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Abstract

These notes outline the construction of the Steenrod reduced powers
for mod-l motivic cohomology defined over a field of characteristic zero,
following the original construction proposed by Voevodsky.
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1 Introduction

The purpose of these notes is to give a construction of the Steenrod reduced
power operations for mod-l motivic cohomology over a field of characteristic
zero, following the method outlined by Voevodsky [V2]; these are natural trans-
formations on motivic cohomology, which are analogous to the classical Steenrod
operations on singular cohomology theory in algebraic topology. A related ap-
proach to the construction of Steenrod operations has been applied in Chow
theory [Br].

The motivic cohomology theory used here is the Zariski hypercohomology of
certain complexes of sheaves, the motivic complexes of Suslin and Voevodsky,
which are defined in terms of sheaves with transfers. The motivic cohomology
of a smooth scheme X ∈ Sm/k over a field k can also be defined via Voevod-
sky’s triangulated category DM eff

− (k) of mixed motives. This category is a
localization of the derived category of bounded below homological complexes of
Nisnevich sheaves with transfers. The construction of Steenrod operations for
motivic cohomology requires a non-additive homotopy category; this is supplied
by the Morel-Voevodsky homotopy category H(k), which is a localization of the
homotopy category of simplicial Nisnevich sheaves of sets on the category Sm/k
of smooth k-schemes.

The initial step is to show that motivic cohomology is representable on the
Morel-Voevodsky homotopy category. This depends on the following result of
Voevodsky’s:

Theorem 1 Suppose that k is a perfect field. There is an adjuction

M [−] : H(k) → DM eff
− (k) : K.

The proof of this result is sketched in the text as Theorem 4.2.3 - the details
are available in [P].

The next step is to show that, when the field k has characteristic zero1,
motivic cohomology is a bigraded cohomology theory (this is an appropriate
generalization of what is usually meant by a cohomology theory in algebraic
topology). The proof depends on the cancellation theorem of Friedlander, Law-
son and Voevodsky [FV]; this can either be applied directly or be deduced using
the above theorem from the corresponding result in DM eff

− (k), established in
[V4].

When k is a sub-field of the complex numbers, there is a realization functor
H(k) → H, where H denotes the standard homotopy category of topological
spaces. The relation between motivic cohomology and singular cohomology in
algebraic topology is established using the Suslin-Voevodsky version of the Dold-
Thom theorem (see Theorem 6.1.21). In particular, this introduces symmetric
products of schemes into the consideration of motivic cohomology; this is of im-
portance in considering the classification of all possible cohomology operations

1This restriction can be removed using Voevodsky’s identification of motivic cohomology
with Bloch’s higher Chow groups
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which requires the calculation of the motivic cohomology of the representing
objects.

1.1 Steenrod operations in algebraic topology

Consider cohomology operations in the setting of algebraic topology. Let Ẽ∗,
F̃ ∗ be reduced cohomology theories. (For the purposes of this introduction, a
reduced cohomology theory can be understood to be a contravariant functor
from the homotopy category of topological spaces to graded abelian groups
which is equipped with a suspension isomorphism with respect to the suspension
functor Σ on the homotopy category). A cohomology operation of type m,n
is a natural transformation of sets φ : Ẽm → F̃n. The set of isomorphism
classes of natural transformations of this form has an abelian group structure
and is denoted by (E,m, F, n). A stable cohomology operation of degree d is
a sequence of natural transformations {φn ∈ (E,n, F, n + d)} which commute
with the suspension isomorphisms: σE : Ẽ∗ → Ẽ∗+1 ◦ Σ, σF : F̃ ∗ → F̃ ∗+1 ◦ Σ,
where Σ is the reduced suspension functor. The stable cohomology operations
are natural transformations of abelian groups, since the reduced suspension of
a space is a co-group object in the homotopy category.

Taking E,F to be H̃∗(−; Z/2), reduced singular cohomology with Z/2 co-
efficients, one obtains the graded abelian group A of stable cohomology opera-
tions, which has the structure of a non-commutative graded Hopf algebra, with
product given by the composition of natural transformations. The algebra A
is the (mod-2) Steenrod algebra and the homogeneous component of degree i,
consisting of operations of degree i, is written Ai .

The Steenrod squares are cohomology operations Sqi ∈ Ai, for i ≥ 0; these
can be given an explicit construction, using the fact that singular cohomology is
represented by the Eilenberg-MacLane spaces. The operations Sqi generate the
algebra A; the proof of this fact requires the calculation of A. The classic refer-
ence for the Steenrod operations is [SE]; for more recent algebraic considerations
concerning the Steenrod algebra and applications, see [Sc].

Theorem 1.1.1 There are unique stable cohomology operations Sqi ∈ Ai, i ≥
0, which satisfy the following axioms:

1. Sq0 = 1.

2. Cartan formula: Sqk(xy) =
∑k

i=0 Sqi(x)Sqk−i(y).

3. Instability: Let x ∈ H̃n(X, Z/2) be a cohomology class, then:

Sqix =
{

x2 i=n
0 i>n.

The Cartan formula corresponds to the cocommutative coproduct on the
Hopf algebra A: ∆Sqk =

∑k
i=0 Sqi ⊗ Sqk−i. The dual of the Steenrod algebra

A∗ := HomZ/2(A, Z/2) has the structure of a commutative Hopf algebra. Milnor
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established that the algebra A∗ is a polynomial algebra on classes ξi of degrees
2i − 1.

A consequence of the uniqueness and the explicit construction of the Steen-
rod operations is:

Proposition 1.1.2

1. Sq1 = β, the mod-2 Bockstein operator.

2. The Steenrod squares satisfy the Adem relations. If 0 < a < 2b, then

SqaSqb =
[a/2]∑
j=0

(
b− 1− j

a− 2j

)
Sqa+b−jSqj .

The Adem relations allow the calculation of a basis of the Steenrod alge-
bra in terms of monomials of iterated Steenrod operations, using the following
terminology. A sequence of non-negative integers I = (i1, . . . , ik) is said to be
admissible if either I = ∅ or k ≥ 1, ik ≥ 1 and is−1 ≥ 2is, for k ≥ s ≥ 2. If I is
a sequence of non-negative integers, then SqI is written for Sqi1 . . .Sqik , with
the convention that Sq∅ = 1.

Theorem 1.1.3 The admissible monomials form a vector space basis for A.

1.2 The motivic Steenrod algebra

The motivic Steenrod algebra A∗,∗(k, Z/l) is defined as the bigraded algebra of
bistable cohomology operations for mod-l motivic cohomology; here bistability
means that the operations should commute with the two suspension isomor-
phisms for motivic cohomology which correspond to two different models for
a circle in the Morel-Voevodsky homotopy category H(k). For example, the
usual Bockstein operator, β, for motivic cohomology is a bistable cohomology
operation which defines an element in A1,0(k, Z/l).

The principal theorem [V2] of Voevodsky’s (stated for the case l = 2) is the
following:

Theorem 2 Let k be a field of characteristic zero. There exists a unique se-
quence of bistable cohomology operations Sq2i ∈ A2i,i(k, Z/2), i ≥ 0, such that

1. Sq0 = Id.

2. Cartan formula: Let X, Y be simplicial smooth schemes and let u ∈
H∗,∗(X, Z/2), v ∈ H∗,∗(Y, Z/2) be motivic cohomology classes. For all
i ≥ 0,

Sq2i(u× v) =
∑

a+b=i

Sq2a(u)× Sq2b(v) + τ(
∑

a+b=i−2

βSq2a(u)× βSq2b(v))

in H∗,∗(X × Y, Z/2).
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3. Instability: Let X be a simplicial smooth scheme and u ∈ Hn,i(X, Z/2),

Sq2i(u) =
{

0 n < 2i
u2 n = 2i.

Remark 1.2.1

1. The construction produces Steenrod squaring operations Sqj for all non-
negative integers; there are relations Sq2i+1 = βSq2i, so that it is sufficient
to establish uniqueness for the even operations Sq2j as above. Theorem 2
is thus the direct analogue of Theorem 1.1.1.

2. The ‘coefficient ring’ H∗,∗(Spec(k); Z/2) for motivic cohomology is not
in general central in the motivic Steenrod algebra, since the Bockstein
operator can act non-trivially; this contrasts with the situation in alge-
braic topology and implies that the motivic Steenrod algebra has a Hopf
algebroid structure rather than a Hopf algebra structure.

The second important result [V2] of Voevodsky’s concerns the calculation of
the mod-2 motivic Steenrod algebra, and is the analogue of Theorem 1.1.3.

Theorem 3 The motivic Steenrod algebra A∗,∗(k, Z/2) is a free left H∗,∗(Spec(k), Z/2)
module on the admissible monomials SqI .

Remark 1.2.2 The proof of this theorem is based upon a calculation of the
motivic cohomology of the spaces which represent motivic cohomology. This
requires the consideration of the motivic cohomology of non-smooth schemes,
namely the symmetric products of certain sub-schemes of projective spaces; for
this, it is necessary to introduce the cdh topology.

An algebraic argument provides the determination of the ‘dual’ of the motivic
Steenrod algebra (Theorem 9.5.10 in the text) which corresponds to Milnor’s
calculation of the dual of the topological Steenrod algebra.

1.3 Organization of the paper

These notes are divided into three Parts, with the intention of making the
material more accessible to the reader. The first part is devoted to the technical
framework which is necessary to give the definition of motivic cohomology. The
second part develops the basic theory of motivic cohomology which is required
and states the main results. The final part concerns the explicit construction of
the Steenrod operations.

Remark 1.3.1 These notes were mostly written in 2000, based on Voevodsky’s
preliminary notes [V2] on the construction of the motivic Steenrod operations.
The notes have not been revised to take into account the modified construction
[V7] which has since appeared. In particular, the correspondence with Bloch’s
higher Chow groups by Voevodsky allows the removal of certain of the hypotheses
that the base field should have characteristic zero.
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The author’s original intention was to include the calculation of the motivic
Steenrod algebra in these notes (indeed, this is the principle reason for the delay
in their appearance). However, since this introduces issues involving motivic
cohomology of non-smooth schemes and also the relation with qfh sheaves, which
lie somewhat outside the theme of these notes, the author has preferred to write
this up separately.

Acknowledgement: The author the author first heard indications of Voevod-
sky’s construction of the motivic Steenrod operations in talks by Fabien
Morel and has benefitted from discussions with him. The author has also
benefitted from discussions with Jörg Wildeshaus, with whom he orga-
nized a working group on A1-homotopy theory at Villetaneuse, Paris 13,
during the period 1999-2001.
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Part I

The homotopy theory of schemes
and motivic cohomology

2 The homotopy category

The purpose of this section is to review the construction of a homotopy theory
for the category of smooth schemes over a field k, in which the affine line A1

becomes ‘contractible’ and hence plays the rôle of the interval [0, 1] in classical
algebraic topology. Homotopy theories correspond to inverting a class of ‘weak
equivalences’ in a suitable category C; the formal framework which establishes
the existence of the associated homotopy category is provided by Quillen’s the-
ory of model categories [Ho]. This necessitates working with a category which
is both complete and cocomplete and hence requires the passage to presheaves.
The approach followed here is that of Morel and Voevodsky [MV], who base
their construction on the Joyal and Jardine model structure on the category of
simplicial sheaves. This involves the choice of a Grothendieck topology on the
category Sm/k of smooth schemes. Morel and Voevodsky show that taking the
Nisnevich topology yields a homotopy category which has good properties and
which is suitable for the study of the motivic cohomology of smooth schemes.

The reader should, however, be aware that there are variants of these con-
structions which give rise to an equivalent homotopy category (see [V3, W, M2],
for example). One variant is to use simplicial presheaves, which have certain
technical advantages when considering the change of Grothendieck topology.

It should be stressed that the main object of interest is the homotopy cate-
gory which is obtained; the model structure which is used to obtain it plays a
secondary rôle.

2.1 Simplicial sheaves and the Nisnevich topology

The following notation will be used throughout this paper:

Notation 2.1.1 Let k be a field.

1. Let Sch/k denote the category of separated schemes of finite type over
the field k.

2. Let Sm/k denote the full subcategory of Sch/k of separated smooth
schemes of finite type over the field k.

Recall the definition of the Nisnevich topology on the category of smooth
schemes; this lies strictly between the Zariski topology and the étale topology.

Definition 2.1.2 [MV, 3.1.1] The Nisnevich topology on Sm/k is the Grothendieck
topology which is generated by coverings of the form {Ui → X}i, a finite set
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of étale morphisms such that, for any point x ∈ X, there exists a point u ∈ Ui

over x, for some i, such that the induced morphism on residue fields is an iso-
morphism.

The Nisnevich topology is an example of a completely decomposed topology
[V5]; in particular it is generated by coverings of the form {U i

↪→ X, Y
p→ X},

where i is an open immersion and p is an étale morphism which fits into an
‘elementary distinguished square’

p−1(U) //

��

Y

p

��
U

i
// X

such that p induces an isomorphism (Y − p−1U)red → (X − U)red (see [MV]).

Notation 2.1.3

1. Let ShvN is(Sm/k) denote the category of sheaves of sets for the Nisnevich
topology on Sm/k.

2. Let ∆opShvN is(Sm/k) denote the category of simplicial sheaves for the
Nisnevich topology upon Sm/k, namely the category of simplicial objects
in ShvN is(Sm/k).

Suppose that x ∈ X is a point (not necessarily closed) of the smooth scheme
X and let Oh

X,x denote the Henselization of the local ring OX,x of X at x [Mi,
I§4]; if F is a Nisnevich sheaf on Sm/k then let F (Spec(Oh

X,x)) denote the
filtered colimit of the sets F (U) over the category of Nisnevich neighbourhoods
of x (referred to as étale neighbourhoods in [Mi, I§4]).

Lemma 2.1.4 The functors F 7→ F (Spec(Oh
X,x)) (for X belonging to a small

skeleton of Sm/k) form a conservative family of points for the category of
sheaves with respect to the Nisnevich topology on Sm/k.

The category of simplicial sheaves ∆opShvN is(Sm/k) is the underlying cat-
egory of the Morel-Voevodsky A1-local homotopy theory; this can be regarded
as the analogue of the category of simplicial topological spaces in algebraic
topology.

The following lemma recalls the rôle of the constant simplicial object functor:

Lemma 2.1.5 Let ∆opC be the category of simplicial objects in the category
C. The constant simplicial structure functor C → ∆opC, induced by the functor
∆ → ∗ to the discrete category with one object, is left adjoint to the functor
∆opC → C, X∗ 7→ X0.
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The Nisnevich topology is sub-canonical, which means that the presheaf U 7→
HomSm/k(Y, X) represented by a smooth scheme X is a sheaf. Thus, the Yoneda
functor defines an embedding Sm/k ↪→ ShvN is(Sm/k), which extends to an
embedding Sm/k ↪→ ∆opShvN is(Sm/k) via the constant simplicial structure
functor.

Smooth schemes are identified with their image in the category of simplicial
sheaves. This gives the following standard objects in ∆opShvN is(Sm/k):

1. Spec(k), which plays the rôle of the basepoint in the theory; the associated
sheaf is the constant sheaf U 7→ ∗.

2. Affine space An, n ≥ 0, obtained from the affine scheme Spec(k[x1, . . . , xn]).

3. Projective space Pn, n ≥ 0, obtained from Proj(k[x0, x1, . . . , xn]).

4. The multiplicative group Gm
∼= A1 − 0, obtained from the affine group

scheme Spec(k[x, x−1]).

Simplicial sets also yield objects of the category of simplicial sheaves, by the
following result:

Lemma 2.1.6 The category ∆opShvN is(Sm/k) has the structure of a simplicial
category.

In particular, the constant sheaf functor Set → ShvN is(Sm/k) which sends
a set K to the sheaf associated to the presheaf U 7→ K, induces a functor

∆opSet → ∆opShvN is(Sm/k),

where ∆opSet is the category of simplicial sets.

2.2 The A1-model structure

Model categories were developed by Quillen to provide a formal framework
which guarantees the existence of the localization of a category by a class of
weak equivalences. A model category is a category provided with a model
structure of three classes of morphisms: cofibrations, weak equivalences and
fibrations. These should satisfy axioms which allow a formal theory of ‘homo-
topy’ to be developed [Ho]; the class of fibrations is determined by the other
two classes. The category of simplicial sets has the structure of a model cate-
gory and the associated homotopy category is the usual homotopy category of
algebraic topology. The category of simplicial sets plays a distinguished rôle in
the theory of model categories and there is an enriched notion of a simplicial
model category, for which the underlying category is a simplicial category and
the simplicial structure and model structure satisfy compatibility conditions.

The category ∆opShvN is(Sm/k) has a simplicial model category structure,
a case of a general result for simplicial sheaves over an essentially small site due
to Joyal and Jardine. The weak equivalences are defined with respect to the
points of the Grothendieck topology.
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Definition 2.2.1 A morphism f : X → Y is a weak equivalence for the sim-
plicial model category structure if, for any smooth scheme U ∈ Sm/k and any
point u ∈ U , the corresponding morphism of simplicial sets:

X (Spec(Oh
U,u)) → Y(Spec(Oh

U,u))

is a weak equivalence, where (−)h denotes Henselization, and the values of the
simplicial sheaves on Spec(Oh

U,u) are interpreted as the colimit over the category
of Nisnevich neighbourhoods of u.

Remark 2.2.2 The cofibrations in the Joyal and Jardine model structure are
taken to be the monomorphisms in the category of simplicial sheaves. This
implies that all objects in ∆opShvN is(Sm/k) are cofibrant with respect to this
structure.

Notation 2.2.3 The homotopy category corresponding to the simplicial model
category structure of Joyal and Jardine is written as Hs(k), where the s stands
for ‘simplicial’.

This simplicial homotopy category Hs(k) can be localized via the technique
of Bousfield localization for model categories, so as to make the map A1 →
Spec(k) a weak equivalence.

Definition 2.2.4

1. A simplicial sheaf X ∈ ∆opShvN is(Sm/k) is A1-local if the projection
Y×A1 → Y induces a bijection HomHs(k)(Y,X ) → HomHs(k)(Y×A1,X ),
for any Y ∈ ∆opShvN is(Sm/k).

2. A morphism Y → Z in ∆opShvN is(Sm/k) is an A1-weak equivalence
if, for any A1-local object X ∈ ∆opShvN is(Sm/k), the induced map
HomHs(k)(Z,X ) → HomHs(k)(Y,X ) is a bijection.

Theorem 2.2.5 [MV, Theorem 2.2.5, Theorem 2.2.7] The class of monomor-
phisms and A1-weak equivalences defines a proper model category structure on
∆opShvN is(Sm/k). The associated homotopy category is denoted H(k).

These constructions have a pointed variant:

Definition 2.2.6 A pointed simplicial sheaf is a morphism Spec(k) → F in
∆opShvN is(Sm/k), where Spec(k) is the representable sheaf with constant sim-
plicial structure.

Notation 2.2.7

1. Let Set• denote the category of pointed sets and let ∆opSet• denote the
category of pointed simplicial sets.

2. Let ShvN is(Sm/k)• denote the category of pointed sheaves and let ∆opShvN is(Sm/k)•
denote the category of pointed simplicial sheaves.
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Remark 2.2.8 The above notation is ambiguous but should not cause confu-
sion: a pointed simplicial object can be regarded either as a simplicial object in
the category of pointed objects or as a simplicial object which is pointed by the
point taken with constant simplicial structure.

Lemma 2.2.9 The forgetful functor

∆opShvN is(Sm/k)• → ∆opShvN is(Sm/k)

has left adjoint (.)+, which is given by the canonical inclusion X+ := (Spec(k) ↪→
X q Spec(k)).

The category ∆opShvN is(Sm/k)• has a simplicial model category structure
induced by the A1-model category structure on ∆opShvN is(Sm/k), so that the
cofibrations are the monomorphisms and the weak equivalences are A1-weak
equivalences; the associated pointed homotopy category is denoted by H•(k).
The functor (.)+ and its right adjoint (the forgetful functor) induce an adjunc-
tion:

H(k) � H•(k).

2.3 Monoidal structures

The category of pointed simplicial sheaves ∆opShvN is(Sm/k)• has a symmetric
monoidal structure with respect to the smash product, which induces a sym-
metric monoidal structure on the pointed A1-local homotopy category H•(k).
Recall the definition of the smash product (see [MV, Section 2.2.5]):

Definition 2.3.1 Let X, Y ∈ ∆opSet• be pointed simplicial sets and let X ,Y ∈
∆opShvN is(Sm/k)• be pointed simplicial sheaves.

1. The wedge X ∨ Y in ∆opSet• is the coequalizer of the diagram

∗ // // X q Y

in the category of simplicial sets, pointed in the canonical way.

2. The smash product X ∧ Y in ∆opSet• is the quotient

(X × Y )/(X × ∗ ∨ ∗ × Y )

which is pointed by the image of (X ×∗∨ ∗× Y ). The unit for the smash
product is the object (∗)+, where a disjoint basepoint is adjoined.

3. The smash product X ∧ Y in ∆opShvN is(Sm/k)• is the sheaf associated
to the presheaf:

U 7→ X (U) ∧ Y(U).

The unit for the smash product is the object (Spec(k))+.
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In particular, the category ∆opSet• of pointed simplicial sets is a symmetric
monoidal category with respect to the smash product.

Notation 2.3.2 Let H• denote the homotopy category derived from the cate-
gory ∆opSet• of pointed simplicial sets, equipped with the usual notion of weak
equivalences (see, for example, [Ho, Chapter 5]). The category H• is equivalent
to the classical homotopy category of pointed topological spaces.

The monoidal structures provided by the smash product carry over to the
associated homotopy categories; the following result is a consequence of [Ho,
Theorems 4.3.2, 4.3.4].

Proposition 2.3.3 Let k be a field.

1. The smash product on ∆opSet• induces a closed symmetric monoidal struc-
ture on H•.

2. The smash product on ∆opShvN is(Sm/k)• induces the structure of a closed
H•-algebra on H•(k).

Remark 2.3.4 The above result is a case of a general result for a pointed
homotopy category associated to a pointed model category C•. The homotopy
category Ho(C•) has the structure of a H•-module which becomes an H•-algebra
structure if C• has a suitable monoidal structure (see [Ho, Chapter 5]). The
above situation is more straightforward, since the category ∆opShvN is(Sm/k)•
has a simplicial model category structure. These results show that the homotopy
category H• plays a distinguished rôle amongst the homotopy categories of
pointed model categories.

2.4 Topological realization

Let k be a field, then H•(k) has the structure of a H•-algebra. In particular,
there is a unit morphism:

H• → H•(k).

When k is a sub-field of C, then the general considerations of [MV] on derived
functors between homotopy categories corresponding to continuous maps be-
tween sites shows that taking C-points X 7→ X(C) induces a retract to this
functor.

Proposition 2.4.1 [MV] Let k be a field and let x : k ↪→ C be a C-point, then
there is a complex realization functor

tC
x : H•(k) → H•

which is a morphism of H•-algebras.

Remark 2.4.2 More general realization functors, which do not require a com-
plex embedding, are provided by the étale homotopy type [F]. This theory is in
the process of being developed from the point of view of A1-homotopy theory.
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2.5 Spheres and suspension functors

There are standard objects in the category ∆opShvN is(Sm/k)• which play the
rôle of spheres in A1-homotopy theory; the justification for the terminology is
that they yield spheres in the usual homotopy category H• under topological
realization and are independent of the field of definition.

Definition 2.5.1

1. Let S1
s ∈ ∆opSet• denote the simplicial model (∆1/δ∆1, δ∆1) for the

pointed circle; the constant sheaf functor ∆opSet• → ∆opShvN is(Sm/k)•
allows S1

s to be regarded as an object of ∆opShvN is(Sm/k)•.

2. Let S1
t denote the pointed sheaf ((A1 − {0}), 1), the sheaf induced by

the scheme Gm, pointed by the rational point which corresponds to the
identity. This is regarded as an object of ∆opShvN is(Sm/k)• via the
constant simplicial structure functor.

3. Let T denote the simplicial sheaf A1/(A1 − {0}), pointed by the image of
(A1 − {0}); again this will be regarded as an object of ∆opShvN is(Sm/k)•
via the constant simplicial structure functor.

The following statement concerning topological realization is clear:

Proposition 2.5.2 Let k be a sub-field of C equipped with a complex embed-
ding x : k ↪→ C. The complex realization functor tC

x : H•(k) → H• induces
isomorphisms in H•: tC

x(S1
s ) ∼= S1 ∼= tC

x(S1
t ) and tC(T ) ∼= S2.

The following result provides relations between these objects in H•(k).

Lemma 2.5.3 Let k be a field, then there are isomorphisms in H•(k):

1. T ∼= (P1,∞), where (P1,∞) is the sheaf represented by the projective line,
pointed by the rational point at infinity, equipped with constant simplicial
structure.

2. T ∼= S1
s ∧ S1

t .

Proof: (1) There is a cocartesian square:

(A1 − {0}) 0 //

∞
��

A1

��
A1 // P1

corresponding to the standard Zariski open cover of P1. This induces an A1-
weak equivalence T ∼= (P1,∞), by comparing cofibres and using the fact that
P1/0 → P1/A1 is an A1-weak equivalence.
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(2) There is an A1-weak equivalence T ∼= S1
s ∧Gm [MV, 3.2.15], induced by

the cofibration sequence which defines T . �

There are suspension functors which correspond to taking the smash product
with the objects defined in Definition 2.5.1:

Notation 2.5.4 Let the functors Σs,Σt,ΣT : H•(k) → H•(k) respectively be
induced by the smash product with the objects S1

s , S1
t , T respectively.

The simplicial suspension functor Σs is the canonical suspension functor
which is associated to the H• action on H•(k). The suspension functors are
related by the following:

Lemma 2.5.5

1. There is a natural equivalence of functors ΣT
∼= Σs ◦ Σt.

2. The transposition S1
s ∧ S1

t → S1
t ∧ S1

s induces a natural equivalence of
functors tr : Σs ◦ Σt

∼=→ Σt ◦ Σs.

Remark 2.5.6 The spheres S1
s , S1

t are given bidegrees (1, 0), (1, 1) respectively,
so as to be compatible with standard notions of degree and weight. The bidegree
is extended to smash products by additivity; for example the sphere T has
bidegree (2, 1).

2.6 Cofibration sequences

The notion of a cofibre sequence arises naturally in the study of pointed model
categories (see [Ho, Chapter 6]). Moreover, cofibrations sequences give rise to
exact sequences when considering representable cohomology theories.

Definition 2.6.1 Let f : X → Y be a morphism in ∆opShvN is(Sm/k)•.

1. The (simplicial) cone of f , written Cone(f), is defined to be the pushout
of the diagram:

X // i0 //

f

��

X ∧∆1

Y

where iε : ∗ → ∆1, for ε ∈ {0, 1} denote the two vertex morphisms and
∆1 is pointed by i1.

2. The cofibre sequence associated to f is the sequence which has the form:

X → Y → Cone(f) → ΣsX ,

where Cone(f) → ΣsX is the evident collapse map sending Y to a point.
(See [Ho, Chapter 6] for details).
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Remark 2.6.2 The simplicial cone construction can be regarded as the natu-
ral way of constructing cofibration sequences in simplicial model categories, in
that it is ‘independent’ of the model structure used. With respect to the Morel-
Voevodsky model structure, weaker notions can be used, since all monomor-
phisms are cofibrations.

2.7 Thom spaces

The Thom space of a vector bundle over a smooth scheme X is defined in
the category ∆opShvN is(Sm/k)•. The Thom space should be considered as a
generalized iterated T -suspension of the base space, by considering the case of
a trivial bundle (see Example 2.7.2).

Definition 2.7.1 Let ξ be a vector bundle over a smooth scheme X ∈ Sm/k.
The Thom space of ξ is the pointed sheaf:

Th(ξ) := E(ξ)/E(ξ)×,

where E(ξ)× is the complement of the zero section of the total space E(ξ).

Example 2.7.2

1. The pointed sheaf T identifies with the Thom space of the trivial bundle
A1 over Spec(k).

2. Let ξ, η be vector bundles over X, Y ∈ Sm/k respectively, then Th(ξ�η) '
Th(ξ) ∧ Th(η) [MV, 3.2.17 (i)].

3. Let ξ be a vector bundle over X ∈ Sm/k and write θ for the trivial bundle
of rank one on X; there is a map

P(ξ ⊕ θ)/P(ξ) → Th(ξ)

which is an A1-homotopy equivalence [MV, 3.2.17 (iii)].

2.8 Split Simplicial Sheaves

The class of split simplicial sheaves in ∆opShvN is(Sm/k) is useful in certain
situations; in particular, any object in the Morel-Voevodsky homotopy category
is weakly equivalent to a split simplicial sheaf. The basic facts concerning split
simplicial sheaves are recalled here for the benefit of the reader:

Definition 2.8.1

1. A simplicial sheaf X ∈ ∆opShvN is(Sm/k) is split if, for all n ≥ 0, there
exists a set {Ui|i ∈ In} of sheaves represented by smooth schemes Ui such
that:

Xn
∼= (Xn)deg q (qi∈In

Ui),

where (Xn)deg denotes the degenerate part of the simplicial structure.
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2. A split simplicial sheaf is finite if the set
⋃

n In is finite.

Remark 2.8.2 Suppose that X is a split simplicial sheaf, with Ui ∈ Sm/k as in
the definition, then, for each n, there is a cocartesian diagram in ∆opShvN is(Sm/k):

qi∈In
Ui × ∂∆n //

��

skn−1(X )

��
qi∈In

Ui ×∆n // skn(X ),

where skj(X ) denotes the j-skeleton of the simplicial sheaf X (see [GJ, Section
VII.1] for basic notions concerning the skeleton and coskeleton of a simplicial
object). This presentation makes it intuitively clear how split simplicial sheaves
are constructed by attaching ‘cells’ which are labelled by smooth schemes. More-
over the ‘attaching’ morphisms Ui × ∂∆n → skn−1X are adjoint to morphisms
Ui → (coskn−1(X ))n; this establishes the connection with alternative treatments
of split simplicial objects.

The following result is clear:

Lemma 2.8.3 Let X ∈ ∆opShvN is(Sm/k) be a split simplicial sheaf, then X
is the filtered colimit of the diagram of finite split sub-sheaves of X .

Resolutions can be formed on the left by split simplicial sheaves, by Propo-
sition 2.8.5, which is a variant of of [MV, Lemma 1.16]. The statement of the
result involves the notion of local fibration in ∆opShvN is(Sm/k).

Definition 2.8.4 A morphism X → Y in ∆opShvN is(Sm/k) is said to be a
local fibration if x∗X → x∗Y is a Kan fibration for any point x∗ of the Nisnevich
topology.

Proposition 2.8.5 There exists a functor Φ : ∆opShvN is(Sm/k) → ∆opShvN is(Sm/k)
and a natural transformation Φ → 1 such that, for all X ∈ ∆opShvN is(Sm/k),

1. ΦX is a split simplicial sheaf.

2. The morphism ΦX → X is a simplicial weak equivalence and a local fibra-
tion.

2.9 Compact Objects

It is necessary to have an understanding of the compact (or small) objects in the
A1-local homotopy category H(k), for technical reasons. Recall the following
definition of a compact object (which can be generalized to consider higher
ordinals):
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Definition 2.9.1 Let C be a category which contains all small colimits. An
object A in C is compact if, for any small filtered diagram I → C, the natural
morphism:

lim→
i∈I

HomC(A,Xi) → HomC(A, lim→
i∈I

Xi)

is a bijection.

The following lemma is straightforward:

Lemma 2.9.2

1. The set of representable sheaves corresponding to a small skeleton of Sm/k
forms a set of generators of the category ShvN is(Sm/k).

2. The sheaf represented by X ∈ Sm/k is a compact object in the category
ShvN is(Sm/k).

In fact, Kan observed that a stronger result holds: any sheaf F is canonically
the colimit of a diagram of representable sheaves.

Proposition 2.9.3 Let X be a finite split simplicial sheaf in ∆opShvN is(Sm/k).
Then:

1. X is a compact object in ∆opShvN is(Sm/k).

2. The image of X in H(k) is a compact object.

Moreover, an object in H(k) is compact if and only if it is the retract in H(k)
of an object represented by a finite split simplicial sheaf.

Proof: (1) This is straightforward.
(2) This is proved by using homotopy colimits, which are the correct homo-

topy theoretic form of colimits, and by applying [MV, Corollary 2.1.21].
Finally, suppose that C ∈ ∆opShvN is(Sm/k) represents a compact object

in H(k), then there is a resolution X '→ C of C, with X a split simplicial
sheaf, by Proposition 2.8.5. This morphism admits an inverse in the homo-
topy category C // X . Lemma 2.8.3 implies that X is a filtered colimit
in ∆opShvN is(Sm/k) of objects in H(k) represented by finite split simplicial
sheaves, hence this morphism factors through an object represented by X ′, a fi-
nite split simplicial sheaf, by the compactness of C. In particular, C is a retract
of X ′ in H(k). The converse statement is clear. �

Remark 2.9.4 A pointed simplicial sheaf is said to be split if the underlying
simplicial sheaf (forgetting the basepoint) is split. The above results adapt
easily to the pointed situation.
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3 Cohomology theories and cohomology opera-
tions

The purpose of this section is to give a systematic introduction to the notions of
cohomology theory which are encountered in the study of the A1-local homotopy
theory. This involves greater generality than is strictly necessary, so that this
material could be omitted on first reading.

Notation 3.0.5 Throughout this section, C• will be used to denote a pointed
model category, as defined in [Ho, Chapter 6]. The reader unfamiliar with this
notion can consider the example ∆opShvN is(Sm/k)• equipped with either the
simplicial model structure or the A1-local model structure.

3.1 Additive presheaves on homotopy categories

This section introduces the basic properties of additivity and homotopy invari-
ance for presheaves Hs•(k)op → Set .

Definition 3.1.1 Let C• be a pointed model category. An additive presheaf on
the homotopy category Ho(C•) is a presheaf

h : Ho(C•)op → Set ,

such that, for any finite coproduct
∨

Xi in C•, the natural morphism:

h(
∨

Xi) →
∏

h(Xi)

is a bijection.
An additive presheaf h is said to be non-trivial if there exists an object

X ∈ C• such that h(X) 6= ∅.

Remark 3.1.2 The canonical functor C• → Ho(C•) allows an additive presheaf
to be considered as a presheaf on the category C•. The universal property
of the homotopy category states that a functor F : C• → Set factors across
C• → Ho(C•) if and only if F sends weak equivalences to bijections. This
property is frequently termed the homotopy axiom and is subsumed in the
above definition.

The following lemma is straightforward:

Lemma 3.1.3 Let C• be a pointed model category and let h : Ho(C•) → Set
be a non-trivial additive presheaf. Then h factors across the forgetful functor
Set• → Set and h(∗) is the singleton set, where ∗ denotes the point of C•.

Definition 3.1.4 Let C• be a pointed model category. A presheaf h on the
homotopy category Ho(C•) is representable if there exists an object Z ∈ Ho(C•)
together with a natural isomorphism:

HomHo(C•)(X, Z)
∼=→ h(X).
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Remark 3.1.5 A representable presheaf on the homotopy category Ho(C•) is
necessarily an additive presheaf which is non-trivial.

Suppose that F : C• � D• : G is a Quillen adjunction between pointed
model categories (see [Ho] or consider simply the adjunction at the the level of
homotopy categories), so that there is a derived adjunction:

LF : Ho(C•) � Ho(D•) : RG

at the level of the homotopy categories.

Lemma 3.1.6 Let F,G be as above and let h : Ho(D•)op → Set be an additive
presheaf. Then

1. the composite functor h ◦ LF : Ho(C•)op → Set is an additive presheaf on
Ho(C•).

2. Moreover, if the additive presheaf h is represented by W ∈ Ho(D•), then
the additive presheaf h ◦ LF is represented by RG(W ).

In the special case that the adjunction corresponds to a Bousfield localization
of model categories, there is an analogous result in the opposite direction. Recall
the following definitions:

Definition 3.1.7 Let F : C• � D• : G be a Quillen adjunction between pointed
model categories. The adjunction is said to be a Bousfield localization if the
underlying categories of C• and D• are the same, the functors F,G are the
identity, the class of cofibrations in C• and D• are the same whereas the class
of weak equivalences in C• is contained in the class of weak equivalences in D•.

This is of special interest when the localization is obtained with respect to a
set of morphisms f ∈ S in the homotopy category Ho(C•). Recall the relevant
definitions:

Definition 3.1.8 Let C• be a pointed model category and let S be a set of
morphisms in Ho(C•).

1. An object Z ∈ Ho(C•) is S-local if, for any morphism f : A → B in S, the
induced morphism HomHo(C•)(B,Z) → HomHo(C•)(A,Z) is a bijection.

2. A morphism g : X → Y is an S-weak equivalence if the induced morphism
HomHo(C•)(Y,Z) → HomHo(C•)(X, Z) is a bijection, for any S-local object
Z in Ho(C•).

3. The S-localization of C•, if it exists, is the model category with the same
cofibrations as C• and with weak equivalences taken to be the S-weak
equivalences.

The following is clear:
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Lemma 3.1.9 Let C• be a pointed model category and let S be a set of mor-
phisms in Ho(C•) for which the S-localization C•S exists. A representable addi-
tive presheaf h on Ho(C•) factors across an additive presheaf on Ho(C•S) if and
only if h sends the morphisms of S to bijections. Moreover, in this case, the
induced additive presheaf on Ho(C•S) is representable.

These general considerations apply to the A1-localization:

Hs•(k) � H•(k)

Definition 3.1.10 An additive presheaf Hs•(k)op → Set is homotopy invariant
if, for every X ∈ ∆opShvN is(Sm/k)•, the projection morphism X ∧ (A1)+ → X
induced by the projection A1 → Spec(k) induces a bijection:

h(X ) → h(X ∧ (A1)+).

Corollary 3.1.11 A representable additive presheaf h : Hs•(k)op → Set fac-
tors canonically across the A1-localization Hs•(k) → H•(k) if and only if h is
homotopy invariant.

3.2 Brown representability

In practice, it is difficult to construct additive presheaves on a homotopy cat-
egory which are not representable. In particular, there are results inspired by
the Brown representability theorem of algebraic topology, which give sufficient
conditions for a presheaf to be representable. In the current context, the point
of view taken is that the existence of an underlying model category structure is
accepted; the reader should however be aware for example that in the context of
cohomological functors on triangulated categories, this is not always necessary.

Remark 3.2.1 For technical reasons, Brown representability theorems are best
formulated for compactly-generated homotopy categories and the additive presheaf
should be restricted to the full subcategory of compact objects in the homotopy
category.

Notation 3.2.2 Let Ho(C•)comp denote the full sub-category of compact ob-
jects in Ho(C•).

Proposition 3.2.3 Let C• be a pointed model category and let h : Ho(C•)op →
Set be an additive presheaf. Suppose that there exists a set I of cofibrations in C
with compact domain and range such that the following conditions are satisfied:

1. For any compact object C ∈ Ho(C•)comp, there exists a morphism ∗ → X
in I such that C is a retract of X in Ho(C•).

2. Mayer Vietoris axiom: For any pushout square in C•

A //
��

��

E

��
B // B ∨A E,
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where i ∈ I, and E is obtained by a finite sequence of pushouts of elements
I, the sequence of pointed sets

h(B ∨A E) // h(B)
∏

h(E) // // h(A)

is exact in the middle.

Then the restriction of h to (Ho(C•)comp)op is represented by an object of Ho(C•).

Example 3.2.4 The example which is of interest here is the case Ho(C•) =
Hs•(k); here I should be chosen to be the set of inclusions A ↪→ B of a sub
split simplicial sheaf A in a finite split simplicial sheaf B.

Remark 3.2.5 A more interesting problem is to consider when a functor de-
fined on the underlying category C• preserves weak equivalences. An interesting
case is given by the Brown-Gersten descent condition.

3.3 Additive presheaves of abelian groups

The terminology introduced here is non-standard; the justification is that usage
of ‘cohomology’ can be ambiguous. In particular, the following definition does
not require any exactness property or suspension isomorphism; however, all
cohomology theories here will be taken to be additive.

Definition 3.3.1 Let C• be a pointed model category. A reduced cohomology
theory on the homotopy category Ho(C•) is an additive presheaf h : Ho(C•)op →
Ab which takes values in the category of abelian groups.

The usual way of obtaining a reduced cohomology theory is indicated by the
general result:

Lemma 3.3.2 Let C• be a pointed model category equipped with a monoidal
structure ∧ which is compatible with the model structure. Let h : Ho(C•)op → Set
be an additive presheaf and suppose that A is an abelian cogroup object in the
category Ho(C•). The presheaf:

X 7→ h(A ∧X)

defines a reduced cohomology theory.

In particular, this gives:

Example 3.3.3 Let C• be a pointed simplicial model category and let h :
Ho(C•)op → Set be an additive presheaf. The presheaf X 7→ h(S2 ∧ X) is
a reduced cohomology theory, where S2 ∈ Ho(C•) represents the pointed sim-
plicial two-sphere.
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3.4 Bigraded reduced cohomology theories

Definition 3.4.1 A bigraded reduced cohomology theory on H•(k) is a set of
reduced cohomology theories:

h∗,∗ : H•(k)op → Ab

indexed over Z× Z, such that there exist natural suspension isomorphisms:

σs : h∗,∗ → h∗+1,∗ ◦ Σs

σt : h∗,∗ → h∗+1,∗+1 ◦ Σt

which satisfy the suspension coherence condition:
For each (a, b) ∈ Z × Z, there exists a commutative diagram of natural

transformations:

ha,b
σs //

σt

��

ha+1,b ◦ Σs

tr◦σt

��
ha+1,b+1 ◦ Σt σs

// ha+2,b+1 ◦ Σs ◦ Σt

Definition 3.4.2 A bigraded reduced cohomology theory on H•(k) is exact
if, for any cofibration sequence X → Y → Cone(f) the induced sequence of
bigraded abelian groups:

h∗,∗(Cone(f)) → h∗,∗(Y) → h∗,∗(X )

is an exact sequence.

Remark 3.4.3

1. let h∗,∗ be a bigraded reduced cohomology theory which is exact, then the
exact sequence of Definition 3.4.2 extends into a long exact sequence in
cohomology, using the simplicial suspension isomorphism σs.

2. Let h∗,∗ be a bigraded reduced cohomology theory, which is representable
in each bidegree, then the exactness condition is satisfied automatically.

3. The bidegrees of the suspension isomorphisms are compatible with the
bidegrees of the spheres S1

s and S1
t given in Remark 2.5.6.

3.5 Unreduced cohomology theories

From the point of view of homotopy theory, reduced cohomology theories are the
most natural objects for consideration. It is sometimes convenient to work with
unreduced cohomology theories, especially when the objects being considered
are not naturally pointed.
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Definition 3.5.1 An unreduced cohomology theory is an abelian presheaf

H : H(k)op → Ab

which is additive: for each finite coproduct qXi, the natural morphism:

H(qXi) →
∏

H(Xi)

is an isomorphism in Ab.

The notions of reduced and unreduced cohomology theory are related via
the adjunction:

(.)+ : H(k) � H•(k) : forget.

The following lemma can be used to establish an equivalence between the classes
of unreduced and reduced cohomology theories.

Lemma 3.5.2

1. Let h : H•(k)op → Ab be a reduced cohomology theory, then the composite

H(k)op
(.)+→ H•(k)op → Ab

is an unreduced cohomology theory.

2. Let H : H(k)op → Ab be an unreduced cohomology theory, then the functor
h : H•(k)op → Ab defined by

h(Spec(k) → X ) := ker{H(X ) → H(Spec(k))}

is a reduced cohomology theory.

Notation 3.5.3 To avoid confusion between the reduced and unreduced ver-
sion of a cohomology theory, a reduced cohomology theory will usually be dec-
orated by a tilde, as in H̃.

3.6 Determining bigraded theories by T -suspension theo-
ries

A bigraded reduced cohomology theory is determined by the reduced coho-
mology theories in bidegrees of the form (2∗, ∗) together with a T -suspension
isomorphism. This allows the theory of T -spectra, which gives a model for a
‘stable homotopy theory’, to be used to represent bigraded reduced cohomol-
ogy theories [V1, M]; the theory of T -spectra is not necessary for the present
purposes.
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Definition 3.6.1 Let k be a field; a T -suspension reduced cohomology theory
is a sequence of reduced cohomology theories h[b] : H•(k)op → Ab, for b ∈ Z,
together with T -suspension natural isomorphisms:

σT : h[b] → h[b+1] ◦ Σs ◦ Σt.

The category of T -suspension reduced cohomology theories is the category with
morphisms given by natural transformations between T -suspension reduced co-
homology theories which commute with the suspension isomorphism.

The following lemma is clear:

Lemma 3.6.2 Let h∗,∗ : H•(k)op → Ab be a bigraded reduced cohomology the-
ory; let h[b] := h2b,b, for b ∈ Z and define σT to be the composite:

h[b] ∼= h2b,b σt→ h2b+1,b ◦ Σt
σs→ h2(b+1),b+1 ◦ Σs ◦ Σt

∼= h[b+1] ◦ Σs ◦ Σt.

Then h[∗] froms a T -suspension reduced cohomology theory.

The converse is also true:

Lemma 3.6.3 Let h[∗] be a T -suspension reduced cohomology theory, equipped
with suspension isomorphism:

σT : h[b] → h[b+1] ◦ Σs ◦ Σt.

Define reduced cohomology theories hm,n, for (m,n) ∈ Z× Z by:

hm,n(X ) :=
{

h[n](Σ2n−m
s X ) m ≤ 2n

h[m−n](Σm−2n
t X ) m ≥ 2n.

Then there exist suspension isomorphisms σs, σt such that h∗,∗ forms a bigraded
reduced cohomology theory.

Proof: (Indications) The technical point of the proof is that the suspension
isomorphisms have to be defined so that the coherence condition is satisfied;
this reduces to an exercise in permuting smash products of S1

s and S1
t in the

category H•(k). �

The bigraded reduced cohomology theories form a category, where the mor-
phisms are the natural transformations which commute with the suspension
isomorphisms. Lemmas 3.6.3 and 3.6.2 establish the following:

Proposition 3.6.4 There is an equivalence between the category of bigraded
reduced cohomology theories on H•(k) and the category of T -suspension reduced
cohomology theories on H•(k). In particular, a bigraded reduced cohomology
theory h∗,∗ on H•(k) is determined by the associated T -suspension reduced co-
homology theory h[∗], up to natural isomorphism.
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3.7 Bistable cohomology operations

Throughout this paper, we are only concerned with bistable cohomology oper-
ations between bigraded reduced cohomology theories. The reader interested
in general notions concerning generalized cohomology operations in algebraic
topology can consult [Boa].

Definition 3.7.1 Let h, g be bigraded reduced cohomology theories on H•(k).
A bistable cohomology operation θ of bidegree (p, q) from h to g is a collection
of natural transformations (not a priori homomorphisms), for (a, b) ∈ Z× Z:

θa,b : ha,b → ga+p,b+q

which commute with the suspension isomorphisms σs, σt.

The simplicial circle S1
s is a cogroup object in H•(k); this implies (as in the

‘classical’ situation of algebraic topology):

Lemma 3.7.2 Let h, g be bigraded reduced cohomology theories on H•(k). Sup-
pose that θ is a bistable cohomology operation between h and g, then the natural
morphisms θa,b(X ) are morphisms of abelian groups, for all (a, b) ∈ Z× Z.

Definition 3.7.3 Let h be a bigraded reduced cohomology theory on H•(k)
such that the isomorphism classes of cohomology operations of each bidegree
(p, q) forms a set.

The bigraded algebra of bigraded cohomology operations is the set of iso-
morphism classes of bigraded cohomology operations, bigraded by the bidegree,
provided with the structure of abelian group via addition in Ab and with ring
structure (non-commutative) given by the composition of natural transforma-
tions.

Proposition 3.6.4 implies that a bigraded reduced cohomology theory h∗,∗ is
determined by its associated T -suspension reduced cohomology theory. In this
context, bistable cohomology operations are interpreted as T -stable cohomology
operations, as follows:

Definition 3.7.4 Let h[∗], g[∗] be T -suspension reduced cohomology theories
on H•(k). A T -stable cohomology operation of bidegree (p, q) from h to g is a
sequence of natural transformations, for b ∈ Z:

h[b] → g[b+q] ◦ Σ2q−p
s 2q ≥ p

h[b] → g[b+p−q] ◦ Σp−2q
t p ≥ 2q

which commute with the T -suspension isomorphisms σT .
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4 Sheaves with transfers and the adjunction be-
tween H(k) and DM eff

− (k)

The point of view which is adopted in this paper is that motivic cohomology is
a bigraded representable functor from the opposite of the homotopy category
H(k) of Morel and Voevodsky, defined with respect to the Nisnevich topology
on the category Sm/k of smooth schemes, to the category of abelian groups.
In the case that the field k admits resolution of singularities2, this defines a
cohomology theory in the sense of Section 3.4. This viewpoint is in accordance
with the philosophy that motivic cohomology should be defined as a sheaf hy-
percohomology theory.

The proof that motivic cohomology is a bigraded cohomology theory depends
on two ingredients:

• The duality theorem of Friedlander, Lawson and Voevodsky [FV, Theo-
rems 7.1, 7.4].

• The usage of Nisnevich sheaves with transfers, N tr
k , which are used to

establish the existence of localization sequences.

Heuristically, one can regard the transfers as performing a further localiza-
tion of the homotopy category H(k), by applying [V4, Theorem 4.1.2].

Motivic cohomology factors across Voevodsky’s triangulated category of mo-
tives, DM eff

− (k); when the ground field k is perfect, the category DM eff
− (k) is

equivalent to the A1-localization of the derived category D−N tr
k of Nisnevich

sheaves with transfers. The factorization is provided by the derived functor
H(k) → DM eff

− (k) of the free presheaf with transfers functor, Ztr[−], which
forms part of an adjunction between H(k) and DM eff

− (k), when the field k is
perfect.

Remark 4.0.1 The proof that motivic cohomology defines a bigraded coho-
mology theory does not require passage through the category DM eff

− (k). Alter-
natively, this fact can be regarded as being a consequence of the cancellation
theory in DM eff

− (k), [V4, Theorem 4.3.1], once the adjunction between H(k)
and DM eff

− (k) has been established. The ideas which go into the proof of the
cancellation theorem are the same as indicated above.

The purpose of this section is to recall the definition of the category of
Nisnevich sheaves with transfers and then to indicate the construction of the
adjunction between H(k) and DM eff

− (k).

4.1 Nisnevich sheaves with transfers

The definition of motivic cohomology uses Nisnevich sheaves with transfers,
which are defined in terms of the category of smooth correspondences.

2Voevodsky has established that this restriction is unnecessary.
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Definition 4.1.1 [SV2, §1] Let X, Y ∈ Sm/k be smooth schemes over the field
k. Let C(X, Y ) denote the set of closed, integral subschemes Z ↪→ X×Y which
are finite and surjective over a component of X and let c(X, Y ) the free abelian
group Z[C(X, Y )] generated by C(X, Y ).

Definition 4.1.2 [SV2, §1] The category SmCor/k of smooth correspondences
over the field k is the category with objects [X], where X ∈ Sm/k, and mor-
phisms HomSmCor/k([X], [Y ]) given by the abelian group c(X, Y ). The compo-
sition of morphisms is given by intersection of cycles as follows. Suppose that
S ∈ c(X, Y ), T ∈ c(Y, Z), then the cycles S × Z and X × T intersect properly
on X × Y × Z and each component of the intersection cycle (S × Z) • (X × T )
is finite and surjective on a component of X. The composite T ◦ S ∈ c(X, Z) is
defined as the push-forward (pXZ)∗((S×Z) • (X ×T )), where pXZ denotes the
projection X × Y × Z → X × Z.

The category SmCor/k is an additive category, with the direct sum of the
objects [X] and [Y ] given by [X q Y ]. There is a functor

Sm/k → SmCor/k

which is the association X 7→ [X] on objects and which sends a morphism
f : X → Y to the cycle Γf ∈ c(X, Y ) given by the graph of f .

Notation 4.1.3

1. Let Nk denote the category of abelian sheaves for the Nisnevich topology
on Sm/k.

2. Let Ptr
k be the category of abelian presheaves with transfers, namely

additive functors SmCor/kop → Ab. (A functor is additive if, for any
X, Y ∈ Sm/k, F (X q Y ) ∼= F (X)⊕ F (Y )).

3. Let N tr
k denote the full subcategory of Ptr

k of sheaves for the Nisnevich
topology. The category N tr

k is abelian and the inclusion N tr
k ↪→ Ptr

k has
an exact left adjoint functor, which is given on the underlying presheaves
by F 7→ (F )Nis, the sheafification functor [V4, 3.1.4].

Example 4.1.4 The sheaf Gm is an abelian sheaf for the étale topology, hence
belongs to Nk. It is canonically equipped with the structure of a presheaf with
transfers, hence Gm ∈ N tr

k . (This result generalizes to any sheaf represented by
an affine abelian variety).

Definition 4.1.5 Let Y be a smooth scheme in Sm/k. The free presheaf with
transfers Ztr[Y ] generated by Y is the abelian presheaf on Sm/k given by X 7→
c(X, Y ).

The main properties of the functor Ztr[−] are summarized in the following
result:
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Proposition 4.1.6 [SV2, §1] Let Y ∈ Sm/k be a smooth k-scheme.

1. Ztr[Y ] is a sheaf for the étale topology and, in particular, is a Nisnevich
sheaf.

2. Ztr[Y ] is a presheaf with transfers and Ztr[−] defines a functor Sm/k →
N tr

k .

3. The functor Ztr[−] extends by left Kan extension to a functor Ztr[−] :
ShvN is(Sm/k) → N tr

k , which is left adjoint to the forgetful functor N tr
k →

ShvN is(Sm/k).

The following basic structure is also required:

Lemma 4.1.7 Let X, Y ∈ Sm/k be smooth schemes.

1. There is a natural morphism Ztr[X]×Ztr[Y ] → Ztr[X×Y ] in the category
N tr

k , induced by the exterior product of cycles.

2. The graph morphism induces a morphism of sheaves of sets X → Ztr[X].

To be explicit concerning the product structure, let U,X, Y ∈ Sm/k be
smooth schemes; the exterior product of cycles defines a map:

C(U,X)× C(U, Y ) → Z[C(U × U,X × Y )]

which extends by linearity to Ztr[X](U)×Ztr[Y ](U) → Ztr[X×Y ](U ×U). The
interior product is obtained by composing with the morphism Ztr[X × Y ](U ×
U) → Ztr[X × Y ](U) which is induced by the diagonal U ↪→ U × U . This
corresponds to taking the intersection product with the diagonal.

The abelian sheaf Ztr[X] can be regarded as a pointed sheaf of sets pointed
by zero, by forgetting the abelian structure. The above morphisms induce re-
spectively morphisms of pointed sheaves of sets:

Ztr[X] ∧ Ztr[Y ] → Ztr[X × Y ]
X+ → Ztr[X].

Notation 4.1.8 Suppose that F is a pointed sheaf, with structure map Spec(k) →
F , then write:

Ztr(F ) := Ztr[F ]/Ztr[∗],

where the cokernel is taken in the category of abelian sheaves. If X is an
unpointed sheaf, then X+ is the sheaf X q Spec(k), pointed by the canonical
inclusion; additivity of Ztr implies that Ztr(X+) ∼= Ztr[X ].
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4.2 The adjunction between H(k) and DM eff
− (k)

Notation 4.2.1 Suppose that A is an abelian category, then let C−A denote
the category of complexes (with differential of degree −1) which are bounded
below and let C≥0A denote the subcategory of complexes which are concentrated
in non-negative degree.

The derived category of C−A will be denoted by D−A.

Recall the following definitions:

Definition 4.2.2 [V4, 3.1.10]

1. A presheaf with transfers, F ∈ Ptr
k , is homotopy invariant if, for all X ∈

Sm/k, the morphism F (X) → F (X × A1) induced by the projection
morphism X × A1 → X is an isomorphism.

2. A Nisnevich sheaf with transfers is homotopy invariant if the underlying
presheaf with transfers is homotopy invariant.

3. A complex C∗ ∈ C−N tr
k is motivic if its homology sheaves are homotopy

invariant.

4. The triangulated category DM eff
− (k) of motivic complexes is the full sub-

category ofD−N tr
k generated by objects represented by motivic complexes.

The Dold-Kan equivalence [W2, §8.4] provides an adjunction and equivalence
of categories:

CN
∗ : ∆opAb � C≥0Ab : K,

where CN
∗ denotes the normalized chain complex. Under this correspondence,

the homotopy of a simplicial abelian group is the homology of the associated
chain complex in the category C≥0Ab.

The Dold-Kan equivalence is used to establish the adjunction between the
homotopy category H(k) and the category DM eff

− (k). This is analogous to the
adjunction between the usual topological homotopy category H and the derived
category D−Ab of bounded below chain complexes of abelian groups.

Theorem 4.2.3 Suppose that k is a perfect field. There is an adjunction:

M [−] : H(k) � DM eff
− (k) : K.

This is proved in two steps; the first is Proposition 4.2.4, the abelian sheaf
with transfers version of the Dold-Kan correspondence. The second step is to
show that this induces an adjunction on passage to A1-localization.

Proposition 4.2.4 There is an adjunction

LZtr[−] : Hs(k) � D−N tr
k : K.
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The left adjoint Ztr[−] : ShvN is(Sm/k) → N tr
k to the forgetful functor

N tr
k → ShvN is(Sm/k) gives rise to a diagram of adjunctions:

∆opShvN is(Sm/k) � ∆opN tr
k � C≥0N tr

k � C−N tr
k

where the adjunction CN
∗ : ∆opN tr

k � C≥0N tr
k : K is the Dold-Kan equivalence

and the adjunction C≥0N tr
k � C−N tr

k corresponds to the truncation of chain
complexes. The composite adjunction is written:

Ztr[−] : ∆opShvN is(Sm/k) � C−N tr
k : K.

By construction, the functor K : C−N tr
k → ∆opShvN is(Sm/k) sends quasi-

isomorphisms to simplicial weak equivalences, hence induces a derived functor:
K : D−N tr

k → Hs(k). However, the functor CN
∗ Ztr[−] is not known to send

simplicial weak equivalences to quasi-isomorphisms; it is therefore necessary to
use a suitable resolution functor to define the derived functor.

Recall the definition of a split simplicial sheaf from Definition 2.8.1. Split
simplicial sheaves permit inductive arguments over the skeletal filtration; at each
stage the simplices which are attached are disjoint unions of sheaves represented
by smooth schemes. In particular, the functor Ztr[−] is calculated on a split
simplicial sheaf by applying the functor Ztr[−] termwise to (coproducts of)
representable sheaves.

Lemma 4.2.5

1. The functor CN
∗ Ztr[−] sends simplicial weak equivalences between split

simplicial sheaves to quasi-isomorphisms.

2. If X is split and C∗ ∈ C−N tr
k , then there is an isomorphism:

[CN
∗ Ztr[X ], C∗]D−N tr

k

∼= [X ,KC∗]Hs(k).

Proof: (Indications)
(1) A morphism X → Y between split simplicial sheaves induces a morphism
CN
∗ Ztr[X ] → CN

∗ Ztr[Y] in C−N tr
k ; it is sufficient, by the Dold-Kan theorem,

to show that this is an isomorphism in D−N tr
k . One reduces to showing that

the morphism CN
∗ Z[X ] → CN

∗ Z[Y] is an isomorphism in D−Nk, by using an
induction upon the skeletal filtration of the split simplicial sheaves together with
[V4, Proposition 3.1.9]. The morphism CN

∗ Z[X ] → CN
∗ Z[Y] is an isomorphism

in D−Nk since the functor CN
∗ Z[−] commutes with the passage to points and the

functor CN
∗ Z[−] sends weak equivalences of simplicial sets to quasi-isomorphisms

of chain complexes, by [GJ, III.2.16].
(2) This is essentially a formal consequence of (1), using the adjunction

between the homotopy category of simplicial sheaves and the derived category
D−Nk, which is induced by (CN

∗ Z[−],K). (Compare with [B] and [MV, 2.1.26]).
�
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Proof of Proposition 4.2.4: Let Φ denote the resolution functor by split sim-
plicial sheaves constructed in Proposition 2.8.5, which is equipped with a natural
weak equivalence ΦX → X . Lemma 4.2.5(1) implies that the functor CN

∗ ZtrΦ
sends simplicial weak equivalences to quasi-isomorphisms. Moreover, Lemma
4.2.5(2) implies that there is a natural isomorphism, for X ∈ ∆opShvN is(Sm/k)
and C∗ ∈ C−N tr

k :

[X ,KC∗]Hs(k)
∼= [CN

∗ Ztr[ΦX ], C∗]D−N tr
k

.

The result follows. �

Theorem 4.2.3 is proved by passage to A1-localization, using Proposition
4.2.9 together with the following result.

Proposition 4.2.6 [MV, 2.2.5] The localization functor Hs(k) → H(k) is left
adjoint to the functor H(k) → Hs(k) induced by the inclusion of A1-local objects.

The hypothesis that k be perfect is required since Theorem [V4, 3.1.12] is
used in the proof of the following result which compares the concepts of motivic
complex and A1-local simplicial sheaf via the Dold-Kan correspondence.

Proposition 4.2.7 Let k be a perfect field and let C∗ be a complex in C−N tr
k .

The following conditions are equivalent:

1. The complex C∗ is motivic.

2. The simplicial sheaf K(C∗[p]) is A1-local, for all p ∈ Z.

3. For all U ∈ Sm/k the morphism U ×A1 → U induces an isomorphism of
Nisnevich hypercohomology groups: Hi

Nis(U,C∗) ∼= Hi
Nis(U × A1, C∗), for

all i.

Recall the definition of the singular complex functor (which could be defined
more generally on the category of abelian presheaves):

Definition 4.2.8 [SV2, §1] Let C∗ : C−N tr
k → C−N tr

k denote the singular
complex functor D∗ ∈ C−N tr

k 7→ Tot{D∗(− × ∆∗alg)}, where ∆∗alg denotes the
standard cosimplicial object in Sm/k, where the object ∆n

alg is represented by
affine space An.

When k is a perfect field:

Proposition 4.2.9 ([V4, Proposition 3.2.3] and [SV2, Lemma 1.4]). Let k be
a perfect field. The singular complex functor C∗ induces a functor D−N tr

k →
DM eff

− (k) which is left adjoint to the inclusion DM eff
− (k) ↪→ D−N tr

k .
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Proof of Theorem 4.2.3: Suppose that the field k is perfect and write
l : Hs(k) � H(k) : r for the adjunction of Proposition 4.2.6. There is a diagram
of adjunctions:

H(k) � �

r
//

1H(k)

**
Hs(k)

l
//

LZtr(−)

��

H(k)

F

���
�

�
�

�
�

�
�

�

D−N tr
k

K

OO

��
DM eff

− (k)

G

[[7
7

7
7

7
7

7
7

7
?�

OO

where the functor G exists because KC∗ is A1-local when C∗ is a motivic com-
plex, by Proposition 4.2.7. The factorization F exists by the universal property
of A1-localization.

The functors F : H(k) � Hs(k) : G define an adjunction, by a formal argu-
ment applied to the above diagram. �
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Part II

Motivic cohomology and
Steenrod operations

5 Motivic cohomology

Throughout this section, let k be a perfect field. The following notation is used:

Notation 5.0.10 Let M [−] : Sm/k → DM eff
− (k) denote the composite of the

functor Sm/k → H(k) induced by the Yoneda embedding and the functor
M [−] : H(k) → DM eff

− (k) which is the A1-localization of the derived functor
LZtr[−] of the functor Ztr[−]. This functor coincides with the functor defined
by Voevodsky in [V4].

The (Beilinson) motivic cohomology of a smooth scheme X ∈ Sm/k with
coefficients in an arbitrary motivic complex C• is defined to be:

Hi
M(X, C•) := [M [X], C•[i]]DMeff

− (k).

The adjunction between the Morel-Voevodsky homotopy category H(k) and
DM eff

− (k) implies that there is an isomorphism: Hi
M(X, C•) ∼= [X, K(C•[i])]H(k).

Moreover, [SV2, Theorem 1.5] implies that there is an isomorphism with the Nis-
nevich hypercohomology group HNis

i(X, C−•); this corresponds to the passage
between the simplicial homotopy category Hs(k) and the A1-local homotopy
category H(k), using the fact that the object K(C•[i]) is A1-local.

In addition, Voevodsky’s results on the cohomology of presheaves with trans-
fers [V] allow these groups to be related to Zariski hypercohomology, as sug-
gested by Beilinson’s approach to defining motivic cohomology. (See for example
[SV2, §3]).

From this point of view, it is necessary to choose suitable motivic chains
Z(n) ∈ C−N tr

k , for n ≥ 0, which give rise to a bigraded cohomology theory.

5.1 Sheaves of relative cycles

The most direct way of defining integral motivic cohomology from the homotopy
theoretic point of view is to follow the approach of Friedlander and Voevodsky
[FV] in terms of sheaves of relative cycles. See Section 5.3 for the definition via
the motivic chains of Suslin-Voevodsky.

Definition 5.1.1 [FV, §2] Let U ∈ Sm/k be a smooth k-scheme and let X ∈
Sch/k be a k-scheme. For an integer r ≥ 0, let zequi(X, r)(U) denote the free
abelian group generated by cycles Z ↪→ X ×U for which the composite p in the
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diagram
Z

� � //

p
##FFFFFFFFF X × U

pU

��
U

is of finite type of relative dimension r, dominant over a connected component
of U .

The above construction defines presheaves on the category of smooth schemes:

Proposition 5.1.2 [FV, §2] Let X ∈ Sch/k be a k-scheme, then the cycle
morphisms associated to pullback induce a presheaf structure:

zequi(X, r) : (Sm/k)op → Ab.

The following result summarizes some of the basic properties of the relative
cycle construction:

Proposition 5.1.3 Let r be a non-negative integer.

1. [V4, §4.2] Let X ∈ Sch/k be a scheme, then zequi(X, r) is naturally a
Nisnevich sheaf with transfers.

2. Let f : X → Y be a proper morphism in Sch/k, then proper push-forward
of cycles induces a morphism of sheaves:

f∗ : zequi(X, r) → zequi(Y, r).

3. Let q : W → X be a flat morphism in Sch/k of relative dimension n, then
flat pull-back induces morphisms of sheaves:

q∗ : zequi(X, r) → zequi(W,n + r).

A key property is the localization sequence which is a consequence of the
following result:

Proposition 5.1.4 [FV, Theorem 5.11] Let k be a field admitting resolution of
singularities. Let X ∈ Sch/k be a scheme with closed subscheme Z ↪→ X. For
any non-negative integer r, there is an exact sequence of Nisnevich sheaves with
transfers:

0 → zequi(Z, r) → zequi(X, r) → zequi(U, r) → Q → 0

such that the sheaf with transfers satisfies C∗Q ' 0 in C−N tr
k .

Of particular importance is the following Corollary, which uses the fact that
P1 is proper:
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Corollary 5.1.5 Let k be a field admitting resolution of singularities and let
X ∈ Sch/k be a scheme, then there is a weak equivalence in C−N tr

k :

C∗zequi(X × P1, r) ' C∗zequi(X, r)⊕ C∗zequi(X × A1, r).

The sheaves of cycles which are of interest here are given by the case r = 0;
this gives rise to a version of motives ‘with compact supports’, a name which is
justified by the following Lemma and the existence of a localization sequence.

Lemma 5.1.6 Let X ∈ Sm/k be a smooth, proper k-scheme, then there is a
natural isomorphism zequi(X, 0) ∼= Ztr[X].

However, it should be noted that the proof that integral motivic cohomology
defines a bigraded cohomology theory in the sense of Section 3.4 requires passage
through zequi(X ×−, 1).

5.2 Integral motivic cohomology

The following is taken as the definition of integral motivic cohomology, restricted
to the bidegrees of the form (2∗, ∗).

Definition 5.2.1 Let X ∈ Sm/k be a smooth scheme and let n ≥ 0 be an
integer. The integral motivic cohomology of bidegree (2n, n) is defined by:

H2n,n(X, Z) := [X, KC∗zequi(An, 0)]Hs(k)

where the morphisms are taken in the unpointed homotopy category and K
denotes the Kan functor from chain complexes to simplicial objects.

The fact that this extends to a bigraded cohomology theory is equivalent to
the following statement:

Theorem 5.2.2 Let k be a field admitting resolution of singularities and let
X ∈ Sm/k be a smooth scheme. For any integer n ≥ 0, there is a natural
isomorphism:

H2(n+1),(n+1)(X × P1, Z) ∼= H2n,n(X, Z)⊕H2(n+1),(n+1)(X, Z).

Proof: (Indications) Throughout the proof, the Kan functor K is omitted
from the notation. Consider the cohomology group

G := [X × P1, C∗zequi(An+1, 0)]Hs(k).

The key step is to use a Brown-Gersten descent argument and the Friedlander-
Lawson-Voevodsky duality theorem [FV, Theorem 7.4] to deduce (as in the
proof of [FV, Theorem 8.2]) that G is isomorphic to

[X, C∗zequi(P1 × An+1, 1)]Hs(k).
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The localization property (Corollary 5.1.5) of the sheaves of relative cycles yields
a weak equivalence in C−N tr

k :

C∗zequi(P1 × An+1, 1) ' C∗zequi(An+1, 1)⊕ C∗zequi(A1 × An+1, 1).

Applying the duality argument in reverse yields an isomorphism:

G ∼= [X × A1, C∗zequi(An, 0)⊕ C∗zequi(An+1, 0)]Hs(k).

The terms on the right hand side are A1-local, hence this implies the result. �

5.3 Motivic chains and Eilenberg MacLane spaces

Definition 5.3.1 let n be a non-negative integer and let k be a field. The
motivic integral Eilenberg MacLane space KM(Z, n) is the isomorphism class
of objects in the A1-local pointed homotopy category H•(k) which represent
reduced motivic cohomology H̃2n,n(−, Z).

The object C∗zequi(An, 0) ∈ C≥0N tr
k yields a pointed simplicial sheaf in

∆opShvN is(Sm/k)• by applying the Kan functor; this is one model for the
motivic Eilenberg-MacLane space KM(Z, n). There exist other models, defined
in the category DM eff

− (k), which are also useful. For the convenience of the
reader, the definition of the Suslin-Voevodsky motivic chains is recalled:

Definition 5.3.2 [SV2, §3]

1. For n ≥ 0, define Ztr(Gm
∧n) to be the abelian sheaf quotient Ztr[Gm

×n]/Dn,
where Dn is the sum of the images of the homomorphisms Ztr[Gm

×n−1] →
Ztr[Gm

×n], induced by the embeddings Gm
×n−1 ↪→ Gm

×n, given by
∗ → Gm, ∗ 7→ 1 on the ith factor. The sheaf Dn is a direct summand
of Ztr[Gm

×n], so that Ztr(Gm
∧n) is a direct summand of Ztr[Gm

×n].

2. The motivic complex Z(n) of weight n is the complex of (étale) abelian
sheaves:

Z(n) := {C∗Ztr(Gm
∧n)}[−n]

By construction, Z(n) ∈ C−N tr
k can be regarded as an object of DM eff

− (k).

Proposition 5.3.3 Let k be a field admitting resolution of singularities. The
following Nisnevich sheaves with transfers give rise to isomorphic objects in
DM eff

− (k) under the composite functor

N tr
k

� � // C−N tr
k

C∗ // DM eff
− (k)

where the first functor is the inclusion as a complex concentrated in degree zero.

1. zequi(An, 0)
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2. Ztr[Pn]/Ztr[Pn−1]

3. Ztr[An]/Ztr[(An − {0})].

These objects are isomorphic to Z(n)[2n] ∼= {C∗Ztr(Gm
∧n)}[n] in DM eff

− (k).

Proof: The equivalence of the objects C∗zequi(An, 0) and C∗(Ztr[Pn]/Ztr[Pn−1])
follows from the localization sequence associated to the inclusion Pn−1 ↪→ Pn as
follows. There is an exact triangle in DM eff

− (k):

C∗zequi(Pn−1, 0) → C∗zequi(Pn, 0) → C∗zequi(An, 0) → .

Moreover, since Pn−1, Pn are proper, the first morphism identifies with the mor-
phism C∗Ztr[Pn−1] → C∗Ztr[Pn]; the cofibre of this morphism is isomorphic to
C∗(Ztr[Pn]/Ztr[Pn−1]) in DM eff

− (k).
The equivalence of the objects C∗(Ztr[Pn]/Ztr[Pn−1]) and C∗(Ztr[An]/Ztr[(An − {0})])

follows from an excision argument. There is a cartesian square

(An − {0}) //

��

An

��
(Pn − {0}) // Pn

which is derived from the evident Zariski open covering of Pn. This induces a
cocartesian square in N tr

k :

Ztr[(An − {0})] //

��

Ztr[An]

��
Ztr[(Pn − {0})] // Ztr[Pn]

in particular the cofibres of the horizontal morphisms are isomorphic in N tr
k .

Finally, the projection (Pn − {0}) → Pn−1 has the structure of a vector bundle
for the Zariski topology, hence induces an isomorphism C∗Ztr[(Pn − {0})]

∼=→
C∗Ztr[Pn−1] in DM eff

− (k); the result follows.
The equivalence with the object Z(n)[n] in DM eff

− (k) is proved by using the
object C∗(Ztr[Pn]/Ztr[Pn−1]). Consider the standard Zariski open cover U of
Pn by Ui

∼= An, for 0 ≤ i ≤ n+1, where in terms of co-ordinates for points over
an algebraically closed field, the open set corresponds to {[x0, . . . , xn]|xi 6= 0}.
Consider U0 as the distinguished open, and write U ′ for the restricted open
covering of (Pn − {0}), where 0 is the point corresponding to [1, 0, . . . , 0].

Mayer-Vietoris (associated to the Zariski open cover U) for the sheaves Ztr[U ]
(regarded as functorial in U) implies that there is a Cech complex Ztr[Ǔ ] ∈
C−N tr

k associated to the open cover, which becomes trivial in DM eff
− (k).

The cover U ′ of (Pn − {0}) likewise gives rise to a complex Ztr[Ǔ ′] ∈ C−N tr
k

which becomes trivial in DM eff
− (k) and there is a morphism of complexes:

Ztr[Ǔ ′] → Ztr[Ǔ ]
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and the cokernel again induces a trivial object in DM eff
− (k).

The quotient complex can be identified explicitly as a complex:

Ztr[Gm
×n] →

⊕
Ztr[A1 ×Gm

×n−1] →
⊕

Ztr[A2 ×Gm
×n−2] → . . .

. . . → Z[An] → Ztr[Pn]/Ztr[Pn−1].

After passage to DM eff
− (k), there is an equivalence C∗Ztr[At × Gm

×n−t] ∼=
C∗Ztr[Gm

×n−t]; the result follows by a filtration argument by using the decom-
position [SV2, Equation (3.0), §3] of the products Ztr[Gm

×n−t]. �

Remark 5.3.4 Heuristically, this result follows directly from the weak equiva-
lence

BGm 'H•(k) P∞

in the A1-local homotopy category, which is given by [MV, Proposition 4.3.7].
(Here B denotes the simplicial classifying space construction applied to the sheaf
Gm considered as an abelian monoid).

The technical point is that the derived functor of Ztr is obtained with respect
to the simplicial structure and not the A1-local structure, so this is not an
immediate consequence of the material which has been presented here.

5.4 The product structure

The product structure in motivic cohomology is induced by the intersection
product of cycles. In the case of the model C∗zequi(An, 0) for the Eilenberg-
MacLane space KM(Z, n), this product is derived from:

Proposition 5.4.1 [FV, page 117] Let k be a field, let X, X ′ ∈ Sch/k be
schemes over k and let U ∈ Sm/k be a smooth scheme. There is a pairing
of abelian presheaves:

× : zequi(X, r)⊗ zequi(X ′, r′) → zequi(X ×X ′, r + r′)

which sends a pair of cycles Z ↪→ X × U , Z ′ ↪→ X ′ × U to the cycle associated
to Z ×U W ↪→ X × Y × U .

In particular, this induces a morphism:

zequi(Am, 0)⊗ zequi(An, 0) → zequi(Am+n, 0)

which is the basis for the product structure.

Lemma 5.4.2 Let k be a field. There are product morphisms:

(KC∗zequi(Am, 0)) ∧ (KC∗zequi(An, 0)) → KC∗zequi(Am+n, 0)

in ∆opShvN is(Sm/k)• which induce morphisms:

KM(Z,m) ∧KM(Z, n) → KM(Z,m + n)

in H•(k) which are associative in the obvious sense.
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These structure morphisms in the homotopy category yield the product
structure for motivic cohomology as follows:

Definition 5.4.3 The external product for integral motivic cohomology is in-
duced by the product morphisms of Lemma 5.4.2. Let X ,Y be pointed simplicial
sheaves in ∆opShvN is(Sm/k)•, then there is an external product:

H̃2m,m(X , Z)⊗ H̃2n,n(Y, Z) → H̃2(m+n),(m+n)(X ∧ Y, Z)

which is induced by sending a pair of morphisms X → KM(Z,m) and Y →
KM(Z, n) in the pointed homotopy category ∆opShvN is(Sm/k)• to the com-
posite

X ∧ Y → KM(Z,m) ∧KM(Z, n) → KM(Z,m + n).

The product extends to other bidegrees by the usual suspension techniques.

The product can also be obtained via other models for the motivic Eilenberg-
MacLane spaces. For technical reasons it is sometimes useful to work with the
model provided by the sheaf Ztr[An]/Ztr[(An − {0})]. There is a morphism

Ztr[Am]× Ztr[An] → Ztr[Am+n]

which is given by Lemma 4.1.7.

Lemma 5.4.4 The product of cycles induces a product morphism:

Ztr[Am]/Ztr[(Am − {0})]∧Ztr[An]/Ztr[(An − {0})] → Ztr[Am+n]/Ztr[(Am+n − {0})]

in the category ∆opShvN is(Sm/k)•.

Proof: It suffices to check that the sub-sheaves Ztr[(Am − {0})]×Ztr[An] and
Ztr[Am] × Ztr[(An − {0})] map to Ztr[(Am+n − {0})] ↪→ Ztr[Am+n] under the
product map; this is straightforward. �

Remark 5.4.5 It is necessary to check that the product obtained is equivalent
in the homotopy category H•(k) to the product defined in Definition 5.4.3.

5.5 The tensor product in DM eff
− (k)

The category DM eff
− (k) is equipped with a tensor product, which is the local-

ization of a derived tensor product defined on the category D−N tr
k .

Lemma 5.5.1 [SV2, Lemma 2.6] Let k be a field. There exists a symmetric
monoidal structure ⊗L

tr : D−N tr
k ×D−N tr

k → D−N tr
k which is the derived functor

of ⊗tr : N tr
k × N tr

k → N tr
k which satisfies the identity Ztr[X] ⊗tr Ztr[Y ] →

Ztr[X × Y ].
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Suslin and Voevodsky establish that this symmetric monoidal structure passes
to the A1-localization; the field k is assumed to be perfect, since Proposition
4.2.7 is applied.

Proposition 5.5.2 [SV2, Proposition 2.8] Let k be a perfect field. There exists
a symmetric monoidal structure (⊗, Z) on DM eff

− (k) which satisfies the following
properties:

1. Let A ∈ DM eff
− (k) be a motivic complex. The functors A⊗− and −⊗ A

take exact triangles in DM eff
− (k) to exact triangles.

2. The functors A ⊗ − and − ⊗ A preserve the direct sums which exist in
DM eff

− (k).

3. The localization functor defines a functor of symmetric monoidal cate-
gories:

C∗ : (D−N tr
k ,⊗L

tr) → (DM eff
− (k),⊗)

in the sense that, for A•, B• ∈ C−N tr
k , there is a natural isomorphism:

C∗(A• ⊗L
tr B•)

∼=→ C∗(A•)⊗ C∗(B•).

Corollary 5.5.3 Let k be a perfect field. The derived functor M [−] : H(k) →
DM eff

− (k) is a functor of symmetric monoidal categories: for each X ,Y ∈
∆opShvN is(Sm/k), there is a natural isomorphism in DM eff

− (k):

M [X × Y] → M [X ]⊗M [Y].

Proof: This is a straightforward consequence of the explicit construction of
the derived functor of Ztr[−] by using split simplicial sheaves. �

Remark 5.5.4 It should be stressed that the morphism K : DM eff
− (k) → H(k)

will not respect the symmetric monoidal structures. (See the remark on page
210 of [V4]).

The tensor product in DM eff
− (k) can also be used to construct the product

in motivic cohomology, using the following result:

Lemma 5.5.5 [SV2, Lemma 3.2] Let m,n be non-negative integers, then there
is a natural quasi-isomorphism in DM eff

− (k):

Z(m)⊗ Z(n) ∼= Z(m + n).

From this point of view, the product of classes in motivic cohomology of
simplicial sheaves X ,Y ∈ ∆opShvN is(Sm/k) given by morphisms in DM eff

− (k)

α1 : M [X1] → Z(a1)[b1]
α2 : M [X2] → Z(a2)[b2]

is given by the composite:

M [X1×X2]
∼=→ M [X1]⊗M [X2]

α1⊗α2→ Z(a1)[b1]⊗Z(a2)[b2] ∼= Z(a1 +a2)[b1 + b2].
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Remark 5.5.6 It is again necessary to verify that this product is compatible
with that given in Definition 5.4.3.
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6 The algebraic Dold-Thom theorem

The explicit connection between motivic cohomology and singular cohomology
in algebraic topology is provided by the algebraic Dold-Thom theorem, which
was established by Suslin and Voevodsky. This material is essential for the
calculation of the motivic Steenrod algebra.

6.1 Symmetric products and group completion

Recall the following basic notions concerning the quotients of schemes by the
action of a finite group:

Definition 6.1.1 Let X ∈ Sch/k be a scheme which admits an action by the
finite group G; the action is said to be admissible if every orbit of points of X
is contained in some G-invariant open affine sub-scheme of X.

The following is standard:

Lemma 6.1.2 Suppose that the finite group G acts admissibly upon the scheme
X ∈ Sch/k and that H ⊂ G is a sub-group, then:

1. the quotient schemes X/G and X/H exist

2. There is an induced morphism X/H → X/G which is finite and surjective.

Example 6.1.3 Suppose that the symmetric group Sd acts admissibly upon
the product Xd, where X ∈ Sch/k (for example this happens if X is a quasi-
projective shceme). Then the quotient scheme Xd/Sd exists and is denoted
Sd(X); this is the dth symmetric product of X.

The following result is the algebraic version of the Dold-Thom theorem [DT]:

Theorem 6.1.4 [SV, Theorem 6.8] Let Z ∈ Sch/k be a scheme such that any
finite subset of Z is contained in an open affine set. Let S be a normal, connected
scheme, then there is an isomorphism:

Ztr[Z](S)[
1
p
]
∼=→ hom(S,qd≥0S

d(Z))+[
1
p
],

where the (.)+ denotes the group completion of the monoid structure induced by
the monoid structure of qd≥0S

d(Z) and p is the exponential characteristic of k.

In particular, this implies:

Corollary 6.1.5 Let Z ∈ Sch/k be a scheme such that any finite subset of Z
is contained in an open affine set and let k be a field of characteristic zero, then
there is an isomorphism of Zariski sheaves on Sm/k:

Ztr[Z]
∼=→ (qd≥0S

d(Z))+

where the group completion is formed in the category of sheaves.

44



The group completion of a monoid in the category of simplicial sheaves is
considered in [MV, §4.1]; the simplicial category structure on the category of
simplicial sheaves is used to define the group completion, so that the argument
reduces, with respect to the simplicial model structure, to the classical case of
group completion of a simplicial monoid [Q] by passage to the points of the site.
However, the connectivity hypothesis is too restrictive, and the subtle part of
the argument is the passage from the simplicial case [MV, Proposition 4.1.9] to
the A1-local result [MV, Theorem 4.1.10].

This requires the notion of A1-connectivity, which is the A1-local version
of connectivity. In particular, it will be necessary to know that the sheaves
represented by symmetric products of Pn are A1-connected.

Definition 6.1.6

1. The functor π0 : ∆opShvN is(Sm/k) → ShvN is(Sm/k) is the left adjoint to
the constant simplicial structure functor ShvN is(Sm/k) → ∆opShvN is(Sm/k).
Explicitly the sheaf π0X associated to X ∈ ∆opShvN is(Sm/k) is the sheaf
colimit of the diagram X1 ⇒ X0; equivalently, π0X is the sheaf associated
to the presheaf U 7→ π0(X (U)), where π0 here refers to the usual functor
on the category of simplicial sets.

2. A simplicial sheaf X is said to be connected if π0X is the trivial sheaf
(namely the constant sheaf which is a singleton set on each scheme).

3. A scheme X ∈ Sm/k is said to be connected if the simplicial sheaf which
it represents is connected.

Remark 6.1.7

1. Suppose that X is a simplicial sheaf with constant simplicial structure,
then π0X ∼= X0; in particular, X is connected if and only if X is the trivial
sheaf.

2. There is a natural surjection of sheaves X0 → π0X .

Notation 6.1.8 Let X → LA1X denote a functorial A1-local resolution in the
category ∆opShvN is(Sm/k), so that LA1X is A1-local and the morphism is an
A1-weak equivalence.

Definition 6.1.9 [MV, §3.2.1] A simplicial sheaf X ∈ ∆opShvN is(Sm/k) is A1-
connected if the A1-localization LA1X is connected. If X is a smooth scheme
then X is said to be A1-connected if the sheaf represented by X with constant
simplicial structure is A1-connected.

It is straightforward to check that the definition is independent of the choice
of A1-local resolution. In particular, an A1-local sheaf is connected if and only
if it is connected.

Example 6.1.10 The sheaf Gm is A1-local, since O∗ is homotopy invariant for
regular schemes. It follows that Gm is not A1-connected.
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An understanding of an explicit construction of an A1-localization functor
is necessary to obtain examples of A1-connected sheaves. Recall the following
definition, which is the analogue of Definition 4.2.8:

Definition 6.1.11 [MV, §2.3.2] Let SingA1

∗ : ∆opShvN is(Sm/k) → ∆opShvN is(Sm/k)
denote the singular functor defined by

X 7→ diag{Hom(∆∗alg,X )}

where ∆∗alg denotes the standard algebraic cosimplicial scheme with ∆n
alg rep-

resented by affine space An and Hom is the internal hom in the category of
sheaves applied degreewise.

There is a canonical monomorphism X → SingA1

∗ (X ), which is an A1-weak
equivalence [MV, Corollary 2.3.8]. This is a first approximation to an A1-local
resolution; however, even if X is fibrant, SingA1

∗ (X ) need not be A1-local [MV,
Example 3.2.7]. The following result is a consequence of the explicit construction
of an A1-fibrant resolution functor.

Proposition 6.1.12 [MV, Corollary 2.3.22] Suppose that X ∈ ∆opShvN is(Sm/k)
is a simplicial sheaf and that X → X ′ is an A1-weak equivalence, with X ′ A1-
local, then π0X → π0X ′ is an epimorphism of sheaves.

Corollary 6.1.13 Let X ∈ ∆opShvN is(Sm/k) be a simplicial sheaf. Suppose
that SingA1

∗ (X ) is connected, then X is A1-connected.

The sheaf π0SingA1

∗ (X ) is the sheaf associated to the presheaf:

U 7→ colim{X1(U × A1) ⇒ X0(U)},

where the morphisms are the diagonal morphisms induced by the simplicial
structure of X and the morphisms induced by the diagram U ⇒ U ×A1, corre-
sponding to the rational points 0, 1 of A1. In particular, if X is represented by
a scheme X, with constant simplicial structure, then π0SingA1

∗ (X ) is the sheaf
colimit of the diagram:

Hom(A1, X) ⇒ X

where the objects are interpreted as sheaves.

Definition 6.1.14 A simplicial sheaf X is A1-contractible if:

1. X is pointed by Spec(k) → X .

2. There is an elementary A1-homotopy [MV, §2.3] between 1X and the com-
posite X → Spec(k) → X .

Example 6.1.15 Let L/k be a finite separable extension of fields. Observe
that the scheme Spec(L) is not A1-contractible, since it does not have a rational
point, although Spec(L) is a one point scheme. This is reasonable, since base
change to Spec(L) yields a non-connected scheme.
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The following result is a consequence of [MV, 2.3.4, 2.3.8]:

Lemma 6.1.16 Let X be an A1-contractible simplicial sheaf, then:

1. There is a simplicial weak equivalence SingA1

∗ (X ) ' ∗.

2. X is A1-connected.

This yields the following criterion for A1-connectivity:

Proposition 6.1.17 Let k be a field which admits resolution of singularities.
Let X ∈ Sch/k be an irreducible scheme such that:

1. Rational points are dense in X.

2. Every point of X admits an A1-contractible open neighbourhood.

Then the simplicial sheaf represented by X is A1-connected.

Proof: (Sketch) The result is required for non-smooth schemes and, in par-
ticular, requires Mayer-Vietoris squares which are homotopy cocartesian in the
homotopy category; the A1-connectivity should be treated with respect to the
cdh-topology. This is the origin of the hypothesis that k should admit resolution
of singularities.

The argument is an induction based upon the following: suppose that X ad-
mits a Zariski covering by A1-connected schemes U, V , then there is a homotopy
cartesian diagram

U ∩ V //

��

U

��
V // X.

The A1-localization functor applied to this diagram should yield a homotopy
cocartesian diagram:

LA1(U ∩ V ) //

��

LA1U

��
LA1V // LA1X.

where, by hypothesis π0LA1U = ∗ = π0LA1V and π0LA1(U ∩ V ) is non-trivial.
It follows that π0LA1X = ∗, as required. �

Corollary 6.1.18 Let k be a field which admits resolution of singularities and
let t ≥ 1 be an integer. The simplicial sheaves represented by the symmetric
products St(Pn), n ≥ 0 are A1-connected.

Example 6.1.19 The simplicial sheaf represented by Pn is A1-connected, for
n ≥ 0 (without any hypothesis on the base field).
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With this understanding of A1-connectivity, we return to the refined version
of group completion.

Definition 6.1.20 (Compare with [MV, Definition 4.1.8]). Suppose that any
finite subset of the scheme Z ∈ Sch/k is contained in an open affine set and
that Z is pointed by a choice of a rational point ∗. Multiplication by ∗ induces a
morphism Sd(Z) → Sd+1(Z) and hence a morphism in the category of sheaves:

qd≥0S
d(Z) → qd≥0S

d(Z).

Define S∞(Z) to be the colimit in the category of sheaves of the associated
direct system.

The A1-local version of the group completion theorem [MV, Theorem 3.1.10]
has the following consequence in this context:

Theorem 6.1.21 Let k be a field of characteristic zero and let Z be a quasi-
projective scheme, such that the schemes St(Z) are A1-connected for each t ≥ 0,
then there are A1-weak equivalences:

Ztr[Z]

'A1

��
Z× S∞(Z) 'A1

// RΩ1
sB(qSd(Z)),

where RΩ1
s indicates the derived functor of the simplicial loop functor Ω1

s, which
is right adjoint to the simplicial suspension Σs.

In particular, Corollary 6.1.18 implies the following result, which is the ver-
sion of the algebraic Dold-Thom theorem which is used.

Corollary 6.1.22 Let k be a field of characteristic zero and suppose that n ≥ 0,
then there is an equivalence in the A1-local homotopy category:

Ztr[Pn] 'A1 Z× S∞(Pn).

6.2 Consequences of the algebraic Dold-Thom theorem

The algebraic Dold-Thom theorem, Theorem 6.1.4, is the basis of the compari-
son theorem of Suslin-Voevodsky between the algebraic singular cohomology of
a separated variety (non necessarily smooth) over the complex numbers C and
the ordinary singular cohomology of its complex realization.

Theorem 6.2.1 [SV, Theorem 8.3] Let Z be a separated variety over C and let
n ≥ 0 be an integer, then there is a natural isomorphism:

H∗(Z(C), Z/n) → H∗sing(Z, Z/n).
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In the homotopical approach to motivic cohomology, there is the following
analogous result, using the complex realization functor of Section 2.4:

Theorem 6.2.2 Let x : k ↪→ C be a complex embedding of fields and let tC
x :

H•(k) → H• be the complex realization functor to the classical pointed homotopy
category of topological spaces, then there is an isomorphism:

tC
x(KM(Z/n, m)) ∼= K(Z/n, 2m)

for any integers m,n ≥ 0.

Proof: (Indications) This is a consequence of the classical Dold-Thom theo-
rem in algebraic topology together with the algebraic version, Theorem 6.1.21.
The proof requires working with non-smooth schemes and hence relies on the
passage to the cdh-topology together with the comparison theorem of [V6]. �

Corollary 6.2.3 Let X be a simplicial sheaf and let x : k ↪→ C be a complex
embedding of the field k. There is a morphism of Z/l-algebras:

(tC
x)∗ : Hd,n(X , Z/l) → Hd(tC

x(X ), Z/l),

where the right hand side denotes the singular cohomology of the realization
tC
x(X ) of X .

The morphism (tC
x)∗ is a morphism of H∗,∗(Spec(k), Z/l)-algebras, via the

induced morphism of algebras

(tC
x)∗ : Hd,n(Spec(k), Z/l) → Hd(∗, Z/l) ∼= Z/l,

where Z/l is concentrated in bidegree (0, 0).

Proof: (Indications) This follows directly from Theorem 6.2.2; the statement
about the multiplicative structure follows since the realization functor tC

x re-
spects the monoidal structure. �
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7 Basic properties of motivic cohomology

The purpose of this section is to collect some basic properties of motivic coho-
mology which are used in this paper.

7.1 Motivic cohomology of small weights and vanishing
conditions

The following result is a straightforward consequence of the explicit identifica-
tion of the complexes of sheaves Z, Z(1) in C−N tr

k .

Proposition 7.1.1 [SV2, Corollary 3.2.1] Let k be a field and let X ∈ Sm/k be
a smooth scheme over k. There are identifications of integral motivic cohomology
in weights zero and one:

Hi,0(X, Z) =
{

H0
Zar(X, Z) i = 0

0 i 6= 0

Hi,1(X, Z) =

 H0
Zar(X,O∗) i = 1

Pic(X) i = 2
0 i 6∈ {1, 2}

.

The connection with Bloch’s higher Chow groups is made explicit by the
following result, which is a cohomological reformulation of [V4, Theorem 4.2.9],
using the duality theorem [V4, Theorem 4.3.7]:

Theorem 7.1.2 Let k be a field admitting resolution of singularities and let k
be a smooth quasi-projective scheme which is equidimensional of dimension n,
then there is a canonical isomorphism:

H2m−t,m(X, Z) ∼= CHm(X, t)

where the groups on the right hand side denote Bloch’s higher Chow groups.

In particular, there is the following identification of the motivic cohomology
of a point in bidegrees of the form (n, n).

Theorem 7.1.3 [SV2, Theorem 3.4 ] Let k be a field and let n be a non-negative
integer. The motivic cohomology groups Hn,n(Speck, Z) are isomorphic to the
Milnor K-groups KM

n (k).

It is also useful to have vanishing results for motivic cohomology:

Proposition 7.1.4 [V1, Corollary 2.2] Let k be a field admitting resolution
of singularities and let X be a simplicial sheaf in ∆opShvN is(Sm/k), then the
motivic cohomology groups Hp,q(X , Z) are trivial in the following cases:

1. q < 0

2. q = 0 and p < 0
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3. q = 1 and p ≤ 0.

When X has constant simplicial structure and is represented by a smooth
scheme, then the following applies:

Proposition 7.1.5 [V1, Corollary 2.3] Let k be a field admitting resolution of
singularities and let X be a smooth scheme over k, then the motivic cohomology
group H2m−t,m(X, Z) is zero for:

1. t < 0

2. m− t > dim X.

7.2 Motivic cohomology with coefficients

The definition of motivic cohomology with coefficients in an abelian group is
straightforward.

Definition 7.2.1 Let A ∈ Ab be an abelian group; the motivic cohomology of
a simplicial sheaf X ∈ ∆opShvN is(Sm/k) with coefficients in A is defined in
bidegrees (2n, n) as the group of homomorphisms:

[X , C∗(zequi(An, 0)⊗A)]Hs(k)

where the tensor product can be interpreted either in DM eff
− (k) or in D−Nk.

In particular, this definition applies when l is a prime and A = Z/l. The
proof that integral motivic cohomology defines a bigraded cohomology theory
extends to the case of motivic cohomology with coefficients to give:

Theorem 7.2.2 Let k be a field admitting resolution of singularities, then mo-
tivic cohomology with coefficients Z/l is a bigraded cohomology theory on H(k).

Definition 7.2.3 Let l be a rational prime and let n be a non-negative integer.
The mod-l motivic Eilenberg-MacLane space KM(Z/l, n) is the isomorphism
class in ∆opShvN is(Sm/k)• of objects which represent mod-l motivic cohomol-
ogy in bidegree (2n, n).

For the purposes of constructing the Steenrod reduced power operations, the
following notation is fixed for an explicit model for the mod-l Eilenberg-MacLane
space:

Notation 7.2.4 Let n be a positive integer.

1. Let Ztr(An/(An − {0})) denote the abelian Nisnevich sheaf with transfers

Ztr[An]/Ztr[(An − {0})],

where the quotient is taken in the category of abelian Nisnevich sheaves
with transfers.
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2. Let Ztr(An/(An − {0}), Z/l) denote the abelian Nisnevich sheaf with trans-
fers Ztr(An/(An − {0})) ⊗ Z/l. Thus, Ztr(An/(An − {0}), Z/l) gives a
model for KM(Z/l, n).

The definition of the product structure on integral motivic cohomology car-
ries over to the case with coefficients; in particular, for X ,Y ∈ ∆opShvN is(Sm/k),
there is a natural exterior product:

H∗,∗(X , Z/l)⊗H∗,∗(Y, Z/l) → H∗,∗(X × Y, Z/l).

In particular, taking X to be the sheaf represented by Speck, this induces:

H∗,∗(Speck, Z/l)⊗H∗,∗(Y, Z/l) → H∗,∗(Y, Z/l).

Lemma 7.2.5 Let k be a field, then the mod-l motivic cohomology H∗,∗(Spec(k), Z/l)
has the structure of a bigraded Fl-algebra (non-commutative).

Definition 7.2.6 Let k be a field. The Bockstein operator β : H∗,∗(−, Z/l) →
H∗+1,∗(−, Z/l) is the natural transformation which is induced by the exact
triangle in D−Nk:

Z/l(n) → Z/l2(n) → Z/l(n) → .

The following is clear:

Lemma 7.2.7 Let k be a field admitting resolution of singularities, then the
Bockstein operator is a bistable cohomology operation for mod-l motivic coho-
mology.

The algebra H∗,∗(Speck, Z/l) is the coefficient ring of motivic cohomology
with coefficients Z/l; the following results give information on its structure:

Proposition 7.2.8 Let k be a field which admits resolution of singularities,
then:

1. Hp,q(Spec(k), Z/l) = 0 if one of the following conditions holds:
p > q
q < 0
q = 0, p 6= 0
q = 1, p 6= 0, 1.

2. Hp,p(Spec(k), Z/l) = KM
p (k)/l, mod-l Milnor K-theory.

3. H0,1(Spec(k), Z/l) = µl(k), where µl is the sheaf of lth roots of unity.

The following example defines elements which are of importance in the con-
struction of the Steenrod reduced power operations.

Example 7.2.9 Let k be a field and let l = 2; there are canonical elements:
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1. τ ∈ H0,1(Spec(k), Z/2), corresponding to the element −1 ∈ µ2(k).

2. ρ ∈ H1,1(Spec(k), Z/2), corresponding to the class of −1 ∈ k∗/k∗ 2.

Lemma 7.2.10 Let k be a field and let l = 2 then the Bockstein yields a relation
βτ = ρ.

In the case that k has characteristic zero, one has the following:

Theorem 7.2.11 (Voevodsky) Let k be a field of characteristic zero and let
l = 2, then there is an isomorphism:

H∗,∗(Spec(k), Z/2) ∼= (KM (k)/2)[τ ],

where the elements of KM
p (k)/2 are placed in bidegree (p, p).

7.3 The projective bundle theorem and the Thom isomor-
phism theorem

Motivic cohomology satisfies a projective bundle theorem; this is the basis for
the theory of Chern classes for motivic cohomology and the Thom isomorphism
theorem. An analogue of these results holds for any multiplicative cohomology
theory which is induced from a ring spectrum with a P∞-orientation in the
stable homotopy category of T -spectra [M]. (The notion of a spectrum with
P∞-orientation is a generalization of that of a complex-oriented ring spectrum
in the usual stable homotopy category of algebraic topology).

Let ξ be a rank n vector bundle over a smooth scheme X ∈ Sm/k; write
Pξ for the associated projective bundle over X and λξ for the canonical line
bundle over Pξ. Motivic cohomology of weight one is known, by Proposition
7.1.1; there is an isomorphism H2,1(X, Z) ∼= Pic(X), hence the line bundle λξ is
classified by a cohomology class c(λξ) ∈ H2,1(Pξ, Z). The cup product defines
classes c(λξ)i ∈ H2i,i(Pξ, Z).

Theorem 7.3.1 [V4, 3.5.1] Let k be a field which admits resolution of singu-
larities and let ξ be a vector bundle of rank n over a smooth scheme X ∈ Sm/k.
Suppose that A is a commutative ring, then H∗,∗(Pξ,A) is a free H∗,∗(X, A)-
module on the classes {c(λξ)i|0 ≤ i ≤ n− 1}.

Remark 7.3.2

1. The hypothesis that k admits resolution of singularities is necessary since
the proof uses the fact that motivic cohomology has a suspension isomor-
phism with respect to suspension by P1. 3

2. Coefficients are taken in a commutative ring so that a product structure
is defined.

3This requirement can now be removed, according to Voevodsky.
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Theorem 7.3.1 implies formally that motivic cohomology has a theory of
Chern classes: there are cohomology classes ci(ξ) ∈ H∗,∗(X), defined by the
equation:

c(λξ)n =
n∑

i=1

(−1)i−1ci(ξ)c(λξ)n−i.

ci(ξ) is the ith Chern class of the vector bundle ξ. These classes satisfy stan-
dard properties which are deduced axiomatically by using the splitting principle
(compare with [Gro]).

The projective bundle theorem also gives a proof of the Thom isomorphism
theorem for motivic cohomology. Let θ denote the trivial bundle of rank one
on the scheme X ∈ Sm/k; there is a natural morphism of pointed simplicial
sheaves

P(ξ ⊕ θ)/P(ξ) → Th(ξ),

which is an A1-homotopy equivalence (see Example 2.7.2). This allows the
description of the Thom class uξ of a vector bundle ξ:

Theorem 7.3.3 Let k be a field which admits resolution of singularities and
let ξ be a vector bundle of rank n over the scheme X ∈ Sm/k. There exists
a unique cohomology class uξ ∈ H2n,n(Th(ξ)) such that, for any closed point
Spec(k(x)) → X, the restriction uξ|Spec(k(x)) = u∪n, where u ∈ H2,1(P1) is the
canonical class and u∪n ∈ H∗,∗(Th(ξ|Spec(k(x)))) ∼= H∗,∗(P1 ∧n).

Proof: The existence of the Thom class follows formally from the properties of
Chern classes, as follows: the sequence P(ξ) → P(ξ ⊕ θ) → Th(ξ) is equivalent
to a cofibration sequence and induces a short exact sequence in cohomology

H̃∗,∗(Th(ξ)) → H∗,∗(P(ξ ⊕ θ)) → H∗,∗(P(ξ)),

since H∗,∗(P(ξ ⊕ θ)) → H∗,∗(P(ξ)) is surjective, by the projective bundle theo-
rem. Consider the class

n∑
i=0

(−1)i−1ci(ξ ⊕ θ)c(λξ⊕θ)n−i ∈ H∗,∗(P(ξ ⊕ θ)).

By construction, this class is sent to zero in H∗,∗(P(ξ)) and hence arises from a
class uξ in H̃∗,∗(Th(ξ)).

The uniqueness of the Thom class follows from the construction above and
the proof of the projective bundle theorem. �

The Thom class gives rise to the Thom isomorphism theorem for motivic
cohomology:

Theorem 7.3.4 [V1, Theorem 3.20] Let k be a field which admits resolution of
singularities and let ξ be a vector bundle of rank n over X ∈ Sm/k. The
cup product with the Thom class uξ induces an isomorphism: H∗,∗(X) →
H̃∗+2n,∗+n(Th(ξ)).
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7.4 The Gysin sequence

There are Gysin sequences for motivic cohomology, which are deduced from the
following homotopy purity theorem, together with the Thom isomorphism for
motivic cohomology.

Theorem 7.4.1 [MV, Theorem 3.2.23] Let i : Z ↪→ X be a closed embedding
of smooth k-schemes and let νX,Z denote the normal bundle to i over Z. There
is a canonical isomorphism in H•(k):

X/(X − iZ) ∼= Th(νX,Z).

Remark 7.4.2 This result depends on the fact that the the Grothendieck
topology is at least as strong as the Nisnevich topology and the fact that the
schemes are smooth.

The Thom isomorphism theorem implies the following result:

Corollary 7.4.3 Let i : Z ↪→ X be a closed embedding of smooth k-schemes
which is everywhere of codimension d, then the cofibration sequence

(X − iZ) → X → Th(νX,Z)

induces a long exact sequence in motivic cohomology with coefficients in a com-
mutative ring A:

. . . → H∗−2d,∗−d(Z,A)
∪cd(ν)→ H∗,∗(X, A) → H∗,∗(X − iZ, A) → . . . .

Remark 7.4.4 Corollary 7.4.3 generalizes immediately to any multiplicative
cohomology theory which satisfies a Thom isomorphism theorem.

In the case that the closed immersion is the zero section of a vector bundle
of constant rank over a smooth scheme, one obtains the following:

Proposition 7.4.5 [V4, 3.5.4] Let k be a field which admits resolution of sin-
gularities and let ξ be a vector bundle of rank d on X ∈ Sm/k. Suppose that A
is a commutative ring, then there is an exact sequence of H∗,∗(X, A) modules:

. . . → H∗−2d,∗−d(X, A)
∪cd(ξ)→ H∗,∗(X, A) → H∗,∗(E(ξ)×, A) → . . . .
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8 Classifying spaces

In algebraic topology, the classifying space BZ/2 represents the singular co-
homology group H1(−, Z/2); in particular BZ/2 has an ‘infinite loop space
structure’ and the space BZ/2 plays a fundamental rôle in studying singular
cohomology with Z/2-coefficients. This is exemplified by the work of Lannes
which yields his proof to the Sullivan conjecture [La]. Similar statements hold
for motivic cohomology with Z/l-coefficients, for l an odd prime.

The purpose of this section is to introduce the analogous notions of classify-
ing space in A1-homotopy theory. In particular, the construction of the Steenrod
squaring operations given here follows from the construction of the total Steen-
rod power map; this depends on the usage of the geometric classifying space of
Z/2.

8.1 Classifying spaces in A1-homotopy theory

The geometric classifying space of a linear algebraic group is defined following a
standard construction of the classifying space of a group in algebraic topology.
The proof that this has a suitable homotopical meaning introduces the étale
classifying space [MV, §4.2].

Definition 8.1.1 [MV, §4.2] Let G be a linear algebraic group over k, namely
a closed subgroup of GLm(k), for some m, with given closed embedding i : G ↪→
GLm(k).

For t ≥ 1, let Ut denote the open subscheme of Amt on which the diagonal
action of G induced by the embedding i : G ↪→ GLm(k) is free. Let Vt := Ut/G
denote the quotient scheme, which is a smooth scheme which identifies with the
image of Ut in Amt/G.

The embeddings Amt ↪→ Am(t+1) induced by At ↪→ At+1, (x1, . . . , xt) 7→
(x1, . . . , xt, 0) induce closed embeddings Ut ↪→ Ut+1 and Vt ↪→ Vt+1. Define

Egm(G, i) := colimt∈NUt

Bgm(G, i) := colimt∈NVt

where the colimit is taken in the category of sheaves. The sheaf Bgm(G, i) is
the geometric classifying space of G.

The étale classifying space of a sheaf of groups is defined below and has a
canonical description in the homotopy category H(k). Write (Sm/k)T for the
category of sheaves on Sm/k with respect to the topology T .

Definition 8.1.2 Let G ∈ (Sm/k)Nis be a sheaf of groups and let E(G) →
B(G) denote the universal G-torsor [MV, 4.1.1], so that B(G) denotes the as-
sociated ‘classifying’ simplicial sheaf. The morphism of sites π : (Sm/k)et →
(Sm/k)Nis, induces adjoint functors π∗ a Rπ∗ between the corresponding ho-
motopy categories with respect to the simplicial model structure.

The étale classifying space of G, BetG, is defined as Rπ∗π
∗(B(G)) ∈ Hs(k).
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If G is an étale sheaf of groups, then the étale classifying space BetG is
represented by BetG, where B(G) → BetG is a fibrant model with respect to
the simplicial model structure for the étale topology on ∆opShvet(Sm/k).

The following result can be interpreted as showing that the class of the geo-
metric classifying space Bgm(G, i) in the homotopy categoryH(k) is independent
of the embedding i.

Proposition 8.1.3 [MV, Proposition 4.2.6] Let k be an infinite field and let G
be a linear algebraic group over k. The geometric classifying space Bgm(G, i) is
isomorphic in H(k) to the étale classifying space BetG.

Proof: (Indications). It is sufficient to check that the hypotheses of [MV,
Proposition 4.2.6] are satisfied for the group G and the construction in Defini-
tion 8.1.1. The sheaf of groups is representable, hence is an étale sheaf; moreover
[MV, Example 4.2.2] shows that Bgm(G, i) is constructed from an admissible
gadget (in the terminology of loc. cit.). It remains to check that the conditions
(1),(2),(3) of [MV, Definition 4.2.4] are satisfied. The field k is assumed to be
infinite hence condition (3) is satisfied, by the remark before [MV, Example
4.2.10]. Moreover, the condition (2) is satisfied, by construction; the proof is
completed by verifying that condition (1) of [MV, Definition 4.2.4] is satisfied. �

In particular, this Proposition shows that the following terminology makes
sense in the homotopy category.

Notation 8.1.4 Let G be a linear algebraic group over an infinite field k; the
isomorphism class in the homotopy category H(k) of the geometric classifying
space Bgm(G, i) associated to a closed immersion i : G ↪→ GLm(k) is denoted
by BgmG.

Remark 8.1.5 The motivation for introducing the étale classifying space into
the discussion of the geometric classifying space is to establish étale descent,
allowing the functor H1

et(−, G) to be related to the functor represented by BgmG
on the homotopy category H(k).

One has the following:

Proposition 8.1.6 Let k be a field of characteristic zero, then the geometric
classifying space BgmZ/2 represents motivic cohomology with Z/2-coefficients
H1,1(−, Z/2).

Proof: (Indications) This follows from Hilbert’s Theorem 90 (Lemma 8.3.1),
Proposition 8.1.3 together with the results of Morel-Voevodsky upon étale clas-
sifying spaces [MV, Section 4.1.4] and [MV, Proposition 4.3.1]. �
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8.2 The lens space Bgmµl

The group scheme µl of lth roots of unity is the affine group scheme Spec(k[T ]/T l−
1), which is a linear algebraic group via the closed embedding µl ↪→ Gm which
is induced by the surjection of Hopf algebras k[T, T−1] → k[T ]/T l − 1. The
standard action of Gm upon A1 restricts to an action of µl upon A1. This in-
duces a diagonal action of µl upon An, for n ≥ 1 an integer, which restricts to
an action upon (An − {0}).

Lemma 8.2.1 Let n ≥ 1 be an integer; the morphism (An − {0}) → Pn−1 has
the structure of a (Zariski) Gm-torsor and the restriction of the Gm-action on
(An − {0}) to µl coincides with the above action.

Definition 8.2.2 Let n ≥ 1 be an integer.

1. Let Wn denote the quotient scheme (An − {0})/µl.

2. Let Wn ↪→ Wn+1 denote the closed embedding induced by the embedding
An → An+1, {x1, . . . , xn} 7→ {x1, . . . , xn, 0}

3. Let Bgmµl denote the colimit

Betµl := lim→
n→∞

Wn,

where the colimit is taken in the category of sheaves.

The following result is standard:

Lemma 8.2.3 Let k be a field which contains a primitive lth root of unity.
The (étale) sheaf represented by µl is (non-canonically) isomorphic to the sheaf
defined by the discrete abelian group Z/l.

Proposition 8.2.4 Let k be a field which contains a primitive lth root of unity,
then there is a (non-canonical) isomorphism

Bgmµl
∼= BgmZ/l

in ∆opShvN is(Sm/k). In particular, Bgmµl is a model for the étale classifying
space of Z/l.

The following result is the key to performing the calculation of the motivic
cohomology of Bgmµl.

Proposition 8.2.5 Let k be a field, n ≥ 1 be an integer and let λ denote the
canonical line bundle over Pn−1. The scheme Wn is a smooth k-scheme, which
is isomorphic to E(λ⊗l)×, the complement of the zero section of the line bundle
λ⊗l over Pn−1.
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Proof: (Indications). This is a case of a more general result. The total space
E(λ⊗l) identifies with (A1)∼×Gm

(An − {0}), where Gm acts on (A1)∼ through

the map Gm
(−)l

→ Gm and the standard Gm-action. The complement of the zero
section then identifies with

(Gm)∼ ×Gm
(An − {0})

and hence with (An − {0})/µl. �

Corollary 8.2.6 Let X be a smooth scheme over the field k; the scheme X×Wn

is smooth and identifies with E(X ×λ⊗l)×, where X ×λ⊗l denotes the pullback
of λ⊗l to X × Pn−1, via the projection X × Pn−1 → X.

8.3 The cohomology of X ∧Bgmµl+

There are canonical elements a ∈ H1,1(Wn, Z/l) and b ∈ H2,1(Wn, Z/l), which
permit the description of H∗,∗(Wn, Z/l). Their description requires the following
result:

Lemma 8.3.1 Let k be a field.

1. (Hilbert 90) There is an isomorphism H1,1(X, Z/l) ∼= H1
et(X, µl).

2. If X ∈ Sm/k, there is a commutative diagram:

H1,1(X, Z/l) B→ H2,1(X, Z)
↓ ↓

H1
et(X, µl) → H1

et(X, Gm)

in which B denotes the integral Bockstein operator and the vertical arrows
are isomorphisms.

Definition 8.3.2

1. Let b ∈ H2,1(Wn, Z/l) denote the image of c1(λ) ∈ H2,1(Pn−1, Z/l) under
the map H2,1(Pn−1, Z/l) → H2,1(Wn, Z/l) induced by Wn → Pn−1.

2. Let a ∈ H1,1(Wn, Z/l) correspond to the class in H1
et(X, µl) classifying

the µl-torsor defining Wn, via Lemma 8.3.1(i).

Lemma 8.3.1(2) implies:

Lemma 8.3.3 The classes a, b are linked by the Bockstein operation: β(a) = b.

The Gysin sequence of Proposition 7.4.5, applied using Corollary 8.2.6, im-
plies the following result:
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Lemma 8.3.4 Let X ∈ Sm/k be a smooth k-scheme and let n ≥ 1 be an
integer. The Gysin sequence for E(X × λ⊗l)× induces a short exact sequence
of H∗,∗(X × Pn−1)-modules:

H∗,∗(X × Pn−1, Z/l) → H∗,∗(X ×Wn, Z/l) → H∗−1,∗−1(X × Pn−1, Z/l).

Proof: The first Chern class for motivic cohomology is additive with respect to
tensor products of line bundles, hence the class c1(λ⊗l) identifies with lc1(λ). It
follows that cup product with the class c1(X×λ⊗l) is trivial in motivic cohomol-
ogy with Z/l-coefficients. The result therefore follows directly from Proposition
7.4.5. �

The calculation (Lemma 8.3.5) of the cohomology H∗,∗(X×Pn−1, Z/l) as an
H∗,∗(X, Z/l)-module is a special case of the projective bundle theorem, Theorem
7.3.1.

Lemma 8.3.5 Let k be a field which admits resolution of singularities, let n ≥ 1
be an integer and let X ∈ Sm/k be a smooth scheme; then H∗,∗(X×Pn−1, Z/l) is
a free H∗,∗(X, Z/l)-module on classes c, . . . , cn−1, where c is the mod-l reduction
of the first Chern class of the pullback of λ.

Proposition 8.3.6 Let k be a field of characteristic zero and let X ∈ Sm/k be
a smooth scheme. There is an isomorphism of H∗,∗(X, Z/l)-modules:

H∗,∗(X ×Betµl, Z/l) ∼= H∗,∗(X, Z/l)[a, b]/ ∼,

where ∼ denotes the relation a2 = 0 if l 6= 2 and a2 = τb + ρa, for l = 2.

The proof of this result requires the calculation of the relation involving the
class a2. This can be established using the complex realization argument of
Corollary 6.2.3.

Proof of Proposition 8.3.6: The Gysin (short) exact sequence given by
Lemma 8.3.4 together with Lemma 8.3.5 establish that H∗,∗(X ×Wn, Z/l) is a
free H∗,∗(X, Z/l)-module on the classes abi, bi, 0 ≤ i ≤ n−1. The cohomology of
X ×Betµl is obtained as the inverse limit of the tower of surjections associated
to Wn ↪→ Wn+1 (As usual in considering the cohomology of a colimit, care
should be taken with the lim1

← term).
Suppose that l = 2; there is a relation involving a2, which is easily seen to

be of the form a2 = ετb + ηa, where ε ∈ {0, 1} and η ∈ H0,1(Spec(k), Z/2).
Suppose that k = C, so that ηC = 0; thus the relation has the form a2 = εCτb,

and it suffices to show that εC is non-trivial. Consider the Complex realization
functor tC : H•(C) → H•. The topological space tC(Bgmµl) identifies with
RP∞, which has cohomology algebra Z/2[u] on a class u of degree one which
corresponds to a. In particular, u2 is non-trivial, hence a2 must be non-trivial,
by Corollary 6.2.3. The case of a general field is treated by a functoriality
argument.4

4Voevodsky has shown that usage of complex realization can be avoided.
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Thus, the relation has the form a2 = τb + ηa. The Bockstein operator is
a derivation and βτ = ρ, βa = b; moreover, for reasons of bidegree, βη = 0.
Therefore there is an equality β(a2) = 0 = ρb + ηb, which yields η = ρ, as
required.

The case l odd is treated similarly. �

Remark 8.3.7 The calculation of Proposition 8.3.6 using the Gysin sequence
in motivic cohomology can be generalized, by passing to the category DM eff

− (k)
and using the Gysin sequence in this setting. Essentially, there is a Künneth-
style formula for the cohomology of any object of the form X × Bgmµl, since
the reduced motive of Bgmµl is a direct sum of motives of the form Z/l(∗1)[∗2].
This implies the following result.

Proposition 8.3.8 Let k be a field of characteristic zero and let X ∈ ∆opShvN is(Sm/k)
be a simplicial sheaf. There is a natural isomorphism of H∗,∗(X , Z/l)-modules:

H∗,∗(X ×Betµl, Z/l) ∼= H∗,∗(X , Z/l)[a, b]/ ∼,

where ∼ denotes the relation a2 = 0 if l 6= 2 and a2 = τb + ρa, for l = 2.
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9 Properties of the motivic Steenrod algebra

The purpose of this section is to discuss the basic properties of the motivic
Steenrod algebra and of the Steenrod squaring operations.

9.1 The motivic Steenrod algebra

Throughout this section, let l be a fixed prime and let k be a field admitting
resolution of singularities.

Definition 9.1.1 The mod-l motivic Steenrod algebra, A∗,∗(k, Z/l), is the al-
gebra of bistable cohomology operations for motivic cohomology H∗,∗(−, Z/l).

Example 9.1.2

1. The Bockstein operator β defines a bistable cohomology operation in
A1,0(k, Z/l), by Lemma 7.2.7.

2. Multiplication by an element of H∗,∗(Spec(k), Z/l) defines a bistable co-
homology operation, hence there is a bi-homogeneous inclusion

H∗,∗(Spec(k), Z/l) ↪→ A∗,∗(k, Z/l),

which is a homomorphism of algebras over Z/l.

Remark 9.1.3 The action of the Bockstein operation given in Lemma 7.2.10
shows that the image of H∗,∗(Spec(k), Z/l) in A∗,∗(k, Z/l) is not central. This
is contrary to the situation in algebraic topology.

Motivic cohomology with coefficients Z/l of bidegree (2n, n) is represented by
the motivic Eilenberg-MacLane space KM(Z/l, n) and the suspension morphism
is induced by the structure morphism:

P1 ∧KM(Z/l, n) → KM(Z/l, n + 1).

These morphisms induce an inverse system of bigraded abelian groups:

. . . → H∗+2n,∗+n(KM(Z/l, n), Z/l) → H∗+2(n−1),∗+n−1(KM(Z/l, n−1), Z/l) → . . .

and the motivic Steenrod algebra is related to the inverse limit of this system.

Proposition 9.1.4 Let l be a rational prime and let k be a field which admits
resolution of singularities, then there is an isomorphism:

A∗,∗(k, Z/l) ∼= lim
←

H∗+2n,∗+n(KM(Z/l, n), Z/l).
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Proof: (Indications) The result follows by a standard Milnor exact sequence
argument by showing that lim1

←H∗+2n,∗+n(KM(Z/l, n), Z/l) vanishes; this re-
quires an understanding of the motivic cohomology of the motivic Eilenberg-
MacLane spaces. �

When k is a sub-field of the complex numbers, there is a morphism to the
topological Steenrod algebra, constructed by using topological realization. Re-
call that a complex embedding x : k ↪→ C induces an associated complex real-
ization functor tC

x : H(k) → H from the Morel-Voevodsky A1-local homotopy
category to the homotopy category of topological spaces.

Notation 9.1.5 Let A∗(Z/l) denote the mod-l topological Steenrod algebra.

Proposition 9.1.6 Let x : k ↪→ C be an embedding of fields, then there is a
morphism of H∗,∗(Spec(k), Z/l)-algebras:

(tC
x)∗ : A∗1,∗2(k, Z/l) → A∗1(Z/l).

Proof: The result follows from Proposition 9.1.4 and Corollary 6.2.3. �

9.2 The motivic Steenrod squares

Henceforth, the prime l will be taken to be two; analogous results hold when
the prime l is odd. The motivic Steenrod squaring operations are bistable
cohomology operations which are characterized by the following result (Theorem
2 of the Introduction):

Theorem 9.2.1 Let k be a field of characteristic zero. There exists a unique
sequence of bistable cohomology operations Sq2i ∈ A2i,i(k, Z/2), i ≥ 0, such that

1. Sq0 = Id.

2. Cartan formula: Let X, Y be simplicial smooth schemes and u ∈ H∗,∗(X, Z/2), v ∈
H∗,∗(Y, Z/2). For all i ≥ 0,

Sq2i(u× v) =
∑

a+b=i

Sq2a(u)× Sq2b(v) + τ(
∑

a+b=i−2

βSq2a(u)× βSq2b(v))

in H∗,∗(X × Y, Z/2).

3. Instability: Let X be a simplicial smooth scheme and u ∈ Hn,i(X, Z/2),

Sq2i(u) =
{

0 n < 2i
u2 n = 2i.

Remark 9.2.2

1. For the uniqueness statement of Theorem 9.2.1, it is essential to consider
the motivic cohomology of simplicial schemes and not just of representable
sheaves with constant simplicial structure.
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2. The Cartan formula is a consequence of the multiplicative structure of
motivic cohomology. This is illustrated by the situation for the topo-
logical Steenrod algebra, A(Z/2); the multiplicative structure of singu-
lar cohomology induces a Hopf algebra structure over Z/2 on A(Z/2)
and the diagonal acts on the topological Steenrod squares by ∆Sqn =∑n

i=0 Sqi ⊗ Sqn−i; this expression corresponds to the Cartan formula for
the topological Steenrod algebra. An analogous explanation holds in the
motivic setting, which relies on establishing a flatness property of the mo-
tivic Steenrod algebra. This is used in Section 9.5, where the dual of the
motivic Steenrod algebra is considered; the diagonal induces a product
upon the dual.

The construction of the motivic Steenrod squaring operations is given in
Sections 10 and 11; an indication of the proof that these satisfy the given con-
ditions is also given. The uniqueness statement of the theorem is related to the
calculation of the motivic Steenrod algebra and can be proved by showing that
all bistable cohomology operations can be detected upon products of BgmZ/2’s.

Notation 9.2.3 Write Sq2i+1 for the bistable cohomology operation βSq2i ∈
A2i+1,i(k, Z/2) where i is a non-negative integer.

Remark 9.2.4 The construction of the Steenrod squaring operations yields
operations Sq2i+1; the identification implicit in Notation 9.2.3 is one of the
motivic Adem relations.

The fact that the Bockstein operation acts non-trivially via βτ = ρ greatly
increases the algebraic complexity of the motivic Steenrod algebra. For instance,
one has the Cartan formula for the odd squaring operations:

Sq2i+1(u× v) =
∑

c+d=2i+1

Sqc(u)× Sqd(v) + ρ(
∑

a+b=i−2

Sq2a+1(u)× Sq2b+1(v)).

The term with coefficient ρ is not present in the analogous topological Cartan
formula.

The motivic Steenrod operations are related to the topological Steenrod op-
erations under topological realization, via the characterization of the topological
Steenrod operations:

Corollary 9.2.5 Let x : k ↪→ C be a complex embedding, then the induced
morphism of H∗,∗(Spec(k), Z/2)-algebras, (tC

x)∗ : A∗1,∗2(k, Z/2) → A∗1(Z/2)
satisfies (tC

x)∗Sqi = Sqi.

9.3 Detection of bistable cohomology operations

The objects BgmZ/2 ∈ H(k) play a distinguished role in the study of mo-
tivic cohomology with Z/2-coefficients; in particular, the motivic cohomology
of products of these spaces can be used to detect certain additive cohomology
operations. This is the basis for recent work on the structure of the category of
unstable modules over the topological Steenrod algebra (see [Sc], for example).
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Notation 9.3.1 Following the standard notation from algebraic topology, let
H∗,∗ denote the coefficient ring H∗,∗(Spec(k), Z/2).

The motivic cohomology algebras of projective space P∞ and of the classi-
fying space BgmZ/2 are known; this extends to a calculation of the cohomology
algebras of products:

Proposition 9.3.2 Let k be a field admitting resolution of singularities, then
there are isomorphisms of H∗,∗-algebras:

H∗,∗((P∞)×n, Z/2) ∼= H∗,∗[b1, . . . , bn]
H∗,∗((BgmZ/2)×n, Z/2) ∼= H∗,∗[a1, . . . , an, b1, . . . , bn]/a2

i =τbi+ρai
.

Moreover, the canonical morphism BgmZ/2 → P∞ in cohomology induces the
morphism of H∗,∗-algebras given by bi 7→ bi and ai 7→ 0.

These algebras afford useful representations of the motivic Steenrod algebra;
the action of the motivic Steenrod squares upon H∗,∗(BgmZ/2, Z/2) is given by
the following result:

Lemma 9.3.3 The Steenrod squares Sqi act on the classes abi, bi of the coho-
mology H∗,∗(BgmZ/2, Z/2) as follows:

1.

Sq2i(bj) =
(

2j

2i

)
bi+j

Sq2i+1(bj) = 0

2.

Sq2i(abj) =
(

2j

2i

)
abi+j

Sq2i+1(abj) =
(

2j

2i

)
bi+j+1

Proof: The Bockstein operation acts by βa = b and βb = 0; the instability
condition implies that Sqia = 0 for i > 1 and that Sq2(b) = b2, whereas Sqib = 0
for i > 2. The calculation follows from the Cartan formula. �

The action of the Steenrod squares upon H∗,∗(P∞, Z/2) follows immediately
from this result; the calculation extends to the cohomology algebras H∗,∗((P∞)×n, Z/2)
and H∗,∗((BgmZ/2)×n, Z/2) by applying the Cartan formula.

Example 9.3.4 Lemma 9.3.3 suggests a formal similarity between the action
of the motivic Steenrod operations upon products of BgmZ/2 and the action of
the topological Steenrod operations upon the singular cohomology of products
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of BZ/2. However, the non-trivial action of the Bockstein upon the coefficients
H∗,∗ introduces a certain complexity. For example, consider the class a1a2a3 in
H3,3((BgmZ/2)×3, Z/2); the Cartan formula yields the following:

Sq3(a1a2a3) = τ(b1b2b3) + ρ(b1b2a3 + b1a2b3 + a1b2b3).

By contrast, the action of the motivic Steenrod operations upon the motivic
cohomology of products of P∞ is formally similar to the corresponding action in
topology, apart from the non-trivial action of the Bockstein upon the coefficient
ring.

Notation 9.3.5 Let F (n) denote the A∗,∗(k, Z/l)-module which is generated
as a sub-module of H∗,∗((BgmZ/2)×n, Z/2) by the class

∏n
i=1 ai of bidegree

(n, n).

Remark 9.3.6 This notation is consistent via topological realization with that
used in the study of unstable modules over the topological Steenrod algebra [Sc];
in the topological case it is straightforward to see that the action of the Steenrod
squares on the modules of the form H∗((BZ/2)×m, Z/2) is determined by the
structure of the modules F (n), as n varies. In particular, in the topological
setting, all cohomology operations which can be detected upon products of
BZ/2 can be detected using the modules F (n).

Example 9.3.7 The additional complexity in the motivic setting is exhibited
already in the case n = 2; one has:

Sq2(a1a2) = τb1b2

Sq3(a1a2) = ρb1b2

There is no bistable cohomology operation θ such that θ(a1, a2) = b1b2; for
suppose otherwise, then θ would satisfy the relation θ(a2) = b2, by naturality.
The relation a2 = τb + ρa would imply that θ(a2) belongs to the submodule of
H∗,∗((BgmZ/2)×2, Z/2) given by the product with the ideal of elements of bide-
gree not equal to (0, 0) in H∗,∗ (this argument supposes that a form of diagonal
morphism extending the Cartan formula is available). This is a contradiction.

It follows that F (2) is not a free H∗,∗-module; however, the sub-H∗,∗-module
generated by elements of bidegrees (∗1, ∗2) with ∗1 ≤ 2 is free.

The module F (n) is cyclic, hence there is a morphism of A∗,∗(k, Z/2)-
modules:

f(n) : A∗,∗(k, Z/2) → Σ−n,−nF (n),

where Σ−n,−n indicates the shift of degree of the underlying bigraded abelian
group, which defines a functor on the category of A∗,∗(k, Z/2)-modules in the
obvious way (no sign considerations occur working over Z/2).

The morphism f(n) is used to consider the detection of bistable cohomology
operations using the motivic cohomology of products of BgmZ/2. Two issues
arise:
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1. The identification of F (n), using the fact that bistable cohomology oper-
ations are additive. The problem is to consider divisibility arising from
powers of τ .

2. To show that the morphism f(n) is bijective through a certain range of
bidegrees.

These questions are intimately linked to the calculation of the motivic Steen-
rod algebra. A related algebraic result is given in Lemma 9.4.7

9.4 The Adem relations and their consequences

The motivic Steenrod algebra satisfies Adem relations which correspond under
topological realization to those for the topological Steenrod algebra.

Proposition 9.4.1 The operations Sqi satisfy relations for 0 < a < 2b:

SqaSqb =

{ ∑[a/2]
j=0

(
b−1−j
a−2j

)
Sqa+b−jSqj a odd∑[a/2]

j=0 τ εj
(
b−1−j
a−2j

)
Sqa+b−jSqj + ρ

∑[a/2]
j=1,j≡b(2)

(
b−1−j
a−2j

)
Sqa+b−j−1Sqj a even,

where εj =
{

1 b even, j odd
0 otherwise.

In particular, setting τ = 1 and ρ = 0 and formally identifying Sqi with
the topological Steenrod square Sqi, one obtains the Adem relations for the
topological Steenrod algebra. In the case that the field k admits a complex
embedding, this is clear by Corollary 9.2.5.

As a special case, the Adem relations give:

Corollary 9.4.2 There is a relation βSq2i = Sq2i+1.

The Adem relations permit the calculation of a basis for the sub-algebra
of the motivic Steenrod algebra which is generated by the motivic Steenrod
squaring operations; this is a generalization of the usual result for the topological
Steenrod algebra [SE].

In order to be algebraically explicit, introduce the following algebra:

Notation 9.4.3

1. Let H denote the sub-algebra of H∗,∗(Spec(k), Z/2) generated by the el-
ements τ, ρ ∈ H∗,∗(Spec(k), Z/2). Thus H ∼= Z/2[τ, ρ] is a commutative
polynomial algebra.

2. Let B denote the sub-H-algebra of A∗,∗(k, Z/2) generated by the motivic
squaring operations Sqi, for i ≥ 0.

The algebras considered in Section 9.3 have analogues in the study of B:
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Lemma 9.4.4 The H-algebra H[a1, . . . , an, b1, . . . , bn]/a2
i =τbi+ρai

has the struc-
ture of a B-module.

Definition 9.4.5

1. A sequence of non-negative integers I = (i1, . . . , ik) is said to be admissible
of length k if either I = ∅ or k ≥ 1, ik ≥ 1 and is−1 ≥ 2is, for all k ≥ s ≥ 2.

2. Suppose that I is a sequence of non-negative integers, then let SqI denote
the composite cohomology operation Sqi1 . . . Sqik , with the convention
that Sq∅ = 1.

Proposition 9.4.6 The H-algebra B is a free left H-module on the basis

{SqI |I is an admissible sequence}.

Proof: (Indications) The Adem relations imply that the operations SqI , for
I admissible, generate B as an H-module. The representations of B on algebras
of the form H[a1, . . . , an, b1, . . . , bn]/a2

i =τbi+ρai
of Lemma 9.4.4 can be used to

show that B is free on the given basis. �

The argument used in the proof of Proposition 9.4.6 can be made more
precise as follows (compare with the discussion in Section 9.3):

Lemma 9.4.7 Let FB(n) denote the sub-B-module of H[a1, . . . , an, b1, . . . , bn]/a2
i =τbi+ρai

generated by
∏n

i=1 ai, then the induced morphism of B-modules:

B → Σ−n,−nFB(n)

is an isomorphism in bidegrees (∗1, ∗2) with ∗1 ≤ n.

The calculation of the stable motivic cohomology of the motivic Eilen-
berg MacLane spaces establishes that the operations Sqj generate the algebra
A∗,∗(k, Z/2) over the coefficient ring:

Theorem 9.4.8 Let k be a field of characteristic zero. The motivic Steenrod
algebra A∗,∗(k, Z/2) is a free left H∗,∗(Spec(k), Z/2)-module on basis:

{SqI |I is an admissible sequence}.

9.5 Algebraic Duality

The structure of A∗,∗(k, Z/2) can be studied algebraically by duality. The dual
situation is related to the study of homology operations in the associated motivic
homology theory; the general issues involved in duality theory lie outside the
theme of this paper. The algebraic result, Theorem 9.5.10, is modelled on
Milnor’s calculation of the dual of the topological Steenrod algebra [Mil], paying
attention to the fact that H is not central in B.
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Definition 9.5.1 Let Γ denote the H-module of morphisms of left H-modules
HomH(B,H); the H-module structure is induced by the product on H. The
H-algebra Γ is bigraded via Γs,t := Hom−s,−t

H (B,H), using the standard con-
ventions for grading homomorphisms between graded modules.

The basis of admissible monomials SqI has dual basis ηI and Γ is a free
H-module on this basis.

Notation 9.5.2 Write H(BgmZ/2) for the commutative, bigraded, augmented
H-algebra H[a, b]/a2=τb+ρa, where |a| = (1, 1) and |b| = (2, 1). The augmenta-
tion is induced by a, b 7→ 0.

The algebra H(BgmZ/2) is a free left H-module on classes {abi, bi|i ≥ 0};
moreover H(BgmZ/2) is equipped with a Hopf algebra structure over H, with
diagonal ∆ given by

∆H : H(BgmZ/2) → H(BgmZ/2)⊗H H(BgmZ/2)
a 7→ a⊗ 1 + 1⊗ a

b 7→ b⊗ 1 + 1⊗ b

The action of A∗,∗(k, Z/2) on H∗,∗(BgmZ/2, Z/2) induces an action:

B ⊗H H(BgmZ/2) → H(BgmZ/2),

where B denotes the sub-algebra of A defined in Corollary 9.4.6.

Definition 9.5.3 The coaction map

λ : H(BgmZ/2) → H(BgmZ/2)⊗̂HΓ

is the bigraded map: x 7→
∑

I SqI(x)⊗ηI , where the tensor product is completed
with respect to the filtration of H(BgmZ/2) by the powers of the augmentation
ideal. (This is the analogue of the Milnor coaction for a module over the topo-
logical Steenrod algebra).

The Cartan formula defines a map ∆ : B → B ⊗HL
B, where the tensor

product ⊗HL
is defined with respect to the left H-module structures on both

factors. This induces a dual product map:

µ : Γ⊗H Γ → Γ.

In terms of the explicit basis ηI of Γ:

ηIηJ =
∑

cK
IJηK ,

where cK
IJ is the coefficient of SqISqJ in ∆SqK . The following is clear:

Lemma 9.5.4 The product µ provides Γ with the structure of a commutative,
bigraded H-algebra.

69



The product map H(BgmZ/2) ⊗ H(BgmZ/2) → H(BgmZ/2) is a map of
B-modules, where the domain is given the structure of a B-module, via ∆.

Lemma 9.5.5 The coaction λ is a multiplicative map.

Proof: This follows directly from the Cartan formula and the definition of the
product in Γ. �

The coaction λ is determined by λ(a), λ(b), by the multiplicativity given by
Lemma 9.5.5. These elements can be written in terms of the standard H-basis
for H(BgmZ/2) as:

λ(a) =
∑
i≥0

(abi ⊗ xi + bi ⊗ yi)

λ(b) =
∑
i≥0

(abi ⊗ x′i + bi ⊗ y′i),

for suitable homogeneous elements xi, x
′
i, yi, y

′
i ∈ B∨.

Definition 9.5.6 Define the morphism

λn : H(BgmZ/2)⊗n → H(BgmZ/2)⊗n⊗̂HΓ

to be the composite of λ⊗n with the morphism induced by the product Γ⊗n → Γ.

Lemma 9.5.7 The coaction λ is additive: there is a commutative diagram

H(BgmZ/2) λ //

∆H

��

H(BgmZ/2)⊗̂HΓ

∆H⊗1

��
H(BgmZ/2)⊗H H(BgmZ/2)

λ2

// (H(BgmZ/2)⊗H H(BgmZ/2))⊗̂HΓ.

Proof: The morphism λ2 is the adjoint to the action of B on the tensor
product H(BgmZ/2) ⊗H H(BgmZ/2) via the diagonal ∆ of B. The lemma is
thus a restatement of the fact that the product H(BgmZ/2)⊗H H(BgmZ/2) →
H(BgmZ/2) is a morphism of B-modules. �

The following lemma defines the ‘Milnor elements’ in Γ:

Lemma 9.5.8 There exist unique elements τj, ξj ∈ Γ, for j ≥ 0 such that:

1. (a) ξ0 = 1

(b) |τj | = (1− 2j+1, 1− 2j)

(c) |ξj | = (2(1− 2j), 1− 2j).

2. (a) λ(a) = a⊗ 1 +
∑

j≥0 b2j ⊗ τj
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(b) λ(b) =
∑

j≥0 b2j ⊗ ξj.

3. The element τ0 ∈ Γ−1,0 is the dual of the Bockstein.

Proof: This follows directly from the additivity of λ; the coefficients of the
terms in a, b are determined by the fact that the B action on H(BgmZ/2) is
unital together with the identifications Γ0,0 ∼= F2, Γ1,0 = 0.

The identification of τ0 follows for reasons of bidegree. �

Lemma 9.5.9

1. The morphism λ is determined on H by:

(a) λ(ρ) = ρ⊗ 1

(b) λ(τ) = τ ⊗ 1 + ρ⊗ τ0.

2. For j ≥ 0 there is a relation in Γ:

τ2
j = τξj+1 + ρτj+1 + ρτ0ξj .

Proof: The image of ρ under λ is determined by the grading and unit condition.
The remaining statements are consequences of the relation a2 = τb + ρa in

H(BgmZ/2). The unit condition implies that

λ(τ) = τ ⊗ 1 + ρ⊗ κ,

for a suitable κ of bidegree (−1, 0). A straightforward calculation using the
multiplicativity of λ gives:

λ(a2) = λb⊗ 1 + ρa⊗ 1 +
∑

b2j+1
⊗ τ2

j

λ(τb) =
∑

τb2j

⊗ ξj +
∑

ρb2j

⊗ κξj

λ(ρa) = ρa⊗ 1 +
∑

ρb2j

⊗ τj

Consider the relation λ(a2) = λ(τb) + λ(ρa). Equating the coefficients of b
yields the relation ρ(κ + τ0) = 0; Γ is free as a left H-module, so this implies
that κ = τ0, giving the stated value of λ(τ). The coefficient of a yields no new
information.

It remains to consider the coefficient of b2j

, for j ≥ 0; this yields the stated
relation for τ2

j . �

The following theorem is the motivic version of Milnor’s calculation of the
dual of the Steenrod algebra.

Theorem 9.5.10 The commutative H-algebra Γ is isomorphic to

H[τ0, τ1, . . . , ξ1, ξ2, . . .]/τ2
j =τξj+1+ρτj+1+ρτ0ξj

.
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Proof: (Indications) The proof is similar to the calculation of Milnor [Mil] for
the odd prime case of the dual of the topological Steenrod algebra. The rela-
tion corresponds in the motivic case to the relation given by Lemma 9.5.9. It
remains to show that there are no further relations; this is a consequence of the
fact that tensor products of the algebras H(BgmZ/2) provide faithful represen-
tations of B through certain ranges of bidegrees (compare with Lemma 9.4.7). �

Corollary 9.5.11 The free H-module Γ has a basis consisting of monomials of
the form ∏

i≥0

τ εi
i

∏
j≥1

ξ
rj

i .

This basis defines a dual basis on B and extends to a H∗,∗(k, Z/2)-basis of the
motivic Steenrod algebra A∗,∗(k, Z/2). In particular, this gives the definition of
the operations used in the proof of the Milnor Conjecture [V1].

The algebra Γ admits further structure:

Theorem 9.5.12 The pair (H,Γ) has the structure of a Hopf algebroid and
the morphism λ gives H(BgmZ/2) the structure of a comodule over the Hopf
algebroid (H,Γ). In particular, the right unit is given by the restriction of the
coaction map to H and the diagonal ∆Γ : Γ → Γ⊗H Γ is determined by:

1. ∆Γξk =
∑

i+j=k ξ2i

j ⊗ ξi.

2. ∆Γτk = τk ⊗ 1 +
∑

i+j=k ξ2i

j ⊗ τi.

3. ∆Γρ = 1⊗ ρ ∼= ρ⊗ 1.

4. ∆Γτ = τ ⊗ 1 ∼= 1⊗ τ + τ0 ⊗ ρ.

Proof: The Hopf algebroid structure corresponds to a dual structure on (H,B);
the diagonal morphism is calculated by studying the coaction map λ, using the
fact that Γ is free as an H-module together with the coassociativity of the coac-
tion. �
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Part III

Construction of the Steenrod
squares

10 The total Steenrod power

The Steenrod reduced powers for mod-l motivic cohomology are defined by
constructing the total Steenrod power map in H•(k):

Ztr(An/(An − {0}), Z/l) ∧BgmZ/l+ → Ztr(Aln/(Aln − {0}), Z/l),

using the notation of 7.2.4, where BgmZ/l is a geometric model for the étale
classifying space BetZ/l for the finite group Z/l. (See Section 8.1 for a discussion
of classifying spaces).

The construction works more generally; for a finite sub-group G ⊂ Σm, there
is a map in the homotopy category H•(k):

Ztr(An/(An − {0}), Z/l) ∧BgmG+ → Ztr(Amn/(Amn − {0}), Z/l).

Remark 10.0.13 The construction of the total Steenrod power is a variant,
using the theory of Thom classes, of the use of the quadratic construction (re-
spectively the cyclic construction, for l 6= 2) in algebraic topology [G, §27]. This
should be compared with the construction of the operations for complex cobor-
dism which Rudyak [Ru, §VII.7] calls the Steenrod-tom Dieck operations. In
particular, the theory of Thom classes permits the construction to be carried
out integrally 5.

10.1 A review of Galois coverings

The passage from Galois coverings to vector bundles is used essentially in this
construction of the Steenrod total power map; for the convenience of the reader,
this is reviewed in this section.

Definition 10.1.1 [Mi] A morphism of schemes Y
φ→ X is a Galois covering

with group G if:

1. The finite group G acts on the right upon the scheme Y and φ is G-
invariant.

2. The morphism φ is locally of finite type and faithfully flat.

3. The canonical morphism Y × G → Y ×X Y is an isomorphism of right
G-schemes.

5Voevodsky’s modified construction of the Steenrod squares no longer uses the Thom class.
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Proposition 10.1.2 [SGA1, Exposé V, Proposition 2.6] Let Y → X be a mor-
phism of schemes and let the finite group G act on the right on Y . Suppose that
the scheme X is locally Noetherian, then the following conditions are equivalent:

1. The scheme Y is finite over X, X = Y/G and the inertia groups of G
acting upon Y are trivial.

2. There exists a quasi-compact, faithfully flat base change X1 → X such
that the scheme Y ×X X1 is isomorphic to X1 ×G as a right G-scheme.

3. There exists a finite, étale, surjective base change X1 → X such that the
scheme Y ×X X1 is isomorphic to X1 ×G as a right G-scheme.

4. The morphism φ is faithfully flat and quasi-compact and the canonical
morphism Y ×G → Y ×X Y is an isomorphism.

A morphism satisfying the above conditions is termed a principal covering
with Galois group G in [SGA1].

Definition 10.1.3 Let G be a finite group which acts on the right upon the
locally Noetherian scheme Y ∈ Sch/k; say that G acts admissibly upon Y if
every orbit is contained in an open affine sub-scheme which is stable under the
G-action.

Corollary 10.1.4 Let G be a finite group which acts admissibly upon the scheme
Y ∈ Sch/k, so that the quotient Y → Y/G =: X exists and is a finite morphism.
Suppose that G acts freely upon Y , then the morphism φ : Y → X is a Galois
covering.

Galois coverings (and, more generally, principal homogeneous spaces - see
[Mi, Section III.4]) are classified by the first Čech cohomology group of the base
space with coefficients in the group G, defined with respect to the flat topology.
When the group is commutative, the following lemma applies:

Lemma 10.1.5 Let G be a commutative finite group. There is a one-one cor-
respondence between Galois coverings of the form Y → X with group G and
elements of the étale cohomology group H1(Xet, G).

Proposition 10.1.6 Let G be a finite group and let G ↪→ GLn(k) be a closed
immersion. Suppose that Y → X is a Galois covering with group G. Let G
act upon An via the morphism G ↪→ GLn(k) and act diagonally upon Y × An,
then the scheme (Y × An)/G is canonically a vector bundle over the scheme
X := Y/G.

Proof: (Indications) This is a consequence of the standard technique of faithfully-
flat descent, using Hilbert’s theorem 90. �

The following basic argument allows morphisms to be factored through the
quotient by a group action.
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Lemma 10.1.7 [Mi, II.1.4] Let Y → X be a Galois covering with group G
and let F be an étale sheaf, then the morphism F (X) → F (Y ) induces an
isomorphism F (Y ) → F (X)G.

In particular, under the hypotheses of the lemma, if Y → F is a morphism
of sheaves which is G-equivariant when F is given the trivial G-action, then the
morphism factors canonically through the morphism of representable sheaves
Y → X.

10.2 The geometric construction

Let X ∈ Sm/k be a smooth scheme and let G ⊂ Σm be a finite discrete group;
fix a geometric model EG/G for the geometric classifying space BgmG (as in
8.1.4).

The exterior product of cycles and the diagonal Ztr(X) → Ztr(X)∧m defines
a composite:

φ : Ztr[X] → Ztr[X]∧m → Ztr[Xm].

Remark 10.2.1 This morphism induces the mth cup product in motivic co-
homology, when X = An, after passage to a suitable quotient. This can be
compared with the situation in algebraic topology, as follows. Let K(Z, s) de-
note the sth integral Eilenberg MacLane space; the cup product of singular
cohomology is induced by structure maps K(Z, s) ∧ K(Z, t) → K(Z, s + t) in
the homotopy category. The mth cup product is induced by the composite
K(Z, s)

diag→ K(Z, s)∧m → K(Z,ms), where the second morphism is the itera-
tion of the structure map.

The morphism φ is not a morphism of abelian sheaves, just as the mor-
phism K(Z, s) → K(Z,ms) in algebraic topology is not an abelian group object
morphism.

Notation 10.2.2 Let X ∈ Sm/k be a smooth scheme, and let the group G ⊂
Σm act diagonally on Xm × EG. For notational clarity, the quotient (Xm ×
EG)/G is written (abusively) as Xm ×G EG.

Consider the composite:

Ztr[X] ∧ EG+
φ∧id→ Ztr[Xm] ∧ EG+ → Ztr[Xm × EG] → Ztr[Xm ×G EG].

This map is G-equivariant and the right hand side is an étale sheaf, by Proposi-
tion 4.1.6, hence there is a factorization through the quotient morphism Ztr[X]∧
EG+ → Ztr[X]∧BgmG+, via passage to the colimit using Lemma 10.1.7. Thus
there is an induced morphism:

Ztr[X] ∧BgmG+ → Ztr[Xm ×G EG].
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Suppose that Z ↪→ X is a closed immersion, then the above construction
passes to the quotient:

Ztr[X]/Ztr[X − Z] ∧BgmG+ → Ztr[Xm ×G EG]/Ztr[(Xm − Zm)×G EG].

In particular, the closed immersion 0 ↪→ An induces the morphism:

αm,n,G : Ztr(An/(An − {0})) ∧BgmG+ → Ztr[Amn ×G EG]/Ztr[(Amn − 0)×G EG].

Notation 10.2.3 Let Th(ξ) denote the Thom space E(ξ)/E(ξ)× of the vector
bundle ξ. Write:

1. Ztr(Th(ξ)) := Coker{Ztr[E(ξ)×] → Ztr[E(ξ)]},

2. Ztr(Th(ξ), Z/l) := Coker{Ztr(Th(ξ)) ×l→ Ztr(Th(ξ))},

where, in both cases, the cokernel is taken in the category of abelian sheaves.

The sheaf Ztr(An/(An − {0})) identifies with Ztr(Th(An)), by regarding An

as the trivial vector bundle of rank n over Spec(k). Moreover, the scheme
ξ := (Amn ×G EG) is canonically a vector bundle of rank mn over BgmG, by
Proposition 10.1.6. Thus, the morphism αm,n,G can be written as:

αm,n,G : Ztr(Th(An)) ∧BgmG+ → Ztr(Th(Amn ×G EG)).

10.3 Homotopical constructions with Thom classes

The second part of the construction is homotopical, calling upon the theory of
Thom classes for motivic cohomology. The factorization properties which are
used concerning Thom classes are made explicit in this section.

The adjunction provided by Theorem 4.2.3 factors across the pointed homo-
topy category as:

M(−) : H•(k) 
 DM eff
− (k) : K

where K denotes the derived functor of the Kan functor and M(−) is a suitable
derived functor of Ztr(−).

Lemma 10.3.1 Let k be a perfect field, let X ∈ ∆opShvN is(Sm/k)• be a split
simplicial sheaf and let A be an abelian group. A motivic cohomology class
u ∈ H̃n,i(X , A) is represented by a morphism in H•(k), X → K(A(i)[n]) which
factors canonically in the homotopy category as

X → Ztr(X ) → K(A(i)[n]).

Proof: (Indications) The adjunction theorem yields a canonical factorization
in H•(k):

X → M(X ) → K(A(i)[n])

of the morphism which represents the cohomology class u. The construction of
the derived functor of Ztr(−) provides a natural morphism M(X ) → C∗Ztr(X ),
which induces an isomorphism in H•(k), since the simplicial sheaf is split. �
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Example 10.3.2 The Lemma applies to the simplicial cone of a morphism
Y → X between representable sheaves. In particular, this applies when i : Y ↪→
X is an immersion; moreover, in this case, the Dold-Kan correspondence relates
the objects Ztr[Cone(i)] and the quotient (of abelian sheaves) Ztr[X]/Ztr[Y ].

Throughout the rest of this section, let k denote a field which admits reso-
lution of singularities, so that Thom classes are defined. The Thom class uξ of
a vector bundle of rank n on X ∈ Sm/k is represented by a morphism in the
homotopy category which factors naturally as

Th(ξ) → Ztr(Th(ξ)) → Ztr(Th(An)),

since Ztr(Th(An)) is a model for the motivic Eilenberg-MacLane space which
represents motivic cohomology of bidegree (2n, n). Hence, the Thom class in-
duces a natural morphism in H•(k) which will be denoted (abusively) by

uξ : Ztr(Th(ξ)) → Ztr(Th(An))

and which shall be referred to as the extended Thom class of ξ.

Example 10.3.3 Let η := X × An be the trivial bundle of rank n over the
smooth scheme X ∈ Sm/k; then there is an A1-weak equivalence Th(η) '
Th(An) ∧ X+. The uniqueness of the Thom class implies that the extension
of the Thom class Ztr(Th(η)) → Ztr(Th(An)) is induced by the projection
Th(η) → Th(An) given by X → Spec(k).

Let G be a finite group; a vector bundle ξ of finite rank over X ∈ Sm/k is
said to be a G-vector bundle if there are G-actions on the total space and the
base space such that the structure morphism is G-equivariant and the action
of G is linear on each fibre. The following result is the key to proving basic
properties of the Steenrod total power morphism.

Lemma 10.3.4 Let k be a field which admits resolution of singularities and let
ξ be a G-vector bundle over X ∈ Sm/k of rank n such that the action of G on
X is free and admissible and such that ξ/G has the structure of a vector bundle
of rank n over X/G.

Suppose further that Y ∈ Sm/k admits a free admissible G-action and that
there is a G-equivariant morphism of sheaves f : Y → Ztr(Th(ξ)). Then the
composite uξ ◦ f factors naturally in the homotopy category H•(k) as

Y → Y/G → Ztr(Th(An)).

Proof: The canonical factorization is induced by the extended Thom class of
ξ/G, via the commutative diagram:

Y //

��

Ztr(Th(ξ))
uξ //

��

Ztr(Th(An))

Y/G // Ztr(Th(ξ/G)).

uξ/G

66nnnnnnnnnnnn
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The triangle on the right commutes in the homotopy category by uniqueness of
the extended Thom class, whereas the square on the left is obtained by passage
to the quotient, using the fact that Ztr(Th(ξ/G)) is an étale sheaf, by Lemma
10.1.7. �

10.4 The total Steenrod power and its properties

Throughout this section, let l be a rational prime and let k be a field which
admits resolution of singularities.

Definition 10.4.1 Let G be a subgroup of the symmetric group Σm; the gen-
eral total Steenrod power map

Ztr(An/(An − {0}), Z/l) ∧BgmG+ → Ztr(Amn/(Amn − {0}), Z/l)

is the composite of the map

αm,n,G : Ztr(Th(An)) ∧BgmG+ → Ztr(Th(ξ/G)),

where ξ denotes the vector bundle ξ := Amn × EG, with the extended Thom
class uξ/G, by passing to coefficients in Z/l.

Notation 10.4.2

1. Write KM(Z/l, n) for the motivic Eilenberg MacLane space, which shall
be represented by the explicit model Ztr(An/(An − {0}), Z/l).

2. For s, t ≥ 0 let µ denote the product morphism for the motivic Eilenberg-
MacLane spaces: µ : KM(Z/l, s)∧KM(Z/l, t) → KM(Z/l, s + t) which is
induced by the product of cycles.

Definition 10.4.3 The total Steenrod power in the homotopy category H•(k):

Pn : KM(Z/l, n) ∧BgmZ/l+ → KM(Z/l, ln).

is the morphism obtained by setting G = Z/l and m = l in Definition 10.4.1.

The construction and Proposition 10.3.4 show that the Steenrod total power
map satisfies the following basic properties:

Proposition 10.4.4

1. There is a commutative diagram in H•(k):

KM(Z/l, s) ∧KM(Z/l, t) ∧BgmZ/l+ //

µ∧1

��

KM(Z/l, s) ∧BgmZ/l+ ∧KM(Z/l, t) ∧BgmZ/l+

Ps∧Pt

��
KM(Z/l, s + t) ∧BgmZ/l+

Ps+t

��

KM(Z/l, ls) ∧KM(Z/l, lt)

µ

��
KM(Z/l, l(s + t)) KM(Z/l, l(s + t)),
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in which the top horizontal arrow is induced by the diagonal on BgmZ/l
and a permutation of the factors.

2. If Spec(k) → BgmZ/l is a distinguished base point, then the composite:

KM(Z/l, n) → KM(Z/l, n) ∧BgmZ/l+ → KM(Z/l, ln)

is the lth power map.

Proof: It suffices to establish the proposition working integrally, so that the
model for KM(Z/l, n) is replaced by Ztr(Th(An)).
1. There is a commutative diagram:

Ztr[As] ∧ Ztr[At] ∧ EZ/l+ → Ztr[As] ∧ Ztr[At] ∧ (EZ/l × EZ/l)+
↓ ↓

Ztr[As × At × EZ/l] → Ztr[As × At × EZ/l × EZ/l]

where the horizontal arrows are induced by the diagonal EZ/l → EZ/l×EZ/l.
This can be considered as a diagram of Z/l-equivariant morphisms, where the
group Z/l acts diagonally via Z/l → Z/l × Z/l on the right hand side of the
diagram. The passage to the quotient EZ/l × EZ/l → Spec(k) will induce the
Thom class for the respective trivial bundles (see Example 10.3.3), and there is
a commutative diagram:

Ztr[As] ∧ Ztr[At] ∧ EZ/l+ → Ztr[As] ∧ Ztr[At]
↓ ↓

Ztr[As × At × EZ/l] → Ztr[As × At].

The commutative diagram of the Proposition is obtained by passage to Thom
spaces and taking the quotient by the group action, using the argument of
Proposition 10.3.4.
2. Take a base point for BgmZ/l which is induced by a point Spec(k) → EZ/l.
The composite Kn → Kn ∧ BgmZ/l+ → Kln is induced by passage to quotient
from the composite

Ztr[An]
φ→ Ztr[Anl × Spec(k)] → Ztr[Anl × EZ/l] → Ztr[Anl ×Z/l EZ/l]

together with the extended Thom class for Anl ×Z/l EZ/l. By Proposition

10.3.4, it suffices to consider the composite Ztr[An]
φ→ Ztr[Anl × Spec(k)] →

Ztr[Anl × EZ/l] together with the Thom class of Anl × EZ/l. The Thom class
of this trivial bundle is induced by the projection Anl×EZ/l → Anl, from which
the result follows, by the definition of the product map in motivic cohomology. �

The derivation of the Adem relations for motivic cohomology in Proposition
9.4.1 depends on the following result.

Proposition 10.4.5 The composite morphism:

Pln ◦ (Pn ∧ 1) : KM(Z/l, n) ∧BgmZ/l+ ∧BgmZ/l+ → KM(Z/l, l2n)
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is Z/2-equivariant, where Z/2 transposes the factors BgmZ/l+ and acts trivially
on the right hand side.

Proof: (Indications). For clarity, write G, H for the groups Z/l in the proof.
There is an evident commutative diagram in the category of sheaves of sets:

Ztr[An] ∧ EG+ ∧ EH+
//

��

Ztr[Anl × EG] ∧ EH+
// Ztr[Anl] ∧ EH+

��
Ztr[Anl2 × EH]

��
Ztr[Anl2 × EG× EH] // Ztr[Anl2 ].

Passing to the quotient by the respective complements of zero sections yields
a diagram which corresponds to the construction of the Steenrod total power
without taking the quotient by the group actions.

Lemma 10.3.4 shows that first taking the quotient by the G-action and sub-
sequently taking the quotient by the H-action, the composite around the top of
this diagram induces the composite of two total Steenrod power maps.

Hence, it suffices to consider the passage to the quotient induced by the
composite around the bottom of the diagram; using Lemma 10.3.4, this factors
across the Thom class for the vector bundle Anl2 ×G×H EG×EH. Hence, the
induced map:

Ztr(Th(An)) ∧ EG+ ∧ EH+ → Ztr(Th(Anl2))

is equivariant with respect to the Z/2-action, by uniqueness of the Thom class
of the bundle Anl2 ×G×H EG× EH. �
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11 Definition of the Steenrod squares

Throughout this section, let l denote a rational prime. The total Steenrod power
Pn : KM(Z/l, n) ∧ BgmZ/l+ → KM(Z/l, ln) induces a natural transformation,
which will be denoted (abusively) by P∗n:

P∗n : H̃2n,n(X , Z/l) → H̃2ln,ln(X ∧BgmZ/l+, Z/l)

sending a cohomology class represented by X → KM(Z/l, n) to the composite:

X ∧BgmZ/l+ → KM(Z/l, n) ∧BgmZ/l+ → KM(Z/l, ln),

which represents a cohomology class in the given group.
The Steenrod reduced powers are defined by describing the map P∗n using

the calculation of H̃2ln,ln(X ∧BgmZ/l+, Z/l) given in Section 8.3 (when the field
k contains a primitive lth root of unity).

11.1 Definition of the Steenrod squares

Throughout this section, let k be a field which admits resolution of singularities
and which contains a primitive lth root of unity. (The latter hypothesis is
vacuous if l = 2 and can be removed by using transfer arguments). In this case
BgmZ/l is equivalent to Betµl, hence the calculations of Section 8.3 are available.
The modifications necessary in the general case are indicated in Section 11.6.

The definition will be given in terms of unreduced motivic cohomology;
hence, if X is a pointed simplicial sheaf, the reduced cohomology of X+ is
considered. The morphism P∗n identifies as:

H2n,n(X , Z/l) → H2ln,ln(X ×Betµl, Z/l).

Notation 11.1.1 Define classes uk, for k ≥ 0, by u2i := bi and u2i+1 := abi.

Definition 11.1.2 Let x ∈ H2n,n(X, Z/l) be a class in motivic cohomology;
for j an integer, let Dj(x) ∈ H∗,∗(X, Z/l) denote the unique classes such that:

P∗n(x) =
∑

Dj(x)uj . (1)

(Proposition 7.1.4 implies that the sum above contains only finitely many non-
zero terms).

Lemma 11.1.3 Let k be a field of characteristic zero. The association x 7→
Dj(x) define natural transformations of sets:

D2i : H2n,n(X , Z/l) → H2(ln−i),(ln−i)(X , Z/l)
D2i+1 : H2n,n(X , Z/l) → H2(ln−i)−1,(ln−i)−1(X , Z/l)
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Proof: The naturality follows directly from the naturality of the isomorphism
given in Proposition 8.3.6 and of its extension to the consideration of the coho-
mology of simplicial sheaves. �

The non-trivial Dj define the Steenrod reduced powers, up to relabelling
and renormalization.

Definition 11.1.4 Let k be a field of characteristic zero. The motivic Steenrod
reduced square operations Sqj , for j ∈ Z, are defined on x ∈ H2n,n(X , Z/2) by:

Sqj(x) := 0 if j > 2n

Sq2i(x) := D2(n−i)(x) if i ≤ n

Sq2i−1(x) := D2(n−i)+1(x) if i ≤ n

Remark 11.1.5

1. The fact that the Sqj define bistable cohomology operations is proven in
Corollary 11.3.2.

2. It is not clear from the definition that the natural transformations Sqj are
trivial for j < 0.

11.2 The Weak Cartan formula

The Cartan formula calculates the Steenrod reduced power operations on prod-
ucts. A weak form of the Cartan formula can be proved immediately for coho-
mology classes in bidegrees of the form 2∗, ∗. The general Cartan formula will
follow once it is known that the operations are bistable and that the operations
Sqj for negative j are trivial.

Lemma 11.2.1 Let k be a field of characteristic zero. Suppose that X ,Y are
simplicial sheaves and that u ∈ H2m,m(X , Z/2), v ∈ H2n,n(Y, Z/2) are motivic
cohomology classes. For all i ≥ 0, there are equalities:

Sq2i(u× v) =
∑

a+b=i

Sq2a(u)× Sq2b(v) + τ{
∑

a+b=i−2

Sq2a+1(u)× Sq2b+1(v)}

Sq2i+1(u× v) =
∑

j+k=2i+1

Sqj(u)× Sqk(v) + ρ{
∑

a+b=i−1

Sq2a+1(u)× Sq2b+1(v)}

in H∗,∗(X × Y, Z/2).

Proof: The classes u, v are represented respectively by maps X → KM(Z/l,m)
and Y → KM(Z/l, n) in the unpointed homotopy category. The product u× v
is represented by the composite:

X × Y → KM(Z/l,m)×KM(Z/l, n) → KM(Z/l,m + n).
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The class P∗m+n is represented by the map (X ×Y)×BgmZ/l → KM(Z/l, l(m+
n)) which, by Proposition 10.4.4 (1), agrees with the composite

X × Y ×BgmZ/l → X ×Y ×BgmZ/l ×BgmZ/l →
(X ×BgmZ/l)× (Y ×BgmZ/l) → KM(Z/l, l(m + n)),

where the map (X × BgmZ/l) × (Y × BgmZ/l) → KM(Z/l, l(m + n)) is the
product of the classes P∗m(u) and P∗n(v).

In unreduced cohomology, the map

H∗,∗(X × Y ×BgmZ/l ×BgmZ/l, Z/l) → H∗,∗(X × Y ×BgmZ/l, Z/l)
‖ ‖

H∗,∗(X × Y, Z/l)[a, b, a′, b′]/ ∼ → H∗,∗(X × Y, Z/l)[a, b]/ ∼

is induced by a, a′ 7→ a and b, b′ 7→ b and where the ∼ indicates the equivalence
relation derived from Proposition 8.3.6. The result is now straightforward by
identification of cohomology classes. �

11.3 Bistability

The fact that the Steenrod reduced power operations extend to define bistable
cohomology operations is a consequence of the projective bundle theorem to-
gether with the weak Cartan formula. Recall that the pointed simplicial sheaf
T is equivalent to P1 in the pointed homotopy category H•(k).

Let k be a field admitting resolution of singularities, and let X be a simplicial
sheaf, then the projective bundle theorem implies that there is an isomorphism:

H∗,∗(X × T, Z/2) ∼= H∗,∗(X , Z/2)[c]/c2 = 0,

where c is the (mod-2 reduction of the) first Chern class of the canonical line
bundle on P1 in bidegree (2, 1). The T -suspension σT is induced by cup product
with the class c, hence the Cartan formula can be applied:

Lemma 11.3.1 The operation Sqi commutes with σT .

Proof: The motivic Steenrod squares act by Sqi(c) = c, if i = 0, and 0
otherwise, for reasons of bidegree. The weak Cartan formula of Lemma 11.2.1
immediately implies the result. �

Hence:

Corollary 11.3.2 Let k be a field of characteristic zero. The operations Sqi

are bistable cohomology operations for Z/2-motivic cohomology, with bidegrees:

|Sq2i| = (2i, i)
|Sq2i+1| = (2i + 1, i).
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11.4 The proof of Theorem 2

Let k be a field of characteristic zero and consider the prime l = 2. The
cohomology operations Sqj were constructed in Section 11.1, for integers j,
and were shown to be bistable in Corollary 11.3.2. The Sqj in degrees j ≤ 1 are
identified by:

Proposition 11.4.1 Let k be a field of characteristic zero. The Steenrod squares
Sqj are trivial for j < 0. There are identifications:

1. Sq0 = Id

2. Sq1 = β.

Proof: (Indications) The proof is by the method of the universal example:
namely the calculation of H̃∗,∗(Kn, Z/l) in degrees ≤ 2(n + 1). (In fact, by
Proposition 9.1.4, it is sufficient to consider the ‘stable cohomology’ of the mo-
tivic Eilenberg-MacLane spaces)6. �

Remark 11.4.2 In algebraic topology, there is a straightforward proof that
the Steenrod squaring operation Sqj is trivial for j < 0, based on the skeletal
filtration of a simplicial set.

The Cartan formula is proved from the weak Cartan formula, Lemma 11.2.1,
by using bistability.

Remark 11.4.3 To state the Cartan formula in the form given in the Theorem
requires the identification of the motivic Steenrod squares of odd degree:

Sq2i+1 = βSq2i.

This is one of the Adem relations; the proof of the Adem relations uses the
Cartan formula but the argument is not circular, since the above identification
is not used in the proof.

The instability condition is derived as follows: suppose that u ∈ H2i,i(X, Z/2)
is a cohomology class represented by a morphism X → KM(Z/2, i), then the
class Sq2i(u) is represented by the composite

X → X ∧BgmZ/2+ → KM(Z/2, i) ∧BgmZ/2+ → KM(Z/2, 2i),

where the first map is induced by a point of BgmZ/2. Proposition 10.4.4(2)
implies that this corresponds to the cup square of the class u. Suppose now
that u ∈ Hn,i(X, Z/2), with n < 2i, then consider the simplicial suspension of
u:

σ2i−n
s (u) ∈ H2i,i(Σ2i−n

s X, Z/2);

6This is non-trivial.
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the operation Sq2i is bistable and the cup product in the cohomology of a
simplicial suspension is trivial, since ΣsX has the structure of a cogroup object
so that the diagonal ΣsX → ΣsX × ΣsX factors up to homotopy across the
inclusion of the wedge ΣsX ∨ ΣsX ↪→ ΣsX × ΣsX. It follows that Sq2i(u) is
trivial in this case.

Uniqueness of the operations follows once that it is known that the Sqj

generate the motivic Steenrod algebra A∗,∗(k, Z/2) over the coefficient ring
H∗,∗(Spec(k), Z/2). For example, the action of the Steenrod squares Sq2i on
the motivic cohomology of products of BetZ/2 (respectively P∞) is determined
by the properties given. Uniqueness is equivalent to the assertion that for any
non-trivial bistable cohomology operation, there exists a cohomology class in
H∗,∗((BgmZ/2)×m, Z/2), for some m, on which the operation acts non-trivially.
(See the discussion in Section 9.3).

11.5 A proof of the Adem Relations

The motivic Steenrod algebra satisfies Adem relations similar to those for the
topological Steenrod algebra, which were stated in Proposition 9.4.1. The Adem
relations can be derived from the fact that

Pln ◦ (Pn ∧ 1) : KM(Z/l, n) ∧BetZ/l+ ∧BetZ/l+ → KM(Z/l, l2n)

is Z/2-equivariant (see Proposition 10.4.5).

Remark 11.5.1 It is also possible to derive the Adem relations using the repre-
sentation of the motivic Steenrod algebra upon the motivic cohomology algebras
H∗,∗((BgmZ/2)×n, Z/2).

Recall that there is an isomorphism of H∗,∗(X, Z/2)-modules:

H∗,∗(X×BetZ/2×BetZ/2, Z/2) ∼= H∗,∗(X, Z/2)[a, b, a′, b′]/(a2 = τb+ρa, a′
2 = τb′+ρa′).

The Adem relations are given by considering the class P∗ ◦ P∗x, for a suitable
universal choice of cohomology class, and equating the coefficients of aε1bi1a′

ε2b′
i2

and aε2bi2a′
ε1b′

i1 , for suitable choices of indices. To calculate the class P∗◦P∗x,
the Cartan formula is used together with the action of the Steenrod squares Sqi

on H∗,∗(BetZ/2, Z/2) (see Lemma 9.3.3).
Using the notation of Notation 11.1.1, the equations of Lemma 9.3.3 reduce

to:

Sqiuk =
(

k

i

)
uk+i,

which do not involve τ, ρ. The terms involoving ρ, τ arise from the Cartan for-
mula and are therefore linear. The coefficient of τ can be deduced by a weight
argument from the topological Adem relations, hence it remains to calculate
the term which is linear in ρ, which shall be called the perturbation from the
topological Adem relations. In particular, setting ρ = 0 and τ = 1, one obtains
the topological Adem relations (see Section 9.4). The calculation follows that
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of Steenrod and Epstein [SE].

Proof of Proposition 9.4.1: It suffices to calculate the perturbation term in
ρ, which arises from the Cartan formula for Sq∗, with ∗ odd. Henceforth, it is
sufficient to work only in terms of the degree of an element and not its weight.

Following [SE, p.119] (in particular using their notation k, c, s), the Adem
relation for SqkSqc, (0 < k < 2c), is derived from P∗P∗(x), for |x| = 2s −
1 + c, where 2s > k. The relations are given by equating the coefficients of
u2|x|−ku′|x|−c and u|x|−cu

′
2|x|−k in the expression

P∗P∗(x) =
∑
j,l

Sql(Sqj(x)u|x|−j)u′2|x|−l. (2)

Consider the coefficient of u2|x|−ku′|x|−c; these terms arise for 2|x|−l = |x|−c,
so that l = |x|+ c = 2s + 2c− 1, hence l is odd. For given j, the perturbation
term from this expression is

ρ
∑

m odd

Sql−m−1Sqj(x)Sqm(u|x|−j)u′|x|−c.

and the terms in u2|x|−ku′|x|−c, are given by m = |x| − k + j. Hence, the
perturbation term is:

ρ
∑

{j||x|−k+j odd}

Sql−m−1Sqj(x)
(
|x| − j

m

)
u2|x|−ku′|x|−c.

Similarly, consider the perturbation term in the coefficient of u|x|−cu
′
2|x|−k

of equation (2); these terms arise for 2|x| − k = 2|x| − l, so that l = k. Hence,
if k is even, there is no perturbation term.

Thus, suppose that k is odd; proceeding as above, the perturbation term is:

ρ
∑

n odd

Sql−n−1Sqj(x)Sqn(u|x|−j)u′2|x|−k,

where n+|x|−j = |x|−c, so that n = j−c. Now, Sqn(u|x|−j) =
(|x|−j

n

)
u|x|−c and

|x|−j = |x|−(n+c) = 2s−1−n is even, since n is odd. The binomial coefficient
is thus trivial over Z/2, so that the perturbation coefficient of u|x|−cu

′
2|x|−k is

trivial.
Thus, the only additional term in the Adem relations is for k even

ρ
∑

{j|j≡c(2)}

(
|x| − j

|x|+ j − k

)
Sqk+c−j−1Sqj(x).

Finally, |x| = 2s−1+c, so that the binomial coefficient is equal to
(
2s−1+c−j

k−2j

)
=(

c−j−1
k−2j

)
, which completes the proof. �
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11.6 Modifications for l odd

When the prime l is odd, a similar method gives the construction of the mo-
tivic Steenrod reduced power operations. There are two additional issues to be
adressed: the fact that the field k need not necessarily contain a primitive lth

root of unity and the fact that certain of the operations Dj are trivial. The first
point is dealt with by using a transfer argument involving adjoining a root of
unity to the base field k.

The second point is addressed as follows:

Remark 11.6.1 A model for the classifying space of Z/l in algebraic topology,
is given by the topological realization of Bgmµl. There is an analagous construc-
tion of the Steenrod reduced powers; in particular the classes Dj(x) are defined
as in Section 11.1 (up to a sign). In algebraic topology, the classes D2i(x) and
D2i+1(x) are shown to be trivial unless (l−1)|i by using coefficients Z/l twisted
by the action of Aut(Z/l) [SE]. This corresponds to considering the non-trivial
action of Aut(Z/l) on BgmZ/l; the argument in the motivic setting is completed
by the following Proposition.

Proposition 11.6.2 The cohomology class in H2nl,nl(KM(Z/l, n)×BgmZ/l, Z/l)
defined by the total Steenrod power Pn is invariant under the action of Aut(Z/l)
on BgmZ/l.
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