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 THE HOMOTOPY TYPE OF MSU

 By DAVID J. PENGELLEY

 0. Introduction. This paper examines the homotopy type of the

 Thom spectrum MSU associated with special unitary cobordism. For odd

 primes p, standard methods show that the p-localization MSU(p) is
 equivalent to a wedge of suspensions of the Brown-Peterson spectrum BP.

 Forp = 2, however, this is not the case, and our work is devoted to deter-

 mining the 2-primary homotopy type of MSU. This involves a new in-

 decomposable spectrum, and our main results are the following.

 There is an indecomposable 2-local spectrum, which we call BoP,

 such that MSU(2) is equivalent to a wedge of suspensions of BoP and BP.

 Under the equivalence, the Thom class lies in a BoP summand. As a com-

 odule over the dual Steenrod algebra A [11], H*(BoP; Z/2) is a sum of
 4 '2 2

 suspensions of B = Z/2[?1, t2, ..., j, . ... C A, where tj is the con-
 jugate of Milnor's generator (j. There is one suspension of B beginning in
 each nonnegative dimension divisible by 8.

 BoP bears strong similarities to BP and the (- 1)-connected K-theory

 spectra bo and bu. In particular, in Section 6 we show there is a map

 BoP - bo(2) inducing an epimorphism v* of homotopy groups. In fact, v*
 induces an isomorphism of torsion subgroups, and its torsion free kernel

 is concentrated in even dimensions.

 A brief summary of our methods is as follows. In Sections 1 and 2 we

 describe the Adams spectral sequence for 7r*MSU(2), including a com-

 putation of the differentials, with particular attention paid to the product

 structure. Anderson, Brown, and Peterson [4] gave a computation for

 these differentials, but their proof requires some correction, and in any

 case we will need the more extensive knowledge of the product structure.

 In Sections 3 to 5, we construct BoP and show it is indecomposable.

 To produce BoP, first the Sullivan-Baas construction is applied to MSU,

 yielding a spectrum representing a bordism theory of SU-manifolds with
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 1102 DAVID J. PENGELLEY

 certain singularities. Then we produce a map from the 2-localization of

 this spectrum to a wedge of BP suspensions, and the fibre is the desired

 spectrum BoP.

 Sections 6 and 7 are devoted to producing a homotopy equivalence

 between MSU(2) and a wedge of BoP and BP suspensions. Maps from

 MSU(2) to a suspension of BoP are somewhat difficult to construct, so

 maps to a suspension of bo(2) are constructed first, using the Adams spec-

 tral sequence, and then lifted to BoP by obstruction theory.

 Several of the indecomposable spectra which, like BoP, appear as

 summands in cobordism Thom spectra, have proven extremely useful in

 homotopy theory. The most notable are the Eilenberg-MacLane and

 Brown-Peterson spectra, upon which the Adams and Novikov spectral se-

 quences are based. Hopefully, BoP too will have a useful role to play in

 homotopy theory. In particular, a generalized Adams-Novikov spectral se-

 quence based on BoP has the advantage that the Hopf map - E i-xS0 ap-
 pears on the zero line. To apply BoP effectively, it would be useful to find
 a canonical description for it similar to Quillen's construction [1] of BP,

 and to know that BoP is a commutative ring spectrum. It must also be

 shown that BoP has better flatness properties than bo.

 I owe many thanks to my thesis advisor Doug Ravenel for his gener-

 ous help and guidance. This work was supported by an NSF graduate

 fellowship, Fulbright-Hays scholarship, and the English-Speaking Union,

 Seattle Branch.

 1. The Mod Two Homology of MSU. The Thom spectrum MSU is

 a commutative ring spectrum. Thus H*(MSU; Z/2) is a graded left A

 comodule algebra [16], whose structure we will describe below.

 Henceforth, 'A algebra' means 'graded left A comodule algebra',

 unstated coefficient groups are Z/2, and (0 means ( Z/2 We give the

 polynomial algebra C = Z/2[x8, x10, .. ., x2i i 2J - 1), . . I an A

 algebra structure by letting x2i be in grade 2i, and defining the coaction

 map by bx4i = t1 (D x4i-2 + 1 (D x4 for i ? 2j, bx4i2 = 1 (D x442, and
 k2j = 1 0 X2j.

 Since the subalgebra B C A defined in the introduction is in fact a

 sub-A algebra of A, we can give B (0 C the natural A algebra structure of
 a tensor product. In previous work [13], we showed that

 THEOREM 1.1. There is an isomorphism H*MSU _ B (0 C of A
 algebras.
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 THE HOMOTOPY TYPE OF MSU 1103

 We identify H*MSU and B (0 C via such an isomorphism, and now

 proceed to analyze B (0 C. Let E(x) denote the primitive exterior Hopf

 algebra on x, and let E be the quotient Hopf subalgebra E(? 2) of A. Let P
 be the sub-A algebra Z/2[?, t, ..., 2j2 , .. 2 C A, which is isomorphic
 to H*BP and dual to the quotient A */A *Sq 'A * [7].

 LEMMA 1.2. There is an A algebra isomorphism B PLEZ/2.

 Proof. The isomorphism Z/2[?, t2' 23, ... ] A EE(v1)Z/2 is well
 known [16, p. 511], and squaring provides a Hopf algebra isomorphism

 A_P. D

 We will also need the following presumably well-known fact.

 PROPOSITION 1.3. If H is a connected graded commutative Z/2

 Hopf algebra, D is an H algebra, and E is a quotient Hopf algebra of H,

 then (m (0 1) o (1 (0 X (0 1) o (1 0 1D):HEIED - (HLEZ/2) 0 D is
 defined and is an H algebra isomorphism.

 Proof. After taking Z/2 duals, the formula for the map and the fact

 that it is an isomorphism follow from the special case N = Z/2 of Proposi-

 tion 1.7 in [10] along with the commutativity of H. It is straightforward to
 check that it is an H algebra map. D

 Together Lemma 1.2 and Propositon 1.3 imply

 COROLLARY 1.4. (m (0 1) o (1 (? X ?& 1) o (1 0 b):PLEC- B0
 C is a P algebra isomorphism and hence an A algebra isomorphism.

 Next we examine PEEC. By analyzing the E comodule structure of

 C, we will be able to express PEEC as a sum of cocyclic A comodules. Let

 1 be the quotient E-coaction map, and define Sq2: C-C by bc = t 0

 Sq2c + 1 0 c. Sq2 is a differential and a derivation. Define

 & if i= 2
 Y8i =2

 Y 2 if i 2J for i2 1,

 and let Y = Z/2[y8, . . ., Y8i, ... ]C C. Note Sq2 acts trivially on Y. For
 i ? 2J let Ri be the subspace of C spanned by {Xn2, x4ix4_2 n n 0}. R,
 is closed under Sq2. Let R = 0. Ri with diagonal Sq2 action. The natural

 i?e-2J 2
 map R (0 Y - C is clearly an E(Sq ) module isomorphism.

 Since H*(R;.Sq 2) = Z/2, R is a sum of a single trivial summand in
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 1104 DAVID J. PENGELLEY

 grade zero and a free E comodule with primitives Sq2R. We will write R'
 for Sq2R. The desired description of PEIEC now follows:

 PROPOSITION 1.5. There is a sequence of A comodule isomor-

 phisms

 PEEC (PDER) 0 Y- (PDE(Z/2 ? (E (O R'))) (0 Y

 -(B ( (P (D R')) (0 Y.

 We will need to know something about the algebra structure in this
 description. Notice PLEC contains the A subalgebra B (0 Y. The A
 algebra inclusion B C P provides an obvious B module structure on B 0
 (P (O R'), and hence a B (0 Y module structure on (B (? (P (O R')) (0 Y.
 The composite isomorphism of (1.5) is clearly a B (0 Y module map.

 2. The Adams Spectral Sequence for n-*MSU(2). The E2 term of

 the 2-primary Adams spectral sequence [1] converging to ir*MSU(2) is

 given by ExtA*'*(Z/2, H*MSU). We abbreviate ExtA*'*(Z/2, -) as
 Ext(-). By (1.5) we need only know Ext(B) and Ext(P) to describe E2.
 They are given by

 THEOREM 2.1. [9]. There are isomorphisms

 2 4 3
 Ext(B)=- Z/2[qo, h, qlqo, ql, q2,* qk, *S](q0h, h)

 and

 Ext(P) = Z/2[qo, ql, q29 .. 9 qkg ..]1

 where h E Ext'2 and qj E Ext 2 Under the isomorphisms the map
 B - P induces the obvious algebra map.

 Applying Theorem 2.1 to the description of H*MSU provided by
 (1.5) immediately yields

 THEOREM 2.2.

 Ext(H*MSU) (Ext(B) 0 (Ext(P) OR')) (0 Y

 _ (Z/2[qoh, q, q4 , .l , *q, . . .1])(qohR h0Y

 ((Z/2[qog ql, q29 .. * * qk, ... R')) (& Y,
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 THE HOMOTOPY TYPE OF MSU 1105

 with the Ext(B) 0 Y module structure induced on the tensor product in

 the obvious way using the algebra map Ext(B) - Ext(P) described in
 (2.1).

 We will now use this description of Ext(H*MSU), along with a result

 of Conner and Floyd, to determine the differentials in the spectral se-

 quence. The reader is urged to construct a picture of the E2 term as

 described in (2.2). We will make frequent use of the following three lem-

 mas, all proven in [4].

 LEMMA 2.3. h is a permanent cycle, and for each r, E' t-Esr+1t+2
 is an epimorphism if t - s is even, a monomorphism if t - s is odd.

 LEMMA 2.4. d2 is zero on the summand Ext(P) (0 R' (0 Y of E2.
 2 4

 LEmMA 2.5. qlqO and ql are permanent cycles.
 Since d2 is a derivation, it is completely determined by (2.4), (2.5),

 and the following theorem.

 THEOREM 2.6. There are elements

 qj'E E2j+'1, for j 2 2, and

 y' E EE' , for i 2 1,

 of the form

 qj' = qj + decomposables in Z/2[q2, ... , qk, ... * 0 Y,

 and

 Ys= Y8s + decomposables in Y,

 such that

 d2qj' = 0,

 and

 d2Y2i -hqj'l,

 and

 d2Y8'i = 0 if 8i is not a power of two.
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 1106 DAVID J. PENGELLEY

 Before proving the theorem, we will see how it immediately leads to

 the description of E2 and d2 that we desire. Let Ext(B)' denote the sub-
 2 4I

 algebra Z/2[qo, h, qlqo, ql, q2, .. *, qk, . . .] of E2 in which the element
 qk in Ext(B) has been replaced by qk for k 2 2. From (2.2) and (2.6) we
 have

 COROLLARY 2.7. There is an isomorphism E2 (Ext(B)' 6

 (Ext(P) 0 R')) (0 Ywith Y = Z/2[y', ..., y i, ... ], and the differential
 d2 is described explicitly by (2.4), (2.5), and (2.6).

 Proof of Theorem 2.6. Suppose inductively that appropriate qj'and
 y' have been found for allj such that 2j+1 < 8k and all i such that 8i <
 8k.

 Let 1 be the largest integer such that 21 < 8k. Let G*9* = Z/2[q4, q2,

 q'Q1] 0 Z/2[y', ... ** Y8(k-1)] C E* 9 Define a derivation d: Gst_
 Gs +1t' 1 by letting dy9' = qJ'_1 for 3 c j 1 and letting d = 0 on all the
 other polynomial generators of Gk. Notice that on Gk, d2 = h *d by the in-

 ductive hypothesis, and d is a differential. H*'*(Gk; d) is easily computed

 using the Kunneth theorem, and we find that H1st is nonzero only if t - s
 0 (mod 8).

 Case I. 8k is not a power of two. Consider the 'column' Esit with t
 -s = 8k - 1, and the map

 h (ker d)s -1,t-2/Ih .(im d)s-1,t-2 _ (ker d2)S't/(im d2)st.

 Using (2.3) we see the numerators are equal. The left group is zero since

 Hs l,t 2(Gk; d) = 0, and thus the two denominators are equal. So d2y8k
 = d2y for some y E G 8k Definingy' = Y8k + y completes the inductive
 step.

 Case II. 8k = 2m for some m. First we will examine the 'column'

 E6jt with t - s = - 3. The same argument as in Case I shows that
 d2qml -= d2x for some x E Gk' '. Define qm-1 = qm-1 + x, so
 d2qm_ l = 0. The same argument also shows that E3 t = 0 for t - s = 2m
 -3, so q, -1 is a permanent cycle, and thus so is h m-q' E E22+l . From
 Conner and Floyd's work [8] we know 2m1MSU(2) = 0, so h qm-1 must
 be in the image of a differential. The only possibility is d2:E'2 --

 E2,m +1. NowE 0'2m G'2m 6 {Y2m} ? (R' 0 y)0'2m. From (2.4) we
 know d2 = 0 on the rightmost summand. Inductively d2 has been deter-
 mined on Gk'2 , and h *q_-1 is clearly not in the image. Thus there must
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 THE HOMOTOPY TYPE OF MSU 1107

 be an element y E G0'2- such that d2(y2m + y) = h q,1. Let y'm =
 Y2m +YV y.

 Finally, we will show that all higher differentials are zero. Let G*`*

 = Z/2[q , q2, ... , qk, .. . * Z/2[y', ... , y 'i, . .1 C E*'*, with d as in
 the proof of (2.6). H*9*(G; d) is easily computed, and HSt(G; d) = 0

 unless t-s 0(mod 8). Now if t-s is odd, E3t _Hs it 2(G; d), since

 the map

 h .(ker d)s -1,t-2/h .(im d)s-1,t-2 _ (ker d2)s t/(im d2)s t

 is an isomorphism, and multiplication by h maps G monomorphically in

 E2. Thus E3 is rather sparse in the sense that E3 = 0 for t - s 3, 5, or

 7 (mod 8). This will enable us to prove

 PROPOSITION 2.8. All the higher differentials dr:Esrt r t
 for r 2 3, are zero.

 Proof. By the sparseness of E3 this is obvious except when t-s - 1

 or 2 (mod 8).

 Case I. t - s 1 (mod 8). Given x E E6 t, by (2.3) x = h y for

 some y. Now dry = 0 by sparseness, so drx = h *drY = 0.

 Case II. t - s 2 (mod 8). Given x E Es t, by (2.3) we have h drX

 = dr(h x) = dr(0) = 0, so drX = 0, again by (2.3). D

 3. The Sullivan-Baas Construction. In this section we will apply the

 Sullivan-Baas construction [6] to MSU to produce a spectrum whose

 2-localization is closely related to the indecomposable spectrum BoP we

 seek.

 First we describe a sequence of elements in '-*MSU for use with the

 Sullivan-Baas construction. Define Z8j E Y for i 2 2 by

 I8 i if i 2i
 4i if i= 2.

 0,8i
 In our description of the Adams spectral sequence, Z8j E F2' survives to

 E0,8 by (2.6) and (2.8), and is thus represented by an element ^8i E
 'i8iMSU. If h:-x*MSU - H*MSU is the Hurewicz homomorphism,

 h(z^d = Z 8i
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 1108 DAVID J. PENGELLEY

 LEMMA 3.1. The sequence {Z8i}i22 is a regular sequence in
 H*MSU.

 Proof. We will follow Z8i E Y under the composite S: Y = Z/2 0 Y

 C PEZEC - B (0 C involving the map (m (0 1) o (1 0& X 0) 1) o (1 0 f)
 of (1.4). Notice that

 2 _4 2 2
 S(x4d) - 0 x4i-2 + 1 0 x4j if i 2'

 S(Y8) =
 S(X8) 1 ( x8i if i = 2J.

 So if we write B 0 C = Z/2[ 14, ?2, ... J, ...] 0 Z/2[X8, X10, . .., X2

 (i ? 2J - 1), ... . as Z/2[w4, w6, w8, ..., w2i, ... ] in the obvious way,

 with w2i in grade 2i, we see that S(Y) = Z/2[w 2 + w4w10, ..., w24 +
 2

 w4w4i-2 (i ? 2j), **., w8, w16, ..., w2j, .. .1, and

 2 2 iSY,i
 w4i + w4w4i2 + decomposablesinS(Y), if i ? 2i

 S(Z) =8) 2
 (w4i + decomposables in S(Y)) if i = 2V.

 {S(Z8i)} I2 is clearly a regular sequence in Z/2[w4, w6, w8, ... *, w2i, *].

 Those aspects of the Sullivan-Baas construction relevant to our needs

 are summarized by

 THEOREM 3.2. Let {*, [M1], ..., [Mn, ...} be a sequence oJ
 elements in QUs(point) _ 7r*MSU, and let Mn= h([Mn]) E H*(MSU,.
 Suppose {mn}nll is a regular sequence in the algebra H*MSU. Then
 there are CW-spectra M(n) for n 2 0 and maps M(n) P M(n + 1) with

 M(O) = MSU, such that the composite M(O) Po M(1) P i.. Pn1 M(n) is
 an epimorphism in mod 2 homology with kernel the ideal generated by

 {mi, ...,9 mn}I-

 Proof. Let S {n [M1] .. . [Mn]} and let MSU(Sn)*(-) be the
 bordism theory of SU-manifolds with singularity set Sn (see Baas [6]).
 There are long exact sequences

 (3.3)

 MSU(Sn )*() n MSU(Sn)* +dimMn+l( ) '

 MSU(Sn+1)*+dimMn+() MSU(Sn)*-1() -*
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 THE HOMOTOPY TYPE OF MSU 1109

 relating the correspondi, (reduced) generalized homology theories
 MSU(Sn)*(-) and MSU(Sn+l)*(-) on the category of CW-spectra. It is
 clear from the bordism definition of MSU(Sn)*(-) that it satisfies the
 direct limit axiom. Thus [3] it is represented by a CW-spectrum M(n), and

 there is a map M(n) Pn M(n + 1) inducing the natural transformation 'yn.
 Of course M(0) MSU.

 If we apply the sequences (3.3) to the Eilenberg-MacLane spectrum

 K(Z/2), then O3n is just multiplication by mn+ 1 h([Mn+1]), so we see in-
 ductively that it is a monomorphism, and conclude that the composite

 M(O) PO M(1) _ * M(n) has the desired property. El]

 Letting M lim M(n), we have
 Pn

 COROLLARY 3.4. With the hypotheses of Theorem 3.2, there is a

 CW-spectrum M and a map MSU P M, such that p is an epimorphism in

 mod 2 homology with kernel the ideal generated by {ml, .. ., mn, ... }.
 Applying (3.4) to the sequence {Z8i}i,2 C ir*MSU already de-

 scribed, using (3.1) and localizing at the prime 2, we obtain

 PROPOSITION 3.5. There is a 2-local CW-spectrum X, and a map

 MSU(2) P X, such that p is an epimorphism in mod 2 homology with ker-

 nel the ideal generated by {z 8i } i> 2-

 4. The Adams Spectral Sequence for r*X. We now examine the

 2-primary Adams spectral sequence converging to wx*X by studying the

 map of spectral sequences induced by MSU(2) P X. We begin by examin-
 ing the map of E2 terms.

 Recall that Proposition 1.5 identified the A comodule H*MSU as

 (B (S (P 0 R')) 0 Y, with the obvious B 0 Y module structure from the

 subalgebra B (0 Y. Let Z = Z/2[zl6, ..., Z8i, ...] be the polynomial
 subalgebra of Y generated by the regular sequence introduced in Section

 3. It follows from (3.5) that in homology p induces the natural map

 (B?(S(P(9R'))0 YP I(B 0(P0(R'))0 YjjZ,

 where YII Z denotes the algebra quotient by the ideal generated by Z. The
 induced map of E2 terms is the natural projection

 (Ext(B) ? (Ext(P) 0 R')) 0 Y- (Ext(B) 0 (Ext(P) 0 R')) (0 YIIZ.

 To grasp the behavior of the differentials d2 we must first interpret

This content downloaded from 
������������128.151.124.135 on Sun, 12 Jul 2020 21:15:47 UTC������������ 

All use subject to https://about.jstor.org/terms



 1110 DAVID J. PENGELLEY

 the behavior of this map when Ext(H*MSU) is identified as in (2.7).
 Clearly the Y module action on (Ext(B)' (? (Ext(P) (0 R')) (0 Y induced
 from that on Ext(H*MSU) is still just multiplication in the right factor, so
 in fact

 PROPOSITION 4.1. p: MSU(2) - X induces a natural projection

 (Ext(B)' (? (Ext(P) (O R')) (0 Y (!*(Ext(B)' 0 (Ext(P) (R')) 0 Y Z

 of ExtA(Z/2, -) groups.

 Since p induces a map of spectral sequences, the differentials d2 on
 Ext(H*X) are completely determined by those on Ext(H*MSU) already

 described in Section 2. The description of Ext(H*X) provided by (4.1) has

 a natural algebra structure respected by Ext(p *), and d2 is a derivation on
 Ext(H*X).

 PROPOSITION 4.2. The map Ext(p*) has a splitting which is a map
 of d2 chain complexes.

 Proof. From the definition of the sequence {Z8il}i2 C Y it is clear
 that YI Z is an exterior algebra with generators represented by {y?'}1?3.
 So there is an obvious identification of YI Z with the subspace of Y
 spanned by the monomials in the yJs in which no y'- appears to a power

 greater than one. This splitting of Y - YIIZ provides a splitting of
 Ext(p*), and from the form of the differentials, as described in (2.7), it is
 clear the splitting commutes with d2. D

 PROPOSITION 4.3. The map of E3 terms induced by p is an epimor-

 phism. All the differentials drfor r 2 3 in the spectral sequence for -ir*X
 vanish.

 Proof. The splitting of (4.2) shows the map of E3 terms is onto. The
 proposition now follows from (2.8). D

 5. The Indecomposable Spectrum BoP. In this section we will pro-
 duce BoP from X, examine the Adams spectral sequence converging to
 i-*BoP, and show BoP is indecomposable.

 Recall from Section 4 that as an A comodule

 H*X _ (B (? (P (0 R')) (D Y||Z _ (B (? Y||Z) ? (P (O R' (0 YIHZ).
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 THE HOMOTOPY TYPE OF MSU 1111

 From now on we identify H*X with this direct sum. Since the A algebra P

 is isomorphic to H*BP, it appears that X may decompose into two wedge
 summands, one a spectrum with homology B 0 YII Z, the other a wedge
 of BP summands. We will show that it lies in a fibration between two such

 spectra.

 PROPOSITION 5.1. Let W denote the graded vector space R' 0

 YH Z, and let m* denote the canonical projection H*X _ (B (0 YH Z) ?3
 (P (? W)-P P W. Then there is a map X-BP A W inducing m* in
 mod 2 homology.

 Proof. The projection H*X m* P (0 W Z/2 (0 W _ W corre-
 sponds naturally to a map X m K(Z/2) A W, since W is of finite type and
 H*(X; Z) is concentrated in even dimensions and is torsion free. In mod 2

 homology, m induces the natural map H*X P 9 W-A (O W, since a
 map of graded bounded below comodules is uniquely determined by its

 composition with any projection of the target onto its A primitives. The ob-

 structions to lifting m into BP A W lie in zero groups, so we obtain the lift th

 we seek. D

 Now define BoP to be the fibre of th, and let i:BoP - X be the inclu-

 sion of the fibre. We immediately have

 PROPOSITION 5.2. In mod 2 homology, i* is a monomorphism onto

 the left summand B (0 YH I Z of (B (D YH I Z) (? (P (0 W) _ H*X.
 We identify H*BoP with this summand, and remark that since YI Z

 is an exterior algebra on generators Y i with j ? 3, H*BoP is a sum of

 copies of the cocyclic A comodule B, with one copy beginning in each
 dimension divisible by 8.

 Next we compute the Adams spectral sequence for i-*BoP. Not only

 does Ext(H*X) split into the two summands Ext(B)' (0 Y IIZ and Ext(P)
 (0 W, but the form of the differentials, described by -(4.1), (4.3), and
 (2.7), shows this is a splitting of d2 chain complexes, and hence the entire

 spectral sequence for -x*X splits. Thus we have

 PROPOSITION 5.3. In the Adams spectral sequence converging to

 i-*BoP, with E2 -Ext(B)' (D Y Z, the differentials are as follows. d2 is

 zero on {qo, h, qlqo1 ql, q29 ., .qk, ..},d2y2'J= hqj_1, and d2 is a de-
 rivation with respect to the natural algebra structure of Ext(B)' (0 Y IIZ.
 The higher differentials drfor r 2 3 are all zero.
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 1112 DAVID J. PENGELLEY

 The indecomposability of BoP will follow from

 THEOREM 5.4. Let p be a prime, and suppose F is a CW-spectrum

 satisfying

 (1) F is p-local;

 (2) F is bounded below;

 (3) H*(F; Z) is offinite type over Z(p);
 (4) The image of the Z/p Hurewicz homomorphism ir*F - H*(F;

 Z/p) has rank one.

 Then F has no nontrivial wedge decomposition.

 Proof. Suppose F = F' V F". Since the Hurewicz homomorphism

 is additive on wedges, the Hurewicz isomorphism theorem along with (2)

 and (4) shows that one of the wedge summands, say F', has zero mod p

 homology. H*(F'; Z) _ H*(F'; Z(p)) is of finite type over Z(p), soH*(F'; Z)
 is a sum of copies of Z(p) and Z/pn (n 2 1). If it were nonzero, then H*(F';
 Z/p) would be nonzero. Thus H*(F'; Z) 0, so by the Whitehead

 Theorem, F' is homotopy equivalent to a point. O

 COROLLARY 5.5. BoP has no nontrivial wedge decomposition.

 Proof. Clearly BoP satisfies (1), (2), (3) of (5.4). The image of the

 mod 2 Hurewicz homomorphism is given by the zero line E?'* in the

 Adams spectral sequence for -r*BoP. But the differentials, as described in

 (5.3), show this is of rank one. D

 6. Maps from MSU(2) to Suspensions of BoP. We ultimately intend

 to show MSU(2) is a wedge of BoP and BP suspensions by producing a map

 to such a wedge and showing it is a homotopy equivalence. In this section,

 we produce the necessary maps from MSU(2) to various suspensions of

 BoP. Such maps are difficult to produce directly. As an intermediate step,

 we first produce certain maps to suspensions of bo(2). It seems that the

 KO-theory techniques of [4, 17] would provide sufficient maps to bo(2),

 but we will use the Adams spectral sequence since this method will also

 produce a fundamental map we require from BoP to bo(2).

 If M is a graded comodule or vector space, let Mn denote the n'
 grade, Mn the n-skeleton. If a graded vector space is concentrated in even

 dimensions, we call it an evenly graded vector space (abbreviated egvs).

 A priori the Adams spectral sequence with E2 term isomorphic to

 ExtA*'*(H*MSU, H*bo) doesn't necessarily converge to [MSU(2), bo(2)] *,
 since MSU is not a finite complex. We intend to obtain elements of
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 THE HOMOTOPY TYPE OF MSU 1113

 [MSU(2), bo(2)I* by examining lim [MSU 2n , bo(2)I*, where the spectra
 MSU are an increasing sequence of finite subspectra of MSU (a choice
 of 2n-skeleta for MSU) such that MSU2n _ MSU induces an inclusion
 onto (H*MSU) in homology (such subspectra exist since H*(MSU; Z) is

 torsion free and even dimensional).

 The E2 term for the Adams spectral sequence converging to [MSU ,,

 bo(2)I* is given by ExtA*((H*MSU) 2, H*bo), which we now examine.
 Let A 1 denote the subalgebra of A * generated by Sq and Sq2. Then

 H*bo -A* (?A* Z/2 [14; 15, Chapter XI], so H*bo ARA, Z/2
 Z/2[v, 1 , 3 ..., 2j, ...] [15, p. 324], with A1 = Z/2[?1, 12I/(v4, 2)
 Using the change of rings theorem [16, p. 498], we have

 LEMMA 6.1.

 Ext*'*((H*MSU)2n , H*bo) _ ExtA**((H*MSU)2n, Z/2).

 To compute these groups we must analyze the structure of H*MSU

 (B 0 Y) (? (P (0 R' 0 Y) as a comodule over A1. The coaction in
 fact makes H*MSU a comodule over the Hopf subalgebra E = E(? 2) of
 A1. So, as in Section 1, we need only understand the induced Sq2 action
 on H*MSU.

 PROPOSITION 6.2. As an A1 comodule, B = Z/2 (0 (E 0 V'), with

 V' an egvs.

 Proof. Sq2 is a derivation and differential on B with Sq2(?j) =

 The Kunneth theorem yieldsH* (B; Sq2) = Z/2, soB is as described. D

 Proposition 6.3. As an A1 comodule, P _ E (0 V", with V" an
 egvs.

 Proof. H*(P; Sq 2) = 0. D

 COROLLARY 6.4. As an A1 comodule, H*MSU _ Y (? (E (0 V),

 where V is an egvs.

 We immediately deduce that

 COROLLARY 6.5. As an A1 comodule, (H*MSU) _ Yn i) V2n i
 (E 0 V2n -2).

 To analyze liji [MSU(2, bo(2)] *, we now consider, for each k 2 0,
 JUS8k+6 -- I8kl+ the inclusion r:MSU - MSU8(k?l)+6, and the induced map of

 Adams spectral sequences converging to

 [MU8(k+1)+6 b * r [MSU( 8k+6 ~~~~~-[MSU(2) ,bbo(2)] * - () b()*.
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 1114 DAVID J. PENGELLEY

 From (6.1) and (6.5) we see we can describe the E2 terms of the two

 spectral sequences provided we know ExtAI*(Z/2, Z/2) and Ext I*(E, Z/2).
 It is well known [9] that

 2 41 3 (6.6) Ext *(Z/2, Z/2) _ Z/2[qO, h, q 1q0, q1]/(qoh, h3),

 with the generators in the same bidegrees as in Section 2. Regarding

 ExtA1*(E, Z/2), it will suffice to know that

 LEMMA6.7. ExtAs (E, Z/2) = O if t -s is odd.

 Proof. Consider the unreduced, normalized cobar resolution [2] A1

 0 F(A 1) for Z/2 over A1. The differential on the cobar resolution induces
 a differential on HomA1*(E, A1 0 F(A1)) = Hom*'*(E, F(A1)) = E(Sq2)
 0 F(A1), with homology isomorphic to ExtA*(E, Z/2). If we filter the

 2 2
 chain complex E(Sq) 0& F(A1) by the skeletal filtration on E(Sq) , we ob-
 tain a spectral sequence converging to the desired Ext group, with E1 term

 isomorphic to E(Sq 2) (0 Ext*';(Z/2, Z/2). Moreover, it is easy to check

 that the only nonzero differential, d2, is given by d2(1 0 x) = Sq (0 hx

 and d2(Sq2 0 x) = 0, for x E Ext*I*(Z/2, Z/2). The lemma now follows,

 since ExtA1t(Z/2, Z/2) h- Exts+l,t+2(Z/2, Z/2) is onto if (t - s) is even,
 one-to-one if (t - s) is odd. OZ

 Now we can examine the induced map Ext(r*) of E2 terms.

 PROPOSITION 6.8. Extst(r*) is onto if t - s is congruent to 7 or 0

 mod 8.

 Proof. Using the descriptions of (H*MSU)8(k+l)+6 and
 (H*MSU)8k+6 provided by (6.5), we first notice that the composite

 y8k+6 ? (E 0 Vlk+4) i (H*MSU)8k+6 r* (H*MSU)8(k+l)+6

 is a split A1 comodule monomorphism, so Ext(r*) o Ext(i) is onto. But

 Ext(i) is an isomorphism for t - s congruent to 7 or 0 mod 8 since V8k+6 iS

 concentrated in grade 8k + 6 and ExtAs(Z/2, Z/2) = 0 for t - s congru-
 ent to 5 or 6 mod 8. LI

 When (6.5), (6.6), and (6.7) are combined with the fact that Yis con-

 centrated in dimensions divisible by 8, we find that

 PROPOSITION 6.9. For any k 2 0, Ext'1((H*MSU) , Z/2) = 0
 if t - s is congruent to 7 mod 8.
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 THE HOMOTOPY TYPE OF MSU 1115

 So the 'columns' with t - s 0 (mod 8) in the two spectral sequences

 survive in their entirety to E<o, and if we let ES,7(r) denote the induced map
 of E0. terms, it follows from (6.8) and (6.9) that

 COROLLARY 6.10. E<t(r) is onto for t - s 0 (mod 8).

 Now we need a technical lemma which ensures that the epimorphism

 at the E0. level really means the induced homomorphism of mapping
 groups is an epimorphism. We prove something slightly more general for
 use later in this section.

 LEMMA 6.11. Suppose U, V1, V2 (respectively U1, U2, V) are

 2-local spectra with U (respectively U1, U2) finite and V1, V2 (respectively

 V) of finite type and bounded below. Consider the Adams spectral se-

 quencesfor [U, V1]* and [U, V2]* (respectively [U1, V]* and [U2, V]*).
 If V1 L V2 (respectively U2 L U1) induces an epimorphism of El! terms,
 for all groups with t -s = i for some fixed i, then [U, V1]i I [U, V2]i

 (respectively [U1, V]i [U2, V]I) is onto.

 Proof. Let jFf, s 2 0, denote the groups in the decreasing Adams
 filtration of [U, Vj]i (respectively [U., V]I) forj = 1, 2. Since the spectral
 sequences converge, JE +S _ /F- j'F +andn fFi = O for all i andj
 Since the source spectra are finite dimensional and the targets are bounded

 below, the Adams and 2-adic filtrations induce equivalent topologies on the
 mapping groups [12, p. 189]. So in particular, for i fixed, we can choose s
 such that jFi C 2 *. F for = 1, 2.

 Consider the induced commutative square

 1F. / 'Fis 'Fi?/2 * 1F

 2 /2 2F /2.2F0.

 The lower horizontal is clearly onto. The left vertical is onto because the
 Adams filtrations induce finite filtrations on the two groups, and by

 assumption the map is onto when one passes to filtered quotients. Thus the
 right vertical is onto. It now follows from Nakayama's Lemma [5, Proposi-

 tion 2.6] that 1F9 _ 2#F is onto, as desired. O

 Now we are equipped to produce the maps we desire from MSU(2) to
 suspensions of bo(2).
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 1116 DAVID J. PENGELLEY

 THEOREM 6.12. If X: Y - E8iZ/2 is a graded homomorphism from

 Y to the 8ilh suspension of Z/2, then there is a map MSU(2) _ 8bo(2) in-
 ducing the obvious composition

 X :H*MSU

 _(B (9 Y) (93 (P (9R' (9 Y)- Y 1/[4 P2,3 *** j*]()Y

 _H*bo ? Y- H*bo (g E8iZ/2 _ 8iH*bo.

 Proof. X is clearly an element of Hom- 8i(H*MSU, H*bo) =
 Ext?' 8i(H*MSU, H*bo). The restrictions of X to the skeleta
 (H*MSU)8k+6 for k 2 0 are elements of Ext? 8i((H*MSU) 8k+6, H*bo),
 compatible with one another under restriction. Using (6.10), (6.11), and the

 fact that

 0 -8i 8(k+l) +6 or 0 -8i 8k+6
 Homx7, ((H*MSU) ,Z/2) Homxk- ((H*MSU) , Z/2)

 is clearly an isomorphism if k 2 i, we see there is a sequence of elements Xk E

 [MSU )8+6 , bo(2)1]8i, compatible with each other under restriction, and
 each inducing the restriction of X in mod 2 homology. Since [MSU(2),

 bo(2)] -8i - lim [MSU(2, bo(2)] 8iis onto, the theoremfollows. O

 Recall that H*BoP _ B 0) YII Z. Thus the BoP wedge summands in
 the desired decomposition of MSU(2) ought to be indexed by Z. As a first step

 towards a projection MSU(2) - BoP A Z, we construct an appropriate map

 MSU(2) -bo(2) A Z by fitting together maps made available by (6.12). Since

 Z is concentrated in dimensions divisible by 8, it follows from (6.12) that

 THEOREM 6.13. If Y -Z is a (graded) projection of Yonto the sub-
 space Z, then there is a map , :MSU(2) -bo(2) A Z inducing the obvious

 composition

 H*MSU

 _(B (9 Y) (93 (P (& R ' ( Y) -- B ( Y -- Z/2[ 1 P2, 6, .. * *i 9 ... **]()Y

 H*bo 0 Y-id &H*bo (? Z

 in mod 2 homology.
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 THE HOMOTOPY TYPE OF MSU 1117

 Using a map of the type produced in (6.13) we wish to produce a map

 MSU(2) -BoP A Z which will serve as a projection to the BoP summands we

 claim exist in MSU(2). First we need a suitable map BoP - bo(2).

 THEOREM 6.14. There is a map BoP - bo(2) inducing the obvious

 map

 id&c-
 B ? YIIZ @ B ? Z/2 _ B - H*bo

 in mod 2 homology.

 Proof. All the properties of MSU(2) used in the proof of (6.12) are also

 satisfied by BoP. So the same argument produces the desired map. O

 THEOREM 6.15. P*: 7riBoP - 7ribo(2) is an epimorphism for all i
 and an isomorphism for i odd.

 Proof. In (5.3) we computed the E2 term of the Adams spectral se-

 quence converging to -r*BoP, and all the differentials in the spectral se-

 quence. The E2 term of the Adams spectral sequence converging to 7r*bo(2)

 is Ext*'*(Z/2, H*bo) _ Ext*'*(Z/2, Z/2), described in (6.6). There is no

 room for nonzero differentials in the spectral sequence. Combining (5.3),

 (6.6), and (6.14), we see that v induces an epimorphism of E0. terms, and

 hence, by (6.11), of homotopy groups. From the description of the two spec-

 tral sequences it is clear that 7ribo(2) and -riBoP are zero for i odd unless i 1
 (mod 8), in which case both groups are Z/2. The theorem follows. O

 Let F be the fibre of v :BoP- bo(2). From (6.15) and the long exact

 homotopy sequence we immediately have

 COROLLARY 6.16. 7r*F is concentrated in even dimensions.

 In fact, Massey product and Toda bracket arguments can be used to

 show that v* induces an isomorphism of torsion subgroups, so -r*F is tor-
 sion free. We will not prove this here.

 Now we are prepared to produce the map MSU(2) L BoP A Z we

 seek. Note that for any such map, the induced mapf* in homology carries

 the primitives in H*MSU into the primitives YIIZ (0 Z in H*(BoP A Z).

 THEOREM 6.17. There is a map f:MSU(2)-BoP A Z such that

 z fI(Y 1 Z) (?Z z e(x]id Z/2 (? Z = Z

 is the identity.
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 1118 DAVID J. PENGELLEY

 Proof. Consider any map it:MSU(2) - bo(2) A Z satisfying (6.13).
 We would like to lift It to f making

 f BoP A Z

 MSU(2) jPAid

 bo(2) AZ

 commute. The obstructions to such a lift lie in the groups HP(MSU(2);

 7rp- F). Since H*(MSU; Z) is torsion free and even dimensional, it fol-
 lows from (6.16) that the obstruction groups are all zero. From (6.13) and

 (6.14) it is clearf* has the desired property. EI-

 7. The Decomposition of MSU(2). In this section we will show

 MSU(2) is homotopy equivalent to a wedge of suspensions of BoP and BP.

 The mapf:MSU(2) -BoP A Z produced in (6.17) will serve as the

 projection to the BoP summands. But first we need to know more about

 the homology behavior of this map. So far we only know that the restric-

 tion off* to Z C Y is such thatZ (YZ) Z -Z/2 Z = Z is the

 identity. We will in fact need to know that Y * (Y IIZ) 0g Z is an isomor-
 phism.

 We will show this is forced by the differentials in the Adams spectral

 sequences for ir*MSU and -r*(BoP A Z). The idea is roughly as follows.

 Since we knowf*(1) = 1 0) 1, it 'ought' to follow that Ext(f*)(q ') = q
 0 1. Since d2 commutes with Ext(f*) and d2y8 = q2 in both the spectral
 sequence for lr*MSU(2) and for -r*BoP, it follows that Ext(f*)(y') = Y
 0 1, sof*(y8) = Y8 0 1, as desired, etc. The details are rather technical,
 and we will relegate them to a lemma, from which our main result will

 follow easily.

 To state the lemma, we need a few preliminaries. Recall that Y IZ is
 isomorphic to the exterior algebra E(y8, . . ., y2i . . *) Let L:YHIZ - Y
 be the obvious splitting of the projection p: Y -YIZ. In other words,

 L(HYyik) = k Y2Jk for il <12 <

 Now considerJ:(YIZ) ( Z L-1 ? Y(g Y. ClearlyJis an isomorphism
 and a map of right Z modules. Let I be the inverse of J. Specifically, any

 monomial in the y j's can be written in the form
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 THE HOMOTOPY TYPE OF MSU 1119

 Y = (kY 2'J).Z

 with z E Z and jk < Ik+1 for all k. Then

 I(Y) = (k Y2J'k) 0 Z.

 Let F8rZ denote ?3 Zi (and define F8r Y and F8r,YIIZ similarly). For r

 fixed, let ir:Z ~Z8r te the natural projection to grade 8r. So id A ir maps
 BoP A Z onto BoP A Z8r. The technical lemma is as follows.

 LEMMA 7.1. The diagram

 Y* (Y Z) (?Z
 J (idAlr)*

 Y.F8rZ (YIIZ) Z8r
 (YZ)?Z -(idAr)*

 Y I(YIIZ) (gZ

 commutes.

 Before proving the lemma, we will show how the decomposition of

 MSU(2) follows from it.

 COROLLARY 7.2. f*: Y -(Y||Z) (0 Z is a monomorphism.

 Proof. LetO ? y E Y. Since Y = YF?Z, and nfYF8rZ = 0, there
 is some r withy E Y.F8rZ but y Y.F8(r+ Z = 0, then by (7. 1),

 (id A 7r)* ? I(y) = 0. But I(Y.F8rZ) C (YIIZ) (0 F8rZ since I is a Z
 module map, so

 I(y) E ((YH|Z) 0 F 8rZ) n ker((id A 7r)*) = (Y|Z) (0 F8(r+l)Z.

 Thus y = J(I(y)) E Y.F8(r+ 1)Z, a contradiction. O

 LEMMA 7.3. There is a map g :MSU(2) -BP A (R9' Y) such that

 (B( Y) ? (P (gR' Y) H*MSU(2) g* H*(BP A (R' 0 Y))

 _p ? R' ?& Y

 is projection onto the second factor.
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 Proof. The proof of (5.1) carries over word for word to produce the
 desired map. O

 We can combine the mapsf from (6.17) and g from (7.3) to produce a

 map h :MSU(2) -(BoP A Z) V (BP A (R' 0& Y)) that inducesf and g
 when projected onto the left and right summands of the target.

 THEOREM 7.4. h is a homotopy equivalence.

 Proof. In homology, consider the restriction h*: Y 0) (R' 0) Y) -
 ((Y Z) ?) Z) 03 (R' 09 Y) to theA primitives. Letx E Y G) (R' (0 Y) withx
 ? 0. If x 0 Y, then by (7.3), g*(x) ? 0, soh*(x) ? 0. If x E Y, thenf*(x) ? 0
 by (7.2), so h*(x) ? 0. Thus h* is a monomorphism on primitives, and
 hence a monomorphism. But the graded ranks of the source and target of

 h * are the same, so h * is an isomorphism. Since both source and target are

 even dimensional, H*(MSU(2); Z) and H*((BoPAZ) V (BPA (R' (0 Y)); Z)
 are torsion free and h must induce an isomorphism in integral homology.

 Thus by Whitehead's Theoremh is ahomotopy equivalence. O

 Proof of Lemma 7.1. We will prove the diagram commutes when

 restricted to Y*Z8r+s for any s ? 0. For each s we will do this inductively

 by showing it commutes on Y8i *Z8r+s provided it commutes on Y8n 'Z8r+s
 for n < i. To begin the induction we must show it commutes on Z8r+s. In

 Ext*'*(H*MSU), Z8r+s C ker(d2). SO

 f*(Z8r+s) C ker(d2) n Ext0 8r+s (H*(BoP A Z)) = Z/2 09 Z8r+s

 Thus (id A 7r)* of*(Z8r+s) = O if s > 0, and if s = 0, (id A 7r)* of*:Z8r

 -(YIIZ) (0 Z8r is, by hypothesis, the natural inclusion. In either case,
 the diagram commutes, beginning the induction.

 Definej,kby2j c 8i < 2j+1and2k c 8i+s < 2k+1.Letf= (idA
 7r) o f:MSU(2) -BoP A Z -BoP A Z8r. Consider the diagram

 B (0 [(ylIZ)/F8i-21+s(yIIZ)] 0 Z8r

 (B O Y) ? (P O R' O Y) , B (YIIZ) (O Z8r

 [( 8i 2'1 y)8i2 k +s B [(F Y>Z8r+s] * B [F9 +s(YIIZ)]Z ( z8r LB 0 (YIIZ)8i-2k0 Z8r

 involving the induced map f* in homology, with T the natural projection.
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 THE HOMOTOPY TYPE OF MSU 1121

 The composite ae 0 o f3 is trivial, since the target has nonzero

 primitives only in grades less than 8i - 2J + 8r + s, the source is concen-
 trated only in grades at least as large as this number, and an A comodule

 map (between bounded below graded A comodules) is determined by its

 composition with a projection of the target onto the A primitives. Thusf*

 factors as shown because]j k.
 Now consider the restriction of T 0 f* to the primitives. This is ob-

 viously zero except (possibly) in grade 8i - 2J + 8r + s, and in this grade

 it equals T 0 (id A r)* 0 (id (0 I) by the inductive assumption. But T 0f* is
 uniquely determined by its restriction to the primitives, since the source is

 primitive in all grades less than or equal to 8i - 2J + 8r + s, and these
 are the only grades in which the target has nonzero primitives. Thus o1f*
 = T 0 (id A ir)* 0 (id ( I).

 With this in hand let us consider (see Figure 1) the map induced byf
 between relevant portions of the E2-terms of the Adams spectral se-

 quences converging to 7r*MSU(2) and 7r*(BoP A Z8r). The commutative

 diagram in the figure requires some justification..

 The vertical equalities are valid since (F8i-2 Y) *Z8r+s is an ideal in

 Y, and F8i+s-2k (Y I Z) and F8i+s-2k+8(y I I Z) are ideals in Y I I Z. To see
 that d2 and d2 ( id really land in the subgroups shown, recall that on Y,

 d2= h d, with the derivation d as described in Section 2 (this is true also

 on YI Z in the spectral sequence for ir*BoP; note dZ - 0 so d passes
 naturally to a derivation on Y IZ). We leave it to the reader to check that
 the definition of d on {y8' }, the fact that d is a derivation, and the fact

 that multiplication in Y adds. filtrations F*Y, ensure that d(Y8i) C
 Z/2[q', ..., q 1 ] F 8i-2J Y. Thus since dZ = 0, d2(Y8i Z8r+s) C
 Ext(B)' 0 (F8i 2 y) Z8r+sg as claimed. By the same reasoning d2 09 id
 behaves as shown.

 The lowest horizontal Extf*(f*) is the map we wish to determine.
 We detect its behavior as follows.

 Ext(B) 0 (F8- 2- y)-z8r+ E* Ext(B) O F8i+s (YIIZ) (20 Z8Er) Ext(B) (20 (YIIZ)8?+s-2k 0r Z8

 8,- -2'y Ext(f*) 8 s 2kExt(i-)
 Ext(B) 0 (F 2Z8r+s Ext(B)' 0 F8? (YIIZ) 0 Z8r - Ext(B)' 0 (YIIZ)8?+s-2k ? Z8r

 d2l d2Oi3d|

 Ext0,

 Y8i Z8rts (YIIZ)8?s 0 Z8r

 Figure 1
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 Let (Il, .j. , ]l) be the unique increasing integer sequence such that

 8i + s = 2jm.
 m=1

 Note]j = k. Let

 y HY2jm E Y8i+S.
 m=1

 Of course p(y) is the generator of (YIIZ)8i+, = Z/2.
 Now

 Ext(T) o (d2 (0 id)(p(y) (0 z) = (Ext(T)) (h ? qj'- ? P(Hp Y2m) - z)

 =h?9qk- p(Hp IIym) (? Z,

 since Ext(T) kills all but one of the terms in the sum. Thus Ext(T) o (d2 (g id) is

 a monomorphism. So any map 4 such that Ext(r) o (d2 (0 id) o b = Ext(T)
 Ext(f*) d2 must equal the map Ext *(f*) of interest. We now show (id A
 7r)* J I is such a 4, which will complete the proof.

 Earlier in the proof we showed that T 0f* = T o (id A 7r)* ? (id (0 I),
 so applying Ext(-) yields Ext(T) o Ext(f*) Ext(T) o Ext((id A 7r)*) O

 (id (0 I). Now (id (0 I) o d = (d 0 id) o I since dZ = 0, so (id (0 I) o d2

 = (d2 ( id) I. Thus Ext(T) o Ext(f*) o d2 = Ext(T) o Ext((id A 7r)*)
 (d2 (g id) I = Ext(T) o (d2 0 id) o (id A 7r)* O I, as claimed. El
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