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Annals of Mathematics, 152 (2000), 183-206 

Newton polygons and formal groups: 
Conjectures by Manin and Grothendieck 

By FRANS OORT 

Introduction 

We consider p-divisible groups (also called Barsotti-Tate groups) in char- 
acteristic p, their deformations, and we draw some conclusions. 

For such a group we can define its Newton polygon (abbreviated NP). 
This is invariant under isogeny. For an abelian variety (in characteristic p) the 
Newton polygon of its p-divisible group is "symmetric". 

In 1963 Manin conjectured that conversely any symmetric Newton poly- 
gon is "algebroid"; i.e., it is the Newton polygon of an abelian variety. This 
conjecture was shown to be true and was proved with the help of the "Honda- 
Serre-Tate theory". We give another proof in Section 5. 

Grothendieck showed that Newton polygons "go up" under specialization: 
no point of the Newton polygon of a closed fiber in a family is below the 
Newton polygon of the generic fiber. In 1970 Grothendieck conjectured the 
converse: any pair of comparable Newton polygons appear for the generic and 
special fiber of a family. This was extended by Koblitz in 1975 to a conjecture 
about a sequence of comparable Newton polygons. In Section 6 we show these 
conjectures to be true. 

These results are obtained by deforming the most special abelian varieties 
or p-divisible groups we can think of. In describing deformations we use the 
theory of displays; this was proposed by Mumford, and has been developed in 
[17], [18], and recently elaborated in [32] and [33]; also see [11], [31]. 

Having described a deformation we like to read off the Newton polygon of 
the generic fiber. In most cases it is difficult to determine the Newton polygon 
from the matrix defined by F on a basis for the (deformed) Dieudonne module. 
In general I have no procedure to do this (e.g. in case we deform away from a 
formal group where the Dieudonne module is not generated by one element). 
However in the special case we consider here, a(Go) = 1, a noncommutative 
version of the theorem of Cayley-Hamilton ("every matrix satisfies its own 
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184 FRANS OORT 

characteristic polynomial") suffices for our purposes. This enables us to find 
equations singling out specific Newton polygons (in that coordinate system NP- 
strata are linear subspaces). Once this is done (Sections 2 and 3), conjectures 
by Manin, Grothendieck and Koblitz follow easily (Sections 5 and 6). 

Many people have patiently listened to me in discussions about this topic. 
Especially I mention, and I thank: Ching-Li Chai, Johan de Jong and Ben 
Moonen for sharing their time and interests with me. 

1. Definitions and notation 

Throughout the paper we fix a prime number p. 

(1.1) For a commutative finite group scheme N -> S we denote by ND 
its Cartier dual; see [22, I.2], [27, VIIA.3], [30, 2.4]. It can be characterized 
functorially by: 

N D(T) = Hom(NT, Gm,T); 

see [22, III.16], [27, VIIA.3.3]. 
For an abelian scheme X - S we denote its dual by Xt. Note the duality 

theorem: for an isogeny p: X Y Y we canonically have an exact sequence 

0 -> (Ker (<p))D __ yt 2 Xt > 0; 

see [22, III.19] and [16, III.15]. 
For p-divisible groups, see [28]. An abelian scheme X -> S of relative 

dimension g defines a p-divisible group of height 2g, which we denote by 

ind.lim.X[p'] =: X[p?] . 

A polarization for an abelian scheme is an isogeny 

A: X -> Xt 

which on each geometric fiber is defined by an ample divisor; see [15, 6.2]. Note 
that a polarization A is an isogeny which is symmetric in the sense that 

(A: X - Xt)t = A 

with the canonical identification X = Xtt; see [16, 21 Appl. III, p. 208]. A 
polarization is called a principal polarization if it is an isomorphism. 

We say that A: G -> Gt is a quasi-polarization of a p-divisible group G if 
it is a symmetric isogeny of p-divisible groups. 

From now on we work over a base scheme of characteristic p. 
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NEWTON POLYGONS AND FORMAL GROUPS 185 

(1.2) From [27, VIIA.4], "Frobeniuseries", we recall: For every morphism 
X -> S, there is functorially a morphism 

F: X -> X(P/S). 

For a group scheme G/S this is a homomorphism, and we write G[F] 
:= Ker(F: G -> G(P/s)). For a commutative group scheme G there is (functo- 
rially) a homomorphism 

V: G(P/s) G , 

which moreover has the property that V*F - p = V F. 

(1.3) For a group scheme G over a field K of characteristic p we define 
its p-rank f(G) = f by: Hom(Qp,k, Gk) _ (Z/p)f; here k is an algebraically 
closed field containing K, and [tp := Gm[p]. Note that for an abelian variety 
X this is the same as saying 

X[p] (k) -_(71p)f. 

We write a := Ga [F]; for a group scheme G over a field K of characteristic p, 

a = a(G) := dimL(Hom(cp, G OK L)), 

where L is a perfect field containing K (this number does not depend on the 
choice of a perfect L D K). 

(1.4) Dieudonne' modules. In this paper we use the covariant theory. For 
a finite (commutative) group scheme N of p-power rank over a (perfect) field K 
there is a Dieudonne module ]D(N). This functor has the following properties: 

* N - D(N) is an equivalence between the category of finite group schemes 
of p-power rank over K and the category of Dieudonne modules of finite 
length as W-modules, 

* if rank(N) = pn, then the length of ID(N) = M equals n, 

*? D(F: N - N(P)) = (V : M -M(P)) 

* D(V: N(P) - N) = (F: M(P) - M). 

In this ring W[F, V] we have the relations V F = p = F V, and F a = a' F 
and Va6 = a*V, for a e W = W,,(K); this ring is noncommutative if and 
only if K P Ip. 

For a p-divisible group G of height h over a perfect field K there is a 
Dieudonne module ID(G). This module is free of rank h over W. If more- 
over the p-divisible group is a formal group, this module is over the ring 
W[F][[V]]. If X is an abelian variety, we shall write ID(X) = ID(X[p??]). 
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186 FRANS OORT 

The dimension of G is d if G[F] is of rank equal to pd, and this is the 
case if and only if dimK(ID(G)/VID(G)) = d. For a perfect field K we have 
a(G) = dimK(M/(FM + VM)), where M = D(G). 

(1.5) In [14], contravariant Dieudonne module theory was used. By Gm,m 
we denote a p-divisible group defined over Ip, given by: GC,o- = GmG[p?] and 
GoC, for its dual, i.e. Go,1[pi] is the constant group scheme E/pi over Fp, and 
for coprime m, n E Z>o we define the (formal) p-divisible group Gm,n by the 
covariant Dieudonne module 

DI(Gm,n) = W[[F, V]]/W[[F, V]].(Fm- Vn) 

(in the contravariant theory the exponents are interchanged; see [14, p. 35]). 
Note that the dimension of Gm,n equals m, that 

(Gmn)t = Gnm, 

hence the dual of Gm,n has dimension n. The notation Gm,n used in [14] and 
used here denote the same p-divisible group (but the Dieudonne module of it 
in [14] differs from the one used here). 

By the Dieudonne-Manin classification, see [14] and [2], we find: if G is a 
p-divisible group over a field K, there is a finite set of pairs {(mi, ni) I i e I} 
with mi > 0 and ni > 0 and mi and ni relatively prime, such that there is an 
isogeny 

GC k E Gmi,ni i 
iEI 

where k is an algebraically closed field containing K. This set of pairs is called 
the formal isogeny type of this p-divisible group G. 

(1.6) Notation (the Newton polygon). The formal isogeny type of a p- 
divisible group is encoded in the concept of a Newton polygon, abbreviated 
NP. We write P1(G) for the Newton polygon of G; each of the summands 
Gmn gives a slope A = n/(m + n) with multiplicity (m + n); arranged in 
nondecreasing order this gives a polygon which has the following properties 
(the definition of a Newton polygon): 

* The polygon starts at (0, 0) and ends at (h, h - d) for a p-divisible group 
of height h and dimension d, 

* each slope A e Q has the property 0 < A < 1, 

* the polygon is lower convex, and 

* its break-points have integral coordinates. 
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NEWTON POLYGONS AND FORMAL GROUPS 187 

By "lower convex" we mean that it is the graph of a convex piecewise-linear 
function on the interval [0, h]. A Newton polygon determines, and is deter- 
mined by, its set of slopes 0 < Al < ... < Ah < 1. It is called symmetric if 
Ai= - Ah-i+1 for 1 <i < h. 

(1.7) The formal isogeny type of an abelian variety X is symmetric; i.e., 
it can be written 

X[p0 ] X k X s.Gii (Gmj,n am Gnmjmj). 

Indeed, an abelian variety has a polarization; by the duality theorem this 
implies that X [p?] is isogenous with its dual. D 

The converse of this statement is called the "Manin conjecture"; see (5.1). 

(1.8) We say that a Newton polygon 3 is lying above -y, notation 

3 - ? 

if 3 and -y have the same end points, and if no point of 13 is strictly below -y 
(!! note the reverse order). The Newton polygon consisting only of slopes 2 is 
called the supersingular one, notation u; this is a symmetric Newton polygon. 
The Newton polygon belonging to dG1,o0 f c.Go,l) is called the ordinary one, 
denoted by P = Pd,c Note that any symmetric ( satisfies u -C ~ -C p = pg,g. 
More generally, a Newton polygon of height h and dimension d is between 
the straight line, the Newton polygon of Gd,d-h and the Newton polygon of 
dG1,o + (h - d)Go,1. 

(1.9) Displays over a field. In this section we work over a perfect field 
K D Fp. Covariant Dieudonne module theory over a perfect field is a special 
case of the theory of displays. Consider a p-divisible group G of height h over 
K, and its Dieudonne-module ID(G) = M. We choose a W-base 

{el =X1,...,ed=Xd, ed+1=Y1, ..., eh = YC} 

for M such that Y1, .. ., Yc E VM; on this base the structure of the Dieudonne 
module is written as: 

h 
Fej = aijei, 1 < j< d, 

i=1 

ej= Vi (aijei) d <yj<h. 

We have written the module in displayed form; see [17, p1], [18, p01, and [321. 
Now 

(aijI 1< i j 5 h A 
\ 
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188 FRANS OORT 

This matrix, denoted by (a), will be called the matrix of the display. Note 
that in this case the u-linear map F is given on this base by the matrix 

( A pB 
C pD 

where 

A = (aij 1 < i, j < d), B=(aij I 1 < i < d < j < h), 

C = (aij I1 < j < d < i < h), D = (aij I d < ij < h). 

Where the display-matrix is symbolically denoted by (a), we write (pa) sym- 
bolically for the associated F-matrix (it is clear what is meant as soon as d is 
given). Note that the induced maps 

F: M/VM - FM/pM, -: VM/pM - M/FM 
p 

are bijective, hence the matrix (aij 1 < i, j < h) has as determinant a unit 
in W; let its inverse be (bij), written in block form as 

(bi )=( ) G) 

(in [32], the block matrix called J here is denoted by B). Working over a 
perfect field K, with W:= Woo(K), we write 

IF V=V1: W VW. 

Then the map V: M -? M on the given basis has as matrix 

(pE pG) 
VH J 

called the V-matrix. 
Note that the p-divisible group is a formal group if and only if the opera- 

tion V on its covariant Dieudonne module is topologically nilpotent (note that 
D(F) = V). We remark that the Dieudonne module of G[p]/G[F] corresponds 
with Ei=d+l K-ei; hence we see that G is a formal p-divisible group if and only 
if the matrix J mod p is nilpotent in the T-linear sense (also see [32, p. 6]). 

We write Q := VM, T:= El W ej, L:= Ed? W ei, and note that 

F f V-1 :T e L -> M, 

as given above by the transformation formulas on a basis, is a u-linear bijective 
map (we follow [32] for this notation). 

(1.10) Suppose (G, A) is a p-divisible group with a principal quasi- 
polarization over a perfect field K. The quasi-polarization can be given on 
the Dieudonne module M = D(G) by a skew perfect pairing 

( ):M X M -W 
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NEWTON POLYGONS AND FORMAL GROUPS 189 

which satisfies 

(Fa, b) = (a, Vb)j, for all a, b E M; 

see [20, p. 83]. Then we can choose a symplectic base {XI,.. , Xd , Y1, , Yd} 
for the Dieudonne module ID(G) = M; i.e., the polarization is given by a skew 
bilinear form which on this base is given by: 

(Xi ,IYj) = 6ij, (Xi, Xj) = 0 = (Yi, Yj) 

Note that if the module is in displayed form on a symplectic base as above, 
with the display-matrices (a) and (b) as given above, then not only do we have 
(a) . (b) = 1 = (b) (a) but also 

(a )=( A B ), (bili) ( 
E 

) (D-t AB) 

where At is the transpose of the matrix A. 

(1.11) Displays. In order to describe deformations we choose a complete 
Noetherian local ring R with perfect residue class field K (a complete Noethe- 
rian local ring is excellent). We assume p.1 = 0 E R. In this case the theory of 
displays as described in [32] gives an equivalence of categories between the cat- 
egory of displays over R and the category of formal p-divisible groups over R. 
We refer to [18], [32] and [33] for further details and will describe deformations 
by constructing a display. 

(1.12) Deformations of formal p-divisible groups. Displays can be applied 
as follows. Consider a formal p-divisible group Go over a perfect field K, 
and suppose we have written its Dieudonne module and base {el,... , eh} = 
{X1, ... , Xd, Y1, .. ., Y} in displayed form as above. We write h for the height 
of Go, and d for its dimension, c := h - d. Choose R as above, let tr,s be 
elements in the maximal ideal of R, with 1 < r < d < s < h, and let 

Tr)s = (trs,0, ) . W(R) 

be their Teichmiiller lifts. We define a display over R by considering a base 

{el = X1,... ied = Xd, ed+l = Y1, . Ieh = Yc}, 

and 

d h-d d 

FXj = SaijXi +- ad+vj(Yv + Tr,v+dXr), 1 < J < d, 
i=l v=i r=l 

h h-d d 
Yt = V ai,d tXi + ad+vd+t(yv + Trv+dXr)), 1<t<c=h-d. 

v=l r=l 
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190 FRANS OORT 

Note that this corresponds with the matrix 

(T1,d?1 ... T1, h 
A+TC pB+pTD T= () ( pD )' ) 

Tdd+l *-- Tdh 

which gives the map F. Now if for display-matrices, 

(A B -1 E G 

SC D ) H J ) 

then 

(A+TC B+TD )1 E G-ET) 
C D J H J-HT 

(1.13) Let K be a perfect field, let R be a complete Noetherian local ring 
with residue class field K, and let Go be a formal p-divisible group over K. 
The formulas above define a display over W, the ring of Witt vectors over R 
(in the sense of [32]). Hence these formulas define a deformation G -> Spec(R) 
of Go. 

In fact, we have written the module in displayed form. We write c: W -> K 
for the residue class map. The matrix E(J - HT) is u-linear nilpotent (still, 
after deforming); hence this gives the condition necessary for a "display" in 
the sense of [32]. By the theory of Dieudonne modules we conclude that this 
defines a formal p-divisible group G -> Spec(R); see [17], [18], [32], [33]. 

(1.14) Remark. One can show that the deformation just given is the uni- 
versal deformation of Go in equal characteristic p, by taking the elements tr,s 
as parameters, 

R := K[[trs I1 r < d < s < h]]. 

(1.15) Deformations of principally quasi-polarized formal p-divisible groups. 
Suppose moreover the p-divisible group Go has a principal quasi-polarization A0 
and let the base {X1, . .. , Yd} be in symplectic form (in this case c- = h-d d). 
Assume moreover that 

tr)s = ts-d,r+d E R. 

and the displayed form above defines a deformation (G, A) as a quasi-polarized 
formal p-divisible group of (Go, Ao) (see [18], [32], [33]). After renumbering: 
XiJ = ti,j+d, with d = g = c = h/2, we have the familiar equations xij = 

Xj,i, 1 i, < g. 
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NEWTON POLYGONS AND FORMAL GROUPS 191 

2. Cayley-Hamilton 

We denote by k = k D IFp an algebraically closed field. 

(2.1) Definition. We consider matrices which can appear as F-matrices 
associated with a display. Let d, c E 2>o, and h = d + c. Let W be a ring. We 
say that a display-matrix (ail,) of size h x h is in normal form form over W if 
the F-matrix is of the following form: 

o o ... 0 ald pald+1 ... ... ... pal,h 
1 0 ... 0 a2d ... paij ... 

0 1 0 a3d 1 < i < d 

d < j < h 
0 0 1 add pad,d+l . ... pad,h 

0. 0 1 0 .0 
O O~~ p 0 0 

0 . 0 0 p 0 .0 

0 .. 0 0 0 00 
0 ... 0 0 ... ... p 0 

aij E W, al,h E W*; i.e. it consists of blocks of sizes (d or c) x (d or c); in 
the left hand upper corner, which is of size d x d, there are entries in the last 
column, named aivd, and the entries immediately below the diagonal are equal 
to 1; the left and lower block has only one element unequal to zero, and it is 
1; the right hand upper corner is unspecified, entries are called paij; the right 
hand lower corner, which is of size c x c, has only entries immediately below 
the diagonal, and they are all equal to p. 

Note that if a Dieudonne module is defined by a matrix in displayed normal 
form then either the p-rank f is maximal, f = d, and this happens if and only 
if al,d is not divisible by p, or f < d, and in that case a = 1. The p-rank is 
zero if and only if aid= 0 (mod p), for all 1 < i < d. 

(2.2) LEMMA. Let M be the Dieudonne' module of a p-divisible group G 
over k with f (G) = 0. Suppose a(G) = 1. Then there exists a W-basis for M 
on which F has a matrix which is in normal form. 

In this case the entries a,,d,... , add are divisible by p and can be chosen 
to equal zero. 

The proof is easy and is omitted, but we do give the proof of the following 
lemma which is slightly more involved. 
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192 FRANS OORT 

(2.3) LEMMA. Let k be an algebraically closed field, and let M be 
the Dieudonne' module of a local, principally quasi-polarized formal p-divisible 
group G over k with f (G) = 0 (hence G is of "local-local type"). Write d for 
its dimension, and h = 2d for its height. Suppose a(M) = 1. Then there exists 
a symplectic W-basis for M on which the matrix of F is in normal form; see 
(2.1). 

Proof. For every a E Z>o we shall choose an element X(a), with X(a) X 

FM + VM, with X(a+l) -X(a) E paM. 

First step. We choose X E M with X X FM + VM. Let (X, FdX) = 

dE W, and write E mod pW = ido e k. We note that do 7& 0; in fact, write 
FM1 n VM1 = FdM1 = VdM1; this is of dimension one over k; note that 
the pairing induces a perfect pairing between M/(FM + VM) and FdM1. 
Choose A E W, with Ao E k = W/pW such that A0 +130d = 1. Note that 
(AX, FdAX) = A . A ; hence (AX, FdAX) 

- 1 mod pW. 
We change notation, choosing a new X instead of the old A X, and 

concluding that for the new X, 

(X, FdX- 1 mod pW. 

Suppose 
(X, Fs-lX) = bs, 2 < s < d. 

Choosing 
d 

XI=X+ E bs-Y8 
s=2 

we see that 

(XI, Fs-lX)- 0 (mod pW) 

and still (X', FdX') = 1. 
We call this new X' finally X(1), defining Xs = FS-lX(l) for 1 < s < d, 

and Yj = -Vd-j+lX(l) for 1 < j < d. The set {X(1) - Xi,...,Ydj is a 
W-basis for M, which is symplectic modulo pW. On this basis the matrix of 
F is congruent to (Y) mod pW. 

We introduce some notation to be used in this proof. We say that B = 
{XI, . ., Xd, Y1,. .., Yd} is an n-basis, if X = X(a) E W, with X 0 FM + VM, 
and Xs := Fs-lX for I < s < d, and Yj=-Vd-j+lX mod pW for 1 < j < d; 
note that an n-basis indeed is a W-basis for M. We say that an n-basis is (sa) 
if it is simplectic modulo paW. We say that an n-basis is (Fa) if the matrix of 
F on this basis is in normal form; see (2.1), modulo paW. 

For a E 2>o we study the statement: 
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NEWTON POLYGONS AND FORMAL GROUPS 193 

(Ia): For X = X(a), assume that there exists an n-basis B = B(a) which is 
(sa) and (Fa). 

The construction in the first step makes a choice such that (I1) is satisfied. 
This ends the first step. 

We assume for a > 1 that (Ia) is satisfied, and construct a basis which 
satisfies (Ia+,). In order to formulate the proof of the induction step we assume 
that a E 2>o is fixed, and write for equivalence modulo paW, and for 
equivalence modulo pa+l W. In order to prove the induction step (Ia) 1 (Ia+l) 
we study the condition: 

(Jk) Here a E 2>o is fixed, and 1 < k < d. Assume there is an n-basis sat- 
isfying (Ia), and satisfying the property that {Xl, ... * Xd, Y1 ... * Yk} is 
(ps(a + 1)). This last property means that pairs of elements appearing in 
this set satisfy the symplectic properties modulo pa+l W, and Y1,... , Yk-_ 
transform as prescribed by some (YF) mod pa+lW. 

Second Step. We choose a basis satisfying (J1). By induction we know 
that (X, FdX) - 1 + pa./3, with 43 e W; write 30 = 3 mod pW. Choose 
A E W such that Ap - + A0O + io = 0, and replace X by (1 + pa A)X. For this 
new X we have achieved (X, FdX) 1. Choose b. E W such that for this new 
X we have: (X, Fs-lX) bS, for 2 < s < d. Now, choose 

d 
X':=XA- E bS~a.y, 

s-2 

and then 
(X', Fs-lX') 0 (mod pa+lW). 

We call this X' finally X. The new X, FX,... , Y1 = FdX and the old 
Y2.. , Yd satisfy the condition (J1). This ends the second step. 

Third Step. Here a E 2>o is fixed. With 1 < k < d, we assume (Jk) 
satisfied, and construct and prove: There exists a basis satisfying (Jk) such 
that (Yk, VX) 0 O (mod pa+2W). 

Next we construct and prove (Jk+l). 
There exists an element ( C pa+2M. Choose a new X instead of the old 

X+?, construct X1,... , Xd, Y1, ... , Yk which together with the old Yk+1, . . ., Yd 
satisfy (Jk) and the properties: (X,, Xj) 0 O mod pa+2, for all 1 < ij < d, 
and KFYkXi) 0 O mod pa?2 for all i and KFYkXk?1) _ 1 mod pa?2. We 
choose this new n-basis and write 

FYk=pY'+px with Y'EW Yl+***W-Yd, and XEWXl?+***W Xd. 
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Let (FYk, Y9) = c3 for 1 < j < k; note that cj E pa+lW. Define the new 

Yk+l:=Y'- E cjXj; then FYk=P.Yk+1+p (x+ E cjX) 
1<j<k 1<j<k 

The new X1,.. , Xd, Y1,... , Yk+l together with the old Yk+2,.. -, Yd satisfy the 
condition (Jk+l). This ends the third step. 

For fixed a E Z>O, we start induction (J1) by the second step, and then 
by induction in the third step (Jk) ? - (Jk+i) we show that (Jd) is satis- 
fied. Note that (Ia) + (Jd) = (-[a+,); thus we have proved that (Ia) => 
(Ia+,). By the first step we can start induction: I1 is satisfied. Hence in- 
duction shows that all steps (Ia) for a c Z>o are satisfied. Moreover the 

bae (a) - {(a) . X(a) y (a) y(a) __=B 
a bases EB~a) = fxYa) X~a) ) .* Y* d} constructed satisfy B(a+l) - B(a) 

(mod paM). Hence this process converges to a W-basis for M; by construc- 
tion, on this basis the matrix of F is in normal form. This ends the proof of 
the lemma. D 

(2.4) How to determine Af(G)? Consider the Dieudonne module of a p- 
divisible group (or of an abelian variety), by writing down the matrix of F 
relative to some W-basis. In general it is difficult to see directly from that 
matrix what the Newton polygon of the p-divisible group studied is. 

There are general results which enable us to compute the Newton polygon 
from a given displayed form. Here is an example: Nygaard proved in [19, 
Th. 1.2, p. 84], a general result, which e.g. for g = 3 gives the following: 
Suppose there is an abelian variety of dimension 3, and let F be the action of 
Frobenius on its Dieudonne module; this abelian variety is supersingular if and 
only if p3 F8. For explicit computations this does not look attractive. Also see 
[9]: "slope estimates". 

(2.5) Remark. We can compute the p-adic values of the eigenvalues of the 
matrix. Note however that if we change the basis, this ou-linear map gives a 
matrix on the new basis in the ou-linear way. In [9, pp. 123/124], we find an 
example by B. H. Gross of a 2 x 2 matrix which, on one basis has p-adic values 
of the eigenvalues equal to I, while after a change of basis these p-adic values 
equal 0 and 1. We see that the change of basis can change the p-adic values 
of the eigenvalues of this matrix. Thus we have the question: how can we 
determine the Newton polygon from the matrix (say of F on the Dieudonne 
module)? 

In this section we show how in case the matrix is in normal form the 
Newton polygon can be read off easily: 
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(2.6) LEMMA (of Cayley-Hamilton type). Let L be a field of characteris- 
tic p, let W = Woo(L) be its ring of infinite Witt vectors. Let G be a p-divisible 
group, with dim(G) = d, and height(G) = h, with Dieudonne module M. Sup- 
pose there is a W-basis of M, such that the display-matrix (aij) on this base 
gives an F-matrix in normal form as in (2.1). Now, X = Xi = el for the 
first base vector. Then for the expression 

d h 
P Z Spj-dah-JFh+i-j-1 Fh.X = P.X. 

i=l j=d 

Note that we take powers of F in the cr-linear sense, i.e. if the display 
matrix is (a), i.e. F is given by the matrix (pa) as above, 

Fn is given by the matrix (pa).(pa) . (par ). 

The exponent h+ii-j -1 runs from 0 = h+ - -h- to h-I = h+ d-d- 1. 
Note that we do not claim that P and Fh have the same effect on all elements 
of M. 

Proof. Note that F-lel = ej for i < d. 

CLAIM. For d < s < h, 

d s 
FSX ( E iFs-jpjidaijFi)- y X +ps-des+1 

i-1 j=d 

This is correct for s = d. The induction step from s to s + 1 < h fol- 
lows from Fes+, (z~=1 p ai,+sFil-) X + Pes+2 This proves the claim. 
Computing F(Fh-lX) gives the desired formula. C 

(2.7) PROPOSITION. Let k be an algebraically closed field of character- 
istic p, let W = Woo(K) be its ring of infinite Witt vectors. Suppose G is 
a p-divisible group over k such that for its Dieudonne module the map F is 
given by a matrix in normal form. Let P be the polynomial given in the previ- 
ous proposition. The Newton polygon Af(G) of this p-divisible group equals the 
Newton polygon given by the polynomial P. 

Proof. Consider the W[F]-sub-module M' c M generated by X = el. 
Note that M' contains X = el, 2,... , ed. Also it contains Fed, which equals 
ed+1 plus a linear combination of the previous ones; hence ed+l c M'. In 
the same way we see: Ped+2 E M', and p2ed+3 c M' and so on. This shows 
that M' C M = ei<h and W ei is of finite index and that M'= W[F]/W[F] 
.(Fh - P). From this we see by the classification of p-divisible groups up to 
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isogeny, that the result follows by [14, II.1]. Also see [2, pp. 82-84]. By [2, 
p. 82, Lemma 2] we conclude that the Newton polygon of M' in case of the 
monic polynomial Fh - Em biFm-i is given by the lower convex hull of the 
pairs { (i, v (bi)) | i} . Hence the proposition is proved. C 

(2.8) COROLLARY. With notation as above, suppose that every element 
aij, 1 < i < d, d < j < h, is either equal to zero, or is a unit in W(k). 
Let S be the set of pairs (i, j) with 0 < i < d and d < j < h for which the 
corresponding element is nonzero: 

(ij) E S aij 7h O. 

Consider the image T under 

S -TcZxZ given by (i,j) >-(j+I-i,j-d). 

Then Af(G) is the lower convex hull of the set T C Z x Z and the point (0, 0); 
note that al,h E W*, hence (h, h - d = c) E T. 

This can be visualized in the following diagram (illustrating the case 
d < h -d) 

adh ... alh 

ad,2d+2 

ad,2d+1 * * * al,2d+1 

ad,d+l ... ai,d+1 ... a2,d+1 ajd+1 

add ... ai d .. . ... alid 

Here the element ad,d is in the plane with coordinates (x = 1, y = 0) and al,h 
has coordinates (x = h, y = h - d = c). One erases the spots where aij = 0, 
and leaves the places where aij is a unit. The lower convex hull of these points 
and (0, 0) (and (h, h - d)) equals Af(G). 

Proof. This we achieve by writing out the Newton polygon of the polyno- 
mial P in the Cayley-Hamilton lemma. D 

3. Newton polygon strata 

In this section k = k D Fp is an algebraically closed field. 

(3.1) We fix integers h > d > 0, and write c:= h - d considering Newton 
polygons ending at (h, c). For such a Newton polygon /, 
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here we denote by (x, y) - d the property "(x, y) is on or above /"; now, 

dim(/) = #(0)) 

Note that for p = d. (1, 0) + c. (0, 1), dim(p) = dc. 
Suppose there is a formal p-divisible group Go over k with Af(Go) 

ending at (h, c). We write D = Def(Go) for the universal deformation space 
in equal characteristic p. By this we mean the following. Formal deformation 
theory of Go is prorepresentable; we obtain a formal scheme Spf(A) and a 
prorepresenting family 9' -> Spf(A). By [5, Lemma 2.4.4, p. 23], we know 
that there is an equivalence of categories of p-divisible groups over Spf(A) 
respectively over Spec(A). We will say that 9 -> Spec(A) D = Def(Go) 
is the universal deformation of Go if the corresponding 9' - Spf(A) = DA 

prorepresents the deformation functor. 
A theorem by Grothendieck and Katz, see 19, Th. 2.3.1, p. 143], says that 

for any family 9 -> S of p-divisible groups over a scheme S in characteristic 
p, and for any Newton polygon 13 there is a unique maximal closed, reduced 
subscheme W C S containing all points s at which the fiber has a Newton 
polygon equal to or lying above /3: 

8 E W Ar, S(9s) -- 

This set will be denoted by 

w(o - S) C S. 

For every Newton polygon 13 with 13 - ty =PJ(Go) we define V0 C D = Def(Go) 
as the maximal closed, reduced subscheme carrying all fibers with Newton 
polygon equal to or above /3 in the universal deformation space of Go. Note 
that Vp = D, with p = d(1, 0) + c(O, 1). 

In case of a family (9, A) -> S = Spec(R) of quasi-polarized p-divisible 
groups there is an analogous notion, and for a symmetric Newton polygon ( 
we write 

V(- Def(Go, Ao)) =: We C Def(Go, Ao). 

(3.2) THEOREM (Newton polygon-strata for formal groups). Suppose 
a(Go) < 1. For every d3 - y .A=/V(Go), dim(V) = dim(/3). The strata Vi are 
nested as given by the partial ordering on Newton polygons; i.e., 

Vi c V6 0 (13) c 0(6) <# /3 -- 6. 

Generically on Vi the fibers have Newton polygon equal to /3. There is a coor- 
dinate system on D in which all Vi are linear subspaces. 

Proof. At first we choose a coordinate system for D = Def(Go) where 

Go =G' e(A((Go),) e G" with G' -((G,[p'])f, G" (Qp/Zp)s. 
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We apply (2.2) in order to have the Dieudonn6 module of (Go), in normal 
form, obtaining a basis for the Dieudonne module of Go. Now O := 0(p); 
this is the parallelogram of integral points (x, y) bounded by 0 < y < c, and 
y > x > y - d. The universal deformation D of ID(Go) is given by a display- 
matrix 

(A+TC BB+TD) 
C D a 

where T = (Tr,s I I < r < d < s < h). Here Trs = (tr,s,0. ) and D 
Spec(k[[tr,s]]). We write as in (2.8) these variables in a diagram, by putting 

Trs onthespot (s-r',s-1-d) GE=2(p); 

i.e., 

0 ... 0 -1 

Td,h ... T1,h 

Td,d+2 ... Ti,d+2 ... T2,d+2 T1,d+2 

Td,d+l ... Ti,d+l ... ... T1l,d+l 

We see that 

D = Spec(R) = Spec(k[[z(x v) (xy) E (]j), Trs = Z(s-rs-l-d) 

For any /3 >- AJ(Go), 

Rk [ [z(x,y) I (x, y) E O] 
EO (z(xvy) V(xj y) 0(S)). 

Claim. 

(Spec(RO) C Spec(R)) (VO C D) 

Clearly, the claim proves all statements of the theorem. 

Since Go is a direct sum of a local-etale, a local-local and an etale-local 
p-divisible group as above, we obtain Af(Go) = f( = f (O, 1) + 7y' +V s (1, 0), 
where r A/((Go)e,,). Note that 13' -? f. (O, 1) + /3' + s.(1, 0) gives a bijection 
between on the one hand all 13' - ry' and on the other hand all /3 - My. Note 
moreover, see [1, Th. 4.4], that deformations of Go are smoothly fibered over 
deformations of (Go)~,, with precise information on parameters (the matrix of 
the display is in blocks). This shows that the theorem follows for Go if it is 
proved for (Go)>,. Hence we are reduced to proving the theorem in case Go is 
supposed to be of local-local type. 

We use (2.8) in case of the normal form of the matrix of ID(Go) over k; we 
concluded that the entries aij, with 1 < i < d, and d + 1 < j < h which are 
nonzero are all situated in 0(AfV(Go)). For any integral domain B which is a 
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quotient of R = k[[z(. ,) I (x, y) E c]] we can apply (2.6) and (2.8) to its field 
of fractions. This shows that R -> B factors through R -> Ri if and only if the 
generic fiber over B has Newton polygon equal to or above 13. This proves our 
claim in case Go is local-local. Hence this finishes the proof of the theorem. C 

(3.3) We fix an integer g. For every symmetric Newton polygon ( of 
height 2g, 

A(() fxy) E Zx ly < g, y < x<g, (x, y)<} 

and 
sdim(() 

Consider a p-divisible group Go over k of dimension g with a principal 
quasi-polarization. Now, Af(Go) = -y; this is a symmetric Newton polygon. 
Now, D = Def(Go, A) for the universal deformation space. For every symmetric 
Newton polygon ( with '- 7y we define We C D as the maximal closed, reduced 
formal subscheme carrying all fibers with Newton polygon equal to or above 
(; this space exists by Grothendieck-Katz; see [9, Th. 2.3.1, p. 143]. Note that 
Wp = D, where p = g -((I, 0) + (O. 1)). 

(3.4) THEOREM (NP-strata for principally quasi-polarized formal groups). 
Suppose a(Go) < 1. For every symmetric ( F- -y := ./(Go), dim(W) = 
sdim((). The strata We are nested as given by the partial ordering on symmet- 
ric Newton polygons; i.e., 

We C W6 <\ A A(cA(6) *'(Cb 

Generically on We the fibers have Newton polygon equal to (. There is a 
coordinate system on D in which all We are given by linear equations. 

(3.5) COROLLARY. There exists a principally polarized abelian variety 
(Xo, Ao) over k. Strata in Def(Xo, Ao) according to Newton polygons are exactly 
as in (3.4). In particular, the fiber above the generic point of We is a principally 
polarized abelian scheme over Spec(B~) having Newton polygon equal to ( (for 
Be, see the proof of (3.4) below; for the notion "generic point of We" see the 
proof of (3.5) below). 

Proof. We write (Xo, Ao)[p'] =: (Go, Ao). By Serre-Tate theory, see [8, 
?1], the formal deformation spaces of (Xo, AO) and of (Go, AO) are canonically 
isomorphic, say (X, A) -* Spf(R) and (9, A) -- Spf(R) and (X, A)[p'] - 

(9,A). By Chow-Grothendieck, see [4, III1.5.4] (this is also called a theo- 
rem of "GAGA-type"), the formal polarized abelian scheme is algebraizable, 
and we obtain the universal deformation as a polarized abelian scheme over 
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Spec(R). Next, we can consider the generic point of Wd C Spec(R). Hence the 
Newton polygon of fibers can be read off from the fibers in (9, A) -> Spec(R). 
This proves that (3.5) follows from (3.4). D 

Proof of (3.4). The proof of this theorem is analogous to the proof of (3.2). 
We use the diagram 

Xg9g ... Xi,g 

1 Xg,i ... Xil 

Here Xij, 1 < i, j < g, is written on the place with coordinates (g-i+j, j--1). 
We use the ring 

B = k[[xij; 1 
< j ? g]] Xij = z(g-i+j,j-) (g - + j, j -1) A. 

(Xk - X~k) 

Note that B = k[[xij1 < i < j < g]] = [[zxy I (x, y) E A]]. For a symmetric 
( with A r A(Xo) we consider 

B = k[[ti,j; 1 < ij < g]] 
(tk - tek, and Z(xy) V(x, y) , A 

With this notation, applying (2.6) and (2.8), we finish the proof of (3.4) as we 
did in the proof of (3.2) above. D 

(3.6) A remark on numbering. In the unpolarized case, see (3.2), where 
there is a deformation matrix (Trs I 1 < r < d < s < h), we put Trs in 
the "NP diagram space" on the spot (s - r, s - 1 - d). In the polarized case, 
see (3.4), we have a square matrix; according to notation used in case of the 
Riemann symmetry condition we write (Xij 1 < i, j < d = g), and put Xij 
on the spot (g-i + j, j- 1), with d = g = c. Up to this change in numbering in 
the indices these amount to the same when methods concern the same cases: 
Tr's = Xr,s-d. Note that we work with entries in the matix (a) just below the 
diagonal, and obtain deformations starting from the variables tr,s producing 
elements "ar,s- = tr,s", which cause the shifts in indices between (2.8) and 
(3.2). 

4. Where to start 

(4.1) LEMMA. Given d E Z>o, c E Z>o and a prime number p, there 
exists a field K of characteristic p, and a formal group G over K of height 
h = d + c, of dimension d with a(G) = 1 such that its Newton polygon Al(G) 
is the straight line connecting (0,0) with (h, c), i.e. it has h slopes each equal 
to c/h. 
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(4.2) Suppose we are given h, d c Z>o with d < h. Consider the matrix 
(of size h x h with left hand upper corner a block of size d x d): 

0 0 ... 0 0 * * -p 

1 0 ... 0 *-- 0 

01 . 0 0 

. . ... I . 0 . 
00O *- 1 0 0.* . 0-* 

0 . 1 0 0 0 

0 *. *..0 p0 .. 0 

0 ... ... 0Op .. 0 

.0 0 
.. *...0 OO ... p 0 

We say this matrix is in cyclic normal form of height h and dimension d. 

Proof of (4.1). Consider (say over K = Iap) the display given by the matrix 
above. Clearly this defines a Dieudonne module M and hence (as long as K is 
perfect) a p-divisible formal group G with D(G) = M. This matrix gives F on 
a basis for M. We see that Fh.Xl = -pC.Xl. Hence .A/(G) is a straight line, 
e.g. apply (2.7). From the matrix we see that the Hasse-Witt matrix of G has 
rank equal to d -1; hence a(G) = 1. C 

(4.3) LEMMA. Given g E Z>o and a prime number p there exists: 

(1) A field K of characteristic p, and a principally quasi-polarized supersin- 
gular formal group (G, A) over K of dimension equal to g with a(G) = 1. 

(2) A field k of characteristic p, and a principally polarized supersingular 
abelian variety (X, A) over k of dimension equal to g with a(X) = 1. 

Proof. Consider a matrix in cyclic normal form with h = 2g, and d = g. 
This defines a supersingular formal group G of dimension g, height h, with 
a(G) = 1. We give a nondegenerate skew form on M = D(G) by requiring the 
basis to be symplectic; we are going to show this is possible. We compute the 
action of V: 

V(Xi+i) = pXi, VX1 =- Yg, VYi = pXg, VYj+i = Yj. 
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Now, F and V must respect the pairing on this symplectic base; i.e., we have 
to prove that for a, b E M, 

(Fa, b) (a, Vb)if. 

It suffices to show this directly on base vectors; let us show the essential steps 
(the others being obvious): 

-1-=K(Yi,Xi) = (FXd,X1) K(XgVX1 =-g)af-1, 

and analogously (FYd, Y1) =-p = (Yd, VY1)'. This proves the first statement. 
In order to prove (2), we have to see that (G, A) is algebraizable, i.e. 

comes from a principally polarized abelian variety. Using [21, ?2] there is exists 
(canonically) a polarized flag-type quotient H -- H/N = G, (H, u') -> (G, A) 
with a(H) = g. We know that a(H) = g implies that H 0 k E[p?]9, 
where E is a supersingular elliptic curve (isomorphism, say, over an algebraic 
closure k of K). We see that ,u' on H comes from a polarization Au on E9 with 

deg(p') = deg(p) (e.g. use [13, Prop. 6.1]). Hence (H, p') is algebraizable: 
(E9, p) [p??] - (H, p') 0 k and thus the quotient (G, A) 0 k is algebraizable. 
This ends a construction which shows (2). D 

(4.4) Remark. For a proof of (4.3) we could also refer to [13, (4.9)] (where 
it is proved that every component of the supersingular locus in the principally 
polarized case has generically a = 1). However that is a much more involved 
result than just the lemma above. 

5. A conjecture by Manin 

(5.1) A CONJECTURE BY MANIN (see [14, p. 76]). For any prime number p 
and any symmetric Newton polygon ( there exists an abelian variety X over a 
field in characteristic p such that Af(X) = 

This is the converse of (1.7). 

(5.2) This conjecture was proved in the Honda-Serre-Tate theory; see [29, 
p. 98]. 

Using that theory we can actually prove somewhat more; we know that a 
supersingular abelian variety (of dimension at least 2) is not absolutely simple; 
however this is about the only general exception: for a symmetric Newton 
polygon which is not supersingular, there exists an absolutely simple abelian 
variety in characteristic p having this Newton polygon; see [12]. Can we prove 
the result of that paper using the deformation theory as discussed here? 

Once the conjecture by Manin is proved, we conclude that actually there 
exists an abelian variety defined over a finite field with the desired Newton 
polygon. 
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(5.3) A proof of the Manin conjecture. Suppose there is a symmetric New- 
ton polygon ( of height 2g. Choose (Xo, AO) as in (4.3)(2) above; in particular 
a(Xo) < 1 and Ao is a principal polarization. Apply (3.5). We conlude that the 
generic fiber over We C Def(XO, AO) is a (principally) polarized abelian variety 
with Newton polygon equal to (. C 

(5.4) Remark. Actually we proved that for any ( there exists a principally 
polarized (X, A) with PJ(X) = ( and a(X) < 1. 

(5.5) Let us analyze the essential step, where we made a formal group 
algebraic. Starting with supersingular formal groups, we know that the a- 
number is maximal if and only if the formal group is isomorphic with (G1,1)9 
(see [23]); hence this can be algebraized (note that E[p'] CG1,1 0 IFp for a 
supersingular elliptic curve E). We can algebraize a principally quasi-polarized 
supersingular formal group with a(Go) = 1 (use polarized flag-type quotients). 
Then we apply the deformation theory (say of quasi-polarized formal groups), 
obtaining the Newton polygon desired, and then the theory of Serre-Tate, see 
[8, ?1]. Then the Chow-Grothendieck algebraization, see [4, J111.5.4], allows 
us to algebraize the family; it produces an abelian variety as required in the 
Manin conjecture. 

(5.6) By methods just explained a weak form of the conjecture by 
Grothendieck follows: 

WEAK FORM. Let / ' a be two Newton polygons belonging to a height 
h and a dimension d which are comparable. There exists a p-divisible group 
g -- S over an integral formal scheme S in characteristic p, such that the 
generic fiber g,, has A/(g71) = 3 and the closed special fiber Go has A/(g0) = ay. 

WEAK FORM, AV. Suppose there are two symmetric Newton polygons, 
( S- a. There exists a specialization of polarized abelian varieties (X7,, Ark) C 

(X, A) D (Xo, AO) having ( and ay as Newton polygons for the generic an special 
fiber. 

This proves the following (see Koblitz, [10, p. 215]): Suppose there exists a 
sequence 4i < . -n of comparable symmetric Newton polygons. Then there 
exists a sequence of specializations having these Newton polygons in each step. 

6. A conjecture by Grothendieck 

(6.1) In [3, Appendix], we find a letter of Grothendieck to Barsotti, and 
on page 150 we read: " The wishful conjecture I have in mind now is the 
following: the necessary conditions ... that G' be a specialization of G are 
also sufficient. In other words, starting with a BT group Go = G', taking its 
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formal modular deformation ... we want to know if every sequence of rational 
numbers satisfying ... these numbers occur as the sequence of slopes of a fiber 
of G as some point of S." 

We say that Go is a specialization of g,, if there exists an integral local 
scheme S and a p-divisible group g -- S with Go as closed fibre and 9,, as 
generic fibre; in this case we shall write 591 Go. We use analogous 
notation for polarized abelian varieties and quasi-polarized p-divisible groups. 

(6.2) THEOREM (a conjecture by Grothendieck). Given a p-divisible group 
Go and Newton polygons A(Go) =: -a /13, assume a(Go) < 1. Then there 
exists a specialization g , Go with a = (9,q) 

(6.3) THEOREM (an analogue of the conjecture by Grothendieck). (a) 
Suppose there are a principally quasi-polarized p-divisible group (Go, Ao) and 
symmetric Newton polygons Af(Go) =: ay -C (. Assume a(Go) < 1. There exists 
a specialization (a,,, p) (Go, Ao) with ( = A(9,) 

(b) Given a principally polarized abelian variety (Xo, Ao) and symmetric 
Newton polygons Af(Xo) =: -a C , assume a(Xo) < 1. Then there exists a 
specialization (Xr,, u) ---+ (Xo, Ao) with = A(X2). 

Proof of (6.2). Applying (2.2) to D(Go), we use deformation theory and its 
methods, as developed in Section 4, to obtain a generic fiber with the desired 
Newton polygon; by (3.2) any A3 ' S(Go) is realized in D = Def(Go). This 
proves (6.2). 

Proof of (6.3). We apply (2.3) to ID(Go), respectively to JD(Xo[p??]). By 
(3.4) and (3.5), a principally polarized (Xo, Ao) can be deformed to a principally 
polarized abelian variety with a given symmetric A ' A(Xo). This proves all 
existence results in (6.3). D 

(6.4) Remark. The analogue of the conjecture by Grothendieck does not 
hold for arbitrary polarized abelian varieties. This is shown by the following: 

Example (see [7, Remark 6.10]). Fix a prime number p, consider abelian 
varieties of dimension 3 with a polarization of degree p6. In that 6-dimensional 
moduli space A3 p3 0 Fp (of course) the locus where the p-rank is zero, has 
dimension 3; see [18, Th. 4.1]. It can be proved that the supersingular locus in 
this moduli space has a component of dimension equal to three; see [21, Cor. 
3.4]. Hence we conclude there exists a polarized abelian variety (Xo, AO) of 
dimension 3, supersingular, hence Af(Xo) = a = 3 (1,1) with degree(Ao) = p3 
such that every deformation of this polarized abelian variety either is super- 
singular or has positive p-rank; thus no such deformation will produce the 

This content downloaded from 128.151.4.17 on Thu, 12 Mar 2015 05:50:03 UTC
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


NEWTON POLYGONS AND FORMAL GROUPS 205 

Newton polygon a= (2, 1) + (1, 2). This ends the description of the example, 
and the claim that (6.2) does not hold for arbitrary polarized abelian varieties 
is proved. 

We expect an example (Go, Ao), which cannot be deformed to some 
= y A(Go) as just explained, to be available for every symmetric Newton 

polygon ay with f () < g - 2, i.e. which allows in its isogeny class a formal 
group with a > 2, and a carefully chosen inseparable polarization. 

(6.5) Remark. In the previous example we know that a(Xo) 1 (by 
[18, Th. 4.1]). Hence for any Newton polygon ay with h = 6, d = 3 the 
p-divisible group Xo[p??] (no quasi-polarization considered) can be deformed 
to a p-divisible group with Newton polygon equal to ay. We see the curious fact 
that a deformation of a given Newton polygon as p-divisible groups does exist, 
but as (nonprincipally) polarized p-divisible groups does not exist in this case. 

(6.6) Remark. The conjecture by Grothendieck in its general form, i.e. 
(6.2) without assuming anything about a(Go), and the analogue for the 
(quasi-) principally polarized case, i.e. (6.3) without assuming anything about 
a(Go), have been proved; see [6] and [25]. 

It follows that the dimension (of every component) of We C Ag,1 0 Fp 
equals sdim((), as announced in [24]; this was conjectured for the supersingular 
Newton polygon ar in [21], and proved for Wc = Sg,l in [13]. Note that for a 
Newton polygon stratum for ( for nonseparably polarized abelian varieties the 
dimension count can give an answer different from sdim((). 
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