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Introduction 

Introduction 

In the present essay, we attempt to convey some idea of the skeleton of 
topology, and of various topological concepts. It must be said at once that, 
apart from the necessary minimum, the subject-matter of this survey does 
not include that subdiscipline known as “general topology” - the theory of 
general spaces and maps considered in the context of set theory and general 
category theory. (Doubtless this subject will be surveyed in detail by others.) 
With this qualification, it may be claimed that the “topology” dealt with in the 
present survey is that mathematical subject which in the late 19th century was 
called Analysis Situs, and at various later periods separated out into various 
subdisciplines: “Combinatorial topology”, “Algebraic topology”, “Differential 
(or smooth) topology”, “Homotopy theory”, “Geometric topology”. 

With the growth, over a long period of time, in applications of topology to 
other areas of mathematics, the following further subdisciplines crystallized 
out: the global calculus of variations, global geometry, the topology of Lie 
groups and homogeneous spaces, the topology of complex manifolds and alge- 
braic varieties, the qualitative (topological) theory of dynamical systems and 
foliations, the topology of elliptic and hyperbolic partial differential equations. 
Finally, in the 1970s and 80s a whole complex of applications of topological 
methods was made to problems of modern physics; in fact in several instances 
it would have been impossible to understand the essence of the real physical 
phenomena in question without the aid of concepts from topology. 

Since it is not possible to include treatments of all of these topics in our 
survey, we shall have to content ourselves here with the following general 
remark: Topology has found impressive applications to a very wide range of 
problems concerning qualitative and stability properties of both mathematical 
and physical objects, and the algebraic apparatus that has evolved along with 
it has led to the reorientation of the whole of modern algebra. 

The achievements of recent years have shown that the modern theory of 
Lie groups and their representations, along with algebraic geometry, which 
subjects have attained their present level of development on the basis of an 
ensemble of deep algebraic ideas originating in topology, play a quite different 
role in applications: they are applied for the most part to the exact formu- 
laic investigation of systems possessing a deep internal algebraic symmetry. 
In fact this had already been apparent earlier in connexion with the exact so- 
lution of problems of classical mechanics and mathematical physics; however 
it became unequivocally clear only in modern investigations of systems that 
are, in a certain well-defined sense, integrable. It suffices to recall for instance 
the method of inverse scattering and the (algebro-geometric) finite-gap in- 
tegration of non-linear field systems, the celebrated solutions of models of 
statistical physics and quantum field theory, self-dual gauge fields, and string 
theory. (One particular aspect of this situation is, however, worthy of note, 
namely the need for a serious “effectivization” of modern algebraic geometry, 
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which would return the subject in spirit to the algebraic geometry of the 19th 
century, when it was regarded as a part of formulaic analysis. 

This survey constitutes the introduction to a series of essays on topology, 
in which the development of its various subdisciplines will be expounded in 
greater detail. 

Introduction to the English Translation 

This survey was written over the period 1983-84, and published (in Russian) 
in 1986. The English translation was begun in 1993. In view of the appearance 
in topology over the past decade of several important new ideas, I have added 
an appendix summarizing some of these ideas, and several footnotes, in order 
to bring the survey more up-to-date. 

I am grateful to several people for valuable contributions to the book: to M. 
Stanko, who performed a huge editorial task in connexion with the Russian 
edition; to B. Botvinnik for his painstaking work as scientific editor of the 
English edition, in particular as regards its modernization; to R. Burns for 
making a very good English translation at high speed; and to C. Shochet for 
advice and help with the translation and modernization of the text at the 
University of Maryland. I am grateful also to other colleagues for their help 
with modernizing the text. 

Sergei P. Novikov, 
November, 1995 

Chapter 1 
The Simplest Topological Properties 

Topology is the study of topological properties or topological invariants of 
various kinds of mathematical objects, starting with rather general geometri- 
cal figures. From the topological point of view the name “geometrical figures” 
signifies: general polyhedra (polytopes) of various dimensions (complezes); or 
continuous or smooth “surfaces” of any dimension situated in some Euclidean 
space or regarded as existing independently (manifolds); or sometimes sub- 
sets of a more general nature of a Euclidean space or manifold, or even of an 
infinite-dimensional space of functions. Although it is not possible to give a 
precise general definition of “topological property” (“topological invariant”) 
of a geometrical figure (or more general geometrical structure), we may de- 
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scribe such a property intuitively as one which is, generally speaking, “stable” 
in some well-defined sense, i.e. remains unaltered under small changes or de- 
formations (homotopies) of the geometrical object, no matter how this is given 
to us. For instance for a general polytope (complex) the manner in which the 
polytope is given may be, and often is, changed by means of an operation 
of subdivision, whereby each face of whatever dimension is subdivided into 
smaller parts, and so converted into a more complex polyhedron, the subdi- 
vision being carried out in such a way as to be compatible on that portion 
of their boundaries shared by each pair of faces. In this way the whole poly- 
hedron becomes transformed formally into a more complicated one with a 
larger number of faces of each dimension. The various topological properties, 
or numerical or algebraic invariants, should be the same for the subdivided 
complex as for the original. 

The simplest examples. 1) Everyone is familiar with the elementary result 
called “Euler’s Theorem”, which, so we are told, was in fact known prior to 
Euler: 

For any closed, convex polyhedron in 3-dimensional Euclidean space IR3, the 
number of vertices less the number of edges plus the number of (2-dimensional) 
faces, is 2. 

Thus the quantity V - E + F is a topological invariant in that it is the 
same for any subdivision of a convex polyhedron in lR3. 

2) Another elementary observation of a topological nature, also dating back 
to Euler, is the so-called “problem of the three pipelines and three wells” . 
Here one is given three points al, ~2, a3 in the plane lR2 (three “houses”) and 
three other points Al, A2, A3 (“wells”), and it turns out that it is not possible 
to join each house ai to each well Ai by means of a non-self-intersecting path 
(“pipeline”) in such a way that no two of the 9 paths intersect in the plane. 
(Of course, this is possible in IR3.) In topological language this conclusion may 
be rephrased as follows: Consider the one-dimensional complex (or graph) con- 
sisting of 6 vertices ai, Aj, and 9 edges xij, i, j = 1,2,3, where the “boundary” 
of each edge, denoted by dxij, is given by dxij = {ai, Aj}. The conclusion is 
that this one-dimensional complex cannot be situated in the plane R2 without 
incurring self-intersections. This represents a topological property of the given 
complex. 0 

These two observations of Euler may be considered as the archetypes of the 
basic ideas of combinatorial topology, i.e. of the topological theory of polyhe- 
dra and complexes established much later by Poincare. It is important to bear 
in mind that the use of combinatorial methods to define and investigate topo- 
logical properties of geometrical figures represents just one interpretation of 
such properties, providing a convenient and rigorous approach to the formula- 
tion of these concepts at the first stage of topology, though of course remaining 
useful for certain applications. However those same topological properties ad- 
mit of alternative formulations in various different situations, for instance in 
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the contexts of differential geometry and mathematical analysis. For an ex- 
ample, let us return to the general convex polyhedron of Example 1 above. 
By smoothing off its corners and edges a little, we obtain a general smooth, 
closed, convex surface in R3, the boundary of a convex solid. Denote this sur- 
face by M2. At each point x of this surface the Gaussian curvature K(x) is 
defined, as also the area-element da(x), and we have the following formula of 
Gauss: 

1 
5.G /.I 

K(x)da(x) = 2. (0.1) 

In the sequel it will emerge that this formula reflects the same topological 
property as does Euler’s theorem concerning convex polyhedra. (Euler’s the- 
orem can be deduced quickly from the Gauss formula (0.1) by continuously 
deforming a suitable surface into the given convex polyhedron and taking 
into account the relationship between the integral of the Gaussian curvature 
and the solid angles at the vertices.) Note that the formula (0.1) holds also 
for nonconvex closed surfaces “without holes”. A third interpretation, as it 
turns out, of the same general topological property (which we have still not 
formulated!) lies hidden in the following observation, attributed to Maxwell: 
Consider an island with shore sloping steeply away from the island’s edge into 
the sea, and whose surface has no perfectly planar or linear features; then the 
number of peaks plus the number of pits less the number of passes is exactly 
1. This may be easily transformed into an assertion about closed surfaces in 
lR3 by formally extending the island’s surface underneath so that it is convex 
everywhere under the water (i.e. by imagining the island to be “floating”, with 
a convex underside satisfying the same assumption as the surface). The result- 
ing floating island then has one further pit, namely the deepest point on it. 
We conclude that for a closed surface in R3 satisfying the above assumption, 
the number of peaks (points of locally maximum height) plus the number of 
pits (local minimum points) less the number of passes (saddle points) is equal 
to 2, the same number as appears in both Euler’s theorem and the Gauss 
formula (0.1) for surfaces without holes. 

What if the polyhedron or closed surface in lR3 or floating island is more 
complicated? With an arbitrary closed surface M2 in R3 we may associate an 
integer, its “genus” g > 0, naively interpreted as the “number of holes”. Here 
we have the Gauss-Bonnet formula 

1 
% SJ K(x)da(x) = 2 - 29, (0.2) 

and the theorems of Euler and Maxwell become modified in exactly the same 
way: the number 2 is replaced by 2 - 2g. Since Poincare it has become clear 
that these results prefigure general relationships holding for a very wide class 
of geometrical figures of arbitrary dimension. 
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Gauss also discovered certain topological properties of non-self-intersecting 
(i.e. simple) closed curves in Iw 3. It is well known that a simple, closed, con- 
tinuous (or if you like smooth, or piecewise smooth, or even piecewise linear) 
curve separates the plane lR2 into two parts with the property that it is im- 
possible to get from one part to the other by means of a continuous path 
avoiding the given curve. The ideally rigorous formulation of this intuitively 
obvious fact in the context of an explicit system of axioms for geometry and 
analysis carries the title “The Jordan Curve Theorem” (although of course 
in fact it is, in somewhat simplified form, already included in the axiom sys- 
tem; if one is not concerned with economy in the axiom system, then it might 
just as well be included as one of the axioms). The same conclusion (as for 
a simple, closed, continuous curve) holds also for any “complete” curve in 
lR2, i.e. a simple, continuous, unboundedly extended, non-closed curve both 
of those ends go off to infinity, without nontrivial limit points in the finite 
plane. This principle generalizes in the obvious way to n-dimensional space: 
a closed hypersurface in IR” separates it into two parts. In fact a local version 
of this principle is basic to the general topological definition of dimension (by 
induction on n). 

There is however another less obvious generalization of this principle, hav- 
ing its most familiar manifestation in 3-dimensional space iR3. Consider two 
continuous (or smooth) simple closed curves (loops) in LR3 which do not in- 
tersect: 

Consider a “singular disc” Di bounded by the curve Tiyi, i.e. a continuous 
map of the unit disc into lR3: Z$ = $(T,$), i = 1,2, a = 1,2,3, where 
0 5 r 5 1, 0 5 4 5 21r, sending the boundary of the unit disc onto yi: 

where q5 = t for i = 1, and 4 = r for i = 2. 

Definition 0.1 Two curves yr and 72 in lR3 are said to be nontrivially 
linked if the curve 72 meets every singular disc D1 with boundary yi (or, 
equivalently, if the curve yi meets every singular disc Dz with boundary 72). 

Simple examples are shown in Figure 1.1. In n-dimensional space IRn certain 
pairs of closed surfaces may be linked, namely submanifolds of dimensions p 
and q where p + q = n - 1. In particular a closed curve in IR2 may be linked 
with a pair of points ( a “zero-dimensional surface”) - this is just the original 
principle that a simple closed curve separates the plane. 

Gauss introduced an invariant of a link consisting of two simple closed 
curves yi, 72 in lR3, namely the signed number of turns of one of the curves 
around the other, the linking coeficient {n,n} of the link. His formula for 
this is 
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(a) Unlinked curves (b) Linking coefficient 1 

Fig. 1.1 

(c) Linking coefficient 4 

N = {n,rz> = ; 
!.f 

@%w-+Y2(~)1 ,Yl - 72) 

Ir1(t> - r2(t)13 ’ 
(0.3) 

71 72 

where [ , ] denotes the vector (or cross) product of vectors in lR3 and ( , ) 
the Euclidean scalar product. Thus this integral always has an integer value 
N. If we take one of the curves to be the z-axis in lR3 and the other to lie in 
the (5, y)-plane, then the formula (0.3) gives the net number of turns of the 
plane curve around the z-axis. 

It is interesting to note that the linking coefficient (0.3) may be zero even 
though the curves are nontrivially linked (see Figure 1.2). Thus its having 
non-zero value represents only a sufficient condition for nontrivial linkage of 
the loops. 

Elementary topological properties of paths and homotopies between them 
played an important role in complex analysis right from the very beginning 
of that subject in the 19th century. They without doubt represent one of 

Fig. 1.2. The linking coefficient = 0, yet the curves 
are non-trivially linked 
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the most important features of the theory of functions of a complex variable, 
instrumental to the effectiveness and success of that theory in all of its appli- 
cations. A complex analytic function f(z) is often defined and single-valued 
only in a part of the complex plane, i.e. in some region U c R2 free of poles, 
branch points, etc. The Cauchy integral around each closed contour y C U 
yields a “topological” functional of the contour: 

MY) = f f(zkk (0.4 
Y 

in the sense that the integral remains unchanged under continuous homotopies 
(deformations) of the curve y within the region U, i.e. by deformations of y 
avoiding the singular points of the function. It is this very latitude - the 
possibility of deforming the closed contour without affecting the integral - 
which opens up enormous opportunities for varied application. 

More complicated topological phenomena appeared in the 19th century - 
in essence beginning with Abel and Riemann - in connexion with the inves- 
tigation of functions f(z) of a complex variable, given only implicitly by an 
equation 

F(z,w) = 0, w = f(z), (0.5) 

or else by means of analytic continuation throughout the plane, of a function 
originally given as analytic and single-valued only in some portion of the 
plane. The former situation arises in especially sharp form, as became clear 
after Riemann and Poincare, in the context of Abel’s resolution of the well- 
known problem of the insolubility of general algebraic equations by radicals, 
where the function F(z, w) is a polynomial in two variables: 

F(z, w) = wn + al(Z)wn-l + . . . + a,(z) = 0. (0.6) 

Such a polynomial equation has, in general, finitely many isolated branch 
points zi,“.,zm in the plane, away from which it has exactly n distinct roots 
wj(z) , z # zk (k = 1,. . . , m). Here the region U is just the plane Iw2 with the 
m branch points removed: 

u = It2 \ {Zl,. . . ) z,}. 

It turns out that in general the branch points cannot be merely ignored, for the 
following reason. In some neighborhood of each point zs that is not a branch 
point, the equation (0.6) determines exactly n distinct functions wj(z) such 
that F(z, wj(z)) = 0. If, however, we attempt to continue any one wj of these 
functions analytically outside that neighborhood, we encounter a difficulty of 
the following sort: if we continue Wj along a path which goes round some of 
the branch points and back to the point zc, it may happen that we obtain 
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Fig. 1.3 

nontrivial “monodromy” , i.e. that we arrive at one of the other solutions at 
20: 

w,(zo) # q(zo), s # j. 

Proceeding more systematically, consider all possible loops r(t), a 2 t 2 b, 
in the region U = lR2 \ { zi, ... ,zm}, with $a) = y(b) = za. Each such loop 
determines a permutation of the branches of the function w(z): if we start at 
the branch given by wj(z) and continue around the loop from a to b, then we 
arrive when t = b at the branch defined by w,, so that the loop y(t) determines 
a permutation j -+ s of the branches (or sheets) above ZO: 

Y + o-r> u,(j) = s. 

The inverse path y-l (i.e. the path traced backwards from b to a) yields the 
inverse permutation cry-l : s + j, and the superposition yi .ys of two paths 
yi (traced out from time a to time b) and 72 (from b to c), i.e. the path ob- 
tained by following yi by 79, corresponds to the product of the corresponding 
permutations: 

~71% = ~-72 O u-Y17 uy-1 = (up. (0.7) 

In the general, non-degenerate, situation the permutations of the form CJ? 
generate the full symmetric group of permutations of n symbols. (This is the 
underlying reason for the general insolubility by radicals of the algebraic equa- 
tion (0.6) for n 25.) To see this, note that the “basic” path 35, j = 1,. . . , m, 
which starts from za, encircles the single branch point zj, and then proceeds 
back to zo along the same initial segment (see Figure 1.3) corresponds, in 
the typical situation of maximally non-degenerate branch points, to the inter- 
change of two sheets (i.e. (T-,, is just a transposition of two indices). The claim 
then follows from the fact that the transpositions generate all permutations. 

It is noteworthy that the permutation cry is unaffected if the loop y is 
subjected to a continuous homotopy within U, throughout which its begin- 
ning and end remain fixed at za. This is analogous to the preservation of 
the Cauchy integral under homotopies (see (0.4) above), but is algebraically 
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more complicated: the dependence of the permutation gy on the path y is 
non-commutative, in contrast with the Cauchy integral: 

This sort of consideration leads naturally to a group with elements the ho- 
motopy classes of continuous loops y(t) beginning and ending at a particular 
point .zo E U, for any region, or indeed any manifold, complex or topological 
space U. This group is called the fundamental group of U (with base point ze) 
and is denoted by ~1 (U, 20). The Riemann surface defined by F(z, w) = 0 thus 
gives rise to a homomorphism - monodromy - from the fundamental group 
to the group of permutations of its “sheets”, i.e. the branches of the function 
w(z) in a neighborhood of z = ~0: 

f7 : m(U, zo) + &, (0.9) 

where S, denote the symmetric group on n symbols, and U is as before - a 
region of E2. 

For transcendental functions F, on the other hand, the equation F(z, 20) = 
0 may determine a many-valued function w(z) with infinitely many sheets 
(n = oo). Here the simplest example is 

F(z,w)=expw-z=O, U=R2\0, w=lnz. 

In this example the sheets are numbered in a natural way by means of the 
integers: taking zo = 1, we have wk = lnzs = 2rik, where k ranges over the 
integers. The path y(t) with \yJ = 1, y(O) = y(27r) = 1, going round the point 
z = 0 in the clockwise direction exactly once, yields the monodromy y -+ cry, 
a,(k) = k - 1. 

An interesting topological theory where the non-abelianness of the funda- 
mental group r(U, ze) plays an important role is that of knots, i.e. smooth 
(or, if preferred, piecewise smooth, or piecewise linear) simple, closed curves 

-Y(t) c R3, Y(t + 27r) = 7(t), or, more generally, the theory of links, as intro- 
duced above, a link being a finite collection of simple, closed, non-intersecting 
curves yi, . , yk C Iw3. For k > 1, one has the matrix with entries the linking 
coefficients {ri, rj}, i # j, given by the formula (0.3), which however does not 
determine all of the topological invariants of the link. In the case k = 1, that 
of a knot, there is no such coefficient available. Let y be a knot and U the 
complementary region of Iw3: 

U=R3\y. (0.10) 

It turns out that the fundamental group rr(U, za), where za is any point of 
U, is abelian precisely when the given knot y can be deformed by means of a 
smooth homotopy-of-knots (i.e. by an “isotopy” , as it is called) into the trivial 
knot, i.e. into the unknotted circle S1 c IK2 c Iw3, where the circle S1 lies in 
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for instance the (z, y)-plane (see Chapter 4, $5). Elementary knot theory (see 
Figure 1.5) shows that the abelianized fundamental group 

where [xi, 7ri] denotes the commutator subgroup of rri, and U is, as before, the 
knot-complement in lR 3, is for every knot infinite cyclic. More generally, for a 
link (71,. . . , ok} the group Hi(U) is the direct sum of k infinite cyclic groups. 
For any topological space U, the abelianized fundamental group 7rr/[nr,~i] 
is called the one-dimensional integral homology group , denoted by HI(U) as 
above, or by HI (U; Z). The group operation in HI is always written additively. 

(a) Unknotted curve 
(the “trivial” knot) 

(b) The simplest nontrivial (c) The “figure-eight” knot 
knot (the “trefoil” knot) 

Fig. 1.4 

We saw earlier that in planar regions U c R2 the Cauchy integral of a single- 
valued function analytic in U (without poles!) around closed contours y lying 
in U, 

In = 
f 

f(z)dz, 

7 

determines a complex-valued linear form on the one-dimensional homology 
group Hl(U; Z) (see (0.8) in particular). 

It is appropriate to round off our collection of elementary topological ob- 
servations with a more modern example, dating from the 1930s namely the 
theory of singular integral equations on a circle or arc, which originated as one 
of several important boundary-value problems in the 2-dimensional theory of 
elasticity (Noether, Muskhelishvili). Subsequently this theory came to have 
much greater significance by virtue of its considerable role in the development 
of the theory of elliptic linear differential operators and pseudo-differential 
operators. Let HI, Hz be Hilbert spaces, and let A : HI 4 Hz be a Noethe- 
rian operator (Fredholm in modern terminology), i.e. a closed (and bounded) 
linear operator with finite-dimensional kernel Ker A = {h 1 A(h) = 0) (not to 
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- 
- 
- 
- 
- 

Fig. 1.5 

be confused with the kernel of an integral operator!), and finite-dimensional 
“cokernel”, i.e. kernel of the adjoint operator A* : Hz --+ HI. It turns out 
that the index i(A) of such an operator A, defined by 

i(A) = dim(Ker A) - dim(Ker A*), (0.11) 

i.e. the difference in the respective numbers of linearly independent solutions of 
the equations A(h) = 0 and A*(h*) = 0, is a homotopy invariant. This means 
simply that the index i(A) remains unchanged under continuous deformations 
of the operator A, although the individual dimensions on the right-hand side 
of the equation (0.11) may change. 

In the simplest case of nonsingular kernels K(z, y) of integral operators .6?, 
the “Fredholm alternative” was discovered at the beginning of this century. 
In the language of functional analysis this is in egect just t&e assertion that 
i(A) = 0 for operators A of the form A = 7 + K, where K is a “compact 
operator”, i.e. g(M) is a compact subset of Hz for every bounded subset M 
of HI, and the operator 7 is an isomorphism of the Hilbert spaces HI and 
Hz. In fact the addition of a compact operator to any Noetherian operator 
A preserves the Noetherian property, so that the simple$ deformation in the 
class of Noetherian operators has the form At = A0 + tK (with A0 = 7 in the 
classical Fredholm situatian). 

For singular integral operators, on the other hand, the index is a rather 
more complicated topological characteristic. Much classical work of the 1920s 
and 1930s was devoted to explicit calculation of the index via the kernel of 
the operator. Far-reaching generalizations of this theory to higher-dimensional 
manifolds, culminating in the Atiyah-Singer Index Theorem, have come to be 
of exceptional significance for topology and its applications. 
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This example shows how topological properties arise not only in connexion 
with geometrical figures in the naive sense, but also in mathematical contexts 
of a quite different nature. 

Chapter 2 

Topological Spaces. Fibrations. Homotopies 

3 1. Observations from general topology. 
Terminology 

Although topological properties are sometimes hidden behind a combinato- 
rial - algebraic mask, they nonetheless all partake organically of the concept 
of continuity. The most general definition of a continuous map or function 
between sets requires very little in the way of structure on the sets. As intro- 
duced by Frechet, this structure or topology on a set X, making it a topological 
space, consists merely in the designation of certain subsets U of X (among 
all subsets of X) as the open sets of X, subject only to the requirements that 
the empty set and the whole space X be open, and that the collection of 
all the open sets be closed under the following operations: the intersection 
of any finite subcollection of open sets should again be open, and the union 
of any collection, infinite or finite, of open sets should likewise be open. The 
complement X \ U of any open set U is called a closed set. The closure of 
any subset V c X, denoted by v, is the smallest closed set containing V. 
A continuous map (or, briefly, map) f : X + Y between topological spaces 
X and Y, is then one for which the complete inverse image f-‘(U) of every 
open set U of Y is open in X. (The complete inverse image f-‘(D) of any 
subset D c Y, is just the set of all z E X such that f(x) E 0.) A compact 
space is a topological space X with the property that, given any covering of 
X by open sets U,, i.e. U U, = X, there always exist a finite set of indices 

fflr..., (YN such that the open sets U,,, . . , U,, already cover X, i.e. there 
is always a finite subcover. It can be shown that in a compact space X every 
sequence of points xi, i = 1,2, . . ., has a limit point z, in X, i.e. a point such 
that every open set containing it contains also terms xi of the sequence for 
infinitely many i. 

A Hausdorfl topological space is one with the property that for every two 
distinct points xi, x2 there are disjoint open sets U1, U2 containing them: 
U1 n U2 = 8, xi E U1, x2 E U2. A topological space X is called a metric space 
if there is a real-valued “distance” p(xr, x2) defined for each pair of points 
xi, 22 E X, continuous in xi, x2 (with respect to the “product topology” on 
X x X - see below), satisfying 
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Metric spaces are always Hausdorff. A path-connected space X is one in which 
each pair of points x1, x2 can be joined by a continuous path in X, a path 
being a map I ---+ X of an interval I to X. Every topological space de- 
composes into pairwise disjoint, maximal path-connected components (path- 
components). The set of path-components of X is denoted by TO(X) and is 
called the “zero-dimensional analogue of the homotopy groups” of X; in gen- 
eral this set does not come with a natural group structure, except in certain 
special (and important) cases (see below). 

Given topological spaces X, Y, we can form their direct product X x Y, 
with points the ordered pairs (x, y), x E X, y E Y, and as a “basis” for its 
topology the subsets of the form U x V where U is open X and V in Y. 
(An arbitrary open set of X x Y is then obtained by taking the union of any 
collection of basic ones.) 

Given topological spaces X, Y, one usually endows the set Yx of all con- 
tinuous maps f : X -+ Y with a topology called the compact-open topology. 
This is defined as follows: take any compact set K c X, and any open set V 
of Y; the set of all maps f sending K to V, f(K) c V, is then a typical basic 
open set of Yx. If-the space X itself is compact and Y is a metric space with 
metric p, then Yx is a metric space with metric j? given by 

There is yet another simple but important construction from a pair of 
topological spaces X, Y, namely their bouquet X V Y. Strictly speaking the 
bouquet is defined for pointed spaces X, Y, i.e. spaces with specified points 
x0 E X, yo E Y; their bouquet X V Y is the space resulting from identification 
of ~0 and yo, ~0 z yo, in the formal disjoint union of X and Y: 

Fig. 2.1. The bouquet X V Y 
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x v Y = XOY/xo x y(). (1.1) 

More generally, given any closed subset A c X and map f : A ---+ Y, one 
may by means of identification form the following analogue of the bouquet: 

Xv(A,f)Y=XtiY /x=f(z), zcA. 

An important case of this is the mapping cylinder Cf of a map f : Z -+ Y. 
Consider the product of 2 with an interval I = [a, b], and form the identifica- 
tion space 

Cf = (2 x I)LJY/(z,b) M f(z), z E 2. (1.2) 

(Here 2 x I plays the role of X and 2 x {b} that of A.) The topology on 
the space Cf is defined in the natural way: a subset of Cf is taken as open 
precisely if its complete inverse images under the natural maps 2 x I + Cf 
and Y -+ Cf , are both open. 

On any subset A of a topological space X the subspace or induced topology 
is defined by taking the open sets of A to be simply the intersections with A 
of the open sets of X. 

A sequence of points xi of a topological space X is said to converge in X, 
if it has a limit in X , i.e. a point xW of X with the property that every 
open set U containing 5, contains the xi for almost all i (that is for all but 
finitely many i). The topology on X may be recovered from the knowledge of 
its convergent sequences. 

A homeomorphism between topological spaces X and Y is a continuous, 
one-to-one surjection f : X + Y, such that the inverse f-l : Y --+ X is 
also continuous. Here the continuity of the inverse function f-l does not in 
general follow from the other defining conditions; it does follow, however, if 
X is compact and Y Hausdorff. 

Functional analysis provides many examples of continuous bijections with 
discontinuous inverses. In particular, for spaces of real-valued smooth func- 
tions there are various natural kinds of convergence definable in terms of 
different numbers of derivatives, so that the existence of continuous’bijections 
with discontinuous inverses is to be expected even in such relatively concrete 
contexts. 

One often encounters topological spaces which carry at the same time some 
algebraic structure, compatible with the topological structure in the sense that 
the various algebraic operations are continuous when considered as maps; thus 
one has topological groups, topological vector spaces, topological rings, etc. 

From the purely abstract point of view, it is very natural to consider topo- 
logical spaces which have the property of being locally Euclidean, although 
in fact most naturally occurring examples of such entities come with some 
additional smooth or piecewise linear structure (PL-structure). 

Definition 1.1 A topological manifold (of dimension n) is a Hausdorff 
topological space X with the property that each of its points x has an 
open neighbourhood U (i.e. open set, or “region”, containing x) which 
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is homeomorphic to an open set of n-dimensional Euclidean space W (for 
some fixed n). 

Thus an n-manifold is covered by open sets U, each homeomorphic to II%“, 
and therefore each having induced on it via some specific homeomorphism 
cp : U, + RF, local co-ordinates x:, . . , x”, On each region of overlap U, n Uo 
there will then be defined two systems (or more) of local co-ordinates, and 
hence a co-ordinate transformation from each of these to the other: 

X 

$2. Homotopies. Homotopy type 

A continuous homotopy (or briefly homotopy or deformation) of a map 
f : X ---t Y, is a continuous map of the cylinder X x I to Y: 

F=F(z,t):XxI-+Y, XEX, a<t<b, 

(I an interval [a, b]) for which 

F(x, a) = f(x) for all x E X. 

Two maps f, g : X ---+ Y are homotopic if there is a continuous homotopy F 
such that 

F(x, a) = f(x), F(x, b) = g(x), II: E X. 

One often needs to consider in this context pointed spaces X, Y, i.e. with 
particular points x0 E X, yo E Y specified. For such spaces maps f : X -+ Y 
are usually also required to be “pointed”, i.e. to satisfy f(xo) = yj~, and 
homotopies between “pointed” maps are then also normally “pointed”, in the 
sense that one requires F(xo, t) = yo for all t. 

Each equivalence class of homotopic maps f : X --+ Y constitutes a path- 
component of the function space Yx, and is called a homotopy class of maps 
X --) Y (or of pointed maps, as the case may be). Thus the set ro(Yx) is 
comprised of homotopy classes. 

Sometimes one has to deal with pairs of spaces A c X, B c Y, where the 
appropriate maps f : X --+ Y are those for which f(A) c B. Such a map of 
pairs is denoted by 
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f : (X,4 - (Y,B) , 
and the space of all such maps of pairs has as its path-components the 
analogous homotopy classes of maps of pairs. There are several important 
reasons, as we shall see below, for considering also the category of triples 
(20 E A c X) for which the appropriate maps f : X + Y are those for 
which both f(A) c B and f(zrc) = y 0, where (ye E B c Y) is another such 
triple. Here one has homotopy classes of pointed maps of pairs. 

Definition 2.1 A continuous map f : X + Y is called a homotopy eqviv- 
alence if there is a “homotopy inverse” map g : Y --+ X, i.e. such that the 
two composites g o f : X + X and f o g : Y ---+ Y are homotopic to the 
respective identity maps 

lx :x---+x (lx(x) = x), ly : Y ---+ Y (lY(Y> = Y>. 

(For pointed spaces one modifies this definition in the obvious way to yield 
the concept of a pointed homotopy equivalence.) The spaces X, Y are then 
said to be homotopy equivalent, X N Y, or to have the same homotopy type. 

Suppose now that the following conditions hold: X is a subspace of Y (or 
embedded in Y); f : X --f Y is the inclusion map; g : Y --f X restricted 
to X is the identity map on X; and, finally, throughout the homotopy F 
deforming f o g : Y -+ Y to the identity map ly, we have F(z, t) = IC for all 
x E X c Y. In this situation the subspace X is called a deformation retract 
of Y. For instance any open region Y of Iw” has a deformation retract of lower 
dimension. The whole Euclidean space Rn has any point as a deformation 
retract. Spaces Y with the latter property are said to be contractible (over 
themselves) or homotopically trivial: Y w 0. 

A retraction of a space Y onto a subspace X c Y is a map f : Y -+ X 
with the property that the restriction of f to X is the identity map on X: 
fix =1x. Th e s P ace X is then called a retract of Y. 

$3. Covering homotopies. Fibrations 

Consider a (continuous) map p : X -+ Y. We say that an arbitrary map- 
ping f : 2 --f Y is covered (via p) if there is a mapping g : 2 + X such that 
f =pog. 

Suppose now that we have a homotopy F : Z x I -+ Y, where I = [a, b], 
and that at the initial time t = a the map f (2) = F(z, a) is covered by some 
mapg:Z--+X. 

Definition 3.1 The map p : X --+ Y is called a fibration if given any 
space Z and any homotopy F : Z x I --+ Y whose initial map f(z) = F(z, a) : 
2 -+ Y is covered (by g(z), say), the whole homotopy F “down below” in 
Y is covered “up above” in X by some homotopy G : Z x I --+ X, i.e. 
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p o G(z, t) = F(z, t). The homotopy G is called a covering homotopy for F 
with initial map g. 

For various technical reasons a weakened form of this definition is often 
employed in situations where the space Z has one or another condition im- 
posed on it (for example, cellularity - see Chapter 3). However the essential 
character of the concept of fibration is unaffected by such changes. 

Usually the following additional condition is imposed in the above defini- 
tion, namely that each point zr E 2 remaining fixed under the homotopy 
F(z, t) for all t in any subinterval of [a, b], should likewise remain fixed on 
that subinterval under G(z, t). 

In the most important situations the construction of a covering homotopy 
is carried out by means of a “homotopy connexion”. Roughly speaking a 
homotopy connexion is a recipe for obtaining from a given path in Y beginning 
at ye E Y and any prescribed point x0 E X above ye, a unique covering 
path in X beginning at xc. Furthermore this covering path should depend 
continuously on both the given path in Y and the initial point x0 E X at which 
the covering path is to begin; this secures the covering-homotopy property for 
all reasonably well-behaved spaces 2. 

M= 

I 
N= & 

M= 

N= 

a N=S’VS’ b N=S’VSZ 

Fig. 2.2 

Some more terminology: given a fibration p : X --f Y, we call p a projec- 
tion, X the total space, Y the base, and each space Fy = pm1 (y), y E Y, a 
fiber of the fibration. 

Take Z to be a fiber FyO of a fibration p : X -+ Y, g : Z + X the 
inclusion and f : Z --+ Y to be the projection of Z = Fv,, to the single point 
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yo E Y. Let y(t) b e a path in Y joining ys to any other point yi. Using the 
covering-homotopy property (in the form of the above-mentioned “homotopy 
connexion”, which we always presuppose) it is straightforward to establish the 
following important fact: 
All fibers FV over a path-connected component of Y are homotopy equivalent. 
We shall in fact assume henceforth that the base Y of a fibration is path- 
connected. 

Here are the simplest examples. 

1. Covering spaces. A map p : X --+ Y is a covering map, and X is a 
covering space of Y, if it is a fibration with a discrete fiber F, i.e a space all of 
those subsets are open (so that its points, which may be infinite in number, 
are all isolated from one another), such that for each point y E Y there is 
an open neighbourhood U of y (y E U c Y) whose complete inverse image 
p-‘(U) is homeomorphic to the direct product U x F with F = U, {z~}: 

p-‘(~) = u& 2 U x F, 

where each U, c X is a homeomorphic copy of U. The sets U, are open in 
X and the restriction plu, : U, --+ U of p to each of them is a homeomor- 
phism with U. The existence of a homotopy connexion is easily established 
for covering spaces. 

Here the covering space is 
an infinite tree of “crosses” 
(without cycles and therefore 
contractible). Each vertex has 
four edges incident with it 

Fig. 2.3 

Concrete examples of covering spaces over regions of W2 were discussed 
in Chapter 1 in connexion with Riemann surfaces. In those examples the 
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homotopy connexion is constructed in the obvious way. Other examples are 
depicted in Figures 2.2 and 2.3. 

2. Serre fibrations. Let B c Y be any pair of spaces, and denote by X 
the space consisting of all paths y : [a, b] + Y, in Y beginning in B: 

r(a) E B, y(b) E Y, Y E X . 

Consider the evaluation map p : X --+ Y defined by 

P(Y) = y(b). 

This defines a Serre Jibration p : X + Y. 
To see that p : X ---+ Y is indeed a fibration, consider any path Y(T), 

b < T < c, in the base Y beginning at the end of a given path y E X, 
y(b) = y(b). By associating with each point y of the curve y(7) the path ‘yr 
obtained by adjoining to y the segment from y(b) to y(7) = y, we trivially 
obtain a homotopy connexion, i.e. recipe for covering each path Y/(T) in the 
base Y by a path yr in the total space X with Yb = y (see Figure 2.4). In 

r(a) 

altlb 

Y(T) = Y 
-----__ 

y(b) = y(b) 

b<r<c 

-0 

Y(C) 

Fig. 2.4 

this example, the total space X contains an embedded copy of the space B, 
consisting of the constant paths y(t) G const., which we may therefore identify 
with B. It is easy to see that this subspace B is a deformation retract of X. 
Of especial importance is the situation where B is a single point {yo}, yo E Y; 
the space X is then contractible. In this case X is usually denoted by EYo, 
and the fiber F3/ over y E Y by n(yo, y). (A s noted earlier in the more general 
context, the fibers Q(yo, y) are all of the same homotopy type provided the 
base Y is path-connected.) For y = yo the space Q(yo,yo) = R is the loop 
space of Y based at yo. 

3. For locally trivial fibrations (or fiber bundles) the covering-homotopy 
property is somewhat more difficult to establish. For these fibrations p : X --f 
Y all the fibers Fy are actually homeomorphic to a space F. The defining 
conditions are as follows: it is required that, analogously to covering spaces, 
each point y of the base Y should have a neighbourhood U, y E U C Y, whose 
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inverse image p-‘(U) c X, is homeomorphic to the direct product U x F via 
a homeomorphism q : p-l(U) --f U x F “compatible” with the projection p. 
(Here the fiber F need not be discrete, as in the case of covering spaces.) Let 
{ Ua} be a covering of Y by such open sets U,. Then given any two sets U,, 
Uo of the covering, we have on the complete inverse image of their intersection 
UC2 n u, = ua,a two homeomorphisms defined: 

+a : p-l (Ua,p) - Ua,p x F , 

40 : p-l (Ua,a) - Ua,p x F 

The map X,,p = 4a o 4;’ : U,,p x F + Ua,p x F then respects fibers and 
induces the identity map of the base UQ,p. It therefore has the form 

where ia,o(w) : F + F is a homeomorphism of the fiber over w, varying 
continuously with w. On intersections Ua,o,-, = U, n Up n U, we require 

x %P oXfl,?IoXr,a = 1. (3.1) 

The maps A,,0 are called glue&g or transition functions. If there is such a 
covering of Y by open regions U, satisfying the above requirements, notably 
that for each Q there exists a homeomorphism 

4w,, : p-l (ua) - ua x F, 

compatible with p, and these homeomorphisms collectively satisfy (3.1), then 
the covering-homotopy property of a fibration follows, and moreover these 
data characterize the fiber bundle uniquely. 

The concept of a fiber bundle, as just described, turns out to be funda- 
mental in the theory of manifolds, in differential topology and geometry, and 
in the major applications of these theories. We shall encounter the concept 
repeatedly in the sequel. In the most important examples of fiber bundles 
the homotopy connexions will be determined by “differential-geometric con- 
nexions” on the total spaces of the bundles. It is pertinent to note that 
for certain bundles such “differential-geometric connexions”, when expressed 
in term of local co-ordinates, turn out to be what are termed by physicists 
“Maxwell-Yang-Mills fields”. 

$4. Homotopy groups and fibrations. Exact sequences. Examples 

The homotopy groups of a topological space, which we shall now define, are 
the most important invariants, and play a fundamental role in topology. It 
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has turned out that they are of crucial importance also in the applications of 
topological methods to modern physics, determining for instance the structure 
of singularities (“declinations”) in liquid crystals. However we shall not in this 
section be in a position to embark on a description of the more serious methods 
of computation of homotopy groups; this will have to be postponed until we 
consider manifolds and homology theory. 

Let S” denote the n-dimensional sphere in IP+‘, i.e. the subspace consist- 
ing of the points (x0,. . . , P) satisfying 

2 (xy2 5 1. 
a=0 

Definition 4.1 The set of pointed homotopy classes of maps (P, SO) -+ 
(X, x0), is called th e n-dimensional homotopy group of (X, x0), and is denoted 
by ~n(x, ~0). 

(a) n= 1 

0 

Y 
so - 

S’ 
8 

/-+ 
0 (x 2) 

9 ’ 

0 

SlVS' 

(b) n = 2 

Fig. 2.5. f -I- g = (f V 9) 0 @ 

We have yet to specify the group operation on the elements of this set, i.e. 
on the homotopy classes. Let f, g be two maps (P, SO) + (X, x0). Their sum 
is then defined as the composite first of the map 11, from Sn onto the bouquet 
S” V Sn which identifies the equator of 5’” to the point SO on it, followed by 
the map of the bouquet to the space (X,x0) which coincides with f on the 
first sphere of the bouquet and with g on the second (see Figure 2.5). 
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Extended to homotopy classes of maps this sum is well-defined, and yields 
a group operation on ~,(X,ze) ( see Figures 2.6, 2.7). For n > 1 this group 
operation is abelian; this is a consequence of the fact that for n > 1 the 
n-sphere may be continuously rotated, while keeping the point se fixed, so as 

x0 D+ 

/’ /--- ‘TN \ ‘-. 

653 /I / 1; 5 

5’ 

Sn 

Fig. 2.6 

sn 

SJ 

Fig. 2.7 

,VSn 

0: 

8 

so 

(-a) 

( x , x0) 

Fig. 2.8 

to interchange its upper and lower hemispheres (see Figure 2.8). Hence for 
n > 1 the additive notation is used for the group operation on T~(X, ze). 
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Observe that the elements of ~,(X,za) may also be realized as homotopy 
classes of maps f of the disc Dn sending the boundary dD” = Snel to the 
point 50: 

f : (Dn, 9-l) --f (X,x0). 

Any path r(t), 1 5 t < 2, in X, beginning at y(l) = x0 and ending at 
y(2) = ~1, yields a map of the cylinder S”-l x 1 to X: 

which depends only on the coordinate t. If we take the union of this map with 
any map f : (D”, S’+‘) + (X, ~a), then we obtain an extension of the latter 
along the path y: 

(f,-y) : (D” u (9-l x I), 9-l x (2)) ---+ (X,x1). 

By means of this construction we arrive at a natural isomorphism between 
the n-th homotopy groups with different base points x0, x1 (see Figures 2.9, 
2.10, 2.11): 

-yp : 7&(X, x0) - %(X,X1) 

2 

sb 

D; : 2 (xj)’ 2 1 
j=l 

Fig. 2.9 

Fig. 2.10 Fig. 2.11 
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The isomorphism -y!“’ depends only on the homotopy class of the path y in 
the class of all paths joining 50 to 21. In the case 50 = xi each such homotopy 
class is a homotopy class of loops based at xc, and is therefore the element of 
the first homotopy group ri(X, 50) (the fundamental group of (X,x0)). We 
conclude that the fundamental group xi (X, xc) acts naturally as a group of 
operators on each of the groups 7rr,(X,zo). For n = 1 this action is just the 
conjugating action inducing inner automorphisms of the group ~1 (see Figures 
2.12, 2.13): 

y!l)(u)=ywy-l, UE7r1, YE7r1. 

=0 X0 

Fig. 2.12 Fig. 2.13 

A very important class of topological spaces is that of simply-connected 
ones, i.e. those with trivial fundamental group 7ri (X, ~0). In this case it fol- 
lows from the preceding discussion that the homotopy groups n,(X,xc) are 
essentially independent of the choice of base point zc (for path-connected 
spaces X); 7rn(X, 50) may simply be defined as consisting of the free homo- 
topy classes of maps S” + X, without specifying any base point. In the 
general case (of connected but not necessary simply-connected spaces) the 
free homotopy classes of maps S” --+ X (i.e. unpointed) are determined al- 
gebraically as the orbits under the action of ~1 = ~i(X,zc) on the group 
r,(X, ~0). In the case n = 1, these are just the conjugacy classes of the group 
Xl. 

It follows easily from its definition, that the n-th homotopy group of a 
product of two spaces is just the direct product of the n-th homotopy groups 
of those factor spaces: 

Tn (X x y,zo x Yo) = rn (X,x:,) x nn (Y,Yo) 

There is also the smash (or tensor) product of spaces: 

x A Y = x x Y/(X x yo) v (zo x Y) ) 
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where the relationship between the homotopy groups of X, Y and X A Y is 
given by a bilinear pairing of homotopy groups: 

@ : n(X) @ Tn(Y) - m+,(X A Y) , 

where @ has the form 

@=(f,g), f  :9-x, g:S”-Y, sl+““slAs”. 

Given any group r, we define the integral group ring Z [n] of x to have 
as elements the formal finite linear combinations of the elements of 7r with 
integer coefficients: 

a= 5 but7 Xi E Z, IfdiET. 

i=l 

Addition is as usual for linear combinations, and the multiplication is defined 
as follows: given a = C Xiu,, b = C pjvj, we set 

a.b= (~Xzu~).(~~~lij) =~&P~(G.v,). 

i,j 
(4.1) 

There is an alternative, equivalent, definition of the (integral) group ring more 
usual in the context of analysis: the elements are taken to be the functions 
a : 7r + Z (ui + Xi) with finite support, added in the usual way for integer- 
valued functions, and multiplied via “convolution” as follows: given two such 
functions a, b their product is given by 

a. b(u) = c a(w)b(w) = c a(v)b(v-‘u) (4.2) 
V~W=‘u. VET7 

As already noted, this is the same ring Z[n]. This concept can be generalized 
to the situation of a continuous (i.e. topological) group by replacing the sums 
by integrals. 

The point for us here is that, to put it in algebraic language, every ho- 
motopy group 7r,(X,za), n > 1, is in a natural way a Z[r]-module, with 
7r = ~1 (X, zs), i.e has the structure of a linear space with ring of “scalars” 

Od. 
The fundamental group r1 was introduced by Poincark. It was only in the 

1930s that the higher homotopy groups rr,, n > 1, were defined (by Hurewicz). 
Initially the Z[n]-module structure of the latter groups went unnoticed, and 
the abelianness of the 7r, for n > 1 created a false impression of their formal 
simplicity in comparison with ~1. It was only somewhat later (beginning with 
Whitehead sometime in the 1940s) that their module structure came to be 
used - although rather unsystematically. The active and systematic exploita- 
tion of the Z[r]-module structure of the higher homotopy groups occurred 
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from the 1960s on, in the course of intensive development of the theory of 
non-simply-connected manifolds. It is curious that in certain particular prob- 
lems of homology theory, module-theoretic considerations played a significant 
role already in the 1930s. 

We now turn to the category of triples (za E A c X). 

Definition 4.2 The n-dimensional relative homotopy group r,(X, A, q,), 
n > 1, has as its elements the homotopy classes of maps 

f : (W S--l, so) - (X, A, 20)) 

where f(P) c A, f(sa) = ~0. The group structure is defined on this set in 
a similar manner to that of the corresponding absolute homotopy group (see 
Figure 2.14). 

It turns out that for n > 2 the groups 7rn(X, A, 50) are abelian. Here it is 
the group TT~(A,zO) which acts as a group of operators on the n,(X, A,zo), 
n > 2, so that they may be considered as Z[r]-modules with 7r = 7rr (A, ~0). 

X’bO 

x1=0 
Y 

x1;: 0 

Fig. 2.14 

In the “relative” context there arise three natural homomorphisms: 

A : ~(x, 50) - ~(x, -4x0), 

8 : rn(X, A, xo) - P-l(A, xo), (4.3) 

G : ~,(A,xo) - nn(X,xo). 

The definition of the homomorphism j, depends on the observation that a 
map f : (P, S-l) 4 (X, 50) may be regarded as a map g of triples: 

f = g : (II”, S-l, so) ---+ (X, A, x0), 

in view of the fact that x0 E A. 
The homomorphism 8 is defined by restricting maps f : (P, P-l) + 

(X, A, x0) to the boundary dD” = P-l of D”: 
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g = &-I : (Sn-l,~o) + (A,x,,). 

The “inclusion homomorphism” i, comes directly from the inclusion A c 

X. 
It is almost obvious also that the composition of any two “neighbouring” 

homomorphisms i,, j,, d yields the zero homomorphism: 

j*oi* =o, aoj, =o, i*od=O, 

whence we infer that 

Im i, c Ker j,, Im j, c Ker d, Im 8 c Ker i,. 

It turns out (after a little calculation) that these subgroup inclusions are in 
fact equalities (called “exactness conditions”): 

Im i, = Ker j,, Im j, = Ker 8, Im d = Ker i,. (4.4) 

This is normally expressed by the statement that the following sequence of 
groups and homomorphisms is “exact”: 

-3 r,(A,xo) % TT,(X,Z~) k T,(X,A,Q) 5 T+~(A,Q,) + . 

(4.5) 
This is called the exact homotopy sequence of the pair (X, A). 

The construction of the homotopy groups ~ the absolute ones 7rn(X, 50) 
on the one hand and the relative ones rrn(X, A,q) on the other - may 
be regarded as determining covariant functors from the category of pointed 
topological spaces (or the category of triples, as the case may be) to the 
category of (abelian) groups. This means simply that maps 

f  : x + Y, x0 + Yo, (A - B) 

of pointed spaces (X, 50) (or triples (X, A, 50)) determine homomorphisms of 
the corresponding homotopy groups 

f* : %(X,X0) - %(Y, Yo), 

f* : rm(X, A, xo) - nn(Y, B, YO). 

These homomorphisms are obtained essentially in the following way: to each 
map g : (D”, S-l) + (X, ~0) representing an element of 7rn(X, 20) we asso- 
ciate the map 

f  0 g : (D”, s-l> - (Y, Yo) , 

and similarly for triples. 

In the particular examples above we had 

i : A + X, i(xo) = x0, 

i, : nn(A,xo) - rn(X,xo), 
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(the inclusion homomorphism), and 

x-x 
j : x0-A , 

x0 - x0 

The above collection of elementary properties of the homotopy (and likewise 

homology) groups ~ especially their functoriality and the exact sequence 
of a pair (X, A) ~ leads, after very substantial further development, to an 
elaborate algebra,ic apparatus for topology, as we shall see below. 

In one case, of extreme importance in connexion with algebraic methods 
for computing the homotopy groups, the relative homotopy groups reduce 
to the absolute ones. Consider an arbitrary fibration p : X -----) Y, with the 
covering-homotopy property (as usual with respect to any prescribed initial 
condition at t = 0). Let ye E Y, and zo E p-‘(ye) = Fo. An important, albeit 
not especially difficult, theorem asserts that there is an isomorphism 

(4.6) 

This is established using the projection homomorphism p* (arising from the 
projection p of X to Y sending the fiber FO to the point ye). Starting with 
the covering-homotopy property, we may see this isomorphism intuitively as 
follows. Each map f  : D” + Y, representing an element of x,(Y, yn), may 

D t” 

@ 

-4 (Di) 

so 
aDi 

Fig. 2.15 

be lifted to X in view of the contractibility of the disc D” to the point so on 
its boundary S”-’ (see Figure 2.15). By lifting this map to X we obtain a 
covering map D” -+ X which maps the boundary S’“-l not necessarily to a 
point, but to the fiber FO over yo. A straightforward argument now yields the 
desired isomorphism (4.6). 

As a consequence of this isomorphism, i.e. ultimately of the covering- 
homotopy property, one obtains the following exact sequence of the fibration 
(rather than of the pair (X, Fo)): 
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Important cases. 1. Let p : X --) Y be a covering-space projection (see 
above) with (discrete) fiber Fo. Then since ni(Fo, ~0) = 0 for i > 1 (0 denoting 
the trivial group), the exact sequence (4.7) becomes in this situation: 

for n > 1, 0 - %(X,Zo) 3 Tn(Y,Yo) - 0; 

for 12 = 1, 0 - ?(X,Zo) - w(Y, Yo) -5 ~o(Fo,Zo) - 0. 

Thus from exactness we obtain: 

and in the case n = 1 that 7rl(X, ~0) is isomorphic to a subgroup of rl(Y, yo), 
furthermore in such way that the set of cosets is “isomorphic” to (i.e. in one- 
to-one correspondence with) the number of components of the fiber; in other 
words each coset corresponds to a sheet of the covering. 0 

2. Consider the Serre fibration over any space Y; thus here (as before) the 
total space X = EVO is the space of all paths y(t), a 5 t < b, beginning at 
the point yo = r(a). Clearly X is contractible. The fiber PO = p-‘(~0) over 
the chosen point Y/O is the loop space R(yo), consisting of all closed paths 
beginning and ending at yo. For this fibration the exact sequence (4.7) yields: 

0 + 7r,(Y,y/o) 5 q-l(.n(YO),~O) - 0, n 2 1, 

whence we infer the isomorphism; 

%(Y,Yo) " %-l(%/O)r~O), (4.9) 

where zo denotes the trivial loop with image the point yo for all t. This 
isomorphism was in fact used by Hurewicz to define the homotopy groups 
recursively. 0 

Returning now to an arbitrary fibration p : X -+ Y, we recall the basic 
assumption that the fibration comes with a “homotopy connexion”. In par- 
ticular this allows us to translate a fiber along a path in the base; i.e. to each 
path y(t), a 5 t 5 b, in the base there corresponds a map of fibers 

r: F. 4 Fl, Fo = P-‘(Yo), FI = P-‘(YI), 

YO = r(a), ~1 = y(b), 

which depends continuously on the path y. A closed path y beginning and 
ending at yo yields in this way a homotopy equivalence 

7 : F. --+ Fo, 
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which in turn induces “monodromy” isomorphisms between the n-th homo- 
topy groups: 

We met with a particular case of this in the discussion of Riemann surfaces 
in Chapter 1, where we had n = 0, the base was a region of Iw2, and the 
monodromy, denoted by uy, was a permutation of the discrete fiber. 

It is worthwhile distinguishing, from among the classes of all covering 
spaces, the regular ones, namely those where the image p,ni(X) c ,1(Y) 
is a normal subgroup of rr(Y). For such a covering space the quotient group 
m(Y)/p*n(X) = r acts naturally as a discrete group of transformations 
(homeomorphisms) of the space X, the action being defined via the transport 
of fibers along closed paths y in the base Y, i.e. via monodromy; the paths 
belonging to those homotopy classes contained in the image p,rr(X) yield 
trivial monodromy. 

The largest covering space X of a given space Y is called a universal cov- 
ering space of Y. It can be shown to exist uniquely for a large class of spaces 
Y. The space X is simply-connected: ri(X) is trivial, so that, in view of the 
above, it is a regular covering, and r = ri(Y) has a natural discrete action on 
it, with orbits the fibers p-‘(y). Since X is simply-connected, its homotopy 
groups are independent of the base point ~0. The group r (acting discretely 
and freely on X, i.e. only the identity element fixes any point) induces homo- 
morphisms 

y : 7rn(X) + 7rn(X), n > 1, y E r. 

Taking into account that r = ,i(Y, ys), we thus have actions of ~1 on all nn 
with the natural geometric interpretation. 

Example 1. Let U c Iw3 be the region obtained by removing from lR3 a line 
and any point off that line. The region U then has as deformation retract the 
bouquet of the circle and 2-sphere: 

u N s2 v s1 = Y. 

One easily deduces that ri(U) = ni(S’ V 5”) ” Z 2 nl(S1), where Z is the 
infinite cyclic group, with generator t, say. Consider the universal cover of 
U, or, rather, the homotopically equivalent universal cover X of the bouquet 
s2 v s1 = Y: 

X+Y=S2VS1. 

The space X turns out to be representable as the line Iw (coordinatized by A, 
say) with 2-spheres ST attached at the integer points j (see Figure 2.16). The 
action of ,1(Y) on X is here given by 

t(X) = x + 1, t (sj2) = s;+1. (4.10) 

The space X has as its 2-dimensional homotopy group 7rz(X) the direct sum 
of a countably infinite collection of copies of Z, with basis {dj} say, each dj 
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t(X) = x + 1, t (sjg = s;+l 

Fig. 2.16 

defined geometrically by the obvious map S2 ---+ 5’:. The action of rrr(Y) on 
7rz(X) is then obviously given by 

t@J = dj+l. (4.11) 

In view of the isomorphism (4.8), this describes also the structure of 7r2(S2 V 

9) ” 7@,(U), mc usive 1 of the action on it of .iri(S2 V S”) ” Z. In module 
language, ~2 (U) is thus a free Z[r]-module (K = nr(U)) on the one generator 
d = da, since each element a of 7rz(U) has the unique form 

a = E Aid(d), 
j=-N 

where the Xj are integers, C Xjti E Z[r], and 7r = ni(Y, ~0). 0 

Example 2. The real projective plane lRP2 has as its points the equivalence 
classes of non-zero real vectors (A’, X1, A”) w h ere two triples are equivalent if 
one is a nonzero scalar multiple of the other: 

(MO, xxl, xX2) N (x0, xl, x2) ) x # 0; 

in other words the points of IRP2 are the straight lines through the origin in 
IR3, with the origin removed. One obtains exactly two representatives of each 
equivalence class by imposing the requirement of unit length: 

-&A)2 = 1. 
j=O 

From this it is clear that lRP2 may be considered as the orbit space of the 
action on the 2-sphere S2 of the discrete group Z/2 of order 2: 

(x0, xl, x2) N (-x0, -xl, --x2) 

Since the group 7ri(S2) is trivial this covering is universal for RP2. From (4.8) 
we have 

7r&!P) cz 7r2(W2) 2 z. (4.12) 
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Denote by d a generator of 7r2(lRP2). We also have 7t-i(IRP2) G+ Z/2 in view of 
the above description of lRP2 as the orbit space of its universal cover under 
the action of Z/2; write t for the generator of ri(RP2), t2 = 1, which can be 
regarded as acting appropriately on the sphere S2. The structure of n2(RP2) 
as Z[7ri]-module is then given by 

t(d) = -d, t2 = 1. (4.13) 

It. is readily established that 7ri(Sn) = 0 for i < n, and that r,(P) = Z. 
It follows much as in the case n = 2 just treated that for the n-dimensional 
real projective space RP”, one has 

7ri(RPn) ” 7ri(S”), i > 1; 7rl(RPn) g z/a. (4.14) 

Moreover the generator t of the group rl(IRPn) acts on the basis element d 
of rn(IRPn) (regarded as Z[ni]-module) according to the formula: 

t(d) = (-l)“+‘d, (4.15) 

where the factor (- l)n+l arises from the reflection 5 4 --z of II@’ restricted 
to the sphere 5’” c IP+‘, as it affects orientation. 

We remark in conclusion that for the space IRPoo, defined as the direct 
limit of the sequence of spaces RPn, n = 1,2, ., each embedded naturally in 
its successor, the fundamental group is again Z/2, while the groups ri(iRP”), 
i > 1, are all trivial. 0 

Example 3. Every connected planar region (or, more generally, every open 2- 
dimensional manifold) has as deformation retract a one-dimensional complex. 
Every one-dimensional complex is homotopy equivalent to a bouquet of finitely 
or countably infinitely many circles. (The latter case is conveniently realized 
as the complex depicted in Figure 2.17 (c).) 

(a) Circle (b) Bouquet (c) Circles attached at the integer 
points X = n of the X-line 

Fig. 2.17 

It is easy to construct covering spaces for these l-complexes that are trees, 
and so simply-connected. (A tree is a connected graph without cycles.) The 
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bouquet S1 VS’, for instance, has the tree shown in Figure 2.18 as its universal 
cover. To see this, observe that every vertex in the covering graph lies above 
the single vertex of the bouquet and therefore must have a neighbourhood 
homeomorphic to some neighbourhood of the vertex of the bouquet, i.e. to a 
“cross”. On this tree the free group on two generators acts freely in a natural 
way, with orbit space the bouquet S1 V S’. It follows by this sort of argument 
that ni(K) is a free group for every l-complex (or graph) K. 0 

Fig. 2.18. The universal covering tree of s’ v s’ 

Example 4. The n-dimensional torus T” is obtained from IF?? by means of 
the identification 

(xl,. . , ,A”) N (Xl,. .)X”) 

whenever (Xi - x1, . . , A” - x”) has all components integers. We infer imme- 
diately a discrete, free action of the integer lattice Zn on BP, and the orbit 
space is the quotient group: 

Tn = IFP/Zn, T1 = S1 = lR1/Z. (4.16) 

It follows that 

nl(Tn) g Z”, ri(T”) = 0 for i > 1. q 

x 
c 

-2 -1 0 1 2 3 

x -+ x + 1, 7ri(Si) = z 

Fig. 2.19 
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Example 5. Up to homeomorphism every closed, orientable surface is a 

sphere-with-handles (see Figure 2.20). This fact was established by Mobius. 
We shall denote the sphere with g handles attached by Mi; the integer g is 
called the genus. For g > 2 each of the surfaces Mi may be obtained as an 
orbit space of the Lobachevskian plane L2 under the discrete, free action of a 

group r of (metric-preserving) transformations (see Figure 2.21, where L2 
is represented as the interior of the unit disc). For the upper-half plane model, 

(a) 9 = 1 (b) g = 2 (cl 9 = 3 

Fig. 2.20 

Im .z > 0, of L2, the group r may be taken as that generated by the following 

P=$ 

Fig. 2.21 

The transformations A1 and Az 
move the center of the octagon 
to the points indicated by the 
arrows 

2g linear-fractional transformations Al,. . , AQ : L2 + L2 (all preserving 
the half-plane) : 

Al = ( $ .!, ), Al, = B,“+lA&l, 

B, = 
cos cy sin f f  cos p + vGFs-2p 

-sin cy 
(4.17) 

cos a > 
, l=ln 

sin /3 ’ 

2g - 1 

a=-irT 
p=$. 
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(Here a matrix 
a b 

( ) c d 
represents the linear-fractional transformation 

az + b 
z+- 

czfd’ 

Figure 2.21 shows some of this transferred over to the unit-disc model of L2.) 
It can be checked that 

Al . A2gA;’ . A;; = 1, (4.18) 

and shown that all relations among AI, . . , Aag are consequences of (4.18). 
Thus 7ri(i$) is isomorphic to the group defined by the generators Al,. , Aa9 
with the single defining relation (4.18). One may find other generators 
al,. , a,, bl, , b, for the group .rrr(Mi) with the single defining relation: 

albla,1b~1a2b2a~1b,1 a,b,a,‘b,’ = 1. (4.19) 

The effect of taking the orbit space under the action of this group of transfor- 
mations is, essentially, to identify appropriate sides of a 4g-gon in L2 (in IR2 
for g = 1) - see Figure 2.22. 0 

g=l g=2 

Fig. 2.22 

Example 6. The closed non-orientable surfaces may be constructed from 
the orientable ones by taking the orbit spaces of the latter under a suitable 
discrete, free action of Z/2, analogously to the construction of IRP2 from S2, 
described earlier. There arise two families of nonorientable closed surfaces: 

N,2,1 and q,2. 

These may also be obtained from polygons of 4g and 4g+2 sides respectively 
by suitable identification of edges - see Figure 2.23. One can find generators 
al, . , a,, bl, , b, for .iri(Ni,,) with the single defining relation: 

Ng”,, : alb&b,’ . . . a,_lb,_la,=l,b,=l,a,bga,lb, = 1. (4.20) 

For Ni,2, on the other hand, the group ni(Ni 2) is given by generators 

al,...,ag, bl, , b,, c, and the single defining relation 
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(4.21) 

That these two families exhaust the closed, non-orientable surfaces was first 
established by Poincare. 0 

N:,, (the Klein bottle) 

(a) N&, g Z 1 

N& (the projective plane) 

(b) N,2,,, g 2 0 

Fig. 2.23 

It can be shown that for all 2-dimensional manifolds (i.e. surfaces), open or 
closed, with the exception of IwP2 and S2, all of the higher homotopy groups 
are trivial: 

7Ti(M2) = 0 for i > 1, M2 # RP2, s2. (4.22) 

A space X with the property that all but one of its homotopy groups are 
trivial is called an Eilenberg-MacLane space, denoted by K(n,n) if 

Tn(X) g T,Ti(X) = 0 for i # 72. (4.23) 

(In fact, K(r, n) may b e realized as a “CW-complex” - see below.) We have 
already encountered spaces of the type K(n, 1). Note in particular that the 
space RP” mentioned at the end of the Example 2 is of type K(Z/2,1). 0 

Example 7. The Hopf fibration. The complex projective space CP” of n 
complex dimensions is defined, analogously to IRPn, by identifying non-zero 
vectors in Cnfl if they are non-zero multiples of one another by complex 
scalars: 

(x0,. . . (A”) - (MO, . ) XX”) ) x E @, x # 0. 

Restricting to just those points of cn+’ satisfying 

we infer that CP” may be realized as the orbit space under the free action of 
the circle group S1 ” U(1) ” 5’02 on S2n+1 given by 
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(A’,. , A”) --+ (eiaXo, . . . , eiaXn) . 

This defines the Hopf fibration: p : S2%+l ---+ @P”, with fiber S1 ? U(1) g 
SO2. Since 7r1(S1) ” Z, 7ri(S1) = 0 f or i > 1 (see above), we obtain from the 
exact sequence of the fibration (see (4.7)) the following isomorphisms: 

7ri (s2”+1) E 7ri (CP”) , i # 2, 

x2,+1 P 2n+l) ” 7Tzn+1 (CP”) Ei z, (4.24) 

7r2 (CP2) 2 Z” 7r1(s1). 

It follows by taking the direct limit as n --+ 03, that the infinite- 
dimensional complex projective space CPm has the type of the Eilenberg- 
MacLane space K(Z, 2). From (4.24) and the fact that @P1 ” S2 we deduce 
also Hopf’s theorem: 

7r3 (s2) ” z. 0 (4.25) 

Example 8. Consider a knot, i.e. an embedded circle S1 in the 3-sphere S3, 
and its complement S3 \ S1 = U, say. (Earlier we considered knots in iR3; 
here we have adjoined a point at infinity to obtain the compact space S3.) 
A theorem of Papakyriakopoulos asserts that 7rz(U) = 0, whence it can be 
shown without difficulty that nj(U) = 0 for j > 2. Hence knot-complements 
are all Eilenberg-MacLane spaces of type K(n, 1). 0 

In conclusion we note that of the simple, well-known examples of spaces 
of type K(x, n), there is only one with n > 1, namely K (Z, 2) = CP”. As 
far as the apparatus of algebraic topology is concerned, for the most part the 
existence of the spaces K(n, n) suffices; in only one important paper (by E. 
Cartan) is knowledge of a concrete algebraic model made significant use of. 

Chapter 3 
Simplicial Complexes and CW-complexes. 

Homology and Cohomology. Their Relation to 
Homotopy Theory. Obstructions 

3 1. Simplicial complexes 

Simplicial complexes (first introduced by Poincark) furnish the most ele- 
mentary, convenient, most accessible to a rigorous treatment, and cleanest 
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means for defining the homology and cohomology groups and investigating 
their formal properties, as we shall shortly see; however they are inconvenient 
when it comes to particular concrete calculation of these groups. 

An n-dimensional simplex on is defined as the convex hull in W’ of any n+l 
points ~0,. . . , on not contained in any (n - 1)-dimensional hyperplane (see 
Figure 3.1). Thus the points of cn = (~0, . , (1~~) are the linear combinations 
of the vertices (~0,. . . , (Y, (regarded as n-vectors) of the following form: 

n n 
x E 8, x = c X~ctj, c .j ZT 1 > xi > 0. (1.1) 

j=o j=o 

A face of a simplex on of any dimension n is the simplex determined by any 

a0 
. 

(a) O-dimensional (b) l-dimensional (c) 2-dimensional (d) 3-dimensional 

Fig. 3.1 

proper subset of the vertices, i.e. the convex hull in R” of a proper subset of 
((1~0,. , a,}. In particular the faces of dimension n - 1 are just the simplexes 

ai n-1 = (cl&. . ,G!̂ i,. . . ,c&), (1.2) 

(where the hat indicates that a symbol is to be considered omitted). Thus cP 
has exactly n + 1 faces of dimension n - 1. 

A simplicial complex K is then an arbitrary (finite or countably infinite) 
collection of simplexes, with the following properties: 

1. Together with each simplex in the collection, all of its faces of all dimen- 
sions should also be in the collection. 

2. Any two simplexes in the collection that intersect should either coincide 
(i.e. be the same simplex) or intersect precisely in a common face. 

A simplicial complex is most conveniently given by indicating its vertices 
cl!0 )...) a, )“‘) together with those (finite) subsets of these that determine 
simplexes of the complex. 
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One might consider more general complexes composed not just of simplexes 
but also of other general convex polyhedra (or rather polytopes), still satis- 
fying the conditions 1 and 2 above; and we shall in fact often be considering 
such complexes. However it is easy to show that by means of subdivision such 
complexes may be refined to simplicial ones. In investigations into the homol- 
ogy of concrete complexes, an operation of “consolidation” is often employed, 
involving the union of appropriate sets of simplexes into convex polytopes. 

Remark. Besides simplicial complexes, cubic complexes are of interest. Such 
a complex is made from cubes In of all dimensions (see Figure 3.2), fitting 
together into a cubic complex under the analogues of the conditions 1, 2 
above. Every simplicial complex may, by means of appropriate subdivision, 
be given the form of a cubic complex, and vice versa. The convenience of 
cubic complexes consists in the fact that In+m = I” x I”, so that a product 
of cubic complexes is again a cubic complex, and they derive interest also from 
the fact that R” has regular tesselations into cubes (regular cubic lattices). 
In modern statistical mechanics several questions arise in the theory of lattice 
models concerning cubic subcomplexes occurring as images of submanifolds of 
Iw” with prescribed regular cubic tesselations. In the case n = 3, in particular, 
it turns out to be necessary to find a description of the maps of surfaces 
M2 into the regular cubic lattice in Iw3, where M2 is subdivided into a-cubes 
(squares), and the map preserves this structure. Refinements of the respective 
subdivisions must be such as to preserve the regularity of the lattice in Iw3. ’ 

i” II 

(a) (b) (cl (4 

Fig. 3.2 

Returning to our arbitrary simplicial (or convex polyhedral) complex K, 
we note that if K is finite, i.e. consists of only finitely many simplexes (or 
convex polytopes), then the Euler-Poincare’ characteristic, already mentioned 
in Chapter 1, may be defined for it: 

(1.3) 

1 “Novikov’s problem”, considered recently by N.P. Dolbilin, M.A. Stank0 and M.I. 
Shtogrin. 
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where rj is the number of j-dimensional simplexes (or j-dimensional convex 
polytopes) of K. If every simplex of K has dimension < n and there are some 
simplexes of dimension n, then we say that the complex K is n-dimensional. 
The m-dimensional skeleton of K is the subcomplex made up of all simplexes 
of K of dimension < m. 

Given two simplicial complexes K and K’, we say that K’ is a subdivi- 
sion of K if each simplex of K is a union of finitely many simplexes of K’ 
and the simplexes of K’ are contained linearly in the simplexes of K. There 
is a standard subdivision of any simplicial complex, called the barycentric 
subdivision, defined inductively as follows: A point (or zero-dimensional sim- 
plex) does not subdivide. The barycentric subdivision of a one-dimensional 
simplex crl = (era, cri) is carried out by introducing a new vertex at the cen- 
tre (midpoint) of a’, so that a1 becomes the complex made up 3 vertices 
and 2 one-simplexes (the edges). To barycentrically subdivide an n-simplex 

d’ 
. . 

dtl 4 

Fig. 3.3. The barycentric subdivision of a simplex 

CF c IfP, one first barycentrically subdivides the faces of on, then introduces 
a further new vertex cr’ E on at the centre (centroid) of 9, and admits as new 
simplexes (of the barycentric subdivision) all those of the form (PO, . . . , ,&, cu’) 
where (PO,. , &) is an arbitrary simplex of the barycentric subdivision of a 
face of on. The totality of new simplexes then comprises the barycentric sub- 
division of cm (see Figure 3.3). The barycentric subdivision of a simplicial 
complex is then obtained by barycentrically subdividing all of the simplexes 
of the complex, ensuring that on faces common to two or more simplexes the 
subdivisions coincide. 

Definition 1.1 Two simplicial complexes K1, K2 are said to be combi- 
natorially equivalent if there exists a simplicial complex K isomorphic to a 
subdivision of each of them. 

At a certain stage in the development of topology, when all of the known 
topological invariants were defined in combinatorial terms, the conjecture 
known as the Hauptuermutung der Topologie, regarded then as of the very 
first importance, was proposed. This is the conjecture that any two homeo- 
morphic complexes are combinatorially equivalent. It was shown to be valid 
in dimensions < 3 by means of direct, elementary methods (by Moise in the 
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1950s - at least for manifolds), but turned out to be false in dimensions > 6 
(Milnor in the early 1960s). Then in the late 1970s it was shown (by Ed- 
wards) that the double suspension of any 3-dimensional manifold that is a 
“homology 3-sphere” (i.e. has the same homology as the S-sphere) is actually 
homeomorphic to the 5-sphere, and it is certainly the case that the associated 
triangulation of S5 is combinatorially inequivalent to the trivial one, namely 
as the boundary of a simplex 06. 2 

Notwithstanding the truth or otherwise of the Hauptvermutung for partic- 
ular spaces, the simplest topological invariants depending for their definition 
on a combinatorial structure imposed on a space - for example the Euler- 
Poincarg characteristic and the homology groups (see below) - turn out to be 
invariant not only under homeomorphisms but even under homotopy equiv- 
alences (Alexander in the 1920s). (It would appear that this was in fact the 
source of the concept of homotopy equivalence.) Deeper invariants - the inte- 
grals of “Pontryagin classes” over cycles, which admit of a combinatorial defi- 
nition by the Thorn-Rohlin-Schwarz theorem, and “Reidemeister-Whitehead 
torsion” - may also be defined initially combinatorially. While it has long 
been known (since the middle 1950s for the Pontryagin classes, and since the 
1930s for Reidemeister-Whitehead torsion) that these quantities are not ho- 
motopy invariants, it turns out that they are at least topological invariants, i.e. 
invariant under homeomorphisms (Novikov in the mid-1960s for the Pontrya- 
gin classes, and Edwards-Chapman in the 1970s for Reidemeister-Whitehead 
torsion; note that for n = 3 this follows from Moise’s theorem of the 195Os, 
mentioned above). Reidemeister-Whitehead torsion constitutes an essentially 
self-contained chapter of topology. We shall subsequently return to later de- 
velopments in connexion with this invariant (occuring in the 1960s and 7Os), 
which have come to comprise a unique and highly complex theory. In the mid 
1960s Sullivan outlined a beautiful theory having as a consequence that the 
Hauptvermutung holds for simply connected PL-manifolds M provided that 
the group Hs(M; i%) does not have 2-torsion.3 Kirby and Siebenmann have 
developed a theory clarifying completely the relationship between PL- and 
topological structures on manifolds in dimensions n # 4.4 In any case for 

*The results of Freedman and Donaldson (early 1980s) show that the Hauptvermutung 
is false also for four-dimensional manifolds. 

31n the first version of his work Sullivan placed no restrictions on the group H3(M); 

the need for the above-mentioned requirement emerged in a discussion with Browder and 
Novikov (Spring, 1967). An exposition of Sullivan’s theory has not yet appeared in the 
literature (at least as of 1994, the time of writing). 

4The book by R. C. Kirby and L. C. Siebenmann, Fozlndational essays on topological 
manifolds, smoothings, and triangulations, Pranceton University Press, 1977, Annals of 
mathematics studies, no. 88, is devoted to this theory. In this book the authors have ap- 
parently attempted to give an independent validation of Sullivan’s theory. However there 
are several crucial statements in the book whose proofs require Sullivan’s results. For ex- 
ample, in the present author’s opinion the proofs on the pages 268-296 do not seem to be 
complete independently of references to certain of Sullivan’s results. It is of course impor- 
tant that these fundamental results be established in full rigour and published. It should be 
noted here that some of difficulties of the theory outlined by Sullivan have been overcome 
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each n 2 5 there exist altogether only finitely many homeomorphism classes 
of closed, smooth or piecewise linear (PL-) manifolds (Novikov, in the mid- 
196Os, in the simply-connected case). More detailed results, dating from the 
late 1960s and the 197Os, will be indicated at the conclusion of 55 of Chapter 
4. 

Returning to our exposition of the elementary theory of simplicial com- 
plexes, we define a map of simplexes cr; --+ UT to be any mapping of the 
vertices of a? to those of ap, extended linearly to the whole of cry. A sim- 
plicial map f : K1 + K2 of complexes is then a map whose restriction to 
each simplex is a map of simplexes; thus a simplicial map between complexes 
is also determined by the images f(c~j) = ,0j of the vertices cyj of K1, where 
the /3j are vertices of Kz. A piecewise linear (PL-)map K1 ---+ K2 is one that 
is simplicial between some suitable subdivisions I?l, I?2 of K1 and K2 (not 
necessarily barycentric). 

The fairly straightforward “Theorem on Simplicial Approximation” asserts 
that every continuous map f : K1 --+ Kz of complexes, can be abitrarily 
closely approximated by a PL-map g : I?1 4 I?2 of suitable subdivisions of 
K1 and Ka, which is homotopic to f. 

Sometimes a variant of this theorem is used, according to which, given as 
before any map f : K1 --+ Kz, there is a simplicial map g : l?l + Kz now of 
some subdivision of K1 only, no longer necessarily close to f, but homotopic 
to f by means of a homotopy throughout which the motion of each image 
point is confined to a single simplex of Kz. 

Definition 1.2 A simplicial complex K is an n-dimensional PL-manifold 
if, after application of a sequence of barycentric subdivisions, the combinato- 
rial neighbourhood of each simplex of K - i.e. the complex made up of the 
simplexes, together with their boundaries, having that simplex as a face - is 
a complex combinatorially equivalent to on. 

A PL-manifold of dimension n is said to be orientable if its n-simplexes 
may all be so oriented that the orientations induced on each (n - 1)-simplex 
from the orientations of the two n-simplexes of which it is a common face, are 
opposite. Each particular way of orienting the n-simplexes of an (orientable) 
PL-manifold so as to satisfy this criterion, is called an orientation of the 
PL-manifold. 

Every PL-manifold is, of course, a topological manifold. However not every 
triangulation of a topological manifold yields a simplicial complex which is a 
PL-manifold: we have already mentioned Edwards’ theorem (from the 1970s) 
to the effect that the triangulation of the sphere S5 arising from the double 
suspension CCM3 of any homology 3-sphere M3 (i.e. a 3%manifold with HI = 

by other topologists; for instance all required results of homotopy theory have been estab- 
lished by Milgram and Madsen, in their book Classifying Spaces in Surgery and Cobordism 
of man~jolds, University Press, 1979, Annals of mathematics studies, no. 92. This work 
uses several technical tools and ideas not yet developed in 1967. 
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(a) The cone on K (b) The suspension CK = (CK)l U (cTK)~ 

Fig. 3.4 

Hz = 0 but with ~1 # 0) is not combinatorially equivalent to g5 yet CCM3 2 
S5 (where E means “is homeomorphic to”). 

We shall now define some of these terms. The cone on a simplicial complex 
K, denoted by CK, is the complex formed by joining every point of K by 
means of an interval to a new vertex CY outside K; the triangulation of CK 
making it a simplicial complex is carried out in the obvious manner (see Figure 
3.4(a)). The suspension CK of K is then the union of two cones on K with 
their common base K identified: 

ZK = (CK)l UK (CK)2. (1.4) 

The suspension can then be triangulated in the obvious way (see Figure 3.4(b)) 

m do dl \ \ \ 

El 
\ 

’ dl /-- d2 do 
Fig. 3.5. Subdivisions of cylinders on simplexes 

The basic operations on topological spaces introduced in 31 of Chapter 2, 
namely the bouquet K1 V Kz, the (simplicial) mapping cylinder Cf, f  : A ---f 
Kz, A c K1, and the product K1 x Ka, all go over to the class of simpli- 
cial complexes upon following each operation by some (standard) subdivision. 
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(Thus although the product of two simplexes is not a simplex, it is readily 
triangulated - see Figure 3.5.) 

52. The homology and cohomology groups. Poincark duality 

We now turn to the definition of the homology and cohomology groups 
of simplicial complexes. The algebraic boundary of any simplex 19 = 

(QIO,.“, on) is defined as the following formal linear combination of its faces 
of dimension n - 1 

ag = &l)~oy-l, (2.1) 
i=O 

where ain-’ = (~a,..., &, , [Y,), the hat over oi indicating its omission. 
Observe that doa = 0. For any complex K the group C,(K) of n-dimensional 
integral chains of K is the free abelian group consisting of all finite formal 
integral linear combinations of the n-simplexes of K: 

here LY indexes the n-simplexes of K, and the coefficients A, are integers. 
From the defining formula (2.1) for the algebraic boundary of a simplex we 
obtain the boundary operator d on the integral n-chains of K: 

~:c,(K)~c,-~(K), a =Cx,(a~:), 
a 

and thence the following chain complex C,(K): 

3 Cn(K) 5 C,pl(K) 2 Cnp2(K) 5 ... 5 Co(K) -% 0, (2.2) 

where 8 o d = 0. We now define for each n > 0 the n-dimensional integral 
homology group of K by 

&(K; Z) = Ker d/Im a, (2.3) 

noting that this makes sense, i.e. Ker d 1 Im d, since 808 = 0. The elements 
of the subgroup Ker d c Cn( K) are called cycles of K, and of the subgroup 
Im d c C, boundaries. 

The operations of forming Gr @ Gz and Hom(Gr, Gz) from arbitrary pairs 
Gi, Gz of (additively written) abelian groups, will be important for us; they 
are defined as follows: 

1. The abelian group Gi @J G2 is obtained from the group of all finite formal 
sums of expressions gr @ gs, gi E Gi , g2 E G2, by imposing the bilinearity 
relations: 
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(9: +d) 8’2 = s; @g2 f&@g2, 

(2.4) 

91 @ (9; + 99 = 91 @d? + 91 @ 9;. 

The resulting group Gi @ G2 is called the tensor product of Gr with G2. 

2. The abelian group Hom(Gr, G2) h as as its elements the homomorphisms 
h : Gr + G2 from the abelian group Gi to the abelian group Gz, two such 
homomorphisms being added in the natural way: 

(hl + b)(g) = h(g) + b(g). (2.5) 

In the case where G2 is the additive group of a field, one denotes Hom(Gr, Gs) 
by GT. (Cf. the notation V* for the dual space of a vector space V, consisting of 
all vector-space homomorphisms from V to the one-dimensional vector space, 
i.e. scalar-valued linear functions on V.) Note in particular that G @ Z 2 G 
and Hom(Z, G) z G. 

Equipped with these two operations we can construct from a chain complex 
C(K) and any abelian group G the following chain and cochain complexes over 
G: 

(9 C(K)@G: . . . 5 C,(K) @G 2 C,-1(K) 8 G 5 . . . , 

(ii) Hom(C(K), G) : . . . z P(K; G) z C+l(K; G) ‘* c . ..) 

where Ci(K; G) = Hom(C,(K),G) and a* is the formal dual operator of 
6’. We call the groups Cn(K;G) = C,(K) @ G the chain groups of K with 
coeficients from G, and the C”(K; G) the cochain groups of K over G. The 
homology groups H, and cohomology groups Hn with coeficients from G are 
defined in terms of the above two algebraic complexes by 

H, (K; G) = Ker d/Im d, Ker d c Cn(K) @G; 

Hn(K;G) = Ker d*/Im a*, Ker d* c Cn(K;G). 

The elements of the group Ker a* are called cocycles, and of the group Im a* 
coboundaries. 

Remark. Chains and cochains may of course be defined also with coeffi- 
cients from a non-abelian group (written multiplicatively in this case). How- 
ever then the boundaries, coboundaries and cohomology groups admit of nat- 
ural definitions only in dimensions 0 and 1. The zero-dimensional cocycles 
(which are actually also the elements of the zero-dimensional cohomology 
group H’(K; G)) are just functions g defined on the 0-simplexes of K, the 
vertices, taking the same value at the two ends of each edge: 

a*g(d, = d&Mdi,o)-l> 
(2.6) 

a*!9 = 1 * d~&l) = d4,o). 
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Hence H’(K;G) 2 G x ... x G, where the number of direct factors G is the 
number of connected components of K. In dimension one we have: 

a*gb& = g(a~,2)g(a~,l)-lg(a~,o), 
(2.7) 

9 = a*.f - dd,l) = dd,oM~:,o). 

For nonabelian G, H’(K; G) will in general be simply a set without a natural 
group structure, since the coboundaries need not constitute a normal subgroup 
of the group of cocycles. 

Generalizations to the case n = 2 have been suggested although there 
is some doubt as to the naturalness of the definition in this case, and they 
have so far not found significant use. One may for now at least consider such 
generalizations merely arbitrary. 

Later on, when we come to the theory of sheaves and fiber spaces, we shall 
see definitions of cohomology groups Ho (K; F) and H1 (K; F) with coefficients 
in a “sheaf” F of non-abelian groups, whose naturality will be very clear. 0 

Returning to the standard situation of additive abelian groups G, we 
introduce next the scalar product (f,c) E G of an n-cochain f and an 
n-chain c: 

(2.8) 
cy a 

This scalar product then induces a natural scalar product between the ele- 
ments of the n-th cohomology and homology groups. 

Example 1. If G is the additive group of a field (for instance @, Iw, Q, Z/p), 
then the homology and cohomology groups have the supplementary structure 
of vector spaces over G, one has 

H”(K; G) ” (H,(K; G))* , (2.9) 

and the scalar product (2.8) is non-degenerate. 

Example 2. Suppose G = Z and the complex K is finite. For appropriate 
maximal free abelian direct factors @ and H, of Hn(K; Z) and H,( K; Z) 

* 
respectively, one has fin = g,, . ( > 

The scalar product (2.8) between fin and 

fi, is non-degenerate and, relative to naturally corresponding free bases, has 
determinant 3~1. For the torsion subgroups there is an isomorphism (in the 
case K finite) 

Tor Hn(K; Z) S Tor H,-l(K; Z). (2.10) 

Example 3. Again suppose G is the additive group of any field. Then it 
follows from the definitions that 
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H”(K;G) = Horn (H,(K; Z), G) , 

H,(K; G) = H,(K; Z) @ G. 

If the field G has characteristic 0 (for instance G = Q) then 

H”(K;Q) ?EHn@QNHom g,,Q 
( > 

(2.11) 

If the field G has finite characteristic p < 03 (for instance G = Z/p) then for 
finite complexes K one has 

H”(K; Z/p) = Horn (k(K; z), Z/P) @ Horn (Tar K-I(K; Q, Z/P), 
(2.12) 

H,(K; Z/p) = (k(K; Z) @Z/P) 69 ((Tar ff,-l(K; z)> @ Z/P). 

From (2.11) and (2.12) we see that the ranks of the homology groups over Z/p 
are at least equal to their ranks over Q, R, Cc. In standard notation, the rank 
of the group H,(K; Q) ( i.e. dimension as a vector space over Q) is denoted 
by b, (the n-th Betti number) and the rank (dimension) of H,(K;Z/p) by 
bp) 2 b,. 

Example 4 (Poincare”s Theorem). For any finite complex K one has 

x(K) = c(-l)jbj. (2.13) 

The analogue of this turns out to be valid for the bi,“‘: 

x(K) = x(-1)jbl”‘. 
j>O 

(2.14) 

As noted earlier, the Euler-Poincare characteristic x(K) is defined as the alter- 
nating sum Cj20(-l)jrj, where “/j is the number of j-dimensional simplexes 
of K. The name “Betti numbers” was introduced by Poincare, however not as 
the torsion-free rank of the groups Hj (K; Z). (It is easy to see that the group 
Ho(K; Z) is always free abelian of rank equal to the number of connected 
components of K.) A many-sided investigation of the homology groups over 
various coefficient groups began in the late 1920s after E. Noether gave the for- 
mal definition of them, thereby bringing algebraic order into the non-algebraic 
homology theory created by the topologists. 0 

It is not difficult to calculate the homology and cohomology of a product 
K1 x K2 refined to a simplicial complex: 

H,(K1 x Kz;Z) ” c &(h’l; Hj(K2; @), 
i+j=m 

(2.15) 

H”(K1 x K:!;Z) z c H”(K1; Hj(Kz; Z)). 
i+j=m 
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Over a field G these formulae simplify to the following: 

Hm(K1 x K2; G) Z c H,(Kl; G) @ H,(K2; G), 

ifj=m 

(2.16) 

H”(K1 x K2; G) ” c Hi(K1; G) @ Hj(K,; G). 

i+j=m 

Note that a simplicial map between complexes induces homomorphisms 
between the respective homology groups (and, likewise, though in the opposite 
direction, between the cohomology groups), in view of the fact that such maps 
commute with the boundary operator d: 

f :Kl -K2, f* : fL(Kl; G) - fL(K2; G), 

(2.17) 
f* : Hn(K2; G) + Hn(K1; G). 

Thus, as for the homotopy groups, the operations of forming the homology and 
cohomology groups are, as they say, functorial (covariantly and contravari- 
antly respectively) on the category of simplicial complexes and simplicial 
maps. 

A simplicial homotopy is a simplicial map F : K1 x I ---f K2, where 
K1 x 1 is subdivided (barycentrically or a refinement thereof - see Figure 
3.5) so as to turn it into a simplicial complex. To each simplex on of K1 there 
corresponds the (n + 1)-dimensional chain representing cn x I in K1 x I, and 
the image chain F(o” x 1) in K2. Denote by fa and fb respectively the maps 
of the base and lid of the cylinder K1 x I (I = [a,b]): 

fb : K1 x {b} - K2, fb(z) = J’(T~), 

and denote the chain F(an x 1) by D(an). The following formula: 

qao”) f  aq?) = fa(an) - fb(a”), (2.18) 

which has a simple geometric interpetation, is a consequence of the obvious 
decomposition a(an x I) = ((aa”) x I) u (on x {a}) U (an x {b}), and the 
appropriate attaching of signs. The formula (2.18) extends by linearity to 
arbitrary n-chains. In particular if z is a cycle, dz = 0, then the formula gives 

f&) - .fb(Z) = *wz), (2.19) 

from which it follows that homotopic maps induce the same homomorphisms 
of the homology groups. The analogous conclusion is similarly valid for coho- 
mology. 

The homotopy invariance (i.e. invariance under homotopy equivalences) 
of the homology and cohomology groups, is thus ultimately a consequence 
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of their invariance under barycentric subdivision, which was known, it would 
appear, to Poincare. The invariance of the homology and cohomology of finite 
complexes under homeomorphisms then follows by invoking the additional 
fact that any self-map f : K + K of a finite complex, having the property 
that every point z is sufficiently close to its image f(z), is homotopic to the 
identity map: f N 1~. For, given any homeomorphism h : K1 --f Kz of 
finite complexes, then after carrying out sufficiently fine subdivisions of the 
complexes, we can (by the Simplicial Approximation Theorem - see above) 
find simplicial maps 7, 9 approximating h and h-l respectively such that the 
composites 70 9 and 90 fare as close as desired to the identity maps 1~~ and 
1~~) and therefore homotopic to them. 

In the same way one infers via simplicial approximation that any (con- 
tinuous) map of simplicial complexes induces homomorphisms of the homol- 
ogy and cohomology groups, that are unchanged by (continuous) homotopies. 
Thus the operation of taking the homology and cohomology groups of a sim- 
plicial complex is a functor with values depending only on the homotopy type 
of the complexes and the homotopy classes of maps between them. 

Consider now the diagonal map 

A(x) = (z,s), A : K --+ K x K, 

K a simplicial complex. 

Definition 2.1 Given any ring G, we define the product of two cohomology 
classes a E Hj(K; G) and b E Hq(K; G) to be the quantity 

ab=A*(a@b) E Hm(K;G), m=j+q, (2.20) 

where 
A* : Hm(K x K;G) + Hm(K;G) 

is the homomorphism induced by the diagonal map A. 

Here a @I b denotes the cohomology class of the product K x K naturally 
determined by a and b as follows: The chain complex C, (K1 x K2) of a product 
may be identified naturally with the appropriate sum of tensor products: 

Cm(K1 x Kz) = c Ci(W @Cq(Kz), 
j+q=m 

a(a @ b) = (da) @ b + (-l)ja %J ab, 

(2.21) 

where we take as a basis for C,(Kl x K2) the simplexes of some simplicial 
subdivision of the products al x o-i of simplexes ofI uz of K1, K2. (For CW- 
complexes (see below) one may simply take the ~“1 x 02” as basis elements.) 
It follows that a pair zi, .zz of cocycles of K1, K2 respectively, of dimensions 
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j, q, yields a cocycle z1 x 22 say, in Hm(K1 x K2), m = j + q, and it is this 
“product of cocycles” that defines the monomorphism 

H(K1) @ HP(K2) + Hi+q(Kl x K2) 

used in the definition (2.20). 
Equipped with this multiplication, the direct sum of the cohomology groups 

becomes a graded skew-commutative associative ring5 with identity element 
1 E H’(K; G), called the cohomology ring of K (with coefficients from an 
arbitrary commutative ring G with a multiplicative identity): 

H*(K; G) = xHi(K; G). (2.22) 
PO 

Here “skew-commutativity” signifies that for a, b as in the preceding definition 
one has 

ab = (-l)jqba, j = dima, q = dim b. (2.23) 

The formation of the cohomology ring is functorial in the (usual) sense that 
the mapping f” : H*(K; G) -+ H*(L; G) induced by any map f : L --+ K, 
is a ring homomorphism. 

It was Kolmogorov and Alexander who, in the mid-1930s, in the course of 
carrying out an algebraic analysis of certain topological work (of Van Kampen 
and Pontryagin, for instance) where cohomological ideas were being used in 
embryo, defined the cohomology groups explicitly and introduced the multipli- 
cation of cohomology classes. It seems that they were led to the cohomological 
product partly by the analogy with tensor analysis where cohomology groups 
with coefficients in R, defined in terms of differential forms and so having 
an obvious multiplication, had already been discovered (by E. Cartan), and 
partly by the analogy with Lefschetz’ ring of intersections of cycles on closed 
manifolds, dual to the cohomology ring (see below). 

In this connexion it is pertinent to mention “Pontryagin duality”, which 
for finite complexes K is the isomorphism 

Hj(K; Char G) g Char Hj(K; G), 

where G is any abelian group and Char G is the group of characters of G, i.e. 
of arbitrary homomorphisms 

G-+S1%Jl”S02. 

For finite abelian groups it is not difficult to see that G 2 Char G, for G = Z 
we clearly have that Char Z ” S1, and for G = S1, Char S1 g Z. In general 
one has (Pontryagin) 

Char Char G g G. 

51n modern terminology, a “super-ring”. 
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In the early 1930s as a result of investigating the algebraic aspects of earlier 
work of Poincare and Alexander on “duality laws”, Pontryagin established the 
following isomorphisms: 

Hj(M”; Char G) 2 Char H,-j(iF; G), 

for any orientable PL-manifold M”, and 

W,(S”\K;CharG)rCharH+-i(K;G), O<j<n-1, 

for any simplicial complex K embedded in the n-sphere S”. Translated into 
cohomological notation these isomorphisms become respectively 

H3(Mn; G) Z H”+(M”; G) 
(2.24) 

H,(S” \ K; G) 2 Hn-j-l(K; G), 0 < j < n - 1. 

The first of these isomorphisms is referred to as “Poincare duality”, and the 
second as “Alexander duality”. 

The multiplication of integral cohomology classes may be defined alterna- 
tively in terms of multiplication of cochains. Let the vertices of K be 00, ~1 . ., 
and let f  and g be cochains of dimensions j and q respectively, in other words 
integer-valued functions on the sets of simplexes of these dimensions. For each 
oriented simplex cm = (oci”, . , oltnb) of K with m = j + 4, we set 

fg (urn) = fk&7(~;)> 
(2.25) 

gf = (Q...>Qi,), CT; = ((Yi,). . ) a&,). 

(Note that ai and ~2” meet in a single vertex.) The multiplication (2.25) is 
not skew-commutative (in fact not even well-defined) at the level of cochains, 
but does determine a well-defined skew-commutative product of elements in 

the cohomology groups, in view of the equations 

a*(fg) = (~*f)g -t (-l)Wa*gL 
(2.26) 

fg - (-l)jqgf = a*& 

The second equation 2.26 is valid for cocycles only. 
Multiplication of cochains yields another important operation: the cup prod- 

uct. Let c be a chain of dimension m and a, b cochains of dimensions j, q re- 
spectively, where m = j+q. The cap product anb is then the chain determined 
via the scalar product of chains with cochains by 

(anc,b) = (c,ab). (2.27) 

The cap product of a cochain with a chain then determines the cap product 
between cohomology and homology classes: 
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u n c E Hm-j(K; Z), 
(2.28) 

a E Hj(K; Z), c E H,(K; Z). 

Under maps f  : Ki + K2, the cap product obeys the following rule: 

f*(f*b) n 4 = an f&9, 
(2.29) 

a E P(K; Z), c E H,(K; Z). 

Each integral homology class c E H,(K; Z) determines, via the cap prod- 
uct, the following duality operator: 

P(K; Z) 4 H&K; Z), 
(2.30) 

It turns out that in the case where K is a closed m-dimensional orientable 
manifold M”, and c is the fundamental class [Mm] E H,(Mm;Z) (i.e. the 
class [Mm] represented by the manifold A4 itself with a chosen orientation; 
if M is connected then H”(M”;Z) 2 Z with generator [Mm]), then the 

operation (2.30) is just the isomorphism of Poincare duality: 

D : Hj(Mm; Z) % Hm-j(Mm; Z), D(U) = u n [Mm]. (2.31) 

The operation D determines a dual operation to cohomological multiplica- 
tion, called the intersection of cycles (for orientable manifolds M): 

(D(a)) 0 (D(b)) = D(ab)> 
(2.32) 

H,+(M”; Z) 0 &&Mm; Z) c II,-,-JM”; 25). 

We shall give below a simple geometric interpretation of this operation. For 
non-orientable manifolds, Poincare duality and the intersection of cycles are 

defined in mod 2 homology, i.e. with G = Z/2. For piecewise linear (PL-) 
manifolds K = Mm, the Poincari! duality isomorphism has a simple geo- 
metrical interpretation. This involves the Poincare’ dual complex DK of the 
complex K, originating in the idea of the dual of a graph in the plane or on a 
two-dimensional surface. Let K’ be the barycentric subdivision of K. For each 
simplex om of K of largest dimension, we define its dual Dam to be the point 
of K’ at the center of am; the points {Dam} are then to be the vertices of 
the dual complex DK. At the other extreme, the dual Da0 of a vertex 0’ of 
K is taken to be the convex m-dimensional polytope obtained as the union of 
all m-simplexes of the barycentric subdivision K’ of K, having o” as a vertex 
(see Figure 3.6). Each simplex & of K, 1 5 k < m, has at its center a point of 
the barycentric subdivision K’; the dual (m - k)-dimensional “simplex” Duk 
of DK is then obtained by consolidating the (m - k)-simplexes of K’ that 
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are transverse to the k-simplex uk, and have the center of uk as a vertex (see 
Figure 3.6). Thus the complex DK is obtained by consolidation from K’, and 
as a topological space it coincides with the complexes K and K’ which are 
just different subdivisions of the same PL-manifold M”. 

Here m = 2. The simplexes of 
the complex K are indicated 
by the solid line-segments, those 
of the dual complex DK by 
dotted line segments 

Fig. 3.6 

We now define the intersection index of each simplex u& with each polytope 
Da; of DK (where cr& and CT; are simplexes of K of the same dimension) to 

be 1 if ui meets DO;, and 0 otherwise: 

d o Duj, = SaB. a (2.33) 

This extends by linearity to yield the intersection index of arbitrary pairs of 
cycles of complementary dimensions: 

(2.34) 

c o DC’ = &&“p@ 

(where on the right-hand sides the Einstein summation convention is being 
used). 

In the orientable case the boundary operator commutes with the dual in 
the sense that 

Da(c) = h’*D(c). (2.35) 

(In the case of non-orientable PL-manifolds this formula remains valid pro- 
vided the coefficients are from Z/2.) The Poincare-duality isomorphism (2.31) 
now follows from (2.35) since the homology of the given manifold M” coin- 
cides on the one hand with that of K, a simplicial subdivision of it, and on 
the other hand with that of DK, a subdivision of M” into convex polytopes. 
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The intersection of cycles of noncomplementary dimensions of K and DK 
respectively, also clearly makes geometrical sense. Thus the operation of ‘<in- 
tersection of cycles” (and thence of homology classes) can indeed be seen to 
arise from actual geometrical intersections. 

$3. Relative homology. The exact sequence of a pair. 
Axioms for homology theory. CW-complexes 

As in the case of the homotopy groups, one can define in a natural way 
the relative homology and cohomology groups of a pair (K, L), where K is a 
simplicial complex and L a subcomplex. 

A relative chain of the pair (K, L) is simply an equivalence class of chains 
of K whose pairwise differences are chains of L; i.e. two chains are now to be 
considered the same if they are congruent modulo the chains of L. Hence the 
relative chain complexes 

C,(K, L) = C,(K)/C,(L). (3.1) 

The boundary operator 8 on C(K, L) is that induced by the usual boundary 
operator on K-chains; since X’,(L) c Cj-i (L) this does indeed yield a well- 
defined operator: 

. . + Cj(K, L) 5 Cj-l(K, L) a ----f . 

The jth relative integral homology group of the pair (K, L) is then defined by 

Hj(K, L; Z) = Ker a/Im d. (3.2) 

The elements of Ker 8 and Im 8 are here called relative cycles and relative 
boundaries respectively. 

The relative homology groups Hj(K, L; G) with coeficients from an ar- 
bitrary abelian group G are defined, analogously to the absolute homology 
groups over G, using the complex C(K, L) 8 G; and the relative cohomology 
groups Hj (K, L; G) over G are defined via the complex Hom(C( K, L), G) and 
the relative coboundary operator a*. A relative G-cochain may be thought of 
geometrically as a function with values in G, defined on the set of simplexes 
of K and vanishing on those of L. 

Much as in the situation of the homotopy groups, one obtains the exact 
homology and cohomology sequences of the pair (K, L): 

. -% H,(K) 3 H,(K, L) L HjeI(L) 5 Hj-I(K) + . . , (3.3) 

. z Hj(K) I’ Hj(K, L) +f?m Hj-l(L) z H?‘(K) - . . . . (3.4) 
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The constructions of the relative homology and cohomology groups and of 
the respective exact sequences (3.3), (3.4) are all functorial on the category of 

pairs (K, L) and simplicial maps of pairs (Ki, Li) L (Kz, L2). These objects 
are all homotopy invariants; the induced homomorphisms f*, f* are unaffected 
by homotopies of maps of pairs. 

In a similar fashion one obtains, yet more generally, exact sequences of 
triples (K, L, M), K > L > M: 

... % Hj(K,A4) k H,(K, L) 5 Hj-l(L, M) ++ f&(K, M) --+ . , 

(3.5) 
. ..~Elj(I(.hl)~Hi(K,L)~H~-‘(L,M)~Hj-l(K,~)t . . . . 

(3.6) 
Noting that the quotient space k = K/L of a complex K by a subcomplex 

L admits a natural triangulation, one has the following result (the Excision 
Theorem): 

f$(K, L) = H,(K/L), j > 0, 

(3.7) 
&(K,L) ” 0, (if K is connected and L # 8). 

The Excision Theorem follows from the observation that the quotient space 
K/L is clearly homotopically equivalent to the complex obtained by attaching 
the cone on L to K along L: 

K/L N K uL CL. 

For the suspension CK = (CK)l UK (CK)z, one infers from the exact 
homology sequence of the pair (CK, (CK)z) in conjunction with the con- 
tractibility of the complex CK, the following important suspension isomor- 
phism: 

H,(K,xo) ” Hj+l(CK,xo), j 2 0. (3.8) 

Starting from the homology of the discrete two-point space K = So = 
(~0, xi}, and iterating the suspension isomorphism, one obtains by induction 
the homology groups of the spheres: 

H,(P, so; Z) E fP(l!P, so; Z) = z, (3.9) 

&(P, so; G) ” Hn(Sn, so; G) Z G. 

According to a theorem of Eilenberg-Steenrod, homology (and cohomol- 
ogy) theory is uniquely determined (i.e. up to isomorphism) by the conditions 
(Eilenberg-Steenrod axioms) of functoriality, homotopy invariance, existence 
of the exact sequence of a pair (3.3), and the normalization axiom (essentially 
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the property (3.9)), provided that the excision axiom (3.7) also holds; it is 
the latter axiom that distinguishes homology theory from homotopy theory. 

In the 1960s what are known as generalized, or extraordinary, homology 
(and cohomology) theories began to be intensively exploited as part of the 
apparatus of topology. These theories are the same as the ordinary theory 
except for the normalization axiom: the generalized homology groups of the 
sphere (Sn, se) may be non-trivial in dimensions other than n, or, equivalently, 
the (absolute) generalized homology groups of a contractible space (e.g. a disc 
or a point) may be non-trivial in non-zero (including negative) dimensions. 
We shall be considering questions related to this below. 

Poincari: duality can be extended to the relative context (without changing 
the underlying geometric assumptions). Let M” be a closed, orientable PL- 
manifold, and K c M” a subcomplex. There always exists a finite subcomplex 
L of M, which is a deformation retract of the open complementary set U = 
Mm\K, L c U. Wesh a 11 understand the homology of the pair (IvIm, U) to be 
that of (Mm, L). We then have the following generalized version of Poincare 
duality: 

Hj(K) “= H”+(Mm, U). (3.10) 

Example 1. Take M” = S”, the m-sphere. Provided S” \ U is non-empty, 
the exact cohomology sequence of the triple (S”, U, *) (see (3.5)) yields the 
isomorphism 

H”-q!?“, U) z H”-+‘(u, *), j # 0. 

From this we infer the isomorphism of Alexander duality - see (2.24) (valid 
also for j = 0): 

H,(K,xo) ” Hm-j-l(U,uo), x0 E K, ug E U. 0 (3.11) 

Example 2. Let M” be any orientable manifold and let K = W” be the 
closure of a non-empty open set in Mm, so that K is a submanifold W” (with 
boundary aWm) of the same dimension m. From (3.11) and the Excision 
Theorem (3.7) one obtains readily the following isomorphisms: 

Hj(Wm,dWm) = H”-qwy 

H+F, aWm) ” H,pj(Wm). 

These isomorphisms constitute what is known as Lefschetz duality. 0 

Homotopy-invariant homology theories are most conveniently constructed 
and investigated for the category of countable cell complexes (or CW- 
complexes). We have already encountered - for instance in the process of 
constructing the Poincare dual of a simplicial complex - the necessity, or at 
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least convenience, of considering consolidations of simplicial complexes, where 
the structural units are convex polyhedra or polytopes, for instance, rather 
than simplexes. CW-complexes are the most general and convenient objects 
of this type. To begin with, consider a simplicial complex K. We shall say 
that K is decomposed, or subdivided, into cells if we are given a family of cells 
(discs) 0: of various dimensions n and a collection of simplicial maps 

with the following properties: 

(i) Each map !Pg is one-to-one on the interior Int 0: of the cell Dz; 

(ii) The union of the cells (i.e. of the images !Pz(Dz)) is all of the complex 
K, and their interiors !Pz(Int DE) are pairwise disjoint; 

(iii) For each n, the image !&Q(aDt) (the boundary of the cell P,Q(DE) ) lies 
in the union of the cells of dimension < n. 

Under these conditions we say that K has been endowed with the structure 
of a CW-complex K. It is clear from this definition that, given an orientation 
of K (assuming orientability) each n-dimensional cell Pz(Dz) of such a cel- 
lular subdivision is a linear combination of the (oriented) n-simplexes of K 
contained in the cell: 

where the c$ are n-dimensional simplexes of K. (Note that since distinct cells 
intersect only along their boundaries if at all, the interior of each n-simplex 
ay” is contained in the interior of exactly one cell.) Denote the cell !?c(Dz) 
by K”,. Since the boundary 8DE of each disc 0: is mapped simplicially to the 
union of the simplexes of K of dimension < n (the (n - 1)-skeleton of K), 
the boundary operator 8 defined already (in $2) for s@plicial chains, yields 
an expression for the boundary 8~: of each n-cell of K as an integral linear 
combination of cells of dimension n - 1: 

tk”, = c [&“a : d-l] P$-l, aoa = 0. (3.12) 
6 

The integers [K: : K:-‘] are called the incidence numbers of the CW-complex 

i?. 
The cellular homology and cohomology groups of the CW-complex g are 

now defined, analogously to the simplicial versions, in terms of integral cell- 
chains (comprising C,(K)) and cellular cochains, and, over an arbitrary 
abelian group G of coefficients, in terms of C, (2) @ G and Hom(C, (g), G). 
The cellular homology and cohomology groups of a CW-complex coincide 
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with (i.e. are naturally isomorphic to) their simplicial analogues as defined 
above (in $2). 

The n-skeleton Kn of a CW-complex K is the union of the cells of dimen- 
sion 5 n. Clearly each quotient space K”/K”-l is a bouquet of spheres 

K”/Kn-l ” S;” v.. . v S; v . , 

representing the respective n-cells IE~, (Y = 1,2,. . . , m, . . Hence the group 
H,(Kn, Kn-‘; Z) ’ f is ree abelian with free generators represented by the cells 
n:, and the boundary operator 8 may be defined alternatively as the com- 
posite of the the maps a,, j, figuring in the exact homology sequence of the 
pairs (Kn, Knpl), (K+‘, Kn-‘): 

H,(K”,Kn-‘;Z) -% H,-l(K”-l;Z) % H,-1(Kn-1,Kn-2;Z) 

The definition of a CW-complex can be somewhat broadened by dispensing 
with the dependence on an initially given simplicial decomposition. Thus a 
topological space X is called a CW-complex if there is given a collection of 
maps Pz : 02 --+ X of discs (balls) 0: of various dimensions (whose images, 
or, strictly speaking the maps themselves, are called cells) with the same 
properties (i), (ii), ( iii as before: each !PE should be one-to-one on IntDz; ) 
the union of the cells should be all of X; the interiors !P~(IntD~) of the cells 
should be pairwise disjoint; and for each n the set !Pz(aDz) = P,Q(F-‘) 
should be contained in the union of the cells of dimension 5 n - 1. It is also 
required that the topology on X be the appropriate identification topology, in 
the sense that for a mapping f : X -+ 2 to be continuous (2 any topological 
space) it suffices that the maps f 0 !Pz all be continuous (or in other words f 
should be continuous if it is the union of maps of the cells, each pair of which 
agrees on the shared portion of the cells’ boundaries). 

In this general case the n-skeleton of a CW-complex X is the subcom- 
plex Xn made up of the cells of dimension < n. Clearly each quotient space 
Xj1Xj-l is again a bouquet of j-dimensional spheres: 

xj/xj-1 ” s:’ v . v SA v . ) 

each sphere Si arising from exactly one j-cell ~j, (= ‘=%%)L 
Q = 1,. , m, The boundary operator d has the same form as before (see 

(3.12)), where now the incidence number &+’ 3 [ a G] of a pair of (oriented) 

cells K;+‘, 6; is defined (equivalently) as the degree of the composite map: 

apj&tl) + acKjdtl) - si 

determined by !Pi+l and the above identification, i.e. essentially as the 
(signed) number of times the composite of !Pi+lI acoi+,+l) with the identification 
xi/xi-l + v S$ “wraps” the j-sphere i3(Di+‘) around the corresponding 
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j-sphere of the bouquet. It follows that d o 8 = 0, and one then defines the 
homology and cohomology groups of the CW-complex X in the usual way, 
obtaining groups naturally isomorphic to those defined above. 

Any CW-complex may be constructed by iterating the following operation: 
Given a space X and countable collection of maps fa : Sj-’ + X, one 
constructs a new space Y by attaching discs Dj, to X by identifying the 
boundary of each Dj, with the corresponding fol (Sj-‘) via fa: 

Y=X 
u ( 

0; u . Dj, u 
> 

(3.13) 

(.fl>...JCX>...) 

The topology on Y is defined in the natural way. Thus starting with a count- 
able discrete set K” of points (to be eventually the O-skeleton), one first at- 
taches the l-cells (j = l), then to the resulting l-skeleton the 2-cells are 
attached, and so on. 

We note in conclusion the fact that every CW-complex is homotopically 
equivalent to some simplicial complex. 

Example 1. The simplest cellular decomposition of the sphere S” is as 
follows: to a single 0-dimesional cell (vertex) K’ one attaches a single n- 
dimensional cell kn by means of the obvious map P : D” + S” sending the 
boundary of D” to the point KO: !P(aDn) = {KO}. Clearly 86’ = 0 = dKn, so 
that the homology groups are as follows: 

Ho(Y) ” z ” Hn(Sn), 

Hi(S”) = 0 for j # 0,n. 0 

Example 2. a) The real projective spaces have the following cell decompo- 
sitions, with boundary operators as indicated: 

RP” = K0 u d u . u P, 
(3.14) 

~2 = RPj \ &W-l = {(x0 : : xn) 1 xi # 0, xk = 0 for Ic > j} , 

a,$ = aKl = a,$ = aK5 = . = a,2k+l = = 0, aK2k = 2K2k-1, k > 0. 

b) For the complex projective spaces we have: 

CP” = KO u 2 u . u fP, 

p$= (y3 \cpi-1 = {( 2’ : : z”) 1 24 # 0, zk = 0 for k > j} , (3.15) 

a& = 0 , for j > 0. cl 

Example 3. The construction of the closed orientable and non-orientable 
surfaces by identification of appropriate pairs of edges of convex polygons 
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(see Figures 2.22, 2.23) yields the following minimal cellular decompositions 

of those surfaces: 

(i) For the orientable surfaces I$: 

K 0 u K: u ‘. u K$ u K2, 8~; = 0, for j = 1,. . ,2g, 8~’ = 0 

(ii) For the first f  amily of non-orientable surfaces Nf,s, g > 1: 

K 
0 

u K: u . . u KQ l UK2, t&i = 0, for j = 1,. . . (29, d&2 = 24. 

(iii) For the second family of non-orientable surfaces N;,,,, g 2 0: 

n”UK~lJ.4JK;,UK2, dr;: = 0, for j = 0,. . (29, 8~ = 2~4~ 

The homology groups of the closed surfaces may be easily computed from 
these formulae. 

The intersection indices of one-dimensional cycles on these surfaces (taken 

modulo 2 for the non-orientable ones) are determined by the intersection in- 
dices of pairs of the above basic l-cycles, and these are as follows: Writing 
U, = ~ii, bi = ~i~-lr one has, for all surfaces I$, NF,9, Ni,,9, 

aioaj=biobj=O, 
a,obj =Sij, 

(3.16) 

where 6,j is interpreted mod 2 for the non-orientable surfaces. For the surfaces 
N&, there is the additional basic l-cycle K; = c say; the additional basic 
intersection indices arising from this l-cycle are as follows: 

cot= 1, coai=cobi=O (mod2). (3.17) 

Any collection of cycles ai, bi, i = 1, . . , g (and c in the case of IV;,,), satisfying 
(3.16) (and (3.17) if appropriate) is called a canonical basis for the cycles on 
the surface. 

Via the isomorphism of Poincare duality, which in each case sends the 
basic element of the group Ho to the fundamental cohomology class of H2, 
we can infer from (3.16) (and (3.17 in the case of N&)) the structure of the 
cohomology rings 

H*W;; @, H*(%,,; 7W), H*(Ni’,,; V4. 0 

We have already mentioned Hopf ‘s Theorem: 

HICK; 4 c n(K)/ [“l(K), m(K)1 > (3.18) 
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valid for any CW-complex K. (Here [7ri, “11 denotes the commutator subgroup 
of the group ~1, i.e. the subgroup consisting of those elements of ~1 which 
become trivial if commutativity is imposed on ~1.) As an extension of this we 
have Hurewicz’ Theorem: 
IjE7ri(K)=OforO<i<n, thenHi(K;Z)=OforO<i<n, andifn>l 
there is a natural isomorphism 

H,(K; Z) 2 Q(K). (3.19) 

(Note that since for a path-connected space the homotopy groups defined with 

reference to different base points are canonically isomorphic, we shall in future 
not indicate base points explicitly, and likewise for the relative homotopy 
groups ri(K, L) where L is path-connected.) 

The relative version of Hurewicz’ theorem is as follows: 

If7ri(K,L)=OforO<i<n, thenH,(K,L;Z)=OforO<i<n, andif 
n > 1 there is a natural isomorphism 

H,(K, L; Z) ” r,(K, L)l {a = t(a)), (3.20) 

where a ranges over 7rn(K, L), and t ranges over rl(L) considered as a group 
of operators acting as defined earlier on T~( K, L) 

This relativized version of Hurewicz’ theorem is actually more complete in 
that it applies in the non-simply-connected case also, and so embraces Hopf’s 
theorem. 

Example. I f  L is a path-connected subcomplex of the CW-complex K, such 
that K/L is a bouquet of k n-spheres, n > 1: 

K/L=S:v...vS;, 

then rn(K, L) is free as a Z [n]-module (rr = ~1 (L)) with Ic natural free gen- 
erators corresponding to the spheres of the bouquet. II 

$4. Simplicial complexes and other homology theories. 
Singular homology. Coverings and sheaves. The exact sequence 

of sheaves and cohomology. 

In this section we shall use simplexes as a means for constructing a ho- 
mology theory for arbitrary topological spaces X. We shall also define the 
cohomology groups with coefficients from a “sheaf”, important in various 

questions touching on complex-manifold theory and complex analysis. 
We begin with the (‘singular” homology theory of a general space X. We 

define an n-dimensional singular simplex of X to be a pair (c?, f) where I?’ 
is a standard n-simplex and f is a map of the simplex to X: 
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f : un + x. 

The singular n-simplexes of X thus form a continuum, as it were, of maps f : 
on + X. A singular n-chain in X is then a formal integral linear combination 
of finitely many singular simplexes. We denote the corresponding singular 
chain complex by C,(X), with boundary operator d : Cn(X) + C,-r defined 
on a singular simplex (on, f) by the formula: 

a cc f) = C(-i)j (ql, f) , 
j=o 

(4.1) 

where aj n-1 is the j-th (oriented) (n - 1)-d imensional face of 17~. In terms of 
the singular chain complex C,(X), one defines in the usual way the singular 
homology and cohomology groups of X. These are easily verified as being ho- 
motopy invariants of X, and functorial. It is also easy to see that the singular 
(co)homology groups of a one-point space are zero in nonzero dimensions. 
The extension to arbitrary abelian coefficient group G is essentially as be- 
fore. The singular relative homology and cohomology groups Hj(X, A; G) and 
Hj (X, A; G) are defined analogously to the earlier versions. If G is a ring then 
an analogous multiplication of singular cohomology classes can be defined 
making the direct sum H*(X; G) of the singular cohomology groups into a 
graded ring, the singular cohomology ring over G. Finally, it can be shown 
that if X is a simplicial or CW-complex then the singular homology and co- 
homology groups coincide (i.e. are canonically isomorphic to) those defined 
earlier. 

Singular homology is particularly convenient for investigating spaces of 
maps from one complex to another, or, more precisely, their homotopy in- 
variants, which are crucial for building up the technical apparatus used in 
computing the homotopy groups of spheres and other important complexes. 

As mentioned above, for certain kinds of topological spaces, in particular 
those arising in complex geometry and complex analysis, cohomology theories 
with coefficients in ‘(sheaves” are useful. 

A presheaf F (of groups, rings, etc.) over a topological space X is a corre- 
spondence associating with each open set U of X a group (or ring, etc.) &,, 
and to each inclusion V c U of open sets a homomorphism 

hJ :&I -3v, (4.2) 

called the restriction homomorphism corresponding to the pair V c U. It is 
further required that if W c V c U are open sets then 

4wv 0 hw = 4wlJ. (4.3) 

A presheaf is called a sheaf if it has the following further properties: 
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(i) For any open cover of U by open sets V, c U, UVti = U, the vanish- 

ing of all the restriction homomorphisms 4v-v & an element f E 3~, 
q5v,~(f) = 0, should entail f = 0. 

(ii) Given open sets V, as in (i), and elements fa E 3~~) one from each 3~~, 
at which for every cy, p the two restriction homomorphisms correspond- 
ing to the pairs Wap = V, n VP c V, and Wao c Vi, agree in the sense 
that 

4K,K(fa) = hL,V,(fPL (4.4) 

there should exist an element f of 3~ such that for all (1~ 

dw,u(f) = fa, 

The elements of the group (or ring etc.) 3~ over a region U c X are called 
sections of the sheaf 3 above U. 

Example 1. The constant sheaf has 3~ = G for every open set U, where G 
is some fixed group (or ring, etc.). 0 

Example 2. The sheaf of germs of continuous functions. Here each 3r~ 
is the ring of real-valued functions defined on U. One has, analogously, the 
sheaf of germs of smooth functions, and, allowing complex values, of holomor- 
phic, meromorphic or algebraic functions, over respectively a smooth, complex 
manifold or algebraic variety X. One may consider more generally the sheaf 
of germs of vector fields, or general tensor fields on X of some smoothness 
class, or even the sheaf of germs of sections of any fiber bundle over X (see 
below). 0 

Fig. 3.7. Here the nerve is the tetrahedron ABCD 

In the 1920s Lefschetz initiated a program of applying the algebraic meth- 
ods of combinatorial topology to the study of general spaces, early advances in 
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which were made by Vietoris, Alexandrov and Tech. Alexandrov introduced 
the concept of the nerve of a covering of a space X by countably many open 
subsets V,, U V, = X; this is a simplicial complex K { Va} defined as follows: 

The indices &,, ~1, . . of the {Vol} are taken as the vertices of K {Va}, and a 
finite subset {cy,, , . , ~i,~} of n + 1 indices is regarded as an n-simplex if the 
corresponding open sets have non-empty intersection (see Figure 3.7): 

va,, n . . n vai, # 0. 

The cohomology groups Hj(K; G) of the nerve K = K {I&} are then called 
the cohomology groups of the covering {I&}. With each cover { Wn} “in- 
scribed” in the covering {Va}, i.e. such that each W, is contained in some 
V,, there is a natural simplicial map K {Wn} --f K {Va} of nerves, namely 
that sending each vertex K of K {W6} to any vertex Q: of K {V,} satisfying 
W, c V,. (If there is more then one such o, choose any one.) This map of 
vertices does indeed determine a simplicial map, since if W,, n. . n WKrL # 8, 
then the intersection V,, n . . ’ n V,Tb is also non-empty if WKj c V+. Thus 
there is a simplicial map of nerves 

@WV : K {Wn) - K {Vi}. 

Note also that for any two coverings {I&} and {Uo} of the space X there is a 
covering {Wn} inscribed in these coverings (for example with W, = U, n V,, 
K = c@) with corresponding maps of nerves: 

whence there arises an inverse system (or “spectrum”) {K {I&}, @WV} of 
complexes K {Va} and simplicial maps between them. The inverse system 
{K(b), @WV> mayb e considered as providing a simplicial approximation 
of the space X; for instance if X is a compact metric space, then the inverse 
limit of {K {Va} , PWV} is homeomorphic to X. 

Each simplicial map PWV : K {Wn} - K {Va} induces a homomorphism 
of the cohomology groups of the corresponding coverings: 

Sk,, : Hi (K{V,};G) + Hj(K{W,};G), 

and one can take the direct limit of the system { Hj (K {I&} ; G) , !Ph,} 
of groups and homomorphisms, called the jth spectral (or 6ech) cohomol- 
ogy grozlp of the space X. The direct limit is defined essentially as follows: 
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Starting with the elements of the Hj (K {Vo} ; G) for all coverings {Va} as 
generators, take elements 5 E Hj(K {l&} ; G) and y E Hj(K {Up} ; G), pos- 
sibly corresponding to different coverings, to be equal (i.e. we impose this as 
an abelian-group relation among the elements) if there exists a finer covering 
{IV&} such that the images S&,, (z) and @l;lv(y) of the two elements coincide 
in the group Hj(K {IV&} ; G): 

Hi (K Na) ; G) 

Hi (K W,) ; G) 

The jth spectral (or tech) homology group of X is defined similarly as the 
inverse limit of the jth homology groups of all coverings of X, where of course 
the homomorphisms all go the other way. The modern formulation of spectral 
cohomology and homology theory is due to Tech. 

Given any triangulated manifold, it is not difficult to construct a covering 
whose homology and cohomology groups coincide with those of the original 
triangulation. (This may be done by taking a sufficiently fine triangulation K 
of the manifold, and observing that the Poincare-dual complex DK yields a 
covering by the open convex polytopes U, = Int Duz, where the uz are the 
vertices of the triangulation K. One can now see that the nerve K { Ua} of this 
covering coincides with the barycentric subdivision of the complex K.) Hence 
one infers, via the invariance of simplicial homology under barycentric sub- 
division, the equivalence of Tech homology with the simplicial version. Since 
the Tech homology groups are clearly invariant under homeomorphisms, one 
obtains in this manner the invariance under homeomorphisms of the simplicial 
homology groups (but not their homotopy invariance). 

Using nerves of coverings of a topological space X one can give a natural 
definition of the cohomology groups of X with coeficients from a sheaf 3 over 
X, introduced originally, it would appear, by Leray. Let K {I&} be the nerve 
of a covering { Va} of X, as defined above. To each simplex (era, . . . , cy,) of the 
nerve one associates the obvious group (or ring, etc.): 

(Qo,. ” 7 4 - JSu,n...nV,, . 

The cochains f with values in the sheaf3 (corresponding to the covering {Va}) 
are then defined as those functions on the simplexes of K {Va} which at an 
arbitrary simplex (NO,. . , a,) have value in 3r/m0n.,.nv,,, . The coboundary 
operator a* is naturally defined by 
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n+l 

(8’.f, (00, ” 1 Qn+l)) = C(-l)%kf(cYo, '. ,&j,. . . ,%fl)r 

j=O 

where q5j is the restriction homomorphism 

From this one obtains the sheaf cohomology group of dimension n correspond- 
ing to the particular covering {Va}, and the cohomology group H”(X; 3) (nth 
cohomology group of X with coefficients in the sheaf 3) is then the limit of 
the resulting spectrum of such groups arising from all coverings of X. 

Example 1. For the sheaf 3 of germs of continuous functions or functions 
of smoothness class C” (1 < lc < co) on a smooth manifold Mn, it is not too 
difficult to show that 

Hj(W;3) = 0, j > 0. 

The zero-th cohomology group H”(Mn; 3) is here just the infinite-dimensional 
space of (admissible) functions defined on the whole manifold Mn. 0 

Example 2. For the sheaf 3 of germs of holomorphic functions on a closed 
complex manifold X, one has: 

(i) H”(X;3) Z @ (since the only globally holomorphic functions are the 
constant functions); 

(ii) for j > 0, that Hj(X;3) is a finite-dimensional vector space. 0 

Subsheaves 31 c 32, and quotient sheaves 33 = 32131 can be defined in 
a natural fashion, although difficulties may arise in defining the quotient, so 
that in fact it is generally defined only as a presheaf. Thus we have a short 
exact sequence of sheaves: 

This yields the following exact sheaf-cohomology sequence having as particular 
cases all of the various versions of exact cohomology sequences: 

+ H4(X; 31) 2 zP(X; 32) L Hq(X; Fs) -2 Hq+l(x; 31) + . . . 
(4.5) 

Example 1. Let 32 be a constant sheaf over a CW-complex K, i.e. a fixed 
group G is associated with each open set of K. As the subsheaf 31 of 32 we 
take the sheaf over K which is constant (= G) over a given subcomplex L 
of K, and zero outside L. The q-th cohomology group of K with values in 
32 is then Hq(K; G), and with values in 31 is Hq(L; G). The exact sequence 
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(4.5) reduces to the exact cohomology sequence of the pair (K,L) (see 53, 

(3.4)). 0 

Example 2. Let 31 C 32 be constant sheaves of abelian groups over K, 
3s = 3i/3~. In this situation (4.5) yields a natural relationship between the 
cohomology groups of K with different groups of coefficients. Thus for instance 
if the constant group for 31 is Z/p and for 32 is Z/p2, then that for 3s is 
~lP”lUP ” UP, and the homomorphism d* of the exact sequence (4.5) takes 
the form: 

a* : Hq(K; z/p) + Hq+‘(K; Z/p). (4.6) 

This homomorphism is usually denoted by p, and is called the Bockstein 
homomorphism. Here is the direct definition of it: Let Z be an integral q- 
cochain in C*(K; Z) which on being reduced modulo p yields a cocycle z E 
C*(K; Z/p), z = Z mod p. Taking coboundaries gives 

a*z = 0, a*z = pu, a*u = 0, 

so that the expression 

ia*, = pcz) 

defines an element /3(z) of H q+l(K;Z/p) for z E HQ(K;Z/p). q 

Remark. It is a worth noting that quite often there arise sheaves of non- 
abelian groups. For these one can naturally, and usefully, define objects 
H’(X; 3) which come with a group structure, and H’(X; 3) which are merely 
sets. For constant sheaves these objects were, in effect, introduced above (see 
$2). Their d fi ‘t’ e m ion in the general case is completely analogous. We shall 
give specific examples below in the context of principal G-bundles. The group 
H”(X; 3) is called the group of sections of the sheaf 3, and the 3~ sections 
over the regions U (or germs of sections). 

55. Homology theory of non-simply-connected spaces. 
Complexes of modules. Reidemeister torsion. 

Simple homotopy type 

The homology and cohomology theory of non-simply-connected complexes 
presents curious and isolated algebraic features leading in certain situations 
to important consequences. As has already been mentioned, for non-simply- 
connected complexes K a relative analogue of Hurewicz’ theorem for a pair 
(K, L) can be formulated, concerning the structure of the module T,(K, L) 
over Z[r], where 7r = ni(L). If we regard Z as a trivial Z[r]-module, i.e. 
consider the elements of 7r as acting identically on Z, then this result may be 
considered as asserting the isomorphism (cf. (3.18)) 
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ffn(K, L; 4 g G(K, L) %[a] z, (5.1) 
under the conditions nj(K, L) = 0 for 0 < j < n, n > 1. 

Given two modules M, N over a ring R, we define their tensor product 
M @R N over R to be the module generated by all symbols m @ n, m E M, 
n E N, subject to the usual bilinearity relations (cf. (2.3)): 

X(m @ n) = (Am) @ n = m 8 (An), X E R. (5.2) 

In the case R = Z this reduces to the tensor product of abelian groups (con- 
sidered in the natural way as Z-modules) introduced in $2. 

With any non-simply-connected simplicial (or CW-) complex K there is 
naturally associated an algebraic complex C,(k) (where k is the universal 
cover of K) of free Z[n]-modules with basis consisting of chains in natural 
one-to-one correspondence with the simplexes (or cells) of K. This complex 
C,(K) is defined as follows: Let 

p : K + K, (7rl(K) = O), 

be the universal covering projection. As we saw earlier the group 7r = xi(K) 
acts freely on K, and in fact sends simplexes to simplexes (or cells to cells); 
this follows from the fact that over a contractible subspace the universal cover 
is trivial, i.e. is the product of that subspace with the discrete fiber F, which 
is the group IT = ri(K) in this case. In our present context we have as con- 
tractible subspaces the simplexes (or cells) of K, whence 

p-1 (0,“) = /J “&. 
-VET 

Choose an “initial” n-simplex (or cell) a:r c pm1 (~2). The remaining n-cells 
of p-l (02) c k are then obtained by applying the elements of 7r to this one: 

Y(G) = 4&, Y E 71. 

Thus C,(g) is just the usual n-chain complex of i?, endowed with this Z[n]- 
action. It is clearly a free module. Note that the action of Z[K] commutes with 
the boundary operator d: 

ax(c) = M(c), x E Qr]. 

Thus we obtain C,(k) as a chain complex of free Z[n]-modules. 
If the covering g is not necessa_rily universal, but-still regular, then the 

quotient F = rl(K)/N, N ” TI(K), acts freely on K and sends simplexes 
(cells) to simplexes (cells) in such a way that the orbit space k/r 2 K. Then 
as before the chain complex C,(K) comes with the natural r-action, turning 
it into a free Z[F]-module. 
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Any representation p of a group r, i.e. any homomorphism p : r + 
Aut V, from r to the group of automorphisms of some vector space or abelian 
group V, can be used to endow V with the structure of a ZJjr]-module (V, p). 
Tensoring such a module (V, p) with the Z[r]-module C,(K) just defined, we 
obtain the chain complex of K with respect to p 

G(K; P) = Cd@ @‘;zpy (v, P). (5.3) 

From this one constructs, as appropriate factor modules, the homology and 
cohomology groups of K with respect to the representation p. 

Example 1. If p is taken to be the trivial representation sending all of r 
to the identity automorphism of V, then the usual homology and cohomology 
groups Hq(K; V), H’J(K; V) are obtained. •I 

Example 2. Let K be a non-orientable manifold, dim K = n. For each 
path class [r] E ~1 (K), define p[y] = sgn y, where sgn y = 1 if transport 
of a co-ordinate frame around y preserves orientation, and -1 otherwise. We 
take V = Z, so that Aut Z Z Z/2 Z {*l}. For the resulting homology 
and cohomology groups Hj (K; p) and Hj (K; p) there are Poincare-duality 
isomorphisms determined as earlier by the Poincare dual complex DK (see 

§2): 
D: HJK;p) g H”-j(K;p), 

(5.4) 
D : Hj(K;p) ” Hn+(K;p). q 

Example 3. Take V = Z[T], and associate with each element g of K its 
action on Z[r] via multiplication on the right. This gives what is essentially 
the identity representation p, yielding 

H,(K;p)” H#;Z), Hj(K;p) G Hj(&Z). 0 

Of particular interest are those representations p : x + Aut V, for which 
the corresponding homology groups Hq(K; p) are trivial; in this situation we 
say that K is a p-acyclic complex. If K is p-acyclic of dimension n, the chain 
complex C, (K; p) yields an exact sequence: 

0 + C,(K;p) 5 C,-,(K;p) % ... 5 C1(K;p) 3 C,,(K;p) + 0. 

(5.5) 
It is important for what follows to note that if V is a free abelian group with 

a given free basis (or a vector space with given basis), then the free abelian 
groups C, (K; p) (vector spaces if V is a vector space) will likewise each have 
a distinguished basis, whose members correspond to the cells of K. 

Remark. Assume V free abelian (or a vector space) with prescribed basis. 
The “distinguished basis” of C,(K; p) just described is uniquely determined 
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only up to application of one or more of the following elementary geometric 
changes of basis: 

1) that arising from a change of orientation of some or all cells: a: ---f -a:; 
2) that arising from a different choice of “initial cell” a$ from the complete 

inverse image p-l (0,“) = U 0&, y E 7r; here the change of basis has the form 
a; --+ f-p;, or, with respect to a representation p, a: --+ kfrp(y)aE. 

In what follows we assume for each Cj(K; p) a fixed “distinguished basis”. 0 

Suppose now that V is a finite-dimensional vector space over some field 
k, with prescribed basis, and that K is p-acyclic, so that we have the exact 
sequence (5.5). If that sequence has but two terms 

o --f C,(K; p) -% Cn-l(K; P) - 0, 

then d is simply an isomorphism, and relative to the distinguished bases for 
G(K; P) and G-I(K; p) is represented by a nonsingular matrix over k, with 
determinant det a = det C, (K; p). It turns out that with every finite p-acyclic 
complex K one may associate a “determinant” relative to distinguished bases 
for the C,(K; p) in the corresponding exact sequence (5.5). In the case where 
the exact sequence (5.5) has three terms: 

0 + C,(K; p) 5 C,-l(K; p) z Cnx.(K; 6’) - ‘1 

this determinant is defined as follows: Denote the distinguished bases 
of C,(K; p), Cn--l(K; p), Cn-2(K; p) by k, ~~-1, c,-2. The middle complex 
C,-l(K; p) also has (ac,, 6’-‘(c,-2)) as basis, where dP1(c,-2) denotes a set 
of arbitrary chosen inverse images of the members of c,-2, ordered correspond- 
ingly. Since the latitude in the choice of a-‘(c,-2) is “triangular” in charac- 
ter, the determinant of the change of basis from c,-1 to (dc,, aP1(cn-2)) is 
uniquely defined. The determinant det C,(K; p) is defined analogously in the 
general case: Denote the distinguished basis of each Cj = Cj(K; p) by cj, 
write Aj c t7-1 for the image of Cj under d, (j = 1, . . , n-l) and choose 
bases aj for these A, arbitrarily. Set A0 = 0, A, = C, and a, = c,: 

An = G, Aj=aCjcCj-,, j=l,..., n-l, Ao=O, 

0 + A, -+ Cn-l 5 An-1 c Cn-2, 

0 - A,el + Cn-2 2 An-2 c G-3, 

0 - Al --f Co 5 A0 = o. 
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We then define 

det C, (K; p) = 
det [cn- i : (u&- ‘u,-1)] .det [c,-s: (a,-,%‘a,-s)]. 

det[c,-:! : (a,-l,d-la,-2)].det[cn--4 : (u~-.&-~u~-~)]. . ’ 

for the arbitrary pacyclic complex C,(K; p). 

Definition 5.1 The above quantity det C, (K; p), defined for p-acyclic 
complexes K (i.e. with Hj(K; p) = 0 for j > 0), is called the Reidemeis- 
ter torsion of K, and is denoted by R(K, p). 

It was established in the late 1930s (by Reidemeister, de Rham, Franz) that 
up to sign and multiplication by any number of the form det p(y), y E 7r, the 
quantity det C,(K; p) = R(K, p) is a combinatorial invariant of the simpli- 
cial complex K, i.e. is unchanged by subdivisions. Only much later, in the 
1970s was it shown that R(K, p) is in fact a topological invariant. (The vari- 
ation in R(K, p) results from the above-mentioned latitude in choosing the 
distinguished bases of the Cj.) 

Note that if L is any simply-connected complex, ~1 L = 0, then one has 

R(K x L,P) = R(K,p)x(L), 

where x(L) is the Euler-Poincare characteristic of L. 
The quantity R(K, p) was introduced in the first place (by Reidemeister) 

for the purpose of investigating the “lens spaces”, defined as follows: Let A 
be an n x n complex diagonal matrix with primitive mth roots of unity as its 
diagonal entries: 

A = (ajk) , ajk = e2Tiq”m6Jk, A” = I,,,, (5.6) 

where (S,k) = I,,, is the identity n x n matrix. Since the ajj are primitive mth 
roots of 1, each qj must be relatively prime to m. The matrix A generates 
a group isomorphic to Z/m acting on the sphere S2+l according to the 
following rule: 

,i /+ e2riq71mzi , -&y= 1. (5.7) 
j=l 

Taking the orbit space yields the manifold known as the (2n - 1)-dimensional 
lens space: 

L2n- 1 
(ql,,..,qn) = s2”-1/A. (5.8) 

It may always be assumed that q1 = 1 by choosing in place of A the appro- 
priate generator of the cyclic group A generates. 

When n = 2 we obtain the S-dimensional manifolds Lz = Lfl qj, where q is 
relatively prime to m. Two such manifolds L$ and L$, (defined for the same 
m) are homotopy equivalent if and only if 

q’/q” E St2 mod m. (5.9) 
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This follows in a straightforward manner using the structure of the cohomol- 
ogy ring H* (Lz; Z/m) and the Bockstein homomorphism ,L? : H1(Li; Z/m) + 
H2(Li; Z/m) (see (4.6)): For the fundamental homology class [Li] of the lens 
space Li, the following congruence holds: 

(up(a),-+ [Li]) E dq mod m, 

for any generator a of H1(Li; Z/m) % Z/m. Replacing a in this congruence 
by any other generator Xa then causes q to change to X2q. 

The lens spaces L$-f, p ) 1 7, may be decomposed as CW-complexes in a man- 
ner independent of (91, . , qn), much as this was done for the projective space 
IW2n-1. One obtains just one cell of each dimension: (TO, cl,. . , cr2n-1, with 
boundary operator given by 

@- 1 = 0 aa2j = ma2j-1 > j > 0. (5.10) 

However up on the sphere S2+l, the induced covering cell-decomposition, 
on which the cyclic group of order m generated by A acts freely and so as 
to respect cells, does depend in an essential way on (91, . , qn). In the case 
n = 2 we have the following cells induced on S2+l = S3 from those of Lz: 

aS = Aja” 
3 , s = 0,1,2,3, j = 0,l ,...,m-1. (5.11) 

The action of the boundary operator on these cells is as follows (writing 
cJs = 0s 0 ) s = 0, 1,2,3): 

aa = (1 -A’J)02, of = ~7~ 

da2 = (l+A+...+A”-‘)a’, 

ad = (1 -A)aO. 

(5.12) 

For the representation p : Z + (eaxilm) in the space V = C’, the lens 
space Lz is pacyclic, and the exact sequence (5.5) arising from the complex 
C,(L,3; p) is 

o~c3~c,~c,~c,~o, 

where each Cj is one-dimensional, with distinguished generator ej say. In view 
of (5.12) the boundary operator is given by 

de3 = (1 - e2?riqlm) e2, de2 = 0, 
(5.13) 

&, = (1 - eariqlm) eo, 

whence one computes the Reidemeister torsion, obtaining 

R(L$ p) = (I- C”) (1 - C) mod (*Cal, (5.14) 
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where [ = e 2rzlm It follows from (5.14) that there are lens spaces that are . 
homotopically equivalent but not combinatorially equivalent. Later results (of 
Moise, Chapman and Edwards) show that in fact homotopically equivalent 
lens spaces need not even be homeomorphic. By considering various represen- 
tations p for n > 2, de Rham and Franz have shown that in fact only in trivial 
cases does one have combinatorial equivalence of lens spaces. 

A complete analysis of this type of question from the point of view of 
homotopy theory, was carried out by Whitehead. Suppose we know that two 
finite complexes K and L are homotopically equivalent. Can we then realize 
a homotopy equivalence between them by means of elementary combinatorial 
operations? Rather than embark on a detailed, exact description of these 
operations in geometric terms, we shall confine ourselves to sketching the 
essential algebraic picture. 

Suppose L is contained in K as a simplicial or CW-subc_om_plex. Since 
K N L, the complex of relative chains C(K, z) = @, C,(K, L) regarded 
as a Z[r]-module, is acyclic. Consider the following two types of elementary 
operation on an arbitrary algebraic complex C = $, Ct over any associative 
ring R, where each C, has a distinguished basis (04): 

(i) For each fixed k, j, and y E R, 

c73” -+cr,k+a~, 0: -+ cj if either t # k or i # j. (5.15) 

(ii) Stabilization: for each fixed k, the addition of a direct summand Cc”) to 
C of the following form: 

0 - c, --(k) 2.+ qy + 0, (5.16) 

where Cp’, and Cp’ are cyclic, generated respectively by g&i, & with 
%k = $1; thus the operation is defined as follows: 

c - Cadk), 

(5.17) 

Ci+Cj forj#k-1,k. 

If we define two acyclic algebraic complexes over R to be equivalent if one can 
be obtained from the other by means of a finite sucession of the operations 
(i), (ii) and th eir inverses, then under the operation of taking the direct sum 
the resulting equivalence classes form an abelian group K1 (R). This is the 
‘Lgroup of determinants”; it may be alternatively defined as a certain quo- 
tient group of the group of infinite matrices over R with only finitely-many 
non-zero off-diagonal entries and all but finitely many diagonal entries equal 
to the multiplicative identity element of R. To obtain Kl(R) one factors this 
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group by the normal subgroup generated by all commutators and all elemen- 
tary matrices with diagonal entries 1 and the remaining non-zero entry above 
the diagonal. This group arises naturally in algebra as a result of the axiom- 
atization of the fundamental properties of the determinant. 

In the present topological context the ring R has the form Z[r], and in view 
of the aforementioned latitude in the choice of distinguished bases - namely 
that resulting from changes of orientation of cells of the covering space and 
of the initial cell - it is not so much Kr(Z[n]) but rather its factor group 

Wh(r) = Kl(%d)l(f~), 

(the Whitehead group), that is significant. 
Thus for a pair L c K of homotopy equivalent complexes, we obtain as an 

invariant the “determinant” of the complex C(K,z) of Z[n]-modules in the 
Whitehead group Wh(n). The terminology used in this connexion is “simple 
homotopy type” : if one such complex can be changed to another by means 
of the above-defined elementary combinatorial operations then the complexes 
are said to be of the same simple homotopy type. Any representation p : K + 
GL(n,IW) gives rise to a homomorphism from K~@[TT]) to the multiplicative 
group of Iw 

Kl(@,d) - II-X* 

yielding the Reidemeister torsion discussed above. For simply-connected com- 
plexes the group K1 is trivial: Z[r] = Z, Kl(Z) = 0, and simple homotopy 
equivalence reduces to the ordinary kind. 

Already by the late 1930s beginning with the work of Smith and Richard- 
son, investigations of the homological properties of finite groups of trans- 
formations were being carried on. Suppose that a finite group G acts on a 
Cl&‘-complex K, sending cells to cells. From this action one obtains, much 
as above, a complex of Z[G]-modules - even if G does not act freely. The 
subcomplex of K consisting of the points of K fixed by every element of G will 
be denoted by KG, and the corresponding orbit complex by K/G. We have 
natural maps i : KG -+ K, 7r : K 4 K/G, and the induced homomorphisms 

IA 5 H,(K), H,(K) -2 H,(K/G). 

The finiteness of G allows one to define the transfer homomorphism 

p* : K(K/G) - K(K), 

(defined over any group of coefficients) as follows: Every j-chain c, in 
Cj(K/G) corresponds to an orbit {g(c) ] g E G} of j-chains of Cj(K), c E 
C,(K), under the action of the finite group G; the homomorphism pj is then 

induced by that associating each c, E Cj(K/G) with c g(c) E C,(K), the 
gEG 
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(finite) sum of the chains in the corresponding orbit. It follows that the com- 
posite map 

n*p* : H,(K/G) - H,(K/G) (5.18) 

is just multiplication by ]G], and 

pcL*r* : H,(K) - K(K) (5.19) 

is determined by the action of c g (E Z[G] if the coefficient group is Z). 
gEG 

From (5.18) and (5.19) it follows that over a field of characteristic zero or 
finite characteristic relatively prime to ]G], we have 

H,(K; k) E p*H,(K/G; k) @ Ker 7r+, 

H,(K/G; k) ” H,(K; k)G, 
(5.20) 

where the superscript G denotes the subgroup pointwise stabilized by G. 
Via the G-action each element p of Z[G] has associated with it the chain 

complex pC(K) and the resulting homology groups Hf(K) = H,(pC(K)). 
The case G = Z/p, k = Z/p is of particular interest. Note that here 
H,P(K; Z/p) is to be understood as the homology of the complex pC(K; Z/p) 
and not of pC(K; Z) @ Z/p. Consider the following elements of the group ring 
k[G], k = Z/p: 

Cl= c g = 1 + T + T2 + . + Tp-l 

g@ (5.21) 

7=1-T, ffr = 7-c = 0, 

where T is a generator of the cyclic group G of order p (written multiplica- 
tively). The exact sequences due to Smith are as follows: 

Hj-&Y;Z/p) 2 . . . . 

(5.22) 

Hj--l(K; Z/p) I; 

There are analogous exact cohomology sequences (with the arrows going the 
other way). 

From these exact sequences one infers the following result: If the group Z/p 
acts on a Z/p-homology n-sphere, then the set of fixed points of the action is 
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likewise a Z/p-homology sphere of some dimension r. Moreover if p > 2, then 
n - r is even. Analogous results are valid for homology n-discs in the category 
of pairs (K, L) of complexes. (A Z/p-homology n-sphere is a complex K with 
I$(K; Z/p) ” Hj(P; Z/p) f or all j. This definition may be taken as applying 
also in the case n = -1, where S” is the empty set.) 

Within the bounds of the present exposition it is not appropriate to dwell 
at greater length on the purely homological theory of finite or compact trans- 
formation groups with its associated algebro-topological techniques, although 
several authors have investigated this topic. We shall touch on the subject 
of finite and compact groups of smooth transformations below in connexion 
with “K-theory”, “elliptic operators”, and “bordism theory”. 

56. Simplicial and cell bundles with a structure group. 
Obstructions. Universal objects: universal fiber bundles and the 

universal property of Eilenberg-MacLane complexes. Cohomology 
operations. The Steenrod algebra. The Adams spectral sequence 

We now turn to the elaboration of a concept already examined above from 
the point of view of homotopy, namely that of a fiber bundle. Our present 
definition will include an important new element - the “structure group” 
of the fiber bundle, occuring naturally as a subgroup of the group of self- 
homeomorphisms (transformations) of a fiber. Let 

p : E + B (with fiber F) 

be a fiber bundle (as defined in Chapter 2, §3), where E, F and B are CW- 
or simplicial complexes and the projection p respects cells (simplexes). In this 
context the prescribed structural maps are assumed to be defined for some 
open neighbourhood U(oE) of each cell (or simplex) c: of the base B; hence 
on p-‘(oz) we have 

da : ~-‘(a;) --+ u,” x F, 

where the restrictions to fibers are homeomorphisms of F. It is further re- 
quired that the transition function on some small open neighbourhood of the 
boundary (or faces) common to two cells (simplexes): 

have the form 

Jkdd~7 Y) = (Z> L&)(Y)) 

where &(z) is a transformation of the fiber F for each point II: E U,, = 
U(az n a?). We assume that all maps &p(z) belong to a prescribed group 
G of transformations of F; the group G is the structure group of the fiber 
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bundle (E, B, F, p, G). It is also required that the composite of transformations 
X,,(z), &,(z) and &(zr) is th e 1 en 1 y element of the group G: ‘d t’t 

S&(X) 0 i&(X) 0 &(x) - 1, (6.1) 

for each point x of the intersection Uap n Up, n U,, , the common domain of the 
transition functions xap, ipy and &. Thus the fiber bundle is determined 
essentially by the maps 

& : Uao - G, (6.2) 

with the condition (6.1) imposed. 
A cross-section of the bundle is any map f : B -+ E such that p o f = lg. 

A map of fiber bundles (or fiber bundle map) between fiber bundles with the 
same fiber F and group G: 

@: (E,B,F,p,G) - (E’, B’, F, P’, G), 

is defined in the natural way as given by maps @ : E + E’ and 4 : B + B’ 
commuting with the projections in the sense that 

cpop=p’o cp. 

It is further required that @ respect fibers, i.e. that its restrictions to fibers be 
homeomorphisms. Moreover these homeomorphisms have to come from the 
structure group G in the following precise sense: over each point of the base 
B the map 

#cd O @oq!+F+F 

(where &,, 4a are any appropriate structural maps of the bundles E’, E 
respectively) should be a homeomorphism from G. 

Given a fiber bundle (E’, B’, F, p’, G) and an arbitrary map 4 : B + B’, 
one obtains a fiber bundle over B, the induced fiber bundle (E, B, F, p, G) and 
a fiber bundle map 

@ : E - E’, c$ : B + B’, 

by means of the following construction: The distinguished open sets of B on 
which the structural maps 4a are to be defined, are taken to be the complete 
inverse images U, = c$-‘(U’~) of the distinguished open sets U’, of B’ (and 
then if necessary these may be refined to open neighbourhoods of cells). Above 
each such U, we set p-‘(U,) = U, x F. The product spaces p-‘(U,) are then 
joined together to form E by means of the transition functions X,0: 

L&,Y) = b&&9(~)), x E ua n 4 Y E F, 

where the transformation ia is defined in terms of the transformation ?& 
from the fiber bundle (E’, B’, F, p’, G) as follows: 

&(x) = &(4(x)) E G. 
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The total space E may be considered formally as the subset of B x E’ consist- 
ing of those pairs (x, y) such that 4(x) = p’(y). Thus the induced fiber bundle 
over B is obtained by “pulling back” via 4 the fiber bundle over B’. 

Remark. It is easily inferred from the condition (6.1) that the maps &p 
represent a one-dimensional cocycle of the base B with coefficients in the 
sheaf FG of germs of functions with values in the group G (see $4). Hence 
the fiber bundle is associated in this way with an element of H1 (B; 3~)) and 
this correspondence affords a classification of bundles over B with structure 
group G in terms of one-dimensional sheaf cohomology. This classification is, 
however, of an essentially linguistic or tautological character, although it is 
occasionally useful, for instance if the group G is abelian. 0 

As observed above, the collection of maps xap in (6.2) uniquely determines the 
structure of the bundle (E, B, F, p, G). Of course a given topological group G is 
in general realizable in many different ways as a group of homeomorphisms of a 
topological space. Fiber bundles over the same b_ase B, with the same structure 
group G, and with the same collection of maps X,p, but with possibly different 
fibers, are said to be associated with one another. Clearly any fiber bundle 
determines the structure of all of its associated bundles. 

There is a canonical universal realization of a topological group G as a 
group of homeomorphisms of a fiber F, namely that where F = G and G acts 
on itself by means of (right) translations (see Figure 3.8): 

g : G ---+ G, g(h) = hg, h,g E G. (6.3) 

A fiber bundle (E, B, G, G,p) with this G-action is called principal. Such bun- 
dles arise most naturally in the situation of a topological group acting freely 
(i.e. g(x) = 5 implies g = 1) on a space E; here the orbit space E/G plays 
the role of the base B, and the projection is the natural one p : E --+ E/G. 
In fact it is not difficult to show that every principal fiber bundle arises in 
this way, i.e. that there is a free action of G on the total space E such that 
the base B is naturally identifiable with the orbit space E/G, and the fibers 
p-‘(z) with G. 

Of particular importance is the case where G is a compact Lie group acting 
freely on a smooth manifold E by means of smooth transformations, and the 
orbit space B = E/G is likewise a smooth manifold. This describes, in essence, 
the concept of a smooth fiber bundle, to be considered at greater length in the 
sequel. Another particular case of interest is that where G is a discrete group; 
here a principal G-bundle is simply a regular covering space, as considered 
earlier. 

Definition 6.1 A fiber bundle (E, B, F, G,p) is called universal if the as- 
sociated principal bundle (E’, B, G, G, p) has the property that its total space 
E’ is contractible. 

The significance of this definition will appear below. 
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Fig. 3.8 

The concept of an “obstruction” is of fundamental importance in algebraic 
topology; originally it arose in attempting to answer the following questions. 

Question 1. Let L be a subcomplex of a complex K, and let f : L + X 
be a map from L to an arbitrary topological space X. How may f be 
extended, if it can be extended, to all of K? 

Letf,:K+X,cu=1,2,betwomaps,andletF:LxI+Xbea 
homotopy between the restrictions of these two maps to the subcomplex 
L. Can the homotopy F be extended to all of K, i.e. to one between fi 
and fi? 

Question 2. Let p : E + I3 be a fiber bundle (with base B a simplicial or 
CW-complex), and let 1c, : L + E be a cross-section of the bundle over 
the subcomplex L c B: plc, = 1~. How may one extend the cross-section 
over all of B? The analogous problem for homotopies of two cross- 
sections is as follows: Given two cross-sections over B and a homotopy 
between them defined over L c B, how can one extend this homotopy 
to one between the original cross-sections, i.e over all of B ? 

Question 3. Let (E, B, F, G,p) and (E’, B’, F, G,p’) be fiber bundles with 
the same fiber and structure group, L c B be a subcomplex as abov_e, 
and let f : L -----f B’ be a map inducing a-map of fiber bundles f : 
p-l(L) + E’. How can one extend the map f to a map of fiber bundles 
E -+ E’ ? There is also the analogous question for homotopies between 
two maps of fiber bundles. 

We begin with the first of these questions. Thus we seek to extend a map 
f : L + X from the subcomplex L c K to the whole CW-complex K. 
Suppose inductively that the map f has already been defined on all cells of 
dimension 5 n - 1. Thus if a: is any cell of K not contained in L then f is 
assumed already defined on its boundary au:: 

fl a02 : au; ---+ x. 
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Clearly this map may be extended to the interior of 0,” if and only if the map 
flat= 

of the sphere Sz-’ 5 8~2 u\ X is null-homotopic. In any case the map 
S’z-l -+ X defines an element 

x (0:) E %-l(X). 

Thus provided n > 2 we obtain (by considering all n-cells ~2 not contained 
in L) a relative cochain 

X(f) E C” (K, L; %1(X)), 

called an obstruction to the extension off. Clearly the map f  may be extended 
from the (n - l)-skeleton of K to the n-skeleton if and only if X(f) E 0. 

It may be possible, however, to change the map f  on the (n - 1)-skeleton 
KnV1 without changing it on the (n-2)-skeleton KnP2 or on L. Observe that 
the restriction f] Gz-l of the map f  to each (n - l)-cell $-’ may be replaced 

by a map g agreeing with f  on KnP2 U L but differing on the interior of the 
cells 0;3n-l not contained in L. Since f  and g agree on the boundary a$-’ of 

each such cell, they determine a map SnP1 + X, representing a homotopy 
class (“distinguishing element”) ~(a;-‘) E 7r,-i (X). Taking into account all 

such cells a;-’ we obtain a relative (n - 1)-cochain 

p(f) 6 c-l (K,L;~n-l(X)). 

Via the induced homomorphism f* : rrl(L) ---+ 7rr (X), the homotopy groups 
nj(X) acquire the structure of Z [rr(L)]-modules, whence the cochain com- 
plex C* (K, L; r+r(X)) acquires a Z [rr(L)]-module structure. It will be as- 
sumed in what follows that rrl(L) ” rrl(K) = 7r (via the homomorphism 

f* : m(L) - n(K)) and that the map f is already defined on the (n - 2)- 
skeleton of K. The following assertions are valid: 

(i) The obstruction cochain X(f) as a cocycle in the complex C*(K,L;rrn-l(X)) 
considered as a complex of Z [r]-modules: 8*(x(f)) = 0 . 

(ii) Alteration of th e map f  (to the map g say) on that portion of the (n - l)- 
skeleton of K not contained in L, without changing it on the (n - 2)- 
skeleton (so that f  = g on KnP2 U L) causes the obstruction cocycle 
l(f) to change by the addition of an arbitrary coboundary: 

X(f) - J+(f) + a*(P), 

where p E Cm1 (K, L;rr,-l(X)), and a* is the coboundary homomor- 
phism: d* : CnP1 (K, L; 7rn-1(X)) - C” (K, L; rr+l(X)). 

We conclude that 

For it to be possible to extend the given map f  to the n-skeleton of K while 
keeping it fixed on the (n - 2)-skeleton (but allowing f  to be changed on that 
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portion of the (n- l)-skeleton not contained in L) it is nessesary and suficient 
that the obstruction cohomology class [X(f)] in the complex of Z[r]-modules 
C* (K, L; nn-l(X)) vanish: 

0 = [X(f)] E II-l (K, L; 7&1(X)). 

Allowing f to be changed on cells of dimension < n - 2 (not contained in 
L) leads to more complicated rules for changing the obstruction cochain X(f). 
In particular, changes in X(f) arising from changes of f on the (n-2)-skeleton 
may be fully described in terms of the “cohomology operations” (introduced 
in the 1940s and early 1950s by Pontryagin, Steenrod, Postnikov, Boltyanskii 
and Liao); we shall consider these cohomology operations below. 

Observe that if the complex K is simply-connected (or the homomor- 
phism f* : ~1 (L) --+ ri(X) is trivial) then the obstruction class [X(f)] lies in 
the ordinary relative cohomology group over the coefficient group 7rn-i(X). 

The associated problem of extending a homotopy reduces to the above 
problem of extending a map, by taking Ki = K x [a, b], and L1 c K1 to 
consist of the lid and the base: 

K1 = K x [a, b], L1 = (K x {a}) u (K x {b}). 

The prescribed map fi : L1 + X is defined by the two given maps fa : K + 
X, fb : K -----) X. Suppose we have already extended the homotopy Lx I + X 
to the (n-l)-skeleton of K, (n > 3), so that we have F : (KnP1 U L) XI + X. 
Arguing as above one distils out the obstruction to extending the homotopy 
F to Kn as an element 

X E Cn+’ (Kl, Ll;r,(X)) , n > 3. 

It follows that the obstruction to the extension of the homotopy F to the n- 
skeleton of K is represented by the cohomology class of X, or, equivalently, by 
the corresponding element 

[A] E IIn+’ (Kl, L1; m(X)) = IP (K; m(X)) , 

where the cohomology groups are defined with respect to the complexes of 
Z[r]-modules 

C’ (K; G(X)), C* (Kl,L,; s(X)), 7.r = rl(K). 

The second of the above extension problems is treated analogously: Assum- 
ing that the cross-section $J over L has been defined on the (n - 1)-skeleton 
F-l of the base B, one seeks to extend it from the boundary agz of each 
n-cell a: to the cell’s interior. The known restriction map 
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determines a map of the (n - l)-sphere 

g-l -+ aa,” Ap -’ (a;) sz CT; x F, 

which determines in turn an element of the group m-1(F). 
Note that the action of xl(B) on the fibers (as determined by the “homo- 

topy connexion” on the fiber bundle - see Chapter 2, 53), induces an action 
of ~1 (B) on the nj(F), turning them into Z [XI (B)]-modules. Hence there 
arises, much as before, an obstruction cohomology class to the extension of the 
cross-section $1 

[A] E Hn(B; nn-l(F)), 

where the cohomology groups Hj (B; 7r,- r (F)) are defined with respect to the 
complex of Z[7rr(B)]-modules C*(B; r+l(F)). By allowing $ to change on 
the (n - l)-cells of B not contained in L, but keeping it fixed on Fe2 U L, the 
obstruction cocycle X can, as before, be changed to any other cocycle from 
the same cohomology class [Xl. 

The obstruction theory for homotopies between two cross-sections is simi- 
lar: the obstruction class to extending the homotopy from BnP1 to B” is an 
element of the group IP(B; n,-lF). 

The third problem is treated similarly to the first two, with one difference. 
Suppose we already have a bundle map Qn-r : p-l (P-l U L) --+ E’ defined 
on that portion of E above Bn-’ UL, L c B, determining a map 4 : B”-l --+ 
B In-’ between the (n - I)-skeletons of the bases. We might then define an 
obstruction to the extension of &-r to a bundle map pi, above Bn. However 
it is appropriate to consider this problem for principal bundles (i.e. where 
F = G, the structure group of the two fiber bundles), since the theory of such 
obstructions reduces to the case of the associated principal bundle. 

Above each cell a,” of the base B of the principal G-bundle we have, as 
usual, 

p-l (u,“) E a,n x G. 

The restriction of &-r to 6’(cz) x (1) (covering $]a(,,z)), where 1 is the 
identity element of G, determines a map from the (n - 1)-sphere to E’: 

p-1 5 a(u;) x (1) 3 E’, 

P’ O @P,-lla(o~)x{l} = 41a(c7;). 

The map S”-’ ---+ E’ so determined, defines an element of ~~-1 (E’), and tak- 
ing into consideration all cells a: on which q5 is not yet defined, one obtains in 
this way an obstruction cochain X with values in ~,-r (E’). The corresponding 
cochain complex may be given the structure of a ;Z[K~ (B)]-module by pulling 
back the action of ~1 (B’) via the induced homomorphism 

6 : rl(B) - v(B’). 
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If B is simply-connected then as earlier the obstruction class belongs to the 
ordinary cohomology group with coefficients from the group n+r(E’). 

We infer the following result concerning our three questions: 

I f  the homotopy groups of the space X of Question 1 (or of the fibre F in 
Question 2, or the total space E’ in Question 3) are trivial in dimensions 5 n, 
then for CW-complexes K of dimension < n (the base B in Questions 2 and 3) 

every map (cross-section in Question 2, bundle map in Question 3) defined on 
any skeleton of dimension 5 n of K (or B) can be extended to the skeleton of 
next higher dimension, and likewise for homotopies (in the senses appropriate 
to the three questions) defined for any skeleton of dimension 5 n - 1. 

We obtain immediately as a particular case the consequence that for any fibre 
bundle (E, B, F, G,p) th ere is up to a homotopy just one bundle map 

@: (E,B,F,G,p) - (E’, B’, F, G, P’) 

to the corresponding universal bundle, since the total space E’ is contractible. 
Writing B’ = BG in standard notation for the base of the universal bundle, we 
deduce that every fibre bundle (E, B, F, G,p) determines a map f : B + BG 
uniquely to within a homotopy (which, conversely, induces the given fibre 
bundle from the universal bundle). Such a homotopy is of course a map f : 
B x I + BG, and so induces a fibre bundle over the cylinder B x I. Since 
the cylinder B x I, I = [a, b], may be contracted onto its base B x {a} in such 
a way that the lid B x {b} goes “identically” onto B x {a} (in the sense that 

(Xl b) ----f (~,a) for all x E B), we have that Hj(B x I, B x {a}) = 0 over any 
coefficient group. It follows that any fibre bundle over B x I may be mapped 
to the restricted bundle over the base B x {a} in such a way that the induced 
map of bases sends the lid B x {b} of B x I “identically” to B x {a}. For the 
conclusion we wish to draw we require a preliminary definition. 

Definition 6.2 Two fibre bundles over the same base B, with the same 
fibre F and the same structure group G, are said to be equivalent if there 
exists a bundle map between them: 

@ : (E, B, F, G,P) - (E’, B, F, GP’), 

inducing the identity map on the common base. 

The foregoing discussion has as upshot the following important result. 

Theorem 6.1 The set of the equivalence classes of jibre bundles with the 

same base B, Jbre F and group G, is in natural one-to-one correspondence 
with the set of homotopy classes of maps of the base B to the base BG of the 

corresponding universal bundle. 

Example 1. From the exact homotopy sequence of the universal principal 
G-bundle (F = G) ( see Chapter 2, (4.7)) one obtains, on taking into account 
the contractibility of the total space, the following isomorphism: 
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T,(BG) ” T-I(G) (= %-l(F)), n > 1. (6.4) 

This isomorphism and the preceding theorem together imply that the equiv- 
alence classes of G-bundles with base S” are classified by the group 7r,-r (G). 
Recalling that for a topological group G the connected component Gc contain- 
ing the identity is a normal subgroup, so that xc(G) = G/Go has a natural 
group structure, we infer that the action of ?‘rr(&) (” TO(G)) on the groups 
nn(BG) (” x+1(G)) is identifiable with the action of TO(G) on 7rn-r(G): 

q(a) = q@, q E no(G), a E rn-l(G). (6.5) 

Hence the free homotopy classes of maps S” ----f & (i.e. without distin- 
guished base point) are in natural one-to-one correspondence with the orbits 
of n,-r(G) under the action of no(G) given by (6.5), so that these orbits may 
be taken as determining the inequivalent G-bundles over S”. 

Geometrically speaking this reduction of the classification problem for G- 
bundles over S” to the consideration of the group 7rn-r(G) is very natural: 
Consider the sphere S” as the union 0; U D”_ of the hemispheres with their 
boundaries (the equator) identified. Any G-bundle over Sn is trivial over each 
of the hemispheres, in view of their contractibility. Hence there are structural 
homeomorphisms: 

c+hl : p-l (D;) --+ D; x G, 

q52 : p-l (D:) + D” x G, 

(where we are assuming the G-bundle to be principal), and the transition 
function 

Xl2 = q5& : S”-1 x G ----f 9-l x G 

on the equator has the form 

XlZ(T 9) = (T X12(~)(9)), 

where Xl2 : S”-l + G represents the appropriate homotopy class of 7rn- r (G). 
0 

The above classification theorem was given its final form by Steenrod, 
it would seem, although investigations in this direction involving particular 
universal bundles of importance had been carried out earlier by Pontryagin, 
Ehresmann, Chern, and others. As far as obstructions are concerned, a version 
first appeared in the early 1930s in connexion with Van Kampen’s construction 
of n-dimensional complexes K”, n 2 2, that are higher-dimensional analogues 
of the l-complex figuring in Euler’s problem of the three houses and three 
wells, in the sense that they are not embeddable without self-intersections in 
Il%2n. This idea was subsequently elaborated on by Whitney, in particular in 
relation to cross-sections of fiber bundles, and was actively exploited in con- 
crete problems of homotopy theory by Pontryagin and Whitehead. Evidently 
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the final formulation of the concept of an obstruction is due to Eilenberg in 
the case of maps, and Steenrod in the context of fiber bundles. 

We note in passing that fiber bundles with contractible fiber possess cross- 
sections, which are, moreover, all homotopic to one another. This situation 
will arise frequently in the theory of smooth manifolds, to which Chapter 4 is 
devoted. 

In concrete topological problems it is most often the so-called first obstruc- 
tion that is used. This is the obstruction arising in attempting to extend maps 
(Question 1 above) or bundle cross-sections (Question 2) from the (n - l)- 
skeleton to the n-skeleton of the appropriate space, where n is the first di- 
mension for which the homotopy group of the codomain X (in Question 1) is 
non-trivial: 

XT%(X) # 0, 7rj(X) = 0 for j < 72, 

or of the fiber F (in Question 2): 

G(F) # 0, rj(F)=O forj<n. 

Example 1. Consider Hopf’s problem of the classification up to homotopy, 
of the maps from an n-dimensional CW-complex K” to the n-sphere S”. Here 
there are no obstructions to map-extensions. There is just one obstruction to 
extending a homotopy, and this lies in the group Hn(Kn; Z) since T,(P) 2 Z. 
It follows that the homotopy classes of maps K” + S” are in natural one-to- 
one correspondence with the elements of the group Hn(Kn; Z). Equivalently, 
the homotopy classes correspond one-to-one to the homomorphisms between 
the n-th integral homology groups of Kn and S”, since 

H”(K”; Z) = H om (H,(W; Z), Z), Z ” H,(Sn; Z). 0 

Example 2. The previous example may be (mildly) generalized by replacing 
S” by any (n-l)- connected space X (i.e. one for which nj(X) = 0 for j < n). 
Thus one seeks to classify the homotopy classes of maps of an n-dimensional 
CW-complex K” to X. As before, in view of the (n - l)-connectedness, only 
the first obstruction arises, and the analogous result is obtained: each map 
Kn + X is to within a homotopy determined by a unique cohomology class 
in Hn(Kn; m(X)), or equivalently, a unique homomorphism between the nth 
integral homology groups of Kn and X, since 

H”(K”; m(X)) = Horn (H,(Kn; Z), 23,(X; Z)), H,(X; Z) TZ TV. 0 

Example 3. Suppose X is an Eilenberg-MacLane space of type K(r, n), i.e. 

7rn(X) ” 7r, nj(X)=O for jfn. 
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The argument of the preceding two examples leads to the same conclu- 
sion, though here for any CW-complex K: The set of homotopy classes 
of maps K + X is in natural one-to-one correspondence with Hn( K; ‘rr), 
and so, provided n > 1, acquires the structure of an abelian group. Since 
H,(K(r, n); Z) g 7rn(K(7r, n)) g 7r and 

H”(K(n, n); 7r) ” Horn (H,(K(n, n); Z), 7r) % Horn (7r, 7r), 

there is a distinguished element u of fP(K(x, n); 7r), corresponding to the 
identity isomorphism 1 : n --+ K, called the fundamental class of Hn(K(7r, n); 7r). 
In terms of the fundamental class u, the above correspondence between ho- 
motopy classes [f] of maps f : K + K(r, n) and elements of H”(K; 7r) is 
given by 

[fl ++ f*(u) E H”(K; ~1. (64 

Note that in the case n = 1 the above is valid also for non-abelian groups 
7r since, as observed earlier, H1(K; n) is defined (as a set) over such 7r. We 
conclude from (6.6) that: 

The Eilenberg-MacLane space of type K(n, n) is universal for the classi- 
fication of n-dimensional cohomology classes over n (much as principal uni- 
versal G-bundles are universal for the classification of equivalence classes of 
G-bundles). 

As noted earlier, we know a series of examples of Eilenberg-MacLane com- 
plexes of type K(n, l), and K(Z, 2) = c.P” (= lim @P”), but of the remain- 

n--+w 
der we know only that they exist. By virture of (6.6) these complexes play an 
important technical role in topology. 0 

Definition 6.3 A cohomology operation is a “natural” function 
Bx(.zi,. . , zk) of Ic variables zj E Hn3 (X; Gj), taking its values in H*(X; G). 
Here “natural” means that the operation should be functorial in the sense 
that it commutes with homomorphisms induced by maps f : Y ---+ X: 

if f*(q) = .zj., then &(zi,. ,z(c) = f*BX(zl,. , zk). (6.7) 

The simplest example is afforded by the product 19 = zr zk of elements of 
any number k of factors, with all Gj = G. It is however important that there 
exist cohomology operations O(Z) of even one variable that are not definable 
merely in terms of the ring structure of H*(X; G), especially in the case 
G = Z/p. The simplest such “non-trivial” example is afforded by the Bockstein 
homomorphism (see $4) 

P : H4(X; Z/P) + fPfl(X; Z/p) 

In view of the above-noted universal property of the Eilenberg-MacLane 
spaces in connexion with the classification of cohomology classes, the totality 
of cohomology operations of the above form is in natural one-to-one corre- 
spondence with the elements 
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19 E H* (K(G1, no) x . x K(Gk, n/J; G) . 

This correspondence is easily defined in terms of the fundamental classes (see 
(6.6)): 

uj * lG,, Hn3 (K(Gj, nj); Gj) E Horn (Gj, Gj), 

so that 
6 = qu1,. . . ) Uk). (6.8) 

For a given space X and elements zj E Hnj (X; Gj), j = 1, . . , Ic, there exist 
maps fj : X + K(G,, nj) such that zj = f*(uj), whence we obtain the map 

f = fl x ‘. x fk : X + K(G1, nl) x . . . x K(Gk, nk), 

and the value Qx(zr, , zk) E H*(X; G) of the operation 6 is then given by 

Bx(a,. . . rzk) = f*~(‘%,...,Uk). 

(This was observed by Serre in the early 1950s.) 
In addition to the operation p other particular non-trivial cohomology op- 

erations had been discovered earlier: 

1) Pontryagin squares and powers: 

Pp : Hzq(X; Z/p) + Hzpq(X; Z/p’), 

where P,(z) E 3 mod p, and p is prime. 

2) Steenrod squares and powers: 

a) Steenrod squares: 

Sq’ : Hq(X; Z/2) ---+ Hqfi(X; Z/2), 

where, in particular, Sq” = 1 and Sq’ is the Bockstein homomorphism 
for p = 2; 

b) Steenrod powers: 

St; : Hq(X; Z/p) --t Hq+i(X; Z/p), 

where, in particular, St, ’ = 1 and St; coincides with the Bockstein 
operator p. 

The Steenrod squares are homomorphisms and have the following further 
basic properties: 

(i) Sq” = 1, Sq’ = 0, Sqn(z) = .z2, z E Hn(X;Z/2). 

(ii) The Steenrod squares are stable, i.e. they commute with the suspension 
isomorphisms 
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E : Hq(X; Z/2) * Hq+l( cx; Z/2). 

(iii) S$(.zi z2) = C Sq”(zi) Sql(zz). 
k+l=j 

(iv) Sqj = 0 for j < 0; Sqn(z) = 0 if z has dimension < n. 

(v) The Steenrod squares are additive (in contrast with the Pontryagin 
powers): 

Sqi(z1 + z2) = Sqi(z1) + Sq-yzy.). 

The Steenrod powers have analogous properties: 

(i) St: = 1, St; = ,B, St; = 0 if j < 0 or j f 0,l mod (2p - 2). 

(ii) The Steenrod powers are stable, i.e. they commute with the suspension 
isomorphisms. 

(iii) Writing Pi for Sty(P-l), one has 

Spj(P-l)+l = ppi 
P > 

and also the following formulae: 

Pi(Zl z2) = c PYZl) Pk(Z2), 
i+k=j 

(6.9) 

(6.10) 

,B(Zl z2) = P(q) 22 + (-l)W P(zz), 

where m = dim zi. 

(iv) P”(z) = zp for z E H2n(X;Z/p), and for j > n, Pi(z) = 0. 

(v) The Steenrod powers are additive: 

sqz1 + z2) = St;l(z1) + Sti(zz). 

By results of Serre (in the case p = 2) and Cartan (p > 2) from the early 
1950s the Z/p-algebra of all stable operations (the Steenrod algebra dp) is 
generated multiplicatively by the Steenrod operations (the Sqi when p = 2, 
and the St; when p is an odd prime); it follows that all such cohomology 
operations are additive. 

Let d: denote the Zlpsubspace of the Steenrod algebra A, consisting of 
the operations of degree n, i.e. a E d; if a : Hq + Hq+n. In the case p = 2, 
a cohomology operation a E dz is the null operation precisely if the element 
a(~) vanishes for the appropriate fundamental class u: 

u = Ul. . UN E HN (lkf~,oo x .‘. x IRF~,Z/2)) ui E H1 (lRP,~~Z/2) , 
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for some N > n. (Recall that IWP” = K (Z/2; l), and that the ring 

H* (llw,” x ‘. . x RP,“; Z/2) 

is polynomial.) From the properties of the Steenrod squares listed above, it 
follows that the image AZ(U) c H* (RP,oO x x BP,“; Z/2) is a Z/2-vector 
space spanned by those symmetric polynomials u, in the variables ~1, . . UN, 
of the form: 

U w= 

( 

C UT . UC’ 21, Cwj < 72, 

il#i2#..-+.9 1 i 

wj = 2h7 - 1, W=(Wl,...,Wk), wj > 0. 

We denote by Sqw the operation defined by 

SqW(u~~~~us) =uw, degSqW = Cwi. 

Note that 
sqi = sqw ( with w=(l,...,l). 

(6.11) 

i times 
One has the following product formula: 

&Y(az2) = c sqw’(.4sQw2(~2). 

(w,w)=W 

For p > 2 we consider copies Xj of the infinite-dimensional lens space 
K(Z/p; 1) = P/Z/p. H ere the cohomology ring H*(X,; Z/p) has generators 

vi E H1(Xj;Z/p), uj E H2(Xj;Z/p), uj = &. 

In this case an operation a E AZ, a : Hq + Hqfn, is null precisely if CL(V) = 0, 
where 

V=V~"~~/N~UN,+~~~~UN,+N~ E HN1+N2(X1 X...X~N,+N~;~/~), 

where Ni, iV2 > n. The image dP(v) is spanned by the polynomials of the 
form: 

uwr,w” = u . c (++I.. .u~+luJwl;i+l.. .,,;;+1> lVi, . .vui,, 

il < ... -c i, 5 Nl 
N2 > j, > . > j, > N1 

deg a = c (2~: + 
i 

a : HQ(X; Z/p) - Hqfdega(X; Z/p), a = SC,,,,,,). 
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The number s 2 0 appearing in this formula is called the T-Cartan type 
of the corresponding operation a, denoted more usually by s(a) or r(a). The 
type s and the degree deg a (s 5 deg a) determine a bigrading of the algebra 
A, (for p L 2): 

a H [s(a), deg a - s(a)] . 

Of special interest are the operations a = Sk+,, where of course we have 

kt2xwj < N1+2N2. 

The operations Sk,e = ek say, are called i%lnor operations. They define an 
exterior algebra: 

eke, = -ejek, S(ek) = 1, 

and have the further property 

ek(Zl ’ ~2) = ek(h2 f dk(Z2)r 

a special case of the general formula 

SC w’,w”)(zl . z2) = c (~1)s(,:,,~)(zl)s(,;,,;,)(zz). 

(w;,w:)=w’ 

(w;I,w;)=w” 

It turns out that the algebra of all (not necessarily stable) Z/p-cohomology 
operations is generated via composition by the Steenrod operations and the 
Bockstein operator p (together with the product operation in the cohomology 
ring), and that all relations among these operations follows from the properties 
listed above. Over other coefficient groups one has for instance the Pontryagin 
powers; a classification of all cohomology operations was given by Cartan 
in the mid-1950s. In the early years of that decade Serre had shown that 
cohomology operations over a field Ic of characteristic 0 (for instance Q, R, @) 
are all trivial, i.e. reduce essentially to the cohomological product operation. 
There are in such cases no stable operations aside from multiplication by a 
scalar: z H Xz, X E lc. 

As a generalization of single-valued, everywhere-defined cohomology oper- 
ations one has multi-valued, partially defined operations, as in the following 
two examples. 

Example 1. Consider the Bockstein homomorphism 

P : H”(X; UPI + Hk+yX; Z/p). 

As in $4 above, ,D is defined initially on integral cochains Z E C”(X; Z) which 
reduce modulo p to a cocycle z over Z/p, and then ,0(z) is defined as ;6’*E re- 

duced mod p. If z is in Ker p, i.e. if the cocycle ia*? (mod p) is cohomologous 

to 0, then aa*? = pu + d*y, and we can define 
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1 
/32(z) = Td*Z (mod p), 

P 

provided we work modulo Im /3. Proceeding inductively we similarly define 
on Ker ok-i, k > 2, pi = p, an operation pk with values determined modulo 

Im Pk-1, by 

z E Z (mod p), 2~ Cq(X;Z), 

Pk : Ker @k-l - Hqfl(X;Z/p)/Im P&i, 
(6.12) 

Ker flk-1 C HQ(X; z/p). 

I f  /&(z) = 0 for all k > 1, then the class z E Hq(X;Z/p) is obtained by 
reducing an integral class. Classes &(Z) always arise from integral classes of 
order pk. 0 

Example 2. Let k be a ring or field and let zj E H”J(X; k), i = 1,2,3, 
satisfy ziz2 = 0, ~2~3 = 0. For such triples there is an operation called the 
Massey bracket 

(zl, z2, z3) = B(zl, z2, z3) c Hn1+nz+n3-1(X; k), 

defined only up to the addition of an element of the form 

(6.13) 

WlZ3 * ZlW2, 
wl g Hnl+%-1 

(X; k), w2 E H W+Wl(X; k), 

The definition of the Massey bracket is very simple: on cochains in the 
6”“~ (X; k) it is given by 

(Zl, Z2, Zg) = dp1(zlZ2)Z3 * Zldp1(Z2z3). 

In the case that k is a field of characteristic zero, the Massey brackets and 
their analogues constitute generators, with respect to composition, for all 
multivalued, partial, natural cohomology operations. 0 

We now return to our discussion of Steenrod squares. From the classification 
given above (see, in particular, (6.11)) we see that the Steenrod algebra A2 

is generated multiplicatively by the Steenrod squares of the form Sq2*, i 2 0. 
This fact has the following nice application. 

Example. Let K be a CW-complex such that 

Hj(K; Z/2) ” Z/2 for j = 0, n, 2n, 

Hj(K; Z/2) = 0 for j # O,n,2n. 

Denoting by 2cj the generator of Hj (K; Z/2) for j = n, 2n, we also assume 
that z$ = ~2,. Examples of such K are the real, complex, quaternionic and 
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Cayley projective planes. It follows that Sqnu, = ~2, (by property (i) of the 
Steenrod squares). If n is not a power of 2, this is not possible, since then Sqn 
would be decomposable as a composite of the Sqj with j < n, and for such j 
(with the exception of j = 0) we have Sqju, = 0 in view of the assumption 
that Hnfj(K; Z/2) = 0. Hence we must have n = 2’. This was shown by 
Hopf, without using cohomology operations, in the 1940s and by Steenrod in 
the late 1940s. 

It was further (shown by Adams in the late 1950s) that the Steenrod squares 
Sqn with n = 2i, i > 3, decompose non-trivially as composites of partial 
operations. In particular, it follows that Sq%, = ~2, only if n = 1,2,4,8. This 
result has a series of fundamental consequences, in particular the following 
ones: 

1. The only real division algebras are R1, FL’, R4, IRS. 

2. The stable tangent bundle of the sphere S”-l is trivial only if n = 1,2,4,8. 

3. There exist elements with Hopf invariant 1 in the groups 7rzn-l (Sn), only 
if n = 2,4,8.6 

4. There is a fibration Szn-l -+ 5’” of Hopf type (i.e. where the base and 
total spaces are spheres) only if n = 2,4,8. 0 

The essential idea behind the construction of the Steenrod squares for CW- 
complexes K is as follows. Consider the diagonal 

A(K) c K x K, A(K) = {(x,x)> > 

and denote by 2 the subcomplex of those cells of K x K containing A. (Note 
that A itself is not a subcomplex in general.) Let A, : K 4 2 C K x K 
be a cellular approximation of the diagonal, i.e. a cellular map close to the 
diagonal map K -+ A, with the image of each cell CT~ of K approximated in 
a(gk x ak). This yields a product operation on the cell cochains in 

C*(K x K) ” C*(K) @C*(K), 

defined by 

This operation turns H*(K) into a ring; it is the cohomological product de- 
fined earlier for simplicial complexes - see $2. 

Consider the involution u : K x K + K x K given by 

a(x, y) = (y,x), CT2 = 1. 

Although OA = A, the map cr does not (except in trivial cases) preserve A,: 
crAl # A,. This asymmetry is the source of the Steenrod squares. Let w be 

‘jFor the definition of the “Hopf invariant”, see Chapter 4, 53. 
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any cocycle in C*(Al(K)), and define cocycles ws, wi, . . , in terms of w as 
follows (over Z/2 for simplicity): 

wo = w, PWl = wo + u*wo, a*(w, + u*wl) = 0, 

a*w2 = w1+ u*w1, a*(wz + u*w2) = 0, . ) 

d*Wi = Wi-1 + U*Wi-1, d*(Wi + U*Wi) = 0, . , 

with the support of every wi in A,(K). For cocycles z E C”(K; Z/2) set 

(z”)i = Ay(Wi) E C2”-i(K; Z/2), 

with wc taken to be A;(z @z), and then define the (n - i)th Steenrod square 
of z as the cohomology class of the cocycle (Z”)i E H2n-i(K; Z/2): 

It is immediate from this definition that Sq”+“(z) = 0 for i > 0, and 

Sqn(z) = z2. The remaining properties are more difficult to establish; in 
particular it is not clear from the above construction how the axiomat- 
ically simple property Sq’(z) = z, i.e. Sq” = 1, follows. On the other 
hand this property follows easily from Serre’s classification of the stable Z/2- 
cohomology operations mentioned above (whereby the group of stable opera- 
tions of degree j is isomorphic to Hj+,(K(Z/2, n); Z/2)). For, the cohomology 
of the Eilenberg-MacLane space K(Z/2, n) is trivial in dimensions < n, and 
lP(K(Z/2, n); Z/2) ” Z/2, so that there is only one cohomology operation 

of degree zero, namely multiplication by the scalar 1 E Z/2. 
The above construction of the Steenrod squares has consequences in the 

purely algebraic theory of graded Hopf algebras. Let A be a graded algebra 
over Z/p, with an identity element: 

A=$A”, A’=Z/p, 
?I>0 

with multiplication 

#:A@A+A, 4(a@b)=a.b, An.Am~An+m. 

We have the augmentation homomorphism E : A + Z/p = A’, where Ker E = 
@+i A”. The tensor product (over Z/p) - 

A&alpA, (A@A)j = @ A4 @A”, 
q+m=j 

is an algebra, where the product is defined by 

(u @ b)(a’ @ b’) = aa’ @ bb’. 
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The algebra A @ A has a “twisting” homomorphism 

CT: ABA 4 A@A, a(a@b) = (-l)desadesbb@a, 

Such an algebra A is called a Hopf algebra if there is a diagonal homomorphism, 
i.e. a degree-zero algebra homomorphism of the form 

A*:A+A@A, 

A*(u) = a @ 1 + 1 @a + cai @a:, degal > 0, degay > 0. 

Here a CXI b = (u 18 1) . (1 @ b) and A @ 1 and 18 A commute elementwise to 
within multiplication by 3~1. A Hopf algebra A is said to be symmetric if the 
diagonal homomorphism A* commutes (up to a sign 3~ depending on deg u) 
with the involution operator 0 : A @ A -+ ABA defined by a(a@b) = (b@a): 

A*0 = &A*. 

It was observed by Milnor in the late 1950s that the Steenrod algebra A, 
can be naturally endowed with the structure of a Hopf algebra by means of 
the formula for the action on a product of cocycles (see (6.10)). For p = 2, for 
instance, one sets 

A*(Sq%) = Sq’ @ 1 + 18 Sq’ + c Sqi 18 Sqk. 
jfk=t 

For any symmetric Hopf algebra A over Z/p, analogues of the Steenrod opera- 
tions can be defined on the corresponding cohomology algebra Exti*(Z/p, Z/p) 
(defined below) : 

St; : ExtT’n(Z/p, Z/p) --+ Exty+i’pn(Z/p, Z/p). (6.14) 

For example, the operation St: coincides with a nontrivial operator cy* deter- 
mined by the Frobenius-Adams operator? o : x +-+ xp on the algebra A. The 
operations St; have more-or-less the same properties as the original Steenrod 

operations, while St; = 0 only for i $?! 0,l mod (p-l), p > 2. Thus here there 
are more nonzero operations St;, than was the case for the original Steenrod 
operations. 

These operations were discovered in the process of developing the alge- 
braic techniques needed for calculating stable homotopy groups using the 
Adams spectral sequence (Novikov in the late 1950s Liulevicius in the early 

7Well-defined when A is a Hopf algebra over z/p. 
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1960s). ‘,’ In the Adams spectral sequence for spheres, the structure of the 
Steenrod agebra A, and of its cohomology algebra 

(6.15) 

play a crucial role. In accordance with Adams’ method, the computation of 
the algebra (6.15) uses an “approximation” of the Steenrod algebra A, by 
finitely-generated symmetric Hopf algebras; here the above analogues of the 
Steenrod operations turn out to be very useful. In the case of the Steenrod 
algebra Ap with p > 2, one must take into account the bigrading (Cartan 
type) of the this algebra as well as its approximating finite Hopf algebras. 

In applying the Adams spectral sequence to the computation of the stable 
homotopy groups of any CW-complex K, one considers the cohomology al- 
gebra H* (K; Z/p) = M as a graded left module over the Steenrod algebra. 
Consider more generally any left module M over a graded Hopf algebra A 
(over Z/p). The cohomology algebra 

Ext>* (M, Z/p) (6.16) 

of the module M may be defined as follows (after Cartan-Eilenberg in the 

mid-1950s). We denote by A+ the kernel @A”, of the augmentation homo- 
?Ql 

morphism E, and consider the complex 

M t A+@M t A+@A+@M c . . c A+@A+@ . @A+@M c . . . , (6.17) 

where an %-chain” has the form 

g n = (al @ a2 @ . @ a, @ LX) E A+ ~3 A+ %I.. ‘18 A+ 18 M, 

aj E An3, nj > 0, x E M. 

The n-chain (or “simplex”) gn is taken to have dimension n, and is graded 
also by its degree, defined by 

sThese operations were introduced by Novikov in order to compute the cohomology of 
the Steenrod algebra -Ap and modules over J$,. It emerged in particular that for any prime 
p there exists a nontrivial torsion element z of the ring of stable homotopy of spheres such 
that xp # 0 (1959). This result was proved also by Toda (1960) using a different approach. 
Nishida has proved the following theorem: For any nontrivial torsion element 2 of the 
homotopy ring xi of spheres there exists n such that xn = 0. Hence the ring K: is locally 
nilpotent although not nilpotent in the strong sense. In the late 1960s P. May published an 
article establishing (in slightly more general categorical language) all foundational results 
needed for these operations. 

g Ill-anslator’s Note: A general Nilpotence Theorem has been proved for any spectra (Hop- 
kins, Devinatz, and Smith, in the mid-1980s). The simplest version of the Nilpotence The- 
orem states that if a “ring spectrum” X (or “stable space” with a multiplicative structure, 
such as the above-mentioned stable Thorn spaces) has torsion-free cohomology H* (X; Z), 
then every element of Tor xi(X) is nilpotent. (For details and further developments, see D. 
Ravenel, Nilpotence and Periodicity in Stable Homotopy Theory, Annals of Mathematics 
Studies no. 128, Princeton, 1992.) 
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degon&+n. 
j=l 

The boundary homomorphism is defined by 

n-1 

aan = 
C( 

al@.. .~uaj~aj+l~....~ua,~~)+(-l)~(a~~...~ua,~~~ua,.z), 
j=l 

and preserves the degree of chains. The homology of the complex (6.17) with 
respect to the above differential furnishes the desired cohomology algebra 
(6.16). The particular case M = Z/p = H*(S’) yields the cohomology algebra 

mentioned above. If the module M possesses a diagonal homomorphism 

A*:M+M@M 

compatible with the diagonal of A,, then the cohomology algebra 
Ext;F(M, Z/p) acquires the structure of a bigraded Z/p-algebra. 

One can now construct the Adams spectral sequence of groups (actually 
Z/p-vector spaces) E, = c E$, and differentials (homomorphisms) 

q,l 

such that 

(i) Ez>l % Ez&(M,Z/p), Em+1 = H(E,,d,); 

(ii) c E$,’ ” Gn,“(K), where Grr is the “adjoined group”. 
q-1=t , 

Here 7$(K) = 7r,+t (PK), where YT~(PK) = 0 for j < n, 0 < t 5 n - 1. 
The adjoined group GT (relative to a filtration TT = T(O) > r(l) > . .) is, as 
for rings etc., the direct sum of the successive factors: 

G71.=@ (q&+1) = 
CD Gj7T. 

jl0 QO 

The intersection of all members of the filtration arising from the Adams spec- 
tral sequence (for a given prime p) is precisely the set of elements of the stable 
homotopy groups of K of finite order relatively prime to p. 

In the case K = 5’” (and in several other important cases) the Adams 
spectral sequence has as its terms bigraded Zlpalgebras E, with differentials 
d, satisfying d,(w) = d,(u)w f udm(u) for bigraded elements U,V E E,, 
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and the algebra E, is adjoined to the ring of stable homotopy groups of the 
sphere 5’“: 

7rz = @4> 7T; = 7rn+k(P), n > k + 1, 
k>O 

with the multiplication induced by the composition Sn+‘+J -% Snfi -% S”, 
which, via the realization of the stable homotopy groups of spheres in terms 
of the “cobordism ring of framed manifolds” (see Chapter 4, §3), corresponds 
to the multiplication induced by the direct product of manifolds. 

In the case of the sphere K = S”, the second term of the Adams spectral 
sequence is the algebra 

where Z/p has the A,-module structure determined by the identical action of 
1 E d,, and the annihilating action of the elements of d, of positive degree. 
Here there is an element 

ho E E;‘l = Ext>; (Z/p, Z/p), 

with the property that multiplication by he is adjoint to multiplication by p. 

Example 1. From the definition of the cohomology of an A,-module A4 (see 
(6.17)) it follows that 

E$k = Extc$M, Z/p) = HomiP (M, Z/p), (6.18) 

where only those homomorphisms are admitted that commute with the action 
of A,. The action of d, on Z/p is given by 

a(u)=0 if dega>O, 

X(u) = Au if a= X E Z/p, 

where u E Z/p. The superscript k in Horn5 
Tc 
(M, Z/p) signifies that we only 

admit Z/plinear forms that are zero off M (and of course commute with 
the action of dP). When M = H*(K; Z/p) the zero-line E$* has a clear 

topological meaning: any map Sk 2 K induces a homomorphism of dP- 

* modules M = H*(K; Z/p) L Z/p, and, consequently determines an element 
f* E Homjhp (M, Z/p); the non-vanishing of this element guarantees that the 
map f is essential (i.e. not homotopic to zero). However, an element II: E 

HomLp CM, UP) is induced by some map 5’” + K only if all differentials in 
the Adams spectral sequence act trivially on Z: 

d,(x) = 0, m > 2. 
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Note that there are many essential maps Sk z K inducing the trivial homo- 

* morphism H* (K; Z/p) L Z/p; for instance none of the nontrivial elements 
of positive degree of the stable homotopy groups of spheres can be “detected” 
by the corresponding homomorphisms of the cohomology ring. 0 

Example 2. As noted above, for the sphere 5’” we have M = Z/p. In this 
case Extiz = Z/p and Ext:: = 0 for Ic # 0. It is not difficult to identify the 

groups ExtfdE(Z/p, Z/p). We sketch the argument, assuming for simplicity 

that p = 2. Since the algebra AZ is generated by the elements Sq2i, there are 
non-zero elements 

hi E Extf4f (Z/2,2/2) 

dual to the Sq2’. These in fact account for all non-zero elements of the groups 
Ext>:(Z/2,2/2). Note that d,hi = 0 for q 2 2 if and only if there exists an 
element with Hopf invariant 1 in the appropriate stable homotopy group of 
spheres (see Chapter 4, §3). Adams proved in the late 1950s that 

where hohf-, # 0 for i 2 4. It is not difficult to establish Adams’ formula in 
the case i = 4: d2 (hd) = he h$. Since d, (hd) = 0 for q > 3 for “dimensional rea- 
sons” (there is no nontrivial element to be a target), the element h3 represents 
a non-zero element ‘ils = (T of Hopf invariant 1 in the group $ = 7rn+~(Sn), 

-- -- 
n > 8. By skew-symmetry we have h3h3 = -hshs, whence 2x: = 0. Since 
multiplication by ho is adjoint to multiplication by 2, the element hohg must 
be trivial in the infinite term E, of the Adams spectral sequence, whence 

hoh$ = dz for some z E Ext>i6(Z/2, Z/2), 

and since hq is the only nonzero element, we must have z = hq, which estab- 
lishes the formula. We note that the 2-line Ext:z(Z/2,Z/2) is generated by 
the products 

hihj E Extf4t’+2” (Z/2,2/2), (6.19) 

where hihi+ = 0 and all other products are nontrivial. The products h; 
are of particular importance in manifold theory, to be considered in the next 
chapter. lo 0 

lo ‘71-anslator’s Note: The elements h? (which are related to the “Arf invariant problem”) 
are the only double products hihj about which it is not known whether they support 
nontrivial differentials. It is known that the elements h: are cycles of all differentials for 

j = 1,2,3,4,5 (M. Barrat, J. D. S. Jones and M. Mahowald, mid-1970s). The elements hlh, 
for j 2 4 are nontrivial, and of order at least 4 for j 2 5 (M. Mahowald, 1978). For a general 
account of the results of computations in the Adams spectral sequence for spheres see D. 
Ravenel, Complex Cobordism and Stable Homotopy of Spheres, Academic Press, 1986. 
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Applications of the Adams spectral sequence to the computation of bordism 

and cobordism rings of smooth manifolds were made around 1960 by Milnor 
and Novikov. The Adams spectral sequence admits a natural generalization in 
terms of extraordinary (generalized) cohomology theory (Novikov, in the late 
1960s) revealing a deep connexion with stable homotopy theory, while the 
Cartan-Serre method of computing stable (and unstable) homotopy groups 
does not admit such a generalization. 

Over the rationals the Adams spectral sequence converges to the stable 
rational homotopy groups r;(K) @ Q = 7r,+j (CnK) (for large enough n), 
reducing to a trivial procedure yielding the earlier result of Serre (from the 
early 1950s) that the Hurewicz homomorphism is in fact an isomorphism: 

7qK) @Q 5 Hj(K;Q). (6.20) 

As mentioned before, the algebra dQ of operations of rational cohomology 
theory consists only of scalar multiplications. 

As already noted, in the case of a prime p application of the Adams spectral 
sequence to particular problems of homotopy theory entails investigation of 
various Hopf algebras over Z/p: 

B=@By BO=Z/p, 
7220 

with a symmetric diagonal A : B --) B @B (see above). The category of such 
algebras (where the morphisms preserve grading and the Hopf structure), 
together with the category of modules over Hopf algebras, constitutes an in- 
teresting algebraic model” which imitates certain properties of the homotopy 
category of CW-complexes. For instance a fiber bundle with simply-connected 
base is modelled algebraically by an appropriate epimorphism f : A + B of 
Hopf algebras (where A is the “total space”, B the “base”) with the following 
special properties: there should exist a Hopf subalgebra C c A (the “fiber”): 

with augmentation ideal 

C+=@CncA+=@An, 
7Ql Ql 

such that 
(i) C is a central subalgebra of A (ac = ca for all c E C, a E A), and Ker f 

has the form Ker f = AC+ = @A; 

‘lIn particular, in these categories cohomology algebras H*,*(A; R) are defined for a Hopf 
algebra A and an A-module R. 
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(ii) the algebra A is a free left C-module, i.e. there is a basis of elements 
ai E A”*, i = 0, 1,2) . . ) 0 = no < nr < n2 < ns 5 . . ., with ae = 1, such that 
each element a of A can be uniquely expressed in the form 

a= 
c wi, ci E c. 

i>O 

Under the above conditions there is a spectral sequence (a special case of the 
Serre-Hochschild spectral sequence discovered in the mid 1950s) of a “fiber 
bundle” f : A + B with “fiber” C which imitates certain properties of the 
Leray spectral sequence for a fiber bundle of CW-complexes (see $7). This 
takes the form of a tri-graded spectral sequence of algebras 

where: 

1. EL:; = H*(E;*>*,d,), d,(w) = d,(u)v zt udm(u); 

2. E;>l,r = c Hq>‘l (B; H1l”(C)) = c Hql”’ (B) cgzlp H1)‘2(C); 
?-I +r* =r Tl+T*=T 

3. @ Ek’>’ ” GHnlT(A), 
q+l=n 

where GH”>’ (A) denotes the adjoint ring with respect to a certain filtration 
generating the above spectral sequence. The gradings indicated by the indices 
~1, 7-2, ~3 correspond to the gradings of A, B, C respectively. 

The analogues of the Steenrod operations St: (the Steenrod squares S$ for 
p = 2) mentioned above (see (6.14)) are related to the above spectral sequence 
in much the same way that the ordinary Steenrod operations are related to 
the Leray spectral sequence for fiber bundles, which we shall consider in the 
next section. 

$7. The classical apparatus of homotopy theory. The Leray 
spectral sequence. The homology theory of fiber bundles. The 

Cartan-Serre method. The Postnikov tower. The Adams spectral 
sequence 

The method of “spectral sequences”, first discovered by Leray in the mid- 
1940s in connexion with maps of spaces, and so applying in particular to fiber 
bundles, is of fundamental importance as an effective tool in homological alge- 
bra, making possible (among other things) the computation of the homology 
groups of an extensive class of spaces by means which avoid direct detailed 
examination of their geometrical structure. 
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Let p : Y + X be a map of topological spaces. For each j > 0 the map p 
determines a presheaf 3j on Y given by 

3; = I.@(p-l(U); II), j 2 0, (7.1) 

on each open set U of X (and for any fixed abelian group D). Hence there 
arise in turn the cohomology groups 

E;J = W(X; 39 

(defined to be zero for q < 0 or 1 < 0). Leray’s theorem asserts the existence 
of a spectral sequence converging to Hm(Y; D): 

where 
Ed 

m+1 = H*(E$,d,) N Ker d,/Im d,, 

such that 

Eg=E$’ for m>q+l, 

c Ezl ” GH”(Y,D) = &““-‘,B”“-‘-‘. (7.3) 
q+l=m I=0 

Here GHm(Y, D) is the group adjoined to EP(Y, D) by means of a certain 
filtration 

For certain indices q, 1 the group E$ is easily identified; for instance Ezm = 

B” c Hm(Y; D) is just the image under the projection homomorphism p*: 

Eo,” o. ==B” =Imp*, p* : H”(X; D) + H”(Y; D). (7.4) 

For a locally trivial fibration Y 5 X with fiber F, the above Leray spectral 
sequence may be described as follows. Let us assume the base X is a CW- 
complex with n-skeleton Xn, n = 0, 1,2,. . The filtration of H”(Y; D) is 
determined by the following natural filtration of the space Y: 

Y, = p-yxy, Y, J% Y, 

Yo c Yl c Y2 c . . . c Y, c . . . ) Y = Y, . 

From the inclusion map $6k : Yk + Y, we obtain for each m the induced 
homomorphism 4; : Hm(Y) -+ Hm(Yk); clearly 4; is an isomorphism for 
k = m. The desired filtration 
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of Hm(Y; D), is obtained by setting 

B” = Ker {4&k :Hm(Y;D)+Hm(Ym-k;D)}, k=m,m-l,...,O. 

If in addition the base X is connected and has just one vertex (O-cell) - 
which may without loss of generality always be assumed - then the quotient 
B”/B”-’ in (7.3) is isomorphic to the image of Hm(Y;D) in Hm(F;D) 
under the homomorphism induced from the inclusion of the fiber F in the 
total space Y: 

i : F + Y, F = P-~(Q), 
(7.5) 

Im {i’ : Hm(Y; D) - Hm(F;D)} ” B”/B”-l c Hm(F;D). 

Furthermore for locally trivial fiber bundles (and also for Serre fibrations - in 
fact for any fibration with the covering homotopy property) Leray’s theorem 
gives the explicit form of the term Ez’l: 

Eq31 = H4(X. (H’(F.D) p)). 2 1 7 7 (7.6) 

Here a representation p of the fundamental group ~1 (X) on H’(F; D) is de- 
termined by the action of ri(X) on the fiber F. If ri(X) acts trivially (in 
particular if ri(X) = 0), then it follows that Ez’l = H”(X; Hi(F)), i.e. the 
term Eill coincides with the cohomology of the direct product X x F: 

c E;” ” H*(X x F; II). 
q,l 

(7.7) 

For the trivial bundle Y = Xx F (the direct product) we have that Ei’l = Eg’, 
i.e. the differentials d, are all zero for m 2 2. 

However for a non-trivial fiber bundle (or “skew product”) with simply- 
connected base, the cohomology of the total space becomes different from 
H*(X x F; D) because of the existence of non-zero differentials d,, m > 
2. Thus for a skew product there is “less” cohomology than for the direct 
product. This is not surprising, for the following reasons. Assuming that the 
fiber F, as well as the base X, is a CW-complex, the cell decomposition of 
the total space is the same as that of the direct product X x F since above 
each cell grn of K the bundle is trivial: 

p-‘(P) 2 CP x F. 

The “skewing” in the cohomology groups H*(Y; D) of the total space Y ap- 
pears when we apply the boundary operator d: 

where ajo;‘;‘” lies above the (q -j)-skeleton Xq-i of the base X. The operator 
ai can be explicitly calculated (as shown by Leray) in terms of the cohomology 
of the base with coefficients from the nr(X)-module H*(F). 
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If D is a ring then each E2* becomes a bigraded ring and the differen- 
tial d, satisfies d,(uv) = d,(zl)v f U&(V) for bigraded elements ‘~L,z, (and 
the resulting ring structure is incorporated into Leray’s theorem). There is a 
completely analogous homological version of the theorem, and over a field the 
cohomology and homology spectral sequences are mutually dual. 

The transgression homomorphism T in the Leray spectral sequence is de- 
fined as follows: consider the pair (Y, F) and the homomorphisms 

H4(F) L Hq+‘(Y, F) (the coboundary homomorphism), 

* 
H9f1(X, x0) % Hq+l(Y, F) (the projection homomorphism). 

The composition (p*)- ’ 0 6 = 7 is the desired transgression. Note that 7 need 
not be everywhere defined on Hq(F), and may be many-valued. An element 
z of Hq(F) is called transgressive if ~(2) is defined. In terms of the Leray 
spectral sequence of the fiber bundle the transgression T may be equivalently 
defined as r = d,, where 

Hq(F) > E4”lq 2 Ei+llo = Hqf’(X)/Ker p*. (7.8) 

It follows from (7.8) that for a transgressive element z E H’J(F), we have 
dj(z) = 0 for j < q. 

In the case D = Z/p, all cohomology rings are modules over the algebra dP, 
and it turns out that the differentials in the Leray spectral sequence commute 
with the Steenrod squares and powers; indeed, since 6 and p* commute with 
the Steenrod squares and powers, it follows that the differential d, does also. 
This is of crucial importance in certain difficult computations. In particular, 
if z E H’J(F) is transgressive then so is St;(z), and 

L%;(Z) = St;+). 

Example 1. Borel’s theorem (early 1950s): If H* (F; Q) is an exterior algebra 
over Q and H*(Y; Q) = 0, then H*(X;Q) is the polynomial algebra in the 
images under transgression of certain exterior generators. Over the field Z/2, 
the hypothesis that H*(F; Z/2) b e an exterior algebra is replaced by the 
requirement that there exist a finite collection of transgressive generators wj E 
Hni (F; Z/2) forming an additive basis for H*(F; Z/2): 

~j,,‘ujZ,~“,VjUjk> jl <j, < . . . <j,. 

The same conclusion follows: the ring H*(X; Z/2) is polynomial. By means 
of this theorem the cohomology over Z/2 of a space of type K(Z/2,n), and 
the Steenrod algebra d2 were computed (Serre, early 1950s). 0 

Example 2. Using the Leray spectral sequence the following cohomology 
rings can be calculated without difficulty: 
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H* (RP; Z/2); H*(RP”; Z); H* (CP”; Z); 

H*(LF/Z/m; Z); H*(S”/Z/m; Z/m); 

H*(SO,; Cl!); H*(G; 4; H*(Sx 4; 

H*(BSO,; Q); H*(BU,; Z); H*(BSO,; Z/2); 

H*(BO,; Z/2). 

The calculations are carried out using the following fibrations: 

1. S2n+1 4 CT” (fiber S’); 

2. Iw2n+1 4 CP” (fiber S’); 

3. S2”f1/Z/m -+ CT’” (fiber S’); 

4. so, --+ 5-l (fiber SO,-1); 

5. u, --f 9-l (fiber U,-1); 

6. E --+ BO, (fiber 0,), E N *; 

7. E + Bun (fiber V,), E N *. 0 

Example 3. As a trivial case of Borel’s theorem above, one has for the space 
x = K(Z, 72): 

H*(X’Q) = 1 
A(u) > u E H”(X) , if n is odd, 
Q[u] , u E Hn(X) , if n is even. 

For finite groups 7r the cohomology ring H*(K(n,n);Q) is zero. For finitely 
generated abelian groups 7r the cohomology ring H*(K(n, n); R) over any 
coefficient ring R is finitely generated. cl 

In Chapter 1 we described how to convert, by means of a construction 
preserving homotopy types, any map f : X -+ Y into a Serre fibration 

p:x+Y, L-X) F-Y, p-f, 

where Y is the mapping cylinder of f, contractible to Y, X is the space of 
paths in Y beginning at points of X (identified with X x (0) c Y) and ending 
in point,s of Y, and p sends each such path to its end-point in Y. The space 
X is contractible to X. 

We now describe the Cartan-Serre method of computing the homotopy 
groups R-~(X) of a simply-connected space X. Suppose rj(X) = 0 for j < n 
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and Y = K(x,(X), n). There is then a map f : X --+ Y, for which the induced 
homomorphism f* : 7rn(X) - r,(Y) is an isomorphism. Applying the above 
construction to the map f, we obtain a fiber bundle (Serre fibration): 

p : x + P w K(7r,(X), n). 

It follows that the fiber F of the fibration p : X + Y has the same homotopy 
groups as X in dimensions above n: 

rj(F) 2 nj+l(X) for j > n, 

(7.9) 
xj(F) = 0 for j < n. 

Hence computing 7r* (F) is as good as computing 7r* (X). In its simplest form 
the Cartan-Serre method operates as follows: 

Step 1. The homology groups H,(F) of the fiber F are calculated by means 
of the homological Leray spectral sequence applied to the fibration 
p:X+Y. 

Step 2. Hurewicz’ theorem is invoked to compute the group r,+i(X): 

H,(F) 2 nn(F) ” T,+~(X). 

Step 3. The entire process is repeated. 

However there is a more convenient procedure for calculating the homotopy 
groups of a simply-connected space X. By attaching cells of dimensions > q 
to the space X so as to “kill” the homotopy groups of dimensions 2 q, one 
obtains a space X, > X for which 

nj(X) ” r.j(X,) for j < q, 
(7.10) 

7r.j(X,) = 0 for j > q. 

Thus if X is such that r.j(X) = 0 for j < n, then TV = 0 for all j, so that 
X, is contractible, while Xn+i is of type K(r,n), K = rrn(X). Consider the 
following sequence of fibrations (obtained by conversion of the corresponding 
inclusions Xl+1 c Xl into fibrations): 

(n + 1) EL+2 - %,l (with fiber F,+l N K(7h+l(X), n + 1)); 

(n + 2) xn+3 - %+2 (with fiber Fn+2 N K(s+2(X), n + 2)); 
. . . 

(n + k) i+k+l - 

. . . . 

- Xn+k (with fiber &+k - K(~+k(x), n + k)). 

Now a fiber bundle with fiber of type K(r,m) and with simply-connected 
base B, is homotopically determined by a single cohomology class 
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11, E H”+yBJr). 

Thus to each of the above fibrations &+k+i --f Xn+k with fiber &+k - 
K(n,+k, n + k), there corresponds a particular cohomology class 

h+k E Hn+k+l(&z+k> %+k(x)). 

The cohomology classes u,+k are known as the Postnikov invariants of the 
space X. The sequence of fibrations with fibers Fn+k N K(?r,+k, n + k): 

. 4 xn+3 - x,+2 - xn+1 - * (7.11) 

(where * here denotes a contractible space) is called the Postnikov tower for 
X. It follows that the collection of groups rj(X) and Postnikov invariants uj 
determine the homotopy type of the the simply-connected space X. 

The Cartan-Serre method enables one to compute the Postnikov invariants 
in the course of recursively constructing the spaces X,+j, invoking knowledge 
of the cohomology of the Eilenberg-MacLane spaces K(TT, m). For the rational 
homotopy groups 7ri(X)@Q this computational procedure becomes very much 
simpler by virtue of the simplicity of the structure of the cohomology rings 

ff*(K(n, ml; Q). 

Example 1. For the sphere S” the groups 7ri(Sn) @ Q are given by: 

7r,(P) g z, 7r4n-1 @Q = Q, 

with all other rational homotopy groups trivial (whence it follows that in all 
other cases ,i(Sn) is finite). 

Example 2. For simply-connected, finite CW-complexes X the homotopy 
groups rj(X) are all finitely generated. (These two results were obtained by 
Serre in the early 1950s.) 

Example 3. The Cartan-Serre theorem (early 1950s). If a simply-connected 
space X is such that the algebra H*(X; Q) is a free skew-symmetric algebra, 
then rj(X) @Q is isomorphic to the vector space of those linear Q-forms on 
Hj(X; Q) that vanish on the nontrivially decomposable elements of Hj (X; Q). 
This theorem applies to H-spaces X since by Hopf’s theorem H*(X; Q) is free 
skew-symmetric for such spaces. Hence in particular the result applies to loop 
spaces QX, so that knowledge of H* (QX; Q) f or any finite simply-connected 
CW-complex X yields complete information about the groups nj(X) @ Q. 
However such cohomology algebras are not always easily computed in detail. 
(For the definition of H-spaces and for further details, see Chapter 4, $2.) 

Much later, in the early 1970s Sullivan gave precise form to a general the- 
ory of rational homotopy type (“Q-type”) applying to finite, simply-connected 
CW-complexes, where all computations are carried out in the rational cate- 
gory, i.e. when all invariants are tensored by Q. He showed that the rational 
homotopy type of such a CW-complex is determined by an equivalence class of 
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certain differential skew-symmetric algebras. Via Kahlerian geometry this led, 
in particular, to the result that the Q-type of a simply-connected “KShler man- 
ifold” is completely determined by its rational cohomology algebra (Deligne, 
Sullivan, Griffiths, Morgan, in the mid-1970s). q 

In certain special cases the Cartan-Serre method allows the homotopy 
groups to be computed exactly, rather than just up to tensoring by Q. Adams 
reorganized the Cartan-Serre method into the form of a spectral sequence 
known as the “Adams spectral sequence”. He observed that for the compu- 
tation of stable homotopy it is actually more convenient to use the so-called 
“Adams resolution”, rather than Postnikov towers. 

Let X be a finite CW-complex (or homotopic equivalent thereof) of di- 
mension < 2n - 1 and with rrj(X) = 0 for j 5 n - 1. We now regard the 
cohomology ring H* (X; Z/p) as a module over the Steenrod algebra A,. Let 

{WT... ,mlc), mj E HnT(X;%), b e a basis for this module, and consider 
maps 

fj:X+K(Z/p,nj), j=1,2 ,..., k, 

such that f,*(uj) = mj, where uj E Hnj (K(Z/p, nj); Z/p) is the fundamental 
class of the complex K(Z/p, nj). We obtain a map 

f = fi f3 : X -+ fi K(Z/p,nj). 
j=l j=l 

We convert the map f into a fibration with total space X-i N X and fiber 
X0 = F c X-1: 

f&-i yj, y3 - K(Z/p,nj). 
j=l 

We then repeat the entire procedure with Xa in place of X-i, and so on, to 
obtain a filtration of the space X: 

X-X-,3X~3X1>X~3~~~ ) (7.12) 

with the property that the A,-modules Mj+l = H*(Xj,Xj+l;Z/p) are free 
for j > 0. The boundary homomorphism 

s : H’(Xj, xj+l; z/P) + H’+‘(Xj-1, Xj; Z/P) 

in the cohomology exact sequence of the triple (XJ--1,X3, Xj+i) yields the 
differential dj : Mj+l ---+ Mj, determining the following complex of free A,- 
modules: 

. --f Mj+, 2 Mj % Mj-, + . 2 MO -r, Mpl. (7.13) 

Here M-1 E H*(X-1; Z/p) and E is defined to be the homomorphism 
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H*(X-l,Xo;z/P) - ff*(X-l;qP) 

induced by the inclusion of pairs (X-i, 8) -+ (X-i, Xc). In particular, in 
“stable dimensions” we have 

so that in the algebraic resolution (7.13) all iUj with j > 0 are free (and 
Ker dj = Im d,+i); this therefore represents an acyclic resolution of the .A,- 
module M-i E H* (X; Z/p). The complex (7.13) is known as the Adams 
resolution of the A,-module H*(X; Z/p), and the diagram of “stable spaces” 
or spectra 

X-X-1 t- , ,x0/,x1<. .7xj~,/j+~. .’ 

X-l/X0 x0/x1 
. xj+l/xj . . . 

(7.14) 

is called the Adams resolution of the space X or the geometric realization of 
the Adams resolution (7.13). By taking stable homotopy groups one obtains 
from the diagram (7.14) the Adams spectral sequence. We note that there is the 
following isomorphism for a product of Eilenberg-MacLane spaces K(Z/p, nj): 

and this isomorphism allows the Adams spectral sequence to be handled very 
efficiently by means of homological algebra. 

By using the above methods of Cartan, Serre and Adams, often in com- 
bination with other more special tools and ideas, several topologists have 
managed to carry out far-reaching computations of the stable and non-stable 
homotopy groups of spheres (Serre, Toda and others, from the early 1950s to 
the mid-1960s). In the late 1960s and into the 1970s these techniques were 
supplemented by those of extraordinary homology theory (see 58, 9 below). 

The stable homotopy groups of spheres $ = 7r,+i(SN), N > i + 1, and 
the associated skew-symmetric ring rz: 

are important in the theory of smooth manifolds. The first few stable homo- 
topy groups of spheres are given in the following table: 
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i=O 1 2 3456 7 8 9 10 11 12 13 

T% = Z Z/2 Z/2 Z/24 0 0 Z/2 Z/240 Z/2 @Z/2 Z/2 @ Z/2 @ Z/2 Z/6 Z/504 0 Z/4 

The multiplicative and additive relations among the indicated generators are 
as follows: l2 

2rj = 0, v3 = 12V, rp = 0, 240~ = 0, 

q2a = Y3, Tj3a = 0, u2u = 0, 3w = ?p, (7.15) 

q2v = 256x, y = VW, 6w = 0, 504X = 0. 

Note that the elements q, V, 0, qcr, q2a, x and their multiples are realizable 
by means of framed normal bundles on the sphere S”, i.e. are images under 
the homomorphism 

whose definition is given in Chapter 4, $3. (S ome of the stable groups nj(SO) 
(P) are tabulated in Chapter 4, $2.) Nontrivial p-components xj C ‘/rj5 appear 

first for j = 2p - 1; for p > 2, j < 2p(p - 1) - 1, they are as follows: 

,w ” z/p, 3 j = 2k(p - l), k= l,...,p-1, 

dp) = z/p, j = 2p(p - 1) - 3 2, (7.16) 

7rF ” 3 z/p2, j = 2p(p - 1) - 1. 

For j # 2p(p- 1) -2, these 7ry’ are contained in Im J, i.e. T:) c Jnj(SO). It 
turns out that the image under J contains only a small part of @; in particular, 

the group 7r,$p-1J-2 contains nontrivial elements that do not belong to that 
image. 

12We recall that in the algebra Extdz (z/2, z/2) the elements 2, 7, V, o are represented 
by the elements ho, hl, hz, h3, respectively. 
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$8. Definition and properties of K-theory. 
The Atiyah-Hirzebruch spectral sequence. Adams operations. 

Analogues of the Thorn isomorphism and the 
Riemann-Roth theorem. Elliptic operators and K-theory. 

Transformation groups. Four-dimensional manifolds 

The first and the most important generalizations of cohomology theory 
- K-theory and cobordism theory - were introduced (or more accurately 
first considered from the appropriate point of view) in the late 1950s and 
1960s by Atiyah. Subsequent development of the associated methodology very 
significantly augmented the algebraic apparatus of topology. Moreover for 
the investigation of many topological problems either K-theory or cobordism 
(bordism) theory has turned out to provide the most appropriate context. 
The general axiomatics of extraordinary homology (and cohomology) theory 
were worked out by G. W. Whitehead in the early 1960s. 

We begin with the basic concepts of K-theory. For a pair (K, L) of fi- 
nite CW-complexes the groups Ki(K, L) and Kg(K, L) are defined as the 
Grothendieck groups of classes of stably equivalent vector bundles (real and 
complex respectively) with base B = K/L, where “stable equivalence” of two 
vector bundles ~1 and ~2 means that 

Vl CB EN1 = vz c3 EN2 (8.1) 

where &Na (i=1,2)isth t e rivial vector bundle with fiber RN% or (CNi. Every 
vector bundle Y over K/L has a stable inverse. This is explained in Chapter 
4, $1: one first realizes K/L as a deformation retract of a manifold U > K/L 
over which v can be extended to a bundle stably equivalent to the tangent 
bundle of U; the inverse --v is then realized as the normal bundle over U with 
respect to an embedding U c EV, q sufficiently large: 

Y@(--v) =EN -0. (8.2) 

It is clear that under the direct sum operation on vector bundles, Ki(K, L) 
(A = IR, C) becomes a group, and, via the tensor product, in fact a commuta- 
tive ring. 

For a finite Cl&‘-complex K we set 

K;(K) = K;(K u *, *), A = lR,@, (8.3) 

where * denotes the one-point space, i.e. in effect we consider vector bundles 
over K. 

Motivated by the suspension isomorphism (see (3.6)) we define 

K;j(K, L) = K;(CjK, CjL), j > 0, (8.4) 

where CK, CL denot,e the suspensions of K, L. From properties of the uni- 
versal G-bundles with G = lim O,, lim U,, one obtains natural isomorphisms 
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Kij(K, L) s [23(K/L), BO], 
(8.5) 

K&j(K,L) ” [lP(K/L), BU], 

where [X, Y] denotes the set of homotopy classes of maps X * Y. Bott 
periodicity (see Chapter 4, $2) then yields 

K;j-s(K, L) = Kij(K, L), 

(8.6) 
K$“(K, L) ” K;j (K, L), 

which allows the groups Ki(K, L) (A = IF%, UZ) to be defined, via periodicity, 
for all j, -oc < j < 03. 

The functor K:(., .) satisfies the axioms of generalized cohomology the- 
ory (see $3): homotopy invariance, functoriality, the excision axiom (since by 
definition Ki (K/L, *) = K: (K, L)), and existence of exact sequences of pairs: 

. - Kj(K,L) + Kj(K) --) Kj(L) 3 Kj+‘(K,L) --+... (8.7) 

The dual homology theory K,/‘(., .) is defined for the category of finite com- 
plexes by 

K,/‘(K) = K,‘(K, *) = K;+(S”\K, *‘), n + 03, 
(8.8) 

Kf(K,L) = Kj/(K/L, *), 

i.e. as an appropriate limit, with the finite CW-complex K embedded in S” 
(for sufficiently large n). There is no simple geometric description of the groups 
K./(K), and they are not generally used in homotopy theory. 

Since each vector bundle over the suspension CK is determined by a ho- 
motopy class of maps 

K + 0, or K-U,, 

for some r~, we infer natural isomorphisms 

K&K) Z [K, 01, K&K) z [K, U]. 

Hence for a contractible CW-complex (in particular a one-point space) we 
obtain via Bott periodicity the isomorphisms: 

K;j(*) E nj(BO) ” T+~(O), (j > 0), 

K;j(*) zs rj(SU) ” T+~(U), (j > 0). 

Note that in general K$(K, L) is a graded skew-commutative ring. The above 
observations lead to the following description of the coefficient rings KF(*), 
Kj@(*): 
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1. Ki(*) has as generators 1 E Ki(*), h E I-C;‘(*), u E Ki4(*), 21 E 
Ki’(*), v-l E Ki(*), with relations 

2h = 0, h3 = 0, u2 = 4v, vu-l = 1; (8.9) 

2. Kc(*) has as generators 

1 E a*), w E Ke2(*), w-l E Ki(*), (8.10) 

with the single relation ww-l = 1, so that 

KC(*) 2 qw, w-l]. (8.11) 

Note that multiplication by v in the case of Ki(*) (and multiplication by 
w in the case of Kc(*)) corresponds to application of the Bott periodicity 
operator. 

The ring K;(K) may be computed by means of the Atiyah-Hirzebruch 
spectral sequence, which exists for any generalized cohomology theory. In the 
present case the Atiyah-Hirzebruch spectral sequence has as its terms rings 
Ek* with differentials d, satisfying 

E *>* 
m+l = H(Ez*, d,), 

d, : Egq ----t Eg+m+-m+l, dk = 0, 

E2pyq = Hp(K; K;(*)), 
(8.12) 

c Egq = GK;(K), 
p+q=s 

i.e. the ring E& = c Ekq is adjoined to K;(K). The images of the differ- 
P,q 

entials d, are finite groups, and for a finite CW-complex K one has d, = 0 
for m sufficiently large. The orders of the groups Im d,, and the relationship 
of the differentials d, to cohomology operations, were studied by Buchstaber 
in the late 1960s. 

For CW-complexes K with torsion-free integral cohomology groups, the 
Atiyah-Hirzebruch spectral sequence collapses in the case n = (E , i.e. d, = 0 
for m 2 3, yielding the isomorphism: 

H*(K; Kc(*)) ” K;(K). 

With n = lR the same condition on K implies that all groups Im d, have 
order at most 2. 

Example 1. Let K = RP”. The ring K~(IRP”) is generated by the element 
u = n - 1, where 11 is the canonical line bundle over ID’” (with nontrivial 
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Stiefel-Whitney class WI(~); see Chapter 4, $1). It follows that d, = 0 for 
m 2 3, in the Atiyah-Hirzebruch spectral sequence, whence 

GK;(RP”, *) F ~H’(WP”; Ki”(*)), 
j20 

(8.13) 

where lc = 8q + s, h(k) = 4q + X,, 

Xl = 1, x2 = 2, x3 = 2, x4 = 3, x,5 = 3, xfj = 3, A, = 3. 

The following relations hold: 

-u2 = 2u, 2h(“)U = 0, 7&u) = (1 + ?A)1 - 1, 

where til is the “Adams operation”, shortly to be defined. 
For -4 = @, the generator of Kg(lRP”) is ‘u = cu, the complexification of U, 

so that again d, = 0 for m > 3 in the Atiyah-Hirzebruch spectral sequence, 
yielding 

Kg(Ilw”) ” &4) -II2 = 2v, &J) = (1+ ?I)1 - 1. 0 (8.14) 

By means of real and complex representations, one can define on the 
Grothendieck group Ki, n = R, @, various operations commuting with con- 
tinuous mappings. These are the K-theoretic analogues of the ordinary coho- 
mology operations. We now define the Adams operations of complex K-theory. 

Given a complex bundle q over K/L, we may form the exterior power 
bundle Aj(v), j > 0. The formal power series in t: 

At(v) = c llq?$j = 1 + lll(q)t + A2(q)t2 + ” , 
j?J 

defines an operator 

4 : K’(K, L) - K”(K L) [Ml, 

whose coefficients Aj, however, are not additive since (see Chapter 4, 51) 

A(% @ 772) = ~t(vd~t(772). (8.15) 

To obtain additive operations consider the coefficients of the series 

- log(1 - tnl +. .) = -log n-, = c $tk. 
k>l 

Here qk(nl,. . , nk) is a polynomial over Z in the Aj. It is convenient to 
express qk in terms of symmetric polynomials. Let si, ~2, . . be the elementary 
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symmetric polynomials in ‘1~1, ‘112, . . .; then the symmetric polynomial ut +. . . + 
U: may be expressed as a polynomial in ~1,. . . , Sk: 

uf + . . .U; = pk(sl,s’J,. . .,Sk), k = 1,2,. . 

The following expression (the k-th Adams operation) is very convenient for 
particular calculations: 

$k(v) = pk(r], A$,. . . A”+ 

It follows that 

$k(% a3 72) = $J”(rll) @ $k(rl2), Q1 = A1 = 1. (8.16) 

If q is a line bundle, then 
Qk(rl) = rlk. (8.17) 

For line bundles (considered as representing elements of KE) and consequently 
their direct sums, it is easy to establish the following properties: 

ch”(Gk(4) = kn(chnrl), (8.18) 

where ch is the Chern character. These properties then follow without diffi- 
culty for all vector bundles (or rather elements of Kg). 

Denoting by Q the generator of Kg(S2n, *) g Z, for which chq = p E 

H2”(S 2n. Z 3 ), the dual of the fundamental class, we have 

gkr/ = k”q. (8.19) 

The formula (8.19) implies the following rule for commuting the operator Gk 
and the Bott periodicity operator w (see above): 

$,“(wz) = kw?lk(z). 

This motivates the extension of $J~ to all KG’(K, L) with j > 0 by setting 
qkw = kw, and exploiting multiplicativeness: 

$k(4 = $JkkNk(9 

Extension of the operators $” to the Ki with j > 0 is possible only after 
tensoring with Z [i] , i.e. going over to the groups K& @ Z [i] . 

In real K-theory the Adams operations $J” are defined in a similar fashion. 
These operations commute with the complexification homomorphism: 

c: K;(K,L) --+ K;(K,L), $“.c=cqb’“. 
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The operations $I”, introduced by Adams in the early 1960s have turned 
out to be extremely useful in the solution of several problems. In order to 
formulate these problems, we first need some further definitions. 

Let S(q) denote the spherical fibration associated with a vector bundle q, 
i.e. S(q) has the same base as Q, but each fiber lP of the vector bundle v is 
replaced by the sphere S”-l c R”. Two vector bundles 771, 772 over the same 
base K with fiber lP or @” are said to be fiber-wise homotopy equivalent if 
there is a map 

S(Q) - S(r/2) 

between the total spaces of the associated spherical fibrations, inducing the 
identity map on the base, and of degree +l on the fibers. This leads to the 
concept of stable fiber-wise homotopy equivalence of real or complex vector 
bundles (namely 71 - 772 if there exist trivial bundles 81, &Nz, such that 
71 e3 EN1 and r]2 $ ~~2 are fiber-wise homotopy equivalent as above). The set 
of classes determined by this stable equivalence (first considered by Dold in the 
mid-1950s) are denoted by JR(K) (or Jc(K)). There are obvious epimorphisms 

K;(K) - JR(K), K;(K) - Jc(W. 

Let G, be the group of homotopy equivalences of the sphere Sq (i.e. of homo- 
topy classes of maps 5’4 -+ 5’4 of degree l), and let G = lim G,, the direct 

q-00 
limit of the groups G, under the natural inclusions G, c G,+r. The natural 
embedding 0 c G (see Chapter 4, $4) induces a map j : BO --f BG, whence 

Kg(K) = [K, BO] , 

JR(K) = ~*(K~(K)) c [K, =I, 
where (as before) [X, Y] d enotes the set of homotopy classes of maps X + Y. 

For smooth manifolds M” the group &(AP) has several important appli- 
cations: 

1. To obtaining lower bounds for the orders of homotopy groups of spheres 
(M” = P). 

2. To the study of smooth structures on spheres (AP = P). 

3. To estimating the number of independent vector fields on spheres S2+l 
(Mn = RP). 

4. To classifying the stable normal bundles of smooth closed manifolds (see 
Chapter 4, §3,4). 

It is appropriate to mention here also the following fact, a corollary of a 
result of Atiyah: 
Let qN be a vector bundle over Mn. The class [q] E JL$(M~) contains the 
normal bundle over M (i.e. q is stably homotopy equivalent to the normal 
bundle) if and only if the cycle 4( [MI) E HN+,(TQ; Z) is spherical. 
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(Here TV is the Thorn space, and 4 is the Thorn isomorphism 4 : H,(Mn) % 
HN+~(T~); a cycle IL: E H,(X; Z) is spherical, if it belongs to the image of 
the Hurewicz homomorphism 7r* (X) + H, (X; Z).) By the Browder-Novikov 
theorem (see Chapter 4, §4), for a simply-connected manifold Mn of dimen- 
sion n # 41c + 2, n 2 5, the above condition that +([Mn]) be spherical, 
together with the Hirzebruch formula for the signature, suffice for the vector 
bundle 77 to be realizable as a normal bundle of a possibly different manifold 
L homotopy equivalent to M”. 

Consider the subgroup H of K:(K) generated by all elements of the form 

PN”(lClk - l)% (8.20) 

where n is any element of K:(K), p ranges over all primes, and iVp over all 
sufficiently large integers. According to a result of Adams the quotient group 

JR(K) ” K:(K)/(pNp(+lc - 1)~) = K;(K)/H 

provides a lower estimate for JR(K) since the kernel of the epimorphism 
K;(K) - JR(K) . is contained in Adams’ subgroup H. In the case K = S”, 
Adams was able to establish the reverse estimate (to within the factor 2 in 
certain dimensions), thereby obtaining a measure (to within the indicated ac- 
curacy) of the orders of the groups Jn(Sln) c 7&-i = 7r~~-r+~(S~). This 
estimate of Adams coincides (up to the factor 2 for even n) with a lower esti- 
mate obtained by Kervaire-Milnor (see Chapter 4, $3). For K = RPzn Adams’ 
lower estimate yields 

K;(W’2n) ” Jw(Rl=2n), 

from which there follows, by means of certain reductions due to Toda, an 
exact value for the largest number of linearly independent vector fields on 
an odd-dimensional sphere S2qp1. If 2q = 2m(21 + l), m = c + 4d, where 
0 < c < 3, this number is 2’ + 8d - 1 (Adams, early 1960s); and this number 
of linearly independent vector fields may be constructed on the sphere by 
using infinitesimal rotations. 

Adams’s conjecture that all elements of K:(K) of the form ICN($” - 1)~ 
are, for sufficiently large N, J-trivial (i.e. lie in the kernel of the epimorphism 
K:(K) - JR(W), was proved in the late 1960s by Sullivan and Quillen 
by means of elegant general categorical ideas involving augmentation of the 
homotopy category in such a way that multiplication by k becomes invertible. 

Since there is no simple geometric interpretation of homological K-theory, 
the appropriate K-theoretic analogue of Poincare duality for closed manifolds 
requires special treatment. In particular the following questions arise: What 
is a “fundamental class” in Kn(Mn)? When does it exist? An essentially 
equivalent, but more accessible, question is the following one: For which vector 
bundles 77 over K, with fiber Rn, is there a “Thorn isomorphism” 

qSK : K;(K) + K;+j (Trl), OK = .+k(l)> n = R@. ? (8.21) 
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For a complex vector bundle q with fiber @“, n = 2m, the value of 4~(1) 
was determined (by Grothendieck-Atiyah-Hirzebruch in the late 1950s) in the 
context of complex K-theory (i.e. when -4 = e): 

4K(l) = /l.=(q) - Aodd E K;(T& 

where 
lY”=y~) = c n2qr& @d(q) = c @+1(q). 

QO j>O 

The following formula is valid: 

&rl(cW~(l))) = T(v) E H*(K;Q), i : K - Trl, 

where T(q) is the “Todd genus” of 77, and 4~ is the Thorn isomorphism in 
cohomology (see Chapter 4, $3). This yields a formula for the Chern character: 

Ch(4drl)) = U77)cfdrl). 

For maps f : Mn ---+ N” of quasicomplex manifolds (i.e. having their stable 
normal bundles endowed with a complex structure) there is an analogue of 
the Gysin homomorphism, of the form 

Df*D = f! : K”(M”) + K’(N”), 

satisfying 
cw!(d)uNk) = f!(CWVPY~“)). (8.22) 

(This is a generalization of the Riemann-Roth theorem.) For embeddings 
AP c Nk the operator f! coincides with the Thorn isomorphism for the 
normal bundle VMVLCNL of the embedding. 

In real K-theory (A = Iw) the construction of the Thorn isomorphism re- 
quires a spinor structure to exist on the bundle q (dim7 = n), which is the 
case if the Stiefel-Whitney classes WI(V), ~~(77) = 0. One then defines 

4~(1) = A+(v) - A-(v) E KidW> (8.23) 

where A* are the “semi-spinor” representations of the group Spin(n) on the 
vector space n (EP), and A*(q) are the vector bundles associated with these 
representations. The Thorn isomorphism 4~ in real K-theory is used to define 
the a-genus: 

477) = &J1kwJk(l))). (8.24) 

As we shall see (in Chapter 4, 53) A(M4”) = A(VM) is an integer for a Spin- 
manifold Iv14”. (This may be inferred from the real analogue of the generalized 
Riemann-Roth theorem. Indeed, if in 8.22 we take N” = *, we conclude that 
the T-genus is integer-valued. If the Chern class cl(M) = 0 for a quasicomplex 
manifold M, then the a-genus a(M) will be integral as well.) 
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As a result of investigations by several people throughout the 1960s and 
early 1970s the ring K;(X) has been calculated for most of the important 
homogeneous spaces X. Of particular interest is the result that for a compact, 
connected and simply-connected Lie group G, the ring K;(G) is generated by 
the “fundamental representations” pi,. . . , pm E K’(G) (m = rank G) as the 
exterior algebra in these generators over the ring Z[w, w-l]: 

K:(G) g 4~1,. . . , pm), n = z[w,d], 
where w is the Bott periodicity operator (Hodgkin’s theorem, proved in the 
early 1960s). For G = U(n) the representations pr, , pn are just the exterior 
powers of the canonical bundle 77 over BU(n): pj = nj(v). For the classifying 
space BG of a compact (or finite) Lie group, we have: 

K;‘(BG) = 0, K:(BG) ” & = Z + I/I2 + 12/13 + . . . , 

the completion of the complex representation ring RG with respect to powers 
of a prime ideal I with RG/I E Z (Atiyah, in the mid - 1960s). 

In computing the K-theory of infinite-dimensional CW-complexes X addi- 
tional difficulties arise; in particular, elements of infinite filtration may occur, 
i.e. nontrivial elements of K;(X), w h ose restriction to any n-skeleton X” is 
zero (Mishchenko, Buchstaber, Hodgkin, in the late 1960s). The appearance of 
elements of infinite filtration is a common feature of generalized cohomology 
theory, not occuring in the ordinary theory. 

One of the most elegant applications of K-theory occurs in connexion with 
the index formula for elliptic pseudo-differential operators on closed manifolds. 
First we give the requisite definitions. Let 71, ~2 be vector bundles over a 
closed manifold M”, and r(~i) th e 1 inear space of smooth cross-sections13 of 
the bundle vi, i = 1,2. A general differential operator L of order m is defined 
on the space r(ni) taking its values in the space r(r/z): 

L : T(rll) - F(q2). 

In local coordinates L has the form 

where ai,...i, (x) is a matrix-valued function and L1 is an operator of order 
< m. 

When L is elliptic, both kernel and cokernel are finite-dimensional, and 
the difference of these dimensions is by definition the index Ind L = 
dim Ker L - dim Coker L, of the operator L. The “index problem” is to give 
a description of the integer Ind L in terms of topological data implicit in the 

13Here the vector spaces are assumed to be endowed with a proper norm determining the 
structure of a Sobolev space on r(vi). 
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elliptic operator L. The following interpretation of the highest-order terms in 
the operator L, provides the key to the solution of the “index problem”. Let 
7r : T*(M) + A4 be the projection of the cotangent bundle over AP, and let 
7; (M) = r*(M) \ A4 be the subset of nonzero vectors in r*(M). The highest 
terms of L then determine a homomorphism ~TL : 7r*qi + r*rlz, which in 

local co-ordinates is given by: 

where p = (pi,...,p,) E r*(M) is a covector. The homomorphism PL is 
called the symbol of the operator L. The operator L is elliptic if and only if 
its symbol a~ is an isomorphism on r;(M), or, in terms of local co-ordinates, 
if and only if each map a~(z,p) is invertible, i.e. det a~(z,p) # 0 if p # 0. 

The isomorphism (TL - or rather its stable homotopy class [gL] - is to be 
thought of as a topological “twist” of the elliptic operator L, and determines 
the operator up to the addition of a compact operator. 

For singular integral operators we have m = 0. In the case A4 = S1 and 
any elliptic operator L of order m = 0, the symbol (TL reduces to a pair of 
matrix-valued functions g:(z) = QL(Z, l), c;(z) = ~L(z, -1) on the circle 

S’ = {z E @ 1 ]z] = l}. The Noether-Muskhelishvili formula (1920-1930) for 
the index of L in this case is as follows: 

2-/rind L = 
f  

log det crl (t)dz - 
f  

log det aL (z)dz. 

The general construction of Atiyah-Singer (from the early 1960s) is as fol- 
lows: given our two bundles I*, r*(rjz) over the total space r*(M) and an 
isomorphism go : rr*(~) --+ n*(rjz) between their restrictions to the subman- 

ifold r;(M), there is defined a difference element 

Let D(M) and S(M) stand for the unit disc and unit sphere bundles obtained 
from r*(M) endowed with some Riemannian structure. Going over to the 
Thorn complex Tr* = D(M)/S(M), which is homotopy equivalent to the 
complex r*(A4)/70*(M), we obtain a well-defined element 

d(r*(m), r*(m),oL) E K’(TT*). 

The Atiyah-Singer index theorem consists in the formula: 

Ind L = (4-‘(ch d) .T(Mn), [M”]), 

where T(M) is the Todd genus of the complexification of the tangent bundle 
r over M. 

One of th_e most beautiful applications of this formula yields the interpreta- 
tion of the A-genus of a Spin-manifold M4” (i.e. for which WI(M) = w?(M) = 

0) as the index of the Dirac operator, yielding the integrality of the A-genus. 
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At the present time several different proofs of this theorem are known, 
as well as various generalizations of it. Atiyah-Singer’s first proof was, like 
that of the Riemann-Roth-Hirzebruch theorem, based on cobordism theory. 
Both of these results extend to manifolds-with-boundary, provided that the 
restriction of the operator L to the boundary is Noetherian. 

Thus we see that the link with the theory of linear operators has been of 
great benefit for topology, leading as it has to the discovery of several deep 
algebro-topological connexions. 

By way of an example we shall now give the Atiyah-Bott formula for the 
number of isolated fixed points of a holomorphic self-map 

of a compact Kahler manifold M”. Let pi,. . . , pk be the fixed points of such 
a map f, all assumed to be isolated and non-degenerate. Let T(f) : T -+ 7 
be the derivative of the map f, inducing bundle maps 

T(f) : rll - 71, 71 = P-7, 

T(f) : 772 - 772, Q? = LPddT. 

Let Xlq,...,Lq, Xj, # 1, denote the eigenvalues of the induced self-map 
T(f) of the tangent space 7(pq) to Mn at each fixed point pp. The Atiyah- 
Bott formula (an analogue of the Lefschetz formula) for the number of fixed 
points, is then as follows: 

x(f) = & 
( ) 
fi --!--- j=l 1 - h, = & (n- T(f)l,,(P,,) - Tr PI,&)) 7 

q=l q=l 

where Tr denotes the trace. (The Lefschetz formula for the number of fixed 
points is: 

x(f) = c (-l)“n: ~(f)*IHoP(M)r 
m 

where HOP(M) denotes the vector space of holomorphic m-forms on M”.) 
The above formula has several analogues, including a real analogue where 

M” is endowed with a Riemannian metric and the map f is an isometry, or, 
more generally, one has a f-invariant elliptic complex (or f-invariant elliptic) 
operator L : F(Q) + T(r/2) over M”. In the latter case the spaces Ker L, 
Coker L and the fibers of r]l, ~2 above the fixed points p,, become representa- 
tion spaces for the operator T(f), and the following formula (of Atiyah-Bott) 
holds: 

?1- T(f)ker L -n T(f)koker L = c cn- T(f)i,,(pq) -n T(fh&,)). 
Q 



124 Chapter 3. Simplicial Complexes and CW-complexes. Homology 

In the early 1970s in the course of investigating the “Euclidean” 4- 
dimensional theory of Yang-Mills fields (connexions on vector bundles), “in- 
stantons” were discovered. These are special solutions in W4 of the Yang-Mills 
equations, decreasing to zero as 1x1 -+ 00, so that, in particular, they may be 
extended to the sphere S4 = IX4 U 00 (Belavin, Polyakov, Schwarz, Tyupkin). 

Of particular interest is the self-duality equation of Belavin-Polyakov: 

F = Fabdxa A dxb, *F = fF, 
(8.26) 

Fab = adb - ab& i- [&, Ad, 

for the l-form of a connexion on a vector bundle over S4, which is in fact satis- 
fied by instantons. (Of course instantons satisfy the full second-order Maxwell- 
Yang-Mills system of equations, but the equation (8.26) is first-order.) It turns 
out that all functions globally minimizing the functional 

-s= 
s 

Tr (&,Fab) &d4x = 
s 

Tr (FA*F), 

S* 54 

satisfy the self-duality equation, for a given first Pontryagin class 

PI =const. 
s 

Tr (FA*F), G= SU(2). 

54 

By exploiting properties of the manifold of self-dual connexions on a given 
manifold M4, Donaldson discovered, in the early 1980s deep topological prop- 
erties of 4-dimensional closed manifolds. He was able to show, for instance, 
that for a simply-connected manifold M4 the quadratic form defined by the 
intersection index on H2(M4; Q) can be positive definite only if it is reducible 
over Z to a sum of squares. The remarkable equation (8.26) seems to be spe- 
cific, in a certain sense, to the geometry of 4-dimensional manifolds. Thus 
the theory of non-linear elliptic equations also turns out to be very useful for 
topology. 

It is appropriate to mention also the analogues of K-theory for the category 
of G-spaces -the Kc-theory developed by Atiyah and Segal in the mid-1960s. 
Of particular interest is the special case of the category of spaces with an 
involution (G = Z/2), w h ere the group Z/2 acts on the fibers of vector bundles 
via complex “anticonjugation”. ( “KR-theory” was developed by Atiyah, and 
the important special case “KSC-theory”, by Anderson.) These K-theories 
allow one to obtain various relations between invariants associated with fixed 
points and global invariants of a manifold, and to clarify the algebraic nature 
of the g-fold periodicity of real K-theory. 
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59. Bordism and cobordism theory as generalized homology 
and cohomology. Cohomology operations in cobordism. 
The Adams-Novikov spectral sequence. Formal groups. 

Actions of cyclic groups and the circle on manifolds 

From a geometrical point of view, bordism theory is the most natural ho- 
mology theory. We start with the classical situation where the cycles are taken 
to be any smooth manifolds. In unoriented bordism theory fIp(.) = n,( .), a 
singular n-cycle of a space X is a pair (M”, f), where M” is a closed manifold 
and f is a map of the manifold to X: 

(Mn,f), f : Mn --+ X. 

Two singular n-cycles (MT-, fl) , (M; , fi) are equivalent (or cobordant): 
(Mr, fi) - (MF, f2), if there exists a manifold Lnfl with boundary dL”+l = 
Mp U M; (the disjoint union) and a map g : Ln+’ + X such that 

glhy = fl, 91&f;” = f2. 

Here all manifolds involved are assumed to be embedded into RN for N >> n. 
We now define the n-dimensional bordism group by 

0,0(X) = {n-cycles}/ N , 

where the (abelian) group structure is defined in terms of the disjoint union 
of n-cycles: 

[(MT-, fdl + [CM;, f2)1 = [(Mf u M;, fl u fi)] . 

For a pair of spaces Y c X the relative bordism groups fi,“(X, Y) are defined 
analogously, using maps of manifolds (Mn, f) now possibly with boundary 
dM” # 0, where the boundary 8M is mapped into Y, and defining appropri- 
ately the equivalence -. 

In the general case, there is a bordism theory @(X,Y) associated with 
any stable sequence of Lie groups G = (G,), G, c 0,. The basic examples 
are 

G = 0, SO, U, SU, Sp, e, 

where G, = 0,) G, = SO,, Gan = U,, G2n = SW,, Gdn = Spn, G, = 1. 
Besides these, more examples may be produced by considering representations 

P : G ---+ 0, P = (P,), in : Gn - On, 

for instance G = Spin = (G,) = (Spin.,), pn : Spin, --+ SO, (a double 
cover). 

A manifold M is called a G-manifold when its stable normal bundle is 
endowed with a G-structure. The bordism theory a$(.) is defined as above, 
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assuming that all manifolds involved are embedded into IWN, N >> n, and 
that their normal bundles are furnished with a G-structure. The bordism 
groups O,“(X, Y) have all the basic properties of a generalized homology the- 
ory: homotopy invariance, functoriality, fulfilment of the Excision Axiom for 
pairs Y c X of CW-complexes: L’z(X,Y) = 02(X/Y,*), and existence of 
an exact sequence of a pair (X, Y): 

” + @(Y) + f&y(X) + L?,G(X,Y) + L?:-,(Y) --t . . . . 

The bordism groups O,“(*) of the one-point space * coincide with those of 
spheres; this follows from the suspension isomorphism 

c : fq(X, Y) 3 q!f+,(ZX, ZY), 

in view of which 

.n,“(*) ” f2,“(* u *‘, *‘) 3 fq+&Y’“, *“). 

The bordism groups of a point are called the cobordism groups. Their direct 
sum L?,G = @, a:(*), f urnished with the product operation induced by the 
direct product of manifolds, is the cobordism ring. In Chapter 4, $3, the rela- 
tionship of the cobordism groups Og(*) to the “Thorn spaces” MG = (MG,) 
of universal vector G,-bundles with base BG, is indicated. “Thorn’s theorem” 
yields 

.n,(*) 2 r&(MG) = rr,+k(A4Gk), k > m + 1. 

(Note that the Thorn space MG, is (n-1)-connected.) In particular for G = e, 
the groups 0, coincide with the stable homotopy groups of spheres, which 
were considered at the end of 57 above. Results concerning the rings 0,” for 
other groups G will be given in Chapter 4, 53. 

Dual to the bordism theory @(.) is the cobordism theory JIG(.), the cor- 
responding cobordism groups being defined by 

fl,-(X, *) = Q$-m-l(SN \ X, *‘), N --+ co, 

where the finite CW-complex X is embedded in a sphere of sufficiently large 
dimension. 

By proceeding according to the scheme laid out by Thorn (see Chapter 4, 
$3) one obtains the following natural isomorphism: 

f2Gm(X, *) E ,llm [Cn+mX, MG,] , (9.1) 

where [ , ] denotes the set of homotopy classes of maps. The direct sum 

f4gx, Y) = CB, .n,m(X, Y) can be given a multiplicative structure turning it 
into a skew-symmetric ring. This multiplication is defined as follows. For each 
of the above G, the groups G, are “closed” with respect to the operation of 
taking the direct sum of vector bundles in the sense that this operation gives 
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rise to maps of the corresponding classifying spaces and of vector bundles over 
them: 

BGxBG+BG. 

The resulting map of universal vector bundles 

induces a “multiplication” between the corresponding Thorn spaces: 

where VA W = V x W/V V W is the “tensor” or smash product of the pointed 
spaces V, W. Applying the map MQ,,,,, to the product of maps f, g: 

f:C m1+n1x - M(G,,), g : Cm*+nnX ---+ M(Gn2), 

representing, via (9.1), elements of the appropriate cobordism groups, we ob- 
tain the map 

M@n,,&xg) : ‘r ,,,1+,,iz+“1+“2X~M(G?11)~M(~,,)~~(~,,+,2), 

yielding the desired biliniar, associative multiplication on the direct sum 
L?;(X) of the corresponding cobordism groups: 

L?,m’(X)~ f&y(X) c fl(yf”‘(X), 
(9.3) 

Zl . z2 = (-lpm2Z2 ..zl. 

A closed manifold IP with a normal G-structure possesses a natural fun- 
damental class [API E L$(AP) defined by the identity map 

1 : M” --+ M”; [M”] = [(iv, 111. 

There is a cap product operation which can be defined between cobordism 
and bordism classes, analogous to that defined in ordinary homology and 
cohomology (see Chapter 2, $3): 

O,-(X) n O/f(X) --) Lp(X), 

with the property 
f*(a)flb=anf,(b) 

for maps f of CW-complexes. In the case X = M” the map 

aHan[M”] 
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defines the Poincar&Atiyah duality isomorphism 

This isomorphism induces the operation of intersection of bordism classes 
dual to the product of cobordism classes defined above: 

aob=D-‘(Da.Db). 

As for any generalized cohomology theory, there is a spectral sequence (of 
rings) in cobordism theory (the Atiyah-Hirzebruch spectral sequence): 

(Ekq, dm) i d, : EP$ + Eg+W-mfl, dk =O, 

(9.4) 
E;lq = HP(X; a;(*)), 

with adjoined ring c Ekq = G&$(X). 

Examples. 1. In t;l case G = 0, by a theorem of Thorn from the mid-1950s 
the groups L’;(X) are isomorphic to direct sums of ordinary Z/2-cohomology 
groups of X of various dimensions. The ring structure of L’;(X) is given by 
a canonical isomorphism 

O;(X) E H*(X; a(;(*)), 

where L?;(*) is the polynomial algebra 

with generators vj of dimensions j = 2,4,5,. . ., j # 2” - 1. The Atiyah- 
Hirzebruch sequence collapses (d, = 0 for m 2 2, Ehq = Ei”), and the 

adjoined ring Go;(X) = c Egq is isomorphic to L’;(X). 

2. In the case G = SO, EG structure of the ring Q&,(X) @Z(z), where 2~2) 
is the ring of rationals with odd denominators (i.e. Z localized at the prime 
2) also reduces to that of the ordinary cohomology ring with coefficients from 
Z(z) (by results of Novikov, Rohlin and Wall from around 1960). On the 
other hand, the theory LZ&, (.) @Z@) does not reduce to ordinary cohomology 
for any prime p # 2. In this case the ring L’&, @ izc,) is a polynomial ring 
z(,) [XI, ~2, . .I with g enerators in each negative dimension of the form 4k 
(Milnor, Novikov; around 1960). 

3. The case G = U is the most interesting one, and provides a basis for 
applications of the algebraic techniques of cobordism theory. The ring 06 is 
a polynomial ring with one generator of each even negative dimension (Milnor, 
Novikov; see Chapter 4, 53): 
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The Atiyah-Hirzebruch sequence collapses only for complexes X with torsion- 
free integral cohomology groups; however even for such X the adjoined ring 
Go;(X) need not be isomorphic to L?;(X). 

4. The structure of the ring Q& @ Zt,), for p > 2, as well as some of 
2-primary torsion of fig,, were described by Novikov in the early 1960s. The 
structure of fig, 8 (2) Z was subsequently completely elucidated by Conner 
and Floyd (in the mid-1960s). 

5. The case of the symplectic cobordism ring 0:” turns out to be much 
more complicated than those of the above cobordism rings. It is known that 
all torsion of the ring Q,Sp is 2-primary (Novikov, 1960), and that the Ray 
elements $j E L’fJT-s (indecomposables of order 2) play an exclusively impor- 

tant role in all computations of the ring R, sp. The additive structure of L’s” 
has been computed up to dimension 120 by means of the Adams spectral se- 
quence (Kochman, mid 1980), and the ring structure in the same dimensions 
has now essentially been determined by Vershinin via the Adams-Novikov 
spectral sequence (1990). Vershinin also shows that the cobordism ring of 
symplectic manifolds with singularities (Ray elements) reduces, in fact, to the 
cobordism ring 0,“. Using this Botvinnik has described the Adams-Novikov 
spectral sequence for symplectic cobordism in terms of cobordism with singu- 
larities; further computations have led to the detection of nontrivial elements 
of 0:” of order 2” for any Ic (Botvinnik, Kochman, 1992). cl 

The work of Conner and Floyd focussed attention on the fact that there 
exist Chern characteristic classes in complex cobordism theory ofi (and, 
analogously, there exist Stiefel-Whitney classes in unoriented cobordism the- 
ory L?G(.)). These characteristic classes with values in cobordism groups are 
direct analogues of the Chern and Stiefel-Whitney classes in ordinary coho- 
mology. 

In the case of a manifold M” and a vector bundle r] over M”, this implies 
that the cycles in M dual to the characteristic classes cj(q), wi(n) may always 
be realized as images of manifolds. The first indication of this property of the 
characteristic cycles was given by Gamkrelidze (in the early 1950s) when he 
proved that the characteristic cycles of algebraic varieties in CP may be 
realized by algebraic subvarieties. 

As will be indicated in Chapter 4, $3 (see also $6 above) there exists a close 
link between the Stiefel-Whitney characteristic classes in Z/Zcohomology and 
the Steenrod squares, given by the formula of Thorn; in fact one has a repre- 
sentation of all Steenrod operations a E AZ in the cohomology of the product 
lrw,” x . . . x llw,-: 

By means of this representation one can define appropiate analogues of the 
Steenrod operations for the cobordism theories Q(;(.) and L$(.). 

In what follows we confine ourselves to complex cobordism theory L?; (.). 
(The theory a;(.) is analogous, with considerable trivialization occuring.) In 
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the cobordism group L’:(X) of any CW-complex X, there is a subset W(X) 
of ‘Lgeometric cobordism” classes, defined as follows. Since the Thorn space 
M(U2) may be identified with (CP” = K&2) (see Chapter 4, 53), there 
corresponds to each cohomology class z E H2(X; Z) a unique homotopy class 
of maps 

fi : x --$ M(U2) = (CP”, 

such that f,‘(u) = z, where u E H2((CP”;Z) is a generator; the map fi 
thus determines a cobordism class (geometric cobordism class) [z] E L@(X). 
The set W(X) of all geometric cobordism classes corresponds one-to-one with 
H2(X; Z); however this correspondence is not additive. 

For U-manifolds M2n one obtains a dual (to W(M2n)) set of divisors 

also not additive in Q~~,_2(A42n). 
For each complex vector bundle q over X we define its first Chern charac- 

teristic class al(n) E L’s(X) to be the geometric cobordism class [cl(n)] cor- 
responding, as above, to the first Chern class ci(q 

2 
,in ordinary cohomology. 

The further Chern characteristic classes aj(q) E Ou3(X), 1 < j 5 dimcr], are 
then determined by general functorial properties and the Whitney formula: 

4% @ 772) = 4771)4772)1 o(q) = 1 + 01(n) + az(T7) + . ‘. (9.5) 

The images of the aj(~) in the ordinary cohomology groups are again the 
ordinary Chern characteristic classes. The Chern characteristic classes are 
closely related to cohomology operations in complex cobordism theory O;(.); 
the latter are determined by the following conditions: 

1. For each finite sequence w = (wi, . . . , wk) of integers there is a stable, 
additive operation 

s, : O&(X) + 0, “2’“‘(X), degs, = 21~1, Jw[ = $wi. 

i=l 

(9.6) 

2. The following product formula holds: 

s,(ab) = c sc./ (ah/~ (b). 
(w’,d’)=w 

3. The operation SO is the identity operator: se = 1; if a E Q;(X) is a 
geometric cobordism class, then 

i 

aW1+’ for w = (WI), 
s,a = 

0 for w=(wi ,..., wk), k>l. 

4. If a product s,~ o S,~J of total degree < 2n, vanishes on the element 
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Ul . . u, E f2$yCP,oo x . . . x CP,-), 

where the uj E fl~(CPJ~) are the standard generators, then the product is 
the null operation: sWl o sw” = 0. From this condition the composition formula 
follows: 

SW’ 0 SW” (IL) = c XJW’, W”)& 
w 

where the &,,(w’, w”) are integers. It follows also that the element S,(U), 
11 = Ul”‘U,, has the form of a monomial “symmetrized with respect to 
WI,. , wn’): 

s,(u) = (-&z . . . . . thy; 
> 

Ul . . . u,. 

The operations s, are called Landweber-Novikov operations. These afford 
a basis for the Landweber-Novikov (LN) algebra S over Z, which is a Hopf 
algebra with the obvious (diagonal) comultiplication, defined according to the 
same scheme as Milnor uses for defining the classical Steenrod algebra: the di- 
agonal is determined by the “Leibniz formula” for the action of the operations 
on the product of two elements (see above). Such actions of Hopf algebras on 
modules equipped with a multiplication, are therefore called Milnor modules. 

It is not difficult to show that the algebra AU of all stable operations in 
complex cobordism theory consists precisely of the linear combinations 

where the Xj E A = ~7; have negative dimensions (degrees): 

xj E QG2'j = /ie2qj, degXj = -zqj, 

and the elements s, have positive degrees: 

degs, = 21~1 = 6w.j. 
j=l 

The algebra AU has the grading 

where Ayn consists of the operations of degree 2n, i.e. of the linear combina- 
tions 

c XjS&) 9 deg Xj + deg s,(j) = 2n. 

Here infinite formal series are allowed, with deg s,(j) -+ co as j + 00. 
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The action of the operations s, on the cobordism ring J2’; = A can be 
described explicitly using particular manifolds. Each element of n may be 
represented as a polynomial with rational coefficients in the cobordism classes 
of the manifolds (cP1, . , cCP, . . The tangent bundle r((CP) decomposes 
as follows (see Chapter 4, 51): 

T(cPn) + E$ = (7% + l)rj, 

where q is the canonical line bundle over U’“, for which we have 

q(r)) = u E n$(@Pn), 

D(u) = p-l] E L?&-2(@P”). 

It follows that the stable normal bundle v(@P) may be identified with 
-(n + 1)~. For the element -77 E KO((CP”) the Chern characteristic classes 
in cobordism are as follows: 

q(q) = (-1)&j, Duj = [CP”-j] 

We now define the characteristic class uw, w = (WI, . , wk), as follows. Con- 
sider the symmetric polynomial 

QW(ulr...,uk)= xu;la(l) . . ..$+). 

where summation is over all elements (I of the symmetric group on k let- 
ters. The polynomial Q(ui, . . . , Uk) is uniquely expressible as a polynomial 
P”(ol, 02, .) in the generators aj, where uj is the jth elementary symmetric 
polynomial in ui, . . , uk. Let Ow, w = (WI,. . , wk), denote the characteristic 
class 

u - P”(fq, c72,. . .). w- 

We now apply the class ow to the bundle -(n + 1)~ (stably equivalent to the 
normal bundle v(@.P”)), h w ose Chern class a(-(n + 1)~) is the following: 

o(-(n + l)T/) = 1 + dl + a2 + ‘. . = 
(1 + &+I. 

A simple computation shows that the dual of the class a,(-(n + 1)~) E 
O,$” ((CP) is the cobordism class [UY”-l”1] times an integer X(w). This 
determines the cobordism operation s, as follows: 

&JCP”) = X(w) [@P”+q ) IWI = 5wj 
j=l 

(9.7) 

A complete description of the action of the cobordism operations on the cobor- 
dism ring 0; = n is now obtained from (9.7) using the properties: 
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together with SO = 1 (for the empty u). (This was established by Novikov 
in the mid-1960s.) This representation of the algebra AU of operations of 
complex cobordism theory Q;(.) by means of its action on the coefficient 
ring Q; = A, is faithful, i.e. if a E AU acts trivially on A then a = 0. This 
property represents a cardinal distinction between complex cobordism theory 
and ordinary cohomology. 

It is of interest to note that the algebra AU may be given as the completion 
of the product of two algebras with respect to the topology of formal series: 

AU = (A ~8 S)T. 

This product is isomorphic as vector space to the tensor product of these alge- 
bras, but the multiplication is not the usual one. They form non-commuting 
subalgebras; the Novikov formula for their commutator given above (see 9.8) 
depends on the action of the Landweber-Novikov algebra S on the complex 
cobordism ring described above. What is significant here is that this action 
determines a “Milnor module” over the Hopf algebra S, i.e. that it satisfies 
the Leibniz product formula with respect to the comultiplication. The algebra 
AU is realized as the algebra of operators on the (left) Milnor module A over 
the Hopf algebra S, realized in turn as the algebra of differential operators 
with constant coefficients, acting on the functions “belonging to the ring A”. 
This is a special case of a rather general construction of “operator algebras” 
by Novikov (in the early 1990s) in the context of the theory of Hopf algebras 
and Milnor modules over them. 

In 1978 Buchstaber and Shokurov observed that the natural dual Hopf 
algebra to the Landweber-Novikov algebra S, contains the ring .4 of “complex 
cobordisms for the one-point space”: 

ncx*, A@Q=S@Q. 

(Via the Chern numbers (giving the integral structure of A as known from 
earlier results of Milnor and Novikov) the ring A was analysed by Buchstaber 
from this new point of view in the late 1970s; its structure turned out to be 
highly non-trivial.) We may therefore regard this construction as a special case 
of the very general construction of the “operator double” of the Hopf algebra 
S and its dual S*, in the sense of Novikov (1992). There are natural actions 
R;t, Lb* of an arbitrary algebra S on its dual space S*, which are adjoint to 
right and left multiplication respectively: 

%(a) = L,(b) = ah (Rj(z),z) = (z, R&)) = (z,zy). 
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In the situation of Hopf algebras one has the Leibniz property, i.e. S* is a 
left (or right) Milnor module over S in the natural way; in fact S* can be 
made into a left Milnor module over the larger Hopf algebra S @I St using the 
representation p* satisfying 

where s indicates the “antipodes” of a Hopf algebra, and St denotes the alge- 
bra S with “transposed” comultiplication and consequently with the opposite 
antipodes. Restriction of the action of p*i to the diagonal A(S) c S @ St 
yields an “ad-module”. The diagonal restriction of the operator algebra act- 
ing on S* (as Milnor module) leads to Drinfeld’s “quantum double” of the 
Hopf algebra S, again a Hopf algebra, with diagonal as in S* and St. 

Buchstaber and Shokurov have identified the algebra A’ with the alge- 
bra of differential operators on the group of formal diffeomorphisms of the 
real line fixing 0 and with first derivative at 0 equal to 1. It follows (as was 
pointed out by Novikov in 1992) that the algebra AU is the operator double 
of the Landweber-Novikov algebra S corresponding to the Milnor module S* 
equipped with the action Rz; this affords a basis for the general notion of the 
“quantum analogue of rings of differential operators” according to Novikov’s 
scheme (1992), where such an analogue was considered in the case of Fourier 
transforms. Various “almost-Hopf” properties of such operator doubles were 
investigated by Novikov (in 1992) and Buchstaber (1994). A special case of 
this construction of operator doubles was investigated independently in 1992 
by Semenov-Tyanshanskii, Faddeev and Alexeev, who used instead the term 
“Heisenberg double”. 

It turns out that complex cobordism theory 0;(.) may be used very ef- 
fectively for computing stable homotopy classes of maps of finite complexes 
by means of the Adams-Novikov spectral sequence (an analogue of the Adams 
spectral sequence described in §6,7 above). The group of stable homotopy 
classes of maps K --+ L is defined by 

[K, L]’ = /imJCjK, ZjL]. 

Set 
[K, L]; = [CqK,L]‘, [K, L]; = @[K, L];. 

4 

Thus from the stable homotopy classes of maps K -+ L, we obtain the graded 
abelian group [K, L]S,. For K = L = So, in particular, we obtain the direct 
sum of stable homotopy groups of spheres: 

[SO, so]: = @r; = @rN+q(SN), N > q + 1. 

n20 q20 

How does one compute [K, L]“,? Let M, N denote the graded Au-modules 
Q;(K), O;(L) respectively. There exists a spectral sequence (the Adams- 
Novikov spectral sequence) 
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Ekq, d, : Ekq --+ Eg-mVq+m-l, d; = 0, E;lI = H(E;*,d,), (9.9) 

with second term 
E;,q = Ext;: (N, M) , 

and adjoined group 
G[K,L]; = c Egq 

p-q=n 

Note that Ext:$ (N, M) coincides with the set of Au-module homomorphisms 

N = R;(K) + f2;(cqL) = CQM, 

of degree q: 
Ext>z (N, M) a! Horn:, (N, M). 

Here CQM coincides with M, but the grading is shifted by q. 
The definition of the functor Ext>* ( , ) (basic to homological algebra), 

where A is a ring, is as follows (in the case when A = A’). Given any AU- 
module N, we can form its free acyclic resolution (respecting the grading on 
N); this is a complex C of Au-modules of the form 

. . . +cc,~c,-$+c,-z -%...~C1%C,,$V--,O, 

where all of the Cj are free Au-modules (whose free generators can be cho- 
sen compatibly with the grading), the operators d preserve the grading, and, 
finally, Ker d = Im d everywhere. We therefore have N g Co/Im d. We now 
form the dual complex C* = HomAu(C, M): 

where 

c; = @qq = @HomP,U(C,, M) = @Homiu(&, CqM). 
9 4 Q 

The homology groups of the complex C* are then the objects Ext;:: 

@ ExtpAz (N, M) = @ Ker a*/Im d*. 
4 Q 

It can be shown that these groups do not depend on the choice of the free 
Au-module resolution C with the prescribed properties. 

Remark. The objects Ext>* for an arbitrary ring A, were first introduced 
into homological algebra by Eilenberg-MacLane in the late 1940s. The follow- 
ing theorem is due to them: 
If A = Z[T], th e integral group ring of a group x, and Z is given the trivial 
A-module structure, then there is an isomorphism for any A-module M: 
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Ext>(Z, M) ” Hq(K(n, 1); M). 0 

In the case K = So, the Adams-Novikov spectral sequence converges to 
the stable homotopy groups of the complex L: 

A4 = n = .n;, N = Q;(L), 

EZpyq = Ext”A;(N, /l). 

The existence of the Adams-Novikov spectral sequence (9.9) with second 
term Ext>: represents a quite general categorical property of a generalized 
cohomology theory h*(.) defined on the stable category of stable homotopy 
types and stable homotopy classes of maps. (Note that the stable category is 
not abelian in the sense of Grothendieck, although stable homotopy classes of 
maps always come with the natural structure of a graded abelian group. Note 
also that in K-theory there is no such spectral sequence since that theory 
is defined in terms of non-stable objects.) The usefulness of a generalized 
cohomology theory h*(.) f or solving particular problems depends of course 
on the specific properties of that theory: how efficiently the algebra Ah of 
stable operations can be computed; to what extent the structure of the Ah- 
module h*(X) can be worked out for particular spaces X, and, finally, how 
many non-trivial differentials d, there are in the Adams-Novikov spectral 
sequence corresponding to the theory h*(.) (the fewer, the better). In the 
latter respect complex cobordism theory Q,$(.) has a significient advantage 
over ordinary Z/pcohomology theory (especially for primes p > 2), and is 
essentially no worse as far as computations of the appropriate algebraic objects 
are concerned. For example for the stable homotopy groups of spheres one has 

E;l* = Ext=;;(n, /l), 

and the groups ExtiT, contain the lower estimate of Kervaire-Milnor for the 
groups Jr,- 1 (SO), which is not the case for the ordinary Adams spectral 
sequence. (For the definition of the J-homomorphism, see $8 above, and Chap- 
ter 4, $3.) The groups Ext”* AU yield much new information, as do the higher 
terms. In the 1970s several authors carried out far-reaching calculations of 
the Adams-Novikov spectral sequence for spheres (Miller, Ravenel, Wilson, 
Buchstaber and others) .14 

The first Chern class 01 in complex cobordism theory has certain remark- 
able properties. It was mentioned above that for a complex line bundle q, the 
class a(q) is a geometric cobordism class. How may one compute the class 
al(ql@ r/z) for line bundles ~1, r]z? 

Write (T~(T]I) = U, gl(r/z) = V. It can be shown that the class gl(ql 8~~) is 
representable as a power series in u, 2, (Novikov, in the mid-1960s): 

l4 7Vunslator’s note: For a general account of the results on computations in the Adams- 
Novikov spectral sequence for spheres see the book D. Ravenel, Complex Cobordism and 
Stable Homotopy of Spheres, Academic Press, 1986. 
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for which the defining conditions of a commutative formal group hold: 

Let 7-l be a complex line bundle such that 77 @ q-l is the trivial line bundle. 
The Chern class ai(v-‘) = G say, is a power series in u = ~1 (r]) of the following 
form: 

ii=-u+ c PiUi, Pi E n7 
i>2 

with 
f(u,G) = 0. (9.11) 

The resulting formal group f(u, w) of geometric cobordism classes can be 
explicitly calculated in term of the series 

namely as (Mishchenko, in the late 1960s): 

f(‘lL, w) = L7-%7(4 + g(w)). (9.12) 

By means of the formal group f(u, w) one may define (and calculate) ana- 
logues in fiG(.)-theory of the Adams operations constructed in K-theory using 
representations of the groups U,. We define 

!Pk(u) = ;g-ykg(u)), u E L$(w=), 

where u is as before the geometric cobordism class cl(q). We require that the 
operations P” have the following properties, analogous to those of the Adams 
operations in K-theory: 

!Pk(z + y) = !Pk(x) + *k(y), (9.13) 

!P(a: . y) = !P(x) S"(y). 

The operation Pk is then well-defined in the theory Q;(.) @ Z [i] by (9.13) 
(Novikov, in the late 1960s). 

Let k be any algebra over the rationals. In many situations it is useful 
to have a classification of the ring homomorphisms Q : 0; + k. It was 
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shown by Hirzebruch that such a homomorphism Q is determined by a series 
Q(Z) = 1 + qlz + q2z2 + . (see Chapter 4, $1-3). Writing Q(@pN) for the 
value of Q at CP”, one has the formula (Novikov, late 60s) 

SQ(u) = c QW$ = Q(du)>, 
7X10 

whence 

Q(z) = +-- 
Q 

Thus we see that the series g(u) determining the above formal group, makes 
an appearance also in this context. 

A natural analogue of the Chern character (the Chern-Dold character, 
whose existence was first established by Dold) can be effectively constructed 
by means of the series g(u). This character is given by a A-algebra homomor- 
phism 

ChU : L?;(K) ---+ H*(K;n@3Q), n = .n;, (9.14) 

determined by the requirement that for K = CP”O and u the same generator 
as above, 

chU(g(u)) = t E H2((CP2;Z), (9.15) 

where t is the canonical generator. (The theory of the character chu and 
various applications of it were introduced by Buchstaber in the late 1960s.) 

At the end of the 1960s Quillen showed that the above formal group of 
geometric cobordism classes is in fact a geometric realization of the universal 
Lazard formal group of the theory of one-dimensional formal groups. He was 
able to calculate effectively important projective operators in the algebra 
AU 8 Z(,) (where iz@) is the localization of Z at the prime p), thereby com- 
pleting the computation of the “reduced” complex cobordism theories (now 
known as “Brown-Peterson” theories BP*(.)) into which the theory 0fi(.)@U&, 
decomposes as their direct sum. (The existence of the theories BP*(.) was es- 
tablished (non-effectively) by Brown and Peterson in the mid 1960s. Such 
projectors had earlier, though not sufficiently effectively, been constructed 
by Novikov.) This approach has proved effective for computing the groups 
Ext;: @ Zc,) figuring in stable homotopy theory (see above).15 

Later (in the early 1970s) two-valued analogues of the formal groups were 
introduced into cobordism theory by Buchstaber and Novikov. Through the 
1970s the associated algebraic theory was developed by Buchstaber, who also 

l5 ‘D-anslator’s note: Formal group theory has been applied to great effect in computions 
of the Adams-Novikov spectral sequence for spheres (Miller, Morava, Ravenel, Wilson, and 
others). There are other cohomology theories generalizing both K-theory and complex 
cobordism theory, namely the “Morava K-theories” K(n)*(.), that have been effectively 
formulated in terms of formal group theory, and have proved very useful in computations 
with the Adams-Novikov spectral sequence as well as for investigations of the general prop- 
erties of the stable homotopy category. (For details, see D. Ravenel, Complex Cobordism 
and Stable Homotopy of Spheres, Academic Press, 1986.) 
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gave several applications of this theory to symplectic and self-dual cobor- 
dism theories. Algebraic topology from the point of view of cobordism theory 
has been elaborated by several authors (Dieck, Gottlieb, Becker, and others); 
however we shall not pursue these further developments here.16 

In the early 1960s it was observed by Conner and Floyd that bordism the- 
ory can be used to obtain various results concerning smooth actions of finite 
groups and compact Lie groups on closed manifolds. We shall now consider 
some of these results. Suppose for instance that we are given a diffeomor- 
phism of order p (prime) T : M2” + M2n Tf’ = 1 where M2” is a closed 
U-manifold, with isolated fixed points pl, . .‘. ,p,. The restriction of the dif- 
feomorphism T to a sufficiently small sphere in M2” centered at pj has no 
fixed points, and determines a singular complex bordism, namely a map of 
the appropriate lens space (as orbit space) to the Eilenberg-MacLane space 

KWP, 1): 

fj : s,2”-l/z/p - Sjoo/U~ = K (UP, 1)) 
(9.16) 

w; = (Sj2n-1/Z/p,fj) ) WjT E LIZ”,-1 (sj”/z/p) . 

The bordism class of wT depends only on the differential dT : T(M),~ ---+ 

+-f)P, at the point pj, i.e. on the eigenvalues Xi, , X, of the complex 
matrix A.j = dTpl : 

WT = wjT(Xl,. , L), A,(&) = exp(2~q,/p), qq E (‘UP)*, 

where the xjq are non-zero residues modulo p. By removing open neighbour- 
hoods bounded by the spheres S7-l from the manifold M2n, one obtains a 
manifold on which Z/p acts without fixed points. In particular, this yields the 
relation 

c wjT=o. 
in the group 0&-i (S$F/Z/p). 

In the case p = 2 we have xjq = 1, and from knowledge of the structure of 
the group 

J-g-1 fsj”/z/2) = g-1 W”) 

we infer (see below) 

T wj = a,, 2+lan # 0, 2na, = 0, 

so that the number of fixed points must be divisible by 2” (Conner and Floyd, 
in the mid-1960s). 

16The theory of two-valued formal groups (developed in the late 1970s - mid 1980s 
by Buchstaber) provides a powerful tool for computations in the Adams-Novikov spectral 
sequence for the simplectic cobordism ring (Buchstaber, Ivanovskii, Nadiradze, Vershinin). 
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The case p > 2 is more complicated since the bordism classes wT (our 
invariants of the fixed points) depend on the residues xj,r E (z/p)* for which 
of course there are more choices than before. It turns out that the classes wjT 
can be effectively calculated as functions of the residues (Novikov, Mishchenko, 
Kasparov, in the late 1960s): writing wT = cr(xji, . ,xjn), we have 

cy(Xjl,... ,Xjn) = fi q=l g-l(x;qg(u)) r-- a ‘. .) l). (9.17) 

The groups 06 (S 2”-‘/Z/p) 
S2n-1/Z/p may b d 

and 0: (S’,-‘/,/p) for the lens spaces 
e escribed explicitly using formal group theory as follows. 

(We note that the first partial results about these cobordism and bordism 
groups were obtained by Conner and Floyd in the early 1960s.) Consider 
the spaces S,““+‘/Z/p c ST/Z/p as representatives of the bordism 
classes cu(xji, . . xjn) E .nz”,+r (S”/Z/p). The geometric cobordism class u E 
0; (S2+‘/Z/p) generates the ring 0; (S2nf1/Z/p) (as J$-module) with 
relations: 

un+2 = 0, g-l(pg(u)) = 0, 

Du” = a( 1,. . ) 1 ) = o!,-k E @-k)+1 (P+‘/Z/p) ) 
\ ” , 

n-k times 

(9.18) 

The sets {xji, . , xjn} of residues (j = 1, . . . , m) actually realizable as corre- 
sponding to the set of fixed points pl, . ,p, E M2” of some Z/p-action on 
M2n, must satisfy 

m 
C”(Xjl:. . . ,XjJ = 0. (9.19) 

Brmgmg m the formula (9 :;)r 
. . . 

. > we obtain from (9.19) a system of equations in 
the mn variables x:jq ( f 0 mod p) determining the set of admissible residues 

“CP?. 
We remark that the bordism class [M”“] in the group L?zn 8 Z/p can also 

be computed via the residues xjq. 
The above discussion carries over to oriented cobordism theory, with some 

simplification, by means of the homomorphism 0; + L’&. Here, however, 
the case p = 2 is special and requires different techniques. The formula (9.17) 
generalizes to the situation where the fixed point set of the transformation is 
a submanifold of M with a nontrivial normal bundle. The situation where a 
cyclic group of composite order acts on a manifold has also been investigated 
(by Mishchenko, Gusein-Zade, Krichever, in the early 1970s). 

Especially interesting results have been obtained in the situation where the 
circle S’ acts smoothly on an oriented or U-manifold. For instance, Gusein- 
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Zade (ca. 1970s) has completely described the bordism groups arising in con- 
nexion with actions of S’ on manifolds such that there are no points fixed 
by the whole group S1. It turns out that these bordism groups contain in 
a natural way invariants of (and relations between) the fixed points for any 
smooth action of the circle on a manifold. Several elegant results of this type 
for smooth actions of S1 on U-manifolds, using complex cobordism theory 
and formal group theory, were obtained by Krichever in the first half of the 
1970s. We shall now describe two such results. 

1. Let A(k) be the characteristic class determined by the series 

kue” 
A(w = &-y_l’ 

(see Chapter 4, $3); then for each U-manifold M2n this characteristic class 
determines the rational number Ack,(M2”). If the circle S’ acts smoothly on 
a U-manifold M2” for which k divides c~(M~~), then Ack)(M2”) = 0. In the 
case k = 2, the number Ap,(b~f~~) coincides with the signature of M2”. (The 
latter result was proved by Atiyah-Hirzebruch via the Atiyah-Bott formulae 
for Spin-manifolds.) 

2. If S1 acts on a U-manifold M2n, then the linearization of this action 
on the normal bundle to the submanifold Nj” c M2” (j = 1,. . . , m) of fixed 
points, has eigenvalues 

~lj~~~~~~n-k,j~ Xqj = exp(2+n,j), 

where the n,j (the weights) are integers. Let lj denote the number of negative 
weights n,j < 0, and let TzI be the characteristic class with values polynomials 
in y, determined by the Hirzebruch series 

Ty(4 = (Y + lb 
1 - exp(-u(y + 1)) - y”’ 

Then the following formula holds: 

2 Y’JT,(N;) = T?I(M2n). (9.20) 
j=l 

For y = 1, the value of Tl on manifolds coincides with their signature, and 
this case of the above result was obtained earlier by Atiyah-Hirzebruch using 
the theory of elliptic operators. Putting y = -1 yields the Euler-Poincare 
characteristic: T-l(M) = x(M), and (9.20) reduces to the classical formula 
for x(M).17 

“Around 1990 further important results were obtained concerning actions of the circle on 
manifolds. Certain of the ideas of “global analysis on loop spaces” first appeared here (Wit- 
ten, Taubes), the elegant notion of “elliptic genera” (Oshanine, Landweber), and certain 
generalizations of these such as the Baker-Akhieser functions (Krichever). 
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Chapter 4 
Smooth Manifolds 

$1. Basic concepts. Smooth fiber bundles. Connexions. 
Characteristic classes 

The topology and geometry of smooth (differentiable) manifolds is the most 
important area of study in topology, the source of and most fruitful field for 
applications of the whole complex of topological methods, closely linked with 
analysis and, particularly in recent times, with contemporary mathematical 
physics. The elementary theory of smooth manifolds was created by Whitney 
in the mid-1930s. 

The internal definition of a differentiable manifold is as follows: it is in the 
first place an (n-dimensional) topological manifold (see the conclusion of 51 of 
Chapter 2), i.e. a Hausdorff topological space X for which there is a covering 
collection of open sets V,, lJ, V, = X, each homeomorphic to (an open region 
of) W. Such homeomorphisms 

then determine local co-ordinates (xk, . ,x2) on each open set (or chart or 
local co-ordinate neighbourhood) V,. The manifold X is said to be smooth 
of class Ck if on each region of intersection V, n VP the transition functions 
expressing one set of co-ordinates in terms of the other are smooth of class C”, 
i.e. the maps 4,$,’ and 404;~ between the appropriate regions of Euclidean 

n-space are functions of class Ck, Ic > 0. (If k = oo the manifold is said to 
be infinitely diflerentiable, or just smooth. A real-analytic manifold is one for 
which the transition functions are real-analytic.) 

Manifolds will be denoted by IP, N”, etc. Note that the Jacobian 

det(G’xA/dxi) 

of the transition function xa(xa) is non-zero everywhere on V, n Vo, since 
if it were zero at any point, then the inverse function xp(xa) would not be 
smooth. 

The development, at the elementary level, of techniques for studying 
smooth manifolds, requires the existence of partitions of unity, i.e. the exis- 
tence, for each open cover {I&} of a manifold M”, of open sets IV, c IV; C V, 
such that U, W, = M”, and of real-valued functions qcl 2 0 of class C” de- 
fined on Mn, with the following properties (see Figure 4.1): 

$J~ 3 1 on Wa:; +,, z 0 outside WA; 

00 > C,$)a(x) > 0 for each x E M”; C& = 1, where & = $)a/x+or. 
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Fig. 4.1 

&ample. For compact manifolds M”, partitions of unity exist for all fi- 
nite covers {Va} of M” by local co-ordinate neighbourhoods. If we multi- 
ply the local co-ordinates xj, on each region V, by the function Q, (see 
above) of a corresponding partition of unity, then the resulting functions 
q!~~xj, = y: say, are defined and smooth on the whole manifold Mn. If the cover 
WY> = vl,... , VN}, then the collection of functions {yi} ,j = 1,. . . , n, 
(Y = 1, . , N, defines a C”-embedding 

{yi} : M” + RWnN, 

since $,cy = 1 on W, and any two points of W, are distinguished by their local 
co-ordinates x”,. (For non-compact manifolds the analogous argument yields 
an embedding into Hilbert space.) Using the idea of “general position” (see 
below) and projections of the above embedded manifold onto k-dimensional 
hyperplanes, it can be shown that for k 2 2n+l the set of smooth embeddings 
Mn -+ lRk is everywhere dense in the space of smooth (even just continuous) 
maps Mn -+ iRk, and the set of smooth immersions likewise for k > 2n. In 
the case n = 1 this is visually obvious - see Figure 4.2. 0 

A smooth map f : Mn --+ Nk between two smooth manifolds is a 

map each of whose expressions in terms of local co-ordinate systems 
{xja Ij=l,... , n} on the charts V, of Mn and {y+ ) s = 1,. . , k} on the 

charts U, of N” is made up of smooth functions y$(zi, . ,x”,) (in the usual 
sense). (Here each domain of definition of these functions has the form 

At each point x of Mn the rank (rank f(x)) of the smooth map f is defined to 
be the rank of the matrix (ayt/axj,) evaluated at x. The rank at each point 
is an invariant of f  (in the sense that it is independent of the particular local 
co-ordinates in use). 
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(i) S’ --+ lR3. 
In general position 
this is an embedding 

(ii) S’ - lR*. 
The projection to R2 
has self-intersections not 
removable by means of small 
perturbations: the tangent 
vector field (in general 
position) is non-degenerate 

Fig. 4.2 

An immersion f : M” -+ N” is a smooth map with the property that 
at every point x E Mn the rank of f is n (so that we must have n 5 k). A 
submersion is defined by the requirement rank f E k (so that n 2 k). An em- 
bedding f is a one-to-one immersion: f(x) # f(y) if x # y. A diffeomorphism 
f : MT- * MT between two smooth manifolds is a smooth homeomorphism 
with smooth inverse. 

The smoothness class C” of a manifold is, beyond the basic assumption that 
k > 1, not of great significance for topology, in view of a theorem of Whitney 
to the effect that any C”-manifold is diffeomorphic to a unique C”-manifold, 
in fact to a (unique) real-analytic manifold. (It was further shown by Morrey 
(in the late 1950s) that any real-analytic manifold can be embedded real- 
analytically in some P; this is a difficult result requiring more recent methods 
of the theory of complex manifolds.) In the sequel we shall therefore frequently 
assume, without explicit mention, that our smooth manifolds and maps have 
smoothness class C”, and shall not distinguish diffeomorphic manifolds. 

Beginning with Whitney, lemmas (due also to Brown, Sard, and others 
in the 1930s) concerning “general position” have come to play an important 
role in connexion with the techniques employed in studying the topology of 
smooth manifolds. The simplest such result states that a real-valued map 
f : Mn + Iw of class Ck for k sufficiently large, always has the property 
that the image f (2) of the set 2 of critical points (i.e. points x E 111” for 
which grad f(x) = 0), h as measure zero in R. (For compact Mn the set f  (2) 
is closed, and its complement has positive measure.) More generally, for any 
map f  : Mn -+ Nk with k < n, of sufficiently high smoothness class, the 
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set f(2) has measure zero in Nk, where Z consists of the points x E M” for 
which rank f(x) < k. Note also that for any Cl-map Mn --f Nk with k > n, 
the image f(Mn) has measure zero in N Ic. In all of these situations the points 
in the codomain Nk outside the set f(2) (f(M”) in the latter situation where 
k > n) are said to be in general position with respect to f. We shall describe 
the various essential lemmas about bringing maps into general position, as 
the need for them arises. 

Recall that a tangent vector to a (smooth) manifold M” at a point x0 of 
M” is the velocity vector (dxj,/dt),, at x0 to a parametrized curve x’,(t) (in 
local co-ordinates on a chart V, containing ~0) passing through x0. The vector 
space IF& of all tangent vectors to Mn at x0 is called the tangent space to 
M” at x0. 

Let (r&, . . . ,qE) be any tangent vector to a point x E M”, in terms of 
local co-ordinates XL,. . . , x”, on a local co-ordinate neighbourhood containing 
x. Under a change to co-ordinates xb, . . . ,xz (with Jacobian matrix lap = 

(G’x$/axi)), the components of the tangent vector transform according to the 
rule 

ax; 
$ = qig (with summation over j). (1.1) 

a 
On the other hand the gradient, and, more generally, differential l-forms given 
in local co-ordinates by C Q&X; = Q&X:, transform according to the rule 

(1.2) 

More general tensors of type (m, k), with components 

relative to local co-ordinates xi, . . . , x:, transform under co-ordinate changes 
LY -+ ,D in the appropriate way (obtained by “extrapolating” from (1.1) and 
(1.2)). A little more detail is in order. In terms of local co-ordinates xk, . . , x”, 
in some neighbourhood of the point x of interest, there are the usual standard 
basis vectors el,, . . . , ena for the tangent space at x, and the correspond- 
ing dual basis of covectors ek, . . . , en, for the dual space, with scalar product 

(eh, eja) = Sj, given by evalulating each ej, at the eja. Thus each vector 77 in 
rWz has the unique form r]&eja E rW2, and each covector q* the unique form 
QaeL E IQ”. At each point x E M” we then have the space of tensors of type 

h k) 
I%; 63 ’ . ’ @RpR~*@-.@R~*, 
-- 

m k 

with standard basis (relative to the prevailing local co-ordinates) consisting 
of the expressions 
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An arbitrary tensor (of type (m, Ic)) at the point z has the form (in the local 
co-ordinates ICY, . . . , z”,) 

where the summation convention is assumed (and the index cr suppressed). 
The basic vectors eja correspond naturally to the operators a/ax&, and the 
dual-basis covectors ej, to the differentials dxj,: 

eia H c?/~x$; e: H dxj,. 

A tensor field of type (m, k) is then a smooth function assigning to each point 
5 of M” a tensor of type (m, Ic). 

The usual tensor (field) operations (contraction, product, permutation of 
indices, etc.) and the Einstein summation convention (whereby any index 
appearing as both superscript and subscript in a single expression is auto- 
matically summed over) will be used without comment in what follows. 

Skew-symmetric tensors (more precisely tensor fields) with lower indices 
only, i.e. of type (O,Ic), are of particular importance; they have the alter- 
native name differential forms and are usually written as follows (in local 
co-ordinates): 

fik = iTi,,,,ikdxil A’.’ Adxi”, (1.3) 

in view of their use in integration theory. The exterior product fik A 01 of 
differential forms is defined algebraically by means of the tensor product and 
the “alternation” operation making the exterior product skew-symmetric: 

In terms of the local notation (1.3) for differential forms, the exterior product 
is determined uniquely by the conditions of associativity, commutativity with 
scalars, and 

dxi A dxi = -dxi A dxi. (1.4) 

The differential operator d on forms is defined by the following conditions: 

(i) df = -$dx$ 
Q 

for real-valued functions 

(ii) d(dxil A . . . A dx2k) = 0; 

(111) d(f .nlc) = df A & + f d&, f any scalar function. 

From these we infer 

dod=O, d(.&Ai2~)=df&A~~+(-l)“f&Adf& 

Finally we mention the important concept of a Riemannian or pseudo- 
Riemannian metric on a manifold IMn; this is a non-degenerate symmetric 
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tensor (field) of type (0,2) depending smoothly on the point 5 of Mn. In local 
co-ordinates (XL), it will have the form (gij), with gij = gji and det (gij) # 
0. Such a tensor determines a symmetric scalar product of pairs of tangent 
vectors (at each point x), pairs of covectors (and in general pairs of tensors of 
any type) in the natural way: 

(771,7?2) = rlggij, 

As a tool for investigating the topology of manifolds, usually Riemannian met- 
rics are used, i.e. those for which det (gij) > 0. However pseudo-Riemannian 
metrics occur not infrequently; they are important not only in the theory of 
relativity, but also for instance in studying the geometry of semisimple Lie 
groups. 

A Lie group is a smooth manifold IP equipped with a smooth binary 
operation 

P:M”xMn*Mn; @(X,Y) =x.y, X,Y E M”, 

under which Mn is a group: (x. y) . z = z. (y . z); there is an identity element 
1; each element x of M” has an inverse element 5-l (xx-l = x-1x = l), and 
this inverse should vary smoothly with 2. 

Let x1, . . . , xn be local co-ordinates of a Lie group M” in a neighbourhood 
of xc = 1. In terms of such co-ordinates the group operation z = !P(z, y) has 
the form 

zi= !P(xl,... Jn,YIY.,Yn), 

whence by Taylor’s theorem 

zi = xi + yj + bj,,x”y” + 0(/x1 . lyl), 
(1.5) 

(~-l)j = -,j + o(lxl). 

The Lie algebra of the Lie group M” is the tangent space to M” at x0 = 1, 
equipped with the bracket operation defined (in terms of local coordinates in 
a neighbourhood of 1) by 

[C, Vlk = CbSs - btj)Ji77S1 (1.6) 

where < = (cl,. . . ,<“), n = (T$, . . , qn). It is immediate that this operation 
is bilinear, skew-symmetric ([E, q] = -[v, <I), and satisfies Jacobi’s identity: 

KI’ll7Cl + h~17Jl + K751~Vl = 0. (1.7) 
The most important Lie groups are groups of matrices over various fields, 
in particular Iw, Cc and also the skew-field Ml of quaternions. The group O,,, 
consists of the linear transformations of the vector space Rn, n = p + q, 
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preserving a symmetric scalar product of signature p, q. The orthogonal group 
0, (= On,,) is of course of particular importance. Analogously, the group 
UP,, consists of the linear transformations of @“, n = p + q, preserving an 
Hermitian scalar product of signature (p, q), and lJ, = U,,e is the unitary 
group. The respective subgroups SO,,,, SO,, SUP,,, SU,, and SL,(R) c 

G&(R), s-L(@) c GL(@) ( w h ere SG denotes the subgroup of matrices of 
determinant 1 of the matrix group G) are also important. Finally, Sp, denotes 
the subgroup of n x n orthogonal quaternionic matrices. The Lie groups O,, 
U,, SO,, SU,, Sp, are all compact, and by the theorem of Cartan-Killing 
there are only finitely many (namely 6) compact, simply-connected, simple 
Lie groups not locally isomorphic to a group in this list of matrix groups. In 
fact every compact Lie group G is of the form 

(T” x G1 x G2 x . . x Gk) /D, 

where Tn is the n-torus, the Gi are compact, simply connected, simple Lie 
groups (and so figuring in the Cartan-Killing list), and D is a finite subgroup 
contained in the center. 

A smooth fiber bundle is defined as in the general case (see Chapter 3, $6) 
except that now the spaces E, B, F are all required to be smooth manifolds, 
the projection p is a smooth map, the transition functions are likewise smooth, 
and the structure group G c Diff F, i.e. is a subgroup of the group of dif- 
feomorphisms of the fiber F. (In the most important situations G is a Lie 

grow) 
A (smooth) vector bundle is a smooth fiber bundle where the fiber F is 

a vector space on which the structure group G acts as a group of linear 
transformations. The two most important types are real vector bundles, where 
F ” R”, G c GL,(iR), and complex vector bundles, where F g C”, G c 

G-L(Q. 
An important example is the tangent bundle r = r(M”) of a smooth man- 

ifold M”, with F g Iw”, G = GL,(IR) and base B = Mn; the total space is 
denoted by T(M”). Note that a cross-section of the tangent bundle is just a 
(tangent) vector field on Mn. If a Riemannian metric is given on M, then the 
structure group reduces to 0,. 

From the tangent bundle over Mn one can construct many important asso- 
ciated vector bundles over Mn, with the group GL,(lR) acting on the various 
fiber-manifolds. For example if we take as fiber the dual space lQ* at each 
point z E M” (i.e. the space of tensors of type (0,l)) we obtain the cotan- 
gent vector bundle T* with total space denote by T*(M”). More generally, 
the action of the group GL,(IK) on the vector space of tensors of type (m, k) 
yields an associated vector bundle over Mn with fiber this space of tensors; 
this bundle is denoted by 

m times k times 
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Similarly, one can form the exterior powers Lo” of the cotangent space 
r*. Differential forms on Mn are then cross-sections of such vector bundles. A 
Riemannian metric on M” may analogously be regarded as a cross-section of 
the symmetric square S2r of the tangent bundle, obtained as the symmetric 
part of 7 8~. 

A further example of a vector bundle associated with the tangent space, 
is that where the fiber above each point consists of the ordered I+tuples of 
linearly independent tangent vectors (k-frames). 

In the presence of a Riemannian metric it is appropriate to use representa- 
tions of the group 0, rather than GL,(IW) (by means of linear transformations 
of the fiber). Important homogeneous spaces for the orthogonal and unitary 
groups are Stiefel manifolds and Grassmannian manifolds. The points of the 
real (or complex) Stiefel manifold Vzk (or V,“,) are the orthogonal k-frames 

p;,,;;;; in R 71 ( or in @” endowed with the Hermitian metric). It is easy 

v;k 2 son/so,-k g on/on-k, 

(1.8) 
vzk g sun/sun-, 2 &l&-k. 

The points of the real (or complex) Grassmannian manifold GE,k (or Gz,,) 
are the k-dimensional subspaces of Iw” (or U?). Since the usual action of 0, 
on lP induces a transitive action of that group on the set of all k-dimensional 
subspaces (and analogously for U, on P), it is not difficult to deduce that 

G;,k g so,/(so,-k x sok) ” on/(&-k x ok), 

(1.9) 

GE k 2 su,l(su,-,, x suk) z i&/(&-k x uk). 

The orientable Grassmannian manifold GE k has as points the oriented k- 
dimensional subspaces of Iw”. This is a double cover (with fiber Z/2) of the 
corresponding Grassmannian manifold Gt,k: 

There are natural embeddings 

induced by the standard embeddings IW* --+ lP+‘, Cc” + (Cnfl. We denote 
by Gf , Gf, Gz the direct limits of the respective sequences of spaces and 
embeddings: 

GF = lim GF,k, G^F = lim c:,,, GE = lim Gz,k. 
12’00 n+m 71’00 

It is easy to see directly that GT is contractible, Gy = RP”, and Gy = CP”. 
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From the isomorphisms (1.13) below, it follows that 

7rj(Vt,) = 0 for j < n - k, 

rj(V$) = 0 for j < 2(n - k). 

The principal bundles 

(1.10) 

E,” = Vck + GF,,+, F = 01, = G, 

@ = vTk --+ @,, F = SOI, = G, (1.11) 

E,” = Vzk + Gz,k, F = uk = G, 

(where the projections are the obvious ones), taken together with the obser- 
vation that the spaces 

E& = lim EE, @$ = lim ,!?,“, Ez = lim E,@ 
n-CC n-+m n-+00 

are contractible, lead to the conclusion that: 

The principal bundles (1.11) go in the limit as n --+ 00 to the universal G- 
’ bundles for the Lie Groups G = oki SOI,, uk. Hence the classifying spaces for 

these groups are 

BOI, = GE, Bsok = C?;, Buk = G;. (1.12) 

Recall that any map M” -+ BG determines up to equivalence a (principal) 
G-bundle over M” as the induced bundle (and this determines a one-to-one 
“classifying” correspondence between the equivalence classes of (princi- 
pal) G-bundles over M” and the set [M”, BG] of homotopy classes of 
maps I@’ + BG). In the case of the tangent bundle of a manifold M” the 
corresponding map Ivan -+ BOk (or M” --+ BSOk) arises naturally as a 
generalization of the spherical Gauss map of a surface. One first embeds Mn 
in IWN for sufficie n 1 large N (this is possible by Whitney’s theorem), and t y 
then associates with each point x of M” the tangent plane to Mn at x (with 
an orientation indicated if M” is orientable) parallel-translated to the origin 
in KP. This defines an appropriate classifying map 

f : Mn + Gt,n, (or f : M” + g”,,,, if Mn is orientable), 

which is covered in the natural way by the induced map from the tangent 
bundle of M” to the universal bundle. 

The generalization of this construction to any smooth vector bundle with 
base B a manifold presents no difficulty. Note that the total space E of such a 
bundle is contractible to B (identified with the zero-th cross-section). Embed 
E in IWN for suitably large N, and consider at each point of B c E the plane 
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in IWN tangent at z to the fiber F, c IWN through z. On parallel-translating 
these planes to the origin in RN, 

-w 
we obtain the desired map B --+ GE,n (or 

B *GN?l if B is orientable). Since for any finite CW-complex K there is a 
homotopy equivalent smooth manifold U (obtained by embedding K in lKN for 
some N, and taking as U a small neighbourhood of K having K as deformation 
retract), the above construction of the smooth Gauss map determined by a 
vector bundle is, in essence, no less general than the construction of a universal 
G-bundle over a finite CW-complex. 

For general smooth fiber bundles with G c Diff F, the universal G-bundle 
may be constructed as follows. Denote by EN(F) the space of embeddings 
F + IWN. The group Diff F then acts in the obvious way on EN(F), and 
the direct limit E,(F) = Jirrr EN(F) is contractible. The orbit space under 

the action of G on E,(F) then gives the desired base BG of the univer- 
sal G-bundle. In the literature an alternative construction (due to Milnor in 
the late 1950s) is generally employed, based on a different idea, allowing the 
construction of BG for a wide class of groups G. 

Returning to vector bundles, note that the homotopy exact sequences of 
the following principal bundles: 

so,-1 --+ so, --+ so,/so,-1 ” s-l, 

(where SO,-1 4 SO,, U,-i -+ U, are embeddings) taken together with 
the fact that 7rj(SkV1) is trivial for j 2 k - 2, yield isomorphisms: 

nk(SOn) E 7rk(SOn-l), k < n - 1, 

TQIJ~) CL! T,#,-I), k < 2(n - 1). 
(1.13) 

Hence the natural embeddings son-k + SO,, un-k -+ U, (and 
Sun-k --+ Sun) induce isomorphisms between the corresponding homotopy 
groups of dimensions < n - k - 1, 2(n - k) respectively. From this (1.10) above 
follows. (For Sp, one has, analogously, Tk(Spn) 2 ?Tk(Sp+l) for k < 4n - 2.) 
The homotopy groups rk(C,) g xk(SCn) for k < n-l, .TTk(Un) for k < 2n-2, 
and flk(S&) for k < 4n - 2, are called stable, since they are independent of 
n in these ranges. They were first computed by Bott (in the late 1950s) using 
the global calculus of variations (see $2 below). 

The differential geometry of smooth G-bundles with structure group G a 
Lie group, depends crucially on the concept of a “connexion”. A differential- 
geometric G-connexion on a principal G-bundle over a manifold B of dimen- 
sion n, is a smooth G-invariant field associating with each point of the total 
space E an n-dimensional subspace of the tangent space to E, transverse to 
the fiber through the point. (Recall that the group G acts freely on E (on the 
left say) with the orbits of the action as the fibers F g G.) The n-dimensional 
subspaces attached to each point of E are said to be horizontal. 
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On the Lie group G there is a standard right-invariant l-form zua with values 
(at tangent vectors to G) in the Lie algebra 6 of G, where 6 is identified with 
the algebra of right-invariant vector fields on G, namely the l-form which at 
each tangent vector 77 to G at x E G, takes as value the unique right-invariant 
vector field e satisfying E(x) = v. The l-form then satisfies 

;[wo;Zuol = dwo, -- g*wo = (Ad s)wo, (1.14) 

where g acts by left multiplication h H gh, and [ , ] denotes the exterior 
product operation on forms on G with values in 6. (Recall that forms and 
cochains with values in any ring may be multiplied, although in general the 
multiplication will not be skew-commutative. Note also that for a matrix Lie 
group G the linear transformation Ad g of the (matrix) Lie algebra 6 is 
effected by conjugation of the matrices u E 8 by g: Ad g(u) = gug-I.) A 
connexion on a principal bundle (E, B, G, G,p) is then determined by any 
l-form w on E with values in the Lie algebra 6, satisfying 

g*w = (Ad g)w, wIF = wo, (1.15) 

where F (E G) is the fiber over any point; the horizontal n-dimensional tan- 
gent subspaces at each point y of E are defined by the equation w = 0 at y. 
It can be shown that, conversely, any connexion on the G-bundle determines 
such a l-form w. 

The curvature form Q on E is the 2-form defined by 

n=dw+;[w,w]. (1.16) 

It follows that g*Q = (Ad g)Q for all g E G. Furthermore the form R is, as 
they say, “purely horizontal”: it vanishes on any pair of tangent vectors of 
which at least one is vertical, i.e. tangent to the fiber. Thus 0 has non-zero 
values essentially only on pairs of “horizontal” tangent vectors. 

Let x1,. , xn be co-ordinates on any (distinguished) chart U c B satisfy- 
ing p-‘(V) Z U x G (via &J say). These then furnish coordinates on U x {l}, 
and in terms of such local co-ordinates the form w of the connexion, restricted 
to U x {l}, is given by 

(where the A, are B-valued functions of the point (xa)), and the curvature 
form 0 has locally the form 

f&,, = L’luxfll = Fabdx” A dxb, 

where the Fab are B-valued functions of (xa). From (1.16) it follows that 

Fab = aaAb - ab& + [A,, Ab] , a, = a/ax? (1.17) 



$1. Basic concepts. Smooth fiber bundles. Connexions 153 

In view of (1.15), these local formulae for the restrictions of w and R to U x { 1) 
determine w and 0 completely on the whole region p-i(V) E U x G. 

How do the above local expressions for wou and $,, change under changes 
of bundle coordinates, i.e. changes of the diffeomorphism &? Let $)rr be 
another diffeomorphism p-‘(V) ---+ U x G, and consider the diffeomorphism 

&,$qjl : U x G + U x G, h 9) +-+ (x7 JG)g), (1.18) 

where X defines the appropriate transition function, X(z) E G. In particular, 
the cross-section U x 1, where 1 E G is the identity element, goes to a different 
one: 

qh/!+ : (x, 1) H (x,X(x)), X(x) E G. (1.19) 

(A transformation of the type (1.19) is in this context called a gauge trans- 
formation.) Under this transformation the connexion and curvature forms 
transform as follows (assuming that G and @3 are comprised of matrices): 

(9 Wd +-+ w*, w6 = A,dxa, wq,j = Ahdx”, 

A,dx” H Ahdx”, A:, = XAJ-l + (&X(x)) X-‘(x); 
(1.20) 

Fab H +)Fabx-1(X) = Fib. 

Example 1. Let G be an abelian Lie group (for example G = S1 g SO2 g 
VI). Then in view of (1.16) th e curvature form is in essence the closed 2-form 
on the base defined in terms of the connexion form w by 

p*R = dw. 

The cohomology class [0] E H’(B;lR) turns out to be independent of the 
choice of connexion, and to be “integral” in the sense that the integrals of the 
form R over 2-cycles are integers. 

Example 2. Let G = U,. In this case the form Tr Q (= Tr F,bdx” A dxb in 
local co-ordinates) of any curvature form 0, is again a closed 2-form on the 
base with cohomology class 

[Tr n] = Cl E IP(B; R) 

independent of the connexion, and integral. This cohomology class is called 
the first Chern class of B. The forms Tr(Qm) obtained by taking powers of 
the matrix (Fab), represent integral cohomology classes & E H2m(B; R) (or 
over Cc), and are also called Chern classes of B. However for the integral Chern 
classes (see below for their precise definition) there is a more appropriate basis 
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ClrC2..., in terms of which the classes & have integer polynomial expressions 
(but not vice versa) 

zi =Pi(cl,...,ci). 

The polynomials Pi( ci , . . , ci) are in fact the Newton polynomials express- 

ing the symmetric polynomials 2 ~1 in terms of the elementary symmetric 
k=l 

polynomials 

cj = c uil’...‘uij: E1=cl, ~2=+2c2, . . . 
i,<...<ij 

This representation of the classes &, ci as symmetric polynomials has topo- 
logical significance, and turns out to be very useful (see below). 0 

Example 3. In the case G = SO,, the curvature form R (of any connexion) 
yields the Pontryagin classes pi = [Tr n2i] E H4i(B; IR) of B, also integral. As 
in the case of the Chern classes, we shall choose below a different (“indivisible” 
over Z) basis pi for the Pontryagin classes, in terms of which the pi are once 
again expressed as Newton polynomials. cl 

The field of horizontal n-dimensional tangent subspaces on the total space 
of a principal G-bundle, determining, in accordance with the definition, a 
connexion on the bundle, induces such a field, likewise transverse to the fibres, 
on the total space E’ of any associated bundle (E’, B, F, G, p’). Via this field 
of horizontal tangent subspaces every smooth or piecewise smooth path y(t), 
a 5 t 5 b, in the base B, is covered in the total space E’ by a unique horizontal 

path T(t), p’?(t) = -dt), once the initial point T(a) is prescribed (see Figure 
4.3). 

Fig. 4.3 

The covering motion of the point y(t) a b ove y(t) is termed parallel trans- 
lation. This construction represents the smooth version of the “homotopy 
connexion” introduced in Chapter 2, $3, with the concomitant “covering ho- 
motopy property”, and the homotopic consequences flowing thence. 
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A connexion on a principal G-bundle determines an operation of covariant 
differentiation in the direction of any tangent vector to the base B, on the 
cross-sections of any associated G-bundle. As noted above, in terms of local 
co-ordinates on suitable regions U of the base B the connexion l-form is given 

by 
w4” = A,(z)dz”. 

Since A, is a matrix-valued function, we may write A, = (A,): = (A$), 
i, j = 1, , q. A cross-section of an associated G-bundle can locally be rep- 
resented as a vector-valued function (@(z)) with values in Iw”. The covariant 
derivatives are then the operators D, defined by 

D,=a,+A,, D&(x) = a,$ + A;$. (1.21) 

The commutators [Da, Db] yield the curvature components (1.17): 

[Da, Db] = adb - ab& -t [Aa, hi = &b. (1.22) 

In the case of the tangent bundle 7(Mn) the above discussion yields the 
classical concepts of Riemannian geometry. It appears that the idea of a con- 
nexion on a fibre bundle was first introduced in the 1930s by Weyl in a special 
case, and in general form by Cartan. Physicists came to the concept somewhat 
later (Yang and Mills in the mid-1950s), although doubtless independently 
- at least of Cartan. In physical terminology connexions are called “gauge 
fields”; they are of fundamental importance in the physics of elementary parti- 
cles. The simplest example of such a field (due to Weyl) is that of a connexion 
on a G-bundle with G = Ui Z SO2 2 Si, having the physical interpretation 
as an electromagnetic field with field strength the curvature tensor Fab. As 
noted above (see (1.20) the gauge transformations are just those transforma- 
tions of the local formula for the connexion, arising from changes from the 
identity cross-section to another: (z, 1) H (IC, X(X)). In Einstein’s general the- 
ory of relativity one considers connexions on the tangent bundle arising from 
the gravitational field. 

Returning to the main line of development of our exposition, we now in- 
troduce the concept of a “characteristic class” of a smooth G-bundle. 

Definition 1.1 A characteristic class 0 with respect to the category of G- 
bundles (E, B, F, G, p) is a function associating with each G-bundle an element 
B of H’(B) (over some coefficient ring) in such a way that under bundle maps 
@ : E ---+ E’, 4 : B + B’, the characteristic class behaves naturally (more 
precisely, as a contravariant functor): 

+*(O’) = 0, c) : B --f B’. 

It is easy to see that the characteristic classes of G-bundles correspond one- 
to-one to the elements of the cohomology ring of the base BG of the universal 
G-bundle: For, as noted earlier, every G-bundle with base B is induced by a 
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map 4 : B --+ BG unique up to homotopy, so that if 0’ E H* (BG) is any 
given element, then we obtain a characteristic class 0 of the G-bundle over B 
induced by 4, as the pullback of 8’: 0 = $*(Q’). 

For compact abelian groups G the spaces BG are known: 

G=S1, BG = @Pm; 

G = Tn, BG = @Plm x ... x CP,-; 

G = (Z/2)n, BG = iRP,oo x . . x IWPF; 

G = Z/m, BG = lim S2n-1/Z/m = S~/Z/m, 
7X-m 

(where, in the last case, P/Z/m is the infinite-dimensional lens space). The 
cohomology rings of these BG are also known; of particular importance are 
the following ones: 

H*(@P,“x...~@p,“;Z)“Z[u~,...,u,l, 

(the polynomial ring over Z in uj E H2 (“Pj”; Z)); 

H’ (RP,oo x . x RP,“; Z/2) ” Z/2 [q, . . . , v,] , uj E H1 (“Pj” 

H* (WP; UP) = 44~) @ Z/P 1~1, 

‘u E H1 (B~/P; UP), u = ,Bu E H2 (BZ/p; Z/p) , 

; vq ; 

(1.23) 

where ,Ll is the Bockstein homomorphism (see Chapter 3, §5), A,(w) is the 
exterior algebra over Z/p generated by w (v” = 0), and the tensor product has 
imposed on it skew-commutativity. 

The most important facts about the cohomology rings H* (BG) for G = O,, 
SO,, U,, SU, with coefficients from Z, Z/2 and IR are as follows: 

In the group U, we have the subgroup Tn, a maximal torus, comprised 
of the diagonal matrices g, and the Weyl group S,, of permutation matrices 
g normalizing Tn: gTng-’ = Tn. The restriction of the cohomology ring of 
BU, to BTn has zero kernel, i.e. the homomorphism 

i* : H*(BU,;Z) - H*(BT”;Z) =Z[u~,...,u,], 

induced by the inclusion i : BTn ----+ BU,, is a monomorphism invariant under 
the action of the Weyl group. It follows that the cohomology ring of the space 
BU, is given via the homomorphism i’ by that of BT”, and that the image un- 
der i* consists of all symmetric polynomials in ~1, . . , u,, thus yielding a com- 
plete description of the ring H* (Bun; Z). The Chern class ci E H2i (Bun; Z) 
is defined as the element mapped by i* to the i-th elementary symmetric 
polynomial in the “Wu variables”, i.e. the elements uj E H2 (@Pjoo; Z): 
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71 

Ci H 
c 

uj, . . . . . uj; ) Ei H 
c 

U;. (1.24) 
jl<...<ji j=l 

Thus the elements ci form a basis for H’ (Bun; Z). (The elements Ci were 
defined earlier in terms of the curvature form.) 

For the groups SOzn, SOzn+i the maximal torus T” is as for U,, but the 
Weyl groups are larger. The kernel of the restriction homomorphism 

H*(BSOk;Z) + H*(BTn;Z), k=2n,2n+l, 

analogous to i’ above, contains only the 2-torsion elements. The Weyl group of 
SOzn, modelled via the action on H* (BTn; Z), is generated by the symmetric 
group S, of all permutations of ui, . , u,, together with the transformations 
aij defined by 

Uij 1 Ui H -Ut, UjH-Uj, ukwuk, k#i,j. (1.25) 

For SOzn+i one needs instead of these (as generators) the transformations 
given by 

Us 1 Ui H -Ui, Uj H Uj, j # i. (1.26) 

Thus the set of invariant polynomials for SOzn+i is smaller than for SOZ,. 
The invariance of the homomorphism H*(BSOZ~; Z) * H*(BTn; Z) under 
the action of the Weyl group yields as image the linear span of the elemen- 
tary symmetric polynomials in the squares u;, representing the Pontryagin 
classes pi, supplemented by the polynomial ~2~ = ui u,, representing the 
Euler characteristic class. The image under the restriction homomorphism 
H*(BS02,+1; 4, -+ H*(BTn; Z) on the other hand, is spanned only by the 
images of the Pontryagin classes. In summary (for both SOa,, SOzn+i): 

Pi H c 
2 

uj;... . uji E H4i(BTn; Z), 
j,<...<ji 

X2n H Ul . u, E H2”(BTn; Z), 
(1.27) 

pi E ff4i(BSok;Z), k 2 2n, ~2~ E H2”(BS02,;Z). 

Over the field IR of reals (or over Q) the situation is the same for all com- 
pact Lie groups G (with maximal torus Tn): the restriction homomorphism 
H* (BG; IR) 4 H*(BTn; JR) has trivial kernel and image consisting all poly- 
nomials in 211, . . . , u,, invariant under the induced action of the Weyl group. 

In order to describe the mod-2 cohomology of BG, with G = O,, SO,, 
one uses the obvious discrete analogue of the torus, namely the subgroup of 
diagonal matrices (Z/2)n c 0,. Here the restriction homomorphism 

H’(B0,; Z/2) + H*(B(Z/2)n; Z/2) 2 Z/2 [q, . . , un] , 

uj E H1(RPjoo; Z/2), BZ/2 = RP”, 
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has trivial kernel, and the image consists of the symmetric polynomials in 

~1, . , u,. The elements of H*(BO,; Z/2) sent under this homomorphism to 
the elementary symmetric polynomials in ~1, . , II,, are called the Stiefel- 
Whitney characteristic classes wj: 

wj H 1 Vi, ‘. . . ’ Vi,? E H’(B(Z/2)“; Z/2). (1.28) 
il<...<i, 

The natural homomorphism H*(BO,;Z/2) ---+ H*(BSO,;Z/2) is onto (i.e. 
an epimorphism) with kernel the principal ideal generated by wr, i.e. the set 
of multiples of wr. 

Note that reduction modulo 2 of the Chern classes ci yields the Stiefel- 
Whitney classes ~2%~ and of ~2~ yields ~2~: 

~2% = ci (mod 2), ~2~ = ~2% (mod 2). 

Observe also that 

P,(T) (mod 2) = w4i(cV) = 1 w2j(~)w2k(~)~ 

2j+2k=2i 

(where c denotes LLcomplexification”), and for U,-bundles xsn = c,. 
The characteristic classes of a manifold are defined as the characteristic 

classes of the tangent bundle of the manifold. 
Such are the basic facts concerning characteristic classes. We now describe 

some of their further properties. 
Note first that the condition wr(qn) = 0 is nessesary and sufficient for 

orientability of the G-bundle qn, i.e. for reducibility of the bundle structure 
group G to SO,. 

Recall that with any real (or complex) vector bundle qn with base B one 

may associate a fibration (over B) with fiber 

F = Vin-lci (or F = V$-k), 

the corresponding Stiefel manifold. The Stiefel-Whitney (or Chern, in the 
complex case) classes arise as the “first obstructions” to the existence of cross- 
sections (see Chapter 3, 56) of this fiber bundle: 

v~,-k(rln) vk-, - B (or V&-k(?) 
V?Y+k 

A B in the complex case), 

rj(F) = 0, j < k - 1, 7Q-l(F) @ 2/2 ” Z/2, F = Vn!jnmkr 

or 
7rj(F) = 0, j < 21c - 1, 7~~~-r(F) g Z, F = V&wk. 
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The fundamental group ni(B) acts trivially on the group 7rk.-r(F)@Z/2 in the 
first case (F = V:n-k), and on nzk-i(F) (F = V&k), where the structure 
groups of the original vector bundle vn are O,, U, (or may even be GL,(IR), 

GL, (@)) respectively. 
The construction of the Poincark duals Dwi, Dci of the characteristic cycles 

w,, c, as cycles in the appropriate homology groups, is more direct. For the 
classes wi, take any On-bundle rln with fiber R” and base B a smooth closed 
manifold, and consider a field on B of Ic-tuples of vectors vi(z), . . , v~(z), 
II: E B, in general position; the set of all points z E B where the vectors 
‘~1 (xc), , uk(z) are linearly dependent then constitutes a cycle (mod 2) of 
dimension n - /c + 1 representing the element Dwi. In other words if one 
considers the associated fiber bundle Vf,-,(v”) over B and a cross-section of 
this bundle in general position, then all’ “zeros” of this section form the cycle 
representing Dwi. In the case of an oriented (or SO,-) bundle qn, n = 2m 
and Ic = 1, the above field is just a vector field, whose zeros form an integral 

cycle of dimension n representing the element Dxzm. The duals of the Chern 
classes may be obtained similarly. 

For G-bundles a subgroup Gi c G will frequently serve as structure group; 
the operation of taking a subgroup as a structure group, where possible, is 
called reduction of the structure group G. A structure Lie group G may always 
be reduced to a maximal compact subgroup in a class of equivalent C”- 
bundles. (However for a class of equivalent complex-analytic G-bundles this 
is not always possible.) 

Any complex-vector bundle q may be regarded as real, by “forgetting” 
the complex structure: q H rv; this operation corresponds to the embedding 

un 2 SOzn (or GL,(@) A GLz,(JR)). In the other direction, one can 
apply to any real vector bundle 77 the operation of complexijication r] H CT, 
using the embedding GL,(IR) 5 G&(C). Given any representation (i.e. 

homomorphism) p : Gi ---+ Ga of one group to another, one obtains, in the 

obvious way, from any Gi-bundle q a Gz-bundle pq. We now list these and 
other operations on vector bundles (some mentioned earlier): 

1. The direct sum 71 $ r/2. 

2. The tensor product ~1 8 772 (over R or C). 

3. The exterior powers Ajq (coinciding when j = n = dimv with the deter- 
minant of the bundle: det 7 = nnq). 

4. The symmetric powers Sjq (the symmetric part of the tensor power &q). 
Thus 

A27 CB s2q = 7 @ q. (1.29) 

5. The dual bundle q*; the complex conjugate bundle 7j (when Q is a complex 
bundle); the operations r and complexification c noted above, satisfying 
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It follows from their definitions that the Pontryagin classes of a vector bundle 
n coincide (up to sign) with the Chern classes of the complexified bundle cq: 

(-l)“Pi(77) = Czi(Crl), 2C2i+1(crl) = 0. (1.31) 

For direct sums of vector bundles the following formulae are valid: 

(9 Wi(Vl @rl2) = c Wjbl)Wk(~2)> wo = 1; 

j+k=i 

(ii) ci(rll @ 72) = c cjh)ck(r/2), CO = 1; 

j+k=i 
(1.32) 

(iii) Pi(Q @ rl2) = c pj(qi)pk(r]Z), to within 2-torsion; 
j+k=i 

(iv) Xzn(rl1 @ 772) = X2k(%)X2m(~2), k + m = 72, 

where in the case (iv) it is assumed that dim771 = 2k, dim772 = 2m. 
It follows from these formulae that except for ~2~ these classes are all 

stable, i.e. if E; (or E,“) is the trivial bundle with fiber RN (or CN), then 

wi(rl @$) = Wi(rl), ci(rl @ $) = ci(rl), Pi(rl @ &,“) = Pi(V). 

The behaviour of characteristic classes under the tensor product operation 
(and likewise the operation of forming exterior and symmetric powers) of 
vector bundles over B is somewhat more complicated. This behavior may 
be described in rational (or real) cohomology by means of “Wu generators” 
~l,...IwI of the cohomology ring H*(Tn; Q) of the maximal torus. For U,- 
bundles q the Chern character ch(v) is defined as the formal sum 

ch(v) = $exp(ui) = 2 C 2 = C $G = C chm(q), 
j=lm>O 77220 7QO (1.33) 

&x(v) = $m = P,(cI, . . , cm), 

and for Son-bundles 7, 
Nrl) = ch(crl), 

where ch(q) is given by (1.33). Here we identify the elementary symmetric 
polynomials in 211, . . . , u, with the Chern classes ci (and in VA:, . . . , U: with 
the Pontryagin classes pi). One then has the simple formula 

(1.34) 

In what follows we shall often omit the symbol 8 for the tensor product, 
since there is no other product for bundles. Returning for the moment to 
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characteristic classes of sums qi @ r/2 of vector bundles over B, we consider 
the formal sums (defined for each vector bundle 77): 

1 @ q @ s2v @ s3rl 69.. . = S(q), 

which are easily seen to satisfy 

4% @r/2) = 4771)4v2), 

S(rll 63 r/2) = S(q)S(q2), 

(1.35) 

Similarly, if we write (formally) 

w=1+wi+w2+..., c=1+ci+c2+..., p=l+p1+p2+..., 

then the formulae (1.32) take the simple form: 

(4 4% 63 r/2) = W(VlMV2), 

(ii) 4771 @ 772) = 4rll)C(r/2), 

(iii) ~(771 @ r/2) = p(r]i)p(r/2) (modulo 2-torsion) 

The symbolic generators ‘1~1, . . . , U, (representing appropriate elements of 
H* (BF; R)) are also convenient for defining additive and multiplicative ex- 
pressions f(v) (like w(q), c(q) and p(q)) in th e c h aracteristic classes. It turns 
out that all such additive expressions (i.e. such that f(qi@qz) = f(ni)+f(q2)) 
can be obtained from those in a single variable u, expressed as a power series 
(for complex and real bundles respectively): 

(i) f(U)= ConrUm, f(~)=f(cl,...,Ck,...)=f:f(uj); 
?TL>O j=l 

(ii) f(u2)= Cbmu2m, f(o)=f(P1,...,Pk,---)=~f(U32). 
T?QO j=l 

Hence all additive expressions f(u) are of the form (again in the cases of 
complex and real bundles respectively): 

6) f(v) = f(cl, . . , Ck, . . .) = c m!a,~;, = c m!a,ch,(~); 
77X20 m>O 

(1.36) 

(ii) f(q) = f(pl,. . . ,plc,. . .) = C ~%,&, = C m!b,&,(q). 
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Analogously, all multiplicative characteristics f(q), i.e. satisfying f(~ 8~~) = 
f(~) . f(qs), are determined by power series in one variable, of the following 
form: 

(i) f(u) = C amurn, f(v) = f(cl, . . . ,ck,. .) = fi f(%); 
m>o j=l 

(ii) f(u’) = C Luzrn, f(7) = f(Pi, . . . ,Pk,. .) = fi f(u;). 
?TL>O j=l 

On closed manifolds (real or complex) the form of such a multiplicative char- 
acteristic f is determined by the requirement 

yielding: 

(i) f(i@-“) = (f(ci, . . . , c,), [M2n]) (the complex case); 

(ii) f(M4n) = (f(pi,. ,p,), [M”“]) (the real orientable case). 

In particular, in the case (i) above we have for the Euler characteristic x [AP”] 
that 

f(u)=l+u, f(Cl,..., c~,...)=l+ci+c2+ . . . . 

We shall meet with other important cases below. 

Ezam$e 1. For the tangent bundle T = T(IRP) of n-dimensional real 
projective space, we have the simple bundle isomorphism 

where ER denotes the trivial bundle over RPn with fiber IR1, and 7 is the 
unique nontrivial line bundle over IRP with structure group 01 Z Z/2. Over 
lRP1 the total space of q is the usual Mobius band (see Figure 4.4) - though 
with the fiber taken to be an open interval. The Stiefel-Whitney classes of q 
are as follows: 

0 # WI(V) = ‘u E H’(WP; Z/2), 

Wi(V) = 0, i > 1. 

The cycle Dv E H,-i(IRP; Z/2) is represented by the hypersurface 
IRP”-l c liw”; see Figure 4.5. Using the formula for the class of a direct 
sum of vector bundles, we obtain thence 

W(T) = 1 + WI(T) + . . + W*(T) = (1+ ?Jy+l E H’(RP”; Z/2). 
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b 

Fig. 4.4. The Mijbius band: the simplest nontrivial bundle, 

with base S1 and fiber an interval 

Fig. 4.5 

Example 2. The tangent bundle r = r(CPn) is a complex GL,(C)-bundle. 
For reasons similar to those applying in the previous example we have 

T(CP) CB E@ ” 17 

n+l times 

Cl = u E H2(@P; Z), 

C(T) = 1 + Cl(T) + . + C,(T) = (1 + tqn+l E H*(cP;Z), 

where u is a generator of H2(CPn; Z) E Z. The Poincare dual cycle DU E 
H2n-2(CPn; Z), is represented by the cycle @P”-l c CP”. 

Example 3. Let M” be a smooth submanifold of a smooth manifold N” 
(n < k). We then have, in addition to the tangent bundle r = 7(Mn), the 
normal bundle v = v(M”) in N” with respect to some Riemannian metric on 
N” (although in fact the metric is not significant here). One has the simple 
formula 

i*7(Nk) = T(AP) @ v(AP) 

(where i’ is induced by the inclusion i : Mn -+ N”), whence 
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i*w(N”) = W(T)W(V), 

i*p(Nk) = p(~)p(v) (modulo the 2-torsion), 

i*c(Nk) = C(T)C(V), 

for complex U,-manifolds M” c Nk in the last case. In the case that Nk = lKk, 
the tangent bundle r(Rk) is trivial, so that 

i’w(R”) = 1, i*p(@) = 1. 

Consequently W(T)W(V) = 1 and p(r)p(v) = 1 (modulo the 2-torsion), yielding 
(see (1.32)) formulae expressing the corresponding characteristic classes of the 
tangent and normal bundles of M” in terms of one another. 

Example 4. For the tangent bundle T of an even-dimensional orientable 
manifold M2n the Euler characteristic class satisfies 

(X27x(7), [hif2”]) = X(M2”), 

i.e. yields the Euler-Poincare characteristic when evalulated at the fundamen- 
tal homology class [Mu”] . (For U- manifolds one replaces the class xsn by the 
Chern class c,.) 

Example 5. For Lie groups G the tangent bundle is trivial and all of the 
characteristic classes are zero. Lie groups are parallelizable manifolds, i.e. 
admit fields of n-frames (n = dimG) that are everywhere non-degenerate 
(obtained by means of left (or right) translation of any basis of the tangent 
space at the identity element). 

Example 6. Suppose a submanifold M” of RN is defined by a set of si- 
multaneous equations fi = 0,. , fN-, = 0, where the gradients of the fi, 
i = l,..., N - n, are everywhere linearly independent on the manifold of 
common zeros: 

hfn = (5 E RN 1 fi(x) = 0,. . , f&,(x) = o} . 

The normal bundle .(Mn) (with fiber lRNpn ) is then trivial and in view of 
the formula (1.32) all of the stable characteristic classes wi, pk of the manifold 
Mn will be zero. Only the Euler class x2k may be non-zero, provided n = 2lc. 
(For instance x(S’~~) = 2.) The tangent bundle T(M") is here stably trivial, 
i.e. 7 CBE,N+ =E;. 0 

At various points above we have mentioned the concept of a complex 
manifold: this is an even-dimensional real smooth manifold with charts V, co- 
ordinatized by complex co-ordinates z;, . .zz, and transition functions on the 
regions V, n VP of overlap complex-analytic. Here n is the complex dimension 
of the complex manifold M”; as a real manifold its dimension is 2n. The 
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simplest examples of compact complex manifolds are the complex projective 
spaces @P”, and the even-dimensional tori T2” = P/r, where r is a lattice 
determined by any 2n linearly independent real vectors in U? g R2n. Of 
particular importance are the compact complex submanifolds M” c Alan, 
the projective algebraic varieties. 

An Hermitian metric on a complex manifold Mn is given in terms of local 
co-ordinates on each chart V, by 

ds2 = g,idzhdZi, gij = gji 

With such a metric one may associate the real 2-form given locally by 

The requirement that parallel translation of tangent vectors along any path 
determine a unitary transformation, leads to the condition that the 2-form 0 
be closed: 

dL? = 0. 

Complex manifolds endowed with an Hermitian metric whose associated 2- 
form R is closed, are called Kiihler manifolds. A Kahler manifold AP’ for which 
the form R represents an integral cohomology class, i.e. is such that its inte- 
grals over 2-cycles in Mn are integer-valued, is called a Hedge manifold. The 
complex projective space CP” and its complex submanifolds (varieties) are 
Hodge manifolds. In fact, every Hodge manifold is a projective algebraic vari- 
ety; this was proved by Siegel for complex tori, and by Kodaira in the general 
case (in the late 1940s). A complex torus endowed with an Hermitian metric 
with constant components gii is Kahler, but is a complex projective algebraic 
variety if and only if the defining lattice r c C=” satisfies the conditions of 
Riemann for a corresponding e-function to be definable. 

All complex submanifolds of Cc” without boundary and of dimension > 0, 
are non-compact. Further results concerning the topology of complex mani- 
folds will be given in the following sections. 

52. The homology theory of smooth manifolds. 
Complex manifolds. The classical global calculus of variations. 

H-spaces. Multi-valued functions and functionals 

Every differentiable manifold Mn of smoothness class Ck, k > 1, can be 
triangulated, i.e. turned into a simplicial complex. A smooth simplex is a pair 
consisting of a standard simplex gk c IWk and a regular smooth embedding of 
some k-dimensional open region U such that ok c U c Iw”, into the manifold: 
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dlor, a, ~2]=[OI,oc,] + . . . 
d [a, ~~ a,]=-[q,a,]+ . . . 

&3 

Fig. 4.6 

A smooth triangulation of M” is then a simplicial decomposition of Mn into 
smooth simplexes: 

M” = u fk,&lc), 
4 

making M” a “PL-manifold,” i.e. such that the simplicial complex made up 
of all simplexes containing any given simplex is combinatorially equivalent to 
the standard n-simplex on (see Chapter 3, $1). 

Up to combinatorial equivalence any smooth manifold M” has just one 
smooth triangulation (Cairns, Whitehead, in the 1930s). Hence the standard 
apparatus of simplicial homology and cohomology (H, (Mn), H’ (Mn), the 
multiplication on H* making it a ring, intersections of cycles in H,(Mn), 
Poincare duality, etc. - see Chapter 3, §1,2) goes over in its entirety, via 
smooth triangulations, to smooth manifolds M” (see Figure 4.6). 

For closed submanifolds IV”, Vj c Mn, the intersection operation has a 
clear geometric interpretation. First one subjects W” to an arbitrarily small 
perturbation to bring it into “general position” relative to Vj, in the sense 
that at each point x E W” n V j, the vectors tangent to W” or Vj should 
together span the full tangent space EXE of the ambient manifold Mn. Thus 
if Ic + j < n the intersection W” n Vj will, in general position, be empty. If 
Ic + j = n, then (in general position) the intersection will consist of finitely 
many isolated points x1, . . . , x, (see Figure 4.7); in this case the number m 

of these, reduced modulo 2, gives the intersection index modulo 2: 

W” o Vj s m (mod 2). (2.1) 

If the manifolds Mn, Wk, Vj come with orientations, then each point xj of 
the intersection W” n Vj has associated with it a sign sgn,,? ( Wk n Vj), namely 
the sign of the determinant of the change from a frame rzj for the tangent 
space to Mn at xj, agreeing with the given orientation of M*, to the frame 
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cc, 7 rlJ) where rLj is a tangent frame for Wk at xj according with the given 

orientation of W”, and similarly for rgj with respect to VT. We then have 

w”ovj = Ci sgn.+ (Wk n Vj) , 

(2.2) 
Wowk = (-l)“j (Wk 0 vi) 

For a smooth orientable manifold Mn, one may choose a pair of bases 

{q}, {qJ>, CYj = 1,“. ,bj, 

for the groups Hj(Mn; Z), j = 0, 1, . , n, mutually Poincark-dual in pairs: 

zo = 20 = l,z, = & = [Aq. 

For n = 2m, one has in particular two bases {z$m}, (52}, ay, = 1,. , . , b,, 
for the group H”(M2m; Z), satisfying 

and so Poincare-dual. (For non-orientable manifolds there exist analogous 
mutually dual bases modulo 2.) 

Example. Let M” be a closed, orientable manifold, and f : Mn -+ M” 
any regular smooth self-map. Consider the following cycles (the diagonal and 
the graph of f) in M” x Mn: 

A = {(x,x)} E H,(Mn x M”;Q); 

4 = {(x,f(x))) E &(Mn x MYQ). 

As noted above, in general position the intersection An A, consists of isolated 
points xj: f(xj) = xj, which, in view of the regularity of f and the assumption 
that the cycles A, A, are in general position relative to one another, are non- 
degenerate, i.e. in terms of local co-ordinates x9, in a neighbourhood of the 
point xj, 

Fig. 4.7 
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The intersection index is then the sum of the attached signs of the fixed points 

don,= c 
x,EAnAf 

(2.4) 

From bases {z? }, { 27 } satisfying (2.3), one obtains the basis ~7 @ Zzy;J 
for H,(AP x Mn; Q), using which one can establish (via (2.4)) the Lefschetz 
formula (ea. 1920) 

A 0 A, = ~W)“W~IH~~M~;Q~. 
k/O 

(2.5) 

It follows that if f is null-homotopic then A o Af = 1. Applying this to 
M” = S”, and considering the disc D” as a hemisphere of S”, Dn c S”, one 
can deduce Brouwer’s theorem (ca. 1910) on the existence of a fixed point of 
any map Dn ---+ D”. 0 

t=1 

WXI 

t=o 

Fig. 4.8. The intersection index is not changed by a deformation of cycles 

Returning to our closed submanifolds Wk, l/j c M”, we now consider the 
case lc + j > n. Here the intersection Wk n Vj (if non-empty and assuming 
general position) is always a submanifold (with an orientation imposed if the 
manifolds are oriented) of dimension j + k - n: 

v.i o wk = Nj+k-n (2.6) 

Thus in this case the intersection of cycles has immediate geometric meaning. 
However it is far from being the case that all cycles in a manifold (representing 
elements of the integral or Z/2-homology groups) are representable as sub- 
manifolds or linear combinations of submanifolds. In fact in integral homology 
not all cycles need even be representable as images of closed manifolds 

f+[Nk] = z E &(Mn;Z), f : Nk + Mn. 
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The problem of determining when cycles are so representable is called 
Y%eenrod’s problem”. (Of course the fundamental cycle [M”] is trivially so 
representable.) In Z/2-homology Steenrod’s problem has a positive solution 
(Thorn, in the early 1950s). We shall discuss Thorn’s theory in connection 
with this sort of problem below (see $3). 

As noted earlier, orientability of a manifold M” is determined by the 
vanishing of the first Stiefel-Whitney class wi(M”), whose Poincare dual 
Dwi E H,-i(M”; Z/2) is represented by the cycle consisting of the “zeroes 
of the determinant” , i.e. the points where a field of tangential n-frames r”(z) 
in general position becomes degenerate (i.e. linearly dependent). It may also 
be obtained as the image under the Bockstein homomorphism 

p* : H,(M”; Z) --+ H,-1(M”; Z/2) 

of the fundamental class [Mn]: 

DWl = /3*[M”]. (2.7) 

(Recall from Chapter 3, end of 54, that the Bockstein homomorphism is de- 
fined (on integral chains) by 

P*(Z) = az/2, z = 5 mod 2.) 

From (2.7) we infer the homotopy invariance of WI; in the sequel we shall 
discuss Thorn’s theorem on the homotopy invariance of all of the Stiefel- 
Whitney classes wi, and also the explicit formula of Wu for calculating them 
(dating from the early 1950s). (S ee also the preceding section.) 

For a non-orientable manifold M” there is an orientation epimorphism CT : 
rl(M”) -+ Z/2 (where Z/2 = {-l,l}), defined as follows: we set o(a) = -1 
if parallel transport of a tangent n-frame around a loop y in the homotopy 
class a changes the orientation of the n-frame; otherwise set o(a) = 1. (Thus 
in any surface a sufficiently small neighborhood of a non-self-intersecting loop 
y parallel transport around which changes the orientation of a tangent n- 
frame, will be a Mobius band (see Figure 4.6).) There is therefore an action 
o of rl(Mn) on Z which simply multiplies Z by &l; the homology groups 
Hi(Mn; cr) with coefficients from the corresponding representation are the 
Poincare duals of the usual integral cohomology groups H”-j(Mn; Z) (see 
Chapter 3, $5) (and analogously for Q, Iw, @). 

Cellular decompositions of manifolds, and consequently cellular homology, 
arise in connection with the following situation (considered by Morse in the 
late 1920s): Suppose we are given a real-valued smooth function f on a closed 
or open manifold M”, with the following properties: 

1. “Compactness”: every closed region of Mn determined by an inequality 
of the form f(z) < c should be compact. 

2. All critical (or stationary) points xj (points where grad f vanishes) 
should be non-degenerate, i.e. the quadratic form d2f on the tangent space 
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Tw:, should have non-zero determinant; in terms of local coordinates this is 
the condition that at xj 

det 

Such functions are called Morse functions. The “height functions” on closed 
orientable surfaces suitably embedded in IK3, furnish examples of Morse 
functions-see Figure 4.9. The number of negative squares in the diagonal- 
ized quadratic form d2f at the point xj, is called the Morse index of the 
critical point. 

j=o 

Cl 

4 

2 Z 

Fig. 4.9 

9” 0 c; 0 0 \ 

Z 

Note that a Morse function f on a manifold M” may always be chosen 
in such a way, that for any critical value c of f there is an E > 0 such that 
f-l [c - E, c + E] contains only one critical point ~0, f (x0) = c. If x0 is such a 
critical point of index A, then the manifolds 

M:+, (f(x) I c+ E) and M,“_, (f(x) I c - E), 

and their boundaries 

iVz;$ (f(x) = c + E) and iv,“--,’ (f(x) = c - E), 

are related in the following way: Consider the “n-dimensional handle of index 
A” 

H,” = D”-A x DA, 

which has boundary 

tlH,n = (S”-‘-l x DA) u (D,-’ x Sx-‘) . 

One identifies the portion D”-A x Sx-l of the boundary 8Hr with a suitable 
small tubular neighborhood of an embedded (A - 1)-sphere in iV,“--,’ = aA&, 
via a diffeomorphism 

$ : Dn-’ x S’-’ ----f N,“--,‘. 



$2. The homology theory of smooth manifolds. Complex manifolds 171 

One then attaches the handle H,” to MF-, via the diffeomorphism 111, smooth- 
ing out “corners” to obtain a smooth manifold-with-boundary. It can be 
shown that this can be effected in such a way as to obtain a manifold diffeo- 
morphic to IkfF+,, i.e. one obtains 

M” = M:-, C+& - u+ (ITA x DA). 

This procedure induces a “Morse surgery” 

N,“--,’ H N;JE1, 

where 
N;cE1 E N,“--,’ \ En-’ x S’-’ IJ+ 

> ( 
S-‘-l x Ox). 

(Here En-’ denotes the interior of the disc PWx.) 

)111_: Dn-R=6n-2 

Fig. 4.10 

Thus a Morse function on M” provides a “handle-decomposition” of the 
manifold Mn, i.e. leads to a decomposition of the manifold into a “sum” of 
handles. (Figure 4.11 shows the two possibilities for attaching a handle Hf to 
a disc Hz, and then in Figure 4.12 a “Smale function” (i.e. a Morse function 
with critical values ordered according to their index) is used to effect a Morse 
surgery on the torus by starting with Hi and successively attaching handles 
as one passes through the critical points.) 

Morse’s theorem consists in the following lower estimate for the number 
rnA of critical points of index X of a Morse function f on a closed manifold 
M”, relating that number to the integral homology of Mn: 
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Xl 

e- = 

X0 
H,2 

Fig. 4.11 

mxm 2 b, mx(f) 2 by, (2.8) 
where bx is the Xth Betti number (= rank Hx(iP; Z)), and b?) the Xth mod-p 
Betti number (see Chapter 3, $2). 

Writing qx for the least number of generators of the torsion subgroup 
Tor IJ,(hl”;Z) of Hx(AP;Z), we infer from the relationships between the 
homology groups over different coefficient groups (see Chapter 3, 32) that 

(2.9) 

These are the Morse inequalities. 

-w-e%fy+y- 
- - 0 0 0 

x=2 

0 
h=? 

h=? 

h=O 

Fig. 4.12 
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For simply-connected manifolds of dimension > 6 these inequalities are 
strict in the sense that there exists a Morse function f on M” for which 
equality obtains in all of the equations (2.9) (Smale, in the early 1960s). 

A Morse function f on a closed manifold M” can be used to construct 
a CW-complex of the same homotopy type as the manifold, with the same 
number of cells of each dimension X as the Morse function has critical points of 
index X. The basic idea of the construction is as follows: Endow the manifold 
Mn with a Riemannian metric gij and consider the vector field -grad f, which 
in local coordinates {XL} defines the dynamical system given locally by 

af dx; 
dt - -Py& (2.10) 

where gijgj, = IS:. Let x0 be a critical point of index X with f  (x0) = c 
say, and, as before, denote by M:wE, MF+, the manifolds-with-boundary 
determined respectively by the inequalities f(x) 5 c - E, f(x) 5 c + E, 

where E is sufficiently small for there to be no critical points other than xc in 
f-l [c - E, c + s]. Choose a coordinate system { xj} in a neighborhood U of x0 
so that the identity 

f(x) = c - (x1)2 - . . . - (XX)” + (xA+y + . + (xc”)2 

holds throughout U for the Morse function f .  Now consider an embedding 
4 : DA + U of the X-disc, determined by the formula 

(x1)” + . + (x’)~ 5 E and xx+l = 0,. . ,xn = 0. 

Fig. 4.13 

Note that: 

(i) 4(O) = x0; 

(ii) the function cj*f on the disc D A has the center of the disc as its only 
(non-degenerate) critical point (a maximum); 
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(iii) the image 4(a@) of the boundary 8Dx = SxP1 is contained in the 
manifold E)MCn_. = {x E M” 1 f(s) = c - E}. 

The manifold Mc+E is homotopy equivalent to the space M:-, U$ DA. An 
appropriate homotopy (Pi : M:+, --) M,“,,, 0 < 7 2 1, is defined as follows: 
On Mp-, it is the identity map for all r; outside U and Mr-,, (pT is the 
deformation of MCfE which moves the points along the integral trajectories of 
the dynamical system (2.10), transverse to the level surfaces. It can be shown 
that on U the homotopy (p7 can be defined so as to deform those parts of 
the level surfaces f-l [c - E, c + E] contained in U, onto the X-dimensional disc 
DA - see Figure 4.13. The upshot is that (p7 provides a homotopy between 
the identity map cpe : MC+E --+ MC+E and the desired map cpi : MCfE ----f 
M:pE Us DA. 

By carrying out this construction for each critical point in turn one obtains 
the desired CW-complex homotopically equivalent to M”. At each stage one 
can ensure, by means of a small perturbation of cpi bringing it into “general 
position”, that the boundary 8Dx is attached only to cells of dimension < X 
already constructed in MC-,. (Alternatively one may use a Smale function, 
i.e. a Morse function where the critical values have the same ordering as the 
indices of the corresponding critical points.) 

The Morse inequalities (see above) follow quickly from this construction 
of a CW-complex of the same homotopy type as Mn. They may in fact be 
supplemented, since one infers from that construction that 

j=o j=o 

so that in particular taking Ic = n, one has 

&l)jm3(f) = x(Mn). 

(2.11) 

(2.12) 
j=o 

The Morse inequalities do not apply if the critical points of a real-valued 
smooth function on a closed manifold Mn are isolated but are allowed to 
be degenerate. There is however another useful homotopy invariant - the 
Lyusternilc-Shnirelman category of the manifold (introduced in the late 1920s) 
- which provides a lower bound for the number of critical points of smooth 
functions on M* regardless of non-degeneracy. For an arbitrary topological 
space X, this invariant, denoted by cat(X), is defined as the least number lc 
of closed sets Xi,. , Xk, such that X = Ui Xi, and each Xi is contractible 
in X (to a point). One then has the result that for a closed manifold Mn the 
number m(f) of critical points of an arbitrary smooth, real-valued function f 
on M” satisfies 

m(f) > cat(Mn). 

The invariant cat(Mn) may in turn be estimated from below using the coho- 
mology ring of Mn (with appropriate coefficients): Defining the cohomological 
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length I(Mn) of M” to be the largest number 1 for which there exist non- 
zero products LYE . ~1 of elements al, . . . , cyl of positive degree in H*(M”; Z) 
(H* (iW; Z/2) if Mn is non-orientable), we have 

cat(Mn) > l(M”). 

One always has cat(Mn) 5 n + 1. It is not difficult to see that cut(Sn) = 2, 
and that cat(M’) = 3 for every closed surface M2 other than S2, and also 
that cat(RP) = n + 1, cat(@P) = n + 1. In the sequel we shall consider 
inequalities of Morse and Lyusternik-Shnirelman type in the context of certain 
path spaces arising in the calculus of variations. 

Finally we consider smooth functions f on a manifold Mn whose critical 
points constitute a submanifold of Mn; such functions arise inevitably in the 
presence of a Lie group of symmetries of M”, where it is required that the 
level sets of f be preserved by the Lie action (see Figure 4.14). 

Fig. 4.14 

Let f be a smooth function on Mn. A submanifold W” is called critical if 
grad flWk E 0. Note that the Hessian d2f determines a quadratic form on a 
subspace Vpwk c TM: orthogonal to W” with respect to some Riemannian 
metric on Mn. A connected critical submanifold W” is called nondegenerate 
of index X if for any x E W” the quadratic form d2flvz-b is nongenerate and 

has index X. (The index is independent of the point x since W” is connected.) 
A particular case of a critical manifold was considered by Pontryagin in the 
late 1930s in connection with a calculation of the mod-2 Betti numbers of Lie 
groups; the general theory together with its most important applications are 
due to Bott in the 1950s. 

Over a critical submanifold W,” c M” there is a naturally defined vector 
bundle yxu --f Wk with fibers lIX$- given by the directions of “steepest de- 
scent” (i.e. decrease in f) at each point x E W,“, i.e. those determined by the 
negative squares in the Hessian d2f restricted to the normal vector bundle of 
W,. 

Suppose now that the solution set of the equation gradf = 0 constitutes a 
collection of smooth critical submanifolds W,$ of M”, with indices X,. If for 
every Wk the vector bundle uxU ---+ W,“, just defined, is orientable (i.e. one 
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may reduce the stucture group of uxa to the group SOJ,, ), then one has the 
ineaualities 

(2.13) 

for the ranks bj of the jth rational homology groups (and also over Z/p). 
If the vector-bundles Y’U -+ IV! are not all orientable then the inequalities 
(2.13) hold only over Z/2. These inequalities may be explained in the following 
way: Each s-dimensional cycle in a critical submanifold IV,” corresponds to 
a relative cycle of dimension s + A, in each of the groups Hs+x, (A4=, M,-,) 
(where MC denotes the closed region of M” defined by f 5 c) formed, roughly 
speaking, out of the rays in l@- of “steepest descent” emanating from the 
points z of the s-cycle. 

In general, analytical or geometrical information concerning real-valued, 
smooth functions definable on a manifold, with restrictions of various kinds 
imposed on the nature of their critical points, may yield significant conclusions 
concerning the topology of the manifold. 

Example 1. If M” is a closed manifold on which there exists a Morse func- 
tion with just 2 critical points, then it is not difficult to see that Mn must be 
homeomorphic (even piecewise linearly) to S”. By the Smale-Wallace theorem 
(of the early 196Os), for n 2 5 there exists on every manifold M” homotopi- 
tally equivalent to the sphere S* a Morse function with exactly 2 critical 
points. The idea for such a characterization of spheres is due to Reeb (in 
the early 1950s); the first deep application of it was made by Milnor in the 
late 1950s in connection with his discovery of exotic smooth structures on 
the sphere S7, in the sense that the manifolds with these smooth structures 
are not diffeomorphic to the standard smooth 7-sphere, though they are PL- 
homeomorphic to it. In 54 below we shall discuss the more elaborate Milnor- 
Kervaire theory of manifolds M” homotopically equivalent to S” for n 2 5. 

Example 2. Let W n+l be a manifold-with-boundary, with boundary a dis- 
joint union: IYW”+’ = VT U VP, and suppose that Wn+’ is contractible onto 
each of these portions of the boundary: 

wn+l - vr - v;, nj (wn+lJy) = 0, j 2 0. 

In this situation we say that the manifold Wn+’ is an h-cobordism between 
Vr and VT, and that the latter manifolds are h-cobordant. The “h-cobordism 
theorem” of Smale states that if n 2 5 and VT, V2 are simply-connected then 
there exists a smooth, real-valued function f on Wn+‘, constant on Vln and 
VT, without any critical points (and with gradient nowhere tangential to VP 
or Vi%). It follows that under the same hypotheses, IV+’ is diffeomorphic to 
the cylinder VT x I, and VP is diffeomorphic to Vzn. 0 

Example 3. The closed surfaces M2 may be readily classified by considering 
particular Morse functions on them. The generalization of this approach, on 



$2. The homology theory of smooth manifolds. Complex manifolds 177 

the basis of the h-cobordism theorem above, leads to the classification of cer- 
tain classes of simply-connected manifolds, for instance those having non-zero 
homology groups only in the middle dimension [ ;]. The method of Novikov 
(of the early 1960s) for classifying arbitrary simply-connected manifolds uses 
a different approach although it does invoke the h-cobordism theorem (see $4 
below). On any connected, closed S-dimensional manifold M3 there exists a 
Morse function f with one maximum point, one minimum point, a collection 
of critical points of index 1 all on one level surface f = cl, and a collection of 
critical points of index 2 all on another level surface f = cz. (The number of 
critical points of index 1 can then be shown to be equal to the number of index 
2; we denote this number by g.) If the manifold is cut along an intermediate 
level surface f = c, cl < c < cz, one obtains the two submanifolds 

My = {cx E M 1 f(z) I c} , M; = {x E M ) f(x) 2 c} 

with the surface Mi as common boundary: 

M; = {x E M 1 f(z) = c} 

It is not difficult to see that if M3 is orientable then the manifolds M-, M+ 
are each homeomorphic to the solid handlebody obtained as the region of Iw3 
filling the sphere-with-g-handles Mi embedded in standard fashion in Iw3. It 
follows that the structure of the S-manifold M3 is determined wholly by the 
way in which these two (identical) solid handlebodies MA and M+ are glued 
together along their boundaries, i.e. by a diffeomorphism h : Mi -+ Mi. (Such 
a decomposition of a 3-manifold is called a Heegaard splitting.) Although the 
homotopy and topological classes of diffeomorphisms Mi + Mi have been 
classified (by Nielsen in the 193Os), this does not yield a classification of the 
(closed, connected) S-manifolds since different diffeomorphisms Mi --f Mi 
may yield homeomorphic manifolds M3. In the case g = 1 one obtains, as 
the only 3-manifolds with Heegaard splittings of genus one, S3, S2 x S1, and 
certain lens spaces. Cl 

Example 4. If g(z) is a holomorphic function in general position on a com- 
plex manifold M” of complex dimension n, then the real part f(z) = Reg(z) 
of g(z) is a Morse function all of whose critical points have index n. This is 
true in particular for the manifold obtained from a projective algebraic variety 
M” c (CP” by deleting the hyperplane section @PNP1 n M” = W”-l say: 
on the remaining afline portion Mn \ W”-l there exist many everywhere- 
holomorphic functions g in general position, and their real parts will then be 
Morse functions with all critical points of index n. From this one can conclude 
that: Every map K -P Mn, where K is a CW-complex of dimension 5 n - 1, 
is contractible onto the hyperplane section. This has the consequence for the 
homology groups that the inclusion homomorphism 

Hj (W”-‘) + Hj (Mn) 

is an isomorphism for j < n - 1 and an epimorphism for j = n - 1. 
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The homology theory of projective algebraic varieties, developed by Lef- 
schetz in the 1920s including intersections of cycles, the theory of algebraic 
cycles and the special role of the hyperplane section, will be examined in detail 
in a cognate volume surveying complex algebraic geometry. We shall confine 
ourselves here to the consideration of particular properties of meromorphic 
maps 

f:M”-CP1rS2 

(i.e. complex analytic functions with poles). The critical points of such a 
function have associated with them a nice topological phenomenon. Let xj be 
a critical point (gradflZJ = 0, d2flZi non-degenerate) with f(xj) = c say. On 
each non-singular level set (or “fiber”) FE defined by the equation f(x) = C+E, 
for 1~1 sufficiently small, there is a “vanishing cycle” zs E H,-.l(F,), vanishing 
in the sense that the cycle goes to 0 as E --+ 0. Moving the fiber F, around the 
loop 1~1 = const. yields a “monodromy” map 

The induced self-map Aj : H,(F,) + Hj (FE) of the homology groups has the 
form 

Aj=l for jfn-1, 

A,ml(z) = z zt (z. z)zo, z, zo E fLl(F,). 

(Note that the fiber F, is a complex manifold of complex dimension 7~ - 1.) 
The monodromy transformations associated with degenerate critical points 

of algebraic functions have been the object of deep investigations in algebraic 
geometry over a long period (including the last decade), by Deligne and many 
others. One of the most interesting situations is that where there arise such 
“fiber bundles with singularities” as a result of sectioning a variety Mn c 

CPN by a one-parameter family of hyperplanes, yielding fibers F which are all 
hyperplane sections. Homologically, a bundle with singular fibers over critical 
values cj = g(xj) is described by means of homology with coefficients in a 
“Leray sheaf” .F on the sphere S2 = CP’, given by 3~ = H,(g-l(U)). (Note 
that here for small discs U, the region p-‘(U) is contractible onto a single 
fiber.) In the case of a meromorphic function f : Mn --f @P1 having only 
nondegenerate critical points, the only homological invariants of f are the 
homology groups of the fibers F, and the collection of critical points together 
with their associated vanishing cycles (see above). Actually this situation was 
already covered by the Picard-Lefschetz theory of the 192Os, although rigorous 
proofs were given only somewhat later. 0 

A completely different approach, via tensors, to the real or complex coho- 
mology theory of a manifold Mn was initiated around 1930 by Cartan, using 
skew-symmetric tensor fields (with lower indices only) on the manifold, i.e. 
differential forms, and the associated differential operator d on such forms, in- 
troduced above. Particular important types of l-forms and 2-forms, together 
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with some of their deeper topological and algebro-topological properties, in- 
cluding applications, had been considered earlier by Poincark in connection 
with the theory of automorphic forms and his investigations of Hamiltonian 
systems; however the full systematic theory is due to Cartan. 

Consider the algebraic complex A* (Mn), defined to have as its elements 
the smooth globally-defined differential forms & on M”, given in terms of 
local co-ordinates on each chart V, c Mn by 

f& = c Tj,mjkdxj, A.. . r\dxj,“. 
j,<...<j, 

Thus here k is the degree of the form, and the k-forms flk together com- 
prise Ak(Mn). The differential operator d : Ak(Mn) + Akfl(Mn) is defined 
locally by 

df& = c %,,,; A dxj,’ A . ,j dxe, 
j,<...<j, cx (2.14) 

dxj A dxS = -dxS A dxj a a a a 

The real vector spaces Ak(Mn), k = 0,. . , n, together with the differential d 
determine the algebraic complex A* ( Mn) : 

0 - llO(M”) 5 A’(M”) + .” 3 fl”(M”) ---f 0. (2.15) 

Note that Ak(Mn) may be defined as the sheaf of germs of k-forms (of class 
C”), and the sequence (2.15) gives rise to an exact sequence of sheaves (see 
below). The cohomology groups of the manifold Mn are now defined via the 
homology of the algebraic complex (2.15): 

H$(M”;IW) = Ker d/Im d, Im d c Ker d c Ak(Mn), 

and their direct sum forms a graded ring 

IiJr,(M”) = c H;(M”; Et), 
k>O 

where the multiplicative operation is the exterior product of forms. 
“Poincark’s lemma” states that in some neighbourhood of every point of Mn 
every closed form 0 E Ak(Mn), k > 0, (i.e. da = 0) is exact (i.e. 0 = dfl’). 

For compact, simply-connected Lie groups and certain homogeneous 
spaces, namely simply-connected symmetric spaces of covariantly constant 
Riemann curvature (i.e. where the covariant derivative of the Riemann curva- 
ture is identically zero), the cohomology ring Hs(Mn) is readily calculated. 
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Each class z E Hi (M”) contains a unique two-sided invariant k-form, (and 
conversely each such k-form belongs to some cohomology class) on M” = G 
(in the Lie group case), or a unique G’-invariant k-form on Mn = G’/Gb in 
the case of a symmetric space. Note that in the latter case the Lie algebra 6’ 
of the Lie group G’ always admits a Z/2-grading: 

6’ = 6; + q, 
(2.16) 

[@3b, q c ($7 p&q c @%, p5;,cq c (5;. 

A Lie group G endowed with a Riemannian metric may be regarded as a 
symmetric space by taking the group G’ = G x G as acting on G, with the 
action given by 

(917 92) : 9 +-+ 9ld. 

This yields M* = G ” G’IG, and 

cY=@;+s;, 
(2.17) 

where t$, = {(z, z)} , S: = { (5, -x)} . 

In fact for any homogeneous space of a compact Lie group G the computation 
of the cohomology ring reduces to the computation of the complex -4zn,(hiln) 
consisting of the G-invariant forms, although the restriction of the operator d 
to &, may act like the null operator. 

In the 1930s de Rham showed that these cohomology groups (i.e. defined 
in terms of differential forms) are naturally isomorphic to the usual simplicial 
cohomology groups with coefficients in Iw. We now sketch the modern proof 
of this result using sheaf theory. Consider the following sheaves on a manifold 
IP: 

A” = the sheaf of germs of /c-forms (of class C”); 

2” = the sheaf of germs of closed k-forms. 

(Thus 2’ is the sheaf of constants.) One has the following exact sequence of 
sheaves 

0 --f z” 2 Ak L z”+l ---+ 0 (2.18) 

(where i is the inclusion), which , as noted in Chapter 3, $4, gives rise to the 
exact cohomology sequence 

. . + H.?(z”> .!.z+ @(A”> .&+ Hj(zk+l) 2 @+l(zk) + . . . , (2.19) 

(where Hj(F) denotes the jth cohomology group with coefficients from the 
sheaf .F, i.e. the group Hj(M”; F)). Using the fact that sections of n”(h 2 0) 
are required only to be of class C” and not analytic, it is not difficult to show 
that 

Hj(Ak)=O forj>O. (2.20) 
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Note also that H”(Ak) = .4k (M”), since by definition H’(A”) coincides with 
the group of all k-forms of class C” defined on the whole of Mn. Prom (2.20) 
and the exactness of the sequence (2.19), it follows that for j > 0 the homo- 
morphisms 

d* : Hi(Zkfl) + H i+l(Zk) 

are isomorphisms. Thus we have a sequence of isomorphisms 

H1(Zk) 5 H2(Zk-l) ‘* - ... ---i ‘* Hk+l(Zo), (2.21) 

where 
H”+l(Z’) ” Hk+‘(Mn; R), (2.22) 

the ordinary real cohomology group, since Z” is the sheaf of constants. We 
have also from (2.19) and (2.20) the exact sequence 

H”(Ak) 5 H”(Zkfl) -% H1(Zk) + 0, 

where H’(A”) is the group of all k-forms (of class C”) globally defined on 
M” (so that d, = d), and H”(Zkfl) the group of closed (Ic + 1)-forms on Mn. 
Prom this exact sequence, together with (2.20), (2.21) we have immediately 

Hk+l(Mn;IR) E H1(Zk) “Ker d/Im d Z Hi+l(Mn), 

Ker d c Ak(Mn), 

which is de Rham’s theorem. (Note that the Poincare lemma is used implicitly 
in this argument to establish local exactness, i.e. to obtain the exactness of 
the sequence of sheaves (2.18).) 

We next glance at a different kind of invariance of the cohomology groups 
Hi (M”) , namely their invariance under smooth homotopies of manifolds 

F : M; x I + M2m, I = [a,b]. 

Observe first that for any form w E Ak(MF) the pullback has the form 

Fqw = I$!‘) 21”‘2k-l dxi’ A.. . A dxik--l A & + Qj!‘) jl...jkdxii A . . A dxj”. 

If we define an operator D on forms w E Ak(Mp) by 

Dw = s,” F*w, Dw E A,-,(MF), 

where the integral is with respect to t, then the contribution to Dw from the 
second term in the above expression for F*w is zero, since that term does not 
involve dt. Using this it is straightforward to verify that 

DdfdD= f, - f;, 
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where fa = F( ,a), fb = F( ,b). It follows (much as in Chapter 3, $2, the 
analogous conclusion followed from equation (2.17) there) that for any cocycle 
z (dz = 0) the difference f,*(z)-f;(z) = do(z), and so is a coboundary. Hence 
the induced homomorphisms 

coincide (for all j). 
As far as homotopy theory is concerned, the category of CW-complexes 

and cellular maps may be replaced by the category of manifolds and smooth 
maps, since any CW-complex K, after being embedded in IWN for some N, 
may be replaced by a neighborhood of it in IWN contractible to K, and then 
cellular maps may be approximated arbitrarily closely by smooth ones, or 
replaced by smooth maps deformable to them by means of arbitrarily small 
homotopies. From this consideration and the homotopy invariance of the co- 
homology groups Hi just established in outline (together with the fact that 
they satisfy the other cohomology axioms, given in Chapter 3, §3), it is clear 
that the coincidence of the Hi with the usual cohomology groups follows. In 
fact there is no difficulty in taking this route to establishing the equivalence of 
cohomology theory defined via forms on manifolds, with the usual cohomology 
theory; however a detailed and rigorous exposition of this line of argument 
would not seem to be worthwhile since it would not yield a proof shorter than 
other known proofs. 

There is a natural operator on forms on an orientable manifold AP, de- 
termined by a Riemannian metric gij on M”, called the duality operator 
* : nyiq - An-k (Mn). It is given locally by 

*w = (*T)il...i7L-k dxil A A &+-k 1 

w = Tj,...j,dxil A . A dxik. 

(The operator * is well-defined for oriented manifolds M” since for these the 
local expression 

da = 
-\i 

det(gij) dxi A . . A dx”, 

determines a well-defined n-form.) The duality operator * has the following 
properties: 

1) (*)2 = (-l)“(“-k) on k-forms; 

2) the operator 6 = *-‘de : nk+‘(iVP) + nk(AP) is formally dual to d 
with respect to the scalar product given by 

(w,w’) = / w A *w’, 
M” 
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that is, 

f(dw,w’) = (w,Sw’). 

3) The Laplace operator A = d6 + 6d = (d + S)2 commutes with both d and 
S (and is self-dual). 

For any closed manifold Mn one has the following orthogonal “Hodge decom- 
position” of fl”(jV) considered as a Hilbert space with respect to the above 
scalar product (2.23): 

Ak(AP) = Im d @ Im S @ Ker A, 

where Ker A consists of the harmonic forms on Mn. One has also 

(2.24) 

Kerd=Imd@Ker A, 
(2.25) 

Kerd=Imh@Ker A, Ker A = Ker d n Ker 6, 

whence it follows that the dimension of the space of harmonic forms in n”(iU”) 
is equal to the lath Betti number bk(kP). It can be shown that the Poincari, 
duality homomorphism is determined by the action of the duality operator * 
on the harmonic forms. 

The Laplace operator A can be defined also for simplicial complexes, in 
fact for CW-complexes more generally, by taking d* and d in place of d 
and S respectively, so that the Laplace operator in this context is defined as 
A = da* + d*a. With this understanding, the formulae (2.24) and (2.25) for 
the Hodge decomposition hold for any CW-complex K, with respect to the 
scalar product determined by taking the cells to form an orthogonal basis. 

I f  the CW-complex K is not simply connected, then as described in Chap- 
ter 3, $5, any (unitary) representation p : rl(K) -+ U, determines a chain 
complex C, (K; p) with the structure of a Z[Ti]-module. In the case where 
all homology groups of positive dimension of this chain complex are zero, 
the following formula for the Reidemeister torsion holds (Singer, in the late 
1960s): 

~WNK,P)I = Cq(-l)qlogdetAl~,(~;p). 

9 
(2.26) 

By extending this formula to the complex of differential forms on a manifold, 
using a suitably defined relative determinant of two different representations, 
Ray and Singer (in the early 1970s ) were able to give an analytic treatment 
of Reidemeister torsion, showing in particular that their analytic version of 
the concept was independent of the metric gij. A rigorous verification that 
the Ray-Singer torsion actually does coincide with the usual combinatorially 

defined Reidemeister torsion was given in general form somewhat later (by 
Miiller and Cheeger in the late 1970s). 

It is of interest to note in this connection A. S. Schwarz’ curious quantum- 
theoretical interpretation of Ray-Singer torsion using a functional integral of 
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a simple gauge-invariant expression in differential forms where the torsion 
appears in the process of constructing, in the standard way, a theory hypo- 
thetically violating gauge-invariance.’ 

Differential forms are especially important in the homology theory of 
Kahler manifolds AI” of n complex dimensions, with Kahler metric &j. Re- 
call (from the end of the preceding section) that by definition this metric is 
Hermitian, given locally (on a chart V, co-ordinatized by .zA , . . . , z,“) by 

ds2 = gkjdzkdZj a ar 

with the property that the associated real 2-form 

L? = ;gkidZg A d.Zi 

is closed: dQ = 0. The space Ak(Mn) of k-forms (and the associated sheaf Ak 
on AP) decomposes naturally as a direct sum of forms of type (p, q): 

A”(W) = c LPq, (2.27) 
p+q=n 

where a form of type (p, q) is defined (locally) as 

c fil..&jl...j<, dz~r\...r\dz~r\dz~r\...ndz~, (2.28) 

Differentiation of forms on the Kahler manifold Mn is defined on O-forms 
(functions) by 

d=d,+&, d,f = gdz, &f = $dz, 

and extended essentially as for real forms to forms on M” of degree > 0. The 
Kahler metric is used to define the formally dual operators 

6 = *-‘d*, 6, = *-‘d,*, s, = *-l&*, (2.30) 

and the corresponding Laplace operator 

A, = &d, + d,&, z\, = A,, 
(2.31) 

A = dS + 6d. 

By “Hodge’s lemma,” provided the metric is Kahler the real and complex 
Laplace operators differ only by a constant factor: 

lAn up-to-date survey was written in 1983-1985 and published in Russian in 1986. The 
work of A. S. Schwarz mentioned above was completed around 1980 and was well-known at 
that time to certain mathematical physicists (specialists in quantum field theory). Starting 
from the late 1980s these ideas were developed by Witten and others. This theory is now 
known as “Topological Quantum Field Theory”, and has become an extremely active area 
of modern topology. 
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A = const. x A,. 

If follows that for M” a closed manifold the space of harmonic forms and 
hence the cohomology groups decompose as direct sums: 

H”(M;@) = c Hp~Q(Mn;@), 
p+q=k 

(2.32) 

in accordance with the decomposition (2.27). This decomposition depends of 
course on the metric. Note that the form L? determined by the metric (see 
above) has type (1,l): 

[L?] E HlJ(M”; C), 

and that [P] # 0 since the integral 

I 0” 
M” 

is a non-zero multiple of the volume of AP. 
The operation of forming the exterior product of any form w on M” with 

the form R is usually denoted by L: 

L(w) = nnw, 

and the dual operator by A. Primitive forms w are defined to be those for 
which Aw = 0. Every form may be obtained from the primitive ones by means 
of applications of operators given by expressions in L and A. Note the result 
of Dolbeault: 

Hp,q(Mn; C) ” Hp(M”; nq), 

where here LI’J denotes the sheaf of germs of holomorphic q-forms on Mn. If 
the form 0 represents an integral cohomology class, then by Kodaira’s theo- 
rem the manifold Mn can be algebraically embedded in @PN in such a way 
that the cohomology class of 0 is dual to the hyperplane section (mentioned 
earlier in connection with its special role in the homology theory of algebraic 
varieties). Note also the result of Moisheson (mid-1960s) to the effect that 
a complex manifold endowed with a (not necessarily Hodge) Kahler metric 
admits an algebraic embedding in @PN if the space of meromorphic functions 
on the manifold has transcendence degree (i.e. largest number of algebraically 
independent functions) equal to its dimension. 

It is a useful observation that algebraic cycles, i.e. subvarieties (possibly 
with singularities) iVnek of a projective algebraic variety Mn, determine ho- 
mology classes dual to elements of H”>“: 

D [IV”-“] E Hk>k(Mn; C) n H2k(Mn;Z). (2.33) 

According to sharpened version of a conjecture of Hodge every element of 
the intersection on the right-hand side of (2.33) is realizable in this way by 
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means of a rational linear combination of algebraic cycles. The case Ic = 1 of 
this conjecture was settled earlier by Lefschetz in stronger form: every class in 
II’)’ n N2(Mn; Z) can be realized (as in (2.33)) by means of the fundamental 
cycle of an algebraic subvariety N”-l n AP (a so-called “divisor”). For k > 1, 
Thorn’s theory (see below) shows that obstructions arise even to the realiza- 
tion of elements of H2cn--k) (AP; ;Z) as images in Mn of non-singular complex 
(or even quasi-complex) varieties Nnek (under maps Nn-” ---+ AP). We note 
here also the result of Hironaka of the mid-1960s according to which every va- 
riety with singularities may be obtained via contraction from a non-singular 
variety (and is therefore a continuous image of it). 

We shall not discuss in the present survey the original circle of ideas, initi- 
ated by Grothendieck in the late 1950s for formulating a homology theory of 
projective algebraic varieties over (algebraically closed) fields of characteristic 
p > 0. These ideas depend on elegant use of the category of finite-sheeted, 
unbranched coverings of open regions of @PN (with respect to the Zariski 
topology, where the closed sets are just the algebraic subvarieties) involving 
the “&ale topology” of Grothendieck. Analogues in the Grothendieck theory, 
of the Lefschetz formula for the number of fixed points of a smooth self-map 
M + M, applied to the Galois group of the algebraic closure of a finite 
field, yield, by means of homological algebra along the lines of the Weil-Tate 
program, number-theoretic asymptotics for the numbers of solutions of dio- 
phantine equations modulo p, and the rationality of the mod-p analogue of 
the Riemann <-function (which is considerably simpler than the ordinary c- 
function). This and related questions, including the relevant history and later 
developments, will doubtless be dealt with in those volumes of the present se- 
ries devoted to algebraic geometry. What is important for us here is that the 
Grothendieck homology theory of real varieties defined by polynomials over 
the integers yields the same information as the ordinary homology theory of 
the complex variety defined by the same set of polynomials; the situation is 
more complicated only in mod-p homology where p > 0 is the characteristic 
of the field of interest. 

We now return to the theory of ordinary real smooth manifolds. One of the 
most important areas of application of homology and homotopy theory is the 
study of global properties of extremals of functionals of paths on M” with 
one or the other of two types of boundary conditions: 

1) s {y} = s” L(s,k)&, y = z(t), x(to) = 20, x:(t1) = Xl, (2.34) 
to 

the extremal problem where the end-points of the paths y are fixed at ~0, ~1; 

2) S(Y) = 
f 

-qz, kc)& Y(t + T) = 7(t), 
Y 

the periodic variational problem. 
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The quantity L, the Lagrangian of the variational problem, is a real-valued 
smooth function L(x, U) defined on the points (x, v) of the total space T(Mn) 
of the tangent bundle of M”, and is always required to satisfy the positivity 
condition 

2 

& vi+ > 0 for all non-zero vectors r]. (2.36) 

The standard examples of Lagrangians arising in geometry or in the classical 
mechanics of non-charged particles, are as follows: 

a) L = Jj gijwiwj = + lv12, the Lagrangian appropriate to the motion of a 
particle in a Riemannian manifold Mn; provided the parameter t is natural, 
i.e. proportional to arc length, the extremals are the parametrized geodesics 
of M”; 

b) L = ; gijvivj - U(Z), appropriate to the motion of a particle in the 
Riemannian manifold Mn in the presence of a force field with potential U(Z); 

c) L(x, v) = [VI = ,,/‘s, yields the length functional, with the geodesics 
as extremals; 

d) more generally than c), functionals of Finsler length type where the 
Lagrangian satisfies 

L(x, Xv) = XL(x, v), x > 0; (2.37) 

these occur on submanifolds of Banach spaces, with the induced metric; they 
are usually required to satisfy the positivity condition 

l(Y) = 
s 

L(x,f)dt > 0. (2.38) 
Y 

If L(x, -v) = L(x, w), th e variational problem is said to be reversible; this is 
the case for instance for the length functional c) with respect to a Riemannian 
metric. 

According to the principle of Maupertuis (or Fermat-Jacobi-Maupertuis) 
the trajectories extremizing functionals of Lagrange type (see b) above) are 
just the geodesics with respect to the new metric defined in terms of the total 
energy E = a lv12 + U(Z) of the particle by 

lj: = 2(E - U)gij(x), 

lE($ = ,/vdt, I dxj (2.39) 
k:j = - 

Y dt ’ 

Provided E > rnaxZEMIL U(x), this clearly defines an ordinary Remannian 
metric. The extremals yielded by Fermat’s “principle of least time” are essen- 
tially the geodesics with respect to a metric of the form 

gij = C-l(X)Sij in Iw3, 

where c(x) is a smooth scalar function (originally the speed of light). (As is 
well known, Fermat introduced the principle that light rays travel along paths 
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of least time in order to explain the observed bending of light rays in passing 
from one isotropic medium to another, linking this to the differing speeds of 
light, then unknown, in the different media.) 

In general one considers functionals defined on the path space fl(zc,zi) 
consisting of all piecewise smooth parametrized paths in M” joining ~0 to ~1, 
or (in the periodic problem) on the space fl+(AP) of of all piecewise smooth, 
directed, parametrized loops, i.e. maps S1 -+ M”, f(cp + 27r) = f(v). The 
manifold Mn is assumed closed. The positivity condition (2.38) ensures that 
the functionals a), b), c), d) b a ove all satisfy the compactness requirement 
(“Arzela’s principle”) that the subspace of paths y satisfying S {y} 5 c should 
for each constant c be relatively compact (in the compact-open topology on 
fl(zo,zl) or 0+). 

With respect to the compact-open topology (or a natural distance be- 
tween paths determined by a Riemannian metric on Mn), the spaces fi(za, ~1) 
and on+ are “infinite-dimensional” manifolds. In view of the Fermat-Jacobi- 
Maupertuis principle, the above examples a), b), c), d) will be essentially 
covered if we consider only length functionals with respect to a Riemannian 
metric or of Finsler type on our closed manifold M”. Assuming in addition the 
condition (2.36), a Morse theory for such functionals S(y) on fi(ze,zr) (or 
on Q+) analogous to that described above for smooth functions on manifolds, 
can be formulated: In place of the gradient one uses the “variational deriva- 
tive” of S with respect to paths, so that critical paths are those at which the 
variational derivative SS/Sy vanishes; it turns out that y E fi(zc, 21) is criti- 
cal precisely if it is a smooth geodesic parametrized by a natural parameter. In 
terms of the “second variation” a2S of the functional S one defines a Hessian 
d2S as a certain bilinear form on pairs of smooth vector fields (i.e. elements 
of T7( 0)) along y in IP, y E fl(za, xi), and then the index i(yo) of a critical 
path “/o is the largest dimension of a subspace of TTa(f2) on which d2S, as a 
quadratic form on Tyo (L’), is negative definite. It was shown by Morse in the 
1920s that the index i(yc) of a critical path 70 E R(zc, zi) coincides with the 
number of points p of the curve 70, (counting multiplicities and excluding ~1) 
that are “conjugate” to 50 in the sense that there exists a non-zero vector field 
along the arc of yc from 50 to p vanishing at ~0 and p and satisfying Jacobi’s 
linear differential equation (the Euler-Lagrange equation for the extremals of 
the functional given by the second variation b2S). In the periodic case, i.e. for 
0+(&P), the number of points conjugate to any particular point on a critical 
loop provides only a lower estimate for the index. (The rigorous exposition 
of this theory requires in particular Hilbert’s theorem on the existence of a 
geodesic joining ~0 and ~1.) As in the Morse theory of functions on mani- 
folds, one can show, using the trajectories determined by the “gradient” (and 
finite-dimensional approximations by means of piecewise geodesic arcs), that 
the space R(za, zr) is homotopically equivalent to a CW-complex whose cells 
of dimension i correspond one-to-one with the geodesics of index i from zc to 
zr (and similarly for 0+). It follows that in the general non-degenerate case 
(with the above assumptions, including Arzelk’s principle), one has in this 
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context also the Morse inequalities 

w(S) L b(fqso, a)), 

(2.40) 
m(S) 2 h(fl+), 

where mi is the number of extremals of index i. 
In certain circumstances the first of these inequalities may be used to infer 

the existence of distinct geodesics from zc to zi. However in the periodic 
problem a plurality of closed geodesics may be illusory for instance in the sense 
that they might all be multiples of a simple closed geodesic (i.e. obtained by 
going round that geodesic a varying number of times). In the case M” = S” 
with n > 3, it is known that there are at least two geometrically distinct 
extremals in the periodic problem (A. I. Fet, in the mid-1960s). For any closed 
manifold Mn with the property that the Betti numbers bi(R(xc, zi)) increase 
at least linearly as i + oo, it has been shown (by Gromoll and Meyer in the 
late 1960s) that there exist infinitely many geometrically distinct, periodic 
extremals. 

Working in the context of Poincare’s problem concerning three non-self- 
intersecting geodesics on the 2-sphere S ‘, Lyusternik and Shnirelman ex- 
tended their inequality (see above) to show that m(S) > cot(X/Mn), for 
arbitrary reversible functionals S on the quotient space X/Mn of the space 
of non-self-intersecting paths on Mn (or more precisely the completion of 
this space) modulo the space Mn c X of constant paths on Mn. (Here non- 
degeneracy of the critical points is again not required.) By transferring to the 
space of non-directed paths and showing that X/S2 (taking M” = S2) has 
the homotopy type of IRP2, they were able to show, around 1920, that for any 
reversible functional S on X/S2, the number of critical points, regardless of 
degeneracy, satisfies 

m(s) 2 3, 

thereby solving Poincare’s problem.2 In conclusion we note again that this 
theory applies only to reversible variational problems. 

An important chapter of the global calculus of variations is devoted to 
the study of the length functional and geodesics determined by a metric of 
Cartan-Killing type on a Lie group or symmetric space (mainly due to Bott in 
the late 1950s). On the group SU zn, for instance, equipped with the invariant 
metric determined by the Killing form (X, Y) = Re Tr(XY*) on the Lie 
algebra, the minimal geodesics from zc = 1 to ~1 = -I (I the identity matrix) 
form a submanifold diffeomorphic to the complex Grassmannian manifold 

Gn,n 2 Uzn/(Un x U,), and the minimal geodesics, as critical paths of the 
action functional a), have index 0, while the non-minimal geodesics (from 
TCO to ~1) have index > 2n + 2. It follows that the inclusion of the space of 
minimal geodesics (” G!&, ) in n(zc,zi) induces an isomorphism between 

2A complete and rigorous exposition of the Lyusternik-Shnirelman theory has been pub- 
lished recently; see the survey by I. A. Taimanov in Russian Surveys, 1992, v. 2. 
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the corresponding homotopy groups of dimensions up to and including 2n. 
From the homotopy exact sequence of the principal fiber bundle 

V&, + G!&, with fiber U,, 

(see 51 (l.ll)), we infer that 

T.~(G:~,,) 2 T?-l(U,), 1 < j < 2n - 2. (2.41) 

Putting these various facts together we obtain (after some work) the result 
known as Bott periodicity for the stable homotopy groups of the unitary group: 

7rj(Un) 2 7rj-z(Un), 2 5 j 5 2n - 1. (2.42) 

For the orthogonal and symplectic groups the argument is somewhat more 
complicated. For the orthogonal groups one obtains 8-fold periodicity: 

~~(5’0,) E 7rj_8(SOn), 8 < j < n - 2. (2.43) 

The first seven stable homotopy groups of 0, and U, are given in the 
following table: 

j 0 1 2 3 4 5 6 7 8 ... 

Tj(Od z/2 z/2 0 z 0 0 0 z z/2 ‘.’ 

7rj(Un) 0 z 0 z 0 z 0 z 0 “. 

One has the following isomorphisms for the symplectic group Spn: 

nj (04 = ~j-4(%J, j 5 n - 2, 

(2.44) 

n’j (SPn) = 7r.j-4(0,), j 5 n-2. 

In fact the Bott periodicity operator is defined for any CW-complex K in the 
sense that 

[C8K,0,] = [K,O,] if dim K < n - 10, 
(2.45) 

[C’K, Un] = [K, Un] if dim K < 2n - 4, 

where C denotes the suspension and [X,Y] the set of homotopy classes of 
maps X ---f Y. (Often the index n is omitted in (2.45) with the understanding 
that it is sufficiently large.) 
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Taking the direct limits 

0 = lim O,, U = lim U,, Sp = lim Sp,, 
n-+03 12’00 n-+cc 

we infer from Bott periodicity that 

f140 = sp, n4sp = 0, f12u = u, 

where 0X = 0(X, zc) is the space of loops on X based at ~0. (The base point 
is often left implicit.) 

Remark. Without entering into detail we mention the fact (established by 
several authors) that the non-parallelizability of the spheres S” for n # 1,3,7 
can be deduced from Bott periodicity independently of the results of Adams 
originally used for this purpose. Thus for all n # 1,3,7, the tangent bundle 
T(,!P) is non-trivial, and moreover for odd n represents (via the classification 
of Son-bundles - see Chapter 3, $6) an element of r,-r(S0,) of order 2. 
Note that for the unitary group U, the first non-stable homotopy group is 

mn(Un) = cl!. 

On the other hand Adams’ result on the non-existence of elements 
of 7r2n-1(Sn), n > 8, of Hopf invariant 1 does not seem to follow from Bott 
periodicity in this way (see Chapter 3, $6). 0 

We now turn to the cohomology algebras of Lie groups and, more generally, 
“H-spaces.” An H-space is a topological space X equipped with a continuous 
multiplication z . y = $(z:, y) E X (i.e. $ : X x X + X) with respect to 
which there is a “homotopic identity element,” i.e. an element 1 E X such 
that the maps 

7/Q,%) : x --) x, $(Z, 1) : x -----f x 

defining multiplication by 1, are both homotopic to the identity map lx. 
Note that H-spaces may be more or less like groups, for instance in the sense 
that they are “homotopically associative,” as in the case of the loop spaces 
~(X,Q). The latter, together with Lie groups, furnish the most important 
examples of H-spaces. For instance it follows from Bott periodicity that the 
space BU = J@m BU,, has the homotopy type of the loop space Q(U, 1) : 

BU N f2(U, l), and similarly for BO and BSp, so that these may be regarded 
as H-spaces as far as their homology or homotopy is concerned. Thus these, 
as also 0, U, Sp, are homotopically associative and commutative, although for 
finite n, i.e. for the Lie groups O,, U,, Sp,, this is not the case. 

We now consider the cohomology algebra of an arbitrary H-space X, with 
coefficients from any field Ic. From the natural k-algebra isomorphism 

Hm(X x X; k) ” c Hj(X; k) C.9 Hq(X; k), 
j+q=m 

and the H-space multiplication 1c, on X, one obtains a k-algebra homomor- 
phism 
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?y : H*(X; k) 4 H’(X; k) @ H*(X; k). (2.46) 

From the existence of a homotopic identity element it follows that for any 
z E H*(X; Ic) we may write G*(z) in the form 

T),+(z) = 163 z + z @ 1 + c z; @ z:‘, (2.47) 

where dimz;, dimzj’ > 0. The conditions (2.46), (2.47) determine the struc- 
ture of a Hopf algebra on H*(X; k). Th e existence of an algebra homomor- 
phism of the form (2.47) turns out to be a strong restriction on the structure of 
the algebra H*(X; k); according to Hopf’s theorem, a graded, skew-symmetric, 
associative algebra 

H = CH”, dim H” -C co, 
k>O 

over a field of characteristic 0 (a, R, @ for instance) for which there exists a 
homomorphism H + H @ H of the form (2.47), is a free skew-commutative 
graded algebra, i.e. satisfies no relations other than skew-commutativity: zw = 
(-l)ab~~, where a, b are the dimensions of z, w. Hence the algebra H*(X; k) 
has a set of exterior generators ej,, E H’j+‘(X; Ic), and a set of polynomial 
generators uj, E H2j(X; Ic), together generating H*(X; Ic) without further 
relations. Since the free polynomial generators uj, satisfy uyO # 0 for all n, it 
follows immediately that for finite-dimensional H-spaces X (in particular for 
Lie groups), the algebra H*(X; k) is a finitely generated free exterior algebra. 

Over fields k of characteristic p > 0, it can be shown that there is a set of 
multiplicative generators of H* (X; k) in terms of which there are only relations 
of the form up’” = 0. Furthermore in several cases it is known that although 
+J’” = 0, there is in the “dual algebra” a non-zero element of that dimension. 
Here the dual (Pontryagin dual) algebra to the Hopf algebra H*(X; k) of an 
H-space X, is obtained from the direct sum H,(X; k) of the homology groups 
(vector spaces) by defining a multiplication on it via the homomorphism 

$L : H,(X; k) @ H,(X; k) - H,(X; k) 

These results have been obtained by means of close scrutiny of the cohomology 
of H-spaces over finite fields, initiated by Browder in the early 1960s. 

In particular Browder proved a Poincare-duality law for the homology of 
finite-dimensional H-spaces. However for a considerable period no nontrivial 
examples of finite-dimensional H-spaces were known, until in the early 1970s 
Mislin, Hilton and others found such examples using the “plocalization tech- 
nique for the category of homotopy types” invented by Quillen and Sullivan 
around 1970 in connexion with the “Adams conjecture”. (The idea behind this 
technique actually dates back to work of Serre of the first half of the 1950s.) 
These new H-spaces resemble the homotopy-theoretical plocalizations of cer- 
tain classical Lie groups and H-spaces for various primes p. 
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As regards the H-spaces X = Q(Y, yc), it should be pointed out that over 
a field k of characteristic zero, the Pontryagin ring H,(X; k) is isomorphic to 
the enveloping algebra of the Lie-Whitehead superalgebra of the homotopy 
groups 

n*(X)@‘, %(X) =%+1(Y), 

where the grading is as in X and the Whitehead (Lie superalgebra) multi- 
plication [z, y] of elements as in Y. To construct the enveloping algebra one 
takes all elements x~j of some graded basis for the homotopy groups (ten- 
sored with Q), adjoins an identity element 1, and considers the algebra of all 
noncommutative k-polynomials in the variables Z, subject to the relations 

x.x. _ (-l)dim xi dim q,.,. = [x. x.~ 
2 3 3 2 21 3’ 

This result is a consequence of theorems of Serre and Cartan. 

Example. For the loop space of the sphere S” we have 

Hj(LY; Z) = 0, j # k(n - l), 
(2.48) 

H+Y3”;Z) E Z, j = k(n - l), k 2 0. 

Denoting by VI, a (suitable) generator of the group H”(+‘)( 09; Z), one has 
the following multiplicative relations in H*( QSn; Z): 

1) n = 2k: VT = 0, 

2) n=2k+l: upup= YP+q)' 

(2.49) 

The isomorphisms (2.48) and the relations (2.49) h ave been shown (by Serre) 
to follow automatically from the Leray cohomology spectral sequence of 
the appropriate fibrations; however they were first obtained by Morse and 
Lyusternik around 1930 by considering geodesics on the sphere Sn. 0 

Anymap$:SnxSn--tSn, can be extended naturally (using a construc- 
tion of Hopf) to a map 

f$ : s2n+l ---i sn+l, 

where we consider S” c Snfl and S” x S” c SZnfl by means of the following 
canonical embeddings: S” is identified with the equator of Snfl: 

Sn+l = D;+’ U D,nfl, where Sn = D;“+l n or+l; 

and S” x S” with the following subspace of S2n+1: 

S” x Sn =(D;+’ x Sn)n(Sn x D;+l), 

where S2n+1 = (0:” x Sn) U (5’” x DC+‘). 
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The “Hopf invariant” h(f, $) of the map f$ turns out to coincide with the 
product mlrn2 of the degrees of the maps 

+(S,SCI) : 5’” x {SO) - S”, degti(s,so) = ml, 

$(so,s) : {SO} x 9’ -----f S”, deg$(sc,s) = m2. 

If S” is an H-space with multiplication 1c, then clearly the degrees ml, m2 = 1, 
so that there is a map f$ : S2n+1 ---t Sn+’ of Hopf invariant 1. Hopf showed 
that such maps can exist only if n has the form n = 24 - 1, and they do exist 
for n = 1,3,7. The theorem that maps S2nf1 --+ Sn+’ with Hopf invariant 1 
do not exist for n other than 1, 3, 7, was proved by Adams in the late 1950s. 

Theorems of this type - on nonparallelizability of spheres or the above 
result of Adams (which is much stronger) - yield as a corollary the non- 
existence of real finite-dimensional division algebras of dimensions other than 
2, 4 and 8. (As already noted, this follows alternatively from Bott periodicity, 
as was shown by Milnor, Kervaire and Atiyah.) 

In the early 1980s in the course of investigations of certain classical- 
mechanical problems such as that of the motion of a rigid body about a fixed 
point in a gravitational field, or of a rigid body moving freely in an ideal fluid, 
and also in problems of contemporary mathematical physics (in particular 
that of giving a detailed topological analysis of Dirac monopoles), there arose 
a class of multi-valued functionals (for instance as generalized analogues of 
Dirac monopoles) defined on one or another space of paths or fields with a 
large number of variables (Novikov). The topology of multi-valued functions 
and functionals, estimates of the number of their critical points, and the study 
of the structure of their level sets (in the finite-dimensional case), which we 
shall now describe, constitute a non-classical analogue of the classical global 
calculus of variations. 

A multi-valued functional with single-valued gradient on a finite- or 
infinite-dimensional manifold M, is given by a closed l-form w (dw = 0) on 
M. The multi-valued function S itself is then given by the integral 

s 

z 
S(x) = w, where xc is a fixed point. 

x0 

The value S(x) depends, in general, on the path y connecting x with the point 
~0. The multi-valued function S becomes a single-valued one when lifted to 
some regular infinite-sheeted covering space 

p : M 4 M, where p*w = dS. (2.50) 

Assuming that H,(M; Z) # 0, this covering space has monodromy group 
isomorphic to Z x Z x. . . x Z (k factors), where (k - 1) is called the “irrationality 
degree” of the form w. An action of generators Tl, . . . , Tk of the monodromy 
group Z X Z X . . x Z on M is determined by numbers ~1, . . . , Kk, given by the 
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“periods” of the form w as follows. First, one chooses some basis yl, . . , -ym E 
HI (M; Z), and then the numbers ~j are given by the integrals (periods) of the 
form w around the 7.j: 

s 
w = Kj, j 2 k 

7.7 
(2.51) 

I 
w = 0, j > k. 

ri 

(The numbers ~1,. . . , & are linearly independent over Z.) The action of the 
above monodromy group then is given by 

S(T,x) = S(x) + /cir i = 1,. . , k, (2.52) 

If {Va} is an open cover of the manifold M on each member of which w 
is exact: w Iv,, = dSca) f or some single-valued function s(a) (x) defined on V,, 
then on each region of overlap V, n VP the difference Sea) - S(p) will be locally 
constant, i.e. constant on each connected component of V, n VP. This affords a 
canonical method of constructing a multi-valued function S on a manifold M 
(or any topological space) with single-valued gradient, via an open cover {Va} 
of M and a corresponding collection of functions {Sea)}, each S’ca) defined 
and single-valued on V,, with the property that Sea) - S’(fl) is locally constant 
on V, I? Vo. Note that if there is a single-valued function S on M such that 
S - So) is constant on each V,, then the collection {S(o)} essentially defines 
that single-valued function. 

If S is a multi-valued function on M with single-valued gradient, then the 
level sets S = const. are well-defined and determine a “foliation” (possibly 
with singularities) of M, with “leaves” which may be, in general, non-compact, 
even if M is compact. The study of such foliations, which are of considerable 
topological interest, has begun only recently. 

As for single-valued smooth functions on a manifold M, so also for multi- 
valued functions S (as above) is one interested in the critical points XC~ : 

a3 = 0. We shall consider, in the infinite-dimensional as well as the finite- 
dimensional case, only l-forms w for which the critical points are all isolated 
and non-degenerate and have finite Morse index (essentially the number of 
negative squares in the quadratic form d2Slzj on the tangent space at xj, 
with respect to appropriate local coordinates). If the monodromy group is Z 
with generator yi (or in another words the l-form w has zero irrationality 
degree) and its only period c 

is an integer (see above), then w represents an integral cohomology class 

[w] E Hl(M;Z). (2.53) 

This determines a single-valued map 
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I) = exp {2&S} : A4 -t S1. 

In this situation the form w is said to be quantized. 

(2.54) 

Examples. 1. Let M = Mn be a finite-dimensional, closed manifold, and w 
a closed l-form on M. How may one estimate the number of critical points of 
w? The above-mentioned classical situation of a quantized form (see (2.53), 
(2.54)) is especially simple: in this case M* must have the homotopy type of 
a fibration over S1. There are various topological criteria for the existence of 
maps 11, : M --+ S1 without critical points, obtained in the 1960s by Browder, 
Levine, Hsiang and Farrell (see 55 below). If M” is not of this type, there will 
be critical points, estimates for which are given below. 

2. Let M be the path space O(Nk,za,si) consisting of the paths in N” 
(any closed manifold) from 50 to xi, or the space R+(N”) of directed loops 
y : S’ -+ Nk. Note that the space O+(Nk) may be regarded as a fiber bundle 
over N” with projection map 

p : L?+(Nk) + N”, P(Y) = Y(O)? 

whose fiber over a point x E N” is the loop space R(N”,x) consisting of 
the loops beginning and ending at x. There is also the obvious cross-section 
cp : N” + Qn+(Nk), pep = 1, where p(x) is the constant loop at x. If Nk is 
endowed with a Riemannian metric then any closed 2-form R on Nk (which 
may be called a “generalized magnetic field” for k 2 3, or an “electromagnetic 
field” for k = 4) gives rise to the functional 

(2.55) 

(the “action functional”), and the functional (with the same extremals) 

(2.56) 

(the “Maupertuis functional”). Here E is the “energy,” e the “charge,” and y 
is from Q(Nk,xs,xi) or O+(Nk). Provided Nk is simply-connected and the 
cohomology class of the form R is non-zero: 

0 # [fl] E H2(Nk;R), 

the formulae (2.55), (2.56) d e fi ne multi-valued functionals on the space M = 
fi(N”, ~0, ~1) (or @(N”)). (If the manifold N” is not simply-connected, then 
it can be embedded in the (suitably realized) Eilenberg-MacLane complex 
K(T, 1) where 7r = ri(Nk), in such a way that the cells of K(x, 1) \ Nk all 
have dimensions 2 3. The induced homomorphism 

H2(7rl(Nk); lit) = H2(K(n, 1); R) + H2(Nk; R) 



52. The homology theory of smooth manifolds. Complex manifolds 197 

is then a monomorphism, from which it follows that on the subspace @(IV”) 
of null-homotopic free loops the functionals (2.55) and (2.56) are single- 
valued.) 

3. Consider a smooth fiber bundle 

p:E--+B, 

with base B a smooth closed manifold or manifold-with-boundary Wq. Sup- 
pose we are given a closed (q + 1)-form Q (dR = 0) on the total space E, and 
some single-valued functional 5’0 {$} defined on the cross-sections $J : B -+ E 
(p$ = 1) of the fiber bundle. The formula 

s = so {$I+ .I d-‘(f-9, CBS++) 
of the general type of (2.55) and (2.56), defines a functional, in general multi- 
valued, on the space C of cross-sections of the bundle, with prescribed values 
on the boundary dWq, if there is any boundary. The most interesting case 
is that where E = 5’4 x G, G a Lie group. Here the cross-sections are the 
so-called “chiral fields” g(z), z E IRq, where g(z) -+ go as 1x1 ---+ 00. Note 
that on every compact simple Lie group G there can always be defined a non- 
trivial two-sided invariant 3-form or 5-form (for instance if G = SU,, n > 3), 
appropriate to the cases q = 2 or 4 respectively. 0 

We now explain in more detail how the formula (2.57) (and so also (2.55) 
and (2.56)) d e fi ne multi-valued functionals. Let 0 be a closed form (as above) 
on E, the total space of the fibration p : E + B, and {Va} be an open cover 
of E, with the following two properties: 

a) the form 0 is exact on each V,: 

b) for any smooth cross-section 1c, of the fibration p : E -+ B there should 
exist an index Q such that q!~( B) c V,. 

Let C be the space of cross-sections of the fibration p : E --+ B. The forms 
Qa determine “local functionals” 

+-%a = iB ~) @a 

on the regions W, c C consisting of those cross-sections contained in V,. On 
the regions of overlap we have 

Sy$,) - Sqb) = J-B p - @P). 

Since d( Qa - Gp) = 0 on V, n Vo, the difference S CL21 - SC@) is locally constant 
on W, II Wp by Stokes’ Theorem, so that the collection { Sccl)} does determine 
a well-defined l-form w on C. 
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If, in this context, the form w is quantized, i.e. [w] E H1(C; Z), then the 
value at + of the resulting (single-valued) map 

exp (27riS) : C -+ S1, 

is called the Feynman amplitude of the cross-section +. The condition that 
the form w be quantized is essential in the quantum theory of such fields 
with multi-valued action functionals. This represents the procedure known as 
“topological quantization of coupling constants” in Quantum Field Theory, 
as formulated by Novikov (1981), Deser-Jackiv-Templeton in the special case 
of Chern-Simons (1982), and Witten (1983). 

In the case of a trivial fibration E = Sq x F + SQ, the form R is actually 
defined on the fiber F, the space C of cross-sections reduces to the space of 
maps 5’4 + F, and the integrals of the form w along paths in the domain 
function space C coincide with integrals of the form fi on F over appropriate 
images under the Hurewicz homomorphism rq+l(F) + H,+l(F). 

For general bundles E -+ B (as above) the association of integrals of R 
over cycles in E with contour integrals of w along paths in C, requires individ- 
ual topological analysis (not usually very difficult) depending on the partic- 
ular bundle in question and the boundary conditions. We note in conclusion 
that if the functional (2.57) (or (2.55) or (2.56)) is actually multi-valued (i.e. 
not single-valued) then on the covering space C (cf. (2.50)) where p;w = SS 
(pi : 2; + C), the functional S takes on all values (-oo, co). 

We now turn to the known topological estimates of the number of critical 
points of multi-valued functions and functionals. We begin with the simplest 
finite-dimensional case. Let w be a closed l-form on M” of irrationality degree 
zero. We then have a covering space A?l of M” with monodromy group Z: 

p:M+Mn, p*w=dS, 

where the generating monodromy transformation T : A? + A? satisfies 

S(Tx) = S(z) + n, n # 0. 

By suitably decomposing Mn and fi as CW-complexes, we can endow the 
cell-chain complex of&l with the structure of a Z[T, T-‘l-module (see Chapter 
3, 55). Denote by K+ the completion of the ring Z[T, T-l] in the direction of 
positive powers of T only, i.e. the ring of formal Laurent series of the form 

q= c ajTj, ajEZ. 

Consider the homology groups of the chain complex of 2 with coefficients in 
the ring Kf via the representation (inclusion) p : Z[T,T-l] ---+ Kf; these 
homology groups Hj (M; K+) may then be regarded as K+-modules. Since 
K+ is a principal ideal domain, the groups Hj(h;r; K+) (which we may write 
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appropriately as Hj(h;l; [w]) t o indicate their dependence on [w]) have well- 
defined torsion-free ranks (the analogues of the Betti numbers) and torsion 
ranks over K+, which we shall denote respectively by 

bJM”, [w]) = rk Hi@& K+), 

and qj(Mn, [u]) (for th e rank of the torsion submodule). Thus bj + qj is the 
least number of generators of the K+-module Hj(i@; Kf). Provided the crit- 
ical points of the multi-valued function S are isolated and all non-degenerate, 
the following lower bounds for the number mi(5’) (or m,(w)) of critical points 
of index i can be established (Novikov’s inequalities, from the early 1980s): 

mi(w) > bi(M”, [w]) + qi(M”, [w]) + qi-l(Mn, [WI). (2.58) 

More recently (in the mid 1980s) Farber has shown by constructing a suitable 
map M” --+ S1, where rl(Mn) E Z, n 2 6, that these inequalities are strict 
in general. 

If the irrationality degree k - 1 2 1, so that the covering space &? has 
monodromy group Z x . x Z with more than one factor, then the situation 
is more complicated. The corresponding ring KL, depending on the set of 
periods (2.51): K = (~1 : ~2 : . : Q), is defined as the enlargement of the 
ring 

Z[Tl, . . Tk, T,-’ . T[l] 

of Laurent polynomials obtained by including all formal Laurent series q in 
which the coefficient am,mz...mk of Tm1Tm2 Tmk is zero unless C Kjrnj > 
-N(q) for some positive integer N(qf, an: furthe:, are such that for each pair 
of numbers A < B there exist only finitely many non-zero coefficients aml...mk 
satisfying A < C mjlcj < B. The homology groups Hj (G; K,$) should again 
yield somehow a lower bound for the number of critical points of each index. 
A variant of this type of completion is the ring (K,f)Stab’e where in addition it 
is required that the condition C Kjrnj > -N(q) hold not just for a particular 
point K. = (K~ : ~2 : . . : Q) but for some small neighbourhood of it. However 
since the ring K,’ is no longer a principal ideal domain, the exact picture 
remains unclear.3 We conclude by emphasizing the crucial fact underlying 
the inequalities (2.58) and their possible generalizations to the cases k > 2, 
namely that the l-form w gives rise not just to a chain complex but a complex 
of K,f-modules with homotopy-invariant homology groups. 

We now turn to the analogous problem for functionals of types (2.55) or 
(2.56) on the function spaces Q(Nn,~O, ~1) and fin+(Nn). As we have seen 
these functionals determine closed l-forms w = 6s. However it turns out that 
for the space Q(i’V, zo,~l) the homology groups analogous to those used to 

3Sirokav has proved that the ring (K, ) + Stable for a generic point n is an integral domain, 
so that the Morse inequalities hold in this more general case as well. Recently Pazhitnov 
and Ranicki have proved further results along these lines and have developed an analogue 
of Morse theory in this case (“Morse-Novikov theory”). 
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obtain the inequalities (2.58) are all degenerate, so that for the “problem with 
fixed end-points,” i.e. for O(Nn, xc, xl), there would appear to be no analogue 
of the Morse inequalities. On the other hand, for the “periodic problem,” i.e. 
for functionals on L?+(Nn), the situation is different. On a complete Rieman- 
nian manifold N” with Riemannian metric gij, a functional like, for instance, 
(2.39) (but allowed to be multi-valued) always has the property that the one- 
point loops $(N”) C Q+(Nn) constitute a submanifold of local minimum 
points of the functional. In the multi-valued case the complete inverse image 

in the appropriate covering space &l with projection p : Ak + x, always 
consists of local minimum points of the single-valued function fE on M defined 
by the pullback p*w = SLE. The inclusions 

N” + Nj”, iE(N,n) = 0, i”N,JJ = & 6&n, (2.59) 
m=l 

are all homotopic to one another as maps to h;r. Assuming ~1 > 0, consider a 
map (homotopy) 

where 

@:NnxI--tF, I=[a,b], 

@(N” x {al) = Ni”o,...,O) c Jk @(Nn x VI) = N;,,,...,,) c 12. 

One has 

0 < rn& mgxLP(@(N” x I)) 1 < iE(N;l,,..,,o,) = 0. (2.60) 

Essentially by deforming the map @ on subsets of the form z x I where z 
ranges over the cycles in H, (Nn), in the direction opposite to the gradient of 
the functional iE, one obtains the following inequalities for the number of non- 
degenerate critical points in the region lE > 0 (assuming general position): 

m.+l(lE) 2 maxb!p)(Nn), z 
P z 

(2.61) 

where p ranges over all primes (Novikov). These inequalities thus represent 
the analogues in the “periodic problem” of the Morse inequalities (2.8). It is of 
interest to observe that the inequalities (2.61) do not involve the homology of 
the function space L’+(Nn) itself. However because of certain analytic difficul- 
ties these inequalities have not been established in more general situations4 

4Novikov and Grinevich (1994) established these inequalities for nonzero magnetic fields 
on the flat a-torus and on surfaces with negative curvature. A different technique was used 
by Ginzburg, beginning in the late 1980s for studying periodic orbits in a magnetic field 
with fixed period (but not necessarily fixed energy as in the former approach). In particular, 
he helped to correct certain mistakes in papers of Novikov and Taimanov of the mid-1980s. 
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The inequality (2.61) applies also to functionals of type (2.38) when 1 is 
a single-valued functional on Qn+(Nn), but “Arzela’s principle” is violated, 
in the sense that there exist loops y E @(Nn) for which l(y) < 0 (so that 
the metric constitutes a non-positive analogue of a Finsler-type metric; such 
metrics do in fact arise in mathematical physics). In this situation one needs 
to utilize in addition (analogously to above) segments of the form 

CD : [a, b] ---f n+(N”) 

such that Q(u) is a one-point (i.e. constant) loop, and G(b) = y with l(y) < 0. 
One has the following recent theorem of Taimanov: 

If for a single-valued functional of Finsler type (see (L.3’7)) there exist loops 
y E KP(Nn) for which l(y) < 0, and 1 = 0 on all constant loops, then there 
exists a cross-section 

$Q : N” --a R+(N”), plc, = 1, 

such that 

a) l(h(Nn)) < 0, and 
b) the cross-section $1 is homotopic to the cross-section 1c, of constant loops 

via a homotopy Sp : N” x I ---f L’+(Nn). 

This result thus establishes what might be called the “principle of transfer 
of cycles to the negative region of values of the functional.” The inequality 
(2.61) can be inferred from this result for such single-valued functionals 1, i.e. 
taking negative as well as positive values. New results of the Morse-Novikov 
theory on extreme points of locally-regular multi-valued functionals on loop 
spaces (or on spaces of nonselfintersecting curves) may be found in the survey 
by I. A. Taimanov in: Russian Surveys, 1992, v. 2. 5 

An interesting example (due to Polyakov and Vigman) of a multi-valued 
functional arises in connection with the “Whitehead formula” for the Hopf 
invariants of the elements of 7rs(S2); we recall the construction of that formula: 
Let f : S3 --+ S2 be a smooth map, and w a 2-form on S2 satisfying 

s 
w = 1. (2.62) 

s2 

Let w be a l-form on S3 satisfying dv = f*(w) = W say. Then the Whitehead 
formula for the Hopf invariant of f is given by 

‘By the end of the 1980s specialists in symplectic geometry (Floer, Hoffer, A. Salomon, 
D. McDuff and others) had created a Morse theory for multi-valued functionals on free loop 
spaces. These functionals do not have, in general, the property of local regularity, i.e. the 
Morse indices of critical points may be infinite. (These ideas first appeared in Rabinovich’s 
work on periodic orbits of Hamiltonian systems of the early 1980s.) There are applications 
of Floer’s theory to the moduli spaces of connections on 3-dimensional spheres, where the 
multi-valued functional coincides with the well-known Chern-Simon functional. The latest 
developments in this theory also involve the rings Kf of Novikov, defined above. 
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(2.63) 

and has the properties of: 

a) homotopy invariance: SH/Sf = 0; and 
b) rigidity: SH/Sw = 0 (provided (2.62) holds). 

We now define a multi-valued functional (determined, as earlier, by a closed 
l-form) on the space F of null-homotopic smooth maps f : S2 + S2, by 

where the map f has been extended from S2 = 8Dt to the whole disc 0:. 
The corresponding l-form on F is then furnished by 65’. 

Beginning with the work of Chen and Sullivan in the late 1970s various ho- 
motopically invariant integrals generalizing (2.63) have been constructed. The 
most transparent and general version of such integrals (defined by Novikov 
in the early 198Os), also involving the concept of “rigidity,” is important for 
investigating the associated multi-valued functionals and their quantization. 
We shall now describe this integral. 

Let A = Cz>0 Ai be a skew-commutative differential algebra over a field lc 
of characteristic 0, with A0 = k, and coboundary operator d : Ai + Aif’, sat- 
isfying H1(A) = 0. F or each positive integer q we construct a free differential 
extension C,(A) of A, minimal with respect to the property 

@(C,(A)) = 0, J’ 24, (2.65) 

as follows: Set Ci = A. Let {yja} b e a minimal set of multiplicative generators 
for the cohomology ring in dimensions j < q. We now introduce corresponding 
free generators v~-I,~, and set 

C4’ = A[. , ujpl+, . .I, dvj-l,, = yja. 

Note that the inclusion A = C$’ + Ci induces the zero homomorphism of 
the cohomology groups in dimensions 5 q. By iterating this construction we 
obtain a sequence of inclusions 

We now define the (q + l)st homotopy group (relative to Ic) of the algebra A 
to be the vector space Hq+‘(C’J(A)): 

nq+dA) @k = H”+l(C,(A)). (2.66) 

If we take A = A*(AP), the algebra of Coo-forms on a simply-connected man- 
ifold Mn, then it can be shown that nq+l(A) @Iw 2 rq+l(M) @I R. Hence the 
infinite portions of the homotopy groups of any simply-connected manifold 
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M” may be obtained in a quite elementary manner from the algebra A*(Mn) 
of forms on Mn (although the full verification of the above isomorphism re- 
quires the more elaborate Cartan-Serre apparatus of algebraic topology). This 
result may be regarded as a homotopy-theoretic analogue of de Rham’s the- 
orem (see above). 

Using (2.66) we can now construct the desired homotopically invariant 
integrals. Given any smooth map F : Sqfl x IK -+ Mn, we obtain a natural 
homomorphism 

E’ : C,(A) --+ A*(Sq+’ x W), A = A*(Mn), 

commuting with d, by simply taking P = F* on Ci = A = A*(Mn) and 
extending using the fact that all closed forms of degree 5 q on Sq+l x Iw are 
exact. If z is any element of H q+’ C A)) represented by a cocycle 2 say, then ( q( 
P;(Z) is a (q + l)-form on Sqfl x R satisfying d@(Z) = 0. We now define our 
integral by 

where 

Since the form P(Z) is closed we have dH/dt = 0, whence the homotopy 
invariance of the integral (2.67) follows fairly quickly. The definition and in- 
vestigation of “rigidity” in this context is somewhat more involved. 

$3. Smooth manifolds and homotopy theory. Framed 
manifolds. Bordisms. Thorn spaces. The Hirzebruch formulae. 

Estimates of the orders of homotopy groups of spheres. 
Milnor’s example. The integral properties of cobordisms 

In this section we shall first consider some ideas, based on the geometry 
of manifolds, giving access by elementary means to certain information con- 
cerning the homotopy classes of maps of manifolds (in cases other than those 
examined in Chapter 3 where the homotopy groups were known to be trivial 
for elementary reasons). In their further development these geometrical ideas 
become combined with the algebraic techniques described at the conclusion 
of Chapter 3. 

We remind the reader that for smooth manifolds any continuous maps and 
homotopies can be approximated arbitrary closely by smooth maps coinciding 
with the original map wherever it happened to be smooth, so that we always 
assume all maps and homotopies of manifolds to be of smoothness class C” 
if need be. 
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The simplest of homotopy invariants is the degree of a map between closed 
orientable manifolds of the same dimension: 

f  : Mn 4 N”, 

defined as follows: Consider a generic point y (i.e. “regular”) in N”; the Ja- 
cobian Jf of f is then non-zero at each point of the complete inverse image 
f-‘(y) = (51,. ,xk}. We define 

deg f = 5 sgnJf(zj). 
j=l 

(3.1) 

(Figure 4.15 can be used to illustrate the verification that the degree of f is 
independent of the choice of the regular point y of Nn, assuming that M” 
and N” are connected. Figures 4.16, 4.17 exemplify the concept.) 

desf=l degf=O 

Fig. 4.16 

The definition (3.1) of the degree of a map applies also to the following 
situations: 
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u) Maps f : (Mn,Wn-‘) --+ (N”, p-l), (d&f” = w-1, ap = p-l), 
where the boundary W”-l of M” is mapped to the boundary V”-l of Nn. 
Here the degree of f restricted to the boundary W”-l is equal to its degree 
on the interior of M”. (Hence if f defines a diffeomorphism between the 
boundaries, then as a map between the interiors we shall necessarily have 
degf = fl.) 

47L 0 tk=Z) 

--____ 

yo-yo+27i 

0 - X1 X2 x3 XY 2% 

sgn x1=+, 6671 x2= -, sgn x3= + 

sgn x+=-t, deg f=Z 

Fig. 4.17 

b) Proper maps f : M” + N” of open manifolds, i.e. maps with the 
property that the complete inverse image of any compact set is again compact. 
Here the degree is invariant under homotopies F : M” x I -+ Nn that are 
also proper maps. Note that if w is an n-form on N”, then one has the formula 

/Mn f’w = (deaf) / w. (3.2) 
NTL 

c) The isolated singular points za of a vector field q(z) on a manifold M”: 
V(Q) = 0. On a sphere SrP1 about ICY of sufficiently small radius E (defined 
by Iz - ~01 = E) the vector field v( z will be non-vanishing and therefore the ) 
following Gauss map is well-defined: 

v(x) y-1 - p-1. 

b?(x)1 & 

The degree of this map is called the index of the singular point x0. If the 
singular point is non-degenerate, i.e. 

det(~)l,, # 0, 

then the index of the singular point is equal to sgn det(g)/,, . (Figure 4.18 

shows the possible types of isolated non-degenerate singular points of a vector 
field on a 2-dimensional manifold.) 
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For a vector field on a closed manifold M”, the sum of the indices of the 
singular points is equal to the Euler characteristic x(Mn) (Poincare, Hopf). 

Fig. 4.18 

For non-orientable manifolds the degree of a map is defined only modulo 
2. As noted above, for connected manifolds the degree is independent of the 
choice of the point y  E N”. The homotopy invariance of the degree of a map 
f  : Mn + N” can be seen as follows. Let F : Mn x I + Nn be any homotopy 

of f  (F(TO) = f(z)), and consider the complete inverse image of a point v  
arbitrarily close to y, with the property that at every point of F-l&) the map 
F has rank n, as illustrated in Figure 4.19 in the case M” = N” = S1. The 
coincidence of the degrees of the restrictions of F to the base and lid of the 
cylinder is clear in that figure, and the general case is similar. Hopf’s theorem 

Mnx? 

63 

The complete inverse image 
is shown in bold 

0 

MnXI 

/----- 
--. 

.\ 

MnX Cl 

-!- a 

/fjn=sq 

F-‘(iiJ 

Fig. 4.19 

(of the late 1920s) states that for a closed manifold Mn every map M” --+ S” 
from Mn to the n-sphere is determined to within a homotopy by its degree, so 
that the degree is a complete homotopy invariant of such maps. Hopf’s actual 
argument was along the lines of the above sketch of the proof of the homotopy 
invariance of the degree of a map, except for his use of PL-manifolds, i.e. of 
suitable triangulations of the manifolds. In the more general situation of a 
simplicial (i.e. PL- ) map f  : Mn+k + Nn of PL-manifolds, the complete 
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inverse image of the interior of a simplex 8’ of N” of largest dimension will 
have the form 

f-l (Int on) = Int 6-n x W”, (3.3) 

for some simplex 6-” of Mn+lc and submanifold W”. Following Hopf’s idea, it 
is then natural to seek invariants of the map f using such complete preimages. 

Consider a map between spheres: 

f : snfk - S”. 

Reverting to our use of points in general position, we consider the complete 
inverse images of two distinct such points yi, y2 E S”; these will be submani- 
folds 

w,” = f-‘(Vi), yi E S”, i = 1,2, 

wt, wz” c sn+k. 
In the case where n is even and k = n-l, these two submanifolds may be linked 
in Sn+k = s2n-1 with “linking coefficient” {WI”-‘, W;-‘} (see Chapter 1 
for the definition ‘of the linking coefficient of two loops in a manifold). For 
odd n the linking coefficient { Wp-‘, W;-‘} is zero. For even n (the case we 
are considering) the linking coefficient is independent of the pair of regular 
points yi, y2 E S”, and is invariant under homotopies of f; it is called the 
Hopf invariant of f: 

h(f) = {W;“-‘, WF-l}, n = 2q, 

(3.4) 
f : !P-1 ---t SQ. 

The Hopf invariant determines the Hopf homomorphism: 

r4q-1(sZq) - z, f +-+ h(f), 

from which it follows that the groups 7rdq-i(S2’J) are infinite. It was shown 
later (in the early 1950s) by Serre that all other 7rj(Sn) are finite; as we saw 
earlier (in Chapter 3, 57) the methods used here go considerably beyond the 
purely geometrical. 

The switch from P&maps to smooth ones, leads to the possibility of ob- 
taining a standard method for investigating homotopy groups of spheres using 
complete preimages of points (Pontryagin, late 1930s). In this approach, one 
exploits the fact that the inverse image W” = f-‘(y) of a regular point 
y E S” under a map f : Snfk ---+ S”, is a framed manifold, i.e. comes with a 
non-degenerate field vn(z) of vector n-frames determined by f as follows: Let 
41,... ,& be local co-ordinates in some sufficiently small neighbourhood U of 
y with y as origin and with linearly independent gradients (with respect to the 
standard local co-ordinates on Sn); then Lhe complete preimage Wk = f-‘(y) 
is given by the n equations 41 = 0,. . ,q5, = 0, where the & are lifts of the 
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$i to f-‘(U). The gradients grad &i will be linearly independent on Wk, and 
so determine a field of n-frames on Wk. 

Similarly, given a homotopy F : Sn+k x I --+ S”, the complete inverse 
image F-‘(y) of a regular point y E 5’” is a manifold-with-boundary V”+l c 
Sn+li x I (whose boundary falls into two disjoint parts, one in the base and 
one in the lid of the cylinder ,YP+~ x I) equipped, much in the same manner 
as before, with a normal (relative to some Riemannian metric) field Y,(Z) of 
vector n-frames in Sn+lc x I, which on the boundary of Vk+l lies in Sn+k x {CL} 
or Sn+k x {b}. (Note that it may be assumed that V’“+l approaches the lid 
and base of Sn+lc x 1 transversely.) The pair (V”+l , vn) c Snfk x 1 is called 
a framed manifold-with-boundary (or framed bordism). Two framed manifolds 

y$‘d?), (W,“, dZ’ ) are said to be equivalent if there is a framed bordism 
k+l, v,), v”+’ c snfk x I, whose respective boundary components are the 

given framed manifolds. A realization of such an equivalence may be called a 
framed bordism (or framed cobordism). It is quite straightforward to show that 
the equivalence classes of closed framed manifolds are in natural one-to-one 
correspondence with the elements of the group r,+k(Sn). 

Before proceeding, we note that the groups rn+k(Sn) are called stable if 
k < n - 1, since for these k they are independent of n; this is immediate from 
the suspension isomorphism 

c : ?Tn+k(Sn) ---t 7Tn+k+l(Sn+‘), k < n - 1. 

More generally, for any CW-complex K the suspension construction yields 
an isomorphism in homology always (see Chapter 3, §3), and an isomorphism 

C: n,+k(K) 3 r,+k+i(CK) for k < n - 1, provided the complex K is 
(n - 1)-connected, i.e. if xj(K) = 0 for j 5 n - 1. (This was shown in the late 
1930s by Freudenthal, who was also the first to compute the groups 7rn+i (P).) 

The following facts about framed manifolds are not difficult to establish: 

1. Each framed manifold (W”, vn) of dimension k > 0 is equivalent to a con- 
nected framed manifold. (Figure 4.20 illustrates the construction of a framed 
bordism (Vkfl, vn) with dV k+l = Wf U W,” U Wt, realizing an equivalence 
between the disjoint union (Wt U Wt, ~~l~:,~;) and the connected framed 

manifold (W,“, vnlwb).) 
2. In the case k = 1, the only stable invariant of a framed manifold is the 

homotopy class of its field of frames, which is given by a map V, : Si + SO,. 
Since ni(SO,) % Z/2 for n > 3, it follows that nIT,+i(Sn) Z Z/2 for n > 3. 

3. In the case k = 2 there is again a single stable invariant of each equiv- 
alence class of framed manifolds (W’, v,), but its construction is somewhat 
more involved. Suppose n > 4. By statement 1 above we may assume without 
loss of generality that W2 c llP+2 (or W2 c S”+2) is a connected surface 
(of genus g say) with normal field vn(lc). Each class z E H1(W2; Z/2) may 
be represented by a simple (i.e. embedded ) circle C 2 S1 in W2 c Rn+2. 
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Writing n(z) for the normal vector field to C in W2, we have a field of normal 
frames v,+i(z) = (n(z), vn(z)) to C in Iw n+2 By statement 2 above there is a . 
unique invariant G(z) say (Q(z) E Z/2) of the framed manifold (C, ~,+i(z)) 
called the Arffunction. One has the following “Arf identity”: 

@(zi + ~2) = @(zi) + @(z2) + zi 0 z2 (modulo 2), (3.5) 

where zi o z2 is the intersection index of the cycles zi and ~2. In terms of any 
canonical basis of cycles zi, . . . , zgr ‘~1, . . . , wg, i.e. satisfying 

zi 0 zj = w, 0 wj = 0, z,owj =&, 

the full Arf invariant is defined by 

@ = -g @(Zi)@(W& @ E z/2. (3.6) 
i=l 

(It is independent of the (canonical) basis.) It turns out that for n 2 4 the 
quantity Cp is the only stable invariant of framed manifolds (W2, vn), whence 
it follows that for n > 4,7r,+2 (Sn) E Z/2 (Pontryagin, in the late 1940s). 

Fig. 4.20 

4. There is a complicated theory (devised by Rohlin in the early 1950s) 
leading to the determination of the groups r,+s(Sn). As the first (non-trivial) 
step, it is shown that every non-trivial framed manifold (W3, w,) is bordant 
to a framed sphere S3 c Wnf3, situated in standard fashion in IWnf3 (since in 
the stable range every disposition of S3 in 1Wn+3 is equivalent to the standard 
one). It is shown next that the latitude in defining a frame on S3 E TWn+3 
determines a homomorphism (in fact an epimorphism) 

J : 7r3(SO,) + 7r,+3(Sn). (3.7) 

Since 7rs(SO,) g Z for 7~ > 4, it now follows that the stable group 7rIT,+s(Sn) 
is cyclic. Further analysis reveals that 
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nnf3(Sn) = Z/24 for n > 4, n7(S4) 2 z @z/12, “s(S3) 2 z/12. 

These results are closely linked to Rohlin’s theorem to the effect that for a 
closed manifold M4 with the property that M4 \ {ze} is parallelizable, the 
first Pontryagin class pi(iU4) is divisible by 48. (Recall that characteristic 
classes are elements of the integral cohomology groups.) 

As a generalization of (3.7) one has that the equivalence classes of framed 
k-spheres (S”, vn) determine in 7r,+k(Sn) the image of the “Whitehead ho- 
momorphism” (see Chapter 3, $8) 

J : 7rk(SOn) + 7r,+k(Sn). 

It is known that this image is finite cyclic, and that its order (an important 
quantity) is in the case Ic = 4s - 1 expressible in terms of the Bernoulli 
numbers. (Milnor and Kervaire produced a lower bound for the order in the 
late 195Os, and Adams an upper bound in the mid-1960s.) 0 

These results represent the limit of what can be discovered about the ho- 
motopy groups of spheres using geometrical methods; further progress on this 
problem involves heavy use of the methods of homotopy theory (see Chapter 
3, §7). 

The theory of bordisms and cobordisms may be regarded as developing 
naturally out of the above-described geometrical ideas, providing a bridge 
to algebraic techniques for settling questions about smooth manifolds. The 
classical bordism groups (or cobordism groups) are defined as follows: Two 
smooth closed manifolds IV;, IV! of the same dimension Ic, are said to be 
equivalent (or cobordant) if their sum (i.e. disjoint union) is diffeomorphic to 
the boundary of a compact smooth manifold Nk+‘: 

For each Ic 2 0 the equivalence (or cobordism) classes of closed k-manifolds 
form a group L’p under the operation defined in the obvious way in terms of 
the sum operation on manifolds. The direct sum 

(3.8) 

then forms a graded ring,6 the classical bordism ring, with multiplicative op- 
eration determined by the direct product of manifolds. It is in fact an algebra 
over Z/2. 

Examples. 1. L@ Z Z/2 (the scalars). 

2. np = 0 

‘There is an another standard notation, namely ‘32,, for the bordism ring 02. 
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3. Lrf Z Z/2. (This follows from the classification theorem for closed sur- 
faces. Note that IwP2 represents the non-zero element, i.e. IwP2 is not the 
boundary of any compact 3-manifold. Since x(IwP2) = -1, this follows from 
the following general fact: 
I f  a closed manifold is a bounday: Mn = dW”+l, then its Euler-Poincard 
characteristic is even. 
This is in turn a consequence of the equality 

XP n+l LJMTL w”+l) = 2x(Wn+l) - x(h!P), 

where W n+l U&p” wn+l is the “double” of Wn+’ (obtained by taking two 
copies of Wn+l and identifying their boundaries), and the fact that any odd- 
dimensional closed manifold has zero Euler-Poincare characteristic). 

3. 03” = 0 (Rohlin, early 1950s). 0 

Restricting ourselves to oriented manifolds, we obtain analogously the ori- 
entable bordism groups f&f” and the orientable bordism ring 

Q,“O = x @“. 
k>O 

Examples. 1. 6~‘:” Z Z (the scalars). 

2. L?f” = 0 = Q$” (obviously). 

3. 6’:” = 0 (Rohlin, early 1950s). 

4. L?p ” Z (Rohlin and Thorn, both in the early 1950s). Note that the 
bordism class [CP”] generates 6’2”. 0 

If a closed manifold M” is a boundary, i.e. represents zero in the bordism 
group 6’2, then all of its “Stiefel-Whitney numbers” (see below) are zero. In 
the late 1940s Pontryagin established the following basic facts: If a closed 4k- 
dimensional manifold M4” is the boundary of an orientable manifold then in 
addition its “Pontryagin numbers” are all zero. The Stiefel-Whitney charac- 
teristic numbers of Mn are the values taken on the fundamental class [Mn] by 
homogeneous polynomials over Z/2 of degree n in the Stiefel-Whitney char- 
acteristic classes. (To obtain the Pontryagin characteristic numbers of M4k 
one evaluates homogeneous polynomials over Z of degree lc in the Pontryagin 
characteristic classes.) 

The main method for computing the bordism groups is based on their 
connexion with homotopy theory; we shall now describe this connexion. 

Definition 3.1 The Thorn space TV of a vector bundle 7 (or any fibre 
bundle with fibre IlF) is the quotient space E/AE, where AE is the subspace 
consisting of the vectors in the fibres of length > 1. (Provided the base B of v 
is a compact space one may take the one-point compactification of the total 
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space E, as the resulting space is homotopically equivalent to the Thorn space 

TT) 

For each j > 0 there is a natural isomorphism, the Thorn isomorphism 

(valid in modulo 2-cohomology if the bundle is not orientable): 

q6 : W(B) --f Hj+“(T,), j > 0, 

(3.9) 
4(z) = z %, WI = 4(l), 

where 4(l) is the cohomology class of T,, taking the value 1 on the fibres, the 
Thorn class. One has the following formula of Thorn (from the early 1950s) 
relating the StiefelLWhitney characteristic classes wj E Hj(I3;Z/2) of the 
vector bundle Q and the Steenrod squares Sqi: 

Wj(v) = ti-lSq’C$(l). (3.10) 

Applied to the tangent bundle r(Mn) of a smooth closed manifold M”, this 
formula leads to a proof of the homotopy invariance of the Stiefel-Whitney 
classes wi(Mn) of Mn. By exploiting the fact that the tangent bundle r(Mn) 
is isomorphic to the normal bundle to the diagonal A c M” x M”, in con- 
junction with Thorn’s formula (3.10), one may obtain explicit expressions for 
the classes wi(h/m) in terms of the Steenrod squares Sq’ acting on the co- 
homology ring H*(Mn; Z/2) (W u’s formulae, of the early 1950s). To obtain 
Wu’s formulae one solves the equation (for each i = 1, . . , [n/2]) 

Sqyz) = z lci, (3.11) 

over the group II”-“(M”; Z/2) for the unknowns K+ (for all .z E Hnpz(Mn; Z/2)). 
We note that the equation (3.11) h as a solution since any homomorphism 
H”-“(Ad”; Z/2) --+ Z/2 (and so in particular the homomorphism 

Sq” : fP-“(Ad”; Z/2) b H”(M”; Z/2) 2 Z/2) 

is obtained via Poincare duality by multiplying the elements of Hnpi by a 
single i-dimensional class. Wu’s formulae have the following form: 

Sq(w) = 6 

w=l+w1+...+w,, 
(3.12) 

K=l++l+...+F+/z], 

sq = 1 + sq1 + sq2 + . 

These formulae yield, for instance, the result that all orientable 33manifolds 
are parallelizable. 
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If a manifold Mn is almost parallelizable, i.e. if Mn with one point removed 
is parallelizable, then wi = 0 for i < n, and from this together with (3.12) 
one may deduce that if n = 41c then in H2”(Mn;Z/2) every square is zero: 
.z~ = 0 (modulo 2). This implies that the scalar square (z2, [M4”]) = (z, Z) is 
even for every 

z E H2k(M4k; Z)/(Torsion). 

Since the quadratic form (z, z) is even and unimodular, it then follows that 
the signature r(M4”) is divisible by 8. The signature T(M~~) is defined as 
the difference in the numbers of positive and negative squares in the (di- 
agonalized) quadratic form (5, y) given by the intersection index of elements 
Z, y E H2k(M4k; Z) (or equivalently by (z, y) = (my, [M4k]), J: = Drc, y = Dy), 
although this quadratic form is non-degenerate only for closed manifolds. 
It can be shown that for closed manifolds the signature is invariant under 
bordisms. if M4” = 6’W4k+1 for some orientable manifold-with-boundary 
W4k+1, then T(M~~) = 0. (To prove this one first observes that if two 21C- 
cycles in M4” are null-homologous in W 4k+1, then their intersection index 
is zero, so that ( , ) is zero on Im i* where i* is the inclusion homomor- 
phism H2k ( W4k+1; Q) --+ H2k(M4k; Q). The desired conclusion then follows 
by showing that the dimension of Im i* c H2”(M4’; Q) is exactly half the 
dimension of Hzk(M4”; Q).) Fr om this fact important conclusions follow; for 
instance that the group f14 So is isomorphic to Z with generator [CP”]. In $1 
above we saw that the first Pontryagin class pi of @P2 satisfies 

(1 +pi) = (1 + u?)~ = 1 + 3u2 E H*(@P2; Z), 

where u is a generator of H2(CP2; Z) ” Z. It follows that pi(@P2) = 3. Since 
+C.p2) = 1 (th is can be obtained directly from knowledge of the structure of 
H* (@P2; Q)), and since [@P2] generates a:‘, it follows that 

+f4) = $1, (3.13) 

for every orientable closed 4-dimensional manifold M4 (since 37(M4) - pl is 
an identically zero linear form on L’, so 2 Z). (This result is due to Rohlin and 
Thorn in the early 1950s.) Generalization of the formula (3.13) to higher di- 
mensions requires computation of the groups LQs” @Q; we shall be considering 
this problem in the sequel. 

The signature T(M~~) of a manifold-with-boundary M4k has the property 
4k of additiuity: if M’, , M$k are two manifolds-with-boundary and VI, V2 &’ 

V are diffeomorphic connected components of their respective boundaries, 
then for the manifold obtained by identifying VI and Vz one has (Rohlin and 
Novikov in the late 1960s): 

T(M;” u M”“) = T(M;“) + T(M;“). (3.14) 

We remark that this additivity property is possessed also by the Poincark- 
Euler characteristic of even-dimensional manifolds M2”, but by no other char- 
acteristic. 
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For any group G c O,, the Thorn space Tn of a universal vector bundle 
with fibre IL?” and base BG will be denoted by M(G). More generally any 
representation p : G --+ O,, not necessarily one-to-one, determines a Thorn 
space; for instance the double cover 

p : Spin, + SO,, 

determines the Thorn space M(Spin,). I f  G C SO,, one speaks of the ori- 
entable Thorn space M(G). In the case G = (1) c SO,, we obtain the 
m-sphere: A&(G) ” S”. By (3.9) we have the following Thorn isomorphisms: 

4 q5 : HJ(BG; Z) + H”+j(M(G); Z), G c SO,, 

qq.z) = 2 u,, urn = 4(l); 

b) 4 : Hj(BG; Z/2) + H”+j(M(G); Z/2), G c O,, 

Classical cobordism theory concentrates (as we have seen) on the cases G = 
0, or SO,. Further developments of that theory are based on the following 

facts (established by Thorn): 

(i) An element t E H,-m(Mn;Z/2) as re p resentable by a closed subman- 

ifold Wnem c Mn, precisely if there exists a map f  : M” + M(0,) such 
that 

f*(u,) = Dz E H”(M”; Z/2), 

where u, = 4(l) is the Thorn class (see 3.9) of the Thorn space M(O,), and 
D is the Poincare-duality isomorphism. 

(ii) An element z E H,-,(Mn; Z), Mn orientable, is representable 
by an orientable submanifold W”-” c Mn if and only if there is a map 
f : Mn + M(S0,) such that 

f*(um) = Dz E Hm(Mn;iZ). 

(iii) The bordism groups L?,+ , o 0:” are canonically isomorphic to the corre- 
sponding “stable” homotopy groups of M(0,) and M(S0,): 

6’: 2 r~~+k(M(o~)), k < m - 1, 
(3.15) 

fq0 N - ~,+,+(M(SW), k < m - 1, 

(Thorn, early 1950s). 

Note that if we replace SO, by the trivial group (1) in (3.15) we ob- 
tain the isomorphism established by Pontryagin (in the late 1930s) between 
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~m+k(M({ll)) = riT,+k(Sm) and the group QLr of bordisms of framed mani- 
folds, Ic < m - 1. 

Statements (i), (“) u and (iii) above were established using the “theorem 
on transversal-regularity” (or t-“regularity”), according to which any map 
g : M” + Xq of smooth manifolds can be approximated arbitrary closely 
by a map f that is “t-regular” on any prescribed submanifold Y’Jern c X4. 
(A map f is t-regular on Y - 4 m if for every point y of the complete inverse 
image f-l(Yq-“) c M”, the image of the tangent space to M” at y (under 
the induced map of tangent spaces) together with the tangent space to Y’J+’ 
at f(y), spans the whole of the tangent space to X4 at f(y).) This condition 
ensures that the complete preimage f-‘(Yqem) is a smooth submanifold of 
M” of dimension n - m: 

f-yyq-") = p-m c M”, 

moreover such that the restriction map iV”-” --+ YqPm extends naturally to 
a map of the respective normal bundles with fibre IR”. 

To obtain the representability of cycles by submanifolds (Statements (i) and 
(ii)) one takes M(0,) (or M(S0,)) in the role of X4, and BO, c M(0,) 
(or BSO c M(S0,)) in the role of Yq-“; the submanifold representing a 
cycle is then fel(BOm) (or f-‘(BSO,)). To obtain Statement (iii) one takes 
XQ = 9. 

Remark. The spaces M(0,) and M(S0,) together with the natural maps 

M(G) - M(On+l), M(SOn) - M(SOn+l) 

define spectra (as objects in the appropriate category), denoted by MO and 
MS0 respectively. The “homotopy groups of the spectra” MO and MS0 
coincide with the above “stable” homotopy groups: 

7rkMo = 7rm+k(M(o,)), k < m - 1, 

?rkMSO = xIT,+k(M(SO,)), k < m - 1. 

The spectra MU, MSU, MSpin and MSp are defined in a similar manner. 

A natural geometric interpretation of the homotopy groups of M(G), G c 
O,, is as follows: Define a G-manifold to be the normal bundle V, on a 
submanifold Wk of Sm+k (or of KC”+“) equipped with a G-structure. Two 
G-manifolds WY, Wzm C Smfk are said to be G-bordant if there exists a 
G-manifold Vm+l c Sm+k x I, I = [a, b], normal to the boundaries: 

av=wl”lJw,m, 

Wlm c Sn+k x {u} , Wzm c Sn+k x {b} 

(analogously to the framed bordism introduced earlier). 
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It turns out that the equivalence classes of G-manifolds are in natu- 
ral one&o-one correspondence with the elements of the homotopy group 

nm+l(M(G)). 
By restricting attention to manifolds M” c Sm+lc having normal bundles 

with prescribed structure group, one is led to the following bordism rings 
corresponding to the classical Lie groups: 

L?:, fi’,s” ( h 1 t e c assical bordism rings, introduced in the early 1950s); 

Of’, “4f’ % rq+*(Sn); G = (1) (b or d isms of framed manifolds, introduced 
in connexion with the study of the homotopy groups of spheres, in the 
late 1930s); 

flu flnsu. Uk, SUk C SGzk (the unitary and special unitary bordism 4’ 4 ’ 
grows); 

Qp; Spk C So& (the symplectic bordism groups); 

Q:pin; p : Spink + SGk (the spinor bordism groups). 

Investigations into the structure of the G-bordism rings 0: for G = U, 
SU, Sp, Spin, and their further generalizations, were initiated around 1960 
(by Milnor and Novikov). For the classical groups G, the G-structure of the 
stable normal bundle of a manifold is determined by the G-structure of the 
tangent bundle, so that for G = U for instance, a complex (or quasi-complex) 
manifold M2” of real dimension 21c, determines a bordism class of Q$: 

A generic polynomial equation of degree n + 1 (in n + 1 homogeneous complex 
co-ordinates) defines in cCP an SU-manifold M2n-2 representing a bordism 
class 

[M2+2] E @f2. 

In the case n = 3 one obtains in this way the Kummer surface K4 (of 4 real 
dimensions), which is almost parallelizable (i.e. the complement of a point is 
parallelizable), simply-connected, and has the following invariants: 

x(K4) = c2(K4) = 24, 
(3.16) 

7(K4) = 16, pl(K4) = 48, c1(K4) = 0. 

As noted in connexion with the definition of a characteristic class of a 
G-bundle, given in $1 above, each such characteristic class is uniquely deter- 
mined by an element $J of H* (BG), where BG is the base of the universal 
G-bundle. For a closed manifold M” the characteristic numbers of Mk (al- 
ready mentioned above) are then the values +([Mk]) ($J E H”(BG)) taken 
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by characteristic classes of dimension k on the fundamental homology class 
[iMk]. For G c SO, we have (as noted above) the Thorn isomorphism 

q5 : H”(BG; Q) ” H”+“(M(Gm); Q), 

f#l(z) = z u,. 

On the other hand by the Cartan-Serre theory (see Chapter 3, §7), for Ic < 
m - 1 the Hurewicz homomorphism determines an isomorphism 

rm+k(M(G)) @Q ” H”+“(M(G); Q). 

From these two isomorphisms we conclude that the characteristic numbers 
provide a complete collection of linear forms on the homotopy groups 

rm+k(M(G)) 8 Q. 

The characteristic numbers may be viewed as invariants of G-bordism classes 
for any G c SO, provided k < m - 1. It follows that the G-bordism classes 
of 6’: are determined up to torsion by the characteristic numbers. 

As a corollary of Statement (ii) of Thorn’s theorem, it can be shown that 
for G = SO,, given any cycle z E H,-,(Mn;Z), there is an integer X # 0 
such that the element XZ may be represented by a submanifold (this in fact 
holds even in nonstable dimensions). 

For the simplest Lie groups (i.e. of small dimension) the Thorn spaces M(G) 
are as follows: 

G = SOI = {I}, M(SO~) = ~1; 

G = O1 = Z/2, M(01) = lu=J; 

G=S02=S1=U1, M(SO2) = M(U1) = CP”. 

We see from this that the spaces M(SOi), M(Oi) and hl(SOz) = M(Ui) are 
respectively the Eilenberg-MacLane spaces K(Z, l), K(Z/2,1) and K(Z, 2). 
It follows that all cycles in H,_1(M”;;Z),H,_1(M”;2/2) and H,-z(Mn; Z) 
are realizable as submanifolds. 

The ring OB” @Q has as generators the bordism classes [@Pzi] (the groups 
of0 @ Q being trivial for j # 4k). As a linear basis for Q,&’ @ Q one may 
take the set of bordism classes of the form 

The Pontryagin numbers provide a complete set of invariants for the ring 
OB” @Q. The signature r(M4”) is also a bordism invariant; in fact r is a ring 
homomorphism 0:’ -+ Z with value 1 on the generators [@P2i]: 
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T(ikqk) T(Mp) = T(M,4” x iq), 
(3.17) 

7(@P2y = 1. 

How is the signature r(M4’“) ex p ressed in terms of the Pontryagin numbers 
of M4”? For k = 1, i.e. on the group @O, we have the Thorn-Rohlin formula 
T = $11, mentioned above. From the formulae given in $1 above in the course 
of our exposition of characteristic classes, one obtains the following formulae 
for the Pontryagin classes of the manifolds @P4 and @P2 x @P2: 

For @P4, p = 1 +p1 +p2 = (1 fU2)5, 

where ‘1~ is a generator of H2(@P4; Z) 2 Z; hence 

pl = 5u2, p2 = 10u4, pi = 25~~. 

For (IX’: x (IX;, p = 1 + p1 + p2 = (1 + UT)“( 1 + $)“, 

where ui generates H2(@Pf; Z); hence 

p; = 18&& p2 = 9uTu;. 

The Pontryagin numbers for these manifolds are shown in the following table: 

@P4 

@P2 x @P2 

7 P? P2 

1 25 10 

1 18 9 

Hence we infer the following expression for the signature r in terms of the 
Pontryagin numbers (on the group 62,““): 

7 = ;(~Pz - ~3 (3.18) 

The general formula of this type, given by Hirzebruch in the mid-1950s is as 
follows: 

+f4k) = (-h(Pl, . ,Pk)r [M4”]), (3.19) 

where the polynomial Lk(pr,. . ,pk) is given by the homogeneous part of 
degree k of the series 

L = 1 + L1 + L2 + ‘. . + Lk + ‘. = fi --!% 
i=l tanh ui ’ 

N >> k, 

expressed as a polynomial in the first k elementary symmetric functions 
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Pj = c 
up, Uf> 

il<...<ij 

This is a particular case of the general method (noted in 51 in connexion with 
the discussion of characteristic classes given there) of obtaining multiplicative 
expressions in the Pontryagin charateristic classes by using a single formal 
power series 

Q(u) = 1 + Q1u2 + Qgu4 f.. . . 

For the Hirzebruch formula above one takes the formal series 

L(u2) = & (3.20) 

The values taken on the (CP” by any multiplicative characteristic Q defined 
in terms of the Pontryagin or Chern numbers on L?*sO @Q or fly respectively, 
determine the series Q(u) completely: If one takes the formal series (a “generic 
series” for the multiplicative characteristic Q) 

L?Q(u) = c Q ((=‘“> 2 
QO 

with formal inverse gGl(u): gg’(gQ(u)) = u, the following general formula 
(due to Novikov in the late 1960s) can be established (related to the theory 
of formal groups - see Chapter 3, $9): 

In the case of the signature r, the Hirzebruch polynomials Lk(p1,. . .pk) are 
determined by the signature of the complex projective spaces: 

7(@P2k) = 1, T(cP2k+‘) = 0. 

We now define one more important invariant, the Todd genus T, determined 
by its values on the CP”: 

T(@P”) = 1, j 2 0, 

and by the generic series ST(u): 

ST(U) = c Un+l - = - log(1 - u), 
n>O n + l - 

-1 
!?T 

= 1 - exp(-u), (3.22) 

T(U) = &, T(Mn) = (n 1 -“;-u, 1 LMnl). 
j 
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By using certain general categorical properties of complex algebraic va- 
rieties and holomorphic fiber bundles, one can deduce from the Hirzebruch 
signature formula (3.19) the Riemann-Roth-Hirzebruch theorem, as follows. 
Let c be a holomorphic vector bundle over a complex algebraic variety Mn 
(of complex dimension n), and denote by 3~ the sheaf of germs of holomorphic 
cross-sections of E. Define a characteristic x by 

x(Mn,E) = c(-l)j dim Hj(M”;3,). 
j>O 

This invariant x( M”, <) can be shown to be given by the following Riemann- 
Roth-Hirzebruch formula: 

x(M”,O = ((ch 5) T(Mn), [M”I), (3.23) 

where ch < is the Chern character of I, and T(AP) is as in (3.22), with n = 2k. 
In the case where the vector bundle < is one-dimensional and trivial, one 
obtains the Todd genus, known also as the “holomorphic Euler characteristic” 
of the variety AP. In the classical situation (the case of a complex curve Ml) a 
holomorphic vector bundle [ is determined by the equivalence class of divisors 
D = C nixi, where xi E M1 and the ni are integers, so that the sheaf 3~ is 
denoted instead by 3~. The group H”(M1; 3~) then consists of the functions 
having no poles outside the divisor D, and satisfying 

(f) + D 2 0, 

where (f) = c mkyk, mk 2 0 is the divisor of the poles of the function f. 
The classical Riemann-Roth theorem asserts that 

dim H”(M1; 3D) - dim H1(M1; 3D) = n(D) - g + 1, 

n = Cnj, g = genus of the curve Ml. 

This theorem may be cast in a different form by means of the equality 

dim H1(M1; 3D) = dim H1(M1; 3K-D), 

where K is a divisor of the zeros and the poles of meromorphic forms. 
The Todd genus (see (3.22) above) turns out, for reasons to be given be- 

low, to be integral-valued on the whole bordism group fl&. In the late 1950s 
Hirzebruch and Atiyah proved several “integrality theorems”, useful in many 
calculations. The most important of these is as follows: From the above for- 

mula T = & for the Todd genera we have 

T(u) = e”12&. 
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Set 

J+~) = * = e 
sinh u/2 

-“‘“T(u). 

The characteristic determined (as described above) by this series: 

A(pl, ,pk, . .) = 1 + Al + . . + Ak + . . . , 

Al=-5 A2= 
24’ -&(-4~2 + %:), 

(3.24) 

(3.25) 

is called the A-genus. It turns out that provided ~ri(M~“) = 0, ~~(44~“) = 0, 
the number (Ak, [M4”]) is an integer for all k, and even for k odd. It follows 
that for all k, Ak defines an integer-valued linear form on the group L$r, .of 
spinor bordisms. (Note that a manifold admits a spinor structure if and only 
if it is orientable (wi = 0) and also wz = 0. ) 

To give further applications of these integrality theorems we need to recall 
one of the most important consequences of Bott periodicity of the homotopy 
groups 71;--i(SO), 7r- i (U) (which classify oriented and complex’bundles over 
the sphere Sj). The generator of the group 7r4k(SO) corresponds to a “basic” 
oriented vector bundle v4” over S4” with Chern character (see Chapter 3, $8) 

ch 77 4k = @p, where (p, [S4”]) = 1 and 

ak = 
1 

1 for even k 2 2, 
2 for odd k 2 1. 

The Chern character of the corresponding “basic” U-bundle qc over S4k is 
ch 77~ = CL. The Chern and Pontryagin classes of rl@ are as follows: 

pk(rl@) = ak . (2k - l)!P, 

(3.26) 
ck(q@) = Uk (k - l)!/L. 

(Note that the formulas (3.26) follow from the inductive definition of the 
Chern character: 

ck = (k - I)! chk + f(Cl, . . ,ck-I).) 

Remark. If Mn is an almost parallelizable manifold with stable normal 
bundle V,JJ, then it is not difficult to show that there exists a “normal” map 
f : Mn ---+ S” of degree one (i.e. mapping the fundamental class [Mn] to 
[Sn] in such a way that f*(c) ” VM, where 5 is some stable vector bundle 
over the sphere Sn). This construction shows that Pontryagin (and all other) 
characteristic classes of almost parallelizable manifolds may be expressed in 
terms of characteristic classes of vector bundles over spheres. We note also 
that the class pk(M4k) is the only possibly nontrivial Pontryagin class. 0 
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From this remark it follows that the stable normal (or tangent) bundle 
of any almost parallelizable manifold M4k is determined by a multiple of 
the “basic” bundle q over the sphere S4”. In particular, the only nontrivial 
Pontryagin class pk(M4”) has the form: 

pk(M4”) = AM ak . p. (2k - l)! , 

(P> W4”1) = 1, 
for some integer AM. Let Xmin denote the least number AM over all almost 
parallelizable manifolds M4”. This number Xmin determines the order of the 
previously mentioned group Jndk- i (SO) C n&- 1 (Sn), 12 > 4/c, which may be 
realized by means of framings of the standard sphere S4”-l c lP+4k-1: 

Xmin = IJr4k-l(SO)J. 

The A-genus of such a manifold M4” is given by 

(3.27) 

Aj(M4”) = 0 for j < k, 

&(M4”) = a$+(2k - I)! , 
(3.28) 

so by integrality of the A-genus the number ak!“XM(2k - l)! must be even 
Pk 

for odd k. It follows that IJrr4k-i(SO)I ’ d IS ivisible by the denominator of the 
fraction Bk/4k where Bk is the kth Bernoulli number, since 

ak Bk -z 

Pk 2 . (2k)! ’ AdM4k) = !$& + . . . . 

(This result was proved by Milnor and Kervaire in the late 1950s.) 

Example a) k = 1. Here we have A Pl i = -24, al = 2. Since the number 

Xmill. $ is even, it follows that the order of the group I Jn3(SO) I is divisible by 
24. (Recall that in fact rs(SO) ” Z/24.) Since A1(M4) is even and T = pi/3, 
the signature must therefore be divisible by 16 (Rohlin, in the early 1950s). 

0 

Remark. Algebraic considerations involving the intersection index as a 
quadratic form, in particular its even-valuedness and unimodularity, yield 
only that the signature is divisible by 8. 0 

Example b) k = 2. here we have a2 = 1 and 

A2 = &(7Pf - 4Pz), 

so that Xmin & must in this case be integral. Hence ( JTT(SO)I is divisible 
by 240. 0 
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Remark. The stable homotopy groups 7rlT,+j (Sn) have been computed using 
methods of Cartan-Serre-Adams type, significantly beyond j = 7, thanks to 
the efforts of several authors (in particular, Toda). The formula (3.27) for 
the order of J7rdk.-i(SO) for all k represents an important result in manifold 
theory; in particular it provides a lower bound for the order of the stable 
homotopy groups of spheres. This “geometric” approach to the computation 
of the stable homotopy groups of spheres may be combined with algebraic 
methods (the Cartan-Serre method and the Adams spectral sequence) only in 
the framework of extraordinary cohomology theories. 0 

We mention one more application of the signature in manifold theory of fun- 
damental importance. By means of the signature formula, non-trivial smooth 
structures on manifolds have been found, first on the sphere S7 (by Milnor in 
the late 1950s). The construction is as follows: 

Consider a 4-dimensional vector bundle q of Hopf type over the sphere 
B = S4. The corresponding spherical bundle S(q) has fiber S3, and structure 
group SO4. We assume that 

x4(7) = P, (II> [S41) = 1, (3.29) 

where p is a generator of H4(S4; Z). This condition implies that the total 
space of the bundle with fiber S3 is homotopy equivalent to S7; we shall 
denote this total space by ML, where (Y is defined in terms of p and the first 
Pontryagin class of q by 

Pl(rl) = wu, 6% [S”l) = 1. 

Denote by Nt the total space of the corresponding disk bundle D(q) with 
fiber D4. Note that 8Ni = I@:. It is not difficult to show that a: must be 
even: Q: = 2k. The quaternionic Hopf bundle whose spherical bundle is the 
standard Hopf fibration S7 --+ S4 corresponds to the case k = 1. Milnor 
gave an explicit construction of these bundles for all even cr, at the same time 
defining a Morse function on each such manifold iVl2 with exactly two critical 
points (a maximum point and a minimum point). From this it follows that 
each M;I is homeomorphic (even piecewise linearly) to the standard sphere 
S7. Consider now the PL-manifold 

Assuming that Nt is a smooth manifold, we compute its first Pontryagin class 
and its signature: 

pl(m;) = pl(Nz) = a = 2k; ~(fii) = T(N:) = 1. (3.30) 

Hence by the Hirzebruch formula, 
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which is not an integer when k = 2 (i.e. cr = 4). We infer that the manifold 
fij is not smooth, so that Mi is not diffeomorphic to S7. 

It follows from the topological invariance of the Pontryagin numbers that 
in fact the manifold Ni is not homeomorphic to any smooth manifold; it is 
clear, however, that @ is a PL-manifold. Further development of the theory 
of smooth structures on spheres and other manifolds will be discussed in the 
next section. 

We now return to cobordism theory and the problem of realizing cycles 
by submanifolds. We have seen that the computation of bordism rings via 
the Thorn-Pontryagin construction leads to the study of homotopy proper- 
ties of the Thorn spaces of the universal vector G-bundles (for G = 0, SO, 
U, ,537, Sp, Spin, and others). Adams’ method, on the other hand, involves 
the calculation of the cohomology ring H*(M(G);Z/p) and the action on 
it of the Steenrod operations, i.e. the stucture of the cohomology ring as a 
module over the Steenrod algebra (see Chapter 3, $6). Except in the case of 
H*(M(Spin); Z/2), the structure of these modules may be inferred from the 
observation that the embedding i : BG, + M(G,) of the base space as the 
zero section, induces a monomorphism (of modules over the Steenrod algebra) 

i* : H*(M(G,); Z./p) --+ H*(BG,; Z/p) 

onto a prime principal ideal generated by i*(un), where U, is the Thorn class 
in H*(M(G,); Z/p). Th is implies, in particular, that the product operator 

z t--+ i*(un) z = i*(z . q5(1)) = i*qS(z) 

has zero kernel in the appropriate cohomology group of M(G,) 
For G, = O,, SO, one obtains: 

(3.31) 

i*(un) = wn, 
(3.32) 

H*(M(G,); Z/2) 2 w, . H*(BG,; Z/2). 

Note that if G, = U,, SU,, then n = 2k, and if G, = Sp, then n = 4k. One 
has the following isomorphisms: 

H*(M(S02k); Z/P) z x2k . H*(BS02k; Z/P), P > 2, 

H*(MV2k); VP) E ck . H*(BU2k; z/p), P > 2, 
(3.33) 

H*(M(s!&k); z/p) 2 ck . H*(BSU2k; z/P), P> 2, 

H*(M(Smk); Z/P) 2 i*(u&) . H*(BSpa; z/p), p > 2. 

Recall (see 51 above) that the cohomology rings of the BG, can be described 
in terms of symbolic generators (namely the symmetric polynomials in the 
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generators of H*(Tn) where Tn is a maximal torus of G,: in tr, . . , t, mod 2 
for G, = O,, SO,, in terms of which w, = tl . . t,, and in the 2-dimensional 
generators ~1, . Uk in other cases, in terms of which X2k = Ck = 211 . . . Uk). 
The isomorphism (3.32) implies that the cohomology ring H*(M(O,);Z/2) 
is in dimensions 5 2n a free module over the Steenrod algebra A2 with the 
non-dyadic monomials 

4=Cqj <n, qj not of the form 2r - 1, 

as generators, and the action of these generators on the Thorn class w, = 
tl . t, is ordinary multiplication of polynomials: 

p(w,) =ptl...t, E H “+“Pw?& Z/2), q = c qj. 
(This is a theorem of Thorn.) This result allows (using the Adams spectral se- 
quence) the complete computation of the homotopy groups of the Thorn spaces 
M(0,) (in dimensions 5 2n), or, equivalently, all stable homotopy groups of 
the spectrum MO, which can be identified (via the Thorn-Pontryagin con- 
struction) with the bordism ring Qp = n,. As an immediate application of 
this computation one has the following theorem: 

Any cycle of dimension < n/2 in the homology (mod 2) of a manifold M” 
may be realized by a closed submanifold, and, in all dimensions, as the image 
of a closed manifold. cl 

For p > 2 and G = SO, U, SU, Sp the A,-modules H*(M(G);Z/p) turn 
out to be direct sums of copies of the one-dimensional A,-module d,/(P) 
(where p is the Bockstein operator and (/3) the two-sided ideal generated by 
,D). The module d,/(P) ’ g is iven by the relation p(z) E 0. 

Remark. The latter statement also holds for H*(M(U);Z/2), with the 
Bockstein operator @ replaced by the operation Sql. 0 

The structure of the modules H*(M(G); Z/2) (as AZ-modules) for G = SO, 
SU, Sp and Spin is somewhat different. They are also direct sums of one- 
dimensional AZ-modules, but the summands vary: For G = SO they are free or 
with the single relation Sq’(w) = 0 ( w h ere v is a generator); for G = SU with 
the same relation Sql(w) = 0 together with the identical relation Sq2(z) E 0 
for every element z; for G = Sp (the most difficult case) there are the two 
identical relations Sq’(z) E 0, Sq2(z) =: 0 (f or all z) ; and finally for G = Spin 
there are summands with the two relations Sql(w) = 0, Sq’(v) = 0 (where w is 
a generator of this AZ-module). (These results are due to Milnor and Novikov 
(around 1960), and in the caSe of Spin to Anderson, Brown and Peterson in 
the mid-1960s.) 

It should be noted that there is a product structure (induced by the direct 
product of manifolds) on all of the above bordism rings. This “geometric” 
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product structure determines an algebraic “product” on the dP-modules M = 

H*(M(G); UP) via the diagonal homomorphism 

AIM-M@zlpM, 

which in turn determines a multiplication on the the cohomology groups 

Ext;; (M, Z/p). 

After certain algebraic obstacles have been overcome, the Adams spectral 
sequence (see Chapter 3, §6,7) yields up the structures of the bordism rings 
Q:“, O,U (Milnor, Novikov). It should be mentioned that the 2-torsion of the 

grows 4 , + ‘* QsU had been calculated ealier using different, purely geometric 
ideas (by Rohlin and Wall in the late 1950s in the case of a:*, and by 
Conner and Floyd in the mid-1960s for @‘; however the combination of 
these geometric methods with those of homological algebra turned out to be 
feasible only in the framework of the generalized (extraordinary) cohomology 
(cobordism) theories Q;(.) and QG(.). 

The results are as follows: None of the bordism rings 0: (with G as before) 
has p-torsion for p > 2, and in the case 0: for p 1 2. The rings 02 @ Z/p 
and 0: @ Q are polynomial for p > 2. The ring 0: is polynomial (over 
the integers) in even-dimensional generators, one of each even dimension. On 
these generators [M2”] the Newton polynomials & = n! ch, take the following 
values: 

(GL, [M2”1) = 
{ 

1 for n#pi-1, 
p for n=pi-1, 

p prime, [M2”] E 02”. 

Since (2;,, @P) = n + 1, it follows that only the elements [@P-l] satisfy the 
above condition. All other generators [M2n] may be constructed out of the 
Milnor manifolds H,,, , which represent the cycles @P’ x (IX’-’ +@P’-i x @Pt 
in the product CP’ x @Pt. Linear combinations of the elements [HT,t] provide 
a full set of multiplicative generators of the ring 0,“. 

The following theorem (Novikov, early 1960s) on the representability in 
the stable dimensions j < n/2 of integral cycles z E Hj(AP; Z) by oriented 
submanifolds (or, in any dimension, by continuous images of manifolds) is a 
consequence of results concerning the stable homotopy structure of the com- 
plexes M(SO,) (or the spectrum MSO): 

There exists an odd integer X such that the cycle Xz can be so represented; 
moreover if for all Ic > 1, p > 2, there is no p-torsion in the homology 
groups H,(M”; Z) of d‘ zmensions j = 2k(p - 1) - 1, then in fact X may be 
taken to be 1. 

Remark. If there is p-torsion in the indicated groups, then the factor X may 
be taken as the nroduct 

P>2 
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which is the formula for the denominator of the general coefficient in Hirze- 
bruch’s polynomial 

L,(pl,. . . ,p,), when m = i . [‘I 
In the late 1960s Buchstaber constructed examples showing that this result 
cannot in general be improved. At the same time he showed that in the absence 
of p-torsion in certain intermediate groups, the result can be improved. 

$4. Classification problems in the theory of smooth manifolds. 
The theory of immersions. Manifolds with the homotopy type 
of a sphere. Relationships between smooth and PL-manifolds. 

Integral Pontryagin classes 

The general formulation of the problem of the homotopy classification of 
immersions is as follows: 

Given two manifolds AP and Nk, where k > n, characterize the classes of 
regularly homotopic immersions IF’ 4 Nk. 

The simplest case of interest is that where M” = 5’” and Nk = Iw’“. Con- 
sider the following two function spaces of immersions: 

a) The space Xk,, of immersions of the disc P equipped with a normal 
field u, of dimension s, into lRk, where n + s < I;, under the condition that 
for each admissible immersion each point SO of the boundary dD of the disc 
should have a neighbourhood on which the immersion is “normalized”, in the 
sense that its image is essentially a region of a standard n-dimensional plane 
in lRk equipped with a standard constant normal s-dimensional field of frames 
in R”. 

b) The space Y,“, , of immersions of the sphere S” equipped with a normal 
field u,, in IKk, n + s < k, with the property that each immersion is “nor- 
malized” on some neighbourhood U, of each point so of S”, i.e. the image of 
the neighbourhood U, is a region of a standard n-dimensional plane in lRk 
equipped with a standard constant normal s-dimensional frame field in R”. 

There is an obvious map 

xi,, - YL,Sfl, 

defined by taking the boundary S”-’ = dD” of the disc together with an ad- 
ditional l-dimensional field normal to S”-l and tangential to the interior of 
Dn. By an observation of Smale (made in the late 1950s) this map is the pro- 
jection map of a Serre fibration. Since therefore the fibers are all homotopically 
equivalent, it is not difficult to see that in fact they have the homotopy type 
of Y,,+. Since, further, the total space Xk,, is contractible: nj(Xk,,) = 0 for 
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j 2 0, we obtain an isomorphism between the appropriate homotopy groups 
of the fiber and base: 

%(Y,,s) g “j+lwL,,+,). (4.1) 

Now classifying the immersions of S” in IR”, simply means identifying the 
path-connected components of Yk,s, i.e. identifying 7rc(Yk,a). From the se- 
quence of isomorphisms obtained from (4.1) by letting j vary, we have imme- 
diately 

m(Y,,I)> 2 c&g. (4.2) 

Since Y& is just the Stiefel manifold with points the non-degenerate fields of 
n-frames on lRk: 

y& = Vik, 

we infer Smale ‘s theorem: 

The particular case k = 2n of this result is the classical theorem of Whitney 
on the classification of immersions S” ----+ lf%2n. (The case n = 1 of Whitney’s 
theorem is illustrated in Figure 4.21 a); the invariant of the homotopy class 
of an immersion is in this case given alternatively by 1/27r $ k ds = n, the 
integral of the curvature of the immersed circle over the whole circle.) As 
another non-trivial consequence of Smale’s theorem we have that all immer- 
sions S2 + lK3 are regularly homotopic, since 7r2(V2y3) s rz(SO3) = 0; this 
is by no means obvious even for simple examples of immersions: compare the 
immersion S2 + lRP2 + IR3 with the standard embedding S2 + lR3. 

Smale’s theorem generalizes without great difficulty to the situation of im- 
mersions S” --+ Mk of the sphere Sn in any manifold Mk ; here the re- 
sult is that the homotopy classes of immersions are completely determined 
(i.e. in onetoone correspondence with) the elements of the homotopy group 
TIT,(&k), where &k is the total space of the bundle of non-degenerate fields 
of tangential n-frames on the manifold M”. Already in the case k = 2, for 
the surface Mg (sphere-with-g-handles) the fundamental group 7ri(Ei,z) of 
the manifold of “linear elements” (i.e. fields of l-dimensional subspaces of the 
tangent space of Mg) is non-trivial; it is given by generators al, bi, . . . , a,, b,, c 
with the defining relations 

fJ aibia,lb,l = 29-2, Cai = CLiC, cbi = bit. 
i=l 

(4.3) 

(The case g = 0 is illustrated in Figure 4.21 (b).) 
In the early 1960s the ultimate generalization of Smale’s theorem was es- 

tablished by Hirsch, who showed that for any two manifolds M”, Nk (k > n) 
each class of immersions Mn --+ Nk is uniquely determined by the ordinary 
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homotopy class of maps of tangent bundles induced by these immersions. 
The proof makes crucial use of the fact that, by definition of an immersion, 
no tangent n-frame at any point of M” becomes degenerate under the map 
of tangent spaces induced by an immersion f : Mn -+ N”. Consider the 

(a) S1 + R2, V$ N 9, (b) S1 --t S2, El,2 r SOB, xl(SOs) z Z/2; 

f 
kds = n thus on going over from R2 to the sphere S2, 

7 the invariant in (a) becomes reduced modulo 2 

Fig. 4.21 

manifold G,(Nk) whose points are the n-dimensional planes (subspaces) of 
the tangent spaces at the points of Nk. The immersion f induces a map 
f : Mn --+ Gn(Nk), which is covered by a map of principal bundles with 
structure group GL,(IR); it is the homotopy classes of these bundle maps that 
determine the classes of immersions. 

A theory concerned with closed manifolds homotopy equivalent to spheres 
was developed by Milnor and Kervaire around 1960. In order to describe 

Fig. 4.22 

this theory we need the construction called a “connected sum” Mr#M?J’ of 
manifolds Mp, MF, with respect to which the set of (diffeomorphism classes 
of) smooth manifolds of each dimension n forms a commutative semigroup: 
From each of the manifolds Mr, MC a small disc is removed: 
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Cj(xj,)2 < c2 on My, 

in terms of local co-ordinates on appropriate charts U, c A/l;, VP c MC, 
and then the resulting boundaries (each diffeomorphic to the standard sphere 
Sp-‘) are identified (taking orientation into account if the manifolds are ori- 
ented) by means of the standard diffeomorphism; the resulting smooth mani- 
fold is the connected sum Mr#MF (see Figure 4.22). 

Example. We have an exhaustive list of closed 2-manifolds (closed surfaces): 

Mi = ,T”# ‘:. #Tg T2 the torus, 

g times 

N2 = K2#T2#...#T2 
1>9 d 

K2 the Klein bottle, 

g - 1 times 

N2 = RP2#T2#-#T2 
2>9 -. 

g times 

Hence T2, K2 and lRP2 are generators for the semigroup of all closed surfaces, 
with defining relations 

RP2#RP2#RP2 S lRP2#T2 = RP2#K2, 

K2#T2 = K2#K2. 

(Figures 4.24, 4.25, 4.26 illustrate these relations.) 

Fig. 4.23. The sphere-with-g-handles A4,” (g = 3 in the figure) 

Remark. The orientable closed surfaces form a free monoid on the single 
generator T2. It would seem that the closed orientable S-manifolds also form 
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a free monoid; however for closed orientable 4-manifolds this is certainly no 
longer the case. Note incidentally that of the closed surfaces, the IV;,,,, g 2 0, 
all represent the nonzero cobordism class of fig, while all the other surfaces 
represent the zero class. 0 

Fig. 4.24. The process of deforming a handle so that it goes from the outside to the 
inside 

Fig. 4.25 

Y - ::I-> @@ @ 
Fig. 4.26 

Returning now to the topic of homotopy spheres, we first observe that the 
oriented h-cobordism classes of homotopy n-spheres form a group (denoted 
by On) under the operation of taking the connected sum. (See 53 above for 
the definition of h-cobordism.) Here the zero class consists of the oriented 
manifolds AP bounding contractible manifolds-with-boundary IV+‘: 

M” = ifqp+1, J/p+1 N 0. 

The inverse of (the class of) an oriented homotopy n-sphere AI; is (the class 
of) the same manifold AL?_” with the opposite orientation. To see this, i.e. to see 
that the connected sum Mg#M” is h-cobordant to S” consider the manifold- 
with-boundary Wnfl with dW”+l = MF#MTT, constructed as follows (see 
Figure 4.27): From the cylinder MF x I remove the subset 0,” x I where 
0: c MT is a small open ball of radius E; after appropriate “smoothing of 
corners” one is left with a smooth manifold-with-boundary 

Wn+’ = (MT x I) \ (D,n x I) = (MT \ D:) x I, 

for which dW”+l = MF# M”, and which is moreover contractible. 
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Fig. 4.27. M,“#M_” N 0, M” N S” (homotopy sphere) 

Smale’s important “h-cobordism theorem”, stating that every h-cobordism 
Wn+’ between simply-connected manifolds AJr, i$’ of dimension n 2 5 is 
diffeomorphic to MT x I (whence IV? is diffeomorphic to IV,“), implies that 
for each n > 5 the group On provides an exact classification of the homo- 
topy n-spheres, and hence of the distinct smooth structures definable on the 
topological n-sphere. 

Of particular interest is the subgroup (denoted by bP”+l) of 0” consisting 
of the h-cobordism classes of boundaries of compact parallelizable manifolds- 
with-boundary. Milnor has shown how to construct, corresponding to each 
even-dimensional, unimodular, integer matrix (aij) (as in (4.4)), a paralleliz- 
able manifold-with-boundary P4k with boundary a homotopy sphere M4k-1, 
for which Hzk(P 4k; Z) is a free abelian group with a basis of cycles having 
matrix of intersection indices (aij), and T~(P~“) = 0 for j < 2k. The minimal 
signature of such a manifold is 8: rmin (P4k) = 8; here is a matrix A = (aij) 
yielding such a manifold: 

A= 

/21000000 
12100000 
01210000 
00121000 
00012101 
00001210 
00000120 

\00001002 

(4.4 

Note that the manifold P4k is a Spin-manifold (it is oriented and the Stiefel 
class w2( P4k) = 0). Thus a necessary condition for the boundary of P4k to 
be the ordinary (4k - 1)-sphere S4k-1, is the integrality of the a-genus of the 
manifold 

P4’ uaP4k D 4k 

(see 53 above), given by 
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/i[p4k UaP4k D4”] = ,-(P4”) ’ 

1 
22”fl(22”-1 - 1)’ 

Hence in this situation the signature r(P4”) must in fact be divisible by 

p+y‘p-1 - 1). 

Using the fact that the signature is divisible by 8, one has that the order of 
the group bP4k is divisible by 

2-2(2-l - 1). 

(Recall that for even Ic the a-genus is likewise even, so that in fact for k even 
the order of the group bP4k is divisible by 22”-1 (22k-1 - l).) 

For large enough N (N > n + 1) every homotopy sphere M” c llP+jv 
has trivial normal bundle Y. (For this one uses the classification of normal 
fields of N-frames on M” via elements [v] of ~T~(SON), in conjunction with 
Bott periodicity for SO, the fact that pk(Mn) = 0 for n = 4k (a consequence 
of the Hirzebruch signature formula and r(P) = 0), and a result of Adams 
of the early 1960s implying that the classifying element [v] = 0 also in the 
cases where T~(SON) 2 Z/2.) I n view of this property, homotopy n-spheres 
admit framings VN, and the natural one-to-one correspondence (see $3 above) 
between framed normal bundles on n-manifolds in Wn+N and the elements 
of TN+%(S~) (whereby framed manifolds of the form (P, VN) correspond to 
the subgroup J(K~(SON)), th e image under the Whitehead homomorphism 
- see $3 above) then yields a homomorphism 

p : 0” --+ 7rpf+n(sN)/J?T,(so). (4.5) 

The kernel of this homomomorphism coincides with the subgroup bP”+l 
of classes of homotopy n-spheres bounding parallelizable manifolds-with- 
boundary. A theorem of Milnor and Kervaire asserts that the homomorphism 
p is an epimorphism provided n is not of the form 4k + 2, while for n = 4k + 2 
the image under p has index at most 2. The kernel bP”+l is cyclic, and in 
fact trivial for even n. It is known further that for n of the form 4k + 1, the 
subgroup bP4k+2 c 04k+1 has order at most 2, that bP” 2 Z/28, and that 
the order of bP4k increases as k -+ co. 

A detailed technique for investigating homotopy spheres has been devel- 
oped, involving “killing” the appropriate homotopy groups of framed mani- 
folds by means of “Morse surgery”, in order to reduce them to framed ho- 
motopy spheres. (This technique was used, in the case n = 2, by Pontryagin 
in the late 1940s in connexion with his calculation of the groups 7r,+2(Sn); 
see $3 above.) The given framed manifold is first replaced by an equivalent 
connected one, and this in turn by an equivalent simply-connected framed 
manifold, and so on; difficulties requiring non-trivial analysis arise only in 
dimension [n/2]. For odd n no invariants emerge in this dimension, although 
the proof of this is non-trivial. For n of the form 4k, since the signature 
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of a framed manifold is zero by Hirzebruch’s formula, one may always by 
means of elementary Morse surgeries eliminate the n/2-dimensional homo- 
topy also, provided n > 4, the cycles of dimension n/2 being in this case 
realizable as embedded n/2-spheres, as required for Morse surgery. For n of 
the form 4lc + 2 the framed manifold M4kf2 can also be reduced to a manifold 
M4k+2 satisfying ~j’j(Mf~+~) = 0 f 
of 1&k+i(&ff”t2) ” .rr2k+r(M;k+2 

or j 5 21c. Here, although the elements 
) are, as in the previous case, realizable by 

means of embedded spheres S2”f1 c Mfk’2, these spheres may have non- 
trivial normal bundles in Mfkf2, corresponding to the non-trivial element [v] 
of the first non-stable homotopy group r2k(S&k+i): 

[v] E r2k(SOZk+l) ” 7744 /tZ # 0,173. 

(These groups were encountered earlier following the discussion of Bott peri- 
odicity in 52 above, where it was remarked that it is their non-triviality that 
gives rise to the non-parallelizability of spheres of dimensions # 1,3,7, and 
the non-existence of division algebras of dimensions # 2,4,8.) Thus for all 
Ic # 0, 1,3, to each element 

Z E i&k+l(M4k+2; z) 2 7T2k+@‘f4k+2) 

there corresponds an element 

G(z) = [u] E ~2k(S02k+l) z z/2, 

the Arf function. The following “Arf identity” 

@(Zl + z2) = @(Zl) + @(z2) + Zl 0 z2 (mod 2) 

holds for the Arf function @. For k = 0, 1,3, the Arf function may be defined 
alternatively in terms of framed normal bundles on spheres S2”+l C M4k+2 c 

RN. (This approach was taken in $3 above, in the case k = 0.) Much as 
described in $3 (see (4.8) there), the Arf function determines the A+invariant 

@ : %+4k+2(SN) - 212. 

The “Arf-invariant problem” then consists in determining this homomorphism 
for the various k. It is nontrivial in the cases k = 0, 1,3, on the stable groups 
nN+2(SN), r~+s(S~), rN+14(SN). In the late 1950s Kervaire showed that 
it is trivial when k = 2; this result then enabled him to construct a lo- 
dimensional PL-manifold not homotopy equivalent to any smooth manifold, 
and to show that bPl” g Z/2 (bP1’ c Og). For k = 0, 1,3 we have bP2 c 
bP6 E bP14 Z Z/2. It was then shown by Kervaire and Milnor that @ = 0 
precisely if bP4kf2 2 Z/2. Somewhat later, in the mid-1960s it was proved 
by Anderson, Brown and Peterson that in fact the Arf-invariant @ is zero in 
all dimensions of the form n = 8k + 2; in their proof they used the idea (due 
to Brown and Novikov in the early 1960s) of extending the Arf-invariant @ 
to a homomorphism of the SU-cobordism group: 
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The image of the homotopy groups of spheres in 0:” turns out to be describ- 
able in quite simple terms, and it is this which yields the result. 

For n of the form 8k + 6, this approach via ordinary cobordism theory 
does not succeed. However by constructing a special cobordism theory which 
maximally extends the Arf-invariant, Browder was able to show (in the late 
1960s) that the Arf-invariant @ is zero for all n not of the form 2” - 2, and 
moreover that for n = 2” - 2 it is non-zero if and only if the elements 

h;-, E Ext;;2(Z/2, Z/2) 

are cycles with respect to all the Adams differentials (therefore representing 
nontrivial elements of the group 7rN+2s-2(SN)). In particular, in the cases 
s = 5,6, the elements hz, h$ are in fact cycles with respect to all Adams 
differentials, so that bp3’ = 0, bp6’ = 0.7 

There is another naturally occuring group r”, related to On, obtained as 
a quotient of the group of connected components of the space Diff+(S+‘) 
of orientation-preserving diffeomorphisms f : S”-l 4 S”-l under compo- 
sition, by factoring by the normal subgroup of those diffeomorphisms f that 
extend to diffeomorphisms 1c, of the disc D” bounded by S+‘: 

II, : Dn + Dn, T,!~~.&-I = f. 

We thus have the following sequence of homomorphisms, whose composite we 
denote by ji: 

p : ~o(Diff+(S”-l)) + r” + 0” 5 7rn+N(SN)/Im J. 

(Here the homomorphism r” + 0” is defined by associating with each diffeo- 
morphism f : Sp-’ + S,“-‘, the homotopy n-sphere obtained by identifying 
the boundaries of two discs Dy, Dg via that diffeomorphism.) 

It follows from results of Smale that rn g 0” for n > 5, since for these n 
all homotopy spheres Mn can be constructed from discs Dy , 0; by identify- 
ing their boundaries by means of a diffeomorphism f : S;-’ + ST-‘. The 
triviality of the groups rl, r2 is easy. That r3 = 0 follows from Smale’s result 
(of the late 1950s) according to which Difff(S2) is homotopy equivalent to 
SOs. That r4 = 0 follows from the (highly non-elementary) result of Cerf (of 
the mid-1960s) asserting that no(Diff+(S3)) = 1. On the other hand it fol- 
lows from Milnor’s example (see $3 above) that ~~o(Diff+(S”)) # 1. Putting 
these results together (with others) one has: 

rl = r2 = p = r4 = p = p = 0 

r7 = z/28, rn = On, n # 3. 

7The latter result is due to Barrat, Mahowald and J. D. S. Jones; they proved that hz 
is a cycle of all Adams differentials by direct computation in the Adams spectral sequence. 
It is not known (as of 1994) whether or not the elements hi are cycles for j 2 6. 
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The fiber bundle projection 

p : Diff+(Dq) - Diff+(SQ-l), (4.6) 
and the inclusion map 

K : Diff+(Dq, sq-1) --+ Difff(sy, 

are defined in the natural way. The fibre Fq of the fibre bundle (4.6) is the 
group of diffeomorphisms fixing the boundary: Fq = Diff+(P, Sqel). One 
has the usual induced homomorphisms of homotopy groups: 

a : 7r@iff’(sq-l)) - 7r_l(Diff+(Dq, S-l)), 

K* : 7rj-@fff(lY, sq-1)) - 7r-lpiff+(Sq)). 

Composing 2j times, we obtain a homomorphism 

x : ?rj(Diff+(s”-l)) - 7ro(Diff+(Sq+y). 

For the composite of X with the Milnor-Kervaire homomorphism ,G (see 
above): 

p : 7r&liff+(sq-l)) - rq+dSN)/Im J~,(SON), 

the following formula can be shown to hold in the ring of stable homotopy 
groups of spheres (or in the cobordism ring L’F’ of framed manifolds) for all 
elements a E 7rc(Diff+(SN-‘)), b E 7rq(SO~): 

p(X(ub~-~)) = p(a) o J(b) (modJn,+N(SON)), 

ah-1 E 7rq(Difff(P-1)). 
(4.7) 

In certain dimensions the structure of the ring 

is such that the right-hand side of (4.7) turns out to be non-zero (for appro- 
priate a,b); this occurs for instance when q = 1,n = 8 - see the table at 
the end of $7 of Chapter 3. It can by inferred from this that for such N the 
component of the identity of the space Diff+(SN-‘) is not contractible to 
the subgroup SON (Novikov, in the early 1960s).8 

The general classification theory of closed, simply-connected-manifolds of 
dimension n 2 5, and then of the non-simply-connected ones, depends on 
certain important, although elementary, properties of maps 

8Proved slightly later also by Milnor. 
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of degree one between closed manifolds. Since for such maps (of degree one) the 
homomorphism f*D-‘f*D (where D is the Poincarkduality isomorphism) is 
the identity map on the homology of M,“, that homology admits a standard 
decomposition 

H,(Ml) E (D-‘~*D)(H,(Mz)) @Ker f*, (4.8) 

which is orthogonal with respect to the intersection of cycles (and analogously 
for the cohomology of MF). The direct summand Ker f* of the homology of 
M,” is closed under the Poincar&duality operator, and in general behaves 
as if it itself represented the homology of some manifold. Thus if the kernel 
Ker fiaJ) c rj(MF) of the induced map f*(n’) of the jth homotopy group is 
trivial for j < Ic - 1, then for the kth such kernel the analogue of Hurewicz’ 
theorem is valid: 

Ker fLRk) E Ker fiH’), (4.9) 

and the induced homomorphisms between the respective homotopy groups: 

f* : ri(M;) - ri(M;), 

are isomorphisms for i < Ic. This result is true also for non-simply-connected 
manifolds provided the homology groups are considered as Z[n]-modules 
where rl(MF) 2 nl(M;) E 7r. Under the same assumption as before, namely 
that the kernels of the induced homomorphisms of the 7ri should be trivial for 
i < k - 1, one has the isomorphism 

Ker fLHk) ?Z Ker fLRk) @~I~] Z (4.10) 

(provided the induced homomorphism of the fundamental groups 7rr has trivial 
kernel). 

The classification theory of manifolds of given homotopy type was devel- 
oped by Novikov in the early 1960s and of all homotopy types of closed smooth 
manifolds by Browder and Novikov (also in the early 1960s). In the course 
of solving these classification problems one encounters the situation where a 
homotopy type of manifolds is represented by a particular CW-complex X. In 
the most general context, as formulated by Browder, X need not be a man- 
ifold and may have geometric dimension different from the given n, and it 
is required only that there exist a fundamental class [Xn] E H,(Xn; Z) such 
that the cap operation a --+ a n [Xn] defines an appropriate Poincare isomor- 
phism from homology to cohomology; Cl&‘-complexes with this property are 
called Poincare’ complexes. It turns out that a Poincare complex X admits 
a unique stable “normal spherical bundle” vx which behaves like the usual 
stable normal bundle of a manifold, and in the case where X is a smooth (or 
PL-) manifold vx is just the stable homotopy class of its standard normal 
bundle. If there exists a homotopy equivalence f : Mn -+ X, where M” is a 
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manifold, then there must exist a vector bundle c over X which is homotopy 
equivalent to the stable normal spherical bundle vx (if g : X -+ IW’ is a ho- 
motopy inverse of f, then 5 = g*vM). Thus the classification problems above 
lead to the consideration of a Poincare complex X together with a vector 
bundle < over X which is homotopy equivalent to the stable normal spherical 
bundle VX. However when X is a smooth closed manifold, the vector bundle 
< is homotopy equivalent to the ordinary normal bundle vx, and the problem 
of determining the latitude in such vector bundles c can be solved effectively 
(Novikov, early 1960s). 

Assuming that there is a vector bundle 6 over a given Poincard complex 
X, a degree one map f : Mn + X is called normal if the normal bundle UM 
is equivalent (as a vector bundle) to f*E, i.e there is a commutative diagram: 

(4.11) 

In this situation the kernel Ker f* behaves with respect to both homology 
and homotopy as in the case of parallelizable manifolds, which circumstance 
permits the use of a natural analogue of the Milnor-Kervaire technique to 
reduce the kernels of the induced maps of homotopy groups by means of 
Morse surgeries. For a given manifold (or, more generally, Poincare complex) 
X” and a given vector bundle ( over Xn, one defines normal bordism classes of 
normal maps f : M” + X”, f*< = UM, covered by bundle maps f^ : UM + 5, 
where VM is the stable normal bundle of M” C Rn+N, as follows: A normal 
bordism is a normal map g covered by a map 4 of bundles, as indicated: 

T f 

N n+l L X” x I 

(4.12) 

where the manifold Nn+l c lRnfN x I, I = [a, b], approaches the boundary 
of lRWn+N x I transversely, and itself has boundary 

aN”+l = M,” u MC, 

MF c IRn+N x {a}, M; c IRWnfN x {b} , 

on each component of which there is given a normal map of degree one. We 
denote the resulting set of bordism classes by N(Xn, 0. It can be shown 
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without difficulty that the set N(Xn, I) can be realized as the subset of those 
elements (Y of the homotopy group T~+N(T[) of the Thorn space of the bundle 
<, homologous to the fundamental class [X”] (see above), i.e. such that 

where 

is the Hurewicz homomorphism, and qS : H,(Xn; Z) -+ Hn+~(T[; Z) is 
the Thorn isomorphism. Cartan-Serre theory shows that the stable group 
r,+N(T<) has the form 

(4.14) 

where fl(Xn, [) is finite abelian; with respect to this decomposition the above 
normal bordism classes of normal maps of degree one are represented as fol- 
lows: 

o! E N(xn,<), a = 1 + a, a E Ai(X”,<). (4.15) 

In the situation where Xn = IP is a smooth manifold and < is its stable 
normal bundle UM (M” c lRn+N ), the identity element 1 of ~TT,+N(T<) corre- 
sponds to the pair of identity maps 

id 
VM - VM 

and the following assertions are valid: 

1. Suppose fl : Mr -+ Mn, f2 : MF + Mn are maps of degree one which 
together with the induced maps of normal bundles determine one and the same 
normal bordism class. If  in addition each of the maps fi, f2 is a homotopy 
equivalence, then there exists a homotopy n-sphere En E bPnfl such that 

M; ” Cn#M;. (4.16) 

It follows that for n 2 5 the manifolds MT- and MC are homeomorphic, with 
the punctured manifolds obtained by removing a point from each actually dif- 
feomorphic, and that for even n > 5, Mr and MC are in fact diffeomorphic 

(Novikov). 

2. The following result applies to an arbitrary fixed vector bundle < over 
Mn: For odd n > 5 each normal bordism class Q E n/(M”,[) is realized by 
some homotopy equivalence f  : M’ + M”. The following condition on the 

Pontryagin classes of the vector bundle [: 

L(pl(J), . , Pi = r(Mn) 
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is both necessary and suficient for this to be true also in the case n = 4k 
(Browder, Novilcov). 

Prom the first result one obtains immediately the corollary that for each 
given homotopy type there exist only finitely many pairwise non-diffeomorphic 
closed, simply-connected n-manifolds (n 2 5) with the same Pontryagin 
classes pj E H4j(Mn. Q). I nvoking the topological invariance of the Pontrya- 
gin classes, one infers’from this in turn the finiteness of the number of distinct 
smooth structures that exist on each closed, simply-connected topological 
manifold of dimension n 2 5. Since this theory is valid also for PL-manifolds, 
one obtains also the finiteness of the number of distinct PL-structures defin- 
able on any such topological manifold. 

Remark. Note in this connexion that in the analogue of the first result 
for PL-manifolds, one obtains an incidental strengthening of the conclusion, 
namely to the effect that the manifolds M; and I$? will be in fact PL- 
homeomorphic, in view of the fact that all homotopy n-spheres are PL- 
homeomorphic to Sn. I3 

An exact classification of the diffeomorphism classes of manifolds satisfying 
the hypotheses of Result 1 above (i.e. of the same homotopy class, and with 
maps to M” whose extensions to the stable normal bundles define the same 
normal bordism class) is obtained by taking the set N(Mn, v,) of elements 
of the form 1 + a E KN+~(Tv,) modulo the subgroup G(Mn, vn) of those 
elements representing homotopy classes of automorphisms of degree one, i.e. 
of self-maps f : M” + M” of degree one, preserving the stable normal 
bundle: f*v, = u,. Thus the diffeomorphism classes of manifolds satisfying 
the hypotheses of the above Result 1 are in natural one-to-one correspondence 
with the cosets of 

N(Mn, bL)/G(M”, &I) (4.17) 

There is a smaller group J(M”, vn), a subgroup of the automorphism group 
O(Mn, vn), consisting of those automorphisms of the bundle V, inducing the 
identity map on the base Mn. The orbit set 

(4.18) 

is relevant to the following question: Given a normal homotopy equivalence 
f : MT- + M” of degree one, when can f be deformed to a diffeomorpism 
(more precisely, to a diffeomorphism up to forming the connected sum with 
a Milnor sphere C” from the group bP n+l)? The answer is that a normal 
bordism defined by such a map f is so deformable if and only if its projection 
to the coset (4.18) is the same as the projection of the distinguished element 
(represented by the identity map Mn + Mn). Futhermore if fi : MF + Mn 
and f2 : MF + M” are normal maps of degree one (representing normal 
bordism classes), then they correspond to the same coset in (4.18) if and only 
if f1fi-l is homotopic to a diffeomorphism (modulo bP”+‘). 
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In the situation where the given vector bundle < is the stable normal bundle 
of M” c sN+n, 5 = v,, the Thorn space TV, has particular geometric signif- 
icance: For a suitably small E, let U, be the E-neighbourhood of the manifold 
M” c SN+n; then by definition we have 

TVM = SN+“/(SN+“\UE), 

the quotient space of S N+n obtained by identifying to a point the comple- 
ment of the neighbourhood U, (h ere N >> r~). The associated natural map 
SN+n --+ TV, thus restricts to the identity map on U,; it has degree one and 
represents (in r,+N(Tv,)) the manifold Mn. For n of the form n = 4k + 2 it 
turns out that the elements of x,+N(Tv,) of the form 1 + a where a ranges 
over a certain subgroup B of N(M”, v,) of index 1 or 2, are precisely those 
corresponding to n-manifolds of the same homotopy type as M”. (The spaces 
TV, are often useful for carrying out calculations for particular manifolds.) 

The above-described theory has been generalized to the situation of 
manifolds-with-boundary by Go10 and Wall (in the mid-1960s). 

Around the mid-1960s several authors9 demonstrated the usefulness of 
the concept of “S-duality”, which has a more general categorical character. 
Spanier and G.W. Whitehead defined the S-dual DK of a CW-complex K 
embedded in a sphere S” of sufficiently high dimension, to be simply the 
complement S” \ K; thus the operator D acts on CW-complexes K as follows: 

D:KwSm\K. 

In particular the S-dual of a sphere is a sphere (up to homotopy equivalance). 
On (homotopy classes of) maps f : K ---+ L the S-dual operator reverses the 
arrows (this is clear if f is an embedding, and the general case is reduced to 
this by means of the mapping cylinder): 

Df:DL--+DK, 

[K, Lls = PL, DKls, 
where [ , Is denotes the set of stable homotopy classes of maps. It was observed 
by Atiyah in the early 1960s that the S-dual of the Thorn space of the stable 
normal bundle of a closed manifold Mn is the Thorn space of a trivial vector 
bundle EQ over Mn: 

D(TvM) = C(MT) = TE’, 

where MT = M” u {*} (the disjoint union with the one-point space). The 
map f : SN+ ----+ TVM turns out to have as S-dual the map Df : TE’J --+ SQ 
from the Thorn space of the trivial vector bundle e’J to Sq, of degree one on 
each fibre, varying with the point of the base as parameter. 

gA. Schwarz, Novikov, Sullivan 
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Denote by SG, the semigroup of maps SQ --+ SQ of degree one. We have, 
corresponding to each normal bordism class o E N(M”, t), a map from the 
base manifold M” to the semigroup SG,: 

D-f : M” + SG,, (4 - m). 

The image under this map in the quotient SG,/SO then constitutes an ob- 
struction to the existence of a diffeomorphism between the various manifolds 
Mp in the class o. Note that as q --f CQ, the homotopy properties of SG, (tak- 
ing account of its structure as an H-space) stabilize. The natural embeddings 
give rise to a spectrum 

SG, c SG,+l c ... 

with limit SG, say. We also have embeddings 

SG > SPL > SO, 

where SPL denotes the group of germs of origin-fixing and orientation- 
preserving PL-automorphisms of a disc of sufficiently high dimension. The 
induced monomorphism rj (SO) --+ rj (SG) of homotopy groups coincides 
with the Whitehead homomorphism J (see 53 above) once one makes the 
identification afforded by the isomorphism 

TV = TV+#‘~), N>j+1. 

One gives meaning to the universal base BSG for spherical bundles (i.e. with 
spherical fibres) by defining equivalence of such bundles in terms of bundle 
maps commuting with the projections, and of degree one on the fibres. Al- 
though the space SG, clearly has the homotopy type of @(S’J), the connected 
component of the identity of the q-dimensional loop space, so that 

nj(flq(Sq)) E nq+JSq) ” rj(SG), 

the multiplicative structures of these two spaces are different. Note that the 
space BSG does not have the homotopy type of any (q - 1)-loop space 
m-l(Y). 

This theory transfers to the context of PL-manifolds without significant 
change. The tangent and stable normal bundles of a manifold, equipped 
with the group of germs of origin-fixing PL-automorphisms of discs of un- 
specified dimensions, are called, following Milnor, microbundles. A theorem 
proved by several authors in the early 1960s asserts that a PL-manifold 
admits a compatible smooth structure if and only if the stable normal (or 
tangent) microbundle reduces to a vector O-bundle, 0 c PL (or vector 
SO-bundle, SO c SPL, in the orientable case). The relative homotopy 
groups nj(SPL, SO), representing obstructions to the reducibility of a PL- 
microbundle to a smooth one, are isomorphic to the respective groups Pj-l: 

7rj(SPL, SO) = 7rj(SPL/SO) = I+l. (4.19) 
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From this isomorphism one obtains the obstructions to the existence of a 
smoothness stucture in a neighbourhood of the j-dimensional skeleton of a 
PL-manifold M as the cohomology classes in Hj(M; rj). The theory of PL- 
manifolds was developed starting from the 1930s by many authors (Newman, 
Whitehead, Zeeman, Munkres, Mazur, Hirsch and others). 

On a small open region of a PL-manifold where the tangent bundle is triv- 
ial, a “local” smooth structure can always be defined, and it is this fact which 
allows the natural transference to the context of PL-manifolds of the entire 
above-described technical apparatus of the classification theory of smooth 
manifolds of a given homotopy type, since the Morse surgeries eliminating the 
kernels of the appropriate homotopy groups (see above) are carried out over 
small parallelizab!e regions. 

However one needs to take into account the fact that in general a PL- 
vector bundle has more automorphisms acting identically on the base than a 
smooth (or SO-) bundle. Hence in the approach via S-duality the obstructions 
to the existence of PL-isomorphisms between manifolds are represented by 
homotopy classes of maps 

Mn --) SGISPL, 

rather than maps to SG/SO. In 1966 it was shown by Sullivan and Wagoner 
that the groups n,-(SG/SPL) (or th e isomorphic groups rj(G/PL)) have 
simple structure and obey a nice 4-periodicity: 

z j = 4k 

nj(SG/SPL) = TQ(G/PL) = 

i 

!& ; 1;; 1; 

0 j = 4k + 3. 

Subsequently, using the homotopy structure of the space SG/SPL,10 and 
its connexion with Bott periodicity, together with other properties, Sullivan 
has been able to establish certain important general facts, however up to the 
present (1994) complete proofs of Sullivan’s results have not appeared in print. 

As we have mentioned, the homotopy groups rj(SPL/SO) are isomorphic 
to the groups Yj-l. The results above imply that that the inclusion homo- 
morphism 

7Lj(SO) + 7rj(SPL) 

is in fact an isomorphism for j < 6. For j = 7 one has that the image of QT~(SO) 
in xT(SPL) has order divisible by 7. The latter result may be established 
without difficuty by going over to the inclusion BSO -+ BSPL of the bases 
of the universal SO- and SPL-bundles, and using the fact that the Pontryagin 
class of a PL-manifold may be fractional with denominator 7 (see $3). From 
this divisibility result one may infer the following corollary: 

“The homotopy properties of the spaces G/PL, SGISPL are completely described in 
the book by Madsen, Milgram, Classifying Spaces in Surgery and Cobordism of Manifolds, 
Princeton University Press, 1979, Annals of mathematics studies, no. 92. 
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There exists a CW-complex M (a smooth manifold) having r-torsion in its 
cohomology group H’(M; Z), and two SO-vector bundles ql, q2 over M, such 
that 

6) ~2(771) # PZ(VZ), and 
(ii) the vector bundles 71, 772 are PL-isomorphic. 

This result implies that the torsion parts of integer Pontryagin classes are 
not in general PL-invariant (Milnor-Kervaire, early 1960s). 

As early as the 1940s it had been established (by Whitney) that provided 
n # 2, under suitable, simple conditions an immersion S” + M2” can be 
regularly deformed into a smooth embedding. This fails in the exceptional 
case n = 2; this exceptional case underlies the cardinal technical difficulties of 
the theory of simply-connected 4-dimensional manifolds. From the end of the 
1950s throughout the 1960s various topologists (Haefliger, Stallings, Levine, 
and others) developed a theory of embeddings of simply-connected manifolds 
(starting with homotopy spheres) into Euclidean spaces, using, among other 
things the entire apparatus described above for classifying manifolds. We shall 
not however expound the results of this theory here; a separate essay in the 
present series is to be devoted to this topic, and also to the deep theory of 
3-manifolds and knots in R3. 

55. The role of the fundamental group in topology. Manifolds of 
low dimension (n = 2,3). Knots. The boundary of an open 

manifold. The topological invariance of the rational Pontryagin 
classes. The classification theory of non-simply-connected 
manifolds of dimension 2 5. Higher signatures. Hermitian 

K-theory. Geometric topology: the construction of non-smooth 
homeomorphisms. Milnor’s example. The annulus conjecture. 

Topological and P&structures 

The fundamental group plays a singularly important role in topology; it 
is involved in all of the technical apparatus of the subject, and likewise in 
all applications of topological methods. In fact for low-dimensional manifolds 
(i.e. of dimension 2 or 3) the fundamental group underlies essentially all non- 
trivial topological facts. For instance, as the reader will recall, the classification 
of the self-homeomorphisms of a closed surface M2, its homotopy and isotopy 
classes (i.e. classes of homotopic homeomorphisms), all reduce, according to 
Nielsen, to consideration of the automorphism group of 7ri(M2) taken modulo 
the subgroup of inner automorphisms, and so ultimately to composites of 
“elementary” automorphisms. For the orientable surface iVi of genus g, the 
automorphism group of ni(Mi), presented as usual in terms of 2g generators 
and a single relation by 
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9 
al,bl,...,ag,bg; n a.b.aT1bY1 = 1 22% z 

i=l 

is generated by the following elementary automorphisms (Dehn, 1920s): 

ai : bi H biai; h H bk, k # 6 a, c) a,; 1 I i 5 g; 

Pi : ai H aibi; ak - ak7 k # 4 b, H b,; 1 < i 5 g; 

“li : bi ++ aL&biai; 

bi+l H bi+lbia,‘b,‘ai+l; b, +-+ b,, 4 # i, i + 1; (5.1) 

ai+i H a~~lbiaib,‘ai+lbia,lb~lai+l; 

ak - ak, k#i+l, l<i<g-1; 

5: aj H bg+l-j; bj H a,+l-j. 

Note that CY~, pi, yi preserve orientation, while 6 reverses it. 
The fundamental group also determines the theory of knots, i.e. of embed- 

dings S1 -+ S3; the knot group determined by such an embedding is defined 
as 7ri(S3\S1). This group has a distinguished element a, namely the class of 
the loop S,’ obtained by moving the embedded circle S1 a small distance E in 
a direction normal to S1 c S3 at each point, in such a way that the result- 
ing circle Si has zero linking coefficient with the original knot S1 c S3. The 
boundary of the tubular s-neighbourhood of the knot S1 c S3 is a torus T2, 
and it can be shown that for non-trivial knots the inclusion 

T2 it (S3\S’) 

determines in canonical fashion a subgroup isomorphic to Z @ Z with canon- 
ically defined generators (one of which is the above-defined element a). It is 
likely that the knot group together with this canonically defined subgroup 
(gZ@Z) withd is t inguished basis, affords a complete invariant of the knot. 
In particular the group of a knot is isomorphic to Z if and only if the knot 
is trivial, i.e. the embedding S1 L) S3 is isotopic (i.e. deformable by means 
of self-diffeomorphisms of S3) to the trivial embedding (Papakyriakopoulos’ 
theorem, proved in the late 1950s). 

However difficulties of a group-theoretical kind prevent one from obtaining 
by these means an algorithm for determining whether or not a given knot is 
trivial. Such an algorithm was constructed by Haken in the early 1960s using 
different ideas, however with the drawback that it is an algorithm only “in 
principle”, in the sense that the vast number of steps in the algorithm rule it 
out for practical purposes. 
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There are various other knotinvariants in use (the most practically useful 
of which is the “Alexander polynomial”) all ultimately determined by the 
group of the knot. It is convenient for some purposes to consider invariants 
occuring in the Z[Z]-module homology (see Chapter 3, $5) of the canonical 
Z-covering 6 + U of the knot complement S3\S1 = U. 

There is a class of relatively simple knots for which the knot complement 
U is a fibre bundle over S1 with fibre a punctured suface of genus g (the genus 
of the knot): 

u + s’, F” i$\{*}. 

(The genus of an arbitrary knot is the least genus of a surface in U having the 
knot as boundary.) It can be shown in the case of a knot whose complement U 
is a fibre bundle (as above), that the knot is defined by an algebraic equation 
in c2 > S3: 

f(z, w) = 0, /2j2 + /WI2 = & > 0, 

where f(z, W) is a polynomial satisfying fi = fW = 0 at z = w = 0; in general 
such an equation determines a link in S3, consisting of several embedded 
circles, but often the solution set is connected and so represents a knot S’ c 
S3. In terms of f the fiber bundle U is given essentially by 

(z, w) H arg f = 4, f = peid, p2 = E. 

By a theorem of Papakyriakopoulos (of the late 195Os), if M3 is any mani- 
fold for which 7rz(M3) # 0, then there exists an embedded 2-sphere S2 c M3 
not homotopic to zero. It follows that for the complement S3\S’ of a knot, one 
has 7ri(S3\S’) = 0 for i 2 2, so that all homotopy invariants are, in principle, 
determined by ~1. 

Every finitely presented group (i.e. presentable by means of a finite number 
of generators and relations) can be realized by means of a standard construc- 
tion as the fundamental group ri(K) of a finite Cl&complex of dimension 
< 2, or as the fundamental group rri(AJ) of a manifold A4 of dimension 5 4. 

From results of P. S. Novikov, Adyan, and Rabin (of the early and mid- 
1950s) on the algorithmic undecidability of various questions in the theory 
of finitely presented groups (in particular the question of whether or not a 
given arbitrary presentation presents the trivial group) it is not difficult to 
infer the algorithmic undecidability of the question as to whether or not an 
arbitrary given finite CW-complex of dimension 2 2 is homotopically equiva- 
lent to some standard simply-connected CW-complex, and likewise whether 
or not an arbitrary given closed manifold of dimension > 4 is homotopically 
equivalent to some standard simply-connected manifold. This observation was 
made by A. A. Markov (in the late 195Os), who also showed (this is more 
difficult) that it is also not algorithmically decidable for every manifold of 
dimension 2 4 whether or not it is homeomorphic (or PL-homeomorphic, or 
diffeomorphic) to a standard simply-connected manifold. Contractibility of 
a CW-complex is an algorithmically unrecognizable property in dimensions 
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2 3, and the question of whether or not a closed manifold of dimension n 2 5 
is homeomorphic to the n-sphere S” is also undecidable; these undecidability 
results were established by S. P. Novikov in the early 1960s using homolog- 
ical algebra; it is likely that the latter question remains undecidable also for 
n = 4. Note that, on the other hand, the homeomorphism problem for finite 
22dimensional Cl&complexes and the problem of deciding whether or not a 
given 3-manifold-with-boundary is homeomorphic to a contractible manifold, 
are in all likehood algorithmically soluble. The latter problem reduces, modulo 
calculation of the genus of the boundary of the S-manifold-with-boundary, to 
that of recognizing the homotopy type of S3. The simplest algorithmic prob- 
lems of the theory of closed 3-manifolds and knots are, it would seem, also 
soluble, although, as the problem of recognizing the trivial knot shows (see 
above), notwithstanding the existence of an algorithm, a problem may still be 
intractable in practice. For the recognition problem for the sphere S3 there 
is an algorithm solving it in the class of Heegaard diagrams of genus g = 2 
(Birman, Hilden, in the late 196Os).i’ 

It is possible that for some 33dimensional problems there are efficient, suf- 
ficiently fast, algorithms, for instance for recognizing the trivial knot or the 
sphere S3, in the sense that, although not always strictly applicable, they 
nonethetheless give a quick resolution of the problem “practically always”; 
such algorithms would for practical purposes be more useful than those ap- 
plying always but only “in principle”. It is of interest to mention in this regard 
a numerical experiment (recorded in the biophysical literature) carried out in 
connexion with an investigation of the properties of, for instance, substances 
possessing long, closed molecules (%atenated”) in the configuration of knots 
and links (Frank-Kamenetskii and others, in the 1970s); similar structures 
have been encountered also in other areas of physics. In conclusion we note 
that up to a large number of crossings knots can be effectively and uniquely 
recognized through their Alexander polynomials.12 

The Poincarit conjecture to the effect that S3 is the only simply-connected, 
closed S-manifold, remains unproven. In the late 1950s Milnor showed that 
from the above-mentioned theorem asserting the existence of a homotopically 

‘lIn his recent article The sol&ion to the recognition problem for S3, Haifa, Israel, 
May 1992, H. Rubinstein claims to have constructed an algorithm for recognizing the 3- 
dimensional sphere. The author of the present survey does not know if the arguments in 
this article have all been verified. 

“In the late 1980s V. Jones discovered remarkable new polynomial invariants of knots, 
allowing the solution of certain classical problems of knot theory. Here the idea derives from 
representations of equivalence classes of knots by conjugacy classes in different groups equiv- 
alent via “Markov moves”, and representations of braid groups arising in the Yang-Baxter 
theory of mathematical physics, yielding precise solutions of certain 2-dimensional models 
of statistical and quantum physics. Following Jones’ work several topologists, algebraists, 
and mathematical physicists have developed the theory further. (See for example Kauff- 
man, Louis H., ‘Knots and physics”. Singapore: World Scientific, 1994. Series on knots 
and everything or the lectures of Dror Bar-Natan ‘Lectzlres on Vassiliev &variants”). This 
theory has now been reformulated in the more modern setting of “topological quantum field 
theory”, invented by A. Schwarz and Witten. (See also the Appendix.) 
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non-trivial, embedded 2-sphere S2 c M3 in manifolds M3 with 7rz(M3) # 0, 
one can deduce the uniqueness, up to homotopy equivalence, of the decompo- 
sition of a S-dimensional closed manifold as a connected sum (see $4 above) 
of 3-manifolds of the following three elementary types: 

Type I: those with ~1 finite; 

Type II: those with 7r2 = 0; 

Type III: M3 = S2 x S1. 

Moreover if the Poincare conjecture is true then this decomposition is topo- 
logically unique. 

Various Type I manifolds can be constructed by factoring by the action 
of finite subgroups of SU2 or SO4 acting freely (i.e. in such a way that no 
non-trivial elements fixes any point) on S 3. Similarly, manifolds of Type II 
may be obtained as the orbit spaces of actions of discrete groups G of mo- 
tions of 3-dimensional Lobachevskian space L3, G c Oa,r, acting freely and 
with compact fundamental region. Over the period from the mid-1960s till 
the early 1980s V. S. Makarov produced several infinite series of such man- 
ifolds; however these examples have not yet been studied in detail.13 An 
extensive program of investigation of 3-dimensional manifolds undertaken by 
Thurston several years ago, is complete only for the rather narrow class of 
Haken manifolds. It has issued in the “Geometric Conjecture”, which, if true, 
would have as corollary the following elegant result: If a closed S-manifold 
M has 7rz(M) = 0 and nl(M) without non-trivial abelian subgroups other 
than Z, then M is homotopy equivalent to a compact 3-manifold of constant 
negative curvature, so that its fundamental group is isomorphic to a discrete 
group of isometries of Lobachevskian 3-space, with compact fundamental do- 
main. Relevant to this program is the conjecture that if x1 (M3) is infinite and 
n2(M3) = 0, then the manifold M3 is homotopy equivalent to a 3-manifold 
of constant negative curvature, and therefore obtainable as the orbit space of 
the action of a discrete group of motions of L3. 

We now turn to problems concerning the topology of higher-dimensional 
manifolds (of dimension n > 5). The problem of the topological invariance 
of the Pontryagin classes pk E H4”(Mn; Q) of rational or real cohomology, 
i.e. of the invariance of integrals of the classes pk over cycles under homeo- 
morphisms (assuming the Pontryagin classes represented as differential forms, 
perhaps expressed in terms of the curvature tensor relative to some Rieman- 
nian metric), would on the face of it seem to be not at all related to the 
fundamental group; in fact in solving the problem one may assume without 

r31n the mid-1980s Fomenko and Matveev constructed, with the help of a computer, 
nice families of closed 3-manifolds with constant (normalized) negative curvature, using 
Matveev’s “complexity theory” for 3-manifolds. One of these manifolds turned out to have 
volume less than that of a certain 3-manifold conjectured by Thurston to be minimal. 
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loss of generality that the manifold M” is simply-connected. Thus at first 
glance the (affirmative) solution of the problem (by Novikov in the mid-1960s) 
by resorting to the consideration of non-simply-connected toroidal regions 
and techniques specific to non-simply-connected manifolds, appears artificial. 
However no alternative proof has hitherto been found. Moreover the device 
of introducing toroidal regions in order to reduce problems concerning home- 
omorphisms to auxiliary problems concerning the smooth or P&topology of 
non-simply-connected manifolds, has undergone substantial development in 
the first place by Kirby as a means for proving the so-called “Annulus Con- 
jecture” (finally settled by Siebenmann, Hsiang, Shaneson, Wall and Casson 
in the late 196Os), and has subsequently been further refined to a tool for 
solving topological problems about purely topological manifolds and homeo- 
morphisms between them (by Kirby, Siebenmann, Lashof and Rothenberg). 

Apart from the signature formula, there exist for simply-connected mani- 
folds essentially no other homotopy-invariant relations among the Pontryagin 
classes and numbers. (By theorems of Thorn and Wu concerning the classes 
Wi and pl, respectively, the only possible homotopy invariants are certain 
characteristic numbers modulo 2 (for the classes wi) and modulo 12 (for the 
classes pk), and certain other characteristic numbers. The fact that the ratio- 
nal Pontryagin classes pl, are not in general homotopy-invariant is a relatively 
straightforward consequence (as was observed by Dold in the mid-1950s) of 
the SerreRohlin theorem on the finiteness of the groups 7rn+s(Sn) for n # 4. 
The simplest examples are afforded by the family of SOs-vector bundles with 
base S4 and fibre S2, each determined by a class pl E H4(S4; Z) (2 Z) (or 
by an element of 7rs(SOs) E Z). It can be inferred from the finiteness of the 
image under’the homomorphism 

J:r3(SO3) - 7rtj(S3)G &2, 

that the total spaces of these vector bundles fall into only finitely many ho- 
motopy types (determined by the class of the bundle to within “fiberwise 
homotopy equivalence”, as defined by Dold). Since in fact there are infinitely 
many such bundles with different Pontryagin classes pl, it follows that at best 
only pi(mod 48) may be a homotopy invariant in the class of manifolds ob- 
tained as total spaces of these bundles. Theorems of Browder and Novikov (see 
54 above) show that even for a particular simply-connected manifold there 
are no homotopy-invariant relations among the Pontryagin classes apart from 
the Hirzebruch-Thorn-Rohlin formula for the signature. 

Thorn, Rohlin and Schwarz showed in the late 1950s that the rational Pon- 
tryagin classes pl, are invariant under PL-homeomorphisms, and on this basis 
were able to propose the following combinational definition of those classes. 
For each cycle z E H4k(Mn; Q) realizable as a submanifold M4k C M” with 
trivial normal bundle 
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M4k x Ip-lk L) M?z 
, 

(5.2) 

i*([M4”]) = 2, 

we set (cf. the Hirzebruch formula (3.19)) 

(Lk(Pl,. . . ,Pk), 2) = +f4”). (5.3) 

General categorical properties may now be invoked to show that the values 
of Lk(pl, , pk) at such cycles z determine its values on all of H4k(Mn; a). 
Now from the form of the Hirzebruch polynomials, we have 

L 
k 

= 22k(22k-1 - 1)Bk 

(2k)! 
Pk +~k(Plr,Pk-I), (5.4) 

where Bk is the kth Bernoulli number, whence it follows that the class pk may 
be expressed in terms of L1, . , Lk: 

Pk =Pk(Ll,...,Lk). (5.5) 

On the basis of this “signature” definition of the classes pk one can give 
a combinatorial treatment of their properties. If Mn is a PL-manifold and 
f  : M” + Sn-4k a simplicial map of sufficiently fine triangulations, then the 
complete inverse image f-l (x) of any interior point z of a simplex 0n-4k of 
Sne41c of maximal dimension, has the form 

f-l(x) = M4’, f-‘(Int gn-4k) = Int cP-4k x M4’, 

where M4” is a PL-submanifold of Mn. We now define 

(Lk(P1, . ,pk), z) = 7(M4”), 

where z is the element of H4k(Mn; Q) represented by the PL-submanifold 
M4” c M”, and thence we define the Pontryagin classes pk as before, using 
the formula 

Pk = Pk(L1, . . , Lk). 

As earlier this can be shown to determine pk on H4k(Mn; a), and so affords 
a PL-invariant definition of the rational Pontryagin classes pk. We see that 
underlying this definition is the natural and simple analogue for PL-maps of 
the property of transversal regularity for smooth maps. 

Note that this definition is non-local, by contrast with the smooth case, 
where the classes pk are expressed to terms of the curvature tensor. The 
existence of a local PL-representation of the classes pl, has been proved (by 
I.M. Gel’fand, Losik and Gabrielov in the mid-1970s), but so far an effective 
(i.e. constructive) local definition is lacking. 

We now sketch the proof of the topological invariance of the rational Pon- 
tryagin classes of a manifold M”. To begin with, note that different smooth 
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(or PL-) structures on a single continuous manifold M” must, by definition 
of homeomorphism, all possess the same underlying collection of open sets 
of Mn (each of which is a smooth (or PL-) manifold with respect to each 
of the various superimposed smooth or PL-structures on M”). The rational 
Pontryagin classes pk of a manifold Mn, or, more precisely, their integrals 
over the individual cycles of M”, turn out to be representable as homotopy 
invariants of certain open “toroidal” regions of M” and their covering spaces, 
and from this one infers their topological invariance for the whole manifold 
Mn. (The above definition of the pl, via the signature is used.) 

Thus, to begin, consider a fixed embedding 

1~ x Tn-4k-1 L-t Rn-4k 

of a neighbourhood of a torus, and a corresponding “toroidal” region of M” 

u” = M4” x Tn-lk-l x R ~-f M”. (5.6) 

With respect to a smooth (or PL-) structure on M”, this region need not be a 
smooth direct product; what is important here is that the region is homotopy 
equivalent to the manifold M4k x Tn-4k-1, and that the signature 7(M4”) 
may be expressed as a homotopy invariant of this region or of its covering 
spaces in terms of their cohomology rings. It may be assumed without loss of 
generality that the manifolds M”, M4” are simply-connected, and that k > 1, 
n < 81c. By using methods of differential topology it may be shown that for a 
manifold with free abelian fundamental group the following assertion is valid: 
If IV”, m > 6, is such a manifold (i.e. ,i(Wm) is free abelian) on which there 
is defined a free continuous or smooth action of the group Z with the property 
that the orbit space Wm/Z is a closed manifold with the homotopy type of a 
fibre bundle Vm + S’ with base S1, then the manifold Wm is diffeomorphic 
to the direct product of a closed manifold and the real line: 

W” = Iv-l x Et. 

(In fact for this conclusion it suffices that the manifold W” with free Z-action, 
be homotopy-equivalent to a finite CW-complex, and that the orbit space 
Wm/Z be compact; moreover the condition on rl(Wm) may be weakened to 
the requirement that the Grothendieck group Kc(7ri) (see below) be trivial: 
Ko(m) = 0.) 

From this lemma the topological invariance of the rational Pontryagin 
classes is deduced as follows: We first apply the lemma to the region U” 
(i.e. we take Wm = U”, m = n) endowed with any smooth structure, taking 
Z to act in the natural way: 

T : (z, t) - (LC, t + l), 

where it: E M4k x Tna41cp1, t E R. Since ~I(M~~) = 0, we have that ,1(V) 
is free abelian, so that by the above lemma there is a diffeomorphism 
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U” 2 v-1 x Kc, (5.7) 

where Vnpl is homotopy equivalent to M4” x Tn-lkwl. Since the direct de- 
composition (5.7) is smooth, we have for the Pontryagin classes 

p.j(U”) = pj(T1), j = 1,2,. . . . 

Consider the Z-covering space of Vnel determined by the Z-covering of the 
torus: 

Tn-4k-2 x y& 2 Tn-4k-1, 

en-1 5 vn-1; 

here en-l has the homotopy type of M4” x Tn-4k-2. Applying the procedure 
once again, this time with cn-’ in the role of W”, we obtain 

p-1 ” p-2 x R , V”-2 N j,,f4” x y-4k-2 
, 

pj(Vn-2) = pp-1) = pj(u”), j 2 1. 

Iterating this argument we finally arive at 

p4k+l g v4k x R, 

(5.9) 

gP”) = &(Pkfl) = “. = &(U”), j > 1, 

where V4k is a smooth, closed manifold, homotopy-equivalent to M4”. The 
signature formula gives 

T(M~~) = &(M4”) = s&(V4”) = (&@I,. ,pk), [M4”]), 

where the Pontryagin classes are defined in terms of any smooth structure on 
the manifold Un. From this the topological invariance of the rational Pontrya- 
gin classes quickly follows. 

For n > 81c the above argument yields a smooth embedding V4” x lRnp41c - 
U”, endowed however with a possibly different smooth structure, whence one 
obtains a diffeomorphism 

1/4” x an-4k - M4k x Rn-4k 
7 

where the latter manifold is endowed with any smooth structure. Following 
soon after the appearance of the above proof, Siebenmann was able to show 
by means of a more careful analysis of the argument that this conclusion holds 
also in the non-stable dimensions n < 8lc. 

For nonsimply-connected closed manifolds there are non-trivial homotopy- 
invariant relations between integrals of the rational Pontryagin classes over 
certain cycles; the simplest examples of such relations are as follows: 
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Example 1. Let n = 4k + 1 and z E H4k (yn). Consider a Z-covering space 
projection p : M” + M” such that p*rl(M,) consists just of those cycles y 
having zero intersection index with the cycle z: 

p*7r&i?P) 0 z = 0. 

There is a cycle i E H4k(Mn) definable in homotopically invariant fashion, 

Mi Mi+1 
Fig. 4.28 

such that p,i = z. In Jhe cohomology ring H’(A@;Q) we have the bilinear 
form defined on Hzk(M”;Q) by 

k&Y) = (XY,4 = (Y,X), (5.10) 

which has finite-dimensional carrier (i.e. the subspace annihilating every ele- 
ment has finite codimension). Denoting by r(Z) the signature of this bilinear 
form, one has the following formula: 

(Lk(Pl,...,Pk)rz) =7(z). (5.11) 

Example 2. If a smooth manifold V 4k+q has the homotopy type of a product 
of the form M4k x TQ: 

v4”+4 wM4k xTq, 

then the following formula (due to Novikov in the mid-1960s) may be estab- 
lished by means of the technique used to prove the topological invariance of 
the ChSSeS Lk (pi, . , pk): 

Lk(v4”+‘) = ‘+!f4”). 0 

The general conjecture concerning the “higher signatures” consists in 
the following: As was shown already by Hopf (in the early 1940s) every 
CW-complex K has a distinguished set of cohomology classes determined 
completely by ~1 (K) , namely the image under the induced homomorphism 
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f* : H*(K(n, 1)) + H*(K) (with any coefficients) of the canonical map 
f : K + K(n, 1). (Hopf described these in the 2-dimensional case.) An 
algebraic characterization of the homotopy types of the spaces K(r, 1) and 
their cohomology H*(K(r, 1)) (with respect to arbitrary coefficients, includ- 
ing Z[n]-modules) was given by Eilenberg and MacLane in the mid-1940s; 
they then defined the cohomology H*(T) of the group 7r, as being given by 
H*(K(-/r, 1)). (Slightly later, but independently, D. K. Faddeev also gave defi- 
nitions of these algebraic objects, motivated by considerations from algebraic 
number theory.) In fact this concept lay at the base of the homological algebra 
extended by Cartan, Eilenberg, Serre, Grothendieck and others to the context 
of modules and more general abelian categories. (One such generalization - 
to the category of A-modules -was used in 56, 7, 9 of Chapter 3 above, as 
part of the algebraic apparatus of stable homotopy theory.) 

Of course one has the corresponding class of cycles (of a closed manifold 
Mn) given by 

Df*H*(qQ) c H,(AP;Q). 

The “conjecture concerning the higher signatures” is then that for each cycle 
z in Df*H*(r; Q) of dimension 4k the integral of the Pontryagin-Hirzebruch 
class over that cycle: 

should be homotopically invariant. For 72 = 4k + 1 and arbitrary 7r = 
7ri(M4k+1) the distinguished cycles z E H~~(IM~~+‘; Q) of codimension one 
are precisely those for which the formula (5.11) holds with respect to the bi- 
linear form defined by (5.10), and intersections of such cycles also have this 
property. (In, the case that 7r is free abelian all cycles are of this form.) The 
conjecture concerning higher signatures for such intersections of cycles of codi- 
mension one, was settled by Rohlin in the case of intersections of two cycles (in 
the second half of the 196Os), and then (at the end of the 1960s) by Kasparov, 
Hsiang and Farrell for intersections of any number of cycles: 

z = D(yl A...A yk), yj E H1(Mn;Q). 

An analytic proof of this theorem using the theory of elliptic operators was 
obtained in the early 1970s by Lusztig, who also established the conjecture 
for certain cycles in the case where n is a discrete subgroup of the group of 
motions of a symmetric space of constant negative curvature. For abelian 7r 
he made use, for the first time, of a family of elliptic complexes associated 
with finite-dimensional representations (and their characters) of the group; 
for non-abelian 7r he was able to exploit infinite-dimensional “Fredholm” rep- 
resentations pi : 7r + Aut Xi of 7r in rings of unitary operators on Hilbert 
spaces Xi. (A pair of unitary representations pi, ~2, together with a Noethe- 
rian operator F : ‘Hi -+ 7-12, is called a Fredholm representation if Fpl - p2F 
is a compact operator; cf. end of Chapter 1.) It turns out that, by exploit- 
ing analogues of formulae of Atiyah-Hirzebruch-Singer type for the index of 



55. The role of the fundamental group in topology 255 

elliptic operators with coefficients in a Fredholm representation, constructed 
using the geometry of compact manifolds of positive curvature to define quan- 
tities like “the signature with coefficients from a representation”, the higher- 
signatures conjecture can be fully established for all groups 7r realizable as 
discrete groups of motions, with compact fundamental region, of symmetric 
spaces (Mishchenko, early 1970s ). This result was generalized by Solov’ev 
and others in the 1970s; it now appears that these methods have evolved to 
the extent of yielding a proof of the conjecture for all discrete subgroups of 
Lie groups (Kasparov, in the early 1980s). l4 

It is interesting to note in this connexion that the above mentioned “Fred- 
holm representations” were first introduced by Atiyah in the late 1960s for the 
algebras C*(iVP) of complex-valued functions, in the algebra of bounded op- 
erators on Hilbert space; in this context a Fredholm representation is a triple 
pi, ~2, F : 7-ti + ?t2, as defined above, with in addition pi(f) = pi(f+). Every 
pseudodifferential elliptic operator D of order m = 0 determines a Fredholm 
representation (pi, D, pz), where pi(f) is the operation of multiplication by f 
on the sections of bundles vi: 

Since Df - fo is a compact operator, the triple (pi, D, ~2) is indeed a Fred- 
holm representation. It was shown by Kasparov, Douglas, and others, in the 
first half of the 1970s that Fredholm representations of C*(X) for compact 
spaces X provide a basis for constructing by analytic means K,(X)-theory 
as a homological theory. By these means Kasparov was also able to formulate 
an intersection theory for manifolds (X = M”). 

Among the topological questions concerning simply-connected manifolds 
arising in connexion with the development of the techniques of the classifi- 
cation theory outlined in $4 above, the following one has come in for special 
attention: Under what conditions does a smooth open manifold W”, m > 6, 
admit a simply-connected boundary, i.e. under what conditions is W” real- 
izable as the interior of a smooth manifold-with-boundary mm with simply- 
connected boundary awm = V”-l (nl(VmP1) = {l}, W” = Int mm)? If 
it is assumed that the purely continuous version of this problem, i.e. for the 
class of topological manifolds-with-boundary, is settled in some sense, then 
the problem as formulated can be shown to reduce to the construction of a 
diffeomorphism between a manifold M” homeomorphic to the direct product 
of a certain closed topological manifold with the real line, and the product of 

141n this connexion many deep results have been obtained over the last decade using both 
topological and analytical methods. In particular Novikov’s conjecture has been established 
for the “hyperbolic groups” introduced by Gromov, and for certain other classes of groups, 
by Cohn, Pedersen, Gromov, Rosenberg and several others. Some beautiful applications 
of cobordism theory to the theory of manifolds with positive scalar curvature have been 
found and elaborated on by Gromov, Lawson, Kreck and Stolz. Here, in the non-simply- 
connected case, characteristic numbers analogous to the higher signatures, but with the 
L-genus replaced by the A-genus, play an important role. 
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a smooth closed manifold with the real line. If on the other hand the solution 
of the continuous version is not assumed beforehand, then the following con- 
ditions are imposed instead: the open manifold Wm should have only finitely 
many ends, and be simply-connected at infinity in the direction of each of 
these ends, and furthermore the homotopy type at infinity in the direction of 
every end should be finite. The theorem of Browder-Levine-Livesay asserts 
that under these assumptions (once made precise) the open manifold Wm is 
the interior of a compact manifold-with-boundary Wm with each component 
of its boundary simply-connected: 

v-1 = Uj vjm-l, 

7rlpy1) = 0. 

In certain cases the conditions at infinity on W” may be replaced by global 
restrictions on W”. Of especial interest among such restrictions are those of 
an algebraic character, for instance the condition that W” have the homotopy 
type of a finite CW-complex, and admit a free action of a discrete group G 
of smooth (or continuous) transformations with compact fundamental region. 
It was precisely this sort of modification of the above problem concerning the 
boundary of an open manifold Wm (in the particular case G = Z, xl(Wm) 
free abelian) that proved to be of technical importance in the proof of the 
topological invariance of the rational Pontryagin classes (see above). 

It seems that at the same time as the Browder-LevineeLivesay theorem was 
being proved, Siebenmann was independently investigating the non-simply- 
connected version of that theorem; however, although publication of his results 
was delayed over a protracted period, it has emerged (if one goes by his work 
published in the late 1960s) that he considered only a restricted case of the 
problem, namely that of the representability of a smooth manifold in the form 
v x Et. 

In the non-simply-connected case an obstruction to the representability of 
a manifold W in the form W = V x LR, where V is closed and of dimension 
2 5, is given by an element of the Grothendieck group iYe( K = 7rr (V), 
which by definition (cf. Chapter 3, 58) consists of the stable classes of finite- 
dimensional, projective Z[7r-modules qi (i.e. direct summands of free mod- 
ules), where ~1,772 are said to be equivalent if 

for some finite-dimensional free modules Ni , N2. (For the ring C*(X) of func- 
tions on a compact space X, the Grothendieck group Ks(C*(X)) consists of 
classes of modules of cross-sections of non-trivial vector bundles over X (the 
free modules corresponding in this case to the trivial bundles), and coincides 
with K”(X, *).) Taking into account the involutary operation in the group 
ring Z[K] defined by inversion in the group r, one can associate naturally with 
each Z[n]-module 7 the dual n* = HomA (Q, A), A = Z[rr], which is projective 
if q is projective. Taking the dual defines an involution on Kc(n): 
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If W is known to have the homotopy type of a finite CW-complex, then it 
can be shown that 

7j + (-l)nn* = 0 

in the group Kc(n), 7r = xl(W). 
At around the same time Wall found an obstruction to homotopy finiteness 

of CW-complexes L (under the assumption that L is embeddable as a retract 
in some homotopically finite CW-complex X, i.e. that there exists a map 
f : X --+ L, L c X, such that f]~ = 1~). Th is obstruction is also given by 
an element of Kc(r), 7r = nr(L). It turns out that for a manifold W, Wall’s 
obstruction to homotopy finiteness of W is just n&q* where Q is the Novikov- 
Siebenmann obstruction to the existence of a smooth direct decomposition 
W = V x Iw. In the case 7r 2 Z/p, p prime, the group Ka [7r] may be interpreted 
as the group of Kummer classes of ideals of the algebraic number field Q[fi], 
and has been computed in detail, along with the duality operator *, in the 
context of algebraic number theory. Using these results, Golo, in the second 
half of the 1960s constructed a series of examples of specific open manifolds 
W not decomposable in the form V x Et. 

The general problem of the realizability of a given open manifold W as 
the interior of a compact manifold-with-boundary (where the boundary is 
no longer necessarily simply-connected) was considered by Brakhman (in the 
early 1970s) under the assumption that W is a regular covering space of some 
closed manifold. The special case where the manifold W is homotopically 
equivalent to a manifold of the form M’J x Y-4 (n > 5), with rr(Mq) free 
abelian, was considered earlier. (If I@ is a torus, then of course the universal 
covering space of this manifold is IWn.) 

As indicated earlier, for closed manifolds V” with the homotopy type of 
a torus, V” N Tn, the Pontryagin classes pi(P) are all trivial. By using 
Adams’ theorem (of the early 1960s) on the injectivity of the Whitehead 
homomorphism 

J : 7rJ(SO) ---+ 7Qr+j(SN), N > j + 1, 

for j # 4k - 1, together with the homotopy equivalence of the suspension CTn 
with a bouquet of spheres, it can be shown that all homotopy tori are stably 
parallelizable (Novikov, in the mid-1960s). Further applications of homotopy 
tori will be described below. 

Recall (from Chapter 3, 85) that in connexion with the concept of “simple 
homotopy type”, as defined by Whitehead, elements of K1 (rr) arise as ob- 
structions to simple homotopy equivalence between CW-complexes known to 
be homotopy equivalent in the ordinary sense. For manifolds this obstruction 
(actually in the Whitehead group K~(x)/ & rr) arises in connexion with the 
generalization to the non-simply-connected case of Smale’s theorem on the 
triviality of h-cobordisms between simply-connected manifolds of dimension 
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> 5. An h-cobordism Wn+’ between non-simply-connected manifolds may 
be non-trivial even for n 2 5; even if Wn+l is contractible onto one of its 
boundary components (nj(Wn+‘, P) = 0 for j 2 0), there may nonetheless 
be an obstruction to triviality, given by an element 

a(Wnfl , V”) E Wh(x) = K1(n)/ f n. (5.12) 

In fact for each n > 5 every element a of Wh(n) is realizable as such an 
obstruction, and the vanishing of the obstruction a(Wnfl, Vn) is necessary 
and sufficient for triviality of the h-cobordism: Wn+l = Vn x I (Mazur, first 
half of the 1960s; the proof was brought to completion by Barden and Stallings 
in the middl96Os). 

The appropriate algebraic definition of Kz for associative rings with an 
identity element was discovered by Milnor and Steinberg in the second half 
of the 1960s and the higher analogues Kj were constructed around the turn 
of that decade by several authors (Quillen, Volodin, Gersten, Karoubi, Villa- 
mayor); the equivalence of the various definitions proposed was established 
somewhat later. The topological realizations of these groups (as considered by 
Wagoner), especially of Kz, are of great interest; however we shall not pursue 
the topic here, not least because this line of investigation remains far from 
complete. 

It is noteworthy that for the Laurent extension A[t, t-l] of a ring A, besides 
the obvious projectors 

Ko(A[t, t-l]) = Ko(A), 

Kl(A[t,t-‘I) = Kl(A), 

determined by the natural ring epimorphism A[t,t-‘1 4 A and the inclu- 
sion A --+ A[t, t-l], there is a non-trivial projector B (the Bass projector, 
discovered in the mid-1960s): 

Ko(A) z K1(AIW1l), 
satisfying BB = 1, with the kernel of B given explicitly. The construction of 
this projector is as follows: If q is a projective A-module, then v + q is a free 
module for some ii. The infinite direct sum 

n<+m 
M= c tn(r7+ii) =~(%+Irln) 

n>-CC n 

is then a free A[t,t-‘l-module. We define B(q) as the automorphism of the 
A-module A4 commuting with t, t-l, given by 
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(5.13) 

The definition of B is as follows: Each automorphism X of the free A[t, t-l]- 
module FN of rank N is, after being multiplied by a sufficiently large power 

n of t, representable by a matrix over A[t] relative to some basis er, . . , eN of 
FN. Denoting by F& the “positive part” of FN: 

F$ = { cajej 1 aj E A[t]} , 

we set 

l?(X) = F,$//tY = 77. (5.14) 

It is straightforward to verify the projectivity of the module q, and then that 
BB = 1 on Ko(A). 

It follows that one always has 

Kl(A[t, t-l]) ” &,(A) CB ICI(A) @P. (5.15) 

In the case A = Z[ 7r with n free abelian, Bass showed that P = 0. Since ] 
for such 7r (g Z @ . $ ‘Z) every finitely-generated Z[r]-module has a free 
acyclic resolution of finite length, and Ka(7r) = 0, one obtains by induction 
Bass’ theorem for free abelian TTT: 

Wh(7r) = Kl(T)/ It 7r = 0. 

It follows that in the situation of free abelian fundamental group the above 
mentioned invariant of non-simply-connected manifolds is trivial. 

A natural continuation of this sort of problem is that of representing a 
manifold W” as a smooth fiber bundle over the circle 5” (IV” + S1), on 
the assumption that the given manifold W” has the homotopy type of such 
a bundle. If  7ri (Wn) cz Z and n > 6, and the fiber of the fibration is simply- 
connected, then the problem has an affirmative solution (Browder, Levine, 
Livesay, in the midp1960s). In the more general situation, where the fiber 
is not simply-connected, obstructions arise involving both &-a(r) and Kr(r), 
where 7r is the fundamental group of the fiber given as the kernel Ker f* of the 
homomorphism f* : 7r --+ Z, induced from the appropriate map f  : W” ---+ 
S1, a candidate for being a smooth projection. (The solution of the problem 
was obtained in the second half of the 1960s by Hsiang and Farrell.) 

We turn now to the general classification theory of nonsimply-connected 
manifolds of dimension n 2 5. This theory follows closely the Browder- 
Novikov scheme for classifying the simply-connected manifolds of dimension 
n 2 5 (see $4 above); however rather than yielding a final classification the- 
orem, the theory reduces the problem to the existence of certain algebraic 
obstructions, which we shall now describe. All of the Browder-Novikov appa- 
ratus (described in $4) of normal maps of degree one of closed manifolds, and 
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of bordisms between them, carries over to the non-simply-connected case. In- 
voking the non-simply-connected analogue of Hurewicz’ theorem, concerning 
the kernels of the homomorphisms induced from normal maps f : &Ii --f M of 
degree one, one carries out Morse surgeries transforming such a map into one 
inducing isomorphisms between the respective homotopy groups up to and 
including dimension [n/2] - 1. For even n (= 21c) analysis of the homotopy 
kernel in dimension k (in terms of universal covering manifolds) reveals that 
this kernel is a finitely-generated free stable Z[n]-module, on which there is 
defined a n-invariant scalar product given by the intersection index of cycles 
lifted onto the universal covering manifold: 

(z,w) = -JT(z 0 aw) E qr]. (5.16) 
UEK 

Thus this scalar product takes its values in iZ[n], on which there is an involu- 
tion u H ii, where 

u= c aigi, CLi E Z, giET, ii= c Wi -l, (5.17) 
2 i 

with the usual properties of an involution: 

im = vu, iYi = u. (5.18) 

Remark. Note that for non-orientable manifolds the definition of the invo- 
lution needs to be adjusted as follows: 

U ++ ti = C(Sgn gi)aigtrl, (5.19) 

where sgn g2 = -1 if the action of gi is orientation-reversing and sgn gi = +I 
otherwise. 0 

The scalar product (5.16) is Hermitian for k even and co-Hermitian for k 
odd: 

(uz, w) = u(z, w), (6 w) = *tw, 4, 
(5.20) 

(z, uw) = (z, w)u, 

and is non-degenerate in the sense that relative to a free basis {ei} for the 
Z[r]-module M = Ker firk) (n = 2k), the matrix 

B = (hj) = ((ei, ej)) 

is invertible. (Recall that we are already in the situation where Ker fisj) = 0 
for j < k.) In invariant form (i.e. expressed without reference to a basis) this 
non-degeneracy means that the scalar product ( , ) determines an isomorphism 
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given by 

h:M-+M* = HomA(M,A), A = Z[r], 

u ++ h(u), @(‘L~),v) = (u,~). (5.21) 

(Note that the above-mentioned involution allows M’ to be endowed with the 
structure of a Z[rr-module.) The scalar product has the property of “even- 
ness”, which in matrix terminology (given that the module M is free) means 
that the above matrix B is expressible in the form: 

B = v cl3 (-l)kv+, 

where V+ = VT, T denoting the operation of taking the transpose. For odd k 
there also exist Z/2-invariants (analogous to the Arf invariant) which we shall 
not, however, describe here. If Mn is neither a smooth nor PL-manifold but 
only a CW-complex whose Z[r]-homology and cohomology satisfy Poincare 

duality, then the module M = Ker fin’) will be merely a projective Z[n]- 
module rather than stably free. In this case one may proceed geometrically, 
adding more generators by attaching handles of index k in order to make a sta- 
bly free module out of the projective module M. The obstruction then appears 
as before in the Hermitian and co-Hermitian groups Kt(Z[x]), Ki”h(Z[r]). In 
this context the role of the trivial element is taken by the module (denoted 
by Hg) having a canonical basis of cycles whose behavior with respect to the 
scalar product is analogous to that of the standard cycles on the surface of 
genus g with respect to the intersection index: 

al ,..., ag, bl,..., b,, 
(5.22) 

(ai,aj) = 0, (bi, bj) = 0, (ai,bj) = Sij = &(bj,ai). 

Under the operation of forming the direct sum of modules, with the rela- 
tions Hg N 0 for all g imposed, one obtains the following analogues of the 
Grothendieck groups: 

K~(Z[*IT]) k even, the Hermitian case; 

Kth(;Z[7r]) k odd, the co-Hermitian case, 

where Z[r] is equipped with the involution (5.17) (or (5.19) in the nonori- 
entable situation). 

The algebraic formulation of the obstruction theory to Morse surgeries was 
given in the case n = 2k by Novikov and Wall, in the mid-1960s and was 
extended to odd n by Wall at the end of the 1960s. It turns out that the ob- 
structions reduce to elements of the groups KF(Z[7r]) (k even), and Kih(Z[r]) 
(k odd), constructed on the analogy of the group Ki(n), using stable classes 
of automorphisms of the canonical modules defined by (5.22), preserving the 
scalar product. The Whitehead relations are imposed on these classes (i.e. 
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direct sums of such automorphisms are identified with their corresponding 
composites) yielding commutativity together with a further relation, conve- 
niently formulated as follows: any automorphism X : Hs --+ Hg for which 
x(aj) = aj, j = 1,. . , g, is set equal to the trivial one. These groups of ob- 
structions to surgeries, defined via automorphisms of free modules over the 
ring Z[n], are called the Wall groups of R, denoted by L,(X): 

Lo ” K,h, L1 E K;, L2 ” Kih, L3 ” Kih. (5.23) 

As noted earlier, we shall not enter here a into discussion of the Z/2%structure 
of these groups and the associated analogues of the Arf invariant. 

There is the alternative approach (along the lines of that described prior 
to the preceding paragraph) to the definition of the groups Kk, Kk, Klh, 
Kfh via projective modules equipped with a non-degenerate Hermitian or 

co-Hermitian scalar product (with the requisite property of “evenness” and 
the structure carried by the Arf invariant) determining an isomorphism h : 

M 2 M*, and with values in a ring with an involution. (In the above 
topological context the ring was Z[rr] with the involution u + 6 as in (5.17) 
or (5.19).) The groups E-,h and J?ih are defined as usual in terms of direct 
sums of such modules, with the relations equating the projective modules of 
the form A4 = N @ N* (N** E’ N) with the trivial one, imposed: 

(N, N) = (N*, N*) = 0, 
(5.24) 

N@N*-0, h:N@N*+(N@N*)*, 

where the isomorphism h is given by the pair of canonical isomorphisms: 

h: 
N* 5 N* 
N r,,, 

(5.25) 

The algebraic definition of 2: and kfh 1s based not on automorphisms (as 
above) but rather on the concept of a Lagrangian submodule L c N 63 N* of a 
canonical projective module N @ N*, defined by the conditions that h\L = 0 
and that L be a direct summand satisfying 

M=N@N*-L@L*, L**=L. (5.26) 

The group operation is given by the direct sum of pairs (M, L), with those 

pairs taken to be trivial for which the projection A4 + N (N* ---) 0) restricts 
to an isomorphism L + N. The stable equivalence classes of pairs (M, L) 
then constitute the groups Kk and l?ih, the Novikov- Wall groups. 

Without considering the possible variants or entering into any detail, we 
note that the higher analogues p: and j?ih can be defined for any ring A 
with an involution u + G (UV = a~) in both the free and projective cases. It 
turns out that, for instance, Rk = klh and l?zh = k,$. 
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An algebraic theory of the groups K? @ Z[a], Kbh @ Z[+] was formulated 
by Novikov (in the late 1960s) in the category of rings with involution, and 
included an algebraic construction of analogues of the Bass projectors (see 
above): 

K,h(A[t, t-l]) + K;+l(A), i?B = 1. (5.27) 

The groups K,” 8 Z[i] furnish a periodic (of period 4) homology theory in the 
category of rings with involution, in which the Hermitian analogues of the Bass 
projectors (5.27) subsume the co-Hermitian case in view of the isomorphisms 

K3” ” K;$, K;h ” K3”+2. (5.28) 

Note in this connexion the isomorphism (modulo tensoring with Z[i]) 

K,h+l(A[t,t-l]) g K;(A) @ Kjh+l(A), (5.29) 

contrasting with the corresponding situation in ordinary K-theory where 
there is a non-trivial kernel N. 

The above Hermitian K-theoy, as formulated by Novikov, uses analysis of 
geometric realizations of the above algebraic objects together with analogues 
of concepts of Hamiltonian formalism arising in connexion with analytical and 
quantum mechanics, as applied intensively by Maslov in the early 1960s to the 
construction of short-wave asymptotics in the theory of hyperbolic equations 
(and developed further by many authors). Once translated into an algebraic 
context, the standard terminology of symplectic geometry and Hamiltonian 
formalism turns out to be extremely useful; in particular it clarifies the ideas 
behind the algebraic constructions (and sometimes even suggests the appro- 
priate ideas), and makes more explicit the mechanism underlying the algebraic 
analogues of Bott periodicity. Of course once the algebraic theory has been 
precisely formulated, it ceases to be dependent on its source in the analogy 
with Hamiltonian formalism. 

It was shown by Mishchenko (around 1970) that tensoring by Z[;] elimi- 
nates the differences between the various proposed Hermitian K-theories. At 
the same time he constructed a homotopy invariant 7x of an orientable mani- 
fold Mj, given by an element of K~(Z[T]) (where x = rin/lj), analogous to the 
signature, and determining a homomorphism from each bordism group of the 
Eilenberg-MacLane space K(T, 1) to the corresponding Hermitian K-theory: 

To : L’,S’(K(q 1)) - K,h(l+r]) ~3 Z[$]. 

For normal maps f : Mr --+ M” of degree one (figuring centrally in the 
general classification theory of manifolds of dimension > 5), obstructions to 
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Morse surgeries are given by the formula 

T”(MT’) - T”(bP) E K,h(qr]) @I Z[$]. 

Remark. Note that even for simply-connected manifolds the calculation of 
such obstructions without dividing by 2 was impossible owing to a difficulty 
involving the Arf invariant. 0 

Novikov’s conjecture on the higher signatures concerns the existence of a 
purely algebraic analogue of the Chern character: 

ch : K,h(Z+r]) 8 Q - H,(q Q), 

with the property that for a closed manifold M” the following formula should 
hold: 

(z, ch o ?(AP)) = &(AJP), &5*(z)). (5.30) 

Here 7r = 7rr(Mn), 4 : Mn -+ K(K, 1) is the canonical map, D+*(z) E 
H4k(Mn; Q), and Lk is the Hirzebruch polynomial in the Pontryagin classes of 
Mn. It would appear that this formula, if true for any group 7r, would embrace 
all possible relations between the Pontryagin classes for a given homotopy type 
of the manifold M”. In all cases where the general conjecture on the higher 
signatures has been established, the existence of such an algebraic analogue 
of the Chern character (satisfying (5.30)) has also been shown. 

In the second half of the 1960s it was observed by I. M. Gel’fand and 
Mishchenko that for rings C*(X) of complex-valued functions on compact 
spaces X, one has 

K;(c*(x)) % K;(x). 

In fact such an isomorphism exists also for Kr, and therefore for all the K,h of 
such function algebras with involution (the involution on C*(X) being given 
by f ---f f). In the case X = Tn, use of the Fourier transform yields the 
following isomorphism modulo tensoring by Z[ :]: 

K,h(C[Z x . . . x Z]) ” K,h(C*(Tn)) (” K;(Tn)). (5.31) 

Hence the ordinary Chern character of a vector bundle over Tn affords an 
algebraic analogue of the Chern character for 7r = Z x . . x Z (n times), 
although this method of obtaining such an analogue is obviously not algebraic. 

The algebraic definition of the analogues of the Bass projectors in K,h- 
theory for the rings C*(X), yields a suspension isomorphism and an approach 
to Bott periodicity different from that afforded by the ordinary K-theory of 
Atiyah and others. Note that the presence of an imaginary i (i2 = -1) in 
the ring C*(X) allows the Hermitian theory to be transformed to the co- 
Hermitian, so that for algebras A with such an an imaginary element we have 
K;(A) = Ksh(A), and the periodicity is shortened to 2. 

By sorting out the various algebraic constructions one arrives at the signifi- 
cance of periodicity from the point of view of Hamiltonian formalism; however 
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this theory (as conceived by Novikov in the late 1960s) concerns the tensor 
product @I%?$]. A complete formalization of Hermitian algebraic K-theory 
(called algebraic L-theory), avoiding tensoring by Z[i], was achieved by Ran- 
icki in the first half of the 1970s by recasting the theory over the integers; 
for a group ring Z[rr] the corresponding groups are denoted by L,(n). These 
groups were studied by several people throughout the 1970s and into the 1980s 
(Pedersen, Beck, Sharpe). In the first half of the 1970s Wall and Beck devel- 
oped detailed techniques for computing these objects in the situation where 
7r is finite and the modules are free, and actually carried out the calculations 
for various particular groups. 

On the other hand although the full algebraic theory was not available until 
the end of the 1960s it was possible earlier on to obtain complete informa- 
tion about the groups L,(n) in certain special cases (although noneffectively) 
without having to hand the details of the algebraic definition, for instance 
when r is free abelian, rr = Z x . . . x Z. In the case n = Z the theory was 
formulated by Browder (in the mid-1960s) as a geometric obstruction theory 
to reducibility to the simply-connected situation. In this form the theory was 
then extended to the more general case 7r = Z x . . x Z by Shaneson (in the 
late 1960s). Independently of the various algebraic definitions of the groups 
L,(T), there exists an isomorphism 

L(n x Z) ” Lx(~) @ -Lfl(~lT), (5.32) 

which can be established geometrically, and this isomorphism allows the struc- 
ture of the groups L,(Z x . x Z) to be inferred (non-effectively) from that 
of the groups L,(l) = L,, which are as follows: 

L, z 

1 

z ifn=O (mod4), 
Z/2 if n E 2 (mod 4), 
0 otherwise. 

(These isomorphisms were already known from simply-connected surgery the- 
ory.) Knowledge of the groups L,(Z x . x Z) leads to a complete classification 
of the homotopy n-tori, i.e. of the n-manifolds having the homotopy type of 
the torus T”, n 2 5. In particular, it turns out that such a manifold always 
has a finite-sheeted covering manifold diffeomorphic to the standard torus T”. 

Remark. We note that all surgery obstructions (i.e. the elements of the 
grows L+I (n)) are realized geometrically as invariants distinguishing two 
manifolds in the same homotopy class as the given n-manifold. The construc- 
tion is as follows: If two normal maps fi : MF + Mn are homotopy equiva- 
lences and lie in the same normal bordism class, then there exists a bordism 
Wn2+i with boundary the disjoint union of Mr and Mg (6W’“+1 = Mr U M$) 
together with a normal map F : Wnfl ---+ Mn x I, whose restrictions to 
the boundary components MF and MF are fi, fz respectively. Denote by 
p : M x I + M the projection on the first factor. Under the above condition 
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the map Fl = fc ’ o p o F affords a normal retraction Wnfl ---f n/r? onto the 
boundary component IVY (see $4 above). Starting with a given manifold &IF 
one can realize geometrically by means of such bordisms Wn+’ every element 
of the surgery obstruction group, just as in the simply-connected case. Thus 
one may construct (starting with MT) such a bordism Wn+’ corresponding 
to any prescribed element of the group L,+r(r) Z K,h+,(n). 0 

For homotopy tori there is a subgroup A, of finite index: 

A, c L,+l(Z x ... x Z), 

whose elements are realized by bordism manifolds Wn+r with diffeomorphic 
boundary components A!lF, &I;, dW n+l = IvIF U MT-. This theorem implies 
(via Novikov’s result that all homotopy tori are stably parallelizable) the 
finiteness of the number of different homotopy tori in each normal bordism 
class (Wall, Siebenmann, Hsiang, Shaneson, Casson, end of the 1960s). 

Since, by a theorem of Shaneson, the groups 

L,,l(Z x . . . x Z) = K,h+,(Z x “. x Z) 

are determined (modulo a finite group) by the higher signatures, the result on 
the finitness of the number of homotopy tori in each normal bordism class, also 
follows from the non-simply-connected analogues of the Hirzebruch formula 
for the higher signatures, in much the same way Milnor’s theorem on the 
finiteness of the groups bP 4k follows from the ordinary Hirzebruch formula. 
The argument here is as follows. Consider the group of vector bundles & over 
the torus Tn+’ with the property that J(<N) = 0 and &- = 0 (i.e. the bundle 
IN is a stably homotopy trivial one over the torus Tn+’ and its restriction IT” 
to the n-torus Tn c Tnfl is the trivial vector bundle). Following the general 
construction of a normal bordism (see 54 above), one obtains a map 

SN+n+l ---+ T[N, 

and a normal map of degree one: 

f : bfn+’ + Tn+‘, f*(&) ” VM, 

where &In+’ is a smooth closed manifold realizing an element Q of the group 

-L(~) c L(r x q, TT=zx...xz 
- 

n times 

determined uniquely (mod 2n) by the Chern character Do& <N E H, (Tn+’ ; Q). 
Thus the construction above provides a normal map of degree one: 

f̂  
vM - EN 

t 
f 

t 
M - Tn+l 
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trivial over T” C ZP+l: 

f-l@‘“) “T” c W+‘, vMITn = f*~~l~n = o. 

By cutting Mnfl along the embedded torus Tn one then obtains the desired 
manifold realizing the element a, and with each of its two boundary compo- 
nents diffeomorphic to Tn. 

Given two CW-complexes or manifolds one can often distinguish them, 
i.e. show that they are not homeomorphic (or not PL-homeomorphic, or not 
diffeomorphic), by means of algebro-topological invariants. However if all con- 
ceivable invariants coincide for these two spaces, then one is forced to resort 
finally to seeking some means or other of actually constructing a homeomor- 
phism between them. It is interesting to consider the various methods that 
have been employed to this end over the last two or three decades. In differ- 
ential topology the approach to this problem has relied either on producing 
an appropriate map directly by analytic means, or else on using completely 
finitistic procedures involving careful selection and analysis of sequences of 
attachments of handles (for example, by means of Morse surgeries, when the 
topology of the level sets of a Morse function alters as its value passes through 
a critical point). In carrying out sequences of Morse surgeries, their effects on 
homotopy, the algebraic obstructions to realizing them that arise, and various 
reductions and simplifications that occur (for instance the mutual cancella- 
tion of a pair of handles) are all investigated. These basic techniques, which 
have been in use for a very long time, underwent intensive elaboration in 
the 1960s in parallel with the remarkable developments in the topology of 
manifolds of that era. We shall not however consider them further here; they 
have been mentioned at various points earlier on in this book. What other 
tools does topology have at its disposal appropriate to the direct investiga- 
tion of homeomorphisms? In low dimensions (n < 3) every compact family of 
homeomorphisms of manifolds can be approximated by PL-homeomorphisms, 
and by diffeomorphisms, and the whole group of self-homeomorphisms of a 
manifold has the same local and global homotopy properties as the group 
of PL-homeomorphisms (Moise, in the early 195Os), and even the group of 
self-diffeomorphisms. However in higher dimensions this is certainly no longer 
the case. Among the best-known of the early results relevant to this sort of 
question, obtained by elementary visual means, is that of Mazur and Brown 
(of around 1960): Given a ‘flat” embedding of a sphere, i.e. an embedding of 
a whole neighbourhood: 

F : S”-l x I ----) S”, I = [-I, 11, 

the image F(S”-1 x (0)) of the “middle” sphere Snpl x (0) bounds a closed 
disc Dn c P: dD” = F(S”-1 x (0)) (the “g eneralized Schoenflies conjec- 
ture”). Following hard on the appearence of the Brown-Mazur theorem, the 
“Annulus Conjecture” was formulated (by various people): 
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Given two non-intersecting flat embeddings Fl and F2 of Pm1 in Sn: 

F&3”-’ x (0)) n F&Y’ x (0)) = 0, 

is it true that the closed region of Sn between them is homeomorphic to an 
annulus S”-l x I? 

For n 5 3 this conjecture holds for elementary reasons, and for n > 6 it 
holds under the assumption of smoothness by virture of Smale’s h-cobordism 
theorem. In fact, in higher dimensions, the Annulus Conjecture can be estab- 
lished without difficulty under the assumption that the embeddings Fl, F2 
are smooth at at least one point. (We shall return to the discussion of the 
Annulus Conjecture below.) 

We now describe another result of Mazur (from the early 1960s) which, 
although it concerns smooth manifolds, uses entirely elementary techniques, 
and allows one to establish that a certain two CW-complexes known to be 
combinatorially inequivalent, are nonetheless homeomorphic (Milnor, also in 
the early 1960s). The theorem is as follows: 

Iff :M,n + MC is a normal homotopy equivalence between two manifolds 

MT- and Mz, i.e. f*(vE’) = uN , where v;’ denotes the normal bundle of (1) 

MF with respect to an embedding MF c lRN+n, iV 2 n + 1, then the direct 
products 

M;xlRN and M; x RN 

are difleomorphic. 

The idea of the proof is as follows: Consider embeddings 

M;xDN~M;xRN and MF x DN L-) My x RN (5.33) 

respectively “approximating” the homotopy equivalence f : Mp + Mp, and 
a homotopy inverse g : M; -+ Mp (f o g N 1, g o f N 1). The normal bundles 
of MF c M; x RN and M; c M,” x lRN (where the inclusions are obtained 
by restricting the above embeddings to Mr x (0) and MF x (0)) are trivial in 
view of the assumption f *(v@)) = N Y!‘. From the pair of embeddings (5.33) 
we then obtain an expanding sequence of regions 

M~xD~cM;xD;cM;xD;c... , 

where the radii of the balls Dy c RN increase, all of the embeddings 

are standard, and the embeddings of MF x DE, MC x DE+2, etc. represent 
successive extensions and are all isotopic. The assertion of the theorem now 
follows readily. 

We now describe Milnor’s example. Note first that every 3-dimensional ori- 
entable, closed manifold is parallelizable. Let Lil, L& be two lens spaces with 
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fundamental group isomorphic to Z/p and invariants ql, q2 E Z*, satisfying 
q1 = X2q2 mod p. It is a classical result that this condition guarantees the 
homotopy equivalence of the two lens spaces, but that they may be chosen 
so as to have different Reidemeister torsion, which implies that they are not 
PL-homeomorphic (See Chapter 3, $5). By Mazur’s theorem the manifolds 

Lil x RN and Lil x IWN 

are diffeomorphic for some N, so that the Thorn spaces (which are CW- 
complexes) of the trivial bundles 

Kl = (Lil x 0”) / (LZ1 x P-1) ) 

K2 = (L& x 0”) / (Li* x P-l) 

are also homeomorphic. However they are not combinatorially equivalent (Mil- 
nor). To see this one first observes that the boundary of a combinatorial neigh- 
bourhood of the singular point of Ki has the form Lii x SNml, and then that 
the relative Reidemeister torsion of Ki (with respect to the singular point) is 
well-defined and equal to the ordinary Reidemeister torsion of the lens space 
Lii. The result now follows. 

Thus the Huuptwemnutung is false in general for CW-complexes of dimen- 
sion 3 + N. Since N can be reduced to 3, this applies in fact to CW-complexes 
of dimension > 6. 

We now return to the topic of (not necessarily smooth) homeomorphisms. 
Recall that in the early 1960s Stallings established, independently of Smale 
and Wallace, a continuous version of the higher-dimensional Poincare con- 
jecture, showing that a PL-manifold homotopy equivalent to the sphere S” 
(n 2 5) is homeomorphic to the sphere S*. As part of the proof he showed 
that every “locally flat” embedding 5’” c Snfk can be reduced, by means 
of a homeomorphism of the sphere S n+k, to a standard embedding provided 
n > 3, Ic 2 3. (In the case Ic = 2 one requires also that 7~~(5’“+~ \ Sn) E Z.) An 
embedding F : S” 4 Snfk is called locally fiat if for each point x of 5’” there 
is a neighbourhood 0: such that the restriction of F to that neighbourhood 
extends to an embedding 

D,“xI-Snfk, I = [-I, 11, 

where 0: is identified with 0,” x (0). 
Technically more complex is the proof of the following theorem of Cher- 

navskii (of the mid 1960s): 

The group of self-homeomorphisms of any closed topological manifold, or of 
RN, is locally contractible. 

In the space of all self-maps of a given manifold endowed with the Co-topology 
the homeomorphisms are “unstable”, in contrast with the diffeomorphisms, 
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which with respect to the Cl-topology form an open subset in the space of all 
smooth self-maps. However a diffeomorphism arbitrarily close to the identity 
map with respect to the Co-topology, may still be very complex, and extremely 
difficult to deform to the identity map within the class of homeomorphisms; 
as will be indicated below, this fact has played an important role in topology. 
Chernavskii constructs such isotopies of a diffeomorphism to the identity map 
using essentially elementary, but extremely complicated techniques. 

At the end of the 1960s Kirby found an approach to the proof of the Annulus 
Conjecture via reduction to the situation of smooth (or PL-) homotopy tori, 
and almost immediately thereafter the crucial problems concerning homotopy 
tori associated with this approach were solved by Wall, Siebenmann, Hsiang, 
Shaneson and Casson We shall now describe Kirby’s idea. 

In the theory of homeomorphisms Iw” --+ lRn the concept of a stable home- 
omorphism is important; this is a homeomorphism h : R” + R” that 
is a composite h = hl 0 . 0 hk of homeomorphisms hi each of which re- 
stricts to the identity on some non-empty open region Ui. Diffeomorphisms 
and PL-homeomorphisms are stable, as are homeomorphisms approximable 
by PL-homeomorphisms. If a homeomorphism agrees with a stable one on 
some open non-empty region, then it must itself be stable. It therefore makes 
sense to speak of the pseudogroup of stable homeomorphisms between open 
regions of Iw” and thus of the class of stable manifolds determined by this 
pseudogroup, where the co-ordinate transformations are restricted to being 
stable (Brown, Gliick and others, in the early 1960s). From the stability of 
orientationpreserving homeomorphisms of R”, the Annulus Conjecture for 
spheres and for lRn follows relatively easy. We shall now sketch the proof of 
stability. 

In the early 1960s Connell made the useful observation that a homeomor- 
phism h : R” --f R” for which the distance between z and its image h(z) is 
bounded above ([h(z) - ICI < M) is stable. From this it follows that all home- 
omorphisms of a torus are stable; for if a homeomorphism h : T” + Tn fixes 
a point and is homotopy equivalent to the identity map, then the universal 
covering map h : IRn + R” satisfies 

Ii(z) - ~1 < M for all 5 E lRn, 

whence it follows that in fact h : Tn + Tn is stable. The general case of 
a homeomorphism h of Tn is reduced to this special case by composing h 
with suitable affine transformations. There is a resemblance between Kirby’s 
strategy for proving the Annulus Conjecture, and the proof of the topologi- 
cal invariance of the Pontryagin classes, in that at a certain point in Kirby’s 
scheme a “toroidal region” of LR” is introduced, however somewhat differently: 
one considers an immersion 4 : Tn \ {*} + R”, which, although such immer- 
sions exist for any open, parallelizable n-manifold, may here be constructed 
by elementary direct means. (In fact its precise form is unimportant.) Dif- 
ferent homeomorphisms g : lRn + Rn induce potentially different smooth 
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structures on the image of Tn \ {*} in IP by mapping this region to other 
regions of Iw”. 

Now every smooth open manifold Mn of dimension n > 6, with a neigh- 
bourhood of infinity homeomorphic to S-l x Iw, is realizable as the interior of 
a smooth manifold-with-boundary whose boundary has the homotopy type 
of S”-l (see th e earlier discussion of the problem of Browder-Levine-Livesay). 
Hence by using the result of Smale and Wallace that all homotopy spheres of 
dimension n 2 5 are PL-homeomorphic to S” (see above), we may compactify 
such an image region 

Tn \ {*I 

with its new smooth structure (induced from a homeomorphism g : IWN 4 
IWN) by means of a single point *’ to obtain a homotopy torus V” endowed 
with a PL-structure (Wall, Hsiang, Shaneson, Siebenmann, Casson): 

V”\ {d} ” Tn \ {*}. 

If the new closed manifold V” is PL-isomorphic to Tn then we have a homeo- 
morphism T” -+ Tn, and since such homeomorphisms are, as observed above, 
always stable, it follows that the original homeomorphism g : Iw” + llF is 
also stable. The proof is completed by showing that it suffices to construct a 
PL-homeomorphism between some finite-sheeted covering spaces pn 4 Fn, 
rather than between V” and Tn. Hence all self-homeomorphisms of Iw” are 
stable, and the Annulus Conjecture follows. 

Using results about smooth or piecewise linear homotopy tori, it can be 
shown that for n > 5 there exists a PL-homeomorphism h : Tn -+ Tn not 
isotopic to the identity map, with obstructions to such isotopies, in general, ly- 
ing in Z/2. (In fact there is a PL-homeomorphism not even “pseudo-isotopic” 
to the identity map.) Lifting such an h to a PL-homeomorphism i: ?’ + Fn 
of a covering space with an odd number of sheets, we can, provided the number 
of sheets is large enough, deform the latter PL-isomorphism (via a topologi- 
cal isotopy) to a self-homeomorphism arbitrary close, in the Co-topology, to 
the identity map, but still not PL-isotopic to it in view of the fact that the 
obstruction to such a PL-isotopy (with values in Z/2) prevails in odd-sheeted 
covering spaces. However by Chernavskii’s theorem, since the homeomorphism 
h is Co-close to the identity map, it must in fact be topologically isotopic to 
it. The upshot of this delicate discrimination between PL- and topological 
homeomorphisms is another counterexample to the Hauptvermutung, and an 
example of a topological manifold not admitting a compatible PL-structure 
(Kirby and Siebenmann, end of the 1960s). 

Thanks to the work of several people (Lees, Lashof, Rothenberg, at the 
end of the 196Os), it is now known that such properties of closed topological 
manifolds of dimension 2 5 as those of admitting a compatible PL- or smooth 
structure, are equivalent to the reduction of the structure group TOP (roughly 
speaking, the group of germs of homeomorphisms of an open disc) of the 
tangent microbundle, to its subgroup PL c TOP or to 0 (even in non-stable 
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dimensions of these bundles). These investigations, together with those of 
Kirby and Siebenmann, yield the following structures of the relative homotopy 
groups rri(TOP/PL): 

Knowledge of these groups renders the results of the above authors concern- 
ing triangulability (i.e. admissibility of a PL-structure) effective. An upper 
bound for the number of distinct PL-structures definable on a topological 
manifold Mn (where n > 5 for closed manifolds, and n 2 6 for manifolds- 
with-boundary), is afforded by the order of the group H3(Mn; Z/2). Note 
that here simpleconnectness is not involved. (Complete proofs of all of the 
results of this theory depends on some results of the Sullivan theory, which, 
as noted earlier, is as yet incomplete.) 

It is noteworthy that the fact that rra(PL/TOP) g Z/2, which alone dis- 
tinguishes PL-structures on manifolds from continuous ones, is ultimately a 
consequence of Rohlin’s theorem to the effect that the signature 7 of every 
almost parallelizable manifold M4 is divisible by 16, while in all dimensions 
of the form 4/c > 4 there exist almost parallelizable closed PL-manifolds with 
7 = 8 (Milnor; see $3 above). 

Noteworthy among the more recent successful constructions of homeomor- 
phisms are the following two: 

1. The direct construction of a homeomorphism 

C2M3 --+ S5 

from the double suspension of any S-dimensional manifold M3 satisfying 
H1(M3;Z) = 0 (Ed wards, in the late 1970s). Prom this there follows the 
existence of a triangulation of S5 with respect to which it is not a PL-manifold, 
and which is not combinatorially equivalent to the standard triangulation. 

2. The direct (and not exceptionally complicated) construction of a homeo- 
morphism between any smooth S-connected closed d-manifold and the sphere 
S4 (Freedman, around 1980). On the other hand with respect to diffeomor- 
phisms the d-dimensional analogue of the Poincare’ conjecture remains open. 
(Note that in dimension 4 PL- homeomorphisms are in this context equivalent 
to smooth.) 
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Concluding Remarks 

In this survey of the ideas and methods of topology far from all topics have 
been considered. Little has been mentioned here of 3-dimensional topology 
and the theory of Kleinian groups as developed by Thurston and others, or 
of the developments in 4-dimensional topology due to Donaldson, Freedman, 
and others. Neither have we surveyed here the qualitative theory of foliations: 
notably the theorems of Reeb, Haefliger and Novikov on analytic foliations 
and and on foliations with compact sheet; the techniques for establishing 
the existence of foliations and other geometric structures on open manifolds 
(Gromov), of foliations of codimension one of odd-dimensional spheres (Law- 
son, Tamura, and others), and of compact manifolds of arbitrary dimensions 
(Thurston); the theory of characteristic classes of foliations (Bott, Godbillon, 
Vey, Bernshtein, and others); the classification theory of foliations (Haefliger 
and others); the cohomology theory of Lie algebras of vector fields on man- 
ifolds (I. M. Gel’fand, Fuks); the theory of singular points of complex hy- 
persurfaces (Milnor, Brieskorn); real algebraic curves and surfaces (Gudkov, 
Arnol’d, Rohlin, Kharlamov, Kirilov, Viro). 

We have also omitted from our survey such areas of topology as the the- 
ory of embeddings of manifolds and higher-dimensional knots (created by 
several people, beginning with Whitney and including Haefliger, Stallings and 
Levine), as also the theory of “typical singularities of maps and and functions” 
(Whitney, Pontryagin, Thorn, Boardman, Mather, Arnol’d). 

The author of the present essay has preferred - and this is in full con- 
ciousness - to omit discussion of topological results of a general categorical 
and abstract nature, nothwithstanding their usefulness and even necessity as 
far as the intrisic logic of topological concepts is concerned. 

There is also missing from the survey a summary of the homology theory 
of general spaces, in particular of subsets of IWn, developed in the 1920s by 
several authors, including P. S. Alexandrov, Tech, Pontryagin, Kolmogorov, 
Steenrod, Chogoshvili, Sitnikov, Milnor, among others. 

There is also missing a discussion of the topological properties of manifolds 
with various differential-geometric properties (global geometry). 

Finally, it has not proved possible to discuss the substantial applications of 
topology that have been made over recent decades to real physical problems, 
and have transformed the apparatus of modern mathematical physics. We 
hope that this lack will be made good in other essays of the series. 
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Appendix 
Recent Developments in the Topology 

of 3-manifolds and Knots 

5 1. Introduction: 
Recent developments in Topology 

The present survey of topology was in fact written in 1983-84 and published 
(in Russian) in 1986. Over the intervening decade several very beautiful new 
ideas have appeared in the pure topology of 3-manifolds and knots, and it 
is to these that the present appendix is devoted. It should however be noted 
that impressive developments have occurred also in other areas of topology: 
in symplectic topology, with the creation of “Floer homology” and its subse- 
quent development by several mathematicians (Gromov, Eliashberg, Hoffer, 
Salamon, McDuff, and others); in the theory of SOz-actions on smooth mani- 
folds, including analysis on loop spaces (Witten, Taubes), originating in quan- 
tum mechanics, and “elliptic genera” (Oshanine, Landweber) allowing formal 
groups and other techniques of complex cobordism theory to be applied to the 
theory of such actions (already mentioned in the body of this survey in connec- 
tion with work carried out by the Moscow school around 1970); in the so-called 
“topological quantum field theories” (whose beginnings were also mentioned 
above in connection with the construction of Reidemeister-Ray-Singer torsion 
via a functional integral, by A. Schwarz in 1979-80) as developed by Witten 
in the late 1980s following a suggestion of Atiyah, and by others in the 1990s. 
The present author is of the opinion that these conformal and topological 
quantum field theories constitute a new kind of analysis on manifolds, hith- 
erto remaining, however, without rigorous foundation. Nonetheless these new 
methods have led to the discovery (by physicists such as Candelas and Vafa, 
among others, with subsequent more-or-less rigorous justification by vari- 
ous mathematicians) of subtle features of the structure of rational algebraic 
curves on certain symplectic manifolds and algebraic varieties (for instance 
on “Calaby-Yau” or “toroidal” manifolds). 

In a similar manner deep facts about the topology of moduli spaces have 
been obtained by Kontzevich using the technique of “matrix models” bor- 
rowed from statistical mechanics, by means of which physicits (Gross, Migdal, 
Brezin, Kazakov, Douglas, Shenker, and others) were led in 1989-90 to the dis- 
covery of some beautiful results, in part topological, in string theory, finding 
in particular a connection between that theory and the celebrated integrable 
models of soliton theory. 

Thus over the last two decades (since the discovery of instantons in the mid- 
1970s by Belavin, Polyakov, Schwarz and Tyupkin, mentioned in the body of 
this survey), several very interesting developments in topology have been initi- 
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ated by quantum field physicists. One outcome of this has been that some first- 
rank physicists have gone from doing research in physics proper to working 
on problems of abstract mathematics using the approach and mathematical 
techniques of quantum field theory familiar from their training in physics. Al- 
though the latter technique is standard among physicists, it is scarcely known 
to the community of pure and applied mathematicians, partly because some 
of the basic notions and techniques of the theory, although certainly mathe- 
matical in nature (contrary to the opinion of many mathematicians that they 
belong to physics), are not easily amenable to rigorous mathematical treat- 
ment. In fact the current rigorous version of quantum field theory formulated 
in terms of 20th century pure mathematical analysis, although highly non- 
trivial from the viewpoint of functional analysis, seems rather impoverished 
by comparison with its physical prototype. The interaction of topology and 
algebraic geometry with modern quantum physics over the last two decades 
has proved extremely fruitful in pure mathematics; it is also to be hoped that 
ultimately it will bear fruit also outside pure mathematics. 

$2. Knots: the classical and modern approaches 
to the Alexander polynomial. Jones-type polynomials 

We shall sketch here some of the ideas of modern knot theory, inaugurated 
in the mid-1980s by the discovery of the “Jones polynomial”. We begin by 
recapitulating the relevant basic notions of knot theory. 

We shall consider only classical Icnots: such an object is a smooth, closed 
nonselfinterskcting curve K in Euclidean space lR3 or in the 3-sphere S3, with 
everywhere nonzero tangent vector. A linlc is a union of such curves, pairwise 
nonintersecting: 

K=UKi; K, n Kj = 0 for i # j. 

By projecting a knot or link orthogonally onto a plane (or “screen”) in the 
direction of some suitable vector 7, we obtain the diagram of the knot or 
link, consisting of a “generic” collection of plane curves (where by generic 
we mean that the tangent vector is everywhere non-zero, all intersections 
( LLcrossings”) are transversal, and there are no triple intersection points); the 
diagram should also include, for each crossing, the information as to which of 
two curve segments is “above” the other relative to the screen. The diagram 
is said to be oriented if each component curve of the knot or link is directed, 
otherwise unoriented. 

Classical knot theory is concerned with the space S3 \ K = M, an open 
3-manifold. There is a natural embedding of the torus T2 in M, namely as 
the boundary of small tubular neighbourhood of the knot K. Similarly, for a 
link we obtain a disjoint union of 2-tori in M. 
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The principal topological invariant of a knot K is the fundamental group 
rr(M) of the complement M of K, with distinguished subgroup the natural 
image of 7rr(T2), T2 c M2, with the obvious standard basis. The classical 
theorem of Papakyriakopoulos of the 1950s asserts that a knot is equivalent 
to the trivial one if and only if nr(A4) is abelian. It was shown by Haken 
in the early 1960s that there is an algorithm for deciding whether or not 
any knot is equivalent to the trivial knot. However, while it appears to have 
been established (by Waldhausen and others in 1960s and 1970s) that two 
knots are topologically equivalent if and only if the corresponding fundamental 
groups with labelled abelian subgroups are isomorphic, the existence of an 
appropriate algorithm for deciding such equivalence remains an open question. 

The complexity of the knot goup nr(M) has led to the search for more 
effectively computable invariants to distinguish knots and links. The first such 
non-trivial invariant to be discovered was the Alexander polynomial. We shall 
now give an alternative elementary definition of this invariant in terms of 
the oriented diagram of the knot or link, following early articles of Alexander 
himself. (This definition was rediscovered by Conway around 1970.) This 
approach to the definition is based on the very strong additive property of 
Alexander polynomials with respect to an operation eliminating crossings. 
(The Jones, HOMFLY, and Kauffman polynomials have similar properties 
- see below.) Consider the three oriented diagrams of Figure A.l, differing 
from one another only in a small neighbourhood of a single crossing. The first 

y( x)-g-( x)=(x) 
D n,+ %,- k-1 

Fig. A.l. Defining the Alexander and HOMFLY polynomials 

two diagrams D,,* have exactly n crossings and identical projections on the 
screen; moreover their oriented diagrams coincide exept for one crossing. The 
third diagram D,-1 has n - 1 crossings (one fewer then the other two), being 
obtained from either D,,* by replacing a neighbourhood of the crossing at 
which these differ by the configuration indicated in Figure A.l, in natural 
agreement with the orientation. The Alexander polynomials corresponding to 
the respective diagrams are related as follows: 

zp&-, cz) = pD,,,+ (z) - PO,&,- (2). 

This will serve as a defining condition once supplemented by the conditions 
that the Alexander polynomial should be zero for any diagram with 2 or more 
connected components, and should be equal to 1 for the trivial one-component 
diagram (i.e. for a simple closed curve). 
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This defines the Alexander polynomial as a polynomial in the variable z; 
the standard version is then obtained by means of a substitution: 

A(t, t-l) = P(z), z = t1’2 - t-1’2, 

yielding finally the Alexander polynomial A(t, t-l), well-defined up to multi- 
plication by a power of t. 

The HOMFLY polynomial H(x, y) is defined using the same three diagrams 
but with the general condition 

~HD,-,(x,Y) = YHD_,+(x,Y) - Y-~HD,,-(x,Y), 

together with the condition that H = 1 for the trivial knot. Note that the 
most general formula of this type, involving three variables, can be normalized 
to this form by multiplying by a suitable factor. 

Setting y = 1, x = z yields the Alexander polynomial. Putting x = y1j2 - 

Y -1/2 yields the celebrated Jones polynomial J(y), of which, therefore the 
HOMFLY polynomial is a natural generalization. We shall call all of these 
polynomials (including the “Kauffman polynomial” defined below) Jones-type 
polynomials. 

We shall now describe Kauffman’s method, based on unoriented diagrams, 
of constructing polynomial invariants constituting a different generalization 
of the Jones polynomials. For four unoriented diagrams Dn,*, I&.r,r, D+r,z 
differing only in a small neighbourhood of one crossing, as depicted in Figure 
A.2, we first define a 2-variable state polynomial Q via the following recurrence 

(s)( x)=j(=)-( ,()I 
Fig. A.2. Defining the state polynomial and the Kauffman polynomial 

relation: 

QLL,, - QD,&,- = ~QD,-~,~ - QLA-~.~)~ 
together with 

QDOzp= (a-a-1)+1 
z 

for the trivial one-component diagram Do, and the requirement that Q change 
by a factor A*’ with each Reidemeister move (see Figure A.3). The Kauflman 
polynomial of a diagram D, is then defined by 

KD_ = a -“(Drb)Q~,L (a, z), 

where the “writhe number” w(D) of an oriented knot or link diagram D is 
defined as the algebraic sum of signs fl attached to the crossings according 
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(x)=+)> (X)=61(-) 
Fig. A.3. The first Reidemeister move and the state polynomial 

to the orientation of the 2-frame determined by each crossing, with the first 
vector of the frame given by the (directed) upper branch (see Figure A.4). 
(Thus the orientation of the diagram D is significant only for the number 

+1 -1 

Fig. A.4. The writhe number, determined by the orientations of the crossings 

W(O).) This completes the definition of the Kauffman polynomial, an invariant 
of the knot or link in question. 

For any oriented diagram D the Jones polynomial of D is then given by 

JD(t) = 
KD(z zz t-l14 - t1f4, a = t314) 

t1/2 - t-112 

On the other, hand by a theorem of Jaeger the Kauffman polynomial of a dia- 
gram can be expressed as a linear combination (with appropriate coefficients) 
of HOMFLY polynomials of certain diagrams associated with the given dia- 
gram. 

(x)=(x)+( )( )T ( O)=d 
Fig. A.5. Defining the bracket polynomial and the Jones polynomial 

Kauffman also defines a polynomial S D, via the recurrence relations (see 
Figure A.5) 

Son(A,B;d) = ASD,,+, + BSD~L--~,~, 

with SD,, = d for the trivial diagram Do. Upon substituting 

B = A-‘, -d = A2 + A-2, 

one obtains the Jones polynomial in the form 
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(1) 

(11) 

(III) 

/ 
b - f-l-1 - \ 

d 

I -I( 
‘X - x, ’ x - x 

Fig. A.6. The Reidemeister moves 

J(A4, A-4) = (-A)-3”(D)S(A, B; d), t = A-4. 

(The “bracket” polynomial S will appear later on in the definition of the 
Turaev-Reshetikhin invariant of 3-manifolds using Kauffman’s ,approach.) 
Thus Kauffman provides two different ways of arriving at the Jones polyno- 
mial. 

The topological invariance of all of the above polynomials can be estab- 
lished in a purely combinatorial manner using “Reidemeister moves”, which 
are elementary changes (of three types) of diagrams, realizing equivalences of 
knots and links (see Figure A.6). 

Thus one has merely to check that each polynomial remains unaffected by 
Reidemeister moves; the appropriate recurrence relation may then be used to 
calculate the polynomial. (It should be noted that the identification of these 
elementary moves was non-trivial in the era of Reidemeister and Markov (the 
1930s and 194Os), but that the introduction of the concept of “generic prop- 
erties” by Whitney, Pontryagin and Thorn (from about 1935 till the 1950s) 
simplified the problem to the point of becoming an exercise for students: 
“Consider a generic deformation and decompose it into elementary topologi- 
cal moves.“) 

In older treatments of knot theory (in particular in ‘(Modern Geometry”, 
Part II, by Dubrovin, Fomenko and the present author) the definition of the 
Alexander polynomial is couched in terms of the somewhat unintuitive op- 

eration of “differentiation in the group ring”. It has been pointed out (by L. 
Alania in the author’s Moscow seminar) that this “differentiation” can be ar- 
rived at via the following topological route: Starting with the oriented diagram 
of the knot or link K on the plane, one calculates in the standard manner a 
presentation of the group ni(M) of the knot (A4 = S3 \ K), obtaining one 
generator for each edge of the diagram (see Figure A.7) and a pair of rela- 
tions for each crossing. Since one relation of each such pair simply equates the 
pair of generators corresponding to the edges forming the upper branch of the 
crossing, the presentation reduces immediately to the standard one involving 
the same number of generators and relations. The 2-complex L with exactly 
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Fig. A.7. Calculating the fundamental group 

one O-cell, and with l-cells labelled by generators and 2-cells labelled by the 
relations, is then a deformation retract of M. Lifting to the universal cover we 
obtain a boundary operator on a complex of free Z[7ri]-modules; which takes 
the form of a square matrix with entries from this group ring, and it is this 
matrix which is related to the above-mentioned “differentiation”, as follows. 
Denoting the generators by ai and relators by rj, one defines the operator a,, 

by 
ax&j) = &j, 

&* (bc) = &% (b) + &i (c)i 

the matrix in question then has entries qij given by 

4ij = aa, CTj) 

Mapping each generator ai to t we obtain a complex of modules over the 
ring of integer Laurent polynomials, with boundary operator the correspond- 
ing square matrix now with Laurent polynomials as entries. The determinant 
of this matrix turns out to be zero, and the highest common factor of its 
cofactors, after multiplication by a suitable power of t, turns out to be just 
the Alexander polynomial A(t). 

The homological treatment of the Alexander polynomial by Milnor in the 
196Os, formulated in terms of the torsion of the first homology module over 
the Euclidean ring Q[t,t-l] of the Z-covering of L, may be given along these 
lines. A note by the author in Soviet Math. Doklady contains the following 
more attractive exposition. Consider all one-dimensional representations p : 
~1 (M) + @, and the homology Hf(M; @) with local coefficients in such a 
representation. In fact we may take M to be any manifold, replace @ by C”, 
and consider more generally the space Rep,(ni) of all representations of ~1 in 
GL,(C), an algebraic variety over Z. The rank hi(p) of the homology group 
Hf(M;P) then defines an integer-valued function on this algebraic variety, 
which is constant almost everywhere (i.e. outside certain “‘jumping” algebraic 
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subvarieties Wj c Rep,(ri) over Z); the value of hi(p) jumps on each such 
subvariety, jumps further on their pairwise intersections, and so on. 

In the particular case we were considering, i.e. where M = S3 \ K, K a 
knot, and n = 1, we obtain the variety Repi(7ri) = C\ (0) = @*. One has the 
following result: 

For i = 1 the jumping subvarieties constitute a finite set of points which turn 
out to be just the roots of the Alexander polynomial. 

For a link with lc components, we have Hi(M) = Z” and Rep,(ri) = 
(C*)“, and one obtains corresponding jumping subvarieties, and a “generalized 
Alexander polynomial” in Ic variables. A modern elementary combinatorial 
treatment of the multi-variable Alexander polynomial was given a few years 
ago by H. Murakami. 

The algebraic geometry in this picture is homotopy invariant, but may be 
complicated, and even in the case A4 = S3\K, K a link, is not well understood. 

The present author had conjectured that one should be able to extract the 
Jones and HOMFLY polynomials directly from the structure of the jumping 
subvarieties in the case n = 2. However a few years ago Le Tu, in Moscow, 
investigated these subvarieties in the interesting case of the 2-bridge knots, 
and discovered that their structure is far more complex than expected. Thus 
the problem of finding a classical algebraic-topological treatment of the Jones 
polynomial remains open. 

We now give a third definition of the Alexander, Jones, and HOMFLY 
polynomials, involving the braid groups B,. We recall the definition of these 
groups: 

Consider the group with generators gi, i E Z, and relations 

The nth braid group B, is then the subgroup generated by n consecutive 
generators Q+i, . , gk+n. There is thus a natural embedding of B, in &+I. 
(It is more standard to take B, to be the subgroup generated by ~1,. . . , cm, 
i.e. to take Ic = 0.) 

By a theorem of Markov (Jr.) of the 194Os, the set of equivalence classes 
of knots and links is in natural one-to-one correspondence with the classes 
of braids under the equivalence relation determined by the following two ele- 
mentary operations (Markov moves): 

1. Conjugation of any braid a E B, by any element c E B,: a N cat-I. 

2. Multiplication of any braid a E B, by g;:i E B,+l: a N aazil. 

Two braids are then equivalent if one can be transformed into the other by 
means of a finite sequence of elementary Markov moves. 
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The idea behind this correspondence is both simple and natural. Consider 
the circle S1 c IK3 given by 2’ + y2 = 1, z = 0, and a tubular neighbourhood 
T of small radius: lR3 > T > S1. A transverse knot or link is then defined 
to be a simple closed curve (or collection of such) in T with tangent vector 
everywhere transverse to the a-balls orthogonal to the circle. A braid is then 
obtained from a transverse knot or link by cu.tting the tubular neighbourhood 
orthogonally to the circle at any point. It was in fact Alexander who first 
showed that any knot or link in lR3 is isotopic to a transversal one; Markov 
corrected a deficiency in the argument. 

Any linear representation p of the nth braid group B, in GL,(A), where 
A is any commutative and associative ring, has character (trace function) 
invariant under the first elementary Markov operation above: 

xp(a) = T+(a)l, a E Bn 
To obtain such a representation to start with (for all n simultaneously) one 
may try to represent the generators (pi, i E Z, by matrices satisfying the 
above defining relations. Jones obtained a class of representations in this way 
using the technique for solving certain integrable models of statistical physics 
and quantum field theory; thus he was able to obtain from the Yang-Baxter 
equation a special “local, translation-invariant” class of representations of all 
braid groups simultaneously. 

Let V be a vector space and 

a linear transformation with the property that on the tensor product V@V@V 
of three copies of V, we have 

‘%2s23sl2 = s23%2s23, 

where Stj coincides with S on the tensor product of the ith and jth copies 
of V in V @ V @ V, and restricts to the identity map on the remaining copy. 
(Note that in the theory of solvable models of statistical mechanics one may 
find the Yang-Baxter equation written more generally for a map of the form 
R = TS, the composite of S : Vi @ Vj + Vi @ Vi with the permutation map 
T : vi @ vj + vj @ vi, where now the factors of Vi @ Vj @ Vk may be different, 
in the form 

Defining 
P(ai) = Si,i+l, 

we obtain a representation p of the infinite braid group by linear transforma- 
tions of the infinite tensor product of countably many copies of V, restricting 
to a representation pn of the nth braid group B, by linear transformations 
of the space V @I V @ . . @ V ((n + 1) factors). Thus the image ~(a,) of each 
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generator gi is determined by its action “locally” on V, @ V,+r (since it acts 
identically on all other factors), and is “translation-invariant” in the sense 
that for all i, p(ai) acts in the same way as S acts on V @ V. 

(One may easily imagine variants of this construction using different (pe- 
riodic) partitions of Z; however to date no examples of interest have been 
found.) 

A representation p is said to have the Markov property if there exists a 
constant A independent of n such that for every n and every braid a E B, 
one has 

Tr[p,(a)lA = Tr[p,+l(aa,+l)l. 

Then according to Jones, given such a representation p, the quantity 

A-“(“)Tr[p,(a)], a = 0:; . . .C$Z E B,, 

where w(a) = CT=“=, j,, affords a topological invariant. 
We shall give below some important examples of such representations yield- 

ing as invariants the Alexander, Jones and HOMFLY polynomials. However 
before doing so we give a direct geometric explanation of the connection be- 

tween knots and solutions of the Yang-Baxter equation. Let R$ and R$ be 
two solutions of the Yang-Baxter equation, where the indices all run over the 
same set I indexing a basis for the vector space V. Given a diagram D, one la- 
bels each crossing with a copy of the solution R or x according as the crossing 
is “positive” or “negative” in the earlier sense. Each incoming edge is labelled 
with the appropriate lower indices (cd or kl) and each outgoing edge with the 
appropriate upper indices. On carrying out a total tensor contraction of the 
product of all Rs and %% associated with all crossings of the diagram, one 
obtains a number (DIIR,??) depending on the diagram D and the solutions R 
and R. 

The number (D/IR,R) gives a topological invariant of the corresponding 
knot or link under two more additional conditions. First, the number (011 R,??) 
is invariant with respect to the second and the third Reidemeister moves pro- 
vided the following “channel unitarity” and “cross-channel unitarity” equa- 
tions hold: 

pfRij = pbb. 
ZJ cd c d, 

-jd RZ.?R. = ,j”Sb. 
36 zc c d 

Secondly, let R, R satisfy the restrictions 

Then the number A-w(D)(DII R, R) is invariant with respect to the first Rei- 
demeister move and therefore affords a topological invariant. 

(Conditions of this type, together with the associated terminology, come 
from the interpretation by Yang, Zamolodchikov, and others, of the enti- 
ties R,R in terms of the “factorizable scattering amplitude” in integrable 
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models of 2-dimensional quantum field theory. The “Baxter-type” integrable 
2-dimensional lattice models of statistical mechanics furnish different interpre- 
tations. Note however that in both cases the actual Yang-Baxter solutions are 
much more complicated, depending on an additional ‘(spectral parameter” .) 

It is convenient to introduce “cup” and “cap” matrices Mab and Mcj sat- 
isfying 

MaiMib = 6;. 

The pair of solutions of the Yang-Baxter equation related by 

--ab hb 
R,, = MceR%M , 

then satisfy both channel and cross-channel unitarity. These matrices arise 
from the diagrams obtained from diagrams of braids by eliminating a single 
crossing; they are associated with the extrema of the Morse function on the 
zz-plane which projects the diagram on the z-axis (see Figure A.8). (Here 
we are assuming the standard definition of an n-braid as consisting of n 
nonintersecting and nonself-intersecting curve segments within the cylinder 
~?+y~<l, O<z<l,startingatfixedpointsP~,...,P,inthebase(z=O) 
and ending at the points Qi, , Qn vertically above these in the lid (z = 1)). 
The diagram of such an n-braid is then the projection of the braid on the 
zz-plane with the nature of the crossings indicated (as for knots). The cor- 
responding closed braid is constructed by joining PI to Qi, P2 to Q2,. . , P, 
to Qn in the obvious way by standard unknotted curve segments outside the 
cylinder (see Figure A.9). Given the diagram D of a closed braid B, one 

.>(, kb 1 ad (-) 
C d c d a b 

R ab -ab 
ab R ab M”” Ma, 

Fig. A.8. Defining R-matrices and cup and cap matrices 

defines the Marlcov trace by 

T(D) = Tr[rl@ ~8.. . @ wn(B)l, 

where p is the representation obtained from the solution R of the Yang-Baxter 
equation, and 

7; = MaiMb”. 

Consider the explicit solution R given by 

RF; = AMabMcd + A-%,a&, 
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1 2 n 

x 

1‘ 

1 2 n 

z=o 

=)-3-J z = l 

12 n 

Fig. A.9. The diagram of a closed braid on the plane. A closed braid in the cylinder 

where i2 = -1, the matrix M is of the form 

M= (-$ k”), 
and the index set I = (+, -). The diagram D of the closed braid B in question 
is considered here to be unoriented. However D has a natural orientation 
determined by the direction of the z-axis in the (z, 2) plane. This yields the 
formula 

J(A4, A-4) = (-A)-3”‘D’~(D) 

for the Kauffman-Jones polynomial discussed above. 
In the case of oriented diagrams one has an explicit solution R given by 

the formula 

RF2 = ((4 - 4-l) 1 a < b] + q[a = b]) 6;s; + [a # b]S~S,b, 

where [P] is defined to be 1 if the proposition P is true and 0 if P is false, and 
the index set I = 1, = (-n, -n + 2,. . . , n). The associated solution x may 
be obtained by replacing q by q-l and a, b by -a, 4 in this formula. These 
Yang-Baxter solutions yield the following topological invariant of a given knot 
or link with oriented diagram D: 

-w(D) (DIIR,??). 

The HOMFLY polynomial may then be obtained by taking the index set I 
of cardinality n + 1 (where n > 1) and by making the substitution y = qn+l. 
In the case n = 1 the substitution q = t112 gives the Jones polynomial. Note 
that the substitution q = 1 does not yield any new information. 

Consider now “tangles”, i.e. oriented diagrams D1 in the strip 0 5 z < 1 
with one input edge and one output edge, ending at the lines z = 0 and 
z = 1 respectively. For the index set I = (-, +) we always label both the 
input and output edges with the index +. One then obtains the Alexander 
polynomial for the closed oriented diagram D in the plane by cutting it along 
an (arbitrarily chosen) external edge. 
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Following Jaeger and Kauffman, one may obtain the Alexander polynomial 
from the following R-matrix: taking the index set I = (fl, -l), one sets 

R = (q - q-l)X+- + qX++ - q-IX-- + Y, 

and then obtains E by substituting q-l for q and X-+ for X+- ; here the 
tensors X,, are given by 

Kx~ = { 
1 ifa=c=sandb=d=p, 
0 otherwise, 

and the tensor Y by 
Y,“d” = [a # b]S$S,b, 

where a, b, c, d = *l. 
The Alexander polynomial may also be obtained from the “Burau repre- 

sentation” of the braid group on the direct sum of one-dimensional spaces 
Iwi = IL?, given by 

1 0 0 
P(ui) = 

[ I 

OTO; 
0 0 1 

here 1 denotes the identity matrix of arbitrary size and T is the 2 x 2 matrix 

T= [ Y (&)] 

acting on Iw, @ Iwi+ 1. The Alexander polynomial is then given by 

ALL = (det)*(p(a) - L), 

where D, is the relevant closed braid obtained from the braid a, and (det)’ 
denotes any (n- 1)-minor of the matrix p(a) - 1,. As obtained by these means 
the Alexander polynomial is well-defined up to multiplication by fP, m any 
integer. 

It is worthwhile pointing out the following interesting identity for the ex- 
terior powers of the linear transformation M: 

det(M - Xl,) = c Trace((-X)kAkM); 
j=o 

this leads to a (non-Markov) trace, and to Yang-Baxter solutions R, ?? essen- 
tially equivalent to those used above in constructing the Alexander polynomial 
using tangles. 

There are three nice algebraic objects that have turned out to be very 
useful in the modern theory of knots and 3-manifolds: the Hecke algebra, the 
Temperley-Lieb (or Jones) algebra, and the Birman- Wenzl algebra. They are 
defined as follows: 
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A He&e algebra is generated by the elements cri, i E Z, satisfying the braid 
relations (see above), together with relations of the form 

(Ti - CT-1 = z, 

where z may be either a number or in the centre of the algebra. 
The Temperley-Lieb algebra (TL) over the ring Z[A, A-‘] is given by gen- 

erators vi, i E Z, satisfying the relations 

v,?Jj = vjvi, Ii -jl > 1, 
VjV~flV~ = vi. 

Here A may be taken as some number. There is an associated abstract trace, 
i.e. a linear map 

f  : TL -+ Z[A, A-‘], 

satisfying I = I f or all U, w. Note also that one obtains a representa- 
tion p of the braid group in TL in the general form 

,o(ai) = awi + b, 

for appropriate numbers a, b. 
The Jones algebra is the same as TL, however considered rather as given in 

terms of generators ei = 6 -l~i, where -6 = A2 + Ap2; the ei are projectors: 
ef = ei. 

The Birman- Wenzl algebra is also generated by the pi, with the additional 
relations 

ci - ai1 = Z(TJ( - 1). 

This is easily seen to be realizable as a subalgebra of TL. 
From braids and the Yang-Baxter equation the theory of “quantum groups” 

has been constructed (by Drinfeld, Jimbo, Sklyanin, Kulish, Faddeev, Takhtad- 
jan, Reshetikhin, Voronovich, and others). This represents a pleasing system- 
atization of the behaviour of the most familiar solutions of the Yang-Baxter 
equation in terms of certain algebras (shown by Drinfeld to be Hopf algebras 
equipped with a nice additional structure called a “quantum double”. (In his 
terminology this is “quantum deformation” of the enveloping algebra of a 
semisimple Lie algebra.) 

This striking terminology derives, in fact, merely from the property that 
to a first approximation this deformation is determined by a certain Poisson 
bracket on the Lie group, so that, on the face of it, it appears to represent 
some sort of quantization of the group as of a phase space. (Such brackets 
had made an appearance earlier in connexion with certain (not all) integrable 
models of the theory of solitons.) However this procedure does not in fact 
represent any quantization of the group or Lie algebra as objects measuring 
the symmetry of some physical system to be quantized. 

Several examples show that this very appealing construction is more like 
a “discretization” , in a certain subtle, nontrivial sense, than a “quantization” 
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as this term is usually employed in the context of symmetry in analysis (and 
in fact similar nontrivial “q-deformations of analytic calculus” can be traced 
back to the 19th century). However the term “quantum group” sounds im- 
pressive, and lends a, perhaps somewhat spurious, air of excitement to the 
topic. (A first-rate quantum physicist at the Landau Institute who had him- 
self discovered many nontrivial solutions of the Yang-Baxter equation, once 
told the present author (in the late 1980s) that he did “not know what ‘quan- 
turn group’ means, but it sounds very attractive”. It seems however that he 
himself had in effect already applied quantum groups to the discretization of 
the Schrodinger operator in a magnetic field.) 

It seems likely that the technique of quantum groups can be used to im- 
prove some of the known results concerning the above polynomial invariants. 
However hitherto nothing along these lines has been achieved aside from a 
systematization of known results, although the approach continues to look 
promising. 

The Jones polynomial has led to some beautiful new results. One such result 
is as follows. In the late 19th century the physicist Tait, following,a suggestion 
of either Maxwell or Thompson (Lord Kelvin), began to study knots. Having 
compiled a table of the simplest nontrivial knots, he observed in particular 
various properties of the “alternating” knots in his table, i.e. those where 
undercrossings alternate with overcrossings as one traces out the oriented 
diagram of the knot. Using the Jones polynomial it was shown by Kauffman 
and Murasugi in the late 1980s that, provided such an oriented diagram is 
irreducible (i.e. is not obtainable by joining two nontrivial diagrams together 
by means of a pair of nonintersecting line segments (see Figure A.lO)), then the 
number of crossings is a topological invariant of the knot. (In fact the number 
of crossings of an irreducible alternating diagram is equal to the difference 
between the largest and smallest powers oft occuring in the Jones polynomial 
J(t, t-l).) 

Fig. A.lO. A reducible diagram 

Although this had never been considered a major question of knot theory, it 
is significant that the methods of classical topology had seemed inadequate for 
settling it. This (and other results) provide evidence of the great importance 
of the discovery of the Jones polynomial. 
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We mention in passing also the following nice property of the Alexander 

polynomial (known for some time): For a ribbon knot (i.e. one bounding an 
immersed 2-disc in R3) there exists a polynomial f(t) such that 

A(t, t-‘) = f(t)f(t-‘). 

$3. Vassiliev Invariants 

The additive properties of the Alexander and Jones polynomials have a very 
attractive interpretation in terms of “Vassiliev invariant?. The theory of these 
invariants has appeared over the last 5 years or so; chief among its exponents 

are V. Vassiliev, D. Bar-Natan, J. Birman , X-S. Lin, M. Kontzevich. 
Consider the space Fk of all immersions Gk of the circle S’ in R3 with 

the property that the image has exactly k double points (crossings), Pi, Pi E 
S’, i = 1,. . , k, at each of which the image curve meets itself transversely. 
By perturbing the image near one such intersection point we obtain a pair 

G;-1, Gi-i of immersions of S1 each with (k - 1) crossings, and therefore 
belonging to the space Fk- r (see Figure A. 11). Consider a topological invariant 

Fig. A.1 1. Defining the Vassiliev derivative 

fk of the space Fk, i.e. any function from the set of components of Fk to some 
abelian group A: 

.fk : ro(Fk) + A. 

Thus in particular when k = 0 we obtain precisely the topological invariants 
of knots. We call such an invariant fk a Vassiliev derivative of some invariant 
f&i if the following equation holds: 

fk-l($,) - fk-l(Gi-l) = fk(Gk). 

A topological invariant of knots is then called a Vassiliew k-invariant if its 
(k + l)st Vassiliev derivative is zero. 

By a result of Bar-Natan, all coefficients of the Alexander polynomial are 
Vassiliev invariants. A few years ago Bar-Natan, Lin, and Birman were also 
able to deduce from the additive properties of the HOMFLY polynomial that 
after performing the substitution. 

y  = exp(Nz), z = exp(G) - exp(-G), 
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the coefficients of the HOMFLY polynomial as a series in t are Vassiliev 
invariants. 

There is an attractive formula due to Kontzevich expressing all Vassiliev 
invariants analytically in terms of multiple integrals, assuming that the knot 
or link diagram comes with some generic Morse function (for instance the 
projection of the planar diagram on the y-axis). 

There is also a purely combinatorial characterization of all possible Vas- 
siliev invariants, which, however, is at present computationally impractical 
for calculating specific invariants. (In fact there are at present no known spe- 
cific Vassiliev invariants other than the above-mentioned coefficients of the 
Alexander and HOMFLY polynomials of knots.) 

Fig. A.12. The diagram U 

This combinatorial description is as follows. Define a chord diagram to be 
a circle with 21c distinct points labelled Pj, Qj,j = 1,2,. . , k, marked on it. 
(In fact only the cyclic order of the points around the circle will be significant 
here.) We now impose the following relations on the free abelian group freely 
generated by all chord diagrams (with 2k points): 

1. A chord diagram is set equal to zero if it contains a pair Pj, Qj of points 
not “linked” with any other pair, i.e. if for any i one has Pj < Pi < Qj in 
the cyclic order round the circle, then also Pj < Qi < Qj. 

2. Given any (k - 2) pairs Pj, Qj, j = 1,. . . , k - 2, of points and three 
further points Al, AZ, A3 on the circle, all distinct, one may construct a 
chord diagram with 2k points as follows: First replace one of the three 
points Al, AZ, A3 by two adjacent points (close to the chosen Ai) labelled 
Pk-l,Pk, and relabel one of the remaining points Qk-1 and the other Qk; 
since this relabelling can be carried out in two distinct ways, there are two 
chord diagrams, C+ and C- say, obtainable in this way; thus if Al is the 
point first chosen, then C+ and C- are given by 

c, : A2 = Qk-1, A3 = Qk, 
c- : A2 = Qk, A3 = Qk-1. 

One then imposes the relations ensuring that the difference C+ - C- is 
independent of the choice of the first point of the triple Al, Aa, A3. 

The resulting quotient group Bk then has encoded in it all Vassiliev k- 
invariants. 
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The graded sum 

k>O 

can be given the structure of a graded Hopf ring by defining multiplication 
via the connected sum of chord diagrams along arcs disjoint from the marked 
points. (That this multiplication is well-defined is a consequence of the above 
defining relations of the Bk.) 

We now describe the formula of Kontzevich from which it follows easily that 
each element of the Bk does indeed correspond to a Vassiliev invariant. Let 
K be an oriented knot in Iw3 given via co-ordinates z = .z(t)(= x(t) +iy(t)), t. 
(Here t may be regarded as a generic Morse function on K.) Consider the 
following sum (of “Kniznik-Zamolodchikov monodromy”): 

here the integral is taken with respect to the variables t,. For each value of 
t, one has the set of points (z(ts),ts) on the knot K, and from this set one 
chooses (the choice being indicated by AS) m, pairs 

(zj(b),b), (+(t,),t,), j = 1,. . ,msr 

where C, m, = m. The associated chord diagram is then just the circle 
with this collection of pairs of points. The symbol N J denotes the number 
of descending chords with respect to t. Writing s = SK for the number of 
minimum points of the knot K, and y := Z(U) where U is as in Figure A.12, 
one has the following formula of Kontzevich : 

ypSZ(K) is a topological (Vassiliev) invariant. 

$4. New topological invariants for 3-manifolds. 
Topological Quantum Field Theories 

We shall now describe some applications of these ideas to the construction 
of new topological invariants of 3-manifolds. These invariants were discovered 
by Witten as natural non-abelian generalizations of the Schwarz represen- 
tation of the Reidemeister-Ray-Singer invariant, in the form of a functional 
integral of “Chern-Simon? type, i.e. a multi-valued action functional on 

the space of gauge-equivalent classes of Yang-Mills fields (i.e. differential- 
geometric connexions on principal G-bundles where G is any compact Lie 
group (e.g. G = SUz)). 

There is a “partition function” defined on the class of 3-manifolds of the 
following form (provided this can be made sense of): 
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2(M3) = J DA(z) exp {ikS(A)} , i2 = -1. 

Here Ic is an integer by virtue of the “topological quantization of the coupling 
constants” (as formulated for multi-valued functionals by the present author 
in 1981, by Deser-Jackiv-Templeton in the special case of the Chern-Simons 
action (1982), and by Witten in 1983), which in turn is a consequence of 
the requirement that the “Feynman amplitude” exp {i&5’} should be single- 
valued. Note that the CS-action has the following local form: 

S(A) = Tr(&Ai - t3,Aj + ;A3). 

Using a Heegaard decomposition of the 3-manifold along some surface, Witten 
developed a beautiful “Hamiltonian” approach to topological quantum field 
theory, enabling him to reduce the problem of defining and calculating the 
quantity Z(M3) t o certain problems of 2-dimensional conformal field theory 
on this surface. A perturbation series for Z(M3) in the variable i + co, 
constructed by Axelrod and Singer (and in a special case by Kontzevich) 
yielded some interesting topological quantities; the properties and possible 
applications of these has, however, hitherto not been investigated. 

The problem of giving an exact, rigorous, nonperturbative, purely topolog- 
ical definition of this invariant was solved by Reshetikhin and Turaev. The 
theory of this type of invariant has been further developed by several peo- 
ple, including Viro, Lawrence, and Lickorish. We shall now describe some 
of these invariants, as elaborated in the work of Lickorish of the late 1980s. 
(Our account of this work is largely taken from Kauffman’s book ‘(Knots and 
Physics” .) 

One can obtain any 3-manifold Mi by performing surgery along a suitable 
link or knot L in S3. This realization of a 3-manifold was used by Lickorish, 
Zieschang and the present author in the early 1960s in the construction of a 
non-singular 2-foliation on an arbitrary closed 3-manifold, starting from the 
Reeb fibration of S3 and performing a “tubulization” operation along some 
suitable transversal knot or link, i.e. along some appropriate closed braid 
in S’ x O2 c S3. It seems likely that Dehn had already been aware of 
the possibility of obtaining an arbitrary 3-manifold via surgery along a knot 
or link in S3; the reduction to closed braids is certainly due to Alexander 
(see above). At some time in the 1980s it was pointed out by Kirby that the 
latitude in this construction can be characterized via two standard elementary 
operations figuring in the multi-dimensional surgery theory used by Smale and 
Wallace in the proof of the n-dimensional Poincare conjecture for n > 4. The 
two operations in question are as follows (where we now assume that a link 
comes with a “frame” - see below): 

1. The first Kirby operation consists in the addition of a further unknotted 
component to the link, separated from the original link by a “wall” Iw2 C 

&X3, and with frame of linking number *l (see below). 
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2. The second Kirby operation is as follows: Choose two components Li, Lj, 
and denote by Lf the parallel shift of one of them (Li). Join Li and Lj by a 
Jordan arc equipped with a normal frame compatible with normal frames 
on Li and Lj not meeting the other components. Form the “connected 
sum” zi of Li and Lj along this framed arc, analogous to the “connected- 
sum” construction of the theory of framed surgeries (as for instance in the 
calculation of ns(S2) according to Pontryagin’s scheme). Finally, replace 
the pair Li, Lj by the new pair Lf,zj (the remaining components being 
left as before). 

Fig. A.13. A 2r-twist 

(Instead of the second operation, 3-manifold theorists often prefer to use a 
combination of the two operations. Thus for instance if the link has the form 
of an unknotted framed circle with linking number 4~1 (see below) bounding 
a disc, together with a number of other components all intersecting this disc 
transversely, then one removes this unknotted component and gives a “21r- 
twist” to the others (see Figure A.l3).) A s mentioned above, in the present 
context the given knot or link is assumed to come equipped with a frame (i.e. a 
normal field of unit vectors in IR3). A full topological invariant of such a frame 
is afforded by the linking number of the original curve (component) S1 with 
its shift a small distance in the direction of the normal field. The canonical 
normal frame is the one for which this linking number is zero: { S1, S:} = 0. 
A surgery along a closed Jordan curve Si in a 3-manifold M3, with trivial 
normal bundle T(S’) = S1 x D2 c M3, is determined completely by the 
linking number of a framing of the curve: the shift S: is to be null-homotopic 
after the surgery, in the new manifold A42 (and if the surgery is along a link, 
then the same applies to each component of the link). 

For a framed link L one has a linking matrix, a symmetric n x n matrix, 
where n is the number of components. The index i(L) of the link is then 
defined to be the number of strictly negative entries in the diagonalization of 
the linking matrix. 

A blackboard frame is the normal vector field to a planar diagram of a link 
L, obtained by means of a generic plane projection. A shift of the knot or link 
L a small distance in the direction normal to the plane of projection yields 
a parallel knot or link. If D is any diagram of the link, we shall understand 
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that the same diagram D with the n components (numbered 1,2,. , n in 
some order) labelled with integers ir, , i,, represents a new link with i, 

components parallel to the qth component (labelled iq), and close to one 
another. Thus this new link has altogether ir + . + i, components. 

For each fixed positive integer T write I, = (0, 1, , T - 2}, and denote 
by c an arbitrary function from the set of components of the link (numbered 
1,2,. , n) to I,. Given any numbers X0, Xl,. , Xr--2, we define a number 
((15)) (where L denotes the link in question) by 

(W)) = CL(l) x x X,++!~D,,(A, A-‘; 6); 

here the summation is over all such functions c, 6 = -A2 - Ae2 (as in Kauff- 
man’s construction of the Jones polynomial-see earlier), and DL denotes the 
diagram of the link L. 

The formula 
TR(@) = riy(L)) 

then gives a topological invariant of the 3-manifold Mi (the TR or Turuev- 
Reshetikhin invariant) provided r 2 3, A = exp {i7r/2r}, and the numbers X, 
satisfy the overdetermined linear system 

i=r-2 

6’ = C XiTi+j, j 2 0, 
i=o 

where Tj(j E Z) denotes the quantity So, (A, A-l; 6) determined by the di- 

agram Dj consisting of j distinct parallel copies of the elementary diagram 
with just one crossing (see Figure A.14). Although of considerable intrinsic in- 
terest, this invariant has not so far found use in the solution of any topological 
problem. 

Fig. A.14. The elementary diagram and its parallel copies 

The important notion of a “topological quantum field theory” (TQFT) has 
emerged in recent years, after it began to be realized that TQFT represents 
more than the mere construction of certain topological invariants of knots 
and manifolds via functional integration or the more rigorous combinatorial 
approach. We shall now describe an axiom system for TQFT, devised by Segal 
and Atiyah. (This system may perhaps be regarded as analogous to the well- 
known Eilenberg-Steenrod system of axioms for homology, which proved to 

be particularly useful in connexion with generalizations of homology such as 
K-theory and complex cobordism theory.) 
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An n-dimensional TQFT is postulated to be a category of closed, oriented 
(n - l)-dimensional manifolds V, each equipped with a Hilbert space Hv 
(usually finite-dimensional). The morphisms correspond to the oriented n- 
manifolds W with boundary V partitioned into two parts (the “inside” and 
“outside”): 

dW = v  = v, u v2, 

where VI, Vz carry the induced orientation. Any such cobordism W determines 
a linear map 

fw : Hv, --+ f+,, 

(where the bar indicates the opposite orientation) which may be considered 
as an element of Hvluv, : 

in view of the axiom 
Hv = H+ 

(here the asterisk indicates the adjoint space). Clearly for a cylinder with the 
natural orientation, the map fw will be the identity map. Thus a morphism 
is determined by an element fw E Hv for any manifold W with boundary V. 

I f  the manifold V happens to be the boundary of two manifolds WI, W,, 
we shall have two associated elements 

fw,,fw, E Hv. 

We then have that the number (f wl, fw,) is a topological invariant of the 
closed manifold WI U Wz. 

In classical topology there were only two examples of such invariants, 
namely the Euler characteristic of even-dimensional manifolds, and the signa- 
ture of manifolds-with-boundary of dimension 41c; the “Additivity Lemma”, 
proved by Rohlin and the present author in the mid-1960s shows that the 
latter example satisfies the axiom system. In these examples the spaces Hv 
are all one-dimensional, and the morphisms amount to multiplication by 

exp(aT(W)), where r is the signature (or the Euler characteristic in the sim- 
pler case). However we now have many new examples where the dimensions of 
the spaces Hv exceed 1; these represent highly nontrivial TQFTs, and yield 
the above invariants. 

In the case n = 2 any cobordism can be achieved by iterating the el- 
ementary “trousers”, i.e. the 2-manifold with boundary consisting of three 
circles VI, Vz, V3, on which there is a Morse function definable with exactly 
one critical point and constant on each of the two parts VI U Vz and 7s of the 
boundary. As a morphism in the appropriate TQFT this surface determines 
a tensor C;k on the space Hv of the circle V = S1; in fact its components are 
just the structural constants of a certain “Frobenius algebra”, i.e. a commuta- 
tive and associative algebra with identity element, and with a scalar product 
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qij = ( , ), satisfying (fg, h) = (f, gh). The scalar product qij corresponds to 
the cylinder S1 x I with boundary circles carrying the same orientation. 

This construction leads to the description of the values of the “correlation 
functions” (or the vacuum expectations for products of fields in terms of 
TQFT, which are constant by definition) as follows. Let {ei} be a basis of the 
corresponding Frobenius algebra, then one can derive the following properties: 

(a) the O-loop correlation function of pairs is equal to qij; 
(b) the O-loop correlation function of triples is equal to 

cijk = %s cjk ; 

(c) any O-loop correlation function may be expressed in the form 

(eiej . ek, 1); 

(d) any k-loop correlation function may be expressed in the form 

(eiej , . . ek, H”), 

where Hk = qi’eiei is the appropriate element of the Frobenius algebra under 
consideration. 

In the most interesting cases one has families of such theories (i.e. families 
of Frobenius algebras) depending on several parameters, and here the “axiom- 
atization” of such families becomes very important. (A suitable axiom system 
was formulated by Witten, Dijgraaf, and the Verlinde brothers.) It should be 
noted that the space of parameters satisfies certain “soliton-type dispersion- 
less integrable hierarchies” or “hierarchies of hydrodamic type” (in the sense 
of Dubrovin and the present author, involving the Hamiltonian formalism 
determined by a certain flat metric on the space of parameters). 

Remark. There are some aesthetically very pleasing cases when the space 
Hv, V = Si, turns out to be the even part of the cohomology ring of certain 
Calaby-Yau manifolds, and the associated Frobenius algebras correspond to 
certain “quantum deformations” of the cohomology ring. A rigorous treatment 
of this case, at least in part, has been given by Yau, Kontzevich, Manin, Tian, 
Ruan, Piunikhin, Givental, Salamon, MacDuff and others, using techniques 
from symplectic topology and algebraic geometry and topology. 0 

Following Witten, Dijgraaf, the Verlinde brothers, Dubrovin, Krichever and 
others, we shall describe an axiom system for the particular case of the 2- 
dimensional TQFT in the absence of a gravitational field. This approach in- 
volves a space with co-ordinates ti, and a function F(t) satisfying 

qk”aiaj8kF(t) = Ctj(t), (4.1) 
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where the metric q is constant in the t-coordinates, and C(t) is made up of 
the structural constants of a family of time-dependent Frobenius algebras (as- 
sociated with the same metric) at each value oft. We also have the equations 

Qj = alaiajF(t), 

since the first basic vector corresponds to the identity in these Frobenius al- 
gebras. The equations (4.1), (4.2) are called the associativity equations. (Note 

that the equations (4.1) are the most difficult part of this system to study.) 
These provide a geometric description of the so called Frobenius geometry of 
the space with the co-ordinates t’. 

The following aesthetically very pleasing description of the Frobenius geom- 
etry is due to Dubrovin. Assuming the metric 7 is such that the tensor r/isC,Sk 

is symmetric, consider the operators & - ~6’~~ depending on the parameter 
z and defining a connection on our space. It turns out that the curvature of 
this connection is zero provided the associativity equations (4.1), (4.2) hold 
(signifying that the Frobenius algebras C(t) are associative and the tensor 

field C’ijk coincides with the third derivative of some function F(t) which may 
be interpreted as the “free energy” for the corresponding TQFT). 

Following the scheme of Dijgraaf and Witten (1991) one may use flat co- 
ordinates hi,,(t) ( as f  ormal series in the variable 2) to define the “disper- 

sionless hierarchy” and so-called “O-loop gravitation continuation” (in this 
TQFT), as follows: 

hi= ghj,,(t), j=1,2 ,..., m 2 0, hj,o = tivij, 
m=O 

Hj,m = j-h&t(X)) dX. 

Here the Hj,m may be interpreted also as commuting Hamiltonians (of the 
hydrodynamic type) for this hierarchy, with “times” Tj),, and X = T1lo, 
tj = Tj>‘. The Hamiltonian formalism here is determined by the flat metric q 
in the sense of Dubrovin and Novikov (early 1980s; corresponding examples 
may be found in the book Modern Geometry, II, by Dubrovin, Fomenko, 
Novikov). In particular, the “free energy” O-loop was defined there as a special 
solution F(X, T). The partial derivatives with respect to the variables Tjlm of 
the solution F(X, T) coincide with the “O-loop correlation functions” in this 
TQFT. The following initial conditions are imposed on the solution F(X, T): 

F(X,T) = F(t), 

where Tj,m-l = 0 for m > 1, Tj,O = tj and X = tl; 
the condition for a “dispersionless string”: 
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the O-loop relation for the corresponding correlation functions: 

There are some simple cases when it is natural to conjecture the exis- 
tence of a “/c-dimensional loop gravitation extension” for all values of Ic. 
Here the dimension n = 1, and the “free energy” function satisfies the cele- 
brated KdV hierarchy with the Schrodinger potential u having initial value 
U(X) = (ax)‘F = X, and vanishing for all other “times”. 

It turns out that the Schrodinger potential may easily be obtained as a 
formal power series with integral coefficients, in the variables Tm, To = X. 
The coefficients of this formal power series are equal to the Chern numbers 
of certain holomorphic vector bundles over the corresponding moduli spaces 

of algebraic curves (of arbitrary genus and with certain points labelled); this 
result is due to Kontzevich (1992), who also proved the above conjecture of 

Witten. 
A nice exposition of the differential-geometrical approach to the subject 

may be found in the recent lectures “Geometry of 2-dimensional topological 
field theories” (SISSA preprint, 1994) given by Dubrovin. 

We conclude with a few more words on the associativity equations for the 
function F(t): we note that in the case ~11 = 0, 7712 = 1, 7722 = 0, the function 
F(t) (for n = 2) has the form: 

F(t) = $32 + f(t2), 

where f  is an arbitrary function. There are very interesting 2-dimensional 
examples of TQFT in this case which are significant for physics. 

Since this topic is quite recent, not all of the interesting observations that 
have been made concerning it have been given rigorous proof. It remains 
an intensely active area of research. The present author is not aware of the 
existence of a good survey article on the subject. 

For this brief survey the book ‘(Knots and Physics” by Kauffman, and lec- 
tures of Bar-Natan on Vassiliev invariants were the main sources; in addition 
a number of recent papers and the above-mentioned lectures by Dubrovin 
were consulted. Most of the remaining material was gleaned by the author 
from private conversations, lectures and seminars. 
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Piunikhin, 297 - C-function, 186 
Poincare, 28, 39, 40, 50-52, 72, 179, 206 - -Roth theorem, 120 
- -Atiyah duality, 128 - -Roth-Hirzebruch 
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