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§1. Introduction

This talk will focus on an alternative construction of Brown–Gitler spec-
tra as those representing a certain functor from spectra to abelian groups.
This functor is defined in terms of Hopf algebras and Witt vectors, and
the “construction” is non-explicit, appealing to (an appropriate version of)
Brown representability. The first part of the talk will be devoted to formu-
lating and verifying the necessary hypotheses of Brown representability; the
second to showing that the objects produced has the correct cohomology to
fit our earlier definition of Brown–Gitler spectra.

This talk will be independent of other parts of the seminar in the sense
that it has little dependance on or necessity for the rest of what we’re doing.
Nevertheless, let’s recall a bit of general set-up: our goal is

1.1. Theorem (The Immersion Conjecture). Every n-manifold immerses

into R2n−α(n), where α(n) is the number of ones in the binary expansion of
n.

Recall that Brown–Gitler spectra entered the picture as follows. The
existence of an immersion of Mn into R2n−α(n) can be reduced to exhibiting
a factorization of the map M → BO classifying the stable normal bundle
through the natural map BO(n − α(n)) → BO. This reduction via the
Smale–Hirsch theorem (from Emily’s talk). Rather than construct a map to
BO(n − α(n)) direction, the strategy is to produce an auxiliary spectrum
BO/In → BO so that the classifying map of −TM more obviously factors,
and then show that BO/In → BO(n− α(n)) in a compatible way.

The Thomified version of BO/In, called Brown–Gitler spectra and de-
noted by B(n) in Robert’s talk, and are in fact by having a certain co-
homology and satisfying some additional conditions. In this talk, we give
another description.

We’ll closely follows the paper of Goerss, Lannes, and Morel titled “Hopf
algebras, Witt vectors, and Brown–Gitler spectra.” Our main result of this
talk will be the following result from that paper (functors involved to be
defined in the next section):

1.2. Theorem. For all n even, the functor Sp→ Ab given by X 7→ DnH∗(Ω
∞X;Z/2)

is is the n-th homology of a 2-local spectrum B(n), whose cohomology is

H∗B(n) ' A/A{χ(Sqi) : 2i > n},
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as a module over the Steenrod algebra A; and so that if ι : B(n) → HZ/2
generates H0(B(n)), then, for all CW complexes Z, i∗ is surjective in di-
mension n:

B(n)n(Z) � Hn(Z).

That is, B(n) = BO/In.

1.3. Remark. Recall from Robert’s talk that Brown–Gitler spectra are char-
acterized as sequences of spectra {Xk} having the cohomology as above,
together with any of five equivalent conditions. It seems like the second
fact above should imply (5) from Robert’s talk, which asserted that for any
pointed CW complex Z, the differential dr in the Adams spectral sequence
Ers,t for B(k/2)⊗Σ∞Z the sequence vanished for r ≥ 1, t− s ≤ 2k + 1. I’ll
try to clarify this relationship later. (NOTE k is off from Robert’s talk –
Goerss et al define B(k) = B(k−1) for k odd. We’ll just assume k is even.).

1.4. Remark. Goerss–Lannes–Morel prove an analogous result to 1.2 at all
primes, under the hypothesis that n 6≡ ±1 (mod 2p), but we’ll specialize to
p = 2. This is the relevant context for the seminar. The proof ideas go
through for general primes, but (as usual) some algebraic assertions have
different forms at odd p.

1.5. Notation. Following Goerss–Lannes–Morel, we writeK(G,n) for ΣnHG,
the n-th suspension of the Eilenberg–Mac Lane spectrum.

§2. Hopf algebras and Witt vectors

Our goal here is the define the functor which we seek to prove is repre-
sentable. This necessitates a bit of background on Hopf algebras.

2.1. Definition. A Hopf algebra (H,m, η,∆, ε) over a field (or ring) k is a
bialgebra H equipped an antipode map S : H → H such that

m ◦ (1⊗ S) ◦∆ = m ◦ (S ⊗ 1) ◦∆ = η ◦ ε.

2.2. Example. Hopf algebras as over k are equivalent to affine abelian group
schemes over k under the usual equivalence

{Affine k − Schemes} ↔ {k −Algebras}.

2.3. Example. For an abelian group G, the group algebra k[G] is a Hopf
algebra over k with comultiplication induced by the assignment g 7→ g ⊗ g,
counit induced by g 7→ 1k, and antipode induced by g 7→ g−1.

2.4. Definition. Let H the category of graded commutative and cocommu-
tative Hopf algebras over k. In later sections, and as needed for simplifica-
tion, we will assume k = F2.

The following is of primary interest to us:

2.5. Example. Given a spectrum X, H∗(Ω
∞X;Z/2) can be viewed as an

element of H: the underlying group is the usual graded abelian group struc-
ture on homology, multiplication is induced by composition of loops, and
comultipliation comes from the space diagonal on Ω∞X. The antipode map
is probably induced by the antipode on the sphere. It’s a fact that antipodes
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are unique if they exist, and so can generally be ignored: limits and colimits
of Hopf algebras can be computed in bialgebras, Hopf agebras form a full
subcategory, etc. etc.

2.6. Definition. A Hopf algebra H ∈ H is said to be connected if H0 '
k. We write H0 for the full subcategory of H spanned by connected Hopf
algebras.

The algebraic structure of H is, a priori, complicated and computations
are difficult; however, our understanding can be simplified by H0. In order
to do this, we begin by discussing certain particularly nice connected Hopf
algebras, which are finitely generated projective and in fact generate H0

under quotients of coproducts in H.

2.7. Remark. During the seminar, Haynes pointed out that the identifi-
cation of H(n) as finitely generated projective generators for H0, and the
subsequent fact that homH(H(n),−) establish an equivalence of categories
between H0 and a more combinatorial module category is analogous to
the study of spaces (say CW spaces) via simplicial sets and the functors
homTop(∆n,−).

This construction requires a bit of work.

Construction/Definition:
Let C(j) be the graded ring Z[x0, . . . , xn, . . . ] where xi has degree 2i+1j.

Let

wn :=
n∑
i=0

pixp
n−i

i .

Then Schoeller proves that there is a unique Hopf algebra structure mak-
ing each wi primitive, meaning that

∆(wi) = wi ⊗ g + g ⊗ wi
for some element g ∈ C(j) such that ε(g) = 1 (meaning g is grouplike).

We then let C(m, j) be the subring Z[x0, . . . , xm] ⊂ C(j). This is, in fact,
a Hopf subalgebra: to see this, note that wi ∈ C(m, j) for i ≤ m.

The next step is to get a Hopf algebra over F2; thus far, our Hopf algebras
have been integral.

2.8. Definition. Let V be the category of graded F2-vector spaces. Define
Φ: V → V by (ΦV )n = 0 if n is odd and (ΦV )2m = Vm.

If n = 2mk, where (2, k) = 1, H(n) is determined by the formula

ΦH(n) = F2 ⊗ C(m, k).

Thus, H(n) = F2[x0, . . . , xm] as an algebra, where xi has degree 2ik.

2.9. Remark. Note that if n = 2mk, H(n) ↪→ H(2n) as Hopf algebras,
induced by the inclusion of polynomial rings. This simply corresponds to
adding one additional algebra generator xm+1 of degree 2m+1k. For t odd,
there is not an obvious relationship between H(n) and H(tn).
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It’s a fact, due to Schoeller, that H(n) is a finitely generated and pro-
jective in H0 (where projectivity is defined, as usual, as lifting through
surjections in H0).

For H ∈ H, define a functor Dn : H → Ab by

DnH := homH(H(n), H).

(Note that comultiplication on H(n) gives DnH the structure of an abelian
group.) Putting together the Dn’s, we define a functor D∗ : H0 → D, where
D is the category of of Dieudonne modules: graded abelian groups M satis-
fying

• Mn = 0 if n < 1.
• 2m+1Mn = 0 if n = 2mk with k odd.

and equipped with Verschiebung and Frobenius maps V : M2n → Mn and
F : Mn →M2n such that FV = V F = p, where p denotes multiplication by
p.

In order to complete the definition of D∗, we need to define the action of
V and F act on D∗(H) functorially. For n = 2mk, et φ : H(n)→ H(2n) be
the inclusion F2[x0, . . . , xm] ↪→ F2[x0, . . . , xm+1]. (See 2.9 above.)

Let ψ : H(pn) = F2[x0, . . . , xm+1]→ F2[x0, . . . , xm+1] be the composition
of the quotient map

F2[x0, . . . , xm+1]→ F2[x0, . . . , xm+1]/(x0)

with the power/ shift map determined by xi 7→ x2i−1.
Then one checks that:

H(2n) H(n)

H(2n)

ψ

[2]
φ

H(n) H(2n)

H(n)

φ

[2]
ψ

commute. Given these, it’s clear from the definition of the group structure
of Dn(H) that taking V and F to act by φ and ψ makes D∗(−) a functor
to D.

§3. Representability

Classical Brown representability, as stated in Adams’ his 1971 paper “A
variant of E. H. Brown’s representability theorem,” asserts that

3.1. Theorem (Brown Representability). Let H : finCW→ Ab be a homo-
topy functor satisfying the wedge and Mayer-Vietoris axioms. Then H is
representable.

From this Adams deduces that

3.2. Theorem. Generalised cohomology theories on finite CW complexes are
representable by an Ω-spectrum.
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These two statements imply

3.3. Corollary. If B : Sp → Ab are exact homotopy functor which takes
arbitrary wedges to sums of groups and commutes with filtered colimits, then
there is a spectrum E so that B(X) = E0(X) for all spectra X.

Proof. Define a homology theory on finite spectra by

Bk(X) = B(Σ−kX),

and a cohomology theory by B∗ : Spfinop → Ab by

Bn(X) := B−n((X)∗),

where (−)∗ denotes taking the Spanier–Whitehead dual. Note we need finite
spectra for the dual to exist.
B∗ gives a generalised cohomology theory on finite CW complexes by

taking Σ∞, and, by 3.2,we get that there exists a spectrum E representing
it. Then it’s clear that the generalised homology theory E∗ on spectra agrees
with B on finite suspension spectra. But any spectrum can be written as a
filtered colimit of shifts of finite suspension spectra so in fact E∗ gives B∗
on all spectra.

�

We will verify that the functor B = X 7→ DnH∗Ω
∞X from spectra to

abelian groups satisfies the wedge and exactness axioms, and commutes with
filtered colimits, so that by we can deduce:

3.4. Theorem. There is a spectrum B(n) so that for all X ∈ Sp, B(n)n(X) =
DnH∗(Ω

∞X;Z/2).

Explicitly, the conditions to verify are:

(1) Given any filtered system {Xα} of spectra, the natural map

colimB(Xα)→ B(colimαX)

is an isomorphism.
(2) For any coproduct ∨αXα of spectra, the natural map

⊕αB(Xα)→ B(∨αXα)

is an isomorphism.
(3) If X → Y → Z is a (co)fiber sequence of spectra, then

B(X)→ B(Y )→ B(Z)

is exact.

The first two verifications are fairly straightforward:

Proof of 1. As a functor to abelian groups, homology commutes with filtered
colimits (this is essential the fact that filtered colimits commute with finite
limits, for example kernels, and all colimits commute). Up to weak equiva-
lence, Ω∞ also commutes with filtered colimits, which can be seen by taking
homotopy groups. So, to show that the natural map colimαH∗(Ω

∞Xα) →
H∗(Ω

∞ colimαXα) ' H∗(colimα Ω∞Xα) is an isomorphism, we use the fact
that the forgetful functor from the category BiAlg of cocommutative coal-
gebras in graded strictly commutative algebras to abelian groups commutes
with sifted colimits, and the colimit in H is computed in BiAlg .
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3.5. Remark. In more detail: objects of BiAlg are algebra objects in grAlgop,
and as a right adjoint the forgetful functor Alg(grAlgop)→ grAlgop preserves
limits. Taking opposites into account, this shows that the colimit in bialge-
bras is the colimit of the underlying algebras. As a last step, note that the
free commutative algebra monad on abelian groups preserves sifted colimits,
and so the forgetful functor Alg → Ab preserves these too. Thus, the map
in question is an isomorphism of the underlying abelian groups.

To finish, note that Dn = homH(H(n),−), and H(n) is a compact ob-
ject of H since finitely generated (and in fact all colimits, since H(n) are
projective). �

Proof of 2. By 1, we can assume our coproducts are finite and hence are also
products of spectra. Then, as a right adjoint, Ω∞ commutes with products:

Ω∞ ∨α Xα ' ΠΩ∞Xα,

where the product is in pointed spaces. Since we have field coefficients,
we can apply the Künneth theorem to see that we have the graded tensor
product of the constituent H∗(Ω

∞Xα), which is a coproduct in algebras and
(as noted in 3.5 above) also the coproduct in Hopf algebras.

Now we again use that Dn preserve colimits. Hence, 2 is proved.
�


