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In the spring of 2013, MIT ran an E -theory conjectures seminar, wherein we posed questions about E -theory and
then did our best to answer them. Since there are a lot of questions and a lot of people seem to want to know things
about E -theory, it seems fruitful to record some of these questions for future reference. Participants in the seminar
include: Nat Stapleton (organizer), Tobi Barthel, Saul Glasman, Rune Haugseng, Aaron Mazel-Gee, Kyle Ormsby,
Tomer Schlank, Vesna Stojanoska, Sebastian Thyssen, and myself, with guest appearances by many others.

I should immediately take responsibility for any nonsense that’s made its way into these notes. Of course,
conjectures are conjectures and if there were better reasons for them to true than wishful thinking, then they’d be
theorems — but many poor transcriptions (mistakes, misrepresentations, typos, etc.) of otherwise great talks can
be squarely blamed on me.
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1. FEBRUARY 5TH: WELCOME AND INTRODUCTION (NAT STAPLETON, ADDENDA BY ERIC PETERSON)

Before embarking on the bulk of the seminar, Nat gave a welcome talk which described some appearances of
p-divisible groups in algebraic topology and furthermore outlined how he hoped the semester would unfold. It
makes sense to add two more things to the notes from that talk:

• Some words about what Morava E -theory itself is, for the benefit of relative newcomers.
• The basic definitions of some other terms which were oft-repeated later in the semester.

This section is thus meant more as a reference, and is accordingly offset from the rest of the notes.

1.1. Some constructions. Morava E -theory enters the stage of algebraic topology via chromatic homotopy theory,
the main thesis of which is that complex bordism can be thought of as a functor

Spectra
M U∗−−→QCoh(Mfg)

valued in quasicoherent sheaves over the moduli stack of 1-dimensional, commutative formal Lie groups. Many
of the theorems in chromatic homotopy theory assert that this functor is “not too lossy” in a variety of different
senses, and because of those results we can often lift structural facts about QCoh(Mfg) to structural facts about the
category Spectra.

One useful such structural fact is that the geometric points of the p-primary component ofMfg can be enumer-
ated — they are each uniquely characterized by an integer invariant called the height, and every positive integer can
be so realized. The height n of a formal group G over a field k of positive characteristic p can be defined via the
rank of its p-torsion:

dimk OG[p] = pn .

We would like to produce a similar fact in algebraic topology, and there are many ways of going about this. Our
first approach will be to use the Landweber exact functor theorem, which asserts that any flat map Spec R→Mfg

can be lifted to a map M U → A of ring spectra, where A is a 2-periodic ring spectrum whose homotopy satisfies
A0 = R. The value of A-homology on a space X is given by

A∗X =M U∗X ⊗M U∗
A∗.

However, we cannot apply this theorem to our situation directly, as the inclusion of a geometric point is rarely
expected to be a flat map of stacks. We can instead replace it by its formal neighborhood in Mfg, which we do
expect to be flat, though a priori there’s no reason to expect this deformation space to be represented by a scheme.
Theorems of Lubin and Tate tell us that this works out; given a formal groupG as above, they calculate that...

• Ext0(G,Ĝa) = 0, meaning the formal neighborhood ofG can be realized as a space rather than a stack.
• Ext2(G,Ĝa) = 0, meaning the pointG is smooth, so the deformation space is given by a power series ring.
• dimk Ext1(G,Ĝa) = n− 1, meaning the power series ring is (n− 1)-dimensional.

In all, this gives that the inclusion of the infinitesimal neighborhood ofG intoMfg can be described as

LTn := SpfW(k)¹u1, . . . , un−1º→Mfg,

which is necessarily flat and so begets a ring spectrum E(G) by Landweber’s theorem. Generally, whenG is a formal
group of height n, this spectrum is referred to as En , or “the nth Morava E -theory,” without explicit reference to
G. Moreover, once En has been realized as a ring spectrum, we can produce a ring spectrum realizing the geometric
point itself by considering the quotient

En/〈un−1, un−2, . . . , u1, p〉=: K(n),

called “the nth periodic Morava K -theory.” This quotient realizes the inclusion of the geometric point into its
formal neighborhood.

We can do slightly better with a second, more opaque construction. The submoduli M≥n
fg

of formal groups

of height at least n gives a closed substack of Mfg, and its open complement M<n
fg

satisfies the hypotheses of

Landweber’s theorem. This yields another cohomology theory E(n), called a “Johnson–Wilson spectrum”, which
has the coefficient ring E(n)∗ = Z(p)[v1, . . . , vn−1, v±n ] with degrees |vi | = 2(p i − 1). The Bousfield localization of
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E(n) with respect to the Morava K -theory K(n) above is specified by the following formula (which is valid for any
LK(n)X , where X is an E(n)-local spectrum):

LK(n)E(n) = limI [M
0(I )∧ E(n)] = limI E(n)/〈p I0 , . . . , v In−1

n−1〉.

Here I is a multi-index I = (I0, . . . , In−1) of positive integers, and M 0(I ) is the associated generalized Moore spectrum.
This spectrum M 0(I ) is known not to always exist, but it does exist for a cofinal subset of the possible values of I .
This formula has the expected action on homotopy groups, and this can be seen to guarantee a map LK(n)E(n)→ En

whose action on coefficient rings is given by vi 7→ ui ·u p i−1, where u is a periodicity element inπ−2En . This further
indicates that the spectrum En splits multiplicatively as a wedge of suspensions of LK(n)E(n) — i.e., they contain
identical information.

The benefit to this second approach is that the formula for K(n)-localization realizes topologically the profinite
topology on LTn . This is especially important in the setting of Morava E -homology — for instance, it is a theorem
that a spectrum X satisfies K(n)∗X = 0 if and only if it also satisfies E∗nX = 0. In terms of the Bousfield lattice, this
means that the cohomological Bousfield classes of En and K(n) are the same. This is as you would expect — a formal
neighborhood of a smooth point hardly contains more information than the point itself. However, the homological
Bousfield class of the Morava E -theory spectrum is identical to that of the Johnson–Wilson E(n), which in turn is
identical to the wedge K(0)∨ · · · ∨K(n), indicating that something has gone awry. This problem is fixed when we
consider the K -theoretic localization: if we define “continuous Morava E -theory” by the formula

E∨n (X ) :=π∗LK(n)(En ∧X ) =π∗limI (En/〈p
I0 , . . . , u In−1

n−1〉 ∧X ),

then the acyclics of E∨n and K(n)∗ coincide. This alternative functor has a variety of nice properties, but it is not a
homology functor — it is not guaranteed to carry infinite wedges to infinite sums.

Finally, and most opaquely, there is the obstruction theory of Goerss–Hopkins–Miller, which gives a third con-
struction of the spectrum En . This is very complicated and technical, and it carries us far afield from our concerns
for the rest of these notes, but there is substantial payoff. Their construction produces En as an E∞ ring spectrum,
meaning that Morava E -theory comes equipped with a theory of power operations and a well-behaved category of
module spectra. Moreover, they show that the E∞-automorphisms of En are exactly given by the Morava stabilizer
group Sn , which is the automorphism group of the underlying formal group G. This gives a theory of fixed point
spectra, some of which are known to be particularly interesting:

E hSn
n = LK(n)S

0, E hC2
1 =KO∧2 , E hG24

2 = LK(2)TMF,

where G24 is a maximal subgroup of finite order (which is 24) in S2.

1.2. Height modulation and p-divisible groups. One of the basic phenomena of interest this semester is the
interplay between different chromatic heights. The theory of p-divisible groups, also called Barsotti–Tate groups,
is a robust framework for studying such questions, and so we introduce their language now. A p-divisible group is
a sequence of finite, flat group schemes denotedG[p j ], satisfying the following properties:

• There is an exact sequence 0→G[p j ]→G[p j+k]→G[pk] for each j and k.
• Denote the colimit of the above inclusions by G[p∞]. The map p : G[p∞]→ G[p∞] is an epimorphism

of group schemes.
Two important points immediately arise: first, every R-point in a p-divisible group G[p∞] for R a finite ring over
the base is p j -torsion for some large j . This is important, and unfortunately it is not captured by the name. Second,
every p-complete formal group gives rise to a p-divisible group byG 7→G[p∞]. Generally, every p-divisible group
comes equipped with a short exact sequence

0→G[p∞]for→G[p
∞]→G[p∞]et→ 0,

where the cokernel is an étale group scheme and the kernel is the p-divisible group of a formal group.
We define the height of a p-divisible group by the rank of OG[p] as before. These p-divisible groups are exception-

ally well-behaved with respect to height: by defining the pullback f ∗G[p∞] of a p-divisible group as the pulled-back
system { f ∗G[p j ]}, we see that the height of a p-divisible group is constant under base change. This is not true of
formal groups. Moreover, the short exact sequence behaves well with respect to height:

htG[p∞] = htG[p∞]for+htG[p∞]et.
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In particular, this means that while a pullback of a formal group may drop in height, the height of the associated
p-divisible group is merely shifted into the étale component.

Finally, we can produce these objects inside of algebraic topology. The p-adic circle can be described as the
colimit of the groups Z/p j , each of which sits inside the circle as its p j -torsion. Taking classifying spaces, this
shows that the space CP∞ = BS1 can be expressed p-adically as the colimit of the spaces BZ/p j . One can produce
the following calculation using a Gysin sequence:

GEn
[p j ] := Spec E∗BZ/p j ∼= (Spf E∗CP∞)[p j ],

and hence the p-divisible group for Morava E -theory is realized in topology by this sequence of classifying spaces.
Having made this identification, we give three methods for modifying the height of Morava E -theory:
• In the simplest case, the inertia groupoid is an endofunctor of G-Spaces, which for a finite group G is

given by ΛG : X 7→
∐

[g]X
g ranging over conjugacy classes of elements of G. This functor is homotopi-

cally well-behaved, in the sense that it sends wedges to wedges and pushouts to pushouts, and hence any
Borel-equivariant cohomology theory E∗G(−) can be precomposed with the inertia groupoid to give a new
cohomology theory E∗G(ΛG(−)).

In the Borel equivariant setting, we think of the classifying space BZ/p j as a one-point space ∗ acted on by
the group Z/p j . Via these spaces, the algebro-topological construction of a p-divisible group given above
assigns GEn

to Morava E -theory. We can use this to calculate the p-divisible group assigned to E -theory
extended by the inertia groupoid:

Spec E∗
Z/p jΛZ/p j (∗//(Z/p j )) = Spec E∗

Z/p j







∐

g∈Z/p j

∗g







= Spec E∗
�

(EZ/p j ×Z/p j ∗)×Z/p j
�

=GEn
[p j ]⊕Z/p j .

Hence, this construction gives a p-divisible group which is the direct sum of the original p-divisible group
and the constant p-divisible groupQp/Zp .

Question 1. How can we use this p-divisible group to learn new information regarding En? There is real
potential here, Stapleton has already used this to provide an algebro-geometric description of the E -theory
of certain centralizers of commuting tuples of elements in symmetric groups.

• More generally, if X is a topological stack with finite inertia groups, then we use the internal hom of
topological stacks to give an alternative definition of the inertia groupoid:

Λ(X ) = hom(∗//Z,X ).

These are the “stacky constant loops” on X , and the stack ∗//Z representing the constant loops receives a
quotient map from the stack representing all loops R//Z → ∗//Z.1 This carries an evident action of the
circle group S1, and taking the homotopy S1-orbits yields the “twist construction”:

E∗TwistG(X ) = E∗|hom(R//Z,X )|hS1 .

In reality we use a p-adic version of this construction. Theee is also an explicit model for these objects,
which one can use to calculate the p-divisible group associated to this object:

GE∗n◦Twist =GEBS1

n
⊕Zp
Qp .

Hence, this construction gives a p-divisible group with a height 1 étale part, but this time the extension is
nontrivial.I don’t really understand the twist construction. It would be nice to say something more.
• A more obvious way to study the interaction of two chromatic heights is to put them both in the same

expression, and one way to do so is to study the spectrum LK(t )En . The homotopy of this ring spectrum
has been calculated to be

π0LK(t )En =W(k)¹u1, . . . , un−1º[u
−1
t ]
∧
〈p,u1,...,ut−1〉

.

1It’s worth pointing out that this is not an equivalence of topological stacks. A G-equivariant equivalence X → Y induces an equivalence of
topological stacks X //G→ Y //G only if the inverse map can also be made to be equivariant. This is not the case for ∗→R.

4



The formal group law associated to LK(t )En is given by pulling back the formal group law over En , so has
height t — though the p-divisible group given by pullback has height n, and hence étale height n − t .
Moreover, this difference can be detected in algebraic topology by the following pair of formulas:

(GLK(t )En
)for[p

j ] = Spfπ0(LK(t )En)
Σ∞+ BZ/p j

,

GLK(t )En
[p j ] = Spfπ0LK(t )

�

E
Σ∞+ BZ/p j

n

�

.

Nat’s theory of transchromatic characters (and, in specific cases, the characters of Hopkins–Kuhn–Ravenel and of
Chern) seeks to interrelate these constructions.

1.3. E -theory and the algebraic geometry of spaces. A recurring theme in the study of Morava E -theory is that
its value on spaces X with extra structures is often most easily understood by considering the affine formal scheme
Spf E∗nX . For instance, this is how we understood the p-divisible group given above. What follows is a field guide
to other spaces with algebro-geometric interpretations:

Space X Formal scheme XEn
= Spf E∗nX

point LTn
CP∞ GEn

, a versal deformation of a formal group
BZ/m GEn

[m]
K(Z/m, q) Altq (GEn

[m])
BA∗, A abelian Hom(A,GEn

)
BU (m) Div+m(GEn

)
BU ×Z Div(GEn

)
BΣm Subm(GEn

), modulo the transfer ideal
...

...

The essential thing to note is that all of the cohomology rings of these spaces come with extra operations, classically
expressed through enormous intertwining formulas, and the act of taking the formal spectrum swallows two of the
available operations: the ring sum and product. We will expand this list as the seminar progresses.

1.4. Definition of the Picard group. Another recurring point of our discussions is the Picard group of the K(n)-
local stable category. Given an arbitrary symmetric monoidal (∞-)category, we can define three related objects:

(1) An object X is said to be invertible when there is some other object Y with X ⊗Y ∼= I, I the unit object.
The collection of isomorphism classes of invertible objects forms a group Pic, called the Picard group.

(2) We can also consider the full (∞-)subcategory generated by the invertible objects.
(3) We can finally consider the further (∞-)subcategory given by restricting to only the invertible morphisms,

called Pic.
The category Pic has the property that π0Pic recovers the definition of Pic above as a group. This is recorded by
fiber sequence ΣGL1I→ Pic→ Pic.

Most commonly, we will be interested in the Picard groups of the stable homotopy category, of the K(n)-local
stable homotopy category, and of various categories of modules. The Picard group of the stable homotopy category
is Z, represented by the spheres — there are no further elements. The Picard group Picn of the K(n)-local stable
category is much more complicated: up to a factor of Z/|vn |, it is a profinite- p-group. Because Morava K -theory is
a monoidal functor, it sends invertible spectra to Pic(LinesK∗

), i.e., 1-dimensional vector spaces over K∗. A result of
Hovey-Strickland shows that E -theory behaves monoidally when restricted to K(n)-locally invertible spectra, i.e.,
E∨n X is a 1-dimensional (En)∗-module. Together with the action of the stabilizer group Sn , E∨n X is referred to as the
“Morava module of X ”. The collection of Morava modules is denoted Picalg

n , and much of the effort put into this
area of study is meant to name properties of the map

Picn

E∨n−→ Picalg
n .

For instance:
• When this map injective? When is it surjective?
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• What can be said about the finiteness of its source, target, or kernel?
• And so on...

6



The remainder of this document contains talk notes individual sessions of the seminar.

2. FEBRUARY 12TH: HEIGHT AMPLIFICATION AS AN ADJUNCTION (NAT STAPLETON)

Let’s begin by discussing a few more questions related to the last talk and then jump into some character theory.
One might try to understand what power operations are for E -theory composed with the inertia groupoid.

Charles Rezk and Yi Fei have computed the total power operation E2 → E2BΣp → E2BΣp/It r at the primes
p = 2 and p = 3, using an explicit model for E2 as an elliptic spectrum. Given these preexisting calculations, it
would be interesting to try to compute what happens to the total power operation in the case of p-adic K -theory
composed with the inertia groupoid: K∧pΛG(−)hG — where we can begin to come to grips with the general situation.
Similarly, we could ask about the case of rational cohomology composed with the inertia groupoid HQ∗(ΛG(−)hG)
and how it is related to K∧p , or about rational cohomology composed with the 2-fold inertia groupoid, which may

involve some relationship between HQ∗(Λ2
G(−)hG) and E2. It would be great to complete these calculations and try

to understand the relationship between them and Rezk and Yi Fei’s calculations.
There is a concrete way to compare cohomology theories of different heights. We can compare En and LK(t )En

for t < n by using character theory. However, the character maps do not quite land in LK(t )En . One must extend
the coefficients by an LK(t )E

0
n -algebra called Ct . We construct a new cohomology theory

C 0
t (X ) :=Ct ⊗LK(t )E

0
n

LK(t )E
0
n(X ).

The ring Ct is constructed to have the property that it is the initial LK(t )E
0
n -algebra equipped with a chosen isomor-

phism Ct ⊗GE[p
∞]∼= (Ct ⊗GLK(t )E

[p∞])⊕Qp/Z×n−t
p . Already this ring stands to support interesting geometry:

Question 2 (Haynes Miller). How does the stabilizer group Sn act on Ct ?

Question 3. Does going down one height have a relationship to the determinant representation?

Idea 4. What happens at n = 1, t = 0? We can at least compute the ring then: it’s C0 = colimQp (ζpk ).

With the intention of comparing these cohomology theories, Nat has constructed a map

EnXhG
Φt−→Ct ⊗Lt

LK(t )EnΛ
n−1
G (X )hG =: CtΛ

n−t
G (X )hG .

This map generalizes the character map of Hopkins-Kuhn-Ravenel, which essentially handles the case t = 0, and
this in turn generalizes the ( p-adic) Chern character, which handles the case of t = 0 and also n = 1. This is a good
time to mention another question Haynes has asked:

Question 5 (Haynes Miller). Is this in some sense the unit of an adjunction? It ought to look something like
�

height n
stuff

� �

height t
stuff

�−◦Hom(∗//Zn−t ,−)

LK(t ) + extension

The real challenge is to identify what the “stuff” is, so that we can appropriately define these categories.

Idea 6. Height 0 stuff almost certainly ought to be rational spectra.

Idea 7. One could do something like the definition of elliptic spectrum, which is a category of spectra paired with
elliptic curves that they model. We could as a first approximation take appropriate spectra paired with p-divisible
groups that they model, along with maps between them relating to homomorphisms among the p-divisible groups.

Idea 8. We could replace “stuff” not with “spectra” but with (excisive?) functors from topological stacks to some
kind of algebraic category — perhaps p-complete modules.

Idea 9. There is definitely such a thing as an extension of a cohomology theory from standard spaces to topological
stacks, which works by defining the cohomology theory on an arbitrary topological stack to be its value on the
geometric realization. We might look to the existing work for ideas about how to approach this. (In some cases,
this is another phrasing of Borel equivariance, I think.)
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Idea 10. It’s possible that fussing with finite groups is holding us back, and we may want to be considering topolog-
ical∞-stacks instead (with∞-groupoids acting). A baby step toward this understanding this would be attempting
to make a construction using crossed modules. If you can do it for 1- and 2-types, then probably you can do it for
∞-groupoids if you’re clever enough.

Motivated by the string of equations

ΛG(∗//G) =
∐

g∈G/∼
BC (g ), ΛG(X //G) = EG×G

∐

g∈G

X g , Λe (X //e) =X ,

we might further ask the question

Question 11. Is there a nice category of spaces over π-finite spaces with fibers finite CW-complexes? In particular,
can we make sense of the inertia groupoid in this category? The main obstacle to accomplishing this seems to be to
define the internal hom-space appropriately.

3. FEBRUARY 25TH: POWER OPERATIONS AND THE BOUSFIELD-KUHN FUNCTOR (NAT STAPLETON)

Let’s talk about the relationship between power operations, the Bousfield-Kuhn functor, and the character maps.
Beginning with a cohomology class X → En , we can build a map

BΣk ×X
∆−→ EΣk ×Σk

X k → (EΣk )+ ∧Σk
E∧k

n

µ
−→ En .

As X varies, this composite is called the total power operation,

Pk : EnX → En(BΣk ×X ) ≈←− EnBΣk ⊗ EnX .

As ever, we’ll want to stick to the one case we understand: p-adic (2-adic, even) K -theory. Since Σ2 ' Z/2, and
we have easy algebro-geometric descriptions of K∧2 BZ/2, we should be interested in the power operation

P2 : K∧2 X →K∧2 BΣ2⊗Z2
K∧2 X ∼=K∧2 BZ/2⊗Z2

K∧2 X .

Specifically, the algebro-geometric description of K∧2 BZ/2 states K∧2 BΣ2
∼= K∧2 BZ/2 = K∧2 ¹xº/(2x + x2) — and

caveat lector: we are working with a nonstandard presentation of K∧2 BΣ2, stemming not from representation the-
ory but from formal group theory, which is why this quotient doesn’t look quite like you might expect. The
isomorphism between the two presentations is given by Z2[s]/(s

2 − 1)→ Z2[x]/(2x + x2) by s 7→ x + 1, which
means that x corresponds to the normalized sign representation. That aside, one then computes that the action of
P2 is given by

P2(x) = (σ
2(x)+λ2(x))+λ2(x)s .

Our program for understand the total power operations works through the Bousfield-Kuhn functor, which is a
map Φt : Spaces→ Spectra which factors LK(t ) through Ω∞:

Spectra SpectraK(t )

Spaces.

Ω∞

LK(t )

Φt

The total power operation can be thought of as a map Pk :Ω∞EX
n →Ω

∞EBΣk×X
n , which does not come from a map

of spectra, since it’s not additive. Nonetheless, it is some map of spaces and so we are free to apply Φt , yielding a
map Φt Pk : LK(t )E

X
n → LK(t )E

BΣk×X
n . Since this is a map of spectra, it is additive. Setting X = ∗, Charles Rezk has

shown in unpublished work that the composite

LK(t )E
X
n → LK(t )E

BΣk
n → (LK(t )En)

BΣk

is null!
Let’s try to work this through our favorite example of 2-adic K -theory, where we set t = 0 and aim to compute

Φ0P2 :Q2→Q2[s]/(2s + s2). We find

Φ0P2(n) =
−1

2
(σ2(n)−λ2(n))s =

−1

2
ψ2(n)s =

1

2
ns ,
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up to a lot of sign mistakes. This map is additive and multiplicative, as expected, but it’s not a ring map since it
doesn’t send 1 to 1. This is actually OK, as the target splits as a product of rings, begetting projection-like maps of
this type.

The next piece of this puzzle involves transfers from subgroups. For a subgroup H ⊆G, we can draw a commut-
ing square:

EnBH
∏

[β]∈[Zn−t
p ,H ]/∼Ct BC (imβ)

EnBG
∏

[α]∈[Zn−t
p ,G]/∼Ct BC (imα),

ϕn−t
H

TrG
H

ϕn−t
G

intertwining the character map with the transfer maps. This even comes with the formula

ϕn−t
G TrEn

(x) =
∑

[g H ]∈(G/H )imα/C (imα)

TrCt
|CG (imα)
g−1CH (im gαg−1)g

ϕn−t
H [gαg−1](x).

Rather than ponder this, we immediately revert to our example, taking e ⊂Σ2 for our choice of H ⊂G:

K∧2 Q2

K∧2 BΣ2 Q2[s]/s ×Q2[s]/(2+ s),

ϕn−t
H

TrG
H

ϕn−t
G

and we find that the corner-to-corner composite is 1× 0. Moreover, one computes

2−1P2 :Q2→Q2[s]/(2s + s2)∼=Q2[s]/s ×Q2[s]/(2+ s),

and the formula is (2−1P2)(n) = (σ
2n + λ2n,σ2n − λ2n). Projecting onto the second factor, including it back into

the ring, and passing back along the isomorphism recovers the 1× 0 formula above!
So, we formulate a conjecture:

Conjecture 12. Consider the following diagram:

En EnBΣpk (EnBΣpk )/It r

∏

Ct BC (imα)
∏

Ct BC (imα)/I [α]t r

∏

α
It r [α]=0

Ct BC (imα).

Ppk

ϕn−t
Σ

pk
ϕn−t
Σ

pk

project
include

We conjecture that the two composites landing in the bottom-left corner are both Φt Ppk . (Several checks reveal them to
have the same formal properties.)

We closed with some discussion of what value basepoints brought to the internal hom-space construction under
discussion at the beginning of the session.

4. MARCH 5TH: SPECTRAL TANGENT SPACE AND DETERMINANTAL K -THEORY (ERIC PETERSON)

Here in the Morava E -theory seminar, we’re really interested in studying Morava E -theory and what this functor
is telling us about the entire stable category. The theory of Bousfield localization informs us immediately that we
aren’t really learning about the stable category when we do so, but rather about the full subcategory of K(n)-local
objects.
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Spectra SpectraK VectorSpacesK∗

K∗

LK K∗

For that matter (and for this reason), I’m really going to talk about Morava K -theory in this talk, though of course
much of what I’ll say can be lifted to E -theory without so much hassle. One thing that we know about Morava
K -theory that we don’t have for Morava E -theory is that it’s a monoidal functor. Namely, there are monoidal
structures on each of these categories (the smash product, the localized smash product, and the tensor product
respectively) such that each rightward-facing functor is monoidal. So, if this is the diagram and the categories we
care about, studying monoidal invariants of these categories is a sane thing to do, since the functors involve preserve
this structure.

One invariant we can form is the Picard category, defined in the introduction as the full subcategory of monoidally-
invertible objects, the luff subcategory of that with all invertible morphisms, or the Picard group of isomorphism
classes of just the objects. This extends our diagram above like so:

Spectra SpectraK VectorSpacesK∗

Pic Picn LinesK∗
.

K∗

LK K∗

The Picard category of VectorSpacesK∗
is the subcategory of 1-dimensional vector spaces LinesK∗

. The Picard group
of the category Spectra is isomorphic to Z, containing all the stable spheres Sn , −∞ < n < ∞. Both of these
are expected answers — what’s unexpected is that the Picard group of SpectraK is, up to a direct product factor of
Z/|vn |, a profinite- p-group. This is a really curious fact, and it’s essentially the only qualitative thing that’s known
about these groups in general. They’ve been completed in a few cases (n = 1 and p ≥ 2, or n = 2 and p ≥ 3, and
otherwise not at all), but they appear to be connected to all kinds of interesting K(n)-local phenomena, so we’re
really interested in finding out more about them.

4.1. An example. It’s reasonably easy to show that the map Pic → Picn is an inclusion, and so Picn is even an
infinite profinite- p-group. In particular, this means that it must contain elements beyond just the standard stable
spheres Sn , which is exactly where the mystery above lies — what are these new elements? There’s one family of
elements that’s easy to construct, so let’s start with those to build intuition. This family arises from understanding
the following family of cofiber sequences:

· · · S−1 S−1 · · · S−1

· · · S−1 S−1 · · · p−1S−1

· · · M 0(p j ) M 0(p j+1) · · · M 0(p∞).

p j p j+1

p p p

Each of these vertical sequences is the cofiber sequence defining a Moore spectra with top cell in dimension 0. They
knit together by the horizontal maps shown, and a theorem about homotopy colimits says that if I take the colimit
of each row individually, what I get on the far right is again a cofiber sequence. The top row is a sequence of identity
maps, so its colimit is unchanged; the middle row is given by a sequence of multiplication-by- p maps, so its colimit
is the spectrum S−1 with p inverted; and the bottom row doesn’t have a good name yet, so we replace j with ∞
in the notation. Next, I want to study the K -local homotopy type of the inhabitants of this new cofiber sequence,
specifically the middle term. Since K∗ is of characteristic p, we know that multiplication by p is 0 on K -homology,
but simultaneously we’ve constructed p−1S−1 so that multiplication by p is an invertible map — hence, p−1S−1
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must be K -acyclic. In turn, this means that the going-around map M 0(p∞)→ S0 must be a K -local equivalence, and
so we’ve identified M 0(p∞) as an invertible spectrum — just not a very interesting one.

Here’s a different way we could have proven this. A crucial theorem of Hopkins, Mahowald, and Sadofsky asserts
that the right-hand square in the earlier diagram is a pullback — i.e., your favorite spectrum X is K -locally invertible
exactly when its value under K∗ lifts to LinesK∗

, or dimK∗X = 1. So, if we can calculate dimK∗M
0(p∞), we’ll be

able to check that it’s an invertible spectrum. This is easy enough to do: each of K∗M
0(p j ) is a 2-dimensional graded

K∗-vector space, with one generator in degree 0 and another in degree −1. The description of these spectra and the
maps between them in terms of cofiber sequence tells us the action of the map K∗M

0(p j )→ K∗M
0(p j+1): it is an

isomorphism on the top cell and multiplication by p — i.e., zero — on the bottom cell. Passing to the colimit, only
the top cell survives and we see that M 0(p∞) is invertible using this detection theorem.

The apparent downside to this other method is that it does not identify the homotopy type of M 0(p∞), and
we remain blissfully unaware that we’ve discovered the most trivial example of an invertible spectrum. On the
other hand, it also suggests how to produce more examples of invertible spectra: modify the sequence by inserting
maps which induce isomorphisms on K∗-homology. Each spectrum M 0(p j ) is said to be “type 1”, meaning that
it supports a map vN

1 : M 0(p j ) → M−N |v1|(p j ) which on K(1)-homology induces multiplication by vN
1 for some

N � 0. With an auxiliary computation, one shows that N can be taken to be N = p j−1. With these maps in hand,
select your favorite p-adic integer a∞ ∈ Zp , with its digital expansion a∞ =

∑∞
j=0 c j p j . We associate a∞ to the

following sequence, given by interleaving the maps v p j−1

1 alongside the horizontal maps from before:

· · · →M−|v1|a j−1(p j )→M−|v1|a j−1(p j+1)
v

c j p j

1−−→M−|v1|a j (p j+1)→ ·· · → S−|v1a∞ .

Hopkins, Mahowald, and Sadofsky show that this assignment a∞ 7→ S−|v1|a∞ determines an injection Zp → Pic1,
and moreover that when p ≥ 3 the cosets of its image are represented by S1, . . . ,S|v1|. So, for Pic1, there is essentially
nothing but the standard spheres and some kind of p-adic completion interpolating among them.

4.2. Spectral tangent spaces. Unfortunately, this is essentially the only general family of Picard elements we’re
aware of, and so the examples just about stop here — there’s one other reliable family, called the determinantal
spheres, which we’ll come to in just a moment. In the meantime, this exploration has at least told us what to look
for: if we want to find natural sources of elements of the K -local Picard group, we should look for natural sources of
K∗-lines. One way I know to produce a K∗-line is to look at the tangent space at a smooth point of a 1-dimensional
variety — and in fact, we sort of have examples of such things in homotopy theory. Namely, the spectrum CP∞ has
cohomology K∗CP∞ = K∗¹xº, which chromatic homotopy theory (and formal geometry) teaches us to think of
in analogy to a 1-dimensional formal variety. So, we could hope for a diagram of the following shape:

{certain spectra} Picn

�

1-dimensional
pointed varieties

�

LinesK∗
.

Tx

K∗ K∗

Tx

The missing piece of this diagram is the top arrow — some kind of spectral construction of the tangent space. I’ve
constructed such an arrow, and I’d like to describe it to you, but first let’s recall the definition of cotangent space
from algebraic geometry: a pointed affine K∗-variety is a K∗-algebra map x : A → K∗. Its kernel is an ideal I ,
which receives a multiplication map I ⊗A I → I . The cokernel of this map is the definition of the cotangent space:
T ∗x A := I/I 2. It turns out that we can basically make this construction again with spectra, but for technical reasons
we have to work with coalgebras rather than with algebras. Namely, we have the following diagram for a pointed
coalgebra spectrum C :

C M M�C M

S TηC .

∆

η
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Let me explain. The pointing of the coalgebra spectrum is exact a map η : S → C . Then, M is the cofiber of η.
What’s more is that M is a C -comodule spectrum, and it carries a comultiplication map M → M�C M . We define
TηC to be the fiber of this last map.

This construction has dubious properties in general, but everything turns out to work just great in the one case
we care about:

Theorem 13 (Peterson). When C is a strict, pointed coalgebra spectrum such that SpfK∗C ∼= Âm for some m, the
following hold:

(1) The Cotor spectral sequence

E∗,∗2 =Cotor∗,∗K∗C
(K∗M ,K∗M )⇒K∗(M�C M )

is concentrated in Cotor-degree 0, collapses at E2, and converges strongly without invisible extensions.
(2) Hence, there is an isomorphism K∗TηC ∼= (T ∗η K∗C )∨.
(3) When m = 1, we furthermore find an invertible spectrum TηC ∈ Picn .

Idea 14 (Saul). These hypotheses can certainly be weakened from a strict coalgebra spectrum to instead some kind
of coherently co-associative comultiplication for which a cobar construction still exists. On the other hand, all
known examples are strict, so there’s no apparent need for the extra technology.

Now that we have this machine, let me feed it some example spectra. The first and foremost example is Σ∞+CP∞,
where one can compute

T+Σ
∞
+CP∞ ' S2.

This isn’t super interesting though — we did all this work to discover new examples of invertible spectra, and we’ve
wound up with just the 2-sphere again. To get something more interesting, we turn to a computation of Ravenel
and Wilson, which states

SpfK∗HZ/p∞q
∼= Â(

n−1
q−1).

There are two binomial coefficients which give 1: we can pick q = 1, which is actually the case Σ∞+CP∞ all over
again, or we can pick q = n. For this second choice, we find something interesting indeed — I’m going to jump
ahead and say some words I haven’t said before, but if you hold on just a moment I’ll go back to the main thread
of things. First, LinesK∗

has only one isomorphism type, so is not very good at distinguishing invertible spectra.
Luckily, there is a factorization Picn→ LinesK∗

of the form

Picn
K−→QCohSn

(LTn)
special fiber
−−−−−−−→ LinesK∗

,

where QCohSn
(LTn) is a category of quasicoherent sheaves on Lubin-Tate space, equivariant against the action of

the Morava stabilizer group Sn — whatever all those things are. Its main feature for us is that it has more than one
isomorphism type in it. Hopf ring calculations allow us to identify the image of our new invertible spectrum in
this middle category:

K (Σ∞+ HZ/p∞n)
∼=Ωn−1

LTn/Zp
,

i.e., it is “the determinantal bundle.” This both identifies it as unable to be merely a standard sphere and also gives
it its name: the determinantal sphere.

4.3. Determinantal K -theory and horizons. OK, back to the main story. This is already neat enough, as we’ve
accomplished our main goal, but this is a conjectures seminar, so we’re going to push a bit further. The first thing
to notice is that the diagram defining the tangent spectrum can be extended to the right:

C M M�C M M�C 3 · · ·

S TηC A2 A3 · · · ,

∆

η β
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where each of these spectra on the bottom is defined as the fiber of the map above it. Another theorem identifies
their K -local homotopy type: Aj ' (A1)

∧ j . In the case of CP∞, we can make sense of this: the “filtration quotients”
of this tower take the form S0, S2, S4, S6, . . . — that is, we’re picking up the cellular decomposition of CP∞. On the
other hand, we can also plug HZ/p∞n in, and we recover a similar decomposition of it into smash-powers of the
determinantal sphere. This is pretty neat: the classical cell structure of HZ/p∞n is horrendously complicated, but
if we expand our view of “cell complex” just a slight bit, it becomes as simple as that of CP∞.

Question 15. What other spectra can be efficiently decomposed K -locally using attaching maps along exotic ele-
ments of the K -local Picard group?

While we’re in the neighborhood of CP∞, we may as well take a look around and see what other spaces and
spectra near it we can also find near HZ/p∞n — after all, we’ve already found its cell structure laying around.
Looking back up at the extended tower diagram, you’ll see that I quietly labeled the map β : TηC → M . This is
by analogy to the case of C = Σ∞+CP∞, where β coincides with the inclusion CP1 → CP∞, i.e., the Bott element
of the homotopy of CP∞. A theorem of Snaith says that this is enough to recover complex K -theory: there is an
equivalence of ring spectra KU 'Σ∞+CP∞[β−1]. Correspondingly, we can form a spectrum I’ll call “determinantal
K -theory”:

Rn :=Σ∞+ HZ/p∞n[β
−1].

This spectrum has some truly remarkable properties. Firstly, there is the following beautiful theorem of Craig
Westerland:

Theorem 16 (Westerland). There is an equivalence Rn ' E hSSn
n . Here SSn is the subgroup of “special” elements of the

Morava stabilizer group, i.e., the kernel of the map det : Sn → Z×p given by considering Sn ⊆ GLn(Zp ) as the group of
units of a certain noncommutative n-dimensional algebra. (This spectrum sometimes goes by the name of “(Mahowald’s)
half the K-local sphere”.)

Craig also shows a variety of properties of Rn . For instance, BU can be recovered from KU by the formula
BU = Ω∞KU 〈1〉, and we can similarly define a space Wn = Ω

∞Rn〈1〉. There is a morphism Jn : Wn → BGL1S0

generalizing the complex J -homomorphism J : BU → BGL1S0, and hence a theory of determinantal Thom spectra.
In particular, we can build a Thom spectrum Xn = Thom(Jn) in analogy to M U = Thom(J ), and Rn carries the
same universal property as KU : it is the initial Xn -oriented ring spectrum whose associated formal group (via the
Xn -orientation) is multiplicative. And the list goes on from there.

This is all really fascinating, but because it’s done by algebraic analogy, there’s a lot missing from the picture.
Most glaringly, geometry is utterly absent from the picture — here I mean the sort with vector bundles and Lie
groups, not any silly formal geometry. Indeed, it turns out that analogues of the spaces ΩSU (m) (which filter
ΩSU ' BU ) are easy to construct, but analogues of BU (m) are not yet known.

Conjecture 17. There is an analogous notion of “vector bundle” which is classified by analogs of the spaces BU (m). The
come with associated spherical bundles, which are fibered in determinantal spheres.

Here’s another place where this filtration might be coming from: the space CP∞ can be realized differently as
the classifying space BU (1). I haven’t mentioned it yet, but this program also goes through for BO(1) if we use
K(∞) = HF2 as our homology theory. The tangent space of BU (1) was calculated to be S2, and the tangent space
of BO(1) can be calculated to be (2-adic) S1 — and it’s perhaps no accident that S2 =ΣU (1) and S1 =ΣO(1). Spaces
of the form BG come to us as simplicial objects, and so inherit a skeletal filtration, whose filtration quotients look
exactly like (shifts of) the filtration quotients we’ve come up with. In our situation, this lets us guess at what “G(1)”
should be:

Conjecture 18. There is an A∞ multiplication on G(1) = Σ−1T+Σ
∞
+ HZ/p∞n . Moreover, this suspension spectrum is

realized as BG(1).

Idea 19. Actually, Craig and I seem to have mostly sorted out this positively. Specifically, Σ−1TηC can also be
written as CotorC (S,S), which Koszul duality tells us carries the structure of an A∞-algebra. There is a natural map
comparing B CotorC (S,S) and C itself, arising from the co/unit of an adjunction, and this can be checked to be
nonvanishing on the algebraic tangent space, so a K -local isomorphism.
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As a closing remark, Craig’s paper on this contains several more conjectures and questions connecting it to a
great many things, including certain questions in algebraic K -theory. The hungry reader should look for more
things there.

5. MARCH 12TH: ORIENTATIONS OF DERIVED p-DIVISIBLE GROUPS ( JACOB LURIE)

In this talk we’re going to concern ourselves with derived algebraic geometry, so let’s start by fixing a base E∞-
ring A. A derived p-divisible group over A of height n is a functor G from commutative E∞-algebras over A to
topological abelian groups, satisfying the following conditions:

(1) G[pk] : E∞-AlgebrasA → Spaces is corepresentable by a functor of rank pnk , i.e., there is an E∞-algebra
OK
∼=A×(nk) and a natural equivalenceG[pk](B)∼=HomA(OK ,B).

(2) The group is entirely p-torsion: G= colimkG[pk].
(3) The map p : G→ G is an fppf surjection. (It’s sometimes useful to take this to be fpqc or even something

else entirely. That’s fine.)
The example of a p-divisible group we’ve been studying all along is called the canonical p-divisible group, written
Gcan. In symbols, it is specified by

Gcan[p
k] =Hom(ABZ/pk

,−).
One way we could generalize this example is to replace Z/pk by a general finite abelian p-group H , yielding the
more general formula Hom(ABH ,−)'Hom(H ∗,G(−)).

An important point when studying these constructions is that BH has more maps off it than those induced
by homomorphisms — specifically, basepoint nonpreserving maps. Let Cl be the category of spaces which are
homotopy equivalent to BH , where H is a (varying) finite abelian p-group. Then we can compute

HomCl(BH ,BH ′) =HomAb (H , H ′)×BH ′,

where the latter factor picks up the image of the basepoint. We make the following definition to control this
phenomenon:

Definition 20. Let G be a p-divisible group. There is a map ρ0 : (Cl∗)
op → CAlgA determined by the formula

Hom(H ∗,G(B)) =HomCAlgA
(ρ0(BH ),B). A preorientation ofG is a map ρ : Clop→ CAlgA factoring ρ0 as:

(Cl∗)
op CAlgA

Clop.

ρ0

ρ

(Equivalently, preorientations ofG are in bijection with maps BQp/Zp →G(A) of topological abelian groups.)

The group Gcan is equipped with a canonical preorientation — and in fact, if G is any p-divisible group over A,
then preorientations of G biject with the space of maps Hom(Gcan ,G). The goal of introducing p-divisible groups
to algebraic topology is to study transchromatic phenomena, and so we make a definition to fit that into the picture:

Definition 21. Take such a preoriented p-divisible group G over A. We say that G is oriented if for every integer
m the preorienting mapGK(m)

can →GLK(m)A
is a monomorphism with étale quotient.

There is real content in this definition. For instance, that the preorientation corresponding to the identity map
Gcan→Gcan is an orientation is something checked in Nat’s thesis. Other examples of orientations include Ĝm for
KU , without p-completion. There’s also loads of examples of preorientations that are not orientations — the zero
mapGcan→G is never an orientation, and we should think of the orientation condition as a sort of nondegeneracy.

Suppose that we have an oriented p-divisible groupG over A. For a test group T ∈ Cl, we get fromG a finite flat
A-algebra OG(T ) of rank |π1T |n . The inclusion of any point in T begets a map OG(T )→AT via the preorientation
ρ. The case of G = Ĝm encourages us to think of the source as H genuine

H (∗,A) and the target as H Borel
H (∗,A), where

the natural map is an Atiyah-Segal map. The definitions of pre/orientation are meant to enforce the truth of the
Atiyah-Segal theorem — this is another perspective on why we picked exactly the definition we did.2

2Nat: So, the genuine G-spectrum side coincides with the side with nontrivial étale part. Lurie: Yes, and this can be made precise; maybe
we’ll do so shortly.
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We can also useG to produce other things that deserve to be called “Atiyah-Segal maps”.

Definition 22. Still taking G be an oriented p-divisible group over A, let X be a space. We define C ∗G(X ), the
G-twisted cochains on X , by

C ∗G(X ) = lim
T→X
T∈C l

OG(T ).

This definition mixes classical function spectra with the theory of finite groups, since we’re restricting our test
objects to live in Cl. There is a natural map C ∗G(X )→C ∗(X ;A) =AX , which we again think of as a kind of Atiyah-
Segal map. We are interested, of course, in properties of these maps, and Jacob knows about several interesting cases
already.

Theorem 23. Suppose either that X is the p-localization of a finite complex or, if p is invertible in A, that X has finite,
finitely many homotopy groups (called “π-finiteness”). In these cases, the map

B ∧A C ∗G(X )→C ∗GB
(X )

is a homotopy equivalence of B-modules.

This is surprising and exciting! Here is another case of interest:

Theorem 24. If A is K(n)-local and we work with Gcan, then C ∗G(X )→ C ∗(X ;A) is an equivalence for all spaces X .
(OK, this is not super interesting, as there is no étale part to take into account, hence it is already true.)

Lastly, we have a splitting theorem in the case that the cohomology theory Ct is designed to embody:

Theorem 25. Let X be a p-finite space. If there is a splittingG=G′× (Qp/Zp )
k , then

C ∗G(X )'C ∗G′(L
k X ).

Lastly, we pressed Jacob about conjectures over lunch. He provided us with two:

Conjecture 26. This first one had something to do with Adams operations becoming E∞ after rationalization,
but I can’t recall the exact statement.

Conjecture 27. There is an equivalence

µp (En) =HomS-Algebras(Z/p,GL1En)'K(Z/p, n).

Equivalently, by as-yet unpublished ambidexterity work, the function spectrum functor

F (−, En) : Spaces
≤n
p-fin→ CAlg

op
En

is fully faithful. This deserves a little more motivation.

6. MARCH 19TH: THE MODULAR ISOGENY COMPLEX (MARK BEHRENS)

6.1. The modular isogeny complex. Let’s jump right in.

Definition 28 (Rezk). SetG=CP∞E , and let Subp I1 ,..., p Is G be the subgroup scheme

Subp I1 ,..., p Is G=
¦

H1 < · · ·<Hs <G
�

�

�|H j/H j−1|= p I j
©

,

where implicitly H0 = e . This scheme Subp I G= Spf Sp I is representable, and in fact Sp I are finite E0-algebras, free
as E0-modules. Then we set

K s
pk =

∏

I1+···+Is=k
I j>0

Sp I .

These come with maps ui : K s
pk →K s+1

pk by omitting the i th factor, 1≤ i ≤ s . We define a differentialδ =
∑

(−1)i ui ,

and we claim (K•
pk ,δ) is a chain complex (of modules) for each choice of k.
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Note that the chain
K0

pk →K1
pk →K2

pk → ·· · →K k
pk →K k+1

pk → ·· ·

when k ≥ 1 is really
0→ Spk →

∏

k1+k2=k

Spk1 , pk2 → ·· · → Sp,..., p → 0→ ·· · ,

i.e., it is truncated. When k = 0, we pick this sequence to be E0→ 0→ 0→ ·· · by convention.
Our goal is to uncover the homology of this complex. One way to try to answer this question is by comparing

it to the Tits building, which is a pointed simplicial set T• ∈ sSet∗ given by flags:

Ts =
n

0=V0 ≤V1 ≤ · · · ≤Vs ≤ F
n
p =Vs+1

o

.

Note that T0 = ∗, so this gives a natural base point for the simplicial set. We define face and degeneracy maps by
omission and duplication, with the special cases d0 = ds = ∗ as in the bar complex. In all, |T•| is called the Tits
building for GLnFp .

This looks rather like our complex in the case k = n, so maybe we can borrow some ideas from its analysis. With
some work, one can manage to compute its cohomology

H̃ ∗(T•;Fp or Zp ) =

(

0 if ∗ 6= n,
St if ∗= n,

where St denotes the “Steinberg representation”, recording the GLnFp action on T•.
3

Motivated by this classical computation, Charles posed the following conjecture:

Conjecture 29 (Charles, now proven). The cohomology of the modular isogeny complex is of the form

H ∗K•
pk =

(

0 if ∗ 6= k,
something interesting if ∗= k,

where “something interesting” is specifically an object called C [k]∨ (which is 0 when k > n).

When he stated the general conjecture, Charles had proven this for the modular isogeny complex in the case
n = 2, where he had as input Katz–Mazur-type geometry of elliptic curves and the comparison between isogenies
and their duals. He further noticed an exact sequence

0→C [0]∨→C [1]∨→C [2]∨→ 0.

Charles and Mark went on to show that this conjecture was completely true:

Conjecture 30 (Behrens, Rezk). The conjecture holds for all n, and there is always such an exact sequence

0→C [0]∨→ ·· · →C [n]∨→ 0.

6.2. The Dyer-Lashof algebra. Take Y to be a spectrum, and let

PY =
∨

i≥0

Y ∧i
hΣi

denote its free E∞-algebra. There is a classical result concerning the HFp -homology of such a spectrum: H∗(PY ;Fp )
is the free allowable algebra over the Dyer–Lashof algebra generated by H∗Y . Here, the Dyer-Lashof algebra refers
to the algebra of operations acting on the HFp -homology of an E∞-algebra, which is described in terms of some
symbols Q i subject to Adem-type relations. Charles showed an analogue of this for E -theory:

Theorem 31 (Rezk). There is a monad T : ModE∗
→ModE∗

defined on the entire category of E∗-modules, together with
a comparison map η : TE∗Y → E∗PY . The natural transformation η is an isomorphism if E∗Y is finite and flat. There
is also a splitting T=

⊕

T〈i〉 coming from the wedge decomposition of P:

E∗Y
∧i
hΣi
=T〈i〉(E∗Y ).

3Aaron wanted to know what dimension this representation had.
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Specialize to the case Y = Sq and consider [T〈pk〉(E∗Sq )]q = E∗(BΣpk )qρ̄. What do the square brackets denote?
We have two maps through which we can study this object, the transfer and the restriction:

kerTr=Γq[k] ,→ E0(BΣpk )qρ̄�∆q[k] = cokerRes .

The direct sums

Γq =
⊕

k

Γq[k], ∆q =
⊕

k

∆q[k]

can both be viewed as “Dyer-Lashof” algebras. The algebra Γq naturally acts on Eq A for A an E∞-ring, and likewise
if B is an augmented E∞-ring B→ S, then∆q acts on (Ind E∗B)q .

These two algebras are closely related. The composite Γq[k]→∆q[k] is injective, for q odd it’s even an isomor-
phism, and even for q even it merely has finite cockerel. One can compute them explicitly in the case n = 1 and
E =K∧p :

Γ0 =Zp[ψ
p] ∆0 =Zp[θp].

For k = 1, the maps Γ0[1]→ E0BΣp → ∆0[1] take the form Zp{ψp} → Zp{(−)p ,θp} → Zp{θp}, where the first
map is given by ψp 7→ (−)p + pθp and the second acts by projecting away.4

In the course of studying the E -theory Dyer-Lashof algebra, Charles has recently proven the following theorem,
which can be interpreted as strengthening the Behrens-Rezk result mentioned earlier:

Theorem 32 (Charles). The algebra Γ is Koszul, meaning that BΓ is dual to the modular isogeny complex and that the
cohomology of BΓ is concentrated in particular locations.

Charles can also generalize the second half of the Behrens-Rezk result concerning the long exact sequence by
appealing to Goodwillie calculus. This arises by applying the Goodwillie tower for the identity of Spaces∗ to S1,
then feeding it to E∗. This procedure can be used to build the sequence itself, and then the fact that S1 has no periodic
homotopy means that the tower is concentrated in some range, hence there’s a collapse in the spectral sequence and
the C [i]∨ sequence must be exact.

Mark had to run before we could press him about any conjectures (or explain this last remark).

7. APRIL 2ND: THE TOPOLOGICAL HOCHSCHILD HOMOLOGY OF E -THEORY (GEOFFROY HOREL)

Recall that Hochschild homology for a flat algebra over a commutative ring k is a functor HH∗ : k-Alg→Ch∗(k),
which takes a k-algebra A to the derived tensor product A⊗LA⊗Aop A (if A is not flat, one needs to derive A⊗Aop).
There is a variant of this, THH, for spectra: a functor THH : S-Alg→ Spectra from strictly associative ring spectra.
There are several different constructions of THH: for instance, for cofibrant A we can employ the formula we had
earlier:

THH(A) =A∧LA∧Aop A.

where the ∧LA∧Aop symbols denotes the derived smash product in the category of A∧Aop-modules.
We don’t actually need a strict associative structure to form this spectrum, since any A∞-algebra can be strictified.

In fact, let Spectra be the category of symmetric spectra with the positive model structure. For any operad O in
simplicial sets, we have a model structure on Spectra[O ], the category of algebras over O in spectra, and it comes
with a Quillen adjunction

Spectra
⊥−→ Spectra[O ].

A morphism f : O →P of operads induces another Quillen adjunction

Spectra[O ] ⊥−→ Spectra[P ],
which is a Quillen equivalence if f is an equivalence of operads.

The cyclic bar construction is another construction of THH which is mildly more aesthetically pleasing. Given
a cofibrant S-algebra A, we define a cyclic object C•(A) by Cn(A) = A∧(n+1). The degeneracies are just given by
inserting the unit S→A, and the face maps are all given by multiplying adjacent copies of A, except that the last one
is made “cyclic” by bringing the last copy of A around to the front and then multiplying there. There is an extra

4We further remark that Γ and∆ are also isomorphic as algebras, but noncanonically.
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operator in each degree which cyclically permutes the factors but we won’t use it. Then, the geometric realization
of the underlying simplicial object of C•(A) gives a definition of THH(A) (if A is cofibrant as an associative algebra):5

|C•(A)| 'THH(A).

In the case that A is even a commutative S-algebra, MacClure–Schwängzl–Vogt show THH(A)' S1⊗A, where
we use the simplicial tensoring of the category of commutative S-algebras. Hence, we have some adjunctions:

mapcomm(T H H (A),B)'map(S1,mapcomm(A,B))'mapcomm(A, LB),

where LB = B S1
denotes the “free loops” given by the simplicial cotensoring of this same category.

However, this description is not so helpful for computations — so, how does one compute THH? One way is
via the Bökstedt spectral sequence:

Theorem 33 (Bökstedt). Suppose K∗ is a homology theory with Künneth isomorphisms. Then there is a spectral sequence

E2 =HH∗(K∗A/K∗)⇒K∗(THH(A))

(where we consider K∗A as an associative object in K∗-modules).

Remark 34. The spectral sequence still exists if K∗ doesn’t have Künneth isomorphisms. For instance there is a
spectral sequence computing the stable homotopy groups of THH(A). the E2-page of that spectral sequence is
of the form Torπ∗(A∧Aop)(π∗A,π∗A), but in general, this is not HH of anything. Bökstedt was able to compute
π∗THH(HFp ) using that spectral sequence.

This is the E -theory seminar, so let’s talk about the THH of Morava E -theory. There’s an edge homomorphism
in the Bökstedt spectral sequence, which is associated to a map A→THH(A). This is really just given by remarking
that A=C0(A)means that A includes as the 0-skeleton in the model THH(A)' S1⊗A. This gives maps

HH∗(K∗A/K∗) K∗THH(A)

K∗A K∗A

to the spectral sequence. Finally, here is the theorem:

Theorem 35 (Ausoni–Rognes; proof by Horel). Taking K = K(n) and E = En and working K(n)-locally, then
En→THH(En) is an K(n)-local equivalence.

The proof uses the K(n)-Bökstedt spectral sequence (henceforth denoted “BSS”). Then the edge homomorphism
to the second page HH∗(K∗E/K∗)

∼←− K∗E is an isomorphism (meaning that it’s concentrated on the vertical axis)
for the following reason: in Ravenel’s green book, he computes directly that K∗E = K∗[t1, t2, . . .]/(relations), i.e.,
K∗E is ind-étale over K∗. However, HH∗ commutes with sequential colimits, and moreover HH∗ of an étale algebra
is trivial.

Question 36. What is THH(En) in the larger category? For instance, THH(KU ) =KU ∨ΣKUQ.

Idea 37. It may be the case that (at least on commutative S-algebras) THH(En) classifies deformations of Hn along
with an automorphism. This guess comes from the adjunction and equivalence

map(S1,map(En ,B))'map(THH(En),B)'map(En ,B).

Remark 38. Lurie has claimed that
(1) En doesn’t have a DAG moduli-theoretic interpretation,6 and

5The cyclic structure of C•(A) is what induces the S1-action on T H H see for instance the Dwyer–Hopkins–Kan paper Homotopy Theory of
Cyclic Sets or the nLab articles for a description of the cyclic indexing category. Also, a cute fact: this category is self-opposite, so a cyclic object
is the same thing as a cocyclic object.

6This seemed shocking to me when I first heard it, but I feel steadily more confident about what it must mean: En does not have an
interpretation classically without taking into account its adic topology; DAG works purely with E∞-ring spectra; and a power of p is part of
ideal in the the quotients En/I k

n . This is bad news, as every such E∞-ring spectrum with pk vanishing must be built from Eilenberg–Mac Lane
spectra in a particular way, and this excludes En/I k

n from ever hoping to be E∞.
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(2) there isn’t a derived stack representing deformations of derived formal groups.
It’s not clear what this means in terms of representability properties of En generally.

To please Nat, let’s talk about things involving finite groups to round out the talk. We’ll need the fact that THH
is monoidal, i.e., THH(A∧B)'THH(A)∧THH(B). Moreover, if G is a finite group, then one can easily compute
that THH(Σ∞+G)'Σ∞+ LBG (this remains true if G is a topological group). Hence, in the K(n)-local category:

THH(En ∧Σ
∞
+G)'THH(En)∧Σ

∞
+ LBG

K(n)-equiv.
−−−−−→ En ∧Σ

∞
+ LBG.

We always have a trace mapK(En[G])→THH(En[G]) (whereK is algebraic K-theory).

Question 39. According to the redshift conjectureK(En) has a formal group of height n+1. Is this map related to
Nat’s character map ?

Remark 40. Unfortunately, the map lands in En -homology instead of En -cohomology of Σ∞+ LBG. Maybe we can
make things work by using the self duality of Σ∞+ BG in the K(n)-local category.

8. APRIL 9TH: BRAUER GROUPS AND RESOLUTIONS OF THE SPHERE (DREW HEARD)

8.1. The Picard group. Let Kn be the category of K(n)-local spectra, which is symmetric monoidal with product
given by X ∧̂Y = LK(n)(X ∧Y ). Today we’re interested in its associated Picard group,

Picn =
¦

[X ] ∈Kn

�

�

�∃Y,X ∧̂Y ' LK(n)S
0
©

.

There is a map Picn → Picalg
n given by X 7→ E∨n X , the target of which is referred to as the category of “Morava

modules,” or sometimes in symbols as Pic(EGn) or Picalg
n . There is a subgroup Picalg,0

n ⊆ Picalg
n of those modules

concentrated in even degrees, and this is interesting because of a cohomological computation

Picalg,0
n
∼=H 1(Gn ; E×n,0).

We define an exact sequence

0→ κn→ Picn

E∨n−→ Picalg
n ,

and today we’re most interested in studying the group κn . Incidentally, here’s a rather generic and I think difficult
question about the obvious other half of this morphism:

Question 41. When is this map onto? When it isn’t, what is its cokernel? (Note: in all cases so far it has been
computed to be surjective.)

Let’s explore κn , which is exactly the group of spectra X with E∨n X ∼= E∨n S
0 as E∨E -comodules. Very few of

these κn have been identified:
• n = 1, p = 2: Hopkins, Mahowald, and Sadofsky showed that κ1 =Z/2.
• n = 2, p = 2: Mahowald claims that this takes the form κ2 =Z/2×Z/4×G, where G is an unknown factor.
• n = 2, p = 3: Shimomura and Kamiya showed that this takes the form of either Z/3×Z/3 or Z/9, and

they accomplished this with really intensive (and seemingly disorganized) computation. Goerss, Henn,
Mahowald, and Rezk determined that it is actually κ2 = Z/3×Z/3, and they did so in a way generalizing
the Hopkins-Mahowald-Sadofsky result. In the discussion below, we’ll call a generator of the left-hand
factor P and one of the right-hand factor Q.

We’re of course interested in a systematic study, so let’s begin by investigating the Hopkins-Mahowald-Sadofsky
set-up. They actually proceed in multiple distinct ways — for instance, they produce enormous quantities of these
invertible spectra through geometric methods, but we’re going to avoid that since geometry gets tricky at higher
heights. The intriguing-for-us thing they do is to study the fiber sequence

LK(1)S
0→KO∧2

ψ3−1
−−→KO∧2 ,

lending KO∧2 the name “half the K(1)-local sphere”. If we apply K∗ =K(1)∗ to this sequence, we get an exact triangle

K∗→K∗KO∧2 →K∗KO∧2 .
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The Bott perioditicty isomorphism K∗Σ
4K 'K∗K restricts to an isomorphism of continuousG1-modules

K∗Σ
4KO 'K∗KO,

and so algebraically we might also study the exact sequence

K∗→K∗Σ
4KO∧2 →K∗Σ

4KO∧2 .

Topologically, this is realized as the fiber sequence

LK(1)DQ→Σ4KO∧2 →Σ
4KO∧2 ,

where it’s important to note the twisting of the map Σ4KO∧2 →Σ
4KO∧2 .

At n = 2 and p = 3, GHMR want to use the same idea, so they produce a resolution of the K(2)-local sphere:

LK(2)S
0→ E hG24

2 →Σ8E hSD16
2 ∧ E hG24

2 → ·· · →Σ48E hG24
2 ,

where G24 ⊆ G2 is a maximal finite subgroup and SD16 is the dihedral group of order 16. This is longer than the
height 1 resolution, and so more computationally complex — and this is to be expected.7

Let’s try to explain where P (the left-hand generator of κ2 =Z/3×Z/3) comes from. We can draw a diagram:

κ2 H 5(G2, (E2)4)

κ′2 H 5(G24, (E2)4).

τ

ϕ

τ′

The map τ morally detects the action of the d5 differential in the Adams-Novikov spectral sequence on the identity
class (up to tracking noncanonical isomorphisms). The map ϕ comes from sending a Picard element X to the
spectrum X ∧ E hG24

2 , and the group structure in κ′2 is given by smashing over the algebra spectrum E hG24
2 .

Theorem 42 (Goerss–Henn–Mahowald–Rezk). The bottom-right group is Z/3 and the map τ′ is an isomorphism —
injectivity comes from some collapse in the associated Adams spectral sequence, surjectivity comes from the fact that there
are isomorphisms E∗(E

hG24
2 )' E∗(Σ

24E hG24
2 )' E∗(Σ

48E hG24
2 ) which cannot be realised topologically.

Just as with KO∧2 , we use the isomorphism E∨∗ E hG24 ' E∨Σ48E hG24
2 to produce another algebraic resolution:

E∗→ E∗Σ
48E hG24 → ·· · ,

via the 16-fold algebraic and topological periodicities of E hSD16 . For the same reasons, this extends to topological
resolution Σ48E hG24 → Σ56E hSD16 → ·· · , where all the Toda brackets are still zero — but this is a resolution of the
exotic spectrum P instead. What this means in terms of the square diagram is that ϕ is surjective. Producing Q is
much harder, so for clarity’s sake we’ll just skip it.

Instead, let’s indicate how we can generalize to n = p − 1 — i.e., away from p = 3. Let Gn be a maximal finite
subgroup ofGn ; then we can build an analogous square:

κn H 2 p−1(Gn , (En)2 p−2)

κ′n H 2 p−1(Gn , (En)2 p−2) =Z/p.

τ

ϕ

The map τ is again related to a differential in the Adams spectral sequence — this time it’s the differential on the
(2 p − 1) page. The group κ′n consists of E hGn

n -modules, which has topological periodicity p times its algebraic
periodicity.8

7Saul: What does it mean for this to be a resolution? It means each composite is null, that every possible Toda bracket is zero. Another way
to phrase this is that X∗ is a resolution when each map Xn → Xn+1 factors as Xn → Cn → Xn+1, where the adjacent maps Cn → Xn+1→ Cn+1
form a fiber sequence — compare this with the definition of an exact sequence in an arbitrary abelian category.

8See Lee Nave’s thesis, titled “On the Nonexistence of Smith-Toda complexes” for more information.
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Remark 43. EOn,∗ is actually known — away from the 0-line, at least. This is part of Nave’s write-up. It turns out
they all look like EO2,∗ — this is a really remarkable and strange fact.

Hans-Werner Henn wrote a paper titled “On the finite resolution of K(n)-local spheres”, where he works at
n = p − 1, n > 1. He constructs a resolution of the form

LK(n)S
0→ E hGn

n ∨Z0→
∨

Σ?E hGn
n ∨Z1→ ·· · →

∨

Σ?E hGn
n ∨Zn→ Zn+1→ ·· · → Zm .

Arguing as before, using periodicity of E hGn
n we can re-resolve the resolution. The complex is too complicated to

think about Toda brackets, but if one can do something clever it should be possible to get other elements of the
Picard group via twisted topological resolutions, and with these a surjection ϕ : κp−1→Z/p.9

Question 44. Is this surjection split, as it was at p = 3?

8.2. The Brauer group. Let’s take a break from the questions about the Picard group and talk about a related
invariant: the Brauer group. Let SpectraK(n) be the category of K(n)-local spectra. This is symmetric monodial with
monoidal product X ⊗Y := LK(n)(X ∧Y ). Recall that in a symmetric monoidal category with product ⊗ there are
cannonical maps ρ : X →DDX , ν : F (X ,Y )⊗Z→ F (X ,Y ⊗Z) and ⊗ : F (X ,Y )⊗ F (Z ,W )→ F (X ⊗Z ,Y ⊗W ).

If X is a multiplicative ring spectrum with multiplication m : X ∧ X → X , let X ◦ denote the opposite ring

spectrum; that is the spectrum with multiplication m′ : X ∧X
T→X ∧X

m→X , where T is the twist map.

Definition 45. Let DA= LK(n)F (X , S) be the functional dual of A. Then A is a K(n)-locally dualizable if the natural
map ν : DA⊗A→ F (A,A) is an equivalence in SpectraK(n).

Definition 46. A K(n)-local spectrum X is faithful if X ⊗Y ' ∗ implies that Y ' ∗.

Equipped with these definitions we can define Azumaya algebras over LK(n)S.

Definition 47 (Baker-Richter-Szymik). X ∈ SpectraK(n) is a weak (topological) Azumaya algebra over LK(n)S if and
only if the first two over the following conditions hold, whilst X is a (topoligcal) Azumaya algebra over LK(n)S if and
only if all three of them hold.

(1) X is K(n)-locally dualizable.
(2) The natural morphism X ⊗X ◦→ F (X ,X ) is a K(n)-local equivalence.
(3) X is faithful as a K(n)-local spectum.

Remark 48. The Künneth formula shows that all non-trivial X ∈ SpectraK(n) are in fact faithful. Also, the Baker-
Richter-Szymik definition actually works more generally; it is defined for E -local R-modules, where R is a cofibrant,
commutative S-algebra.

Let Azn denote the set of (equivalence classes of) K(n)-local Azumaya algebras10. Then we can define the Brauer
equivalence relation ≈ on Azn .

Definition 49. If X1,X2 ∈ Azn , then X1 ≈ X2 if and only if there are faithful, dualizable, cofibrant K(n)-local
spectra M1, M2 such that

X1⊗ F (M1, M1)'X2⊗ F (M2, M2)

Theorem 50. The set Brn is an abelian group with multiplication induced by the smash product ⊗.

In a similar way to the case for commutative rings we have that Azumaya algebras of the form F (M , M ) are the
trivial objects in the Brauer group.

The only thing known about these groups so far is the following result of Baker-Richter-Szymik:

Theorem 51. Suppose that p > 2 and n > 1. Then the K(n)-local Brauer group of LK(n)S
0 is non-trivial.

9Kyle: What is the nature of the Zi spectra? Well, we can take the cofiber LK(n)S0→ E hN
n →K ; then E hN

n has a resolution in terms of E hH
n ,

and the target K has a finite Adams resolution. Explicitly the Zi ’s are summand in a finite wedge of En ’s.
10This is a set!
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Recall that the Picard group of a scheme Pic(X )'H 1(X ;Gm), and that there is an injection

Br(X ) ,→H 2(X ,Gm)torsion.

Now we can approximate the Picard group of the K(n)-local stable homotopy by studying H 1(Gn , (En)
×
0 ) so this

suggests the following:

Idea 52. Study Brn by finding a suitable map to H 2(Gn , (E0)
×).

The natural map to study is the one that goes X 7→ E∨∗ (X ), as with the Picard group. In fact E∨∗ (X ) naturally lies
in the category of "Morava modules" - E∗-modules with a compatible action of Gn . This is symmetric monoidal,
and it should be possible to construct a notion of Azumaya algebra and Brauer group in this category. (It seems you
may need to restrict to X concentrated in even degrees.)

Conjecture 53. If X is a K(n)-local (topological) Azumaya algebra over LK(n)S, then E∨∗ (X ) is an Azumaya algebra in
the category of Morava modules.

The map should respect the Brauer equivalence, and so should give a map on Brauer groups. One can then try
and prove an equivalence between the Brauer group of Morava modules and H 2(Gn , (En)

×
0 ).

Idea 54. There is perhaps a more elegant way to do this. Let R be a ring spectrum. Then there is a space
Br(R) such that π1(Br(R)) ' Br(R), π2(Br(R)) ' Pic(R) and π3(Br(R)) ' Gm(R) (see Szymik’s Brauer spaces for
commutative rings and structured ring spectra). Then perhaps one can see morphisms Picn → H 1(Gn , (En)

×
0 and

Brn→H 2(Gn , (En)
×
0 by studying the edge homomorphisms in a suitable K(n)-local variant of this.

9. APRIL 16TH: THE E -THEORY FORMAL SCHEMES OF CLASSICAL K -THEORY SPACES (ERIC PETERSON)

One of the central points of Morava E -theory is its connection to algebraic geometry through its values on
certain spaces. Certainly we’re all aware of the importance of E0CP∞, but through this semester Nat has told us
a lot about E0BZ/p j ; Nat and Mark both have been interested in E0BΣp j ; and in my earlier talk we considered
E0K(Z/p j , q) for q > 1. There’s another family of spaces that others have put a lot of work into studying their
E -theory which haven’t been named yet: the spaces in the Ω-spectra for ordinary K -theory. There are some pretty
cool things known about these spaces, and that’s what I want to discuss with you today.

To save on notation, throughout this talk I’ll write

XE := Spf E0X

for the formal scheme associated to the E -cohomology of a space X . I should mention immediately that essentially
all of this is due to Matt Ando, Mike Hopkins, and Neil Strickland, except for some easy pieces, which are due to
me and my coauthors Adam Hughes and JohnMark Lau. Also also, some of the conjectures below are work in
progress with Matt and Neil — I’ll label which to scare you off of them. Also also also, fair warning: this will be
fairly rich in computation.

9.1. KU and schemes of divisors. Generally speaking, the complex case is simpler than the real case, and the
periodic case is simpler than the connective case, so we’ll begin by considering periodic complex K -theory KU .
You’ll recall that the whole point of having a complex oriented cohomology theory — and E -theory is no exception
— is that CP∞E becomes a formal affine variety of dimension 1, i.e., E0CP∞ is a power series ring in one variable.
To produce a formal scheme description of (BU × Z)E , we’ll run through the computation of its cohomology
and analyze each step along the way. As the first step, there is a map BU (1)×n → BU (n), which factors as in the
following triangle

E0BU (1)⊗n E0BU (n)

E0
¹x1, . . . , xnº

Σn .

∼=
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A theorem of Borel identifies the marked map as an isomorphism. The bottom ring can be identified as E0
¹σ1, . . . ,σnº,

where σi is Newton’s i th symmetric function in the x∗, which are the Chern classes coming from the line bundles
on the left.

Let’s work to interpret this statement. The space BU (1)×n classifies a rank n-bundle equipped with a splitting
into a sum of n line bundles, and the map BU (1)×n → BU (n) forgets this splitting. On cohomology, this map
determines the Chern classes of the rank n bundle in terms of those of the line bundles:

c





n
⊕

i=1

Li



=
n
∏

i=1

(1+ t−1c1(Li )) = 1+
n
∑

i=1

t−iσi (L1, . . . ,Ln),

i.e., it takes a factored polynomial and forgets the factorization. So, we should think of the ring spanned by the
symmetric functions as classifying monic polynomials of degree n, and this map as forgetting a factorization.

Monic polynomials have a special place in formal geometry: suppose that we have an E0-algebra map E0
¹xº→

A, where A is finite and free as an E0-module. The Weierstrass preparation theorem guarantees that the kernel of
this map can be written uniquely as the ideal generated by a monic polynomial p(x) — and this correspondence is
clearly bijective. On the level of schemes, such an E0-algebra map corresponds to a free, finite closed subscheme,
which is sometimes called a Cartier divisor. By definition we thus have the identification

BU (n)E =Div+n CP∞E .

The direct sum BU (n)× BU (m) → BU (n + m) and tensor product BU (n)× BU (m) → BU (nm) maps also
have interpretations. The sum corresponds to the sum of divisors (or product of representing polynomials). The
tensor product is more complicated; you already know that the tensor product map BU (1)× BU (1) → BU (1)
yields the group structure on CP∞E , and the map for generic n and m is an enrichment of this. In the case that we’re
taking the product of two divisors written as the sum of point divisors (i.e., when considering the precomposition
BU (1)×n→ BU (n)), the formula is given by

 

n
∏

i=1

(x − ai )

!

∗







m
∏

j=1

(x − b j )






=
∏

i , j

(x − (ai +CP∞E
b j )).

The next step in computing the cohomology of BU is to limit along the sequence

· · · → BU (n)→ BU (n+ 1)→ ·· · → BU ,

whose maps are induced by summing with the trivial line bundle (equivalently, by sending the polynomial f (x)
to the polynomial x · f (x)). This indeed gives a description of the formal scheme BUE : it is the colimit of the
formal schemes Div+n CP∞E induced by summing with the point divisor [0]. A remarkable feature of this colimit
construction is that it enlarges to include ineffective divisors — this comes about essentially by allowing power series
inverses. We write this stabilization as

BUE =Div0CP∞E .

Finally, BU ×Z has a Z’s worth of copies of BU , and hence

(Z×BU )E =Z×BUE =: DivCP∞E .

9.2. kU and the augmentation ideal. Having accomplished a description of the interesting spaces associated to
KU , we turn now to the connective version kU . Because KU is 2-periodic, we can easily identify the spaces in its
Ω-spectrum:

k 0 1 2 3 4 · · ·
kU 2k BU ×Z BU BU 〈4〉= BSU BU 〈6〉 BU 〈8〉 · · · .

We have descriptions of the first two, and so we’ll use this information to bootstrap our way up.
What’s cool — and what uses the 2-periodicity of KU — is that these higher deloopings are given simply by taking

higher connective covers of BU . This gives us a tool by which we can study BSU : it belongs to the Postnikov-type
fiber sequence

BSU → BU
det−→ BU (1).

23



This begets a short exact sequence of formal group schemes — i.e., BSUE is the fiber of the summation map BUE →
BU (1)E = CP∞E , which sends a divisor to the sum of all the points in its zero locus. Correspondingly, we call the
fiber of this map SDiv0CP∞E , the scheme of “special divisors” which vanish under the collapse map to CP∞E .

Unfortunately, we cannot proceed in this way to produce a description of BU 〈6〉E . It belongs to a fiber sequence
BU 〈6〉 → BSU → K(Z, 4), but the analogous map BSU → K(Z, 4) does not have an obvious expression in terms
of formal schemes we already know about. We might look to existing computation for clues, which will turn out
to be decidedly unhelpful, but it’s worth stating nonetheless. The HFp cohomology of BU 〈2k〉 was computed for
p = 2 by Stong and for all primes by Singer; at p = 2 it is given by

HF∗2(BU 〈2k〉) =
HF∗2(BU )

F2[θ2i | σ2(i − 1)< k − 1]
⊗Op[Sq3 ι2k−3],

where θ2i agrees with xi modulo decomposables and Op denotes the Steenrod subalgebra closure in HF∗2K(Z, 2k−
3). For general p, the answer looks similar, but the right-hand tensor factor is enlarged a bit.

There’s no hope of pulling out a formal scheme description of BU 〈2k〉E be staring at that formula, so we instead
try our other favorite method: universal property. To begin, remember that the spaces BU ×Z and BU are given
by universal properties of a certain sort: they are both “free” formal groups on BU (1)E =CP∞E , where we crucially
used the map classifying the (reduced) tautological line bundle 1−L :CP∞→ BU . Thinking of this as an element
ϕ of kU 2BU (1), we can use kU ’s product to build elements of higher cohomological degree: ϕ×k ∈ kU 2k BU (1)×k .

We would like to investigate whether BU 〈2k〉E is the free formal group generated by elements of the form ϕ×k ,
subject to whatever relations they enjoy. For one, it’s clear that this product is invariant under rearrangement,
since multiplication of divisors and tensor of bundles are both commutative. Using the shorthand 〈a1, . . . ,ak〉 =
∏k

i=1([0]− [ai]), we further produce the following identity using the same trick as is used to study the formal
group law on CP∞KU :

〈a1, . . . ,ak〉= ([0]− [a1])([0]− [a2])([0]− [a3])〈a4, . . . ,ak〉
= ([0]− [a1])[a2]([0]− [a3])〈a4, . . . ,ak〉+ 〈a1,a3, . . . ,ak〉
= ([0]− [a1])([a2]− [a2+ a3])〈a4, . . . ,ak〉+ 〈a1,a3, . . . ,ak〉

〈a2, . . . ,ak〉− 〈a1+ a2,a3, . . . ,ak〉+ 〈a1,a3, . . . ,ak〉= 〈a1,a2,a4, . . . ,ak〉− 〈a1,a2+ a3,a4, . . . ,ak〉+ 〈a1,a3, . . . ,ak〉.

This looks rather horrendous, but we learn two things from it: first, canceling the two like terms on the last line, we
see that the point-divisors obey a sort of cocycle identity. Second, if we look at the third line, we see an important
relation: we’re not just taking symmetric powers of BUE , but rather symmetric powers over (BU ×Z)E .11 This
actually turns out to be all the relations you have to notice:

Theorem 55 (Ando, Hopkins, Strickland). There is a suitably “free” object CkCP∞E = Symk
DivCP∞E

Div0CP∞E . The

map BU (1)×k → BU 〈2k〉 factors through it:

BU (1)×k
E BU 〈2k〉E

Ck BU (1)E .

∼=

Moreover, the marked map is an isomorphism of group schemes for k ≤ 3.

A lot of work goes into this theorem: you have to show that these Ck schemes even exist; that they have the
desired properties; that the map is an isomorphism for much simpler cohomology theories, where it can be checked
by explicit calculation (including HFp ); and that this then implies the isomorphism for E -theory. This second-to-
last step is where things fall apart for k ≥ 4, where we see the class Sq7 Sq3 ι5 appear in Singer’s formula. The obvious
problem with this class is that it’s odd-dimensional, and so the entire theory of formal schemes stops making much

11Saul recognized this as a weight filtration on the symmetric powers, just like we were using the weight filtration to study BU (n)E a moment
ago in a different way.
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sense. However, Hughes, Lau, and I have computed the representing graded ring for the Cartier dual scheme

DCkCP∞HF2
=HomF2

(CkCP∞HF2
,Gm),

leading to the following conjecture:

Conjecture 56. The dashed map in the above triangle becomes an isomorphism after deleting not just the odd classes but
their orbit under the action of the Steenrod algebra, i.e.,

CkCP∞HF2

∼= Spf





HF∗2(BU 〈2k〉)

Op[HFodd
2 (BU 〈2k〉)]



 .

Question 57. This draws attention to the action of the dual Steenrod algebra on DCkCP∞HF2
. This is easy to

compute over a certain factor and very hard over a different factor. What is the answer for the difficult factor?

Question 58. More generally, one can ask: is there a space X (k) which has the property that X (k)E ∼= CkCP∞E ?
That is to say: can this deletion be performed on the level of spaces, rather than by fixing (i.e., mangling) the
cohomology ring ex post facto?

Two tools came up as we were trying to address this last question.

Idea 59 (Ando). Alexander Zabrodsky (following work of Steve Wilson) has a procedure to delete odd-dimensional
phenomena from H -spaces by successive fiberings, in such a way that this preserves the H -space structure. This is
much smarter than trying to delete the odd-dimensional cells manually, which may destroy the H -space structure,
but it’s not super clear what we end up with instead.

Idea 60 (Behrens). Again in the same neighborhood as Wilson spaces, the spaces BP 〈m〉k in the Ω-spectrum for
truncated Brown-Peterson theory may be relevant. They, too, come with a lot of the formal tools that make the
bordism tower interesting for homotopy theorists. They also agree in some sense with the tower we have in the case
of BP 〈1〉, so they could be considered natural candidates for answering this question.

9.3. kO away from 2. Up until this point, I’ve only told you things that you could find in the literature (more
or less) — and this is a conjectures seminar, so I should really be making an effort to tell you about fresh and even
underripe ideas. To that end, I’m going to pass to connective real K -theory in order to try to make good on the title
of the talk and tell you some things about BString.

There is a complicated story describing what happens when 2 is not invertible, which we’ll get to if there’s
time. The story simplifies dramatically if 2 is invertible, and it inspires the answer at 2, so we’ll start there. This
assumption gives us two key ingredients:

(1) Complex conjugation ξ : kU → kU is a unipotent map of order 2, which means that away from 2 we can
form a pair of projection operators P± =

1±ξ
2 . These split the spectrum kU into a wedge kU+ ∨ kU−, on

which P+ and P− act by the identity respectively.
(2) There is a cofiber sequence

ΣkO
ν−→ kO

c−→ kU
λ−→Σ2kO,

where ν is the generator of π1kO and c denotes complexification. The element ν is 2-torsion, so away from
2 that map is null and this cofiber sequence splits.

What’s more is that these two sequences interact: ξ c = c means that c factors as c : kO→ kU−→ kU , and similarly
λξ =−λ means that λ factors as kU → kU+→ Σ2kO. A couple more minutes of fussing demonstrates that these
factorizations even beget equivalences kO ' kU− and kU+ ' Σ2kO. Delooping everywhere yields the following
table, limited by the Ando-Hopkins-Strickland hypothesis of k ≤ 3:

k C−
k
CP∞E = (kO2k )E CkCP∞E = (kU 2k )E C+

k
CP∞E = (kO2k+2)E

1 (S p/U )E BUE BS pE
2 BS pE BSUE (Spin/SU )E
3 (Spin/SU )E BU 〈6〉E BStringE

25



9.4. kO and 2-torsion phenomena. When working at 2, we don’t have either of the crucial tools we used above,
so we have to approach along an entirely different route, envisioned I think entirely by Neil. For the time being,
let’s work with Morava K -theory — everything will turn out to be even-concentrated, so we can get an answer for
completed Morava E -theory at the end if we please. I’m also going to switch quietly to homology. It turns out that
homology computations are even more tightly bound to formal scheme computations, so it should still be easy to
follow along.

Let’s start by computing K∗BO using the Atiyah-Hirzebruch spectral sequence,

(HF2)∗BO ⊗K∗⇒K∗BO.

The HF2-homology of BO is known: (HF2)∗RP∞ is given by F2{βR0 ,βR1 , . . .}, and (HF2)∗BO is the free symmetric
algebra on these classes:

(HF2)∗BO = F2[b
R
1 , bR2 , bR3 , . . .].

A theorem of Yagita states that the first differential in such an AHSS is described by the action of the nth Milnor
primitive in F2-homology. This is calculable and results in the differential d bR2i = bR2i−2n+1. After the action of this
family of differentials, there is little left: all the odd classes are deleted, as are the classes bR2n+2i for i ≥ 0 — but
their squares survive, saved by the Leibniz rule. What’s left is concentrated in even-degrees, so the spectral sequence
collapses, and there are no zerodivisors, hence no multiplicative extensions. This yields the following formula:

K∗BO ∼=K∗[b
R
2i | 0< i < 2n] ⊗

K∗[(b
R
2i )

2|0<i<2n]
K∗[(b

R
2i )

2 | 0< i].

This is the description we will recast in formal schemes. The left-hand tensor factor is easiest: it’s easily recogniz-
able as the symmetric algebra on K∗BZ/2, which identifies it as the scheme of divisors Div0CP∞K [2]. The right-hand
factor also looks like a scheme of divisors, but we have to explain the squares in it and in the corner piece. To do
so, consider the addition map BU (1)K ×BU (1)K → BU (1)K given by the tensor product of bundles. Since addition
is commutative, this factors through the symmetric square BU (1)×2

K → (BU (1)K )
×2
Σ2
→ BU (1)K — and the middle

factor can be identified with BU (2)K , its map to BU (1)K induced by the determinant. The desymplectification map
BS p(1)→ BU (2) is null-homotopic when postcomposed with the determinant map, and so lifts to a map to the
scheme-theoretic fiber BS p(1)K → fib(BU (2)K → BU (1)K ). This turns out to be an isomorphism.

The space BS p(1) has the same homotopy type as S3, so its cohomology is isomorphic to a power series ring
with generator in degree 4 — i.e., it is a formal curve. The symplectification map BU (1)→ BS p(1) also has a role
to play: on formal schemes it sends the point-divisor [a] to the formal difference [a,−a]. This map, called q , is an
isogeny of formal curves of degree 2. Passing to Div0 BU (1)K and Div0 BS p(1)K , this induces push and pull maps

q∗ : Div0 BS p(1)K �Div0 BU (1) : q∗,

which satisfy q∗q
∗ = 2, the degree of the isogeny.

This “2” is precisely where the squares in our tensor product formula are coming from. Specifically, the tensor
factor K∗[(b

R
2i )

2|0 < i] is a model for Div0 BS p(1)K , where the elements are so-named because that’s where they’re
sent by the injective map

Div0 BS p(1)K ∼= SchK∗[(b
R
2i )

2 | 0< i]
q∗
−→ SchK∗[b

R
2i | 0< i]∼=Div0 BU (1)K .

The leftward map, q∗, sends each generator to its square (plus higher order products). Finally, even though BS p(1)K
does not carry the structure of a formal group, we can use the isogeny q to define a self-map 2 : BS p(1)K → BS p(1)K ,
and the corner piece we’re tensoring over is modeled by Div0 BS p(1)K[2]. In all, this lets us draw the following bi-
Cartesian square:

Div0 BS p(1)K[2] Div0 BU (1)K[2]

Div0 BS p(1)K BOK .

q∗

q∗
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This seems cumbersome at first, but it makes the next two steps quick and easy. The point of giving a presentation
by a bi-Cartesian square is that kernels of maps from the bottom corner automatically inherit such presentations as
well. In analogy to our analysis of BSU → BU → BU (1), we have a fiber sequence

BSO→ BO
det−→ BO(1),

which begets a cube whose top and bottom faces are both bi-Cartesian:

Div0 BS p(1)K[2] SDiv0 BU (1)K[2]

Div0 BS p(1)K BSOK

Div0 BS p(1)K[2] Div0 BU (1)K[2]

Div0 BS p(1)K BOK BO(1)K ∼= BU (1)K[2].
det

Here, the composite Div0 BU (1)K[2] → BU (1)K[2] is the summation map, and Div0 BS p(1)K → BU (1)K[2] is
zero. We can produce a description of BSpinK using the same method, but we run into a small obstacle: we have to
analyze the action of the maps

SDiv0 BS p(1)K → BSOK → (HZ/22)K
∼= (BU (1)K[2])

∧2,

SDiv0 BU (1)K[2]→ BSOK → (HZ/22)K
∼= (BU (1)K[2])

∧2.

I don’t quite know how to compute these maps, but Neil has a guess as to what they are, and I think we’ll end up
getting it before long:

Conjecture 61 (Neil Strickland, nearly proven). The first composite is zero. The second composite acts by 〈a, b 〉 7→ a∧b ,
where SDiv0 BS p(1)K is identified with C2BS p(1)K .

We now want to finish the story and compute BStringK . This space fibers over BSpin with fiber K(Z, 3), and this
sequence comes with a comparison map to another fiber sequence we already understand well:

K(Z, 3) BString BSpin K(Z/2,3)K

K(Z, 3) BU 〈6〉 BSU .

Kitchloo, Laures, and Wilson show that the top sequence of group schemes is short exact, and Ando, Hopkins, and
Strickland show the same of the bottom sequence. There’s also a map upward of fiber sequences, coming from λ
rather than from c . The idea from here is to use the presentation of BSpinK together with facts about how these
maps λ and so on interact to deduce that BString has the same description as it did away from 2:

Conjecture 62 (Matt Ando, Neil Strickland). There is an isomorphism

BStringK =C+3 CP∞K
at 2 as well as away from 2.12

Idea 63. The Cartier duals of these schemes are supposed to tie into the study of “Σ-structures,” just like the com-
plex connective story connects to “Θ-structures”. It would be nice both to establish this connection and also to
understand what value Σ-structures hold for arithmetic geometers. (It’s worth pointing out that Gerd Laures and
Nitu Kitchloo have a paper about comparing “real structures” with BStringK(1) and BStringK(2). I don’t even know

12Again, a warning: since there’s a program in place for proving this with a large unpublished body of work sitting beneath it and at least
two adults working on it, it’s not appropriate to encourage others to begin thinking about it from scratch. On the other hand, lots of the ideas
and questions around this project are wide open and equally interesting.
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if these are the same thing, but I suspect they are. Gerd also just posted a preprint concerning characteristic classes
for TMF1(3), which addresses ideas in this same neighborhood.)

10. APRIL 26TH: FUTURE DIRECTIONS IN ALGEBRAIC TOPOLOGY (TYLER LAWSON AT TALBOT)

Since this is a talk for a private audience, I hope you’ll give me the leeway to speak a little loosely. I guess the place
to start is to say that we in algebraic topology study things which we have no hope of completely understanding,
and so it’s certainly not reasonable to make conjectures on how we could go about doing that. On the other hand,
we have a history of developing tools that find effective use in other subjects — cohomology and category theory,
to name the most obvious two. Maybe this is a more reasonable subject to spend time talking about: how we might
influence other fields near chromatic homotopy theory.

10.1. Equivariant homotopy theory. Associated to a finite group G, there is a category of G-spectra. For each
subgroup H ≤ G and G-spectrum X , there is an associated fixed point spectrum X H , and these fit together in
complicated ways determined by the subgroup lattice of G — collectively, they look rather like a Mackey functor.
In principle, if we wanted to compute something about these objects, we could make use of the Tom Dieck splitting:

(SG)
H =

∨

K<H

Σ∞BWK ,

with WK the Weyl group of K in H . The homotopy groups of these objects are somewhat accessible (again, at least
in principle), but maybe a better idea is to study qualitative information about G-spectra instead.

Question 64. What are some structural properties of the equivariant stable homotopy category?

This connects up to chromatic homotopy theory because there are analogues M UG of the complex bordism
spectrum M U . These aren’t really connected to any sort of bordism, but nonetheless they do arise from certain
Thom spectra and they do carry sorts of “Chern classes” — and hence they must have some connection to the
theory of formal group laws. We don’t have full information about π∗M UG the way we do for π∗M U , so it’s hard
to say exactly what this connection might be, but we do have some special examples computed. These examples
have been worked out by a variety of people: Greenlees, Strickland(’s memoir), Križ, Abram, and so on.

Question 65. What does π∗M UG tell us? Generally, does M UG tell us as much structure in G-spectra as its classical
analogue does nonequivariantly?

Of course, M U and chromatic homotopy theory aren’t the only possibility for exploring equivariant homotopy
theory. Another promising tool are certain decomposition diagrams called “isotropy separation diagrams”, which
we’ll illustrate in the context of Cp -equivariance. A Cp -equivariant spectrum is equivalent data to a spectrum X
with a Cp -action, a spectrum Y with no action (thought of as the geometric fixed points of X against Cp ), and a
map Y → X tCp encoding the map to the Tate construction. Specifically, from this information we can reconstruct
the genuine fixed points X Cp via the pullback diagram:

X Cp X hCp

Y X tCp .

More generally, we can write complicated isotropy separation diagrams for groups with a more complex sub-
group lattice structure. For instance, Σ3 has four subgroups, and they have to fit together in this world in compli-
cated ways — but it can be made to work. These diagrams play an important role in almost all studies of equivariant
theory, and they look rather like a theorem from chromatic homotopy theory:

Theorem 66 (Chromatic fracture). The category of E(n)-local spectra appears as the following coherent pullback:

SpectraE(n) SpectraK(n)

Arrows(SpectraE(n−1)) SpectraE(n−1).

LE(n−1)

target
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Hence, it’s quite possible that we already have the tools in place we need to study this.

Idea 67. In classical chromatic homotopy theory, we mix the primes of Z with the chromatic primes. Possibly in
equivariant stable homotopy theory we’ll want to do something analogous by mixing the primes of the Burnside
ring of G with the chromatic primes. This is already visible to some extent in our analysis of G-equivariant K -theory
KG .

Idea 68. Humans are generally very bad at thinking about Mackey functors, so isotropy separation often confers a
dramatic improvement in perspective.

Here’s another seemingly important phenomenon in equivariant theory. We’ve seen the homotopy fixed point
spectra E hG

n for finite subgroups G of the Morava stabilizer group appear a lot this week, especially when talking
about TMF, TAF, and most basically KO. The homotopy fixed point spectral sequence computing π∗KU hC2 is a
well-known exercise:
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Each column in this picture computes one homotopy group of KO, and each right-descending diagonal in this
picture corresponds to H ∗(C2;πs KU ) for a particular value of s . Hence, if we truncate the spectral sequence to get
a picture for π∗k u hC2 , we see that we don’t quite compute what you’d expect. There’s a scattering of permanent
classes in negative degrees with missing incoming differentials, and these are not expected to appear in π∗ko.

Nonetheless, if you look at the picture, you can see what you’d like to have happen instead: there’s a diagonal line
on the page across which the classes in positive and negative degrees don’t really interact, and if we could truncate
along this diagonal line, we’d produce the fixed point spectrum we expect. This also happens when looking at
H ∗(Mell;ω

⊗∗) thinking about the homotopy groups of tmf.
The slice filtration takes equivariant phenomena and separates them in an unusual way that often captures exactly

this cutoff phenomenon. This in turn seems to suggest that there’s some new and unexpected way to look at the
G-stable category that we’re not quite seeing yet — something important.

Idea 69. There appears to be some deep connection among the slice filtration; nonvertical truncations and gaps
in fixed-point spectral sequences; and some unseen third object. This seems like a good project for someone, and
whoever’s interested should probably first get Vesna’s opinion, as she may well have thought about this before.

Remark 70. The slice filtration is built by studying localizing subcategories of G-spectra built out of certain gener-
ating objects, just like Postnikov truncations. An extremely important feature of these categories is that they are
merely localizing and not thick — they are not closed under fiber sequences.

10.2. Motivic homotopy theory. Another subject we could try to make an impact on is algebraic geometry, and
our most likely target inside of algebraic geometry is motivic homotopy theory. Motivic homotopy shares a lot
of large-scale behavior with equivariant homotopy, making it doubly interesting in light of the above discussion.
The general idea, of course, is that the stable motivic homotopy category is meant to house “spectra”, but given by
stabilizing schemes rather than spaces. There are a ton of names attached to this field: Dan Dugger, Dan Isaksen,
Kyle Ormsby, Markus Spitzweck, Igor Križ, Po Hu, Morel, Vladimir Voevodsky — and the list goes on almost
interminably.
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The assimilation of homotopy theory into algebraic geometry via motivic homotopy has already been fairly
successful — there are analogues of the Steenrod algebra there, of bordism theories, and so on. The present state of
the art is Morel’s computation of π0S0, given by the Grothendieck-Witt ring, which intertwines Milnor K -theory
and the Witt ring classifying quadratic forms up to some sort of stable equivalence. All of these ideas have had a
serious role to play in the resolution of the Milnor conjecture, which has spurred interest in computing farther out
— people are now making headway on computing π1S0.

What generally makes this complicated is that the motivic homotopy category (like the equivariant stable cate-
gory and the K(n)-local stable category) has a larger Picard object associated to it than theZwe’re accustomed to. In
the motivic world, homotopy groups end up being bigraded, generated by a motivic circle and by a simplicial circle.
Because of this, computations become exceedingly difficult — a primary complication is that when we commute
circles past each other in classical homotopy theory we pick up factors of−1, but motivically there’s more than just
one circle to commute and more than just one −1.

Remark 71. In principle, motivic computations are supposed to be “easier” than corresponding equivariant compu-
tations. For a motivating example, the equivariant cohomology of a point is horrendous, but the motivic cohomol-
ogy of a point is not. Also, to get you worried, η is neither nilpotent nor torsion in motivic π∗S0.

This all raises a lot of questions to which there are not really even hints of answers — and rather than barging
into an unfamiliar field and trying to compute things, let’s instead ask a somewhat more reserved question:

Question 72. How can we qualitatively understand motivic stable theory? What are the analogues to understand-
ing things from a chromatic perspective?

Remark 73. The slice filtration discussed in the previous section was actually first investigated motivically.

10.3. Algebraic K -theory. Algebraic K -theory provides spectral invariants for module categories — including
rings, ring spectra, and generally anything giving rise to a symmetric monoidal category. This has been related
in some sense to algebraic topology every since Quillen constructed higher K -theories using homotopical machin-
ery.

We certainly can’t compute individual things in algebraic K -theory, and so again we can instead hope to under-
stand general phenomenology connected to the K -theory functor itself. The most strongly related such conjecture
is chromatic redshift, which doesn’t have a precise statement but is of the rough form:

Conjecture 74 (Chromatic redshift). The spectrum K(R) has chromatic information of one height higher than that of
R itself.

This is a strange conjecture and it’s certainly not something that we understand conceptually, but rather some-
thing that’s been repeatedly observed in our admittedly limited bunch of computations.

Remark 75. The redshifting element in computations has something to do with the generating cohomological class
of BS1. This appears in the calculation of K -theory in terms of topological Hochschild and cyclic homologies —
THH supports an S1-action, and taking fixed points against it introduces ghost of a BS1 to the picture. It may also
be the case that the B in Quillen’s +-construction is what’s doing the “shifting”, since the nonacyclicity of higher
Eilenberg-Mac Lanes also has something to do with “seeing higher chromatic data”.

Question 76. We could try to understand things from a chromatic point of view. After all, K -theory is closely
connected to the functors R 7→ BGLn R, and so we might ask: is some kind of redshift visible in BGLn R, BGL1R,
GL1R, or g l1R?

Question 77. Since K satisfies a universal property pertaining to sending a module category to its additive invari-
ants, it should be easy to map off of. On the other hand, Lubin-Tate spectra are very nearly the field theories of the
stable category, and so they should be easy to map into. Can we in some way detect maps KR→ En as R and n
vary?

Idea 78. Steve Mitchell has started to study this for R = H A an Eilenberg–Mac Lane spectrum, and his answer is
that there are no such maps.

Question 79. Topological cyclic homology is the target of a trace map from K -theory, and its known to capture
much of the information present in good situations. So, if we can’t understand K -theory, can we instead approach
these questions for TC?
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On the other hand, there are actual methods available to compute TC, which is a noble goal all its own. This
process happens in stages:

(1) Compute THH — this is by now accomplishable by fairly well-established methods.
(2) Use its S1-equivariant structure to build complicated diagrams involving the Frobenius, restriction, and

transfer maps.
(3) Take various sorts of limits and fixed points to produce objects TRn = THH(R)Cpn , TR = limres TRn ,

TF= limFrob TRn , and TC=THH(R)S1
.

Question 80 (This is both serious and less serious.). What are some names which abbreviate to T R and T F ? Or,
what are some better names for these objects?

Of course, TC is not really that computable. There are something like 2 · ∞+ 2 spectral sequences involved
(stemming from fixed points and from the Tate construction), followed by some additional homotopy limits. What’s
remarkable is that these intermediate spectral sequences display cutoff phenomena similar to that stemming from
the slice filtration.

Question 81. Are the cutoffs in the spectral sequences computing TC related to a slice filtration? Does this inform
our understanding of equivariant or motivic stable homotopy theory?

Idea 82. Another approach is to learn even partial information about THH(M U ) or TC(M U ), the “universal”
cases. (Various teams of superfriends have done work on / written about this, but there are a lot of moving parts
and it’s a lot of work.)

Idea 83. Conjectural computations suggest that THH(M U )hS1
is something like M U again.

Idea 84. Again, the only class that’s going to survive this homotopy limit is the class belonging to the circle. This is
supposed to be comparable to the computation of Q⊗ limnZ/p × · · · ×Z/pn — a system of vn -torsion groups can
form into a non-vn -torsion group in the limit.

Idea 85. Is there a connection between THH or TC of M U and that of S, given that one is a nilpotent thickening /
Hopf-Galois extension of the other? (Some mentions that Ausoni and Rognes have a lot to say about this.)

10.4. Transchromatic homotopy theory. The basic idea here is that we’ve been studying the K(n)-local categories,
but we don’t have a good conceptual understanding of how these pieces interact. We also heard in Tobi’s talk about
how little we understand about this interaction with the splitting conjecture.

We don’t really study K(n)-local spectra from this perspective. Rather, we study their continuous Morava E -
theory, i.e., their Morava modules. The relevant object LK(n)(En∧X ) carries an action both of E and of the extended
stabilizer group Gn , intertwining in a particular way. This is something like being a module over some kind of
spectrum-level group algebra “E〈〈Gn〉〉”. Moreover, the Morava module is kind of “complete” as such a module,
which should be our lens through which to view the K(n)-local category.

So, let’s think about sending the spectrum XK(n) to its localization LK(n−1)XK(n) — this should be like sending an
En〈〈Gn〉〉-module to an En−1〈〈Gn−1〉〉-module.

Question 86. How exactly does this go? What should these symbols mean? How do we put these modules together
as n varies?

Hopkins, Kuhn, and Ravenel are interested in this in their paper on character maps, as is Nat with his transchro-
matic geometry.

10.5. Multiplicative theory. We’ve collectively spent a lot of time thinking about the smash product of spectra,
how it gives us commutative ring objects, how it gives us associative ring objects, and all kinds of structures in
between. A primary reason to pursue these objects has been computational: having a structured multiplication
often induces multiplicative structures on relevant spectral sequences, and this lets you finish computations that
you can otherwise merely start.

The downside is that these are very difficult to construct a lot of the time — there are very few spectra that we
know have commutative ring structures. Important examples of these that we do know include the Eilenberg–Mac
Lane spectrum H R, whose multiplication is essentially unique Σ∞+Ω

∞Y , which is like the group-algebra S[Ω∞Y ]
(though there are a lot of rings which are not group-algebras); and the Thom spectra M O, M U , and M whatever.
We like M U a lot, and we especially like its relationship to BP — but what about BP ?
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Question 87. Does BP support a structured commutative multiplication?

This isn’t an open problem that gets mentioned much to people outside of our tiny subfield, as it’s so strongly
rooted in the technical details of the chromatic picture, but it would be extremely helpful to know one way or
another. If we had such a structure, the first thing to do would be to try to compute K(BP ), which would then
be an E∞-ring which could contain fantastic organizational information. There are at least partial results in this
direction:

Theorem 88 (Basterra-Mandell). BP admits an E4-structure. (I think they show that the space of such structures is
connected but do not show that it is contractible.)

Theorem 89 (Hu-Križ). There is no BP-algebra structure on M U .

Remark 90. So long as I’m speculating, I’d guess that BP does not admit an E∞-structure. There’s little concrete
evidence that it should, and in fact some of the essential things we use about BP are known not to mesh with a
hypothetical E∞-structure, which is discouraging. Even so, it would be nice if it were E∞, but we seem to be hoping
for this entirely out of optimism.

It’s further worth remarking what this extra structure might buy you:

Theorem 91 (Mandell(, Lurie)). If R is E1, then ModulesR exists (on the level of homotopy categories). If R is E2,
then ModulesR has a monoidal structure. If R is E3, then ModulesR has a braided monoidal structure. If R is E4, then
ModulesR has a symmetric monoidal structure.

Remark 92. The E∞ structure on the objects in HHR is absolutely crucial — the norm map cannot be made sensible
without it.

We actually know a way of refining A∞-structures to E∞ ones, say via Goerss-Hopkins obstruction theory but
also in many other ways. For instance, if BP had such a structure, then the natural map BP → HZ/p would be
necessarily E∞, and the action H∗BP → H∗HZ/p would govern some amount of what’s going on with the Dyer-
Lashof algebra. Of course, you can compute this without knowing a priori the existence of such a structure, and
then you can feed it into one of these obstruction theories — but things just go south quickly. The way that this
goes for M U is to notice that M U is built from BU , which can be resolved by the connective covers BU 〈2k〉, which
have controllable homology groups. This just doesn’t work at all for BP .

Question 93 (Ravenel; mildly unrelated). Find some way to produce spectra from formal group law data.

Remark 94. Hopkins has a “proof” that En supports an E∞-structure straight from the fact that it has an A∞-
structure. This originally ran afoul (pointed out by May) of being too careless about cofibrancy of operads and
algebras over operads, and though this has since been fixed no one has written it up. Most interestingly, this does
not go through Goerss-Hopkins obstruction theory. On the other hand, somehow both proofs rely heavily on
a description of A∞-maps En ∧ En → En , and Goerss-Hopkins obstruction theory also shows that the resulting
E∞-structure is essentially unique.

Theorem 95 (Angeltveit). The ring spectrum K(n) has a unique S-algebra structure, but not a unique M U -algebra
structure.

Remark 96. The E∞ properties of completed Johnson-Wilson spectra have been analyzed, but not uncompleted
ones. The best result in this direction so far is that LK(2)∨K(3)∨···∨K(n)E(n) is E∞, but without any kind of completion
the answer to the analogous question is not known.

Matt Ando has thought quite a lot about E∞-orientations of spectra by M U , the intertwining of structured ring
spectra with formal group laws. Suppose that R is a so-oriented E∞ ring spectrum, with an associated formal group
law ΓR. Now, think of a formal group law classified by a map L→ S off the Lazard ring as having a certain shape
“R” if it factors as L→ R∗→ S for our fixed map M U∗ = L→ R∗.

Theorem 97 (Ando). When R is H∞-ly M U -oriented (so, in particular, E∞-ly M U -oriented), then formal group laws
of shape R∗ are canonically closed under quotients.

32



Being a commutative algebra means that you have a map PA→A, where P denotes the free E∞-algebra

PX =
∞
∨

j=0

E∧ j
hΣ j

,

and associativity gives two maps

PPA PA A.

If these two long composites are equal, then A is said to be E∞ — if they are merely homotopic, with a specific
homotopy, then they are said to be H∞.

Remark 98. H∞ is not really operadic in the sense that you might expect. For instance, H∞ does not imply A∞ —
it doesn’t even imply A4.

Anyway, let’s start thinking about Matt’s theorem with the example of Ĝm . This p-local formal group has very
few subgroups, all of the form Ĝm[p

k] for varying k. Moreover, there is an isomorphism Ĝm/Ĝm[p
k]∼= Ĝm , i.e.,

a factorization

Ĝm Ĝm

Ĝm/[p
k].

pk

Less locally, we also care about the spectra TMF / Tmf / tmf, all of which admit E∞ ring structures. They should
also fit into this story, and they do: given a subgroup H in the formal completion Ĉ of an elliptic curve, the formal
group Ĉ/H is actually the formal group associated to the quotient curve itself:

Ĉ/H ∼=ÖC/H .

This compatibility is in some sense why we get an E∞ structure on TMF.
Let’s also talk about M U -theory — after all, M U is H∞-ly oriented by the identity, so we should be able to take

canonical quotients of any formal group law. This is indeed the case: if F : L→ R is a formal group law over R¹xº,
then we get a coordinate yon F /H for a subgroup H given by the pointwise formula

y =
∏

α∈H

(x −F α).

(This formula can of course be written with the monic associated to the divisor, rather than in this factored form.)
Matt essentially calculated this using Chern classes and a lot of trickery.

What’s obvious from this formula is that if you start with something p-typical and an arbitrary subgroup, you
have no reason to think that you’ll get something p-typical back. This was written up by Johnson–Noel:

Theorem 99 ( Johnson–Noel). The map M U∗→ BP∗ classifying p-typical FGLs is not compatible with quotients, and
hence cannot be the reduction of an H∞ map.

So, we have to find some way of producing such canonical quotients for p-typical FGLs if we expect BP to have
an H∞ structure. Other spectra also show up when trying to analyze this story, about which we can ask similarly
difficult questions — namely, BP 〈n〉 and E(n), with coefficient rings Z(p)[v1, . . . , vn] and Z(p)[v1, . . . , vn][v

−1
n ].

Question 100. Are FGLs of shape BP 〈n〉 or E(n) closed under quotients? (This would say a lot about the Ausoni-
Rognes program.)

What makes this question interesting is that it isn’t an entirely formal property. Instead, it depends upon the
choice of generators vi , which are only canonical modulo all the choices of the v j , j < i . Picking “smart” choices of
vi can certainly modify the answer to this question, and it also tells us something about the geometry of the moduli
of formal group laws.

Question 101. To what extent does this depend upon the choice of generators vi ?
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Idea 102. Andy Baker has thought questions like this before in some paper with “adic” in the title. In it, he rails
against having made any choice of coordinates at all in the construction of Johnson-Wilson theory, and he tries to
invert all possible vn rather than a selected one.

Remark 103. There are also∞+∞+2 cases for which we know that this works. There’s HZ(p) as p varies; there’s
BP 〈1〉 as p varies; there’s BP 〈2〉 for p = 2, joint work of Tyler with Niko Naumann; and there’s BP 〈2〉 for p = 3,
joint work of Tyler with Mike Hill. Neither of these last cases indicate how a proof might go for large primes.

Remark 104. Strickland does some related manipulations with Johnson–Wilson theories in his paper on products
on M U -modules, where it’s crucial that he work with neither the Hazewinkel generators nor the Kudo–Araki
generators, but rather some strange mix of the two. This might be able to be used to prove that there are definitely
choices of generators for which this question is answered negatively, at least for M U -modules if not for S-modules.

Idea 105. Certainly this machinery can be used to M U -orient spectra H∞-ly, and possibly some obstruction theory
can then be studied to lift such orientations to E∞-orientations. There are many examples where this would be
interesting, including E -theory. We might also try to compare such approaches to Barry Walker’s thesis about p-
adic measures versus K(1)-local E∞-orientations. It might also also be worth noting that E∨E is vastly nicer from
the perspective of commutative algebra than LK(n)(En ∧M U En), and that this is a big part of what’s standing in the
way.

Remark 106. Strickland’s subgroup theorem states that

Spf E0
nBΣpn = Subpn GEn

.

This gives even stronger reason to think that power operations are related to finite quotients of formal groups.

11. MAY 7TH: FACTORING CHARACTER MAPS (NAT STAPLETON)

Off and on this semester, we’ve considered the transchromatic character map

En(EG×G X )→Ct (EG×G Fixn−t X ).

We’ve mentioned the words “twist construction” before, but we haven’t really gone into detail. The key theorem
concerning the twist construction is that there is a factorization of the transchromatic character map:

En(EG×G X ) Ct (EG×G Fixn−t X )

Bt (TwistG
n−t (X )),

which arises from a canonical map Bt →Ct of rings and a map EG×G Fixn−t X →TwistG
n−t X of spaces, where

TwistG
n−t (X ) = hom(∗//Zn−t

p ,X //G)//(Qp/Zp )
n−t ,

arising from (Qp//Zp )
n−t → (∗//Zp )

n−t .
This is a concise expression, but it perhaps doesn’t explain what’s going on. Let me instead try to give concrete

models for these objects. First, we have a tried-and-true model for the fix-construction side:

EG×G Fixn−t (X ) =
∐

[α]∈Gn−t
p /∼

EC (imα)×C (imα) X
imα.

We can also form the following pushout of abelian groups:

Zn−t
p imα⊆G

Qn−t
p imα⊕Zn−t

p
Qn−t

p ,

34



leading us to make the definition
T (α) :=C (imα)⊕Zn−t

p
Qn−t

p .

This should give you pause — after all, C (imα) is not abelian in general — but it is well-defined because of the
formula [g , i] = [gα(z), i + z].

By definition, there is a canonical short exact sequence

1→C (imα)→ T (α)→Qp/Z
n−t
p → 1.

Recall that C (imα) acts on X imα, and this is part of the G-action on the Fix construction. This turns out to extend
to an action of T (α) on X imα by the formula [g , i] · x := g x — this follows from

[gα(z), i + z] · x = gα(z) · x = g · x.

We use this to give a definition of the twist construction:

TwistG
n−t (X ) =

∐

α

ET (α)×T (α) X
imα.

This definition makes obvious the map

EG×G Fixn−t (X )→Twistn−t (X )

needed in the character factorization.
It also gives a map

TwistG
n−t (X )→Twiste

n−t (∗)' BQp/Z
n−t
p ,

which suggests that we try relating it it to the theory of p-divisible groups. In particular, take G = Z/pk — then
one can calculate

En TwistZ/pk

t (∗) = (ΓG
E (BS1)n−t

n
⊕Zn−t

p
Qn−t

p )[p
k],

i.e., the pk -torsion in the pushout

Zn−t
p Qn−t

p

G
E (BS1)n−t

n
G

E (BS1)n−t
n

⊕Zn−t
p
Qn−t

p ,

whereG
E (BS1)n−t

n
is determined by the change-of-base pullback square

G
E (BS1)n−t

n
GEn

Spf E (BS1)n−t

n Spf En .

More explicitly, we can present this ring in coordinates by the formula
∏

(i1,...,in−t )∈(Z/pk )n−t

En¹q1, . . . , qn−tº¹xº/
�

[pk](x)− ([i1](q1)+GEn
· · ·+GEn

[in−t ](qn−t )
�

.

Finally, note that if all the qi are set to zero, then we get Γ(GEn
⊕Qp/Zn−t

p )[p
k]. This is used to get the relation-

ship between Bt and Ct .
13

In any event, this is all meant to give a natural factorization of the transchromatic Chern character map through
some other ring. That’s fairly interesting — where else do we see this?

Question 107. The Bismut-Chern character is a factorization

13There was a lot of confusion about whether taking the S1-action into account changed anything, since it appeared to be acting trivially.
Tomer eventually reminded us that if we have a G-spectrum with G decomposing as a normal subgroup N and a quotient G/N , then even if
G/N acts trivially, there is a twist taken into account in the G-fixed points by way of the nontriviality of the extension defining G.
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HRS1(X )

K(X ) HR(X ).

Bismut

Bismut’s definition is entirely analytic, which is why we wanted R rather than Q. Can this map be produced via
homotopy theory? (Tomer thinks the answer is yes, and that R can be replaced byQ adjoined some periods.)

Idea 108 (Nat). Fei Han has accomplished something like this inside the Stolz-Teichner program.

Question 109. There is a map

TwistG
n−t (X )→ Ln−t (X //G) := hom(Qp//Z

n−t
p ,X //G)//(Qp//Z

n−t
p ).

Can we build a factorization

En(EG×G X ) Bt (L
n−t (X //G))

Bt (TwistG
n−t X )?

Question 110. Both the Fix and the Twist constructions admit actions of GLn−t (Zp ). What is the connection
between their homotopy orbit spectra and p-divisible groups?

12. MAY 7TH: THE E -THEORY OF CROSSED MODULES (TOMER SCHLANK)

Recall that our transchromatic character maps EnBG → Ct Ln−t BG are so-named because when n − t = 1 we
have the formula LBG =

∐

g∈G/G BC (g ), which is in turn connected to the theory of characters. Furthermore, in
the case of n = 1, this gives a map K(BG)→ HC(LBG), which sends a (completed, virtual) representation to its
character.

The story of transchromatic characters arises by asking what cohomology theories we can replace K and HC
by, but we could have asked a different question: what else can we use in place of BG? One idea for generalization
is that the spaces BG are coincident with pointed homotopy 1-types, and so perhaps we can say something about
pointed homotopy 2-types if we can sufficiently express them in terms of group theoretic data. Crossed modules
turn out to encode this information well:

Definition 111. A crossed module is a morphism δ : M → P of not-necessarily-abelian groups, together with a
left-action P M (note that P and M already left-act on themselves by conjugation) such that δ is equivariant in the
two ways you could expect:

δ(p m) = pδ(m), δ(m)m′ = m m′.

These conditions guarantee that M is normal in P , and so we think of this as the “exact sequence”

1→π2X →M
δ−→ P →π1X → 1.

Indeed, there is a functor from crossed modules to 2-types, playing the role of the classifying space functor, which
produces a 2-type with these two homotopy groups. On the other hand, one thing we have to be careful about
is that many different crossed modules can produce the same 2-type, since M and P are recording something like
a presentation of the crossed module. For an easy example, take M mapping to itself by the identity — this has
vanishing kernel and quotient, so yields a contractible complex under realization, but obviously M itself can be
taken to be nonzero.

A recent theorem of Lurie asserts roughly that character theory works for all π-finite spaces (so, in particular,
those arising from finite crossed modules), and our goal is to take this theorem and expand it into computations,
ideally identical with those coming from Nat’s framework. We would hope to be able to see connections to repre-
sentation theory, . . . .

Now, Nat’s framework uses groups, so trying to make his theorems work for crossed modules requires going
through and checking that we can do the things he does for groups with crossed modules instead. Lots of things do
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indeed carry over — for instance, the definition of a p-Sylow crossed submodule as p-Sylow subgroups of M and P
that map to each other works well. On the other hand, some things don’t seem to work, and some things we don’t
know about. What’s also encouraging is that some things from topology carry over as well — we can define the free
loopspace of a crossed module as follows.

Definition 112. Select a crossed module M → P with associated kernel π2 and quotient π1. Further select a
“basepoint” [g0] ∈π1, as well as a lift p0 of g0 to P . We define P[g] to be the subgroup of P commuting with p0. I
must have copied something down wrong...?

M
m 7→(m−p0 m,δm)
−−−−−−−−→ P[g].

Remark 113. This is reasonable because the group P is like the paths in the 2-type. So, the new paths in the loopspace
are diagrams like

m

.

p

p0 p0

p

Two such diagrams paste together as

m m′

,

p

p0 p0

p ′

p0

p p ′

and so one sees where the conjugation condition in the definition arises. Write something less wishy-washy.

Idea 114. One thing you could naively hope to see pop up here is a representation theory for 2-vector spaces.
However, it seems like this isn’t the case, as everyone who looks at this problem for a few weeks decides that 2-
vector spaces aren’t the way to go — that is, everyone except, perhaps, Ganter and Kapranov. Their work bears
investigating.

Idea 115. Another idea is that the Atiyah-Segal theorem asserts that the map from genuine-equivariant K -theory to
Borel-equivariant K -theory is described as a completion:

KG(∗) =RepG→Rep∨G
∼=K(BG).

The uncompleted object RepG includes into Cn , which is some genuinely integral statement, and so one can ask: is
there some factorization through the theory of lattices in the setting of crossed modules?

13. MAY 14TH: HIGHER “q”-EXPANSIONS AND TAF CHARACTER MAPS (SEBASTIAN THYSSEN)

There’s a template story that we care about a lot when trying to get algebraic topology to interact with arithmetic
geometry, roughly summarized by the following square:

geometric data moduli objects

cohomology theories universal theories.

For instance, this is how people think about TMF:
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elliptic curves Mell

Ell∗ TMF.

and about TAF:

abelian varieties
+

extra structure
a Shimura variety

“abelian” cohomology TAF.

There’s some extra tickery involved in making this work for higher dimensional abelian varieties; the essential
obstacle is that the formal groups arising in algebraic topology are 1-dimensional, whereas those coming from
completions of high dimensional varieties will, predictably, be high dimensional. So, to split off a 1-dimensional
summand, we’re obligated to further consider the following data:

• A principle polarization, which controls A versus its dual A∗. (Note that this is not necessary in the case of
elliptic curves, since they are already well-related to their duals.)
• A quadratic, imaginary number field F , so that A carries a complex multiplication through OF .
• The action of OF on A must be of signature (n, 1). Loosely speaking this means that OF acts on LieA by n

copies of the natural representation and 1 copy of the conjugate one.
This process eventually yields a cohomology theory, but it is enormously complicated, cf. the memoir “Topological
Automorphic Forms" by Mark Behrens and Tyler Lawson. Hence, a question:

Question 116. Can we extract height n information by using lower height theories, obviating the need to compute
with TAF directly?

Classically, the answer is yes: the Chern character gives a natural transformation K(X ) → HQ(X ). This is
encouraging, and it encourages us to look for more “character maps” of similar form. I’d now like to describe some
maps of similar form involving TMF and TAF — but to do so, we’ll have to spend some time with number theory
first. Let me start by reminding you as to what a modular form is:

(1) A complex, holomorphic modular form of weight k is an analytic function f : h→ C on the upper half-

plane satisfying a modular transformation property: for
�

a b
c d

�

= γ ∈ SL2(Z), we declare

f (γ ·τ) = f
�

aτ+ b

cτ+ d

�

= (cτ+ d )k f (τ).

(2) Or: a modular form over a ring R of weight k is a rule associating to each elliptic curve (E/R, dω) an
element f (E/R, dω) ∈ R which is: dependent only upon the isomorphism class of the elliptic curve; ho-
mogeneous of degree k in the second variable, i.e., f (E/R,λdω) = λ−k f (E/R, dω); and stable under base
change.

(3) Or: a modular form of weight k is a section ofω⊗k onMell.
All these definitions agree where they interact. Definitions 1 and 2 are evidently equal over C. To tie 2 and 3, note
that for an isomorphism ϕ : E ′→ E , we have dω′ = ϕ∗dω = λdω for λ ∈ R×. Then, we compute

f (E/R, dω)dω⊗k = f (E ′/R,λdω′)λk (dω′)⊗k

= λ−k f (E ′/R, dω′)λk (dω′)⊗k ,

and hence this value is invariant under isomorphism.
Over the ring Z((q)), we have the Tate curve — this parametrizes a punctured formal neighborhood onMell of

the “missing point at∞”. The q -expansion of a modular form is given by its evaluation on the Tate curve:

f 7→ f (CTate, dωTate) = fq ∈Z((q)).
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This is said to be holomorphic if it actually lies in the subring fq ∈ Z¹qº ⊆ Z((q)). Restricting attention to the
holomorphic modular forms, this gives a graded ring map

⊕

k

M Fk ,→Z[u
±]¹qº.

In fact, given Lurie’s work on building the derived sheaf of elliptic curves, we can instantiate this topologically:

Tmf= O top(Mell)→O
top(SpfZ¹qº)“=”KU¹qº.

This map is something like a character map, in the sense that it moves from height 2 data to height 1 data.

Remark 117 (Tobi). What are some algebraic characterizations of the image of the q -expansion? Tomer: This is
really hard; it involves Hecke operators and many complicated conjectures of Shimura and lots of others. Saul: But,
without any extra adjectives, you can write down generators of the ring of modular forms at least. This won’t work
when you also expect things like level structures or marked points.

Remark 118 (Tobi). Can you also tell us why the map is injective? Sebastian: There are several steps to the argument,
but you end up showing that if a modular form vanishes on a formal neighborhood of the cusp, then it’s also zero
on a dense open, so zero everywhere. The problem appears when you tensor the tautological bundle ω with an
arbitrary OF -module L. The zero locus will still be a dense open, but then you have to actually work to check that
it is the whole space.

Remark 119 (Tobi). And what’s special about ∞, what if I evaluate somewhere else? Tomer: Well, what other
canonical points do you know that are arithmetically global?

Now we move into thinking about automorphic forms, where we might try to reproduce this q -expansion
behavior. We’ll work with the structure group U (2,1;Z[i]), which contains as a subgroup SL2(Z) by the embedding

�

a b
c d

�

7→







a 0 b
0 1 0
c 0 d






.

We’ll also care about the following generalization of the upper half-plane: CH2 =
¦

(v, w)
�

�

�Im v − 1
2 ww∗ > 0

©

.

Given these, an automorphic form ϕ is an analytic function ϕ :CH2→C satisfying modularity: for

γ =







a1 a2 a3
b1 b2 b3
c1 c2 c3






,

the automorphic form transforms by

ϕ(γ · (v, w)) = (c1v + c2w + c3)
kϕ(v, w).

We have two variables, v and w, in which we can take expansions. The thing number theorists typically do is to
take a Fourier expansion in v, which ends up landing in “Jacobi functions¹vº”, and there’s all sorts of complicated
theory that comes out of doing this. The other variable seems rather unexplored; taking Taylor expansion in w at
0 produces something in the ring “Modular forms¹wº”.
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Let me draw a picture to try to explain why we land in the claimed target ring.

• w

•w

◦

im(v2)

im(v1)

im(v) = w2

2im(v) = w2

2

h

w ∈C

CH2

//

OO

33

After thinking hard, this forces ϕn+k to be a modular form of weight n+ k, and so begets a map

AU (1,2)
k

3 ϕ 7→ Tw=0ϕ ∈M F∗¹wº.

This can even be made into a map of graded rings, using the same trick as is used for modular forms: a formal sum
of two homogeneous forms ϕ = ϕk +ϕ

′
k ′

can be factored as:

ϕk +ϕ
′
k ′ =

∞
∑

n=0

�

ϕn+k (v)w
n dω⊗k +ϕ′n+k ′(v)w

n dω⊗k ′
�

=
∞
∑

n=0

�

ϕn+k (v)dω
⊗k +ϕ′k ′+n(v)dω

⊗k ′
�

wk .

This last object is an element in M F∗[dω]¹wº, so gives a graded map A∗ → M F∗[dω]¹wº. Lastly, there are
inclusions CHn→CHn+1 for every n, and moreover CHn−t →CHn+1 for every n and t < n.

Conjecture 120. There is an expansion principle analogous to the q-expansion principle for elliptic curves.

The point of such expansion principle is that we can now start of with an, say complex, automorphic form, check
that the coefficients of the expansion are say integral and then knew that the automorphic form is already defined
over the integers. So assuming that this conjecture holds, the hard work of Behrens and Lawson then produces
E∞-spectra Xn (for n-dim abelian schemes) by evaluating on a suitable formal neighborhood of the expansion locus
together with topological analogues of these expansion maps, i.e. (transchromatic) character maps from TAFn+1 to
the spectra just mentioned!

Idea 121. The target of these higher character maps should yield interesting and unexplored height n theories.

Conjecture 122. Due to the present construction of the TAF-spectra, which is tied to one prime p at a time, we conjecture
a good approximation of Morava E-theory by localizing our spectra Xn , i.e.

LK(n)Lp Xn ' Ep,n .

If it wasn’t for this dependence on p in the TAF construction we’d even hope for a more global analogue.
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14. MAY 24TH: HOMOLOGY OF LIMITS AND ALGEBRAIC CHROMATIC SPLITTING (MIKE HOPKINS)

I was told that this was an informal seminar, and I took that seriously, so this might be a little disorganized —
you’ll have to bear with me. I want to advertise a purely algebraic problem inside of the Morava E -theory world
that I think would be really good to solve. It has to do with comparing two different chromatic layers, and if the
calculation comes out a certain way, we’d in particular be able to prove the chromatic splitting conjecture.

This story starts by recalling the homotopy groups of the E(1)-local sphere, one of the only computations in
chromatic homotopy theory that you can actually do:

π∗LE(1)S
0 =







Q/Z at −2
Z at 0 (for p 6= 2)
other stuff at i 6= 0,−2

,

where the undescribed groups are finite cyclic groups with the property that

πi L1S
0⊗π−2−i L1S

0→π−2L1S
0

is a perfect pairing. There are lots of different ways of looking at it, including some methods involving p-adic
interpolation,14 and the whole thing behaves as if all the groups want to be captured by that oneQ/Z in dimension
−2. This is even reflected in related computations — the image of j spectrum captures exactly the connective part of
this, and if you force that answer to be periodic, then all finite cyclic groups in positive dimensions somehow force
the existence of thisQ/Z in dimension −2.

At higher heights, we can ask the obvious analogues of these questions:

Question 123. Where are the Q/Z groups in π∗LE(n)S0? More generally, where are the vi -divisible groups for
i < n?

Generally, it’s a good idea to try to find pieces of complicated computations which ought to have simple expla-
nations, and then seek those. This feels like one such thing.

Now, there’s one other calculation along these lines that we know, and which is actually a little easier: the
homotopy of the K(1)-local sphere L̂E(1)S0. This has the property that

π∗L̂E(1)S
0 =π∗

�

profinite completion
of LE(1)S0 (at p)

�

.

Performing this profinite completion on the level of spectra causes the infinite groups to shift around — and you
can see this happen when the Q/Z in π−2LE(1)S0 becomes a Zp in π−1LK(1)S0. So, knowing how the shifts work,
we could have instead asked the following question instead and gotten an equivalent answer:

Question 124. What are the groups π∗(LnS0)∧p ⊗Q? When are they nonzero?

These operations can be expressed concisely by studying the Bousfield classes involved — and this explains why
the p-completion shows up. We have the following:

LnS
0 = LK(0)∨···∨K(n)S

0,

(LnS
0)∧p = LK(1)∨···∨K(n)S

0.

These localizations look like they’re related, and they are — we have pullback “fracture squares / cubes”, an example
of which for n = 2 is:

LK(1)∨K(2)S0 LK(2)S0

LK(1)S0 LK(1)LK(2)S0.

14Extremely disappointingly, this was not brought up in this seminar.
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So, it would even suffice to understand the rational components of the homotopy groups of these other spectra.
The two intermediate corners are something we know — maybe — up to me getting this wrong, at least.15 This is
what I think the theorem is:

Theorem 125 (Maybe). There is an isomorphism

π∗LK(n)S
0⊗Q∼=H ∗(Sn ;π∗En)⊗Q∼=Λ[ξ1, . . . ,ξn],

with ξi ∈π−2i+1LK(n)S0.

So, what’s left is to understand is the thing in the corner — i.e., Q⊗π∗LK(n−1)LK(n)S0. This is part of what the
chromatic splitting conjecture is meant to address.

Conjecture 126 ((One sort of the) chromatic splitting conjecture). Recall the Devinatz-Hopkins equivalence

LK(n)S
0 '−→ E hSn

n .

This means that LK(n)S0 receives a map LK(n)S0← (S0)hSn =D(BSn) (where care must be taken with the profinite object
Sn in “D(BSn)”). With some work, this begets an element ζn ∈ π−n LK(n)S0 by noticing that the determinant class (or
“norm”) ζ ∈ H 1(Sn ;π0En) survives the Adams spectral sequence. Note that ζ1 in π∗LK(1)S0 captures the copy of Zp of
interest to us previously. The conjecture is that

LK(n−1)S
0 ∨ LK(n−1)S

0 1∨ζ−→ LK(n−1)LK(n)S
0

is an equivalence. Check that I got this last part right.

Remark 127. This is easy to check at n = 1, and elaborate calculations of Shimomura verify it at least for p ≥ 5.
It’s generally helpful to have something hold for both of these, essentially because n = 1 can’t tell the difference
between n and n2, whereas n = 2 can.

Remark 128. At some point, people were trying to disprove the telescope conjecture by understanding the locations
of the Q/Zs in the finite localizations via really enormous computational machines. For instance, take X to be an
E(1)-local finite spectrum. Then we can always find maps to and from large wedges of spheres (by analyzing the
rational homotopy type) with the indicated composites:

∨

Sn X
∨

Sn X .
pN

pN

These maps have finite kernel and cokernel, and so knowing where the Q/Zs are in π∗X is identical information
to understanding what the wedge of spheres is — that is, it’s dependent only upon the rational homotopy type of
X . This ought to generalize to vi -divisibilities as well, and we ought to be able to give qualitative analyses of what’s
happening.

Through the rest of this talk, we’re mostly going to be concerned with two examples. This will save us from
dragging indices along everywhere we go.

(1) n = 1: We could consider π∗L̂1S0 ⊗Q. Now, we know the answer as to where the Q/Z groups live, but
today we’re going to reproduce this same answer in a different way. Now, in place of this, we might try
to study π∗K ∧ LK(1)S0 ⊗Q, where we emphasize that we’re using the uncompleted smash product. If we
understood that well, then we could easily recover information about the homotopy groups we want. Is
this via an Adams spectral sequence? (That is: why are we studying K -groups?)

(2) n = 2: Similarly, we can try to study the next height up, but let’s try to make our decrease in height as small
as possible. Namely, we would like to study the groups v−1

1 π∗LK(2)M
0(p). A simpler replacement for these,

as above, are the groups v−1
1 π∗E2 ∧ LK(2)M

0(p).16

15This is in my brain, filed under “things we know.” Maybe we know it — or maybe it’s just in there because if we could do something really
cool with it, then we should be able to go back and figure it out.

16Note that because we have a naturally occurring map, we can study the E -homologies of these things to detect equivalences, rather than
studying their actual homotopy. Note further that I’m not sure what “map” refers to here.
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There’s a conjectured answer about all this, which we now endeavor to describe. Begin by considering just the
spectrum LK(1)S0 without the extra inversion step, and recall that LK(1)S0 = limm L1M (p m). We want to understand
K∗LK(1)S0, and we know that K∗L1M 0(p m) =K∗/p m . So, what’s left is a question about interchanging K∗-homology
with inverse limits. This is also how things go in our program at n = 2: we want to study the system

LK(2)M
0(p) = lim L2M 0(p)∧M 0(pn0 , vn1

1 ) = lim M 0(p)∪vn1
1

CΣn1|v1|M 0(p).

Analogously, the intermediate homologies of the spectra in this system are

(E2)∗L2M 0(p)∧M 0(pn0 , vn1
1 ) = (E2)∗/〈p, vn1

1 〉.
This all begets the following natural question:

Question 129. How do we calculate the En -homology of an inverse limit? Can we do this for E(n)-local systems?

Remark 130. You can see that there’s something to this question in an example. There’s an equivalence M (p) =
lim M (p)∧M (pn0 , vn1

1 ), but all the terms in the right-hand side are K∗-acyclic, while the left-hand side is not. How-
ever, if we K(2)-localize appropriately, things get a lot better, and that’s the miracle we’re going to discuss.

Let’s discuss this situation further: set E = En and consider a system

· · · →Xm→Xm−1→ ·· · ,
where all the spectra are local for E(n). Maybe the E -homology of the inverse limit of this system is complicated,
but the homotopy is not so bad: there’s a Milnor short exact sequence

0→ lim1π∗+1Xm→π∗ limXm→ limπ∗Xm→ 0,

arising from the long exact sequence associated to the fibration

limXm→
∏

m
Xm

shift−→
∏

m
Xm .

So, it’s actually an equivalent problem to understand the E -homology of products.
For now, let’s suppose that our system is such that lim1 vanishes — this hypothesis is definitely inessential (in

fact, that will sort of end up being the point), but maybe for now it will be simplify the exposition. Anyway, it
would be great if we had a formula for E∗X in terms of π∗X , but of course we don’t in general. There is one special
case where we do: if X is an E -module, then there is an isomorphism E∗X ∼= E∗E ⊗E∗

π∗X . So, if our diagram was
a tower of E -modules with E -module maps, we could put these facts together17 to get

E∗ limXm = E∗E ⊗E∗
limπ∗Xm .

This formula shows that there is not an isomorphism lim E∗Xm 6∼= lim E∗E⊗E∗
π∗Xm . That’s not surprising, as we

know in our hearts that homology doesn’t commute with inverse limits, and this is exactly the phenomenon we’re
trying to capture. However, we can actually make this statement true if we make our symbols mean something else
— specifically, this statement is false if we understand the limit to be in the category of graded groups. The functor
E∗E ⊗E∗

− suggests that we really mean something else, as it’s the functor which sends an E∗-module to the cofree
E∗E -comodule over it. This is right-adjoint to the forgetful functor:

ComodulesE∗E
ModulesE∗

.
forget

E∗E ⊗E∗ −

Since it’s a right-adjoint, it commutes with limits, and so we see that the thing we’re computing is a limit in the
category of E∗E -comodules — and really we could have been doing everything in the category of E∗E -comodules,
including the Milnor sequence and so on.

Remark 131. Note that we mean E∗E -comodule in the most literal sense — i.e., these things are not equivalent to
Sn -modules. That becomes true only after In -adic completion. The difference between these two objects is recorded
in the coaction map: there is a map ψ : M → E∗E ⊗M with ψ(m) =

∑

bi ⊗mi , which is necessarily a finite sum.
However, a naive infinite limit could potentially convert this into an infinite sum. The limit in E∗E -comodules is
exactly the E∗-submodule on which ψ is given as a finite sum. This makes computations exceedingly awkward, but
it gives some small bit of intuition as to what’s going on.

17This statement is still ignoring lim1. If we wanted that too, we could re-state this in terms of products, and everything would work out.
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We can drop the hypothesis that we’re working with E -module spectra by noting that every spectrum admits a
cosimplicial resolution in terms of E -modules:

...
...

...

Xm E ∧Xm E ∧ E ∧Xm · · ·

Xm−1 E ∧Xm−1 E ∧ E ∧Xm−1 · · ·

...
...

....

We now have access to the E -homologies of all the terms in these resolutions. This is still hard of course — we seem
to have traded one inverse limit for another. Luckily, we have a nilpotence-era theorem to help us out:

Theorem 132 (H., Ravenel). Any E(n)-local spectrum X has a finite E-resolution. (In fact, doing this for the sphere and
smashing through shows that every E(n)-local spectrum has a finite resolution of uniform length.)

Theorem 133. If {Xα} is an inverse system of E(n)-local spectra, then this process begets a spectral sequence

lims

ComodulesE∗E

E∗Xα⇒ E∗−s limXα.

No one has learned to calculate with this spectral sequence, but it doesn’t feel like this is because it’s especially
hard — just that no one has really resolved to sit down and do it. In fact, my strong feeling is that this is a fundamental
thing that transchromatic people have missed out on. We ought to be able to compute more about these derived
functors of the inverse limit, and managing to do so would open a lot of doors.

Let’s try it out in our easy, concrete example of n = 1. The first thing we’ll need is a (finite) resolution of
LE(1)M

0(p m). This comes from the usual fiber sequence

LE(1)S
0 ∪p m e1→K/p m ψ`−1

−−→K/p m ,

where ` is a topological generator of Z×p and p 6= 2. Applying K∗ and taking the limit in K∗K -comodules gives18

lim
ComodulesK∗K

K∗K/p m =K∗K .

Hence, this gives an exact sequence

0→ lim
ComodulesK∗K

K∗/p m→K∗K
ψ`−1
−−→K∗K→ lim1

ComodulesE∗E

K∗/p m→ 0.

We’re supposed to be able to understand this algebro-geometrically, without picking a basis (or, as they say,
“coordinates”). We needed to feed in information about the stabilizer group and its action in homotopy theory to
get here, but once we’re here we should be able to hand everything over to algebra. To start, K is Landweber flat,
which means we have an isomorphism Specπ0K ∧K = AutĜm . The map ψ` induces a map AutĜm → AutĜm ,
which acts by f 7→ [`]◦ f . Now, we’re really interested in the rationalization of these groupsQ⊗K∗K , and rationally
we have access to a logarithm. With some work, this gives Q⊗π0K ∧K ∼=Q[b±], where b is given by the ratio of
the v1 elements from each factor, and the action of ψ` is given by ψ`(b ) = ` · b . It would be nice to flesh out the
formal geometry. This allows us to compute the inverse limit exact sequence:

18Recall that we’re working with K = E1 =K∧p , which is p-adically complete — but that we’re not completing any of our smash products.
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Q Q⊗π0K ∧K Q⊗π0K ∧K Q

b n (`n − 1)b n

b 0 = 1 (`0− 1)b 0 = 0.

Tensoring up to K∗-coefficients gives what we were after.19

We can also imagine how this might go for n = 2. The spectra in our system there were Xm = LE(2)M
0(p)∪v m

1

CΣm|v1|M 0(p), and we want some resolution

Xm→ E2Xm→ ·· · ,

which should somehow involve the structure of S2. We use our program to calculate the levelwise E -homology:

E∗ limXm→ lim
ComodulesE∗E

E∗E ∧Xm⇒ · · · .

Finally, we invert v1 and study the cohomology of the resulting resolution. Just as in the example of n = 1, we’re
supposed to calculate that the various maps act by 0 on the element 1, and this is what produces the ζn element
we’re after. We summarize all this for arbitrary height in the following conjecture:

Conjecture 134 (Algebraic chromatic splitting conjecture).

lim i
ComodulesE∗E

E∗/〈p, . . . , vn−2, v m
n−1〉=

(

0 for i > 1,
v−1

n−1E∗/〈p, . . . , v2〉 for i = 0,1.

(This would verify the ordinary chromatic splitting conjecture.)

Remark 135. It’s unclear whether this should depend upon the size of the ambient prime. Mike’s gut feeling is
that it shouldn’t, but Shimomura claimed that the ordinary chromatic splitting conjecture was false at small primes,
though this has been re-contested. The web is sufficiently tangled that it’s hard to really tell. If anything goes wrong,
it’s that the infinite cohomological dimension of the stabilizer group somehow complicates the resolutions we need
to use.

Remark 136. I’d really like to state all this in terms of the Morava stabilizer group, though admittedly this may just
be out of personal computational prejudice. This is really hard, of course — we’re relating Sn to Sn−1 — and the
“computability” of these derived inverse limit functors is also part of their appeal. One thing that’s arised since then
but which we weren’t originally thinking about is the interaction with Barsotti–Tate groups, specifically the idea
that height reduction isn’t losing height but rather pushing it into an étale component.

Remark 137. At some point in the distant past, the Ext groups of an arbitrary ring were viewed as impossible to
compute, but then Tate and all his friends came along and gave these beautiful methods for computing Ext in certain
cases. As you go along and read about these things, you start to build up a library of things you do understand,
and by the end of it you realize you can actually compute quite a lot. One of the major goals of this sort of project
would be to start building such a library — to find simple examples of diagrams whose derived inverse limits we can
compute, then to begin some systematic approach to classes of examples.

Remark 138. Shimomura’s calculations of the homotopy of the E(2)-local sphere verifies (again, at least at large
primes) that the ordinary chromatic splitting conjecture holds. His machine, however, is completely algebraic,
since the Adams spectral sequence that would typically follow the chromatic spectral sequence is collapsing. So,
while I haven’t checked this, it’s hard to imagine that his calculation somehow avoids checking the algebraic version
of the chromatic splitting conjecture as well.

Remark 139. Paul Goerss gave a talk at some point called The Homology of Inverse Limits, and Hal Sadofsky claimed
to have a bunch of computations related to this. I’m not sure what happened to either of their projects, but they
might be good people to talk to if you want to hear more about these things or if you have something to share
yourself.

19The differential d b/b in H 1 is supposed to be important to this, and it’s also supposed to indicate how a lot of this proceeds in general.
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APPENDIX A. FURTHER PROJECTS

Some projects we mentioned through the semester seemed interesting, but were either too underdeveloped to
speak about or we simply ran out of time. It seems remiss to omit their mention from these notes entirely, so here
they are.

A.1. Other things involving p-divisible groups. A broader program that could be investigated is to instantiate
other entries from the chart in Section 1.3 in terms of p-divisible groups and height modulated Morava E -theory.
Work in progress includes:

• Nat and Tobias have largely worked out a study of level structures on the group π0LK(t )En ⊗GEn
and their

instantiation in algebraic topology.
• Nat has produced an analogue of the result that BU (m) represents the divisor scheme Div+m(GEn

) by study-
ing the p-torsion points of U (m).
• Nat has also begun investigating a p-divisible analogue of Strickland’s theorem that BΣm represents the

scheme of subgroups Subm(GEn
).

This leaves many constructions untouched, however. For instance, isogenies of formal groups are known to be
connected to power operations, by work of Matthew Ando; this is connected to the third point above. Matt, along
with Mike Hopkins and Neil Strickland, have also shown that the formal scheme associated to BU 〈6〉 is connected
to Θ-structures (or cubical structures) in the sense of Lawrence Breen or David Mumford. Less classically, Neil
Strickland’s student Sam Marsh computed the E -theory of various linear algebraic groups of finite fields, and while
he didn’t phrase his results in this language the answer appears to be related to symmetric powers of formal schemes.
An analysis of any of these ideas or of carrying over any other algebro-geometric description of a space using classical
Morava E -theory to height-modulated Morava E -theory would be very interesting.

A.2. Morava E -theory at n =∞. Several of us have wondered aloud at one point or another what the Morava E -
theory associated to the degenerate point Ĝa ∈Mfg might look like. This seems hard to make sense of, and possibly
someone with a superior understanding of the moduli stack would warn us off of trying to study it seriously, but
nevertheless there has been idle speculation.

A.3. E∞-presentations of M U . (This is an idea of Matt Ando’s. He has a graduate student, Nerses Aramyan, who
may be working on this project or something extremely close. Those intrigued by this would do well to talk to him
first, so that no one steps on his toes.)

There are not many spectra for which we have E∞-structures, and there are even fewer for which we have E∞-
maps among them. Some of these (e.g., M U ) come from geometric considerations, with which it is typically very
hard to do algebraic calculations, and some of these (e.g., En) come from very hard algebraic calculations alone, for
which no geometric analogue is known.

There is one result which suggests an algebraic program that might be used to calculate E∞-M U -orientations.
A complex oriented cohomology theory can be defined in two ways: as a ring spectrum E receiving a ring map
M U → E , or as a ring spectrum E together with a class x ∈ E2CP∞ restricting to the unit under

E2CP∞→ E2CP1 ∼= Ẽ0S0.

This second definition can also be expressed diagrammatically, using the identification of the Thom spectrum of the
tautological bundle over CPn :

T (L − 1 ↓CPn) = Σ−2+∞CPn+1.

Adam’s observation is that the choice of such a cohomology class x is equivalent to a choice of factorization of the
unit map:

T (L − 1 ↓CP0)'Σ−2CP1 S0

T (L − 1 ↓CP∞)'Σ−2CP∞ E .

'

η

x
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Since M U is canonically complex-oriented, this begets a map T (L − 1 ↓ CP∞) → M U , which on rational
homology is the unit map

Q{β1,β2, . . .}→Q[b1, b2, . . .].
Rationally, the free E∞-ring-spectrum P(X ) on a spectrum X has known action on homology:

HQ∗P(X ) = SymÞHQ∗X .

Hence, the natural map PT (L − 1 ↓CP∞)→M U is a rational equivalence.
Thinking of rational information as “chromatic height 0”, one might then ask what happens at chromatic height

1, i.e., whether this map is a K(1)∗-equivalence. It isn’t — the E1-Dyer-Lashof algebra acts freely (unsurprisingly)
on the free E∞-ring-spectrum, but its action is not free on M U . However, Matthew Ando believes that work of
McClure and of Ando–Hopkins–Strickland on H∞-M U -orientations suggests how this situation might be repaired:

C

PT (L − 1 ↓CP∞) M U

PT (L ⊗Perm ↓CP∞×BΣp ).

coeq

The spectrum T (L − 1 ↓ CP∞) should receive a pair of maps: one corresponding to a sort of trivial inclusion of a
wedge summand, and another corresponding to a sort of norm construction. These should agree upon postcompo-
sition to M U , and so produce a map off of their coequalizer C in E∞-ring-spectra. This map is conjectured to be a
K(1)-equivalence, and since BΣp is rationally acyclic, an E(1)-equivalence.

This has really pleasant implications — using the adjunction

E∞-RingSpectra(PX ,Y )' Spectra(X ,Y )

we produce from the coequalizer sequence a fiber sequence of mapping spaces:

Spectra(T (L ⊗Perm ↓CP∞×BΣp ),Y )⇔ Spectra(Σ−2CP∞,Y )← E∞-RingSpectra(M U ,Y ),

where Y is an E(1)-local E∞-ring-spectrum. This gives a concrete condition for checking when a given coordinate
on a K(1)-local complex-orientable spectrum is in fact an E∞-coordinate — it simply has to pull back to the same
element of cohomology under two maps.

More generally, one would hope that a similar resolution (perhaps involving BΣp2 ) could be used to study at least
E(2)-local E∞-M U -orientations, if not E(n)-local ones — these may have been recently made accessible by Charles
Rezk’s work on the Koszul-ality of the Dyer-Lashof algebra for E(n). If this works out sufficiently well, it may also
give access to a proof that the M U 〈6〉-orientation of tmf (which is E(2)-local) is E∞. Other related work includes
the thesis of Jan-David Möllers, a student of Gerd Laures, and of Barry Walker, a student of Charles Rezk. It’s
also possible that the obstruction theory of Niles Johnson and Justin Noel is related — these resolutions may be
smart, short resolutions of their general procedure. There is also a sequence due to Arone and Lesh, in a paper titled
Filtered spectra arising from permutative categories, which appears to at least be superficially related to this problem.

A.4. Iwasawa theory. (All of this is an idea of Mike Hopkins.)
Consider, again, the homotopy groups of the K(1)-local sphere. For p ≥ 3 the K(1)-local Adams spectral sequence

collapses, so the answer is entirely computed by the chromatic spectral sequence. The chromatic spectral sequence is
concentrated in two lines: H 0,∗(S1; E1) is a single Zp in degree 0, and H 1,1+∗(S1; E1) contains a scattering of groups,
collectively called the α-family, which altogether are given by the following formula:

πn LK(1)S
0 =







Zp when n = 0,
Zp/(p s) when n = s |v1| − 1,
0 otherwise.

Chromatic homotopy theory gives us powerful methods for computations, but any geometry present in the
system exists integrally, and so it is frequently useful to try to produce integral models for the phenomena we see
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when working at a family of chromatic primes. The denominators in this formula are, in fact, encoded by a familiar
integral family: the Bernoulli numbers. Specifically, we have

πs |v1|−1LK(1)S
0 =Zp/denom(B2s/2s).

Here’s a second interesting observation: the expression Zp/(p s) can be written in terms of the p-adic valuation

as Zp/p1−|s |p , which is evidently p-adically continuous in s . It’s also evident that we can replace the integer s ∈ Z
by a p-adic integer s ∈ Zp and the formula will still give a result. In fact, this isn’t a totally insane idea: the even
part of the Picard group of the K(1)-local category is given by Z×p , and so we could conceive of such homotopy
groups graded against p-adic integers. Further computation reveals that this guess at the extension of our formula is
actually correct — the homotopy groups graded over the p-adic spheres simply p-adically interpolates the standard
K(1)-local homotopy groups.

Moved by this, we can ask for a continuous object in which the Bernoulli numbers appear — and number theory
has gifted us with one of those too: the Riemann ζ -function, where the Bernoulli numbers appear as the special
values

ζ (1− 2s) =
B2s

2s
.

This is neat, and it gives us an idea of where to go, but the integral homotopy groups are inappropriate for studying
continuous phenomena. After all, we don’t know of such a thing as C-graded homotopy, and we already have a
notion of p-adically graded homotopy in the K(1)-local setting. So, perhaps we’re after a p-adic analogue of the
ζ -function.

Number theorists have also described such an object, though they have decided that it resides in the field of
Galois theory, in a further subfield now called Iwasawa theory. Define the group G to be the Galois group of the
maximal cyclotomic extension: G =Gal(Q(ζp∞) :Q). This comes with a natural character κ : G→Z×p , determined
by the formula

ζ κ(σ)pn = σ · ζpn

for any σ ∈ G. To build a ring-theoretic source of inputs to κ, we construct the profinitely-continuous group-
ring Λ = Zp¹Gº, sometimes referred to as “the Iwasawa algebra.” The ring Λ is to be thought of as the ring of
holomorphic functions, and the pushforward map κ2r

∗ : Λ→ Zp as evaluation at r . Then, the p-adic ζ -function
is defined as a certain element of the fraction field of Λ (i.e., as a “meromorphic function”) which interpolates the
complex zeta function at our chosen points and which has dramatic constraints on its poles.

This is a lot to swallow, and it’s not clear how to connect this set-up to chromatic homotopy theory exactly.
Nonetheless, Neil Strickland20 has forged ahead and rephrased our computation of the homotopy groups of the
K(1)-local sphere in Iwasawa-theoretic terms. Recall that Piceven

1
∼= Z×p , which we interpret as Z×p = End(Z×p ) by

the correspondence between the function β : x 7→ x b and b . Now take G to be G = Pic∗1 = hom(Piceven
1 ,Z×p ), so

that Λ = Zp¹Gº. We construct an “Iwasawa module” πS0
K(1) over Λ, along with auxiliary modules Mβ for each

β ∈ Pic1 which altogether have the relation

πS0
K(1)⊗Λ Mβ =πβLK(1)S

0.

Here’s how he does it: he takes πS0
K(1) to be Zp with the trivial Pic∗1-action, and he makes Mβ to be Zp with the

action λ · x = λ(β)x = λb x. We can check that this gives the right answer via the following calculation, taking x⊗ y
to be a generator of the above tensor product and b to be a topological generator of Z×p :

x ⊗ y = (βb x)⊗ y = x ⊗ (βb y) = x ⊗λb y

⇒ 0= (1−λb )(x ⊗ y).

This presents us with two operations: in the case λ= 1+ p s this produces the quotient Zp/(p s), and in every other
case the coefficient is a unit and the tensor product collapses to the zero module.

This was abandoned after a few people thought really hard about the K(2)-local case, found it to be very difficult,
and then got distracted by much more attractive and modern developments in homotopy theory. However, Mark

20More exactly, Mike says that this is his model, but the only place it appears in the literature is in some published notes of Neil’s.
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Behrens published a result a few years ago that indicates there may yet be hope for a K(2)-local statement. Mark’s
result concerns the organization of the β-family, which are a bunch of analogous elements in H 2,∗ at chromatic
height 2, using (spectral related to) TMF. If TMF is involved, then you should expect their existence and nonex-
istence to be reflected and recorded by statements about modular forms, and this is exactly the case: the element
βi/ j ,k exists exactly when a corresponding modular form fi/ j ,k exists, satisfying some minimality property and a
variety of complicated and confusing conditions (even for seasoned number theorists) about the weights of f and
its reductions mod powers of p.

What might this mean in the context of the above program? Remember that in the end this all came down to
picking off the denominator of some Bernoulli numbers, which is supposed to tell you how many times you can
divide your favorite α-element by p. To phrase this operation algebraically, you’d want to follow the composite

Zp
ζ−→Qp →Qp/Zp ,

which detects exactly the fractional part of the p-adic rational special value of the ζ -function. Analogously, the
divisibility properties of modular forms are encoded in the theory of L-functions. Moreover, there’s even an anal-
ogous quotient: L-functions are valued in modular forms, and p-adic modular forms are essentially built out of
integral modular forms along with reciprocals of the Eisenstein series. Hence, one could hypothesize the existence
of a fantastical p-adic L-function whose composite

unknown source→ p-adic M F →
p-adic M F

integral M F

records the divisibilities in the β-family.
That’s already a lot to ask for — but, ideally, this would all fit into an Iwasawa theory for Pic2, which would

wrap up the homotopy groups of LK(2)S0 into a single Iwasawa module. You’ll notice that the module πS0
K(1) was

extraordinarily simple. This is partly because the actual homotopy groups are not so awful, but it’s also reflective
of a broader phenomenon in number theory: computing special values of modular forms, L-functions, or whatever
else is potentially very difficult, but the objects themselves are often easier to deal with “in the aggregate.” By the
same token, one could hope for a sort of L-function which “embodies” the K(2)-local homotopy groups of spheres
in a way that gave interesting structural information about them without requiring us to unpack the Λ-module into
the individual groups. Such a result would be a really extraordinary victory for stable homotopy theory.
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