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STABLE ∞-OPERADS AND THE MULTIPLICATIVE YONEDA

LEMMA

THOMAS NIKOLAUS

Abstract. We construct for every ∞-operad O
⊗ with certain finite limits new

∞-operads of spectrum objects and of commutative group objects in O. We show
that these are the universal stable resp. additive ∞-operads obtained from O

⊗.
We deduce that for a stably (resp. additively) symmetric monoidal ∞-category
C the Yoneda embedding factors through the ∞-category of exact, contravari-
ant functors from C to the ∞-category of spectra (resp. connective spectra) and
admits a certain multiplicative refinement. As an application we prove that the
identity functor Sp → Sp is initial among exact, lax symmetric monoidal endo-
functors of the symmetric monoidal ∞-category Sp of spectra with smash product.

1. Introduction

Let C be an ∞-category that admits finite limits. Then there is a new ∞-category
Sp(C) of spectrum objects in C that comes with a functor Ω∞ : Sp(C) → C. It is
shown in [Lur14, Corollary 1.4.2.23] that this functors exhibits Sp(C) as the universal
stable ∞-category obtained from C. This means that for every stable ∞-category
D, post-composition with the functor Ω∞ induces an equivalence

FunLex
(

D,Sp(C)
)

→ FunLex
(

D, C
)

,

where FunLex denotes the ∞-category of finite limits preserving (a.k.a. left exact)
functors.

The question that we want to address in this paper is the following. Suppose C
admits a symmetric monoidal structure. Does Sp(C) then also inherits some sort
of symmetric monoidal structure which satisfies a similar universal property in the
world of symmetric monoidal ∞-categories? This is a question of high practical
importance in applications in particular for the construction of algebra structures
on mapping spectra and the answer that we give will be applied in future work by
the author.

Let us formulate the question more precisely. Assume that C is a presentable
and symmetric monoidal ∞-category such that the tensor bifunctor ⊗ : C × C → C
preserves colimits in both variables separately. Then as a consequence of the results
in [Lur14, Section 4.8.2] and [GGN15] the ∞-category Sp(C) inherits a canonical
closed symmetric monoidal structure with respect to which the functor Ω∞ becomes
lax symmetric monoidal. The question is then whether for a stably symmetric
monoidal ∞-category D (i.e. D is stable and the tensor bifunctor is exact in both
variables seperately) the induced functor

(1) FunLexlax

(

D,Sp(C)
)

→ FunLexlax

(

D, C
)
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is an equivalence. Here FunLexlax denotes the ∞-category consisting of those lax sym-
metric monoidal functors whose underlying functor preserves finite limits. It is a
consequence of the results of this paper that the functor (1) is indeed an equivalence
of ∞-categories. In fact our results are far more general.

• We introduce the concept of stability for ∞-operads D (a.k.a. symmetric
multicategories) generalizing the concept of stably symmetric monoidal ∞-
categories (Definition 4.1). For every such stable ∞-operad D the appropri-
ate functor generalizing (1) is shown to be an equivalence (Corollary 4.13).
This generalization makes sense since lax symmetric monoidal functors be-
tween symmetric monoidal ∞-categories are the same as maps between the
underlying ∞-operads.

• We prove that if C is itself only an ∞-operad (which admits certain finite
limits) then Sp(C) also inherits the structure of an ∞-operad which is stable
(Theorem 4.11). This generalizes the symmetric monoidal structure on Sp(C)
above (being symmetric monoidal is merely a property of an ∞-operad).
Even if C is symmetric monoidal, but not presentable, then it can happen
that Sp(C) is only an ∞-operad and not symmetric monoidal. Again the
generalisation of the functor (1) is shown to be an equivalence (Corollary
4.13).

• Conceptually the aforementioned results can be summarised by saying that
Sp(C) forms the cofree stable ∞-operad obtained from C. Following the pat-
tern developed in [GGN15] we will generalize this to pointed and (pre)addi-
tive situations. More precisely we construct for every ∞-operad C with
sufficient limits new ∞-operads C∗ of pointed objects, CMon(C) of commu-
tative monoid objects and CGrp(C) of commutative group objects in in C.
We show that these are the cofree pointed, preadditive resp. additive ∞-
operads obtained from C (see Section 5).

As a consequence of these abstract structural result we deduce that for every stably
symmetric monoidal ∞-category C the functor which sends an object x ∈ C to the
mapping spectrum map(1, x) admits a lax symmetric monoidal structure. This im-
plies that for every highly structured algebra a in C the mapping spectrum map(1, a)
becomes a highly structured ring spectrum as well. Moreover the functor map(1,−)
is initial among all exact, lax symmetric monoidal functors from C to the∞-category
of spectra (Corollary 6.8). An immediate consequence is that the identity functor
Sp → Sp is initial among exact, lax symmetric monoidal endofunctors of Sp. This
is, as tautological as it sounds, an important structural result for the symmetric
monoidal ∞-category Sp which is not true, for example, for the ∞-category of chain
complexes.

Relation to other work. Lurie constructs in [Lur14, Section 6.2.4] a stabiliza-
tion for a more restrictive subclass of ∞-operads than we do. His stabilization is
equivalent to ours and satisfies the same universal property but is closer to being
symmetric monoidal (more precisely corepresentable). He however uses much more
elaborate tools than we do, namely Goodwillie derivatives. We are not aware that a
similar construction can be done in the (pre)additive setting, see also Remarks 4.3
and 4.14.

In the paper [GGN15] it is shown that in the presentable setting the category
Sp(C) satisfies the universal property that left adjoint, symmetric monoidal functors
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out of it are the same as functors of the same kind out of C. By passing to right
adjoint functors this is equivalent to a universal property that is weaker but similar
to the one here. However it only works in the presentable world. In [BGT14]
Blumberg, Gepner and Tabuada take a similar presentable approach to deduce that
the lax symmetric monoidal functor induced by the tensor unit satisfies a certain
universal property. We consider it to be one of the main contributions here that we
do not need any presentability hypothesis and obtain even stronger forms of these
statements. Finally we make in this paper essential use of the Day convolution
structures for ∞-categories as introduced by Glasman [Gla13] and further developed
with Barwick [BGS15]. We review and extend some of their results in Section 3.

Acknowledgements. This paper is part of a joint project with Markus Land. I
want to thank him for several discussions and for helpful comments on an early
draft. I also thank David Gepner for comments on a draft.

2. Operads and operadic limits

We will freely use the language of ∞-categories as developed by Joyal, Lurie and
others. Our main sources are the books by Lurie [Lur09, Lur14]. We will mostly
follow the notation and terminology there. In particular for an ∞-category C and
objects a, b ∈ C we denote the mapping space by MapC(a, b) or only Map(a, b) if the
ambient category C is clear from the context. The mapping space is considered as an
object in the ∞-category S of spaces. Several times in this paper, we will encounter
the situation that for an ∞-category C and objects a, b ∈ C there is an ‘enriched’
mapping object, which lies in another ∞-category D with a functor D → S and
which refines Map(a, b). In such a situation we will denote the enriched mapping
object by mapD(a, b).

We say that an inclusion of simplicial sets C ⊆ D is a full simplicial subset if
the n-simplices of C are precisely those n-simplices of D for which all vertices lie in
C. In particular a full simplicial subset can be specified by specifying a subset of
the vertices. The most important case is that D is an ∞-category in which case it
follows that every full simplicial subset is also an ∞-category and we say that it is a
full subcategory. For two ∞-categories C and D we denote by Fun(C,D) the functor
category which is the simplicial set of maps from C to D. We will add a superscript
to indicate that we restrict to the full subcategory of functors with certain proper-
ties, for example FunΠ(C,D) ⊆ Fun(C,D) for the product preserving functors and
FunLex(C,D) ⊆ Fun(C,D) for the finite limit preserving (a.k.a. left exact) functors.

Let Op∞ denote the ∞-category of ∞-operads in the sense of [Lur14, Chapter
2]. These are really the ∞-categorical analogue of coloured, symmetric operads
(a.k.a. symmetric multicategories) but we will follow Lurie and simply call them ∞-
operads to avoid awkward language. To be precise an ∞-operad is an inner fibration
O⊗ → NFin∗ that admits coCartesian lifts over inert morphisms in NFin∗ such that
the induced maps

(ρ1! , ..., ρ
n
! ) : O

⊗
〈n〉 → O⊗

〈1〉 × ...×O⊗
〈1〉

are equivalences where ρi : 〈n〉 → 〈1〉 is the inert morphism in Fin∗ with ρi(i) = 1
and ρi(k) = 0 for k 6= i. Here we denote the fibre of the fibration O⊗ → NFin∗ over
the object 〈n〉 = {0, ..., n} ∈ NFin∗ by O⊗

〈n〉.
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For an ∞-operad O⊗ we will denote the underlying ∞-category as O := O⊗
〈1〉.

By the usual abuse of notation we will usually only write O⊗ for the ∞-operad and
leave the morphism O⊗ → NFin∗ implicit. A map between ∞-operads O⊗ and O′⊗

is a functor O⊗ → O′⊗ over NFin∗ which sends coCartesian lifts of inert morphisms
to coCartesian lifts. For every pair of operads there is the ∞-category of operad
maps O → O′ which is denoted by AlgO(O

′).

Remark 2.1. The notation AlgO(O
′) comes from the fact that if O⊗ is a monochro-

matic (i.e. non-coloured) operad like E⊗
n for 0 ≤ n ≤ ∞ then these ∞-categories

really form the ∞-categorical analogue of algebras over classical operads.

Remark 2.2. A symmetric monoidal ∞-category is a special case of an ∞-operad:
it is an ∞-operad C⊗ such that the map C⊗ → NFin∗ is coCartesian. If C⊗ and
C′⊗ are symmetric monoidal ∞-categories then an operad map C⊗ → C′⊗ is the ∞-
categorical analogue of a lax symmetric monoidal functor. It is potentially misleading
(thought mathematically consistent) to call such a functor a C-algebra in C′. In this
situation we will denote the ∞-category AlgC(C

′) also by Funlax(C, C
′) and refer to

it as lax symmetric monoidal functors. Such a lax symmetric monoidal functor
C⊗ → C′⊗ is symmetric monoidal if it carries all coCartesian lifts to coCartesian
lifts.

Recall that a morphism in Fin∗ is called active if only the basepoint maps to the
basepoint, i.e. if it is obtained from a morphism of finite sets by adding a disjoint
basepoint. For an operad O⊗ we denote by O⊗

act the pullback of O⊗ along the
inclusion NFinact∗ → NFin∗. In particular O⊗

act is an ∞-category and there is a fully
faithful inclusion i : O ⊆ O⊗

act of ∞-categories.

Definition 2.3. Let O⊗ be an∞-operad and p : K⊳ → O be a cone in the underling
∞-category. We say that p is an operadic limit if the induced cone ip : K⊳ → O⊗

act

is a limit cone in the ∞-category O⊗
act.

Let K be a collection of small simplicial sets. We say that an∞-operad O⊗ admits
all K-indexed operadic limits if for each functor K → O with K ∈ K there exists an
extension to an operadic limit cone. By OpK∞ we denote the subcategory of Op∞
consisting of ∞-operads that admit K-indexed operadic limits and operad maps
that preserve K-index operadic limits. Similary for O⊗,O′⊗ ∈ OpK∞ we will denote
by AlgKO(O

′) ⊆ AlgO(O
′) the full subcategory consisting of maps that preserve K-

indexed operadic limits.
In the case K = {∅} we say that the operad admits a terminal object and write

Op∗∞ resp. Alg∗O(O
′). Similarly for K consisting of all finite discrete simplicial sets

(including the empty set) we say that O⊗ admits operadic products and write OpΠ∞
resp. AlgΠO(O

′) . Finally for K consisting of all finite simplicial sets we say that O⊗

admits all finite operadic limits and write OpLex∞ resp. AlgLexO (O′).

Remark 2.4. One can spell out the definition of an operadic limit more explicitly
using the multi-mapping-spaces in an ∞-operad. For a sequence of objects z1, . . . , zn
and x in O we will denote these multi-mapping-spaces by MulO(z1, . . . , zn;x). Con-
cretely these are the mapping spaces

MulO(z1, . . . , zn;x) = MapO⊗
act

(z1 ⊠ . . . ⊠ zn;x)
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where we consider the list (z1, . . . , zn) as an object denoted z1⊠ . . .⊠zn in O⊗
act. For

example the mapping spaces MulO(z, x)in the ∞-operad O⊗ agrees with the mapping
space MapO(z, x) in the underlying ∞-category.

Then a cone p : K⊳ → O is an operadic limit if and only if for every sequence of
objects z1, . . . , zn in O the induced cone

MulO(z1, . . . , zn; p) : K
⊳ → S

is a limit in the ∞-category S of spaces. In particular an operadic limit is also a
limit in the underlying ∞-category O.

Example 2.5. Recall that a symmetric monoidal ∞-category is by definition an ∞-
operad such that the map C⊗ → NFin∗ is coCartesian. Then a cone K⊳ → C is an
operadic limit if and only if it is a limit in the underlying ∞-category C. This can be
easily seen using the description in terms of multi-mapping spaces and the fact that
in this case MulC(z1, . . . , zn;−) is corepresentable by z1 ⊗ ....⊗ zn. In particular C⊗

admits all K-indexed operadic limits precisely if the underlying ∞-category C admits
all K-indexed limits.

Example 2.6. It is not true in general that an ∞-operad admits K-shaped limits if
the underlying ∞-category does. Consider for example the ∞-category ∆0 consid-
ered as an ∞-operad without higher operations. Concretly the ∞-operad is given by
NFininert∗ → NFin∗ where Fininert∗ ⊆ Fin∗ is the subcategory consisting of all finite
pointed sets and inert morphism. This ∞-operad is also called the trivial operad.
Then the unique object is terminal in the underlying ∞-category but not operadically
terminal.

We now want to give a ‘converse’ to Example 2.5. We say that a map of ∞-
operads O⊗ and O′⊗ is fully faithful if it is fully faithful as a functor O⊗ → O′⊗

between ∞-categories. Equivalently if for every sequence of objects z1, ..., zn, x in O
the induced morphism

MulO(z1, . . . , zn;x) → MulO′

(

F (z1), . . . , F (zn);F (x)
)

is a homotopy equivalence. For example a symmetric monoidal functor F : C⊗ → C′⊗

between symmetric monoidal ∞-categories C⊗ and C′⊗ is fully faithful as a map of
∞-operads precisely if the underlying functor F〈1〉 : C → C′ between ∞-categories is
fully faithful.

A large symmetric monoidal ∞-category C⊗ is called presentably symmetric mon-
oidal if the underlying ∞-category C is presentable and the tensor bifunctor ⊗ :
C × C → C preserves colimits separately in each variable.

Proposition 2.7. For a small ∞-operad O⊗ and a collection of finite simplicial
sets K the following are equivalent

(1) O⊗ admits operadic limits of shape K
(2) O⊗ admits a fully faithful inclusion i : O⊗ → C⊗ where C⊗ is presentably

symmetric monoidal and such that the essential image of i(O) ⊆ C is closed
under K-indexed limits.

(3) O⊗ admits a fully faithful inclusion i : O⊗ → C⊗ where C⊗ is small, sym-
metric monoidal, C admits K-index limits and the essential image i(O) ⊆ C
is closed under K-indexed limits.

Proof. Recall that for an ∞-operad we have the inclusion i : O ⊆ O⊗
act. Moreover

O⊗
act admits a symmetric monoidal structure whose associated tensor bifunctor will
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be denoted by ⊠ : O⊗
act × O⊗

act → O⊗
act. Note that this functor is denoted as ⊕ in

[Lur14, Remark 2.2.4.6]. But since this could lead to confusion with biproducts in
the additive situation we prefer to use ⊠.

To show (1) ⇒ (2) assume that O⊗ admits K-indexed operadic limits. It is shown
in [Lur14, Section 2.2.4] that the fully faithful inclusion O → O⊗

act of ∞-categories
admits an extension to a fully faithful map of ∞-operads O⊗ → (O⊗

act)
⊠. Using

[Lur14, Corollary 4.8.1.12.] we can equip the∞-category P(O⊗
act) = Fun

(

(O⊗
act)

op,S
)

of space valued presheaves on O⊗
act with a symmetric monoidal structure such that

the Yoneda embedding O⊗
act → P(O⊗

act) admits a symmetric monoidal refinement.
This structure is in fact equivalent to the Day convolution that we will discuss in
Section 3 but we will not need this equivalence here.

Then by the Yoneda Lemma the induced map of ∞-operads

(O⊗
act)

⊠ → P(O⊗
act)

⊗

is fully faithful. But by construction P(O⊗
act)

⊗ is presentably symmetric monoidal
and the composition O⊗ → P(O⊗

act)
⊗ is fully faithful. Also the underlying functor

O → P(O⊗
act) preserves K-indexed operadic limits since the map O⊗ → O⊗

act does
so by definition of operadic limits and the Yoneda embedding preserves all limits.
Thus it also preserves all operadic limits (which exist in the target).

For (2) ⇒ (3) we use that the inclusion O → C factors through the κ-compact
objects Cκ for some cardinal κ since O is small. Enlarging κ if necessary we can
assume that Cκ is closed under all finite limits by [Lur09, 5.4.7.4]. Enlarging κ

further we can also assume that Cκ is closed under tensor products. This then
shows the claim.

For (3) ⇒ (1) assume the existence of an embedding j : O⊗ → C⊗ as stated in
(3). Then for every functor K → O⊗ the limit again lies in the essential image of
j〈1〉. Since it is an operadic limit in C⊗ it follows from fully faithfulness that it is

also an operadic limit in O⊗. �

Remark 2.8. We assume implicitly throughout that paper that our ∞-operads O⊗

are small. The presentably symmetric monoidal category C⊗ that occurred in the last
proposition however is necessarily large (i.e. the simplicial set C⊗ is a simplicial set
in the next universe). But in practice the ∞-operads O⊗ that we care about are often
already large. In that case the symmetric monoidal category C⊗ will be very large
i.e. lies in the next universe after large. Everything then works logically exactly the
same as now (in fact large sets also satisfy the ZFC axioms). Thus for simplicity
of language we will keep using the implicit assumption that all ∞-operads O⊗ are
small unless otherwise stated but note that all results also hold for ∞-operads in a
larger universe with the changes that those which are now large have to lie in the
successor universe.

Definition 2.9. An operadic adjunction between ∞-operads p : O⊗ → NFin∗ and
p′ : O′⊗ → NFin∗ consists of operad maps F : O⊗ → O′⊗ and G : O′⊗ → O⊗

together with a transformation α : idO⊗ → GF that exhibits G as a right adjoint to
F and such that p(α) is the identity transformation from p to itself. In this case we
say that F is operadically left adjoint to G and G is operadically right adjoint to F .

Clearly the operadic right adjoint is, if it exists, essentially uniquely determined
by the left adjoint and vice versa.
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Remark 2.10. Note that this notion is a special case of the notion of relative
adjunctions discussed by Lurie in [Lur14, Section 7.3.2]. One can translate the con-
cept of an operadic adjunction into the language of multi-mapping-spaces. Then an
operadic adjunction consists of two operad maps F and G together with a transfor-
mation α : id → GF such that for every sequence of objects x1, ..., xn ∈ O and every
object y ∈ O′ the induced transformation

MulO′

(

F (x1), . . . , F (xn); y
) α∗◦G(x1,...,xn;y)
−−−−−−−−−−→ MulO

(

x1, . . . , xn;G(y)
)

is a homotopy equivalence of spaces.

The next lemma in particular shows that an operadic adjunction always has an
underlying ordinary adjunction. In other words: the underlying functor of the op-
eradic right adjoint is the right adjoint of the underlying functor.

Lemma 2.11. For an operadic adjunction we obtain by restriction induced adjunc-
tions

F〈1〉 : O ⇆ O′ : G〈1〉 and Fact : O
⊗
act ⇆ O′⊗

act : Gact

Proof. This follows directly from [Lur14, Proposition 7.3.2.5]. �

It easily follows from the second equivalence of this lemma that an operadic right
adjoint functor preserves operadic limits.

Example 2.12. (1) Let C⊗ and C′⊗ be symmetric monoidal ∞-categories and
F : C⊗ → C′⊗ be a map of operads. Then F admits an operadic right adjoint
if and only if the underlying functor F〈1〉 : C → C′ admits a right adjoint.
This follows from [Lur14, Corollary 7.3.2.7].

(2) Assume that D ⊆ C is a full, reflective subcategory of the ∞-category C with
localization L : C → D. Assume that C has a symmetric monoidal struture
C⊗. Then we have the induced operad structure i : D⊗ ⊆ C⊗ such that the
inclusion i is a fully faithful map of ∞-operads. Assume that the localization
is compatible with the symmetric monoidal structure in the following sense:

For every L-equivalence X → Y in C and every object Z ∈ C the
induced map X ⊗ Z → Y ⊗ Z is also an L-equivalence.

Then D⊗ is symmetric monoidal, and the inclusion i admits an operadic
left adjoint L⊗ which is a symmetric monoidal functor. This is [Lur14,
Proposition 2.2.1.9.].

(3) In the the situation of (2) assume that C admits internal mapping objects.
That is a functor mapC(X,−) : C → C right adjoint to −⊗X : C → C. Then
instead of the criterion given in (2) it suffices to check the following

For every object X ∈ D and every object Z ∈ C the internal map-
ping object mapC(Z,X) ∈ C is equivalent to an object in D.

The equivalence of the two criteria follows easily from the adjunction property
of the tensor product and the internal mapping space.

3. Day convolution of ∞-operads

In this section we recall and expand some results about the Day convolution of ∞-
categories as developed by Glasman [Gla13]. This Day convolution for ∞-categories
is a generalization of the classical one for ordinary categories by Day [Day70]. The
results of this section will be needed in some of the proofs in later chapters. But
we have tried to formulate the statements in later chapters without reference to the
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terminology introduced here so that this section can be skipped at a first reading.

Assume C⊗ → NFin∗ is a symmetric monoidal ∞-category, i.e. a coCartesian
fibration. Assume moreover that O⊗ → NFin∗ is an ∞-operad. We consider the
internal hom in simplicial sets over NFin∗ denoted by hom/NFin∗ (C

⊗,O⊗). This is
by definition the simplicial set over NFin∗ (unique up to isomorphism) such that for
every other simplicial set K → NFin∗ there is a bijection

Hom
(

K,hom/NFin∗

(

C⊗,O⊗
)) ∼

−→ Hom
(

K ×NFin∗ C
⊗,O⊗

)

which naturally depends on K. Here Hom denotes the set of homomorphisms of
simplicial sets over NFin∗. In particular the fibre of hom/NFin∗ (C

⊗,O⊗) over 〈n〉 is

isomorphic to the simplicial set Fun
(

C⊗
〈n〉,O

⊗
〈n〉

)

.

Lemma 3.1. The morphism hom/NFin∗ (C
⊗,O⊗) → NFin∗ is an inner fibration.

Proof. This follows as in [Gla13]: we have to find a lift in every diagram

Λn
i

//

��

hom/NFin∗ (C
⊗,O⊗)

��
∆n //

77
♦

♦

♦

♦

♦

♦

NFin∗

for 0 < i < n. But this is by adjunction the same as a lift in the diagram

Λn
i ×NFin∗ C

⊗ //

��

O⊗

��
∆n ×NFin∗ C

⊗ //

88
♣

♣

♣

♣

♣

♣

NFin∗

Since O⊗ → NFin∗ is inner it suffices to show that the left vertical morphism is
inner anodyne. But that follows from the dual of [Lur09, Proposition 3.3.1.3]. �

Definition 3.2. Let C⊗ be a symmetric monoidal ∞-category and O⊗ be an ∞-
operad. Then the Day convolution is defined as the the full simplicial subset
Fun(C,O)⊗ ⊆ hom/NFin∗ (C

⊗,O⊗) whose fibre over 〈n〉 consists of those functors

F : C⊗
〈n〉 → O⊗

〈n〉

such that under the equivalences

ρ : C⊗
〈n〉

∼
−→
∏

n

C ρ′ : O⊗
〈n〉

∼
−→
∏

n

O

we have an equivalence of functors ρ′ ◦F ≃ (F1× ...×Fn)◦ρ for functors Fi : C → O.

The last condition can be expressed more informally by saying that the functor F
is in diagonal form. Note that the notation here is slightly abusive since Fun(C,O)⊗

depends on the operad structures C⊗ and O⊗ and not only on the underlying ∞-
categories C and O. But the underlying ∞-category Fun(C,O)⊗〈1〉 is the functor

category Fun(C,O) and therefore we choose the notation as it is.

Proposition 3.3. Assume C⊗ is a small symmetric monoidal ∞-category and O⊗ is
a small ∞-operad O. Then Fun(C,O)⊗ → NFin∗ is an ∞-operad. If D is presentably
symmetric monoidal, then so is Fun(C,D)⊗.
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There is an equivalence of symmetric monoidal ∞-categories AlgE∞
(Fun(C,O)) ≃

AlgC(O). In the case that O is symmetric monoidal this means that a commutative
algebra in Fun(C,O) is essentially the same thing as a lax symmetric monoidal
functor C → O.

Proof. Assume first that O⊗ is presentably symmetric monoidal. Then the underly-
ing∞-category Fun(C,O) of Fun(C,O)⊗ is presentable. The fact that it is symmetric
monoidal is [Gla13, Proposition 2.9] and the fact that the tensor product preserves
colimits separately in each variable is [Gla13, Proposition 2.11]. Now let O be a small
∞-operad. Choose an operadically fully faithful embedding i : O⊗ → D⊗ where D is
presentably symmetric monoidal. To see that this is possible apply Proposition 2.7
with K = ∅. Let i(O)⊗ ⊆ D⊗ be the full subcategory spanned by the essential image
of i. Then Fun(C, i(O))⊗ ⊆ Fun(C,D)⊗ is also a full subcategory. Since it is spanned
by the products of elements in Fun(C,O) it follows immediately that it is again an
∞-operad. Now finally there is an evident equivalence of ∞-operads O⊗ → i(O)⊗.
This induces an equivalence of the ∞-categories Fun(C,O)⊗ ≃ Fun(C, i(O))⊗ over
NFin∗. Since according to 3.1 the first is an inner fibration it follows that it is an
∞-operad from the fact that the second is.

The second claim directly follows from [Gla13, Proposition 2.12.]. �

Remark 3.4. The conclusion of Proposition 3.3 is true more generally than stated
(see [Gla13] and [BGS15]): first one can allow the source C⊗ to be pro-op-monoidal
instead of symmetric monoidal. That means that C⊗ is an ∞-operad such that
C⊗ → NFin∗ is a flat inner fibration (see [Lur14, Definition B.3.8]). In that case
Fun(C,O)⊗ defined with the same formula is still is an ∞-operad. Also for Fun(C,O)⊗

to be symmetric monoidal one does not need O⊗ to be presentably symmetric monoidal,
but it is enough if O⊗ is symmetric monoidal and has sufficient colimits. We shall
however not need these generalizations in this paper.

In order to understand the coCartesian lifts in Fun(C,O)⊗ let us unfold what a
1-simplex in hom/NFin∗ (C

⊗,O⊗) is. First it covers a morphism f : 〈n〉 → 〈m〉 in

Fin∗. We denote by C⊗
f the pullback of C⊗ → NFin∗ along the functor ∆1 → NFin∗

induced by f . Similarly we have O⊗
f . Then by the universal property a 1-simplex in

hom/NFin∗ (C
⊗,O⊗) covering f is the same as a morphism C⊗

f → O⊗
f over ∆1. Now

let us assume that O⊗ and C⊗ admit coCartesian lifts for f (this is by assumption
the case for C and for O it is the case if f is inert or if O is symmetric monoidal).
We denote the resulting functors by

fC
! : C⊗

〈n〉 → C⊗
〈m〉 and fO

! : O⊗
〈n〉 → O⊗

〈m〉

Then a morphism C⊗
f → O⊗

f is essentially the same thing as a pair of functors

F : C⊗
〈n〉 → O⊗

〈n〉 and G : C⊗
〈m〉 → O⊗

〈m〉 together with a transformation η : fO
! ◦ F →

G ◦ fC
! .

Lemma 3.5. Let f : 〈n〉 → 〈m〉 be a morphism in Fin∗. Now assume that either
O⊗ is presentably symmetric monoidal or that f is inert (also recall that C⊗ is
symmetric monoidal). An edge in Fun(C,O)⊗ over f is essentially the same thing
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as a (not necessarily commutative) square

C⊗
〈n〉

F1×...×Fn //

fC
!

��

O⊗
〈n〉

fO
!

��

C⊗
〈m〉

G1×...×Gm
// O⊗

〈m〉

together with a transformation η : fO
! ◦ F → G ◦ fC

! where we abbreviate F =
F1 × ... × Fn and G = G1 × ... × Gm. This edge is coCartesian if and only if the
transformation η exhibits G as the left Kan extension of fO

! ◦ F along fC
! .

Proof. The first part follows from the discussion above and the second is a reformu-
lation of the description of coCartesian lifts given in [Gla13]. �

Corollary 3.6. Let C⊗ be symmetric monoidal and D⊗ be presentably symmetric
monoidal. Then we have a natural equivalence

MapFun(C,D)(E ⊗ F,G) ≃ MapFun(C×C,D)(⊗
D ◦ (E × F ), G ◦ ⊗C)

where ⊗C : C × C → C and ⊗D : D ×D → D are the tensor bifunctors of C and D.

Proof. Note that in the terminology of Lemma 3.5 the tensor bifunctors are given by
fC
! and fD

! for f the unique active morphisms 〈2〉 → 〈1〉. Since the tensor product

of E and F is the left Kan extension of ⊗D ◦ (E × F ) along ⊗C the claim follows
from the universal property of left Kan extension. �

Note that the construction of Fun(C,O)⊗ as a subset of hom/NFin∗ (C
⊗,O⊗) allows

us to immediately deduce certain functorialities. It is on the point set level (i.e.
as simplicial sets over NFin∗) contravariantly functorial in the first variable and
covariantly in the second. We can now show that these functorialities are compatible
with the operad structures.

Corollary 3.7. Let C⊗ be a symmetric monoidal ∞-category. For every morphism
p : O⊗ → O′⊗ of ∞-operads the morphism p∗ : Fun(C,O)⊗ → Fun(C,O′)⊗ induced
by post-composition with p is a morphism of ∞-operads. If O and O′ are presentably
symmetric monoidal and p is a symmetric monoidal functor that preserves colimits
then p∗ is also a symmetric monoidal functor.

Proof. The only thing that we have to prove is that p∗ preserves certain coCartesian
lifts, namely those over intert morphisms in NFin∗ in the first case and all coCarte-
sian lifts in the presentably symmetric monoidal case. Thus let let f be a morphism
in NFin∗ as in Lemma 3.5. Then for a lift of f we obtain a diagram

C⊗
〈n〉

F1×...×Fn //

fC
!

��

O⊗
〈n〉

fO
!

��

η

t| qq
q
q
q
q
q
q
q
q
q
q
q

q
q
q
q
q
q
q
q
q
q
q
q
q

p〈n〉
// O′⊗

〈n〉

fO′

!
��

C⊗
〈m〉

G1×...×Gm // O⊗
〈m〉

p〈m〉
// O′⊗

〈m〉

in which the right hand side commutes (in sense that there is a filler cell that
is invertible and which is therefore suppressed in the notation) since p preserves
coCartesian lifts over f . Using the description of coCartesian lifts given in Lemma
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3.5 we have to show that the composition cell p〈m〉 ◦ η exhibits the composition

p〈m〉 ◦G as the left Kan extension of fO′

! ◦ p〈n〉 ◦ F ≃ p〈m〉 ◦ f
O
! ◦ F along fC

! .
We now disntinguish two cases: first if the morphism f is inert, then all the push-

forward functors f! are product projections. Then η exhibits a left Kan extensions
precisely if G is equivalent to the appropriate projection of the F ′

i s, i.e. G ≃
∏

Ff(i).
In particular η is an equivalence in this case. Similar we see that p〈m〉 is also in prod-
uct form. From this description it is immediate that p〈m〉 ◦ η is an equivalence and
exhibits a product projection, hence a left Kan extension.

The second case that we have to consider is the f is not necessarily inert but p〈1〉
and hence also p〈m〉 preserve colimits. But then it is clear that p〈m〉 also preserves
left Kan extensions (using the pointwise formulas) and we are done. �

Corollary 3.8. Let q : C⊗ → C′⊗ be an operad morphism between symmetric
monoidal ∞-categories C and C′, i.e. a lax symmetric monoidal functor. Then
the morphism q∗ : Fun(C′,O)⊗ → Fun(C,O)⊗ induced by pre-composition with q is
a morphism of ∞-operads. If O⊗ is presentably symmetric monoidal and q is a sym-
metric monoidal functor, then q∗ admits an operadic left adjoint which is symmetric
monoidal.

Proof. For the first part of the proof we proceed similarly as in the proof of Corol-
lary 3.7. We have to show that q∗ preserves coCartesian lifts of inert morphisms.
Thus consider a coCartesian lift in Fun(C′,O)⊗ over an inert morphism f in Fin∗.
Following the discussion in the Proof of Corollary 3.7 we have a diagram

C⊗
〈n〉

q〈n〉
//

fC
!

��

C′⊗
〈n〉

F1×...×Fn //

fC′

!
��

O⊗
〈n〉

fO
!

��

C⊗
〈m〉

q〈m〉
// C′⊗

〈m〉

G1×...×Gm // O⊗
〈m〉

where we do not draw η as a filler in the right hand diagram since it is invertible.
Then again q〈n〉 is in product form as well and as in the proof of Corollary 3.7 before
we see that the outer diagram is also a left Kan extension.

Thus it remains to show the second part of the claim. We want to use [Lur14,
Corollary 7.3.2.12]. Thus we first have to show that the underlying functor q∗〈1〉 :

Fun(C′,O) → Fun(C,O) admits a left adjoint, but this is clear since it preserves all
limits and colimits and since O is presentable and therefore the functor categories are
presentable as well. This left adjoint is given by left Kan extension and we denote this
left adjoint by q!. Then we have to verify condition (2) of [Lur14, Corollary 7.3.2.12]
which in this case comes down to the following: the evident natural transformations

q! ◦ ⊗
Fun(C,O) → ⊗Fun(C′,O) ◦ (q! × q!) and q!(1Fun(C,O)) → 1Fun(C′,O)

are equivalences where ⊗Fun(C,O) and ⊗Fun(C′,O) are the tensor bifunctors in the Day
convolution structures and 1Fun(C,O),1Fun(C′,O) are the tensor units (the transforma-
tions in question are easily described in terms of their adjoints and the lax symmetric
monoidal structure of q∗). Let F,G : C → O be functors. Then F ⊗Fun(C,O) G is
according to Lemma 3.5 given by the left Kan extension of F ⊗O G : C × C → O
along ⊗C : C×C → C. Thus q!(F ⊗Fun(C,O)G) as the further left Kan extension along
C → C′ can be obtained as the left Kan extension along the composition q ◦⊗C. But
this is equivalent to the left Kan extension along ⊗C′

◦ (q × q) by the assumption
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that q is symmetric monoidal. Then finally the claim follows from the fact that the
left Kan extension of F ⊗O G : C × C → O along q × q is equivalent to q!F ⊗O q!G

which follows from the assumption on the tensor product of O. The case of the unit
works similar. �

Note that for a symmetric monoidal ∞-category C the opposite category Cop also
carries a canonical structure of a symmetric monoidal ∞-category. This can be
constructed by first straightening C⊗ → NFin∗ to a functor NFin∗ → Cat∞, then
post composing with (−)op : Cat∞ → Cat∞ and then straightening to a symmetric
monoidal ∞-category (Cop)⊗ → NFin∗ again. One can also give a direct simpli-
cial model, see [BGN14], see also [Knu16, Appendix A.3] for a discussion of the
functoriality of this construction. Thus the functor category Fun(Cop,S) admits an
extension to a presentably symmetric monoidal ∞-category Fun(Cop,S)⊗.

Proposition 3.9 (Glasman [Gla13, Section 3]). Let C⊗ be a small symmetric monoidal
∞-category. Then the Yoneda embedding j : C → Fun(Cop,S) admits a canonical
refinement to a symmetric monoidal functor C⊗ → Fun(Cop,S)⊗.

We can now combine this observation with the equivalence AlgE∞
(Fun(Cop,S)) ≃

Funlax(C
op,S) as stated in Proposition 3.3 to get

Corollary 3.10. For C a symmetric monoidal ∞-category we have a fully faithful
functor j′ : AlgE∞

(C) → Funlax(C
op,S) that (up to equivalence) refines the ordinary

Yoneda embedding j.

Proof. The only thing that we have to show is fully faithfulness. But this follows
since the map C⊗ → Fun(Cop,S)⊗ is fully faithful in the operadic since (i.e. as a
functor of total ∞-categories) since the underlying functor is fully faithful by the
Yoneda lemma and it is symmetric monoidal. For such operad maps all the induced
functors on algebra ∞-categories are also fully faithful. �

Note that every presentably symmetric monoidal ∞-category D⊗ admits internal
mapping objects mapD(a, b) ∈ D for a, b ∈ D. In particular if D⊗ is presentably
symmetric monoidal then according to Proposition 3.3 so is Fun(C,D)⊗ and thus
admits internal mapping object. For later use we want to give a concrete description
of these internal mapping objects in Fun(C,D). It turns out to be most conveniently
expressed using the language of ends in ∞-categories as discussed in [GHN15] and
[Gla13]. Let us sketch the relevant facts about ends:

(1) Given a functor F : Cop × C → D the end
∫

d∈C F also written as
∫

c∈C F (c, c)

is the limit over the induced functor TwArr(C) → Cop × C
F
−→ D where

TwArr(C) is the twisted arrow ∞-category of C as defined in [Lur11, Section
4.2].

(2) Since the end is defined as a limit is also has the properties of limits, i.e.
it preserves other limits and also is preserved by all functors that preserve
limits.

(3) If F is a functor F : Cop × C × C′ → D then we can take for every t ∈ C′ the
end and obtain a functor in t which we write as t 7→

∫

c∈C F (c, c, t). To see

this we consider F as a functor Cop × C → Fun(C′,D) and take the end in
the functor category.
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(4) If we have a functor F : Cop × C × C′op × C′ → D then we have the ‘Fubini’
result which is the equivalence

∫

c∈C

∫

c′∈C′

F (c, c, c′, c′) ≃

∫

(c,c′)∈C×C′

F (c, c, c′, c′).

This follows from the equivalence TwArr(C × C′) ≃ TwArr(C)×TwArr(C′).
(5) The mapping space in a functor category between functors F,G : C → D

admits a description as an end in the ∞-category of spaces as follows

MapFun(C,D)(F,G) ≃

∫

c∈C
MapD(F (c), G(c))

This follows from Proposition 5.1 in [GHN15]

Proposition 3.11. Assume that D⊗ is a presentably symmetric monoidal ∞-category.
Then the internal mapping object in the symmetric monoidal ∞-category Fun(C,D)⊗

is given by the formula

mapFun(C,D)(F,G)(−) ≃

∫

d∈C
mapD

(

F (d), G(− ⊗ d)
)

Proof. We want to verify that the functor

c 7→

∫

d∈C
mapD

(

F (d), G(c ⊗ d)
)

satisfies the universal property of the internal mapping object. To that end let us
compute maps from a further functor E : C → D into it:

MapFun(C,D)(E,

∫

d∈C
mapD

(

F (d), G(− ⊗ d)
)

)

≃

∫

c∈C
MapD

(

E(c),

∫

d∈C
mapD

(

F (d), G(c ⊗ d)
)

)

by (5)

≃

∫

c∈C

∫

d∈C
MapD

(

E(c),mapD

(

F (d), G(c ⊗ d)
))

by (2)

≃

∫

(c,d)∈C×C
MapD

(

E(c)⊗ F (d), G(c ⊗ d)
)

by (4)

≃ MapFun(C×C,D)(⊗
D ◦ (E × F ), G ◦ ⊗C) by (5)

≃ MapFun(C,D)(E ⊗ F,G) by Cor.3.6

The chain of equivalences is natural in E which establishes the desired universal
property. �

4. Stable ∞-Operads

Recall that an ∞-category C is called stable if it is pointed (i.e. it admits an object
which is initial and terminal) and a square ∆1 ×∆1 → C is a pushout precisely if it
is a pullback. The notion of stability is studied in detail in [Lur14, Section 1]. We
now want to discuss the operadic analogue:

Definition 4.1. A symmetric monoidal ∞-category C⊗ is called stably symmetric
monoidal if the underlying∞-category is stable and the tensor bifunctor ⊗ : C×C →
C preserves finite colimits separately in each variable (i.e. is exact in each variable).
A (small) ∞-operad O⊗ is stable if it admits a fully faithful inclusion i : O⊗ → C⊗
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where C⊗ is a (small) stably symmetric monoidal ∞-category and such that the
essential image i(O) ⊆ C is closed under finite limits. We let OpSt∞ be the full
subcategory of OpLex∞ (see Definition 2.3) consisting of the stable ∞-operads.

Example 4.2. The category of spectra with the smash product is stably symmetric
monoidal. All categories of modules over a commutative ring spectrum (such as the
∞-category of chain complexes) are stably symmetric monoidal. Since this example
is large the convention of Remark 2.8 is applied, i.e. we work one universe higher.

An example of a stable ∞-operad is formed by the suboperad Sp⊗fg ⊆ Sp⊗ of the ∞-

operad of all spectra spanned by the spectra with finitely generated homotopy groups
in every degree. This subcategory if clearly closed under finite limits, but not under
smash products (e.g. HZ⊗KU ≃ KUQ is not in Spfg).

Remark 4.3. • Note that for a stable ∞-operad O⊗ → NFin∗ the total ∞-
category O⊗ is in general not stable as an ∞-category. Conversely if the
∞-category O⊗ is stable then O⊗ is not necessarily stable as an ∞-operad.

• One can give a more intrinsic characterization of stability for an operad
using the theory of operadic colimits discussed in [Lur14, Section 3.1.1]: an
∞-operad O⊗ is stable if and only if it admits finite operadic colimits for
diagrams in O and finite operadic limits and its underlying ∞-category is
stable. We will not need this characterization and therefore avoid the theory
of operadic colimits. The key to see the equivalence to our definition is to
give an independent proof of Proposition 4.11 below using this alternative
characterization.

• The underlying ∞-category O of a stable ∞-operad is stable. This follows
since i(O) ⊆ C is a stable subcategory. But in general it is not sufficient that
O is stable as an ∞-category for O⊗ to be stable as an ∞-operad. However
under the assumption that O⊗ admits all operadic colimits and limits it is
equivalent as noted before. Again we do not prove this here.

• A symmetric monoidal ∞-category C⊗ is stably symmetric monoidal precisely
if it is stable as an ∞-operad. One direction is clear taking the identity as
an embedding. For the other direction assume that i : C⊗ → C′⊗ is an fully
faithful embedding as in the definition. In particular the underlying functor
preserves all finite colimits and limits. Then for every finite colimit in C,
which we will write abusively as colim ci, and objects c, d ∈ C we have the
following chain of equivalences

MapC(c⊗C colim ci, d) ≃ MulC(c, colim ci; d)

≃ MulC′(i(c), i(colim ci); i(d))

≃ MapC′(i(c) ⊗C′ i(colim ci); i(d))

≃ MapC′(colim(i(c) ⊗C′ i(ci)); i(d))

≃ limMapC′(i(c) ⊗C′ i(ci); i(d))

≃ limMulC′(i(c), i(ci); i(d))

≃ limMulC(c, ci; d)

≃ limMapC(c⊗C ci; d)

This shows that the canonical cone exhibits c⊗colim ci as the colimit of c⊗ci
in C. Therefore the tensor product of C preserves colimits separately in the
second variable and thus by symmetry in both.



STABLE ∞-OPERADS AND THE MULTIPLICATIVE YONEDA LEMMA 15

• There is also a definition of stability for ∞-operads in [Lur14, Section 6.2.4].
This notion differs from ours, in that Lurie calls an ∞-operad O⊗ stable if
the functor O⊗ → NFin∗ is locally Cartesian, the underlying ∞-category is
stable and the associated tensor functor ⊗n : On → O (which exists by the
locally Cartesian assumption) is exact in each variable separately. One can
show that every such ∞-operad is stable in our sense. but the converse is
not true, i.e. our notion of stability is more general.

Lemma 4.4. A small ∞-operad O is stable if and only if it admits a fully faithful
inclusion i : O⊗ → C⊗ where C⊗ is presentably symmetric monoidal, C is stable and
the essential image i(O) ⊆ C is closed under finite limits.

Proof. Assume O is stable. By definition of stability we find an operadically fully
faithful embedding i : O⊗ → C⊗ where C⊗ is stably symmetric monoidal. Now
we form the Ind-completion Ind(C). According to [Lur09, Proposition 1.1.3.6] and
[Lur14, Corollary 4.8.1.13] it is stable, presentably symmetric monoidal such that
the inclusion C → Ind(C) admits a symmetric monoidal refinement. Then O⊗ →
C⊗ → Ind(C)⊗ is the desired embedding.

For the converse assume that we have an embedding O⊗ → C⊗ as described.
Then the underlying embedding O → C factors through the κ-compact objects Cκ

for some cardinal κ since O is small. Enlarging κ if necessary we can assume that Cκ

is closed under tensor products and finite limits. Since Cκ is closed under colimits
it is also stable. Thus (Cκ)⊗ can be used to see that O⊗ is stable. �

Now we want to explain how to ‘stabilize’ an ∞-operad. Therefore let us first
recall the stabilization of ∞-categories.

Denote by Sfin
∗ the ∞-category of finite pointed CW complexes. These are by def-

inition precisely the spaces which can be obtained under finite (homotopy) colimits
from the point. This category admits all finite colimits, but it is not idempotent
complete as witnessed by Wall’s finiteness obstruction. Let C be an ∞-category
which admits finite limits. Then the category of spectrum objects Sp(C) is defined
as the full subcategory of Fun(Sfin

∗ , C) spanned by the reduced excisive functors.
These are the functors F : Sfin

∗ → C such that F (∗) is terminal in C and such that
F carries pushout squares in Sfin

∗ to pullback squares in C. For example we can
obtain the ∞-category Sp of spectra as Sp(S). There is a canonical forgetful functor
Ω∞ : Sp(C) → C obtained by evaluation at S0. See [Lur14, Section 1.4.2] for a more
detailed discussion.

The ∞-category Sfin
∗ admits a symmetric monoidal structure given by smash

product. We denote the resulting ∞-operad by (Sfin
∗ )⊗ → NFin∗.

Construction 4.5. Let O⊗ be an ∞-operad that admits finite operadic limits. We
denote by hom/NFin∗

(

(Sfin
∗ )⊗,O⊗

)

the internal hom in simplicial sets over NFin∗
(cf. first paragraph of Section 3). In particular the fibre of hom/NFin∗

(

(Sfin
∗ )⊗,O⊗

)

over 〈n〉 is given by the ∞-category

Fun
(

(Sfin
∗ )⊗

〈n〉
,O⊗

〈n〉

)

We define the simplicial set Sp(O)⊗ over NFin∗ to be the full simplicial subset whose
fibre over 〈n〉 is spanned by those functors

F : (Sfin
∗ )⊗〈n〉 → O⊗

〈n〉
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such that under the equivalences

ρ : (Sfin
∗ )⊗〈n〉

∼
−→
∏

n

Fin∗ ρ′ : O⊗
〈n〉

∼
−→
∏

n

O

we have an equivalence of functors ρ′ ◦F ≃ (F1× ...×Fn)◦ρ where all Fi : S
fin
∗ → O

lie in Sp(O) ⊆ Fun(Sfin
∗ ,O) i.e. are reduced and excisive.

It is clear that by construction the underlying ∞-category of Sp(O)⊗ is given by
Sp(O). This explains our notation.

Proposition 4.6. For every ∞-operad O⊗ which admits finite operadic limits the
simplicial set Sp(O)⊗ → NFin∗ is also an ∞-operad which admits finite operadic
limits. For every map F : O⊗ → O′⊗ in OpLex∞ the evident map F∗ : Sp(O)⊗ →
Sp(O)⊗ induced by post-composition with F is also in OpLex∞ .

Proof. By definition the simplicial set Sp(O)⊗ is a full simplicial subset of the Day
convolution Fun(Sfin

∗ ,O)⊗ → NFin∗ as described in Definition 3.2. As a subset
it is precisely spanned by the products of reduced excisive functors. In general if
P⊗ is an ∞-operad and P0 ⊆ P is a full simplicial subset then the corresponding
full simplicial subset P⊗

0 ⊆ P⊗ spanned by products of 0-simplices in P0 is again
an ∞-operad as one easily shows using the definition of ∞-operads. Therefore it
follows immediately from the fact that Fun(Sfin

∗ ,O)⊗ is an ∞-operad (as shown in
Proposition 3.3) that Sp(O)⊗ is again an ∞-operad.

With the same argument we get that the induced morphism F∗ : Sp(O)⊗ →
Sp(O′)⊗ is a morphism of ∞-operad from the fact that the functor Fun(Sfin

∗ ,O)⊗ →
Fun(Sfin

∗ ,O′)⊗ is a map of ∞-operads as shown in Corollary 3.7.
It only remains to see that Sp(O)⊗ admits finite limits and that the morphism F∗

preserves finite limits. For that purpose we embed i : O⊗ → C⊗ into a presentably
symmetric monoidal ∞-category such that the image is closed under finite limits
using Proposition 2.7. Then clearly the induced morphism i∗ : Sp(O)⊗ → Sp(C)⊗

is also fully faithful and the essential image i∗(Sp(O)) ⊆ Sp(C) is closed under
finite limits (as the forgetful functor Sp(O) → O preserves all limits). Again from
Proposition 2.7 we get that Sp(O)⊗ has finite operadic limits. The fact that the
morphism F∗ preserves finite operadic limits follows since the underlying morphism
(F∗)〈1〉 : Sp(O) → Sp(O′) of ∞-categories preserves limits and since both ∞-operads
have all finite operadic limits. �

Construction 4.7. There is a morphism Ω∞ : Sp(O)⊗ → O⊗ informally given by
evaluation at S0. Concretely we define it as the composition

Sp(O)⊗ ⊆ hom/NFin∗

(

(Sfin
∗ )⊗,O⊗

)

s∗
−→ hom/NFin∗

(

NFin∗,O
⊗
)

∼= O⊗

where s : NFin∗ → (Sfin
∗ )⊗ is the section of (Sfin

∗ )⊗ → NFin∗ given by the com-
mutative algebra object S0 in Sfin

∗ . The fact that it is a map of ∞-operads fol-
lows immediately from Corollary 3.8 since it is the restriction of the morphism
Fun(Sfin

∗ ,O)⊗ → Fun(E∞,O)⊗ ∼= O⊗. Here E⊗
∞ is the ∞-operad given by the iden-

tity NFin∗ → NFin∗. The functor Ω∞ also preserves finite operadic limits since the
underlying functor of ∞-categories does.

Corollary 4.8. The assignment O⊗ 7→ Sp(O)⊗ refines to an endofunctor Sp :
OpLex∞ → OpLex∞ with a natural transformation Ω∞ : Sp → id.
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Proof. By Proposition 4.6 we see that the assignment Sp(−) determines a functor
from the 1-category of ∞-operads with finite operadic limits and limit preserving
∞-operad maps to itself. This 1-category admits a simplicial enrichment given
for operads O⊗ and O⊗ by the maximal Kan complex contained inside the ∞-
category AlgLexO (O′). Then by construction the functor Sp(−) evidently induces a
simplicial functor. But the ∞-category OpLex∞ is the homotopy coherent nerve of
that simplicial category. Therefore we get a functor of the associated ∞-categories.
The same arguing shows that the transformation Ω∞ which comes from a simplicial
transformation exists. �

Proposition 4.9. Assume that C⊗ is presentably symmetric monoidal. Then so is
Sp(C)⊗ and the forgetful map Ω∞ : Sp(C)⊗ → C⊗ admits an operadic left adjoint
Σ∞
+ : C⊗ → Sp(C)⊗ which is symmetric monoidal.

Proof. By Proposition 3.3, the operad Fun(Sfin
∗ , C)⊗ is presentably symmetric monoidal

and by Corollary 3.8 the map

s∗ : Fun(Sfin
∗ , C)⊗ → C⊗

admits an operadic left adjoint which is symmetric monoidal. We have to show that
the composite

Ω∞ : Sp(C)⊗ ⊆ Fun(Sfin
∗ , C)⊗

s∗
−→ C⊗

admits an operadic left adjoint which is symmetric monoidal. Therefore it suffices to
show that the inclusion Sp(C)⊗ → Fun(Sfin

∗ , C)⊗ does. The underlying subcategory
Sp(C)∗ ⊆ Fun(Sfin

∗ , C) is a localizing subcategory. Thus we can use the criterion
established in Example 2.12 (3). Therefore Let F,G : Sfin

∗ → C be functors and
assume that G is reduced and excisive. We have to show that the internal mapping
object mapFun(Sfin

∗ ,C)(F,G) is also reduced and excisive. But according to Proposition
3.11 we have

(2) mapFun(Sfin
∗ ,C)(F,G)(c) ≃

∫

d∈Sfin
∗

mapC(F (d), G(c ∧ d))

First if c ∈ Sfin
∗ is terminal (i.e. a contractible space) then c∧ d is also terminal and

therefore also G(c ∧ d) and mapC(F (d), G(c ∧ d)). As ends preserve limits we get
from (2) that the functor mapFun(Sfin

∗ ,C)(F,G) is reduced.

If we have a pushout square p : ∆1 × ∆1 → Sfin
∗ then p ⊗ d is also a pushout

for every d ∈ Sfin
∗ . Thus G(p ⊗ d) is a pullback and hence also mapC(F (d), G(p ⊗

d)). We again use (2) and the fact that ends preserve pullbacks to deduce that
mapFun(Sfin

∗ ,C)(F,G)(p) is a pullback. This shows finally that mapFun(Sfin
∗ ,C)(F,G) is

excisive and finishes the proof. �

Corollary 4.10. For C⊗ ≃ S× the ∞-category of spaces with cartesian product
we have an equivalence of ∞-operads Sp(C)⊗ ≃ Sp⊗ where Sp⊗ is the symmetric
monoidal ∞-category of spectra with smash product.

Proof. By Proposition 4.9 we know that the left adjoint Σ∞
+ : S → Sp admits a

symmetric monoidal structure. Then the equivalence with the smash product of
spectra follows from the uniqueness of the symmetric monoidal structure as shown
in [Lur14, Corollary 4.8.2.19], see also [GGN15, Theorem 5.1]. �
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Theorem 4.11. For every ∞-operad O⊗ which admits finite operadic limits the
∞-operad Sp(O)⊗ is stable. If O⊗ is stable then the functor Ω∞ : Sp(O)⊗ → O⊗ is
an equivalence of ∞-operads.

Proof. To show that Sp(O)⊗ is stable we first assume that O⊗ ≃ C⊗ is presentably
symmetric monoidal (and consequently the underlying ∞-category C admits all lim-
its). Then according to Proposition 4.9 the ∞-operad Sp(C)⊗ is presentably sym-
metric monoidal as well. The underlying ∞-category Sp(C) is stable as shown in
[Lur14, Corollary 1.4.2.17]. Thus we conclude that Sp(C)⊗ is stably symmetric
monoidal and therefore also stable as an ∞-operad.

For general O⊗ we find a finite limit preserving, fully faithful embedding O⊗ →
C⊗ into a presentably symmetric monoidal ∞-category C⊗ using Proposition 2.7.
Then Sp(O)⊗ → Sp(C)⊗ is also fully faithful which follows immediately from the
construction. We conclude using Lemma 4.4 that Sp(O)⊗ is stable as well. This
shows the first part of the proposition.

We now want to show that for a stable ∞-operad O⊗ the morphism Ω∞ :
Sp(O)⊗ → O⊗ is an equivalence of ∞-operads. We assume first that O⊗ ≃ C⊗

is presentably symmetric monoidal. Then according to 4.9 we find that

Ω∞ : Sp(C)⊗ → C⊗

admits an operadic left adjoint Σ∞
+ : C⊗ → Sp(C)⊗ which is symmetric monoidal. In

[Lur14, Proposition 1.4.2.21] it is shown that the underlying functor Ω∞ : Sp(C) → C
and Σ∞

+ : C → Sp(C) are inverse equivalences (since C is stable). But a symmetric
monoidal functor between symmetric monoidal ∞-categories is an equivalence of
∞-operads precisely if the underlying functor of ∞-categories is. Thus Σ∞

+ : C⊗ →
Sp(C)⊗ is an equivalence of ∞-operads. Therefore also Ω∞ (as the right adjoint) is
an equivalence of ∞-operads.

Finally for a general stable ∞-operad O choose an embedding into a presentably
symmetric monoidal ∞-operad C⊗ according to Lemma 4.4. We get a commutative
square

Sp(O⊗) //

Ω∞

��

Sp(C)⊗

Ω∞

��

O⊗ // C⊗

in which the right hand morphism Ω∞ is an equivalence of ∞-operads and the un-
derlying morphism of the left hand morphism Ω∞ is an equivalence of ∞-categories.
Since the horizontal morphisms are both fully faithful this implies that the left
hand morphism Ω∞ is essentially surjective and operadically fully faithful. But this
implies that it is an equivalence of ∞-operads. �

Corollary 4.12. The endofunctor Sp : OpLex∞ → OpLex∞ together with the transfor-
mation Ω∞ : Sp → id is a colocalization onto the full subcategory of stable ∞-operads.

Proof. The follows immediately from the last Theorem 4.11. �

Corollary 4.13. For every stable ∞-operad O⊗ the functor

AlgLexO (Sp)
Ω∞

−−→ AlgLexO (S)

induced by the forgetful map Ω∞ : Sp⊗ → S× is an equivalence of ∞-categories.
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Proof. Using the functoriality statement in Proposition 4.6 we get a functor

AlgLexO (S) → AlgLexSp(O) (Sp)

Since O⊗ is stable the target of that functor is equivalent to AlgLexO (Sp) and it is
clear that the functor is an inverse to the one in question. �

Remark 4.14. Our stablilization construction O⊗ 7→ Sp(O)⊗ is on the level of sim-
plicial sets isomorphic to the construction given in [Lur14, Construction 6.2.5.20].
Lurie shows under a stronger assumption than we have (namely differentiablity
[Lur14, Definition 6.2.4.11]), that this gives a stabilization for his notion of sta-
ble ∞-operads which is special case of ours. He also proves similar results to ours:
for example [Lur14, Proposition 6.2.4.15] is the direct analogue of Corollary 4.13 and
[Lur14, Example 6.2.4.17] is the direct analogue of Corollary 4.10. In particular we
see a posteriori that for an ∞-operad which is differentiable the ∞-operad Sp(O)⊗

is stable in the sense of Lurie.
We will give in the next section a treatment for the case of (pre)additive and

pointed operads that is completely parallel to the treatment in this section. We are
not aware of a treatment of these cases along the lines of Lurie’s strategy.

5. Pointed and (Pre)additive ∞-Operads

In this section we want to establish a picture similar to the one discussed for
stable ∞-operads, but for (pre)additive and pointed ∞-operads. Since most of the
proofs and result are analogous we try to only mention the crucial differences and
not repeat everything.

Recall that an ∞-category C is called pointed if it admits a zero object, that is
an object 0 ∈ C which is initial and terminal. A pointed ∞-category C is called
preadditive if for every pair of objects a, b ∈ C the canonical morphism

(

id 0
0 id

)

: a ⊔ b → a× b

is an equivalence. In this case we write a ⊕ b for the biproduct. A preadditive
∞-category is called additive if for every object a ∈ C the shear map

(

id id
0 id

)

: a⊕ a → a⊕ a

is an equivalence. For example every stable ∞-category is additive and in particular
also preaddtive and pointed. See [GGN15, Section 2] for a more detailed discussion.

Definition 5.1. A symmetric monoidal ∞-category C⊗ is called pointed if the un-
derlying ∞-category is pointed and the tensor bifunctor ⊗ : C × C → C has the
property that c⊗ 0 ≃ 0 ≃ 0 ⊗ c for every c ∈ C. It is called (pre)additive if the un-
derlying ∞-category is (pre)additive and the tensor bifunctor preserves coproducts
separately in each variable.

An ∞-operad O⊗ is called pointed if it admits a fully faithful inclusion i : O⊗ →
C⊗ where C⊗ is a pointed symmetric monoidal ∞-category and the essential image
i(O) ⊆ C contains the zero object. It is called (pre)additive if C⊗ can be chosen to
be (pre)additive and such that the essential image i(O) ⊆ C is closed under finite
products.

We define Oppt∞ to be the full subcategory of Op∗∞ consisting of the pointed ∞-
operads and OpPre∞ and OpAdd

∞ to be be the full subcategories of OpΠ∞ consisting
of the preadditive and additive ∞-operads (see Definition 2.3 for the Definition of
Op∗∞ and OpΠ∞).
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Example 5.2. Since every stable ∞-operad is pointed and additive, the exam-
ples mentioned in Example 4.2 are also examples here, in particular the symmet-
ric monoidal ∞-categories of spectra and chain complexes are pointed and additive.
An example of an additive symmetric monoidal ∞-category is the ∞-category of
connective spectra with the smash product. The ordinary category of abelian groups
with tensor product is an additive symmetric monoidal ∞-category. The category of
abelian monoids with the tensor product of abelian monoids is a preadditive but not
additive symmetric monoidal ∞-category. The category of pointed sets and the ∞-
category of pointed spaces with the smash product are examples of pointed symmetric
monoidal ∞-categories.

Remark 5.3. The obvious analogues of Remark 4.3 are true. For example one can
characterize preadditivity as the existence of operadic biproducts and pointed as the
existence of an operadic zero object. Also whether a symmetric monoidal ∞-category
is (pre)additive or pointed as an operad or as a symmetric monoidal ∞-category is
the same. Note also that being pointed for an ∞-operad is not same as unital, which
means that the ∞-category O⊗ is pointed as discussed in [Lur14, Section 2.3.1].

Lemma 5.4. A small ∞-operad O is pointed (resp. (pre)additive) if and only if
it admits a fully faithful inclusion i : O⊗ → C⊗ where C⊗ is presentably symmet-
ric monoidal, C is pointed (resp. (pre)additive) and the essential image i(O) ⊆ C
contains the zero objects (resp. is closed under finite limits).

Proof. We can choose by definition an embedding O⊗ → C′⊗ where C′⊗ is (pre)
additive or pointed symmetric monoidal. Then we form the ∞-category Pall

Σ C′ or

Pall
pt C

′ which is the universal category obtained from C′ by adding all colimits while
keeping finite coproducts (resp. the initial object). It admits a tensor product which
extends the tensor product of C′ (under Yoneda) by [Lur14, Proposition 4.8.1.10]
and turns it into a presentably symmetric monoidal ∞-category. Since the inclu-
sion preserves finite coproducts it suffices to show that the ∞-categories Pall

Σ C′ and

Pall
pt C

′ are (pre)additive resp. pointed. To see this we use that the underlying ∞

categories of Pall
Σ C′ and Pall

pt C
′ can be described explicitly as the ∞-categories of

functors FunΠ(C′op,S) and Fun∗(C′op,S) as shown in [Lur09, Section 5.3.6]. These
are in fact (pre)additive resp. pointed as shown in [GGN15]. �

Now we want to define for every ∞-operad O⊗ with a terminal object resp. finite
products new operads O⊗

∗ of pointed objects in O⊗ resp. CMon(O)⊗ of commutative
monoids and CGrp(O⊗) of commutative groups in O⊗. These are the universal
pointed resp. (pre)additive ∞-operad obtained from O⊗ as we will show eventually.

First recall that for an∞-category C with a terminal object the category of pointed
objects C∗ is defined to be the full subcategory of the arrow category Fun(∆1, C)
consisting of those arrows whose source is a terminal object. For an ∞-category C
which admits finite products a commutative monoid in C is a functor F : NFin∗ → C
which satisfies the Segal condition, that is for every n ≥ 0 the canonical morphism

(ρ1∗, ..., ρ
n
∗ ) : F 〈n〉 → F 〈1〉 × ...× F 〈1〉

is an equivalence where ρi : 〈n〉 → 〈1〉 is the morphism with ρi(i) = 1 and ρi(k) = 0
for k 6= i. A commutative monoid F in C is a commutative group if additionally the
morphism

(ρ1∗, µ∗) : F 〈2〉 → F 〈1〉 × F (〈1〉
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is an equivalence where µ : 〈2〉 → 〈1〉 is defined as µ(1) = 1 and µ(2) = 2. The
∞-categories CMon(C) and CGrp(C) of commutative monoids and groups in C are
the full subcategories CGrp(C) ⊆ CMon(C) ⊆ Fun(NFin∗, C) consisting of the group
resp. monoid objects.

The ∞-category ∆1, which is in fact the nerve of a poset, admits a symmetric
monoidal structure given by categorical product, which is explicitly given by taking
the minimum in the poset. If we name the elements by 0 and 1 we find that

0⊗ 0 = 0 0⊗ 1 = 0 1⊗ 1 = 1

and this already uniquely determines the symmetric monoidal structure. We denote
the corresponding symmetric monoidal ∞-category by (∆1)⊗ → NFin∗. The cate-
gory Fin∗ also admits a symmetric monoidal structure given by smash product. We
have 〈n〉 ⊗ 〈m〉 ≃ 〈nm〉. We denote the resulting symmetric monoidal ∞-category
by NFin⊗∗ → NFin∗.

Construction 5.5. Let O⊗ be an ∞-operad that admits an operadically terminal
object. We define the simplicial set O⊗

∗ over NFin∗ to be the subset of the internal
hom hom/NFin∗

(

(∆1)⊗,O⊗
)

whose fibre over 〈n〉 is spanned by those functors which
correspond under the equivalence

hom/NFin∗

(

(∆1)⊗,O⊗
)

〈n〉
≃ Fun

(

(∆1)⊗〈n〉,O
⊗
〈n〉

)

≃ Fun

(

∏

n

∆1,
∏

n

O

)

to functors F1 × ...× Fn where Fi : ∆
1 → O lies in O∗ ⊂ Fun(∆1,O) i.e. Fi(0) is a

terminal object in O for every i.
Let O⊗ be an ∞-operad that admits finite operadic products. We define the sim-

plicial sets CMon(O)⊗ and CGrp(O)⊗ over NFin∗ to be the full simplicial subset of
hom/NFin∗

(

NFin⊗∗ ,O
⊗
)

whose fibres over 〈n〉 are spanned by those functors which
correspond under the equivalence

hom/NFin∗

(

(NFin∗)
⊗,O⊗

)

〈n〉
≃ Fun

(

(NFin∗)
⊗
〈n〉,O

⊗
〈n〉

)

≃ Fun

(

∏

n

NFin∗,
∏

n

O

)

to functors F1 × ...× Fn where Fi : NFin∗ → O lies in CMon(O) resp. CGrp(O).

Now the exact same argument as in Proposition 4.6 shows that O⊗
∗ is an∞-operad

which lies in Op∗∞ and that CMon(O)⊗ and CGrp(O)⊗ are ∞-operads in OpΠ∞. We
again as in Construction 4.7 obtain canonical forgetful maps

O⊗
∗ → O⊗ and CGrp(O)⊗ ⊆ CMon(O)⊗ → O⊗

which are given by evaluation at the commutative algebra object [1] ∈ ∆1 and
〈1〉 ∈ NFin∗. The analogue of Corollary 4.8 shows that we obtain endofunctors
CMon,CGrp : OpΠ∞ → OpΠ∞ and (−)∗ : Op∗∞ → Op∗∞ with transformations
CGrp → CMon → id and (−)∗ → id.

Now we want to show an analogue of Proposition 4.9. This also works very similar
to the proof given there, but since there are some changes we want to spell it out.

Proposition 5.6. Assume that C⊗ is a presentably symmetric monoidal ∞-category.
Then so are C⊗

∗ , CGrp(C)⊗ and CMon(C)⊗. Moreover the operad morphisms

CGrp(C)⊗ → CMon(C)⊗ → C⊗ and C⊗
∗ → C

admit operadic left adjoints which are symmetric monoidal.
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Proof. By Proposition 3.3, the operads Fun(∆1, C)⊗ and Fun(NFin∗, C)
⊗ are pre-

sentably symmetric monoidal and by Corollary 3.8 the maps

Fun(∆1, C)⊗ → C⊗ and Fun(NFin∗, C)
⊗ → C⊗

admit operadic left adjoints which are symmetric monoidal. Thus again as in Propo-
sition 4.9 it suffices to prove that the localizations

Fun(∆1, C) → C∗ and Fun(NFin∗, C) → CMon(C) → CGrp(C)

of the underlying ∞-categories are compatible with the symmetric monoidal struc-
tures. We want to use the criterion established in Example 2.12 (3).

Let us start with the case of pointed objects. Let F,G : ∆1 → C be functors and
assume that G is a pointed object, i.e. G(0) is a terminal object in C. Then we use
Proposition 3.11 to find

(3) mapFun(∆1,C)(F,G)(0) ≃

∫

d∈∆1

mapC(F (d), G(0))

Since G(0) is terminal and ends as well as mapping spaces preserve terminal objects
this this shows that mapFun(∆1,C)(F,G) is again a pointed object.

Now we come to the second case. Let F,G : NFin∗ → C be functors and assume
that G is a commutative monoid (group) object. We have to show that the internal
mapping object mapFun(NFin∗,C)(F,G) is also a commutative monoid (group) object.
But according to Proposition 3.11 we have

(4) mapFun(NFin∗,C)(F,G)(c) ≃

∫

d∈NFin∗

mapC(F (d), G(c ∧ d))

For 〈n〉 ∈ NFin∗ we have that the canonical map G
(

〈n〉 ∧ d
)

→ G(d)n is an equiva-
lence for every d since G is a commutative monoid object (and the same for a group
object and n = 2 in case of the shear map). The mapping object and the end in
(4) commute with products. This implies that map(F,G) is also a monoid (group)
object. �

From Proposition 5.6 we immediately get as in Corollary 4.10 invoking the unique-
ness results from [GGN15] that we have equivalences

CGrp(S)⊗ ≃ (Sp≥0)⊗ and S⊗
∗ ≃ (S∗)

∧

where (Sp≥0)⊗ is the symmetric monoidal ∞-category of connective spectra with
smash product and (S∗)

∧ is the symmetric monoidal ∞-category of pointed spaces
with smash product.

Theorem 5.7. For every ∞-operad O⊗ in Op∗∞ the ∞-operad O⊗
∗ is pointed. If

O⊗ is pointed then the functor O⊗
∗ → O⊗ is an equivalence of ∞-operads.

For every ∞-operad in OpΠ∞ the ∞-operad CGrp(O)⊗ is additive and the ∞-
operad CMon(O)⊗ is preadditive. If O⊗ is preadditive then the functor CMon(O)⊗ →
O⊗ is an equivalence of ∞-operads. If O⊗ is additive then the inclusion CGrp(O)⊗ →
CMon(O)⊗ is an equivalence of ∞-operads.

Proof. The proof works as the proof of Theorem 4.11. The seemingly different case
that CGrp(O)⊗ → CMon(O)⊗ is an equivalence works the same: we import the
result that it is an underlying equivalence from [GGN15] and then argue that its
an operadic equivalence using Proposition 5.6 and the left adjoint. Alternatively we
show that CGrp(O)⊗ → O⊗ is an equivalence and use 2-out-of-3. �
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This immediately implies that the endofunctors CMon,CGrp : OpΠ∞ → OpΠ∞ and
(−)∗ : Op∗∞ → Op∗∞ are colocalization onto the full subcategories of preadditive and
additive resp. pointed ∞-operads. Finally we get the analogue of 4.13.

Corollary 5.8. For every pointed ∞-operad O⊗ the induced functor

Alg∗O (S∗) → Alg∗O (S)

is an equivalence of ∞-categories. For every preadditive ∞-operad O⊗ the induced
functor

AlgΠO (CMon(S)) → AlgΠO (S)

is an equivalence of ∞-categories. For every additive ∞-operad O⊗ the induced
functor

AlgΠO
(

Sp≥0
) Ω∞

−−→ AlgΠO (S)

is an equivalence of ∞-categories.

6. Yoneda embeddings and lax monoidal structures

In this section we want to discuss symmetric monoidal versions of Yoneda’s lemma
that we obtain in the stable and the additive setting. This also works with the nec-
essary changes in the preadditive and pointed setting, but for the sake of readability
we restrict to these two cases. First recall from [Lur14, Section 1.4] that for a stable
∞-category C the opposite is also stable and the functor

(5) FunLex(Cop,Sp)
Ω∞

−−→ FunLex(Cop,S)

is an equivalence. Here S denotes the ∞-category of spaces and Sp = Sp(S) denotes
the ∞-category of spectra. For C additive it is shown in [GGN15] that the functor

(6) FunΠ(Cop,Sp≥0) → Fun(Cop,S)

is an an equivalence where Sp≥0 denotes the∞-category of connective spectra. These
statements are non-operadic analogues of Corollary 4.13 and Corollary 5.8 and have
already been used extensively in the last chapters.

Definition 6.1. Let C be a stable∞-category. Then a functor F : Cop → Sp is called
representable if F preserves finite limits and if Ω∞F : Cop → S is representable in the
classical sense. The object c ∈ C representing Ω∞F is called the representing object
for F . Let C be an additive ∞-category. Then a functor F : Cop → Sp≥0 is called
representable if F preserves finite products and if Ω∞F : Cop → S is representable.

Recall that the Yoneda embedding defines a functor j : C → Fun(Cop,S) which
is an equivalence onto the full subcategory Funrep(Cop,S) ⊆ Fun(Cop,S) of repre-
sentable functors. Directly from (5) we get that for C stable post-composition with
Ω∞ induces an equivalence Funrep(Cop,Sp) → Funrep(Cop,S) where Funrep(Cop,Sp) ⊆
Fun(Cop,Sp) is the full subcategory on the representable functors. As a consequence
we get a fully faithful inclusion jSt : C → Fun(Cop,Sp) which we call the stable
Yoneda embedding. In particular we get for every object c ∈ C a representable func-
tor represented by c. We will denote this functor as mapSp(−, c) and call for d ∈ C
the value mapSp(d, c) the mapping spectrum from d to c. Similar for C additive we
get using (6) that the functors

C
j

// Funrep(Cop,S) Funrep(Cop,Sp≥0)
Ω∞

oo



24 THOMAS NIKOLAUS

are equivalences. Composing them with the inclusion induces an additive Yoneda
embedding jAdd : C → Fun(Cop,Sp≥0). We denote the representable functor by
mapSp≥0(−, c) and call mapSp≥0(d, c) the connective mapping spectrum.

Remark 6.2. For a representable functor F : Cop → Sp (or Cop → Sp≥0) it follows
a posteriori that it preserves all limits and not only finite limits (resp. products).
This can be seen using that the analogous statement is true for the respective functor
to spaces and limits of spectra can be tested on the underlying spaces of all shifts.
In fact if C is presentable and stable (or presentable and additive) then a functor
F : Cop → Sp is representable precisely if it preserves all limits. To see this use the
equivalences

C ≃ Sp(C) ≃ C ⊗ Sp ≃ Funlim(Cop,Sp)

which follows as explained in [GGN15, Section 4].

Proposition 6.3 (Stable/Additive Yoneda lemma). Let C be a stable ∞-category
and F,G : Cop → Sp be functors such that F is representable by c ∈ C and G

preserves finite limits. Then we have an equivalence

MapFun(Cop,Sp)(F,G) ≃ Ω∞G(c)

which is natural in G. If C is additive and F,G : Cop → Sp≥0 are functors where
F is represented by c ∈ C and G preserves finite products then we get a similar
equivalence

MapFun(Cop,Sp≥0)(F,G) ≃ Ω∞G(c)

Proof. This follows from (5) and (6) together with the space valued Yoneda Lemma
for ∞-categories. �

Remark 6.4. In the setting of Proposition 6.3 the ∞-catgory Fun(Cop,Sp) is stable,
in particular also admits mapping spectra. One can improve the statement of the
proposition to the stronger statement that we have an equivalence of spectra

mapSp(F,G) ≃ G(c)

To this end consider the functor mapSp(F,−) : Fun(Cop,Sp) → Sp. It preserves
finite limits and the underlying functor Ω∞mapSp(F,−) is given by Map(F,−). But
the functor evc : Fun(C

op,Sp) → Sp which takes G to G(c) also preserves finite limits
and according to Proposition 6.3 it has the same underlying functor. Thus the two
are equivalent. A similar argument in the additive case shows that mapSp≥0(F,G) ≃

G(c).

Now finally we want to discuss symmetric monoidal variants of Yoneda’s Lemma.
Recall from Corollary 3.10 that for a symmetric monoidal ∞-category C⊗ the Yoneda
embedding j : C → Fun(Cop,S) admits a refinement j′ : AlgE∞

(C) → Funlax(C
op,S)

which we call the symmetric monoidal Yoneda embedding. Here Funlax(C
op,S) de-

notes the ∞-category of lax symmetric monoidal functors. These are by definition
operad maps from (Cop)⊗ with opposite symmetric monoidal structure to S×. We
say that a lax symmetric monoidal functor from Cop to either of the symmetric
monoidal ∞-categories of spaces, connective spectra or spectra is representable if
the underlying functor is representable in the sense of Definition 6.1.
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Proposition 6.5. For a symmetric monoidal ∞-category C⊗ the functor j′ : AlgE∞
(C) →

Funreplax(C
op,S) is an equivalence where Funreplax (C

op,S) ⊆ Funlax(C
op,S) is the full sub-

category consisting of the representable functors. If C is a stably symmetric monoidal
∞-category then the functor

Ω∞ : Funreplax (C
op,Sp) → Funreplax(C

op,S)

induced by post-composition with the operad map Ω∞ : Sp → S is an equivalences of
∞-categories. For C additively symmetric monoidal the corresponding functor

Ω∞ : Funreplax(C
op,Sp≥0) → Funreplax(C

op,S)

induced by post-composition with the operad map Ω∞ : Sp≥0 → S is an equivalence.

Proof. The first equivalence is immediate from Corollary 3.10. The second and third
follow from Corollary 4.13 and Corollary 5.8. �

As a consequence we get a stable, symmetric monoidal Yoneda embedding j′St :
AlgE∞

(C) → Funlax(C
op,Sp) for C stably symmetric monoidal and an additive, sym-

metric monoidal Yoneda embedding j′Add : AlgE∞
(C) → Funlax(C

op,Sp≥0) for C
additively symmetric monoidal. As a first immediate, but certainly well known
consequence we get the following result, where a commutative coalgebra in C is by
definition a commutative algebra in Cop.

Corollary 6.6. Let C⊗ be stably symmetric monoidal (additively symmetric monoidal).
If c ∈ C is a commutative coalgebra and a ∈ C is a commutative algebra then the
mapping spectrum mapSp(c, a) (resp. mapSp≥0(c, a)) admits the structure of an E∞-
ring spectrum. This structure is natural in coalgebra maps in c and algebra maps in
a.

Corollary 6.7. Let C⊗ be stably symmetric monoidal and F : Cop → Sp a repre-
sentable functor or let C⊗ be additive and F : Cop → Sp≥0 be representable. Denote
the representing object by c ∈ C. Then there is a homotopy equivalence between
the space of lax symmetric monoidal structures on F and the space of commutative
algebra structures on c.

Proof. The space AlgE∞
(c) of commutative algebra structures on c ∈ C is defined as

the pullback

AlgE∞
(c)

��

// AlgE∞
(C)

��
∆0 c // C

in Cat∞ where the right vertical functor is the forgetful functor. This functor
reflects equivalences, which implies that AlgE∞

(c) is an ∞-groupoid. The space
of lax symmetric monoidal structures on F : Cop → Sp is similarly the fibre of
Funlax(C

op,Sp) → Fun(Cop,Sp) over F . Now consider the following commuting dia-
gram

AlgE∞
(C)

��

j′
// Funreplax(C

op,S)

��

Funreplax(C
op,Sp)

Ω∞
oo //

��

Funlax(C
op,Sp)

��
C

j
// Funrep(Cop,S) Funrep(Cop,Sp)

Ω∞
oo // Fun(Cop,Sp)
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in which the vertical morphisms are the forgetful functors. The right hand square is
a pullback by definition. The other two are pullbacks since all occurring horizontal
morphisms are equivalences. Thus by pasting of pullbacks the fibres are homotopy
equivalent. �

Corollary 6.8. Let C be a symmetric monoidal ∞-category with unit object 1 ∈ C.

(1) The functorMap(−,1) : Cop → S admits a canonical lax symmetric monoidal
refinement. With this refinement it is initial in Funlax(C

op,S).
(2) If C is additively symmetric monoidal then the functor mapSp≥0(−,1) : Cop →

Sp≥0 admits a canonical lax symmetric monoidal refinement and with this
refinement it is initial in FunΠlax(C

op,Sp≥0).
(3) If C is stably symmetric monoidal then the functor mapSp(−,1) : Cop → Sp

admits a canonical lax symmetric monoidal refinement and with this refine-
ment it is initial in FunLexlax (C

op,Sp).

Proof. In view of the equivalences FunLexlax (C
op,Sp) → FunLex(Cop,S) for C stable and

FunΠlax(C
op,Sp≥0) → FunΠ(Cop,S) for C additive it suffices to prove the first claim.

Since the Yoneda embedding C → Fun(Cop,S) admits a symmetric monoidal struc-
ture (Proposition 3.9) it sends the tensor unit 1 to the tensor unit. Thus the functor
map(−,1) is the tensor unit in Fun(Cop,S)⊗. But the tensor unit in any symmetric
monoidal ∞-category admits a canonical commutative algebra structure that makes
it initial in the category of commutative algebras [Lur14, Setion 3.2]. This together
with the equivalence AlgE∞

(Fun(Cop,S)) ≃ Funlax(C
op,S) from Proposition 3.3 im-

plies the claim. �

This last corollary will be important in a future paper of the author with Markus
Land where it is used to construct, among other things, an E∞-map of ring spectra
from ku to lC. Here ku is connective, complex k-theory and lC is the connective,
symmetric L-theory spectrum of the complex numbers with complex conjugation as
involution. The next corollary will be used in joint work of the author with Peter
Scholze about the cyclotomic trace.

Corollary 6.9. (1) The identity functor Sp → Sp is initial in FunLexlax (Sp,Sp).
(2) The functor Ω∞ : Sp → S is initial in Funlax(Sp,S).
(3) The identity functor S → S is initial in Funlax(S,S).
(4) The functor Σ∞

+ : S → Sp is initial in Funlax(S,Sp).

Proof. The first two statements follow immediately by applying Corollary 6.8 to the
dual category Spop since

idSp(−) ≃ mapSp(1,−) and Ω∞(−) ≃ Map(1,−)

For the third statement we apply the first part of Corollary 6.8 to the dual of the
category of spaces and use that idS(−) ≃ Map(1,−). For the last statement we use
that the functor Σ∞

+ is the tensor unit in the Day convolution symmetric monoidal
∞-category Fun(S,Sp)⊗. This follows since the functor

Fun(S,S)⊗ → Fun(S,Sp)⊗

given by post-compositon with Σ∞
+ is symmetric monoidal according to Corollary

3.7 and since the identity is the unit in the source category. Finally we use Proposi-
tion 3.3 to deduce that AlgE∞

(Fun(S,Sp)) ≃ Funlax(S,Sp). Then the statement is
implied by the fact that the tensor unit is the initial E∞-algebra. �
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Remark 6.10. Note that Corollary 6.9 is not true for an arbitrary stably symmetric
monoidal ∞-category, in particular not for the category of chain complexes. It should
be considered as a fundamental property of the symmetric monoidal ∞-category of
spectra. There is however an analogous statement for chain complexes but it is about
HZ-linear functors (e.g. dg-functors) and not just exact functors. But since being
HZ-linear for functors is extra structure and not only a property the statement is
not as close as useful as the one here.

Remark 6.11. One can get versions of the results of this section for other operads
O⊗ than E∞, e.g. O⊗ = E⊗

n . In this case the ∞-category of lax symmetric monoidal
functors has to be replaced by the category of O-symmetric monoidal functors which
are O-algebras in the Day convolution structure on the functor category. The theory
and the proofs in this case work mutatis mutandis the same but we will not need this
extra generality.
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