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Chromatic congruences and Bernoulli numbers

Irakli Patchkoria

Dedicated to the memory of my great granduncle Terenti Shamugia,

a talented mathematician who passed away very young

Abstract

For every natural number n and a fixed prime p, we prove a new congruence for the orbifold
Euler characteristic of a group. The p-adic limit of these congruences as n tends to infinity
recovers the Brown-Quillen congruence. We apply these results to mapping class groups and
using the Harer-Zagier formula we obtain a family of congruences for Bernoulli numbers. We
show that these congruences in particular recover classical congruences for Bernoulli numbers
due to Kummer, Voronoi, Carlitz, and Cohen.

1 Introduction

The orbifold Euler characteristic χorb(G) of a group is a well-studied invariant which has ap-
plications in topology, group theory, and number theory. It was first defined by Wall [Wal61].
Harder [Har71] and Serre [Ser71] related it to number theory by computing the orbifold Euler
characteristic of arithmetic groups in terms of Dedekind zeta functions.

Given a discrete group G, the invariant χorb(G) is a rational number defined under certain
conditions on G. The conditions we will use in this paper are the following: G is virtually
torsion-free and admits a finite classifying G-space EG for proper actions. The latter is uniquely
determined up to a G-equivariant homotopy equivalence with the properties:

• EG is a G-CW-complex;

• The H-fixed subspace EGH is contractible if H ≤ G is finite and empty otherwise.

For any discrete group G, a model of EG always exists. We say that G admits a finite EG

if there exists a finite G-CW complex model of EG. The orbifold Euler characteristic can be
defined for more general groups but the vast majority of examples one cares about in geometric
group theory and number theory satisfy the above conditions. For more details and examples
see e.g., [Lüc05].

Under the additional assumption that any elementary abelian p-subgroup of G has the rank
at most 1, Brown in [Bro74] and [Bro75] proved a congruence

χorb(G) ≡ 1

p − 1∑[g]χorb(C⟨g⟩) mod Z(p),

where [g] runs over the conjugacy classes of order p elements and C⟨g⟩ denotes the centralizer
of g. Brown applied this formula to certain symplectic groups over number rings and using
theorems of Harder and Serre, provided new results about the denominators of special values
of Dedekind zeta functions. An interesting special case is given by the symplectic group G =

Spp−1(Z) where p is an odd prime. In this case using [Har71], Brown’s congruence recovers the
congruence

ζ(−1) ⋅ ζ(−3) ⋅ ⋯ ⋅ ζ(2 − p) ≡ 2
p−3
2

p(p − 1) ⋅ h
−
p mod Z(p),
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where ζ is the Riemann zeta function and h−p is the first factor of the class number of Q(ζp).
Using the formula ζ(1 − 2n) = −B2n

2n
, where B2n is 2n-th Bernoulli number and the von Staudt-

Clausen theorem [Sta40, Cla40], one concludes that p does not divide the first factor h−p if an
only if p does not divide the numerator of any of the Bernoulli numbers B2,B4, . . . ,Bp−3. This
is a well-known criterion for regularity proved by Kummer in [Kum50].

Later Quillen generalized Brown’s congruence and removed the restriction on the rank of
elementary abelian p-subgroups. Quillen showed that if G is a virtually torsion-free group with
a finite EG, then one has

∑
(E)
(−1)r(E)p(r(E)2

)χorb(N(E)) ≡ 0 mod Z(p),

where the sum runs over the conjugacy classes of elementary abelian p-subgroups, r(E) denotes
the rank of E, and N(E) the normalizer of E. The proof was written up by Brown in [Bro82a,
Theorem 14.2]. We refer to this congruence as the Brown-Quillen congruence. The proof
of Quillen and Brown relies on the homotopical and homological analysis of the geometric
realization of the poset of non-trivial elementary abelian p-subgroups. In particular, it uses a
version of the Solomon-Tits theorem and spectral sequence arguments.

The goal of this paper is to provide new congruences for χorb(G) and apply them to the
mapping class group Γu of the closed oriented surface of genus u. Following [HKR00] we denote
by Gn,p the set of n-tuples (g1, . . . , gn) of commuting elements (gigj = gjgi for all i and j), each
of which has p-power order. The group G acts on Gn,p by conjugation in each coordinate. If G
admits a finite EG, then the quotient set G/Gn,p is finite. The following is the first main result
of this paper:

Theorem A. Let p be a prime and n ≥ 1. Suppose G is a virtually torsion-free discrete group
with a finite EG. Then we have

∑
[g1,...,gn]∈G/Gn,p

χorb(C⟨g1, . . . , gn⟩) ≡ 0 mod Z(p),

where C⟨g1, . . . , gn⟩ denotes the centralizer of the subgroup generated by the tuple (g1, . . . , gn).
The proof of this theorem uses a classical fact from group theory known as the Frobenius

theorem [Fro03]: If n divides the order of a finite group H , then the number of solutions of the
equation xn

= 1 in H is a multiple of n.

Remark. We refer to the congruence in Theorem A as the chromatic congruence at height n,
because the orbit set H/Hn,p plays a prominent role in the chromatic homotopy theory. By the
work of Hopkins-Kuhn-Ravenel, for H a finite group and n ≥ 1, the cardinality ∣H/Hn,p∣ is equal
to the Morava K-theory Euler characteristic χK(n)(BH) of the classifying space BH [HKR00,
Theorem B]. The n-th Morava K-theory spectrum K(n) is a complex oriented theory with a
formal group law of height n.

To relate the congruence of Theorem A to the Brown-Quillen congruence we use a result
of Hall from [Hal36] which uses the Möbius inversion for posets. In particular, Hall’s result
computes the cardinality of the set of generating n-tuples of a finite abelian p-group. An account
can be found in [DSC98, Section 6.B] where this set shows up as the state space of a natural
Markov chain for random generation. Reformulating Theorem A in terms of the generating
tuples yields:

Theorem B. Let p be a prime and n ≥ 1. Suppose G is a virtually torsion-free discrete group
with a finite EG. Then we have

∑
(H)

χorb(N(H)) ⋅ ∣Φ(H)∣n ⋅ (
r(H/Φ(H))

∑
i=0

(−1)ipn(r(H/Φ(H))−i)+(i2) ⋅ (r(H/Φ(H))
i

)
p

) ≡ 0 mod Z(p),
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where the sum runs over the conjugacy classes of finite abelian p-subgroups generated by at most
n elements. Here N(H) denotes the normalizer of H, Φ(H) the Frattini subgroup of H, (a

b
)
p

is the p-binomial coefficient, and r is the rank.

This theorem in particular provides a new and in some sense an elementary proof of the
Brown-Quillen congruence. Below we show that the p-adic limit of the left hand side exists as
n →∞ and the limit is equal to the left hand side of the Brown-Quillen congruence. Our proof
only uses the abstract existence of a finite EG and combinatorial arguments. In particular, we
fully avoid to deal with the homotopy or homology type of the poset of non-trivial elementary
abelian p-subgroups.

Application

We apply Theorem A to the mapping class group Γu of a closed oriented surface Su of genus u.
By [HZ86], one has

χorb(Γu) = ζ(1 − 2u)
2 − 2u

=
B2u

2u(2u− 2) .
Hence using Theorem A, one obtains an infinite family of congruences for Bernoulli numbers.
We make these congruences explicit at height n = 1. Turns out that they recover the following
classical congruences for a prime p ≥ 5:

• The congruence
B2u

2u
≡
B2v

2v
mod pr Z(p),

for 2u = prx + 2 and 2v = pr−1x + 2, where r, x ≥ 1 and p − 1 ∤ 2u. This is a special case of
Kummer’s congruence [Kum51, Vor90], proved in the original form by Kummer and then
generalized by Voronoi.

• The congruence

B2u +
1

p
≡ 1 mod pr Z(p),

for 2u = xpr(p−1), where r ≥ 0, x ≥ 1, and p ∤ 2u−2. This is a congruence due to Carlitz
[Car53] generalizing the p-local von Staudt-Clausen theorem [Sta40, Cla40].

• The congruence
B2u

2u
−
B2v

2v
≡ ( 1

2u
−

1

2v
)(1 − 1

p
) mod pr Z(p),

for u = pr(p−1
2
k − 1) + 1 and v = pr−1(p−1

2
k − 1) + 1, where r, k ≥ 1. This congruence seems

to be less known than the previous two. To our knowledge the only written down proof
in the literature is due to Cohen [Coh07, Proposition 11.4.4]. Cohen’s proof crucially uses
the theory of p-adic L-functions. Our proof is very different. We instead use the geometry
of the moduli space (e.g., the results of [HZ86]) and Theorem A.

To apply Theorem A, we require the knowledge of abelian p-subgroups. We can freely choose
the number n and this allows us to have some control on the cardinalities of generating sets. For
example, the congruence at height n = 1 requires only the knowledge of cyclic p-subgroups. On
the other hand, to use the Brown-Quillen congruence, we require the knowledge of all elementary
abelian p-subgroups. There are cases when it is easier to understand cyclic p-subgroups than
elementary abelian p-subgroups. This seems to be the case for mapping class groups. By the
work of Harer-Zagier [HZ86], we have all the data available to apply Theorem A at height n = 1.
On the other hand, we do not have a complete classification of elementary abelian p-subgroups
and their centralizers. However, the papers [Bro92, BW07] have made significant progress in
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this direction and one could try to use them to make the Brown-Quillen congruence explicit for
all mapping class groups. This has not yet been addressed in the literature.

A good example to illustrate the difference between various congruences in this paper is the
mapping class group Γ (p−1)(p−2)

2

for a prime p ≥ 5. For any n ≥ 1, Theorem B gives a congruence

ζ(1 − 2u)
2 − 2u

+
pn − 1

p − 1
(− 1

p
⋅
ζ(1 − 2v)
2 − 2v

+
(p − 1)2

2u ⋅ p(2u + 2p − 2))+(p
2n
−(1+p)pn+p) ⋅ 1

6p2
≡ 0 mod Z(p),

where u =
(p−1)(p−2)

2
and v = p−1

2
. If we take the p-adic limit as n→∞, we get the Brown-Quillen

congruence

ζ(1 − 2u)
2 − 2u

−
1

p − 1
( − 1

p
⋅
ζ(1 − 2v)
2 − 2v

+
(p − 1)2

2u ⋅ p(2u + 2p − 2)) +
1

6p
≡ 0 mod Z(p) .

In the special case n = 1 one gets:

ζ(1 − 2u)
2 − 2u

−
1

p
⋅
ζ(1 − 2v)
2 − 2v

+
(p − 1)2

2u ⋅ p(2u + 2p − 2) ≡ 0 mod Z(p) .

The latter does not require the knowledge of elementary abelian p-subgroups of rank bigger
than 1. However, the formulas for n ≥ 2 and the Brown-Quillen congruence need the higher
rank subgroups. Here the number theoretic difference between n = 1 and n ≥ 2 cases can be
understood through the von Staudt-Clausen theorem, as discussed at the end of the paper.

We expect that the general congruences provided in this paper will have further applications
in number theory. These could especially come from arithmetic groups where cyclic subgroups
are easier to understand than the elementary abelian subgroups. Even more specifically, we are
interested in arithmetic groups whose nontrivial cyclic p-subgroups are all isomorphic to Z /p
but additionally also have an elementary abelian p-subgroup of rank higher than 1. An example
of such a group is the symplectic group Sp2(p−1)(Z).
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2 Preliminaries

A proper G-CW complex is a G-CW complex X such that the stabilizers of cells are finite. In
particular, the G-space EG is a proper G-CW complex. A proper G-CW complex X is called
finite if it has finitely many equivariant cells.

In what follows N(H) denotes the normalizer of H ≤ G and C(H) denotes the centralizer of
H . We will denote by W (H) the quotient W (H) = N(H)/C(H) often referred to as the Weyl
group of H . If H is finite, then W (H) is finite.

Proposition 2.1. Let X be a finite proper G-CW complex and H ≤ G a finite subgroup. Then
the C(H)-space XH is a finite proper C(H)-CW complex.

Proof. It is enough to check that for any finite subgroup K ≤ G, the H-fixed point set (G/K)H
as a C(H)-set has only finite stabilizers and finitely many orbits. To show this we consider a
map

C(H)/(G/K)H → Hom(H,K)/K,
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where Hom(H,K) is the set of group homomorphisms and K acts by the conjugation. This
map sends [xK] to cx ∶ H → K, cx(h) = x−1hx. It is well defined and injective and since the
target is finite, so is the source. The stabilizer of xK ∈ (G/K)H is given by C(H) ∩ xKx−1

which is also finite.

Corollary 2.2. Suppose G admits a finite EG and let H ≤ G be a finite subgroup. Then EGH

is a finite model of EN(H) and EC(H).
The following definition is due to Wall [Wal61]:

Definition 2.3. Let G be a virtually torsion-free discrete group with Λ ≤ G a finite index torsion-
free subgroup and X a finite proper G-CW complex. Then the orbifold Euler characteristic of
X , denoted by χG

orb(X), is defined to be the rational number

χQ(Λ/X)
[G ∶ Λ] ,

where χQ is the classical Euler characteristic. If G admits a finite EG, then χG
orb(EG) is called

the orbifold Euler characteristic of G and is denoted by χorb(G).
We observe that

χorb(G) = χQ(BΛ)
[G ∶ Λ] ,

since EG as a Λ-space is a finite model of EΛ, the free contractible Λ-CW complex. Here
BΛ = Λ/EΛ is the classifying space. This definition is independent of the choice of Λ.

The following is known as Quillen’s formula (see e.g., [Bro82a, Proposition 7.3]):

Proposition 2.4. Let G be a virtually torsion-free discrete group.

i) For every finite proper G-CW complex X, one has

χG
orb(X) =∑

Gσ

(−1)nσ
1

∣Hσ ∣ ,

where the sum runs over all G-orbits of cells σ of X, the number nσ is the dimension of σ,
and Hσ is the stabilizer of σ.

ii) If G admits a finite model for EG, then one has

χorb(G) =∑
Gσ

(−1)nσ
1

∣Hσ ∣ ,

where the sum runs over all G-orbits of cells σ of a fixed finite G-CW model for EG, the
number nσ is the dimension of σ, and Hσ is the stabilizer of σ.

3 Chromatic congruences and the proof of Theorem A

In this section we prove the main general result of this paper.

Proposition 3.1. Let G be a virtually torsion-free discrete group with a finite EG. Then for
any finite proper G-CW complex X and n ≥ 1, we have

∑
[g1,...,gn]∈G/Gn,p

χ
C⟨g1,...,gn⟩
orb

(X⟨g1,...,gn⟩) =∑
Gσ

(−1)nσ
∣Hσ

n,p∣
∣Hσ ∣ ,

where the sum runs over all G-orbits of cells σ of X, the number nσ is the dimension of σ, and
Hσ is the stabilizer of σ.
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Proof. Let Λ be a finite index torsion-free subgroup of G. We will use the following observation
on G-sets: Let Y be a G-set such that G/Y is finite. Then

∣Λ/Y ∣ = ∑
[y]∈G/Y

∣Λ/G/Gy ∣, (1)

where Gy is the stabilizer of y. We also use that for any finite subgroup H ≤ G, the map

∐
(g1,...,gn)∈Grep

n,p

C⟨g1, . . . , gn⟩/(G/H)⟨g1,...,gn⟩ →H/Hn,p, (2)

sending [xH] ∈ C⟨g1, . . . , gn⟩/(G/H)⟨g1,...,gn⟩ to [x−1g1x, . . . x−1gnx] is a bijection, where Grep
n,p

is a fixed set of representatives of G/Gn,p.
Both sides of the desired identity are additive functions in X . It suffices to check the formula

for X = G/H , where H is finite. We have (below C = C⟨g1, . . . , gn⟩ for short and CH denotes
the centralizer in H)

∑
[g1,...,gn]∈G/Gn,p

χ
C⟨g1,...,gn⟩)
orb

((G/H)⟨g1,...,gn⟩))

= ∑
[g1,...,gn]∈G/Gn,p

1

[C⟨g1, . . . , gn⟩ ∶ (C⟨g1, . . . , gn⟩ ∩Λ)] ∣(C⟨g1, . . . , gn⟩ ∩Λ)/(G/H)
⟨g1,...,gn⟩∣

= ∑
[g1,...,gn]∈G/Gn,p

1

[C ∶ C ∩Λ] ∑
[x]∈C/(G/H)⟨g1,...,gn⟩

∣(C ∩Λ)/C/(C ∩ xHx−1)∣

= ∑
[g1,...,gn]∈G/Gn,p

∑
[x]∈C/(G/H)⟨g1,...,gn⟩

1

∣C ∩ xHx−1∣
= ∑
[h1,...,hn]∈H/Hn,p

1

∣CH⟨h1, . . . , hn⟩∣ =
∣Hn,p∣
∣H ∣ .

Here we used Equation (1) for the second identity, the bijection (2) for the fourth identity and
the class equation for the last identity.

Recall that a rational number a is called p-integral if a belongs to Z(p), or equivalently if
a = 0 ∈ Q/Z(p), i.e., the congruence a ≡ 0 mod Z(p) holds.

Lemma 3.2. Let H be a finite group. Then the rational number

∣Hn,p∣
∣H ∣

is p-integral.

Proof. Let r be the maximal number such that pr divides ∣H ∣. Then ∣H ∣ = prk, where gcd(k, p) =
1 and

H1,p = {x ∈H ∣ xpr

= 1}.
By the Frobenius theorem [Fro03], the cardinality ∣H1,p∣ is divisible by pr. We have

∣H1,p∣
∣H ∣ =

∣H1,p∣
pr
⋅
1

k
,

where ∣H1,p∣/pr is an integer and 1/k is p-integral. This completes the proof for the case n = 1.
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Now let n ≥ 2. We have the following chain of identities:

∣Hn,p∣
∣H ∣ = ∑

(h1,...,hn−1)∈Hn−1,p

∣C⟨h1, . . . , hn−1⟩1,p∣
∣H ∣

= ∑
(h1,...,hn−1)∈Hn−1,p

∣C⟨h1, . . . , hn−1⟩1,p∣
∣C⟨h1, . . . , hn−1⟩∣ ⋅

∣C⟨h1, . . . , hn−1⟩∣
∣H ∣

= ∑
[h1,...,hn−1]∈H/Hn−1,p

∣C⟨h1, . . . , hn−1⟩1,p∣
∣C⟨h1, . . . , hn−1⟩∣ .

By the previous paragraph the terms in the last sum are p-integral which completes the proof.

Example 3.3. In general the numerator of ∣Hn,p ∣
∣H∣ might not be divisible by p. For example, let

H = Σ3, p = 2, and n = 2. Then ∣H2,2 ∣
∣H∣ =

5
3
.

We are now ready to prove Theorem A about the chromatic congruence:

Theorem 3.4. Let G be a virtually torsion-free discrete group with a finite EG. Then for any
finite proper G-CW complex X and n ≥ 1, we have

∑
[g1,...,gn]∈G/Gn,p

χ
C⟨g1,...,gn⟩
orb

(X⟨g1,...,gn⟩) ≡ 0 mod Z(p) .

In particular, if we take X = EG, we get

∑
[g1,...,gn]∈G/Gn,p

χorb(C⟨g1, . . . , gn⟩) ≡ 0 mod Z(p) .

Proof. This follows by combining Proposition 3.1 and Lemma 3.2. The second claim follows
since if X = EG, then X⟨g1,...,gn⟩ = EC⟨g1, . . . , gn⟩ by Corollary 2.2.

Remark 3.5. Proposition 3.1 and Theorem A are related to the decomposition of the iterated
p-adic free loop space due to Lurie [Lur19, Example 3.4.5] and [LPS24]. We do not need this
result in the current paper but since it offers an alternative way to prove Theorem A, we still
review it. Let BglG denote the global classifying orbispace of G and (BglG)∧n,p the iterated
p-adic free loop space of BglG. If G admits a finite EG, then one has a splitting of orbispaces

∐
[g1,...,gn]∈G/Gn,p

BglC⟨g1, . . . , gn⟩ ≃

ÐÐ→ (BglG)∧n,p.

For finite groups, this follows from [Lur19, Example 3.4.5] and, for the general case, from the
forthcoming paper [LPS24]. By applying to the splitting the orbispace Euler characteristic (see
[LPS24]), we get

χorb[(BglG)∧n,p] = ∑
[g1,...,gn]∈G/Gn,p

χorb[BglC⟨g1, . . . , gn⟩] = ∑
[g1,...,gn]∈G/Gn,p

χorb(C⟨g1, . . . , gn⟩).

Using this and the class equation, for any finite group H , one obtains

χorb[(BglH)∧n,p] = ∑
[h1,...,hn]∈H/Hn,p

1

∣C⟨h1, . . . , hn⟩∣ =
∣Hn,p∣
∣H ∣ .

On the other hand, since the iterated p-adic free loop space commutes with colimits, we also get

χorb[(BglG)∧n,p] =∑
Gσ

(−1)nσ
∣Hσ

n,p∣
∣Hσ ∣ ,

7



where the sum runs over all G-orbits of cells σ of EG, the number nσ is the dimension of σ, and
Hσ is the stabilizer of σ. Combining these results, we get an alternative proof of the identity

∑
[g1,...,gn]∈G/Gn,p

χorb(C⟨g1, . . . , gn⟩) =∑
Gσ

(−1)nσ
∣Hσ

n,p∣
∣Hσ ∣ .

Since we want to keep the exposition simple, we will not use orbispaces, p-adic free loop spaces,
and the orbispace Euler characteristic in this paper. Interested readers are referred to the
forthcoming paper [LPS24] and [Lur19].

4 Generating tuples and the proof of Theorem B

In this section we prove Theorem B. The strategy is to use generating tuples. Let H be a finite
abelian subgroup of G. Define

Genn(H) = {(h1, . . . , hn) ∈H×n ∣ ⟨h1, . . . , hn⟩ =H}.
In other words, Genn(H) is the set of generating n-tuples of H . The Weyl group W (H) =
N(H)/C(H) acts freely on Genn(H) by conjugation in each coordinate.

Lemma 4.1. Let G be a virtually torsion-free discrete group with a finite EG. Then we have

∑
[g1,...,gn]∈G/Gn,p

χorb(C⟨g1, . . . , gn⟩) = ∑
(H)
∣Genn(H)∣χorb(N(H)),

where the right hand sum runs over the conjugacy classes of finite abelian p-subgroups.

Proof. It follows by definition that the set Gn,p admits a decomposition

∐
Hab.p-subg.

Genn(H) = Gn,p,

where the disjoint union runs over all finite abelian p-subgroups. The G-action on the right
hand side corresponds to a G-action on the left hand side that is given by conjugating tuples
and permuting summands via conjugation of subgroups. Passing to the G-quotients gives a
bijection

∐
(H)

W (H)/Genn(H) ≅ G/Gn,p,

where the disjoint union runs over the conjugacy classes of finite abelian p-subgroups. This
implies

∑
[g1,...,gn]∈G/Gn,p

χorb(C⟨g1, . . . , gn⟩) = ∑
(H)
∣W (H)/Genn(H)∣χorb(C(H)).

Since W (H) acts freely on Genn(H) and χorb(N(H)) = 1
∣W(H)∣χorb(C(H)), we get the desired

equation.

Let H be a finite abelian p-group. The Frattini subgroup Φ(H) is the smallest subgroup
such that H/Φ(H) is elementary abelian. Note that Φ(H) = 1 if and only if H is an elementary
abelian p-group. For E an elementary abelian p-group, the rank of E is denoted by r(E). We
also recall the definition of the p-binomial coefficients:

(B
i
)
p

=
(pB − 1) . . . (pB−i+1 − 1)
(pi − 1) . . . (p − 1) .

In particular, (B
B
)
p
= 1 and (B

0
)
p
= 1. We are now ready to prove Theorem B.
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Theorem 4.2. Let G be a virtually torsion-free discrete group with a finite EG. Then we have

∑
[g1,...,gn]∈G/Gn,p

χorb(C⟨g1, . . . , gn⟩)

= ∑
(H)

χorb(N(H)) ⋅ ∣Φ(H)∣n ⋅ (
r(H/Φ(H))

∑
i=0

(−1)ipn(r(H/Φ(H))−i)+(i2) ⋅ (r(H/Φ(H))
i

)
p

),

where the sum runs over the conjugacy classes of finite abelian p-subgroups. Furthermore, we
have the congruence

∑
(H)

χorb(N(H)) ⋅ ∣Φ(H)∣n ⋅ (
r(H/Φ(H))

∑
i=0

(−1)ipn(r(H/Φ(H))−i)+(i2) ⋅ (r(H/Φ(H))
i

)
p

) ≡ 0 mod Z(p) .

Proof. Using [DSC98, Section 6.B] and [Hal36], we know the cardinality of the set of generating
n-tuples:

∣Genn(H)∣ = ∣Φ(H)∣n ⋅ (
r(H/Φ(H))

∑
i=0

(−1)ipn(r(H/Φ(H))−i)+(i2) ⋅ (r(H/Φ(H))
i

)
p

).

By Lemma 4.1, we get the first claim. The congruence now follows from the first claim and
Theorem A.

Remark 4.3. The formula of Theorem 4.2 can be slightly simplified. In fact it suffices to take
the sum indexed over conjugacy classes of those finite abelian p-subgroups which are generated
by at most n elements. Other terms in the sum will automatically vanish. For example, if n = 1,
then we only need to consider cyclic p-subgroups. This agrees with Theorem B.

Remark 4.4. It is sometimes convenient to rewrite the congruences of Theorem A and Theorem
B as follows:

χorb(G) ≡ ∑
[g1,...,gn]∈G/Gn,p−{[1,...,1]}

−χorb(C⟨g1, . . . , gn⟩) mod Z(p)

and

χorb(G) ≡ ∑
(H),H≠1

χorb(N(H)) ⋅ ∣Φ(H)∣n ⋅ (
r(H/Φ(H))

∑
i=0

(−1)i+1pn(r(H/Φ(H))−i)+(i2) ⋅ (r(H/Φ(H))
i

)
p

)
mod Z(p) .

5 The congruence at height n = ∞ and a new proof of the

Brown-Quillen congruence

In this section we give a new proof of the following theorem of Brown and Quillen [Bro82a,
Theorem 14.2]:

Theorem 5.1. Let G be a virtually torsion-free discrete group with a finite EG. Then one has

∑
(E)
(−1)r(E)p(r(E)2

)χorb(N(E)) ≡ 0 mod Z(p),

where the sum runs over the conjugacy classes of elementary abelian p-subgroups.
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Proof. For H =∏B
i=0 Z /pλi we have: Φ(H) =∏B

i=1 Z /pλi−1, B = r(H/Φ(H)), and ∣Φ(H)∣ = pA−B,
where A = ∑B

i=0 λi. We keep in mind that A and B depend on H . Then by Theorem 4.2, we
have the congruence

∑
(H)

χorb(N(H)) ⋅ pn(A−B) ⋅ (
B

∑
i=0

(−1)ipn(B−i)+(i2) ⋅ (B
i
)
p

) ≡ 0 mod Z(p) .

Let an denote the left hand side of this congruence. Then we know an ∈ Z(p). By taking the
p-adic limit, we get

lim
n→∞

an = ∑
(H)

χorb(N(H)) ⋅ lim
n→∞
(pn(A−B) ⋅ ( B

∑
i=0

(−1)ipn(B−i)+(i2) ⋅ (B
i
)
p

))

= ∑
(H)

χorb(N(H)) ⋅ lim
n→∞

pn(A−B) ⋅ ( B

∑
i=0

(−1)i lim
n→∞

pn(B−i)+(
i

2
)
⋅ (B

i
)
p

).

The terms with A > B or B > i vanish since limn→∞ pn = 0 in Zp. An abelian p-subgroup is
elementary abelian if and only if A = B, i.e., when the Frattini subgroup Φ(H) is trivial. Hence
only A = B and i = B terms survive in the limit and we obtain

lim
n→∞

an = ∑
(E)
(−1)r(E)p(r(E)2

)χorb(N(E)),

where the sum runs over the conjugacy classes of elementary abelian p-subgroups. The latter is
a rational number, so we know limn→∞ an ∈ Q. On the other hand Zp is closed in Qp and since
an ∈ Z(p) ≤ Zp, we know that the limit limn→∞ an also belongs to Zp. Hence limn→∞ an belongs
to the intersection Q ∩Zp = Z(p) and we obtain the desired congruence.

Example 5.2. Suppose G satisfies the assumptions of Theorem 5.1 and additionally assume
that every elementary abelian p-subgroup of G has the rank at most 1. Then by Lemma 4.1
(see also [Bro82a, Corollary 13.5]), one has

∑
(P )

χorb(N(P )) = 1

p − 1
∑
[g]

χorb(C⟨g⟩),

where P runs over the conjugacy classes of order p subgroups and g runs over the conjugacy
classes of order p elements. This shows that Brown’s congruence mentioned in the introduction
is a special case of the Brown-Quillen congruence.

Remark 5.3. Let G be a virtually torsion-free discrete group with a finite EG and suppose
pN is the maximal cardinality of a p-subgroup. Then the Brown-Quillen congruence can be
recovered from the chromatic congruence at height N . In other words, the limit congruence of
Theorem 5.1 is attained for sufficiently large N . Indeed, by Theorem B it suffices to show that
the term

χorb(N(H)) ⋅ ∣Φ(H)∣N ⋅ pN(r(H/Φ(H))−i)+(i2) ⋅ (r(H/Φ(H))
i

)
p

is p-integral if H is not elementary abelian or i < r(H/Φ(H)). But this follows since p-binomial
coefficients are p-integral and pNχorb(N(H)) is p-integral by Quillen’s formula (Proposition 2.4).
The remaining terms in the congruence of Theorem B recover the Brown-Quillen congruence.
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6 An application: Mapping class groups and congruences

for Bernoulli numbers

In this section we apply Theorem A to the mapping class group Γu of a closed oriented surface
Su of genus u and recover special cases of Kummer’s congruence [Kum51, Vor90], Carlitz’s
congruence [Car53] and a lesser known version of Kummer’s congruence for numbers divisible
by p − 1 [Coh07, Proposition 11.4.4]

By [HZ86], one has

χorb(Γu) = ζ(1 − 2u)
2 − 2u

=
B2u

2u(2u− 2) ,
where ζ is the Riemann zeta function and B2u is the 2u-th Bernoulli number. Let Γs

u denote
the mapping class group of a closed oriented surface of genus u with s many marked points (in
particular, one has Γ0

u = Γu). We need the following formulas from [HZ86]:

χorb(Γs
0) =
⎧⎪⎪⎨⎪⎪⎩
1 s ≤ 3

(−1)s−3(s − 3)! s ≥ 3,

χorb(Γs
1) =
⎧⎪⎪⎨⎪⎪⎩
−

1
12

s ≤ 1
(−1)s(s−1)!

12
s ≥ 1,

χorb(Γs
u) = (−1)s (2u + s − 3)!

2u(2u − 2)! B2u u ≥ 2, s ≥ 0.

By [Bro90, Har86, Mis10, JW10], the group Γs
u is virtually torsion free and admits a finite EG.

Brown’s theorem [Bro82b] tells us that for any virtually torsion-free group G with a finite EG,
the equation holds

χQ(G) =∑
[g]

χorb(C⟨g⟩),

where χQ(G) is the classical Euler characteristic (and hence an integer) and the sum runs over
the conjugacy classes of finite order elements of G. Harer and Zagier use this equation in [HZ86,
Theorem 5] to compute χQ(Γu) explicitly:

χQ(Γu) = ∑
k ≥ 1, v ≥ 0, s ≥ 0

(l1, . . . , ls), li ∣ k, li ≠ k

2u − 2 = k(2v − 2 + s) − l1 − ⋅ ⋅ ⋅ − ls

1

k

χorb(Γs
v)

s!
k2v ∏

q ∣ gcd(l1, . . . ls)

q ∣ k,q prime

(1 − q−2v)N(k; l1, . . . , ls),

where N(k; l1, . . . , ls) is the cardinality of the set

{(r1, . . . rs) ∈ (Z /kZ)×s ∣ r1 + ⋅ ⋅ ⋅ + rs ≡ 0 mod k, gcd(ri, k) = li}.
The number k stands for the order of elements. In this formula, the sum of the terms with a
fixed k ≥ 0 is equal to the sum ∑[g] χorb(C⟨g⟩), where [g] runs over the conjugacy classes of
order k elements. The equation

2u − 2 = k(2v − 2 + s) − l1 − ⋅ ⋅ ⋅ − ls
is the Riemann-Hurwitz formula for a branched cover associated to an order k element of Γu

with s many singular points. This cover can be constructed using the Nielsen realization [Nie43]:
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Given an element g of order k in Γu, the mapping class g is represented by a periodic home-
omorphism f of order k. The associated branched cover is the map Su → Su/⟨f⟩. The i-th
singularity has type k/li and the expression

k2v ∏
q ∣ gcd(l1, . . . ls)

q ∣ k,q prime

(1 − q−2v)

calculates the number of surjective characters determining the cover on the non-singular part.
Let p be a prime. If we only allow k to run through the powers of p, using the Harer-Zagier

formula above and Theorem A at height n = 1, we obtain

Proposition 6.1. For any u ≥ 0, we have the congruence

χorb(Γu) + ∑
m ≥ 1, v ≥ 0, s ≥ 0

(m1, . . . ,ms), 0 ≤mi <m, ∀mi ≠ 0

2u − 2 = p
m
(2v − 2 + s) − p

m1 − ⋅ ⋅ ⋅ − p
ms

1

pm
χorb(Γs

v)
s!

p2mv(1 − p−2v)N(pm;pm1 , . . . , pms)

+ ∑
m ≥ 1, v ≥ 0, s ≥ 0

(m1, . . . ,ms), 0 ≤mi <m, ∃mi = 0

2u − 2 = p
m
(2v − 2 + s) − p

m1 − ⋅ ⋅ ⋅ − p
ms

1

pm
χorb(Γs

v)
s!

p2mvN(pm;pm1 , . . . , pms) ≡ 0 mod Z(p) .

To extract concrete number theoretic formulas from this congruence, we need to simplify the
left hand side in Q/Z(p). It turns out that most of the terms in this congruence are already
p-integral. Though the calculations are somewhat lengthy, we give here detailed proofs. The
only number theoretic input used below is the von Staudt-Clausen theorem [Sta40, Cla40] (see
also [AIK14, Section 3.1]) or rather its p-local consequence: Let p be a prime and suppose
(p − 1) ∣ 2u. Then

B2u +
1

p
≡ 0 mod Z(p) .

For the rest of the section we will assume that the prime p is at most 5 and u ≥ 2. We start with

Lemma 6.2. Let m ≥ 2, v ≥ 2, s ≥ 0, 0 ≤mi < m, and 2u − 2 = pm(2v − 2 + s) − pm1 − ⋅ ⋅ ⋅ − pms .
Then the expression

1

pm
χorb(Γs

v)
s!

p2mv−2vN(pm;pm1 , . . . , pms)
is p-integral.

Proof. The expression can be rewritten as follows:

1

pm
χorb(Γs

v)
s!

p2mv−2vN(pm;pm1 , . . . , pms) = 1

pm
⋅
(−1)s(2v + s − 3)!
s! ⋅ 2v(2v − 2)! B2vp

2mv−2vN(pm;pm1 , . . . , pms)

=
B2v

pm ⋅ 2v(2v − 2)p
2mv−2v

⋅ (−1)s (2v + s − 3)!
s!(2v − 3)! N(p

m;pm1 , . . . , pms) = B2v

pm ⋅ 2v(2v − 2)p
2mv−2v

⋅M,

where M is an integer. Now using the von Staudt-Clausen theorem, it suffices to show

2mv − 2v ≥m + 1 + νp(2v(2v − 2)),
where νp is the p-adic valuation. This follows immediately since v − 1 ≥ νp(2v(2v − 2)) and

2mv − 2v ≥m + v,

for m ≥ 2 and v ≥ 2.
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The following deals with the case m = 1, v ≥ 2 and is proved analogously as the previous
lemma:

Lemma 6.3. Let v ≥ 2, s > 0, and 2u − 2 = p(2v − 2 + s) − s. Then the expression

1

p

χorb(Γs
v)

s!
p2vN(p; 1, . . . ,1´¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¶

s

)

is p-integral.

The above two lemmas say that all the terms in the formula of Proposition 6.1 are p-integral
except possibly the terms with m = 1, s = 0, or m ≥ 1, v = 0, or m ≥ 1, v = 1. In these cases many
of the terms are still p-integral. To be able to deal with these expressions we need an explicit
formula for the number N(pm;pm1 , . . . , pms). The following follows from [HZ86, page 81]:

Lemma 6.4. Let m ≥ 1, s ≥ 0, 0 ≤mi <m. Then

N(pm;pm1 , . . . , pms) = 1

pm

s

∏
i=1

(pm−mi − pm−mi−1)pλp(1 − (−1)µp−1

(p − 1)µp−1
),

where λp =min{m1, . . . ,ms,m − 1}, and µp is the cardinality of the set

{mi ∣ pλp+1 ∤ pmi }.
In particular, we have

N(p,1, . . . ,1´¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¶
s

) = 1

p
(p − 1)s(1 − (−1)

s−1

(p − 1)s−1 ).

Remark 6.5. There is a typo on page 81 of [HZ86], stating that in the above formula one

has the factor (1 − (−1)µp

(p−1)µp ) instead of (1 − (−1)µp−1

(p−1)µp−1 ). In particular, when µp = 1, then

N(pm;pm1 , . . . , pms) = 0.
The sums in Proposition 6.1 are indexed on s-tuples (m1, . . . ,ms). We note that any permu-

tations of such tuples are allowed and the terms involved are independent of these permutations.
Let π(m1, . . . ,ms) denote the number of different tuples obtained by permuting (m1, . . . ,ms).
This can be described as a multinomial coefficient. Every term in Proposition 6.1 indexed on
(m1, . . . ,ms) occurs π(m1, . . . ,ms) many times. This allows us to prove further p-integrality
statements for the terms involved in Proposition 6.1.

We deal next with the case m ≥ 1, v = 1.

Lemma 6.6. Let m ≥ 1, s ≥ 0, 0 ≤ mi < m, 2u − 2 = pms − pm1 − ⋅ ⋅ ⋅ − pms and suppose there
exists an index i0 such that mi0 ≠m − 1. Then the expression

1

pm
χorb(Γs

1)
s!

p2m−2N(pm;pm1 , . . . , pms)π(m1, . . . ,ms)

is p-integral.

Proof. It follows that m ≥ 2. Let x be the number of those i-s such that mi is minimal and
mi ≠ m − 1. Then we have x ≥ 1. If x = 1, then N(pm;pm1 , . . . , pms) = 0 by Remark 6.5 and
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the claim follows. We may assume that x is at least 2. By definition of π(m1, . . . ,ms) and the
formula for multinomial coefficients, we get that

π(m1, . . . ,ms) = s

x
⋅M,

where M is an integer (in fact a multinomial coefficient with (s − 1)! as the numerator and
involving (x − 1)! in the denominator). On the other hand by Lemma 6.4, we get

N(pm;pm1 , . . . , pms) = 1

pm

s

∏
i=1

pm−mi−1L′ =
1

pm
px ⋅L,

where L′ and L are p-integers. Hence the relevant expression can be rewritten as follows

1

pm
χorb(Γs

1)
s!

p2m−2N(pm;pm1 , . . . , pms)π(m1, . . . ,ms)

=
1

pm
(−1)s(s − 1)!

12s!
p2m−2 ⋅

1

pm
px ⋅

s

x
ML = (−1)s ⋅ px−2

12x
⋅M ⋅L.

If x = 2, then this number is p-integral since p ≥ 5. If x ≥ 3, then using p ≥ 5, we get px−2 ≥

5x−2 ≥ x, implying that x− 2 ≥ νp(x). Hence (−1)s ⋅ px−2

12x
⋅M ⋅L is p-integral which completes the

proof.

The remaining expressions with m ≥ 1 and v = 1 are the terms where mi =m−1 for all i. The
Riemann-Hurwitz formula 2u − 2 = pms − pm−1s tells us that s is uniquely determined by m in
such a case. To make this clear we introduce the notation s(m) = 2u−2

pm−pm−1 . Let r be the largest

number such that (pr+1 − pr) ∣ 2u− 2. Then we have 2u− 2 = (pm − pm−1)s(m) for 1 ≤m ≤ r + 1.

Lemma 6.7. Let p − 1 ∣ 2u − 2 and r ≥ 0 be the largest number such that (pr+1 − pr) ∣ 2u − 2.
Then

1

p

χorb(Γs(1)
1 )

s(1)! p2N(p; 1, . . . ,1´¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¶
s(1)

)+ r+1

∑
m=2

1

pm
χorb(Γs(m)

1 )
s(m)! p2m(1−p−2)N(pm;pm−1, . . . , pm−1´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

s(m)

) ≡ 0 mod Z(p) .

Proof. We first simplify the separate summands in Q/Z(p). By Lemma 6.4 and the binomial
theorem for any 2 ≤m ≤ r + 1, one has

−
1

pm
χorb(Γs(m)

1 )
s(m)! p2m−2N(pm;pm−1, . . . , pm−1´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

s(m)

)

= −
(−1)s(m)pm−2

12s(m) ⋅
1

p
(p − 1)s(m)(1 − (−1)

s(m)−1

(p − 1)s(m)−1 )

= −
(−1)s(m)pm−3

12s(m) ((p − 1)s(m) + (−1)s(m)(p − 1))

= −
(−1)s(m)pm−3

12s(m) (
s(m)

∑
x=0

(px(−1)s(m)−x s(m)!
x!(s(m) − x)!) + (−1)

s(m)(p − 1))

= −

s(m)

∑
x=1

(−1)2s(m)−xpx+m−3
12x

(s(m) − 1
x − 1

) − pm−2

12s(m) ≡ −
pm−2

12s(m) mod Z(p) .
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The latter congruence comes from the fact that since m ≥ 2 and x ≥ 1, we have px+m−3 ≥ x. A
very similar argument also shows that for any 1 ≤m ≤ r + 1, we have

1

pm
χorb(Γs(m)

1 )
s(m)! p2mN(pm;pm−1, . . . , pm−1´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

s(m)

) ≡ pm

12s(m) mod Z(p) .

We conclude that the left hand side of the the desired congruence is equal in Q/Z(p) to the sum

p

12s(1) +
r+1

∑
m=2

( pm

12s(m) −
pm−2

12s(m)).

Using that ps(m) = s(m− 1) for any 2 ≤m ≤ r + 1, the latter sum is equal to pr+1

12s(r+1) in Q/Z(p).
By definition of r, we know that p ∤ s(r + 1). Since p ≥ 5, this implies that pr+1

12s(r+1) is p-integral
which completes the proof.

Finally, we deal with the case m ≥ 1, v = 0. We start with the following:

Lemma 6.8. Let m ≥ 2, s ≥ 0, 0 ≤ mi < m, and 2u − 2 = pm(s − 2) − pm1 − ⋅ ⋅ ⋅ − pms . Suppose
that the cardinality of the set { i ∣mi = 0 } is at least 3. Then the expression

1

pm
χorb(Γs

0)
s!

N(pm;pm1 , . . . , pms)π(m1, . . . ,ms)

is p-integral.

Proof. Let x denote the cardinality of the set { i ∣ mi = 0 }. Then by our assumption, we have
x ≥ 3 and hence also s ≥ 3. By Lemma 6.4, one gets

1

pm
χorb(Γs

0)
s!

N(pm;pm1 , . . . , pms)π(m1, . . . ,ms)

=
(−1)s−3

pms(s − 1)(s − 2) ⋅
1

pm

s

∏
i=1

pm−mi−1(p − 1)s(1 − (−1)
x−1

(p − 1)x−1 )π(m1, . . . ,ms).

The number π(m1, . . . ,ms) can be expressed as a multinomial coefficient. Since x ≥ 3, it can be
written as follows

π(m1, . . . ,ms) = s(s − 1)(s − 2)
x(x − 1)(x − 2) ⋅

(s − 3)!
(x − 3)!⋯ =

s(s − 1)(s − 2)
x(x − 1)(x − 2) ⋅M,

where M is an integer. We also know that p(m−1)x ∣ ∏s
i=1 p

m−mi−1 and p ∣ ((p − 1)x−1 + (−1)x).
Hence we get

1

pm
χorb(Γs

0)
s!

N(pm;pm1 , . . . , pms)π(m1, . . . ,ms) = (−1)
s−3p(m−1)x−2m+1

x(x − 1)(x − 2) ⋅L,

where L is p-integral. If x = 3 then the latter is p-integral since m ≥ 2 and p ≥ 5. And if x ≥ 4,

then p(m−1)x−2m+1 ≥ x since p ≥ 5 and m ≥ 2, thus showing that (−1)
s−3p(m−1)x−2m+1

x(x−1)(x−2) is p-integral.
This completes the proof.

The next lemma is proved analogously as the previous one and we skip the proof:
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Lemma 6.9. Let m ≥ 2, s ≥ 0, 0 ≤ mi < m, and 2u − 2 = pm(s − 2) − pm1 − ⋅ ⋅ ⋅ − pms . Suppose
that the cardinality of the set { i ∣ mi = 0 } is equal to 2 and there exists an index j0 such that
0 <mj0 <m − 1. Then the expression

1

pm
χorb(Γs

0)
s!

N(pm;pm1 , . . . , pms)π(m1, . . . ,ms)
is p-integral.

Finally, we consider the case when m ≥ 1, v = 0, the cardinality of the set { i ∣ mi = 0 }
is equal to 2 and all the other mi-s are equal to m − 1. The Riemann-Hurwitz formula 2u =

(pm −pm−1)(s−2) tells us that s is uniquely determined by m. To make this clear we introduce
the notation s(m) = 2u

pm−pm−1 + 2. Let r be the largest number such that (pr+1 − pr) ∣ 2u. Then

we have 2u = (pm − pm−1)(s(m)− 2) for 1 ≤m ≤ r + 1.

Lemma 6.10. Let p − 1 ∣ 2u and r ≥ 0 be the largest number such that (pr+1 − pr) ∣ 2u. Then

1

p

χorb(Γs(1)
0 )

s(1)! N(p; 1, . . . ,1´¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¶
s(1)

) + r+1

∑
m=2

1

pm
χorb(Γs(m)

0 )
s(m)! N(pm;pm−1, . . . , pm−1´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

s(m)−2

,1,1)π(m − 1, . . . ,m − 1´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
s(m)−2

,0,0)

≡
1

ps(1)(s(1)− 2) mod Z(p) .

Proof. We first simplify the separate summands in Q/Z(p). By Lemma 6.4 and the binomial
theorem, one has

1

p

χorb(Γs(1)
0 )

s(1)! N(p; 1, . . . ,1´¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¶
s(1)

) = (−1)s(1)−3
ps(1)(s(1)− 1)(s(1)− 2) ⋅

1

p
(p − 1)s(1)(1 − (−1)s(1)−1(p − 1)s(1)−1 )

=
(−1)s(1)−3

p2s(1)(s(1)− 1)(s(1)− 2)((p − 1)
s(1)
+ (−1)s(1)(p − 1))

=
(−1)s(1)−3

p2s(1)(s(1)− 1)(s(1)− 2)((−1)
s(1)p + (−1)s(1)−1ps(1)

+ (−1)s(1)−2p2 ⋅ s(1)!
2! ⋅ (s(1)− 2)! +

s(1)

∑
x=3

px ⋅ (−1)s(1)−x ⋅ s(1)!
x! ⋅ (s(1)− x)!)

=
1

p(s(1) − 1)(s(1)− 2) −
1

ps(1)(s(1)− 1)(s(1)− 2) −
1

2(s(1)− 2) +
s(1)

∑
x=3

(−1)x+3px−2
x(x − 1)(x − 2)(

s(1) − 3
x − 3

)

≡
1

p(s(1) − 1)(s(1)− 2) −
1

ps(1)(s(1)− 1)(s(1)− 2) −
1

2(s(1)− 2)
=

1

ps(1)(s(1)− 2) −
1

2(s(1)− 2) mod Z(p) .

Here the congruence comes from the fact that the terms px−2

x(x−1)(x−2) are p-integral for x ≥ 3. The

latter follows since p ≥ 5, x ≥ 3, and px−2 ≥ x. Furthermore, again using Lemma 6.4 and the
binomial theorem, for any 2 ≤m ≤ r + 1, a similar calculation shows

1

pm
χorb(Γs(m)

0 )
s(m)! N(pm;pm−1, . . . , pm−1´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

s(m)−2

,1,1)π(m − 1, . . . ,m − 1´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
s(m)−2

,0,0)

≡
1

2p(s(m)− 2) −
1

2(s(m) − 2) mod Z(p) .
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Now the left hand side of the desired congruence is equal in Q/Z(p) to the sum

1

ps(1)(s(1)− 2) −
1

2(s(1)− 2) +
r+1

∑
m=2

( 1

2p(s(m)− 2) −
1

2(s(m)− 2)).

Using that p(s(m) − 2) = s(m − 1) − 2 for any 2 ≤m ≤ r + 1, the latter sum simplifies to

1

ps(1)(s(1)− 2) −
1

2(s(r + 1) − 2) ,

where the term 1
2(s(r+1)−2) is p-integral by definition of r. This completes the proof.

We are finally ready to prove the main theorem of this section:

Theorem 6.11. Let u ≥ 2 be an integer. Then

i) If p − 1 ∣ 2u and p ∣ 2u − 2, then

ζ(1 − 2u)
2 − 2u

−
1

p
⋅
ζ(1 − 2v)
2 − 2v

+
(p − 1)2

2u ⋅ p(2u + 2p − 2) ≡ 0 mod Z(p),

where v = u−1
p
+ 1.

ii) If p − 1 ∤ 2u and p ∣ 2u − 2, then

ζ(1 − 2u)
2 − 2u

−
1

p
⋅
ζ(1 − 2v)
2 − 2v

≡ 0 mod Z(p),

where v = u−1
p
+ 1.

iii) If p − 1 ∣ 2u and p ∤ 2u − 2, then

ζ(1 − 2u)
2 − 2u

+
(p − 1)2

2u ⋅ p(2u + 2p − 2) ≡ 0 mod Z(p) .

iv) If p − 1 ∤ 2u and p ∤ 2u − 2, then

ζ(1 − 2u)
2 − 2u

≡ 0 mod Z(p) .

Proof. All the formulas follow from Proposition 6.1 and the formula χorb(Γv) = ζ(1−2v)
2−2v [HZ86],

after observing that most of the terms in Proposition 6.1 are p-integral. The terms with m ≥

2, v ≥ 2, or m = 1, s > 0, v ≥ 2, are p-integral by Lemma 6.2 and Lemma 6.3, respectively. The
sum of the terms with m ≥ 1 and v = 1 is also p-integral by Lemma 6.6 and Lemma 6.7. To get
the desired formulas we need to consider the remaining terms with m = 1, s = 0, or m ≥ 1, v = 0,
and go through the four cases:

i) In this case for the term with m = 1, s = 0, the Riemann-Hurwitz formula gives 2u − 2 =

p(2v − 2) and hence v = u−1
p
+ 1. This term looks as follows

1

p
χorb(Γv)p2v(1 − p−2v) = 1

p

ζ(1 − 2v)
2 − 2v

p2v −
1

p
⋅
ζ(1 − 2v)
2 − 2v

,

where the first summand is p-integral by the von Staudt-Clausen theorem and since p2v−2 ≥

v. We also have the sum of the terms with m ≥ 1, v = 0. In this sum the terms with mi ≠ 0

for all i are zero since v = 0 and hence 1 − p−2v = 0 . The terms with mi = 0 for only

17



one i are also zero since in this case N(pm, pm1 , . . . , pms) = 0 by Remark 6.5. Using these
observations, Lemma 6.8, Lemma 6.9, Lemma 6.10 and Proposition 6.1, we get

χorb(Γu) − 1

p
⋅
ζ(1 − 2v)
2 − 2v

+
1

ps(s − 2) ≡ 0 mod Z(p),

where 2u = (s − 2)(p − 1) and hence we get

ζ(1 − 2u)
2 − 2u

−
1

p
⋅
ζ(1 − 2v)
2 − 2v

+
(p − 1)2

2u ⋅ p(2u + 2p − 2) ≡ 0 mod Z(p) .

ii) The terms with m ≥ 1, v = 0 do not occur in this case. Indeed, suppose such a term exists.
Then by the Riemann-Huwritz formula, we get

2u − 2 = pm(s − 2)− pm1 − ⋅ ⋅ ⋅ − pms ,

where 0 ≤mi <m. Hence

2u =
s

∑
i=1

(pm − pmi) − 2(pm − 1) = s

∑
i=1

pmi(pm−mi − 1) − 2(pm − 1),

implying p − 1 ∣ 2u, and thus contradicting to our assumption. The term with m = 1, s = 0

is congruent to

−
1

p
⋅
ζ(1 − 2v)
2 − 2v

exactly as in Part i). This covers all the summands in Proposition 6.1 and we obtain

ζ(1 − 2u)
2 − 2u

−
1

p
⋅
ζ(1 − 2v)
2 − 2v

≡ 0 mod Z(p) .

iii) The term with m = 1, s = 0 does not occur in this case since p ∤ 2u − 2 and the Riemann-
Hurwitz formula 2u−2 = p(2v−2) cannot hold. What remains is the sum of the terms with
m ≥ 1, v = 0 which is computed exactly as in Part i) and we get

ζ(1 − 2u)
2 − 2u

+
(p − 1)2

2u ⋅ p(2u + 2p − 2) ≡ 0 mod Z(p) .

iv) The term with m = 1, s = 0 does not occur for the same reason as in Part iii) and the
terms with m ≥ 1, v = 0 do not occur for the same reason as in Part ii). This covers all the
summands and by Proposition 6.1, we obtain

χorb(Γu) = ζ(1 − 2u)
2 − 2u

≡ 0 mod Z(p) .

Remark 6.12. The congruence of Part i) recovers a lesser known version of Kummer’s congru-
ence when p − 1 ∣ 2u and p − 1 ∣ 2v (see [Coh07, Proposition 11.4.4]). The conditions p − 1 ∣ 2u
and p ∣ 2u − 2 hold if and only if the number u can be written as follows

u = pr(p − 1
2

k − 1) + 1,
where k ≥ 1 and r ≥ 1. Then

v = pr−1(p − 1
2

k − 1) + 1,

18



and we see p − 1 ∣ 2v.
Let x denote the expression p−1

2
k − 1. Then the congruence of Part i) can be rewritten as

−ζ(1 − 2u)+ ζ(1 − 2v) ≡ − xpr(p − 1)2
u ⋅ p(2u + 2p − 2) mod pr Z(p) .

In terms of Bernoulli numbers after simplifying one obtains

B2u

2u
−
B2v

2v
≡ ( 1

2u
−

1

2v
)(1 − 1

p
) mod pr Z(p) .

This agrees with [Coh07, Proposition 11.4.4].

Remark 6.13. Part ii) of Theorem 6.11 recovers a special case of Kummer’s congruence proved
by Kummer and Voronoi [Kum51, Vor90]. Indeed, suppose 2u − 2 = pry, where gcd(y, p) = 1.
Then v = u−1

p
+ 1 and hence 2v − 2 = pr−1y. If p− 1 ∤ 2u, then p− 1 ∤ 2v. The congruence in Part

ii) can be rewritten as follows

ζ(1 − 2u)
−pry

−
ζ(1 − 2v)
−pry

≡ 0 mod Z(p),

or equivalently
B2u

2u
≡
B2v

2v
mod pr Z(p) .

Part iv) implies that if p − 1 ∤ 2u and p ∤ 2u− 2, then B2u

2u
∈ Z(p) which is also a special case

of Kummer’s congruence. See [AIK14, Theorem 3.2] for more details on the classical Kummer’s
congruence.

Part iii) recovers a special case of a congruence due to Carlitz [Car53, Theorem 3] which
generalizes the p-local von Staudt-Clausen theorem. Indeed, we may assume 2u = zpr(p − 1),
where r ≥ 0 and gcd(z, p) = 1. Then Part iii) can be rewritten as

ζ(1 − 2u) + 2 − 2u

zpr+1(zpr + 2) ≡ 0 mod Z(p),

since p ∤ 2u − 2. By further simplifying we get

B2u +
1

p
≡ 1 mod pr Z(p) .

This is a congruence due to Carlitz [Car53, Theorem 3].

7 An Example: Γ (p−1)(p−2)
2

and a comparison of the chromatic

and Brown-Quillen congruences

In this section we apply Theorem B to the group Γ (p−1)(p−2)
2

, where p ≥ 5. By a result of Broughton

[Bro92, Section 4] the group Γ (p−1)(p−2)
2

has only one conjugacy class of subgroups isomorphic

to Z /p × Z /p and does not have any higher rank elementary abelian p-subgroups. The genus
u =

(p−1)(p−2)
2

is the minimal genus for which a rank 2 elementary abelian p-subgroup occurs.
Additionally, by [Bro92] the normalizer of Z /p ×Z /p ≤ Γ (p−1)(p−2)

2

is isomorphic to Σ3 ⋉ (Z /p)2.
Next, by [LN98, Proposition 1.1], the group GL(p−1)(p−2)(Z) does not contain p2 torsion and
hence nor does the symplectic group Sp(p−1)(p−2)(Z). Since the Torelli group is torsion-free (see
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e.g., [FM12, Theorem 6.8]), we conclude that Γ (p−1)(p−2)
2

has no elements of order p2. Now by

Theorem B and Remark 4.3, we have the chromatic congruence at height n ≥ 1:

χorb(Γ (p−1)(p−2)
2

)+(pn−1) ∑
(H)

H ≅ Z/p

χorb(N(H))+(p2n−(1+p)pn+p)χorb(Σ3⋉(Z /p)2) ≡ 0 mod Z(p) .

From here one obtains (see Lemma 4.1)

χorb(Γ (p−1)(p−2)
2

) + pn − 1

p − 1
∑
[g]

χorb(C⟨g⟩) + (p2n − (1 + p)pn + p) ⋅ 1

6p2
≡ 0 mod Z(p),

where [g] runs over the conjugacy classes of order p elements. Finally, for any n ≥ 1, by [HZ86]
and the proof of Theorem 6.11 Part i), we see that the chromatic congruence formula at height
n ≥ 1 looks as follows:

ζ(1 − 2u)
2 − 2u

+
pn − 1

p − 1
(− 1

p
⋅
ζ(1 − 2v)
2 − 2v

+
(p − 1)2

2u ⋅ p(2u + 2p − 2))+(p
2n
−(1+p)pn+p) ⋅ 1

6p2
≡ 0 mod Z(p),

where u =
(p−1)(p−2)

2
and v = p−1

2
. After taking the p-adic limit as n → ∞, by the proof of

Theorem 5.1, we recover the Brown-Quillen congruence:

ζ(1 − 2u)
2 − 2u

−
1

p − 1
( − 1

p
⋅
ζ(1 − 2v)
2 − 2v

+
(p − 1)2

2u ⋅ p(2u + 2p − 2)) +
1

6p
≡ 0 mod Z(p) .

On the other hand the chromatic congruence at height n = 1 recovers the congruence of Theorem
6.11 Part i)

ζ(1 − 2u)
2 − 2u

−
1

p
⋅
ζ(1 − 2v)
2 − 2v

+
(p − 1)2

2u ⋅ p(2u + 2p − 2) ≡ 0 mod Z(p) .

The latter and Brown-Quillen congruence can be obtained from each other by using

ζ(1 − 2v)
2v − 2

≡
1

p(p − 1)(p − 3) mod Z(p)

which is a consequence of the von Staudt-Clausen theorem.
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