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Viewing Kan complexes as ∞-groupoids implies that pointed and connected Kan 
complexes are to be viewed as ∞-groups. A fundamental question is then: to what 
extent can one “do group theory” with these objects? In this paper we develop a 
notion of a finite ∞-group: an ∞-group whose homotopy groups are all finite. We 
prove a homotopical analogue of Sylow theorems for finite ∞-groups. This theorem 
has two corollaries: the first is a homotopical analogue of Burnside’s fixed point 
lemma for p-groups and the second is a “group-theoretic” characterisation of finite 
nilpotent spaces.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

One of the earliest insights of homotopy theory was that through the construction of a classifying space, 
one can view group theory as the connected components of the theory of pointed, connected, 1-truncated 
spaces (i.e. with no homotopy groups above dimension 1). In his work [13], Whitehead extended this insight 
by describing pointed, connected 2-truncated spaces by means of 2-groups (in his term: crossed modules). 
This result was further extended by Loday [7] to an “algebraic” characterisation of pointed, connected, 
n-truncated spaces for n ∈ N.

Relying on the classifying space construction, early work of Stasheff, and of Boardman and Vogt [12,2]
demonstrated that weakening the unit, inverse and associativity axioms of a topological group by requiring 
these to hold only up to coherent homotopy, gives a characterisation of spaces equivalent to a loop space.

A more categorical perspective by Joyal [6] further clarified the picture: viewing spaces (more precisely: 
Kan complexes) as ∞-groupoids implies that pointed connected spaces are to be viewed as ∞-groups.

Indeed, when one loops down a pointed connected ∞-groupoid, composition incarnates to concatenation 
of loops and higher associativity may be pictured as straightening paths, paths between paths and so on. 
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An appropriate relative category (and thus an ∞-category) of “spaces equivalent to a loop space” may be 
defined and its associated ∞-category is equivalent to the ∞-category of pointed connected spaces.

To what extent can we “do group theory” with ∞-groups? One place to start is finite group theory, and 
this requires a suitable notion of a “finite” ∞-group. A natural (and prevalent) choice is to take this to 
mean a pointed connected space homotopy groups are all finite. Such a space is called a p-∞-group if all its 
homotopy groups are p-groups. The purpose of this paper is to show that finite pointed connected spaces 
admit Sylow theorems, analogous to the classical ones, and to demonstrate how such theorems can be useful 
for homotopy-theoretic purposes. More precisely:

Definition 1.1. Let p be a prime. A map f : P −→ G of finite ∞-groups is called a p-Sylow map if for all 
n ≥ 1, the map

πn(f) : πn(P) −→ πn(G)

is an inclusion of a p-Sylow subgroup.

Our analogue of the Sylow theorems will take the following form:

Theorem 1.2. Let G be a finite ∞-group and let p be a prime.

1. The ∞-groupoid Pp spanned by p-Sylow maps P −→ G is equivalent to the set of p-Sylow subgroups of 
π1(G). In particular, Pp �= ∅ and |π0Pp| ≡ 1 (mod p).

2. For every finite p-∞-group H, any map H −→ G factors as

H G

P

where P −→ G is a p-Sylow map.
3. Every two p-Sylow maps are conjugate.

The notions appearing in the theorem above will be explained in § 4.

1.1. Organisation

After some preliminary discussion on the category of ∞-groups, we revisit the theory of k-invariants in sec-
tion 3. The main result, Theorem 3.14 asserts that a suitably defined ∞-category of “nth-level k-invariants” 
is equivalent to the ∞-category of (n + 1)-truncated spaces. In section 4 we present our analogue of the 
Sylow theorems for ∞-groups which appears in the form of Theorem 4.10. Lastly, in section 5 we present two 
elementary applications of the Sylow theorems. The first is an analogue of the Burnside’s fixed-point lemma, 
which states that if a p-∞-group coherently acts on a prime-to-p space, then the action admits a homotopy 
fixed point. The second application gives a characterisation of (pointed, connected) finite nilpotent spaces 
that is analogous to the characterisation of finite nilpotent groups.

2. Preliminaries

Throughout, a space will always mean a Kan complex and we denote by S the category of spaces. By 
default, all constructions in simplicial sets will be adjusted to result in S via the Kan replacement functor 
Ex∞. We will indicate explicitly where such adjustments are made.
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An ∞-category will mean a simplicial set satisfying the weak Kan condition as in [6] and [8]. We denote 
the (large) ∞-category of ∞-categories by Cat∞. If C ∈ Cat∞ and X is a simplicial set, we let Fun(X, C) be 
the mapping simplicial set; this is an ∞-category. Let C be an ∞-category. We denote by hC its homotopy 
category. A map f : x −→ y in C1 is an equivalence if its image in hC is invertible. If D0 ⊆ C0 is a subset 
of objects of C, then the full subcategory of C spanned by D0 is the pullback of simplicial sets

D C

D0 hC,

where D0 is the full subcategory of hC spanned by D0. In particular, if we let ιC ⊆ C be the maximal Kan 
complex of C, the ∞-groupoid spanned by D0 is the full subcategory of ιC spanned by D0.

A relative category is a pair (C, WC) of a category C together with a subcategory WC ⊆ C called weak 
equivalences which contains all isomorphisms. If (C, WC) and (C′, WC′) are relative categories, a relative 
functor (or map) from C to C′ is a functor C −→ C′ which takes WC into WC′ .

Let Set+Δ be the category of (possibly large) marked simplicial sets. The objects of Set+Δ are pairs (X, EX)
where X is a simplicial set and EX is a subset of X1 (referred to as the marked edges) containing the 
degenerate edges. The morphisms of Set+Δ are maps of simplicial sets that preserve the marked edges. The 
category Set+Δ admits a model structure, called the Cartesian model structure (see [8, §3.1]), in which:

1. the fibrant objects are ∞-categories with equivalences being the marked edges;
2. cofibrations are monomorphisms;
3. weak equivalences between fibrant objects are precisely categorical equivalences.

If (C, WC) is a relative category, then the nerve NC is naturally a marked simplicial set with WC the 
marked edges. The underlying simplicial set of the fibrant replacement of N(C) in the Cartesian model struc-
ture will be denoted by C∞. A map C −→ C′ of relative categories is called an equivalence if C∞ −→ C′

∞
is an equivalence of ∞-categories. We denote by RelCat the (large) relative category of relative cate-
gories.

A weak inverse to a map of relative categories F : C −→ C′ is a map of relative categories G : C′ −→ C

together with a zig-zag of natural transformations id � F ◦ G and id � G ◦ F which are (component-
wise) weak equivalences. Note that if F admits a weak inverse, then it is an equivalence of relative 
categories.

2.1. The category of ∞-groups

The relative category S of Kan complexes is a standard model for the homotopy theory of ∞-groupoids. 
Similarly:

Definition 2.1. An ∞-group is a pointed connected space and an ∞-group map is a map of pointed connected 
spaces. We denote by Gph := S

≥1
∗ the relative category of ∞-groups.

Our terminology is meant to suggest that an ∞-group is a higher categorical version of the notion of a 
group. However, it is also common in algebraic topology to view a loop space as a “group up to (higher) 
homotopy”. For the sake of completeness, let us prove that the homotopy theories of pointed connected 
spaces and of loop spaces, as defined here, are equivalent.
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Definition 2.2.

1. A loop space is a triple (X, BX, μ) where X is a space, BX is a pointed connected space and μ : X �−→
ΩBX is a homotopy equivalence.

2. A loop space map from (X, BX, μ) to (Y, BY, ν) is a pair consisting of a pointed map φ : BX −→ BY

and a map φ : X −→ Y rendering the following square commutative

X

μ �

φ
Y

ν�

ΩBX
Ωφ

ΩBY.

(1)

3. A loop space map is called an equivalence if φ and φ are homotopy equivalences. We denote the relative 
category of loop spaces by Ω�.

Let B : Ω� −→ Gph be the relative functor given by B(X, BX, μ) = BX and let Ω : Gph −→ Ω� be 
the relative functor given by Ω(A) := (ΩA, A, idΩA). We have an adjunction of relative functors

Ω : Gph Ω� : B⊥

whose unit and counit transformations are homotopy equivalences in each component. Thus, Ω is a weak 
inverse to B and we obtain the following:

Corollary 2.3. The adjunction Ω � B induces an equivalence of the underlying ∞-categories (Gph)∞ �
(Ω�)∞.

Remark 2.4. By means of the Kan loop group, any ∞-group can be replaced by a simplicial group. This 
may be viewed as a rectification procedure since the homotopy theory of simplicial groups is equivalent to 
that of pointed connected spaces. However, the existence of a rectification is model dependent: if we were 
to work in a relative category (C, W), equivalent to S there would be no reason that the induced homotopy 
theory of group objects in C will be equivalent to Gph. For example if (Cat, WThom) is the relative category 
of categories and Thomason equivalences, then group objects in C = Cat are precisely crossed modules, and 
their associated homotopy theory models only pointed connected 2-types.

3. The theory of k-invariants revisited

Our proof of the Sylow theorems for ∞-groups will require a strengthening of the classical theory of 
k-invariants to which we devote this section. Informally speaking, we wish to show that the ∞-category of 
pointed connected (n + 1)-truncated spaces is equivalent to that of triples (X, A, κ) where X is a pointed 
connected n-truncated space, A a π1X-module and κ is a map

X
κ

K(A,n + 2)//π1(X)

Bπ1X.

Although this result is known in folklore, we could not find a proof of it in the literature. We chose to give 
the details here as a service to the community.
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Let us briefly describe how the above-mentioned equivalence will be established. First, we will prove that 
the two ∞-categories at hand admit Cartesian fibrations (see [8, 2.4.2.1]) to the ∞-category of (pointed, 
connected) n-truncated spaces. We will then construct a map of Cartesian fibrations between them and 
prove that the induced map on fibers is a map of coCartesian fibrations over the category GpMod of abelian 
groups with an action of an arbitrary group. Lastly, we will use the classical results of [3] to show that the 
latter map induces an equivalence on each fiber.

The verification that a map of ∞-categories is a (co)Cartesian fibration is usually an involved task. 
However, a result of Hinich [5, Proposition 2.1.4] gives simple conditions on a map of relative categories
which assure that the underlying map on ∞-categories is a (co)Cartesian fibration. In order to use this 
method we will need to “rectify” certain diagrams of ∞-categories to diagrams of relative categories. This 
is the reason for the various technical conditions that appear throughout this section.

We first set up the relative category version of the Grothendieck construction. Recall that if F : C −→ Cat
is a (pseudo-)functor, the Grothendieck construction

∫
C
F is the category where an object is a pair (A, X)

with A ∈ C and X ∈ F(A) and a morphism (A, X) −→ (B, Y ) consists of a pair (f, φ) where f : A −→ B

is a map in C and φ : f!X := F(f)(X) −→ Y is a map in F(B). The projection π :
∫
C
F −→ C is then a

coCartesian fibration classifying F.

Definition 3.1. Let (C, WC) be a relative category and F : C −→ RelCat a relative functor. The Grothendieck 
construction of F is the relative category 

(∫
C
F,WF

)
where a map (f, φ) : (A, X) −→ (B, Y ) is in WF if 

f ∈ WC (and thus φ is an equivalence of relative categories).

Let C be a relative category and F : C −→ RelCat a relative functor. Consider the underlying map of 
∞-categories F∞ : C∞ −→ Cat∞ and the associated coCartesian fibration of ∞-categories 

∫
C∞

F∞ −→ C∞. 
The following is a corollary of [5, Proposition 2.1.4], adjusted for our purposes:

Theorem 3.2. Let C and F : C −→ RelCat be as above. Then there is a canonical categorical equivalence (∫
C
F
)
∞

�−→
∫
C∞

F∞ over C∞.

Let S≥1,≤n
∗ be the relative category of pointed and connected n-truncated spaces (throughout, we assume 

n ≥ 1). For a space X ∈ S we denote by X[n] := coskn+1 X its (n + 1)-coskeleton, which is a model for 
the nth-Postnikov section of X. If f : X −→ Y is a map of spaces we denote by f [n] : X[n] −→ Y [n] the 
corresponding map on Postnikov sections. A space X is called n-coskeletal if X ∼= coskn X.

A space X ∈ S is called reduced if X0 = ∗. To every space X ∈ S
≥1
∗ we denote by Xred the reduced space 

obtained by the pullback

Xred {∗}

X cosk0 X0

where X0 is the constant simplicial set on the vertices of X. The functor X �→ Xred preserves fibrations which 
are surjective on π1 and in particular takes Kan complexes to Kan complexes. We let τnS≥1

red ⊆ S
≥1,≤n
∗ be the 

full subcategory spanned by reduced (n + 1)-coskeletal spaces with its induced relative category structure.

Observation 3.3. The inclusion τnS
≥1
red ⊆ S

≥1,≤n
∗ is an equivalence of relative categories.

Fix a space X ∈ τnS
≥1
red. We denote by G := π1(X) and by BG the simplicial set given by the nerve of G. 

Note that there is a canonical fibration X � BG. For a G-module A, we choose a (functorial) model for 
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K(A, n + 2)//G as a Kan fibration over BG (see e.g. [3]). Thus, both X and K(A, n + 2)//G are objects in 
the category 

(
S

/BG

)fib of fibrations over BG.

Definition 3.4. Let X ∈ τnS
≥1
red and let A be a G-module. The relative category KX

n (A) has as objects the 
diagrams

X Y
�

K(A,n + 2)//G

in 
(
S

/BG

)fib with Y ∈ τnS
≥1
red. A morphism in KX

n (A) is a diagram of the form

Y
�

X K(A,n + 2)//G

Z
�

We take all maps in KX
n (A) to be weak equivalences.

Since 
(
S

/BG

)fib is a category of fibrant objects, it admits a calculus of right fractions [9]. It follows that 
the relative category KX

n (A) models the corresponding mapping space:

Proposition 3.5 ([3]). There is an equivalence of ∞-groupoids

KX
n (A)∞ � Map

/BG
(X,K(A,n + 2)//G).

A map of G-modules A −→ B gives rise to a map

K(A,n + 2)//G −→ K(B,n + 2)//G

(over BG) and thus the construction of KX
n (A) extends to a functor

KX
n : G-Mod −→ RelCat

from the category of G-modules.

Definition 3.6. The relative category of nth-level k-invariants of X is the Grothendieck construction 
Kn(X) :=

∫
A∈G-Mod K

X
n (A).

For a space X ∈ τnS
≥1
red and a G-module A as above, we also define:

Definition 3.7. The category FX(A) has as objects the triples (X ′, η, α) where X ′ ∈ τn+1S
≥1
red, η : X ′ � X

a fibration, α : πn+1X
′ ∼= A is an isomorphism of G-modules and such that the fibration

X ′[n]
�� X[n] ∼= X

is a weak equivalence. A morphism is a commutative triangle of the form

X ′ X ′′

X

suitably compatible with α.
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Remark 3.8. Note that the map X ′[n] −→ X[n] ∼= X is automatically a fibration since coskn+1 preserves 
Kan fibrations between Kan complexes if the codomain is n-truncated.

Recall from [3] that for any X ′ ∈ τn+1S
≥1
red with G′ = π1(X ′) and A′ = πn+1X

′ we have a canonical 
homotopy Cartesian square (over BG)

X ′

∼
X ′[n]

kX′

BG′ K(A′, n + 2)//G′.

(2)

The square (2) the nth-level canonical square of X ′.
Fixing the space X ∈ τnS

≥1
red, Definition 3.7 extends to a functor

FX : G-Mod −→ RelCat

as follows. If f : A −→ B is a map of G-modules, and X ′ � X is an object of FX(A), we first extend the 
nth-level canonical square of X ′ to

X ′

∼
X ′[n] X ′[n]

BG′

�

K(A′, n + 2)//G′ α∗
K(A,n + 2)//G

BG′ K(B,n + 2)//G,

where we replaced the map BG′ −→ K(B, n + 2)//G by a fibration.
We form the pullback

Y ′
0 X ′[n]

BG′ K(B,n + 2)//G,

and define the space f!(X ′) = Y ′ to be Y ′
0 [n + 1]red with the evident fibration

Y ′ � X ′[n] � X

(note that Y ′
0 [n + 1] −→ X[n] is a fibration which is surjective on π1).

Clearly, Y ′ � X is an object in FX(B) and we obtain a relative functor

FX(A) −→ FX(B).

Definition 3.9. The relative category of (n + 1)-Postnikov extensions of X is the Grothendieck construction 
F(X) :=

∫
A
FX(A).

To define a relative functor KX
n (A) −→ FX(A), we first replacing the map BG −→ K(A, n + 2)//G by 

a fibration. Then, for an object
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X Y
�

K(A,n + 2)//G

we form the pullback

Y ′
0 BG

Y K(A,n + 2)//G,

with the evident map Y ′
0 � X. The image of the object in FX(A) is then the resulting map Y ′ := Y ′

0 [n +
1]red � X.

The definition above combined with Theorem 3.2 yields:

Proposition 3.10. The induced map of ∞-categories

Kn(X)∞ F(X)∞

G-Mod

is a map of coCartesian fibrations.

Note that the nth-level canonical pullback defines a relative functor FX(A) −→ KX
n (A) which is a weak 

inverse to KX
n (A) −→ FX(A). These functors are thus equivalences of relative categories and we obtain:

Corollary 3.11. The map Kn(X)∞ −→ F(X)∞ is an equivalence of ∞-categories.

We now wish to exhibit the map Kn(X)∞ −→ F(X)∞ as an induced map on fibers of Cartesian fibrations 
over 

(
S
≥1,≤n
∗

)
∞

. Let us start by defining the functor

Kn :
(
τnS

≥1
red

)op
−→ RelCat .

If X0 −→ X1 is a map in τnS
≥1
red, denote G0 = π1(X0), G1 = π1(X1) and define a relative functor 

Kn(X1) −→ Kn(X0) by sending an object

X1 Y1
�

K(A,n + 2)//G1

to the pullback

Y0
�

X0

Y1
�

X1.

Note that Y0 � X0 is indeed an object of Kn(X0) since we have a map of co-spans

(Y1 −→ X1 ←− X0) ⇒ (K(A,n + 2)//G1 −→ BG1 ←− BG0)
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Similarly, we define a functor F :
(
τnS

≥1
red

)op
−→ RelCat by sending a map X0 −→ X1 to the relative 

functor F(X1) −→ F(X0) which takes an object X ′
1 � X1 to the pullback

X ′
0 X ′

1

Y1 X1

.

The dual of Theorem 3.2 yields:

Proposition 3.12. The induced map of ∞-categories

(∫
X
Kn(X)

)
∞

(∫
X
F(X)

)
∞

(
τnS

≥1
red

)
∞

�
(
S
≥1,≤n
∗

)
∞

is a map of Cartesian fibrations.

Corollary 3.11 yields:

Corollary 3.13. The map 
(∫

X
Kn(X)

)
∞ −→

(∫
X
F(X)

)
∞ is an equivalence of ∞ categories.

We will denote by

K[n] :=
∫

X

Kn(X)

the relative category defined above. Thus, an object in K[n] is an (n + 1)-coskeletal reduced space X, 
together with a span

X Y
�

K(A,n + 2)//G

where G = π1X and A is a G-module. We refer to K[n] as the category of nth-level k-invariants. We are 
now ready to prove:

Theorem 3.14. There is an equivalence of ∞-categories

K[n]∞ �
(
S≥1,≤n+1
∗

)
∞

Proof. The projection
∫

X

F(X) −→ τn+1S
≥1
red

admits a weak inverse

τn+1S
≥1
red −→

∫
F(X)
X
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which is given by sending an object Y to the map Y [n + 1]red � Y [n]red. The result now follows from 
Corollary 3.13 and Observation 3.3. �
4. Sylow theorems for ∞-groups

Recall that an ∞-group is a pointed connected space that is, from our viewpoint, a homotopical analogue 
of a group. In this section we will study homotopical analogues of finite groups and parallel the Sylow 
theorems.

4.1. Basic notions

Definition 4.1.

1. An ∞-group G will be called finite if all homotopy groups are finite. We denote the relative category of 
such spaces by Gpfin

h .
2. We say that G ∈ Gpfin

h is n-truncated if πi(G) = 0 for i > n.

Definition 4.2. Let p be a prime. We say that G ∈ Gpfin
h is a p-∞-group if all its homotopy groups are 

p-groups.

Henceforth, we fix a prime p. Let us first recall the (ordinary) group theoretic case. Recall that a p-Sylow 
subgroup of G is a (possibly trivial) maximal p-subgroup of G. The Sylow theorems assert:

Theorem 4.3 (Sylow). Let G be a finite group.

1. For every p-group H and a map H −→ G, there is a p-Sylow subgroup Pp ≤ G and a factorisation

H G

Pp .

2. The number of p-Sylow subgroups of G is congruent to 1 (mod p).
3. All p-Sylow subgroups are conjugate to each other.

Theorem 4.10 below is our analogue of Sylow theorems. To parallel Theorem 4.3 we first define a notion 
of a p-Sylow “subgroup” for ∞-groups:

Definition 4.4. A map f : P −→ G of finite ∞-groups, is called p-Sylow map if for all n ≥ 1, the map

πn(f) : πn(P) −→ πn(G)

is an inclusion of a p-Sylow subgroup.

Let auth∗ G be the (group-like) simplicial monoid of pointed self-equivalences of G. If G is thought of as 
a pointed ∞-groupoid (with essentially one object), B auth∗ G is a model for the automorphism ∞-group
of G at the base object. We view the canonical map G −→ B auth∗ G as the conjugation map. If G = BG

is the classifying space of a discrete group then the induced map π1BG −→ π1B auth∗(BG) is precisely the 
conjugation map conj : G −→ autG.
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Definition 4.5. A pair f : H −→ G, f ′ : H′ −→ G of ∞-group maps is conjugate if there is an equivalence 
φ : H �−→ H′ and an equivalence ψ : G �−→ G such that

H
φ

�

f

H′

f ′

G
ψ

�
G

commutes and [ψ] ∈ π0 auth∗ G is in the image of

π1G −→ π1
(
B auth∗ G

) ∼= π0 auth∗ G.

Remark 4.6. Note that if G = BG is the classifying space of a discrete group and f : BH −→ BG and 
f ′ : BH ′ −→ BG are the induced maps of a pair H, H ′ of subgroups of G, then f is conjugate to f ′ if and 
only if H is conjugate to H ′.

4.2. Factorisations of a p-∞-group map by a p-Sylow map

Henceforth we fix an ∞-group G, a p-∞-group H and a map f : H −→ G. We denote by Fact(f) the 
∞-category of factorisations of f , given by the pullback of ∞-categories

Fact(f) {f}

Fun
(
Δ2,

(
Gpfin

h

)
∞

)
Fun

(
Δ{0,2},

(
Gpfin

h

)
∞

)

When H � ∗ is the trivial ∞-group and f : ∗ −→ G is the obvious map, Fact(f) is identified with the 

∞-category 
(
Gpfin

h /G

)
∞

of ∞-groups over G. We denote by Pf the full sub-∞-groupoid of Fact(f) spanned 

by factorisations of the form

H −→ P −→ G

such that P −→ G is a p-Sylow map. Note that the Postnikov functors Pn give us an infinite tower of 
∞-categories,

Pf −→ · · · −→ Pf [n+1] −→ Pf [n] −→ · · · −→ Pf [1]

and that

Pf � lim Pf [n]

since (S≥1
∗ )∞ � limPn(S≥1

∗ )∞.

Proposition 4.7. For n ≥ 1 the map

Pf [n+1] −→ Pf [n]

is an equivalence of ∞-groupoids.
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We will prove that the map in Proposition 4.7 is an equivalence by proving that all its fibers are con-
tractible. Then the proposition is equivalent to the following statement:

Proposition 4.8. Let H[n] −→ P0 −→ G[n] ∈ Pf [n]. We denote by S the ∞-groupoid whose objects are the 

possible completions in 
(
Gpfin

h

)
∞

of the diagram

H
f

G

H[n] P0 G[n]

to a diagram

H P G

H[n] P0 G[n]

where P −→ G is a p-Sylow map. Then S is contractible.

Proof. We first claim that S can be identified as the ∞-groupoid of lifts

Δ1 f (
S
≥1,≤n+1
∗

)
∞

v

Δ2

�

(
S
≥1,≤n
∗

)
∞

×Gp GpMod

where v is induced from the (relative) functor that associates to G ∈ S
1≥,≤n+1
∗ the pair (G[n], πnG) over 

π1G. The lower-horizontal map is given by the pair of composable maps

(H[n], AH) −→ (P0, Ap) −→ (G[n], AG)

(here AH := πn+1H, AG := πn+1G and Ap is the (unique) p-Sylow subgroup of AG).
Let Gp be the p-Sylow subgroup of G = π1(G) given by the image of π1(P0) −→ π1(G). Using Theo-

rem 3.14 we can rewrite this as the ∞-groupoid of lifts

Δ1 K[n]∞

v

Δ2

�

(
S
≥1,≤n
∗

)
∞

×Gp GpMod

where v is induced from the relative functor that associates to a triple
(
X,A, η : X

�� Y −→ K(A,n + 2)//π1(X)
)

the pair (X, A).
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By construction, the fiber of v over (X, A) is the mapping space

Map/Bπ1X (X,K(A,n + 2)//π1X)

and it follows that we can further identify S with the space of maps

P0 −→ K(Ap, n + 2)//Gp

which fit into the following diagram in 
(
Gpfin

h

)
∞

:

H[n] K(AH, n + 2)//π1(H)

Bπ1(H)

P0 K(Ap, n + 2)//Gp

BGp

G[n] K(AG, n + 2)//G

BG

(all maps are over BG). Note that we have a homotopy Cartesian square:

K(Ap, n + 2)//Gp

∼
BGp

K(AG, n + 2)//G BG

Thus S is just the space of dashed lifts in the ∞-category of spaces over BGp:

H[n] K(Ap, n + 2)//Gp

P0

�

K(AG, n + 2)//Gp

As a Gp-module, AG factors naturally as a sum

AG = Ap ⊕A(p)

where A(p) is the prime-to-p part. Now, in the ∞-category of spaces over BGp we have

K(AG, n + 2)//Gp � K(Ap, n + 2)//Gp ×K(A(p), n + 2)//Gp

so that S can be identified as the space of dashed lifts in 
(
S/BGp

)
:
∞
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H[n] BGp

P0

�

K(A(p), n + 2)//Gp

This space of lifts is in turn just the homotopy fiber of the map

Map/BGp
(P0,K(A(p), n + 2)//Gp) ×Map/BGp

(H[n],K(A(p),n+2)//Gp) Map/BGp
(H[n], BGp)

(�)

Map/BGp
(P0, BGp)

We will show that all spaces above are contractible. Firstly, the spaces Map/BGp
(H[n], BGp) and 

Map/BGp
(P0, BGp) are contractible by definition. Secondly, we have isomorphisms

πi(Map/BGp
(H[n],K(A(p), n + 2)//Gp)) = H̃n+2−i(H[n], A(p))

πi(Map/BGp
(P0,K(A(p), n + 2)//Gp)) = H̃n+2−i(P0, A

(p)).

Since P0 and H[n] are p-spaces, and A(p) is prime-to-p, these cohomology groups vanish by a Serre class ar-
gument. It follows that the map (�) is a map between contractible spaces and in particular has a contractible 
homotopy fiber S∞. �
Notation 4.9. For a finite ∞-group G and f : ∗ −→ G, we let Pp := Pf be the (homotopy discrete) 
∞-groupoid whose objects are p-Sylow maps P −→ G.

We are now at state to prove our analogue of the Sylow theorems.

Theorem 4.10. Let G be a finite ∞-group and let p be a prime.

1. The ∞-groupoid Pp of p-Sylow maps P −→ G is equivalent to the set of p-Sylow subgroups of π1(G). In 
particular, Pp �= ∅ and |π0Pp| ≡ 1 (mod p).

2. For every finite p-∞-group H, any map f : H −→ G factors as

H G

P

where P −→ G is a p-Sylow map.
3. Every two p-Sylow maps are conjugate.

Remark 4.11. For a finite group G, the classical Sylow theorems appearing in 4.3 can be obtained from 
Theorem 4.10 above with G := BG (for part (3) see Remark 4.6). Note also that a p-Sylow subgroup P of G
will generally have an interesting automorphism group. However, when P is considered as an object in the 
category Gpfin

/G of finite groups over G (via the inclusion P ↪→ G), it admits no non-trivial automorphism. 
This is the reason we chose to work in the ∞-category 

(
Gpfin

h /G

)
.

∞
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Proof. From Proposition 4.8 we conclude that

Pf � Pf [1].

Now Pf [1] is the ∞-groupoid of factorisations

H[1] −→ P −→ G[1].

Since the objects of such factorisations are all 1-types, Pf [1] is in fact discrete and is equivalent to the set of 
p-Sylow subgroups of π1(G) that contain the image of

π1(f) : π1(H) −→ π1(G).

For H = ∗ we get that the ∞-groupoid of p-Sylow maps P −→ G is discrete and is equivalent to the
set of p-Sylow subgroups of π1(G). This proves (1) and (2). To prove (3), fix a p-Sylow subgroup Pp ↪→ G. 
Since all p-Sylow subgroups in π1(G) are conjugate, every p-Sylow map Pp −→ G is conjugate to a p-Sylow 
map Pp −→ G such that the image of π1Pp −→ π1G is Pp. But now, all such p-Sylow maps are equivalent 
as objects of Pf since

Pf � Pf [1]. �
We would like to point out that the analogy between Theorem 4.10 and the classical Sylow theorems is 

not complete. Recall that an ordinary finite group G admits a unique p-Sylow subgroup if and only if the 
p-Sylow subgroup is normal. In the context of ∞-groups, there is a notion of normality which was introduced 
in [4] and developed in [10] for loop spaces. Let us spell-out the corresponding notion for ∞-groups.

Definition 4.12. A map of ∞-groups f : N −→ G is called normal if there is an ∞-group Q and a map 
G −→ Q such that N −→ G −→ Q is a homotopy fiber sequence. The data of the map π : G −→ Q and the 
(pointed) null-homotopy π ◦ f � ∗ is called a normal structure. We will also denote Q := G//N when the 
normal structure is clear from the context.

Example 4.13. Although for an ordinary group, having a unique p-Sylow subgroup is equivalent to the 
p-Sylow subgroup being normal, the analogous “higher statement” is not true. Namely there exists a finite 
∞-group G with a contractible ∞-groupoid of p-Sylow maps for which the essentially unique p-Sylow map 
Pp → G is not homotopy normal. For example, let A be the unique Z/2-module with 3-elements and a 
non-trivial action. Let

X = K(A, 2)//(Z/2),

we have π1(X) = Z/2 which is abelian. Thus there exists a unique 2-Sylow map

B(Z/2) → K(A, 2)//(Z/2).

However this map is not homotopy normal. Indeed if it was we could have completed the diagram by adding

B(Z/2) → K(A, 2)//(Z/2) → K(Z/3, 2).

This cannot happen by the functoriality of homotopy groups as π1-modules.
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4.3. A remark about p-completion

When an ∞-group G is nilpotent, the composite Pp −→ G −→ G∧
p of a p-Sylow map and the p-completion 

is an equivalence by Corollary 5.5. Thus, in this case, constructing a homotopy section to G −→ G∧
p is the 

same as constructing a p-Sylow map. As was pointed out to us by Jesper Grodal, using this observation 
one can take an alternative approach for proving Theorem 4.10. Although this can be considered as a more 
direct construction of a p-Sylow map, we find the current proof of Theorem 4.10 more suitable to the 
higher-categorical point of view taken in this paper.

5. Applications

We call a space finite if all its homotopy groups are finite. In this section we will illustrate how Theo-
rem 4.10 can be applied. Our first application will be to establish an analogue of the Burnside’s fixed point 
lemma. Our second application will be a characterisation of finite nilpotent spaces (viewed as ∞-groups) in 
terms of Sylow maps into them.

5.1. Burnside’s fixed point lemma for p-∞-groups

Let us first recall a well-known corollary of Burnside’s lemma:

Proposition 5.1. Let G be a p-group and X a finite G-set. If the order of X is prime-to-p then the fixed 
point set XG is non-empty.

The parallel statement is now:

Proposition 5.2. Let G be a finite p-∞-group. Let X be a finite space with an action of the Kan loop group 
K(G) of G. If all homotopy groups of X are of prime-to-p order, then the space of homotopy fixed points 
XhK(G) is non-empty.

Proof. If X is non-connected, Proposition 5.1 implies that there is a connected component of X which is fixed 
by π0(K(G)) and thus by K(G). Hence, we may assume without loss of generality that X is connected. We 
choose a point in X so that we have a homotopy fiber sequence of pointed spaces: X −→ X//K(G) γ−→ G. 
Recall that a homotopy fixed point can be equivalently described as a homotopy section s : G −→ X//K(G)
of γ. The long exact sequence takes the form

... −→ πn(X) −→ πn(X//K(G)) cn=πn(γ)−→ πn(G) −→ πn−1(X) −→ ...

which implies that ker(cn) and coker(cn) are of prime-to-p order. Hence, cn maps every p-Sylow subgroup 
of πn(X//K(G)) isomorphically onto a p-Sylow subgroup of πn(G). If we now choose a p-Sylow map Pp −→
X//K(G) we see that the composite map Pp −→ X//K(G) −→ G is a weak equivalence by the assumption 
on G. We thus have a homotopy section in the form G � Pp −→ X//K(G). �
5.2. Finite nilpotent ∞-groups

We finish this section with a result on nilpotency. Recall [1, II.4] that a pointed connected space X is
nilpotent if π1X is nilpotent and acts nilpotently on πn(X) for all n ≥ 2.

Definition 5.3. An ∞-group G is called nilpotent if its underlying space is nilpotent.
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Our goal in this subsection is to prove a parallel to the following classical theorem (see e.g. [11, Theo-
rem 5.39])

Theorem 5.4. Let G be a finite group. The following conditions are equivalent:

1. G is nilpotent.
2. G is isomorphic to the product of its Sylow subgroups.
3. All Sylow subgroups of G are normal.

Corollary 5.5. Let G be a finite nilpotent ∞-group and consider its p-completion G −→ G∧
p . If Pp −→ G is 

a (essentially unique) p-Sylow map, then the composite Pp −→ G −→ G∧
p is an equivalence.

Let G be a finite nilpotent ∞-group. Since G = π1(G) is a finite nilpotent group there is a unique p-Sylow 
subgroup Pp ≤ G for every prime p with p|G. It follows that for every prime p, the relative category Pp of 
p-Sylow maps P −→ G and equivalences is weakly contractible. In other words, for each prime p, there is 
an essentially unique p-Sylow map Pp −→ G.

Definition 5.6. Let G be a finite ∞-group. A collection of Sylow maps {P −→ G} is called ample if no two 
maps are equivalent (over G) and the collection {π1(P) ↪→ π1(G)} equals the set of p-Sylow subgroups of 
G, for all primes p|G.

Theorem 5.7. Let G be a finite ∞-group with G = π1(G) and let {Pp −→ G}p|G be an ample collection of 
Sylow maps into G. The following conditions are equivalent:

1. G is nilpotent.
2. G �

∏
p|G Pp.

3. For every prime p|G, the map Pp −→ G is normal.

Before going to the proof of Theorem 5.7, let us recall an algebraic fact:

Lemma 5.8. Let H be a p-group and M a finite H-module of a p-power order. Then M is nilpotent as a 
H-module.

Proof of Theorem 5.7.

1. (2) ⇒ (3): Clear.
2. (3) ⇒ (1): In that case, π1(Pp) is normal in π1(G) by the LES for Pp −→ G −→ G//Pp so that all the 

Sylow subgroups of G = π1(G) are normal and G = π1(G) ∼=
∏
p|G

π1(Pp) is thus nilpotent. Note that 

πn(G) ∼=
∏
p|G

πn(Pp).

The LES for Pp −→ G −→ G//Pp also implies that π1(Pp) must act trivially on the prime-to-p part of 
each πn(G). Using Lemma 5.8 with H = π1(Pp) we deduce that G is nilpotent.

3. (1) ⇒ (2): Suppose first that G is n-truncated. We argue by induction on n. If n = 1, the decomposition 
G = π1(G) ∼=

∏
p|G

π1(Pp) implies a decomposition G �
∏

p|G Pp. Suppose G is of homotopical dimension 

n + 1. We denote A := πn+1(G), Ap := πn+1(Pp) and Gp := π1(Pp). The canonical homotopy Cartesian 
square of 2 takes the form
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G

∼
Bπ1(G)

G[n] k
K(A,n + 2)//π1(G).

(3)

Since G is nilpotent, the terms in the right-upper and right-lower part of the diagram decompose 
into a product and the induction assumption implies that the left-lower term decomposes as well. The 
homotopy Cartesian square of 3 thus takes the form

G

∼

∏
p|G BGp

∏
p|G Pn(Pp)

k ∏
p|G K(Ap, n + 2)//Gp.

The right-vertical map clearly decomposes to the product of the corresponding maps. The lower-
horizontal map decomposes as well, by a Serre class argument. It follows that G �

∏
p|G Pp.

If G is an arbitrary finite ∞-group, then it is a limit of its n-truncations in the ∞-category 
(
Gpfin

h

)
∞

and the statement follows. �
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