.3. If X is a bisimplicial set, its diagonal is the simplicial
set diag X for which (diag X)n = Xn,n for n ≥ 0, di : (diag X)n → (diag X)n−1

is dhi d
v
i : Xn,n → Xn−1,n−1 for 0 ≤ i ≤ n, and si : (diag X)n → (diag X)n+1 is

shi s
v
i : Xn,n →Xn+1,n+1 for 0 ≤ i ≤ n.

Proposition 15.11.4. If X is a simplicial set and cs∗X denotes the constant
simplicial object at X (i.e., the bisimplicial set such that (cs∗X)i,j = Xj and such
that all horizontal face and degeneracy maps are the identity), then there is a
natural isomorphism X ≈ diag(cs∗X).

Proof. This follows directly from the definitions. �

Definition 15.11.5. If X is a simplicial object in the category of simplicial sets,
then there is a natural map cs∗(X0) → X from the constant simplicial simplicial
set at X0 to X that on

(
cs∗(X0)

)
n

= X0 is the map (s0)n : X0 → Xn. We will
call the composition X0 ≈ diag cs∗(X0) → diag X (see Proposition 15.11.4) the
natural map X0 → diag X.
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Theorem 15.11.6. If X is a bisimplicial set, then its realization
∣∣X∣∣ is naturally

isomorphic to its diagonal diag X.

Proof. We first define a map f : (diag X) →
∣∣X∣∣. If σ ∈ (diag X)n = Xn,n,

we let f(σ) be the image of (σ, 1[n]) ∈Xn×∆[n] in
∣∣X∣∣, where 1[n] is the nondegen-

erate n-simplex of ∆[n] (see Definition 15.11.1). If α ∈∆op
(
[n], [k]

)
is a simplicial

operator, then 1Xn
× α∗ : Xn ×∆[k] → Xn ×∆[n] takes (σ, 1[k]) to (σ, 1[n]) and

α∗ × 1∆[k] : Xn × ∆[k] → Xk × ∆[k] takes (σ, 1[k]) to (α(σ), 1[k]) in
∣∣X∣∣. Thus,

f
(
α(σ)

)
= α

(
f(σ)

)
, and so f is a map of simplicial sets.

We now define a map g :
∣∣X∣∣→ (diag X). Since ∆[n] is the free ∆op-diagram

generated at [n] (see Example 11.5.15), a k-simplex of ∆[n] is a simplicial operator
α : [n] → [k], and so a k-simplex of Xn ×∆[n] is of the form (σ, α) for σ ∈ Xn,k

and α ∈∆op
(
[n], [k]

)
. We define gn : Xn ×∆[n]→ (diag X) by letting gn(σ, α) =

αh∗(σ) ∈ Xk,k. If β ∈ ∆op
(
[k], [m]

)
is a simplicial operator, then β∗(σ, α) =(

βv∗ (σ), β ◦ α
)
, and so gn

(
β∗(σ, α)

)
= gn

(
βv∗ (σ), βα

)
= βh∗α

h
∗β

v
∗ (σ) = βh∗β

v
∗α

h
∗(σ) =

βh∗β
v
∗gn(σ, α) = β∗gn(σ, α), so gn is a map of simplicial sets. To see that the

gn define a map on
∣∣X∣∣, let α ∈ ∆op

(
[n], [k]

)
(see Definition 15.11.1), and let

(σ, β) be a simplex of Xn × ∆[k]; then gkφ(σ, β) = gk
(
σ, α∗(β)

)
= gk(σ, βα) =

(βα)h∗(σ) = βh∗α
h
∗(σ) = gn

(
αh∗(σ), β

)
= gnψ(σ, β). Thus, the gn combine to define

g :
∣∣X∣∣→ (diag X).
We first show that gf = 1(diag X). If σ ∈ (diag X)n = Xn,n, then gf(σ) =

gn(σ, 1n) = (1[n])∗(σ) = σ.
We now show that fg = 1|X|. If σ ∈ Xn,n, then fg(σ, 1[n]) = f

(
(1[n])∗(σ)

)
=

f(σ) = (σ, 1[n]) in
∣∣X∣∣, and so it is sufficient to show that every simplex of

∣∣X∣∣ is
equivalent to one of the form (σ, 1[n]). If (σ, α) is a k-simplex of Xn×∆[n], then σ ∈
Xn,k and α ∈ ∆op

(
[n], [k]

)
, and so (σ, 1[k]) is a k-simplex of Xn ×∆[k]. We have

φ(σ, 1[k]) =
(
σ, α∗(1[k])

)
= (σ, α) and ψ(σ, 1[k]) =

(
α(σ), 1[k]

)
and α(σ) ∈Xk,k, and

so the simplex of
∣∣X∣∣ represented by (σ, α) is also represented by

(
σ(α), 1[k]

)
. �

Theorem 15.11.7 (A. K. Bousfield and E. M. Friedlander, [13]). If f : X → Y
is a map of bisimplicial sets such that

(1) as a map of horizontal simplicial objects in the category of vertical sim-
plicial sets (i.e., (Xn)k = Xn,k), f is a Reedy fibration, and

(2) as a map of vertical simplicial objects in the category of horizontal sim-
plicial sets (i.e., (Xn)k = Xk,n), f is an objectwise fibration (i.e., every
induced map X∗,n → Y ∗,n is a fibration of simplicial sets),

then the induced map of diagonals diag f : (diag X) → (diag Y ) is a fibration of
simplicial sets.

Proof. This is [13, Lemma B.9]. �

Definition 15.11.8. If X is a bisimplicial set, i.e., an object of SS∆op
, and

Y is a simplicial set, then Map(X, Y ) is the cosimplicial simplicial set given by
Map(X, Y )n = Map(Xn, Y ), with coface and codegeneracy maps induced by the
face and degeneracy maps of X.
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Theorem 15.11.9. If X : ∆op → SS is a bisimplicial set, Y : ∆ → SS is a
cosimplicial simplicial set, and Z is a simplicial set, then there is a natural isomor-
phism of simplicial sets

Map(X ⊗∆ Y , Z) ≈ Map
(
Y ,Map(X, Z)

)
.

Proof. We have the coequalizer diagram of simplicial sets∐
(σ : [n]→[m])∈∆

Xm × Y n
φ

⇒
ψ

∐
n≥0

Xn × Y n → X ⊗∆ Y .

Since the functor −×∆[k] : SS→ SS is a left adjoint, the diagram∐
(σ : [n]→[m])∈∆

Xm × Y n ×∆[k] ⇒
∐
n≥0

Xn × Y n ×∆[k]→ (X ⊗∆ Y )×∆[k]

is also a coequalizer diagram, and so we have the equalizer diagram

SS
(
(X ⊗∆ Y )×∆[k], Z

)
→

∏
n≥0

SS(Xn × Y n ×∆[k], Z)

⇒
∏

(σ : [n]→[m])∈∆

SS(Xm × Y n ×∆[k], Z)

which is isomorphic to the diagram

SS
(
(X ⊗∆ Y )×∆[k], Z

)
→

∏
n≥0

SS
(
Y n ×∆[k],Map(Xn, Z)

)
⇒

∏
(σ : [n]→[m])∈∆

SS
(
Y n ×∆[k],Map(Xm, Z)

)
.

This implies that the diagram

Map(X ⊗∆ Y , Z)→
∏
n≥0

Map
(
Y n,Map(Xn, Z)

)
⇒

∏
(σ : [n]→[m])∈∆

Map
(
Y n,Map(Xm, Z)

)
is an equalizer diagram, from which the result follows. �

Lemma 15.11.10. Let C be a Reedy category and let M be a simplicial model
category. If X is a Reedy cofibrant C-diagram in M and Y is a fibrant object
of M, then the Cop-diagram of simplicial sets Map(X, Y ) is Reedy fibrant (see
Proposition 15.1.5).

Proof. If α is an object of C and LαX is the latching object of X at α (see
Definition 15.2.5), then Proposition 15.2.4 implies that there are natural isomor-
phisms

Map(LαX, Y ) = Map
(

colim
∂(
−→
C ↓α)

X, Y
)

≈ lim
∂(
−→
C ↓α)op

Map(X, Y )

≈ lim
∂(α↓

←−−
Cop)

Map(X, Y )

= Mα Map(X, Y ) ,
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i.e., Map(LαX, Y ) is naturally isomorphic to the matching object at α of the Cop-
diagram Map(X, Y ). Since the latching map LαX → Xα is a cofibration and
Y is fibrant, Proposition 9.3.1 implies that the matching map Map(Xα, Y ) →
Mα Map(X, Y ) is a fibration, and so Map(X, Y ) is a Reedy fibrant Cop-diagram of
simplicial sets. �

Theorem 15.11.11. If f : X → Y is a map of bisimplicial sets such that
fn : Xn → Y n is a weak equivalence of simplicial sets for every n ≥ 0, then the
induced map of realizations

∣∣f ∣∣ : ∣∣X∣∣→ ∣∣Y ∣∣ is a weak equivalence of simplicial sets.

Proof. It is sufficient to show that if Z is a fibrant simplicial set, then the
induced map

∣∣f ∣∣∗ : Map
(∣∣Y ∣∣, Z)

→ Map
(∣∣X∣∣, Z)

is a weak equivalence (see Corol-
lary 9.7.5).

Corollary 15.8.8 implies that X and Y are Reedy cofibrant. Since Z is fi-
brant, Lemma 15.11.10 implies that the map Map(Y , Z) → Map(X, Z) is a map
of Reedy fibrant cosimplicial simplicial sets, and Corollary 9.3.3 implies that it
is a Reedy weak equivalence of cosimplicial simplicial sets. Since ∆ (see Defini-
tion 15.1.15) is a cofibrant cosimplicial simplicial set (see Corollary 15.9.11), the
map Map

(
∆,Map(Y , Z)

)
→ Map

(
∆,Map(X, Z)

)
is a weak equivalence of sim-

plicial sets (see Corollary 9.3.3 and Theorem 15.3.4). This is isomorphic to the
map Map(Y ⊗∆ ∆, Z) → Map(X ⊗∆ ∆, Z) (see Theorem 15.11.9), which is the
definition of the map Map

(∣∣Y ∣∣, Z)
→ Map

(∣∣X∣∣, Z)
(see Definition 15.11.1). �

Corollary 15.11.12. If X is a simplicial object in the category of simplicial
sets in which all the face and degeneracy operators are weak equivalences, then the
natural map X0 →

∣∣X∣∣ (defined as the composition X0 → diag X ≈
∣∣X∣∣; see

Definition 15.11.5) is a weak equivalence.

Proof. This follows from Theorem 15.11.11. �





CHAPTER 16

Cosimplicial and Simplicial Resolutions

If M is a simplicial model category and W → X is a cofibrant approximation
to X, then the cosimplicial object X̃ in which X̃n = W ⊗ ∆[n] is a cosimplicial
resolution of X. Dually, if M is a simplicial model category and Y → Z is a
fibrant approximation to Y , then the simplicial object Ŷ in which Ŷ n = Z∆[n] is
a simplicial resolution of Y . In this chapter, we define cosimplicial and simplicial
resolutions in an arbitrary model category (see Definition 16.1.2), and establish a
number of their technical properties. The constructions of this chapter will be used
in Chapter 17 to define homotopy function complexes between objects in a model
category (see Definition 17.4.1) and in Chapter 19 to define homotopy colimits
and homotopy limits of diagrams in model categories (see Definition 19.1.2 and
Definition 19.1.5).

In Section 16.1 we define cosimplicial and simplicial resolutions of objects and
maps, and we establish existence and uniqueness theorems. In Section 16.2 we show
that left Quillen functors preserve cosimplicial resolutions of cofibrant objects and
that right Quillen functors preserve simplicial resolutions of fibrant objects.

In Section 16.3 we define the realization X⊗K of a cosimplicial object X in M

and a simplicial set K. This is an object of M that is the colimit of a diagram of the
Xn indexed by the simplices of the simplicial set K. If M = Top and Xn =

∣∣∆[n]
∣∣,

then X ⊗ K is the geometric realization of K (see Example 16.3.5). Dually, we
also define the corealization Y K of a simplicial object Y in M and a simplicial set
K. This is an object of M that is the limit of a diagram of the Y n indexed by the
simplices of K.

If X is a simplicial object in M and Y is an object of M, then there is a simplicial
set M(X, Y ) in which M(X, Y )n = M(Xn, Y ) (with face and degeneracy operators
induced by the coface and codegeneracy operators of X). Dually, ifX is an object of
M and Y is a simplicial object in M, then there is a simplicial set M(X,Y ) in which
M(X,Y )n = M(X,Y n), and if X is a cosimplicial object in M and Y is a simplicial
object in M then there is a bisimplicial set M(X,Y ) in which M(X,Y )n,k =
M(Xk,Y n) (see Notation 16.4.1). We will use these constructions in Chapter 17
to define homotopy function complexes (see Definition 17.1.1, Definition 17.2.1, and
Definition 17.3.1). In Section 16.4 we establish some adjointness properties for these
constructions, and we use these in Section 16.5 to prove several homotopy lifting
extension theorems (see Theorem 16.5.2, Theorem 16.5.13, and Theorem 16.5.18).

If M is a simplicial model category and X is an object of M, then the cosim-
plicial object X̃ in which X̃n = X⊗∆[n] will not be a cosimplicial resolution of X
unless X is cofibrant. In Section 16.6 we define cosimplicial and simplicial frames
on an object to describe this situation, and we show that a cosimplicial resolution
of an object is exactly a cosimplicial frame on a cofibrant approximation to that

317
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object (with dual definitions and results for simplicial frames.) These will be used
in Chapter 19 to define homotopy colimit and homotopy limit functors.

If C is a Reedy category, X is a C-diagram in a model category M, and X̃ is
a natural cosimplicial frame on X, then even if X is a Reedy cofibrant diagram
it need not be true that X̃ is a Reedy cofibrant diagram of cosimplicial objects
in M. (A dual statement applies to simplicial frames.) In Section 16.7 we define
a Reedy frame on a diagram (see Definition 16.7.8) as one in which this difficulty
does not arise, and we obtain existence and uniqueness results (see Theorem 16.7.6,
Proposition 16.7.11, and Theorem 16.7.14). These will be used in Chapter 19 to
discuss homotopy colimits of Reedy cofibrant diagrams and homotopy limits of
Reedy fibrant diagrams (see Theorem 19.9.1).

16.1. Resolutions

Notation 16.1.1. Let M be a model category.

• The category of cosimplicial objects in M will be denoted M∆.
• The category of simplicial objects in M will be denoted M∆op

.
• If X is an object of M, then

– the constant cosimplicial object at X will be denoted cc∗X, and
– the constant simplicial object at X will be denoted cs∗X.

Definition 16.1.2. Let M be a model category and let X be an object of M.

(1) • A cosimplicial resolution of X is a cofibrant approximation (see Def-
inition 8.1.2) X̃ → cc∗X to cc∗X (see Notation 16.1.1) in the Reedy
model category structure (see Definition 15.3.3) on M∆.
• A fibrant cosimplicial resolution is a cosimplicial resolution in which

the weak equivalence X̃ → cc∗X is a Reedy trivial fibration.
We will sometimes use the term cosimplicial resolution to refer to the

object X̃ without explicitly mentioning the weak equivalence X̃ → cc∗X.
(2) • A simplicial resolution of X is a fibrant approximation cs∗X → X̂

to cs∗X in the Reedy model category structure on M∆op
.

• A cofibrant simplicial resolution is a simplicial resolution in which
the weak equivalence cs∗X → X̂ is a Reedy trivial cofibration.
We will sometimes use the term simplicial resolution to refer to the

object X̂ without explicitly mentioning the weak equivalence cs∗X → X̂.

Proposition 16.1.3. Let M be a simplicial model category.

(1) If X is an object of M and W → X is a cofibrant approximation to X,

then the cosimplicial object W̃ in which W̃ n = W ⊗∆[n] is a cosimplicial
resolution of X.

(2) If Y is an object of M and Y → Z is a fibrant approximation to Y , then

the simplicial object Ẑ in which Ẑn = Z∆[n] is a simplicial resolution of
Y .

Proof. We will prove part 1; the proof of part 2 is similar.
Since all of the inclusions ∆[0] → ∆[n] are trivial cofibrations and W is cofi-

brant, all of the maps W ≈W⊗∆[0]→W⊗∆[n] are trivial cofibrations (see Prop-
osition 9.3.9). Thus, W̃ is weakly equivalent to cc∗X. Since each ∂∆[n]→ ∆[n] is
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a cofibration and W is cofibrant, each latching map W ⊗ ∂∆[n] → W ⊗∆[n] (see
Lemma 9.2.1) is a cofibration, and so W̃ is cofibrant. �

Corollary 16.1.4. Let M be a simplicial model category.

(1) If X is a cofibrant object of M, then the cosimplicial object X̃ in which

X̃n = X ⊗∆[n] is a cosimplicial resolution of X.

(2) If Y is a fibrant object of M, then the simplicial object Ŷ in which Ŷ n =
Y ∆[n] is a simplicial resolution of Y .

Proof. This follows from Proposition 16.1.3. �

The next two propositions show that if X is an object in a model category
and X̃ → cc∗X is a cosimplicial resolution of X, then X̃0 → X is a cofibrant
approximation to X and X̃1 is a cylinder object for X̃0. Thus, a cosimplicial
resolution of X is a sort of collection of “higher cylinder objects” for a cofibrant
approximation to X. Dually, a simplicial resolution is a sort of collection of “higher
path objects” for a fibrant approximation to X.

Proposition 16.1.5. Let M be a model category and let X be an object of M.

(1) If X̃ → cc∗X is a cosimplicial resolution of X (see Definition 16.1.2),

then X̃0 → X is a cofibrant approximation to X. If X̃ → cc∗X is a

fibrant cosimplicial resolution of X, then X̃0 → X is a fibrant cofibrant
approximation to X.

(2) If cs∗X → X̂ is a simplicial resolution of X, then X → X̂0 is a fibrant

approximation to X. If cs∗X → X̂ is a cofibrant simplicial resolution of

X, then X → X̂0 is a cofibrant fibrant approximation to X.

Proof. This follows from Proposition 15.3.11. �

Proposition 16.1.6. Let M be a model category.

(1) If X̃ is a cosimplicial resolution in M, then X̃0 q X̃0 d0qd1−−−−→ X̃1 s0−→ X̃0

is a cylinder object (see Definition 7.3.2) for X̃0.

(2) If X̂ is a simplicial resolution in M, then X̂0
s0−→ X̂1

d0×d1−−−−→ X̂0 × X̂0 is

a path object for X̂0.

Proof. This follows directory from the definitions. �

16.1.7. Existence of functorial resolutions.

Definition 16.1.8. Let M be a model category and let K be a subcategory of
M.

(1) A functorial cosimplicial resolution on K is a pair (F, i) in which F: K→
M∆ is a functor and i is a natural transformation such that iX : FX →
cc∗X is a cosimplicial resolution of X for every object X of K.

(2) A functorial simplicial resolution on K is a pair (G, j) in which G: K →
M∆op

is a functor and j is a natural transformation such that jX : cs∗X →
GX is a simplicial resolution of X for every object X of K.

Proposition 16.1.9. Let M be a model category.

(1) There is a functorial cosimplicial resolution (F, i) on M such that iX : FX →
cc∗X is a fibrant cosimplicial resolution of X for every object X of M.
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(2) There is a functorial simplicial resolution (G, j) on M such that jX : cs∗X →
GX is a cofibrant simplicial resolution of X for every object X of M.

Proof. This follows from Proposition 8.1.17. �

16.1.10. Uniqueness of resolutions.

Definition 16.1.11. Let M be a model category and let X be an object of M.

(1) If X̃
i−→ cc∗X and X̃ ′

i′−→ cc∗X are cosimplicial resolutions of X, then a
map of cosimplicial resolutions from (X̃, i) to (X̃ ′, i′) is a map g : X̃ → X̃ ′

such that i′g = i.

(2) If cs∗X
j−→ X̂ and cs∗X

j′−→ X̂ ′ are simplicial resolutions of X, then a map
of simplicial resolutions from (X̂, j) to (X̂ ′, j′) is a map g : X̂ → X̂ ′ such
that gj = j′.

Lemma 16.1.12. Let M be a model category and let X be an object of M.

(1) If (X̃, i) and (X̃ ′, i′) are cosimplicial resolutions of X and g : X̃ → X̃ ′ is
a map of cosimplicial resolutions, then g is a Reedy weak equivalence.

(2) If (X̂, j) and (X̂ ′, j′) are simplicial resolutions of X and g : X̂ → X̂ ′ is a
map of simplicial resolutions, then g is a Reedy weak equivalence.

Proof. This follows from Lemma 8.1.5. �

Proposition 16.1.13. Let M be a model category and let X be an object of
M.

(1) If X̃ → cc∗X is cosimplicial resolution of X and X̃ ′ → cc∗X is a fibrant

cosimplicial resolution of X, then there is a map X̃ → X̃ ′ of cosimplicial
resolutions, unique up to homotopy over cc∗X, and any such map is a
weak equivalence.

(2) If cs∗X → X̂ is a simplicial resolution of X and cs∗X → X̂ ′ is a cofibrant

simplicial resolution of X, then there is a map X̂ ′ → X̂ of simplicial
resolutions, unique up to homotopy under cs∗X, and any such map is a
weak equivalence.

Proof. This follows from Proposition 8.1.7. �

Definition 16.1.14. Let M be a model category and let X be an object of M.

(1) The category CRes(X) is the category whose objects are cosimplicial res-
olutions of X and whose morphisms are maps of cosimplicial resolutions.

(2) The category SRes(X) is the category whose objects are simplicial reso-
lutions of X and whose morphisms are maps of simplicial resolutions.

Proposition 16.1.15. Let M be a model category and let X be an object of
M.

(1) The classifying space B CRes(X) of the category of cosimplicial resolutions
of X (see Definition 16.1.14) is contractible (see Definition 14.3.1).

(2) The classifying space B SRes(X) of the category of simplicial resolutions
of X (see Definition 16.1.14) is contractible (see Definition 14.3.1).

Proof. This follows from Theorem 14.6.2. �
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Proposition 16.1.16. Let M be a model category and let K be a subcategory
of M.

(1) For every small category D of functorial cosimplicial resolutions on K (see
Definition 14.6.7) there is a small category D′ of functorial cosimplicial
resolutions on K such that D ⊂ D′ and BD′ is contractible.

(2) For every small category D of functorial simplicial resolutions on K (see
Definition 14.6.7) there is a small category D′ of functorial simplicial res-
olutions on K such that D ⊂ D′ and BD′ is contractible.

Proof. This follows from Theorem 14.6.8. �

Proposition 16.1.17. Let M be a model category and let X be an object of
M.

(1) Any two cosimplicial resolutions of X are connected by an essentially
unique zig-zag (see Definition 14.4.2) of weak equivalences.

(2) Any two simplicial resolutions of X are connected by an essentially unique
zig-zag (see Definition 14.4.2) of weak equivalences.

Proof. This follows from Proposition 16.1.15. �

Proposition 16.1.18. Let M be a model category and let K be a subcategory
of M.

(1) Any two functorial cosimplicial resolutions on K are connected by an
essentially unique zig-zag (see Definition 14.4.2) of weak equivalences.

(2) Any two functorial simplicial resolutions on K are connected by an essen-
tially unique zig-zag (see Definition 14.4.2) of weak equivalences.

Proof. This follows from Proposition 16.1.16. �

16.1.19. Resolutions of maps.

Definition 16.1.20. Let M be a model category, and let g : X → Y be a map
in M.

(1) A cosimplicial resolution of g consists of a cosimplicial resolution X̃ →
cc∗X of X, a cosimplicial resolution Ỹ → cc∗Y of Y , and a map g̃ : X̃ →
Ỹ that makes the square

X̃
g̃

//

��

Ỹ

��

cc∗X // cc∗Y

commute.
(2) A simplicial resolution of g consists of a simplicial resolution cs∗X → X̂

of X, a simplicial resolution cs∗Y → Ŷ of Y , and a map ĝ : X̂ → Ŷ that
makes the square

cs∗X //

��

cs∗Y

��

X̂ ĝ
// Ŷ
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commute.

Remark 16.1.21. The effect of Definition 16.1.2 and Definition 16.1.20 is that
• a cosimplicial resolution of an object or map in a model category is exactly

a Reedy cofibrant approximation to a constant cosimplicial object or map,
and
• a simplicial resolution of an object or map in a model category is exactly

a Reedy fibrant approximation to a constant simplicial object or map.
This is the explanation of the terminology “fibrant cosimplicial resolution” and
“cofibrant simplicial resolution”.

Proposition 16.1.22. Let M be a model category and let g : X → Y be a map
in M.

(1) There exists a natural cosimplicial resolution g̃ : X̃ → Ỹ of g such that

X̃ and Ỹ are fibrant cosimplicial resolutions of, respectively, X and Y ,
and g̃ is a Reedy cofibration.

(2) There exists a natural simplicial resolution ĝ : X̂ → Ŷ of g such that X̂

and Ŷ are cofibrant simplicial resolutions of, respectively, X and Y , and
ĝ is a Reedy fibration.

Proof. This follows from Proposition 8.1.23. �

Proposition 16.1.23. Let M be a model category and let g : X → Y be a map
in M.

(1) If X̃ → cc∗X is a cosimplicial resolution of X and Ỹ → cc∗Y is a fibrant

cosimplicial resolution of Y , then there exists a resolution g̃ : X̃ → Ỹ of
g, and g̃ is unique up to homotopy in (M∆ ↓ cc∗Y ).

(2) If cs∗Y → Ŷ is a simplicial resolution of Y and cs∗X → X̂ is a cofibrant

simplicial resolution of X, then there exists a resolution ĝ : X̂ → Ŷ of g,
and ĝ is unique up to homotopy in (cs∗X ↓M∆op

).

Proof. This follows from Proposition 8.1.25. �

Proposition 16.1.24. If M is a model category and g : X → Y is a weak equiv-
alence in M, then every cosimplicial resolution of g and every simplicial resolution
of g are Reedy weak equivalences.

Proof. This follows from the “two out of three” axiom for weak equivalences.
�

16.1.25. Recognizing resolutions.

Definition 16.1.26. Let M be a model category.
(1) If X̃ is a cosimplicial object in M, then we will say that X̃ is a cosimplicial

resolution if there is an object X in M and a map X̃ → cc∗X that is a
cosimplicial resolution of X (see Definition 16.1.2).

(2) If Ŷ is a simplicial object in M, then we will say that Ŷ is a simplicial
resolution if there is an object Y in M and a map cs∗Y → Ŷ that is a
simplicial resolution of Y .

Proposition 16.1.27. Let M be a model category.
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(1) If X is a cosimplicial object in M, then X is a cosimplicial resolution (see
Definition 16.1.26) if and only if X is Reedy cofibrant and all of the coface
and codegeneracy operators of X are weak equivalences.

(2) If Y is a simplicial object in M, then Y is a simplicial resolution if and
only if Y is Reedy fibrant and all of the face and degeneracy operators of
Y are weak equivalences.

Proof. We will prove part 1; the proof of part 2 is dual.
If X is a cosimplicial resolution, then it follows directly from the definitions

that X is Reedy cofibrant and all of the coface and codegeneracy operators of X
are weak equivalences. For the converse, the map X → cc∗X0 defined on Xn as
any n-fold iterated coface map is a cosimplicial resolution of X0. �

Lemma 16.1.28. Let M be a model category.

(1) If i : A → B is a weak equivalence of cosimplicial resolutions in M, then

there is a natural factorization of i as A
q−→ C

r−→ B such that C is a
cosimplicial resolution in M, q is a Reedy trivial cofibration, and r has a
right inverse that is a Reedy trivial cofibration.

(2) If p : X → Y is a weak equivalence of simplicial resolutions in M, then

there is a natural factorization of p as X
q−→ Z

r−→ Y such that Z is a
simplicial resolution in M, r is a Reedy trivial fibration, and q has a left
inverse that is a Reedy trivial fibration.

Proof. This follows from Lemma 7.7.1 and Proposition 16.1.27. �

16.2. Quillen functors and resolutions

Proposition 16.2.1. Let M and N be model categories and let F: M � N :U
be a Quillen pair (see Definition 8.5.2).

(1) If X is a cofibrant object of M and X̃ → cc∗X is a cosimplicial resolution

ofX (see Definition 16.1.2), then FX̃ → cc∗FX is a cosimplicial resolution
of FX.

(2) If Y is a fibrant object of N and cs∗Y → Ŷ is a simplicial resolution of

Y , then cs∗UY → UŶ is a simplicial resolution of UY .

Proof. We will prove part 1; the proof of part 2 is dual.
Corollary 15.4.2 implies that FX̃ is Reedy cofibrant. Since X and X̃n for all

n ≥ 0 are cofibrant, Proposition 8.5.7 implies that FX̃ → cc∗FX is a Reedy weak
equivalence. �

Corollary 16.2.2. Let C be a Reedy category, let M and N be small categories,
and let F: M � N :U be a Quillen pair.

(1) If i : A→ B is a map of cofibrant objects in M and ı̃ : Ã→ B̃ is a cosimpli-

cial resolution of i such that ı̃ is a Reedy cofibration, then Fı̃ : FÃ→ FB̃
is a cosimplicial resolution of Fi and Fı̃ is a Reedy cofibration.

(2) If p : X → Y is a map of fibrant objects in N and p̂ : X̂ → Ŷ is a simplicial
resolution of p such that p̂ is a Reedy fibration, then Up̂ is a simplicial
resolution of Up and Up̂ is a Reedy fibration.

Proof. This follows from Proposition 15.4.1 and Proposition 16.2.1. �
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16.3. Realizations

This section contains a number of technical results needed for the homotopy
lifting extension theorems of Section 16.5.

Definition 16.3.1. Let M be a model category.
(1) If X is a cosimplicial object in M and K is a simplicial set, then X⊗K is

defined to be the object of M that is the colimit of the (∆K)-diagram in M

(see Definition 15.1.16) that takes the object ∆[n]→ K of ∆K = (∆ ↓K)
to Xn and takes the commutative triangle

(16.3.2) ∆[n] α //

!!C
CC

CC
CC

C
∆[k]

}}{{
{{

{{
{{

K

to the map α∗ : Xn →Xk.
(2) If Y is a simplicial object in M and K is a simplicial set, then Y K is

defined to be the object of M that is the limit of the (∆opK)-diagram in
M (see Definition 15.1.16) that takes the object ∆[n] → K of ∆opK =
(∆ ↓K)op to Y n and takes the commutative triangle (16.3.2) to the map
α∗ : Y k → Y n.

Proposition 16.3.3. If M is a model category, then the constructions of Defi-
nition 16.3.1 are natural in X, Y and K.

Proof. This follows directly from the definitions. �

Proposition 16.3.4. If M = SS, the cosimplicial object X is the cosimplicial
standard simplex (see Definition 15.1.15), and K is a simplicial set, then X ⊗K is
naturally isomorphic to K.

Proof. This is a restatement of Proposition 15.1.20. �

Example 16.3.5. If M = Top, the cosimplicial object X is the geometric
realization of the cosimplicial standard simplex (i.e., Xn =

∣∣∆[n]
∣∣), and K is a

simplicial set, then X ⊗K is the usual geometric realization of K.

Lemma 16.3.6. Let M be a model category.

(1) If B is a cosimplicial object in M and n ≥ 0, then B ⊗∆[n] is naturally
isomorphic to Bn.

(2) If X is a simplicial object in M and n ≥ 0, then X∆[n] is naturally
isomorphic to Xn.

Proof. The nondegenerate n-simplex of ∆[n] is a terminal object of ∆(∆[n])
and an initial object of ∆op(∆[n]). �

Lemma 16.3.7. Let M be a model category.

(1) If B is a cosimplicial object in M and n ≥ 0, then B⊗ ∂∆[n] is naturally
isomorphic to LnB, the latching object of B at [n] (see Definition 15.2.5).

(2) If X is a simplicial object in M and n ≥ 0, then X∂∆[n] is naturally
isomorphic to MnX, the matching object of X at [n].
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Proof. We will prove part 1; the proof of part 2 is dual.
If n ≥ 0, then the latching object of B at n is

LnB = colim
∂(
−→
∆↓[n])

B ≈ colim
k<n

∆([k],[n])

B

(see Corollary 15.2.9). Since ∆([k], [n]) is naturally isomorphic to the set of k-
simplices of ∆[n], this is the colimit of the diagram with one copy of Bk for every
k-simplex of ∆[n] for k < n. The result now follows from Definition 16.3.1. �

Proposition 16.3.8. Let M be a model category.

(1) If B is a cosimplicial object in M and n ≥ 0, then the latching map
(see Definition 15.2.5) of B at [n] is naturally isomorphic to the map
B ⊗ ∂∆[n]→ B ⊗∆[n].

(2) If X is a simplicial object in M and n ≥ 0, then the matching map of X

at [n] is naturally isomorphic to the map X∆[n] →X∂∆[n].

Proof. This follows from Lemma 16.3.6, Lemma 16.3.7, and the proof of
Lemma 16.3.7. �

Corollary 16.3.9. Let M be a model category.

(1) If B is a Reedy cofibrant cosimplicial object in M and n ≥ 0, then both
B ⊗ ∂∆[n] and B ⊗∆[n] are cofibrant objects of M.

(2) If X is a Reedy fibrant simplicial object in M and n ≥ 0, then both X∆[n]

and X∂∆[n] are fibrant objects of M.

Proof. This follows from Proposition 16.3.8 and Corollary 15.3.12. �

Proposition 16.3.10. Let M be a model category.

(1) If A → B is a Reedy cofibration of cosimplicial objects in M and n ≥ 0,
then the induced map A ⊗ ∆[n] qA⊗∂∆[n] B ⊗ ∂∆[n] → B ⊗ ∆[n] is a
cofibration in M that is a trivial cofibration if A → B is a Reedy trivial
cofibration.

(2) If X → Y is a Reedy fibration of simplicial objects in M and n ≥ 0, then

the induced map X∆[n] → Y ∆[n] ×Y ∂∆[n] X∂∆[n] is a fibration in M that
is a trivial fibration if X → Y is a Reedy trivial fibration.

Proof. This follows from Proposition 16.3.8 and Theorem 15.3.15. �

Corollary 16.3.11. Let M be a model category.

(1) If A → B is a Reedy cofibration of Reedy cofibrant cosimplicial objects
in M and n ≥ 0, then the induced map A⊗∆[n]qA⊗∂∆[n] B ⊗ ∂∆[n]→
B ⊗∆[n] is a cofibration between cofibrant objects in M that is a trivial
cofibration if A→ B is a Reedy trivial cofibration.

(2) If X → Y is a Reedy fibration of Reedy fibrant simplicial objects in M

and n ≥ 0, then the induced map X∆[n] → Y ∆[n] ×Y ∂∆[n] X∂∆[n] is a
fibration between fibrant objects in M that is a trivial fibration if X → Y
is a Reedy trivial fibration.

Proof. We will prove part 1; the proof of part 2 is dual.



326 16. COSIMPLICIAL AND SIMPLICIAL RESOLUTIONS

Proposition 16.3.8 and Corollary 16.3.9 imply that A ⊗ ∆[n] qA⊗∂∆[n] B ⊗
∂∆[n] and B ⊗∆[n] are cofibrant objects, and so the result follows from Proposi-
tion 16.3.10. �

Proposition 16.3.12. Let M be a model category.

(1) If X is a Reedy cofibrant cosimplicial object in M and K is a simplicial
set, then the (∆K)-diagram in M whose colimit is defined to be X ⊗K
(see Definition 16.3.1) is a Reedy cofibrant diagram (see Example 15.1.19).

(2) If Y is a Reedy fibrant simplicial object in M and K is a simplicial set,

then the (∆opK)-diagram in M whose limit is defined to be Y K (see
Definition 16.3.1) is a Reedy fibrant diagram.

Proof. We will prove part 1; the proof of part 2 is similar.
If σ : ∆[n] → K is an object of ∆K, then the latching category ∂(

−−→
∆K ↓α) of

∆K at σ has an object for each k < n and each iterated coface operator α : ∆[k]→
∆[n]. Thus, the latching category of ∆K at σ is isomorphic to the latching category
of ∆ at [n], and the latching map of our diagram at σ is isomorphic to the latching
map of X at [n]. Since X is Reedy cofibrant, so is our diagram. �

16.4. Adjointness

This section contains technical results for various simplicial sets constructed
from cosimplicial objects and simplicial objects in a category (see Notation 16.4.1).
These constructions will be used in Chapter 17 to define homotopy function com-
plexes between objects in a model category (see Definition 17.1.1, Definition 17.2.1,
and Definition 17.3.1).

Notation 16.4.1. Let M be a model category.

(1) If X is a cosimplicial object in M and Y is an object of M, then M(X, Y )
will denote the simplicial set, natural in both X and Y , defined by
M(X, Y )n = M(Xn, Y ), with face and degeneracy maps induced by the
coface and codegeneracy maps in X.

(2) If X is an object of M and Y is a simplicial object in M, then M(X,Y )
will denote the simplicial set, natural in both X and Y , defined by
M(X,Y )n = M(X,Y n), with face and degeneracy maps induced by those
in Y .

(3) If X is a cosimplicial object in M and Y is a simplicial object in M,
then M(X,Y ) will denote the bisimplicial set, natural in both X and Y ,
defined by M(X,Y )n,k = M(Xk,Y n), with face and degeneracy maps
induced by the coface and codegeneracy maps in X and the face and
degeneracy maps in Y .

(4) If X is a cosimplicial object in M and Y is a simplicial object in M, then
diag M(X,Y ) will denote the simplicial set, natural in both X and Y ,
defined by

(
diag M(X,Y )

)
n

= M(Xn,Y n), with face and degeneracy
maps induced by the coface and codegeneracy maps in X and the face
and degeneracy maps in Y .

Theorem 16.4.2. Let M be a model category.
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(1) If A is a cosimplicial object in M, X is an object of M, and K is a
simplicial set, then there is a natural isomorphism of sets

SS
(
K,M(A, X)

)
≈M(A⊗K,X)

(see Notation 16.4.1 and Definition 16.3.1).
(2) If B is an object of M, Y is a simplicial object in M, and K is a simplicial

set, then there is a natural isomorphism of sets

SS
(
K,M(B,Y )

)
≈M(B,Y K)

(see Notation 16.4.1 and Definition 16.3.1).

Proof. We will prove part 1; the proof of part 2 is similar.
Since A ⊗ K is the colimit of a (∆K)-diagram, a map in M from A ⊗ K to

X corresponds to a coherent set of maps from each object in the diagram to X.
Thus, a map A ⊗K → X is defined by a map An → X for each n-simplex of K
that commute with the simplicial operators. This is also a description of a map of
simplicial sets from K to M(A, X). �

Proposition 16.4.3. Let M be a model category.

(1) If A is a cosimplicial object in M, C is a small category, and K : C→ SS
is a C-diagram of simplicial sets, then the natural map colimC(A⊗K)→
A⊗ (colimC K) is an isomorphism.

(2) If X is a simplicial object in M, C is a small category, and K : C → SS
is a C-diagram of simplicial sets, then the natural map X(colimC K) →
limCop(XK) is an isomorphism.

Proof. This follows from the adjointness relations of Theorem 16.4.2. �

Lemma 16.4.4. Let M be a model category, and let (K,L) be a pair of simplicial
sets.

(1) If A is a Reedy cofibrant cosimplicial object in M, then the map A⊗L→
A⊗K is a cofibration in M.

(2) If X is a Reedy fibrant simplicial object in M, then the map XK →XL

is a fibration in M.

Proof. Since an inclusion L→ K of simplicial sets is a transfinite composition
of pushouts of the maps ∂∆[n]→ ∆[n] for n ≥ 0 (see Proposition 10.2.18), the map
A⊗L→ A⊗K is a transfinite composition of pushouts of the maps A⊗ ∂∆[n]→
A⊗∆[n] for n ≥ 0, and so part 1 follows from Proposition 16.4.3, Proposition 16.3.8,
and Proposition 10.3.4. The proof of part 2 is similar. �

Proposition 16.4.5. Let M be a model category.

(1) If i : A→ B is a map of cosimplicial objects in M, p : X → Y is a map in
M, and (K,L) is a pair of simplicial sets, then the following are equivalent:
(a) The dotted arrow exists in every solid arrow diagram of the form

L //

��

M(B, X)

��

K //

66

M(A, X)×M(A,Y ) M(B, Y ) .
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(b) The dotted arrow exists in every solid arrow diagram of the form

A⊗K qA⊗L B ⊗ L //

��

X

��

B ⊗K //

77

Y .

(2) If i : A→ B is a map in M, p : X → Y is a map of simplicial objects in M,
and (K,L) is a pair of simplicial sets, then the following are equivalent:
(a) The dotted arrow exists in every solid arrow diagram of the form

L //

��

M(B,X)

��

K //

66

M(A,X)×M(A,Y ) M(B,Y ) .

(b) The dotted arrow exists in every solid arrow diagram of the form

A //

��

XK

��

B //

99

XL ×Y L Y K .

Proof. This follows from Theorem 16.4.2. �

Proposition 16.4.6 (Partial homotopy lifting extension theorem). Let M be
a model category.

(1) If i : A→ B is a Reedy cofibration of cosimplicial objects in M, p : X → Y
is a fibration in M, and at least one of i and p is also a weak equivalence,
then the map of simplicial sets

M(B, X)→M(A, X)×M(A,Y ) M(B, Y )

is a trivial fibration.
(2) If i : A→ B is a cofibration in M, p : X → Y is a Reedy fibration of sim-

plicial objects in M, and at least one of i and p is also a weak equivalence,
then the map of simplicial sets

M(B,X)→M(A,X)×M(A,Y ) M(B,Y )

is a trivial fibration.

Proof. A map of simplicial sets is a trivial fibration if and only if it has the
right lifting property with respect to the maps ∂∆[n]→ ∆[n] for n ≥ 0, and so the
result follows from Proposition 16.4.5 and Proposition 16.3.10. �

Proposition 16.4.6 may seem to be incomplete in that it does not assert the
full homotopy lifting extension theorem. We will show in Theorem 16.5.2 that if
the cosimplicial and simplicial objects are assumed to be cosimplicial and simplicial
resolutions (see Definition 16.1.26) then the full homotopy lifting extension theorem
does hold. Example 16.4.7 shows that it does not hold without the assumption that
the cosimplicial or simplicial objects are resolutions.
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Example 16.4.7. We present here an example of a model category M, a Reedy
cofibrant cosimplicial object B in M, and a fibration p : X → Y in M such that
the map of simplicial sets M(B, X) → M(B, Y ) is not a fibration. (This implies
that the partial homotopy lifting extension theorem of Proposition 16.4.6 is the
strongest result possible without assuming that the cosimplicial objects A and B
are cosimplicial resolutions; see also Theorem 16.5.2.)

Let M be the category SS∗ of pointed simplicial sets. Let B be the cosimplicial
object in M that is the free diagram on S1 generated at [1] (see Definition 11.5.25
and Definition 15.1.8), so that Bn =

∨
∆([1],[n]) S1 (where ∆([1], [n]) is the set of 1-

simplices of ∆[n]). Corollary 15.6.6 implies that B is a Reedy cofibrant cosimplicial
object.

Let p : X → Y be any fibration of fibrant pointed simplicial sets for which the
induced homomorphism of fundamental groups p∗ : π1X → π1Y is not surjective.
We will show that the map of simplicial sets M(B, X)→M(B, Y ) is not a fibration.

B1 is the wedge of three copies of S1 (indexed by [0, 0], [1, 1], and [0, 1]), B0

is a single copy of S1, and the maps d0, d1 : B0 → B1 take the S1 in B0 to the
summand indexed by, respectively, [0, 0] and [1, 1]. Thus, we can define a 1-simplex
of M(B, Y ) by sending the summands of B1 corresponding to [0, 0] and [1, 1] to
the basepoint of Y and sending the summand S1 of B1 corresponding to [0, 1] to
some 1-simplex of Y that represents an element of π1Y that is not in the image
of p∗ : π1X → π1Y . If we define a 0-simplex of M(B, X) by sending B0 to the
basepoint of X, then we have a solid arrow diagram

∆[0] //

��

M(B, X)

��

∆[1] //

::

M(B, Y )

for which there is no dotted arrow making the triangles commute.

Lemma 16.4.8. Let M be a model category.

(1) If A → B is a Reedy cofibration of cosimplicial objects in M, n ≥ 1,
and n ≥ k ≥ 0, then the induced map A⊗∆[n]qA⊗Λ[n,k] B ⊗ Λ[n, k]→
B ⊗∆[n] is a cofibration.

(2) If X → Y is a Reedy fibration of simplicial objects in M, n ≥ 1, and

n ≥ k ≥ 0, then the induced map X∆[n] → Y ∆[n] ×Y Λ[n,k] XΛ[n,k] is a
fibration.

Proof. We will prove part 1; the proof of part 2 is similar.
We have the diagram

A⊗∆[n− 1]qA⊗∂∆[n−1] B ⊗ ∂∆[n− 1] //

��

A⊗∆[n]qA⊗Λ[n,k] B ⊗ Λ[n, k]

��

B ⊗∆[n− 1] // A⊗∆[n]qA⊗∂∆[n] B ⊗ ∂∆[n]

��

B ⊗∆[n]
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in which the square is a pushout, and so Proposition 16.3.10 implies that all of the
vertical maps are cofibrations. Our map is thus the composition of two cofibrations.

�

16.4.9. Resolutions.

Lemma 16.4.10. If n ≥ 1 and n ≥ k ≥ 0, then there is a finite sequence of
inclusions of simplicial sets

∆[0] = K0 → K1 → K2 → · · · → Kp = Λ[n, k]

where each map Ki → Ki+1 for i < p is constructed as a pushout

Λ[mi, li] //

��

Ki

��

∆[mi] // Ki+1

with mi < n.

Proof. We let ∆[0] = K0 be vertex k of ∆[n]. We can then add in all the
1-simplices of Λ[n, k] that contain that vertex, followed by the 2-simplices of Λ[n, k]
that contain that vertex, etc., until we’ve added in all of Λ[n, k]. �

Lemma 16.4.11. Let M be a model category.

(1) If A is a cosimplicial resolution in M, n ≥ 1, and n ≥ k ≥ 0, then the
natural map A⊗ Λ[n, k]→ A⊗∆[n] is a trivial cofibration.

(2) If X is a simplicial resolution in M, n ≥ 1, and n ≥ k ≥ 0, then the

natural map X∆[n] →XΛ[n,k] is a trivial fibration.

Proof. We will prove part 1; the proof of part 2 is similar.
We will prove the lemma by induction on n. If n = 1, then the result follows

from Lemma 16.3.6, Proposition 16.1.27, and Lemma 16.4.4.
We now assume that A ⊗ Λ[m, l] → A ⊗ ∆[m] is a trivial cofibration for l ≤

m < n. Lemma 16.4.10 implies that there is a finite sequence of maps in M

A⊗∆[0] = A⊗K0 → A⊗K1 → A⊗K2 → · · · → A⊗Kp = A⊗ Λ[n, k]

where each A⊗Ki → A⊗Ki+1 for i < p is constructed as a pushout

A⊗ Λ[mi, li] //

��

A⊗Ki

��

A⊗∆[mi] // A⊗Ki+1

with mi < n. The induction hypothesis implies that each of these maps is a
trivial cofibration, and so A ⊗ ∆[0] → A ⊗ Λ[n, k] is a trivial cofibration. Since
A ⊗ ∆[0] → A ⊗ ∆[n] is a weak equivalence, the “two out of three” property of
weak equivalences implies that A⊗ Λ[n, k]→ A⊗∆[n] is a weak equivalence and
Lemma 16.4.4 implies that it is a cofibration. �

Proposition 16.4.12. Let M be a model category.

(1) If A → B is a Reedy cofibration of cosimplicial resolutions in M, n ≥ 1,
and n ≥ k ≥ 0, then the map A⊗∆[n]qA⊗Λ[n,k] B⊗Λ[n, k]→ B⊗∆[n]
is a trivial cofibration.
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(2) If X → Y is a Reedy fibration of simplicial resolutions in M, n > 1, and

n ≥ k ≥ 0, then the map X∆[n] → XΛ[n,k] ×Y Λ[n,k] Y ∆[n] is a trivial
fibration.

Proof. We will prove part 1; the proof of part 2 is similar.
Lemma 16.4.8 implies that our map is a cofibration, and so it remains only

to show that it is a weak equivalence. Lemma 16.4.11 implies that A ⊗ Λ[n, k] →
A⊗∆[n] is a trivial cofibration. Since the diagram

A⊗ Λ[n, k] //

��

B ⊗ Λ[n, k]

��

A⊗∆[n] // A⊗∆[n]qA⊗Λ[n,k] B ⊗ Λ[n, k]

is a pushout, the map B⊗Λ[n, k]→ A⊗∆[n]qA⊗Λ[n,k] B⊗Λ[n, k] is also a trivial
cofibration. Since Lemma 16.4.11 implies that the map B ⊗Λ[n, k]→ B ⊗∆[n] is
a weak equivalence, the result follows from the “two out of three” property of weak
equivalences. �

16.5. Homotopy lifting extension theorems

This section contains several versions of the homotopy lifting extension theorem
(Theorem 16.5.2, Theorem 16.5.13, and Theorem 16.5.18). These will be used in
Chapters 17 and 19 to obtain homotopy invariance results for homotopy function
complexes (see Definition 17.1.1, Definition 17.2.1, and Definition 17.3.1), homotopy
colimits (see Definition 19.1.2), and homotopy limits (see Definition 19.1.5).

16.5.1. One-sided constructions.

Theorem 16.5.2 (The one-sided homotopy lifting extension theorem). Let M

be a model category.

(1) If i : A → B is a Reedy cofibration of cosimplicial resolutions in M and
p : X → Y is a fibration in M, then the map of simplicial sets

M(B, X)→M(A, X)×M(A,Y ) M(B, Y )

is a fibration that is a trivial fibration if at least one of i and p is also a
weak equivalence.

(2) If i : A → B is a cofibration in M and p : X → Y is a Reedy fibration of
simplicial resolutions in M, then the map of simplicial sets

M(B,X)→M(A,X)×M(A,Y ) M(B,Y )

is a fibration that is a trivial fibration if at least one of i and p is also a
weak equivalence.

Proof. A map of simplicial sets is a fibration if and only if it has the right
lifting property with respect to the maps Λ[n, k] → ∆[n] for n > 0 and n ≥
k ≥ 0, and so the result follows from Proposition 16.4.5, Proposition 16.4.12, and
Proposition 16.4.6. �

Corollary 16.5.3. Let M be a model category.

(1) If B is a cosimplicial resolution in M and X is a fibrant object of M, then
M(B, X) is a fibrant simplicial set.
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(2) If B is a cofibrant object of M and X is a simplicial resolution in M, then
M(B,X) is a fibrant simplicial set.

Proof. This follows from Theorem 16.5.2. �

Corollary 16.5.4. Let M be a model category.

(1) If i : A → B is a Reedy cofibration of cosimplicial resolutions in M and
X is a fibrant object in M, then the map i∗ : M(B, X) → M(A, X) is a
fibration of simplicial sets that is a trivial fibration if i is a Reedy trivial
cofibration.

(2) If B is a cosimplicial resolution in M and p : X → Y is a fibration in M,
then the map p∗ : M(B, X) → M(B, Y ) is a fibration of simplicial sets
that is a trivial fibration if p is a trivial fibration.

(3) If i : A → B is a cofibration in M and X is a simplicial resolution in M,
then the map i∗ : M(B,X) → M(A,X) is a fibration of simplicial sets
that is a trivial fibration if i is a trivial cofibration.

(4) If B is a cofibrant object of M and p : X → Y is a Reedy fibration of
simplicial resolutions in M, then the map p∗ : M(B,X) → M(B,Y ) is a
fibration of simplicial sets that is a trivial fibration if p is a Reedy trivial
cofibration.

Proof. This follows from Theorem 16.5.2. �

Corollary 16.5.5. Let M be a model category.

(1) If i : A→ B is a Reedy weak equivalence of cosimplicial resolutions in M

and X is a fibrant object of M, then the map i∗ : M(B, X) → M(A, X)
is a weak equivalence of fibrant simplicial sets.

(2) If B is a cosimplicial resolution in M and p : X → Y is a weak equivalence
of fibrant objects of M, then the map p∗ : M(B, X)→M(B, Y ) is a weak
equivalence of fibrant simplicial sets.

(3) If i : A → B is a weak equivalence of cofibrant objects of M and X is a
simplicial resolution in M, then the map i∗ : M(B,X) → M(A,Y ) is a
weak equivalence of fibrant simplicial sets.

(4) If B is a cofibrant object of M and p : X → Y is a Reedy weak equivalence
of simplicial resolutions in M, then the map p∗ : M(B,X)→M(B,Y ) is
a weak equivalence of fibrant simplicial sets.

Proof. This follows from Corollary 16.5.4, Corollary 7.7.2, and Corollary 16.5.3.
�

Proposition 16.5.6. Let M be a model category.

(1) If i : A → B is a Reedy cofibration of cosimplicial resolutions in M and
j : L → K is a cofibration of simplicial sets, then the map A ⊗K qA⊗L
B⊗L→ B⊗K is a cofibration in M that is a trivial cofibration if either
i or j is a weak equivalence.

(2) If p : X → Y is a Reedy fibration of simplicial resolutions in M and j : L→
K is a cofibration of simplicial sets, then the map XK → XL ×Y L Y K

is a fibration in M that is a trivial fibration if either p or j is a weak
equivalence.
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Proof. This follows from Proposition 7.2.3, Proposition 16.4.5, and Theo-
rem 16.5.2. �

Theorem 16.5.7. Let M be a model category.

(1) If i : A → B is a Reedy cofibration of cosimplicial resolutions in M and
j : L→ K is an inclusion of simplicial sets, then the pushout corner map
A ⊗ K qA⊗L B ⊗ L → B ⊗ K is a cofibration in M that is a trivial
cofibration if at least one of i and p is a weak equivalence.

(2) If j : L → K is an inclusion of simplicial sets and p : X → Y is a Reedy
fibration of simplicial resolutions in M, then the pullback corner map
XK → XL ×Y L Y K is a fibration in M that is a trivial fibration if at
least one of j and p is a weak equivalence.

Proof. This follows from Proposition 7.2.3, Proposition 16.4.5, and Theo-
rem 16.5.2. �

16.5.8. Two-sided constructions. The main theorems of this section are
the bisimplicial homotopy lifting extension theorem (Theorem 16.5.13) and the
two-sided homotopy lifting extension theorem (Theorem 16.5.18).

Lemma 16.5.9. Let C and D be Reedy categories, let M be a complete and
cocomplete category, let X be a C-diagram in M, and let Y be a D-diagram in M.

(1) If we view M(X,Y ) as a Cop-diagram in the category of D-diagrams of
sets (see Proposition 15.1.5), then for every object α of C there is a natural
isomorphism of D-diagrams of sets MαM(X,Y ) ≈M(LαX,Y ).

(2) If we view M(X,Y ) as a D-diagram in the category of Cop-diagrams of
sets, then for every object α of D there is a natural isomorphism of Cop-
diagrams of sets MαM(X,Y ) ≈M(X,MαY ).

Proof. We will prove part 1; the proof of part 2 is similar.
Proposition 15.2.4 implies that we have natural isomorphisms

MαM(X,Y ) = lim
(α→β)∈Ob ∂(α↓

←−−
Cop)

M(Xβ ,Y )

≈ lim
(β→α)∈Ob ∂(

−→
C ↓α)

M(Xβ ,Y )

≈M
(

colim
(β→α)∈Ob ∂(

−→
C ↓α)

Xβ ,Y
)

= M(LαX,Y ) .

�

Definition 16.5.10. Let M be a model category. If B is a cosimplicial object in
M and X is a simplicial object in M, then the bisimplicial set M(B,X) (for which
M(B,X)n,k = M(Bk,Xn)) can be considered a simplicial object in the category
of simplicial objects in M in two ways. We define the horizontal simplicial object to
be the one whose object in degree n is M(B,X)n,∗ = M(B,Xn) and the vertical
simplicial object to be the one whose object in degree k is M(B,X)∗,k = M(Bk,X).

Lemma 16.5.11. Let M be a model category, let B be a cosimplicial object in
M, and let X be a simplicial object in M.
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(1) If we view M(B,X) as a horizontal simplicial object (see Definition 16.5.10),
then for every n ≥ 0 there is a natural isomorphism of simplicial sets (see
Definition 15.2.5) MnM(B,X) ≈M(B,MnX).

(2) If we view M(B,X) as a vertical simplicial object (see Definition 16.5.10),
then for every n ≥ 0 there is a natural isomorphism of simplicial sets
MnM(B,X) ≈M(LnB,X).

Proof. This follows from Lemma 16.5.9, letting C be the cosimplicial indexing
category and letting D be the simplicial indexing category (see Definition 15.1.8).

�

Lemma 16.5.12. Let M be a model category, let A→ B be a map of cosimpli-
cial objects in M, and let X → Y be a map of simplicial objects in M.

(1) If all bisimplicial sets are viewed as horizontal simplicial objects, then
for every n ≥ 0 there is a natural isomorphism of simplicial sets (see
Definition 15.2.5)

Mn

(
M(A,X)×M(A,Y ) M(B,Y )

)
≈M(A,MnX)×M(A,MnY ) M(B,MnY ) .

(2) If all bisimplicial sets are viewed as vertical simplicial objects, then for
every n ≥ 0 there is a natural isomorphism of simplicial sets

Mn

(
M(A,X)×M(A,Y ) M(B,Y )

)
≈M(LnA,X)×M(LnA,Y ) M(LnB,Y ) .

Proof. This follows from Lemma 16.5.11. �

Theorem 16.5.13 (The bisimplicial homotopy lifting extension theorem). Let
M be a model category. If i : A → B is a Reedy cofibration of cosimplicial res-
olutions in M and p : X → Y is a Reedy fibration of simplicial resolutions in
M, then for both the horizontal and the vertical simplicial object structures (see
Definition 16.5.10), the induced map of bisimplicial sets

M(B,X)→M(A,X)×M(A,Y ) M(B,Y )

is a Reedy fibration of simplicial objects that is a Reedy trivial fibration if at least
one of i and p is a weak equivalence.

Proof. We will prove this for the horizontal structure; the proof for the ver-
tical structure is similar.

Theorem 15.3.15 implies that it is sufficient to show that for every n ≥ 0 the
map

M(B,X)n
→

(
M(A,X)×M(A,Y ) M(B,Y )

)
n
×Mn(M(A,X)×M(A,Y )M(B,Y )) MnM(B,X)

is a fibration of simplicial sets that is a trivial fibration if either of i and p is a weak
equivalence. Lemma 16.5.11 and Lemma 16.5.12 imply that this map is isomorphic
to the map

M(B,Xn)

→
(
M(A,Xn)×M(A,Y n)M(B,Y n)

)
×(M(A,MnX)×M(A,MnY )M(B,MnY ))M(B,MnX) .
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The codomain of this map is the limit of the diagram

M(A,Xn) //

��

M(A,Y n)

��

M(B,Y n)

��

oo

M(A,MnX) // M(A,MnY ) M(B,MnY )oo

M(B,MnX)

hhPPPPPPPPPPPP

OO 66nnnnnnnnnnnn

and so our map is isomorphic to the map

M(B,Xn)

→M(A,Xn)×(M(A,Y n)×M(A,MnY )M(A,MnX))

(
M(B,Y n)×M(B,MnY )M(B,MnX)

)
Since p is a Reedy fibration, the map Xn → Y n ×MnY MnX is a fibration of
simplicial sets, and so the result now follows from Theorem 16.5.2 and Theo-
rem 15.3.15. �

Corollary 16.5.14. If M is a model category, B is a cosimplicial resolution
in M, and X is a simplicial resolution in M, then M(B,X) is a Reedy fibrant
simplicial object in both the horizontal and vertical simplicial object structures
(see Definition 16.5.10).

Proof. This follows from Theorem 16.5.13. �

Corollary 16.5.15. Let M be a model category, let B be a cosimplicial reso-
lution in M, and let X be a simplicial resolution in M.

(1) If we consider the bisimplicial set M(B,X) as a horizontal simplicial
object (see Definition 16.5.10) in the category of simplicial sets (so that in
simplicial degree n we have the simplicial set M(B,Xn)), then M(B,X)
is a simplicial resolution of the simplicial set M(B,X0).

(2) If we consider the bisimplicial set M(B,X) as a vertical simplicial object
in the category of simplicial sets (so that in simplicial degree n we have
the simplicial set M(Bn,X)), then M(B,X) is a simplicial resolution of
the simplicial set M(B0,X).

Proof. Corollary 16.5.14 implies that M(B,X) is a Reedy fibrant simpli-
cial object, and Corollary 16.5.5 implies that, for every n > 0, the natural maps
M(B,X0)→M(B,Xn) and M(B0,X)→M(Bn,X) are weak equivalences. �

Corollary 16.5.16. Let M be a model category, let B be a cofibrant object of

M with cosimplicial resolution B̃, and let X be a fibrant object of M with simplicial

resolution X̂.

(1) If we consider the bisimplicial set M(B̃, X̂) as a horizontal simplicial
object (see Definition 16.5.10) in the category of simplicial sets (so that in

simplicial degree n we have the simplicial set M(B̃, X̂n)), then M(B̃, X̂)
is a simplicial resolution of the simplicial set M(B̃, X).

(2) If we consider the bisimplicial set M(B̃, X̂) as a vertical simplicial object
in the category of simplicial sets (so that in simplicial degree n we have
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the simplicial set M(B̃n, X̂)), then M(B̃, X̂) is a simplicial resolution of

the simplicial set M(B, X̂).

Proof. This follows from Corollary 16.5.15 and Corollary 16.5.5. �

Corollary 16.5.17. Let M be a model category.

(1) If i : A → B is a Reedy cofibration of cosimplicial resolutions in M and
X is a simplicial resolution in M then, for both the horizontal and verti-
cal simplicial object structures (see Definition 16.5.10), the induced map
i∗ : M(B,X)→M(A,X) is a Reedy fibration of Reedy fibrant simplicial
objects that is a Reedy trivial fibration if i is a Reedy trivial cofibration.

(2) If B is a cosimplicial resolution in M and p : X → Y is a Reedy fibration
of simplicial resolutions in M then, for both the horizontal and vertical
simplicial object structures, the induced map p∗ : M(B,X) → M(B,Y )
is a Reedy fibration of Reedy fibrant simplicial objects that is a Reedy
trivial fibration if p is a Reedy trivial fibration.

Proof. This follows from Theorem 16.5.13. �

Theorem 16.5.18 (The two-sided homotopy lifting extension theorem). Let M

be a model category. If i : A→ B is a Reedy cofibration of cosimplicial resolutions
in M and p : X → Y is a Reedy fibration of simplicial resolutions in M, then the
induced map of simplicial sets

diag M(B,X)→ diag M(A,X)×diag M(A,Y ) diag M(B,Y )

is a fibration of fibrant simplicial sets that is a trivial fibration if at least one of i
and p is a weak equivalence.

Proof. This follows from Theorem 16.5.13, Proposition 15.3.11, Theorem 15.11.7,
Proposition 15.3.13, Theorem 15.11.11, and Theorem 15.11.6. �

Corollary 16.5.19. If M is a model category, B is a cosimplicial resolution in
M, and X is a simplicial resolution in M, then diag M(B,X) is a fibrant simplicial
set.

Proof. This follows from Theorem 16.5.18. �

Corollary 16.5.20. Let M be a model category.

(1) If i : A → B is a Reedy cofibration of cosimplicial resolutions in M and
X is a simplicial resolution in M, then the induced map

diag i∗ : diag M(B,X)→ diag M(A,X)

is a fibration of fibrant simplicial sets that is a trivial fibration if i is a
Reedy trivial cofibration.

(2) If B is a cosimplicial resolution in M and p : X → Y is a Reedy fibration
of simplicial resolutions in M, then the induced map

diag p∗ : diag M(B,X)→ diag M(B,Y )

is a fibration of fibrant simplicial sets that is a trivial fibration if p is a
Reedy trivial fibration.

Proof. This follows from Theorem 16.5.18 and Corollary 16.5.19. �
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Corollary 16.5.21. Let M be a model category.

(1) If i : A→ B is a Reedy weak equivalence of cosimplicial resolutions in M

and X is a simplicial resolution in M, then the induced map

diag i∗ : diag M(B,X)→ diag M(A,X)

is a weak equivalence of fibrant simplicial sets.
(2) If B is a cosimplicial resolution in M and p : X → Y is a Reedy weak

equivalence of simplicial resolutions in M, then the induced map

diag p∗ : diag M(B,X)→ diag M(B,Y )

is a weak equivalence of fibrant simplicial sets.

Proof. This follows from Corollary 16.5.20 and Corollary 7.7.2. �

16.6. Frames

Proposition 16.1.5 shows how a cosimplicial resolution of an object in a model
category yields a cofibrant approximation to that object (and how a simplicial
resolution yields a fibrant approximation). Frames (see Definition 16.6.1) allow us
to discuss the reverse operation (see Proposition 16.6.7). Frames will also be used
to define the homotopy colimit and homotopy limit functors (see Definition 19.1.2
and Definition 19.1.5).

Definition 16.6.1. Let M be a model category and let X be an object of M.
• A cosimplicial frame on X is a cosimplicial object X̃ in M together with

a weak equivalence X̃ → cc∗X (see Notation 16.1.1) in the Reedy model
category structure (see Definition 15.3.3) on M∆ such that
(1) the induced map X̃0 → X is an isomorphism, and
(2) if X is a cofibrant object of M, then X̃ is a cofibrant object of M∆.

We will sometimes refer to X̃ as a cosimplicial frame on X, without
explicitly mentioning the map X̃ → cc∗X.

• A simplicial frame on X is a simplicial object X̂ in M together with a
weak equivalence cs∗X → X̂ in the Reedy model category structure on
M∆op

such that
(1) the induced map X → X̂0 is an isomorphism, and
(2) if X is a fibrant object of M, then X̂ is a fibrant object of M∆op

.
We will sometimes refer to X̂ as a simplicial frame onX, without explicitly
mentioning the map cs∗X → X̂.

Remark 16.6.2. Note that Definition 16.6.1 does not require cosimplicial frames
on non-cofibrant objects to be cofibrant or simplicial frames on non-fibrant objects
to be fibrant. This was done in order to make Proposition 16.6.4 true.

Proposition 16.6.3. Let M be a model category and let X be an object of M.

(1) If X is cofibrant, then any cosimplicial frame on X is a cosimplicial reso-
lution of X.

(2) If X is fibrant, then any simplicial frame on X is a simplicial resolution
of X.

Proof. This follows directly from the definitions. �
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Proposition 16.6.4. If M is a simplicial model category and X is an object of
M, then

• the cosimplicial object X̃ in which X̃n = X⊗∆[n] is a cosimplicial frame
on X, and

• the simplicial object Ŷ in which Ŷ n = X∆[n] is a simplicial frame on X.

Proof. This follows from Proposition 9.5.20 and Proposition 16.1.3. �

Definition 16.6.5. If M is a simplicial model category andX is an object of M,
then the cosimplicial frame on X of Proposition 16.6.4 will be called the standard
cosimplicial frame on X, and the simplicial frame on X of Proposition 16.6.4 will
be called the standard simplicial frame on X.

Proposition 16.6.6. Let M be a simplicial model category.

(1) If X is an object of M, X̃ is the standard cosimplicial frame on X (see

Proposition 16.6.23), and K is a simplicial set, then X̃ ⊗K is naturally
isomorphic to X ⊗K.

(2) If X is an object of M, X̂ is the standard simplicial frame on X, and K

is a simplicial set, then X̂K is naturally isomorphic to XK .

Proof. This follows from Proposition 16.4.3 and Proposition 15.1.20. �

Proposition 16.6.7. Let M be a model category.

(1) If X is an object of M, X̃ → X is a cofibrant approximation to X, and

X̃ ′ → cc∗X̃ is a cosimplicial frame on X̃, then the induced map X̃ ′ →
cc∗X is a cosimplicial resolution of X, and every cosimplicial resolution
of X can be constructed in this way.

(2) If X is an object of M, X → X̂ is a fibrant approximation to X, and

cs∗X̂ → X̂ ′ is a simplicial frame on X̂, then the induced map cs∗X → X̂ ′

is a simplicial resolution of X, and every simplicial resolution of X can be
constructed in this way.

Proof. This follows from Proposition 16.1.5. �

Proposition 16.6.8. Let M be a model category.

(1) There is an augmented functor (F, i) on M∆ (see Definition 8.1.12) such
that
(a) iX : FX →X is a Reedy trivial fibration for every object X of M∆,
(b) (iX)0 : (FX)0 → X0 is an isomorphism for every object X of M∆,

and
(c) if X0 is cofibrant in M, then FX is Reedy cofibrant.

(2) There is a coaugmented functor (G, j) on M∆op
(see Definition 8.1.12)

such that
(a) jX : X → GX is a Reedy trivial cofibration for every object X of

M∆op
,

(b) (jX)0 : X0 → (GX)0 is an isomorphism for every object X of M∆op
,

and
(c) if X0 is fibrant in M, then GX is Reedy fibrant.

Proof. We will construct FX and the map FX → X inductively, and we
begin by letting (FX)0 = X0. If n > 0 and we have constructed FX → X in
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degrees less than n, then we have the induced map Ln(FX)→Xn×MnX Mn(FX).
We can factor this map functorially in M as

Ln(FX) i // (FX)n
p
// Xn ×MnX Mn(FX)

with i a cofibration and p a trivial fibration. This completes the construction, and
Theorem 15.3.15 implies that the map FX →X is always a Reedy trivial fibration.
If X0 is cofibrant, then Ln(FX) → (FX)n is a cofibration for all n ≥ 0, and so
FX is Reedy cofibrant. �

Theorem 16.6.9. If M is a model category then there exists a functorial cosim-
plicial frame on M and a functorial simplicial frame on M.

Proof. This follows from Proposition 16.6.8. �

Theorem 16.6.10. Let M be a model category and let K be a subcategory of
M.

(1) Any two functorial cosimplicial frames on K are connected by an essen-
tially unique zig-zag (see Definition 14.4.2) of weak equivalences of func-
torial cosimplicial frames on K.

(2) Any two functorial simplicial frames on K are connected by an essentially
unique zig-zag (see Definition 14.4.2) of weak equivalences of functorial
simplicial frames on K.

Proof. This follows from Theorem 14.5.5 and Proposition 16.6.8. �

16.6.11. Frames on maps.

Definition 16.6.12. Let M be a model category and let g : X → Y be a map
in M.

(1) A cosimplicial frame on g consists of a cosimplicial frame X̃ → cc∗X on
X, a cosimplicial frame Ỹ → cc∗Y on Y , and a map g̃ : X̃ → Ỹ that
makes the square

X̃
g̃

//

��

Ỹ

��

cc∗X // cc∗Y

commute.
(2) A simplicial frame on g consists of a simplicial frame cs∗X → X̂ on X, a

simplicial frame cs∗Y → Ŷ on Y , and a map ĝ : X̂ → Ŷ that makes the
square

cs∗X //

��

cs∗Y

��

X̂ ĝ
// Ŷ

commute.

Example 16.6.13. Let M be a simplicial model category.
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(1) Let i : A→ B be a map in M, let Ã and B̃ be the cosimplicial objects in
M such that Ãn = A ⊗∆[n] and B̃n = B ⊗∆[n], and let ı̃ : Ã → B̃ be
the obvious map. Proposition 16.6.4 implies that ı̃ is a cosimplicial frame
on i, and Proposition 9.3.8 implies that ı̃ is a Reedy cofibration if i is a
cofibration in M.

(2) Let p : X → Y be a map in M, let X̂ and Ŷ be the simplicial objects in
M such that X̂n = X∆[n] and Ŷ n = Y ∆[n], and let p̂ : X̂ → Ŷ be the
obvious map. Proposition 16.6.4 implies that p̂ is a simplicial frame on p,
and Proposition 9.3.8 implies that p̂ is a Reedy fibration if p is a fibration
in M.

Proposition 16.6.14. Let M be a model category and let g : X → Y be a map
in M.

(1) There is a natural cosimplicial frame g̃ : X̃ → Ỹ on g that is a Reedy
cofibration if g is a cofibration.

(2) There is a natural simplicial frame ĝ : X̂ → Ŷ on g that is a Reedy
fibration if g is a fibration.

Proof. We will prove part 1; the proof of part 2 is dual.
We begin by constructing a natural cosimplicial frame X̃ → cc∗X on X as in

the proof of Theorem 16.6.9.
We will define Ỹ and g̃ inductively. We let Ỹ 0 = Y . If n > 0 and we

have constructed Ỹ and g̃ in degrees less than n, then we have the induced map
LnỸ qLnX̃ X̃n → (cc∗Y )n×Mncc∗Y MnỸ . We factor this map functorially in M as

LnỸ qLnX̃ X̃n i−→ Ỹ n p−→ (cc∗Y )n ×Mncc∗Y MnỸ

with i a cofibration and p a trivial fibration. This completes the construction,
and Theorem 15.3.15 implies that the map Ỹ → cc∗Y is always a Reedy trivial
fibration. Since LnX̃ → X̃n was constructed to be a cofibration for all n > 0,
and LnỸ → LnỸ qLnX̃ X̃n is a pushout of that cofibration, the composition
LnỸ → LnỸ qLnX̃ X̃n → Ỹ n is a cofibration for all n > 0. Thus, if Y is cofibrant,
then Ỹ is Reedy cofibrant. Finally, if g is a cofibration, then LnỸ qLnX̃ X̃n → Ỹ n

is a cofibration for all n ≥ 0, and so g̃ is a Reedy cofibration. �

16.6.15. Uniqueness of frames.

Definition 16.6.16. Let M be a model category and let X be an object of M.
(1) The category CosFr(X) is the category whose objects are cosimplicial

frames on X and whose morphisms are maps of cosimplicial frames on X.
(2) The category SimpFr(X) is the category whose objects are simplicial

frames on X and whose morphisms are maps of simplicial frames on X.

Theorem 16.6.17. Let M be a model category.

(1) IfX is an object of M, then the category CosFr(X) (see Definition 16.6.16)
of cosimplicial frames on X has a contractible classifying space (see Defi-
nition 14.3.1).

(2) IfX is an object of M, then the category SimpFr(X) (see Definition 16.6.16)
of simplicial frames on X has a contractible classifying space (see Defini-
tion 14.3.1).
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Proof. We will prove part 1; the proof of part 2 is dual.
Let W be the class of Reedy weak equivalences X → Y in M∆ such that

X9 → Y 0 is an isomorphism and such that if Y 0 is cofibrant in M then X is Reedy
cofibrant. The result now follows from Theorem 14.5.6 and Proposition 16.6.8. �

Theorem 16.6.18. Let M be a model category and let X be an object of M.

(1) Any two cosimplicial frames on X are connected by an essentially unique
zig-zag (see Definition 14.4.2) of weak equivalences of cosimplicial frames
on X.

(2) Any two simplicial frames on X are connected by an essentially unique
zig-zag (see Definition 14.4.2) of weak equivalences of simplicial frames on
X.

Proof. This follows from Theorem 16.6.17 and Theorem 14.4.5. �

Proposition 16.6.19. Let M and N be model categories and let F : M � N : U
be a Quillen pair (see Definition 8.5.2).

(1) If X is a cofibrant object of M and X̃ → cc∗X is a cosimplicial frame on

X, then FX̃ → cc∗FX is a cosimplicial frame on FX.

(2) If Y is a fibrant object of N and cs∗Y → Ŷ is a simplicial frame on Y ,

then cs∗UY → UŶ is a simplicial frame on UY .

Proof. This follows from Proposition 16.2.1 and Proposition 16.6.7. �

16.6.20. Framed model categories.

Definition 16.6.21. A framed model category is a model category M together
with

(1) a functorial cosimplicial frame (see Definition 16.6.1) X̃ on every object
X in M, and

(2) a functorial simplicial frame X̂ on every object X in M.

Proposition 16.6.22. If M is a model category, then there exists a framed
model category structure on M.

Proof. This follows from Theorem 16.6.9. �

Proposition 16.6.23. If M is a simplicial model category, then there is a nat-
ural framing on M (called the standard framing) defined on objects X in M by

X̃n = X ⊗∆[n] and X̂n = X∆[n].

Proof. This follows from Proposition 16.6.4. �

Remark 16.6.24. If M is a simplicial model category and we make reference
to M in a context that calls for a framed model category, then we will consider M

as a framed model category using the standard framing of Proposition 16.6.23.
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16.7. Reedy frames

If M is a framed model category, C is a small category, and X is a C-diagram in
M, then the framing defines a C-diagram X̂ in M∆, i.e., a C-diagram of cosimplicial
objects in M. If C is a Reedy category and X is Reedy cofibrant, though, there
is no reason to expect X̂ to be Reedy cofibrant. Thus, we define a Reedy frame
on a diagram (see Definition 16.7.8), and we show that Reedy frames always exist
(see Proposition 16.7.11). We also show that any two frames on a diagram (see
Definition 16.7.2) are connected by an essentially unique zig-zag of equivalences
(see Theorem 16.7.6), so that a frame on a diagram defined by a framed model
category structure can always be replaced by a Reedy frame.

16.7.1. Frames on diagrams.

Definition 16.7.2. Let M be a model category, let C be a small category, and
let X be a C-diagram in M.

(1) A cosimplicial frame on X is a diagram X̃ : C→M∆ of cosimplicial ob-
jects in M together with a map of diagrams i : X̃ → cc∗X to the diagram
of constant cosimplicial objects such that, for every object α in C, the map
iα : X̃α → cc∗Xα is a cosimplicial frame on Xα (see Definition 16.6.1).

(2) A simplicial frame on X is a diagram X̂ : C→M∆op
of simplicial objects

in M together with a map of diagrams j : cs∗X → X̂ from the diagram
of constant simplicial objects such that, for every object α in C, the map
jα : cs∗Zα → X̂α is a simplicial frame on Xα.

Example 16.7.3. Let M be a framed model category (see Definition 16.6.21).
If C is a small category and X is a C-diagram in M, then the framing on M defines
a natural cosimplicial frame X̃ : C → M on X and a natural simplicial frame
X̂ : C→M on X.

Definition 16.7.4. Let M be a model category, let C be a small category, and
let X be a C-diagram in M.

(1) The category CosFr(X)is the category whose objects are cosimplicial
frames on X and whose morphisms are maps of cosimplicial frames on
X.

(2) The category SimpFr(X)is the category whose objects are simplicial frames
on X and whose morphisms are maps of simplicial frames on X.

Theorem 16.7.5. Let M be a model category, let C be a small category, and
let X be a C-diagram in M.

(1) The category CosFr(X) of cosimplicial frames on X has a contractible
classifying space (see Definition 14.3.1).

(2) The category SimpFr(X) of simplicial frames on X has a contractible
classifying space.

Proof. We will prove part 1; the proof of part 2 is dual.
Let W be the class of maps of C-diagrams X̃ →X in M∆ such that for every

object α of C

(1) the map X̃α →Xα is a Reedy weak equivalence,
(2) (X̃α)0 → (Xα)0 is an isomorphism, and
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(3) if (Xα)0 is cofibrant in M then X̃α is Reedy cofibrant.

The result now follows from Theorem 14.5.6 and Proposition 16.6.8. �

Theorem 16.7.6. Let M be a model category, let C be a small category, and
let X be a C-diagram in M.

(1) Any two cosimplicial frames on X are connected by an essentially unique
zig-zag of maps of cosimplicial frames on X.

(2) Any two simplicial frames on X are connected by an essentially unique
zig-zag of maps of simplicial frames on X.

Proof. This follows from Theorem 14.4.5 and Theorem 16.7.5. �

16.7.7. Reedy frames. The notion of a Reedy frame (see Definition 16.7.8)
on a diagram will be used in our discussion of homotopy limits and homotopy
colimits of diagrams indexed by a Reedy category (see Section 19.9).

Definition 16.7.8. Let M be a model category, let C be a Reedy category (see
Definition 15.1.2), and let X be a C-diagram in M.

(1) A Reedy cosimplicial frame on X is a cosimplicial frame X̃ : C→M∆ on
X (see Definition 16.7.2) such that if X is a Reedy cofibrant diagram in
M (see Definition 15.3.3) then X̃ is a Reedy cofibrant diagram in M∆.

(2) A Reedy simplicial frame on X is a simplicial frame X̂ : C→M∆op
on X

such that if X is a Reedy fibrant diagram in M then X̂ is a Reedy fibrant
diagram in M∆op

.

Proposition 16.7.9. Let M be a simplicial model category, let C be a Reedy
category, and let X be a C-diagram in M.

(1) The cosimplicial frame on X defined by the standard frame on M (see
Definition 16.6.5) is a Reedy cosimplicial frame on X.

(2) The simplicial frame on X defined by the standard frame on M is a Reedy
simplicial frame on X.

Proof. We will prove part 1; the proof of part 2 is dual.
Let X be Reedy cofibrant, and let X̃ : C → M∆ be the cosimplicial frame on

X defined by the standard frame on M. For every object α in C, let LM
α X →Xα

denote the latching map of X in M, and let LM∆

α X̃ → X̃ denote the latching map
of X̃ in M∆. For every object α in C, LM

α X → Xα is a cofibration in M, and we
must show that LM∆

α X̃ → X̃α is a cofibration in M∆. Thus, Proposition 16.3.8
implies that we must show that for every n ≥ 0 the relative latching map

(16.7.10) X̃α ⊗ ∂∆[n]q(LM∆
α X̃)⊗∂∆[n] (LM∆

α X̃)⊗∆[n]→ X̃α ⊗∆[n]

(see Proposition 16.3.8) is a cofibration in M. Since the latching object LM∆

α X̃
is defined as a colimit (see Definition 15.2.5), Proposition 16.6.6 and Lemma 9.2.1
imply that the map (16.7.10) is isomorphic to the map

Xα ⊗ ∂∆[n]q(LM
α X)⊗∂∆[n] (LM

α X)⊗∆[n]→Xα ⊗∆[n] .

Since LM
α X → Xα is a cofibration in the simplicial model category M, Proposi-

tion 9.3.8 implies that this is a cofibration. �



344 16. COSIMPLICIAL AND SIMPLICIAL RESOLUTIONS

Proposition 16.7.11. If M is a model category and C is a Reedy category,
then

(1) there is a functorial Reedy cosimplicial frame on every C-diagram in M,
and

(2) there is a functorial Reedy simplicial frame on every C-diagram in M.

Proof. We will prove part 1; the proof of part 2 is similar.
Theorem 16.6.9 implies that we can choose a functorial cosimplicial frame X̃ on

every object X of the model category MC. The definition of a frame on an object
implies that if X is Reedy cofibrant, then X̃ is a cofibrant object of (MC)∆, and
Theorem 15.5.2 implies that this is equivalent to the assertion that X̃ is cofibrant
in (M∆)C. �

Definition 16.7.12. Let M be a model category, let C be a Reedy category,
and let X be a C-diagram in M.

(1) The category ReCosFr(X) is the category whose objects are Reedy cosim-
plicial frames on X and whose morphisms are maps of cosimplicial frames
on X.

(2) The category ReSimpFr(X) is the category whose objects are Reedy sim-
plicial frames on X and whose morphisms are maps of simplicial frames
on X.

Theorem 16.7.13. Let M be a model category, let C be a Reedy category, and
let X be a C-diagram in M.

(1) The classifying space of the category of Reedy cosimplicial frames on X
is contractible (see Definition 14.3.1).

(2) The classifying space of the category of Reedy simplicial frames on X is
contractible.

Proof. We will prove part 1; the proof of part 2 is dual.
Let W be the class of maps X̃ →X of C-diagrams in M∆ such that

(1) for every object α of C the map X̃α →Xα is a Reedy weak equivalence,
(2) for every object α of C the map (X̃α)0 → (Xα)0 is an isomorphism, and
(3) if X0 is a Reedy cofibrant diagram in M then X̃ is a Reedy cofibrant

diagram in M∆.
The result now follows from Theorem 14.5.6 and Proposition 16.7.11. �

Theorem 16.7.14. Let M be a model category, let C be a Reedy category, and
let X be a C-diagram in M.

(1) Any two Reedy cosimplicial frames on X are connected by an essentially
unique zig-zag of maps of Reedy cosimplicial frames on X.

(2) Any two Reedy simplicial frames on X are connected by an essentially
unique zig-zag of maps of Reedy simplicial frames on X.

Proof. This follows from Theorem 14.4.5 and Theorem 16.7.13. �

Definition 16.7.15. A Reedy framed diagram category consists of
(1) a Reedy category C,
(2) a model category M,
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(3) a choice of a functorial Reedy cosimplicial frame on every C-diagram in
M, and

(4) a choice of a functorial Reedy simplicial frame on every C-diagram in M

(see Proposition 16.7.11). We will often denote a Reedy framed diagram cate-
gory by (C,M), without making explicit reference to the choice of functorial Reedy
cosimplicial frame or the choice of functorial Reedy simplicial frame.

Proposition 16.7.16. Let C be a Reedy category, let M be a model category,
and let X be a C-diagram in M.

(1) If X is Reedy cofibrant and X̃ : C→M∆ is a Reedy cosimplicial frame on

X, then for every object α of C the latching object LαX̃ = colim
∂(
−→
C ↓α)

X̃

of X̃ at α is a cosimplicial frame on LαX.

(2) If X is Reedy fibrant and X̂ : C → M∆op
is a Reedy simplicial frame on

X, then for every object α of C the matching object MαX̂ = lim
∂(α↓

←−
C )

X̂

of X̂ at α is a simplicial frame on MαX.

Proof. We will prove part 1; the proof of part 2 is dual.
Lemma 15.3.7 and Theorem 15.10.9 imply that LαX̃ is a cofibrant cosimplicial

object. Corollary 15.3.12 implies that Xβ is cofibrant in M for every object β → α

of ∂(
−→
C ↓α), and so every coface and codegeneracy operator of LαX̃ is a colimit of

an objectwise weak equivalence between cofibrant objects. Theorem 15.10.9 thus
implies that every coface and codegeneracy operator of LαX̃ is a weak equivalence.

�





CHAPTER 17

Homotopy Function Complexes

In this chapter, we define homotopy function complexes between objects in
a model category. A homotopy function complex between a pair of objects is a
simplicial set that plays the role of the “space of functions” between those objects,
and its set of components is isomorphic to the set of maps in the homotopy category
between those objects.

In a simplicial model category, a homotopy function complex between a cofi-
brant object and a fibrant object is weakly equivalent to the simplicial mapping
space between those objects, and in the category of topological spaces it is weakly
equivalent to the total singular complex of the topological space of continuous
functions between them. Homotopy function complexes are defined for all model
categories, though, and for a simplicial model category they give the “correct” func-
tion space even between objects that may not be cofibrant or fibrant (which is not
true of the space of maps obtained from the simplicial structure).

If M is a model category and X and Y are objects of M, then there are three
varieties of homotopy function complexes from X to Y :

• Left homotopy function complexes, obtained by resolving the first object
(see Definition 17.1.1),

• Right homotopy function complexes, obtained by resolving the second ob-
ject (see Definition 17.2.1), and

• Two-sided homotopy function complexes, obtained by resolving both ob-
jects (see Definition 17.3.1).

We can work with any one of these three varieties, or work with all three combined.
Although constructing a homotopy function complex requires making choices,

there is an essentially unique zig-zag (see Definition 14.4.2) of change of homotopy
function complex maps (see Definition 17.4.7) connecting any two homotopy func-
tion complexes between a pair of objects (see Theorem 17.1.11, Theorem 17.2.11,
Theorem 17.3.9, and Theorem 17.4.14). Since every change of homotopy function
complex map is a weak equivalence of fibrant simplicial sets (see Theorem 17.4.8),
this implies that there is a distinguished homotopy class of homotopy equivalences
connecting any two homotopy function complexes between a pair of objects, and
the composition of two of these distinguished homotopy classes of homotopy equiv-
alences is another (see Theorem 17.5.30).

Homotopy function complexes are actually only a part of the larger theory of
the simplicial localization of W. G. Dwyer and D. M. Kan ([33, 31, 32]). Dwyer
and Kan start with a category C and a subcategory W of C, the maps of which are
called “weak equivalences”. They then construct the simplicial localization sLWC

of C with respect to W, which is a simplicial category, i.e., a category enriched over
simplicial sets. (If C is not assumed to be small, then the simplicial localization may

347
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exist only in a higher universe; see, e.g., [60, page 17].) The simplicial localization of
C with respect to W is the derived functor of the localization of C with respect to W

(which also may exist only in a higher universe if C is not small; see Remark 8.3.3).
The simplicial localization thus constructs composable function complexes between
objects in the category, and the sets of components of these function complexes are
the sets of maps in the localization of C with respect to W.

Dwyer and Kan show that if M is a simplicial model category and W is its
subcategory of weak equivalences, then when X is cofibrant and Y is fibrant the
simplicial set Map(X,Y ) that is part of the simplicial structure of M is naturally
weakly equivalent to sLWM(X,Y ). They show that a weak equivalence Y → Z
in M always induces a weak equivalence sLWM(X,Y ) ∼= sLWM(X,Z), while the
map Map(X,Y ) → Map(X,Z) is guaranteed to be a weak equivalence only when
X is cofibrant and both Y and Z are fibrant (and a similar statement is true for
weak equivalences of the first argument). Thus, the simplicial set sLWM(X,Y ) is
the “correct” function complex of maps from X to Y , even for simplicial model
categories.

Dwyer and Kan also show that if M is a model category and W is the sub-
category of weak equivalences in M, then the simplicial sets sLWM(X,Y ) can be
computed (up to weak equivalence) using resolutions (see Definition 16.1.2) in the
model category M (see [32, Section 4]), with no need to consider higher universes.
In this chapter, we define a homotopy function complex to be a simplicial set ob-
tained from the Dwyer-Kan construction using resolutions in the model category
M (see Definition 17.4.1). We present a self-contained development of the proper-
ties of these homotopy function complexes, with no explicit reference to the more
general construction of the simplicial localization of Dwyer and Kan.

We define left homotopy function complexes in Section 17.1, right homotopy
function complexes in Section 17.2, and two-sided homotopy function complexes
in Section 17.3, proving existence and uniqueness theorems for each of these. In
Section 17.4 we discuss homotopy function complexes in general (left, right, and
two-sided). We define left to two-sided change of homotopy function complex maps
and right to two-sided change of homotopy function complex maps, and we prove a
uniqueness theorem for homotopy function complexes. We also show that a Quillen
pair induces isomorphisms of homotopy function complexes for cofibrant domains
and fibrant codomains.

In Section 17.5 we discuss functorial homotopy function complexes. We prove
existence and uniqueness theorems for functorial left homotopy function complexes,
functorial right homotopy function complexes, functorial two-sided homotopy func-
tion complexes, and for all functorial homotopy function complexes combined. In
Section 17.6 we show that (left or right) homotopic maps induced homotopic maps
of homotopy function complexes. In Section 17.7 we show that the set of compo-
nents of a homotopy function complex between a pair of objects is isomorphic to
the set of maps in the homotopy category between those objects, and that weak
equivalences can be detected as maps that induce weak equivalences of homotopy
function complexes.

In Section 17.8 we discuss homotopy orthogonal maps, which is the general-
ization for homotopy function complexes of homotopy lifting-extension pairs in a
simplicial model category, and in Section 17.9 we use homotopy function complexes
to obtain some results on colimits of λ-sequences of weak equivalences.
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17.1. Left homotopy function complexes

Definition 17.1.1. If M is a model category and X and Y are objects of M,
then a left homotopy function complex from X to Y is a triple(

X̃, Ŷ ,M(X̃, Ŷ )
)

where
• X̃ is a cosimplicial resolution of X (see Definition 16.1.2),
• Ŷ is a fibrant approximation to Y (see Definition 8.1.2), and
• M(X̃, Ŷ ) is the simplicial set of Notation 16.4.1.

The left homotopy function complex
(
X̃, Ŷ ,M(X̃, Ŷ )

)
is thus entirely determined

by X̃ and Ŷ , but we will commonly refer to the simplicial set M(X̃, Ŷ ) that is a part
of the left homotopy function complex as though it were the left homotopy function
complex (see also Notation 17.4.2). Strictly speaking, however, a left homotopy
function complex from X to Y can be identified with an object of the undercategory(
(cc∗X,Y ) ↓ (M∆)op ×M

)
(see Notation 16.1.1 and Definition 11.8.3)).

Remark 17.1.2. If we embed M in M∆op
as the subcategory of constant simpli-

cial objects, then a left homotopy function complex from X to Y can be identified
with an object of the undercategory

(
(cc∗X, cs∗Y ) ↓ (M∆)op ×M∆op)

(see Nota-
tion 16.1.1), in which case the simplicial set M(X̃, Ŷ ) is naturally isomorphic to
diag M(X̃, cc∗Ŷ ).

Proposition 17.1.3. If M is a model category and X and Y are objects of M,
then a left homotopy function complex from X to Y is a fibrant simplicial set.

Proof. This follows from Corollary 16.5.3. �

Example 17.1.4. If M is a simplicial model category, X is a cofibrant object
of M, and Y is a fibrant object of M, then Corollary 16.1.4 implies that Map(X,Y )
(i.e., the simplicial set that is part of the simplicial structure of M) is a left homotopy
function complex from X to Y .

Definition 17.1.5. A change of left homotopy function complex map(
X̃, Ŷ ,M(X̃, Ŷ )

)
→

(
X̃ ′, Ŷ ′,M(X̃ ′, Ŷ ′)

)
is a triple (f, g, h) where

• f : X̃ ′ → X̃ is a map of cosimplicial resolutions of X,
• g : Ŷ → Ŷ ′ is a map of fibrant approximations to Y (see Definition 8.1.4),

and
• h : M(X̃, Ŷ )→M(X̃ ′, Ŷ ′) is the map of simplicial sets induced by f and
g.

The change of left homotopy function complex map is thus entirely determined by f
and g, but we will commonly refer to the map of simplicial sets h as though it were
the change of left homotopy function complex map. Strictly speaking, however, a
change of left homotopy function complex map can be identified with a map in the
undercategory

(
(cc∗X, cs∗Y ) ↓ (M∆)op ×M∆op)

(see Remark 17.1.2).

Proposition 17.1.6. If M is a model category and X and Y are objects of
M, then a change of left homotopy function complex map is a weak equivalence of
fibrant simplicial sets.
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Proof. This follows from Corollary 16.5.5, Lemma 16.1.12, and Lemma 8.1.5.
�

Definition 17.1.7. If M is a model category and X and Y are objects of M,
then the category of left homotopy function complexes from X to Y is the category
LHFC(X,Y ) whose objects are left homotopy function complexes from X to Y and
whose maps are change of left homotopy function complex maps.

Proposition 17.1.8. If M is a model category and X and Y are objects of
M, then the category LHFC(X,Y ) (see Definition 17.1.7) can be identified with
a full subcategory of

(
(cc∗X, cs∗Y ) ↓ (M∆)op ×M∆op)

(see Notation 16.1.1 and
Definition 11.8.3).

Proof. This follows from Remark 17.1.2. �

Proposition 17.1.9. If M is a model category and X and Y are objects of M,
then the category LHFC(X,Y ) (see Definition 17.1.7) is naturally isomorphic to
CRes(X)op × FibAp(Y ) (see Definition 16.1.14).

Proof. This follows directly from the definitions. �

Proposition 17.1.10. If M is a model category and X and Y are objects of M,
then the classifying space B LHFC(X,Y ) of the category of left homotopy function
complexes from X to Y (see Definition 17.1.7) is contractible.

Proof. This follows from Proposition 14.3.5, Proposition 17.1.9, Proposi-
tion 14.1.5, Theorem 14.6.2, and Proposition 16.1.15. �

Theorem 17.1.11. If M is a model category and X and Y are objects of M,
then any two left homotopy function complexes from X to Y are connected by an
essentially unique (see Definition 14.4.2) zig-zag of change of left homotopy function
complex maps.

Proof. This follows from Theorem 14.4.5 and Proposition 17.1.10. �

17.2. Right homotopy function complexes

Definition 17.2.1. If M is a model category and X and Y are objects of M,
then a right homotopy function complex from X to Y is a triple(

X̃, Ŷ ,M(X̃, Ŷ )
)

where
• X̃ is a cofibrant approximation to X (see Definition 8.1.2),
• Ŷ is a simplicial resolution of Y (see Definition 16.1.2), and
• M(X̃, Ŷ ) is the simplicial set of Notation 16.4.1.

The right homotopy function complex
(
X̃, Ŷ ,M(X̃, Ŷ )

)
is thus entirely determined

by X̃ and Ŷ , but we will commonly refer to the simplicial set M(X̃, Ŷ ) that is a
part of the right homotopy function complex as though it were the right homo-
topy function complex (see also Notation 17.4.2). Strictly speaking, however, a
right homotopy function complex from X to Y can be identified with an object
of the undercategory

(
(X, cs∗Y ) ↓Mop ×M∆op)

(see Notation 16.1.1 and Defini-
tion 11.8.3).
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Remark 17.2.2. If we embed M in M∆ as the subcategory of constant cosimpli-
cial objects, then a right homotopy function complex from X to Y can be identified
with an object of the undercategory

(
(cc∗X, cs∗Y ) ↓ (M∆)op ×M∆op)

(see Nota-
tion 16.1.1), in which case the simplicial set M(X̃, Ŷ ) is naturally isomorphic to
diag M(cc∗X̃, Ŷ ).

Proposition 17.2.3. If M is a model category and X and Y are objects of M,
then a right homotopy function complex from X to Y is a fibrant simplicial sets.

Proof. This follows from Corollary 16.5.3. �

Example 17.2.4. If M is a simplicial model category, X is a cofibrant object
of M, and Y is a fibrant object of M, then Corollary 16.1.4 implies that Map(X,Y )
(i.e., the simplicial set that is part of the simplicial structure of M) is a right
homotopy function complex from X to Y .

Definition 17.2.5. A change of right homotopy function complex map(
X̃, Ŷ ,M(X̃, Ŷ )

)
→

(
X̃ ′, Ŷ ′,M(X̃ ′, Ŷ ′)

)
is a triple (f, g, h) where

• f : X̃ ′ → X̃ is a map of cofibrant approximations to X (see Defini-
tion 8.1.4),
• g : Ŷ → Ŷ ′ is a map of simplicial resolutions of Y (see Definition 16.1.11),

and
• h : M(X̃, Ŷ )→M(X̃ ′, Ŷ ′) is the map of simplicial sets induced by f and
g.

The change of right homotopy function complex map is thus entirely determined
by f and g, but we will commonly refer to the map of simplicial sets h as though
it were the change of right homotopy function complex map. Strictly speaking,
however, a change of right homotopy function complex map can be identified with
a map in the undercategory

(
(cc∗X, cs∗Y ) ↓ (M∆)op ×M∆op)

(see Remark 17.2.2).

Proposition 17.2.6. If M is a model category and X and Y are objects of M,
then a change of right homotopy function complex map is a weak equivalence of
fibrant simplicial sets.

Proof. This follows from Corollary 16.5.5, Lemma 16.1.12, and Lemma 8.1.5.
�

Definition 17.2.7. If M is a model category and X and Y are objects of M,
then the category of right homotopy function complexes from X to Y is the category
RHFC(X,Y ) whose objects are right homotopy function complexes from X to Y
and whose maps are change of right homotopy function complex maps.

Proposition 17.2.8. If M is a model category and X and Y are objects of
M, then the category RHFC(X,Y ) (see Definition 17.2.7) can be identified with
a full subcategory of

(
(cc∗X, cs∗Y ) ↓ (M∆)op ×M∆op)

(see Notation 16.1.1 and
Definition 11.8.3).

Proof. This follows from Remark 17.2.2. �
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Proposition 17.2.9. If M is a model category and X and Y are objects of M,
then the category RHFC(X,Y ) (see Definition 17.2.7) is naturally isomorphic to
CofAp(X)op × SRes(Y ) (see Definition 16.1.14).

Proof. This follows directly from the definitions. �

Proposition 17.2.10. If M is a model category and X and Y are objects of
M, then the classifying space B RHFC(X,Y ) of the category of right homotopy
function complexes from X to Y (see Definition 17.2.7) is contractible.

Proof. This follows from Proposition 14.3.5, Proposition 17.2.9, Proposi-
tion 14.1.5, Theorem 14.6.2, and Proposition 16.1.15. �

Theorem 17.2.11. If M is a model category and X and Y are objects of M,
then any two right homotopy function complexes from X to Y are connected by
an essentially unique (see Definition 14.4.2) zig-zag of change of right homotopy
function complex maps.

Proof. This follows from Theorem 14.4.5 and Proposition 17.2.10. �

17.3. Two-sided homotopy function complexes

Definition 17.3.1. If M is a model category and X and Y are objects of M,
then a two-sided homotopy function complex from X to Y is a triple(

X̃, Ŷ ,diag M(X̃, Ŷ )
)

where
• X̃ is a cosimplicial resolution of X (see Definition 16.1.2),
• Ŷ is a simplicial resolution of Y (see Definition 16.1.2), and
• diag M(X̃, Ŷ ) is the simplicial set of Notation 16.4.1.

The two-sided homotopy function complex
(
X̃, Ŷ ,diag M(X̃, Ŷ )

)
is thus entirely

determined by X̃ and Ŷ , but we will commonly refer to the simplicial set diag M(X̃, Ŷ )
that is a part of the two-sided homotopy function complex as though it were the
two-sided homotopy function complex (see also Notation 17.4.2). Strictly speaking,
however, a two-sided homotopy function complex from X to Y can be identified
with an object of the undercategory

(
(cc∗X, cs∗Y ) ↓ (M∆)op ×M∆op)

(see Nota-
tion 16.1.1).

Proposition 17.3.2. If M is a model category and X and Y are objects of M,
then a two-sided homotopy function complex from X to Y is a fibrant simplicial
set.

Proof. This follows from Corollary 16.5.19. �

Definition 17.3.3. A change of two-sided homotopy function complex map(
X̃, Ŷ ,diag M(X̃, Ŷ )

)
→

(
X̃ ′, Ŷ ′,diag M(X̃ ′, Ŷ ′)

)
is a triple (f, g, h) where

• f : X̃ ′ → X̃ is a map of cosimplicial resolutions of X,
• g : Ŷ → Ŷ ′ is a map of simplicial resolutions of Y (see Definition 16.1.11),

and
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• h : diag M(X̃, Ŷ )→ diag M(X̃ ′, Ŷ ′) is the map of simplicial sets induced
by f and g.

The change of two-sided homotopy function complex map is thus entirely deter-
mined by f and g, but we will commonly refer to the map of simplicial sets h as
though it were the change of two-sided homotopy function complex map. Strictly
speaking, however, a change of two-sided homotopy function complex map can be
identified with a map in the undercategory

(
(cc∗X, cs∗Y ) ↓ (M∆)op ×M∆op)

.

Proposition 17.3.4. If M is a model category and X and Y are objects of M,
then a change of two-sided homotopy function complex map is a weak equivalence
of fibrant simplicial sets.

Proof. This follows from Corollary 16.5.21 and Lemma 16.1.12. �

Definition 17.3.5. If M is a model category and X and Y are objects of M,
then the category of two-sided homotopy function complexes from X to Y is the
category TSHFC(X,Y ) whose objects are two-sided homotopy function complexes
from X to Y and whose maps are change of two-sided homotopy function complex
maps.

Proposition 17.3.6. If M is a model category and X and Y are objects of
M, then the category TSHFC(X,Y ) (see Definition 17.3.5) can be identified with
a full subcategory of

(
(cc∗X, cs∗Y ) ↓ (M∆)op ×M∆op)

(see Notation 16.1.1 and
Definition 11.8.3).

Proof. This follows directly from the definitions. �

Proposition 17.3.7. If M is a model category and X and Y are objects of M,
then the category TSHFC(X,Y ) (see Definition 17.3.5) is naturally isomorphic to
CRes(X)op × SRes(Y ) (see Definition 16.1.14).

Proof. This follows directly from the definitions. �

Proposition 17.3.8. If M is a model category and X and Y are objects of M,
then the classifying space B TSHFC(X,Y ) of the category of two-sided homotopy
function complexes from X to Y (see Definition 17.3.5) is contractible.

Proof. This follows from Proposition 14.3.5, Proposition 17.3.7, Proposi-
tion 14.1.5, and Proposition 16.1.15. �

Theorem 17.3.9. If M is a model category and X and Y are objects of M, then
any two two-sided homotopy function complexes from X to Y are connected by an
essentially unique (see Definition 14.4.2) zig-zag of change of two-sided homotopy
function complex maps.

Proof. This follows from Theorem 14.4.5 and Proposition 17.3.8. �

17.4. Homotopy function complexes

Definition 17.4.1. A homotopy function complex from X to Y is either
• a left homotopy function complex from X to Y (see Definition 17.1.1),
• a right homotopy function complex from X to Y (see Definition 17.2.1),

or
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• a two-sided homotopy function complex fromX to Y (see Definition 17.3.1).
Every homotopy function complex from X to Y can be identified with an ob-
ject of the undercategory

(
(cc∗X, cs∗Y ) ↓ (M∆)op ×M∆op)

(see Remark 17.1.2, Re-
mark 17.2.2, and Definition 17.3.1), but we will commonly refer to the simplicial set
diag M(X̃, Ŷ ) that is a part of the homotopy function complex

(
(cc∗X, cs∗Y ) →

(X̃, Ŷ )
)

as though it were the homotopy function complex.

Notation 17.4.2. If M is a model category and X and Y are objects of M,
then we will use the notation map(X,Y ) to denote a simplicial set that is some
unspecified homotopy function complex from X to Y (see Definition 17.4.1). Thus,
map(X,Y ) will denote either

• the simplicial set M(X̃, Ŷ ) that is part of a left homotopy function com-
plex

(
X̃, Ŷ ,M(X̃, Ŷ )

)
,

• the simplicial set M(X̃, Ŷ ) that is part of a right homotopy function
complex

(
X̃, Ŷ ,M(X̃, Ŷ )

)
, or

• the simplicial set diag M(X̃, Ŷ ) that is part of a two-sided homotopy
function complex

(
X̃, Ŷ ,diag M(X̃, Ŷ )

)
.

Proposition 17.4.3. If M is a model category and X and Y are objects of M,
then a homotopy function complex from X to Y is a fibrant simplicial set.

Proof. This follows from Proposition 17.1.3, Proposition 17.2.3, and Propo-
sition 17.3.2. �

Proposition 17.4.4. Let M be a model category and let X and Y be objects

of M. If
(
X̃, Ŷ ,diag M(X̃, Ŷ )

)
is a two-sided homotopy function complex from X

to Y , then

(1) there is a left homotopy function complex
(
X̃, Ŷ 0,M(X̃, Ŷ 0)

)
obtained

by replacing the simplicial resolution Ŷ with the fibrant approximation

Ŷ 0, and

(2) there is a right homotopy function complex
(
X̃0, Ŷ ,M(X̃0, Ŷ )

)
obtained

by replacing the cosimplicial resolution X̃ with the cofibrant approxima-

tion X̃0.

Proof. This follows from Proposition 16.1.5. �

Definition 17.4.5. Let M be a model category and let X and Y be objects of
M. If

(
X̃, Ŷ ,diag M(X̃, Ŷ )

)
is a two-sided homotopy function complex from X to

Y , then
(1) We will let

LTS(X̃, Ŷ ) :
(
X̃, cs∗Ŷ 0,diag M(X̃, cs∗Ŷ 0)

)
→

(
X̃, Ŷ ,diag M(X̃, Ŷ )

)
denote the natural map in

(
(cc∗X, cs∗Y ) ↓ (M∆)op ×M∆op)

defined by the
identity of X̃ and the natural map cs∗Ŷ 0 → Ŷ (see Notation 16.1.1 and
Remark 17.1.2), and we will call such a map a left to two-sided change of
homotopy function complex map. Although this map is, strictly speak-
ing, a map in the undercategory

(
(cc∗X, cs∗Y ) ↓ (M∆)op ×M∆op)

, we
will commonly refer to the map of simplicial sets diag M(X̃, cs∗Ŷ 0) →
diag M(X̃, Ŷ ) that is a part of the left to two-sided change of homotopy
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function complex map as though it were the left to two-sided change of
homotopy function complex map.

(2) We will let

RTS(X̃, Ŷ ) :
(
cc∗X̂0, Ŷ ,diag M(cc∗X̃0, Ŷ )

)
→

(
X̃, Ŷ ,diag M(X̃, Ŷ )

)
denote the natural map in

(
(cc∗X, cs∗Y ) ↓ (M∆)op ×M∆op)

defined by
the natural map X̃ → cc∗X̃0 and the identity of Ŷ (see Notation 16.1.1
and Remark 17.2.2), and we will call such a map a right to two-sided
change of homotopy function complex map. Although this map is, strictly
speaking, a map in the undercategory

(
(cc∗X, cs∗Y ) ↓ (M∆)op ×M∆op)

we will commonly refer to the map of simplicial sets diag M(cc∗X̃0, Ŷ )→
diag M(X̃, Ŷ ) that is a part of the right to two-sided change of homotopy
function complex map as though it were the right to two-sided change of
homotopy function complex map.

Proposition 17.4.6. Let M be a model category. If X̃ is a cosimplicial resolu-

tion in M and Ŷ is a simplicial resolution in M, then the left to two-sided change of

homotopy function complex map M(X̃, Ŷ 0) ≈ diag M(X̃, cs∗Ŷ 0)→ diag M(X̃, Ŷ )
(see Definition 17.4.5) and the right to two-sided change of homotopy function com-

plex map M(X̃0, Ŷ ) ≈ diag M(cc∗X̃0, Ŷ )→ diag M(X̃, Ŷ ) are weak equivalences
of fibrant simplicial sets.

Proof. Corollary 16.5.5 implies that the bisimplicial set M(X̃, Ŷ ) satisfies the
hypotheses of Corollary 15.11.12, and so Theorem 15.11.6 implies that the natural
map M(X̃0, Ŷ )→ diag M(X̃, Ŷ ) is a weak equivalence. Similarly, reversing the in-
dices of the bisimplicial set M(X̃, Ŷ ), the natural map M(X̃, Ŷ 0)→ diag M(X̃, Ŷ )
is a weak equivalence. �

Definition 17.4.7. If M is a model category and X and Y are objects of
M, then a change of homotopy function complex map is a finite composition (in(
(cc∗X, cs∗Y ) ↓ (M∆)op ×M∆op)

; see Notation 16.1.1) of

• change of left homotopy function complex maps (see Definition 17.1.5),
• change of right homotopy function complex maps (see Definition 17.2.5),
• change of two-sided homotopy function complex maps (see Definition 17.4.5),
• left to two-sided change of homotopy function complex maps (see Defini-

tion 17.3.3), and
• right to two-sided change of homotopy function complex maps.

Although these maps are, strictly speaking, maps in the undercategory(
(cc∗X, cs∗Y ) ↓ (M∆)op ×M∆op)

,

we will commonly refer to the corresponding maps of simplicial sets as though they
were the change of homotopy function complex maps.

Theorem 17.4.8. If M is a model category and X and Y are objects of M,
then a change of homotopy function complex map (see Definition 17.4.1) is a weak
equivalence of fibrant simplicial sets.

Proof. This follows from Proposition 17.1.6, Proposition 17.2.6, Proposi-
tion 17.3.4, and Proposition 17.4.6. �
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Definition 17.4.9. If M is a model category and X and Y are objects of M,
then the category of homotopy function complexes from X to Y is the category
HFC(X,Y ) whose objects are homotopy function complexes from X to Y and
whose maps are change of homotopy function complex maps.

Proposition 17.4.10. If M is a model category and X and Y are objects of
M, then the category HFC(X,Y ) (see Definition 17.4.9) can be identified with a
subcategory of

(
(cc∗X, cs∗Y ) ↓ (M∆)op ×M∆op)

(see Notation 16.1.1 and Defini-
tion 11.8.3).

Proof. This follows from Proposition 17.1.8, Proposition 17.2.8, and Propo-
sition 17.3.6. �

Definition 17.4.11. Let M be a model category and let X and Y be objects
of M. We will call an object (X,Y ) of (M∆)op ×M∆op

(1) a left resolving pair if X is a cosimplicial resolution (see Definition 16.1.26)
and Y is isomorphic to cs∗Y (see Notation 16.1.1) for some fibrant object
Y of M,

(2) a right resolving pair if X is isomorphic to cc∗X (see Notation 16.1.1)
for some cofibrant object X of M and Y is a simplicial resolution (see
Definition 16.1.26), or

(3) a two-sided resolving pair if X is a cosimplicial resolution and Y is a
simplicial resolution (see Definition 16.1.26).

An object (X,Y ) of (M∆)op ×M∆op
will be called a resolving pair if it is either a

left resolving pair, a right resolving pair, or a two-sided resolving pair.

Remark 17.4.12. The conditions of Definition 17.4.11 are not mutually ex-
clusive. For example, in the category of simplicial simplicial sets, the constant
simplicial object at the one point simplicial set is both a simplicial resolution and
a constant simplicial object at a fibrant simplicial set.

Theorem 17.4.13. If M is a model category and X and Y are objects of M,
then the classifying space B HFC(X,Y ) of homotopy function complexes from X
to Y (see Definition 17.4.9) is contractible (see Definition 14.3.1).

Proof. We view HFC(X,Y ) as a subcategory of the undercategory(
(cc∗X, cs∗Y ) ↓ (M∆)op ×M∆op)

(see Remark 17.1.2, Remark 17.2.2, and Definition 17.3.1), and we let W be the
class of maps h = (fop, g) in (M∆)op ×M∆op

such that
(1) both f and g are degreewise weak equivalences and
(2) the codomain of h is a resolving pair (see Definition 17.4.11).

The result now follows from Theorem 14.5.6 and Proposition 8.1.17. �

Theorem 17.4.14. Let M be a model category. If X and Y are objects of
M, then any two homotopy function complexes from X to Y are connected by an
essentially unique (see Definition 14.4.2) zig-zag of change of homotopy function
complex maps.

Proof. This follows from Theorem 14.4.5 and Theorem 17.4.13. �
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17.4.15. Quillen functors and homotopy function complexes.

Proposition 17.4.16. Let M and N be small categories, let F: M � N :U be
a Quillen pair (see Definition 8.5.2), let X be a cofibrant object of M and let Y be
a fibrant object of N.

(1) If X̃ is a cosimplicial resolution of X then FX̃ is a cosimplicial resolution
of FX and the adjointness isomorphism defines a natural isomorphism of

left homotopy function complexes N(FX̃, Y ) ≈M(X̃,UY ).
(2) If Ŷ is a simplicial resolution of Y then UŶ is a simplicial resolution of

UY and the adjointness isomorphism defines a natural isomorphism of

right homotopy function complexes N(FX, Ŷ ) ≈M(X,UŶ ).
(3) If X̃ is a cosimplicial resolution of X and Ŷ is a simplicial resolution of Y ,

then the adjointness isomorphism defines a natural isomorphism of two-

sided homotopy function complexes diag N(FX̃, Ŷ ) ≈ diag M(X̃,UŶ ).

Proof. This follows from Proposition 16.2.1. �

17.5. Functorial homotopy function complexes

17.5.1. Functorial left homotopy function complexes.

Definition 17.5.2. If M is a model category and K is a subcategory of Mop×M,
then a functorial left homotopy function complex on K is a pair (F, φ) where F is a
functor F: K→ (M∆)op×M∆op

and φ is a natural transformation φ : (cc∗X, cs∗Y )→
F(X,Y ) (see Remark 17.1.2) such that

(1) φ(X,Y ) is a left homotopy function complex from X to Y for every object
(X,Y ) of K (see Proposition 17.1.8) and

(2) F takes maps of K into compositions of maps of left homotopy function
complexes.

Definition 17.5.3. Let M be a model category and let K be a subcategory
of Mop ×M. If (F, φ) and (F′, φ′) are functorial left homotopy function complexes
on K, then a change of functorial left homotopy function complex map from (F, φ)
to (F′, φ′) is a natural transformation g : F → F′ such that g(X,Y ) : F(X,Y ) →
F′(X,Y ) is a change of left homotopy function complex map for every object (X,Y )
of K.

Proposition 17.5.4. If M is a model category, then there exists a functorial
left homotopy function complex defined on all of Mop ×M.

Proof. This follows from Proposition 16.1.9 and Proposition 8.1.17. �

Definition 17.5.5. If M is a model category and K is a subcategory of Mop×M,
then a category of functorial left homotopy function complexes on K is a category
of functors from K to (M∆)op ×M∆op

under the “constant object” functor (that
takes (X,Y ) to (cc∗X, cs∗Y )) with respect to those maps in (M∆)op ×M∆op

that
are componentwise Reedy weak equivalences with codomain a left resolving pair
(see Definition 17.4.11).

Theorem 17.5.6. If M is a model category and K is a subcategory of Mop×M,
then for every small category D of functorial left homotopy function complexes on
K there is a small category D′ of functorial left homotopy function complexes on
K such that D ⊂ D′ and BD′ is contractible.
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Proof. This follows from Theorem 14.5.4, Proposition 16.1.9, and Proposi-
tion 8.1.17. �

Theorem 17.5.7. If M is a model category, K is a subcategory of Mop ×M,
and (F, φ) and (F′, φ′) are functorial left homotopy function complexes on K, then
there is an essentially unique zig-zag (see Definition 14.4.2) of change of functorial
left homotopy function complex maps from (F, φ) to (F′, φ′).

Proof. This follows from Proposition 14.5.7 and Theorem 17.5.6. �

17.5.8. Functorial right homotopy function complexes.

Definition 17.5.9. If M is a model category and K is a subcategory of Mop×M,
then a functorial right homotopy function complex on a subcategory K of Mop×M

is a pair (F, φ) where F is a functor F: K → (M∆)op ×M∆op
and φ is a natural

transformation φ : (cc∗X, cs∗Y )→ F(X,Y ) such that
(1) φ(X,Y ) is a right homotopy function complex from X to Y for every

object (X,Y ) of K (see Proposition 17.2.8) and
(2) F takes maps of K into compositions of maps of right homotopy function

complexes.

Definition 17.5.10. Let M be a model category and let K be a subcategory
of Mop×M. If (F, φ) and (F′, φ′) are functorial right homotopy function complexes
on K, then a change of functorial right homotopy function complex map from (F, φ)
to (F′, φ′) is a natural transformation g : F → F′ such that g(X,Y ) : F(X,Y ) →
F′(X,Y ) is a change of right homotopy function complex map for every object
(X,Y ) of K.

Proposition 17.5.11. If M is a model category, then there exists a functorial
right homotopy function complex defined on all of Mop ×M.

Proof. This follows from Proposition 16.1.9 and Proposition 8.1.17. �

Definition 17.5.12. If M is a model category and K is a subcategory of Mop×
M, then a category of functorial right homotopy function complexes on K is a
category of functors from K to (M∆)op×M∆op

under the “constant object” functor
(that takes (X,Y ) to (cc∗X, cs∗Y )) with respect to those maps in (M∆)op ×M∆op

that are componentwise Reedy weak equivalences with codomain a right resolving
pair (see Definition 17.4.11).

Theorem 17.5.13. If M is a model category and K is a subcategory of Mop×M,
then for every small category D of functorial right homotopy function complexes
on K there is a small category D′ of functorial right homotopy function complexes
on K such that D ⊂ D′ and BD′ is contractible.

Proof. This follows from Theorem 14.5.4, Proposition 16.1.9, and Proposi-
tion 8.1.17. �

Theorem 17.5.14. If M is a model category, K is a subcategory of Mop ×M,
and (F, φ) and (F′, φ′) are functorial right homotopy function complexes on K, then
there is an essentially unique zig-zag (see Definition 14.4.2) of change of functorial
right homotopy function complex maps from (F, φ) to (F′, φ′).

Proof. This follows from Proposition 14.5.7 and Theorem 17.5.13. �
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17.5.15. Functorial two-sided homotopy function complexes.

Definition 17.5.16. If M is a model category and K is a subcategory of Mop×
M, then a functorial two-sided homotopy function complex on a subcategory K of
Mop ×M is a pair (F, φ) where F is a functor F: K→ (M∆)op ×M∆op

and φ is a
natural transformation φ : (cc∗X, cs∗Y )→ F(X,Y ) such that

(1) φ(X,Y ) is a two-sided homotopy function complex from X to Y for every
object (X,Y ) of K (see Proposition 17.3.6) and

(2) F takes maps of K into compositions of maps of two-sided homotopy
function complexes.

Definition 17.5.17. Let M be a model category and let K be a subcategory
of Mop × M. If (F, φ) and (F′, φ′) are functorial two-sided homotopy function
complexes on K, then a change of functorial two-sided homotopy function com-
plex map from (F, φ) to (F′, φ′) is a natural transformation g : F → F′ such that
g(X,Y ) : F(X,Y )→ F′(X,Y ) is a change of two-sided homotopy function complex
map for every object (X,Y ) of K.

Proposition 17.5.18. If M is a model category, then there exists a functorial
two-sided homotopy function complex defined on all of Mop ×M.

Proof. This follows from Proposition 16.1.9. �

Definition 17.5.19. If M is a model category and K is a subcategory of Mop×
M, then a category of functorial two-sided homotopy function complexes on K is
a category of functors from K to (M∆)op × M∆op

under the “constant object”
functor (that takes (X,Y ) to (cc∗X, cs∗Y )) with respect to those maps in (M∆)op×
M∆op

that are componentwise Reedy weak equivalences with codomain a two-sided
resolving pair (see Definition 17.4.11).

Theorem 17.5.20. If M is a model category and K is a subcategory of Mop ×
M, then for every small category D of functorial two-sided homotopy function
complexes on K there is a small category D′ of functorial two-sided homotopy
function complexes on K such that D ⊂ D′ and BD′ is contractible.

Proof. This follows from Theorem 14.5.4 and Proposition 16.1.9. �

Theorem 17.5.21. If M is a model category, K is a subcategory of Mop ×M,
and (F, φ) and (F′, φ′) are functorial two-sided homotopy function complexes on
K, then there is an essentially unique zig-zag (see Definition 14.4.2) of change of
functorial two-sided homotopy function complex maps from (F, φ) to (F′, φ′).

Proof. This follows from Proposition 14.5.7 and Theorem 17.5.20. �

17.5.22. Functorial homotopy function complexes.

Definition 17.5.23. If M is a model category and K is a subcategory of Mop×
M, then a functorial homotopy function complex on a subcategory K of Mop ×M

is either
• a functorial left homotopy function complex on K,
• a functorial right homotopy function complex on K, or
• a functorial two-sided homotopy function complex on K.
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Proposition 17.5.24. Let M be a model category and let K be a subcategory
of Mop ×M. If (F, φ) is a functorial two-sided homotopy function complex on K

(see Definition 17.5.16) such that F(X,Y ) =
(
F̃ (X,Y ), F̂ (X,Y )

)
for every object

(X,Y ) of K, then

(1) there is a functorial left homotopy function complex (F̃ , F̂ 0) obtained by

replacing the functorial simplicial resolution F̂ with the functorial fibrant

approximation F̂ 0, and

(2) there is a functorial right homotopy function complex (F̃ 0, F̂ ) obtained

by replacing the functorial cosimplicial resolution F̃ with the functorial

cofibrant approximation F̃ 0.

Proof. This follows from Proposition 17.4.4. �

Definition 17.5.25. Let M be a model category, let K be a subcategory of
Mop ×M, and let F =

(
F̃ , F̂ ,diag M(F̃ , F̂ )

)
be a functorial two-sided homotopy

function complex on K.
(1) We will let

LTS(F):
(
F̃ , cs∗F̂ 0,diag M(F̃ , cs∗F̂ 0)

)
→

(
F̃ , F̂ ,diag M(F̃ , F̂ )

)
denote the natural map defined by the identity of F̃ and the natural trans-
formation cs∗F̂ 0 → F̂ , and we will call such a map a functorial left to two-
sided change of homotopy function complex map. We will commonly refer
to the natural map of simplicial sets diag M(F̃ , cs∗F̂ 0) → diag M(F̃ , F̂ )
as though it were the functorial left to two-sided change of homotopy
function complex map.

(2) We will let

RTS(F):
(
cc∗F̃ 0, F̂ ,diag M(cc∗F̃ 0, F̂ )

)
→

(
F̃ , F̂ ,diag M(F̃ , F̂ )

)
denote the natural map defined by the natural transformation F̃ → cc∗F̃ 0

and the identity of F̂ , and we will call such a map a functorial right to two-
sided change of homotopy function complex map. We will commonly refer
to the natural map of simplicial sets diag M(cs∗F̃ 0, F̂ )→ diag M(F̃ , F̂ ) as
though it wee the functorial left to two-sided change of homotopy function
complex map.

Definition 17.5.26. If M is a model category and K is a subcategory of Mop×
M, then a functorial change of homotopy function complex map on K is a finite
composition of

(1) functorial change of left homotopy function complex maps (see Defini-
tion 17.5.3),

(2) functorial change of right homotopy function complex maps (see Defini-
tion 17.5.10),

(3) functorial change of two-sided homotopy function complex maps (see Def-
inition 17.5.17),

(4) functorial left to two-sided change of homotopy function complex maps
(see Definition 17.5.25), and

(5) functorial right to two-sided change of homotopy function complex maps
(see Definition 17.5.25).
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We will commonly refer to the natural map of simplicial sets that is a part of
the change of functorial homotopy function complex map as though it were the
functorial change of homotopy function complex map.

Definition 17.5.27. If M is a model category and K is a subcategory of Mop×
M, then a category of functorial homotopy function complexes on K is a category
of functors from K to (M∆)op ×M∆op

under the “constant object” functor (that
takes (X,Y ) to (cc∗X, cs∗Y )) with respect to those maps in (M∆)op ×M∆op

that
are componentwise Reedy weak equivalences with codomain a resolving pair (see
Definition 17.4.11).

Theorem 17.5.28. If M is a model category and K is a subcategory of Mop×M,
then for every small category D of functorial homotopy function complexes on K

there is a small category D′ of functorial homotopy function complexes on K such
that D ⊂ D′ and BD′ is contractible.

Proof. This follows from Theorem 14.5.4 and Proposition 16.1.9. �

Theorem 17.5.29. If M is a model category, K is a subcategory of Mop ×M,
and (F, φ) and (F′, φ′) are functorial homotopy function complexes on K, then
there is an essentially unique zig-zag (see Definition 14.4.2) of change of functorial
homotopy function complex maps from (F, φ) to (F′, φ′).

Proof. This follows from Proposition 14.5.7 and Theorem 17.5.28. �

Theorem 17.5.30. Let M be a model category and let K be a subcategory of
Mop ×M.

(1) If map1(X,Y ) and map2(X,Y ) are functorial left homotopy function com-
plexes on K then there is a homotopy equivalence h1,2 : map1(X,Y ) →
map2(X,Y ), defined up to homotopy and natural up to homotopy, such
that if map3(X,Y ) is a third functorial left homotopy function complex
on K and h1,3 : map1(X,Y ) → map3(X,Y ) and h2,3 : map2(X,Y ) →
map3(X,Y ) are the corresponding homotopy equivalences, then h2,3h1,2 '
h1,3.

(2) If map1(X,Y ) and map2(X,Y ) are functorial right homotopy function
complexes on K then there is a homotopy equivalence h1,2 : map1(X,Y )→
map2(X,Y ), defined up to homotopy and natural up to homotopy, such
that if map3(X,Y ) is a third functorial right homotopy function complex
on K and h1,3 : map1(X,Y ) → map3(X,Y ) and h2,3 : map2(X,Y ) →
map3(X,Y ) are the corresponding homotopy equivalences, then h2,3h1,2 '
h1,3.

(3) If map1(X,Y ) and map2(X,Y ) are functorial two-sided homotopy func-
tion complexes on K then there is a homotopy equivalence h1,2 : map1(X,Y )→
map2(X,Y ), defined up to homotopy and natural up to homotopy, such
that if map3(X,Y ) is a third functorial two-sided homotopy function com-
plex on K and h1,3 : map1(X,Y )→ map3(X,Y ) and h2,3 : map2(X,Y )→
map3(X,Y ) are the corresponding homotopy equivalences, then h2,3h1,2 '
h1,3.

(4) If map1(X,Y ) and map2(X,Y ) are functorial homotopy function com-
plexes on K then there is a homotopy equivalence h1,2 : map1(X,Y ) →
map2(X,Y ), defined up to homotopy and natural up to homotopy, such



362 17. HOMOTOPY FUNCTION COMPLEXES

that if map3(X,Y ) is a third functorial homotopy function complex on K

and h1,3 : map1(X,Y )→ map3(X,Y ) and h2,3 : map2(X,Y )→ map3(X,Y )
are the corresponding homotopy equivalences, then h2,3h1,2 ' h1,3.

Proof. This follows from Proposition 14.4.11 and Theorem 17.5.29. �

Theorem 17.5.31. Let M be a model category.

(1) If B is an object of M and g : X → Y is a map for which there is some
map of homotopy function complexes g∗ : map(B,X) → map(B, Y ) (see
Notation 17.4.2) induced by g that is a weak equivalence, then every such
map of homotopy function complexes induced by g is a weak equivalence.

(2) If X is an object of M and f : A→ B is a map for which there is some map
of homotopy function complexes (see Definition 17.6.2) f∗ : map(B,X)→
map(A,X) (see Notation 17.4.2) induced by f that is a weak equivalence,
then every such map of homotopy function complexes induced by f is a
weak equivalence.

Proof. This follows from Theorem 17.5.30, Proposition 7.7.6, and the “two
out of three” axiom (see Definition 7.1.3). �

17.6. Homotopic maps of homotopy function complexes

17.6.1. Induced maps of homotopy function complexes.

Definition 17.6.2. Let M be a model category, let W , X, Y , and Z be objects
of M, and let g : X → Y be a map.

(1) A map of left homotopy function complexes induced by g will mean either
(a) the map ĝ∗ : M(W̃ , X̂) → M(W̃ , Ŷ ) where W̃ is a cosimplicial res-

olution of W and ĝ : X̂ → Ŷ is a fibrant approximation to g (see
Definition 8.1.22), or

(b) the map g̃∗ : M(Ỹ , Ẑ)→M(X̃, Ẑ) where g̃ : X̃ → Ỹ is a cosimplicial
resolution of g (see Definition 16.1.20), and Ẑ is a fibrant approxi-
mation to Z.

(2) A map of right homotopy function complexes induced by g will mean either
(a) the map ĝ∗ : M(W̃ , X̂)→M(W̃ , Ŷ ) where W̃ is a cofibrant approx-

imation to W and ĝ : X̂ → Ŷ is a simplicial resolution of g, or
(b) the map g̃∗ : M(Ỹ , Ẑ)→M(X̃, Ẑ) where g̃ is a cofibrant approxima-

tion to g (see Definition 8.1.22) and Ẑ is a simplicial resolution of
Z.

(3) A map of two-sided homotopy function complexes induced by g will mean
either
(a) the map diag ĝ∗ : diag M(W̃ , X̂) → diag M(W̃ , Ŷ ) where W̃ is a

cosimplicial resolution of W and ĝ : X̂ → Ŷ is a simplicial resolution
of g, or

(b) the map diag g̃∗ : diag M(Ỹ , Ẑ) → diag M(X̃, Ẑ) where g̃ : X̃ → Ỹ

is a cosimplicial resolution of g and Ẑ is a simplicial resolution of Z.
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(4) A map of homotopy function complexes induced by g will mean either a
map of left homotopy function complexes induced by g, a map of right ho-
motopy function complexes induced by g, or a map of two-sided homotopy
function complexes induced by g.

Theorem 17.6.3. Let M be a model category and let W , X, Y , and Z be
objects in M. If g : X → Y is a weak equivalence, then

(1) any map of homotopy function complexes g∗ : map(W,X) → map(W,Y )
induced by g (see Notation 17.4.2 and Definition 17.6.2) is a weak equiv-
alence of fibrant simplicial sets, and

(2) any map of homotopy function complexes g∗ : map(Y, Z) → map(X,Z)
induced by g is a weak equivalence of fibrant simplicial sets.

Proof. This follows from Corollary 16.5.5, Corollary 16.5.21, and Proposi-
tion 16.1.24. �

17.6.4. Homotopic maps of homotopy function complexes. The main
result of this section is Theorem 17.6.7, which implies that if M is a model category
and if f and g are maps in M that are either left homotopic or right homotopic,
then any maps of homotopy function complexes induced by f and g are homotopic
maps of fibrant simplicial sets.

Lemma 17.6.5. If M is a model category and f, g : X → Y are left homotopic,
right homotopic, or homotopic, then both the induced maps of constant cosimpli-
cial objects cc∗f, cc∗g : cc∗X → cc∗Y and the induced maps of constant simplicial
objects cs∗f, cs∗g : cs∗X → cs∗Y are, respectively, left homotopic, right homotopic,
or homotopic.

Proof. The constant cosimplicial and constant simplicial objects obtained
from either a cylinder object for X or a path object for Y satisfy the conditions of
Proposition 7.3.5. �

Proposition 17.6.6. Let M be a model category.

(1) (a) If B̃ is a cosimplicial resolution in M and f̂ , ĝ : X̂ → Ŷ are left
homotopic, right homotopic, or homotopic maps of fibrant objects
in M, then the induced maps of left homotopy function complexes

f̂∗, ĝ∗ : M(B̃, X̂)→M(B̃, Ŷ ) are homotopic.

(b) If f̃ , g̃ : Ã → B̃ are left homotopic, right homotopic, or homotopic

maps of cosimplicial resolutions in M and X̂ is a fibrant object
of M, then the induced maps of left homotopy function complexes

f̃∗, g̃∗ : M(B̃, X̂)→M(Ã, X̂) are homotopic.

(2) (a) If B̃ is a cofibrant object of M and f̂ , ĝ : X̂ → Ŷ are left homo-
topic, right homotopic, or homotopic maps of simplicial resolutions
in M, then the induced maps of right homotopy function complexes

f̂∗, ĝ∗ : M(B̃, X̂)→M(B̃, Ŷ ) are homotopic.

(b) If f̃ , g̃ : Ã → B̃ are left homotopic, right homotopic, or homotopic

maps of cofibrant objects in M and X̂ is a simplicial resolution in
M, then the induced maps of right homotopy function complexes

f̃∗, g̃∗ : M(B̃, X̂)→M(Ã, X̂) are homotopic.
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(3) (a) If B̃ is a cosimplicial resolution in M and f̂ , ĝ : X̂ → Ŷ are left homo-
topic, right homotopic, or homotopic maps of simplicial resolutions in
M, then the induced maps of two-sided homotopy function complexes

diag f̂∗,diag ĝ∗ : diag M(B̃, X̂)→ diag M(B̃, Ŷ ) are homotopic.

(b) If f̃ , g̃ : Ã → B̃ are left homotopic, right homotopic, or homotopic

maps of cosimplicial resolutions in M and X̂ is a simplicial resolu-
tion in M, then the induced maps of two-sided homotopy function

complexes diag f̃∗,diag g̃∗ : diag M(B̃, X̂) → diag M(Ã, X̂) are ho-
motopic.

Proof. We will prove part 1(a); the proofs of the other parts are similar.
If f̂ and ĝ are left homotopic, then Proposition 7.3.4 implies that there is a

cylinder object X̂ q X̂ → Cyl(X̂)
p−→ X̂ for X̂ such that p is a trivial fibration and

a left homotopy H : Cyl(X̂) → Ŷ from f̂ to ĝ. Corollary 16.5.4 implies that the
map M

(
B̃,Cyl(X̂)

)
→ M(B̃, X̂) is a weak equivalence, and so Proposition 7.3.5

implies that f̂∗ and ĝ∗ are left homotopic. Proposition 17.1.3 and Theorem 7.4.9
now imply that f̂∗ and ĝ∗ are homotopic.

If f̂ and ĝ are right homotopic and if Ŷ → Path(Ŷ )→ Ŷ × Ŷ is a path object
for Ŷ and H : X̂ → Path(Ŷ ) is a right homotopy from f̂ to ĝ, then Corollary 16.5.5
implies that the map M(B̃, Ŷ ) → M

(
B̃,Path(Ŷ )

)
is a weak equivalence. Thus,

Proposition 7.3.5 implies that f̂∗ and ĝ∗ are right homotopic. Proposition 17.1.3
and Theorem 7.4.9 now imply that f̂∗ and ĝ∗ are homotopic. �

Theorem 17.6.7. Let M be a model category, and let W , X, Y , and Z be
objects in M.

(1) If f, g : X → Y are left homotopic, right homotopic, or homotopic, and
if f∗, g∗ : map(W,X) → map(W,Y ) (see Notation 17.4.2) are maps of
homotopy function complexes induced by, respectively, f and g, then f∗
and g∗ are homotopic maps of fibrant simplicial sets.

(2) If f, g : X → Y are left homotopic, right homotopic, or homotopic, and
if f∗, g∗ : map(Z,W ) → map(Z,W ) (see Notation 17.4.2) are maps of
homotopy function complexes induced by, respectively, f and g, then f∗

and g∗ are homotopic maps of fibrant simplicial sets.

Proof. We will prove part 1 in the case in which f∗ and g∗ are maps of left
homotopy function complexes; the proofs in the other cases (and of part 2) are
similar.

Let W̃ be a cosimplicial resolution ofW and let f̂ , ĝ : X̂ → Ŷ be fibrant approx-
imations to, respectively, f and g, such that the maps f∗ and g∗ are, respectively,
the maps f̂∗ : M(W̃ , X̂)→M(W̃ , Ŷ ) and ĝ∗ : M(W̃ , X̂)→M(W̃ , Ŷ ). If we factor
the weak equivalences X → X̂ and Y → Ŷ as, respectively, X iX−−→ X̂ ′

pX−−→ X̂ and
Y

iY−→ Ŷ ′
pY−−→ Ŷ such that iX and iY are trivial cofibrations and pX and pY are

fibrations, then the “two out of three” axiom implies that pX and pY are trivial
fibrations.
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The dotted arrow exists in the solid arrow diagram

X
f
//

iX

��

Y
iY // Ŷ ′

pY

��

X̂ ′ pX

//

f̂ ′
77

X̂
f̂

// Ŷ

and a similar diagram implies that the corresponding map ĝ′ : X̂ ′ → Ŷ ′ exists.
Thus, f̂ ′ and ĝ′ are cofibrant fibrant approximations to, respectively, f and g, and
we have the diagram

X̂ ′
f̂ ′
//

ĝ′
//

pX

��

Ŷ ′

pY

��

X̂
f̂
//

ĝ
// Ŷ

in which pY f̂ ′ = f̂pX and pY ĝ′ = ĝpX . Lemma 17.6.5 and Proposition 8.2.4 imply
that if f and g are left homotopic, right homotopic, or homotopic, then f̂ ′ and ĝ′

are, respectively, left homotopic, right homotopic, or homotopic. In any of these
cases, Proposition 17.6.6 implies that the maps f̂ ′∗ : M(W̃ , X̂ ′) → M(W̃ , Ŷ ′) and
ĝ′∗ : M(W̃ , X̂ ′)→M(W̃ , Ŷ ′) are homotopic. Since pX and pY are weak equivalences
of fibrant objects, Corollary 16.5.5 implies that the maps M(W̃ , X̂ ′)→ M(W̃ , X̂)
and M(W̃ , Ŷ ′) → M(W̃ , Ŷ ) are homotopy equivalences of fibrant simplicial sets,
and this implies that f̂∗ : M(W̃ , X̂) → M(W̃ , Ŷ ) and ĝ∗ : M(W̃ , X̂) → M(W̃ , Ŷ )
are homotopic. The result now follows from Proposition 17.4.3. �

17.7. Homotopy classes of maps

Proposition 17.7.1. Let M be a model category.

(1) If B̃ is a cosimplicial resolution in M and X is a fibrant object of M, then

the set π0M(B̃, X) is naturally isomorphic to the set of homotopy classes

of maps from B̃0 to X.

(2) If B is a cofibrant object of M and X̂ is a simplicial resolution in M, then

the set π0M(B, X̂) is naturally isomorphic to the set of homotopy classes

of maps from B to X̂0.

Proof. We will prove part 1; the proof of part 2 is dual.
The set of vertices of M(B̃, X) is the set of maps from B̃0 to X and Prop-

osition 16.1.6 implies that if two vertices of M(B̃, X) represent the same element
of π0M(B̃, X) then those vertices (i.e., maps from B̃0 to X) are homotopic. Fi-
nally, if two maps from B̃0 to X are homotopic, then Proposition 7.4.7 and Prop-
osition 16.1.6 imply that there is a 1-simplex of M(B̃, X) whose faces are those
maps. �

Theorem 17.7.2. Let M be a model category. If X and Y are objects of M

and map(X,Y ) is a homotopy function complex from X to Y , then π0 map(X,Y )
is naturally isomorphic to the set of maps from X to Y in Ho M.
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Proof. This follows from Proposition 17.7.1 and Proposition 16.1.5. �

Lemma 17.7.3. Let M be a model category.

(1) If B̃ is a cosimplicial resolution in M and p : X → Y is a map of fi-
brant objects in M that induces a weak equivalence of simplicial sets

p∗ : M(B̃, X) ∼= M(B̃, Y ), then p induces an isomorphism of the sets of

homotopy classes of maps p∗ : π(B̃0, X) ≈ π(B̃0, Y ).
(2) If X̂ is a simplicial resolution in M and i : A → B is a map of cofi-

brant objects in M that induces a weak equivalence of simplicial sets

i∗ : M(B, X̂) ∼= M(A, X̂), then i induces an isomorphism of the sets of

homotopy classes of maps i∗ : π(B, X̂0) ≈ π(A, X̂0).

Proof. This follows from Proposition 17.7.1. �

Proposition 17.7.4. Let M be a model category.

(1) If B is cofibrant and p : X → Y is a map of fibrant objects that induces
a weak equivalence of homotopy function complexes p∗ : map(B,X) →
map(B, Y ) (see Notation 17.4.2), then p induces an isomorphism of the
sets of homotopy classes of maps p∗ : π(B,X) ≈ π(B, Y ).

(2) If X is fibrant and i : A → B is a map of cofibrant objects that induces
a weak equivalence of homotopy function complexes i∗ : map(B,X) →
map(A,X) (see Notation 17.4.2), then i induces an isomorphism of the
sets of homotopy classes of maps i∗ : π(B,X) ≈ π(A,X).

Proof. We will prove part 1; the proof of part 2 is dual.
If B̃ is a cosimplicial resolution of B, then p induces a weak equivalence

p∗ : M(B̃, X) → M(B̃, Y ) (see Theorem 17.5.31), and so Lemma 17.7.3 implies
that p induces an isomorphism p∗ : π(B̃0, X) ≈ π(B̃0, Y ). Since B̃0 → B is a weak
equivalence of cofibrant objects, the result now follows from Corollary 7.7.4. �

Corollary 17.7.5. Let M be a model category.

(1) If B is cofibrant and p : X → Y is a fibration of fibrant objects that induces
a weak equivalence of homotopy function complexes p∗ : map(B,X) →
map(B, Y ), then for every map f : B → Y there is a map g : B → X,
unique up to homotopy, such that pg = f .

(2) If X is fibrant and i : A→ B is a cofibration of cofibrant objects that in-
duces a weak equivalence of homotopy function complexes i∗ : map(B,X)→
map(A,X), then for every map f : A → X there is a map g : B → X,
unique up to homotopy, such that gi = f .

Proof. This follows from Proposition 17.7.4, Proposition 7.3.13, and Theo-
rem 7.4.9. �

Proposition 17.7.6. If M is a model category, then a map g : X → Y is a
weak equivalence if either of the following two conditions is satisfied:

(1) The map g induces weak equivalences of homotopy function complexes

g∗ : map(X,X) ∼= map(X,Y ) and g∗ : map(Y,X) ∼= map(Y, Y )

(see Notation 17.4.2).
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(2) The map g induces weak equivalences of homotopy function complexes

g∗ : map(Y,X) ∼= map(X,X) and g∗ : map(Y, Y ) ∼= map(X,Y )

(see Notation 17.4.2).

Proof. We will prove this using condition 1; the proof using condition 2 is
dual.

If g̃ : X̃ → Ỹ is a cofibrant approximation to g, then Theorem 17.6.3 implies that
g̃ induces weak equivalences of homotopy function complexes g̃∗ : map(X̃, X̃) ∼=
map(X̃, Ỹ ) and g̃∗ : map(Ỹ , X̃) ∼= map(Ỹ , Ỹ ). If ĝ : X̂ → Ŷ is a cofibrant fi-
brant approximation to g̃, then ĝ is a map of cofibrant-fibrant objects, and The-
orem 17.6.3 implies that ĝ induces weak equivalences of homotopy function com-
plexes ĝ∗ : map(X̂, X̂) ∼= map(X̂, Ŷ ) and ĝ∗ : map(Ŷ , X̂) ∼= map(Ŷ , Ŷ ). Prop-
osition 17.7.4 now implies that ĝ induces isomorphisms of the sets of homotopy
classes of maps ĝ∗ : π(X̂, X̂) ≈ π(X̂, Ŷ ) and ĝ∗ : π(Ŷ , X̂) ≈ π(Ŷ , Ŷ ), and so Propo-
sition 7.5.12 implies that ĝ is a homotopy equivalence. Thus, ĝ is a weak equivalence
(see Theorem 7.8.5), and so g̃ is a weak equivalence, and so g is a weak equiva-
lence. �

Theorem 17.7.7. If M is a model category and g : X → Y is a map in M, then
the following are equivalent:

(1) The map g is a weak equivalence.
(2) For every object W in M the map g induces a weak equivalence of homo-

topy function complexes g∗ : map(W,X) ∼= map(W,Y ) (see Notation 17.4.2).
(3) For every cofibrant object W in M the map g induces a weak equiva-

lence of homotopy function complexes g∗ : map(W,X) ∼= map(W,Y ) (see
Notation 17.4.2).

(4) For every object Z in M the map g induces a weak equivalence of homotopy
function complexes g∗ : map(Y, Z) ∼= map(X,Z) (see Notation 17.4.2).

(5) For every fibrant object Z in M the map g induces a weak equivalence
of homotopy function complexes g∗ : map(Y, Z) ∼= map(X,Z) (see Nota-
tion 17.4.2).

Proof. This follows from Theorem 17.6.3, Proposition 17.7.6, and Proposi-
tion 8.1.17. �

17.8. Homotopy orthogonal maps

If M is a simplicial model category and if i : A → B and p : X → Y are maps
in M such that either

(1) i is a trivial cofibration and p is a fibration, or
(2) i is a cofibration and p is a trivial fibration,

then the map of function complexes Map(B,X)→ Map(A,X)×Map(A,Y )Map(B, Y )
is a trivial fibration (see Definition 9.1.6). If at least one of A and B is cofibrant then
at least one of the maps Map(A,X)→ Map(A, Y ) and Map(B, Y )→ Map(A, Y ) is
a fibration, and so the pullback Map(A,X)×Map(A,Y ) Map(B, Y ) is weakly equiva-
lent to the homotopy pullback (see Corollary 13.3.8 and Theorem 13.1.13). If both
A and B are cofibrant and both X and Y are fibrant, then these function complexes
are homotopy function complexes (see Example 17.1.4 and Example 17.2.4), and
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in this case the “orthogonality” condition is equivalent to saying that the square

Map(B,X) //

��

Map(B, Y )

��

Map(A,X) // Map(A, Y )

is a homotopy fiber square (see Definition 13.3.12).

Definition 17.8.1. If M is a model category and i : A → B and p : X → Y
are maps in M, then we will say that

(1) (i, p) is a homotopy orthogonal pair,
(2) i is left homotopy orthogonal to p, and
(3) p is right homotopy orthogonal to i

if there is a homotopy function complex map(−,−) on M (see Notation 17.4.2) such
that the square

map(B,X) //

��

map(B, Y )

��

map(A,X) // map(A, Y )

is a homotopy fiber square (see Definition 13.3.12). (We will show in Proposi-
tion 17.8.2 that if this is true for any one homotopy function complex, then it is
true for every homotopy function complex.)

Proposition 17.8.2. Let M be a model category, and let i : A→ B and p : X →
Y be maps in M. If there is some homotopy function complex map(−,−) (see
Notation 17.4.2) such that the square

(17.8.3) map(B,X) //

��

map(B, Y )

��

map(A,X) // map(A, Y )

is a homotopy fiber square of simplicial sets (see Definition 13.3.12), then Dia-
gram 17.8.3 for any other homotopy function complex is also a homotopy fiber
square.

Proof. If map1(−,−) and map2(−,−) are homotopy function complexes on
M, then Theorem 17.5.30 implies that there is a homotopy equivalence map1(−,−) ∼=
map2(−,−) that is natural up to homotopy. If we can alter these homotopy equiva-
lences by homotopies to get maps from Diagram 17.8.3 for map1 to Diagram 17.8.3
for map2 that commute on the nose, then the result will follow from Proposi-
tion 13.3.13. If the maps map2(A,X) → map2(A, Y ), map2(B, Y ) → map2(A, Y ),
and map2(B,X)→ map2(A,X)×map2(A,Y ) map2(B, Y ) are fibrations, then we can
use the homotopy lifting property (see Proposition 7.3.11) to alter the homotopy
equivalences from map1 to map2 in our diagrams by homotopies so that we do get
a map of diagrams. Thus, it is sufficient to show that for any homotopy function
complex, Diagram 17.8.3 maps to one with fibrations as described. We will do this
for left homotopy function complexes; the proofs for right and two-sided homotopy
function complexes are similar.
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If map is a left homotopy function complex defined by the cosimplicial resolu-
tion ı̃ : Ã → B̃ to i and the fibrant approximation p̂ : X̂ → Ŷ to p, then we can
factor ı̃ into a cofibration followed by a trivial fibration Ã → B̃′ → B̃ and factor
p̂ into a trivial cofibration followed by a fibration X̂ → X̂ ′ → Ŷ . This yields a
diagram

M(B̃, X̂) //

((QQQ
Q

��

M(B̃, Ŷ )
((PPP

P

��

M(B̃′, X̂ ′) //

��

M(B̃′, Ŷ )

��

M(Ã, X̂) //

((QQQ
Q

M(Ã, Ŷ )
((PPP

P

M(Ã, X̂ ′) // M(Ã, Ŷ )

in which all four maps from the back square to the front square are weak equiva-
lences (see Corollary 16.5.5), and Corollary 16.5.4 and Theorem 16.5.2 imply that
the front square has the fibrations required. �

Theorem 17.8.4. Let M be a model category. If i : A→ B and p : X → Y are
maps in M, then the following are equivalent:

(1) (i, p) is a homotopy orthogonal pair.

(2) For some cosimplicial resolution ı̃ : Ã → B̃ of i such that ı̃ is a Reedy

cofibration and some fibrant approximation p̂ : X̂ → Ŷ to p such that p̂ is
a fibration, the map of simplicial sets

M(B̃, X̂)→M(Ã, X̂)×M(Ã,Ŷ ) M(B̃, Ŷ )

is a trivial fibration.
(3) For every cosimplicial resolution ı̃ : Ã → B̃ of i such that ı̃ is a Reedy

cofibration and every fibrant approximation p̂ : X̂ → Ŷ to p such that p̂
is a fibration, the map of simplicial sets

M(B̃, X̂)→M(Ã, X̂)×M(Ã,Ŷ ) M(B̃, Ŷ )

is a trivial fibration.
(4) For some cofibrant approximation ı̃ : Ã→ B̃ to i such that ı̃ is a cofibration

and some simplicial resolution p̂ : X̂ → Ŷ of p such that p̂ is a Reedy
fibration, the map of simplicial sets

M(B̃, X̂)→M(Ã, X̂)×M(Ã,Ŷ ) M(B̃, Ŷ )

is a trivial fibration.
(5) For every cofibrant approximation ı̃ : Ã→ B̃ to i such that ı̃ is a cofibra-

tion and every simplicial resolution p̂ : X̂ → Ŷ of p such that p̂ is a Reedy
fibration, the map of simplicial sets

M(B̃, X̂)→M(Ã, X̂)×M(Ã,Ŷ ) M(B̃, Ŷ )

is a trivial fibration.
(6) For some cosimplicial resolution ı̃ : Ã → B̃ of i such that ı̃ is a Reedy

cofibration and some simplicial resolution p̂ : X̂ → Ŷ of p such that p̂ is
a Reedy fibration, the map of simplicial sets

diag M(B̃, X̂)→ diag M(Ã, X̂)×diag M(Ã,Ŷ ) diag M(B̃, Ŷ )
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is a trivial fibration.
(7) For every cosimplicial resolution ı̃ : Ã → B̃ of i such that ı̃ is a Reedy

cofibration and every simplicial resolution p̂ : X̂ → Ŷ of p such that p̂ is
a Reedy fibration, the map of simplicial sets

diag M(B̃, X̂)→ diag M(Ã, X̂)×diag M(Ã,Ŷ ) diag M(B̃, Ŷ )

is a trivial fibration.

Proof. This follows from Proposition 17.8.2, Theorem 16.5.2, and Theorem 16.5.18.
�

Proposition 17.8.5. Let M be a model category.

(1) If i : A→ B is a map in M and p : X → ∗ is the map to the terminal object
of M, then (i, p) is a homotopy orthogonal pair if and only if i induces
a weak equivalence of homotopy function complexes i∗ : map(B,X) ∼=
map(A,X) (see Notation 17.4.2).

(2) If p : X → Y is a map in M and i : ∅ → B is the map from the initial object
of M, then (i, p) is a homotopy orthogonal pair if and only if p induces
a weak equivalence of homotopy function complexes p∗ : map(B,X) ∼=
map(B, Y ) (see Notation 17.4.2).

Proof. This follows directly from the definitions. �

Proposition 17.8.6. Let M be a model category.

(1) If p : X → Y is a map in M and we have a square

A
∼= //

i

��

A′

i′

��

B ∼=
// B′

in which the horizontal maps are weak equivalences, then (i, p) is a homo-
topy orthogonal pair if and only if (i′, p) is one.

(2) If i : A→ B is a map in M and we have a square

X
∼= //

p

��

X ′

p′

��

Y ∼=
// Y ′

in which the horizontal maps are weak equivalences, then (i, p) is a homo-
topy orthogonal pair if and only if (i, p′) is one.

Proof. This follows from Proposition 13.3.13 and Theorem 17.6.3. �

Proposition 17.8.7. Let M be a model category and let i : A→ B and p : X →
Y be maps in M such that (i, p) is a homotopy orthogonal pair.

(1) If i′ : A′ → B′ is a retract of i (see Definition 7.1.1), then (i′, p) is a
homotopy orthogonal pair.

(2) If p′ : X ′ → Y ′ is a retract of p, then (i, p′) is a homotopy orthogonal pair.



17.8. HOMOTOPY ORTHOGONAL MAPS 371

Proof. We will prove part 1; the proof of part 2 is dual.
Let p̂ : X̂ → Ŷ be a simplicial resolution of p such that p̂ is a Reedy fibration

(see Proposition 16.1.22). Proposition 8.1.23 implies that there are cofibrant ap-
proximations ı̃ : Ã→ B̃ to i and ı̃′ : Ã′ → B̃′ to i′ such that ı̃ and ı̃′ are cofibrations
and ı̃′ is a retract of ı̃. The map M(B̃′, X̂)→M(Ã′, X̂)×M(Ã′,Ŷ ) M(B̃′, Ŷ ) is thus

a retract of the map M(B̃, X̂) → M(Ã, X̂) ×M(Ã,Ŷ ) M(B̃, Ŷ ), and so the result
follows from Theorem 17.8.4. �

Proposition 17.8.8. Let M be a model category. If i : A→ B and p : X → Y
are maps in M, then the following are equivalent:

(1) (i, p) is a homotopy orthogonal pair.

(2) For some cosimplicial resolution ı̃ : Ã → B̃ of i such that ı̃ is a Reedy

cofibration, some fibrant approximation p̂ : X̂ → Ŷ to p such that p̂ is a
fibration, and every n ≥ 0, the dotted arrow exists in every solid arrow
diagram of the form

Ã⊗∆[n]qÃ⊗∂∆[n] B̃ ⊗ ∂∆[n] //

��

X̂

��

B̃ ⊗∆[n] //

66

Ŷ

(3) For every cosimplicial resolution ı̃ : Ã → B̃ of i such that ı̃ is a Reedy

cofibration, every fibrant approximation p̂ : X̂ → Ŷ to p such that p̂ is a
fibration, and every n ≥ 0, the dotted arrow exists in every solid arrow
diagram of the form

Ã⊗∆[n]qÃ⊗∂∆[n] B̃ ⊗ ∂∆[n] //

��

X̂

��

B̃ ⊗∆[n] //

66

Ŷ

(4) For some cofibrant approximation ı̃ : Ã→ B̃ to i such that ı̃ is a cofibra-

tion, some simplicial resolution p̂ : X̂ → Ŷ to p such that p̂ is a Reedy
fibration, and every n ≥ 0, the dotted arrow exists in every solid arrow
diagram of the form

Ã //

��

X̂∆[n]

��

B̃ //

77

Ŷ ∆[n] ×Ŷ ∂∆[n] X̂∂∆[n]

(5) For every cofibrant approximation ı̃ : Ã→ B̃ to i such that ı̃ is a cofibra-

tion, every simplicial resolution p̂ : X̂ → Ŷ to p such that p̂ is a Reedy
fibration, and every n ≥ 0, the dotted arrow exists in every solid arrow
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diagram of the form

Ã //

��

X̂∆[n]

��

B̃ //

77

Ŷ ∆[n] ×Ŷ ∂∆[n] X̂∂∆[n]

Proof. Since a map of simplicial sets is a trivial fibration if and only if it has
the right lifting property with respect to the map ∂∆[n] → ∆[n] for every n ≥ 0,
this follows from Theorem 17.8.4 and Proposition 16.4.5. �

Proposition 17.8.9. Let M be a model category. If i : A → B is a cofibra-
tion between cofibrant objects, p : X → Y is a fibration between fibrant objects,
and (i, p) is a homotopy orthogonal pair, then (i, p) is a lifting-extension pair (see
Definition 7.2.1).

Proof. Proposition 16.6.14 implies that there is a cosimplicial frame ı̃ : Ã→
B̃ on i such that ı̃ is a Reedy cofibration. Proposition 17.8.8 now implies that Ã⊗
∆[0]→ B̃ ⊗∆[0] has the left lifting property with respect to p, and Lemma 16.3.6
implies that Ã⊗∆[0]→ B̃ ⊗∆[0] is isomorphic to the map i. �

Theorem 17.8.10. If M is a model category and g : X → Y is a map in M,
then the following are equivalent:

(1) g is a weak equivalence.
(2) g is right homotopy orthogonal to every map in M.
(3) For every cofibrant object W of M, g is right homotopy orthogonal to the

map ∅ →W (where ∅ is the initial object of M).
(4) g is left homotopy orthogonal to every map in M.
(5) For every fibrant object Z of M, g is left homotopy orthogonal to the map

Z → ∗ (where ∗ is the terminal object of M).

Proof. We will prove that conditions 1, 2, and 3 are equivalent. The proof
that conditions 1, 4, and 5 are equivalent is dual.

1 implies 2: If i : A → B is a map in M, choose a cofibrant approximation
ı̃ : Ã → B̃ to i such that ı̃ is a cofibration (see Proposition 8.1.23) and
choose a simplicial resolution ĝ : X̂ → Ŷ such that ĝ is a Reedy trivial
fibration (see Proposition 16.1.22 and Proposition 16.1.24); the result now
follows from Theorem 16.5.2.

2 implies 3: This is immediate.
3 implies 1: This follows from Proposition 17.8.5 and Theorem 17.7.7.

�

Proposition 17.8.11. Let M be a model category.

(1) If i : A → B is a cofibration between cofibrant objects and p : X → Y is
a map such that i is left homotopy orthogonal to p, then for every map
j : A→ C such that C is cofibrant the map C → BqAC is left homotopy
orthogonal to p.

(2) If p : X → Y is a fibration between fibrant objects and i : A → B is a
map such that p is right homotopy orthogonal to i, then for every map
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W → Y such that W is fibrant the map W ×Y X →W is right homotopy
orthogonal to i.

Proof. We will prove part 1; the proof of part 2 is dual.
If we choose a simplicial resolution p̂ : X̂ → Ŷ of p such that p̂ is a Reedy

fibration (see Proposition 16.1.22), then Proposition 17.8.8 implies that i has the
left lifting property with respect to the map X̂∆[n] → Ŷ ∆[n] ×Ŷ ∂∆[n] X̂∂∆[n] for
every n ≥ 0. Since the map C → B qA C is also a cofibration between cofibrant
objects, the result follows from Lemma 7.2.11 and Proposition 17.8.8. �

Corollary 17.8.12. Let M be a model category.

(1) If X is an object of M and i : A → B is a cofibration between cofibrant
objects that induces a weak equivalence of homotopy function complexes
i∗ : map(B,X) ∼= map(A,X) (see Notation 17.4.2), then for every map
A→ C such that C is cofibrant the map C → BqAC also induces a weak
equivalence of homotopy function complexes to X.

(2) If B is an object of M and p : X → Y is a fibration between fibrant
objects that induces a weak equivalence of homotopy function complexes
p∗ : map(B,X) ∼= map(B, Y ) (see Notation 17.4.2), then for every map
W → Y such that W is fibrant the map W ×Y X → W also induces a
weak equivalence of homotopy function complexes from B.

Proof. This follows from Proposition 17.8.5 and Proposition 17.8.11. �

Proposition 17.8.13. Let M be a model category.

(1) If i : A→ B, j : B → C, and p : X → Y are maps in M such that (i, p) is
a homotopy orthogonal pair, then (j, p) is a homotopy orthogonal pair if
and only if (ji, p) is one.

(2) If i : A→ B, p : X → Y , and q : Y → Z are maps in M such that (i, q) is
a homotopy orthogonal pair, then (i, p) is a homotopy orthogonal pair if
and only if (i, qp) is one.

Proof. This follows from Proposition 13.3.15. �

Proposition 17.8.14. Let M be a model category, and let i : A → B and
p : X → Y be maps in M such that (i, p) is a homotopy orthogonal pair.

(1) If ı̃ : Ã → B̃ is a cosimplicial resolution of i such that ı̃ is a Reedy cofi-

bration, then for every n ≥ 0 the pushout corner map Ã⊗∆[n]qÃ⊗∂∆[n]

B̃ ⊗ ∂∆[n]→ B̃ ⊗∆[n] is left homotopy orthogonal to p.

(2) If p̂ : X̂ → Ŷ is a simplicial resolution of p such that p̂ is a Reedy fibration,

then for every n ≥ 0 the pullback corner map X̂∆[n] → Ŷ ∆[n] ×Ŷ ∂∆[n]

X̂∂∆[n] is right homotopy orthogonal to i.

Proof. We will prove part 1; the proof of part 2 is dual.
Corollary 16.3.11implies that for every n ≥ 0 the map σn : Ã⊗∆[n]qÃ⊗∂∆[n]

B̃ ⊗ ∂∆[n]→ B̃ ⊗∆[n] is a cofibration between cofibrant objects. Thus, Proposi-
tion 17.8.8 implies that if p̂ : X̂ → Ŷ is a simplicial resolution of p such that p̂ is
a Reedy fibration, then it is sufficient to show that σn has the left lifting property
with respect to the map τk : X̂∆[k] → Ŷ ∆[k] ×Ŷ ∂∆[k] X̂∂∆[k] for every k ≥ 0. We
will do this by induction on n.
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Lemma 16.3.6 and Proposition 17.8.6 imply that for every n ≥ 0 the map
Ã ⊗∆[n] → B̃ ⊗∆[n] is left homotopy orthogonal to p. Since the map σ0 is the
map Ã⊗∆[0]→ B̃ ⊗∆[0], the induction is begun.

We now assume that n > 0 and that the result is true for all lesser values of
n. Lemma 15.3.9 now implies that LnÃ → LnB̃ has the left lifting property with
respect to τk for every k ≥ 0. Proposition 15.3.11 and Corollary 15.3.12 imply that
LnÃ → LnB̃ is a cofibration between cofibrant objects and Lemma 16.3.7 implies
that this map is isomorphic to the map Ã ⊗ ∂∆[n] → B̃ ⊗ ∂∆[n]. Since the map
Ã⊗∆[n]→ Ã⊗∆[n]qÃ⊗∂∆[n] B̃⊗∂∆[n] is the pushout of Ã⊗∂∆[n]→ B̃⊗∂∆[n]

along the map Ã ⊗ ∂∆[n] → Ã ⊗ ∆[n], Proposition 17.8.11 implies that it is left
homotopy orthogonal to p. Since the composition Ã⊗∆[n]→ Ã⊗∆[n]qÃ⊗∂∆[n]

B̃ ⊗ ∂∆[n]→ B̃ ⊗∆[n] is also left homotopy orthogonal to p, Proposition 17.8.13
completes the inductive step. �

17.8.15. Properness.

Proposition 17.8.16. Let M be a left proper model category and let i : A→ B
and p : X → Y be maps in M such that (i, p) is a homotopy orthogonal pair (see
Definition 17.8.1).

(1) If the diagram

A
j
//

i

��

C

k

��

B // D

is a pushout and at least one of i and j is a cofibration, then (k, p) is a
homotopy orthogonal pair.

(2) If the diagram

W //

r

��

X

p

��

Z q
// Y

is a pullback and at least one of p and q is a fibration, then (i, r) is a
homotopy orthogonal pair.

Proof. We will prove part 1; the proof of part 2 is dual.
Let ı̃ : Ã→ B̃ be a cofibrant approximation to i such that ı̃ is a cofibration (see

Proposition 8.1.23). Proposition 17.8.6 implies that ı̃ is left homotopy orthogonal
to p, and Proposition 13.5.6 implies that k has a cofibrant approximation k̃ that is
a pushout of ı̃ (which must be a pushout of k along a map to a cofibrant object).
Thus, Proposition 17.8.11 implies that (k̃, p) is a homotopy orthogonal pair, and so
Proposition 17.8.6 implies that (k, p) is a homotopy orthogonal pair. �

17.8.17. Cofibrantly generated model categories.

Theorem 17.8.18. Let M be a cofibrantly generated model category. If there
is a set I of generating cofibrations for M such that either

(1) the domains of the elements of I are cofibrant, or
(2) M is left proper,
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then a map g : X → Y in M is a weak equivalence if and only if it is homotopy
right orthogonal to every element of I.

Proof. If g is a weak equivalence, then Theorem 17.8.10 implies that g is
right homotopy orthogonal to every map in M. Conversely, assume that g is right
homotopy orthogonal to every element of I. We will show that if W is a cofibrant
object of M, then g is right homotopy orthogonal to the map ∅ → W (where ∅ is
the initial object of M); the result will then follow from Theorem 17.8.10.

Since every cofibrant object of M is a retract of a cell complex (see Corol-
lary 11.2.2), it is sufficient to assume that W is a cell complex (see Proposi-
tion 17.8.7). Thus, there is an ordinal λ and a λ-sequence ∅ →W1 →W2 → · · · →
Wβ → · · · (β < λ) such that W = colimβ<λWβ and each map Wβ → Wβ+1 for
β < λ is a pushout of an element of I. We will show by induction on β that ∅ →W
is left homotopy orthogonal to g.

The induction is begun because ∅ →W0 is the identity map of ∅. If β < λ and
∅ →Wβ is left homotopy orthogonal to g, then there is an element A→ B of I and
a pushout diagram

A //

��

B

��

Wβ
h
// Wβ+1 .

Either Proposition 17.8.11 or Proposition 17.8.16 implies that h is left homotopy
orthogonal to g, and so Proposition 17.8.13 implies that ∅ →Wβ+1 is left homotopy
orthogonal to g.

Finally, let γ be a limit ordinal with γ < λ and assume that ∅ → Wβ is left
homotopy orthogonal to g for all β < γ. If ĝ : X̂ → Ŷ is a simplicial resolution of
g such that ĝ is a Reedy fibration, then we have a map of towers of simplicial sets

M(∅, X̂)

��

M(W1, X̂)oo

��

M(W2, X̂)oo

��

· · ·oo M(Wβ , X̂)oo

��

· · ·oo

M(∅, Ŷ ) M(W1, Ŷ )oo M(W2, Ŷ )oo · · ·oo M(Wβ , Ŷ )oo · · ·oo

in which all the horizontal maps are fibrations and all the vertical maps are weak
equivalences of fibrant simplicial sets. Thus, the induced map limβ<γ M(Wβ , X̂)→
limβ<γ M(Wβ , Ŷ ) is a weak equivalence, and so we have weak equivalences

M(Wγ , X̂) ≈M(colim
β<γ

Wβ , X̂) ≈ lim
β<γ

M(Wβ , X̂)

∼= lim
β<γ

M(Wβ , Ŷ ) ≈M(colim
β<γ

Wβ , Ŷ ) ≈M(Wγ , Ŷ ) ,

and the result follows from Proposition 17.8.5. �
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17.9. Sequential colimits

Proposition 17.9.1. If M is a model category, λ is an ordinal, and

X0
//

g0

��

X1
//

g1

��

X2
//

g2

��

· · ·

Y0
// Y1

// Y2
// · · ·

is a map of λ-sequences in M such that

(1) each of the maps gα : Xα → Yα for α < λ is a weak equivalence of cofibrant
objects and

(2) each of the maps Xα → Xα+1 and Yα → Yα+1 for α < λ is a cofibration,

then the induced map of colimits (colim gα) : colimXα → colimYα is a weak equiv-
alence.

Proof. If Z is an object of M and cs∗Z → Ẑ is a simplicial resolution
of Z, then Theorem 17.7.7 implies that it is sufficient to show that the map
M(colimYα, Ẑ)→M(colimXα, Ẑ) is a weak equivalence of simplicial sets.

Corollary 16.5.5 implies that the map g∗ : M(Yα, Ẑ) → M(Xα, Ẑ) is a weak
equivalence of fibrant simplicial sets for every α < λ, and so the diagram

· · · // M(Y2, Ẑ) //

��

M(Y1, Ẑ) //

��

M(Y0, Ẑ)

��

· · · // M(X2, Ẑ) // M(X1, Ẑ) // M(X0, Ẑ)

is a weak equivalence of towers of fibrations of fibrant simplicial sets. Thus, the
induced map lim M(Yα, Ẑ) → lim M(Xα, Ẑ) is a weak equivalence, and that map
is isomorphic to the map M(colimYα, Ẑ)→M(colimXα, Ẑ). �

17.9.2. Properness. We are indebted to D. M. Kan for the following propo-
sition.

Proposition 17.9.3. Let M be a left proper model category (see Definition 13.1.1).
If λ is an ordinal and

X0
//

g0

��

X1
//

g1

��

X2
//

g2

��

· · ·

Y0
// Y1

// Y2
// · · ·

is a map of λ-sequences in M such that

(1) each of the maps gα : Xα → Yα for α < λ is a weak equivalence and
(2) each of the maps Xα → Xα+1 and Yα → Yα+1 for α < λ is a cofibration,

then the induced map of colimits (colim gα) : colimXα → colimYα is a weak equiv-
alence.

Proof. We construct a λ-sequence Z0 → Z1 → Z2 → · · · intermediate be-
tween the given ones by letting Zα be the pushout Y0 qX0 Xα for every α < β.
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Proposition 7.2.14 implies that Zα → Zα+1 is a cofibration for every α < λ, and
we have maps of λ-sequences

X0
//

h0

��

X1
//

h1

��

X2
//

h2

��

· · ·

Z0
//

k0

��

Z1
//

k1

��

Z2
//

k2

��

· · ·

Y0
// Y1

// Y2
// · · ·

such that
(1) each of the maps Z0 → Zα (for α < λ) is a cofibration,
(2) the map k0 : Z0 → Y0 is an isomorphism, and
(3) (since M is left proper) each of the maps kα : Zα → Yα (for α < λ) is a

weak equivalence.
Since left adjoints commute with colimits, colimZα is isomorphic to the pushout
Y0 qX0 (colimXα) (see Lemma 7.6.6); thus, the map colimXα → colimZα is a
weak equivalence. Thus, it is sufficient to show that colimZα → colimYα is a weak
equivalence. Since k0 : Z0 → Y0 is an isomorphism, each of the maps kα : Zα → Yα
(for α < λ) is a weak equivalence of cofibrant objects in the category (Z0 ↓M) of
objects under Z0 (see Theorem 7.6.5). Thus, Proposition 17.9.1 implies that the
map colimZα → colimYα is a weak equivalence, and the proof is complete. �

Proposition 17.9.4. Let M be a left proper model category. If λ is an ordinal
and

X0 → X1 → X2 → · · · → Xβ → · · · (β < λ)
is a λ-sequence in M such that Xβ → Xβ+1 is a cofibration for every β < λ, then
there is a λ-sequence

X̃0 → X̃1 → X̃2 → · · · → X̃β → · · · (β < λ)

and a map of λ-sequences

X̃0
//

g0

��

X̃1
//

g1

��

X̃2
//

g2

��

· · · // X̃β
//

gβ

��

· · · (β < λ)

X0
// X1

// X2
// · · · // Xβ // · · · (β < λ)

such that

(1) every X̃β is cofibrant,

(2) every gβ : X̃β → Xβ is a weak equivalence,

(3) every X̃β → X̃β+1 is a cofibration, and

(4) the map colimβ<λ X̃β → colimβ<λXβ is a weak equivalence.

Proof. We will define the X̃β inductively. We begin by choosing a cofibrant
approximation g0 : X̃0 → X0 to X0 (see Proposition 8.1.17). If β + 1 < λ and we
have defined gβ : X̃β → Xβ , then we factor the composition X̃β → Xβ → Xβ+1 into
a cofibration followed by a trivial fibration, to obtain X̃β → X̃β+1

gβ+1−−−→ Xβ+1. If
β < λ and β is a limit ordinal, then Proposition 17.9.3 implies that colimα<β X̃α →
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colimα<β Xα is a weak equivalence, and so we can construct the X̃β as required.
Proposition 17.9.3 implies that the map colimβ<λ X̃β → colimβ<λXβ is a weak
equivalence, and so the proof is complete. �



CHAPTER 18

Homotopy Limits in Simplicial Model Categories

If C is a small category and M is a model category, then the colimit functor
takes a C-diagram X in M to an object colim X of M. For most diagrams, though,
the colimit functor does not have good homotopy properties: If f : X → Y is an
objectwise weak equivalence of C-diagrams in M, then it will not in general be true
that (colim f) : colim X → colim Y is a weak equivalence. The homotopy colimit
functor is an attempt to repair this deficiency of the ordinary colimit.

There is a class of C-diagrams in M for which the colimit functor does take
objectwise weak equivalences of diagrams into weak equivalences. For example,
if C is a Reedy category with fibrant constants (see Definition 15.10.1), then the
Reedy cofibrant diagrams are in that class (see Theorem 15.10.9). It can be shown
that our definition of the homotopy colimit of a diagram X (see Definition 18.1.2)
is equivalent to constructing an objectwise weak equivalence X̃ → X such that
X̃ is in this “special class” when X is objectwise cofibrant, and then defining
hocolim X to be colim X̃. Thus, at the cost of replacing our original diagram with
an objectwise weakly equivalent one, we obtain a version of the colimit functor
that takes objectwise weak equivalences between objectwise cofibrant diagrams into
weak equivalences in M. It can be shown that, although there may not be a model
category structure on the category of all C-diagrams in M, the localization of that
category of diagrams with respect to the objectwise weak equivalences does exist
(see Remark 8.3.3), and that the homotopy colimit functor represents the total left
derived functor (see Definition 8.4.7) of the colimit functor. For this, see [30].

The definition that we use (see Definition 18.1.2) is homotopy invariant only for
objectwise cofibrant diagrams. To obtain a definition that is homotopy invariant
for all diagrams, we could first functorially take a cofibrant approximation to each
object in the diagram and then apply Definition 18.1.2. Our definition provides
simpler formulas, though, and it is the standard definition that is already in wide
use.

All of the above remarks can be dualized to describe the homotopy limit functor
as a replacement for the ordinary limit. The formula that we give below for the
homotopy limit (see Definition 18.1.8) is homotopy invariant only for objectwise
fibrant diagrams, and it can also be made completely homotopy invariant by first
functorially taking a fibrant approximation to each object in the diagram.

The standard reference for homotopy colimits and homotopy limits of diagrams
of simplicial sets, total spaces of cosimplicial simplicial sets, and realizations of
bisimplicial sets is [14, Chapters X through XII], and our definitions are essentially
the ones used there (but see Remark 18.1.11). The reference [19] gives a useful
discussion of the idea of a free diagram (see Definition 11.5.35), and [35] gives a
careful development of the homotopy colimit of certain small diagrams in a model
category.

379
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In this chapter we restrict ourselves to diagrams in a simplicial model category.
This includes most of the examples of interest and makes for simpler formulas. In
Chapter 19 we will work with general model categories, providing definitions and
results that specialize to those in this chapter for simplicial model categories with
the standard framing (see Proposition 16.6.23).

In Section 18.1 we define the homotopy colimit and homotopy limit of a dia-
gram in a simplicial model category and give several examples. In Section 18.2 we
show that the homotopy limit of a diagram of spaces can be described as a space
of maps between diagrams. In Section 18.3 we discuss coends and ends, which
are constructions that generalize the definitions of the homotopy colimit and the
homotopy limit. If C is a small category, M is a simplicial model category, X is a
C-diagram in M, and K is a Cop-diagram of simplicial sets, then the coend X⊗C K
(also called the tensor product of the functors X and K) reduces to the homotopy
colimit of X when K is the Cop-diagram B(−↓C)op. Dually, if K is a C-diagram
of simplicial sets, then the end homC(K,X) (also called the hom of the functors
K and X) reduces to the homotopy limit of X when K is the C-diagram B(C ↓−).
We also establish adjointness properties for ends and coends, and we use those
adjointness properties in Section 18.4 together with the homotopy lifting extension
theorem (see Remark 9.1.7) to obtain homotopy invariance results for the pushout
corner map for coends and the pullback corner map for ends (see Theorem 18.4.1).
We also establish a homotopy lifting extension theorem for diagram indexed by
a Reedy category. In Section 18.5 we obtain homotopy invariance results for the
homotopy colimit and homotopy limit functors.

In Section 18.6 we discuss realizations of simplicial objects and total objects of
cosimplicial objects, and establish homotopy invariance results. In Section 18.7 we
discuss the Bousfield-Kan maps from the homotopy colimit of a simplicial object
to its realization and from the total object of a cosimplicial object to its homotopy
limit. In Section 18.8 we compare the homotopy colimit of a diagram of pointed
spaces with the homotopy colimit of the diagram of unpointed spaces obtained by
forgetting the basepoints, and in Section 18.9 we discuss diagrams of simplicial sets.

18.1. Homotopy colimits and homotopy limits

In this section we define the homotopy colimit and homotopy limit of a diagram
in a simplicial model category, and give several examples.

18.1.1. Homotopy colimits.

Definition 18.1.2. Let M be a simplicial model category and let C be a small
category. If X is a C-diagram in M (see Definition 11.5.2), then the homotopy
colimit hocolim X of X is defined to be the coequalizer of the maps

∐
(σ : α→α′)∈C

Xα ⊗ B(α′ ↓C)op
φ
//

ψ
//

∐
α∈Ob(C)

Xα ⊗ B(α ↓C)op .

(see Definition 14.1.1 and Definition 11.8.3) where the map φ on the summand
σ : α→ α′ is the composition of the map

σ∗ ⊗ 1B(α′↓C) : Xα ⊗ B(α′ ↓C)op −→Xα′ ⊗ B(α′ ↓C)op
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with the natural injection into the coproduct, and the map ψ on the summand
σ : α→ α′ is the composition of the map

1Xα ⊗ B(σ∗) : Xα ⊗ B(α′ ↓C)op −→Xα ⊗ B(α ↓C)op

(where σ∗ : (α′ ↓C)op → (α ↓C)op; see Definition 14.7.2) with the natural injection
into the coproduct.

For a discussion of the relation of our definition of the homotopy colimit to
that of [14], see Remark 18.1.11.

Remark 18.1.3. If Spc(∗) is one of our categories of spaces (see Notation 7.10.5),
C is a small category, and X is a C-diagram in Spc(∗), then

Xα ⊗ B(α ↓C)op ≈


Xα × B(α ↓C)op if Spc(∗) = SS
Xα ∧

(
B(α ↓C)op

)+ if Spc(∗) = SS∗
Xα ×

∣∣B(α ↓C)op
∣∣ if Spc(∗) = Top

Xα ∧
∣∣B(α ↓C)op

∣∣+ if Spc(∗) = Top∗

(see Example 9.1.13, Example 9.1.14, Example 9.1.15, and Example 9.1.16).

Example 18.1.4. If Spc(∗) is one of our categories of spaces (see Notation 7.10.5)
and g : X → Y is a map in Spc(∗), then the homotopy colimit of the diagram con-
sisting of just the map g is the mapping cylinder of g.

Example 18.1.5. If Spc(∗) is one of our categories of spaces (see Notation 7.10.5)

and Z h←− X g−→ Y is a diagram in Spc(∗), then the homotopy colimit of this diagram
is the double mapping cylinder of g and h.

Proposition 18.1.6. If C is a small category and P is the diagram of simplicial
sets in which P α is a single point for every object α of C (i.e., P is the constant
diagram at a point), then there is a natural isomorphism hocolim P ≈ BCop.

Proof. Definition 18.1.2 defines hocolim P to be the coequalizer of the maps

∐
(σ : α→α′)∈C

B(α′ ↓C)op
φ
//

ψ
//

∐
α∈Ob(C)

B(α ↓C)op

where the map φ is induced by the identity map on each summand and the map
ψ on the summand σ : α→ α′ is the composition of the map B(σ∗) : B(α′ ↓C)op →
B(α ↓C)op with the natural injection into the coproduct. We define a map B(α ↓C)op →
BCop by sending the simplex

α

((QQQQQQQQQQQQQQQ

��}}{{
{{

{{
{{

σ0 σ1oo · · ·oo σnoo

of B(α ↓C)op to the simplex σ0 ← σ1 ← · · · ← σn of BCop. This defines a sur-
jective map hocolim P → BCop which is also injective because every simplex of∐
σ∈Ob(C) B(α ↓C)op that is mapped to σ0 ← σ1 ← · · · ← σn is equal (in hocolim P )
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to the simplex
σn

1σn

((QQQQQQQQQQQQQQQ

��}}{{
{{

{{
{{

σ0 σ1oo · · ·oo σn .oo

�

18.1.7. Homotopy limits.

Definition 18.1.8. Let M be a simplicial model category and let C be a small
category. If X is a C-diagram in M (see Definition 11.5.2), then the homotopy limit
holim X of X is defined to be the equalizer of the maps∏

α∈Ob(C)

(Xα)B(C↓α)
φ
//

ψ
//

∏
(σ : α→α′)∈C

(Xα′)B(C↓α)

.

(see Definition 14.1.1 and Definition 11.8.1) where the projection of the map φ on
the factor σ : α → α′ is the composition of a natural projection from the product
with the map

σ
1B(C↓α)
∗ : (Xα)B(C↓α) −→ (Xα′)B(C↓α)

and the projection of the map ψ on the factor σ : α → α′ is the composition of a
natural projection from the product with the map

(1Xα′ )
B(σ∗) : (Xα′)B(C↓α′) −→ (Xα′)B(C↓α)

(where σ∗ : (C ↓α)→ (C ↓α′); see Definition 14.7.8).

For a discussion of the relation of our definition of the homotopy limit to that
of [14], see Remark 18.1.11.

Example 18.1.9. If Spc(∗) is one of our categories of spaces (see Notation 7.10.5)
and g : X → Y is a map in Spc(∗) , then the homotopy limit of the diagram con-
sisting of just the map g is what is usually called the mapping path space of g.

Theorem 18.1.10. Let M be a simplicial model category and let C be a small
category. If X is a C-diagram in M and Y is an object of M then there is a natural
isomorphism of simplicial sets Map(hocolimC X, Y ) ≈ holimCop Map(X, Y ).

Proof. Definition 18.1.2 and Proposition 9.2.2 imply that Map(hocolimC X, Y )
is naturally isomorphic to the limit of the diagram∏
α∈Ob(C)

Map
(
Xα ⊗ B(α ↓C)op, Y

) //
//

∏
(σ : α→α′)∈C

Map
(
Xα ⊗ B(α′ ↓C)op, Y

)
.

Axiom M6 (see Definition 9.1.6) and Corollary 14.7.13 imply that there are natural
isomorphisms

Map
(
Xα ⊗ B(α′ ↓C)op, Y

)
≈ Map

(
B(α′ ↓C)op,Map(Xα, Y )

)
≈ Map

(
B(Cop ↓α′),Map(Xα, Y )

)
≈

(
Map(Xα, Y )

)B(Cop↓α′) ,
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and so Map(hocolimC X, Y ) is naturally isomorphic to the limit of the diagram∏
α∈Ob(Cop)

(
Map(Xα, Y )

)B(Cop↓α) //
//

∏
(σ : α′→α)∈Cop

(
Map(Xα, Y )

)B(Cop↓α′)

which is the definition of holimCop Map(X, Y ) (see Definition 18.1.8). �

Remark 18.1.11. There are two respects in which our definitions of the ho-
motopy colimit and homotopy limit differ from those of [14] (which uses the term
homotopy direct limit for the homotopy colimit and homotopy inverse limit for
the homotopy limit). First, we use the diagrams of simplicial sets B(−↓C)op and
B(C ↓−) (see Definition 19.1.2 and Definition 19.1.5) where [14] uses the diagrams
B(−↓C) and B(C ↓−) (see [14, Chapter XII, Paragraph 2.1 and Chapter XI, Para-
graph 3.2]. Since both B(−↓C)op and B(−↓C) are cofibrant approximations to
the constant Cop-diagram at a point (see Corollary 14.8.8), these two choices give
definitions that are naturally weakly equivalent for C-diagrams of cofibrant objects
(see Theorem 19.4.7), but our definition was chosen to make Theorem 18.1.10 true.
It is incorrectly stated in [14, Chapter XII, Proposition 4.1] that this is true for
the definitions used in [14]; this is due to an error in the proof of [14, Chapter XII,
Proposition 4.1]. This error is a minor one, since the spaces claimed there to be
isomorphic are in fact naturally weakly equivalent, which is all that was needed.

The second difference between our definitions and those of [14] is that the defi-
nition of the classifying space (i.e., the nerve) of a category used in [14] is “opposite”
to our definition (see Definition 14.1.1 and [14, Chapter XI, Paragraph 2.1]), i.e.,
if C is a small category, then the definition of BC used in [14] (which is called there
the underlying space of the category) is isomorphic to our definition of BCop.

The combined effect of the above two differences is that our definition of the
homotopy colimit is isomorphic to that of [14], but our definition of the homotopy
limit is different. Since the C-diagrams of simplicial sets B(C ↓−) and B(C ↓−)op

are both free cell complexes (see Definition 11.5.35), these two definitions of the
homotopy limit are naturally weakly equivalent for diagrams of fibrant objects (see
Theorem 19.4.7).

18.2. The homotopy limit of a diagram of spaces

Each of our categories of spaces (see Notation 7.10.5) has an internal mapping
space, and these can be used to describe the homotopy limit of a diagram of spaces
as a space of maps.

Definition 18.2.1 (Internal mapping spaces).
• If X and Y are objects of SS, then the internal mapping space Y X equals

the simplicial mapping space Map(X,Y ) (see Example 9.1.13).
• If X and Y are objects of SS∗, then the internal mapping space Y X

is the pointed simplicial set with n-simplices the basepoint preserving
simplicial maps X ∧∆[n]+ → Y , and face and degeneracy maps induced
by the standard maps between the ∆[n]. When we need to emphasize the
category in which we work, we will use the notation Map∗(X,Y ) for the
pointed simplicial set of basepoint preserving maps.
• If X and Y are objects of Top, then the internal mapping space Y X is

the topological space (see Notation 7.10.2) of continuous functions from
X to Y . When we need to emphasize the category in which we work, we
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will use the notation map(X,Y ) for the unpointed topological space of
continuous functions.
• If X and Y are objects of Top∗, then the internal mapping space Y X is

the pointed topological space (see Notation 7.10.2) of basepoint preserving
continuous functions from X to Y . When we need to emphasize the
category in which we work, we will use the notation map∗(X,Y ) for the
pointed topological space of basepoint preserving continuous functions.

Proposition 18.2.2. The internal mapping spaces Y X of Definition 18.2.1 are
related to the simplicial mapping spaces Map(X,Y ) of Example 9.1.13, Exam-
ple 9.1.14, Example 9.1.15, and Example 9.1.16 as follows:

• If X and Y are objects of SS, then Map(X,Y ) equals Y X .
• If X and Y are objects of SS∗, then Map(X,Y ) is obtained from Y X by

forgetting the basepoint.
• If X and Y are objects of Top, then the simplicial set Map(X,Y ) is the

total singular complex of Y X .
• If X and Y are objects of Top∗, then the simplicial set Map(X,Y ) is

the total singular complex of the unpointed space obtained from Y X by
forgetting the basepoint.

Proof. This follows from the natural isomorphisms of sets

Top
(∣∣∆[n]

∣∣, Y X)
≈ Top

(
X ×

∣∣∆[n]
∣∣, Y )

Top∗
(∣∣∆[n]

∣∣+, Y X)
≈ Top∗

(
X ∧

∣∣∆[n]
∣∣+, Y )

.

�

Definition 18.2.3. Let C be a small category.
(1) If X and Y are C-diagrams of unpointed simplicial sets (see Notation 7.10.5),

then Y X is the unpointed simplicial set of maps of diagrams (i.e., natural
transformations) from X to Y whose set of n-simplices is the set of maps
of diagrams from X ⊗∆[n] to Y (see Definition 11.7.1). When we need
to emphasize the category in which we work, we will use the notation
Map(X,Y ) for the unpointed simplicial set of maps from X to Y .

(2) If X and Y are C-diagrams of pointed simplicial sets (see Notation 7.10.5),
then Y X is the pointed simplicial set of maps of diagrams (i.e., natural
transformations) from X to Y whose set of n-simplices is the set of maps
of diagrams from X ⊗∆[n] to Y (see Definition 11.7.1). When we need
to emphasize the category in which we work, we will use the notation
Map∗(X,Y ) for the pointed simplicial set of maps from X to Y .

(3) If X and Y are C-diagrams of unpointed topological spaces (see Nota-
tion 7.10.5), then Y X is the unpointed topological space of maps of dia-
grams (i.e., natural transformations) from X to Y topologized as a subset
of the product

∏
α∈Ob(C) map(Xα,Y α) (see Definition 18.2.1). When we

need to emphasize the category in which we work, we will use the notation
map(X,Y ) for the unpointed topological space of maps from X to Y .

(4) If X and Y are C-diagrams of pointed topological spaces (see Nota-
tion 7.10.5), then Y X is the pointed topological space of maps of diagrams
(i.e., natural transformations) from X to Y topologized as a subset of the
product

∏
α∈Ob(C) map∗(Xα,Y α) (see Definition 18.2.1). When we need
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to emphasize the category in which we work, we will use the notation
map∗(X,Y ) for the pointed topological space of maps from X to Y .

Lemma 18.2.4. If C is a small category and X and Y are C-diagrams of un-
pointed topological spaces, then there is a natural isomorphism of simplicial sets

Sing
(
Y X

)
≈ Map(X,Y )

(see Definition 11.7.2 and Definition 18.2.3).

Proof. Since the total singular complex functor is a right adjoint it commutes
with limits, and so the result follows from Proposition 18.2.2. �

Proposition 18.2.5. If C is a small category, Spc(∗) is one of our categories

of spaces (see Notation 7.10.5), and X and Y are C-diagrams in Spc(∗), then

the internal mapping spaces Y X of Definition 18.2.3 are related to the simplicial
mapping spaces Map(X,Y ) of Definition 11.7.2 as follows:

• If Spc(∗) = Top, then the simplicial set Map(X,Y ) is the total singular

complex of Y X .
• If Spc(∗) = Top∗, the simplicial set Map(X,Y ) is the total singular com-

plex of the unpointed space obtained from Y X by forgetting the basepoint.
• If Spc(∗) = SS, then Map(X,Y ) equals Y X .

• If Spc(∗) = SS∗, then Map(X,Y ) is obtained from Y X by forgetting the
basepoint.

Proof. This follows from Proposition 18.2.2 and Lemma 18.2.4. �

Proposition 18.2.6. If Spc(∗) is one of our categories of spaces (see Nota-

tion 7.10.5), C is a small category, and X is a C-diagram in Spc(∗), then holim X
is naturally isomorphic to the space of maps between diagrams

Map
(
B(C ↓−),X

)
, if Spc(∗) = SS

Map∗
(
B(C ↓−)+,X

)
, if Spc(∗) = SS∗

map
(∣∣B(C ↓−)

∣∣,X)
, if Spc(∗) = Top

map∗
(∣∣B(C ↓−)

∣∣+,X)
, if Spc(∗) = Top∗

(see Definition 18.2.3).

Proof. For each object α of C the space (Xα)B(C↓α) is a Spc(∗)-object of
maps in Spc(∗) (see Example 9.1.13, Example 9.1.14, Example 9.1.15, and Exam-
ple 9.1.16)

XB(C↓α) ≈


Map(B(C ↓α),X) if Spc(∗) = SS
Map∗(B(C ↓α)+,X) if Spc(∗) = SS∗
map

(∣∣B(C ↓α)
∣∣,X)

if Spc(∗) = Top
map∗

(∣∣B(C ↓α)
∣∣+,X)

if Spc(∗) = Top∗
and so the result follows from Definition 18.1.8. �

18.3. Coends and ends

In this section we define general constructions (see Definition 18.3.2) that al-
low us to analyze the colimit and homotopy colimit as two examples of the same
construction (and, similarly, the limit and homotopy limit as two examples of the
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same construction) (see Example 18.3.8). These definitions also enable us to obtain
adjointness relations (see Section 18.3.9) that will be used to obtain the homotopy
invariance results of Section 18.5.

18.3.1. Definitions.

Definition 18.3.2. Let M be a simplicial model category and let C be a small
category.

(1) If X is a C-diagram in M and K is a Cop-diagram of simplicial sets, then
X ⊗C K is defined to be the object of M that is the coequalizer of the
maps

(18.3.3)
∐

(σ : α→α′)∈C

Xα ⊗Kα′

φ
//

ψ
//

∐
α∈Ob(C)

Xα ⊗Kα

where the map φ on the summand σ : α → α′ is the composition of the
map

σ∗ ⊗ 1Kα′ : Xα ⊗Kα′ −→Xα′ ⊗Kα′

(where σ∗ : Xα → Xα′) with the natural injection into the coproduct,
and the map ψ on the summand σ : α→ α′ is the composition of the map

1Xα ⊗ σ∗ : Xα ⊗Kα′ −→Xα ⊗Kα

(where σ∗ : Kα′ →Kα) with the natural injection into the coproduct.
The construction of the object X ⊗C K in M from the functor X ⊗

K : C × Cop → M is an example of the general construction known as
a coend (see [47, pages 222–223]). In the notation of [47], X ⊗C K =∫ α

Xα ⊗Kα.
(2) If X is a C-diagram in M and K is a C-diagram of simplicial sets, then

homC(K,X) is defined to be the object of M that is the equalizer of the
maps

(18.3.4)
∏

α∈Ob(C)

(Xα)Kα

φ
//

ψ
//

∏
(σ : α→α′)∈C

(Xα′)Kα

where the projection of the map φ on the factor σ : α→ α′ is the compo-
sition of a natural projection from the product with the map

σ
1Kα
∗ : (Xα)Kα −→ (Xα′)Kα

(where σ∗ : Xα → Xα′) and the projection of the map ψ on the factor
σ : α → α′ is the composition of a natural projection from the product
with the map

(1Xα′ )
Kσ∗ : (Xα′)Kα′ −→ (Xα′)Kα

(where σ∗ : (C ↓α)→ (C ↓α′); see Definition 14.7.8).
The construction of the object homC(K,X) of M from the functor

XK : C × Cop → M is an example of the general construction known as
an end (see [47, pages 218–223] or [7, page 329]). In the notation of [47],
homC(K,X) =

∫
α
(Xα)Kα .
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Remark 18.3.5. The tensor product of functors (see Definition 18.3.2) is a
special case of a coend of a functor H: C× Cop → SS, where H(K,L) = K ×L (see
Definition 18.3.2). We use the name “tensor product” because of the similarity to
the case in which a ring R is viewed as an additive category (with one object, and
with morphisms equal to the elements of R). In that case, a left R-module is just
an additive functor G: R → A from R to the category of abelian groups, and a
right R-module is an additive functor F: Rop → A. If H: Rop × R → A is defined
by H(α, α) = F(α) ⊗ G(α), then F ⊗Rop G is the usual tensor product of a right
R-module F with a left R-module G.

Example 18.3.6. Let M be a simplicial model category and let C be a small
category.

(1) If X is a C-diagram in M, then X ⊗C B(−↓C)op (see Definition 14.7.2)
is the homotopy colimit of X (see Definition 18.1.2).

(2) If X is a C-diagram in M, then homC(B(C ↓−),X) (see Definition 14.7.8)
is the homotopy limit of X (see Definition 18.1.8).

Proposition 18.3.7. Let M be a simplicial model category and let C be a small
category.

(1) If X is a C-diagram in M and P : Cop → SS is a single point for every
object α of C, then X ⊗C P is naturally isomorphic to colim X.

(2) If X is a C-diagram in M and P : C→ SS is a single point for every object

α of C, then homC(P ,X) is naturally isomorphic to lim X.

Proof. For part 1, P α is naturally isomorphic to ∆[0] for every object α of
Cop, and so we have natural isomorphisms

Xα ⊗ P α ≈Xα ⊗∆[0] ≈Xα .

Under these isomorphisms, the map φ of Definition 18.3.2 is defined by σ∗ : Xα →
Xα′ and the map ψ is the identity.

For part 2, P α is naturally isomorphic to ∆[0] for every object α of C, and so
we have natural isomorphisms

XP α
α ≈X∆[0]

α ≈Xα .

Under these isomorphisms, the map φ of Definition 18.3.2 is defined by σ∗ : Xα →
Xα′ and the map ψ is the identity. �

Example 18.3.8. Let M be a simplicial model category and let C be a small
category.

(1) If P is the Cop-diagram of simplicial sets that is a single point for every
object α of Cop, then the unique map of Cop-diagrams B(−↓C)op → P
induces a natural map

hocolim X = X ⊗C B(−↓C)op −→X ⊗C P = colim X

for all C-diagrams X in M (see Example 18.3.6 and Proposition 18.3.7).
(2) If P is the C-diagram of simplicial sets that is a single point for every

object α of C, then the unique map of C-diagrams B(C ↓−)→ P induces
a natural map

lim X = homC(P ,X) −→ homC
(
B(C ↓−),X

)
= holim X

for all C-diagrams X in M.
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18.3.9. Adjointness.

Proposition 18.3.10. Let M be a simplicial model category and let C be a
small category.

(1) If X is a C-diagram in M, K is a Cop-diagram of simplicial sets, and Z is
an object of M, then there is a natural isomorphism of sets

M(X ⊗C K, Z) ≈ SSCop(
K,M(X, Z)

)
(where X ⊗C K is as in Definition 18.3.2).

(2) If X is a C-diagram in M, K is a C-diagram of simplicial sets, and W is
an object of M, then there is a natural isomorphism of sets

M
(
W,homC(K,X)

)
≈ SSC

(
K,M(W,X)

)
(where homC(K,X) is as in Definition 18.3.2).

Proof. We will prove part 1; the proof of part 2 is similar.
The object X⊗CK is defined as the colimit of Diagram 18.3.3, and so M(X⊗C

K, Z) is naturally isomorphic to the limit of the diagram

∏
α∈Ob(C)

M(Xα ⊗Kα, Z)
φ∗
//

ψ∗
//

∏
(σ : α→α′)∈C

M(Xα ⊗Kα′ , Z) .

Axiom M6 (see Definition 9.1.6) implies that this limit is naturally isomorphic to
the limit of the diagram

∏
α∈Ob(C)

SS
(
Kα,M(Xα, Z)

) φ∗
//

ψ∗
//

∏
(σ : α→α′)∈C

SS
(
Kα′ ,M(Xα, Z)

)
,

which is the definition of SSCop(
K,M(X, Z)

)
. �

Lemma 18.3.11. Let M be a simplicial model category and let C be a small
category.

(1) If A→ B is a map of C-diagrams in M, K → L is a map of Cop-diagrams
of simplicial sets, and X → Y is a map of objects in M, then the dotted
arrow exists in every solid arrow diagram of the form

A⊗C LqA⊗CK B ⊗C K //

��

X

��

B ⊗C L //

66

Y

if and only if the dotted arrow exists in every solid arrow diagram of the
form

K //

��

Map(B, X)

��

L //

55

Map(A, X)×Map(A,Y ) Map(B, Y ) .
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(2) If X → Y is a map of C-diagrams in M, K → L is a map of C-diagrams
of simplicial sets, and A → B is a map of objects in M, then the dotted
arrow exists in every solid arrow diagram of the form

A //

��

homC(L,X)

��

B //

55

homC(K,X)×homC(K,Y ) homC(L,Y )

if and only if the dotted arrow exists in every solid arrow diagram of the
form

K //

��

Map(B,X)

��

L //

55

Map(A,X)×Map(A,Y ) Map(B,Y ) .

Proof. This follows from Proposition 18.3.10. �

18.4. Consequences of adjointness

In this section we combine the adjointness relations of Section 18.3.9 with the
homotopy lifting extension theorem (see Remark 9.1.7) to obtain the technical
results that imply the homotopy invariance results of Section 18.5.

Theorem 18.4.1. Let M be a simplicial model category and let C be a small
category.

(1) If j : A→ B is an objectwise cofibration of C-diagrams in M and i : K →
L is a cofibration of Cop-diagrams of simplicial sets (see Theorem 11.6.1),
then the pushout corner map

A⊗C LqA⊗CK B ⊗C K −→ B ⊗C L

is a cofibration in M that is a weak equivalence if either j is an objectwise
weak equivalence or i is a weak equivalence.

(2) If p : X → Y is an objectwise fibration of C-diagrams in M and i : K → L
is a cofibration of C-diagrams of simplicial sets (see Theorem 11.6.1), then
the pullback corner map

homC(L,X) −→ homC(K,X)×homC(K,Y ) homC(L,Y )

is a fibration in M that is a weak equivalence if either p is an objectwise
weak equivalence or i is a weak equivalence.

Proof. We will prove part 1; the proof of part 2 is similar.
If p : X → Y is a fibration in M, then axiom M7 (see Definition 9.1.6) implies

that the map of Cop-diagrams of simplicial sets Map(B, X)→ Map(A, X)×Map(A,Y )

Map(B, Y ) is an objectwise fibration that is an objectwise weak equivalence if either
j is an objectwise weak equivalence or p is a weak equivalence. The result now
follows from Lemma 18.3.11, Proposition 7.2.3, and Theorem 11.6.1. �

Corollary 18.4.2. Let M be a simplicial model category and let C be a small
category.
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(1) If K is a cofibrant Cop-diagram of simplicial sets (see Theorem 11.6.1)
and j : A→ B is an objectwise cofibration of C-diagrams in M, then the
map A⊗C K → B⊗C K is a cofibration in M that is a weak equivalence
if j is an objectwise weak equivalence.

(2) If K is a cofibrant C-diagram of simplicial sets (see Theorem 11.6.1) and
p : X → Y is an objectwise fibration of C-diagrams in M, then the map
homC(K,X) → homC(K,Y ) is a fibration in M that is a weak equiva-
lence if p is an objectwise weak equivalence.

Proof. This follows from Theorem 18.4.1. �

Corollary 18.4.3. Let M be a simplicial model category and let C be a small
category.

(1) If K is a cofibrant Cop-diagram of simplicial sets (see Theorem 11.6.1) and
X is an objectwise cofibrant C-diagram in M, then X⊗C K is a cofibrant
object of M.

(2) If K is a cofibrant C-diagram of simplicial sets (see Theorem 11.6.1) and

X is an objectwise fibrant C-diagram in M, then homC(K,X) is a fibrant
object of M.

Proof. This follows from Theorem 18.4.1. �

Corollary 18.4.4. Let M be a simplicial model category and let C be a small
category.

(1) If K is a cofibrant Cop-diagram of simplicial sets (see Theorem 11.6.1)
and f : X → Y is an objectwise weak equivalence of objectwise cofibrant
C-diagrams in M, then the induced map f∗ : X ⊗C K → Y ⊗C K is a
weak equivalence.

(2) If K is a cofibrant C-diagram of simplicial sets (see Theorem 11.6.1) and
f : X → Y is an objectwise weak equivalence of objectwise fibrant C-
diagrams in M, then the induced map f∗ : homC(K,X)→ homC(K,Y )
is a weak equivalence.

Proof. This follows from Corollary 18.4.2 and Lemma 7.7.1. �

Corollary 18.4.5. Let M be a simplicial model category and let C be a small
category.

(1) If X is an objectwise cofibrant C-diagram in M and f : K → K ′ is a
weak equivalence of cofibrant Cop-diagrams of simplicial sets (see Theo-
rem 11.6.1), then the induced map f∗ : X ⊗C K → X ⊗C K ′ is a weak
equivalence of cofibrant objects in M.

(2) If X is an objectwise fibrant C-diagram in M and f : K → K ′ is a weak
equivalence of cofibrant C-diagrams of simplicial sets (see Theorem 11.6.1),

then the induced map f∗ : homC(K ′,X)→ homC(K,X) is a weak equiv-
alence of fibrant objects in M.

Proof. This follows from Theorem 18.4.1 and Corollary 7.7.2. �

Corollary 18.4.6. Let M be a simplicial model category and let C be a small
category.
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(1) If K is a Cop-diagram of simplicial sets and both K̃ → K and K̃ ′ → K
are cofibrant approximations to K (see Theorem 11.6.1), then for ev-
ery objectwise cofibrant C-diagram X in M there is an essentially unique
(see Definition 14.4.2) natural zig-zag of weak equivalences (see Defini-

tion 14.4.1) in M from X ⊗C K̃ to X ⊗C K̃ ′.

(2) If K is a C-diagram of simplicial sets and both K̃ →K and K̃ ′ →K are
cofibrant approximations to K (see Theorem 11.6.1), then for every ob-
jectwise fibrant C-diagram X in M there is an essentially unique (see Def-
inition 14.4.2) natural zig-zag of weak equivalences (see Definition 14.4.1)

in M from homC(K̃,X) to homC(K̃ ′,X).

Proof. This follows from Corollary 18.4.5 and Proposition 14.6.3. �

18.4.7. Reedy diagrams.

Lemma 18.4.8. Let C be a Reedy category and let M be a simplicial model
category.

(1) If B is a C-diagram in M and X is an object of M, then Map(B, X) is
a Cop-diagram of simplicial sets and for every object α of C there is a
natural isomorphism Mα Map(B, X) ≈ Map(LαB, X).

(2) If B is an object of M and X is a C-diagram in M, then Map(B,X) is a
C-diagram of simplicial sets and for every object α of C there is a natural
isomorphism Mα Map(B,X) ≈ Map(B,MαX).

Proof. We will prove part 1; the proof of part 2 is similar.
We have natural isomorphisms

Mα Map(B, X) = lim
∂(α↓

←−
C )

Map(B, X) (see Definition 15.2.5)

≈ Map( colim
(∂(α↓

←−
C ))op

B, X) (see Proposition 9.2.2)

≈ Map( colim
∂(
−→
C ↓α)

B, X) (see Proposition 15.2.4)

= Map(LαB, X) .

�

Theorem 18.4.9 (The Reedy diagram homotopy lifting extension theorem).
Let C be a Reedy category and let M be a simplicial model category.

(1) If i : A→ B is a Reedy cofibration of C-diagrams in M and p : X → Y is
a fibration in M, then the map of Cop-diagrams of simplicial sets

Map(B, X) −→ Map(A, X)×Map(A,Y ) Map(B, Y )

is a Reedy fibration that is a Reedy weak equivalence if either of i or p is
a weak equivalence.

(2) If i : A → B is a cofibration in M and p : X → Y is a Reedy fibration of
C-diagrams in M, then the map of C-diagrams of simplicial sets

Map(B,X) −→ Map(A,X)×Map(A,Y ) Map(B,Y )

is a Reedy fibration that is a weak equivalence if either i or p is a weak
equivalence.
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Proof. We will prove part 1; the proof of part 2 is similar.
We must show that for every object α of C the map of simplicial sets

(18.4.10) Map(Bα, X) −→(
Map(Aα, X)×Map(Aα,Y ) Map(Bα, Y )

)
×Mα(Map(A,X)×Map(A,Y )Map(B,Y ))Mα Map(B, X)

is a fibration that is a weak equivalence if either i or p is a weak equivalence.
Lemma 18.4.8 implies that this map is isomorphic to the map

Map(Bα, X) −→(
Map(Aα, X)×Map(Aα,X)Map(Bα, Y )

)
×Map(LαA,X)×Map(LαA,Y )Map(LαB,Y )Map(LαB, X) ,

and the codomain of this map is the limit of the diagram

Map(Aα, X) //

��

Map(Aα, Y )

��

Map(Bα, Y )

��

oo

Map(LαA, X) // Map(LαA, Y ) Map(LαB, Y )oo

Map(LαB, X) .

hhQQQQQQQQQQQQQ

OO 66mmmmmmmmmmmm

Thus, the map (18.4.10) is isomorphic to the map

Map(Bα, X) −→(
Map(Aα, X)×Map(LαA,X)Map(LαB, X)

)
×(Map(Aα,Y )×Map(LαA,Y )Map(LαB,Y ))Map(Bα, Y ) .

Since Aα qLαA LαB → Bα is a cofibration that is a weak equivalence if i is a
weak equivalence (see Theorem 15.3.15), the result now follows from axiom M7
(see Definition 9.1.6). �

Theorem 18.4.11. Let C be a Reedy category and let M be a simplicial model
category.

(1) If j : A→ B is a Reedy cofibration of C-diagrams in M and i : K → L is
a Reedy cofibration of Cop-diagrams of simplicial sets, then the pushout
corner map A⊗C LqA⊗CK B⊗C K → B⊗C L is a cofibration in M that
is a weak equivalence if either i or j is a Reedy weak equivalence.

(2) If p : X → Y is a Reedy fibration of C-diagrams in M and i : K → L
is a Reedy cofibration of C-diagrams of simplicial sets, then the pullback
corner map homC(L,X) → homC(K,X) ×homC(K,Y ) homC(L,Y ) is a
fibration in M that is a weak equivalence if either i or p is a Reedy weak
equivalence.

Proof. This is similar to the proof of Theorem 18.4.1, using Theorem 18.4.9
in place of axiom M7. �

Corollary 18.4.12. Let C be a Reedy category and let M be a simplicial
model category.

(1) If K is a Reedy cofibrant Cop-diagram of simplicial sets and X is a Reedy
cofibrant diagram in M, then X ⊗C K is a cofibrant object in M.

(2) If K is a Reedy cofibrant C-diagram of simplicial sets and X is a Reedy

fibrant C-diagram in M, then homC(K,X) is a fibrant object in M.
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Proof. This follows from Theorem 18.4.11. �

Corollary 18.4.13. Let C be a Reedy category and let M be a simplicial
model category.

(1) If K is a Reedy cofibrant Cop-diagram of simplicial sets and f : X → Y is
a weak equivalence of Reedy cofibrant C-diagrams in M, then the induced
map f∗ : X ⊗C K → Y ⊗C K is a weak equivalence of cofibrant objects
in M.

(2) If K is a Reedy cofibrant C-diagram of simplicial sets and f : X → Y is
a weak equivalence of Reedy fibrant C-diagrams in M, then the induced
map f∗ : homC(K,X) → homC(K,Y ) is a weak equivalence of fibrant
objects in M.

Proof. This follows from Corollary 18.4.12, Theorem 18.4.11, and Corol-
lary 7.7.2. �

Corollary 18.4.14. Let C be a Reedy category and let M be a simplicial
model category.

(1) If X is a Reedy cofibrant C-diagram in M and f : K → K ′ is a weak
equivalence of Reedy cofibrant Cop-diagrams of simplicial sets, then the
induced map f∗ : X ⊗C K →X ⊗C K ′ is a weak equivalence of cofibrant
objects in M.

(2) If X is a Reedy fibrant C-diagram in M and f : K →K ′ is a weak equiv-
alence of Reedy cofibrant C-diagrams of simplicial sets, then the induced
map f∗ : homC(K ′,X) → homC(K,X) is a weak equivalence of fibrant
objects in M.

Proof. This follows from Corollary 18.4.12, Theorem 18.4.11, and Corol-
lary 7.7.2. �

Corollary 18.4.15. Let C be a Reedy category and let M be a simplicial
model category.

(1) If K is a Cop-diagram of simplicial sets and both K̃ → K and K̃ ′ → K
are Reedy cofibrant approximations to K, then for every Reedy cofibrant
C-diagram X in M there is an essentially unique (see Definition 14.4.2)

natural zig-zag of weak equivalences in M from X ⊗C K̃ to X ⊗C K̃ ′.

(2) If K is a C-diagram of simplicial sets and both K̃ →K and K̃ ′ →K are
cofibrant approximations to K, then for every Reedy fibrant C-diagram X
in M there is an essentially unique (see Definition 14.4.2) natural zig-zag

of weak equivalences from homC(K̃,X) to homC(K̃ ′,X).

Proof. This follows from Corollary 18.4.14 and Proposition 14.6.3. �

Theorem 18.4.16. Let C be a Reedy category and let M be a simplicial model
category.

(1) If P is a Reedy cofibrant Cop-diagram of simplicial sets such that P α is
contractible for every object α of C, then for every Reedy cofibrant C-
diagram X in M the object X ⊗C P is naturally weakly equivalent to
hocolim X.
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(2) If P is a Reedy cofibrant C-diagram of simplicial sets such that P α is con-
tractible for every object α of C, then for every Reedy fibrant C-diagram X
in M the object homC(P ,X) is naturally weakly equivalent to holim X.

Proof. This follows from Corollary 18.4.15 and Corollary 15.6.7. �

18.5. Homotopy invariance

Theorem 18.5.1. Let M be a simplicial model category and let C be a small
category.

(1) If f : X → Y is a map of C-diagrams in M that is an objectwise cofi-
bration, then the induced map of homotopy colimits f∗ : hocolim X →
hocolim Y is a cofibration that is a weak equivalence if f is an objectwise
weak equivalence.

(2) If f : X → Y is a map of C-diagrams in M that is an objectwise fibration,
then the induced map of homotopy limits f∗ : holim X → holim Y is a
fibration that is a weak equivalence if f is an objectwise weak equivalence.

Proof. This follows from Corollary 18.4.2 and Corollary 14.8.8. �

Theorem 18.5.2. Let M be a simplicial model category and let C be a small
category.

(1) If X is an objectwise cofibrant C-diagram in M, then hocolim X is cofi-
brant.

(2) If X is an objectwise fibrant C-diagram in M, then holim X is fibrant.

Proof. This follows from Corollary 18.4.3 and Corollary 14.8.8. �

Theorem 18.5.3. Let M be a simplicial model category and let C be a small
category.

(1) If f : X → Y is a map of C-diagrams in M that is an objectwise weak
equivalence of cofibrant objects, then the induced map of homotopy co-
limits f∗ : hocolim X → hocolim Y is a weak equivalence of cofibrant
objects of M.

(2) If f : X → Y is a map of C-diagrams in M that is an objectwise weak
equivalence of fibrant objects, then the induced map of homotopy limits
f∗ : holim X → holim Y is a weak equivalence of fibrant objects of M.

Proof. This follows from Corollary 18.4.4 and Theorem 18.5.2. �

Remark 18.5.4. D. Dugger and D. Isaksen [28] have proved that if C is a
small category and X is a C-diagram of topological spaces, then hocolim X has
the “correct” weak equivalence type even if X is not an objectwise cofibrant dia-
gram. That is, they prove that if X̃ is an objectwise cofibrant diagram of topo-
logical spaces and j : X̃ → X is an objectwise weak equivalence, then the map
hocolim j : hocolim X̃ → hocolim X is a weak equivalence. Thus, their results
imply that if f : X → Y is an objectwise weak equivalence of C-diagrams of topo-
logical spaces, then hocolim f : hocolim X → hocolim Y is a weak equivalence even
if none of the spaces involved are cofibrant.
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18.6. Simplicial objects and cosimplicial objects

18.6.1. Definitions.

Definition 18.6.2. If M is a simplicial model category and X is a simplicial
object in M (see Definition 15.1.10), then the realization

∣∣X∣∣ of X is the coequalizer
of the maps ∐

(σ : [n]→[k])∈∆

Xn ⊗∆[k]
φ
//

ψ
//

∐
[n]∈Ob(∆)

Xn ⊗∆[n]

where the map φ on the summand σ : [n]→ [k] is the composition of the map

σ∗ ⊗ 1∆[k] : Xn ⊗∆[k] −→Xk ⊗∆[k]

(where σ∗ : Xn →Xk) with the natural injection into the coproduct and the map
ψ on the summand σ : [n]→ [k] is the composition of the map

1Xn
⊗ σ∗ : Xn ⊗∆[k] −→Xn ⊗∆[n]

(where σ∗ : ∆[k] → ∆[n]) with the natural injection into the coproduct. In the
notation of Definition 18.3.2,

∣∣X∣∣ = X ⊗∆op ∆ (see Definition 15.1.15).

Definition 18.6.3. If M is a simplicial model category and X is a cosimplicial
object in M (see Definition 15.1.10), then the total object TotX of X is the equalizer
of the maps ∏

[n]∈Ob(∆)

(Xn)∆[n]
φ
//

ψ
//

∏
(σ : [n]→[k])∈∆

(Xk)∆[n]

where the projection of the map φ on the factor σ : [n]→ [k] is the composition of
the natural projection from the product with the map

σ
(1∆[n])
∗ : (Xn)∆[n] −→ (Xk)∆[n]

and the projection of the map ψ on the factor σ : [n] → [k] is the composition of
the natural projection from the product with the map

(1Xk)σ∗ : (Xk)∆[k] −→ (Xk)∆[n]

(where σ∗ : ∆[n]→ ∆[k]). In the notation of Definition 18.3.2, Tot X = hom∆(∆,X)
(see Definition 15.1.15).

Remark 18.6.4. If Spc(∗) is one of our categories of spaces (see Notation 7.10.5),
then the space (Xn)∆[n] is a space of maps:

(Xn)∆[n] =


map

(∣∣∆[n]
∣∣,Xn

)
if Spc(∗) = Top

map∗
(∣∣∆[n]

∣∣+,Xn
)

if Spc(∗) = Top∗
Map(∆[n],Xn) if Spc(∗) = SS
Map∗(∆[n]+,Xn) if Spc(∗) = SS∗

(see Example 9.1.13, Example 9.1.14, Example 9.1.15, and Example 9.1.16). Thus,
in each case the total space is constructed by first taking the codegreewise mapping
space from the cosimplicial space

∣∣∆∣∣ (or
∣∣∆∣∣+, or ∆, or ∆+) to the cosimplicial

space X, and then taking a subspace of the product of these mapping spaces. In the
notation of Definition 18.2.3, the total space of a cosimplicial space is TotX = X∆.
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18.6.5. Homotopy invariance.

Theorem 18.6.6. Let M be a simplicial model category.

(1) If g : X → Y is a level-wise weak equivalence of Reedy cofibrant simplicial
objects in M, then the induced map of realizations g∗ :

∣∣X∣∣ → ∣∣Y ∣∣ is a
weak equivalence of cofibrant objects in M.

(2) If g : X → Y is a level-wise weak equivalence of Reedy fibrant cosimplicial
objects in M, then the induced map of total objects g∗ : TotX → TotY
is a weak equivalence of fibrant objects in M.

Proof. This follows from Corollary 18.4.13 and Corollary 15.9.11. �

Theorem 18.6.7. Let M be a simplicial model category.

(1) if i : A → B is a Reedy cofibration of simplicial objects in M, then the
induced map of realizations

∣∣i∣∣ : ∣∣A∣∣→ ∣∣B∣∣ is a cofibration in M that is a
trivial cofibration if i is a trivial cofibration.

(2) If p : X → Y is a Reedy fibration of cosimplicial objects in M, then the
induced map of total objects Tot p : TotX → TotY is a fibration in M

that is a trivial fibration if p is a trivial fibration.

Proof. This follows from Theorem 18.4.11 and Corollary 15.9.11. �

18.7. The Bousfield-Kan map

If M is a simplicial model category and X is a cosimplicial object in M (see
Definition 15.1.10), then

• the total object Tot X of X is defined (see Definition 18.6.3) as the
end hom∆(∆,X), using the cosimplicial standard simplex ∆ (see Defi-
nition 15.1.15), and
• the homotopy limit holim X is defined (see Example 18.3.6) as the end

hom∆
(
B(∆ ↓−),X

)
, using the ∆-diagram of classifying spaces of over-

categories B(∆ ↓−).

Both the cosimplicial standard simplex ∆ and the ∆-diagram of classifying spaces
of overcategories B(∆ ↓−) are Reedy cofibrant approximations to the constant ∆-
diagram at a point (see Corollary 15.9.12 and Corollary 15.6.8), but since neither
of these diagrams is a fibrant cofibrant approximation we cannot apply Proposi-
tion 8.1.7 to obtain a map between them. Bousfield and Kan, however, directly
defined such a map in [14, Chapter XI, Example 2.6]. In this section we define the
Bousfield-Kan map, modified from [14] to accommodate our different definition of
the classifying space of a category (see Remark 18.1.11).

Definition 18.7.1. The Bousfield-Kan map of cosimplicial simplicial sets is
the map φ : B(∆ ↓−) → ∆ (see Definition 14.7.8 and Definition 15.1.15) that for
k ≥ 0 and n ≥ 0 takes the n-simplex((

[i0]
σ0−→ [i1]

σ1−→ · · · σn−1−−−→ [in]
)
, τ : [in]→ [k]

)
of B(∆ ↓ k) to the n-simplex

[τσn−1σn−2 · · ·σ0(i0), τσn−1σn−2 · · ·σ1(i1), . . . , τσn−1(in−1), τ(in)]
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of ∆[k]. We will also abuse notation and let φ : B(−↓∆op)op → ∆ denote the
composition of the isomorphism B(−↓∆op)op ≈ B(∆ ↓−) (see Corollary 14.7.13)
with the map φ : B(∆ ↓−)→ ∆.

Proposition 18.7.2. The Bousfield-Kan map of cosimplicial simplicial sets is
a weak equivalence of Reedy cofibrant cosimplicial simplicial sets.

Proof. For every k ≥ 0 both B(∆ ↓ [k]) and ∆[k] are contractible simplicial
sets (see Lemma 14.7.10), and so every map B(∆ ↓ [k]) → ∆[k] is a weak equiva-
lence. The result now follows from Corollary 15.6.7 and Corollary 15.9.11. �

Definition 18.7.3. Let M be a simplicial model category.
(1) If X is a simplicial object in M, then the Bousfield-Kan map is the map

φ∗ : hocolim X −→
∣∣X∣∣ ,

natural in X, that is the composition

hocolim X ≈X ⊗∆op B(−↓∆op)op
1X⊗∆opφ−−−−−−→X ⊗∆op ∆ ≈

∣∣X∣∣
where φ is the Bousfield-Kan map of cosimplicial simplicial sets (see Def-
inition 18.7.1).

(2) If X is a cosimplicial object in M, then the Bousfield-Kan map is the map

φ∗ : TotX −→ holim X ,

natural in X, that is the composition

TotX ≈ hom∆(∆,X)
hom∆(φ,1X)−−−−−−−−→ hom∆

(
B(∆ ↓−),X

)
≈ holim X

where φ is the Bousfield-Kan map of cosimplicial simplicial sets.

Theorem 18.7.4. Let M be a simplicial model category.

(1) If X is a Reedy cofibrant simplicial object in M, then the Bousfield-Kan
map φ∗ : hocolim X →

∣∣X∣∣ is a natural weak equivalence.
(2) If X is a Reedy fibrant cosimplicial object in M, then the Bousfield-Kan

map φ∗ : TotX → holim X is a natural weak equivalence.

Proof. This follows from Corollary 18.4.14 and Proposition 18.7.2. �

Corollary 18.7.5. If X is a simplicial simplicial set (either pointed or un-
pointed), then the Bousfield-Kan map φ∗ : hocolim X →

∣∣X∣∣ is a weak equivalence.

Proof. This follows from Theorem 18.7.4 and Corollary 15.8.8. �

Theorem 18.7.6. Let M be a simplicial model category.

(1) If X is a Reedy cofibrant simplicial object in M, then there is a natural
essentially unique zig-zag of weak equivalences from the realization of X
to the homotopy colimit of X, containing the Bousfield-Kan map.

(2) If X is a Reedy fibrant cosimplicial object in M, then there is a natural
essentially unique zig-zag of weak equivalences from the total object of X
to the homotopy limit of X, containing the Bousfield-Kan map.

Proof. This follows from Corollary 18.4.15, Corollary 15.9.11, and Corol-
lary 15.6.7. �
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Corollary 18.7.7. If X is a simplicial simplicial set (either pointed or un-
pointed), then there is a natural weak equivalence hocolim X → diag X (see Defi-
nition 15.11.3).

Proof. This follows from Corollary 18.7.5 and Theorem 15.11.6. �

18.8. Diagrams of pointed or unpointed spaces

Given a small category C and a C-diagram of pointed spaces X (where by a
“space” we mean either a topological space or a simplicial set), there are two ways
to construct an unpointed version of its homotopy limit:

(1) Take the homotopy limit of the diagram in the category of pointed spaces
and then forget the basepoint, or

(2) forget the basepoints of the spaces in the diagram and take the homotopy
limit in the category of unpointed spaces.

These two homotopy limits will be homeomorphic (respectively, isomorphic) be-
cause if X is an unpointed space and Y is a pointed space, then the space of pointed
maps map∗(X+, Y ) (respectively, Map∗(X+, Y )) (see Definition 18.2.1) is homeo-
morphic (respectively, isomorphic) to the space of unpointed maps map(X,Y ) (re-
spectively, Map(X,Y )) once we’ve forgotten the basepoint of the pointed mapping
space. On the other hand, the homotopy colimit of X will generally have different
homotopy types when taken in the categories of pointed and unpointed spaces (see
Proposition 18.8.4). In this section, we describe the difference between the pointed
and unpointed homotopy colimit.

Notation 18.8.1. In this section only, if X is a diagram of pointed spaces,
then

• hocolim∗X will denote the homotopy colimit formed in the category of
pointed spaces and
• hocolim X will denote the homotopy colimit formed in the category of

unpointed spaces after forgetting the basepoints of the spaces in the dia-
gram.

Definition 18.8.2. A pointed space X will be called well pointed if the inclu-
sion of the basepoint into the space is a cofibration in the model category Spc∗ (see
Notation 7.10.5). Since the one point space is the initial object of Spc∗, a pointed
space X is well pointed if and only if it is a cofibrant space.

Proposition 18.8.3. Every pointed simplicial set is well pointed.

Proof. Every inclusion of simplicial sets is a cofibration. �

The following proposition is due to E. Dror Farjoun ([23]).

Proposition 18.8.4. Let C be a small category, let Spc∗ denote either SS∗ or
Top∗ (see Notation 7.10.5), let X be a C-diagram in Spc∗, and let BCop be the
classifying space of the category Cop (see Definition 14.1.1).

• If Spc∗ = SS∗, then there is a natural cofibration BCop → hocolim X and
a natural isomorphism (hocolim X)/(BCop) ≈ hocolim∗X.

• If Spc∗ = Top∗, then there is a natural inclusion
∣∣BCop

∣∣ → hocolim X
that is a cofibration if X is a diagram of well pointed spaces and a natural
homeomorphism (hocolim X)/

(∣∣BCop
∣∣) ≈ hocolim∗X.
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Proof. This follows from the definition of the homotopy colimit (see Defini-
tion 19.1.2), Proposition 18.1.6, and Theorem 18.5.1. �

Corollary 18.8.5. Let Spc∗ denote either SS∗ or Top∗ (see Notation 7.10.5).
If C is a small category and X is a C-diagram of well pointed spaces in Spc∗ such
that the space Xα is contractible for every object α in C, then hocolim∗X is
contractible (see Notation 18.8.1).

Proof. We will prove this in the case Spc∗ = Top∗; the case Spc∗ = SS∗ is
similar.

Proposition 18.8.4, Proposition 18.1.6 and Theorem 18.5.3 imply that the
map

∣∣BCop
∣∣ → hocolim X is a trivial cofibration. Since the quotient space

(hocolim X)/
(∣∣BCop

∣∣) is naturally homeomorphic to the pushout of the diagram
∗ ←

∣∣BCop
∣∣ → hocolim X, this implies that the map ∗ → hocolim∗X (see Nota-

tion 18.8.1) is a trivial cofibration.
�

Proposition 18.8.6. Let Spc∗ denote either SS∗ or Top∗ (see Notation 7.10.5).
If C is a small category such that the classifying space of C is contractible, then
for any C-diagram of well pointed spaces X in Spc∗ the natural map (see Proposi-
tion 18.8.4) hocolim X → hocolim∗X is a weak equivalence.

Proof. We will prove this in the case Spc∗ = Top∗; the case Spc∗ = SS∗ is
similar.

The quotient space (hocolim X)/
(∣∣BCop

∣∣) is naturally homeomorphic to the
pushout of the diagram ∗ ←

∣∣BCop
∣∣ → hocolim X. Since Spc is a proper model

category (see Theorem 13.1.11 and Theorem 13.1.13), the result now follows from
Proposition 18.8.4. �

Example 18.8.7. If C is the category · ← · → · then the homotopy colimit
of a C-diagram of well pointed spaces has the same weak homotopy type whether
formed in the category of pointed spaces or in the category of unpointed spaces.

Example 18.8.8. If C is the category · → · → · → · · · , then the homotopy
colimit of a C-diagram of well pointed spaces has the same weak homotopy type
whether formed in the category of pointed spaces or in the category of unpointed
spaces.

Example 18.8.9. The homotopy colimit of a diagram indexed by a discrete
group does not, in general, have the same weak homotopy type when formed in
the category of pointed spaces as it does when formed in the category of unpointed
spaces since the classifying space of a nontrivial discrete group is not contractible
(see Example 14.1.4, Proposition 14.1.6, and Proposition 18.8.4.)

18.9. Diagrams of simplicial sets

Lemma 18.9.1. Let M be a simplicial model category, let X be a simplicial set,
and let ∆X be the category of simplices of X (see Definition 15.1.16).

(1) If Y is a (∆opX)-diagram in M, then the homotopy colimit of Y is natu-
rally isomorphic to the homotopy colimit of the simplicial object Z in M

for which Zn =
∐
σ∈Xn

Y σ.
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(2) If Y is a (∆X)-diagram in M, then the homotopy limit of Y is naturally
isomorphic to the homotopy limit of the cosimplicial object Z in M for
which Zn =

∏
σ∈Xn

Y σ.

Proof. We will prove part 1; the proof of part 2 is similar.
Definition 18.1.2 describes hocolim Y as the colimit of the diagram∐

(σ→σ′)∈∆opX

Y σ ⊗ B
(
σ′ ↓ (∆opX)

)op //
//

∐
σ∈Ob(∆opX)

Y σ ⊗ B
(
σ ↓ (∆opX)

)op .

Lemma 9.2.1 implies that there are natural isomorphisms∐
(σ→σ′)∈∆opX

Y σ ⊗ B
(
σ′ ↓ (∆opX)

)op ≈
∐
n≥0
k≥0

∐
σ∈Xn

δ : Xn→Xk

Y σ ⊗ B
(
[k] ↓∆op

)op

≈
∐
n≥0
k≥0

∐
δ : Xn→Xk

( ∐
σ∈Xn

Y σ

)
⊗ B

(
[k] ↓∆op

)op

≈
∐
n≥0
k≥0

∐
∆op([n],[k])

Zn ⊗ B
(
[k] ↓∆op

)op

and natural isomorphisms∐
σ∈Ob(∆opX)

Y σ ⊗ B
(
σ ↓ (∆opX)

)op ≈
∐
n≥0

( ∐
σ∈Xn

Y σ

)
⊗ B

(
σ ↓ (∆opX)

)op

≈
∐
n≥0

Zn ⊗ B
(
[n] ↓∆op

)op ,

and so hocolim Y is naturally isomorphic to the colimit of the diagram∐
n≥0
k≥0

∐
∆op([n],[k])

Zn ⊗ B
(
[k] ↓∆op

)op //
//

∐
[n]∈Ob(∆op)

Zn ⊗ B
(
[n] ↓∆op

)op ,

which is the definition of hocolim Z. �

Proposition 18.9.2. If X is a simplicial set, ∆X is the category of simplices
of X (see Definition 15.1.16), and P is the (∆opX)-diagram of simplicial sets such
that P σ is a single point for every object σ of ∆opX, then there is a natural weak
equivalence from the homotopy colimit of P to X.

Proof. Lemma 18.9.1 implies that hocolim P is naturally isomorphic to hocolim Z
where Z is the simplicial simplicial set such that

Zn =
∐
σ∈Xn

P σ =
∐
σ∈Xn

∗ = Xn

(where we view the set Xn as a constant (i.e., discrete) simplicial set). Since the
diagonal of Z is naturally isomorphic to the original simplicial set X, the result
follows from Corollary 18.7.5. �

Theorem 18.9.3. If X is a simplicial set and ∆X is the category of simplices
of X (see Definition 15.1.16) then there is a natural weak equivalence from B(∆X)
to X.
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Proof. Proposition 18.1.6 implies that if P is the (∆opX)-diagram of simpli-
cial sets such that P σ is a single point for every object σ of ∆opX, then B(∆X) is
naturally isomorphic to hocolim P . The result now follows from Proposition 18.9.2.

�

Proposition 18.9.4. If C is a small category and X is a C-diagram of simplicial
sets that is cofibrant in the model category structure of Theorem 11.6.1, then the
natural map hocolim X → colim X is a weak equivalence.

Proof. This follows from Corollary 18.4.4, Example 18.3.8, Lemma 14.7.4,
and the isomorphism between the map X ⊗C B(−↓C)op → X ⊗C P and the map
B(−↓C)op ⊗Cop X → P ⊗Cop X. �

Proposition 18.9.5. If C and D are small categories and F: C→ D is a functor,
then the homotopy colimit of the Dop-diagram of classifying spaces of undercate-
gories colimDop B(−↓F) is naturally weakly equivalent to BC.

Proof. This follows from Proposition 14.7.5, Proposition 18.9.4, and Propo-
sition 14.8.5. �

Example 18.9.6. If p : E → B is a map of simplicial sets, we will decompose E
into a (∆B)-diagram (see Definition 15.1.16) of simplicial sets p̃. If σ is an n-simplex
of B, then the characteristic map of σ is the unique map χσ : ∆[n]→ B that takes
the non-degenerate n-simplex of ∆[n] to σ, and we let p̃(σ) be the pullback of the
diagram

E

p

��

∆[n]
χσ

// B

If δ : Bn → Bk is a simplicial operator, then δ corresponds to a map ∆[k]→ ∆[n],
and so we get a map p̃(σ, δ) : p̃

(
δ(σ)

)
→ p̃(σ). For each simplex σ in B there is

an obvious map p̃(σ) → E, and these induce an isomorphism of simplicial sets
colimσ∈Ob(∆B) p̃(σ) ≈ E. We will show in Corollary 19.9.2 that the natural map
hocolimσ∈Ob(∆B) p̃(σ)→ colimσ∈Ob(∆B) p̃(σ) ≈ E is a weak equivalence.

Proposition 18.9.7. If p : E → B is a map of simplicial sets, then the (∆B)-
diagram of simplicial sets constructed in Example 18.9.6 is Reedy cofibrant.

Proof. The latching map at the n-simplex σ is the inclusion of the part of
p̃(σ) above ∂∆[n] into p̃(σ). �

Proposition 18.9.7 allows us to prove in Corollary 19.9.2 that if p : E → B is
a map of simplicial sets and p̃ : ∆B → SS is the diagram constructed in Exam-
ple 18.9.6, then the natural map hocolim p̃→ E is a weak equivalence.

18.9.8. Geometric realization and total singular complex.

Proposition 18.9.9. Let C be a small category.

(1) If X is a C-diagram of unpointed (respectively, pointed) simplicial sets and
K is a Cop-diagram of unpointed simplicial sets, then there is a natural
homeomorphism ∣∣X ⊗C K

∣∣ ≈ ∣∣X∣∣⊗C K
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of unpointed (respectively, pointed) topological spaces.
(2) If X is a C-diagram of unpointed (respectively, pointed) topological spaces

and K is a C-diagram of unpointed simplicial sets, then there is a natural
isomorphism

Sing
(
homC(K,X)

)
≈ homC(K,Sing X)

of unpointed (respectively, pointed) simplicial sets.

Proof. We will prove part 1; the proof of part 2 is similar.
Definition 18.3.2 defines X ⊗C K as a colimit. Since the geometric realization

functor is a left adjoint, it commutes with colimits, and so the result follows from
Lemma 1.1.9. �

Theorem 18.9.10. Let C be a small category.

(1) If X is a C-diagram of unpointed (respectively, pointed) simplicial sets,
then there is a natural homeomorphism∣∣hocolim X

∣∣ ≈ hocolim
∣∣X∣∣

of unpointed (respectively, pointed) topological spaces.
(2) If X is a C-diagram of unpointed (respectively, pointed) topological spaces

then there is a natural isomorphism

Sing(holim X) ≈ holim(Sing X)

of unpointed (respectively, pointed) simplicial sets.

Proof. This follows from Proposition 18.9.9 and Example 18.3.6. �

Theorem 18.9.11.
(1) If X is a simplicial unpointed (respectively, pointed) simplicial set, then

there is a natural homeomorphism from the geometric realization of the
simplicial set

∣∣X∣∣ (see Definition 18.6.2) to the realization (see Defini-
tion 18.6.2) of the simplicial unpointed (respectively, pointed) topological
space obtained by taking the geometric realization in each simplicial de-
gree.

(2) If X is a cosimplicial unpointed (respectively, pointed) topological space,
then there is a natural isomorphism Sing(Tot X) ≈ Tot(Sing X).

Proof. This follows from Proposition 18.9.9. �

Proposition 18.9.12. Let C be a small category.

(1) If X is an objectwise cofibrant C-diagram of unpointed (respectively,
pointed) topological spaces, then there is a natural weak equivalence
hocolim(Sing X)→ Sing(hocolim X).

(2) If X is an objectwise fibrant C-diagram of unpointed (respectively, pointed)
simplicial sets, then there is a natural weak equivalence

∣∣holim X
∣∣ →

holim
∣∣X∣∣.

Proof. We will prove part 1; the proof of part 2 is similar.
The natural map of diagrams

∣∣Sing X
∣∣→X induces a natural weak equivalence

hocolim
∣∣Sing X

∣∣→ hocolim X (see Theorem 19.4.2). Theorem 18.9.10 implies that
this is isomorphic to a natural weak equivalence

∣∣hocolim Sing X
∣∣ → hocolim X,
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which corresponds (under the standard adjunction) to a natural weak equivalence
hocolim(Sing X)→ Sing(hocolim X). �





CHAPTER 19

Homotopy Limits in General Model Categories

In this chapter we generalize the definitions of homotopy colimit and homotopy
limit from diagrams in a simplicial model category to diagrams in an arbitrary
model category, using frames (see Definition 16.6.21) in place of the simplicial model
category structure. Our definitions are due to D. M. Kan, who also established their
properties (using methods different from the ones used here).

We define homotopy colimits and homotopy limits in Section 19.1. In Sec-
tion 19.2 we define coends and ends, which are constructions that generalize the
definitions of the homotopy colimit and the homotopy limit, and we establish some
adjointness results. In Section 19.3 we use the adjointness results to obtain ho-
motopy invariance results for the pushout corner map of coends and the pullback
corner map of ends.

In Section 19.4 we establish our homotopy invariance results for homotopy
colimits and homotopy limits and show that changing the choice of frame results
in naturally weakly equivalent homotopy colimit and homotopy limit functors. We
also prove an adjointness result connecting the homotopy colimit and the homotopy
limit functors. In Section 19.5 we show that a homotopy pullback in a right proper
model category is weakly equivalent to the homotopy limit of the diagram if each
of the objects in the diagram is fibrant.

In Section 19.6 we define what it means for a functor between small categories
to be homotopy left cofinal or homotopy right cofinal. We show that such a functor
is homotopy left cofinal if and only if it induces a weak equivalence of homotopy
limits for all diagrams of fibrant objects, and that it is homotopy right cofinal if
and only if it induces a weak equivalence of homotopy colimits for all diagrams of
cofibrant objects. In Section 19.7 we prove a homotopy lifting extension theorem
for diagrams indexed by a Reedy category. In Section 19.8 we discuss the Bousfield-
Kan maps from the homotopy colimit of a simplicial object to its realization and
from the total object of a cosimplicial object to its homotopy limit.

In Section 19.9 we discuss diagrams indexed by a Reedy category. We prove that
the homotopy colimit of a Reedy cofibrant diagram indexed by a Reedy category
with fibrant constants is naturally weakly equivalent to its colimit, and that the
homotopy limit of a Reedy fibrant diagram indexed by a Reedy category with
cofibrant constants is naturally weakly equivalent to its limit.

19.1. Homotopy colimits and homotopy limits

In this section we define the homotopy colimit and homotopy limit of a diagram
in a model category; this generalizes the definitions of Chapter 18 for diagrams in a
simplicial model category (see Remark 19.1.3 and Remark 19.1.6). Our definitions

405
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depend on the choice of a framing for the model category, but we show in Theo-
rem 19.4.3 that two different framings yield naturally weakly equivalent homotopy
colimit and homotopy limit functors.

19.1.1. Homotopy colimits.

Definition 19.1.2. Let M be a framed model category (see Definition 16.6.21)
and let C be a small category. If X is a C-diagram in M (see Definition 11.5.2),
then the homotopy colimit hocolim X of X is defined to be the coequalizer of the
maps ∐

(σ : α→α′)∈C

X̃α ⊗ B(α′ ↓C)op
φ
//

ψ
//

∐
α∈Ob(C)

X̃α ⊗ B(α ↓C)op

(see Definition 16.3.1, Definition 14.1.1, and Definition 11.8.3) where X̃α is the
natural cosimplicial frame on Xα, the map φ on the summand σ : α → α′ is the
composition of the map

σ∗ ⊗ 1B(α′↓C) : X̃α ⊗ B(α′ ↓C)op −→ X̃α′ ⊗ B(α′ ↓C)op

with the natural injection into the coproduct, and the map ψ on the summand
σ : α→ α′ is the composition of the map

1X̃α
⊗ B(σ∗) : X̃α ⊗ B(α′ ↓C)op −→ X̃α ⊗ B(α ↓C)op

(where σ∗ : (α′ ↓C)op → (α ↓C)op; see Definition 14.7.2) with the natural injection
into the coproduct.

For a discussion of the relation of our definition of the homotopy colimit to
that of [14], see Remark 18.1.11.

Remark 19.1.3. If M is a simplicial model category, then for every object
X of M and every simplicial set K the object X̃ ⊗ K (where X̃ is the natural
cosimplicial frame on X; see Proposition 16.6.23) is naturally isomorphic to X ⊗
K (see Proposition 16.6.6). Thus, if M is a simplicial model category with the
natural framing induced by the simplicial structure, Definition 19.1.2 agrees with
Definition 18.1.2.

19.1.4. Homotopy limits.

Definition 19.1.5. Let M be a framed model category (see Definition 16.6.21)
and let C be a small category. If X is a C-diagram in M (see Definition 11.5.2),
then the homotopy limit holim X of X is defined to be the equalizer of the maps∏

α∈Ob(C)

(X̂α)B(C↓α)
φ
//

ψ
//

∏
(σ : α→α′)∈C

(X̂α′)B(C↓α)

(see Definition 16.3.1, Definition 14.1.1, and Definition 11.8.1) where X̂α is the
natural simplicial frame on Xα, the projection of the map φ on the factor σ : α→ α′

is the composition of a natural projection from the product with the map

σ
1B(C↓α)
∗ : (X̂α)B(C↓α) −→ (X̂α′)B(C↓α)
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and the projection of the map ψ on the factor σ : α → α′ is the composition of a
natural projection from the product with the map

(1X̂α′
)B(σ∗) : (X̂α′)B(C↓α′) −→ (X̂α′)B(C↓α)

(where σ∗ : (C ↓α)→ (C ↓α′); see Definition 14.7.8).

Remark 19.1.6. If M is a simplicial model category then for every object X
of M and every simplicial set K the object X̂K (where X̂ is the natural simplicial
frame on X; see Proposition 16.6.23) is naturally isomorphic to XK (see Propo-
sition 16.6.6). Thus, if M is a simplicial model category with the natural framing
induced by the simplicial structure, Definition 19.1.5 agrees with Definition 18.1.8.

19.1.7. Induced diagrams.

Proposition 19.1.8. Let M be a framed model category. If C and D are small
categories, F: C → D is a functor, X is a D-diagram in M, and F∗X is the C-
diagram in M induced by F (see Definition 11.5.5), then

(1) there is a natural map

hocolim
C

F∗X −→ hocolim
D

X

defined by sending F̃∗Xα ⊗ B(α ↓C)op = X̃Fα ⊗ B(α ↓C)op to X̃Fα ⊗
B(Fα ↓D)op by the map 1X̃Fα

⊗ F∗ (see Lemma 14.7.3), and

(2) there is a natural map

holim
D

X −→ holim
C

F∗X

induced by the natural map F∗ : B(C ↓α)→ B(D ↓Fα) (see Lemma 14.7.9).

Proof. This follows directly from the definitions. �

It is often of interest to know conditions on a functor F that ensure that the
natural map of homotopy colimits of Proposition 19.1.8 part 1 is a weak equivalence
for all D-diagrams of cofibrant objects, or that the natural map of homotopy limits
of Proposition 19.1.8 part 2 is a weak equivalence for all D-diagrams of fibrant
objects. For this, see Theorem 19.6.13.

19.2. Coends and ends

In this section we define general constructions (see Definition 19.2.2) that allow
us to analyze the colimit and homotopy colimit as two examples of the same con-
struction and, dually, the limit and homotopy limit as two examples of the same
construction (see Example 19.2.10). These definitions also enable us to obtain ad-
jointness relations (see Section 19.2.12) that will be used to obtain the homotopy
invariance results of Section 19.4.

19.2.1. Definitions.

Definition 19.2.2. Let M be a model category and let C be a small category.

(1) If X is a C-diagram in M, X̃ is a cosimplicial frame on X (see Defini-
tion 16.7.2), and K is a Cop-diagram of simplicial sets, then X ⊗X̃

C K is
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defined to be the object of M that is the coequalizer of the maps

(19.2.3)
∐

(σ : α→α′)∈C

X̃α ⊗Kα′

φ
//

ψ
//

∐
α∈Ob(C)

X̃α ⊗Kα

(see Definition 16.3.1) where the map φ on the summand σ : α → α′ is
the composition of the map

σ∗ ⊗ 1Kα′ : X̃α ⊗Kα′ −→ X̃α′ ⊗Kα′

(where σ∗ : X̃α → X̃α′) with the natural injection into the coproduct,
and the map ψ on the summand σ : α→ α′ is the composition of the map

1X̃α
⊗ σ∗ : X̃α ⊗Kα′ −→ X̃α ⊗Kα

(where σ∗ : Kα′ →Kα) with the natural injection into the coproduct.
(2) If X is a C-diagram in M, X̂ is a simplicial frame on X, and K is a C-

diagram of simplicial sets, then homC
X̂

(K,X) is defined to be the object
of M that is the equalizer of the maps

(19.2.4)
∏

α∈Ob(C)

(X̂α)Kα

φ
//

ψ
//

∏
(σ : α→α′)∈C

(X̂α′)Kα

(see Definition 16.3.1) where the projection of the map φ on the factor
σ : α → α′ is the composition of a natural projection from the product
with the map

σ
1Kα
∗ : (X̂α)Kα −→ (X̂α′)Kα

(where σ∗ : X̂α → X̂α′) and the projection of the map ψ on the factor
σ : α → α′ is the composition of a natural projection from the product
with the map

(1X̂α′
)Kσ∗ : (X̂α′)Kα′ −→ (X̂α′)Kα

(where σ∗ : (C ↓α)→ (C ↓α′); see Definition 14.7.8).

Proposition 19.2.5. Let M be a simplicial model category, let C be a small
category, and let X be a C-diagram in M.

(1) If X̃ is the natural cosimplicial frame on X defined by the simplicial

structure on M and K is a Cop-diagram of simplicial sets, then X ⊗X̃
C K

(see Definition 19.2.2) is naturally isomorphic to X ⊗C K (see Defini-
tion 18.3.2).

(2) If X̂ is the natural simplicial frame on X defined by the simplicial struc-

ture on M and K is a C-diagram of simplicial sets, then homC
X̂

(K,K)
(see Definition 19.2.2) is naturally isomorphic to homC(K,X) (see Defi-
nition 18.3.2).

Proof. This follows directly from the definitions. �
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19.2.6. Framed model categories.

Notation 19.2.7. Let M be a framed model category, let C be a small category,
and let X be a C-diagram in M.

(1) If X̃ is the natural cosimplicial frame on X induced by the framing on
M (see Example 16.7.3), then X ⊗X̃

C K will be denoted X ⊗C K (see
Proposition 19.2.5).

(2) If X̂ is the natural simplicial frame induced by the framing on M, then
homC

X̂
(K,X) will be denoted homC(K,X) (see Proposition 19.2.5).

Example 19.2.8. Let M be a framed model category and let C be a small
category.

(1) If X is a C-diagram in M, then X ⊗C B(−↓C)op (see Notation 19.2.7) is
the homotopy colimit of X (see Definition 19.1.2).

(2) If X is a C-diagram in M, then homC(B(C ↓−),X) is the homotopy limit
of X (see Definition 19.1.5).

Proposition 19.2.9. Let M be a framed model category and let C be a small
category.

(1) If X is a C-diagram in M and P : Cop → SS is a single point for every
object α of C, then X ⊗C P (see Notation 19.2.7) is naturally isomorphic
to colim X.

(2) If X is a C-diagram in M and P : C→ SS is a single point for every object

α of C, then homC(P ,X) is naturally isomorphic to lim X.

Proof. For part 1, P α is naturally isomorphic to ∆[0] for every object α of
Cop, and so we have natural isomorphisms

X̃α ⊗ P α ≈ X̃α ⊗∆[0] ≈ (X̃α)0 ≈Xα

(where X̃ is the natural cosimplicial frame on X induced by the framing on M)
(see Lemma 16.3.6). Under these isomorphisms, the map φ of Definition 19.2.2 is
defined by σ∗ : Xα →Xα′ and the map ψ is the identity.

For part 2, P α is naturally isomorphic to ∆[0] for every object α of C, and so
we have natural isomorphisms

X̂P α
α ≈ X̂∆[0]

α ≈ (X̂α)0 ≈Xα

(where X̂ is the natural simplicial frame on X induced by the framing on M)
(see Lemma 16.3.6). Under these isomorphisms, the map φ of Definition 19.2.2 is
defined by σ∗ : Xα →Xα′ and the map ψ is the identity. �

Example 19.2.10. Let M be a framed model category and let C be a small
category.

(1) If P : Cop → SS is a single point for every object α of Cop, then the unique
map of Cop-diagrams B(−↓C)op → P induces a natural map

hocolim X = X ⊗X̃
C B(−↓C)op →X ⊗X̃

C P = colim X

for all C-diagrams X in M (see Example 19.2.8 and Proposition 19.2.9).
(2) If P : C → SS is a single point for every object α of C, then the unique

map of C-diagrams B(C ↓−)→ P induces a natural map

lim X = homC
X̂

(P ,X)→ homC
X̂

(
B(C ↓−),X

)
= holim X
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for all C-diagrams X in M.

Proposition 19.2.11. Let M and N be model categories and let F : M � N : U
be a Quillen pair (see Definition 8.5.2).

(1) If C is a small category, K is a Cop-diagram of simplicial sets, X is a C-

diagram in M, and X̃ is a cosimplicial frame on X (see Definition 16.7.2),

then FX̃ : C→ N∆ is a cosimplicial frame on FX and there is a natural
isomorphism

F(X ⊗X̃
C K) ≈ (FX)⊗FX̃

C K .

(2) If C is a small category, K is a C-diagram of simplicial sets, X is a C-

diagram in N, and X̂ is a simplicial frame on X (see Definition 16.7.2),

then UX̂ is a simplicial frame on UX and there is a natural isomorphism

U
(
homC

X̂
(K,X)

)
≈ homC

UX̂
(K,UX) .

Proof. We will prove part 1; the proof of part 2 is dual.
The coend X ⊗X̃

C K is the coequalizer of Diagram 19.2.3. As a functor of
X, this is a composition of functors that commute with left adjoints, and so it
commutes with left adjoints. The result now follows from Proposition 16.6.19. �

19.2.12. Adjointness.

Proposition 19.2.13. Let M be a model category and let C be a small category.

(1) If X is a C-diagram in M, X̃ is a cosimplicial frame on X (see Defini-
tion 16.7.2), K is a Cop-diagram of simplicial sets, and Z is an object of
M, then there is a natural isomorphism of sets

M(X ⊗X̃
C K, Z) ≈ SSCop(

K,M(X̃, Z)
)

(where X ⊗X̃
C K is as in Definition 19.2.2).

(2) If X is a C-diagram in M, X̂ is a simplicial frame on X (see Defini-
tion 16.7.2), K is a C-diagram of simplicial sets, and W is an object of
M, then there is a natural isomorphism of sets

M
(
W,homC

X̂
(K,X)

)
≈ SSC

(
K,M(W, X̂)

)
(where homC

X̂
(K,X) is as in Definition 19.2.2).

Proof. We will prove part 1; the proof of part 2 is similar.
The object X⊗X̃

C K is defined as the colimit of Diagram 19.2.3, and so M(X⊗X̃
C

K, Z) is naturally isomorphic to the limit of the diagram∏
α∈Ob(C)

M(X̃α ⊗Kα, Z)
φ∗
//

ψ∗
//

∏
(σ : α→α′)∈C

M(X̃α ⊗Kα′ , Z) .

Theorem 16.4.2 implies that this limit is naturally isomorphic to the limit of the
diagram∏

α∈Ob(C)

SS
(
Kα,M(X̃α, Z)

) φ∗
//

ψ∗
//

∏
(σ : α→α′)∈C

SS
(
Kα′ ,M(X̃α, Z)

)
,
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which is the definition of SSCop(
K,M(X̃, Z)

)
. �

Lemma 19.2.14. Let M be a model category and let C be a small category.

(1) If j : A → B is a map of C-diagrams in M, ̃ : Ã → B̃ is a cosimplicial
frame on j (see Definition 16.7.2), K → L is a map of Cop-diagrams of
simplicial sets, and X → Y is a map of objects in M, then the dotted
arrow exists in every solid arrow diagram of the form

A⊗Ã
C Lq

A⊗Ã
C K

B ⊗B̃
C K //

��

X

��

B ⊗B̃
C L //

77

Y

if and only if the dotted arrow exists in every solid arrow diagram of the
form

K //

��

M(B̃, X)

��

L //

66

M(Ã, X)×M(Ã,Y ) M(B̃, Y ) .

(2) If p : X → Y is a map of C-diagrams in M, p̂ : X̂ → Ŷ is a simplicial
frame on p (see Definition 16.7.2), K → L is a map of C-diagrams of
simplicial sets, and A → B is a map of objects in M, then the dotted
arrow exists in every solid arrow diagram of the form

A //

��

homC(L,X)

��

B //

55

homC
X̂

(K,X)×homC
Ŷ

(K,Y ) homC
Ŷ

(L,Y )

if and only if the dotted arrow exists in every solid arrow diagram of the
form

K //

��

M(B, X̂)

��

L //

66

M(A, X̂)×M(A,Ŷ ) M(B, Ŷ ) .

Proof. This follows from Proposition 19.2.13. �

19.3. Consequences of adjointness

In this section we combine the adjointness results of Section 19.2 with the
homotopy lifting extension theorem to obtain results for the pushout corner map
of coends and the pullback corner map of ends, which we will use in Section 19.4
to obtain our homotopy invariance results.

Theorem 19.3.1. Let M be a model category and let C be a small category.
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(1) If j : A → B is an objectwise cofibration of C-diagrams in M, ̃ : Ã → B̃
is a cosimplicial frame on j (see Definition 16.7.2) that is an objectwise
Reedy cofibration, and i : K → L is a cofibration of Cop-diagrams of
simplicial sets (see Theorem 11.6.1), then the pushout corner map

A⊗Ã
C Lq

A⊗Ã
C K

B ⊗B̃
C K −→ B ⊗B̃

C L

is a cofibration in M that is a weak equivalence if either j is an objectwise
weak equivalence or i is a weak equivalence.

(2) If p : X → Y is an objectwise fibration of C-diagrams in M, p̂ : X̂ → Ŷ is
a simplicial frame on p (see Definition 16.7.2) that is an objectwise Reedy
fibration, and i : K → L is a cofibration of Cop-diagrams of simplicial sets
(see Theorem 11.6.1), then the pullback corner map

homC
X̂

(L,X) −→ homC
X̂

(K,X)×homC
Ŷ

(K,Y ) homC
Ŷ

(L,Y )

is a fibration in M that is a weak equivalence if either p is an objectwise
weak equivalence or i is a weak equivalence.

Proof. We will prove part 1; the proof of part 2 is similar.
If p : X → Y is a fibration in M, then Theorem 16.5.2 implies that the map

of Cop-diagrams of simplicial sets M(B̃, X) → M(Ã, X) ×M(Ã,Y ) M(B̃, Y ) is an
objectwise fibration that is an objectwise weak equivalence if either j is an object-
wise weak equivalence or p is a weak equivalence. The result now follows from
Lemma 19.2.14, Proposition 7.2.3, and Theorem 11.6.1. �

Proposition 19.3.2. Let M be a model category and let C be a small category.

(1) If X is an objectwise cofibrant C-diagram in M, X̃ is a cosimplicial frame
on X, and K is a Cop-diagram of simplicial sets that is a cofibrant object

of SSCop
(see Theorem 11.6.1), then X ⊗X̃

C K is a cofibrant object of M.

(2) If X is an objectwise fibrant C-diagram in M, X̂ is a simplicial frame on
X, and K is a C-diagram of simplicial sets that is a cofibrant object of
SSC (see Theorem 11.6.1), then homC

X̂
(K,X) is a fibrant object of M.

Proof. This follows form Theorem 19.3.1. �

Proposition 19.3.3. Let M be a model category and let C be a small category.

(1) If X is an objectwise cofibrant C-diagram in M, X̃ is a cosimplicial frame
on X, and f : K →K ′ is a weak equivalence of cofibrant Cop-diagrams of

simplicial sets (see Theorem 11.6.1), then the induced map f∗ : X⊗X̃
C K →

X ⊗X̃
C K ′ is a weak equivalence of cofibrant objects in M.

(2) If X is an objectwise fibrant C-diagram M, X̂ is a simplicial frame on X,
and f : K →K ′ is a weak equivalence of cofibrant C-diagrams of simplicial
sets (see Theorem 11.6.1), then the induced map f∗ : homC

X̂
(K ′,X) →

homC
X̂

(K,X) is a weak equivalence of fibrant objects in M.

Proof. This follows from Theorem 19.3.1 and Corollary 7.7.2. �

Proposition 19.3.4. Let M be a model category and let C be a small category.

(1) If K is a Cop-diagram of simplicial sets and both K̃ → K and K̃ ′ → K
are cofibrant approximations to K (see Theorem 11.6.1), then for every
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objectwise cofibrant C-diagram X in M and every cosimplicial frame X̃
on X there is an essentially unique natural zig-zag of weak equivalences

(see Definition 14.4.1) in M from X ⊗X̃
C K to X ⊗X̃

C K ′ that is natural
up to weak equivalence.

(2) If K is a C-diagram of simplicial sets and both K̃ → K and K̃ ′ → K
are cofibrant approximations to K (see Theorem 11.6.1), then for every

objectwise fibrant C-diagram X in M and every simplicial frame X̂ on
X there is an essentially unique natural zig-zag of weak equivalences (see

Definition 14.4.1) in M from homC
X̂

(K̃,X) to homC
X̂

(K̃ ′,X) that is nat-
ural up to weak equivalence.

Proof. This follows from Proposition 19.3.3 and Proposition 14.6.3. �

Proposition 19.3.5. Let M be a model category and let C be a small category.

(1) If K is a cofibrant Cop-diagram of simplicial sets (see Theorem 11.6.1),
f : X → Y is a map of C-diagrams in M that is an objectwise weak

equivalence of cofibrant objects, and f̃ : X̃ → Ỹ is a cosimplicial frame on

f (see Definition 16.6.12), then the induced map of coends f∗ : X⊗X̃
C K →

Y ⊗Ỹ
C K is a weak equivalence.

(2) If K is a cofibrant C-diagram of simplicial sets (see Theorem 11.6.1),
f : X → Y is a map of C-diagrams in M that is an objectwise weak

equivalence of fibrant objects, and f̂ : X̂ → Ŷ is a simplicial frame on
f (see Definition 16.6.12), then the induced map f∗ : homC

X̂
(K,X) →

homC
Ŷ

(K,Y ) is a weak equivalence.

Proof. This follows from Theorem 19.3.1 and Corollary 7.7.2. �

Corollary 19.3.6. Let M be a model category and let C be a small category.

(1) If K is a cofibrant Cop-diagram of simplicial sets (see Theorem 11.6.1), X

is an objectwise cofibrant C-diagram in M, and f : X̃ → X̃ ′ is a map of

cosimplicial frames on X, then the induced map of coends f∗ : X⊗X̃
C K →

X ⊗X̃′

C K is a weak equivalence.
(2) If K is a cofibrant C-diagram of simplicial sets (see Theorem 11.6.1), X

is an objectwise fibrant C-diagram in M, and f : X̂ → X̂ ′ is a map of sim-
plicial frames on X, then the induced map of ends f∗ : homC

X̂
(K,X) →

homC
X̂′(K,X) is a weak equivalence.

Proof. This follows from Proposition 19.3.5. �

Corollary 19.3.7. Let M be a model category and let C be a small category.

(1) If K is a cofibrant Cop-diagram of simplicial sets (see Theorem 11.6.1),

X is an objectwise cofibrant C-diagram in M, and both X̃ and X̃ ′ are
cosimplicial frames on X, then there is an essentially unique zig-zag (see
Definition 14.4.2) of weak equivalences induced by maps of frames from

the coend X ⊗X̃
C K to the coend X ⊗X̃′

C K.
(2) If K is a cofibrant C-diagram of simplicial sets (see Theorem 11.6.1),

X is an objectwise fibrant C-diagram in M, and both X̂ and X̂ ′ are
simplicial frames on X, then there is an essentially unique zig-zag of
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weak equivalences induced by maps of frames from the end homC
X̂

(K,X)
to the end homC

X̂′(K,X)

Proof. This follows from Corollary 19.3.6 and Theorem 16.7.6. �

Proposition 19.3.8. Let M and N be framed model categories and let F : M �
N :U be a Quillen pair (see Definition 8.5.2).

(1) If C is a small category and K is a cofibrant Cop-diagram of simplicial
sets (see Theorem 11.6.1), then there is an essentially unique zig-zag (see
Definition 11.7.2) of natural transformations of functors MC → N induced
by maps of frames from F(− ⊗C K) to (F−) ⊗C K that is a zig-zag of
natural weak equivalences on objectwise cofibrant diagrams.

(2) If C is a small category and K is a cofibrant C-diagram of simplicial
sets (see Theorem 11.6.1), then there is an essentially unique zig-zag (see
Definition 11.7.2) of natural transformations of functors NC →M induced

by maps of frames from U homC(K,−) to homC(K,U−) that is a zig-zag
of natural weak equivalences on objectwise fibrant diagrams.

Proof. This follows from Corollary 19.3.6, Proposition 19.2.11, and Theo-
rem 16.6.10. �

19.4. Homotopy invariance

This section contains our homotopy invariance results for the homotopy colimit
and homotopy limit functors (see Theorem 19.4.2). We also show that changing
the framing of the model category results in naturally weakly equivalent homotopy
colimit and homotopy limit functors (see Theorem 19.4.3), and we establish an
adjointness result connecting the homotopy colimit and homotopy limit functors
(see Theorem 19.4.4).

Theorem 19.4.1. Let M be a framed model category and let C be a small
category.

(1) If X is an objectwise cofibrant C-diagram in M, then hocolim X is cofi-
brant.

(2) If X is an objectwise fibrant C-diagram in M, then holim X is fibrant.

Proof. This follows from Proposition 19.3.2 and Corollary 14.8.8. �

Theorem 19.4.2. Let M be a framed model category, and let C be a small
category.

(1) If f : X → Y is a map of C-diagrams in M such that fα : Xα → Y α is
a weak equivalence of cofibrant objects for every object α of C, then the
induced map of homotopy colimits f∗ : hocolim X → hocolim Y is a weak
equivalence of cofibrant objects of M.

(2) If f : X → Y is a map of C-diagrams in M such that fα : Xα → Y α

is a weak equivalence of fibrant objects for every object α of C, then
the induced map of homotopy limits f∗ : holim X → holim Y is a weak
equivalence of fibrant objects of M.

Proof. This follows from Proposition 19.3.5 and Theorem 19.4.1. �
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Theorem 19.4.3. Let M be a model category, let M′ and M′′ be framed model
categories for which the underlying model category is M, and let C be a small
category.

(1) There is an essentially unique zig-zag (see Definition 14.4.2) of natural
transformations induced by maps of framings connecting the homotopy
colimit constructed using the framing of M′ to the homotopy colimit con-
structed using the framing of M′′ that is a zig-zag of weak equivalences
on objectwise cofibrant diagrams.

(2) There is an essentially unique zig-zag (see Definition 14.4.2) of natural
transformations induced by maps of framings connecting the homotopy
limit constructed using the framing of M′ to the homotopy limit con-
structed using the framing of M′′ that is a zig-zag of weak equivalences
on objectwise fibrant diagrams.

Proof. This follows from Example 19.2.8, Corollary 19.3.6, and Theorem 16.6.10.
�

Theorem 19.4.4. Let M be a framed model category and let C be a small
category.

(1) If X is an objectwise cofibrant C-diagram in M and Y is a fibrant object
of M, then map(hocolim X, Y ) (see Notation 17.4.2) is naturally weakly
equivalent to holim map(X, Y ).

(2) If X is a cofibrant object of M and Y is an objectwise fibrant C-diagram in
M, then map(X,holim Y ) is naturally weakly equivalent to holim map(X,Y ).

Proof. We will prove part 1; the proof of part 2 is similar.
Since Y is fibrant, the simplicial frame Ŷ on Y defined by the framing of M is a

simplicial resolution of Y , and so M(hocolim X, Ŷ ) is a homotopy function complex
map(hocolim X, Y ). Example 19.2.8, Proposition 19.2.13, and Corollary 11.8.7 im-
ply that M(hocolim X, Ŷ ) is naturally isomorphic to SSCop(

B(Cop ↓−),M(X̃, Ŷ )
)

(where X̃ : C→M∆ is the frame on X induced by the framing of M). Since each
Xα is cofibrant, we can take the M(X̃α, Y ) as our homotopy function complexes
map(Xα, Y ), and Corollary 16.5.16 implies that the bisimplicial set M(X̃α, Ŷ ) is
a resolution of the simplicial set M(X̃α, Y ). Example 17.2.4 and Theorem 17.5.14
imply that each simplicial set SS

(
B(Cop ↓α),M(X̃α, Ŷ )

)
is naturally weakly equiv-

alent to Map
(
B(Cop ↓α),map(Xα, Y )

)
, and so the result follows from Proposi-

tion 18.2.6. �

Theorem 19.4.5. Let M and N be framed model categories and let F: M �
N :U be a Quillen pair (see Definition 8.5.2).

(1) If C is a small category, then there is an essentially unique zig-zag of
natural transformations of functors MC → N induced by maps of frames
from Fhocolim to hocolim F that is a natural zig-zag of weak equivalences
on objectwise cofibrant diagrams.

(2) If C is a small category, then there is an essentially unique zig-zag of
natural transformations of functors NC → M induced by maps of frames
from U holim to holim U that is a natural zig-zag of weak equivalences on
objectwise fibrant diagrams.
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Proof. This follows from Proposition 19.3.8 and Corollary 14.8.8. �

19.4.6. The significance of overcategories and undercategories.

Theorem 19.4.7. Let C be a small category and let M be a model category.

(1) If P is a Cop-diagram of simplicial sets that is a cofibrant approxima-
tion (see Definition 8.1.2) to the constant Cop-diagram at a point, then
for every objectwise cofibrant C-diagram X in M there is an essentially
unique natural zig-zag of weak equivalences induced by maps of cofibrant
approximations from X ⊗C P to hocolim X.

(2) If P is a C-diagram of simplicial sets that is a cofibrant approximation
(see Definition 8.1.2) to the constant C-diagram at a point, then for every
objectwise fibrant C-diagram X in M there is an essentially unique natural
zig-zag of weak equivalences induced by maps of cofibrant approximations
from homC(P ,X) to holim X.

Proof. This follows from Proposition 19.3.4, Example 19.2.8, and Proposi-
tion 14.8.9. �

19.5. Homotopy pullbacks and homotopy pushouts

If M is a right proper framed model category, then the diagram X → Z ← Y
has both a homotopy pullback (see Definition 13.3.2) and a homotopy limit (see
Definition 19.1.5). We will show that for fibrant X, Y , and Z, the homotopy pull-
back of the diagram X → Z ← Y is naturally weakly equivalent to the homotopy
limit of that diagram (see Proposition 19.5.3). We begin by showing that, for a
map of fibrant objects, the “classical” method of converting a map into a fibration
does provide a factorization into a weak equivalence followed by a fibration.

Lemma 19.5.1. Let M be a framed model category and let g : X → Z be a map

of fibrant objects. If ev0 : Ẑ∆[1] → Z is the composition Ẑ∆[1] (d1)∗−−−→ Ẑ∆[0] ≈ Ẑ0 ≈
Z (see Lemma 16.3.6) and the square

W
g̃
//

k

��

Ẑ∆[1]

ev0

��

X
g
// Z

is a pullback, then

(1) the map ev1 g̃ : W → Z is a fibration (where ev1 : Ẑ∆[1] → Z is the

composition Ẑ∆[1] (d0)∗−−−→ Ẑ∆[0] ≈ Ẑ0 ≈ Z),
(2) if j : X → W is defined by the requirements that kj = 1X and g̃j : X →

Ẑ∆[1] equals the composition X
g−→ Z ≈ Ẑ0 ≈ Ẑ∆[0] (s0)∗−−−→ Ẑ∆[1], then j

is a weak equivalence, and
(3) (ev1 g̃) ◦ j = g.

Proof. Since Z is fibrant, Ẑ is Reedy fibrant, and so ev0 is a trivial fibration.
Thus, k is a trivial fibration. Since kj = 1X , this implies that j is a weak equiva-

lence. Since the composition Ẑ∆[0] (s0)∗−−−→ Ẑ∆[1] (d0)∗−−−→ Ẑ∆[0] is the identity map, it
follows that (ev1 g̃)j = g, and so it remains only to show that ev1 g̃ is a fibration.
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Let i : A→ B be a trivial cofibration, and suppose that we have the solid arrow
diagram

(19.5.2) A
r //

i

��

W

ev1 g̃

��

B
s //

>>

Z ;

Proposition 7.2.3 implies that it is sufficient to show that there exists a dotted
arrow making both triangles commute. Since X is fibrant, the map kr : A → X
can be extended over B to a map t : B → X such that ti = kr. We thus have a
map (gt× s) : B → Z ×Z ≈ Ẑ∆[0]× Ẑ∆[0] ≈ Ẑ∂∆[1] that fits into the commutative
solid arrow diagram

A
g̃r
//

��

Ẑ∆[1]

��

B //

<<

Ẑ∂∆[1] .

Since Ẑ is Reedy fibrant, Proposition 16.3.8 implies that Ẑ∆[1] → Ẑ∂∆[1] is a fibra-
tion, and so the dotted arrow exists in this diagram. This dotted arrow combines
with the map t : B → X to define the dotted arrow in Diagram 19.5.2. �

Proposition 19.5.3. Let M be a right proper framed model category. If X,
Y , and Z are fibrant objects, then the homotopy pullback (see Definition 13.3.2)

of the diagram X
g−→ Z

h←− Y is naturally weakly equivalent to the homotopy limit
(see Definition 19.1.5) of that diagram.

Proof. If K is the simplicial set that is the union of two copies of ∆[1] with
vertex 1 of both copies identified to a single point, then the homotopy limit of the
diagram X

g−→ Z
h←− Y is naturally isomorphic to the limit of the diagram

X
g

��
??

??
??

?? ẐK

  B
BB

BB
BB

B

~~||
||

||
||

Y

h

����
��

��
��

Z Z

where the two maps with domain ẐK are defined by evaluation on vertex 0 of the
two copies of ∆[1] (see Definition 19.1.5). The limit of this last diagram is naturally
isomorphic to the limit of the diagram

(19.5.4) X
g

��
??

??
??

?? Ẑ∆[1]

ev1

""D
DD

DD
DD

D
ev0

||zz
zz

zz
zz

Ẑ∆[1]

ev0

""D
DD

DD
DD

D
ev1

||zz
zz

zz
zz

Y

h

����
��

��
��

Z Z Z

(see Proposition 16.4.3). If Wg is the pullback of the diagram X
g−→ Z

ev0←−− Ẑ∆[1]

and Wh is the pullback of the diagram Y
h−→ Z

ev0←−− Ẑ∆[1], then the limit of Dia-
gram 19.5.4 is naturally isomorphic to the pullback of the diagram Wg → Z ←Wh.
Lemma 19.5.1 implies that the maps Wg → Z and Wh → Z arise as factorizations
of, respectively, g and h into a weak equivalence followed by a fibration, and so the
result follows from Proposition 13.3.7. �
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19.6. Homotopy cofinal functors

In this section we describe those functors of small categories that induce weak
equivalences of homotopy colimits for all objectwise cofibrant diagrams and, dually,
those that induce weak equivalences of homotopy limits for all objectwise fibrant
diagrams.

Definition 19.6.1. Let C and D be small categories and let F: C → D be a
functor.

• The functor F is homotopy left cofinal (or homotopy initial) if for every ob-
ject α of D the space B(F ↓α) (see Definition 14.1.1 and Definition 11.8.1)
is contractible.
• The functor F is homotopy right cofinal (or homotopy terminal) if for every

object α of D the space B(α ↓F) (see Definition 11.8.3) is contractible.

If C is a subcategory of D and F is the inclusion, then if F is homotopy left cofinal
or homotopy right cofinal we will say that C is, respectively, a homotopy left cofinal
subcategory or a homotopy right cofinal subcategory of D.

We will show in Theorem 19.6.13 that these are the correct notions when con-
sidering homotopy limits and homotopy colimits.

Remark 19.6.2. The reader should be aware that there are conflicting uses of
the above terms in the literature. The definitions of Heller ([41, page 54]) agree
with ours, but Bousfield and Kan ([14, page 316]) use the terms initial and left
cofinal for what we call homotopy initial and homotopy left cofinal and the terms
final and right cofinal for what we call homotopy final and homotopy right cofinal.

Proposition 19.6.3. Let C and D be small categories, and let F: C→ D be a
functor.

(1) If F is homotopy left cofinal, then it is left cofinal (see Definition 14.2.1).
(2) If F is homotopy right cofinal, then it is right cofinal (see Definition 14.2.1).

Proof. This follows directly from the definitions. �

Corollary 19.6.4. Let M be a category that is complete and cocomplete.

(1) If C and D are small categories and F: C → D is a homotopy left cofinal
functor, then for every D-diagram X in M the natural map limD X →
limC F∗X is an isomorphism.

(2) If C and D are small categories and F: C→ D is a homotopy right cofinal
functor, then for every D-diagram X in M the natural map colimC F∗X →
colimD X is an isomorphism.

Proof. This follows from Proposition 19.6.3 and Theorem 14.2.5. �

19.6.5. Homotopy colimits and homotopy limits. In this section, we
prove that a homotopy right cofinal functor induces a weak equivalence of homotopy
colimits for every objectwise cofibrant diagram (see Theorem 19.6.7), and that any
functor with this property must be homotopy right cofinal (see Theorem 19.6.13).
Dually, we prove that a homotopy left cofinal functor induces a weak equivalence
of homotopy limits for every objectwise fibrant diagram, and that any functor with
this property must be homotopy left cofinal
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Proposition 19.6.6. Let M be a framed model category, let C and D be small
categories, let F: C → D be a functor, let X be a D-diagram in M, and let F∗X
be the C-diagram in M induced by F (see Definition 11.5.5).

(1) There is a natural isomorphism of objects of M

hocolim
C

F∗X ≈X ⊗D B(−↓F)op

(Definition 14.7.2).
(2) There is a natural isomorphism of objects of M

holim
C

F∗X ≈ homD
(
B(F ↓−),X

)
(see Definition 19.2.2 and Definition 14.7.8).

Proof. Example 19.2.8 implies that hocolimC F∗X is naturally isomorphic to
(F∗X) ⊗C B(−↓C)op. For every object α of C we have a map F∗ : B(α ↓C)op →
B(Fα ↓F)op (see Example 14.1.8), and we use this to define a map φ : (F∗X) ⊗C

B(−↓C)op →X ⊗D B(−↓F)op as the map induced by the composition∐
α∈Ob(C)

(F̃∗X)⊗ B(α ↓C)op =
∐

α∈(Ob C)

X̃Fα ⊗ B(α ↓C)op

1
X̃Fα⊗F∗−−−−−−→

∐
α∈(Ob C)

X̃Fα ⊗ B(Fα ↓F)op →
∐

γ∈(Ob D)

X̃γ ⊗ B(γ ↓F)op

(see Definition 19.2.2). We will show that φ is an isomorphism by showing that for
every object Z of M the map

φ∗ : M
(
X ⊗D B(−↓F)op, Z

)
−→M

(
(F∗X)⊗C B(−↓C)op, Z

)
is an isomorphism of sets. Proposition 19.2.13 implies that the map φ∗ is isomorphic
to the map

φ̃ : SSDop(
B(−↓F)op,M(X̃, Z)

)
−→ SSCop(

B(−↓C)op,M(F̃∗X, Z)
)

(where X̃ and F̃∗X are defined using the natural cosimplicial frame on M). We
will show that φ̃ is an isomorphism by using Proposition 14.8.15 to define an inverse
ψ to φ.

If g ∈ SSCop(
B(−↓C)op,M(F̃∗X, Z)

)
, then we will define ψ(g) inductively over

the skeleta of B(−↓F)op. Corollary 14.8.10 defines a one to one correspondence
between the elements of a basis of B(−↓F)op (a typical element of which is the
simplex

(
(β0

σ0←− β1
σ1←− · · · σn−1←−−− βn), 1Fβn

: Fβn → Fβn
)
) and the elements

of a basis of B(−↓C)op (in which the corresponding simplex is
(
(β0

σ0←− β1
σ1←−

· · · σn−1←−−− βn), 1βn
: βn → βn

)
). The map g takes this simplex to an n-simplex of

M((̃F∗X)βn
, Z) = M(X̃Fβn , Z) = M(X̃α, Z); since the correspondence of Corol-

lary 14.8.10 commutes with face operators, Proposition 14.8.15 implies that we
can define ψ(g) by letting ψ(g) take the first simplex above to this simplex of
M(X̃α, Z). If g ∈ SSCop(

B(−↓C)op,M(F̃∗X, Z)
)
, then φ̃ψ(g) agrees with g on

our basis of B(−↓C)op, and if h ∈ SSDop(
B(−↓F)op,M(X̃, Z)

)
, then ψφ̃(h) agrees

with h on our basis of B(−↓F)op. Thus, Proposition 14.8.15 implies that φ̃ψ = 1
and ψφ̃ = 1. �
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Theorem 19.6.7. Let M be a framed model category, let C and D be small
categories, and let F: C→ D be a functor.

(1) If F is homotopy right cofinal (see Definition 19.6.1), then for every object-
wise cofibrant D-diagram X in M, the natural map of homotopy colimits
(see Proposition 19.1.8)

hocolim
C

F∗X −→ hocolim
D

X

is a weak equivalence.
(2) If F is homotopy left cofinal (see Definition 19.6.1), then for every object-

wise fibrant D-diagram X in M, the natural map of homotopy limits (see
Proposition 19.1.8)

holim
D

X −→ holim
C

F∗X

is a weak equivalence.

Proof. We will prove part 1; the proof of part 2 is similar.
Proposition 19.6.6 and Example 19.2.8 imply that our map of homotopy co-

limits is isomorphic to the map

X ⊗D B(−↓F)op −→X ⊗D B(−↓D)op .

Proposition 14.8.5 and Corollary 14.8.8 imply that both of the Dop-diagrams of
simplicial sets B(−↓F)op and B(−↓D)op are free cell complexes, and are thus
cofibrant objects in SSDop

. Lemma 14.7.4 implies that B(α ↓D)op is contractible
for every object α of D, and so F is homotopy right cofinal if and only if the map
B(−↓F)op → B(−↓D)op is a weak equivalence of cofibrant objects in SSDop

. The
result now follows from Proposition 19.3.3. �

Corollary 19.6.8. Let M be a framed model category and let C be a small
category.

(1) If α is a terminal object of C and X is an objectwise cofibrant C-diagram
in M, then the natural map Xα → hocolim X is a weak equivalence.

(2) If α is an initial object of C and X is an objectwise fibrant C-diagram in
M, then the natural map holim X →Xα is a weak equivalence.

Proof. We will prove part 1; the proof of part 2 is similar.
Let α be a terminal object of C and let 1 be the category with one object and

no non-identity maps. If Fα : 1 → C is the functor that takes the object of 1 to
α, then for every object β of C the undercategory (β ↓Fα) has one object and no
non-identity maps, and so the result follows from Theorem 19.6.7. �

We are indebted to W. G. Dwyer for the following proposition.

Proposition 19.6.9. Let C be a small category, let α be an object of C, and
let Fα∗ be the free C-diagram of sets generated at α (see Definition 11.5.7) regarded
as a C-diagram of discrete simplicial sets.

(1) If K : Cop → SS is a Cop-diagram of simplicial sets, then the natural map

Kα ≈ {1α} ×Kα ⊂ Fα∗ (α)×Kα −→ Fα∗ ⊗C K

(see Definition 19.2.2) is an isomorphism.
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(2) If K : C→ SS is a C-diagram of simplicial sets, then the natural map

homC(Fα∗ ,K) −→KFα
∗ (α)

α

1
(1α⊂Fα

∗ (α))
Kα−−−−−−−−→K{1α}

α ≈Kα

is an isomorphism.

Proof. We will prove part 1; the proof of part 2 is similar.
We let f : Kα → Fα∗ ⊗C K denote our natural map, and we will construct on

inverse g to f . If β is an object of C, then (since Fα∗ (β) is discrete) Fα∗ (β)⊗Kβ ≈∐
C(α,β) Kβ (see Lemma 9.2.1) and so∐

β∈Ob(C)

Fα∗ (β)⊗Kβ ≈
∐

β∈Ob(C)

∐
C(α,β)

Kβ .

We define h :
∐
β∈Ob(C)
C(α,β)

Kβ → Kα by defining h on the summand σ : α → β

to be σ∗ : Kβ → Kα. To show that h defines a map g : Fα∗ ⊗C K → Kα (see
Definition 19.2.2 and Proposition 19.2.5) we must show that hφ = hψ (see (19.2.3)).
We have ∐

(σ : β→β′)∈C

Fα∗ (β)⊗Kβ′ ≈
∐

(σ : β→β′)∈C

∐
C(α,β)

Kβ′ ,

and on the summand indexed by (σ : β → β′, τ : α → β) the map φ takes Kβ′

by the identity map onto the summand indexed by στ : α → β′, and so hφ on
that summand is (στ)∗ : Kβ′ → Kα. On that same summand, the map ψ is
σ∗ : Kβ′ →Kβ where the Kβ is the summand indexed by τ : α→ β, and so hψ on
that summand is τ∗σ∗ : Kβ′ → Kα. Since (στ)∗ = τ∗σ∗, we have a well defined
map g : Fα∗ ⊗C K →Kα.

The composition gf : Kα → Kα is (1α)∗ = 1Kα . The composition fg on the
summand Kβ indexed by σ : α→ β is induced by

Kβ
σ∗−→Kα ≈ {1α} ×Kα ⊂

(
Fα∗ (α)

)
×Kα ,

which the relations defined by (19.2.3) imply is the identity map. �

Corollary 19.6.10. If C is a small category, α is an object of C, and we regard
Fα∗ (see Definition 11.5.7) as a diagram of discrete simplicial sets, then there are
natural isomorphisms

hocolimFα∗ ≈ B(α ↓C)op

holimFα∗ ≈ B(C ↓α) .

Proof. This follows from Proposition 19.6.9 and Example 19.2.8. �

Corollary 19.6.11. If C and D are small categories, F: C→ D is a functor, α
is an object of D, and we regard Fα∗ (see Definition 11.5.7) as a diagram of discrete
simplicial sets, then there are natural isomorphisms

Fα∗ ⊗D B(−↓F )op ≈ B(α ↓F )op

homD
(
Fα∗ ,B(F ↓−)

)
≈ B(F ↓α) .

Proof. This follows from Proposition 19.6.9. �

Proposition 19.6.12. Let C and D be small categories and let F: C→ D be a
functor.
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(1) If for every D-diagram X of simplicial sets the induced map of homotopy
colimits

hocolim
C

F∗X −→ hocolim
D

X

is a weak equivalence, then F is a homotopy right cofinal functor.
(2) If for every D-diagram X of fibrant simplicial sets the induced map of

homotopy limits

holim
D

X −→ holim
C

F∗X

is a weak equivalence, then F is a homotopy left cofinal functor.

Proof. For part 1, if α is an object of D, we can let X = Fα∗ (see Defini-
tion 11.5.7), regarded as a diagram of discrete simplicial sets. Proposition 19.6.6,
Corollary 19.6.10, and Corollary 19.6.11 imply that B(α ↓F) and B(α ↓D) are
weakly equivalent. Since B(α ↓D)op is always contractible (see Lemma 14.7.4),
Proposition 14.1.6 implies that F is homotopy right cofinal.

For part 2, Example 19.2.8 and Proposition 19.6.6 imply that our natural map
of homotopy limits is isomorphic to the map

homD
(
B(D ↓−),X

)
−→ homD

(
B(F ↓−),X

)
;

Proposition 19.2.5 and Example 9.1.13 imply that this is isomorphic to the map

Map
(
B(D ↓−),X

)
−→ Map

(
B(F ↓−),X

)
.

The D-diagrams of simplicial sets B(F ↓−) and B(D ↓−) are always free cell com-
plexes (see Proposition 14.8.5 and Corollary 14.8.8), and are thus cofibrant D-
diagrams (see Proposition 11.6.2). Since B(D ↓−) is a diagram of contractible
simplicial sets (see Lemma 14.7.10), the map B(F ↓−)→ B(D ↓−) is a weak equiv-
alence of D-diagrams if and only if the functor F is homotopy left cofinal. Since
a D-diagram of simplicial sets is fibrant exactly when it is a diagram of fibrant
simplicial sets (see Theorem 11.6.1), we are trying to prove that a map of cofibrant
diagrams is a weak equivalence if it induces a weak equivalence of simplicial map-
ping spaces to an arbitrary fibrant object. This follows from Corollary 9.7.5. �

Theorem 19.6.13. Let C and D be small categories.

(1) A functor F: C→ D is homotopy right cofinal (see Definition 19.6.1) if and
only if for every framed model category M and every objectwise cofibrant
D-diagram X in M, the natural map

hocolim
C

F∗X −→ hocolim
D

X

(see Proposition 19.1.8) is a weak equivalence.
(2) A functor F: C→ D is homotopy left cofinal if and only if for every framed

model category M and every objectwise fibrant D-diagram X in M, the
natural map

holim
D

X −→ holim
C

F∗X

(see Proposition 19.1.8) is a weak equivalence.

Proof. This follows from Theorem 19.6.7 and Proposition 19.6.12. �

As a corollary, we obtain Quillen’s “Theorem A” (see [56, Page 93]).
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Theorem 19.6.14 (Quillen). If C and D are small categories and F: C→ D is
a homotopy right cofinal functor, then F induces a weak equivalence of classifying
spaces BC ∼= BD.

Proof. This follows from Theorem 19.6.13, Proposition 18.1.6, and Proposi-
tion 14.1.6. �

19.7. The Reedy diagram homotopy lifting extension theorem

Theorem 19.7.1 (The Reedy diagram homotopy lifting extension theorem).
Let C be a Reedy category and let M be a model category.

(1) If i : A → B is a Reedy cofibration of Reedy cofibrant C-diagrams in M,

ı̃ : Ã→ B̃ is a Reedy cosimplicial frame on i that is a Reedy cofibration,
and p : X → Y is a fibration in M, then the map of Cop-diagrams of
simplicial sets

M(B̃, X) −→M(Ã, X)×M(Ã,Y ) M(B̃, Y )

is a Reedy fibration (see Proposition 15.1.5) that is a Reedy trivial fibra-
tion if at least one of i and p is a weak equivalence.

(2) If i : A→ B is a cofibration in M, p : X → Y is a Reedy fibration of Reedy

fibrant C-diagrams in M, and p̂ : X̂ → Ŷ is a Reedy simplicial frame on
p that is a Reedy fibration, then the map of C-diagrams of simplicial sets

M(B, X̂) −→M(A, X̂)×M(A,Ŷ ) M(B, Ŷ )

is a Reedy fibration that is a Reedy trivial fibration if at least one of i
and p is a weak equivalence.

Proof. We will prove part 1; the proof of part 2 is similar.
Theorem 15.3.15 implies that it is sufficient to show that for every object α of

Cop the map

M(B̃α, X) −→(
M(Ãα, X)×M(Ãα,Y ) M(B̃α, Y )

)
×Mα(M(Ã,X)×M(Ã,Y )M(B̃,Y )) MαM(B̃, X)

is a fibration of simplicial sets that is a trivial fibration if at least one of i and p is
a weak equivalence. Lemma 16.5.9 implies that this map is isomorphic to the map

M(B̃α, X) −→(
M(Ãα, X)×M(Ãα,Y ) M(B̃α, Y )

)
×(M(LαÃ,X)×M(LαÃ,Y )M(LαB̃,Y )) M(LαB̃, X) .

The codomain of this map is the limit of the diagram

M(Ãα, X) //

��

M(Ãα, Y )

��

M(B̃α, Y )

��

oo

M(LαÃ, X) // M(LαÃ, Y ) M(LαB̃, Y )oo

M(LαB̃, X)

ggOOOOOOOOOOO

OO 77ppppppppppp
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and so our map is isomorphic to the map

M(B̃α, X) −→

M(B̃α, Y )×(M(Ãα,Y )×M(LαÃ,Y )M(LαB̃,Y ))

(
M(Ãα, X)×M(LαÃ,X) M(LαB̃, X)

)
.

Proposition 16.7.16 implies that LαÃ is a cosimplicial frame on LαA and that
LαB̃ is a cosimplicial frame on LαB. Since ı̃ is a Reedy cofibration, this implies
that the relative latching map Ãα qLαÃ LαB̃ → B̃α is a cofibration that is a
weak equivalence if i is a weak equivalence. Theorem 16.5.2 now implies that our
map is a fibration that is a weak equivalence if at least one of i and p is a weak
equivalence. �

Theorem 19.7.2. Let C be a Reedy category and let M be a model category.

(1) If i : A → B is a Reedy cofibration of Reedy cofibrant C-diagrams in M,

ı̃ : Ã→ B̃ is a Reedy cosimplicial frame on i that is a Reedy cofibration,
and j : K → L is a Reedy cofibration of Cop-diagrams of simplicial sets,
then the pushout corner map

A⊗Ã
C Lq

A⊗B̃
C K

B ⊗B̃
C K −→ B ⊗B̃

C L

is a cofibration in M that is a weak equivalence if at least one of i and j
is a weak equivalence.

(2) If p : X → Y is a Reedy fibration of Reedy fibrant C-diagrams in M,

p̂ : X̂ → Ŷ is a Reedy simplicial frame on p that is a Reedy fibration, and
j : K → L is a Reedy cofibration of C-diagrams of simplicial sets, then
the pullback corner map

homC
X̂

(L,X) −→ homC
X̂

(K,X)×homC
Ŷ

(K,Y ) homC
Ŷ

(L,Y )

is a fibration that is a weak equivalence if at least one of p and j is a weak
equivalence.

Proof. This follows from Proposition 7.2.3, Lemma 19.2.14, and Theorem 19.7.1.
�

Corollary 19.7.3. Let C be a Reedy category and let M be a model category.

(1) If X is a Reedy cofibrant C-diagram in M, X̃ is a Reedy cosimplicial
frame on X, and K is a Reedy cofibrant Cop-diagram of simplicial sets,

then X ⊗X̃
C K is a cofibrant object of M.

(2) If X is a Reedy fibrant C-diagram in M, X̂ is a Reedy simplicial frame
on X, and K is a Reedy cofibrant C-diagram of simplicial sets, then
homC

X̂
(K,X) is a fibrant object of M.

Proof. This follows from Theorem 19.7.2. �

Corollary 19.7.4. Let C be a Reedy category and let M be a model category.

(1) If K is a Reedy cofibrant Cop-diagram of simplicial sets, f : X → Y is a

weak equivalence of Reedy cofibrant C-diagrams in M, and f̃ : X̃ → Ỹ is

a Reedy cosimplicial frame on f , then the induced map f∗ : X ⊗X̃
C K →

Y ⊗Ỹ
C K is a weak equivalence of cofibrant objects in M.
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(2) If K is a Reedy cofibrant C-diagram of simplicial sets, f : X → Y is a

weak equivalence of Reedy fibrant C-diagrams in M, and f̂ : X̂ → Ŷ is a
Reedy simplicial frame on f , then the induced map f∗ : homC

X̂
(K,X)→

homC
Ŷ

(K,Y ) is a weak equivalence of fibrant objects in M.

Proof. This follows from Corollary 19.7.3, Theorem 19.7.2, and Corollary 7.7.2.
�

Corollary 19.7.5. Let C be a Reedy category and let M be a model category.

(1) If X is a Reedy cofibrant C-diagram in M, X̃ is a Reedy cosimplicial
frame on X, and f : K → K ′ is a weak equivalence of Reedy cofibrant

Cop-diagrams of simplicial sets, then the induced map f∗ : X ⊗X̃
C K →

X ⊗X̃
C K ′ is a weak equivalence of cofibrant objects in M.

(2) If X is a Reedy fibrant C-diagram in M, X̂ is a Reedy simplicial frame
on X, and f : K → K ′ is a weak equivalence of Reedy cofibrant C-
diagrams of simplicial sets, then the induced map f∗ : homC

X̂
(K ′,X) →

homC
X̂

(K,X) is a weak equivalence of fibrant objects in M.

Proof. This follows from Theorem 19.7.2 and Corollary 7.7.2. �

Corollary 19.7.6. Let C be a Reedy category and let M be a model category.

(1) If K is a Cop-diagram of simplicial sets and both K̃ → K and K̃ ′ → K
are Reedy cofibrant approximations to K, then for every Reedy cofibrant

C-diagram X in M and Reedy cosimplicial frame X̃ on X there is an

essentially unique natural zig-zag of weak equivalences in M from X⊗X̃
C K̃

to X ⊗X̃
C K̃ ′.

(2) If K is a C-diagram of simplicial sets and both K̃ → K and K̃ ′ → K
are Reedy cofibrant approximations to K, then for every Reedy fibrant

C-diagram X in M and Reedy simplicial frame X̂ on X there is an essen-

tially unique natural zig-zag of weak equivalences in M from homC
X̂

(K̃,X)
to homC

X̃
(K̃ ′,X).

Proof. This follows from Corollary 19.7.5 and Proposition 14.6.3. �

Proposition 19.7.7. Let M be a model category and let C be a Reedy category.
If B is a C-diagram in M that is Reedy cofibrant and X is a simplicial resolution
in M, then the Cop-diagram of simplicial sets M(B,X) (which on an object α of C

is M(Bα,X)) is Reedy fibrant.

Proof. If α is an object of C and LαB is the latching object of B at α (see
Definition 15.2.5), then Proposition 15.2.4 implies that

M(LαB,X) = M
(

colim
∂(
−→
C ↓α)

B,X
)

≈ lim
∂(
−→
C ↓α)op

M(B,X)

≈ lim
∂(α↓

←−−
Cop)

M(B,X)

≈ MαM(B,X)
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and so M(LαB,X) is naturally isomorphic to the matching object at α of the
Cop-diagram of simplicial sets M(B,X). Since the latching map LαB → Bα

is a cofibration, Corollary 16.5.4 implies that the matching map M(Bα,X) →
MαM(B,X) is a fibration, and so M(B,X) is a Reedy fibrant diagram. �

19.8. Realizations and total objects

Definition 19.8.1. Let M be a model category.
(1) If (∆op,M) is a Reedy framed diagram category structure (see Defini-

tion 16.7.15) on the category of simplicial objects in M, then the real-
ization functor M∆op → M is defined to be the functor that takes the
simplicial object X in M to

∣∣X∣∣ = X ⊗∆op ∆ where ∆ is the cosimpli-
cial standard simplex (see Definition 15.1.15) and the tensor product is
defined relative to the functorial Reedy cosimplicial frame on M∆op

.
(2) If (∆,M) is a Reedy framed diagram category structure on the category

of cosimplicial objects in M, then the total object functor M∆ → M is
defined to be the functor that takes the cosimplicial object X in M to
TotX = hom∆(∆,X) where ∆ is the cosimplicial standard simplex and
the hom is defined relative to the functorial Reedy simplicial frame on
M∆.

Theorem 19.8.2. Let M be a model category.

(1) If (∆op,M) is a Reedy framed diagram category structure on the category
of simplicial objects in M and X is a Reedy cofibrant simplicial object in
M, then the realization

∣∣X∣∣ of X is a cofibrant object of M.
(2) If (∆,M) is a Reedy framed diagram category structure on the category

of cosimplicial objects in M and X is a cosimplicial object in M, then the
total object TotX of X is a fibrant object of M.

Proof. This follows from Corollary 19.7.3 and Corollary 15.9.11. �

Theorem 19.8.3. Let M be a model category.

(1) If (∆op,M) is a Reedy framed diagram category structure on the category
of simplicial objects in M and f : X → Y is an objectwise weak equiva-
lence of Reedy cofibrant simplicial objects in M, then the induced map of
realizations

∣∣f ∣∣ : ∣∣X∣∣ → ∣∣Y ∣∣ is a weak equivalence of cofibrant objects of
M.

(2) If (∆,M) is a Reedy framed diagram category structure on the category
of cosimplicial objects in M and f : X → Y is an objectwise weak equiv-
alence of Reedy fibrant cosimplicial objects in M, then the induced map
of total objects (Tot f) : Tot X → TotY is a weak equivalence of fibrant
objects of M.

Proof. This follows from Corollary 19.7.4 and Corollary 15.9.11. �

Theorem 19.8.4. Let M be a model category.

(1) If (∆op,M) is a Reedy framed diagram category structure on the category
of simplicial objects in M and X is a Reedy cofibrant simplicial object
in M, then the realization

∣∣X∣∣ of X is naturally weakly equivalent to the
homotopy colimit hocolim X of X.
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(2) If (∆,M) is a Reedy framed diagram category structure on the category
of cosimplicial objects in M and X is a cosimplicial object in M, then the
total object TotX of X is naturally weakly equivalent to the homotopy
limit holim X of X.

19.8.5. The Bousfield-Kan map.

Definition 19.8.6. Let M be a model category.
(1) If (∆op,M) is a Reedy framed diagram category structure on the category

of simplicial objects in M and X is a simplicial object in M, then the
Bousfield-Kan map is the map

φ∗ : hocolim X −→
∣∣X∣∣ ,

natural in X, that is the composition

hocolim X ≈X ⊗∆op B(−↓∆op)op
1X⊗∆opφ−−−−−−→X ⊗∆op ∆ ≈

∣∣X∣∣
where φ is the Bousfield-Kan map of cosimplicial simplicial sets (see Def-
inition 18.7.1).

(2) If (∆,M) is a Reedy framed diagram category structure on the category
of cosimplicial objects in M and X is a cosimplicial object in M, then the
Bousfield-Kan map is the map

φ∗ : TotX −→ holim X ,

natural in X, that is the composition

TotX ≈ hom∆(∆,X)
hom∆(φ,1X)−−−−−−−−→ hom∆

(
B(∆ ↓−),X

)
≈ holim X

where φ is the Bousfield-Kan map of cosimplicial simplicial sets.

Theorem 19.8.7. Let M be a simplicial model category.

(1) If X is a Reedy cofibrant simplicial object in M, then the Bousfield-Kan
map φ∗ : hocolim X →

∣∣X∣∣ is a weak equivalence.
(2) If X is a Reedy fibrant cosimplicial object in M, then the Bousfield-Kan

map φ∗ : TotX → holim X is a weak equivalence.

Proof. This follows from Corollary 19.7.5. �

19.9. Reedy cofibrant diagrams and Reedy fibrant diagrams

Theorem 19.9.1. Let M be a framed model category.

(1) If C is a Reedy category with fibrant constants (see Definition 15.10.1)
and X is a Reedy cofibrant C-diagram in M, then the natural map
hocolim X → colim X (see Example 19.2.10) is a weak equivalence.

(2) If C is a Reedy category with cofibrant constants and X is a Reedy fi-
brant C-diagram in M, then the natural map limX → holim X (see Ex-
ample 19.2.10) is a weak equivalence.

Proof. We will prove part 1; the proof of part 2 is similar.
The map hocolim X → colim X is naturally isomorphic to the map X ⊗X̃

C(
−↓C

)op → X ⊗X̃
C P where X̃ is the cosimplicial frame on X induced by the

framing on M and P : Cop → SS is the constant diagram at a point. If X̃ ′ is some
other cosimplicial frame on X, then there is a zig-zag of weak equivalences from this
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map to the map X ⊗X̃′

C

(
−↓C

)op → X ⊗X̃′

C P (see Corollary 19.3.7), and so it is
sufficient to show that this map is a weak equivalence for some cosimplicial frame X̃ ′

on X. If we let X̃ ′ be a Reedy cosimplicial frame on X (see Proposition 16.7.11),
then (since C has fibrant constants) the result follows from Corollary 19.7.5 and
Proposition 15.10.3. �

I am indebted to E. Dror Farjoun for the following result (see also [44, Lemma 2.7]):

Corollary 19.9.2. If p : E → B is a map of simplicial sets and p̃ : ∆B → SS is
the diagram constructed in Example 18.9.6, then the natural map hocolim p̃ → E
is a weak equivalence.

Proof. This follows from Theorem 19.9.1 and Proposition 18.9.7. �

Proposition 19.9.3. Let M be a framed model category. If the object X
is a retract of the cofibrant object Y (with inclusion i : X → Y and retraction
r : Y → X), then X is weakly equivalent to the homotopy colimit of the diagram

Y
ir−→ Y

ir−→ Y
ir−→ · · · .

Proof. We have the ω-sequence (where ω is the first infinite ordinal)

X
i−→ Y

r−→ X
i−→ Y

r−→ X
i−→ Y · · ·

which has the two subdiagrams

X
1X−−→ X

1X−−→ X
1X−−→ · · ·

and
Y

ir−→ Y
ir−→ Y

ir−→ · · · .
Both of the subdiagrams are homotopy right cofinal because all of the undercat-
egories have an initial object (see Proposition 14.3.14). Thus, Theorem 19.6.13
implies that the homotopy colimits of the three diagrams are all weakly equivalent.
Since X is a retract of a cofibrant object, it is cofibrant, and so the second diagram
is a Reedy cofibrant diagram. Since this diagram shape has fibrant constants (see
Definition 15.10.1), the homotopy colimit of this diagram is weakly equivalent to
its colimit (see Theorem 19.9.1), which is isomorphic to X. �

Proposition 19.9.4. Let M be a framed model category.

(1) If X is the diagram C ← A → B in M, the objects A, B, and C are
cofibrant, and at least one of the maps A→ B and A→ C is a cofibration,
then the natural map hocolim X → colim X (see Example 19.2.10) is a
weak equivalence.

(2) If X is the diagram C → A ← B in M, the objects A, B, and C are
fibrant, and at least one of the maps B → A and C → A is a fibration,
then the natural map limX → holim X is a weak equivalence.

Proof. We will prove part 1; the proof of part 2 is dual.
We will assume that the map A→ B is a cofibration (the other case is similar).

If the indexing category for the diagram X is γ ← α → β and we let deg(α) = 2,
deg(β) = 3, and deg(γ) = 1, then the indexing category is a Reedy category with
fibrant constants (see Definition 15.10.1) and X is a cofibrant diagram. The result
now follows from Theorem 19.9.1. �
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and corealizations, 326–331

and cosimplicial simplicial sets, 313

and realizations, 326–331

of coends and ends, 388

of mapping spaces, 7

of tensor product and exponentiation, 161

of total derived functors, 157

adjoints

and lifting, 114

preserving cofibrations and fibrations, 115

ℵ0, 187

augmented functor, 139, 139–140, 264

augmented set of horns, 17, 73, 73, 85, 86,

89

and local objects, 17, 73

B, 254

basis of a free cell complex, 272, 272, 273,
274

bisimplicial homotopy lifting extension the-
orem, 334

bisimplicial set, 303–305

as a resolution, 335

cofibrant, 305

cofibration, 305

diagonal, 312, 312–315

isomorphic to realization, 313

weakly equivalent to the homotopy co-
limit, 398

diagonal of

fibrant, 336

different model category structures, 303

fibration, 336

homotopically constant

weakly equivalent to zero-th degree, 315

homotopy colimit

weakly equivalent to the diagonal, 398

latching object, 305

realization, 312, 312–315

isomorphic to diagonal, 313

Reedy fibrant, 335

weak equivalence of realizations, 315

boundary

of a cell, 37

of a free diagram, 299

as a colimit, 299

left adjoint to matching object, 299

of a free diagram of sets, 298

as a colimit, 298

of a set of maps, 298

bounding the size

of a set of maps, 236

of cell complexes, 236–237

Bousfield localization, 57, 57–69

and homotopic maps, 68, 69

and localization, 63

and properness, 65–68

and Quillen equivalences, 64

and Quillen functors, 58, 63

and Quillen pairs, 64

and resolutions, 61

existence, 71, 83

Bousfield, A. K., ix, x, 42, 57, 78, 396

Bousfield-Kan map, 396, 397, 396–398, 427

weak equivalence, 397, 427

Bousfield-Smith cardinality argument, 42–

46, 78–81

Brown, K. S., 129

C-(co)local Whitehead theorem, 55

C-colocal, 65

C-colocal equivalence, 48, 49

C-colocal object, 48, 49

429
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C-colocal Whitehead theorem, 55

C-colocalization, 56

C-local, 65

C-local equivalence, 48, 49

detecting, 69

C-local object, 48, 49

C-local Whitehead theorem, 55

C-localization, 55, 55–57

cardinal, 42, 43, 78, 187, 186–188

and retracts, 188

countable, 187

exponentiating, 187

of a set, 187

of a set of maps, 236

of a set of subsets, 188

product, 187

regular, 18, 42, 44, 75, 76, 187, 187, 191,

195, 198, 200, 201, 207, 212, 237

and smallness, 194

successor, 187, 187

cardinality, 187

cardinality argument, 42–46, 78–81

category

classifying space of

contractible, 258

contractible classifying space, 258

enriched over simplicial sets, 159

of cofibrant approximations, 266

contractible, 266

of cosimplicial frames, 340

contractible classifying space, 340

of cosimplicial frames on a diagram

contractible classifying space, 342

of cosimplicial resolutions, 320

of diagrams, 217, 218

different model category structures, 296

of diagrams in a cofibrantly generated model

category

model category structure, 224

proper, 242

of fibrant approximations, 266

contractible, 266

of functorial cofibrant approximations, 267

contractible, 267

of functorial cosimplicial resolutions

contractible classifying space, 321

of functorial fibrant approximations, 267

contractible, 267

of functorial homotopy function complexes,
361

of functorial left homotopy function com-

plexes, 357

of functorial right homotopy function com-

plexes, 358

of functorial simplicial resolutions

contractible classifying space, 321

of functorial two-sided homotopy function

complexes, 359

of functors, 263, 263–266

of homotopy function complexes, 356, 356

of left homotopy function complexes, 350,

350

contractible classifying space, 350

of right homotopy function complexes, 351,

351–352

contractible classifying space, 352

of simplices, 279, 279–281, 309

as a Reedy category, 280

classifying space, 400

homotopy colimit of a diagram indexed

by the opposite of, 399

homotopy limit of a diagram indexed

by, 399

of simplicial frames, 340

contractible classifying space, 340

of simplicial frames on a diagram

contractible classifying space, 342

of simplicial resolutions, 320

of simplicial sets

properness, 242

of topological spaces

properness, 242

of two-sided homotopy function complexes,
353, 353

contractible classifying space, 353

simplicial, 159–161

small, 264

cell complex, 19, 78, 79, 85, 197, 210, 212

bounding the size, 236–237

cofibrant approximation by, 212

finite, 210

inclusion, 10, 81

presentation of, 38, 201

presented, 202, 233

subcomplex of, 202

relative, 20

set of cells, 202

subcomplex, 203

topological space, 204

cells

determining a subcomplex, 203

set of

of a cell complex, 202

of a relative cell complex, 202

size of, 234

cellular model category, 71, 83, 89, 231, 231–
237

and Reedy model categories, 302–303

cofibrant object, 234

small, 235

compactness, 234–235

existence of factorizations, 235

K-colocal model category, 86

overcategory, 232

recognizing, 232

smallness, 235–236
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cellular object, 84, 84

and colocal objects, 90–91

cellularization, 50–51

existence, 83

for unpointed spaces, 51

change of functorial homotopy function com-
plex map, 360

change of functorial left homotopy function

complex map, 357

change of functorial right homotopy function
complex map, 358

change of functorial two-sided homotopy func-
tion complex map, 359

change of homotopy function complex

left to two-sided, 354, 355

right to two-sided, 354, 355

change of homotopy function complex map,
355

weak equivalence, 355

change of left homotopy function complex

map, 349

as a map in an undercategory, 349

weak equivalence, 349

change of right homotopy function complex
map, 351

as a map in an undercategory, 351

weak equivalence, 351

change of two-sided homotopy function com-
plex map, 352, 352–353

weak equivalence, 353

classical homotopy category, 123, 123–125,
151

equivalent to Quillen homotopy category,
151

classifying space, 254, 253–275

as a colimit of classifying spaces of under-
categories, 269

as a homotopy colimit, 381, 401

contractible, 258, 258–260, 264–267, 269,
270, 320, 321, 340

and essentially unique zig-zags, 261

crossed with an interval, 259

homotopic maps of, 259–260

of a category of simplices, 400

of a discrete group, 255

of a product of categories, 255, 259

of overcategories, 255, 256

of the opposite category, 255

of undercategories, 255, 256

weak equivalence of, 423

closed model category, 109, 112

coaugmented functor, 139, 139–140, 264

cocomplete, 108

coend, 386, 386–394, 407, 407–414

adjointness, 388, 410

and geometric realization, 401

and left Quillen functors, 410, 414

and lifting, 388, 411

cofibrant, 390, 412, 424

homotopy invariance, 389, 390, 412, 413,

424, 425

in a simplicial model category, 408

independence of frame, 413

pushout corner map, 389, 411

uniqueness, 390

coface, 306

image of a unique non-coface, 306

coface operator

iterated, 306

cofibrant, 109, 196

pointed space, 398

Reedy, 401

cofibrant approximation, 138, 137–158, 318,

350, 396

and cylinder objects, 144

and derived functors, 155

and functors, 143, 155

and homotopic maps, 146

and left lifting property, 243

and left Quillen functors, 49

and localization, 49

and path objects, 144

and pushouts, 252

by a cell complex, 212

category of, 266

contractible, 266

existence, 138

fibrant, 138

existence, 138

functorial, 140, 140–142, 148, 267

existence, 141

homotopy idempotent, 140

map of, 141

in a cofibrantly generated model category,

212

map of, 138, 138–139

uniqueness, 139

to a λ-sequence, 377

to a map, 142, 266

existence, 142

map of, 144

uniqueness, 143

uniqueness, 139, 266, 267

cofibrant constants, 309, 308–312, 427

and Quillen functors, 310

and the opposite category, 309

and weak equivalences, 310

characterizing, 309, 310

cofibrant fibrant approximation, 138

existence, 138

to a map, 142

existence, 142

map of, 144

uniqueness, 143

cofibrant localization, 11, 20, 21, 55, 59, 75

cofibrant object
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in a cofibrantly generated model category,

212

cofibrant simplicial resolution, 318

cofibrant-fibrant, 109

cofibrantly generated

Reedy model category structure, 300–302

cofibrantly generated model category, 210,
209–230

and Reedy category, 296–302

cofibrant approximation, 212

cofibrant objects, 212

cofibrations, 211–213

compact cofibrant objects, 216

detecting weak equivalences, 374

diagrams in, 223–225

fibrations, 211

not a cellular model category, 232

product, 211

Quillen equivalent to Reedy model cate-

gory, 297

recognizing, 36, 213

Reedy model category, 301

smallness, 212

trivial cofibrations, 211

trivial fibrations, 211

cofibration, 20, 19–21, 36, 78, 81, 85, 109,

196, 196–201

and adjoints, 115

and colimits, 194

and compositions, 111

and coproducts, 111

and effective monomorphism, 213

and λ-sequences, 193

and lifting, 111

and monomorphisms, 213

and pushouts, 113, 114

and relative cell complexes, 197, 200

and right Bousfield localization, 58, 62

characterization of, 111

closure under transfinite composition, 193

colocal, 66–68

characterization, 89

generating, 210

homotopy extension property, 118

in a cofibrantly generated model category,
211–213

in a simplicial model category

characterizing, 167

of bisimplicial sets, 305

of cosimplicial simplicial sets, 308

preserving, 153

tensor product with a simplicial set, 166

trivial, 109

cofinal

right, 187

and colimits, 186

λ-sequence, 190

subset, 186

cofinal functor, 256–258

cohorns, 60, 60–61

and Quillen functors, 61

colimit

and homotopy right cofinal, 418

and realizations, 327

and tensor with a simplicial set, 163

as a coend, 387, 409

as a left Quillen functor, 310

isomorphism of, 186

of a free diagram, 257

of a sequence of weak equivalences, 311

of compact objects, 207

of induced diagram, 257

of Reedy cofibrant diagrams, 310

of simplicial functors, 183

of small objects, 195

of weak equivalences, 376

preserving objectwise weak equivalences,
310

sequential, 376–378

colocal, see also C-colocal and K-colocal

colocal cofibrant object

and colocal objects, 65

colocal cofibration, 66–68, 84, 87–89

and cofibration, 87

and colocal equivalences, 87

and colocal objects, 63

characterization, 89

detecting, 62, 63

sufficient conditions, 87

colocal equivalence, 48, 52–55

and colocal cofibrations, 87

and limits, 53

and pullbacks, 65

and retracts, 53

and right lifting property, 53

and weak equivalences, 49

two out of three, 52

colocal fibration, 84

colocal object, 48, 51–52, 84

and cellular objects, 90–91

and cofibrant objects, 65

and colocal cofibrations, 63

and Quillen functors, 49, 51

and tensor product, 90

and weak equivalences, 52

characterization, 89

detecting, 61

homotopy colimit of, 90

colocal weak equivalence, 84

colocal Whitehead theorem, 55

colocalization, 83–91

and homotopy classes, 56

fibrant, 56

for unpointed spaces, 51

of a map, 55, 56

of an object, 55, 56
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compact, 80, 205–206, 206, 215, 217

subset of a cell complex in Top(∗), 205

subset of topological space, 205

compactly generated, 5, 134

compactness, 206–207, 215–217, 231

and colimits, 207

and monomorphisms, 207

and retracts, 206, 215

and sets of objects, 207

and small subcomplexes, 216

and smallness, 207

in a cofibrantly generated model category,

216

in cellular model categories, 234–235

simplicial set, 206

topological spaces, 206

uniform, 234

comparing localizations, 23, 24

complete, 108

component, 9, 32

composing homotopy classes, 122–123

composition

of a λ-sequence, 38, 188, 202

of homotopy classes, 148, 150

of left homotopies, 120

of right homotopies, 120

of zig-zags, 133

transfinite, 188, 188–193, 198

and coproducts, 191

and homotopy left lifting property, 193

and inclusion of simplicial sets, 191

and lifting, 193–194

and regular cardinals, 191

and simplicial model categories, 191–
193

and smallness, 196

identifying, 189

composition of zig-zags, 261

composition rule, 159

constant functor, 260

continuous localization functor, 29–30

continuum, 44

contractible, 258, 259

contractible classifying space, 258, 258–260,

264, 265, 320, 321, 342, 344, 350, 352,
353, 356–359, 361, 399, 418

of cofibrant approximations, 266

of fibrant approximations, 266

coproduct

and transfinite composition, 189, 191

corealization, 324, 324–326

and adjointness, 326–331

and fibrations, 327

and limits, 327

in a simplicial model category, 338

pullback corner map, 333

cosimplicial frame, 337, 337–341, 407

and cosimplicial resolutions, 338

and left Quillen functors, 341

category of

contractible classifying space, 340

functorial

existence, 339

on a map, 340

uniqueness, 339

natural, 406, 408, 409

on a diagram, 342, 342–345

uniqueness, 343

on a latching object, 345

on a map, 339, 339, 411

Reedy, 343–345, 423

contractible classifying space, 344

existence, 344

uniqueness, 344

standard, 338

uniqueness, 341

cosimplicial frame on a diagram

category of

contractible classifying space, 342

cosimplicial indexing category, 220, 278, 279,
280, 309

cosimplicial object, 279

Bousfield-Kan map from the total object
to the homotopy limit, 397

category of, 318

constant, 318

iterated coface operator, 306

latching map of, 325

latching object of, 324

matching object, 285

partial homotopy lifting extension theo-

rem, 328, 329

Reedy model category, 289

total object, 395, 426

fibrant, 396, 426

homotopy invariance, 396, 426

total object weakly equivalent to the ho-
motopy limit, 397, 426

cosimplicial resolution, 318, 322, 318–323,

337, 349, 352

and cofibrant approximation, 319

and cosimplicial frames, 338

and cylinder objects, 319

and left Quillen functors, 49, 323

category of, 320

contractible classifying space, 320

existence, 322

functorial, 319

existence, 319

uniqueness, 321

in a simplicial model category, 318, 319

map of, 320

existence, 320

weak equivalence, 320

of a map, 321, 321–322

recognizing, 322
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uniqueness, 320–321

cosimplicial simplicial set, 305–308, 313

cofibrant, 308

cofibration, 308

latching object, 307

maximal augmentation, 306

cosimplicial space

Bousfield-Kan map from the total space
to the homotopy limit, 397

total space

fibrant, 396

homotopy invariance, 396

cosimplicial standard simplex, 279, 396

cofibrant, 308

countable cardinal, 187

CW-complex, 204

cylinder object, 115, 115–122, 131, 146, 148

and cofibrant approximations, 144

and cosimplicial resolution, 319

and fibrant approximations, 144

and homotopy classes, 365

and left Quillen functors, 156

and trivial fibration, 116

composition of, 119

in a simplicial model category, 172

injections, 117

natural, 79, 80, 237

size of, 237

deformation retract, 45, 77, 79, 80, 127, 127,

131

and homotopy lifting, 175

dual of, 132

degeneracy operator

iterated, 304

degenerate simplex

image of a unique nondegenerate simplex,

304

degree of an object

induction on, 293

degree of an object in a Reedy category, 281

induction on, 290, 292

derived functor, 151, 151–153, 156

existence, 152

detecting C-local equivalences, 69

detecting local equivalences, 75

detecting local objects, 74, 75

detecting S-local equivalences, 69

detecting weak equivalences, 133, 177–179,
366, 367, 372

in a cofibrantly generated model category,
374

diagonal

of a bisimplicial set, 312

diagonal of a bisimplicial set

fibrant, 336

fibration, 336

fibration of, 313

isomorphic to realization, 313

weak equivalence of, 337

weakly equivalent to the homotopy colimit,
398

diagram, 217

extending, 228–230, 281–284

free, 221, 221–222

and adjoints, 221, 222

on an object, 221

in a cofibrantly generated model category,
223–225

and properness, 242

model category structure, 224

in a simplicial model category, 225–226

model category structure, 226

indexed by a Reedy category, 281–288

extending over a filtration, 283

induced, 218

and homotopy colimits, 419

and homotopy limits, 419

map of, 217

objectwise cofibrant, 218

objectwise fibrant, 218

of classifying spaces of undercategories, 401

of diagrams

matching object, 333

of homotopy function complexes

Reedy fibrant, 425

of opposites of undercategories, 268–269,

271

as a free cell complex, 273–275

cofibrant approximation to the constant
diagram at a point, 273

map induced by a functor, 268

Reedy cofibrant approximation to the

constant diagram at a point, 297

of opposites undercategories, 268

of overcategories, 269, 269–271

as a free cell complex, 273–275

cofibrant approximation to the constant

diagram at a point, 273

map induced by a functor, 270

Reedy cofibrant, 297

Reedy cofibrant approximation to the
constant diagram at a point, 297

of sets

free, 218, 220, 218–220

free on the set S, 220

of simplicial sets, 271–275

of spaces

space of maps, 384

of undercategories, 269

Reedy cofibrant, 297

Reedy cofibrant

colimit of, 310, 427

Reedy fibrant

limit of, 310, 427

tensored with a simplicial set, 225
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diagram category, 217, 218

and Quillen functors, 225

injectives, 223

Reedy framed, 344

diagram of sets

free

adjointness, 220

direct subcategory, 278

Dror Farjoun, E., ix, 51, 96, 398, 428

dual statement, 110

Dugger, D., 153, 263, 394

Dwyer, W. G., viii, 51, 347, 420

edge path groupoid

and zig-zags, 261

effective monomorphism, 208, 208, 231

and equalizers, 208

and monomorphisms, 208

and retracts, 208

in a cofibrantly generated model category,
213

of sets, 208

elements of S fiberwise over Z, 95

end, 386, 386–394, 407, 407–414

adjointness, 388, 410

and lifting, 388, 411

and right Quillen functors, 410, 414

and total singular complex, 401

fibrant, 390, 412, 424

homotopy invariance, 389, 390, 412, 413,

424, 425

in a simplicial model category, 408

independence of frame, 413

pullback corner map, 389, 411

uniqueness, 390

enriched, 159

equivalence

cellular, 50

colocal, 48, 50

local, 48

pointed, 31

unpointed, 31

equivalence relation

homotopy, 119–122

equivalent zig-zags, 260

essentially unique zig-zag, 261, 265–267, 321,

339, 341, 343, 344, 350, 352, 353, 356,
358, 359, 361, 390, 393, 397, 412, 425

and contractible classifying spaces, 261

exponentiate

to a simplicial set

associativity, 162

fibration, 166

right adjoint to tensor product, 161

exponentiate to a simplicial set, 324, 324–
326

exponentiating cardinals, 187

extending a diagram, 281–284

extension of a diagram, 229

and adjointness, 229

and Quillen functors, 230

f -horn, 60

f -local, see also C-local, S-local, and local

cofibration, 35

equivalence, 8, 8–16, 48

recognizing, 21

fibration, 35

model category structure, 35

space, 8–11, 14–15, 35

and retracts, 9

weak equivalence, 35

Whitehead theorem, 14

f -localization, 11, 21, 19–22

factor, 87

factorization, 21, 74, 75, 85, 198, 212

and cofibrations, 22

and homotopy factorization, 118

and size, 236

and subcomplexes, 235

axiom, 109

classical, 416

functorial, 88

colocal, 87

small object, 199, 198–201

uniqueness up to homotopy, 128

Farjoun, E. Dror, ix, 51, 96, 398, 428

FibZS, 95

fiber, 249

and homotopy fiber, 249

homotopy, 95–98, 249

localizing, 95–98

fiberwise localization, 93, 93–99

of a fibration, 93

pointed, 94

uniqueness, 99

fiberwise model category structure, 95

fibrant, 109

all objects of a model category, xii, 86

fibrant approximation, 138, 137–158, 318,
349

and cylinder objects, 144

and derived functors, 155

and functors, 143, 155

and homotopic maps, 146

and localization, 49

and path objects, 144

and right lifting property, 243

and right Quillen functors, 49

category of, 266

contractible, 266

cofibrant, 138

existence, 138

existence, 138

functorial, 140, 140–142, 267

existence, 141
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homotopy idempotent, 140

map of, 141

map of, 138, 138–139

uniqueness, 139

of a subcomplex, 77

to a map, 142, 266

existence, 142

map of, 144

uniqueness, 143

to a pullback, 247

uniqueness, 139, 266, 267

fibrant cofibrant approximation, 138, 154

existence, 138

to a map, 142

existence, 142

map of, 144

uniqueness, 143

fibrant colocalization, 56, 59

fibrant constants, 309, 308–312, 427

and Quillen functors, 310

and the opposite category, 309

and weak equivalences, 310

characterizing, 309, 310

fibrant cosimplicial resolution, 318

fibration, 109

and adjoints, 115

and compositions, 111

and homotopy pullbacks, 246

and left Bousfield localization, 58, 62

and lifting, 111

and products, 111

and pullbacks, 113

characterization of, 111

exponentiate to a simplicial set, 166

homotopy lifting property, 118

in a cofibrantly generated model category,

211

in a simplicial model category

characterizing, 167

local, 66–68

objectwise, 224

of bisimplicial sets, 336

of diagonals of bisimplicial sets, 313

of simplicial mapping spaces, 164

preserving, 153

trivial, 109

fibrewise localization, 93–99

filtration

of a latching category, 290

of a Reedy category, 281–284, 287–288

filtration of a Reedy category, 281

final, 418

finite cell complex, 210

finite ordered sets, 254, 279

finite subcomplex, 206

in Top(∗), 206

frame, 337, 337–341

cosimplicial

on a map, 339

on a diagram, 342, 342–345

simplicial

on a map, 339

framed model category, 341, 341–342, 409–

410

homotopy colimit, 406

homotopy limit, 406

framing

existence, 341

free

I-cell, 222

free cell, 222

free cell complex, 223, 222–223, 271–275

basis of, 272, 272, 273, 274

map, 275

nondegenerate generator of, 274

recognizing, 271, 273

Reedy cofibrant, 297

relative

and Reedy cofibration, 297

free diagram, 221

adjointness, 220

and adjoints, 221, 222, 228

and classifying space of opposites of un-

dercategories, 421

and classifying space of overcategories, 421

boundary of, 299

colimit of, 257

in a category, 221–222

of sets, 218, 220, 218–220, 298

boundary of, 298, 298

on the set S, 220

on an object, 221

free simplicial group, 272

full class of horns, 73

full set of horns, 85

function complex, 6, 6, 159, 170, see also
simplicial mapping space

and homotopy colimit, 382

and homotopy limit, 382

as a functor, 160

as sets of maps, 162

pointed versus unpointed, 31

function space, 6, see also function complex

and simplicial mapping space

functor

and cofibrant approximations, 143

and fibrant approximations, 143

and homotopic maps, 130, 148

augmented, 139, 139–140, 264

coaugmented, 139, 139–140, 264

cofinal, 256–258

constant, 260

extending to a simplicial functor, 179–183

initial, 256, 257

inverting weak equivalences, 148

left cofinal, 256, 257



INDEX 437

opposite, 228

over X, 263

right cofinal, 256, 257

simplicial, 75–76, 179

taking maps to weak equivalences, 130,
143

terminal, 256, 257

under X, 263

functor category, 263–266

functorial change of homotopy function com-

plex map, 360

functorial cofibrant approximation, 140, 140–
142

category of, 267, 267

existence, 141

homotopy idempotent, 140

map of, 141

uniqueness, 267

functorial cosimplicial frame

existence, 339

on a map, 340

uniqueness, 339

functorial cosimplicial resolution, 319

existence, 319

uniqueness, 321

functorial factorization

colocal, 87, 88

existence, 200

functorial fibrant approximation, 140, 140–

142

category of, 267, 267

existence, 141

homotopy idempotent, 140

map of, 141

uniqueness, 267

functorial fibrant cofibrant approximation,

148

functorial homotopy function complex, 359,
359–362

uniqueness, 361

functorial homotopy function complexes

category of, 361

contractible classifying space, 361

homotopy equivalences, 361

functorial left homotopy function complex,

357, 357–358

category of, 357

contractible classifying space, 357

existence, 357

homotopy equivalence of, 361

uniqueness, 358

functorial left to two-sided change of homo-

topy function complex map, 360

functorial localization, 20–22

functorial right homotopy function complex,

358, 358

category of, 358

contractible classifying space, 358

existence, 358

homotopy equivalence of, 361

uniqueness, 358

functorial right to two-sided change of ho-

motopy function complex map, 360

functorial simplicial frame

existence, 339

on a map, 340

uniqueness, 339

functorial simplicial resolution, 319

existence, 319

uniqueness, 321

functorial two-sided homotopy function com-

plex, 359, 359

category of, 359

contractible classifying space, 359

existence, 359

homotopy equivalences, 361

uniqueness, 359

functors

naturally weakly equivalent, 134

fundamental group, 241

γ-compact, 206, 215

generalized interval, 170, 172

and simplicial homotopy, 171

exponentiate to, 174

simplicially contractible, 174

tensor with, 174

generating cofibrations, 81, 89, 210, 231

generating trivial cofibrations, 78, 81, 89,

210, 231

and relative cell complexes, 213

generator

of a free cell complex, 272

geometric realization, 7, 15–16, 24–29, 158,

324

and coends, 401

and diagram categories, 225

and finite limits, 242

and homotopy colimits, 402

and homotopy fibers, 250

and homotopy limits, 402

and the realization of a simplicial simpli-

cial set, 402

half properness, 239

Hausdorff, 5, 134

higher universe, 258, 263

HLEP, see also homotopy lifting extension

theorem

HLET, see also homotopy lifting extension

theorem

Ho M, 147, 147–155

existence, 148, 149

hocolim, see also homotopy colimit

holim, see also homotopy limit

hom
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of functors, 386, 386–394, 407, see also

end

adjointness, 388, 410

homology

localization, ix

with local coefficients, 241

and weak equivalences, 241

homotopic, 115

homotopic maps, 130, 148, 157

inducing homotopic maps of homotopy func-
tion complexes, 363–365

homotopic maps of classifying spaces, 259–
260

homotopically constant bisimplicial set, 315

homotopy, 115–128

and Bousfield localization, 68

and cancellation, 124

and cofibrant approximations, 146

and fibrant approximations, 146

and homotopy fibers, 250

and homotopy pullbacks, 246

and relative homotopy, 127

and weak equivalence, 130

equivalence relation, 119–122

left, 115, 174

left versus right, 122

of homotopies, 131

over an object, 99, 127, 126–128

relative, 127

restriction of, 237

right, 115, 174

simplicial, 99, 171, 174

under an object, 127, 126–128

using any cylinder object, 122

using any path object, 122

homotopy category, 147

classical, 123, 123–125, 151

equivalent to Quillen, 151

existence, 148

Quillen, 147, 147–151

equivalent to classical, 151

existence, 149

homotopy classes of maps, ix, 122–123, 148,
149, 151, 156–158, 240

and Bousfield localization, 69

and cylinder objects, 365

and detecting equivalences, 69

and homotopy equivalences, 125

and homotopy function complexes, 365–

366

and path objects, 365

and Quillen functors, 157

and weak equivalences, 133

and weak equivalences of homotopy func-

tion complexes, 366

composition, 122–123, 148, 150

well defined, 123

isomorphism

and factorizations of maps, 119

induced by a weak equivalence, 130

homotopy cofiber square, 67, 68, 252, 252

homotopy colimit, 50, 84, 90, 91, 380, 380–

382, 406

and cofibrations, 394

and function complex, 382

and geometric realization, 402

and homotopy function complex, 415

and homotopy right cofinal, 420–422

and induced diagrams, 407, 419

and left Quillen functors, 415

and maps of simplicial sets, 428

and terminal objects, 420

and total singular complex, 402

as a coend, 387, 409

cofibrant, 394, 414

duality with homotopy limit, 382, 415

homotopy invariance, 394, 414

natural map to the colimit, 387, 409

of a bisimplicial set

weakly equivalent to the diagonal, 398

of a diagram indexed by the opposite of a

category of simplices, 399

of a Reedy diagram

alternate construction, 393

of a simplicial object

weakly equivalent to the realization, 397,
426

of colocal objects, 90

of contractible pointed spaces, 399

of induced diagrams, 420

pointed or unpointed, 398–399

weakly equivalent to colimit, 401, 427, 428

homotopy direct limit, 383, see also homo-

topy colimit

homotopy equivalence, 131–133, 149

and relative homotopy, 127

and weak equivalence, 132

detecting, 125

determined by a zig-zag, 262, 262

is a weak equivalence, 133

of functorial homotopy function complexes,

361

over an object, 127

simplicial, 171

under an object, 127

unique, 262

homotopy extension property, 118

homotopy factorization

and factorization, 118

homotopy fiber, 95–98, 249, 249–250

alternate constructions, 250

and fiber, 249

and geometric realization, 250

and homotopic maps, 250

and homotopy pullback, 249

and path components, 250
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and total singular complex, 250

decomposing, 96

homotopy fiber square, 67, 68, 247, 247–249

of homotopy function complexes, 368

homotopy function complex, 48, 353, 353–
356

and detecting weak equivalences, 366, 367

and homotopic maps, 363–365

and homotopy classes of maps, 365–366

and homotopy colimits, 415

and homotopy fiber squares, 368

and Quillen functors, 357

contractible classifying space, 356

fibrant, 354

functorial, 359, 359–362

homotopy limit, 415

induced weak equivalence, 362

left, 349, 349–350

fibrant, 349

one-sided from two-sided, 354

right, 350, 350–352

fibrant, 351

functorial, 358

two-sided, 352, 352–353

fibrant, 352

functorial, 359

uniqueness, 356

weak equivalence of

and lifting maps, 366

homotopy function space, see also homotopy
function complex

homotopy groups, 241

homotopy idempotent, 140, 140

homotopy initial, 418, see also homotopy

left cofinal

homotopy invariance, 332, 334, 336, 337

of coends, 424, 425

of ends, 424, 425

of homotopy colimits, 414

of homotopy limits, 414

of homotopy pullbacks, 245

of homotopy pushouts, 251

of realizations of simplicial objects, 426

of simplicial mapping spaces, 164, 165

of the total object of a cosimplicial object,

426

homotopy inverse limit, 383, see also homo-

topy limit

homotopy left cofinal, 418, 418–423

and homotopy limits, 420–422

and left cofinal, 418

and limits, 418

homotopy left lifting property, 167, 167–170

and left properness, 244

and pushouts, 169

and retracts, 169

and the pushout corner map, 168

closure under transfinite composition, 193

homotopy lifting extension theorem, 161, 331–

337, 389, 411

and homotopy orthogonal maps, 369

bisimplicial, 334

equivalent conditions, 166

left, 331

one-sided, 331

partial, 328, 329

Reedy diagram, 391, 423

right, 331

two-sided, 336

homotopy lifting property, 118, 167, 167–
170

and deformation retracts, 175

and lifting, 167, 169

and properness, 244

and retracts, 169

and the pullback corner map, 168

and the pushout corner map, 168

and uniqueness of factorizations, 175

and uniqueness of lifts, 175

and weak equivalence of function complexes,
168

characterization of cofibrations, 167

characterization of fibrations, 167

characterization of trivial cofibrations, 167

characterization of trivial fibrations, 167

in terms of lifting, 168

homotopy lifting-extension pair, 167

and lifting-extension pair, 167

homotopy limit, 382, 382–385, 406

ad an end, 387

alternative definitions, 383

and fibrations, 394

and function complex, 382

and geometric realization, 402

and homotopy left cofinal, 420–422

and homotopy pullbacks, 244, 416–418

and induced diagrams, 407, 419

and initial objects, 420

and right Quillen functors, 415

and the total singular complex, 402

as a space of maps, 385

as an end, 409

duality with homotopy colimit, 382, 415

fibrant, 394, 414

homotopy invariance, 394, 414

natural map from the limit, 387, 409

of a cosimplicial object

weakly equivalent to the total object,
397, 426

of a cosimplicial space

weakly equivalent to the total space, 397

of a diagram indexed by a category of sim-

plices, 399

of a Reedy diagram

alternate construction, 393

of homotopy function complexes, 415
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of induced diagrams, 420

of mapping complexes, 90

pointed versus unpointed, 398

weakly equivalent to limit, 427, 428

weakly equivalent to the homotopy pull-
back, 417

homotopy mapping space, see also homo-
topy function complex

homotopy orthogonal, 90

partial two out of three, 373

homotopy orthogonal maps, 82, 368, 367–

375

and lifting, 371

and lifting-extension pairs, 372

and properness, 374

and resolutions, 373

and retracts, 370

and weak equivalences of homotopy func-
tion complexes, 370

characterizing, 369

detecting weak equivalences, 372

homotopy invariance, 370

homotopy lifting extension theorem, 369

homotopy pullback, 244, 244–250

alternative constructions, 246

and homotopic maps, 246

and homotopy limits, 244, 416–418

and weak equivalences, 244, 245

homotopy invariance, 245

weakly equivalent to the homotopy limit,

417

homotopy pushout, 250, 250–252

homotopy invariance, 251

homotopy right cofinal, 418, 418–423

and colimits, 418

and homotopy colimits, 420–422

and right cofinal, 418

homotopy right lifting property, 20, 90, 167,

167–170

and pullbacks, 169

and retracts, 169

and right properness, 244

and the pullback corner map, 168

homotopy terminal, 418, see also homotopy
right cofinal

homotopy uniqueness

of factorizations, 128

of lifts, 128

horizontal simplicial object, 333, 333–336

matching object of, 333

horns, 17, 16–17, 19, 60, 60–61

and local equivalences, 73

and Quillen functors, 61

augmented set, 73, 85

augmented set of, 17, 73, 86

full class, 73

full set, 85

on A, 17

on f , 17

on K, 85

I-cell complex, 197

I-cofibrant, 196

I-cofibration, 81, 196, 196–201

and relative I-cell complexes, 197, 200

regular, 197

I-injective, 81, 196, 196–201

idempotent, 140

inclusion of a subcomplex, 210, 212

inclusion of cell complexes, 10, 81, 197

inclusion of free cell complexes, 223

inclusion of I-cell complexes, 197

induced diagram, 218

and homotopy colimits, 407, 419

and homotopy limits, 407, 419

induced map

of homotopy function complexes, 362–363

of left homotopy function complexes, 363

of right homotopy function complexes, 363

of two-sided homotopy function complexes,
363

induced map of homotopy function complexes,

362

induced map of left homotopy function com-

plexes, 362

induced map of right homotopy function com-

plexes, 362

induced map of two-sided homotopy func-

tion complexes, 362

induction

on the degree of an object in a Reedy cat-
egory, 290

transfinite, 41, 237

initial, 418

initial functor, 256, 257, see also left cofinal
functor

initial object

and contractible classifying space, 260

and homotopy limits, 420

and natural transformations, 260

initial subcategory, 256

injective, 20, 19–21, 36, 74, 81, 196, 196–

201

and diagram categories, 223

and Kan fibration, 197

and overcategories, 197

and trivial fibrations, 197

interior

of a cell, 37

internal mapping space, 7, 383, 384

interpolating sequences, 190, 190–191

intersection of subcomplexes, 40, 233, 233–
234

and localization, 77

pullback square, 233

inverse left homotopy, 121
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inverse right homotopy, 121

inverse subcategory, 278

inverting

a map in the homotopy category, 47–50

Isaksen, D., 394

isomorphism

of colimits, 257

of limits, 257

iterated coface operator, 306

joke, pointless, 51

K-cellular object, 84, 84

K-colocal, 50, see also A-colocal and colocal

cofibration, 84, 86

sufficient conditions, 87

cofibrations, 87–89

equivalence, 50

equivalences, 85–87

fibration, 84

model category

cellular model category, 86

model category structure, 83

object, 84

and tensor product, 90

characterization, 89

objects, 90–91

weak equivalence, 84

K-colocal Whitehead theorem, 55

Kan extension, 151, 151–153, 229, 228–230,

282

and adjointness, 229

and Quillen functors, 230

Kan fibration

and injectives, 197

Kan, D. M., viii, 161, 209, 213, 214, 243,
264, 277, 347, 376, 396

κ-small, 194, 200, 212

κ-small relative to I, 198

Kenny Brown’s lemma, 129

Λ{A}-cofibration, 19

Λ{A}-injective, 19

Λ{f}-injective, 20, 21

Λ{f}-cell, 37

Λ{f}-cell complex, 19

Λ{f}-cofibration, 19, 21, 22

Λ{f}-injective, 19, 21

Λ(K)-cell complex, 85, 90

Λ(K)-cofibration, 85

Λ(K)-injective, 85, 85, 86

characterization, 85

Λ̃S-injective, 74

λ-sequence, 13, 17, 18, 38, 39, 45, 54, 76, 79,

90, 188, 188–193, 201, 216, 375, 376

and retracts, 200

cofibrant approximation, 377

composition, 202

in a subclass of maps, 188

interpolating, 190, 190–191

map of, 200, 203

of λ-sequences, 190

reindexed, 189

latching category, 284, 284–287, 310

and Reedy cofibrant diagrams, 289

filtration, 290

opposite, 284

latching map, 284

of a cosimplicial object, 325

relative, 288, 289–292

trivial cofibration, 292

latching object, 284, 284–287, 333

and cosimplicial frames, 345

cofibrant, 291

of a bisimplicial set, 305

of a cosimplicial object, 324

of a cosimplicial simplicial set, 307

of a diagram of mapping spaces, 391

of a simplicial object, 285

left adjoint, 153–158

to the matching object, 297–300

left Bousfield localization, 57, 57–69

and fibrations, 58, 62

and left localization, 63

and left properness, 66

existence, 71

left cofinal, 285, 418

functor, 256, 256–258

subcategory, 256

left derived functor, 47, 151, 151–153, 156

existence, 152

total, 152, 155, 158

and cofibrant approximation, 155

existence, 157

left homotopic maps, 130, 148

inducing homotopic maps of homotopy func-
tion complexes, 364

left homotopy, 115, 115–128, 174

and cofibrant approximations, 146

and cylinder objects, 121

and fibrant approximations, 146

and fibrant objects, 116

and homotopy, 122

and homotopy fibers, 250

and homotopy pullbacks, 246

and right homotopy, 121–123

and trivial fibrations, 123

composition of, 120

equivalence relation, 121

inverse, 121

over an object, 127, 126–128

preserving, 117, 157

under an object, 127, 126–128

left homotopy classes of maps, 119, 122

induced maps, 123

isomorphism of, 123
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left homotopy function complex, 349, 349–

350

category of, 350

fibrant, 349

functorial, 357, 357–358

uniqueness, 350

left homotopy lifting extension theorem, 331

left homotopy orthogonal, 368

and pushouts, 372, 374

and the pushout corner map, 373

partial two out of three, 373

left Kan extension, 151, 151–153, 229, 228–

230, 282

and adjointness, 229

and Quillen functors, 230

left lifting property, 20, 110, 197

and cofibrant approximation, 243

and colimits, 193

and left properness, 243

and local equivalence, 53

and pushouts, 113

and retracts, 112

and transfinite composition, 193–194

closure, 193

left localization, 47, 47–69

Bousfield, 57

left proper, 43, 78, 239, 239–252

and cofibrant approximations, 252

and homotopy left lifting property, 244

and left Bousfield localization, 66

and left lifting property, 243

and local equivalence, 54–55

simplicial sets, 240

SS∗, 240

SS, 240

sufficient condition, 240

left Quillen equivalence, 158, 158

left Quillen functor, 47–50, 153, 153–158

and coends, 410, 414

and cosimplicial frames, 341

and cosimplicial resolutions, 49, 323

and cylinder objects, 156

and homotopy colimits, 415

and horns, 61

existence of total left derived functor, 155

preserving weak equivalences between cofi-

brant objects, 155

left resolving pair, 356

left to two-sided change of homotopy func-
tion complex map, 355

functorial, 360

lift

unique up to homotopy, 128

lifting, 193

and adjoints, 114

and homotopy lifting, 169

and retracts, 112

and simplicial homotopy, 175

and transfinite composition, 193–194

axiom, 109

uniqueness, 175

lifting model category structures, 214, 224

lifting-extension pair, 110

and adjoints, 114

and homotopy lifting-extension pair, 167

and homotopy orthogonal maps, 372

limit

and corealizations, 327

and homotopy left cofinal, 418

and weak equivalences, 311

as a right Quillen functor, 310

as an end, 387, 409

of a diagram of simplicial mapping spaces,
164

of a tower of weak equivalences, 311

of induced diagram, 257

of Reedy fibrant diagrams, 310

preserving objectwise weak equivalences,
310

limit axiom, 109

limit ordinal, 189

local, see also f -local, C-local, and S-local

local coefficient homology, 241

and weak equivalences, 241

local equivalence, 11–13, 48, 52–55

and colimits, 53

and left lifting property, 53

and left properness, 54–55

and pushouts, 54, 65

and retracts, 53

and tensor products, 54

and transfinite composition, 54

and weak equivalences, 49, 56

detecting, 75

recognizing, 21

two out of three, 52

local fibrant objects

and local objects, 65

local fibration, 66–68

and local objects, 63

detecting, 62, 63

local object, 48, 51–52

and fibrant objects, 65

and horns, 73

and injectives, 73

and lifting, 74

and local fibrations, 63

and Quillen functors, 49, 51

and weak equivalences, 52

detecting, 61, 73–75

local space, 14–15

path components of, 32

recognizing, 21

local Whitehead theorem, 55

localization, 11, 19, 47–69, 75

and cofibrant approximation, 49
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and cofibrations, 22

and fibrant approximation, 49

and geometric realization, 24–29

and homotopy classes, 56, 69

and Quillen equivalences, 64

and Quillen pairs, 64

and total singular complex, 24–29

Bousfield, 57, 57–69

cofibrant, 11, 20, 55, 75

comparing, 10, 23, 24

continuous, 29–30

existence, 21, 71, 147

fiberwise, 93, 93–99

pointed, 94

uniqueness, 99

functor, 20–22, 76–78

simplicial, 75–76

uniqueness, 27–29

homology, ix

left, 47

natural presentation, 40

of a category, 147

of a cell complex, 79

of a colimit, 41, 43, 77, 79

of a λ-sequence, 77

of a map, 55, 56

of a subcomplex, 44, 76–78

of an intersection, 41, 77, 80

of an object, 55, 56

existence, 75

pointed versus unpointed, 30–34

right, 47

simplicial, 29–30

uniqueness, 48

universal mapping property, 47

with respect to weak equivalences, 147

localizing the fiber, 95–98

map

of homotopy function complexes, 355

of left homotopy function complexes, 349

as a map in an undercategory, 349

weak equivalence, 349

from a free cell complex, 275

left to two-sided change of homotopy func-

tion complex, 354

of cofibrant approximations, 138, 138–139

uniqueness, 139

of cofibrant fibrant approximations to a

map, 144

of cosimplicial resolutions, 320

existence, 320

weak equivalence, 320

of diagrams, 217

objectwise weak equivalence, 218

of fibrant approximations, 138, 138–139

uniqueness, 139

of fibrant cofibrant approximations to a

map, 144

of free diagrams, 219–222

of functorial cofibrant approximations, 141

of functorial fibrant approximations, 141

of functorial homotopy function complexes,
360

of functorial left homotopy function com-

plexes, 357

of functorial right homotopy function com-

plexes, 358

of functorial two-sided homotopy function
complexes, 359

of homotopy function complexes

induced, 362, 363

induced by homotopic maps, 363–365

weak equivalence, 355

of λ-sequences, 200, 203

of left homotopy function complexes

induced, 362, 363

of right homotopy function complexes, 351

as a map in an undercategory, 351

induced, 362, 363

weak equivalence, 351

of simplicial resolutions, 320

existence, 320

weak equivalence, 320

of two-sided homotopy function complexes,

352, 352–353

induced, 362, 363

weak equivalence, 353

right to two-sided change of homotopy func-
tion complex map, 354

map(X, Y ), 354

mapping complex

as a functor, 160

mapping cylinder

as a homotopy colimit, 381

mapping object

from a bisimplicial set to a simplicial set,

313

mapping path space, 416

as a homotopy limit, 382

mapping space, 6, see also function complex

adjointness, 7

and realization, 8

between diagrams in a simplicial model
category, 226

between diagrams of spaces, 384

from a Reedy diagram to an object, 314

internal, 7, 383, 384

simplicial, 6, 8, 159, 384

weak equivalence of, 7

space of maps, 385

matching category, 284, 284–287, 310

and Reedy fibrant diagrams, 289

opposite, 284

matching map, 284
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of a simplicial object, 325

relative, 288, 289–292

trivial fibration, 292

matching object, 284, 284–287

and pullbacks, 334

and simplicial frames, 345

fibrant, 291

in a diagram of diagrams, 333

left adjoint, 297–300

of a cosimplicial object, 285

of a diagram of mapping spaces, 391

of a horizontal simplicial object, 333

of a simplicial object, 324

of a vertical simplicial object, 333

right adjoint to boundary of a free dia-
gram, 299

matching space, 285

maximal augmentation, 306, 306, 307, 308

and cofibrant cosimplicial simplicial sets,
308

model category, 109

and overcategories, 126

and undercategories, 126

cellular, 71, 83, 231, 231–237, 302–303

cofibrant object, 234

compactness, 234–235

existence of factorizations, 235

recognizing, 232

smallness, 235–236

closed, 109, 112

cofibrantly generated, 210, 209–230

and Reedy category, 296–302

not a cellular model category, 232

recognizing, 213

fiberwise, 95

framed, 341, 341, 409–410

homotopy colimit, 406

homotopy limit, 406

K-colocal, 83

left proper, 239, 239–252

of diagrams

in a cofibrantly generated model cate-

gory, 224

in a simplicial model category, 226

opposite of, 110

product of, 110

proper, 239, 239–252

Reedy, 288, 277–315

right proper, 239, 239–252

S-local, 71

simplicial, 75–76, 161, 159–183

and Reedy categories, 289

model category structure

lifting, 214, 224

monomorphism, 216

and compactness, 207

and subcomplexes, 203–204

effective, 208, 208, 213, 231

and equalizers, 208
and monomorphisms, 208

of sets, 208
in a cofibrantly generated model category,

213

natural cosimplicial frame, 406, 408, 409
natural cylinder object, 79, 80, 237

size of, 237

natural localization, 19
natural map

to a bisimplicial set from its zero-th de-
gree, 312

natural simplicial frame, 406, 408, 409

natural transformation
and homotopic maps of classifying spaces,

260
naturally weakly equivalent, 134
nerve, 254, see also classifying space
non-coface, 306

characterizing, 307
nondegenerate generator

of a free cell complex, 272
nondegenerate simplex

characterizing, 304

object
colocal, 48

local, 48

objectwise cofibrant, 218
objectwise cofibration, 218

objectwise fibrant, 218

objectwise fibration, 218, 224
objectwise weak equivalence, 218, 224

one-sided homotopy lifting extension theo-
rem, 331

opposite, 228

of a Reedy category, 278
opposite model category, 110

opposite of undercategory

isomorphic to overcategory, 270, 271
orderings, 186

ordinal, 186, 186–187, 205, 206

limit, 189
presentation, 38, 202, 202

overcategory, 95, 99, 125, 125–128, 226, 226–

229, 284
and model category structures, 126

classifying space of, 255, 256
and free diagrams, 421

as a homotopy colimit, 421

contractible classifying space, 270
diagram of, 269, 269–271

cofibrant approximation to the constant

diagram at a point, 273
Reedy cofibrant, 297

Reedy cofibrant approximation to the

constant diagram at a point, 297
in a cellular model category, 232
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in a functor category, 263

induced functor, 126

isomorphic to opposite of undercategory,

270, 271

opposite, 228

partially ordered set, 186

path component, 32

path object, 115, 115–122, 131, 146, 240

and cofibrant approximations, 144

and fibrant approximations, 144

and homotopy classes, 365

and right Quillen functors, 156

and simplicial resolutions, 319

and trivial cofibrations, 116

composition of, 119

in a simplicial model category, 172

projections, 117

periodic, 8

permits the small object argument, 198, 200,
224

point, 249

pointed

f -local, 30–34

function complex, 31

pointed equivalence, 31

pointed f -local, 31

pointed localization, 31

pointless joke, 51

Postnikov approximation, 22–24

preorder, 80

preordered set, 186

as a category, 186

presentation, 272

natural, 39

of a cell complex, 38, 201

of a relative cell complex, 38, 39, 201

presentation ordinal, 38, 41–43, 77, 202, 202,

205, 206, 216

presented

cell complex, 202, 233

I-cell complex, 202

relative cell complex, 202

relative I-cell complex, 202

preserving

left homotopy, 117

right homotopy, 117

weak equivalences, 129

product

of cardinals, 187

of categories

classifying space, 259

of cofibrantly generated model categories,
211

of Reedy categories, 278, 294–296, 333

of simplicial mapping spaces, 164

product model category, 110

proper, 43, 239, 239–252

category of diagrams in a cofibrantly gen-
erated model category, 242

category of simplicial sets, 242

category of topological spaces, 242

half, 239

left, 78

properness

and Bousfield localization, 65–68

and cofibrant approximations, 252, 377

and fibrant approximations, 247

and homotopy lifting, 244

and homotopy orthogonal maps, 374

and lifting, 243

and Reedy categories, 289

and sequential colimits, 376

pullback, 112, 112–114

and colocal equivalences, 65

and fibrant approximation, 247

and fibrations, 113

and homotopy orthogonal maps, 372

and trivial fibrations, 113

and weak equivalences of homotopy func-
tion complexes, 373

as a homotopy limit, 428

homotopy, 244, 244–250

alternative constructions, 246

and weak equivalences, 244, 245

homotopy invariance, 245

of a weak equivalence, 239

preserving weak equivalences, 311

pullback corner map, 161, 165, 167

adjointness, 165

and homotopy right lifting property, 168

and right lifting property, 165

and the homotopy lifting extension theo-

rem, 166

and the homotopy lifting property, 168

fibration, 166

of corealizations, 333

Reedy diagram, 424

pushout, 112, 112–114

and cofibrations, 113, 114

and homotopy orthogonal maps, 372

and local equivalences, 54, 65

and total singular complex, 251

and trivial cofibrations, 113

and weak equivalences of homotopy func-

tion complexes, 373

as a homotopy colimit, 428

as a Reedy category, 311

homotopy, 250, 250–252

homotopy invariance, 251

of a weak equivalence, 239

preserving weak equivalences, 311

pushout corner map, 165

adjointness, 165

and homotopy left lifting property, 168

and left lifting property, 165
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and the homotopy lifting extension theo-

rem, 166

and the homotopy lifting property, 168
and weak equivalence of simplicial map-

ping spaces, 166

cofibration, 166
of realizations, 333

Reedy diagram, 424

Quillen equivalence, 64, 158, 158, 297

and Reedy model category structure, 294
extending to diagram categories, 225

Quillen functor, 153, 153–158, 323, 414, 415
and cofibrant approximations, 49

and colocal objects, 49
and fibrant approximations, 49
and frames, 341
and homotopy function complexes, 357
and local objects, 49
and Reedy model category structure, 294
existence of total derived functor, 155
left, 47
preserving weak equivalences, 155
right, 47

Quillen functors, see also Quillen pair

and Kan extensions, 230
and Reedy cofibrant diagrams, 294

and Reedy fibrant diagrams, 294

Quillen homotopy category, 147, 147–151
equivalent to classical homotopy category,

151

existence, 148, 149
Quillen pair, 48–50, 58, 64, 153, 153–158,

214

and localization, 51
and resolutions, 323

extending to diagram categories, 225
preserving weak equivalences, 155

Quillen, D. G., 108, 135, 423

realization, 324, 324–326
and adjointness, 326–331

and cofibrations, 327

and colimits, 327
and mapping space, 8

in a simplicial model category, 338
of a bisimplicial set, 312, 312–315

isomorphic to the diagonal, 313

of a simplicial object, 395, 426
cofibrant, 396, 426

homotopy invariance, 396, 426

weakly equivalent to the homotopy co-
limit, 397, 426

of a simplicial simplicial set

and geometric realization, 402
pushout corner map, 333

recognizing free cell complexes, 271, 273

Reedy category, 278, 278–281
and Quillen functors, 294

diagram indexed by, 281–288

extending over a filtration, 283

filtration of, 281–284, 287–288

opposite of, 278

product of, 278, 294–296

product of Reedy categories, 333

with cofibrant constants, 309, 308–312,
427

and Quillen functors, 310

and weak equivalences, 310

characterizing, 309, 310

with fibrant constants, 309, 308–312, 427

and Quillen functors, 310

and weak equivalences, 310

characterizing, 309, 310

Reedy cofibrant diagram, 291, 297, 326, 401

and homotopy function complexes, 425

and Quillen functors, 294

colimit of, 310, 427

Reedy cofibration, 288, 291, 297

and realizations, 325

Reedy cosimplicial frame, 343, 343–345, 423

contractible classifying space, 344

existence, 344

uniqueness, 344

Reedy diagram, 391–394

coend

cofibrant, 392

homotopy invariance, 393

pushout corner map, 392

end

fibrant, 392

homotopy invariance, 393

pullback corner map, 392

homotopy colimit

alternate construction, 393

homotopy lifting extension theorem, 391,

423

homotopy limit

alternate construction, 393

of diagrams

matching object, 333

pullback corner map, 424

pushout corner map, 424

Reedy fibrant diagram, 291, 326

and Quillen functors, 294

bisimplicial set, 335

limit of, 310, 427

Reedy fibration, 288, 291, 297

and corealizations, 325

of bisimplicial sets, 336

of simplicial resolutions, 334

Reedy frame, 343, 343–345

Reedy framed diagram category, 344

Reedy model category, 288, 277–315

and cellular model categories, 302–303

and cofibrantly generated model categories,

296–302
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compared, 296–297

and properness, 289

cofibrantly generated, 300–302

Quillen equivalent to cofibrantly generated

model category structure, 297

Reedy model category structure, 288–293

Reedy simplicial frame, 343, 343–345, 423

contractible classifying space, 344

existence, 344

uniqueness, 344

Reedy trivial cofibration, 289–292

Reedy trivial fibration, 289–292

Reedy weak equivalence, 288

Reedy, C. L., 114, 239

regular cardinal, 18, 42, 44, 75, 76, 187, 187,
191, 195, 198, 200, 201, 207, 212, 237

and smallness, 194

and transfinite composition, 191

regular cofibration, 197, 197–201

regular I-cofibration, 197, 197–201

reindex, 189, 189

relative cell complex, 19, 19–20, 74, 74–75,
85, 85, 89, 197, 197–201, 210

and cofibrations, 197, 201

and monomorphism, 213

of topological spaces, 204

presentation of, 38, 39, 201

presented, 202

subcomplex of, 202

set of cells, 202

subcomplex, 38, 203

relative CW-complex, 204

relative free cell complex, 223

and cofibrations, 223

and Reedy cofibration, 297

relative I-cell complex, 197, 197–201

and I-cofibrations, 197

and retracts, 198

relative Λ{f}-cell complex, 19, 20, 21

relative Λ(K)-cell complex, 85, 85, 86

relative Λ̃S-cell complex, 74, 74, 74–75

relative latching map, 288, 289–292

and lifting, 291

trivial cofibration, 291, 292

relative matching map, 288, 289–292

and lifting, 291

trivial fibration, 292

resolution, 318–323, 337

and localization, 61

cosimplicial, 318

functorial, 319

functorial, 339

of a map, 321, 321–322, 339

of a simplicial set, 335

simplicial, 318

functorial, 319

two-sided constructions, 335

uniqueness, 320–321

resolving pair, 356

left, 356

right, 356

two-sided, 356

restriction of a homotopy, 237

retract, 9, 12, 21, 89, 108, 200, 211

and cardinals, 188

and colocal equivalences, 53

and compactness, 206, 215

and homotopy orthogonal maps, 370

and local equivalences, 53

and small object factorization, 199

and smallness, 194

as a homotopy colimit, 428

of a cell complex, 212

of a λ-sequence, 200

of a relative I-cell complex, 198

of an effective monomorphism, 208

retract argument, 73, 87, 89, 110, 169, 200

retract axiom, 109

right adjoint, 153–158

right Bousfield localization, 57, 57–69, 83–
91

and cofibrations, 58, 62

and right localization, 63

and right properness, 66

existence, 83

right cofinal, 186–187, 285, 418

and colimits, 186

functor, 256, 256–258

λ-sequence, 190

subcategory, 256

subset, 186

right derived functor, 47, 151, 151–153, 156

existence, 152

total, 152, 155, 158

and fibrant approximation, 155

existence, 157

right homotopic maps, 130, 148

inducing homotopic maps of homotopy func-
tion complexes, 364

right homotopy, 115, 115–128, 174

and cofibrant approximations, 146

and cofibrant objects, 116

and fibrant approximations, 146

and homotopy, 122

and homotopy fibers, 250

and homotopy pullbacks, 246

and left homotopy, 121–123

and path objects, 121

and trivial cofibrations, 123

composition of, 120

equivalence relation, 121

inverse, 121

over an object, 127, 126–128

preserving, 117, 157

under an object, 127, 126–128

right homotopy classes of maps, 119, 122
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induced maps, 123

isomorphism of, 123

right homotopy function complex, 350, 350–

352

category of, 351

fibrant, 351

functorial, 358, 358

uniqueness, 352

right homotopy lifting extension theorem, 331

right homotopy orthogonal, 368

and pullbacks, 372, 374

and the pullback corner map, 373

partial two out of three, 373

right Kan extension, 151, 151–153, 282

right lifting property, 20, 110, 196

and colocal equivalence, 53

and fibrant approximation, 243

and pullbacks, 113

and retracts, 112

and right properness, 243

right localization, 47, 47–69

Bousfield, 57

right proper, 239, 239–252, 416

and homotopy right lifting property, 244

sufficient condition, 240

Top∗, 240

Top, 240

topological spaces, 240

right properness

and fibrant approximations, 247

and right Bousfield localization, 66

and right lifting property, 243

right Quillen equivalence, 158, 158

right Quillen functor, 47–50, 153, 153–158

and cohorns, 61

and ends, 410, 414

and homotopy limits, 415

and path objects, 156

and simplicial frames, 341

and simplicial resolutions, 323

existence of total right derived functor,

155

preserving weak equivalences between fi-

brant objects, 155

right resolving pair, 356

right to two-sided change of homotopy func-
tion complex map, 355

functorial, 360

S-colocal, see also K-colocal and colocal

S-colocal equivalence, 48, 49

S-colocal object, 48, 49

S-local, 65, see also f -local, C-local, and lo-
cal

S-local cofibration, 72

S-local equivalence, 48, 49

detecting, 69

S-local fibration, 72

S-local model category structure, 71

S-local object, 48, 49

S-local weak equivalence, 72

S-local Whitehead theorem, 55

S-localization, 75

cofibrant, 75

functor, 76–78

saturation, 151

self dual, 110

sequence

as a Reedy diagram, 311

sequential colimits, 376–378

set of representatives, 46

set of cells

of a cell complex, 202

of a relative cell complex, 202

set of elements of S fiberwise over Z, 95

set of maps

bounding the size, 236

bounding the size of, 236

set of representatives, 236

simplicial model category, 37

simplicial category, 159, 159–161

simplicial frame, 337, 337–341, 408

and right Quillen functors, 341

and simplicial resolutions, 338

category of

contractible classifying space, 340

functorial

existence, 339

on a map, 340

uniqueness, 339

natural, 406, 408, 409

on a diagram, 342, 342–345

uniqueness, 343

on a map, 339, 339, 411

on a matching object, 345

Reedy, 343–345, 423

contractible classifying space, 344

existence, 344

uniqueness, 344

standard, 338

uniqueness, 341

simplicial frame on a diagram

category of

contractible classifying space, 342

simplicial functor, 75–76, 179, 179–183

colimit of, 183

extending a functor, 181

simplicial homotopy, 99, 170, 171, 170–177

and components of the simplicial mapping

space, 170

and composition, 170

and generalized intervals, 171

and homotopic maps of simplicial map-

ping spaces, 176

and homotopy pullbacks, 246

and left homotopy, 174
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and right homotopy, 174

and the homotopy category, 172

induced by simplicial homotopy of maps

of simplicial sets, 173

simplicial homotopy classes of maps, 14

and simplicial homotopy equivalences, 177

and weak equivalences, 171

isomorphism of, 171, 172

simplicial homotopy equivalence, 14, 171,

176

and equivalence of simplicial mapping spaces,

176

and isomorphisms of simplicial homotopy
classes, 177

and weak equivalence, 173

detecting, 177

induced by simplicial homotopy equiva-
lence of simplicial sets, 173

simplicial indexing category, 278, 279, 309

simplicial localization functor, 29–30, 75–76

simplicial mapping space, 6, 8, 159, 384,

see also function complex and homo-
topy function complex

as a functor, 160

as sets of maps, 162

fibration, 164

from a colimit, 164

from a coproduct, 164

homotopy invariance, 164, 165

to a limit, 164

weak equivalence of, 7

simplicial model category, 75–76, 161, 159–
183, 338, 339, 341, 349, 351

and colimits, 164

and coproducts, 164

and Reedy categories, 289

cosimplicial frame on, 338

diagrams

mapping space, 226

diagrams in, 225–226

model category structure, 226

fibration of simplicial mapping spaces, 164

resolutions, 318, 319

simplices of space of maps, 162

simplicial frame on, 338

trivial fibration of simplicial mapping spaces,

164

weak equivalence of simplicial mapping spaces,

165, 176–177

simplicial object, 279

Bousfield-Kan map from the homotopy co-

limit to the realization, 397

category of, 318

constant, 318

horizontal, 333, 333–336

iterated degeneracy operator in, 304

latching object, 285

matching map of, 325

matching object of, 324

partial homotopy lifting extension theo-

rem, 328, 329

realization, 395, 426

cofibrant, 396, 426

homotopy invariance, 396, 426

realization weakly equivalent to the homo-
topy colimit, 397, 426

Reedy model category structure, 289

vertical, 333, 333–336

simplicial resolution, 318, 322, 318–323, 337,

350, 352

and fibrant approximation, 319

and path objects, 319

and right Quillen functors, 323

and simplicial frames, 338

category of, 320

contractible classifying space, 320

existence, 322

functorial, 319

existence, 319

uniqueness, 321

in a simplicial model category, 318, 319

map of, 320

existence, 320

weak equivalence, 320

of a map, 321, 321–322

recognizing, 322

uniqueness, 320–321

simplicial set, 6, 135

and smallness, 194

and topological spaces, 7, 24–29

as a homotopy colimit, 400

as a simplicial category, 161

as a simplicial model category, 162

category of

proper, 242

cofibrantly generated, 211

colimit of its diagram of simplices, 280

compactness, 206, 215

decomposing via a map, 401, 428

diagram of, 271–275

inclusion of

as a transfinite composition, 191

left proper, 240

map of

decomposing, 428

pointed

as a simplicial model category, 162

weakly equivalent to the classifying space

of its category of simplices, 400

simplicial simplicial set, 303–305, see also

bisimplicial set

Simpson, C., 232

singular functor, 7

size, 79–81, 216

of a cell complex, 43, 46, 202

and factorization, 236
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of a natural cylinder object, 237

of a relative cell complex, 202

of a subcomplex, 43–45, 206

of the cells, 80, 234, 236

skeleton, 38

of a cell complex, 202

of a relative cell complex, 202

small, 75, 76, 212

relative to D, 194

relative to I, 198

small category, 264

small enough, 42, 78, 79

small object, 194

small object argument, 17–19, 21, 29–30, 198,
196–201

permits, 198, 224

small object factorization, 199, 198–201

and retracts, 199

small subcategory, 258

small subcomplex, 216

smallness, 194, 194–196, 231

and colimits, 195

and compactness, 207

and relative cell complexes, 198

and retracts, 194

and sets of objects, 194

and simplicial sets, 194

and transfinite compositions, 196

in a cofibrantly generated model category,

212

in cellular model categories, 235–236

relative to cofibrations, 201

simplicial set, 194

topological spaces, 194

Smith, J. H., x, 42, 73, 78

space, 6, 5–6

cell complex

compact subset of, 205

compactness, 215

notation, 6, 135

pointed or unpointed, 398–399

relative cell complex, 204

space of maps

between mapping spaces, 385

Spc(∗), 8

of a simplicial set, 8

SS(∗)
proper, 242

standard cosimplicial frame, 338, 338, 343

standard framing, 341

standard simplex, 279

as a classifying space, 254

boundary, 298

deformation retraction to a point, 173

simplicially contractible, 173

weak equivalences, 174

standard simplicial frame, 338, 338, 343

strict simplicial homotopy, 170

strong deformation retract, 45, 77, 127, 131

subcategory

small, 258

subcomplex, 201–204, 216

and factorizations, 235

and fibrant approximation, 77

and monomorphism, 203–204

constructing, 39, 203

determined by its set of cells, 203, 232

finite, 206

generated by a cell, 40

in Top(∗)
finite, 206

intersection of, 40

localization of, 76–78

of a presented cell complex, 202

of a presented relative cell complex, 202

of a relative cell complex, 38, 38–42

natural presentation, 39

of the localization, 40–42

size of, 206

small, 43, 216

subcomplexes

in a cellular model category, 232–234

intersection, 233, 233–234

Succ, 187, 237

successor cardinal, 187, 187

tensor

with a set, 221, 221

with a simplicial set, 221, 225, 324–326

and colimits, 163

and local equivalence, 54

associativity, 162

cofibration, 166

left adjoint to exponentiation, 161

tensor product

and pushouts, 191–193

and transfinite composition, 191–193

of functors, 386, 386–394, 407, see also
coend

adjointness, 388

and adjointness, 410

tensor with a simplicial set, 324

terminal, 186–187

subset, 186

terminal functor, 256, 257, see also right
cofinal functor

terminal object

and contractible classifying space, 260

and homotopy colimits, 420

and natural transformations, 260

terminal subcategory, 256

Theorem A, 422

Top(∗)
proper, 242

weak equivalence in, 241
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topological space, 5, 5, 6, 135, 204–206, 241–

242

and simplicial sets, 7, 24–29

and smallness, 194

as a simplicial model category, 163

category of

proper, 242

cell complex, 204

cofibrantly generated, 211

compactness, 206, 215

pointed

as a simplicial model category, 163

relative cell complex, 204

compact subset of, 205

right proper, 240

weak equivalence, 241

total derived functor, 49, 152–153

adjointness, 157

and localization, 51

total left derived functor, 47, 49, 152, 152–

153, 155

and cofibrant approximation, 155

existence, 153, 155, 157

total object, 426

of a cosimplicial object, 395

total object of a cosimplicial object

fibrant, 396, 426

homotopy invariance, 396, 426

weakly equivalent to the homotopy limit,

397, 426

total right derived functor, 47, 49, 152, 152–

153, 155

and fibrant approximation, 155

existence, 153, 155, 157

total singular complex, 7, 15–16, 24–29, 158

and diagram categories, 225

and ends, 401

and homotopy colimit, 402

and homotopy fiber, 250

and homotopy limit, 402

and pushouts, 251

and total space of a cosimplicial space, 402

total space of a cosimplicial space, 395

and total singular complex, 402

fibrant, 396

homotopy invariance, 396

weakly equivalent to the homotopy limit,
397

totally ordered set, 53, 186, 193, 194

well ordered subset, 187

transfinite composition, 13, 17–19, 98, 188,
188–193, 198, 204, 272

and coproducts, 189, 191

and homotopy left lifting property, 193

and inclusion of simplicial sets, 191

and lifting, 193–194

and local equivalence, 54

and regular cardinals, 191

and simplicial model categories, 191–193

and smallness, 196

identifying, 189

of transfinite compositions, 190, 191

transfinite induction, 41–43, 77, 90, 193, 216,
237, 375

trivial cofibration, 109

and coproducts, 111

and λ-sequences, 193

and lifting, 111

and pushouts, 113

characterization of, 111

closure under transfinite composition, 193

generating, 210

in a cofibrantly generated model category,

211

in a simplicial model category

characterizing, 167

preserving, 115, 153

Reedy, 289–292

trivial fibration, 109

and injectives, 197

and lifting, 111

and products, 111

and pullbacks, 113

characterization of, 111

in a cofibrantly generated model category,
211

in a simplicial model category

characterizing, 167

preserving, 115, 153

Reedy, 289–292

two out of three, 109

for colocal equivalences, 52

for local equivalences, 52

partial, 373

two-sided homotopy function complex, 352,

352–353

fibrant, 352

functorial, 359, 359

two-sided homotopy function complexes

category of, 353, 353

uniqueness, 353

two-sided homotopy lifting extension theo-

rem, 336

two-sided resolving pair, 356

under-over-category, 126

undercategory, 125, 125–128, 227, 226–228,

284, 349–355

and model category structures, 126

classifying space of, 255, 256

classifying space of opposite of

and free diagrams, 421

as a homotopy colimit, 421

contractible classifying space, 269

diagram of, 268, 269, 401

Reedy cofibrant, 297
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diagram of opposites, 268

diagram of opposites of, 268–269

cofibrant approximation to the constant
diagram at a point, 273

Reedy cofibrant approximation to the

constant diagram at a point, 297
induced functor, 126

opposite, 227, 228

isomorphic to overcategory, 270, 271
opposite of

diagram of, 271

underlying space
of a category, 383

uniform compactness, 234
uniqueness

of cofibrant approximations, 266, 267
of fiberwise localization, 99
of fibrant approximations, 266, 267
of functorial cofibrant approximations, 267
of functorial fibrant approximations, 267
of functorial homotopy function complexes,

361
of functors over X, 265
of functors under X, 265
of homotopy equivalences, 262

universal cover, 241
universal mapping property of localization,

47
universe, 258, 263, 264

unpointed

equivalence, 31
f -local, 31, 30–34

function complex, 31

localization, 31
spaces

and colocalization, 51

vertical simplicial object, 333, 333–336

matching object of, 333

weak equivalence, 109, 129–130, 132, 174
and colimits, 376

and existence of maps, 130
and homotopy, 130

and homotopy equivalence, 124

and homotopy function complexes, 366,
367

and homotopy orthogonal maps, 372

and homotopy pullbacks, 244, 245
and induced map of simplicial mapping

space, 178, 179

and local equivalences, 49, 56
and simplicial homotopy classes of maps,

171

between cofibrant-fibrant objects, 124
characterizing, 111

detecting, 133, 177–179, 366, 367, 374

via homotopy orthogonal maps, 372
equivalence relation generated by, 133

if and only if an isomorphism in the ho-
motopy category, 151

induces a weak equivalence of homotopy

function complexes, 363
induces isomorphism of homotopy classes,

130

localizing, 147
natural, 134

objectwise, 224
of classifying spaces, 423

of cofibrant objects, 172

of colimits, 311
of fibrant objects, 172

of function complexes, 8, 16–17

and homotopy lifting, 168
of homotopy function complexes, 362

and homotopy classes of maps, 366

and homotopy orthogonal maps, 370
and lifting maps, 366
and pullbacks, 373

and pushouts, 373
of limits, 311
of realizations of bisimplicial sets, 315
of simplicial mapping space

independent of cofibrant approximation,

178
independent of fibrant approximation,

178

of simplicial mapping spaces, 176–177
and the pullback corner map, 166

and the pushout corner map, 166

of topological spaces, 241
and attaching a cell, 241

characterizing, 241

preservation by limits and colimits, 310
preservation by pushouts and pullbacks,

311
preserving, 129

pullback of, 239

pushout of, 239
resolution is a weak equivalence, 322

weak Hausdorff, 5, 134

weakly equivalent, 134
naturally, 134

well ordered

subset of a totally ordered set, 187
well ordered set, 186, 189

well pointed, 398

Whitehead theorem, 124
colocal, 55

local, 14, 55

Yoneda lemma, 219, 221

zig-zag, 133
and edge path groupoid, 261

composition of, 261

determining a homotopy equivalence, 262,
262
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equivalent, 260

essentially unique, 261, 265–267, 321, 339,

341, 343, 344, 350, 352, 353, 356, 358,
359, 361, 390, 393, 397, 412, 425
and contractible classifying spaces, 261

Zorn’s lemma, 46, 80, 205
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