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Let A; be any spectrum in a class of finite spectra whose mod 2 cohomology is
isomorphic to a free module of rank one over the subalgebra .A(1) of the Steenrod al-
gebra. Let E¢ be the second Morava E—theory associated to a universal deformation
of the formal completion of the supersingular elliptic curve C : y? + y = x3 defined
over F4 and G4 a maximal finite subgroup of the automorphism group Sc¢ of the
formal completion of C. We compute the homotopy groups of E zG24 A A1 by means
of the homotopy fixed-point spectral sequence.
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Introduction

A central problem in stable homotopy theory is to understand the homotopy groups
of the sphere spectrum localized at each prime p, JZ’*(S(OP)). A powerful tool for
computing the latter is the Adams and Adams—Novikov spectral sequences, which
allows one to compute 7y (S(Op)) at each stem . Complementary to this method is the
chromatic approach to stable homotopy theory, which aims at analyzing the latter in
a large scale. In fact, the chromatic point of view offers a tool to analyze the global
structure of the stable homotopy category, and hence that of 7. (S (Op)), in a systematic
way by decomposing it into smaller pieces; see for example Ravenel [33] and Hovey

Published: 14 March 2023 DOI: 10.2140/agt.2022.22.3855


http://msp.org
http://www.ams.org/mathscinet/search/mscdoc.html?code=55Q10
http://dx.doi.org/10.2140/agt.2022.22.3855

3856 Viet-Cuong Pham

and Strickland [25]. Fundamental building blocks in the theory are the K(7n)-local
homotopy category, the Bousfield localization of the stable homotopy category at the
Morava K-theories, which are defined at all primes and all natural numbers #n; the
prime is implicit in the notation of K(n) and # is referred to as the chromatic level.

For this purpose, a general strategy is to study the homotopy type of the K(n)-
localization of various finite spectra. A central result of the theory is the work of
Devinatz and Hopkins [16], which expresses the K(n)-localization of a finite spectrum
X as the continuous homotopy fixed-point spectrum

LgmX ~ EICn A X,

where G, is the extended Morava stabilizer group, which is profinite, and £} is the
n'™ Morava E—-theory.

The study of chromatic level one was a great success: the homotopy groups of L g (1)S 0
have been completely computed at all primes and, at the prime 2, Lg1)S 0 detects
essentially the image of J, an infinite family of elements of 74 (S°). Chromatic level
two has also been thoroughly investigated at odd primes. It started with the computation
by Shimomura, Wang and Yabe [39; 36; 37; 38]. Later, Goerss, Henn, Mahowald and
Rezk [21] proposed a conceptual framework to organize the K(2)—local homotopy
category at the prime 3, in which the authors constructed a finite resolution of the K(2)—
local sphere using higher real K-theories. See work of Goerss, Henn, Karamanov and
Mahowald [20; 23; 19] for further investigations at » = 2 and p = 3 and Behrens [7]
for an exposition at p > 5.

The situation of chromatic level two at the prime 2 turns out to be much more com-
plicated and we are only beginning to understand it better. Considerable effort has
recently been made to understand the K(2)-local homotopy category at the prime 2
by the community. In [11], Bobkova and Goerss established a finite resolution of a
spectrum related to the K(2)-local sphere at the prime 2 analogous to that of [21],
which realized an algebraic resolution of S!, a certain closed subgroup of the second
Morava stabilizer group, constructed by Beaudry [5].

One reason why the latter is hard to deal with lies largely in the fact that the cohomo-
logical properties of the group G, are much more complicated at the prime 2. However,
one exciting feature of chromatic level 2 is its close relationship with the theory of
elliptic curves and modular forms, see Section 1. At chromatic level 2 and at the
prime 2, we can choose the Morava E—theory to be the Lubin—Tate theory associated
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to the formal group law of the elliptic curve C : y2 + y = x3 over F4. We denote by
E¢ and G¢ the corresponding Morava E—theory and Morava stabilizer group. One
of the main tools used to investigate the K(2)-local homotopy category is a finite
resolution. There is a certain subgroup S IC of G¢; let Go4 be the automorphism group
of C and Cg¢ be a cyclic subgroup of order 6 of G,4 (see Section 1 for details).

Theorem 1 [11] There is a resolution of E égé? , in the K (2)-local homotopy category
at the prime 2, of the form

ENSt o, o 1 ¢ & By ¢
C 0o— 1—> 2 —>¢C3,

where 50 — EéG24, 51 = 52 = Eéc() and 53 = 248E2G24.

This resolution is commonly called the topological duality resolution. The spectrum
1. . . .

E éSc is used to build the spectrum E éSC , where S¢ is the Morava stabilizer group,

via a certain cofiber sequence

1 — 1
EhSC —>E2~SC 1oz, EéSC,

and E éSC only differs from Lg;)S % by the Galois action, ie there is a homotopy

equivalence
LK(Z)SO (EhSC )hGal(]F4/]F2)

Thus, this theorem offers a useful instrument to study the homotopy type of L g(2) X
for finite spectra X at the prime 2. In particular, it produces a spectral sequence,
known as the topological duality spectral sequence, abbreviated by TDSS, converging
to n*(EéSIC AX):

(1) B o 7, (Ey A X) = 74— p(EESC A X)),

By now, it should be clear that judicious choices of finite spectra become important.
Main players in this paper are finite spectra constructed by Davis and Mahowald [13].
Let A; denote a class of finite spectra whose mod 2 cohomology is isomorphic,
as a module over the subalgebra A(1) generated by Sq' and Sq? of the Steenrod
algebra A, to a free module of rank one on a class of degree 0. As shown in [13,
Theorem 1.4(i)], the class A; contains four different homotopy types, which are
distinguished by the structure of their mod 2 cohomology as modules over the Steenrod
algebra. They are successively denoted by A1[00], A{[01], 4;[10] and A[11]; see
Definition 3.2.1. The spectra A{[01] and A[10] are Spanier—Whitehead self-dual,
ie D(A1[01]) ~ £764,[01] and D(A4[10]) ~ = %A4,[10]; and the spectra A4[00]
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and A[11] are Spanier—Whitehead dual to each other, ie D(A4[00]) ~ Z70A4,[11]
(here D(—) denotes the function spectra F(—, S°)). By an abuse of language, we
write A; to refer to any of these four spectra and refer to any of them as a version
of A1. The spectrum A; is constructed via three cofiber sequences starting from
the sphere spectrum. First, let V(0) be the mod 2 Moore spectrum, ie the cofiber of
multiplication by 2 on the sphere. Next let Y be the cofiber of multiplication by 7, the
first Hopf element, on V' (0). Davis and Mahowald show that ¥ admits v;—self-maps,
v1: 2%Y — Y. Then A is the cofiber of any of these v{—self-maps of Y.

Here, we study the homotopy fixed-point spectral sequence, abbreviated by HFPSS,
for £ éGz“ A Ay, which constitutes an important part of the E;—term of the TDSS:

) H*(Ga4, (EC)x(A1)) = mx(EET24 A A)).

Here are qualitative versions of the main results of the paper; see Theorems 5.3.17 and
5.3.18 for more precise statements.

There are classes

A® € H(Go4, (Ec)192), Kk € H*(Gaa, (Ec)a24), v €H (Gaa, (EC)s).

Theorem 2 As a module over the ring F4[AT3, ic, v]/ (vi), the Eoo—term of the HFPSS
for EéGz“ A A41[01] and EéGZ“ A A1[10] is a direct sum of 46 explicitly known cyclic
modules.

Theorem 3 As a module over the ring F4[A*3, i, v]/ (vic), the Eso—term of the HFPSS
for EéGZ“ A A1][00] and EéGZ“ A Aq[11] is a direct sum of 48 explicitly known cyclic
modules.

One of the interests in working with 4; is that a sufficient understanding of the
homotopy type of Lk 2)A; might allow us to determine the Gross—Hopkins duality
formula for the K(2)-local homotopy category at the prime 2. In fact, the spectrum A4
can be considered as an analog of the Toda—Smith complex V(1) at the prime 3 and,
as demonstrated in [19], computations of the homotopy groups of L g2V (1) allow
one to characterize the Gross—Hopkins formula for the K(2)-local homotopy category
at the prime 3.

One of the key ingredients, to this end, is a comparison between tmf A 4; and
E ng4 A Ay, where tmf denotes the connective spectrum of topological modular forms
localized at the prime 2. In fact, there is a homotopy equivalence (Theorem 5.1.1)

(A%~ tmf A Ay ~ (ERG24)hGAF/F2) \ 4,
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where A3 is the periodicity generator of «tmf. Based on the latter, we first analyze the
homotopy groups of tmf A 4; by means of the Adams spectral sequence, abbreviated
by ASS, then invert A® to get information about the homotopy groups of E gGZ“ ANAy.

We note that, in [10], Bhattacharya, Egger and Mahowald also discuss the E;—term of the
ASS for tmf A A;. Our method is, however, different; the calculation is performed with a
use of the Davis—Mahowald spectral sequence. A key technical result, Proposition 3.3.7,
is the determination of a certain product in the E;—term, which depends on the module
structure of H*(4) over .A— more precisely, on the action of Sq* on H*(A4;). The
latter is different for different models of A;. In turn, this results in differences in the
ik—nilpotence order of elements of 74 (tmf A A); here i is an element of 759(S?).

Next, we summarize the contents of the paper. In Sections 1 and 2, we discuss some
background and tools used in our computation. We recall Lubin—Tate theories and
topological modular forms; in particular, we sketch a proof of the relationship between
topological modular forms and the homotopy fixed-point spectrum E éGZ“. We give
a generalization of the Davis—Mahowald spectral sequence, which is an important
tool to analyze the cohomology of various Hopf algebras. In Section 3, we discuss
the Davis—Mahowald spectral sequence for A; and obtain the E,—term of the Adams
spectral sequence for tmf A 4. In Section 4, we study some differentials in the latter
and then extract some suitable information about 7z, (tmf A A1). In Section 5, we finally
study the homotopy fixed-point spectral sequence for £ éG24 A A1. We emphasize that
there are two different outcomes for the Exo—term of the homotopy fixed-point spectral
sequence, depending on the version of A; see Theorems 5.3.17 and 5.3.18.

Conventions and notation Unless otherwise stated, all spectra are localized at the
prime 2. H*(X) and H«(X) denote the mod 2 cohomology and homology of the
spectrum X, respectively. Given a Hopf algebra A over a field k£ and M an A-comodule,
we will often abbreviate Ext’ (k, M) by Ext;(M). In general, we will write Cr for
the cofiber of a map f: X — Y, except that we will write V(0) for the Moore spectrum
which is the cofiber of the multiplication by 2 on the sphere.
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1 Recollection on chromatic homotopy theory

1.1 Lubin-Tate theories

We recall some generalities on the deformation theory of formal group laws and Goerss—
Hopkins—Miller theory. Let G L be the category whose objects are pairs (k, I'), where
k is a perfect field of characteristic p and I is a formal group law over k, and morphisms
between (k,T") and (k’, T'') are pairs (i, ¢), where i : kK’ — k is a homomorphism of
fields and ¢p: ' => i*T" is a morphism of formal group laws.

Let (k,T") € FGL with T of height n. A deformation of (k,I") to a complete local
ring R with maximal ideal m is a pair (F, ¢), where F is a formal group law over R
and (: k — R/m is a map of fields such that p*F = (*I" with p the canonical
projection R — R/m. A *—isomorphism ¢ between two deformations to R is an
isomorphism between the underlying formal group laws which reduces to the identity
over R/m, ie ¢ = x mod (m). This defines a functor DefT, from the category Ring, ;,
which associates to every complete local ring R the set of x—isomorphism classes of
deformation of I' over R. By Lubin-Tate deformation theory, Defr is corepresentable;
see [27, Theorem 3.1]. That is, there exists a complete local ring Ey 1 together with a
deformation (f, 1) over Ey r which is a universal deformation of I', in the sense that
the map
Homging, , (Ek,r» R) — Defr(R)

sending f to (f*T, fot), where f is induced by / on the residue field. The ring £ kT
is noncanonically isomorphic to W (k)[u1,us, ..., uy—1], where W (k) denotes the
ring of Witt vectors on k.

Consider the graded ring Ek’r‘[u:l:l], where |u;j| =0for 1 <i <n—1and |u| = -2.
The formal group law uf‘(u_lx, u~1y) is a formal group law of degree —2 (ie the
coefficient of x’ y/ is in degree 2(i + j —1)). Let M U be the complex cobordism
spectrum. A famous theorem of Quillen asserts that the coefficient rings M U, support
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the universal group law of degree —2. Thus, uf‘(u_lx, u~1y) is classified by a map
of graded rings MUy — E k,l"[l/l:tl]. Define a functor from the category of pointed
spaces to that of graded abelian groups,

X > MUx(X) ®umu, Er,rlu™']

The formal group uf(u_lx, u~1y) satisfies the Landweber exact functor criterion; see
[34, 6.9]. By the Landweber exact functor theorem, the above functor is a homology
functor. Thus, it is represented by a ring spectrum E(k, ") with

(E(k.T)s 2= WE[ur .. un— I,
The latter is known as an n" Morava E—theory or Lubin-Tate theory.

The construction that associates to a formal group law (k, ') the Morava E-theory
E(k,T) defines a functor from FGL to Ho(Sp), the stable homotopy category. Let us
denote by G (k, I') the automorphism group of the pair (k, I"). We note that G (k, I")
is a profinite group; see [18, Section 7.2]. By functoriality, the group G(k,I") acts
on E(k,I"). This action is, however, defined only up to homotopy. The Goerss—
Hopkins—Miller obstruction theory lifts this action to structured ring spectra.

Theorem 1.1.1 [22, Corollary 7.6] The spectrum E(k,I") has a unique structure of
an Eo—ring. Furthermore, G(k,T") acts on E(k,I") via Eoo—ring maps.

1.2 Topological modular forms

An astute choice of Morava E—theory or equivalently a choice of formal group law
of height 2 will make the calculation easier. Let C be the supersingular elliptic curve
over 4 given by the Weierstrass equation y? 4+ y = x3. Denote by F¢ the formal
completion of C at the origin. The latter is a formal group law of height 2. We abbreviate
E(Fy, Fc) by Ec and G(IF4, F¢) by G¢. Let S¢ denote the automorphism group
of Fc. Let Gal denote the Galois group of IF4 over IF,. There is a short exact sequence

1> Sc — Ge — Gal — 1.

The image of S¢ in G¢ corresponds to the automorphisms of (IF4, F¢) fixing Fy.
Since F¢ is defined over IF,, Gal fixes F¢, the above short exact sequence splits, ie
G = S¢ x Gal. The automorphism group of C has order 24 and these are all defined
over [F4; more precisely,

Aut(C) = Aut]F4(C) =~ SL,(Z/3) = Qg X C3 =: Gay4,
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where Qg is the quaternion group and Cs = {(w) is a cyclic group of order 3; see [40,
Appendix A (Proposition 1.2 and Exercise A.1)]. A representation of Qg is given by

Os = (i, jli*=1,i*=j%iji ' =;7").

The latter has eight elements {1,7, j,k, —1,—i,—j, —k}, where —1 denotes i = j?

and k the product ij. The group C; acts on Qg by permuting i, j and k:

wiv’*=j, wjw®=k.
The elements w and i correspond to the automorphisms w(x, y) = (£x,£%y) and
i(x,y)=(x+1,y+x +&?), respectively.

Since C is already defined over IF,, Gal acts on Aut(C). Denote by G4g the semidirect
product G4 x Gal. Moreover, the automorphism group Aut(C) of C maps injectively
to S¢, and G4g maps injectively to G¢. We view G4 and Ggg as subgroups of S¢
and G, respectively.

The reasons for choosing the formal group law of the supersingular elliptic curve C are
two-fold. First, the geometric origin of G4g allows one to have an explicit description
of its action on w«(E¢); see [6] for more details. Thus, it allows us to adequately
compute the E;—term of various homotopy fixed-point spectral sequences. Second,
this choice of the Morava E—theory enables us to compare the associated homotopy
fixed-point spectrum with the spectrum of topological modular forms, hence providing
us with more tools to understand the former.

Next, we recall the construction of the spectrum of topological modular forms and
show its closed relationship with the homotopy fixed-point spectrum E g,GZ“. Let M
and M (3) be the noncompact moduli stack of elliptic curves and elliptic curves with a
full level 3 structure over Z,), respectively. As functors of points on Z,)—algebras,
the former are described as follows. If R is a Z y)—algebra, then:

e M(spec(R)) is the groupoid of (E, p: E — specR), elliptic curves over spec(R)
and isomorphisms between them, ie an isomorphism between (E, p) and (E’, p’)
consisting of two isomorphisms of schemes (f: E — E’, g: R — R) such that

gop=p'of

o M(3)(spec(R)) is the groupoid of (E, p,¢) consisting of an elliptic curve
(E, p) over spec(R) with an isomorphism of group schemes ¢: Z/3 X Z /3 —
E[3] over spec(R), where E[3]is the subscheme of 3—torsion points of £ and
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isomorphisms between them, ie (f, g): (E, p,¢) — (E’, p’, ¢’) is an isomor-
phism if (f,g): (E, p) — (E’, p’) is an isomorphism of elliptic curves over

spec(R) and f|gp3j00 =¢'.

Theorem 1.2.1 (Goerss, Hopkins and Miller; see Behrens [8, Theorem 1.1]) There
is an E-ring spectra-valued sheaf O'P on the affine étale site AfféAt,l of M such that:

(1) The sheafification of woO"P is the structure sheaf of M.

(2) If E: spec(R) — M is an étale morphism, then O'°P(spec(R)) is a spectrum
associated to the formal completion of E at its origin via the Landweber exact
functor theorem.

Remark 1.2.2 The spectra constructed by point (2) of this theorem are called elliptic
spectra. They are even periodic spectra R whose formal group law on 7o (R) is the
completion of an elliptic curve. These are E(2)-local; see [4, Lemma 4.2].

Let G := GL;,(Z/3) denote the automorphism group of the constant group scheme
7./3xZ]3 over Zy). Then G acts on M(3) by precomposition with the level structure.
The obvious forgetful functor gives rise to a finite étale morphism of stacks (because 3
is invertible in Z3)),

3) M((3) - M.
Thus, one can evaluate O*P at M and M (3). Define

TMF=0"P(M):= holim O'*P(U), TMF(3)=0"P(M(3)):= holim O"“P(U).

ét
U eAffy, UeAfFM(3)

These are known as nonperiodic versions of topological modular forms. The morphism
of (3) is a Galois cover with Galois group G, or a G—torsor. As a consequence of the
fact that O'P satisfies descent, one obtains that

4) TMF ~ TMF(3)"©.

It is known that M(3) is affine over the ring Z()[{], where { is a primitive third root
of unity; see [15, IV, Corollaire 2.9]. In particular, the only automorphism of an elliptic
curve with full level 3 structure is the identity. Furthermore, up to isomorphism of
elliptic curves with full level 3 structure, there is a unique supersingular elliptic curve
with a full level 3 structure over [F4. This follows from the fact that there is a unique
supersingular elliptic curve over [F4 up to isomorphism, and that the automorphism
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group of the supersingular elliptic curve (C, [F4) has order 48, which is equal to that
of G, the automorphism group of Z /3 x Z /3. In other words, the fiber of the morphism
M (3) = M over the supersingular locus of M is isomorphic to spec(IF4); ie the square

spec(Fy) —— M(3)

| |

spec(F4) ) G4g ——— M

is a pullback of stacks, where the bottom is given by specifying a supersingular elliptic
curve, for example C, and spec(IF4)// G4g is the quotient stack of spec(IF4) by Gas,
which acts on spec(IF4) via the quotient G43 — Gal(IF4/IF,) =~ C,. Therefore, by the
construction of 0P, L g(2)O0"P(M(3)) is the Lubin—Tate theory associated to the pair
(F4, Fc); see [8, Section 4]. This means that there is a homotopy equivalence

(5) LxgTMF(3) => Ec.

Note that G' can be identified with Aut(F4, C) = G4g so that the equivalence (5) is
equivariant with respect to the action of G on the source and of G4g on the target,
as follows. Suppose the map spec(F4) — M(3) specifies the elliptic curve C and a
level 3 structure Z/3%? L, C. Then, for any g € G, there is a unique ¢(g) € Gug
making the following diagram commute:

732 L, ¢

1 e

732 L, ¢

Theorem 1.2.3 There is a homotopy equivalence

(6) Li(2)TMF ~ EAGas,

Proof Since an elliptic spectrum is E(2)-local, TMF(3) is E(2)-local, being a ho-
motopy limit of £ (2)-local spectra. Using the equivalence (4) and the fact that K(2)—

localization commutes with homotopy limits in the category of E(2)-local spectra (see
[25, Proposition 7.10(e)]), we obtain that

Li(2)TMF 2 Lg(2)(TME(3)"%) 2 (L g (2 TME(3))"C o EAC4s, O
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A connective model of TMF In [17], a connective ring spectrum tmf was constructed
together with a map of ring spectra tmf — TMF. There is an element A? € 7 g,tmf
such that the latter map extends to a homotopy equivalence

(7) [(A¥)™tmf ~ TMF;

see [17]. The (co)homology of tmf, as a module over the Steenrod algebra A (see

Section 2 for a recollection on the Steenrod algebra), was known by Hopkins and

Mahowald; see [28; 34, Theorem 21.5]:

Theorem 1.2.4 There is an isomorphism of modules over the Steenrod algebra,
H*(tmf) =~ A/ A(2),

where A(2) is the subalgebra of A generated by Sq', Sq° and Sq*. Equivalently, there
is an isomorphism of comodules over the dual A, of Steenrod algebra

H, (tmf) = Ay O 42y, F2,
where A(2) is the dual of A(2).

2 The Davis—Mahowald spectral sequence

We introduce a generalization of the Davis—Mahowald spectral sequence, which is an
useful tool for analyzing Ext groups over various Hopf algebras. Initially, this spectral
sequence was used by Davis and Mahowald in [14] to compute Ext groups over the
subalgebra .A(2) of the Steenrod algebra.

2.1 Construction of the Davis—-Mahowald spectral sequence

Let k be a field of characteristic 2. We will later specialize to the case k = IF,, the field
of two elements. Let (4, A, i, €, n, x) be a commutative Hopf algebra over k, with A,
WU, €, n and x the coproduct, product, counit, unit and conjugation, respectively.

Definition 2.1.1 An exterior coaugmented comodule over A is an A—comodule M
together with a coaugmentation of A—comodules £ — M having a chosen section s of
k—vector space, which satisfies that

(8) (Id®s) o Ap)*(V) =0,

where Aps denotes the comultiplication of M and V is the kernel of s.
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For M an exterior coaugmented A—comodule, let £ (M) be the exterior algebra gener-
ated by the kernel of s.

Lemma 2.1.2 For M an exterior coaugmented A—comodule, E(M) is a comodule
algebra such that the natural inclusion M — E (M) is a map of A—comodules.

Proof Let V be the kernel of the section s. As k—algebras,
EM)Y=T(V)/{(x@x|xeV),

where T'(V) is the tensor algebra over V. T (V') has a unique structure as a comodule
algebra such that the inclusion M =~k & V — T (V) is a map of A—comodules. It
suffices to show that, if / denotes the ideal (x ® x | x € V), then Ar) (/) CAR L
Equivalently, one needs to show that A7) (x ® x) € A® I for x € V. Indeed, this is
a consequence of the commutativity of A and condition (8) of Definition 2.1.1 O

Let M be the cokernel of the coaugmentation k — M and P(M) the polynomial
algebra generated by M.

Lemma 2.1.3 P (M) is an A—comodule algebra such that the inclusion M <> P(M)
is a map of A—comodules.

Proof As k-algebra,
PIM)=T(M)/(x®y—y®x|x,yeM).

As the free algebra on M, T (M) has a unique structure as an A—comodule algebra
such that M < P(M) is a map of A—comodules. In order to conclude, it suffices to
show that Ar 3/ (X®y—y ®x) € AQ (x®y—y®x|x,ye M). This follows, in
fact, from the commutativity of A4. O

We write £ and P for E(M) and P(M), if the underlying M is understood from
the context. We introduce a grading on E and P by letting M and M have degree 1,
respectively. Denote by E; and E<; the subgroup constituting the elements of degree i
and of degree not exceeding i of E(M), respectively. Define P; and P<; similarly
for P. In the theory of Koszul duality, the polynomial algebra P is commonly referred
to as the Koszul dual of the exterior algebra E. We will refer to (P, E) as the pair of
Koszul duals associated to the exterior coaugmented A—comodule M. Let us recall the
definition of the Koszul complex (E ® P, d) associated to the pair (P, E), as follows:
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(i) (EQP)_1=k.
(i) (EQ P)y=E® Py form>0.
(i) d:k=(EQ® P)_1 > E =(E ® P)g is the unit of E.
(iv) d(]_[7=1 Xi; ®z) =Y 1=y ]_[Ji’ xi; ® p(xi,)z, where x;; € E1,z € Py and p
denotes the projection M — M.
Remark 2.1.4 In other words, d: E<; ® Py, — E<p—1 ® Py, is the unique homo-

morphism making the diagram

(X, 1d®=D® pyog)®1d

EZ!'® P<p Egl("_l)®P1®Pm
©) lﬂ@ld l#@ﬂ«
E§n®Pm a ESn—1®Pm+1

commute, where in the upper horizontal map the sum is taken over all cyclic permuta-
tions on n factors of E; in the tensor product £ 1®”.

Proposition 2.1.5 The complex (E ® P, d) is an exact sequence of A—comodules.
Furthermore, (E ® P, d) has a structure of a differential graded algebra induced from
the algebra structure of E and P.

Proof Let xq,...,x, be abasis of E;. As a cochain complex over k, (E ® P,d)
is isomorphic to the tensor product of (E(x;) ® k[yi], d;), where y; = p(x;) for
1 <i <n. Here, each (E(x;) ® k[yi], d;) is the Koszul complex associated to the pair
(E(xi), k[yi]). Itis straightforward to see that the cochain complex (E(x;) ® k[y;], d;)
is exact. Hence, (E ® P, d) is exact by the Kiinneth theorem. This proves the first part.

Let us check that d is a map of A—comodules. In the diagram (9), the two vertical maps
are ones of A—comodules because £ and P are A—comodule algebras. In addition,
they are surjective. It remains to check that the upper horizontal map is a map of
A—comodules. Or, equivalently, each map EE’I” —Mﬂ Eff”‘” ® P; is
a map of A-comodules, where o is a cyclic E)ermutation on n elements. This is
true because o is a map of A—comodules as A is commutative and p is a map of

A-comodules by definition. The second part follows.

Finally, it is straightforward from the formula of d in (iv) that d satisfies the Leibniz
rule. |
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Remark 2.1.6 Let £C4 be the category whose objects are exterior coaugmented
comodules over A and morphisms are maps of comodules which commute with
both the coaugmentation and its section. Then, we see that the association M >
(E(M)® P(M),d) is a functor from £C4 to the category of differential graded
comodule algebras.

This proposition allows us to construct a spectral sequence of algebras converging to
Ext; (k); see [32, Theorem A1.3.2] for example.

Proposition 2.1.7 (1) There is a spectral sequence of algebras

(10) E}’ = Ext) (k. E ® Pr) = Ext’/" (k. k).

converging to Ext}y (k), with d, ESt s pSrELitr

(2) If N is an A—comodule, then there is a spectral sequence of modules over the
previous one, converging to Ext} (N),

B}’ = Ext(k, E® P ® N) = Ext{”" (k, N).

Terminology We will call these spectral sequences the Davis—Mahowald spectral
sequences, or DMSSs for short, associated to the almost graded A—module algebra E.
The first grading s of the E,—term is referred to as the cohomological grading or degree
and the second grading # is referred to as the Davis—Mahowald grading or degree (or
DM grading or degree for short).

With a view to carrying out explicit computations of products in Ext’ (k) and the action
of Ext (k) on Extj (M), we recall a double complex from which the above spectral
sequence is derived.

Foreacht > 0, let (C*(4, E ® P;),dy)s>0 be the cobar complex whose cohomology
is Ext}j(E ® Py), ie
C’(A,EQP)=A®QEQP;

and dy: A2 ® E® P; —» A%l ® E ® P, is given by

N
dy(a1®-+-®as@m) = 1Qa1 Q-+ ®as@m+ Y _ a1®-+-®a;_|®A(2;)®- - ®as®m

i=1

+a;1® - ®as ® A(m),
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where a; € Afor 1 <i <sandm e E ® P;. We will abbreviate a; ® --- Q ag ® m by
[ay]---|as|m]. By an abuse of notation, we will denote by d, the differentials in the co-
bar complexes associated to £ ® P; for different ¢. The factthatd: EQ Py — E® Py
is a map of A—comodules implies that the maps dj, = 1d®* ® d: C5(4, E @ P;) —
C’(A, E® P,41) assemble to give a map of cochain complexes

dp: (CY(A, E® Pr),dy)s>0 — (C*(A4, E® Pr11), dy)s>o-
Finally, it is easily seen that the maps of cochain complexes assemble to form a double
complex (C*(A4, E® P;),dy,dp)s.1>0:

dp dp dp dp
E— % . fpopr—" L E@P— " L EopP—" ...

dy dy dy dy

d d d d
ARE— yAQE®P — " S AREQ®@P,—— s AQE® Py ——— ..

dy d, dy dy
A®2®Ei>A®2®E®P1i>A®2®E®P2i>A®2®E®P3i>"'
dy dy dy dy

We can see that the spectral sequence associated to the horizontal filtration has E;—
term isomorphic to (4% ® k, dy)s>0, which identifies with the cobar complex of the
trivial A—comodule k. Thus this spectral sequence degenerates at the E,—term and the
Eo = E»-term identifies with Ext’ (k). Since there are no possible extension problems,
the cohomology of the total complex is isomorphic to Ext}, (k). Now, the spectral
sequence associated to the vertical filtration has E;—term isomorphic to Ext}, (E ® P;).
This spectral sequence is exactly the one appearing in Proposition 2.1.7.

Remark 2.1.8 The differential d; : Ext% (E ® P;) — Ext(E ® Py1) is the restriction
of the derivation d of the Koszul complex on the A—primitives of £ ® P;.

2.2 Naturality of the Davis—-Mahowald spectral sequence
We notice that the above construction is natural in pairs (4, M), where A is a commu-

tative Hopf algebra and M is an exterior coaugmented left A—comodule. This allows us
to compare Davis—Mahowald spectral sequences associated to different pairs (4, M).
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Definition 2.2.1 Let (A, M) and (B, N) be such that A and B are commutative Hopf
algebras and M and N are objects of £C 4 and £C p, respectively. A morphism between
(A, M) and (B, N) consists of fi: A — B and f,: M — N, where fi is a map of
Hopf algebras and f3 is a morphism in £Cp with the B—comodule structure on M
being induced from f].

Proposition 2.2.2 A morphism between (A, M) and (B, N) induces a map between
the associated Davis—Mahowald spectral sequences.

Proof By Remark 2.1.6, the map f5: M — N induces a map of cochain complexes
of B—comodules E(M)® P(M) — E(N)® P(N). Together with f7, one obtains
a map of double complexes (A®° ® E(M)® P(M);) — (B® ® E(N)® P(N),),
and hence a map of Davis—Mahowald spectral sequences. O

Remark 2.2.3 Although we have only treated the ungraded situation so far, the
construction carries over verbatim to the graded one. More precisely, suppose that A
and E are graded algebras. We refer to this grading as the internal degree. We require
the structural maps in the A—comodule structure of E to preserve the internal degree.
Then we see that the Koszul dual P of E is internally graded and the Koszul complex
is a graded cochain complex with respect to the internal degree. It follows that the
associated DMSS is trigraded with the third grading associated to the internal degree
and the differentials preserve the internal degree.

Let us present examples which are of the main interest in this paper. Recall that the
Steenrod algebra A is generated by the Steenrod squares Sq° for i > 0, subject to the

Adem relations la/2]

&fozz}Z(ﬁ;Zf)S¥+bd&f
i=0

for all a,b > 0 and a < 2b. Let Ay denote the dual of the Steenrod algebra. In [29],
Milnor determines the Hopf algebra structure of A,. As a graded algebra, A, =
F,[& | i > 1], where & is in degree |£;| = 2/ — 1. The coproduct is given by

k

A=) & @&

i=0
where £y = 1. Let us denote by {; the conjugate of &;. Then

(11) A=Y aedd.

i+j=k
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A Hopf ideal of a Hopf algebra A is anideal / suchthat A(/) CI QA+ AQ L If I
is a Hopf ideal of A, then A/ inherits a structure of Hopf algebra from A such that
the natural projection A — A /I is a map of Hopf algebras.

Example 2.2.4 Let A(n) be the quotient of A, by the Hopf ideal [, generated by
({2n+1 2" ,{3“,@,,_,_2, ...). As an algebra,

Am)s« =F2[81. 8200, Cu1]/ (G EAON I )

It is dual to the subalgebra A(n) = (Sq',Sq?,...,Sq? ) of the Steenrod algebra A.
The canonical projection 7 : A(n)x — A(n — 1)« induced by the inclusion I, C I,—;

2n+1 on

of Hopf ideals is a map of Hopf algebras, and hence induces on A(n) a structure of a
right A(n—1)s«—comodule algebra,

d®@m)A: An)x = A(n)x @ A(n)x — A(n)x @ A(n — 1).

An easy computation shows that the group of primitives A(7)« O 4(,—1), F2 of this
coaction is given by

Am)s Oaony. Fa = EGY 83" ),
which is abstractly isomorphic to £, = E(x1,...,X,+1), Where x; stands for { i2n+1_i.
Here and elsewhere in this paper, £(X) denotes the exterior algebra on the k—vector
space spanned by the set X. We see that the algebra E(xy, x3,...,X,+1) inherits a
left A(n)«—comodule algebra structure from A (7)., namely,
k
A =S " @xpy for 1sk<n+1,
i=0

where x¢ = 1 by convention. In particular, the subcomodule
My =Fa{xo} @ Folxy,... xn41}

is an exterior coaugmented A(n)x—comodule, because (; 2m = k) =0¢e€ A(n)x.

Example 2.2.5 Let B(n)« be the quotient of A4« by the Hopf ideal J, generated by

on n—1
({ 2 , 2 ,...,§3+1,§,,+2,...),sothat
on 2nl

B(n)x =TFa[l1, &ov o Cn 1)/ (E e Lo

Similarly to Example 2.2.4, the projection B(n)« — A(n—1)4 induced by the inclusion
of Hopf ideals J, C I,—; defines a structure of a right A(—1)x—comodule algebra
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on B(n)«. A calculation shows that
n—1 n—2
B(m)x Oqm-n), Fo=EQS .8 ... lug1),
which is abstractly isomorphic to Fy, := E(x3,...,X,+1). The notation is chosen to
be coherent with that of Example 2.2.4. We see that F}, inherits a structure of a left
B(n)«—comodule algebra from that of B(#n)4, namely

k
Alxy) = Z §l.2”+1_k Qxp_; for2<k<n+1,
i=0,i#1
. 2n+17k 2
where xo = 1. Since ({}; )*=0¢€ B(n)x,

Ny =Fo{xo} @ Fatxa, ..., Xpt1}

is an exterior coaugmented B(n)«—comodule.

Example 2.2.6 Recall that M), is an exterior coaugmented A(7) «—comodule. Let R(n)
denote P(Mp), the Koszul dual of E,. In particular, it follows from Proposition 2.1.7
that, for any graded left .A(n)«—comodule V, the DMSS converging to Ext:’& )*(IFZ, V)
has E{—term isomorphic to

IS Exti{in)*(En QR(n)s ®V),
where s is the cohomological grading, ¢ is the internal grading and o is the Davis—
Mahowald grading, which, recall, arises from the homogenous degree of the graded

algebra R(n). The change-of-rings isomorphism tells us that

Ext®! J(En® R(n)o @ V) = Extizn_l)*(R(n)a ®V);

A(n
see [31, Appendix A1.3.13] for the change-of-rings isomorphism. This means that
the problem of computing Extii n)*(—) can be reduced to two steps: first computing

5.t
Ext A(n—1).
We will demonstrate the efficiency of this method by carrying out explicit computations

(—), then studying the corresponding Davis—Mahowald spectral sequence.

in the case n = 2.

Example 2.2.7 Similarly, for N,, the exterior coaugmented B(n).—comodule, let
S(n) denote the Koszul dual of F},. For any graded left B(n)«—comodule V, the DMSS

for Ext5;t %!

B(n)*(V) has E;—term isomorphic to

EX5(,, (Fn ® S(n)o ® V) = Exty, ) (S(1)s @ V),

again by the change-of-rings isomorphism.
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Comparison of DMSS There is a morphism between (A1), My) and (B(n)«, Ny)
given by the two projections
A(n)*_)B(n)*’ é‘l l_)é‘l’

M, — Ny, x1+—0, xjr—>x; fori=0andi>2.

This induces a map of spectral sequences, for an A (n)x—comodule V,

Ext*!

o0, (En ® R(n)g ® V) —— Exty,) (Fy ® S(1)g ® V)

ﬂ ﬂ

Ext’ (V) Extyon (V)

This comparison allows us to transfer some computations in the former SS to the
latter, which are simpler because all modules involved in the latter are smaller. This
observation will be made concrete in Section 3.

3 The Davis—Mahowald spectral sequence for the
A(2),—comodule H, (A4,)

The goal of this section is to describe the structure of Ext:’(*z)*(H* (A1)) as a module

over Extj"é)*(Fz). To achieve a part of this goal, we will study the DMSS

Ext®!

. (E2® R(2)6 ® 41) = Ext’ T (Ha(4))

A(2)

as a spectral sequence of modules over the spectral sequence of algebras

Exti(y)(E2 ® R(2)5) = ExC 5! (F>).

We obtain then the structure of Ext:’(*z) (Hx(A1)) as a graded abelian group and a
*,% . * . . .

A(z)*(IFZ) on it. However, there is an important action of an
element of Exti’é)*(Fz) on some elements of Ext:’;;)*(H* (A1)) that cannot be seen

at the E{—term of the DMSS. One way of understanding these exotic products is to

partial action of Ext

carry out computations at the level of double complexes: find representatives of the
cohomological classes in question in the double complexes from which the DMSS
is derived and carry out products at that level. It turns out that a brute-force attack
is messy. Instead, computations are simplified drastically by comparing the DMSS
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associated to (A(2)«, M>) to that of (B(2)«, N;):
Extjf(z)*(lzn ® R(2)e ® Hy(41)) —— Extséf(z)*(Fn ® S(2)s ® Hi(A(1)))

ﬂ ﬂ

Exty oy (Ha(41)) Extpy.(He (A1)

3.1 Recollections on the Davis—Mahowald spectral sequence for the
A(2),—comodule F,

To fix notation, we recollect some information relevant for our purposes. This material
was originally treated in [14] and reviewed in unpublished course notes of Rognes [35].
As we will specialize to the case n = 2, we will simplify the notation by writing
R, Ry, S and S, for R(2), R(2)s, S(2) and S(2)s from Examples 2.2.4 and 2.2.5,
respectively.

Recall that R is a homogenous graded polynomial algebra on three generators, say y1,
¥y, and y3, and R, is its subspace of homogeneous elements of degree o for o > 0.
Let us first explicitly give the coaction of A(2)« on R = [y, ya, y3] with |y;| =4,
|y2] = 6 and | y3| = 7. From Example 2.2.6, we have

A =1®y1, AO2) =&y +1®y2, A =6Ly +E @1+ 1 ;.

*,%

By the change-of-rings theorem, the E;—term of the DMSS for Ext A(z)*(FZ) is iso-

morphic to Exti{il)*(@azo Rg). The coaction of A(1), on R; is induced from that

of A(2)+« and hence is given by

A =10y, A(Q2)=E®y+1®y1, A(3) =0y +6 @y +1®ys3.

In particular, yq, y% and yg are A(1)sx—primitives of R. Let R, denote the A(1)x—
subcomodule Fz{y{yé yé‘ |i+j+k =0,k <3} of Ry. In particular, R; = R} for
1<i=<3.

Lemma 3.1.1 As an A(1l)x—comodule, R, can be decomposed as

Ro= P RF{7 '}

i=o (mod 4)
i<o
Therefore,
L (Y AR
>0 >0
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Proof If one views [F»{ y?‘,’_i} as a subvector space of Ry—_;, then the product of R
produces an isomorphism of vector spaces

P Ri®F{{7 = R,
i=o (mod 4)
i<o
Since y? is an A(1)4—primitive of R, this map is also a map of A(1),—comodules.
The lemma follows. |

Let us denote Ext:’(ﬁ)*(Ré,) by Gy, so that

Ext’y) (R) = (@ Ga) ® Fa[v3].

>0

where vg € Extg"(zf)*(RA;) is represented by yg‘ € R4. Determining the full multiplicative

structure of Ext:’(*l)*(R) is quite involved. Instead, we will work modulo (v‘z‘). This
will suffice for us to obtain a set of algebra generators of Ext:’(*l)*(R). More precisely,
since the product R}, ® R, — Ry factors through R, . & (Ro47r—4 @ F2{y3}),
we obtain a map

Go ® Gy = Gotr @ (Gorr—g @ F2{03}).
We will analyze the map Gy ® G; — G4+, which is the composite
Go ® Gt = Gt D (Gogr—s ®F2{v3}) > Goir,
where the second map is the projection on the first factor.

In what follows, we compute G; for i > 0 as modules over Gg. For this, we decompose
R’ into smaller pieces, compute the Ext groups over A(1)x of these pieces, then
determine G; via long exact sequences. Next, we study the pairings

Go @Gy — Goir,s

which allows us to determine a set of algebra generators of the E;—term. Finally, we
compute d—differentials on this set of algebra generators. We do not intend to describe
completely Ext:’(*z)*(]Fz) but only a subalgebra in which we are interested.

Since y; is a primitive, multiplication by y; induces injections of A(1)s«—comodules

4
SR, > R,
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Lemma 3.1.2 There are short exact sequences of A(1)x—comodules

(@) 0—>Hy(Z12Cp) = Ry — Z8(A(1)« O 40y, F2) = 0, where : S — S is the
Hopf map and the map Hy(X'2Cy) — R, sends the generators of Hy5(Z12Cy)
and Hi4(212Cp) to y% and y%, respectively;

(b) 0— Z*R; — Ry — X12V; — 0, where V3 = Hi(S° Uz e! U, €2).

Proof For part (a), the map % !'2H.(Cy) — R, described in the statement is a map of
A(1)s—comodules. Its quotient is isomorphic to Fz{ylz, V1V2, V1V3, Y2 V3 }, with the
A(1)sx—comodule structure given by

A(32y3) = 1® y2y3 +£f @ y1y3 + 6 ® y1y2 + L) ® y1.
A1) =1® 1113 +E @y + L ® )1,
A(y1y2) = 1® y132 + & @ 17,

A =1 )%

We can check that this module is isomorphic to 8(A(1), O A(0), F2) as A(1)x—
comodules.

For part (b), the quotient of R, by 4R is isomorphic to IFz{y;, Vay3, y32} with
A(1)sx—comodule structure given by

A =1y, Ay =&®1;+1®1y3. A(Y;) =6y +1R ;.

One can check that this quotient is isomorphic to 12 V. O

Lemma 3.1.3 For every o > 3, there is a short exact sequence of A(1),—comodules

0— X*R’

XY1 ’ 60
o] — Ry = X%°V4 — 0,

where V4 is Hx (V(0) A Cy).

Remark 3.1.4 The spectrum V(0) A Cy is homotopy equivalent to Y, introduced on
page 3858 (see Section 3.2 for a presentation of H*(Y)).

Proof The quotient of R, by £*R/ _, is isomorphic to

Fafpg, 5 3. 57205, 353031,
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with A(1)4«—comodule structure given by
A7) =17,

AP 'y =6 @y +1®¥5 s,

AOGIHH) =2 @y +1® 3 2)2,

ATy =6 @y +E8 @y s +E ® 7 2 yi +1® y7 2]

It can be easily seen that this quotient is isomorphic to 67 V. O

Remark 3.1.5 We describe above the comodule structure of R/ for the purpose
of making explicit calculations of the Ext groups. For the sake of visualization, we
present here the module structure of the duals RY, R} and R} of Ry, R; and R3,
respectively, by their corresponding cell diagram. Let {a; ; x |7 + j +k = o} be the
dual basis to { y’l' yg yé‘ |i + j + k = o}. In the following cell diagrams, the straight
lines represent Sq! and the curved lines represent Sq*:

RV: aio0 ao10 doo1

v A

RZ: azo0 ai1o 4io1 @o20 doi11 4002
v v

RS
asoo az10 d201 4220 49111 4102
RV. v \x
3"

030 4021 4012 4003
v

In the cell diagram of R;’, two curved lines from a5, to @192 and ag3o means that

qu (a220) = ajo2 + aopso-

Remark 3.1.6 R;’ is the cohomology of the dual question mark complex, a key
player in the K(1)-local homotopy theory; namely, its K(1)-localization represents
the exotic element of the K(1)-local Picard group; see also Proposition 3.1.13 for its
ko-homology, where ko is the connective real K—theory.

Next we describe the Ext groups of some A(1),—comodules as basic steps towards
computing G4. These calculations are elementary and classical.

Proposition 3.1.7 There are classes hg € Ext!!, h; € Ext!"?, v € Ext®’

Ext*12 such that there is an isomorphism of algebras

Go = Ext,) (F2) 2= Falho, h1, v, v}1/(h}, hohy, hyv, v — hgv).

and v;‘ €

See for example [32, Theorem 3.1.25], and Figure 1.
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<
S Cn

ho 11

S = N W Bk~ W

01 2 3 456 789

*,%

Figure 1: EXtA(1

)*(]Fz, F,) in therange 0 < ¢ —s <8.

Lemma 3.1.8 As a module over Exti{il)*(ﬂ*"z), we have (see Figure 2):

(1) Exti{il)*(H*(V(O))) is generated by 1 € Ext® and v; € Ext!>® with the relations
ho] =vl = vV = 0 and /’l%l = /’l()vl.

2) Extiizl)*(H*(C,,)) is generated by 1 € Ext®°, v; € Ext!3, v% c Ext®S and
vf € Ext>® with hyja =0 fora € {1, vy, vf, vf}, vl = hovf and vv; = hovf.

3) Extiizl)*(H*(SOUZel Uye?)) is generated by 1 eExt®% v, eExt!?, a! eExt!3,
vZ € Ext*® and v} € Ext*® withhol = h11 = hyvy = hoa! = va' = hjv? =
vvl2 = hlvf = vvf =0 and hovf = h%al.

4) Extizl)*(H*(Y)) is generated by {1, vy, v}, v} with hoa = hya = va = 0 for
ae {l,vl,v%, vi’}.

3 4
3 vf
2 2
2 h
1 1
1 U1
0 0 1
01 2 3 4
01 2 3 4 5 6
4 4
3 03 3 -Uf
2 X 2 v
1 vl/al 1 Ui
01 -1 0 -1
01 2 3 4 5 6 01 2 3 4 5 6

Figure 2: Clockwise from top left: Extiit(l)*(H* (V(0))) intherange 0 <t—s <4
and Extiit(l)*(H* (Cy)), Exti;t(l)*(H* (S®Uje! Uy e?)) and Extiit(l)*(H* (Y)) in
therange 0 <7 —s5 < 6.
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See [32, Theorem 3.1.27] for (1) and (4). The calculations for (2) and (3) are also
elementary, so we omit the detail.

Remark 3.1.9 We use the same notation 1, vy, vf and vf to denote certain generators
of the above groups. This is justified by the fact that these generators have close
relationships, which are described in the next lemma. The context will help avoid
confusion.

Remark 3.1.10 The above Ext calculations also give us the homotopy groups of
familiar spectra in A(1)-homotopy theory, namely those of ko (Proposition 3.1.7),
koA V(0) (Lemma 3.1.8(1)) and ko A Cpy >~ ku (Lemma 3.1.8(2)).

Consider cell inclusions V(0) — Y and S® U, e! Uy e? — Y. The induced homomor-
phisms in Ext over A(1)y are described as follows:

Lemma 3.1.11 (i) The homomorphism ExtA(l) (Hx(V(0))) — Ext:’(*l)*(H* (Y))
sends the classes 1 and v, to the nontrivial classes of the same name.

A(l) (H«(S%Uzel Uye?)) —>EXtA(1) (H«(Y)) sends the
classes 1, vy, v1 and v to the nontrivial classes of the same name.

(i1) The homomorplnsm Ext™

Proof For part (i), consider the short exact sequence of A(1)«—comodules
0 — Hy(V(0)) » Hy(Y) — Hy (22 V(0)) — O.

For degree reasons, the classes 1 and vy of Ext™; ) (H«(V(0))) do not belong to the

A( 1
image of the connecting homomorphism

Exty 15 (He (22 V(0)) — Ext’y ;) (Ha(V(0))).

Therefore, they are sent to nontrivial classes of the same name in Ext (1) (H«(Y)).
For part (ii), consider the short exact sequence of A(1)+«—comodules

0— Hy(S%U,e! Uy e?) > Hy(Y) > 2°F, — 0
and the resulting long exact sequence
-1, ) )
Extjl(l)’(H*(z%)) SN Extilil) (He(S® Uz e Upe?)) — Exti&l)*(H*(Y)).

For degree reasons, the classes 1, v1 and v1 of Exti&l) (Hi (SO Uy e! Uy e?)) are not

in the image of the connecting homomorphism, and thus are sent to 1, v% and vf in
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Extj{(*l)*(H*(Y)), respectively. Next, for degree reasons, the classes /gv; and /ha’
are sentto 0 € Extj{(*l)*(H* (Y)). The only way for this to happen is that the connecting
homomorphism sends %31 € Extg\’gl)*(Fz, H,(Z3F,)) to the sum vy +a'. It follows
that vy is not in the image of the connecting homomorphism, and therefore is sent to
vy € Exti;fl)*(H*(Y)) 0

Lemma 3.1.12 H.(Y) has a structure of an A(1)«—comodule algebra. The resulting
structure of an algebra on Ext;’(*l)*(H*(Y)) is that of a polynomial algebra on the
variable v1.

Proof It is not hard to see that Hx(Y') is isomorphic to A(1)« Og(1), F2 as A(1)x—
comodules, where E (1), is the Hopf quotient of A(1)4 by the Hopf ideal (¢;), ie
E(1), =[]/ (é‘%). In particular, H,(Y') has the structure of an A(1)«—comodule
algebra. As a consequence, Ext;’(ﬁ)*(H*(Y)) is an algebra and is furthermore isomor-
phic to ExtEZ‘l)*(IFZ) by the change-of-rings isomorphism. It is well known that the
latter is a polynomial algebra on one variable. |

/

*,% . .
We now compute G, := Ext .A(l)*(RU)’ where, as a reminder, R/ is a subcomodule

of R, the subcomodule of homogenous elements of degree o of R =F,[y1, y2, y3].
We denote by oy o the nontrivial class of Exti{i;r)i(R’U) whenever there is a unique

such one.

Proposition 3.1.13 As a module over Gy, G1 = Ext:’a)*(Rl) is generated by a9 4,1 €

Extg{?l)*(Rl) and a1 3,1 € Ext}‘l’(s’l)*(Rl) with the relations hjag 4,1 =0 and vag 4,1 =

h(z)Olljgjl .
Proof Consider the short exact sequence of A(1)x—comodules
0 — Z4F, > Ry — Z°H,(V(0)) — 0.
The connecting homomorphism
1—6 1,0—4
9: Bxt’y1)(V(0) — Extij(l)i (F,)
of the resulting long exact sequence sends 1 to /; and vy to 0. The latter follows
for degree reasons and the former from the map of short exact sequences of A(1)—

comodules
0 T4, R, SOH,(V(0)) —— 0
0 T4F, Hi(Z4Cy) —— ZF, ——— 0
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and the naturality of the connecting homomorphism. It follows that G is vf—periodic
on the following generators:

S = N W Bk W

4 56 7 8 910

The red part is the contribution of Ext (1) (Z*IF,) and the black part the contribution

of Extj((*l) (ZCH«(V(0))).

What remains to be established is the multiplication by /¢ on the generator of bi-
degree (s,t —s) = (2, 8). This is done by a similar consideration of the connecting
homomorphism associated to the short exact sequence of A(1)x—comodules

0—X2*Cy— R — X'F, > 0. o

Proposition 3.1.14 As a module over G, Ext* ’(1) (R2) = G, is generated by o ;5 €
Ext*S*! where (s,1) € {(0,8), (0, 12), (1, 14), (2, 16), (3, 18)} with

3
hiassr =0, vaggr=hyao,12,2,

4 2
vag, 12,2 = hota 162, V1,142 = hoQ3,18,2, V08,2 = Mgz 16,2-

Proof The short exact sequence in Lemma 3.1.2(a) gives rise to the long exact sequence

fiz;)lz(H*(C")) N EXtA(l) (Ry) — EXtiizo_)S(FZ) — EXtSH”_IZ(H*(C,,)) -

— Ext A1)

Combining that EXt.A(O) () = F,[ho] and the description of ExtA(l) (H*(Cp)), we

see that the connecting homomorphism is trivial for degree reasons; see Figure 3.

What remains is to establish the v;‘—multiplication on the class ag g,» of bidegree
(0, 8). Consider the long exact sequence associated to the short exact sequence in
Lemma 3.1.2(b),

(12) — Ext® L (212yy) -2 Bxt”;

o ) (Z*R;) — Ext”;

)u (Ry) —.

A(l A(l

One can check that the class Shap4,1 € Ext (1) (Z*R;) is not in the image of 9, and

S0 is sent to ag g2 € Ext® ) (R>). For degree reasons, v 24050,4’1 is not in the image

A(l
of 0; thus, vf(xo,g,z is nontrivial in G. O
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S = D W Bk W

8 9 10111213 14 1516 17 18

Figure 3: G,. The red part is the contribution of Extfj‘t(o)*(IFz, F;) and the

black one of Exti’\'(l)*(H* (Cy)).

Remark 3.1.15 We can make a complete calculation of the connecting homomorphism
of (12), which results in the chart in Figure 4.

Lemma 3.1.16 As a module over Gy, EXt:(Ekl)*(Rg,) = (3 is generated by the elements
3 of Ext™ST where (s,7) € {(0, 12), (0, 16), (0, 18), (1, 20), (2, 22), (3, 24)}, with
hioges = 0, vag123 = hjao, 16,3, V0,163 = hia120,3, Vo183 = hoo2,22.3,
va1,20,3 = hot3,04,3, V100, 12,3 = M1 20,3 and viag, 16,3 = hot3,24,3.

Proof The short exact sequence in Lemma 3.1.3 gives the long exact sequence

— Ext*!

0, (B R2) > Ext’y ) (Rs) — Exty; (2'9V) — Ext T (Z4R,) — .

A A1)+

For degree reasons, the connecting homomorphism is trivial; hence, we obtain the addi-
tive structure of G'3 as in Figure 5. We need to establish the nontrivial /1p—multiplication
on the generators {o 18+25,3 | § = 0}. Taking the vf—periodicity into account, we
reduce to showing this property for the generators of

®o,18,3, ©1,20,3, @2.22,3, (3243.

3 )
4 !
3 r
) !
1
0

8 9 10111213 141516 17 18
Figure 4: G,. The red part is the contribution of G and the black one of Ext;’;‘ . )*(Vg,).
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.

S = N W kA~ W

12 13 14 1516 17 18 19 20 21 22 23 24
Figure 5: G3. The red part is the contribution of G, and the black one of Exti"(l)*(V“).

For this, we can check that there are the short exact sequences

0 — Z'8H,(Cy) = R3 — R3/S'8H.(Cy) — 0
and

0— Z*Ry — R3/Z1¥H.(Cy) — SPHA(Cp) — 0,

where, as a A(1)x—subcomodule of R3, £'8H.(Cy) is equal to F2{y1y3 + y3. y2y3}
and the map X4 R, — R3/ £'8C,, is the composite B¢ Ry =215 R3 — R3/ S'18H,(Cy).

As a consequence, Ext (1) (R3/ Z'8H,(Cp)) sits in a long exact sequence

- Ext;‘(ll)’(z”H*(Cn)) -5 Ext’y() (24 Ry) — Exty ) (Ra/ T8 HA(Cp)) — .

Since d is Go-linear, one only needs to compute d on the two generators of

Ext’') (Z'°H.(Cy)) and  Ext)’

19
A1)« .A(l) (FZ’ X H*(CTI))

Direct computations show that d act nontrivially on these classes. It follows that d
is a monomorphism and so Exti{il)*(R3/ T 18H,(Cy)) is vy—free on the generators
depicted in Figure 6.

S = N W kW

12 13 14 15 16 17 18 19 20 21 22 23 24
Figure 6: EXtA(]) (R3/ Z18H.(Cp)).
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S = N W kA~ W

12 13 14 15 16 17 18 19 20 21 22 23 24

Figure 7: Gj3. The red part is the contribution of Ext’;" = (R3/ Z!®H, (Cy)

A(1)#
and the black one of Exti"t(l)*(leH* (Cp)).

It follows immediately from the exact sequence
0 — Z'8H,(Cy) = R3 — R3/S'8HL(Cy) — 0

that Extj{:‘l)*(R3) is as depicted in Figure 7. In particular, missing /o—extensions are
established. |

Theorem 3.1.17 As a module over G, we have (see Figure 8):

(a) Forevery o > 2, Ext;’a)*(Ré,) = G, is generated by a4 € Exti&f)i(R;),
where (s,t) € {(0,40),(0,2] +40),(k,60 +2k)|2=<j <o0,1 <k <3} with

h 1 as,t’o' - O.

(b) For all pairs of triples (s1,t,01) and (s3,1;,0,) witho; > 1 and 0, > 1, except
for (2,9,1) and (3,10, 1),

Usy,t1,01%s5,12,00 = Osy+52,t1+12,01 402+

Proof (a) The statement for 0 = 2 is Proposition 3.1.14. Let us prove the claim for
o > 3 by induction. The base case is Lemma 3.1.16.

S = D W R W

4o 40+4 40+6 60

Figure 8: G, for ¢ > 2. There is an infinite tower of multiplication by /1y in
every even ¢ — s from 40 44 to 60.
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Suppose the claim is true for some o > 3. The long exact sequence associated to the
short exact sequence in Lemma 3.1.3 reads

— Ext®!

. (Ro ) = BxCit ) (Z07T0V,) — Bxtly V(S RY) — .

o+1 A1)« A1)«

Combining the additive structure of Exti{il)*(z“R;) and that

Ext®’

A(l)*(z6a'+6 V4) o~ Z6U+6F2[UI],

we obtain the additive structure of G, as described in the lemma because the
connecting homomorphism vanishes for degree reasons. To establish the nontrivial
ho—multiplication on the generators {t5 25+65+6,0+1 | § = 0}, we use the following
identities:

() Go+1 2 ®0,4,1%,60+25,0 7 0 forallo > 1.
(i) o1,8,10,25+60—6,0—1 = Us+1,25+60+2,0 fOr all o > 2.
(iii) «o,12,2%,25+60—6,0—1 = Us25+60+6,0+1 forall o = 3.
These identities are the content of part (b). For the sake of the presentation, we postpone
the proof of (b); this is legitimate because, as we will see, the proof of (b) only uses the
additive structure of the G;. Let us show how these identities allow us to conclude the

proof of (a). Indeed, the classes o 25+60—6,6—1 €Xist (ie are nontrivial) for all o > 3
and s > 0. Therefore, we have that, for all 0 > 3,

hotts 25+60+6,0+1
= ho0o,12,20,25+60—6,0—1 (multiplying both sides of (iii) by /¢)
= 00,4,1%1,8,1% 25+60—6,0—1 (because of (i)
= 000,4,105 41,2542+ 60,0 (because of (ii))
#0 (because of (i)).

(b) It follows from the long exact sequence in Ext associated to the short exact
sequences in Lemmas 3.1.2(b) and 3.1.3 that

®0,4,1%.t,0 = Qs t+4,0+1>

except for (s,¢,0) = (2,9,1),(3,10,1) (see Remark 3.1.15 and the proof of part
(a) of this proposition). It remains to prove that oy, ¢, ®s,,t5,0, 15 nontrivial for
(si.ti,07) € {(s5i, 607 +2s4,07) | s; =0,1,2,3} fori = 1,2.
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Indeed, for every o, T > 1, there is a commutative diagram of A(1)«—comodules

R, ® R SN Rotr — R/O’-i-t
H*(E60Xg) ® H*(Z&XT) o H*(E6G+61:Xa+r)
H*(EGO'Y) ®H*(E6IY) K H*(260+6IY)

Let us explain the maps in this diagram. The spectrum X is V(0), S®U,e! Uy etorY
if o = 1,2 or o > 2, respectively; and in each case the map R], — H,. (X% X,) is the
projection appearing in the proof of Proposition 3.1.13, Lemma 3.1.2 or Lemma 3.1.3,
respectively. The other vertical arrows are induced by the inclusions of X, into Y. The
bottom horizontal arrow is the multiplication on Hy(Y"), described in Lemma 3.1.12,
and the middle one is induced by the latter. The second upper arrow is the projection
on the factor Ry, . of the decomposition in Lemma 3.1.1.

The induced homomorphisms in Ext over A(1)4 of all vertical arrows are studied
in the proofs of Lemmas 3.1.13, 3.1.14, 3.1.17 and 3.1.11, which show that the
classes oy, Where 0 > 1 and (s,t,0) € {(s,60 + 2s,0) | s = 0,1,2,3}}, are
sent nontrivially in a unique way to EthiZl)*(H* (Y)), and hence their products are
nontrivial by Lemma 3.1.12. This proves (b). O

Remark 3.1.18 Let us summarize what has been done so far. First, Lemma 3.1.1
implies that

Ext’yd) (R) = (@ G,—) R F,[vi],

i=0

where vg € Ext*28(F,, R,) is represented by y;‘. Next, Theorem 3.1.17 describes
completely the products between the G; modulo the ideal generated by vg. It is then
straightforward to verify that Ext:{(*l)*(R) is generated by the classes of

4 4
(13)  ho, hi, v, V], @041, @181, %0,12,2, ®1,14,2, 03,182, ©0,18,3: Vs-
Let us describe the subalgebra of primitives.
Corollary 3.1.19 There is the isomorphism of graded algebras

0, ~ 4 2 _ 3 2 4
EXtAEkl)*(R) = Fafoo,4,1. @0,12,2. 3. @0,18,31/ (g 153 = 0 125 + X 4.1 V2)-
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Proof The algebra Ext® A(l
Fz[yl , yz, 3. Through this identification, g 4,1, ®0,12,2, vg and o, 13,3 identify with

) (IF5, R) is naturally identified with a subalgebra of R =

V1, y2 y3 and y2 + 1 y3 , respectively. Thus the quotient in the statement is isomorphic
to the subalgebra of Ext® A(l

)a (Fz, R) generated by 0,4,1> ¢0,12,25 Ug and 0,18,3- On
the other hand, it follows from Remark 3.1.18 that ®0,4,1, ©0,12,25 v‘zt and o 13,3

generate the whole subalgebra of primitives of Ext"; A(l) (R). |

The differentials d; Since the DMSS for [, is a spectral sequence of algebras, all
dy—differentials can be determined on the set of algebra generators of (13).

Proposition 3.1.20 The differentials d in the DMSS for A is induced from
() di(ho) =0,
(2) di(hy)=0,
(3) di(ap,4,1) =0,
4) di(a1,14,2) =0,
(5) di(ao,18,3) =0,
©) di(v}) =0,
() di(@0,12,2) =g 4 1>
®) dia1,s,1) = hot 4
) di(v) =hlag.a1.
(10) di(as,18,2) = hieo,18,3,
(1) dy(v3) = 004,105 5 5-
Proof (1)—(2),(4) For degree reasons, there is no room for a nontrivial d;—differential
on hg, hy or oy 14,2

(3) Itis easy to see that Ext! A(z
in the E{—term that can contribute to it. Therefore g 4,1 is a permanent cycle.

) (F2,F,) is nontrivial and that oo 4,; is the only class

(5) We see that h()()[()’]g’g, = (00,4,101,14,2- By the Leibniz rule, hodq (0[0313,3) = 0.
As hg acts injectively on G3, it follows that d; (cg,15,3) = 0.

(6) Since hgv;1 =2, we have h%dl (vf) = 2vd(v) = 0. This follows because d; (vf)
takes values in Exti"(sl) (IF5, Ry) on which &g acts injectively.

(7) Wehave that 1 7 is represented by the A(2)—primitive [1 |y2]+[x1 |y1 le EQR,;.

By Remark 2.1.8, d4 (ao 12,2) is represented by d([1|y2]+[x1 |y1]) = [1|y1] € E®R3,
and hence is equal to on 41"
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(8) Because ag 4,101,8,1 = hoto,12,2, the Leibniz rule implies that
3
®o,4,1d1(0t1,8,1) = hod1(o,12,2) = Moty 4 1-
That «g 4,1 acts injectively on the Ej—term implies that d; («;,3,1) = hoa§,4,1-
(9) The relation g 4,1V = I’I%Ollyg’l implies that
dy (v) = B3dy 1 5.1) = W30
®o0,4,1d1(V 0411181 0%0,4,1°
As ag 4,1 acts injectively on the Ej—term, we obtain that d; (v) = h3a0,4,1.
(10) The relation Va,14,2 = h()O(3’18’2 shows that

3 4
hodi(a3,18,2) = @1,14,2d1(v) = a1 14,0hy00,4,1 = Moo, 138,3-
Therefore, dl (063,18’2) = h3a0,18,3.

(11) We check that v3 is represented by the .A(2)—primitive [1]y3]+[x1|y5]in E® Ry.
By Remark 2.1.8, d (vg) is represented by [1]y4 yg], and hence is equal to a0,4,1a§ 12.2°
O

Remark 3.1.21 It turns out that the DMSS collapses at the E;—term because there is
no room for higher differentials. In particular, the classes a1 14,2, ®0 4,1, 0‘8,12,2’ vg
and ag, 13,3 survive the spectral sequence, converging to elements of Ext:’(*z)*(IFz, F>)
in appropriate bidegrees. Following [24], those elements are denoted by «, /5, g, wy

and B, respectively.

The differentials in Proposition 3.1.20 results in important information on Ext;’(*z)*(Fz),
and hence on m.(tmf). Among other things, the differential (11) implies that, in
Ext;(*z) (IF,), there is the relation /1, g = 0, and hence v = 0 in 7« (tmf), by sparse-
ness, where v and k denote the elements in 7, (tmf) which are detected by /2, and g,
respectively. In fact, both v and & have lifts in 74(S?). Likewise, the differential (7)
implies that h3 =0in ExtA’(z) (IF5).

Furthermore, /,, g and w,, § generate a subalgebra of Extjl’(*z)*(Fz, F5), which is iso-
morphic to Fa[h,, g, wa, Bl/(h3, hag, B*—g?). The relation B* = g3 isa consequence
of the dl—dlfferentlal (7). Indeed, the relation O‘o 18, 3 8 1 22t Oto 41V 1mp11es the

relation —g —hywy = 0 1n EXt 2 ut ot 08 gets hit the differentia
1 4 h3 0i EA(2)IF .B g hbyhdff 1

0.4,1
d1 (v500,4,120,12,2) = V30,4,1d1(00,12,2) = V30 4 ;.-

Thus, the relation 8% = g3 + hng becomes B+ = g3.
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3.2 The Davis—Mahowald spectral sequence for 4

The A(2)+—comodule structure of 4; In [13], Davis and Mahowald constructed
four finite spectra, whose mod 2 cohomology are isomorphic to a free module of
rank one over the subalgebra A(1) = (Sq', Sq?) of the Steenrod algebra A. Let us
review the construction of these spectra and their module structure over the subalgebra
A(2) = (Sq',Sq?, Sq*) of A. Recall that Y is V(0) A C,, The A-module structure
of H*(Y) is depicted in Figure 9. An element of ExtA(l)(H*(Y),H*(Y)) can be
represented by an .A(1)-module M sitting in a short exact sequence of A(1)-modules

0—H*ZY) > M - H*(Y) — 0.

It can be checked that M must be isomorphic either to H*(23Y) @ H*(Y) or to A(1)
as an A(1)-module. This means that

(14) Ext} ) (H*(Y). H*(Y)) = F,.

AQl

The A(1)-module structure of .A(1) is depicted in Figure 10. One can ask whether
A(1) admits a structure of A(2)-module. If such a structure exists, then, according
to the Adem relations Sq° Sq' Sq? = Sq* Sq' + Sq' Sq*, there must be a nontrivial
action of Sq* on the nontrivial class of degree 1. It is straightforward to verify that the
latter is the only constraint to putting an .4(2)-module structure on .A(1). There are
also possibilities for Sq* to act nontrivially on the classes of degree 0 and 2. These give
in total four different .4(2)-module structures on A. In other words, the inclusion of
Hopf algebras A(1) < A(2) induces a surjective homomorphism

ExtA(z) (H*(Y),H*(Y)) — ExtA(l)(H*(Y) H*(Y))
whose kernel contains four elements. Therefore,
Ext!; A(z) (H*(Y),H*(Y)) = F$°.
Next, one observes that restriction along .A(2) C A induces an isomorphism

Extly® (H*(Y). H*(Y)) 2 Ext'{3y) (H*(Y), H* (),

CRogica

Figure 9: Diagram of H*(Y'). The straight lines represent Sq' and the curved
lines represent Sq2, the numbers represent the degree of the cell.
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Figure 10: Diagram of A(1).

because, for any .A-module M sitting in a short exact sequence
0—H*(Z3Y)—> M - H*(Y) - 0,

there cannot be any nontrivial qu for k > 8 on M. It is proved in [13] that the
four classes of Extj‘t’3 (H*(Y),H*(Y)) that are sent to the unique nontrivial class of
Exti{gl)(H*(Y), H*(Y)) are permanent cycles in the Adams spectral sequence and
converge to four vy—self-maps of Y, ie the maps £2Y — Y inducing isomorphisms in
K(1)-homology theory. As a consequence, the cofibers of these v;—self-maps realize
the four different .A-module structures on 4(1). We will write 4 to refer to any of
these four finite spectra.

Definition 3.2.1 [10] We define by A4[i, j] for i, j € {0, 1} the version of A; having
the nontrivial Sq* on the generator of degree 0 (respectively 2) if and only if i = 1
(respectively j = 1). (See Figure 10.)

As F,—vector spaces,
(15) Hu(A1[ij]) = Falao, a1, az, a3, as, aq, as, as},

where ag, ai, az, a4, as and ag are duals to the generators of degree 0, 1, 2,4, 5 and 6
of H*(A[iJ]), respectively, and a3 and a3 are duals to the images of the generator
of degree 0 by Sq> and Sq> + Sq? Sq', respectively. By taking duals to the action of
A(2) on H*(A4[ij]), we obtain:

Proposition 3.2.2 The left coaction of A(2)« on Hy(A1[i]) is given by

A(ayr) = [la1]+ [&1]aol.
A(az) = [1|az] + [£] |az]
A(az) =[1]as] +[51]ax]
A(az) = [las] + (€7 ai]
Alaq) =[1]ag] +[51]as3]

+[E7lar] + [E] ao).
+ [€21a0].
+ [E2|az] + [£] |ar] + [E2lar] + [£2€1 lao] + o, j (7 |ao],
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A(as) = [Las] + [E7|as] + [E7as] + [E2]az] + £} |a1] + [E267 ao],
A(as) = [Lag] + [E1]as] + [€] |aa] + [£] |@s] + [£] |as] + [E2]as] + [E2€1 |as]
+ Bi,jlE a2l + [E2671ar] + €] |ar] + vi, i (€7 |ao] + [£267 lao] + Ai, €3 |ao).

where
~ 0 if (i, j) €{(0,0),(0, )}, L -
"‘”‘{1 if G ) e (L0 (1, T T T
[0 G ety
Py = {1 if () e {0, (1), T TP

Proof The proof is a straightforward translation from .4(2)-module structure to A(2)«—
comodule structure using the formula of the duals of the Milnor basis in [29]. O

DMSS for A1 In what follows, we will apply the shearing homomorphism to find
primitives representing certain cohomology classes; see [2, Theorem 3.1]. In general,
let C be a Hopf algebra with conjugation x and B be a Hopf algebra quotient of C.
Given a C—comodule M, consider the composite

d®A d®x®id
—

COMEZZCCOM coCeoM*® com.

When restricting to C O p M, this composite factors through (C Op k) ® M, inducing
the shearing isomorphism of C—comodules

Sh:COp M — (COpk)® M,

where C coacts on C C0p M via the left factor and on (C Op k) ® M diagonally.
Combined with the change-of-rings isomorphism, we have the isomorphisms

Exty(k, M) = Extg(k, C Op M) = Extg (k, (COpk) @ M).

In particular, via these isomorphisms, a class x € Ext% (k, M) is sent to Sh(1 ® x).

Proposition 3.2.3 The E—term of the Davis—Mahowald spectral sequence converging

to EXti{iz)*(H* (A4)) is given by

Es,a,*

N{O if s >0,
1 =

R, ifs=0.

As a module over Falog 4,1, 0,122, vg], ET** is the free module of rank eight on the

generators

(16) I, »s, »i, ¥i. Y2, Yays. Vi, )ad3.
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Proof Indeed, Es %! is equal to Ext (1) (Rs ® Hi(A1)) by definition. The coaction
of A(1)x on Ry ® Hi(A) is the usual diagonal coaction on tensor products. In
addition, Hy (A1) is isomorphic to .A(1)« as A(1)x—comodules. By the change-of-rings
isomorphism,

(17) Ext®’

A1) 4 (RO' ® H*(Al)) = EthvE";(RU) =R

The first part of the proposition follows.

. s,t s,t,0
For the second part, the action of Ext A(1)*(R) on E;"7,

Ext*!

S (R ® ExtA(l) (R®Hx(A41)) — ExH T (R @ Hy(4))),

A1)«

is induced by the multiplication on R,
R® (RQHx(41)) > RQHx(4y).

Now let r € ExtA(l) (RYC Rand s € R ~ ExtA(l) (R ® H«(A4y)). By applying
the shearing isomorphism, the class s is represented by a unique element of the
form s ® ag + Y _s;i ® a; € R ® Hyx (A1), where the a; are in positive degrees. The
action of r on s is then represented by rs ® ag + >_rs; ® a;, which represents
rs € R ExtA(l) (R® A1) via (17). In other words, the action of ExtA(l) (R) on
Ext® A(l) (R®Hx(Ay)) is given by the multlphcatmn of the polynomlal algebra R. The
proof follows from the fact that o 4,1, 00,12,2, v2 € Ext% A(l) (R) are represented by
V1, y2, y3 € R, respectively. O

Let us analyze the differentials in this spectral sequence. As the d,—differentials
decrease s—filtration by r — 1, ie dy: Ey%' — By F1oF and BV = 0/if 5 > 0,
the spectral sequence collapses at the Ey—term and there are no extension problems.
Therefore,

E)"7 ~ Ex Xt (), (Hx (41)).

We now turn our attention to the d;—differentials. As all elements of the E;—term are
in Ext% A(l ) (R®Hx(A1)), we can apply the remark after Proposition 2.1.7. We have
determined the d—differential on the classes g 4,1, ®p,12,2 and vg in Proposition 3.1.20.
By the Leibniz rule, it remains to determine the d;—differential on the classes of (16).

Proposition 3.2.4 There are the d—ditferentials
(1) di(1) =0,
(2) di(y2) =0,
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(3) di(y3) =0,

4 di(y2y3) =0,

(5) di(y2y3) =0,

(6) di(y2y3) =0,

(7 di(y3) =g 4,92,
®) di(y3) —% 4.172)3

Proof Parts (1)—(4) follow from the sparseness of the E;—term.
(5) The only nontrivial d—differential that y, y§ can support is
di(y2y3) = 053,4,10!0,12,21-
However, by the Leibniz rule and Proposition 3.1.20(7),
d (a§,4,10l0,12,21) = 0334,1611 (@o,12,2)1 = 063,4,11 #0.

. 2
This means that g 41

differential. Therefore, y; y§ is a dy—cycle.

@p,12,21 is not a dj—cycle, and so cannot be hit by a d;—

(6) Similarly, a nontrivial d;—differential on y, yg’ would be

3 2
di1(y2y3) =g 4.1%0,12,2)3-

However,

di(ag 4 1®0,12,253) =@ 4173 #0
by the Leibniz rule. Thus, y, yg’ is a dj—cycle.

(71)—(8) The class ®,4,1 in the DMSS for [, represents /15, the unique nontrivial
class of Ext’ A(2) (Fy). By sparseness and parts (2) and (4), y, and y,y3 represent
A(l) (H«(A1)) and ExtA(l) (Hx(A1)), which we denote by
the same names in this proof. It suffices to prove that h2 ¥, = 0 and h?2 523 =01in

nontrivial classes of Ext'’

Ext A(Z)*(H* (A1)) because the differentials in parts (7)—(8) are the only possibilities
for the latter to occur. We will proceed using juggling formulas for Massey products;
see [32, Appendix Al, Section 4]. The classes 1 and y; being permanent cycles by
parts (1) and (3), they converge to classes in Extgt’?z)*(H* (Ay1)) and Exti{fz)*(H* (4y)),
respectively. By sparseness of the E;—term of the DMSS, /111 = & y; = 0. Hence the

Massey product (4, hl,y3) with i € {0, 1} can be formed. In EXtA(z) (IF,), there is
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a well-known Massey product (%1, &5, i) that has zero indeterminacy and is equal
to h%. We have then that

M3yt = (hy, hy, b))y = hy(ha, by, YL).

By sparseness of the DMSS, aég 41 y_i; survives the DMSS and so h% yé # 0. It follows
that (A, /11, y3) does not contain zero and, by sparseness of the DMSS, must be equal
to yzyé. The fact that h; =0¢ Exti’(lzz)*
apply the juggling formula

h2yy vt = h3(hy, hy, yi) = (h2, hy, hy) yl.

(IF) — see Remark 3.1.21 — allows us to

However, the Massey product (h%,hz,hl) lives in the group Exti(lzét)*(ﬂ?z), which

vanishes by Theorem 3.1.17. This concludes the proof of parts (7)—(8). |

E;—term of the Adams SS We describe Ext:':{(";)*(Hﬂ< (A1)) as a module over

Falha, g, 31/ (h3, hag) CEXCy) (F2).
We recall that g is represented by a(z) 12, in the DMSS for IF,. We will denote by e[s, 7]

for 5,7 € N the unique nontrivial class belonging to Exti{i;’)i(H* (41)).

Theorem 3.2.5 As a module over F,[h;, g, v§]/(h3, hyg), Extj’é)*(H* (Ay)) is a
direct sum of cyclic modules generated by the following elements:

e[0,0] e[l,5] e[l,6] e[2,11] e[3,15] e[3,17] e[4,21] e[4,23]
1 Y2 ¥s o »ys ViEwmyio onyio oviyityivs s
0  (h3) (0) (h3) (h3) (0) (h3) (0)

e[6, 30] el6,32] e[7, 36] e[7, 38]
VIEVIYS V3vityivays vivatyiv: vivi+tyivy;
(h2) (h2) (h2) (h2)
e[8, 42] e[9, 47] e[9, 48] e[10, 53]
VIVIHVIYS V13 ys vavi+yiveys YIViHyivi4vivavs vavi+yivays
(h2) (h2) (h2) (h2)

The second row in the table indicates a representative in the DMSS and the third row
the annihilator ideal of the corresponding generator.
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Proof Let R denote F;[h,, g, vg] /(h3,h,g) and A the set consisting of classes given
in the second row of the table in the theorem. For each a € A4, let n, be the /1;,—nilpotency
order of a, as given in the table. We will sketch the proof showing that

P Ria}/(hye) =Eo.

acA
by first showing the inclusion of the left-hand side to the right-hand one, then showing
the equality by comparing their Poincaré series with respect to the topological degree,
which is the difference of the internal degree by the sum of the cohomological degree
and the DM degree.

Let K, C and I denote the kernel, coker and image of d; : E; — E1, as a map of trigraded
F,—vector spaces. The E;—term of the DMSS is then isomorphic to the quotient K/ 1.
Since h; and /1, g are trivial in Ext:’é)*(Fz) (see Remark 3.1.21), Ext:':((";)*(H>,< (A41)) is
a module over [/, g, vg]/(h?’ , h2g). Moreover, using Propositions 3.1.20 and 3.2.4,
it is straightforward to check that:

(1) The classes of A are dq—cycles surviving to the E,—term together with the
corresponding nilpotency order of /5.

(2) For an permanent cycle x € Ey, if x is not hit by a d;—differential, then neither
o 18
is vy x.

(3) For an permanent cycle x € Eq, if x is not divisible by g 4,1, then ozg 122X 18
not hit by a d;—differential.

It follows that

U := P R{a}/(Hya) CE,

a€A
and that

V= @ R{lya, hygay/(g(hya)—Hy* ™" (haga)) C 1.

acA

Consider these groups as graded [F,—vector spaces regarding their topological degree.
The Poincaré series associated to a graded [F,—vector space M is denoted by xazs(X).
We have that

xu(X) < xg,(X) and xp(X) < x7(X),

and, since d; decreases the topological degree by 1 and induces an isomorphism C = 1,
seen as nongraded [F,—vector spaces,

xv(X).X < xc(X).
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Since
Xe (X) = xc(X) + x1(X) + xg, (X)),
we obtain that
xu (X)) + xy (X) + xv (X).X < xg, (X).

On the other hand, an direct computation shows that the left-hand series is equal to
1/(1 = X3)(1—X3)(1 — X©), which is equal to the right-hand series (see Proposition
3.2.3). This allows us to conclude that

Ey = P Ria}/(Hyea). O

acA

Remark 3.2.6 The entire DMSS for A is quite messy. Nevertheless, we illustrate it
by showing the differentials d; truncating the o 4, 1—tower of the first eight classes
of A in Figure 11 (see also Figure 13 for the Eqo—term of the DMSS or the E;—term of
the ASS). In formulas,

di(y3) =g 441, di(y3) =g 4172,
dy(y373) :a§’4’1y3, dy(3) =a§’4,1y2y3,
di(393) =541 (3 +3103).  di(13¥3) =g 41 Y2)3
di(y393) =g 41 (B3 y3+y133). di(133) =g 4112)3

3.3 Two products

We now study the product of « € Exti{(lzs)*(IFz) and e[4,23] € Ext;’g)*(H* (Ay)). This

is a key result, which is the input in the study of d,—differentials of the Adams
spectral sequence in the next section. Recall that « is detected by a1, 14 > in the DMSS
:{(’;)*(IFz).This product is not detected in the DMSS because « has
o—filtration 1 in the DMSS whereas all nontrivial groups in the Eqo—term of the DMSS
:{(’;)*(H* (A1)) are in o—filtration 0. Therefore, we need first to find a
representative of « in the total cochain complex of the double complex AQZ*QE,QR
and that of e[4,23]in A2)®* ® E; ® R ® Hy (A1), then take the product at the level

of cochain complexes, and finally check if this product is a coboundary. It is tedious to

converging to Ext

converging to Ext

carry out this procedure because any representative of e[4, 23] contains many terms,
and so it is not easy to check if the product is a coboundary. Here, by a term of
A2)®* ® E; ® Ry and A2)%* ® E; ® Ry @ Hy(A;), we mean an element of the
basis formed by the tensor products of a basis of A(2)«, E,, R« and Hy(A4;) chosen
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Figure 11: Black arrows represent the ag 4,1—tower of the classes {yéyg |0<i<3,0<j<7},
which generates the E;—term as a module over Fa[co 4.1, 0‘3,12,2: vg]. Red arrows represent
differential d;. Double arrows starting from one class mean that the differential ¢, on that class
hits the some of the targets.
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to be the monomial basis and the basis of (15), respectively. We will use the same
convention when working with B(2),, F, and S instead of A(2)«, E> and Ry. The
following two lemmas simplify computations.

Lemma 3.3.1 The product of o and e[4, 23] is equal either to 0 or to ge|[3, 15].

Proof This is because ge[3, 15] is the only nontrivial class in the appropriate bidegree.
O

We recall from Section 2 that there is a map of pairs (A(2)«, M>) — (B(2)«, N;) given
by
AQ)x =TFal61, 62,831/ (EF. 63, 63) = BQ)x = Fa81, 82, 831/(61, 63, 83)
* 2161-62,63 1°52-63 * 2161,62,63 1:52:63)»
L for i e{l,2,3},
My =TFaixo, X1, X2, x3} = Ny = Fa{xo, x2, X3},
X1 = 0,
xi+—x; for i €{0,2,3}.
The induced map on the polynomial component of the associated pairs of Koszul duals
is given by
R=E[y1. y2.y3] > S =Faly2. 3. y1=>0, ya>y2. y3>ps.
By an abuse of notation, we will denote by p these projection maps. The context will

make it clear which map is referred to.

Lemma 3.3.2 The map px = Ext;’?zz)*(H* (47)) —> Ext;’g)*(H* (A1)) induced by the

projection A(2)« — B(2)« sends ge[3, 15] to a nontrivial element.
Proof The projection A(2)x — B(2)« induces a morphism of the DMSSs. The
morphism of the E;—terms reads

Ext’;(),(E2 ® R@Hy(41)) = Exty, (F; ® S @ He(4))).

By the change-of-rings isomorphism, this morphism identifies with the projection
p: R— S, which is surjective. The class ge[3, 15] is detected by yg (yg’ + ylyg) eR’,
which maps to y27 e S7 via p. By naturality, y; is a permanent cycle in the target
DMSS. The only class in the E;—term which can support a differential hitting y27 is y36 ,
which admits vg y32 as a lift in the source DMSS. We have

di1(v5y3) = d1(v3)y] +v3d1(13) = (€0,4,105 15.2) V5 + V3 (X0,4,12)
= y1y3Y; + Y3ripa.
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This uses the Leibniz rule and Propositions 3.1.20(11) and 3.2.4(7). By naturality,

the dq—differential in the target DMSS is p(y y;‘ y32 + yg ¥1)2), which is equal to 0.

Therefore, the image of ge[3, 15] is nontrivial. |

Lemma 3.3.3 The product of « and e[4, 23] is nontrivial, and hence equal to ge[3, 15]
if and only if the product of p«(c) and p«(e[4, 23]) is nontrivial.

Proof The map p: A(2)+ — B(2)« induces the commutative diagram

Exti{(lg*(lﬁ‘z) ® Extj((zj)*(H*(Al)) — Extz;z‘j)*(ﬁ*( A1)

- -
Extyy),(F2) ® Extply) (Hi(A1)) — Extps) (Ha(41))

where the horizontal maps are the respective multiplications. The result follows from
the fact that p.(ge[3, 15]) is nontrivial by Lemma 3.3.2. |

Now let us compute the product of p«(c) and p«(e[4, 23]).

Lemma 3.3.4 In the total cochain complexes of
BQ2)®*® F,®S and B(2)2*® F, ® S ® Hi(41),

respectively,

(i) ps(@) is represented by (2|11 3]+ (& [1y3] + [E1]1]y5] € BQ) ® F2 ® S?;

(i1) p«(e[4,23)) is represented by

[1y2y3 a0l + [11y3 ¥3lar] + [11y3 yslaz] + [1]y3|as] € F, ® S* @ Hu(4).

Proof A direct computation shows that these elements are cocycles of the total
differentials, which are not coboundaries. One way to prove that they represent the

right classes is to prove that they lift to cocycles in the total cochain complexes of
A2)®* ® E; ® R and of A2)®* ® E; ® R @ Hy(A), respectively.

It is easy to check that

[E211p3]+ [E5 11 p3] + [En 1 p3) + Ealxa | p3] + [ED 1 [pE] + [ X2 v il + (11 yi 3]
€(AQ)s® E; ® R?) @ (E, ® R?)
is a lift for [£[1]y2]+ [€7 |11 y?]+ [E1]1]y3].
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For the other element, instead of finding a lift it suffices to show that p, induces an
isomorphism Ext:’g)*(H* (41)) = Ext;;’g)*(H* (A1)), so that both are isomorphic
to IF,. This can be proved by a similar argument to that used in the proof of Lemma 3.3.2.
Indeed, the nontrivial class of Ext (227) (H«(A4y)) is detected by y, y3 in the DMSS.
Via ps, the latter is sent to y, y3 , which is the unique nontrivial element of the E;—term
of the target DMSS in the appropriate tridegree. For degree reasons, y; yg’ is not hit
by any differential. Therefore 2 y33 survives the target DMSS and it follows that
Extf4(227) (Hy(A4,)) => Ext® B(z) T (Hy(41)) = F,. 0

Set
= [&11p3]+E 1y3]+ E ] p3).

= [1y2y3lac) + (13 ¥3la1] + [11y3 y3las] + [1]y3]as].
We need to show that M N, which is a (d,+dp)—cocycle, represents a nontrivial class
in Ext;é) (H«(Ay)). First, M N is an element in B(2)+ ® F2 ® S ®@Hy(A4;) and
dy(M N)=0. This means that M N represents a class in ExtB(z) (F,®S°®H4(4))),
which is trivial because, by the change-of-rings theorem, Ext’; B (2)*(IF2, Fy@S®H(A41))
is isomorphic to .S, which is concentrated only in cohomological degree 0. There must
be an element P € F, ®S6 ®Hx (A1) such that d,(P) = M N, and so dj, (P) represents

the same class in Ext?; " (Hx«(A1)) as M N does.

B(2
The following technical lemma is essential in proving Proposition 3.3.7, the key result of

this section. We recall the values of A; ; introduced in Proposition 3.2.2: A 9 =21¢,; =1
and )\(),() = )\1’1 =0.

Lemma 3.3.5 If we express P in the monomial basis of B(2) ® F» ® S® ® Hy(41),
then P contains the term Xi,j[l|x2|yg|a0], ie

P = A j[1|x2|ySlao] +

Proof The product M N contains the term [£; 1] y§|a3]. One can check that P must
contain the term [l|y26|a6], so that d,(P) contains the term [$2|1|y§|a3]. Using the
formula for the coaction of A(2)« on ag, one sees that dy,(P) contains the term
Ai, j[§22| 1| y26 |ao], which is not a term of M N. In order to compensate for this term, P
must contain the term A; ;[1]x |)/26 lao]. m|

Lemma 3.3.6 A (d,+dy)—cyclein F; ® S” ® A, gives rise to a nontrivial class in

Ext;éz) (H«(Ay)) if and only if it contains the term [1 |yz7 lao].
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Proof It is shown in the proof of Lemma 3.3.2 that
7,42 ~
EXtB(Z)*(H* (Al)) = Fz
and that this group arises from
0,42 ~
Extyy) (F2 ® ST ®@Hx(A41)) =F{y; CS’.

Therefore, by the shearing homomorphism, the only element in F, ® S ® Hy (A1) that
represents the nontrivial class of Ext;’g)*(H* (A1)) must contain the term [1] yZ lag). O

Proposition 3.3.7 The product ae[4,23] is equal to A;,j ge[3, 15].

Proof Note ae[4, 23] is nontrivial if and only if dj(P) represents a nontrivial class
in Ext;’g)*(H* (A1)). Lemma 3.3.5 shows that dj,(P) contains the term A; ;[1 |y17|a0].
Hence, Lemma 3.3.6 concludes the proof. |

The product between 8 € Exti’(lzg)*(lﬁ'z) and e[3,15] Exti’(lzs)*(H* (A1)) is easier be-

cause both have o—filtration 0 in the Davis—Mahowald spectral sequence.
Proposition 3.3.8 Be[3, 15] = e[6, 30].

Proof The class 8 is represented by yg + y32 in R? and e[3, 15] is represented by
[yg + y1y32|a0] in R3® A;. So the product Be[3, 15] is represented by [yz6 + y12y§‘|a0],
which represents e[6, 30] by Theorem 3.2.5. m|

4 Partial study of the Adams spectral sequence for tmf A 4,

In this section, we establish some differentials in the ASS for tmf A A; and a global
structure of 74 (tmfA A1). This is essential information, allowing us to run the homotopy
fixed-point spectral sequence in the next section.

Recall that the ASS for tmf A A; which has E;—term isomorphic to Ext:':"(*z)*(H,.< (A1)
is a spectral sequence of modules over that for tmf, whose E;—term is isomorphic to
Ext:’(*z)*(IFz). We first recollect some known properties of the ASS for tmf; see [24].
Recall that o, g, wy, B € Ext:’;;)*(Fz) are detected by a1,14,2, 0‘3,12,2’ vg and o, 13,3
in the DMSS.

Theorem 4.0.1 (i) Theclass g € Ext;’é‘;*(Fz) is a permanent cycle detecting the

image of k € 750(S°) via the Hurewicz map S° — tmf.
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(ii) There is the d,—differential in the Adams spectral sequence for tmf
dy(wz) = gfa.
(iii) There is the d;—ditferential in the Adams spectral sequence for tmf
d3 (w3 (v3n) = g°.

(iv) The class A8 := w;1 survives the Adams spectral sequence.

Proposition 4.0.2 In the ASS for tmf A A1, there exists A € [V, such that the following
statements are equivalent:

() da(wael4,23]) = Ag2e[6, 30].
(i) dy(wsel9,48]) = Ag?e[3,15].
(iii) da(w,e[10,53]) = Ag>e|0, 0].
(iv) dy(wae[7,38]) = Agtel[l, 5].
Proof We will prove that (i) = (ii)) = (iii)) = (iv) = (i). The charts of Figure 13

will make the proof easier to follow. First, we observe that all of the classes e[4, 23],
e[7,38], e[9, 48] and ¢[10, 53] are permanent cycles, by sparseness.

(i) = (i) Suppose that

d, (w,e[4,23]) = g2el6, 30].
Then
dy(g?w,el4,23]) = gel6, 30],

by g-linearity. It follows that there is no room for a nontrivial differential on w%e[3, 15].
In order words, w%e[3, 15] is a permanent cycle. Because of Theorem 4.0.1(iii), a gk -
multiple of w%e[3, 15] must be hit by a differential for some k less than 7. One can
check that the only possibility is that

da(w3el9,48]) = g*wie[3, 15).
Since w% is a dr—cycle in the ASS for tmf, this differential implies that
dy(wye[9,48]) = g*e[3, 15].
(i) = (iii)) Suppose that

dr(w,e[9, 48]) = g*e[3, 15].
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Then the class w%e[O, 0] is a permanent cycle, by sparseness. Again, a gX—multiple of
w%e[O, 0] for some k smaller than 7 must be hit by a differential. Inspection shows
that the classes wge[IO, 53] and wg e[1, 5] are the only ones that have the appropriate
bidegree to support such a differential. However, wge[l, 5] is a permanent cycle,
because wg and e[1, 5] are permanent cycles in their respective ASS. Thus,
d (w,e[10, 53]) = g°e[0, 0].
(iii)) = (iv) Suppose that
d»(woe[10, 53]) = g°¢[0, 0].
Then the class w%e[l, 5] is a permanent cycle, as there is no room for a nontrivial
differential on it. Then g¥ w%e[l, 5] must be hit by a differential for some k less than 7.
Inspection shows that the only possibility is that
dy(w3el[7,38]) = gtwiell, 5.
As w% is a dp—cycle, it follows that
d,(woe[7,38]) = g?el[l, 5].
(iv) = (i) Suppose that
dy(wse[7,38]) = ge[l, 3].
By g-linearity,
da(gwael7,38]) = gell, 3].

Then, by sparseness, w%e[6, 30] is a permanent cycle. Then the class g% w%e[6, 30] is
hit by a differential for some k less than 7. Inspection shows that the only possibility
is that

dy(w3e[4,23])) = g*w3e[6, 30].

Therefore,

da(wae[4,23]) = ge[6,30],
by w%—linearity. a
Theorem 4.0.3 In the Adams spectral sequence for tmfA A1[i j], there are the following
differentials d5:

(i) dy(wyel4,23]) = A;,jg>e[6, 30].
(i) da(wpe[9,48]) = A; jg%e[3, 15].
(i) dp(wae[10,53]) = A;,jg°¢[0,0].
(iv) dy(wye[7,38]) = A jge[l, 5.
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Figure 12: The Adams spectral sequence in the range 148 <¢ —s < 152.

Proof By the Leibniz rule and Theorem 4.0.1(ii),
dr(woel4,23]) = dy(wy)el4, 23] = gBuel4, 23] = ki,jgze[6, 30],
where the last equality follows from Propositions 3.3.7 and 3.3.8. Thus, the theorem

follows from Proposition 4.0.2. |

Remark 4.0.4 The homotopy group m(tmf A A1) is a module over m«(tmf); in
particular, it is a module over Z[i]. Since i is detected by g in the ASS, Theorem 4.0.3
expresses a connection between the module structure of Hy(A4;) over the Steenrod
algebra and the nilpotence order of the action of ik on . (tmf A A1). This is essential
information in the determination of differentials in the HFPSS for E éGZ“ ANAj.

Proposition 4.0.5 There are the dy—differentials in the Adams spectral sequence for
tmf A A (see Figure 12)

ds (w%e[lO, 53]) = g°¢[9,48] and d3(w§e[1, 5]) = g w,ef0, 0].

Proof By sparseness of the ASS for tmf A A (see Figure 13), ¢[9, 48] and we|0, 0] are
permanent cycles. Then g’e[9, 48] and gXwe[0, 0] must be targets of some differentials
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Figure 13: Adams spectral sequence for 4; in the range 0 < ¢ —s < 48 (left)
and 48 <t —s < 101 (right). The arrows in bold are differentials for the models
A4[10] and A1[01] and the dashed arrows for the models 41[00] and 4[11].
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for some / and k less than 7. Inspection of the E,—term shows that either

dz(wge[l(), 53]) = g°we[0,0] and d4(w§’e[1, 5]) = g°e[9, 48]
or
dy(w3e[10,53]) = g°¢[9,48] and d3(wie[l,5]) = g’ wye[0,0].

However, the former possibility is ruled out because of the Leibniz rule:
da(w3e[10, 53]) = da(w3)e[10, 53] = 2w, dy (w,)e[10, 53] = 0,

where the first equality follows from the fact that ¢[10, 53] is a permanent cycle, by
spareness. m|

Corollary 4.0.6 The Toda bracket (ii°,e[9,48],v), where k € m4(S?), e[9,48] €
«(tmfA A7) and v € tmf A Ay, tmf A A1]«, can be formed and contains only multiples
of ik in 7wy (tmf A A7).

For references on the Toda bracket, see [41; 26].

Proof In the E4—term of the ASS, the Massey product (g, e[9, 48], v) has cohomo-
logical filtration 27 and is equal to zero with zero indeterminacy. On the other hand,
the corresponding Toda bracket can be formed with indeterminacy containing only
multiples of k. We can check that all conditions of Moss’s convergence theorem [30,
Theorem 1.2] are met. It follows that the Toda bracket (g7, e[9, 48], v) contains an
element detected in filtration 27 by 0, thus is a multiple of k. Therefore, this Toda
bracket contains only multiples of «. a

Finally, we need to have control of the action of the class A% = w‘z‘ € Extiz(’zz)i“(IFz) on
the Eoo—term of the ASS for tmf A A;. This will allow us to compare 7 (tmf A A{)
with 7, (£ ZGM A A1) (see Corollary 5.1.3) and hence to discuss higher differentials in

the HFPSS for ELG24 A A4,

Proposition 4.0.7 The class wg acts freely on the Eqo—term of the ASS fortmf A 4.
As a consequence, the element A3 € 1,9, (tmf) acts freely on the homotopy groups of
tmf A A;.

Proof Using the description of the E;—term of the ASS for tmf A A in Theorem 3.2.5
and an elementary bidegree inspection, we can see that, if a class y is in an appropriate
bidegree to support a differential hitting a class of the form wg x for some class x, then
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y is divisible by w;‘ . Knowing that wg is a permanent cycle in the ASS for tmf, we
conclude that, if a class x survives the E,—term, then the multiples of x by all powers
of wg also survive that term. Therefore, the proposition follows by induction. a

Proposition 4.0.8 For every element x € 4 (tmf A A;), the element A8x is divisible
by ik (resp. v) if and only if x is divisible by ik (resp. v).

Proof The argument is similar to that used in the proof of Proposition 4.0.7. A
bidegree inspection shows that, if a class y € Extj{é)*(H* (Ay)) is in an appropriate
bidegree whose (exotic) product with g (resp. v) might detect A¥x, then y is divisible
by w‘z‘. We conclude the proof by using the fact that the class w‘zt acts freely on the
ASS for tmf A Ay, by Proposition 4.0.7. a

5 The homotopy fixed-point spectral sequence for E gGZ“ A Aq

5.1 Preliminaries and recollection on cohomology of G4

Theorem 5.1.1 There is a homotopy equivalence
[(A%)~!tmf A A; ~ (ERG24)hC A 4,
where Gal denotes the Galois group Gal(IF4/IF»,).

Proof We have

[(AY"!tmf A A; >~ TMF A 4, (by (7))
~ L,(TMF) A Ay (TMF is E(2)-local)
~ L,(TMFA A4y) (A, is a finite complex)

~ LK(Z) (TMF) A Aq

~ (BT A4y (by (6)).
The fourth equivalence is Lemma 7.2 of [25] applied to the K(2)-localization and A4,
which is a finite spectrum of type 2. a
Corollary 5.1.2 There is a homotopy equivalence

Galy A[(A%)"1mf A A; ~ EEC2 A 4.

Therefore,
W (Fs) ®z, (A%) ™' (raltmf A A1) 2= ma (L4 A Ay).
Proof This is a consequence of Theorem 5.1.1 and [11, Lemma 1.37]. O
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Let
(18) O: W(Fy) ®z, mx(tmf A A}) — 7. (ERO24 A 4))

be given by precomposing the isomorphism of Corollary 5.1.2 with the natural homo-
morphism 74 (tmfA A1) — 74 ([(A%) 1 ]tmfA A ). The following corollary recapitulates
the relationship between 4 (tmf A A1) and 74 (E 2024 ANAy).

Corollary 5.1.3 The homomorphism ® is injective. Moreover, it remains injective
after quotienting out by the ideal of 74(S°) generated by (i, v).

Proof This follows from Theorem 5.1.1 and Propositions 4.0.7 and 4.0.8. O

We continue to recollect some necessary information about the HFPSS converging to
mx(ERG24):

(19) H* (Goa, (EC)i) = m—s(ERO24),

The elements 1 € 7;(S?), v € 73(S°) and k € m20(S?) are sent nontrivially to
elements of the same name in 4 (E gGZ“) via the Hurewicz map S°® — E gG“. As the
latter factors through the unit map of tmf, the element k® = 0 in 7, (E 2G24) because
k® = 0 in 74 (tmf) (see [3, Section 8.3, page 36]). These elements are detected by
n € H(Ga4.(Ec)2), v € H'(G24. (Ec)4) and k € H*(Ga4. (E)24), respectively.
Furthermore, there is a class A € H®(G,4, (Ec)24) such that A® is a permanent cycle
detecting the periodicity of £ éGZ“.

The HFPSS for E ng“ A A1 is a spectral sequence of modules over that of (19),
(20) H' (G4, (EC)i A1) = mi—s (EE A ).

In Section 5.2, we will compute H*(G»4, (Ec)« A1) as a module over a certain sub-
algebra of H* (G4, (Ec)«). Let 7 (E¢)s — Fa4[u™!] be the quotient of (E¢ )« by the
maximal ideal (2, u). As the ideal (2, u) is preserved by the action of S¢, the ring
IF4[u*"] inherits an action of S¢, and so of its subgroup G»4. We need the computation
of the ring structure of H* (G4, F 4[ui1]), which is due to Hans-Werner Henn; see [6,
Appendix A].

Proposition 5.1.4 There are classes z € H*(G14, F4[ui1]0), a € H (G4, F4[ui1]2),
b € H (G4, F4[ut']s) and v, € HO(Go4, (F4[u™'])¢) such that there is an isomor-
phism of graded algebras

H*(Gaq, Falu™']) = Falvy", z,a,b]/(ab, b* = vya?).
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Proposition 5.1.5 The homomorphism of graded algebras
H*(Ga4, E¢ ) 5(Gaa, Fyu™])

induced by the projection (E¢ )« — F4[u®!] sends n toa, v to b, & to vgz and A to vg‘.

5.2 On the cohomology groups H* (G24, (Ec)«(A41))

We first determine (E¢)«(A1) using the cofiber sequences through which 4; are
defined. The cofiber sequence £S° 1> SO — C, gives rise to a short exact sequence
of Ec—homology,

0= (Ec)x = (Ec)+(Cy) = (Ec)«(S?) =0,
since (E¢)« is concentrated in even degrees. Hence, as an (£ ¢)«—module,

(Ec)«(Cy) = W (Fs)[ur ™ eo. e2},

where e is the image of 1 € (Ec)o and e, is a lift of £21 € (E¢)2(S?). Next, the
long exact sequence in £ c-homology associated to Cy 2, Cy — Y is the short exact
sequence of (E¢)«[G24]-modules

0 — (Ec)«(Cy) 22 (Ec)«(Cp) = (Ec)«(Y) = 0

since multiplication by 2 on (E¢)«(Cp) = W (F4)[u 1wt Keo, €2} is injective. There-
fore, as an E.—module,

(Ec)«(Y) = Fyflu; J[u™"feo, €2}

Now A is the cofiber of a v{—self-map of Y, 22y Ly — A;. The following lemma
describes the induced homomorphism in Ec—homology of these v;—self-maps:

Lemma 5.2.1 The image of the homomorphism (E¢)«(vy) is (uju=")(Ec)«(Y).
Therefore, as an (E¢)«[G24]-module,

(Ec)«(A1) = (Ec)«(Cp)/(2,u1) = Fa[u™Jeg, e2}.

Proof Let K(1)be the first Morava K—theory at the prime 2 such that K (1) = IFz[vfE 1,
where |vq| = 2, and let BP be the Brown—Peterson spectrum at the prime 2. There is a
map of ring spectra BP — K (1) that classifies the complex orientation of K(1). Recall
that the coefficient ring of BP is given by

BP, =~ Z(z)[vl , U2y ],
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where |v;| = 2(2/ — 1); see [1, Part II]. The induced homomorphism of coefficient
rings sends v; to v;. Let ¢: BP — E¢ be the map of ring spectra that classifies the
2-typification of the formal group law of E¢. One can show that the 2—series of the

latter has leading term u;u~'x? modulo 2; see [6, Proposition 6.1.1]. This implies that

the induced homomorphism ¢y : BPsx — (E¢)« sends vq to uqu~! modulo 2. Similarly
to the calculation of (E¢)«(Y),

BP*(Y) = BP*/Z{e()? 62}’

where e and e, are chosen to be lifts of eg and e, via the map ¢« : BP«(Y) — (E¢)«(Y).
It is also straightforward that

K(1)£(Y) = Fa[v {eq, €1, €2, €3},

where |e;| =7 and eg and e, can be chosen to be the images of ¢ and e, via the
orientation map BP — K(1). By definition, a v{—self-map of ¥ induces an isomorphism
of K(1)«—modules on K(1)-homology. This means in particular that

€0 €1V1 €2 €0
K(1 = )
( )*(vl)(ez) (63')12 641)1)(@2)
where €1, €5, €3, €4 € [, satisfy €164 — €263 = 1. The map BP — K(1) gives rise to

the commutative diagram

BP,(22Y) —) pp.(v)

l K(1)«(v1) l

K(D)£(22Y) =22 K(1)u(Y)
which forces, for degree reasons, that BP«(vq) is given by

€o €1V € €9
BP = .
*(Ul)(€2) (63’)% 6401)(62)

By taking into account the fact that BP4(v) is a map of BPx«BP-comodules, €, must be
equal to 0, and hence €; = €4 = 1. Using the orientation map ¢: BP — E¢, (E¢)«(vq)

e\ U1 0 €o
enen(2) = (e 1) (%)

In particular, the image of (E¢)«(vy) is the cyclic (E¢)«submodule (vq)(E¢)«(Y). O

is given by
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The cohomology group H* (G4, F4[u®']{e;}) for i € {0,2} is free of rank one as a
module over H*(G4, F4[u™']). For i € {0,2}, we choose the generators [0, i] €
HO(Ga4, (F4[u™']{e;});) of these modules.

Lemma 5.2.2 (a) Ec«(A4y) sits in the short exact sequence of G4—modules
0 — F4[u™"Heo} = Ecx(Ar) > Falu™" ez} — 0.

(b) The induced connecting homomorphism of the above short exact sequence,
H*(Goa, Falu*'{ez}) > H* (Gag. Falu™{eo}),

is H* (G4, F4[u*t1])—linear and sends [0, 2] to ae[0, 0] up to a unit of 4, where
a € H' (G4, (F4[u™1]),).

Proof Part (a) is due to the fact that ¢ is Gp4—invariant.

For part (b), since the ideal (2, u1) of (E¢)« is G4—invariant, by taking the quotient
by this ideal, we obtain the homomorphism of short exact sequences of G4—modules

0 —— (Ec)steo; — (Ec)+(Cy) —— (Ec)+ler; —— 0

J | |

0 —— Fafu™"Heo} —— (Ec)«(41) — Fa[u*'J{es} —— 0

Since the homomorphism Ext];ﬁ*BP(BP*,BP*) — H!'(G14,(Ec),) sends 1 to the
class of the same name, the connecting homomorphism of the upper SES sends ¢, €
HO (G4, (Ec)ai{es}) to neg € H (Goy4, ). By naturality, the connecting homomorphism
of the lower SES sends e, € H (G4, F4lut'1{es}) to aeq € H'(Gag, Fa[uT'{eo})
because 74 : H' (G4, (Ec)2) — H' (G4, F4[u™1]) sends 7 to a.

That § is H* (G4, F4[ut!])-linear follows from the fact that the SES in (a) is a sequence
of F4[uT1][G»4] and splits as a short exact sequence of F4[u*!]-modules (see [12,
Section V.3]). O

Using the description of H* (G54, F4[u*!]) and the long exact sequence associated
to the short exact sequence of Lemma 5.2.2, we obtain the following description of

H*(G24, (Ec)«(41)):

Proposition 5.2.3 As a module over H* (G4, F4[u™]), there is an isomorphism
H*(Ga4, (EC)x(A1)) = Fa[v3, 2,a,b)/(a, b*){e[0, 0], e[1, 5]},

where e[0,0] € H®(G4,(Ec)o(A1)) and e[1,5]€H (Ga4, (Ec)¢(A1)) (see Figure 14).
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Figure 14: H*(Gy4, (Ec):(A1)) depicted in the coordinate (s, — ).

The above proposition also gives the action of H* (G4, (E¢)«) on H*(G24, (Ec)«A1).
In fact, the action of Ecy on Ecy(Ay) factors through Fa[u®!] via Ecy X Fa[u®!].
As a consequence, the action of H*(G4, Ecs) on H* (G124, Ec«(A1)) factors through
the induced homomorphism in cohomology of G,4. In particular, it follows from
Proposition 5.1.5 that the classes A, k and v act on H*(G14, Ec«(A41)) as v;', vgz

and b do, respectively.

5.3 Differentials of the homotopy fixed-point spectral sequence
for E gGZ“ A Aq

The HFPSS for E éGZ‘* A A1 has the following features. The spectrum Ec A 47 is a
G,4—Ec—module in the sense that E¢c A Ay is an Ec—module and the structure maps
are G4—equivariant. This guarantees that the HFPSS for £ 2624 A Aq is a module over
that for £ ?;624. In particular, all differentials are k—linear. This element plays a central
role here: the group G4 is a group with periodic cohomology (see [12, Chapter VI,
Theorem 9.5]) and the cohomological periodicity class z € H*(G24,Z) is related to
ik € H*(G14, (EC)+) via the equation
Az =k.

Since A is invertible in H*(G»4., (E¢)«), k plays the same role for cohomology of
(E¢)«[G24]-modules as z for cohomology of Z[G,4]-modules. This means that,
if M is an (E¢)«[G24], then multiplication by i induces an homomorphism on
H*(Ga4, M) — H’T4(Gy4, M), which is a surjection for s > 0 and a bijection

for s > 0. We will define a cohomology class with this property a cohomological
periodicity class. These features of ¥ induce more constrains on the HFPSS.

Definition 5.3.1 Let R be a ring spectrum and G be a finite group acting on R by
maps of ring spectra. The pair (G, R) is said to be regular if G is a group with periodic
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cohomology and there exists a cohomological periodicity class ¢t € H*(G, Ryx) which
is a permanent cycle in the HFPSS for R"C.

Proposition 5.3.2 Let (G, R) be a regular pair as in Definition 5.3.1 and X be a G-R
spectrum. Suppose t € H*(G, Ry) is a cohomological periodicity class which is a
permanent cycle in the HFPSS for R"G. Then the E,—term of the HFPSS for X"C has
the following properties:

(1) All classes of cohomological filtration at least k are divisible by t.

(ii) All classes of cohomological filtration at least r are t—free.

Proof We will prove by induction on r that the E,—term of the HFPSS for X hG has
the properties (i)—(ii). The Eo—term is isomorphic to H*(G, 7« (X)). We recall that
the natural map from the cohomology to the Tate cohomology ¢: H*(G, m« (X)) —
A (G, (X)) is an epimorphism and is an isomorphism when s > 0; see Chapter VI
of [12]. Because G has periodic cohomology, we have

H*(G, e X) = H*(G, e X)),

which means that the group ﬁ*(G, mxX) is t—free and is divisible by ¢. Since
t:HY (G, 1 X) —> as (G, m«(X)) is an isomorphism when s > 0, all classes of positive
cohomological degree of H* (G, 7« X) are t—free.

Now suppose x is a class of H (G, w4+ X) with s > k. Then the class = !i(x) €
(G, 7+ X) has a preimage y € H* % (G, 74 X) (because s —k > 0), ie

((y) =t ().
This implies that
Lry) = 1u(y) = u(x),
and thus, since s > 0,
ty =Xx.

Thus, the E;—term has the properties (i)—(ii). Suppose that the E,—term satisfies (i)—(ii).
Let [x] € E, 4+ be a nontrivial class represented by x € E,. Suppose that x has its
cohomological filtration s > k. By the induction hypothesis, there exists y € Ei_k’*
such that 1y = x. We show that y is a d,—cycle. Because x is a d,—cycle, we have by
t-linearity that td, (y) = d,(ty) = d, (x) = 0. However, the cohomological filtration
of d,(y) is at least r, and so it is z—free by the induction hypothesis, and so d,(y) = 0.

Therefore, [x] is divisible by ¢.
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Now we prove that E, ;1 has the property (ii). Suppose that [x] is z—torsion and has
cohomological filtration at least » + 1. Without loss of generality, we can assume that
t[x] = 0. Then there exists y € E, such that d,(y) = tx. The cohomological filtration
of yisatleastr + 1+ k —r = k + 1, and hence y is divisible by ¢, ie there exists
z € E; such that 7z = y, and then, by ¢-linearity,

tdy(z) =dy(tz) = dr(y) = tx.

However, d,(z) — x has cohomological filtration at least » 4 1, so it must be ¢—free by
hypothesis (ii), and hence is equal to zero, ie [x] is trivial in E, 1.

We conclude that the E, 4 —term satisfies (i)—(ii), thus finishing the proof by induction.
O

The following corollary summarizes consequences on the structure of the HFPSS:

Corollary 5.3.3 Let (G, R) be a regular pair and X be a G—R spectrum. Suppose
teH*(G,Ry) isa cohomological periodicity class which is a permanent cycle in the
HFPSS for R"C. Then we have, in the HFPSS for X hG .

(1) At the E,—term, t—torsion classes are permanent cycles.

(2) Any t—free tower is truncated by at most one other t—free tower by the same
differential. More precisely, if x is a class of cohomological filtration less
than k, then there exists at most one class y of cohomological filtration less
than k such that there exists a unique integer [ and a unique integer r such that
d,(t™y) = " x for all nonnegative integers m. Moreover, all classes t* x for
i €{0,1,...,m— 1} survive the spectral sequence.

(3) Suppose some power of t is hit by a differential in the HFPSS for R"C. Then
any t—free tower consisting of permanent cycles is truncated by a unique t—free
tower. Moreover, the HFPSS has a horizontal vanishing line.

(4) Every element of 74(X"C) that is detected in filtration at least k is divisible
by 7, where 7 is an element of 7« (R"%) detected by 1.

Proof Part (1) follows from Proposition 5.3.2(ii) because t—torsion classes in the
E,—term have cohomological degree less than r. Part (2) follows from parts (i)—(ii) of
Proposition 5.3.2 because a t—tower can be hit by a differential only if it is z—free and
then it becomes ¢—torsion in the next term. Part (3) follows from (2) and the fact that the
HFPSS for X is a module over that for R. Part (4) follows from Proposition 5.3.2(1). O
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Remark 5.3.4 This situation turns out to be common once the group in question is a
group with periodic cohomology. For example, all finite subgroups of G¢ have these
properties.

We return to the HFPSS for £ éGz“ A Ay. We will call the set {k’x |/ € N} associated
to a class x in some page of the HFPSS the k—family of that class.

The following proposition gives us the horizontal vanishing line of the HFPSS for
E"G2a p 4
C 1

Proposition 5.3.5 The HFPSS for E éGZ“ A Ay has a horizontal vanishing line of
height 23, ie E;i = 0 if s > 23. As a consequence, it collapses at the E,4—term.

Proof Asi®=0in 7. (E éGZ“), the class i® must be hit by a differential which is
of length at most 23. This is because i® has cohomological filtration 24 and all even
differentials are trivial. Hence &® is trivial in the E,4—term of the HFPSS for E éGZ‘*.
Next, because the E,4—term of the HFPSS for £ ZGZ‘* A A1 is a module over that
for £ éGZ‘*, the class k© acts trivially on the Ey4—term of the HFPSS for £ gGM AA;.
Since all classes which are not a multiple of k¥ have cohomological filtration at most 3,
the HFPSS has the horizontal vanishing line of height 23. O

Proposition 5.3.6 The following classes are permanent cycles:

e[0,0], ¢[1,5], e[0,6], e[l,11], e[1,15], e[l,17], e[l,21], e[l,23].
Proof Firstly, the class ¢[0, 0] is a permanent cycle because it detects the inclusion
SO A1 into the bottom cell of A. Next, we recapitulate, in the following table, the

associated graded object with respect to the induced Adams filtration on the groups
7 (tmf A A1)/ (i) in the following stems (see Figure 13):

dim 6 15 17 21 23
value Fz @IF2 IFZ IFz IFZ Fz @Fz

By Corollary 5.1.3, the groups w4 (E éGZ“ A Ay)/(k) in these dimensions must have
order twice as big as the respective groups. Inspection in the E;—term of the HFPSS
through dimensions from 0 to 23 and in cohomological filtration less than 4 show that
the classes ¢[0, 6], e[1, 15], e[1, 21] and ¢[1, 23] are permanent cycles.

Note that the groups g (tmf A A7) and 7g(tmf A A1) are annihilated by 7. This means
that ¢[0, 0] and ¢[0, 6] detect two elements which are annihilated by 7. It follows that
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the Toda brackets (v, n, [0, 0]) and (v, 1, ¢[0, 6]) can be formed with indeterminacy
VIT) (EgG24 A Aq) and vrrg (EZ.G24 A A1). By juggling,

n{v.n. [0, 0]) = (n.v.n)e[0. 0] = v?[0. 0],

n{v.n.e[0.6]) = (n.v. 7)e[0. 6] = vZe[0. 6].
Observe that v2¢[0, 0] and v2¢[0, 6] are nontrivial and are detected in cohomological
filtration 2. Consequently, both (v, 1, ¢[0, 0]) and (v, 1, [0, 6]) do not contain zero and
are represented by classes in cohomological filtration at most 1. By sparseness, ¢[1, 5]
and e[1, 11] are permanent cycles detecting (v, 1, ¢[0, 0]) and (v, , e[0, 6]), respectively.
The unique nontrivial element of 77 (tmf A A4;)/ (i) is annihilated by v2. This implies
that the class vZe[l, 11] is the target of some differential. Since 717 (E éGZ“ ANAy)/ (k)

has order at least equal to 4, the class e[, 17] must be a permanent cycle representing
the only element in stem 17 of 74 (E éGZ‘* A Aq)/(ic). |

Remark 5.3.7 As a memo-technique, we will attach to the above classes the names
that retain better their homotopical meaning. The class ¢[0, 0] is the image of the
generator of 7((S°), so it can also be named 1. Next, in 74(Cp), if x denotes the
generator of mo(Cy) = Z, then the Toda bracket (v, n, x) has the indeterminacy group
vy (Cy), which is divisible by 2. Thus, (v, n, x) is well-defined modulo 2. Via the cell
inclusion C;) — Ay, (v, n, x) is sent to (v, n, 1) which is well-defined. Historically, a
choice of representative of (v, 9, x) € 75(Cy) is denoted by w. Thus, e[1, 5] = (v, n, 1)
can be named w. The class ¢[0, 6] is represented by v, in the E;—term. The other
classes are products of these in the E;—term of the HFPSS. Explicitly,
e[0,0] =1, e[l,5]=w, e[0,6] =v,, e[l,11]=vow,

e[l,15] =vv3, e[l,17]=viw, e[l,21]=vv;, e[l,23]=v;w.
d 3—differentials

Proposition 5.3.8 As a module over F4[AT!, i, v]/(v3), the term E; = E3 is free on
the generators

(21) e[0,0], e[l,5], e[0,6], e[l,11], e[0,12], e[l,17], ¢[0, 18], ¢[l,23].
Proposition 5.3.9 The d;—differential in the HFPSS for E gGZ‘l A Ay is trivial on all
of the generators of (21) with the exception of (see Figure 15)

(1) ds(e[0,12]) = v2e[l, 5],

(2) ds(e[0, 18]) = v2e[l, 11].

Algebraic & Geometric Topology, Volume 22 (2022)



On homotopy groups of EZGZ“ A Ay 3917

4

3 L T L

2 A X X 7
! T L L L

0 0 4 8 12 16 20 24

Figure 15: Differentials d3.

Proof That ¢[0, 0], ¢[1, 5], e[0, 6], e[1, 11], ¢[1, 17] and e[1, 23] are d3—cycles follows
from Proposition 5.3.6. For the two other classes, the proof of Proposition 5.3.6 implies
that the elements ®(e[1, 5]) and ®(e[2, 11]), where © is the comparison homomorphism
from 7, (tmf A A7) and n*(EéG24 A Ay) in (18), are detected by ¢[1, 5] and ¢[1, 11],
respectively. Moreover, the elements ¢[1, 5] and e[2, 11] are annihilated by v? in
74 (tmf A A7). It follows that, in the HFPSS, the classes v2e[l, 5] and vZe[l, 11] must
be hit by some differentials. The only possibilities are d3(e[0, 12]) = v2e[l, 5] and
ds(e[0, 18]) = v2e[l, 11]. i

Corollary 5.3.10 As a module over F4[A*!,ic, v]/(v?), the term E4 = Es is a direct
sum of cyclic modules generated by the classes
(22) e[0,0], e[l,5], e[0,6], e[l,11], e[l1,15], e[l,17], e[l,21], e[l,23]

with the relations

(23) v2e[l, 5] = v2e[l, 11] = v2e[l, 15] = v2e[l,21] = 0.

Proof This is straightforward from Proposition 5.3.9 and from the fact that A, ¥ and v

are d3—cycles in the HFPSS for E ?:GZ‘*. m|
8
7 L
6 s S
VLN VLN \ .
VA V- V- T \
5 \L LA AL AL ~
1
024 28 32 36 40 44 48 52

Figure 16: Differentials ds.

Algebraic & Geometric Topology, Volume 22 (2022)



3918 Viet-Cuong Pham

ds—differentials We need the ds—differential, in the HFPSS for £ éGZ“, ds(A) =kv
(see [3, Section 8.3]), depicted in Figure 16.

Proposition 5.3.11 As a module over F4[(A%)*!, ik, v]/(kv), E¢ = E7 is a direct sum
of cyclic modules generated by the following classes fori €0, 2, 4, 6 with the respective

annihilator ideal:
generator | Ae[0,0] Ae[l,5] Ae[0,6] Ale[l,11]
ideal 3) v?) (v3) (v?)
generator | Ae[l,15] Ae[l,17] Ae[l,21] Ale[l,23]
ideal (v?) (v3) (v?) v3)
generator | A'e[2,30] Ale[2,32] Ae[2,36] Ale[2,38]
ideal v) v) v) v)
generator | Ale[2,42] Ae[3,47] Ae[2,48] Ale[3,53]
ideal (v) (v) (v) (v)

Proof If x is a class in the Es—term of the HFPSS for A4, then, by the module structure
of the latter over the HFPSS for S and the Leibniz rule, for all k € Z,

ds(A%*x) = ds(A)x + A% ds(x) = 20K ds(AF)x + AR ds(x) = AP ds(x).

This says in particular that the E¢—term is A?—periodic. Next, if x is a ds—cycle
and is annihilated by v’, then ds(Ax) = ikvx and ds(Av'~!x) = 0. Together with
the fact that all of the generators of (22) are permanent cycles (Proposition 5.3.6),
it is straightforward to verify that the classes together with their annihilation ideal
given in the statement of the proposition generate the Eg—term as a module over
Fal(A%)F!, &, 0]/ (kv). O

Remark 5.3.12 Since A® is a permanent cycle in the HFPSS for E éGZ“, the HFPSS
for E ZGM A Ay is linear with respect to A%. Note that all i—free generators in the
E;—term are of the form (As)k x where k € Z and x is one of the generators listed in
Proposition 5.3.11 (see Figure 17). Then, by Corollary 5.3.3, these free k—families
pair up so that each nonpermanent k—family truncates one and only one permanent
i—family. By A8—linearity, among these 64 generators, only half of them are permanent
cycles and the others support a differential. It reduces the problem into two steps: first
identify all permanent k—families, then identify by which k—family they are truncated.
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Figure 17: The E;—term for s <8 and t —s < 54.

Proposition 5.3.13 The generators
e[2,30], e[2,32], e[2,36], e[2,38], e[2,42], e[3,47], e[2,48], e[3,53]

are permanent cycles.

Proof We give the proof for e[2, 30] and the other generators are proven in a similar
manner. In the Eg—term, the Massey product (ic, v, v2e[0, 0]) can be formed. Since
ds(A) = kv and v3e[0, 0] = 0 € Es, we see that

e[2,30] = Av2e[0, 0] € (k, v, v2e[0, 0]).

The indeterminacy consists of EEEZ’S + Eg’%vze[o, 0], where E;z,s is in the Eg—term

of the HFPSS for E gGZ“ A A1 and Eg’% for £ gG“. The latter are zero groups; hence,
the indeterminacy is zero. Thus,

(ic, v, v2e0,0]) = e[2, 30].

At the level of the homotopy groups of w4 (E éGZ‘* A A1) one can form the corre-
sponding Toda bracket (i, v, vZe[0, 0]) because vi = 0 in 74 (E gGZ‘*) and inspection
in 7, (tmf A A;) tells us that v3e[0,0] = 0. Furthermore, all hypotheses of Moss’s
convergence theorem are verified. Therefore, ¢[2, 30] is a permanent cycle representing
the Toda bracket (e[0,0], v?, k). For the sake of completeness, we record the Toda
bracket expressions for the other elements:

) (ik,v,v%e[0, 6]) = e[2, 36],
(k,v,ve[l, 5]) = e[2,32],
_ (k,v,ve[l, 15]) = e[2,42],
(i, v,ve[l, 11]) = e[2, 38], B
(i, v,ve[l, 21]) = e[2,48],
(K, v,v2e[l1,17]) = e[3,47], B
(ik,v,v2e[2,23]) = ¢[3, 53]. O

We have already identified 16 out of 32 permanent cycles. The next 16 ones are not
the same for different versions of 4. The difference reflects the different behavior of
the d,—differential in the ASS for different models of A; (see Theorem 4.0.3).
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Proposition 5.3.14 In the HFPSSs for all four versions of Ay, the following 12
generators are permanent cycles:

A%e[0,0], AZ%e[l,5], AZ%e[0,6], A%e[l,11], AZe[l,15], AZ%e[l,17],
A%e[1,21], AZe[2,30], AZe[2,32], AZe[2,36], AZe[2,42], AZe[3,47].
The remaining four permanent cycles for A1[00] and A[11] are
A%e[1,23], A%e[2,38], A%e[2,48], AZe[3,53],
whereas the remaining four permanent cycles for A1[10] and A1[01] are
Ate[1,15], A%*e[0,0], A*e[l,5], A*e[2,30].

Proof The associated graded object of the groups m«(tmf A A1)/ (i, v), with respect
to the Adams filtration, in the following stems are given in the following table:

stem 48 53 54 59 63 65 69 78 80 84 90 95
value IFZ @Fz IF2 @Fz Fz IFZ ]Fz Fz Fz Fz Fz IFZ IF2 Fz

In view of Corollaries 5.1.3 and 5.3.3, inspection in the E;—term shows that the following
12 classes are permanent cycles in the HFPSSs for all four versions of A;:

A%e[0,0], AZ%e[l,5], AZ%e[0,6], A%e[l,11], A%e[l,15], AZe[l,17],
A%e[1,21], A2%e[2,30], AZe[2,32], AZe[2,36],, AZe[2,42], AZe[3,47].

Next, in the ASS for tmf A 4[00] and tmf A A1[11], there is no differential until stem 96.
Again, inspection in the Ey—term (see Figure 13) shows that

71 (tmf A Al[OO])/(k, U) = n71(tmf/\ A1[11])/(/2, V) ~ T,
n86(tmf/\ AI[OO])/(E, l)) = n86(tmf/\ Al[ll])/(/Z, \)) = Fz.

It follows that the classes A%e[1, 23] and A%e[2, 38] are permanent cycles in the HFPSS
for E1G24 A 4,[00] and EAO24 A A4[11].

On the other hand, in the ASS for tmf A A1[10] and tmf A 4[01], Theorem 4.0.3 and g—
linearity imply that d»(g2w,e[4, 23]) = g*e[6, 30] and d,(g%wae[7, 38]) = gbell, 5].
Hence, w%e[3, 15] and w%e[é, 30] survive to the Eqoo—term, by sparseness. It then
follows that A*e[1, 15] and A*e[2, 30] are permanent cycles in the HFPSS for A[10]
and A{[01].

For A1[00] and A4;[11], the classes w,e[9, 48] and w,e[10, 53] do not support differ-
entials, by Theorem 4.0.3, and hence persist to the Eqo—term, by sparseness. Neither
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ik nor v divides these classes. Lastly, both w,e[9, 48] and w,e[10, 53] are annihilated
by v. The only classes in the HFPSS that match those properties are A%e[2, 48] and
A%e[3, 53], respectively. Thus, the latter are the last two of the 32 permanent cycles in
the HFPSS for 4[00] and A44[11].

For A1[10] and A4[01], the classes w,e[9, 48] and w,e[10, 53] support nontrivial d,—
differentials. Thus w%e[O, 0] and wge[l, 5] survive to the Eqo—term. For degree reasons,
both w%e[O, 0] and w%e[l, 5] are not divisible either by k¥ or by v, and moreover
their multiples by v are not divisible by . In the HFPSS for £ gGZ“ A Aq[10] and
E ZGZ‘L A A1[10], A%e[0,0] and A?e[1, 5] are the only classes verifying the respective
properties, and hence are permanent cycles. O

Remark 5.3.15 Having determined all permanent k—families, we consider differentials.
We recall, from Remark 5.3.12, that each permanent k—family is truncated by one and
only one nonpermanent k—family. We can proceed as follows: take a permanent cycle,
say x; then locate all nonpermanent classes that can support a differential killing k" x
for some n < 6. Precisely, one of the following situations will happen:

(1) There is no ambiguity, ie there is only one generator that can support a differential
killing k" x for some n < 6, so this differential occurs.

(2) There are two generators that can support a differential killing multiples of x by
different powers of . In order to decide, we inspect the k—exponent of x using
the ASS.

(3) There are two generators that can support a differential killing the multiple of x
by the same power of «. In this case, inspection on the k—exponent of x does not
help. We will treat each of the particularity case by case. Some Toda brackets
will be involved to resolve these cases.

A permanent cycle is said to be of type 1, 2 and 3, respectively, if its k—family is as in
the situation (1), (2) and (3) above, respectively. The HFPSSs for different versions of
A1 do not behave in the same manner. It turns out the HFPSSs for the versions A[10]
and A1[01] behave in the same way and A1[00] and A[11] in the same way. We will
treat the HFPSS for 4[10] and 4[01] in detail and then point out the changes needed
for A1[00] and A44[11].

Higher differentials for 41[01] and A41[10] The reader is invited to follow the
discussion of the differentials using Figures 18 to 20.
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Figure 18: HFPSS for 4;[10] and A[01] from E7—term with 0 <t —s5 <48
(left) and 48 <t — s < 96 (right).
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Proposition 5.3.16 (A) There are the dy—differentials
(1)  do(A%e[1,23]) = k%e[2, 30], (2) do(A®e[1,23]) = ik2A%*e[2, 30].

(B) There are the d s—differentials
(1) dys(A%e[2,38]) = ike[l, 3], (3) dis(A%e[2,38]) = k*A%e[l, 5],
()  dis(A%e]2,48]) = ik*e[l, 15], (4) dis(ASe[2,48]) = k*A%e[l, 15].

(C) There are the d;—differentials

(1) dy7(A%e[3,53])) = ik>e|0, 0], (8)  di7(Abe[1,21]) = k*A%e[2, 36],
(2)  di7(A*e0,6]) = ik*e[l, 21], (9)  di7(ASe]2,32]) = k*A%e[3, 47],
(3) dyi7(A*e[1,17])) = k*e[2, 32], (10) dy7(Ae[3,53]) = &> A*e|0, 0],
(4) di7(A%[1,21]) = k*e[2, 36], (11) dy7(A%e[1,23]) = k*e[2, 38],
(5) di7(A*e[2,32]) = ik*e[3,47], (12) dy7(A*e[2,38]) = k*e[3, 53],

(6) di7(A%[0,6]) =k*A%e[1,21],  (13) di7(A%€]0,0]) = k* A%e[1, 15],
(7) di7(ASe[1,17]) = k*A%e[2,32],  (14) dy7(ASe[l, 15]) = k* A%e[2, 30).
(D) There are the dq9—differentials

(1)  dio(A*e[l, 11]) = i%e[0, 6], (4) dio(ASe[3,47]) = k5 A%e[2,42],
(2)  dio(A*e[3,47)) = ke[2,42], (5)  dio(A%[1,5]) = ii® A%e[0, 0],
(3)  dyio(A®e[l, 11]) = &> A%¢|0, 6], (6) dio(A*e[3,53]) =i>e[2,48].

(E) There are the d,;—differentials

(1) daz(A*e]2,36]) = kbe[l, 11], (4) dp3(A%e[2,36]) = kS A%e[l, 11],
(2)  daz(A*e]2,42]) = ik®e[l, 17], (5) da3(ASe]2,42]) = k®A%e[1,17),
(3)  daz(A*e]2,48]) = ik®e[l, 23], (6) daz(ASe[2,30]) = kSA%e[l, 5].

Proof (A) The classes e[2,30] and A*e[2, 30] are of type 1 and the only possibilities
are
do(A%e[1,23]) =ik%e[2,30] and do(ASe[l,23]) = k2 A*e[2, 30].

respectively.

(B) All of the classes ¢[1, 5], e[1, 15], A%e[1, 5] and A*e[l, 15] are of type 1 and their
k—family is truncated as indicated in the proposition.
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(C)(1)—(10) All classes
e[0, 0], e[1,21],  e[2,32],  e[2,36], ¢[3.47].
A%e[1,21], AZe[2,32], AZe[2,36], AZe[3,47], A*e[0,0]
are of type 1.

(C)(11) The class e[2, 38] is of type 2. The differentials that can truncate its k—family
are
di7(A*e[1,23]) = k*e[2,38] and d,s(Ae[l, 15]) = k%e[2, 38].

The latter cannot happen because the spectral sequence collapses at the Ep4—term.
Therefore,
di7(A%e[1,23]) = ii*e[2, 38].

(C)(12) The class e[3, 53] is of type 2. Its k—family can be truncated by
di7(A%e[2,38]) = k*e[3,53] or dps(A%e[2,30]) = kSe[3, 53].
As above, there cannot be any d,s—differential in the spectral sequence. Hence,
di7(A%e[2,38]) = k*e[3, 53].

(C)(13) The class A%e[l, 15] is of type 3. In its ki—family, only i* A%e[l, 15] can be a
target of differentials,

d17(A%[0,0]) = k*A%e[1,15] and dys(A*e[2,48]) = k*A%e[l, 15].

However, if
dis(A*e[2,48]) = k*A%e[1, 15],

then the only class that can truncate the k—family of e[l, 23] is A%¢[0,0] and by a
d, s—differential
dp5(A%e[0,0]) = kSe[l,23].

This contradicts the fact that the spectral sequence collapses at the Ey4—term. Thus,
d17(A%e[0,0]) = k* A%e[1, 15].

(C)(14) AZe[2,30] is of type 2. Its k—family can be truncated by a do—differential
on A*e[l,23] or by a d;—differential on A®¢[l, 15]. However, the former possibility
cannot occur because of part (11). Therefore,

dy7(A%e[1,15]) = i* A%e[2, 30].
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(D)(1)—(4) All of the classes

e[0,6], e[2,42], A%e[0,6], AZe[2,42]
are of type 1.

(D)(5) The class Ae[0, 0] is of type 3 and its ki—family can be truncated by either
dy7(A%e[3,53])) = k> A%e[0,0] or djo(Abe[l,5]) = ii> A%e|0, 0].
Suppose that the former happened. This would leave us with the differential
dr1(A%¢[1, 5]) = kK7e[2, 48].
It would imply the Massey product in the Ep,—term
(iK%, e[2,48],v) = vA®e[l, 5]

with zero indeterminacy in the E,,—term. We see that the Toda bracket (k> e[2, 48], v)
could then be formed because

k4e[2,48] = ve[2,48] = 0 € . (EL92 A A)).

We check that all conditions of Moss’s convergence theorem [30, Theorem 1.2] are
met, and so the Toda bracket (i>, e[2, 48], v) would contain an element represented by
vASe[1, 5]. This contradicts Corollary 4.0.6. This contradiction proves that

di9(ASe[l, 5]) = k> A%e|0, 0].
(D)(6) The class e[2, 48] is of type 2 and its k—family is truncated by either
dig(A*e[3,53]) = ik%e[2,48] or dy;(ASe[l,5]) =ke[2,48].
However, part (D)(5) rules out the latter.
(E)(1)—(5) AIll of the classes
e[1,11], e[l,17], e[1,23], AZe[l,11], AZe[l,17]
are of type 1.
(E)(6) The class A%e[l, 5] is of type 2. The two possibilities are
dis(A*e[2,38]) = k*A%e[1,5] and da3(A%e[2,30]) = k®Ae[l, 3].

However, part (C)(12) rules out the former because the class A*e[2, 38] must pair up
with the class e[3, 38], by the differential

di7(A*e[2,38]) = ik*e[3, 53]. o
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The above differentials from dg to d,3, together with the k— and A%—linearity exhaust
all differentials. In Theorems 5.3.17 and 5.3.18, we write e;—g for the permanent cycle
e[s,t — s] in bidegree (s, ¢) listed in Proposition 5.3.11, for the sake of presentation.

Theorem 5.3.17 As a module over F4[AT3 i, v]/(kv), the Eoo—term of the HFPSS
for E 2624 AAq for Ay = A{[10] and A[01] is a direct sum of cyclic modules generated
by the following elements and with the respective annihilator ideal:

0,0) (1,5 (0,6) (1,11) (1,15 (1,17) (1,21) (1,23)
€0 es €6 €11 €15 €17 €21 €23
(&2, v3) (&%, v?) (&°,v) (k8 v?) (k% v?) (k% v7) (&*,v?) (k°,07)
(2,30) (2,32) (2.36) (2,38) (2.42) (3.47) (2.48) (3,53)
€30 €32 €36 €38 €42 €47 €48 €53
(2, v) (k*v) (k%) (k%) (@v) (&*v) @,v) (&)
(0,48) (1,53) (0,54) (1,59) (1,63) (1,65 (1,69) (2,74
Aze() A2€5 A2€6 A2811 A2€15 A2€17 A2€21 A2V€23
(k%,v7) (€6, v2) (k°,v%) (€%, v?) (k% v?) (€% v3) (k*,v?) (k,v?)
(2,78) (2,80) (2,84) (2,90) (3,95) (0,96) (1,101) (1,105)
A2€3() A2€32 A2€36 A2€42 A2€47 A4€() A4€5 A41)€6
(&*v) (&4 v) (k') &v) &) @07 &) (@ v?)
(2,110) (1,111) (2,116) (2,120) (2,122) (2,126) (1,147) (2,152)
A4l)€11 A4€15 A4U€17 A4U€21 A4l)€23 (A4€30) A6U€0 A6U€5
(k,v) &) (&) (kv) &v) @) &) &v)
(1,153) (2,158) (2,162) (2,164) (2,168) (2,170)
ASves APve;; APveys APvey; Alvey; ASvess

(k,v?)  (k,v) (k,v) (.0 (k,v) (K, v?)

The case of 41[00] and A{[11] The analysis of the HFPSS for 4;[00] and A{[11]
can be done in the same manner as for 41[10] and 4[01]. All differentials are identical
except for eight ones. These differences reflect the different behavior between the ASS
for A1[10] and 4[01] and that for A;[11] and A[00]. Below are all the changes whose
justifications are based on similar considerations as in the proof of Proposition 5.3.16;
see Figures 21 to 23:

o di7(A*e[l,15])) = k*e[2, 30] instead of do(AZe[1,23]) = ik2e[2, 30].
o di7(A%[1,23])) = k* A%e[2, 38] instead of do(A%¢[1,23]) = k2 A%*e[2, 30].
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o di7(A*e]0,0]) = k*e[l, 15] instead of d;s(Ae[2,48]) = ik*e[1,15].

o di7(A%]2,38]) = ik* A%e[3, 53] instead of d;5(A%e[2,38]) = k*AZe[l, 5].
o dig(A*e[l, 5]) = ik>e0, 0] instead of d;7(AZe[3, 53]) = ik7e[0, 0].

o di9(A%[3,53]) = k> A%e[2, 48] instead of d;7(A®e[3, 53]) = ik A*e[0, 0].
o dy3(ASe[2,48]) = k8 A%e[l, 23] instead of dy5(A%e[2,48]) = ik* Ate[1,15].
o dy3(A*e[2,30]) = ik%e[l, 5] instead of d;5(A%e[2,38]) = i*e[l, 5].

Theorem 5.3.18 As a module over F4[AT3 i, v]/(kv), the Eoo—term of the HFPSS
for E ng4 AAq for Ay = A1[00] and A[11] is a direct sum of cyclic modules generated
by the following elements and with the respective annihilator ideals:

0,0) (1,5 (0,6) (1,11) (1,15 (1,17) (1,21) (1,23)
€0 es €6 €11 €1s €17 €21 €23
(125,1)3) (126,U2) (ES’V3) (,26’1)2) (124,1)2) (,26’1)3) (E4,v2) (,26,1)3)
(2,30) (2,32) (2,36) (2,38) (2,42) (3.,47) (2,48) (3,53)
€30 €32 €36 €38 €42 €47 €48 €53
k*v) (&*v) &*hv) &) (@) (kv) (&Lv) (k4 v)
(0,48) (1,53) (0,54) (1,59) (1,63) (1,65 (1,69) (1,71)
A260 A2€5 A2€6 A2611 A2€15 A2617 A2€21 A2623
(3, v3) (&8 v?) (k3. v3) (€8 v?) (k*.v?) (€8 v?) (k*.v?) (k8 v?)
(2,78) (2,80) (2,84) (2,86) (2,90) (3,95) (2,96) (3,101)
A2€30 A2€32 A2€36 A2€38 A2€42 A2€47 A2€4g A2€53
(k*.v) (k&*v) (k*v) (k*hv) &) (k) (Kv) (k)
(1,99) (2,104) (1,105) (2,110) (2,114) (2,116) (2,120) (2,122)
A*tvey Atves A*veg Atveyy A*vers Atvey; A*vey; Atvess
(k,v%)  (&v) (&Y @&v) (&v) &v?) (Kv) (@)
(1,147) (2,152) (1,153) (2,158) (2,162) (2,164) (2,168) (2,170)
ASvey Abves ASveg APveyy Avers Alvey; ASves; Alvess
(k,v?)  (k,v) (kv (kKv) (&v) &) E&v) (&v?)

Remark 5.3.19 We emphasize that the relations given in Theorems 5.3.17 and 5.3.18
are only the relations in the Eco—term. In fact, we can see by sparseness that the
annihilator exponents of i are still true in 74 (E éGM A A7). In contrast, there are exotic
extensions by v, ie multiplications by v that are not detected in the Eqo—term. These
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can be determined by two different methods: by using the Tate spectral sequence as in
[9, Section 2.3] or by computing the Gross—Hopkins dual of £ éGZ“ A Ay; however, we
do not discuss this point here.

Using the structure of the Exo—term, we can read off the action of the ideal (i, v) on
7w (E éGZ“ A Ay). From this, we obtain the following corollary:

Theorem 5.3.20 (a) The map
Q1 W(Fy) ®z, mi(tmf A A1)/ (K, v) — i (ER24 A A1)/ (R, v),
induced by © in (18), is an isomorphism for k > 0, independent of the version
of A;.
(b) The map

O: W (Fy) ®z, mi (tmf A A1) — 74 (ERC24 A A1)
is also an isomorphism for k > 0, independent of the version of A.
(c) Multiplication by A% induces isomorphisms
mp(tmf A Ay) = w4 q92(tmf A Ay),
mr(tmf A Ay)/ (K, v) = T p192(tmE A Ay) /(K v)

fork > 0.

Proof For part (a), Corollary 5.1.3 asserts that ®’ is injective. To show that the latter
is surjective, it suffices to show that its source and target have the same order. The
order of the target can be seen from Theorems 5.3.17 and 5.3.18; in particular, it has
order 0 or 4 in all stems, except for the stems 48 and 53 modulo 192, in which it has
order 8. The remaining part of the proof is an inspection of the ASS for tmf A A1,
together with the fact that ® is injective, by Corollary 5.1.3, and is linear with respect
to k and v, to show that W ®z, w4« (tmf A A1) has the same order as 74 (EéG24 ANA1),
in nonnegative stems. Because of the dependence of the structure of w4 (E éGZ‘L A Ay)
on the version of 4, we consider them separately; we only give a detailed treatment
for A1[00] and A1[11] and claim that the treatment for A;[01] and 4[10] is completely
similar. For the remaining part of the proof, 4; will be 41[00] or A¢[11].

By sparseness and Theorem 4.0.3(i), all classes wée[i, jlforl =0,1 and ¢[i, j], the
classes in the table of Theorem 3.2.5, survive to the Eqo—term of the ASS for tmf A A;.
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Figure 21: HFPSS for A1[00] and A[11] from E;—term with 0 <¢ —s <48
(left) and 48 < ¢ —s < 96 (right).
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Moreover, for degree reasons, these classes must converge to nontrivial elements of
m«(tmf A A1)/ (ic, v) in the appropriate stems. Therefore, W @z, 7« (tmf A A1)/(k, v)
has the same order as 7 (E 2624 A A1) up to stem 96 and in stem 101.
All of the classes

w%e[O, 0], w%e[l, 3], w%e[l, 6], w%e[Z, 11],

wie3,15], wie[3,17], wie[4,21], wie[4,23]

are dy—cycles in the ASS and the d;—differentials on them can only hit g—multiple

fi?z%*(Fz), the classes

vw%e[0,0], vw%e[l,S], vw%e[1,6], vw%e[2, 11],

vw%e[3,15], vw%e[3,17], vw%e[4,21], vw%e[4,23]

classes. Thus, by v-linearity and the fact that gv = 0 in Ext

are dz—cycles and hence survive to the Eqo—term, by sparseness. As above, these classes
must converge to nontrivial elements of w4 (tmf A 41)/(k, v) in the appropriate stems.
It follows that W ®z,, 7« (tmf A A1)/ (k, v) has the same order as 7 (EZ,G24 A Ay) for
stems from 96 to 144.
Consider the classes
o4 vwge[0,0], vwge[l,S], vwge[1,6], vwge[2, 11],

vwge[l 15], vwge[S, 17], vw;e[4, 21], vwge[4, 23].

As above, these classes survive to the E4—term of the ASS for tmf A A;. By sparse-
ness, vw;’e[4, 23] survives to the Exo—term and converges to a nontrivial element
of mi70(tmf A A1)/(k,v). By sparseness, the other classes can only support ds—
differentials hitting the classes

gle[l,6], g'e2,11], g%[6.32], g’e[3.17], g'e[4,21], g’e[4,23], g%¢[9,47],
respectively. However, the class
gheli, j1 for (i, j) €{(1,6),(2,11),(6,32),(3,17), (4,21), (4,23), (9.47)}

is killed by a differential for a certain integer k less than 7, and hence g’eli, j] for
these (i, j) is killed by a differential on a certain g—multiple class. This means that

vwge[0,0], vwge[l,S], vwge[2,11], vw%e[3,15], vwge[3,17]

survive to the Eqo—term, hence, as above, to nontrivial elements of 7. (tmfA 4y)/(k, v).
Next, the map ® sends ¢[6, 32] and ¢[9, 47] to e[2, 32] and ¢[3, 47], respectively. The
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latter are both annihilated by i#, so that g#e[6, 32] and g#e[9, 47] are hit by certain dif-
ferentials in the ASS; hence, g%¢[6, 32] and g®e[9, 47] are hit by differentials supported
on g—multiple classes. As above, this implies that vwge[l, 6] and vwge[4, 23] survive
to nontrivial elements of 7 (tmf A A41)/(k, v). In total, we have proved that all classes
of (24) converge to nontrivial elements of 7. (tmf A A;)/(k,v); as a consequence,
W ®z, m«(tmf A A1)/(k, v) has the same order as JT*(EéG24 A Ayp)/(k,v) in stems
from 144 to 192.

Together with the fact that 7. (£ éGZ“ A Ay)/(i,v) is Ad—periodic, we conclude that
©’ is a surjection, and hence is an isomorphism.

For part (b), there is a commutative diagram

W (Fy) @z, T (tmf A Ay) — > mo (RG24 A A1)

|

W (F4) ®z, Ta(tmf A A1)/ (R v) ——— 7a (ELS2 A A1)/ (R, )
Part (b) then follows from part (a) and the fact that . (tmf A A1) is bounded below.

Part (c) follows from parts (a)—(b) and the fact that A® is invertible in 74 (E gGZ“). O

Figures 18 to 20 represent the HFPSS for £ éGZ“ ANAq[10]and E g,GZ“ A A1[01] from the
E;—term on. Each black dot e represents a class generating a group F4 which survives
to the Eqo—term. Each circle o represent a class which either is hit by a differential or
supports a differential higher than ds. We only represent the differentials on generators
listed in Proposition 5.3.11 but not those generated by k—linearity.

Figures 21 to 23 represent the HFPSS for £ éGZ‘L AA1[00] and E g,GZ“ A Aq[11] from the
E;—term on. Each black dot e represents a class generating a group 4 which survives
to the Eqo—term. Each circle o represent a class which either is hit by a differential or
supports a differential higher than ds. We only represent the differentials on generators
listed in Proposition 5.3.11 but not those generated by k—linearity.
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