ERRATA FOR MODEL CATEGORIES AND THEIR LOCALIZATIONS

PHILIP S. HIRSCHHORN

Proposition 4.2.5

Proposition 4.2.5 is incorrect. It was correct for early drafts of the book, in which the definition of a cellular model category required that the domains of the elements of the set J of generating trivial cofibrations be cofibrant. The current definition of a cellular model category, however, requires only that the domains of the elements of J be small with respect to I (see Definition 12.1.1).

To correct the error:

- In the third line of the statement of Proposition 4.2.5, change "cofibrant domains" to "domains that are small relative to *I*",
- in the proof of Proposition 4.2.5, in lines 4–5 of page 74, change "with cofibrant domain" to "whose domain is small relative to *I*", and
- in the proof of Theorem 4.3.1 on page 75, in the first line of that proof, change "Theorem 12.4.3" to "Proposition 11.2.3".

Theorem 7.6.5

Part 3 of Theorem 7.6.5 is incorrect as written. That part claims that if A and B are objects of a model category \mathcal{M} , then the category $(A \downarrow \mathcal{M} \downarrow B)$ of objects of \mathcal{M} under A and over B is a model category. The problem with that statement is that $(A \downarrow \mathcal{M} \downarrow B)$ is usually neither complete nor cocomplete. This is because if you have two objects of $(A \downarrow \mathcal{M} \downarrow B)$, $A \xrightarrow{s} X \xrightarrow{t} B$ and $A \xrightarrow{u} Y \xrightarrow{v} B$, there can be no morphisms between them unless ts = vu.

The correction is to choose a fixed map $f: A \to B$ in \mathcal{M} and to let $(A \downarrow \mathcal{M} \downarrow B)_f$

be the full subcategory of $(A \downarrow \mathcal{M} \downarrow B)$ with objects the diagrams $A \xrightarrow{s} X \xrightarrow{t} B$ such that ts = f (that is, $(A \downarrow \mathcal{M} \downarrow B)_f$ is the category of factorizations of f). To form the limit of a diagram in $(A \downarrow \mathcal{M} \downarrow B)_f$, you form its limit in the category $(\mathcal{M} \downarrow B)$; there is then a natural map from A to that limit, and this forms the limit in $(A \downarrow \mathcal{M} \downarrow B)_f$. Dually, to form the colimit of a diagram in $(A \downarrow \mathcal{M} \downarrow B)_f$, you form its colimit in $(A \downarrow \mathcal{M})$; there is then a natural map from that colimit to B, and this forms the colimit in $(A \downarrow \mathcal{M} \downarrow B)_f$.

The corrected statement of part 3 is then

(3) For every map f: A → B in M the full subcategory (A↓M↓B)_f of (A↓M↓B) with objects equal to the diagrams A → X → B for which ts = f is a model category in which a map is a weak equivalence, fibration, or cofibration if it is one in M. This is the model category of factorizations of f.

Date: January 11, 2015.

There are several theorems and proofs that make reference to part 3 of Theorem 7.6.5, and those references need to be rephrased to take this change into account:

Proof of Proposition 3.3.15. In the fifth line from the bottom of page 62, the sentence that begins "Thus, in the category $(A \downarrow \mathcal{M} \downarrow Z)$ of objects of \mathcal{M} under A and over Z" should instead begin "Thus, in the category $(A \downarrow \mathcal{M} \downarrow Z)_{ui}$ of factorizations of $ui : A \to Z$ ".

Statement and proof of Proposition 7.6.13.

- In both of the diagrams (one in the statement and one in the proof), the map from B to Y should be labelled "s".
- The last line of the statement of the proposition is "as maps in $(A \downarrow M \downarrow Y)$, the category of objects of \mathcal{M} under A and over Y.", and that should be changed to "as maps in $(A \downarrow \mathcal{M} \downarrow Y)_{si}$, the category of factorizations of $si: A \to Y$.".
- In the part of the proof that follows the diagram displayed in the proof, the sentence that begins on the second line begins "In the category $(A \downarrow \mathcal{M} \downarrow Y)$ of objects of \mathcal{M} under A and over Y", and that should be changed to "In the category $(A \downarrow \mathcal{M} \downarrow Y)_{si}$ of factorizations of $si: A \to Y$ ".
- In the last two lines of that proof there are two appearances of " $(A \downarrow M \downarrow Y)$ ", and both of those should be changed to " $(A \downarrow M \downarrow Y)_{si}$ ".

Statement of Proposition 7.6.14. There are two appearances of " $(A \downarrow \mathcal{M} \downarrow Y)$ ", and they should both be changed to " $(A \downarrow \mathcal{M} \downarrow Y)_{qi}$ ".

Proof of Proposition 13.2.1. In both of the diagrams in that proof (on page 243), the map $B \to Y$ should be labelled as "s". The third line from the bottom of page 243 begins "The category of objects under A and over Y", and that should be changed to "The category $(A \downarrow M \downarrow Y)_{sq}$ of factorizations of $sg: A \to Y$ ".

Theorem 14.5.4

The proof of Theorem 14.5.4 has two errors.

- (1) The object $(\mathbf{F}\boldsymbol{X}, p_{\boldsymbol{X}})$ may not be a terminal object of $\widetilde{\mathcal{D}}$ because there may be distinct objects $(\widetilde{\boldsymbol{X}}, i)$ and $(\widetilde{\boldsymbol{X}}', i')$ of \mathcal{D} such that $(\mathbf{F}\widetilde{\boldsymbol{X}}, i \circ p_{\widetilde{\boldsymbol{X}}})$ and $(\mathbf{F}\widetilde{\boldsymbol{X}}', i' \circ p_{\widetilde{\boldsymbol{Y}}'})$ are the same object of $\widetilde{\mathcal{D}}$.
- (2) The definition of \widetilde{F} may not work because \widetilde{F} is defined to be the identity on $\widetilde{\mathcal{D}}$ but is not the identity on any objects of \mathcal{D} . This is a problem because those two subcategories of \mathcal{D}' might have objects in common.

The proof we present here uses a different definition of \mathcal{D}' and does not use the subcategory $\widetilde{\mathcal{D}}$. We are indebted to Fabian Lenhardt and Alberto Vezzani for help in identifying the problems and correcting the proof.

Proof of Theorem 14.5.4. Let \mathcal{D} be a small category of functors over X relative to \mathcal{W} . Let \mathcal{D}' be the smallest subcategory of functors over X relative to \mathcal{W} containing

- (1) \mathcal{D} ,
- (2) the object $(\mathbf{F}\boldsymbol{X}, p_{\boldsymbol{X}})$,
- (3) for each object (\mathbf{X}, i) in \mathcal{D}'
 - the object $(\mathbf{F}\widetilde{X}, i \circ p_{\widetilde{X}}),$

 $\mathbf{2}$

- the map $p_{\widetilde{X}} : (\mathbf{F}\widetilde{X}, i \circ p_{\widetilde{X}}) \to (\widetilde{X}, i)$, and
- the map $F(i): (F\widetilde{\boldsymbol{X}}, i \circ p_{\widetilde{\boldsymbol{X}}}) \to (F\boldsymbol{X}, p_{\boldsymbol{X}}),$ and
- (4) for each map $g: (\widetilde{\boldsymbol{X}}, i) \to (\widetilde{\boldsymbol{X}}', i')$ in \mathcal{D}' the map $F(g): (F\widetilde{\boldsymbol{X}}, i \circ p_{\widetilde{\boldsymbol{X}}}) \to (F\widetilde{\boldsymbol{X}}', i' \circ p_{\widetilde{\boldsymbol{X}}'}).$

The category \mathcal{D}' is small because it can be constructed as the union of an increasing sequence of small categories, where each category in the sequence is obtained by "applying F to everything in the preceding category" (i.e., adding the objects and maps described in the last two items above).

We will show that $B\mathcal{D}'$ is contractible by constructing a functor $G\colon \mathcal{D}'\to \mathcal{D}'$ together with

- a natural transformation ϕ from G to the identity functor $1_{\mathcal{D}'}$ and
- a natural transformation ψ from G to a constant functor.

Proposition 14.3.10 will then imply that the identity map of BD' is homotopic to a constant map.

If $(\widetilde{\mathbf{X}}, i)$ is an object in \mathcal{D}' then we let $G(\widetilde{\mathbf{X}}, i) = (F\widetilde{\mathbf{X}}, i \circ p_{\widetilde{\mathbf{X}}})$, and if $g: (\widetilde{\mathbf{X}}, i) \to (\widetilde{\mathbf{X}}', i')$ is a map in \mathcal{D}' then we let G(g) = F(g).

We define a natural transformation ϕ from G to the identity functor of \mathcal{D}' by letting $\phi(\widetilde{\mathbf{X}}, i) = p_{\widetilde{\mathbf{X}}} : (\mathrm{F}\widetilde{\mathbf{X}}, i \circ p_{\widetilde{\mathbf{X}}}) \to (\widetilde{\mathbf{X}}, i).$

We define a natural transformation ψ from G to the constant functor that takes every object of \mathcal{D}' to $(\mathbf{F}\mathbf{X}, p_{\mathbf{X}})$ by letting $\psi(\widetilde{\mathbf{X}}, i) = \mathbf{F}(i) \colon (\mathbf{F}\widetilde{\mathbf{X}}, i \circ p_{\widetilde{\mathbf{X}}}) \to (\mathbf{F}\mathbf{X}, p_{\mathbf{X}})$.

Chapter 3

Page 51, line 35:	"C-local objects and C-local" should be "C-colocal objects and
	C-colocal".
Page 59, line 5:	"Proposition 9.1.9" should be "Proposition 8.1.23".
Page 59, line 11:	"Proposition 8.3.26" should be "Theorem 7.5.10".
Page 59, line 14:	"Proposition 8.3.20" should be "Proposition 7.3.4".
Page 59, line 14:	"Proposition 8.4.4" should be "Proposition 7.6.8".
Page 59, line 16:	"Definition 9.6.2" should be "Definition 8.3.2".
Page 59, line 16:	"Lemma 9.6.3" should be "Lemma 8.3.4".
Page 59, line 17:	"Theorem 9.6.9" should be "Theorem 8.3.10".
Page 63, line 15:	"Theorem $4.1.10$ " should be "Theorem $3.2.13$ ".
Page 67, line 3:	"Corollary 8.5.4" should be "Corollary 7.7.4".
Page 67, line 7:	"Proposition 8.3.7" should be "Proposition 7.3.10".
Page 67, line 23:	"is an trivial cofibration" should be "is a trivial cofibration".
Page 68, line 5:	"Definition 11.2.12" should be "Definition 13.3.12".

Chapter 4

Page 72, line 6:	" $L_{\mathcal{C}}\mathcal{M}$ " should be " $L_{S}\mathcal{M}$ ".
Page 72, line 6:	"C-local" should be "S-local".
Page 72, line 8:	"L _C \mathcal{M} " should be "L _S \mathcal{M} ".
Page 72, line 10:	"L _C \mathcal{M} " should be "L _S \mathcal{M} ".
Page 72, line 12:	"C-local" should be "S-local".

PHILIP S. HIRSCHHORN

Chapter 5

Page 83, line 11:"K-local equivalences" should be "K-colocal equivalences".Page 83, line 15:"C-colocal" should be "K-colocal".Page 83, line 20:"C-colocal" should be "K-colocal".Page 83, line 21:"C-local" should be "K-colocal".

Chapter 9

Page 163, line 4: " $X \times K^+$ " should be " $X \wedge K^+$ ".

Summary of Part 2

Page 103, line 4 from bottom: " $\mathbf{R}U: \mathcal{N} \to \mathcal{M}$ " should be " $\mathbf{R}U: \operatorname{Ho} \mathcal{N} \to \operatorname{Ho} \mathcal{M}$ "

Chapter 15

Page 303, Proposition 15.6.19: The three appearances of $(\partial (\overrightarrow{\mathcal{C}} \downarrow \alpha)^{\text{op"}})$ should all be $(\partial (\alpha \downarrow \overleftarrow{\mathcal{C}})^{\text{op"}})$ and, on the last line, "be the element" should be "by the element".

DEPARTMENT OF MATHEMATICS, WELLESLEY COLLEGE, WELLESLEY, MASSACHUSETTS 02481 *E-mail address*: psh@math.mit.edu *URL*: http://www-math.mit.edu/~psh