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Statements of Results

The Moore spectrum studied here is the suspension spectrum M,={M}}
which consists of, as the n-th space for M, the Moore spaces Mj=S"U e"*! with
attaching map which is of degree q. It has non-trivial homology group Z/q only
in dimension 0. For a given homology theory, the theory with coefficient group
Z/q is given by forming smash product with M, cf. [1], [7].

It is a classical result of M. Barratt [3] that the order of 1, the stable class
of the identity map of M,, is ¢ when g#2 mod 4, and 2q otherwise. Also,
g1, =0 is equivalent to the existence of a multiplication p,: M, A M,— M, with
unit i,: §— M, that is,

Bligh 1) =1y,  p(Lag Aig)=1p,

where S={S"} is the sphere spectrum and i, is the inclusion map S"—»>M} at
n-th level. The multiplicative structure on M, is usuful in studying the structure
of the graded ring M, *(M,) which consists of stable self-maps of M,, cf. [6], [4],
[5], [8]. Itis easy to see that u, is commutative and associative if g is relatively
prime to 6, [6]. B. Gray proved in [4] that y, is not commutative when g=4
and H. Toda proved in [11] that p,, ¢ odd, is not associative if and only if g=0
mod 3 and #0 mod 9. B. Gray also stated in [4, Th. 13], [5, Prop. 3.3] without
proof that M, has an associatvie multiplication if and only if g# 3 mod 9* (at
least when ¢ is odd).

The purpose of this note is to give a complete proof for the question wheather
or not M, admits a commutative/asscociative multiplication. ~Since we are
working in the stable homotopy category, a map is identified with its stable

*) Appearently the statement is not true when g=6 mod 9, for example, M,s=M;V M; cannot
be associative because of the non-associativity of Mj.
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homotopy class; “‘commutative’” and “associative’” mean homotopy commutative
and homotopy associative.

Let 6,: M,—»XM, be the coboundary map, where X denotes the suspension
functor.

DEFINITION 1. A multiplication yu, on M, is said to be regular if
BOALy) +pu(Layg AO)=0,u, in [MyAM, ZM,],
where the square brackets denote the additive group consisting of stable maps.

If we regard 6, as a cohomology operation on a multiplicative cohomology
theory with coefficient Z/q [1], the regularity means that the cohomology operation
0, behaves as a derivation. Our main result is then stated as follows:

THEOREM 2. (a) M, has a multiplication if and only if q#2 mod 4, whence
the number of (homotopy classes of) multiplications is 4 when q=0 mod 4, and
1 when q is odd.

(b) Suppose q#2 mod4. Then M, has always a regular multiplication.
When q=0 mod 4, the number of regular multiplications on M, is 2.

(©) M, has a commutative multiplication if and only if ¢g=0 mod 8 or g
is odd, whence all the multiplications (including non-regular ones) are commu-
tative.

(¢") Suppose q=0mod4. Let T: M, AM,—M,AM, be the map switch
ing factors, j,: M;—ZXS the map represented by the projection M3—S"*1, and
n*: 228— S the generator of n§=[22S, S1=Z/2. Then, for any p,,

1qT=p1y+(q[Dig* (g A Jo)
and ign*(j A j,) is of order 2.
(d) M, has an associative multiplication if and only if q#2 mod 4 and
q# +3 mod9, whence all the multiplications are associative.

(d’) Suppose q#2 mod4 and q=0 mod 3. Let o be a generator of the
3-primary part of n§=[238, §1=Z/24. Then, for any p,,

Ho(ttg N Lag) = p(Lyg A 1) +(a/3)igo(jg A jg A Jg)
and the element i a(j, A j,A j,) is of order 3.

Constructing multilication starts with pre-multiplication, which is a left
M ,-module multiplication on M, (not necessarily associative), that is, which has
iz as left unit.
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DEFINITION 3. A map p,: M,A M,—»M, is said to be a pre-multiplication
l:fl“‘q(iq/\ ]M)le in [Mqa Mq]

Appearently, a pre-multiplication , is a multiplication if and only if g (1y A
iy)=14. The regularity and the associativity of a pre-multiplication are defined
in the same way as the case of multiplication. If g is odd, the premultiplication
is still unique, and if g=2 mod 4, the non-existence still holds. If =0 mod 4,
there are just eight pre-multiplications. However, no more associativity can
arise.

THEOREM 2. (d”) Suppose q=0 mod4. A pre-multiplication which is not
a multiplication is always non-associative.

In [9], we have developped the theory of pre-multiplications on arbitrary
(finite) suspension spectra, which will be usuful in our discussion, in particular,
in discussing assiciativity. In case g=2 mod 4, 2q1,, =0 implies the existence of
an M,, pre-multiplication m,: M, A M, M, i.c., a map m, with my(i A ly )=
1y, M, is said to be an associative M,,-module spectrum, if it admits an M,
pre-multiplication m, which is associative with respect to some pre-multiplication
H2q ON M, in the usual sense: m(1y, A m)=my(lq A Ly ).

THEOREM 4. Suppose q=2 mod4. If g=+3 mod9, then M, can not be
an associative M,;-module spectrum. If q# +3 mod9, then there are exactly
six pairs (lip,, m,) of pre-multiplications which satisfy

mq(leq A mq) =mq(:u2q A qu) +a:1iqvjq(j2q Aj2q A lM.,)

for some ayeZ/|2 not depending on the pair (u,, m,), where v is a generator
of the 2-primary part of n§. The p,,’s of these pairs are associative, regular
multiplications, and none of the other pairs of pre-multiplications satisfies the
associativity. '

Let » be a positive divisor of g. The commutative square

Ss—21-S

]

S ____r__) s .
where n: §— 8§ is the map of degree n, then determines a map

pq,r: Mq I Mr’
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which is of degree 1 on the bottom cells, i.e., Pgriq=1lr, and of g/r on the top
cells. Since the commutative square holds at the level of honest maps with no
homotopy, there can be a canonical choice of p,,. Especially Paa=1at s PrsPor=
Past My—>M,—> M, for a divisor s of r. Let p, u, be pre-multiplications on
M,, M,. Then p,, is said to be multiplicative with respect to Hys My if

/—tr(pq,r A pq,r) = pq,r#q in [Mq A Mq3 Mr] >

in other words, p,,: (M,, u))—(M,, 11,) is a map of ring spectra (when U, and p,
are multiplications). The following lemma is a key result in proving the main
theorem.

LEMMA 5. Let r be a positive divisor of q and suppose g, r#2 mod 4.
For a given regular multiplication yu, on M,, there exists a regular multiplication
g 0n M so that p,, is multiplicative with respect to p,, p,.

This paper is organized as follows: in §1 we prove the parts (a), (b) of Theorem
2. The key lemma, Lemma 5, is proved in §2. The obstruction to the com-
mutativity is analized in §3 and the parts (c), (¢’) are proved. In §4, the
obstruction to the associativity is analized and, in §§4-5, the parts (d), (d"), (d")
of Theorem 2 are proved. The M, ,module structure on M, with g=2 mod 4
is discussed in §6.

The author was supported by SFB 40 “Theoretische Mathematik’> Universitit
Bonn.

§1. Enumerating multiplications

We consider the usual cofibration
(6) S te, M, 11, 58S
Then the coboundary J, is the composite

0y=lpjg: My — X8 — IM,.
Let r be a divisor of 4. As mentioned before, the map p,, satisfies
Paria=lp JiPer=a/")Jgp Pge=1n-

In the same manner as p, there is canonically defined map

bpg: M,

>Mq
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which satisfies

/lr,qir = (Q/r)iqs qur,q =jr5 /lq,q = 1bf

Let #: 28— S be the stable class of the Hopf map S3—S? which is the
generator of n§=[X§, §1=Z/2. Since 27=0, there exist elements

ﬁZ:EMZ——_) S, ﬁz:zzs—_) M2
such that
M2l =1, Jafl2=".
When q is even, we define the elements
fy: ZM, — S, ij,;: 228§ — M,
to be the composites
ﬁq=ﬁ2pq,23 ﬁq=)“2,qﬁ2’
which satisfy the same relations
fNgig=Ms Jgflg="-
The elements 7, and #j, are of order 2 when ¢=0 mod 4, and of order 4 when
g=2 mod4 [3], [1]. We shall quote, from [1] (originally due to [3]), the
following computational result, which is obtained by the standard method using

cofibration (6) together with the following results on stable homotopy groups of
spheres:

i =2Z/2{n}, n3=Z[2{n},

where n2=nn=1{2, n, 2} (Toda bracket, cf. [10]) and we indicate generators inside
{ + '

LEMMA 7.

(a) mo(M)=Z|q{i,}.

0 for q odd,
) 0 for qodd, m,(M)=\Z/4{ii,}  forq=2 mod4,
n,(M,)=
U ziatiny for g even, Z)24ii,} ®Z/24in*}

for =0 mod 4.
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(b) Let r be a divisor of q, and write A=ty P= Py
Z/r{}} Sor r=1mod?2,
M, M]={ Z/2r{}} for r=g=2 mod4,
ZIr{J}®Z[2{inj,} for r=0mod?2, g=0 mod4.
Z/r{p} Jor r=1mod?2,
[M,, M1={ Z/2r{p} for r=q=2mod4,
Zir{p}®Z/2{inj,} for r=0mod?2, =0 mod 4.
(©
0 for gqodd,
(M, M1={ Z/2(ifi} ®Z/2(7,i,} for g=2mod4,
Z)2ifi} ®Z/2A,j}® Z[2{igi})  for q=0mod4.
Form the smash product of (6) with M, to get the cofibration
M, Sarse, M A M, Jahae, ppp

which is induced by g1,,.
Suppose g#2 mod 4. Then gl, =0 by Lemma 7, (b), and the cofibration is
trivial. The trivialization is given by maps

U MyAM, — M, fg: ZM, — M,AM,,

which satisfy the relations

(8-a) HigN La) =1y, i€, p, is a pre-multiplication.
(8-b) (g N L)ty = 1y

8-0) it =O.

(8-d) (g A sty + B(jg A ) =ag ane-

These relations determine uniquely A, for a given pre-multiplication g, [9].
Henceforward, the index g in My 1, will be frequently dropped; the discussions
with p varied and ¢ fixed are much more than those with ¢ varied, which are
Lemma 5, its analogue in case ¢ =2 mod 4, and their consequences.



Multiplications on the Moore spectrum 263

We have proved in [9, Th. 1.3] that, for given pre-multiplications u, p',
there is a difference element

', e [EM,, M,]
uniquely associated to p, 4’ in such a way that
W=p+d, WA, A'=a—(,AL)dW, 1.

The correspondence u'+—d(u’, ) with u fixed is a bijection between the set of pre-
multiplications and [XM,, M,]. Enumerating pre-multiplications as stated
above Theorem 2, (d”) is then immediate from Lemma 7, (c).
Let u be any pre-multiplication. We have u(l, A i,)i, =1, hence, by Lemma
7, (a), (b),
| for ¢ odd,

W1y Ai)=
Ly +xinj, x€Zf2, for g=0mod4.

Therefore p is a multiplication which is unique, when g is odd. When g=0
mod 4, the pre-multiplication p’ with d(u’, u)=xi,jj, becomes a multiplication,
hence the multiplication always exists. The difference element

d(i', p) e m(M,)
is then associated to given two multiplications p, ' in such a way that
d(w', W=d(', 1)j, € Z|2{iigj} @ Z[2{in*jg} »

which proves the part (a) of Theorem 2.
We shall give an equivalent condition for the regularity.

LEMMA 9. A pre-multiplication p is regular if and only if
— 1y when u is a multiplication,
(I A jpi=

— 1y +inj, otherwise.

PrOOF. We may put p(lyAi)=1py+Xifj, xeZ/2 (x=0 if g is odd).
Then we have

(*) ll(éq’\ 1M + 1M A 6q)=jq/\ 1M +1M A jq+Xiqr’(jq A jq) .

By (8-c), (8-d), the regularlity is equivalent to
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0=y A Lyr + 13 AS) (igA 1y,
O0=p(,A 1p+1p A S )AL
The first condition is always valid. By (*) and (8-b), the second is equivalent to
0=1lae+(Ipe A jA+xij,,
hence the lemma. Q.E.D.

Since the stable element j, is of odd degree, the formula (aA f)(«’ A B')=
(—1)deshdeea’qy’ A BB’ of smash product implies that

(10) lq(lMqu)=.]qAJq=_.]q(.]A 1M)
By Lemma 7, (b) with r=g¢, and (10),
(IM A _]q)/.t= _1M+yiq’7jq, S Z/z;

where y =0, hence a regular multiplication exists and unique, for g odd. Suppose
q=0 mod4. Then a pre-multiplication u’' with d(i’, u)=(x+ Viigje Where x
is the same coefficient as above proof, is shown to be regular. Moreover there
are exactly four regular pre-multiplications, which correspond with

Z128ify ®Z2ign?],}
and there are exactly two regular multiplications, which correspond with
Z2{injg;

proving the part (b) of Theorem 2.
Ending the section, we shall restate the enumeration we have made, as follows:

PROPOSITION 11.  Suppose =0 mod 4. Let u be a multiplication. Then,
w is regular if and only if p'=pu+in?(j, A Jg) is regular. One of p and p'=
w+i (g~ Jg) is regular and other is not. Write u" =) =(u"y, Upre =+
ifl(jqA 1y). Then the set of pre-multiplications is

’ ” " ’ ” noy
{:u’ I Y Hpres Hpres Hpres Hpres »

and the first four elements form the set of multiplications.
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§2. The key lemma

Throughout this section, » will be a divisor of q¢ and p=g/r. We consider
the cofibration

(12) M, 2 M, 2> M, A=2p4 P=Pgp>
which is induced by
0'=i,j,: M, —> ZM,.
We put
0"=i,j,: M, — ZM,
and 6,=1i,j, as before. Then we have
(13-a) Prp0,=0" if q divides r?,
(13-b) 0.,p=po".

PrOOF OF LEMMA 5. Suppose (p, r)=1. Then 6’=0 and hence M, is
homotopy equivalent to M,v M, Let A'=4,,:M—->M, p'=p,,: M;>M,.
Then 7, p, " and p’ give a splitting of M,, because, by [2, Appendix, Th. 12.2],

rly, for p#2mod4,
p’i=[
ly, for p=2mod4,
[ ply, for r#2mod4,
Ap=
1y, for r=2mod4.

For given multiplications y, on M), and y, on M, (since (p, r)=‘1, the assumption
q, r#2 mod 4 implies p#2 mod 4, hence p, exists),

(M,v M) A(M,v M,)=(M,AM,)v (M,AM,)v (M,AM,)Vv (M,AM,)

(1p,0,0,ur) Mvar

defines a multiplication y, on M, for which p is multiplicative. The element
d, corresponds with §,v §, via splitting, hence, if p,, is also regular, so is u,. We
may therefore reduce the lemma to the case when g is a prime power. Moreover,
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SinCe Py, P, p=Pa,» W& may assume that p is a prime and r is a power of p. Then
q=pr divides r? and (13-a) is applicable.

By (13-a) and (13-b),

0"t A )= Py, 0,1t (p A P)= PPy, p11(0" A P)+ PPy ptt(p A 5") .
Since pp, ,=0 (by Lemma 7, (b)), we have &'u(p A p)=0. The exact sequence
given by (12) then yields an element Mgt M, A M,— M, with the property
wlp A p)=pHg,
which implies the relation
PHLI A L) =p=ppla Aiy).

An easy diagram chasing leads that there is a choice of u, which is a premulti-
plication. As was shown before, if p is odd, it is a regular multiplication.

Suppose p=2. Then p,(1p Ai)=1s+xipj, x€Z[2. The relation pp, (14
Ai)=p implies x=0. Thus, u, is a multiplication. The multiplication g of

Proposition 11 also makes p multiplicative because pfj,=pAfj,=0. As mentioned
in Proposition 11, either of s, y is regular. Q.E.D.

We mention that, if both of g, r are even (or odd), y, in Lemma 5 is unique.

§3. Commutative multiplications

Let T: M A M,~M,A M, be the map switching the factors. For a multi-
plication p, uTis also a multiplication; it is regular if u is. Therefore if g is odd,
uT=y, i.e., p is commutative by the uniqueness. If =0 mod 4,

uT=p+5w) (jyA j,) for some F(u)(=d(uT, W) € Z|2{ign’}.

Since (j A j)T=—(j,A j,) and 27(u)=0, the element 7(u) is independent of the
chice of multiplication u. We call it 7, and put y,=7, Jor

PROPOSITION 14. If q is odd, the multiplication is commutative. If q=0
mod 4, there is an element y, € Z[2{in?j,} such that

UT=p~+7,(j,A1y) for all multiplications.

CoROLLARY 15. If a multiplication on M, is commutative, all the multi-
plications on M, are commutative.
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Suppose ¢=0 mod4. We may put y,=c,in?j, c,€Z[2. Let p, and p,
be regular multiplications on M, and M,, respectively. Then

HeT=pg+cgig®(igA jg)y  BaT=pa+caian*(jan ja).

Put p=p,,. By Lemma 5,

cgian?(ig A J) =P T—puy
=us(p Ap)T—pap A p)
=aT—pa)(p A p)
=(q/4)?c4ian?* (g A Jg) -
A similar computation as in Lemma 7, (c) shows that i n? J,#0. Hence,
¢g=(q/4)cs=(q/4)c, mod 2.

B. Gray [4, Th. 10] proved that c¢,#0. Therefore c,=¢/4 mod 2, proving the
parts (c) and (¢’) of Theorem 2.

Finally we mention that
(16) If q=0mod4, Ta=—+(q/4) (i A in?, for any multiplication p,
because (uT)" = — Th.

§4. Obstructions to the assiciativity

LEMMA 17. Let p be a pre-multiplication on M,

JaAN L+ 13 A if wisregular,
@) Of=1 L .
JaN Ly + 1y A jo+ign(j A j,)  otherwise.
Iy Aig—igAly if wis a multiplication,
®  4,= o
Lyg Nig—igA Ly +(igAignj,  otherwise.
) 0 if wisregular,
(©) UaA L) (A L) QA pA=
NAly  otherwise.
0 if wis a multiplication,
(GY) U(Lae A D) (A A Ly) (igA ly)=
NAly  otherwise.
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(e) 1A L) (Ipg A WA= p(Lae A ) (A A 1y)A
Proor. We may put
:u(lM A ’q)= 1M+Xiqnjq9 (1M A Jq)#= - 1M+yiq7[jq5

where x, yeZ/2 (x=y=0 if g is odd), x=0 iff u is a multiplication, and y=0
iff yt is regular. Then,

U(lpg Aiy—i Ay +x(i, A ignjg) =0,
(L A Jgtia™ L +Yign(g A j)a=0.
By (8-c), (8-d),
Ty Nig—=ig A Lyg +x(g A igjg= (g A Lag) (g A= ig A Ly +X(3ig A i)
=03,
I A jotjgA Ly +yig(g A j)=Uag A jotigA L +yigCigA Jo)) (igA 1a)p
=gk,
proving (a) and (b). To get (c),
oA L) (A L) (L A A= (g A L) G g A L) (A L) (Lae A D
=pu A L)Ly A DA
and use (a). Similarly (b) implies (d). By (8-d),
Ly A ) (g A D) o= p(Lpg A ) (ig A Lape A L) (1A L)
+(AA L) (g A e A L)) (L A )R
The left hand side is 0 (by (8-c)) and the right is the difference
(A Ly)(Lag A QA= p(ly A ) (R A 1p) 2,
hence (e) is obtained. Q.E.D.

For given pre-multiplication u, we define an element o(u) € [22M,, M,] to
be either side of above (e):

(18) () =p(p A Lag) (Lye A QA= p(Lpe A ) (A A 1y,

which will be shown to be the obstruction to the associativity of u.
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LEMMA 19. If u is a multiplication, the element o(y) is independent of the
choice of p.

PrOOF. We shall show that a(u)=a(u®) for multiplications p and pu°. We
may assume u is regular. Put u®=p+d(j, A 1), d=dj, asin §1. Then

di, =0, 0 if uO is regular, 0 if p° is regular,
Jed= =1 _
—d=d, nj, otherwise, dnj, otherwise,
from which we have, by computation, (we drop the indices: 1= 1y, i=i,, j=j,)
U A O =pd A W +u(IAd)(AA jAD+du(jALAD+d*(GADAAjAL),
(OADLR=(AADA+EALAD)AADA+(@AALDEA DA,
and
a(u0) —a(@)=p(d A DA +p(d Ad)i+d(j A1) (dA D +3d
=pu(dAlp+p(l Ad)p.
By Proposition 14 and (16),
wdADa=pT(AAd)Tha=—p(LAd)ji+y,d+dy,

where y,=(q/4)in?j for g=0 mod 4, y,=0 for g odd. Then, it is enough to show
y,d+dy,=0 for g=4 mod 8. The element 7,4 +dy, is a multiple of in®j, where
n3=nmy. There is a well known relation n3=4v, cf. [10], hence #* is divisible
by g and in3j=0. Q.E.D.

As was seen in [9, §5] the element a(y) is the obstrauction for the multi-
plication u to be associative. The following proposition is a version of [9, Th.
5.2].

PROPOSITION 20. Let u be a pre-multiplication on M,
Ly A )= (A Lyg) = (@) (g A JigA L) + AGDBGig A Lae Adae) 5
(L A DR= —(AA L) (i ATy A a2 () + (g A ag A Ta) A,
where
0 if wis a multiplication,

A= {

iflg gy oOtherwise,
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0 if u is regular,
Aw=y
iflgt1ii, otherwise.
PrOOF*).  We prove the first equality. The second is similar and we omit
the proof. We have

W) (GAjAD)==pIAm)(AADAGAD(ATAT) (by (18), (10))
=—pAAW@ADGAIAD+uAAR@EADEA DU ATAT)
(by (8-d))

=—pdAW@EAADGATAD+ ARG ALATL)
(by Lemma 17, (d)),

where we have used the relation iflg+Tqjq=nA 1y in [EM,, M,], q even [1], and

HAAW@EADGAIAD=p(IA )= p(LA ) (iATAT) (uAT)
(by (8-d))

=p(lApw)—u(unl). Q.E.D.

COROLLARY 21. A pre-multiplication p is associative if and only if a(u)=0
and A(w)=0; in particular, a pre-multiplication which is not a multiplication
is not associative. If a multiplication on M, is associative, all the
multiplications are associative.

PrROOF. The elements j, A j, A 1, and u( Ja A 1y A1) are, together with two
other elements (j, A 15)(uA 1y), p(uA 1), the projections of splitting of M
M,AM, into four copies of M, Therefore —o(u) (g A JgA e+ A(p(j A
Ly Aly)=0 is equivalent to a(u)=0 and A(x)=0. The last statement is im-
mediate from Lemma 19. Q.E.D.

§5. Associative multiplications

According to Corollary 21, we can restrict ourselves the discussion of as-

*) In the proof given in [9, Th. 5.2], there is a mistake in the sign: the equality a(my) (z Az A ly)
=0(my) (xr A1y Aly) below (5.3) in [9] should be a(my) (x Az Alx)= —O0(my) (A1 A 1y),
because of the sign in 7 AzAly=—(zAly) (r AlyAly) (see (10)). Therefore the first
equality in (5.1) should be

my(1y Amyg)=mg(mpy A 1) —a(me)(z Az A 1x).
The change of the sign does not affect the discussions in [9].
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sociativity to the case of multiplications. We shall first show that the associator
o(p) is a 3-primary element, that is,

PROPOSITION 22. If u is a multiplication, 3a(u)=0.

We need some computations to get the proposition. We omit the index g
in pg, g, i, j,» etc, and write 1=1,. By Lemma 19, we may assume that u is
regular. As before, let T be the twisting map of M,A M, and y be the com-
mutator: y=in?j for g=4 mod 8, and y=0 otherwise.

LemMa 23. (a) (IALADAAW(TADHTADAADGALAD=1TATAL
® AAp)(TADNAAT)=T(uAL).

© (ADUADA=GADap), purl)AAD=a(@) (A D.

(d) u@A(TADAAD=20(p) (jA D+pyADAGGA D).

PROOF. (a) Since T?2=1, it is enough to show
(TADGALIADAAD+AADGALIADNTAD=1A1A1.
The left hand side is equal to
AAIADAAR+AARDAAjAD=IA(IADu+A(AL),

(b) Easy.
(¢) By Lemma 17, (¢), (18), (8—c) and (8-d).
(d) By Proposition 20, (10), Proposition 14 and Lemma 23, (c). Q.E.D.

PROOF OF PROPOSITION 22. By Proposition 14 and (8-c), y=uTia. We
compute the element D=p(1 Ap)A=p(l A ) (LA T)(A A Df:

D=pu(lAw)GAIADAAW(TADAATRAE
Ful A (TADAADGAIADAATR)A (by. Lemma 23, (a))
=p(AAW(TADAATY(AADA—pA A (TA)AADTR  (by (8-a), (8-b))

=uT(uA DA ADA—20(u) (A DTR—p(y A DAG A DTR
(by Lemma 23, (b), (d))

=pT (@ A Do) + 20(p) + p(y A Dt (by Lemma 23, (c) and the regularity)
=3o(p) + u(y A DAL

Since y2=0 and 2y=0, a similar computation as in the proof of Lemma 19 leads
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to u(y ADu=p(1 Ay)u=D. Hence 3a(p)=0. Q.E.D.

PROOF OF THE PARTS (d), (d'), (d”) OF THEOREM 2 (CONTINUED AFTER 20, 21).
A similar computation as in Lemma 7 shows that

Z/3{i,aj,} forg=0mod 3,
3-primary component of [22M,, M, ]=
0 for g#0 mod 3,

where « is a generator of the 3-primary component Z/3 of n§=[X3S, S].
Therefore «(u)=0 for any multiplication u, on M, when g#0 mod 3, by Pro-
position 22.  Also we may put a(u,)=a,i,nj,, a,€Z/3, when g=0 mod 3. The
coefficient a, is independent of the choice of multiplication. Then

[4,] B A ) =p (g A D) —agia(j, A juA jg) for g=0mod 3.

Let p=p, ; and suppose that p, is regular. By Lemma 5, composing [4,] with
pApAp from the right and [4,] with p from the left then implies that

aqi?:ajq = (q/3)303i3ajq = (q/3)a3i3ajq .

Therefore a,=(q/3)a; mod 3. Toda proved in [11] that M, is not associative,
that is, a;=1 by replacing « by —« if necessary, completing the proof. Q.E.D.

§6. Remark on the case g=2 mod 4

Throughout the section, we assume g =2 mod 4, and denote simply 1 Mo Loty
igs Jog T2gp J2q BY 1, 1', 4, j, T, j', respectively. We shall try to make analoguous
discussion for M,,-module multiplications on M,.

Since 2¢q1=0 (by Lemma 7, (b) with r=gq), the cofibration

M, A My A M, S0, 5M,

is trivial, hence there is an element, which we call an M, ;-pre-multiplication on
M,

q°
my: My, \M, — M,
together with the associating element

g M, — My, AM,
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satisfying the same properties as (8-a)—(8-d) with u,, fi,, iy, j,» 1arase TEPlaced by
mg, Wy, i', j', 1'A 1. The difference element for two choices m,, mJ of M, -pre-
multiplications

d(m§, m)) € (XM, M 1=Z]2{ifl } ®Z/|2{7],J}

is similarly defined (notice that the third factor Z/2{in?j} vanishes), hence there
are exactly four M, -pre-multiplications on M,. By a similar discussion in §1
of constructing a multiplication from pre-multiplication, there is an m, which
satisfies

(24) m(1'Ai)=p, where p=p,,,.

We call such an m, an M,,multiplication on M,. Enumerating M, ,-multipli-
cations is also similar and one has that there are exactly two M, -multiplications
on M, and that, if m, is one of them, the other is given by my=m,+7j,j(j' A 1).

The regularity of multiplications given in Definition 1 then corresponds with
the following property:

(25) my(1' A8)=08,m,,

that is, 6, is an M,,-module map, because, if a multiplication u, on M, were
constructed, m, would be a composite y,(pA1). For an M, -multiplication m,
the property (25) is equivalent to

25y (I'A jym,=—1, where A=1

4,29 >

which is an analogue of Lemma 9. Then there exists uniquely an M, -
multiplication on M, with property (25) or (25)’, which we call a regular M,
multiplication on M,. We shall stress that the lack of the factor Z/2{in*j} in
[2M,, M,] implies the uniqueness.

Henceforward, we reserve m, for a regular M, -multiplication'on M, because
of the uniqueness. As in Proposition 11, we name other M, -pre-multiplications:

mg=my+7j(j' A1),

Mg, pre =My +if(j' A 1),

Mg, pre =My + (il +7,)) (j' A 1).
An analogue of Lemma 5 is then stated as follows:

LEMMA 26. There exists uniquely a regular multiplication p,, on M,,
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such that ppy,=m1' A p), i, A=(1"A ),

The proof is similar and we omit it. We mention that in Lemma 5 there hold
more relations including (AA 2, = fi A [8, Lemma 2.1]. Tt is not hard to check
the uniqueness of y,,, since in?j’#0. Summarizing the above discussion, we have

PROPOSITION 27. There exist a regular M, ,-multiplication m, on M,
(i.e., a map with properties m (i’ A 1)=1, (24) and (25)), and a regular multiplica-
tion pip, on M, such that pu,,=my1'A p), fia,d=(1"AA)m,. All of these pro-
perties uniquely determine m, and p,,.

We also reserve the notation u,, for the unique regular multiplication in the
proposition, and describe other pre-multiplications as in Proposition 11 with our

I'llq‘

REMARK 28. For each g with q#2 mod4, we may uniquely specify a
regular multiplication p, on M, in the following way: for q odd, p, is always
unique (Theorem 2, (a)), for g=2", n=2, Proposition 27 (in case n=2) and the
remark at the end of §2 (in case n 2 3) give unique p,, and for arbitrary g=q.q,
with g, =2", q, odd, the homotopy equivalence M,=M,, v M,, in §2 gives unique
Hg-

In a similar manner as of (18), we define the associator of m, as follows:
a(mg) =m (g A 1) (1" At ), =m (1" Amg) (fiy, A )ik,
which is an element of
29 [2*M, M,]
Z/3{ioj} for g=0mod 3,

=Z/2{ini,} ®Z/2{finj} ®Z/|2{ivj} ®
for g#£0 mod 3,

where v is a generator of the 2-primary part Z/8 of n§. The discussion in
Proposition 20 with p regular multiplication is applied to show

(30) m(U'Amp))=myuza A1) —a(m)(j' A j A1),
(30)’ (U A = —(uzg A D, + (1" A i' A Da(my) .

Composing 1’ A 1" A p to (30) from the right yields the relation
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(2q/3)ij’ for g=0 mod 3,
a(m,)p=
0 for q#0 mod 3,
and similarly, from (30)’,

(2q/3)i'aj for g=0 mod 3,

Au(m,) =
! 0 for gq#0 mod 3.

From these relations, we get
(€2)) a(my)=ajiog + ayivj,

where a,=0 for ¢#0 mod 3, a,=2¢/3 for =0 mod 3, and a; e Z/2.

Unfortunately an analogue of Proposition 22 can not be expected because of
no commutator; we are not able to decide the coefficient a;. This is the reason
why Theorem 4 has to be a weak form. To show Theorem 4, one needs com-
putations similar to those in Lemma 19 (and Proposition 20). For the com-
putations, one also needs the following relations in [22M,, M_]:

(1" A= p(1 A =i+,
My(fizg A 1)=0, (24 A i, =0,
which follow from the fact that
(32) The homomorphisms
i*: [22M,, M,] — n,(M,).
jx: [22My, M,] — [ZM,, S],
(vADy: [22M,, M,] — [2°M,, M, ]

are monic, if they are restricted to the first, second, third factors Z[2 in (29),
respectively. Moreover they are trivial on the complementary summands in
(29).

Now Theorem 4 follows at once from (30), (31). We shall here restate it
more explicitly:

THEOREM 4'. If g=+3 mod9, M, can not be an associative M,,-module
spectrum. If q# +3 mod?9, the following pairs of pre-multiplication on M,,
and M, -pre-multiplication on M, are only possible pairs satisfying associa-
tivity:
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()qu’ mq)’ (.u/éqs q,pre) (:u2qs )’

m "

(:uéqs m;,pre)’ (,Ltzq, (,u'Zq: ,pre)’

and either all of them or none of them satisfies the associativity. The pre-
multiplications on M,, appearing in these pairs are all associative, regular
multiplications.

(1]
(2]

[31]
[4]

[5]
(6]
[7]
[8]

(9]
[10]
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