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MATHEM ATICS

A CLASSIFICATION OF CONTINUOUS TRANSFORMATIONS OF
A COMPLEX INTO A SPHERE.I*

By L. PONTRYAGIN
(Communicated by I. M. Vinogradow, Member of the Academy, 25. II. 1938)

Two continuous transformations f and g of a topological space R into
an n-dimensional sphere S,** are usually called equivalent if there
exists a continuous deformation transforming f into g. Thus all conti-
nuous transformations of R into S, can be divided into classes, each
class consisting of equivalent transformations. The problem of determi-
ning these classes (for given R and n) is one of the most actual prob-
lems in topology. For the case when R is an n-dimensional complex K,
this problem was completely solved by Hopf. For the case when R=K,,
r>n, it is as yet far from being solved.

In this and some subsequent notes I shall publish my results concern-
ing some particular cases of the problem. In particular, in the present
paper 1 give a complete classification of continuous transformations of
the sphere Sny1 into S, (for n=2,3, ...).

Let us begin by establishing some general properties of transforma-
tions of a topological space into a sphere. '

We shall say that two continuous transformations f and g of a space
J; into a sphere S, coincide in an open set v S, if

1) j71(V)=g(V)=UCR;

2) for every €U we have f(z)=g ().

We can announce now the following three propositions {A, B and C)
the proof of which is immediate.

Proposition A. If two continuous transformations f and g of R
into S, coincide in a non-empty open set ¥ Sy, then these transforma-
tions are equivalent.

Proposition B. Let V be a spherical region in S, F is a closed
subset of the normal space R, V' and F’ are the boundaries of resp.
V and F (in S, and R), and f is a continuous transformation of F into
V4V’ such that f(F')CCV’. Then there exists a continuous transforma-
tion g of R into S, coinciding with f in V.

Proposition C. Let f be a simplicial transformation of a complex
K into the sphere S, (which we suppose to be decomposed into simp-

* Theorems 2’ and 2” have been reported on my behalf by S. Lefshetz at the

International Mathematical Congress in Oslo, 1936.
*% We distinguish between a «sphere» and a «full spheres. A k-dimensional

sphere is the boundary of a (k--1)-dimensional full sphere.
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lexes), 7 is an open n-dimensional simplex belonging to S /

14 - g noand U = f-1(

Then U is homeomorphic to the topological produbct oan and a éergi).

complex P, i.e. we can correlate every point z€U with a pair (z )n

where x€V, y€ P so that il = corresponds to (z, y), then fa)=f(x z,r)u,:y, ;

Besides, if K is a manifold, then £ is also a manifold. a '
The three-dimensional sphere S, is homeomorphic to a group S, of

V3

uaternions. Let H be g [
q a monoparamelric connected subgroup of_S3 and

consider the topological space S, of all right co-sets of A in S,. This
space 1s homeomorphic lo §,. If we denole by 5(;5) (€S, the. co-sel
containing z, then ¢ is a conlinuous Lransformation of S, into S,. The
corresponding transformatlion of S; into S, we shall denote by 9 *

VV[? shall say _that a transformation f of a complex K into &, is ho-
molo,glfio to zero, if the image ol each n-dimensional cycle Z in K modulo
m, where m is an arbitrary nalural number, is the vanishinge cvele i
AR : shing cycle in §,,,

Lemma. Let | be a continuous transformation of a complex K into §

i

If | is homologic to zero, there exists a continuous transformation g of K
into Sy such that j=og, i.e. such that for every z€ K we hace

f(r)=21g ()]

) 'I:[Ehe p roolf of ::-{ln’s lemma is based on the proposition G and involves
rather complicated construction in which some i i :
tpansformaﬁoﬂ ety ¢ which some special properties of the

Hurewicz has proved that two transformalions ¢ an 1
are equivalent if and only if t(he transformations Olﬂha(r)lfl]tshnim ;‘C
into §,) are equivalent. A ‘

This theorem of Hurewicz Llogether wilh the above lemma allow us
to reduce the question of the classification of homologic to zero trans-
formations of K into S, to the question of the classification of all 001;-
tinuous transformatlions of A into S,. And hence we oblain easil th
classificalion of continuous transformations of §, into S e

In fact let f be a simplicial transformation of S, into §,. Take any
two points ¢ and b of 8, which are interior to their correspoaﬁding simy-
lexes:_ Then }[*}(a) and f='(b) are cycles in S,. Hopf has shown thabtl?e
looping coefficient ¢ (f) of these cycles is an invariant of the class of
equivalent transformalions.. IL may be proved that ¢ (f) is the only inva-
marrl;hof this class. In other words we have: ’ G

eorem 1. Two transormations a ] . ;
lent if amd amly i1 4 ) s foand g of Sy into S, are equira-

}I‘V}? proceed now to the case n = 3.

eorem 2. For n=3 there exist n )
W bt e xisl not more than iwo classes of

Proof. Let f be a simplicial transformation of Sny1 into S,, V is an
n-dimensional full sphere with the centre « lying in one ofn'i;he simp-
lexes of Sy, and let U=f-1(V). Then by proposition C. U can be re rle-
sented as the Lopological product of ¥ and a manifold P consistin gf a
finite number of (topological) circles *. Modifying f we can easil gmake
P consist of a single circle. By a second deformation of f we cag make
the curve (a, P)a differentiable curve (lying in Snt1), (V, y) (for any y € P)
a (metric) full sphere normal to (a, P) and the transformation f%sémet-
ric on (V,y). Let g be another transformation of Sni1 into S,; we can
suppose g to bhe modified in the same manner as #. Besides?any two

I.e., in our terminciogy, one-dimensional spheres.
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circles in 8,7 being isolopic. we can suppose that for both lransforma-
lions the («, P) [and, consequenily, the (I7,7)] coincide. Further, since
the transformalions f/ and g (ransform every (V, y) into V isometrically,
we have f(z,y)=g [,{x),y], where ¢, is a rolation of full sphere V.
Thus, the comparison of the two transformations [ and g has lead us to
the family {4y },ep of rotalions of an n-dimensional full sphere where
P is a (topological) circle (and @, depends of y in a conlinuous man-
ner). But since in the manifold of all rotalions of an n-dimensional full
sphere V (n=3) there are only two different homotopic Lypes of circles,
it follows that there exist at mosl two classes of transformations of
Spi1 into Sy

In order lo he able lo proceed further we need anolher general
proposition.

Proposition D. Any conlinuous iransformation of S, into Sn can
be approximated by an analylic transformation. If two analytic transfor-
mations of S, into &, are equivalent, there exists an analytic deformation
of one into the other.

The proof is based upon the possibilily of approximation of a fune-
tion of several variables by polynomials.

Theorem 2'. For n >3 there exist at least two classes of transfor-
mations of Spy1 into S,.

Proof. Let f be an analylic transformation of 8,4, into S,. Then
there exists a point « €S, such that Lhe set P=j-1(a) consists of a {i-
nite number of simple closed analylic curves having no points in com-
mon. The number of these curves we denote by (3. Now take at ¢ n mu-
tually orthogonal vectors ry, ..., r, and a point y € P. The transforma-
tion f correlates the system vy, .... v, to a system of linearly indepen-
dent vectors u,, ... , u, orthogonal to P. To these vec¥ors we join a vec-
tor u, tangent to P at y. Thus, at every point y€ P we have determi-
ned a system U, of n--1 linearly independent vectors. Let us now take
at each point z€8,.; a certain system of n+41 linearly independent
vectors. The manifold of all such systems we denote by M. It may be
easily established that the one-dimensional Betti group of M is the cyelic
group of order 2. Let Z be an one-dimensional cycle in M not homologous
to zero. The sel of all systems U, (y € P) defines in M a cycle homologous
(in M) to the cycle aZ where o =0 or 1. Let y=a- @ (mod 2). It may
be proved that if we deform the transformation f analytically, y remains
constant (mod 2); if @ remains constant during the deformation our
assertion is evident, because the deformation of U, is then continuous;
the critical moments of the deformation (when [ changes its value)
require a special (however, rather elementary) consideration.

To prove theorem 2’ it is now sufficient to construct two transfor-
mations for which the rests of v to the modulus 2 have different values
0 and 1. This may bhe easily done with the aid ol proposition B.

In the next note I shall give the classification of continuous transfor-
mations of Sy 2 into Sy.

Mathematical Institute. State University. Received
Moscow. 4. ITI. 1938.
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Le théoréme III est applicable aux intégrales W, (z), F,(z), P, (x)
By (%), Ln(z), Va(z) dans lecas p=1. Une légére complication de raison.
nement nous permet d’appliquer le théoréme aussi aux intégrales K, ()
(pour p =1) et Sp(x) (mais sealement pour p > 1, cependant, comme i]
a été démontré par A. Tulajkoff (%), le résuliat reste wvrai aussi pour
p=1).

Institut de Mathématiques et de Mécanique. Manuscrit regu
Université de Léningrad. le 25. III. 1938.
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MATHEMATICS

A CLASSIFICATION OF CONTINUOUS TRANSFORMATIONS OF
A COMPLEX INTO A SPHERE. 2*

By L. PONTRYAGIN
(Communicated by I. M. Vinogradow, Member of the Academy, 25. III. 1938)

In this paper we give a classification of transformations of the sphere
Sn4e into the sphere S, (r = 2) and establish some general relations be-
tween transformations of S, into S,.

Theorem 1. There exist exactly two classes of transformations of S,
into §,.

Prf)of. In C. of ¢. t. 1 it was proved that the number of classes
of transformations of §, into S§; is equal to the number of classes of
transformations of §, into §,. In the same paper this last number was
proved to be 2.

Theorem 2. If n=>3 there exists only one class of transformations
of S—n+2 into Sn-

Proof. According to C. of ¢. t. 1 we may confine ourselves to ana-
lytical transformations of S,., into S,. Let f be an analytical trans-
formation of S,4e into §, and a a point of S,, such that f~'(a) is a
surface in 8,4 without singularities. Let further ¥V be a (sufficiently
small) spherical neighbourhood of a. Then U=jf-1(V) is homeomorphic
to the topological product of the full sphere ¥V and a given surface P;
moreover, if a point z€U corresponds (in this homeomorphism) to (z, ¥)
(where €V and y € P), then f(z)=f(z, y)=2x. We can modify f so that
it will transform the full sphere (V, y) into the full sphere V isometri-
cally and that (V,y) will be orthogonal to the surface (a, P) for an
arbitrary y € P.

We shall first consider the case when P is a sphere. For n =4 any
two differentiable surfaces homeomorphic to a sphere are homotopic in Sye.
If, therefore, f and g are two transformations of the described type, we
can suppose that the surface (a, P), and consequently, the full spheres

* The present paper is a continuation of my paper «A classific tion of conti-
nuous transformations of a complex into a sphere. 1» [C. R. Acad. Sci. URSS, XIX,
N 1—2 (1938)], which will be referred to as C. of c. t. 1.

The convention laid down in C. of c. t. 1 concerning the distinction we make
between a k-dimensional «sphere» and a k-dimensional «full sphere» remains valid:
under a k-dimensional sphere we understand the boundary of a (k-+1)-dimensio-
nal full sphere.

Theorems 1 and 2 were reported on my behalf by Prof. S. Lefshetz at the Inter-
national Mathematics Congress in Oslo in 1936.

361




(V,y) coincide for both transformations. We have thus (z,y)=
=g (¥y (), y) where D, is a rotation of ¥V depending in a continuoys
manner on the point ¥ € P. Any image of a two-dimensional sphere bein
homotopic to zero in the manifold of all rotations of V, we conclude
that f and g are equivalent (see C. of ¢. t. 1, A). The case n=3 requi-
res a special consideration (involving some rather complicated argu-
ments), but the result remains true.

It remains to reduce the general case to the case when P is a sphere.
It is easily seen that the surface P is always orientable. Let L be
a sumple closed curve lying in P. A neighbourhood of L can be covered

by a monoparametric family {L[ }, —1 <t <1, of simple closed curves

(Lo=L). Consider in S,;» the family of curves {(ac, Lt)}x ev . This family
is homeomorphic to an (n- 1)-dimensional full sphere V'. If we now
correlate every curve (z, L;) with the point of V’ which corresponds to
the curve (z, L) in the above homeomorphism, we shall obtain a trans-
formation %’ of an open subset of Sy;s into V’. Supposing that V' lies
in an (n+ 1)-dimensional sphere S,;;,we can extend the transformation
k' to a transformation k2 of S.is into S,iy (see C. of c. t. 1, B). Two
cases are now possible: 1) the transformation % is homotopic to zero:
then we shall say that the index of L is zero; 2) & is not homotopic to
zero; in this case we shall say that the index of L is unity. It may be
proved that homologous curves on P have the same index and that if
we add two curves (in the sense of homology) their indices are also
added modulo 2. Hence it follows easily that unless P is a system of
spheres, there exists on P a curve not homologous to zero, whose index
is zero. Let L be such a curve. Denote by P’an differentiable surface in
Sni2, homeomorphic to a circle (two-dimensional full sphere), having the
curve (a, L) for its boundary and no points in common with the surface
(a, P) except the points of (a, L).

This construction enables us to modify f so as to make the genus of
P smaller by one. Repeating this process we shall come at last to a
transformation for waich the corresponding surface P consists of a system
oflspheres; and a system of spheres may be easily reduced to a single
Sp ere.

The theorem is thus proved.

It seems to be usefull to introduce the operations of addition of
classes of equivalent transformations of S, into S,, thus transforming
the set of all such classes into a group.

Definition. Let Sy and 87 be two oriented r-dimensional spheres,
and f’ and f” their transformations into the n-dimensional sphere S,.
We shall say that the transformations f’ and f” are equivalent, if there
exists a homeomorphism 4 of S on §, which preserves the orientation
and for which the transformation f’k and f” of S, into §, are equivalent.
Thus, all transformations of oriented r-dimensional spheres into S, are
divid:d into classes of equivalent transformations.

2 shall define now the sum of two classes as follows. Let 4 and B
be tw) classes and let /€ A and g€ B. Denote by §; the sphere transfor-
med by f and by S that transformed by g. Let further V¥’ and V" be
two fall spheresresp. in §, and S;; since f and g are defined only up
to equivalent transformations, we may suppose that f(V')=g(V")=a
where a is a point of §,. Now if we join the oriented manifolds S,—V’
and S/ — V" by identifying their boundaries so that the orientations are
preserved, we obtain an oriented sphere S§,”; the transformations f and
g of §, and §; dofine a continuous transformation A of S into Sn.
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It may be proved that the class C, to which k belongs, depends neither
on the choice of f and g within the classes A and B, nor on the way
of identification of the boundaries of S;— 7V’ and S, —TV"" (provided
that the condition about the preservation of orientations is fulfilled),
but only on the classes A and B. This class ¢ we shall call the sum of
A and B and write C = A4+ B. The operation of addition thus defined
possesses all the properties of a group operation. The zero of this group
is the class of transformations homotopic to zero. If A4 is a class of
transformations and f€A is a transformation of S, into §,, then the
same transformation f applied to the sphere S/, differing from S by

orientation, determines the class — A opposite to A.

The group thus obtained is isomorphic to one of the homotopy groups
constructed by Hurewicz.

The problem of classification of continuous transformations of S,ix
into 8, may be now more precisely formulated as the problem of deter-
mination of the group of transformations of Syyx into S,. This group we
shall denote by Pj.

From the results already ortained it follows that P§ is a free cyclic
group; P} for n =3 is a cyclic group of the second order, as also is Pj,
while for n =3 the group P; consists of a single element.

We have no reasons to suppose that P} is always a cyclic group.
But another conjecture suggested by the above results is true. We have:

Theorem 3. For n=k-+2 P} is isomorphic to PFV®==P,.

The proof (which is not very complicated) depends upon the pro-
positioas D and A of C. of ¢. t. 1.

In view of this theorem the problem arises to determine the group P.
It seems that this problem is closely related to the study of homotopis
properties of the group of orthogonal matrices.

Received
28. III. 1938.
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