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1. Introduction

This paper is part of a series ([HMM98,HM98] and other work in progress)
getting at some new aspects of the topological approach to elliptic genera.
Most of these results were announced in [Hop95].

In [Och87] Ochanine introduced the elliptic genus – a cobordism invari-
ant of oriented manifolds taking its values in the ring of (level 2) modular
forms. He conjectured and proved half of the rigidity theorem – that the
elliptic genus is multiplicative in bundles of spin manifolds with connected
structure group.

Ochanine defined his invariant strictly in terms of characteristic classes,
and the question of describing the elliptic genus in more geometric terms
naturally arose – especially in connection with the rigidity theorem.

� The authors were partially supported by the NSF
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In [Wit87,Wit88] Witten interpreted Ochanine’s invariant in terms of
index theory on loop spaces and offered a proof of the rigidity theorem. Wit-
ten’s proof was made mathematically rigorous by Bott and Taubes [BT89],
and since then there have been several new proofs of the rigidity theo-
rem [Liu95,Ros98].

In the same papers Witten described a variant of the elliptic genus now
known as the Witten genus. The natural map

BSU → BSpin

induces an isomorphism in cohomology in degree four, and so there is
a characteristic class c2 of Spin-manifolds, twice which is the first Pontrjagin
class.1 The Witten genus is a cobordism invariant of Spin-manifolds for
which c2 = 0, and it takes its values in modular forms (of level 1). It has
exhibited a remarkably fecund relationship with geometry (see [Seg88], and
[HBJ92]).

Rich as it is, the theory of the Witten genus is not as developed as are
the invariants described by the index theorem. One thing that is missing is
an understanding of the Witten genus of a family. Let S be a space, and Ms
a family of n-dimensional Spin-manifolds (with c2 = 0) parameterized by
the points of S. The family Ms defines an element in the cobordism group

MO〈8〉−n S,

where MO〈8〉 denotes the cobordism theory of “Spin-manifolds with
c2 = 0.” The Witten genus of this family should be some kind of “family of
modular forms” parameterized by the points of S. Motivated by the index
theorem, we should regard this family of modular forms as an element in

E−n S

for some (generalized) cohomology theory E. From the topological point of
view, the Witten genus of a family is thus a multiplicative map of generalized
cohomology theories

MO〈8〉 −→E,

and the question arises as to which E to choose, and how, in this language,
to express the modular invariance of the Witten genus. One candidate for E,
elliptic cohomology, was introduced by Landweber, Ravenel, and Stong
in [LRS95].

To keep the technicalities to a minimum, we focus in this paper on the
restriction of the Witten genus to stably almost complex manifolds with
a trivialization of the Chern classes c1 and c2 of the tangent bundle. The
bordism theory of such manifolds is denoted MU〈6〉. We will consider gen-
eralized cohomology theories (or, more precisely, homotopy commutative

1 This class is called λ in [FW99,DMW00] and p1
2 in [BT89,Wit99].
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ring spectra) E which are even and periodic. In the language of generalized
cohomology, this means that the cohomology groups

Ẽ0(Sn)

are zero for n odd, and that for each pointed space X, the map

Ẽ0(S2) ⊗
E0(pt)

Ẽ0(X) −→ Ẽ0(S2 ∧ X)

is an isomorphism. In the language of spectra the conditions are that

πoddE = 0

and that π2E contains a unit. Our main result is a convenient description of
all multiplicative maps

MU〈6〉 −→E.

In another paper in preparation we will give, under more restrictive hy-
potheses on E, an analogous description of the multiplicative maps

MO〈8〉 −→E.

These results lead to a useful homotopy theoretic explanation of the
Witten genus, and to an expression of the modular invariance of the Witten
genus of a family. To describe them it is necessary to make use of the
language of formal groups.

The assumption that E is even and periodic implies that the cohomology
ring

E0CP∞.

is the ring of functions on a formal group PE over π0E = E0(pt) [Qui69,
Ada74]. Phrased without a choice of generator of E0CP∞, the result [Ada74,
Part II, Lemma 4.6] can be interpreted as saying that the set of multiplicative
maps

MU −→E

is naturally in one to one correspondence with the set of rigid sections
of a certain rigid line bundle Θ1(L) over PE (This is explained in Ex-
ample 2.54). Here a line bundle is said to be rigid if it has a specified
trivialization at the zero element, and a section is said to be rigid if it takes
the specified value at zero. Our line bundle L is the one whose sections are
functions that vanish at zero, or in other words L = O(−{0}). The fiber
of Θ1(L) at a point a ∈ PE is defined to be L0 ⊗ L∗

a; it is immediate that
Θ1(L) has a canonical rigidification.

In this language we can describe the set of multiplicative maps
MU〈6〉 → E without first choosing a map MU → E. Given a line bundle
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L over a commutative group A, let Θ3(L) be the line bundle over A3 whose
fiber at (a, b, c) is

Θ3(L)(a,b,c) = La+bLb+cLa+cL0

La+b+cLaLbLc
.

In this expression the symbol “+” refers to the group law of A, and mul-
tiplication and division indicate the tensor product of lines and their duals.
A cubical structure on L is a nowhere vanishing section s of Θ3(L) satisfy-
ing (after making the appropriate canonical identifications of line bundles)

(rigid) s(0, 0, 0) = 1
(symmetry) s(aσ(1), aσ(2), aσ(3)) = s(a1, a2, a3)
(cocycle) s(b, c, d)s(a, b + c, d) = s(a + b, c, d)s(a, b, d).

(See [Bre83], and Remark 2.44 for comparison of conventions.) Our main
result (2.52) asserts that the set of multiplicative maps

MU〈6〉 −→E

is naturally in one to one correspondence with the set of cubical structures
on L = O(−{0}).

We have chosen a computational approach to the proof of this theorem
partly because it is elementary, and partly because it leads to a general re-
sult. In [AS01], the first and third authors give a less computational proof
of this result (for formal groups of finite height in positive characteris-
tic), using ideas from [Mum65,Gro72,Bre83] on the algebraic geometry of
biextensions and cubical structures.

On an elliptic curve the line bundle O(−{0}) has a unique cubical struc-
ture. Indeed, for fixed x and y, there is by Abel’s theorem a rational function
f(x, y, z) with divisor {−x−y}+{0}−{−x}−{−y}. Interpreting f(x, y, 0) as
a section of O(−{0})0, the quotient s(x, y, z) = f(x, y, 0)/ f(x, y, z) is eas-
ily seen to determine a trivialization of Θ3(O(−{0})). Since the only global
functions on an elliptic curve are constants, the equation s(0, 0, 0) = 1
determines the section uniquely, and shows that it satisfies the “symmetry”
and “cocycle” conditions. More generally, the “theorem of the cube” (see
for example [Mum70]) shows more generally that any line bundle over any
abelian variety has a unique cubical structure.

Over the complex numbers, a transcendental formula for f(x, y, z) is

σ(x + y + z) σ(z)

σ(x + y) σ(x + z)
,

where σ is the Weierstrass σ function. It follows that the unique cubical
structure is given by

σ(x + y) σ(x + z) σ(y + z) σ(0)

σ(x + y + z) σ(x) σ(y) σ(z)
. (1.1)
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Putting all of this together, if the formal group PE can be identified
with the formal completion of an elliptic curve, then there is a canonical
multiplicative map

MU〈6〉 −→E

corresponding to the unique cubical structure which extends to the elliptic
curve.

Definition 1.2. An elliptic spectrum consists of

i. an even, periodic, homotopy commutative ring spectrum E with formal
group PE over π0 E;

ii. a generalized elliptic curve C over E0(pt);
iii. an isomorphism t : PE −→Ĉ of PE with the formal completion of C.

For an elliptic spectrum E = (E, C, t), the σ -orientation

σE : MU〈6〉 −→E

is the map corresponding to the unique cubical structure extending to C.

Note that this definition involves generalized elliptic curves over arbitrary
rings. The relevant theory is developed in [KM85,DR73]; we give a sum-
mary in Appendix B.

A map of elliptic spectra E1 = (E1, C1, t1) −→E2 = (E2, C2, t2) con-
sists of a map f : E1 −→E2 of multiplicative cohomology theories, together
with an isomorphism of elliptic curves

C2 −→(π0 f )∗C1,

extending the induced map of formal groups. Given such a map, the unique-
ness of cubical structures over elliptic curves shows that

MU〈6〉

{{

σE1

ww
ww
ww
ww
w

##

σE2

GG
GG

GG
GG

G

E1
//

f
E2

(1.3)

commutes. We will refer to the commutativity of this diagram as the modular
invariance of the σ -orientation.

By way of illustration, let’s consider examples derived from elliptic
curves over C, and ordinary cohomology (for which the formal group is the
additive group).

An elliptic curve over C is of the form C/Λ for some lattice Λ ⊂ C.
The map of formal groups derived from

C −→C/Λ
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gives an isomorphism tΛ, from the additive formal group to the formal
completion of the elliptic curve. Let RΛ be the graded ring C[uΛ, u−1

Λ ] with
|uΛ| = 2, and define an elliptic spectrum HΛ = (EΛ, CΛ, tΛ) by taking EΛ

to be the spectrum representing

H∗(−; RΛ),

CΛ the elliptic curve C/Λ, and tΛ the isomorphism described above.
The abelian group of cobordism classes of 2n-dimensional stably almost

complex manifolds with a trivialization of c1 and c2 is

MU〈6〉2n(pt).

The σ -orientation for HΛ thus associates to each such M, an element of
(EΛ)2n(pt) which can be written

Φ(M;Λ) · un
Λ,

with

Φ(M;Λ) ∈ C.

Suppose that Λ′ ⊂ C is another lattice, and that λ is a non-zero complex
number for which λ·Λ = Λ′. Then multiplication by λ gives an isomorphism
C/Λ −→ C/Λ′. This extends to a map HΛ′ −→ HΛ, of elliptic spectra,
which, in order to induce the correct map of formal groups, must send uΛ′
to λuΛ (this is explained in Example 2.3). The modular invariance of the
σ -orientation then leads to the equation

Φ(M;λ · Λ) = λ−nΦ(M;Λ).

This can be put in a more familiar form by choosing a basis for the
lattice Λ. Given a complex number τ with positive imaginary part, let Λ(τ)
be the lattice generated by 1 and τ , and set

f(M, τ) = Φ(M,Λ(τ)).

Given (
a b
c d

)
∈ SL2(Z)

set

Λ = Λ(τ)

Λ′ = Λ ((a τ + b)/(c τ + d))

λ = (c τ + d)−1.

The above equation then becomes

f(M; (a τ + b)/(c τ + d)) = (c τ + d)n f(M; τ),
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which is the functional equation satisfied by a modular form of weight n.
It can be shown that f(M, τ) is a holomorphic function of τ by considering
the elliptic spectrum derived from the family of elliptic curves

H× C/〈1, τ〉 −→H
parameterized by the points of the upper half plane H, and with underlying
homology theory

H∗
(−;O[u, u−1]) ,

where O is the ring of holomorphic functions on H. Thus the σ -orientation
associates a modular form of weight n to each 2n-dimensional MU〈6〉-
manifold. Using an elliptic spectrum constructed out of K -theory and the
Tate curve, one can also show that the modular forms that arise in this
manner have integral q-expansions (see Sect. 2.8).

In fact, it follows from formula (1.1) (for details see Sect. 2.7) that
the q-expansion of this modular form is the Witten genus of M. The σ -
orientation can therefore be viewed as a topological refinement of the Wit-
ten genus, and its modular invariance (1.3), an expression of the modular
invariance of the Witten genus of a family.

All of this makes it clear that one can deduce special properties of the
Witten genus by taking special choices of E. But it also suggests that the
really natural thing to do is to consider all elliptic curves at once. This leads
to some new torsion companions to the Witten genus, some new congruences
on the values of the Witten genus, and to the ring of topological modular
forms. It is the subject of the papers [HMM98,HM98].

1.1. Outline of the paper. In Sect. 2, we state our results and the supporting
definitions in more detail. In Sect. 2.3 we give a detailed account of our
algebraic model for E0 BU〈2k〉. In Sect. 2.4 we describe our algebraic model
for E0 MU〈2k〉. We deduce our results about MU〈2k〉 from the results about
BU〈2k〉 and careful interpretation of the Thom isomorphism; the proof of
the main result about E0 BU〈2k〉 (Theorem 2.31) is the subject of Sect. 4.

In Sect. 2.5 we give in more detail the argument sketched in the intro-
duction that there is a unique cubical structure on any elliptic curve. We give
an argument with explicit formulae which works when the elliptic curves in
question are allowed to degenerate to singular cubics (“generalized elliptic
curves”), and also gives some extra insight even in the non-degenerate case.
The proof of the main formula (Proposition 2.57) is given in Appendix A.3.

In Sect. 2.6, we give a formula for the cubical structure on the Tate
curve, inspired by the transcendental formula involving the σ -function that
was mentioned in the introduction. In Sect. 2.7, we interpret this formula
as describing the σ -orientation for the elliptic spectrum KTate, and we show
that its effect on homotopy rings is the Witten genus. In Sect. 2.8, we
deduce the modularity of the Witten genus from the modular invariance of
the σ -orientation.
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The rest of the main body of the paper assembles a proof of Theo-
rem 2.31. In Sect. 3 we study a set Ck(Ĝa,Gm)(R) of formal power series
in k variables over a ring R with certain symmetry and cocycle properties.
This is a representable functor of R, in other words Ck(Ĝa,Gm) is an affine
group scheme. For 0 ≤ k ≤ 3 we will eventually identify Ck(Ĝa,Gm) with
spec(H∗BU〈2k〉). For k = 3 we use a small fragment of the theory of Weil
pairings associated to cubical structures; this forms the heart of an alterna-
tive proof of our results [AS01] which works for p-divisible formal groups
but not for the formal group of an arbitrary generalized elliptic curve.

In Sect. 4 we first check that our algebraic model coincides with the usual
description of spec(E0 BU). We then compare our algebraic calculations to
the homology of the fibration

BSU −→BU −→CP∞

to show that spec(H∗BSU) ∼= C2(Ĝa,Gm).
We then recall W. Singer’s analysis [Sin68] of the Serre spectral sequence

of the fibration

K(Z, 3) −→BU〈6〉 −→BSU.

By identifying the even homology of K(Z, 3) with the scheme of Weil pair-
ings described in Sect. 3.7, we show that spec(H∗BU〈6〉) ∼= C3(Ĝa,Gm).
Finally we deduce Theorem 2.31 for all E from the case of ordinary homol-
ogy.

The paper has two appendices. The first proves some results about the
group of additive cocycles Ck(Ĝa, Ĝa)(A), which are used in Sect. 3. The
second gives an exposition of the theory of generalized elliptic curves,
culminating in a proof of Proposition 2.57. We have tried to make things
as explicit as possible rather than relying on the machinery of algebraic
geometry, and we have given a number of examples.

The authors wish to express their gratitude to the referees for their very
careful reading and insightful comments.

2. More detailed results

2.1. The algebraic geometry of even periodic ring spectra. Let BU〈2k〉
→ Z× BU be the (2k − 1)–connected cover. In particular we have

BU〈0〉 = Z× BU
BU〈2〉 = BU
BU〈4〉 = BSU.

Let MU〈2k〉 be the associated bordism theory (so MU〈0〉 is the Thom
spectrum over Z× BU!). If E is an even periodic ring spectrum and k ≤ 3,
then E∗BU〈2k〉 is torsion free and concentrated in even degrees ([Sin68] or
see Sect. 4); by the Thom isomorphism the same is true for E∗MU〈2k〉. It
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follows that the Atiyah-Hirzebruch spectral sequence collapses, and so the
natural map

RingSpectra(MU〈2k〉, E) −→Algπ0 E(E0 MU〈2k〉, π0 E)

is an isomorphism. In other words, the multiplicative maps MU〈2k〉
→E are in one-to-one correspondence with π0E-valued points of
spec E0 MU〈2k〉. If E is an elliptic spectrum, then the Theorem of the
Cube endows this scheme with a canonical point. In order to connect the
topology to the algebraic geometry, we shall express some facts about even
periodic ring spectra in the language of algebraic geometry.

2.1.1. Formal schemes and formal groups. Following [DG70], we will
think of an affine scheme as a representable covariant functor from rings to
sets. The functor (co-)represented by a ring A is denoted spec A. The ring
(co-)representing a functor X will be denoted OX .

A formal scheme is a filtered colimit of affine schemes, in the category
of set-valued functors. The value of the colimit is just the colimit of the
values

(colim
α

Xα)(R) = colim
α

Xα(R).

For example, the functor Â1 associating to a ring R its set of nilpotent
elements is the colimit of the schemes spec(Z[x]/xk) and thus is a formal
scheme.

The category of formal schemes has finite products: if X = colim Xα

and Y = colim Yβ then X × Y = colim Xα × Yβ. The formal schemes in
this paper will all be of the form Ân × Z = Â1 × . . . × Â1 × Z for some
affine scheme Z. If X = colimα Xα is a formal scheme, then we shall write
OX for limα OXα

; in particular we have OÂ1 = Z[[x]]. We write ⊗̂ for the
completed tensor product, so that for example

OX×Y = OX⊗̂OY .

The one-point colimit makes an affine scheme X = spec A into a formal
scheme, with OX = A.

If X → S is a morphism of schemes with a section j : S → X, then X̂
will denote the completion of X along the section. Explicitly, the section j
defines an augmentation

OX
j∗−→ OS.

If J denotes the kernel of j∗, then

X̂ = colim
N

spec
(
OX/J N

)
.

For example, the zero element defines a section spec(Z) → A1, and the
completion of A1 along this section is the formal scheme Â1.
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A commutative one-dimensional formal group over S is a commutative
group G in the category of formal schemes over S which, Zariski locally
on S, is isomorphic to S × Â1 as a pointed formal scheme over S. We shall
often omit “commutative” and “one-dimensional”, and simply refer to G as
a formal group.

We shall use the notation Ga for the additive group, and Gm for the
multiplicative group. As functors we have Ga(R) = R and Gm(R) = R×.
Thus Ĝa is the additive formal group, and Ĝa(R) is the additive group of
nilpotent elements of R.

If the group scheme Gm acts on a scheme X, we have a map α : Gm × X
→ X, corresponding to a map α∗ : OX −→OGm×X = OX[u, u−1]. We put
(OX )n = { f | α( f ) = un f }. This makes OX into a graded ring.

A graded ring R∗ is said to be of finite type over Z if each Rn is a finitely
generated abelian group.

2.1.2. Even ring spectra and schemes. If E is an even periodic ring spec-
trum, then we write

SE
def= spec(π0E).

If X is a space, we write E0 X and E0 X for the unreduced E-(co)hom-
ology of X. If A is a spectrum, we write E0 A and E0 A for its spectrum
(co)homology. These are related by the formula E0 X = E0Σ∞X+.

Let X be a space. If {Xα} is the set of compact subsets of X, then we
write X E for the formal scheme colimα spec E0 Xα. This gives a covariant
functor from spaces to formal schemes over SE. If X is a CW-complex, then
the colimit may be taken over the finite subcomplexes of X, as these are
cofinal among the compact subsets.

We say that X is even if H∗X is a free abelian group, concentrated in
even degrees. If X is even and E is an even periodic ring spectrum, then E0 X
is a free module over E0, and E0 X is its dual. The restriction to even spaces
of the functor X �→ X E preserves finite products. For example the space

P
def= CP∞ is even, and PE is (non-canonically) isomorphic to the formal

affine line. The multiplication P× P → P classifying the tensor product of
line bundles makes the scheme PE into a (one-dimensional commutative)
formal group over SE .

The formal group PE is not quite the same as the one introduced by
Quillen [Qui69]. The ring of functions on Quillen’s formal group is E∗(P),
while the ring of functions on PE is E0(P). The homogeneous parts of
E∗(P) can interpreted as sections of line bundles over PE . For example, let
I be the ideal of functions on PE which vanish along the identity section.
The natural map

I/I 2 → Ẽ0(S2) = π2E (2.1)

is an isomorphism. Now I/I 2 is, by definition, the Zariski cotangent space
to the group PE at the identity, and defines a line bundle over spec π0E.
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This line bundle is customarily denoted ω, and can be regarded as the sheaf
of invariant 1-forms on PE . In this way we will identify π2E with invariant
1-forms on PE . More generally, π2n E can be identified with the module of
sections of ωn (i.e., invariant differentials of degree n on PE ).

Note that for any space X, the map

Ẽ0(X) ⊗π0 E π−2n(E) −→ Ẽ2n(X)

is an isomorphism, and so E2n(X) can be identified with the module of
sections of the pull-back of the line bundle ω−n to X E .

Let E be an even ring spectrum, which need not be periodic. Let EP =∨
n∈ZΣ2n E. There is an evident way to make this into a commutative ring

spectrum with the property that π∗EP = E∗[u, u−1] with u ∈ π2EP.
With this structure, EP becomes an even periodic ring spectrum. Note that
when X is finite we just have EP0 X = ⊕

n E2n X, so the ring EP0 X has
a natural even grading. If X is an infinite, even CW-complex then EP0 X is
the completed direct sum (with respect to the topology defined by kernels
of restrictions to finite subcomplexes) of the groups E2n X and so again has
a natural even grading.

We write HP for the 2-periodic integer Eilenberg-MacLane spectrum
HZP, and MP for MUP = MU〈0〉. The formal group of HP is the additive
group Ĝa; and we may choose an additive coordinate z on Ĝa for which
u = dz. By Quillen’s theorem [Qui69], the formal group of MP is Lazard’s
universal formal group law.

If X is an even, homotopy commutative H-space, then X E is a (com-
mutative but in general not one-dimensional) formal group. In that case
E0 X is an abelian Hopf algebra over E0 and we write X E = spec(E0 X) for
the corresponding group scheme. It is the Cartier dual of the formal group
X E . We recall (from [Dem72, Sect. II.4], for example; see also [Str99a,
Sect. 6.4] for a treatment adapted to the present situation) that the Cartier
dual of a formal group G is the functor from rings to groups

Hom(G,Gm)(A) = {(u, f ) | u : spec(A) −→S ,

f ∈ (Formal groups)(u∗G, u∗Gm)}.
Let b ∈ E0 X⊗̂E0 X be the adjoint of the identity map E0 X → E0 X. Given
a ring homomorphism g : E0 X → A we get a map u : spec(A) → SE and
an element g(b) ∈ (A⊗̂E0 X)× = (A⊗̂OX E )×, which corresponds to a map
of schemes

f : u∗X E −→u∗Gm.

One shows that it is a group homomorphism, and so gives a map of group
schemes

X E −→Hom(X E,Gm), (2.2)

which turns out to be an isomorphism.
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2.2. Constructions of elliptic spectra. Recall that an elliptic spectrum is
a triple (E, C, t) consisting of an even, periodic, homotopy commutative ring
spectrum E, a generalized elliptic curve C over E0(pt), and an isomorphism
formal groups

t : PE −→Ĉ.

Here are some examples.

Example 2.3. As discussed in the introduction, if Λ ⊂ C is a lattice, then the
quotient C/Λ is an elliptic curve CΛ over C. The covering map C→ C/Λ
gives an isomorphism tΛ : ĈΛ

∼= Ĝa. Let EΛ be the spectrum representing
the cohomology theory H∗(−;C[uΛ, u−1

Λ ]). Define HΛ to be the elliptic
spectrum (EΛ, CΛ, tΛ). Note that uΛ can be taken to correspond to the
invariant differential dz on C under the isomorphism (2.1).

Given a non-zero complex number λ, consider the map

f : EλΛ −→EΛ

uλΛ �→ λuΛ

(i.e. π2 f scales the invariant differential by λ). The induced map of formal
groups is simply multiplication by λ, and so extends to the isomorphism

CΛ
λ·−→ CλΛ

of elliptic curves. Thus f defines a map of elliptic spectra

f : HλΛ −→HΛ.

Example 2.4. Let CHP be the cuspidal cubic curve y2z = x3 over spec(Z).
In Sect. B.1.4, we give an isomorphism s : (CHP)reg

∼= Ga and so ŝ : ĈHP
∼=

Ĝa = PHP . Thus the triple (HP, CHP, ŝ) is an elliptic spectrum.

Example 2.5. Let C = CK be the nodal cubic curve y2z + xyz = x3

over spec(Z). In Sect. B.1.4, we give an isomorphism t : (CK )reg
∼= Gm so

ĈK
∼= Ĝm = PK . The triple (K, CK , t̂) is an elliptic spectrum.

Example 2.6. Let C/S be an untwisted generalized elliptic curve (see Defin-
ition B.2) with the property that the formal group Ĉ is Landweber exact (For
example, this is automatic if OS is a Q-algebra). Landweber’s exact functor
theorem gives an even periodic cohomology theory E∗(− ), together with
an isomorphism of formal groups t : PE −→Ĉ. This is the classical construc-
tion of elliptic cohomology; and gives rise to many examples. In fact, the
construction identifies a representing spectrum E up to canonical isomorph-
ism, since Franke [Fra92] and Strickland [Str99a, Proposition 8.43] show
that there are no phantom maps between Landweber exact elliptic spectra.

Example 2.7. In Sect. 2.6, we describe an elliptic spectrum based on the
Tate elliptic curve, with underlying spectrum K [[q]].



Elliptic spectra 607

2.3. The complex-orientable homology of BU〈2k〉 for k ≤ 3. Let E be
an even periodic ring spectrum with a coordinate x ∈ Ẽ0 P, giving rise to
a formal group law F over E0. Let ρ : P3 → BU〈6〉 be the map (see (2.24))
such that the composition

P3 ρ−→BU〈6〉 → BU

classifies the virtual bundle
∏

i(1 − Li). Let f = f(x1, x2, x3) be the
power series which is the adjoint of E0ρ in the ring E0 P3⊗̂E0 BU〈6〉 ∼=
E0 BU〈6〉[[x1, x2, x3]]. It is easy to check that f satisfies the following three
conditions.

f(x1, x2, 0) = 1 (2.8a)
f(x1, x2, x3) is symmetric in the xi (2.8b)

f(x1, x2, x3) f(x0, x1 +F x2, x3) = f(x0 +F x1, x2, x3) f(x0, x1, x3).
(2.8c)

We will eventually prove the following result.

Theorem 2.9. E0 BU〈6〉 is the universal example of an E0-algebra R
equipped with a formal power series f ∈ R[[x1, x2, x3]] satisfying the con-
ditions (2.8).

In this section we will reformulate this statement (as the case k = 3 of
Theorem 2.31) in a way which avoids the choice of a coordinate.

2.3.1. The functor Ck

Definition 2.10. If A and T are abelian groups, we define C0(A, T ) and
C1(A, T ) to be the groups

C0(A, T )
def= (Sets)(A, T )

C1(A, T )
def= (Pointed Sets)(A, T ).

For k ≥ 2 we define Ck(A, T ) to be the subgroup of f ∈ (Sets)(Ak, T ) such
that

f(a1, . . . , ak−1, 0) = 0; (2.11a)
f(a1, . . . , ak) is symmetric in the ai; (2.11b)

f(a1, a2, a3, . . . , ak) + f(a0, a1 + a2, a3, . . . , ak) (2.11c)
= f(a0 + a1, a2, a3, . . . , ak) + f(a0, a1, a3, . . . , ak).

We refer to (2.11c) as the cocycle condition for f . It really only involves the
first two arguments of f , with the remaining arguments playing a dummy
rôle. Of course, because f is symmetric, we have a similar equation for any
pair of arguments of f .
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Remark 2.12. We leave it to the reader to verify that the condition (2.11a)
can be replaced with the weaker condition

f(0, . . . , 0) = 0 (2.11a’)

Remark 2.13. Let Z[A] denote the group ring of A, and let I [A] be its
augmentation ideal. For k ≥ 0 let

Ck(A)
def= Symk

Z[A] I [A]
be the kth symmetric tensor power of I [A], considered as a module over
the group ring. One has C0(A) = Z[A] and C1(A) = I [A]. For k ≥ 2, the
abelian group Ck(A) is the quotient of Symk

Z I [A] by the relation

([c] − [c + a1]) ⊗ ([0] − [a2]) ⊗ . . . ⊗ ([0] − [ak])
= ([0] − [a1]) ⊗ ([c] − [c + a2]) ⊗ . . . ⊗ ([0] − [ak])

for c ∈ A. After some rearrangement and reindexing, this relation may be

expressed in terms of generators of the form 〈a1, . . . , ak〉 def= ([0] − [a1])⊗
. . . ⊗ ([0] − [ak]) by the formula

〈a1, a2, a3, . . . , ak〉 − 〈a0 + a1, a2, a3, . . . , ak〉
+ 〈a0, a1 + a2, a3, . . . , ak〉 − 〈a0, a1, a3, . . . , ak〉 = 0.

It follows that the map of sets

Ak → Ck(A)

(a1, . . . , ak) �→ 〈a1, . . . , ak〉
induces an isomorphism

(Abelian groups)(Ck(A), T ) ∼= Ck(A, T ).

Remark 2.14. Definition 2.10 generalizes to give a subgroup Ck(A, B) of
the group of maps f : Ak −→ B, if A and B are abelian groups in any
category with finite products.

Definition 2.15. If G and T are formal groups over a scheme S, and we
wish to emphasize the rôle of S, we will write Ck

S(G, T ). For any ring R,
we define

Ck(G, T )(R) = {(u, f ) | u : spec(R) −→S , f ∈ Ck
spec(R)(u

∗G, u∗T )}.
This gives a covariant functor from rings to groups. We shall abbreviate
Ck(G,Gm × S) to Ck(G,Gm).

Remark 2.16. It is clear from the definition that, for all maps of schemes
S′ → S, the natural map

Ck(G ×S S′,Gm) → Ck(G,Gm) ×S S′

is an isomorphism.
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Proposition 2.17. Let G be a formal group over a scheme S. For all k, the
functor Ck(G,Gm) is an affine commutative group scheme over S.

Proof. We assume that k > 0, leaving the modifications for the case k = 0
to the reader. We treat first the case that G admits a coordinate x globally
on S. Let F be the resulting formal group law of G. We let A be the set
of multi-indices α = (α1, . . . , αk), where each αi is a nonnegative integer.
We define R = OS[bα | α ∈ A][b−1

0 ], and f(x1, . . . , xk) = ∑
α bαxα ∈

R[[x1, . . . , xk]]. Thus, f defines a map spec(R) ×S Gk −→Gm , and in fact
spec(R) is easily seen to be the universal example of a scheme over S
equipped with such a map. We define power series g0, . . . , gk by

gi =


i = 0 f(0, . . . , 0)

i < k f(x1, . . . , xi−1, xi+1, xi, . . . , xk) f(x1, . . . , xk)
−1

i = k f(x1, . . . , xk) f(x0 +F x1, x2, . . . )
−1

· f(x0, x1 +F x2, . . . ) f(x0, x1, x3, . . . )
−1

We then let I be the ideal in R generated by all the coefficients of all the
power series gi − 1. It is not hard to check that spec(R/I ) has the universal
property that defines Ck(G,Gm).

More generally, suppose that U and V are Zariski open sets of S, over
which G admits coordinates xU and xV . Form the rings RU/IU and RV /IV
representing Ck(GU ,Gm) and Ck(GV ,Gm) as above. Over U ∩ V these
schemes represent the same functor, so we have a canonical isomorphism

Ck(GU ,Gm) ×U (U ∩ V ) ∼= Ck(GV ,Gm) ×V (U ∩ V )

of group schemes over U ∩ V . It is clear that these assemble to give the
affine S-scheme Ck(G,Gm). ��
Remark 2.18. A similar argument shows that Ck(G, T ) is a group scheme
when T is a formal group, or when T is the additive group Ga.

Remark 2.19. If G is a formal group and k > 0 then the inclusion C k(G, Ĝm)

−→ Ck(G,Gm) is an isomorphism, so we shall not distinguish between
these two schemes. Indeed, we can locally identify Ck(G,Gm)(R) with
a set of power series f as in the above proof. One of the conditions on
f is that f(0, . . . , 0) = 1, so when x1, . . . , xk are nilpotent we see that
f(x1, . . . , xn) = 1 mod nilpotents, so f(x1, . . . , xn) ∈ Ĝm ⊂ Gm . This
does not work for k = 0, as then we have

C0(G,Gm) = Map(G,Gm)  = Map(G, Ĝm) = C0(G, Ĝm).

2.3.2. The maps δ : Ck(G, T ) → Ck+1(G, T ). We now define maps of
schemes that will turn out to correspond to the maps BU〈2k+2〉 −→BU〈2k〉
of spaces.
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Definition 2.20. If G and T are abelian groups, and if f : Gk → T is a map
of sets, then let δ( f ) : Gk+1 → T be the map given by the formula

δ( f )(a0, . . . , ak) = f(a0, a2, . . . , ak) + f(a1, a2, . . . , ak)

− f(a0 + a1, a2, . . . , ak).
(2.21)

It is clear that δ generalizes to abelian groups in any category with
products. We leave it to the reader to verify the following.

Lemma 2.22. For k ≥ 1, the map δ induces a homomorphism of groups

δ : Ck(G, T ) → Ck+1(G, T ).

Moreover, if G and T are formal groups over a scheme S, then δ induces
a homomorphism of group schemes δ : Ck(G, T ) −→Ck+1(G, T ). ��
Remark 2.23. When A and T are discrete abelian groups, the group

Ext2(A; T )
def= cok(δ : C1(A, T ) −→ C2(A, T )) classifies abelian central

extensions of A by T . The next map δ : C2(A, T ) −→C3(A, T )) can also be
interpreted in terms of biextensions [Mum65,Gro72,Bre83].

2.3.3. Relation to BU〈2k〉. For any space X, we write K∗(X) for the pe-
riodic complex K -theory groups of X; in the case of a point we have
K∗ = Z[v, v−1] with v ∈ K−2. We have K2k(X) = [X,Z × BU] for all k.
We also consider the connective K -theory groups bu∗(X), so bu∗ = Z[v]
and bu2k(X) = [X, BU〈2k〉]. To make this true when k = 0, we adopt the
convention that BU〈0〉 = Z×BU . Multiplication by vk : Σ2kbu → bu gives
an identification of the 0-space of Σ2kbu with BU〈2k〉. Under this identifi-
cation, the projection BU〈2k+2〉 −→BU〈2k〉 is derived from multiplication
by v mapping Σ2k+2bu → Σ2kbu.

Let

ρ0 : P → 1 × BU ⊂ BU〈0〉 = Z× BU

be the map classifying the tautological line bundle L . For k > 0 we define
a map

ρk : Pk = (CP∞)k → BU〈2k〉 (2.24)

as follows. Let L1, . . . , Lk be the obvious line bundles over Pk. Let xi ∈
bu2(Pk) be the bu-theory Euler class, given by the formula

vxi = 1 − Li .

Then we have the isomorphisms

bu∗(Pk) ∼= Z[v][[x1, . . . , xk]] (2.25)

K∗(Pk) ∼= Z[v, v−1][[x1, . . . , xk]]. (2.26)
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The class
∏

i xi ∈ bu2k(Pk) gives the map ρk. Note that the composition

Pk ρk−→ BU〈2k〉 → BU

classifies the bundle
∏

i(1 − Li).
Since P and BU〈2k〉 are abelian group objects in the homotopy category

of topological spaces, we can define

Ck(P, BU〈2k〉) ⊂ [Pk, BU〈2k〉] = bu2k(Pk).

Then we have the following.

Proposition 2.27. The map ρk is contained in the subgroup Ck(P, BU〈2k〉)
of bu2k(Pk) and satisfies

v∗ρk+1 = δ(ρk) ∈ Ck+1(P, BU〈2k〉).
Proof. Since vk : bu2k Pk → bu0 Pk ∼= K0 Pk is injective, it suffices to
check that vk∗ρk gives an element of Ck(P, BU〈0〉). As the group structure
of P corresponds to the tensor product of line bundles, while the group
structure of BU〈0〉 corresponds to the Whitney sum of vector bundles, the
cocycle condition (2.11c) amounts to the equation

(1 − L2)(1 − L3) + (1 − L1)(1 − L2L3)

= (1 − L1L2)(1 − L3) + (1 − L1)(1 − L2)

in K0(P3). The other conditions for membership in Ck are easily verified.
Similarly, the equation v∗ρk+1 = δ(ρk) follows from the equation

(1 − L1) + (1 − L2) − (1 − L1L2) = (1 − L1)(1 − L2). ��
Now let E be an even periodic ring spectrum. Applying E-homology to

the map ρk gives a homomorphism

E0ρk : E0 Pk → E0 BU〈2k〉.
For k ≤ 3, BU〈2k〉 is even ([Sin68] or see Sect. 4), and of course the
same is true of P, and so we may consider the adjoint ρ̂k of E0ρk in
E0 BU〈2k〉⊗̂E0 Pk. Proposition 2.27 then implies the following.

Corollary 2.28. The element ρ̂k ∈ E0 BU〈2k〉⊗̂E0 Pk is an element of
Ck(PE,Gm)(E0 BU〈2k〉). ��
Definition 2.29. For k ≤ 3, let fk : BU〈2k〉E → Ck(PE,Gm) be the map
classifying the cocycle ρ̂k.
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Corollary 2.30. The map fk is a map of group schemes. For k ≤ 2, the
diagram

BU〈2k + 2〉E

��
fk+1

//vE

BU〈2k〉E

��
fk

Ck+1(PE,Gm) //
δ

Ck(PE,Gm)

commutes.

Proof. The commutativity of the diagram follows easily from the Proposi-
tion. To see that fk is a map of group schemes, note that the group structure on
BU〈2k〉E is induced by the diagonal map ∆ : BU〈2k〉 −→BU〈2k〉×BU〈2k〉.
The commutative diagram

Pk ∆−−−→ Pk × Pk

ρk

� �ρk×ρk

BU〈2k〉 ∆−−−→ BU〈2k〉 × BU〈2k〉
shows that

BU〈2k〉E × BU〈2k〉E −→BU〈2k〉E

pulls the function ρ̂k back to the multiplication of ρ̂k ⊗ 1 and 1 ⊗ ρ̂k as
elements of the ring E0(BU〈2k〉2)⊗̂E0 Pk of functions on Pk

E ×(BU〈2k〉E ×
BU〈2k〉E). The result follows, since the group structure of Ck(PE ,Gm) is
induced by the multiplication of functions in OPk

E
. ��

Our main calculation, and the promised coordinate-free version of Theo-
rem 2.9, is the following.

Theorem 2.31. For k ≤ 3, the map of group schemes

BU〈2k〉E fk−→ Ck(PE,Gm)

is an isomorphism.

This is proved in Sect. 4. The cases k ≤ 1 are essentially well-known cal-
culations. For k = 2 and k = 3 we can reduce to the case E = MP, using
Quillen’s theorem that π0MP carries the universal example of a formal
group law. Using connectivity arguments and the Atiyah-Hirzebruch spec-
tral sequence, we can reduce to the case E = HP. After these reductions, we
need to compare H∗BU〈2k〉 with OCk(Ĝa,Gm). We analyze H∗(BU〈2k〉;Q)

and H∗(BU〈2k〉;Fp) using the Serre spectral sequence, and we analyze
OCk(Ĝa,Gm) by direct calculation, one prime at a time. For the case k = 3 we
also give a model for the scheme associated to the polynomial subalgebra of
H∗(K(Z, 3);Fp), and by fitting everything together we show that the map
BU〈2k〉E −→Ck(PE,Gm) is an isomorphism.
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Remark 2.32. As BU〈2k〉E = Hom(BU〈2k〉E,Gm) = Ck(PE,Gm), it is
natural to hope that one could

i. define a formal group scheme Ck(PE ) which could be interpreted as the
k’th symmetric tensor power of the augmentation ideal in the group ring
of the formal group PE ;

ii. show that Ck(PE,Gm) = Hom(Ck(PE ),Gm); and
iii. prove that BU〈2k〉E = Ck(PE ).

This would have advantages over the above theorem, because the construc-
tion X �→ X E is functorial for all spaces and maps, whereas the construction
X �→ X E is only functorial for commutative H-spaces and H-maps. It is
in fact possible to carry out this program, at least for k ≤ 3. It relies on the
apparatus developed in [Str99a], and the full strength of the present paper
is required even to prove that C3(G) (as defined by a suitable universal
property) exists. Details will appear elsewhere.

2.4. The complex-orientable homology of MU〈2k〉 for k ≤ 3. We now
turn our attention to the Thom spectra MU〈2k〉. We first note that when
k ≤ 3, the map BU〈2k〉 → BU〈0〉 = Z × BU is a map of commutative,
even H-spaces. The Thom isomorphism theorem as formulated by [MR81]
implies that E0 MU〈2k〉 is an E0 BU〈2k〉-comodule algebra; and a choice of
orientation MU〈0〉 → E gives an isomorphism

E0 MU〈2k〉 ∼= E0 BU〈2k〉
of comodule algebras. In geometric language, this means that the scheme
MU〈2k〉E is a principal homogeneous space or “torsor” for the group scheme
BU〈2k〉E .

In this section, we work through the Thom isomorphism to describe the
object which corresponds to MU〈2k〉E under the isomorphism BU〈2k〉E ∼=
Ck(PE,Gm) of Theorem 2.31. Whereas the schemes BU〈2k〉E are related
to functions on the formal group PE of E, the schemes MU〈2k〉E are related
to the sections of the ideal sheaf � (0) on PE . In Sect. 2.4.4, we describe the
analogue Ck(G;� (0)) for the line bundle � (0) of the functor Ck(G,Gm).
In Sect. 2.4.5, we give the map

gk : MU〈2k〉E → Ck(PE;� (0))

which is our description of MU〈2k〉E .

2.4.1. Torsors. We begin with a brief review of torsors in general and the
Thom isomorphism in particular.

Definition 2.33. Let S be a scheme and G a group scheme over S. A (right)
G-torsor over S is an S-scheme X with a right action

X × G
µ−→ X
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of the group G, with the property that there is a faithfully flat, quasi-compact
map of schemes T → S and an isomorphism

G × T −→X × T

of T -schemes, compatible with the action of G × T . (All the products here
are to be interpreted as fiber products over S.) Any such isomorphism is a
trivialization of X over T . A map of G-torsors is just an equivariant map of
schemes. Note that a map of torsors is automatically an isomorphism.

When G = spec(H) is affine over S = spec(A), a G-torsor works out
to consist of an affine S-scheme X = spec(M) and a right coaction

M
µ∗−→ M ⊗A H

with the property that over some faithfully flat A-algebra B there is an
isomorphism

H ⊗A B −→M ⊗A B

of rings which is a map of right H ⊗A B-comodules.
For example, consider the relative diagonal

MU〈2k〉 ∆−→ MU〈2k〉 ∧ BU〈2k〉+.

If E is an even periodic ring spectrum and k ≤ 3, then by the Künneth and
universal coefficient theorems, the map ∆ induces an action

MU〈2k〉E × BU〈2k〉E µ−→MU〈2k〉E .

of the group scheme BU〈2k〉E on MU〈2k〉E . The scheme MU〈2k〉E is in
fact a torsor for BU〈2k〉E . Indeed, a complex orientation MU〈0〉 −→ E
restricts to an orientation Φ : MU〈2k〉 −→E which induces an isomorphism

E0 MU〈2k〉 ∆−→ E0 MU〈2k〉 ∧ BU〈2k〉+ Φ∧BU〈2k〉+−−−−−−→ E0 BU〈2k〉+ (2.34)

of E0 BU〈2k〉-comodule algebras.

2.4.2. The line bundle � (0). Another source of torsors is line bundles. If L
is a line bundle (invertible sheaf of OX-modules) over X, let Γ×(L) be the
functor of rings

Γ×(L)(R) = {(u, s) | u : spec(R) −→X , s a trivialization of u∗L}.
Then Γ×(L) is a Gm-torsor over X, and Γ× is an equivalence between the
category of line bundles (and isomorphisms) and the category ofGm torsors.
We will often not distinguish in notation between L and the associated Gm-
torsor Γ×(L).
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Let G be a formal group over a scheme S. The ideal sheaf � (0) associated
to the zero section S ⊂ G defines a line bundle over G. Indeed, the set of
global sections of � (0) is the set of functions f ∈ OG such that f |S = 0.
Zariski locally on S, a choice of coordinate x gives an isomorphism OG =
OS[[x]], and the module of sections is the ideal (x), which is free of rank 1.

If C is a generalized elliptic curve over S, then we again let � (0) denote
the ideal sheaf of S ⊂ C. Its restriction to the formal completion Ĉ is the
same as the line bundle over Ĉ constructed above.

2.4.3. The Thom sheaf. Suppose that X is a finite complex and V is a com-
plex vector bundle over X. We write XV for its Thom spectrum, with bottom
cell in degree equal to the real rank of V . This is the suspension spectrum
of the usual Thom space. Now let E be an even periodic ring spectrum. The
E0 X-module E0 XV is the sheaf of sections of a line bundle over X E . We
shall write L(V ) for this line bundle, and L defines a functor from vector
bundles over X to line bundles over X E . If V and W are two complex vector
bundles over X then there is a natural isomorphism

L(V ⊕ W ) ∼= L(V ) ⊗ L(W ), (2.35)

and so L extends to the category of virtual complex vector bundles by the
formula L(V − W ) = L(V ) ⊗ L(W )−1. Moreover, if f : Y → X is a map
of spaces, then there is a natural isomorphism (spec E0 f )∗L(V ) ∼= L( f ∗V )
of line bundles over YE . This construction extends naturally to infinite
complexes by taking suitable (co)limits.

Example 2.36. For example, if L is the tautological line bundle over P =
CP∞ then the zero section P −→ PL induces an isomorphism Ẽ0 PL ∼=
Ẽ0 P = ker(E0 P −→E0), and thus gives an isomorphism

L(L) ∼= � (0) (2.37)

of line bundles over PE .

2.4.4. The functors Θk (after Breen [Bre83]). We recall that the category
of line bundles or Gm-torsors is a strict Picard category, or in other words
a symmetric monoidal category in which every object L has an inverse L−1,
and the twist map of L ⊗ L is the identity. This means that the procedures
we use below to define line bundles give results that are well-defined up to
coherent canonical isomorphism.

Suppose that G is a formal group over a scheme S and L is a line bundle
over G.

Definition 2.38. A rigid line bundle over G is a line bundle L equipped
with a specified trivialization of L|S at the identity S → G. A rigid section
of such a line bundle is a section s which extends the specified section
at the identity. A rigid isomorphism between two rigid line bundles is an
isomorphism which preserves the specified trivializations.
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Definition 2.39. Suppose that k ≥ 1. Given a subset I ⊆ {1, . . . , k}, we
define σI : Gk

S −→G by σI(a1, . . . , ak) = ∑
i∈I ai , and we write LI = σ∗

I L,
which is a line bundle over Gk

S. We also define the line bundle Θk(L) over
Gk

S by the formula

Θk(L)
def=

⊗
I⊂{1,...,k}

(LI )
(−1)|I | . (2.40)

Finally, we define Θ0(L) = L.

For example we have

Θ0(L)a = La

Θ1(L)a = L0

La

Θ2(L)a,b = L0 ⊗ La+b

La ⊗ Lb

Θ3(L)a,b,c = L0 ⊗ La+b ⊗ La+c ⊗ Lb+c

La ⊗ Lb ⊗ Lc ⊗ La+b+c
.

We observe three facts about these bundles.

i. Θk(L) has a natural rigid structure for k > 0.
ii. For each permutation σ ∈ Σk , there is a canonical isomorphism

ξσ : π∗
σΘk(L) ∼= Θk(L),

where πσ : Gk
S −→ Gk

S permutes the factors. Moreover, these isomor-
phisms compose in the obvious way.

iii. There is a canonical identification (of rigid line bundles over Gk+1
S )

Θk(L)a1,a2,... ⊗ Θk(L)−1
a0+a1,a2,...

⊗ Θk(L)a0,a1+a2,... ⊗ Θk(L)−1
a0,a1,...

∼= 1.

(2.41)

Definition 2.42. A Θk–structure on a line bundle L over a group G is
a trivialization s of the line bundle Θk(L) such that

i. for k > 0, s is a rigid section;
ii. s is symmetric in the sense that for each σ ∈ Σk, we have ξσπ∗

σs = s;
iii. the section s(a1, a2, . . . )⊗ s(a0 + a1, a2, . . . )

−1 ⊗ s(a0, a1 + a2, . . . )⊗
s(a0, a1, . . . )

−1 corresponds to 1 under the isomorphism (2.41).

A Θ3–structure is known as a cubical structure [Bre83]. We write Ck(G;L)
for the set of Θk-structures on L over G. Note that C0(G;L) is just the
set of trivializations of L, and C1(G;L) is the set of rigid trivializations of
Θ1(L). We also define a functor from rings to sets by

Ck(G;L)(R) = {(u, f ) | u : spec(R) −→S , f ∈ Ck
spec(R)(u

∗G; u∗L)}.



Elliptic spectra 617

Remark 2.43. Note that for the trivial line bundle OG , the set Ck(G;OG)
reduces to that of the group Ck(G,Gm) of cocycles introduced in Sect. 2.3.1.

Remark 2.44. There are some differences between our functors Θk and
Breen’s functors Λ and Θ [Bre83]. Let L′ = Θ1(L)−1 be the line bundle
La/L0. Then there are natural isomorphisms

Λ(L′) ∼= Θ2(L)

Θ(L′) ∼= Θ3(L)−1.

Breen also uses the notation Θ1(L) for Θ(L′) [Bre83, Equation 2.8.1]. As
the trivializations of L biject with those of L−1 in an obvious way, a cubical
structure on L in our sense is in Breen’s terminology a cubical structure on
L′ which is compatible with the natural rigidification.

Proposition 2.45. If G is a formal group over S, and L is a trivializable
line bundle over G, then the functor Ck(G;L) is a scheme, whose formation
commutes with change of base. Moreover, Ck(G;L) is a trivializable torsor
for Ck(G,Gm).

Proof. There is an evident action of Ck(G,Gm) on Ck(G;L), and a trivi-
alization of L clearly gives an equivariant isomorphism of Ck(G;L) with
Ck(G;OG) = Ck(G,Gm). Given this, the Proposition follows from the
corresponding statements for Ck(G,Gm), which were proved in Proposi-
tion 2.17. ��

The following lemmas can easily be checked from Definitions 2.39
and 2.42.

Lemma 2.46. If L is a line bundle over a formal group G, then there is
a canonical isomorphism

Θk(L)a0,a2,... ⊗ Θk(L)a1,a2,... ⊗ Θk(L)−1
a0+a1,a2,...

∼= Θk+1(L)a0,...,ak . ��

Lemma 2.47. There is a natural map δ : Ck(G;L) −→Ck+1(G;L), given
by

δ(s)(a0, . . . , ak) = s(a0, a2, . . . )s(a1, a2, . . . )s(a0 + a1, a2, . . . )
−1,

where the right hand side is regarded as a section of Θk+1(L) by the
isomorphism of the previous lemma. ��
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2.4.5. Relation to MU〈2k〉. For 1 ≤ i ≤ k, let Li be the line bundle over
the i factor of Pk. Recall from (2.24) that the map ρk : Pk → BU〈2k〉 pulls
the tautological virtual bundle over BU〈2k〉 back to the bundle

V =
⊗

i

(1 − Li).

Passing to Thom spectra gives a map

(Pk)V → MU〈2k〉
which determines an element sk of E0 MU〈2k〉⊗̂E0((Pk)V ).

We recall from (2.37) that there is an isomorphism of line bundles
L(L) ∼= � (0) over PE , where � (0) is the ideal sheaf of the zero section;
and that the functor L (from virtual vector bundles to line bundles over X E)
sends direct sums to tensor products. Together these observations give an
isomorphism

L(V ) ∼= Θk(� (0)) (2.48)

of line bundles over Pk
E . With this identification, sk is a section of the

pull-back of Θk(� (0)) along the projection MU〈2k〉E −→SE .

Lemma 2.49. The section sk is a Θk-structure.

Proof. This is analogous to Corollary 2.28. ��
Let

MU〈2k〉E gk−→ Ck(PE;� (0))

be the map classifying the Θk-structure sk. We note that the isomorphism
BU〈2k〉E ∼= Ck(PE,Gm) gives Ck(PE;� (0)) the structure of a torsor for
the group scheme BU〈2k〉E .

Theorem 2.50. For k ≤ 3, the map gk is a map of torsors for the group
BU〈2k〉E (and so an isomorphism). Moreover, the map MU〈2k + 2〉 −→
MU〈2k〉 induces the map δ : Ck(PE;� (0)) −→Ck+1(PE;� (0)).

Proof. Let us write µ for the action

Ck(PE;� (0)) × Ck(PE,Gm) −→Ck(PE;� (0)).

If funiv is the universal element of Ck(PE,Gm) and suniv is the universal
element of Ck(PE;� (0)), then µ is characterized by the equation

µ∗suniv = funivsuniv, (2.51)

as elements of Ck(PE;� (0))
(
OCk(PE;� (0))×Ck(PE ,Gm)

)
.
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Now consider the commutative diagram

(Pk)V //∆

��

(Pk)V ∧ (Pk)+

��
MU〈2k〉 //

∆
MU〈2k〉 ∧ BU〈2k〉+.

Applying E-homology and then taking the adjoint in E0(BU〈2k〉+∧
MU〈2k〉)⊗̂E0(Pk)V gives a section of Θk (� (0)) over BU〈2k〉E×MU〈2k〉E .
The counterclockwise composition identifies this section as the pull-back
of the section sk under the action

MU〈2k〉E × BU〈2k〉E ∆E−→ MU〈2k〉E

as in Sect. 2.4.1. Via the isomorphism BU〈2k〉E ∼= Ck(PE,Gm) of Theorem
2.31, the clockwise composition is funivsk. From the description of µ (2.51)
it follows that gk is a map of torsors, as required.

Another diagram chase shows that the map MU〈2k + 2〉 −→MU〈2k〉 is
compatible with the map δ : Ck(GE;� (0)) −→Ck+1(GE;� (0)). ��
Corollary 2.52. For 0 ≤ k ≤ 3, maps of ring spectra MU〈2k〉 −→E are in
bijective correspondence with Θk-structures on � (0) over GE.

Proof. Since E∗MU〈2k〉 is torsion free and concentrated in even degrees,
the Atiyah-Hirzebruch spectral sequence collapses, and so one has

[MU〈2k〉, E] = E0 MU〈2k〉 = Homπ0 E(E0 MU〈2k〉, π0 E).

One checks that maps of ring spectra correspond to ring homomorphisms,
so

RingSpectra(MU〈2k〉, E) = Algπ0 E(E0 MU〈2k〉, π0 E).

This is just the set of global sections of MU〈2k〉E over SE, which is the set
of Θk-structures on � (0) over GE by the theorem. ��
Example 2.53. Maps of ring spectra MP = MU〈0〉 −→ E are in bijective
correspondence with global trivializations of the sheaf � (0) ∼= L(L), that
is, with generators x of the augmentation ideal E0 P → E0(pt).

Example 2.54. Maps of ring spectra MU = MU〈2〉 → E are in bijective
correspondence with rigid sections of ω ⊗ � (0)−1, or equivalently with
rigid sections of ω−1 ⊗ � (0). The isomorphism (2.48) identifies sections
of ω−1 ⊗ � (0) with elements of E0(PL−1), and the rigid sections are those
which restrict to the identity under the inclusion

S0 → PL−1

of the bottom cell. It is equivalent to give a class x ∈ Ẽ2(P) whose restriction
to Ẽ2(S2) is the suspension of 1 ∈ Ẽ0S0; this is the description of maps
MU → E in [Ada74].
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2.5. The σ–orientation of an elliptic spectrum

2.5.1. Elliptic spectra and the theorem of the cube. Let C be a generalized
elliptic curve over an affine scheme S. To begin, note that the smooth locus
Creg is a group scheme over S, so we can define Θ3(� (0)) over Creg. We
define a cubical structure on C to be a cubical structure on � (0)|Creg; and
we write C3(C;� (0)) for C3(Creg;� (0)).

Theorem 2.55. For any (nonsingular) elliptic curve C over a scheme S,
there is a unique cubical structure s(C/S) ∈ C3(C;� (0)). It has the fol-
lowing properties:

i. If C ′/S′ is obtained from C/S by base change along f : S′ −→S, then

s(C′/S′) = f ∗s(C/S)

ii. If t : C ′ −→C is an isomorphism over S, then

s(C ′/S) = (t3)∗s(C/S).

Proof. The first claim follows from Abel’s theorem as stated in [DR73,
Prop 2.7, p. 189] or [KM85, Theorem 2.1.2], by the argument sketched
in the introduction. The other claims are immediate by uniqueness. See
also [Gro72, Exposé VIII, Cor. 7.5] and [Bre83, Proposition 2.4]) for the
theorem of the cube for a general abelian variety. ��

We would like to extend this to the case where C is allowed to have
singularities. In this generality there may be many cubical structures (for
example when C is a cuspidal cubic over spec(Z), with Creg = Ga) but
nonetheless there will be a canonical choice of one. To prove this, we will
exhibit a formula which gives the unique cubical structure on the universal
elliptic curve over Z[a1, a2, a3, a4, a6][∆−1] and give a density argument to
show that this formula works in general.

Definition 2.56. Let C = C(a1, a2, a3, a4, a6) be a Weierstrass curve (see
Appendix A.3 for definitions and conventions). A typical point of (Creg)

3
S

will be written as (c0, c1, c2). We define s(a) by the following expression:

s(a)(c0, c1, c2) =
∣∣∣∣∣ x0 y0 z0
x1 y1 z1
x2 y2 z2

∣∣∣∣∣
−1 ∣∣∣∣ x0 z0

x1 z1

∣∣∣∣ ∣∣∣∣ x1 z1
x2 z2

∣∣∣∣ ∣∣∣∣ x2 z2
x0 z0

∣∣∣∣ (z0z1z2)
−1d(x/y)0.

(Compare [Bre83, Equation 3.13.4], bearing in mind the isomorphism x �→
[℘(x) : ℘′(x) : 1] from C/Λ to E ; Breen cites [FS80,Jac] as sources.)

Proposition 2.57. s(a) is a meromorphic section of the line bundle p∗ωC
over (Creg)

3
S (where p : C3

S −→S is the projection). It defines a rigid trivial-
ization of

(p∗ωC) ⊗ �−D1+D2−D3 = Θ3(� (0))

(in the notation of Sect. B.4.2).
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The proof is given in Sect. B.4 of the appendix.

Corollary 2.58. There is a unique way to assign to a generalized elliptic
curve C over a scheme S a cubical structure s(C/S) ∈ C3(C;� (0)), such
that the following conditions are satisfied.

i. If C ′/S′ is obtained from C/S by base change along f : S′ −→S, then

s(C′/S′) = f ∗s(C/S)

ii. If t : C ′ −→C is an isomorphism over S, then

s(C ′/S) = (t3)∗s(C/S).

Proof. Over the locus WCell ⊂ WC where ∆ is invertible, there is only
one rigid trivialization of Θ3(� (0)), and it is a cubical structure (by Theo-
rem 2.55). Thus s(a) satisfies the equations for a cubical structure when
restricted to the dense subscheme C3

reg ×WC WCell ⊂ C3
reg, so it must satisfy

them globally. Similarly, the uniqueness clause in the theorem implies that
s(a)|WCell is invariant under the action of the group WR, and thus s(a) itself
is invariant.

Now suppose we have a generalized elliptic curve C over a general
base S. At least locally, we can choose a Weierstrass parameterization of
C and then use the formula s(a) to get a cubical structure. Any other
Weierstrass parameterization is related to the first one by the action of WR,
so it gives the same cubical structure by the previous paragraph. We can thus
patch together our local cubical structures to get a global one. The stated
properties follow easily from the construction. ��
Theorem 2.59. For any elliptic spectrum E = (E, C, t) there is a canonical
map of ring spectra

σE : MU〈6〉 −→E.

This map is natural in the sense that if f : E −→E′ = (E ′, C ′, t′) is a map
of elliptic spectra, then the diagram

MU〈6〉

{{

σE

xx
xx
xx
xx
x

##

σE′

GG
GG

GG
GG

G

E //
f E ′

commutes (up to homotopy).

Proof. This is now very easy. Let s(C/SE) be the cubical structure con-
structed in Corollary 2.58, and let s(Ĉ/SE) be the restriction of s(C/S) to
ĈE . The orientation is the map σE : MU〈6〉 −→E corresponding to t∗s(Ĉ/S)
via Corollary 2.52. The functoriality follows from the functoriality of s in
the corollary. ��
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2.6. The Tate curve. In this section we describe the Tate curve CTate,
and give an explicit formula for the cubical structure s(ĈTate). For further
information about the Tate curve, the reader may wish to consult for example
[Sil94, Chapter V] or [Kat73].

By way of motivation, let’s work over the complex numbers. Elliptic
curves over C can be written in the form

C×/(u ∼ qu)

for some q with 0 < |q| < 1. This is the Tate parameterization, and as is
customary, we will work with all q at once by considering the family of
elliptic curves

C ′
an/D′ = D′ × C×/(q, u) ∼ (q, qu),

parameterized by the punctured open unit disk

D′ = {q ∈ C | 0 < |q| < 1}.
In this presentation, meromorphic functions on C ′

an are naturally identified
with meromorphic functions f(q, u) on D′ × C× satisfying the functional
equation

f(q, qu) = f(q, u). (2.60)

Sections of line bundles on C ′
an admit a similar description, but with (2.60)

modified according to the descent datum of the line bundle.
Let � (0) be the ideal sheaf of the origin on C ′

an. The pullback of � (0)
to D′ × C× is the line bundle whose holomorphic sections are functions
vanishing at the points (q, qn), with n ∈ Z. One such function is

θ̃(q, u) = (1 − u)
∏
n>0

(1 − qnu)(1 − qnu−1),

which has simple zeroes at the powers of q, and so gives a trivialization
of the pullback of � (0) to C×. The function θ̃(q, u) does not descend to
a trivialization of � (0) on C ′

an, but instead satisfies the functional equation

θ̃(q, qu) = −u−1θ̃(q, u). (2.61)

However, as one can easily check,

δ3θ̃(q, u)

does descend to a rigid trivialization of Θ3(� (0)), and hence gives the
unique cubical structure.
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The curve C ′
an has the following presentation as a Weierstrass curve. Set

σk(n) =
∑
d|n

dk

αk =
∑
n>0

σk(n)qn

a4 = −5α3

a6 = −(5α3 + 7α5)/12

(The coefficients of a6 are in fact integers). Consider the Weierstrass cubic

y2 + xy = x3 + a4x + a6 (2.62)

over D′.

Proposition 2.63. The formulae

x = u

(1 − u)2
+

∑
n>0

qn
∑
d|n

d(ud − 2 + u−d)

y = u2

(1 − u)3
+

∑
n>0

qn
∑
d|n

d

2
((d − 1)ud + 2 − (d + 1)u−d).

give an analytic isomorphism between the projective plane curve defined by
(2.62) and C ′

an.

Proof. See for example [Sil94, Chapter V, Sect. 1]. ��
Equation (2.62) makes sense for q = 0 and defines a family Can of

generalized elliptic curves over the open unit disk

D = {q ∈ C | |q| < 1}.
The fiber of Can over q = 0 is the twisted cubic curve

y2 + xy = x3.

The invariant differential of Can is given by

dx

2y + x
= du

u
.

By continuity and Corollary 2.58, the expression δ3θ̃(q, u) determines the
cubical structure on Can.

Let A ⊂ Z[[q]] be the subring consisting of power series which converge
absolutely on the open unit disk

{q ∈ C | |q| < 1} .
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The series a4 and a6 are in fact elements of A, and so (2.62) defines a gen-
eralized elliptic curve C over spec A. The curve Can is obtained by change
of base from A to the ring of holomorphic functions on D. The Tate curve
CTate is the generalized elliptic curve over

DTate = specZ[[q]]
obtained by change of base along the inclusion A ⊂ Z[[q]]. Since the map
from the meromorphic sections of Θ3(� (0)) on C3 to meromorphic sections
on C3

an is a monomorphism, one can interpret the expression

s(C3
an) = δ3θ̃(q, u)

as a formula for the cubical structure on the sheaf � (0) over C, and thus by
base change, for CTate.

Now the map

D′ × C× = D′ × Gm → C ′
an

is a local analytic isomorphism, and restricts to an isomorphism of formal
groups

D′ × Ĝm → Ĉ ′
an.

This, in turn, extends to an analytic isomorphism

D × Ĝm → Ĉan. (2.64)

Although θ̃(q, u) does not descend to a meromorphic function on Can, it
does extend to a function on the formal completion Ĉan. In fact it can be
taken to be a coordinate on Ĉan. We have therefore shown

Proposition 2.65. The pullback of the canonical cube structure s(Can) to
Ĉ3

an, is given by

s(Ĉan) = δ3θ̃(q, u),

where θ̃(q, u) is interpreted as a coordinate on Ĉan via (2.64). ��
We now have three natural coordinates on Ĉ ′

an:

t = x/y, θ̃(q, u), and 1 − u.

Of these, only the function t gives an algebraic coordinate on C ′
an (and in

fact on Can). Let’s write each of the above as formal power series in t:

θ̃(q, u) = θ̃(t) = t + O(t2)

1 − u = 1 − u(t) = t + O(t2).

By definition, the coefficients of the powers of t in the series θ̃(t) and u(t)
are holomorphic functions on the punctured disc D′. It is also easy to check
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that they in fact extend to holomorphic functions on D (set q = 0) and have
integer coefficients (work over the completion of Z[u±1][[q]] at (1 − u)).
Thus θ̃(t) and u(t) actually lie in A[[t]], and in this way can be interpreted
as functions on the formal completion of Ĉ of C (and hence, after change
of base, on the completion ĈTate of CTate). The function 1 − u(t) gives an
isomorphism

sTate
def= 1 − u(t) : Ĉ → Ĝm (2.66)

Moreover, the restriction of the cubical structure s(C) to Ĉ3 is given by

s(Ĉ) = δ3θ̃(t),

since the map from the ring of formal functions on Ĉ to the ring of formal
functions on Ĉan is a monomorphism. Thus we have proved

Proposition 2.67. The canonical cubical structure s(Ĉ/A) ∈ C3(Ĉ;� (0))
is given by the formula

s(Ĉ/A) = δ3θ̃(t),

where t = x/y, and θ̃(t) is the series defined above. ��

2.7. The elliptic spectrum KTate and its σ -orientation. The multiplicative
cohomology theory underlying KTate is simply K [[q]], so π0KTate = Z[[q]].
The formal group comes from that of K -theory via the inclusion

K ↪→ K [[q]],
and is just the multiplicative formal group. The elliptic curve is the Tate el-
liptic curve CTate. The triple (K [[q]], CTate, sTate) is the Tate elliptic spectrum,
which we shall denote simply KTate.

By Proposition 2.67 and Theorem 2.50, the σ -orientation is the compos-
ite

MU〈6〉 → MP
θ̃−→K [[q]],

with the map labeled θ̃ corresponding to the coordinate θ̃(t) on ĈTate in the
isomorphism of Theorem 2.50. In this section, we express the map

π∗MU → π∗MP
π∗θ̃−→ π∗K [[q]]

in terms of characteristic classes, and identify the corresponding bordism
invariant with the Witten genus.

According to Theorem 2.50, maps

MP → E
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are in one-to-one correspondence with coordinates f on the formal group.
The restriction

MU → MP → E

sends the coordinate f to the rigid section δ f of Θ1(� (0)) = � (0)0 ⊗
� (0)−1. The most straightforward formula for δ f is

δ f = f(0)

f

which can be misleading, because it is tempting to write f(0) = 0. (The
point is that it is not so when regarded as a section of � (0)0.) It seems clearer
to express δ f in terms of the isomorphism

� (0)0 ⊗ � (0)−1 ∼= ω ⊗ � (0)−1

as in Sect. 2.1.2. Sections of ω can be identified with invariant one-forms
on PE . If x is a coordinate on PE , and f(x) is a trivialization of � (0), then

δ f = f ′(0)Dx

f(x)

where Dx is the invariant differential with value dx at 0.
The K -theory orientation of complex vector bundles

MP → K (2.68)

constructed by Atiyah-Bott-Shapiro [ABS64] corresponds to the coordinate
1 − u on the formal completion of Gm = specZ[u, u−1]. The invariant
differential is

D(1 − u) = −du

u
,

and the restriction of (2.68) to MU → K is classified by the Θ1-structure

δ(1 − u) = 1

1 − u

(
−du

u

)
.

The map

MU → MP
θ̃−→KTate

factors as

MU → MU ∧ BU+
δ(1−u)∧(θ ′)−−−−−−→ KTate,

where θ ′ is the element of BU KTate ∼= C1(ĈTate,Gm) given by the formula

θ ′ =
∏
n≥1

(1 − qn)2

(1 − qn u)(1 − qn u−1)
.
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In geometric terms, the homotopy groups

π∗MU ∧ BU+

are the bordism groups of pairs (M, V ) consisting of a stably almost complex
manifold M, and a virtual complex vector bundle V over M of virtual
dimension 0. The map

π∗MU → π∗MU ∧ BU+

sends a manifold M to the pair (M, ν) consisting of M and its reduced stable
normal bundle.

The map π∗δ(1 − u) sends a manifold M of dimension 2n to

f!1 ∈ K−2n(pt) ≈ K̃0(S2n),

where

f : M → pt

is the unique map. One has

f!1 = Td(M)

(
−du

u

)n

,

where Td(M) is the Todd genus of M, and it is customary to suppress the
grading and write simply

f!1 = Td(M).

The map θ ′ is the stable exponential characteristic class taking the value∏
n≥1

(1 − qn)2

(1 − qn L)(1 − qn L−1)

on the reduced class of a line bundle (1 − L). This stable exponential
characteristic class can easily be identified with

V �→
⊗
n≥1

Symqn(−V̄C),

where VC = V ⊗R C, V̄C = VC − Cdim V , and Symt(W ) is defined for
(complex) vector bundles W by

Symt(W ) =
⊕
n≥0

Symn(V ) tn ∈ K(M)[[t]],

and extended to virtual bundles using the exponential rule

Symt(W1 ⊕ W2) = Symt(W1) Symt(W2).
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The effect on homotopy groups of the the σ -orientation therefore sends
an almost complex manifold M of dimension 2n to

(π∗σKTate)(M) = f!

(⊗
n≥1

Symqn(T̄C)

)
∈ K̃ [[q]]0(S2n).

This is often written as

f!

(⊗
n≥1

Symqn(T̄C)

)
= Td

(
M;

⊗
n≥1

Symqn(T̄C)

) (
−du

u

)n

or simply as

f!

(⊗
n≥1

Symqn(T̄C)

)
= Td

(
M;

⊗
n≥1

Symqn(T̄C)

)
.

The σ -orientation of KTate determines an invariant of Spin–manifolds,
by insisting that the diagram

MSU −−−→ MU� �
MSpin −−−→ KTate

commute. To explain this invariant in classical terms, let M be a spin
manifold of dimension 2n, and, by the splitting principle, write

TM ∼= L1 + · · · + Ln

for complex line bundles Li . The Spin structure gives a square root of
∏

Li ,
but it is conventional to regard each Li as having square root.

Since, for each i, the O(2) bundles underlying L1/2
i and L−1/2

i are iso-
morphic, we can write

TM ∼=
∑

Li + L−1/2
i − L1/2

i ,

which is a sum of SU-bundles.
Using this, one easily checks that the σ -orientation of M gives

Â

(
M;

⊗
n≥1

Symqn(T̄C)

) (
−du

u

)n

,

where the Â genus is the push-forward in KO-theory associated to the
unique orientation MSpin → KO making the diagram

MSU −−−→ MU −−−→ K� ∥∥∥
MSpin −−−→ KO −−−→ K
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commute. As above, it is customary to suppress the grading and write

Â

(
M;

⊗
n≥0

Symqn(T̄C)

)
,

which is formula (27) in [Wit87].
We have proved

Proposition 2.69. The invariant

π∗MSpin → Z[[q]]

associated to the σ -orientation on KTate is the Witten genus. ��

2.8. Modularity

Proposition 2.70. For any element [M] ∈ π2n MU〈6〉, the series

(π2nσKTate)(M)

(
−du

u

)−n

∈ π0KTate = Z[[q]]

is the q-expansion of a modular form.

Proof. Let us write

Φ(M) = (π2nσKTate)(M)

(
−du

u

)−n

.

The discussion in the preceding section shows that Φ(M) defines holomor-
phic function on D, with integral q-expansion coefficients. It suffices to
show that, if π : H→ D is the map

π(τ) = e2πiτ ,

then π∗Φ(M) transforms correctly under the action of SL2Z. This follows
from the discussion of HΛ in the introduction. ��

3. Calculation of Ck(Ĝa,Gm)

In this section, we calculate the structure of the schemes Ck(Ĝa,Gm) for
1 ≤ k ≤ 3, so as to be able to compare them to BU〈2k〉HP in Sect. 4.
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3.1. The cases k = 0 and k = 1. The group C0(Ĝa,Gm)(R) is just
the group of invertible formal power series f ∈ R[[x]]; and C1(Ĝa,Gm)
is the group of formal power series f ∈ R[[x]] with f(0) = 1. Let
R〈0〉 = Z[b0, b−1

0 , b1, b2, . . . ], and let R〈1〉 = Z[b1, b2, b3, . . . ]. If Fk ∈
Ck(Ĝa,Gm)(R〈k〉) are the power series

F0 =
∑
i≥0

bi x
i

F1 = 1 +
∑
i≥1

bi x
i,

then the following is obvious.

Proposition 3.1. For k = 0 and k = 1, the ring R〈k〉 represents the functor
Ck(Ĝa,Gm), with universal element Fk. ��

Note that F0 has a unique product expansion

F0 = a0

∏
n≥1

(1 − anxn) (3.2)

The ai give a different polynomial basis for R〈0〉 and R〈1〉.

3.2. The strategy for k = 2 and k = 3. For k ≥ 2, the group Ck(Ĝa,
Gm)(R) is the group of symmetric formal power series f ∈ R[[x1, . . . , xk]]
such that f(x1, . . . , xk−1, 0) = 1 and

f(x1, x2, . . . ) f(x0 + x1, . . . )
−1 f(x0, x1 + x2, . . . ) f(x0, x1, . . . )

−1 = 1.

In the light of Remark 2.12, we can replace the normalization f(x1, . . . ,
xk−1, 0) = 1 by f(0, . . . , 0) = 1. Alternatively, by symmetry, we can
replace it by the condition that f(x1, . . . , xk) = 1 (mod

∏
j x j).

Similarly, the group Ck(Ĝa, Ĝa)(R) is the group of symmetric formal
power series f ∈ R[[x1, . . . , xk]] such that f(x1, . . . , xk−1, 0) = 0 and

f(x1, x2, . . . ) − f(x0 + x1, . . . ) + f(x0, x1 + x2, . . . ) − f(x0, x1, . . . ) = 0.

We write Ck
d(Ĝa, Ĝa)(R) for the subgroup consisting of polynomials of

homogeneous degree d.
Our strategy for constructing the universal 2 and 3-cocycles is based on

the following simple observation.

Lemma 3.3. Suppose that h ∈ Ck(Ĝa,Gm)(R), and that h = 1 mod
(x1, . . . , xk)

d. Then there is a unique cocycle c ∈ Ck
d(Ĝa, Ĝa) such that

h = 1+ c mod (x1, . . . , xk)
d+1. If g and h are two elements of Ck(Ĝa,Gm)

of the form 1+c mod (x1, . . . , xk)
d+1, then g/h is an element of Ck(Ĝa,Gm)

of the form 1 mod (x1, . . . , xk)
d+1. ��
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We call c the leading term of h. We first calculate a basis of homoge-
neous polynomials for the group of additive cocycles. Then we construct
multiplicative cocycles with our homogeneous additive cocycles as leading
terms. The universal multiplicative cocycle is the product of these multi-
plicative cocycles. Much of the work in the case k = 3 is showing how
additive cocycles can occur as leading terms of multiplicative cocycles.

In the cases k = 0 and k = 1, this procedure leads to the product
description (3.2) of invertible power series.

We shall use the notation

δ× : Ck−1(Ĝa,Gm) → Ck(Ĝa,Gm)

for the map given in Definition 2.20, and reserve δ for the map

δ : Ck−1(Ĝa, Ĝa) → Ck(Ĝa, Ĝa).

Definition 2.20 gives these maps for k ≥ 2; for f ∈ C0(Ĝa,Gm)(R) we
define

δ× f(x1) = f(0) f(x1)
−1

and similarly for C0(Ĝa, Ĝa).

3.3. The case k = 2. Although we shall see (Proposition 3.12) that the ring
OC2(Ĝa,Gm) is polynomial over Z, the universal 2-cocycle F2 does not have
a product decomposition

F2 =
∏
d≥2

g2(d, bd),

with g2(d, bd) having leading term of degree d, until one localizes at
a prime p. The analogous result for H∗BSU is due to Adams [Ada76].

Fix a prime p. For d ≥ 2, let c(d) ∈ Z[x1, x2] be the polynomial

c(d) =
{

1
p

(
xd

1 + xd
2 − (x1 + x2)

d
)

d = ps for some s ≥ 1

xd
1 + xd

2 − (x1 + x2)
d otherwise

(3.4)

The following calculation of C2(Ĝa, Ĝa) is due to Lazard; it is known
as the “symmetric 2-cocycle lemma”. A proof may be found in [Ada74].

Lemma 3.5. Let A be a Z(p)-algebra. For d ≥ 2, the group C2
d(Ĝa, Ĝa)(A)

is the free A-module on the single generator c(d). ��
Let

E(t) = exp

(∑
k≥0

t pk

pk

)
(3.6)
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be the Artin-Hasse exponential (see for example [Haz78]). It is of the form
1 mod (t), and it has coefficients in Z(p).

For d ≥ 2, let g2(d, b) ∈ C2(Ĝa,Gm)(Q[b]) be the power series

g2(d, b) =
{

δ2×(E(bxd)
1
p ) if d is a power of p

δ2×(E(bxd)) otherwise.
(3.7)

Using the formulae for the polynomials c(d) and the Artin-Hasse exponen-
tial, it is not hard to check that g2(d, b) belongs to the ring Z(p)[b][[x1, x2]],
and that it is of the form

g2(d, b) = 1 + bc(d) mod (x1, x2)
d+1. (3.8)

We give the proof as Corollary 3.22.
Now let R〈2〉 be the ring

R〈2〉 = Z(p)[a2, a3, . . . ],
and let F2 ∈ C2(Ĝa,Gm)(R〈2〉) be the cocycle

F2 =
∏
d≥2

g2(d, ad).

Proposition 3.9. The ring R〈2〉 represents C2(Ĝa,Gm) × spec(Z(p)), with
universal element F2.

Proof. Let A be a Z(p)-algebra, and let h ∈ C2(Ĝa,Gm)(A) be a cocycle.
By Lemma 3.5 and the equation (3.8), there is a unique element a2 ∈ A
such that

h

g2(2, a2)
= 1 mod (x1, x2)

3

in C2(Ĝa,Gm)(A). Proceeding by induction yields a unique homomorphism
from R〈2〉 to A, which sends the cocycle F2 to h. ��
3.4. The case k = 3: statement of results. The analysis of C3(Ĝa,Gm)

is more complicated than that of of C2(Ĝa,Gm) for two reasons. First, the
structure of C3(Ĝa, Ĝa) is more complicated; in addition, it is a more delicate
matter to prolong some of the additive cocycles c into multiplicative ones
of the form 1 + bc + . . . . This is reflected in the answer: although the ring
representing C2(Ĝa,Gm) is polynomial, the ring representing C3(Ĝa,Gm)×
spec(Z(p)) contains divided polynomial generators.

Definition 3.10. We write D[x] for the divided-power algebra on x over Z.
It has a basis consisting of the elements x[m] for m ≥ 0; the product is given
by the formula

x[m]x[n] = (m + n)!
m!n! x[m+n].

If R is a ring then we write DR[x] for the ring R ⊗ D[x].
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We summarize some well-known facts about divided-power algebras in
Sect. 3.4.1.

Fix a prime p. Let R〈3〉 be the ring

R〈3〉 = Z(p)[ad|d ≥ 3 not of the form 1 + pt] ⊗
⊗
t≥1

DZ(p)
[a1+pt ].

In Sect. 3.6.1, we construct an element F3 ∈ C3(Ĝa,Gm)(R〈3〉). In Propo-
sition 3.28, we show that the map classifying F3 gives an isomorphism

Z3 = spec R〈3〉 −→∼= C3(Ĝa,Gm) × spec(Z(p)). (3.11)

The plan of the rest of this section is as follows. In Sect. 3.5, we describe
the scheme Ck(Ĝa, Ĝa). We calculate Ck(Ĝa, Ĝa)×specQ for all k, and we
calculate C3(Ĝa, Ĝa)× specFp. The proofs of the main results are given in
Appendix A.

In Sect. 3.6, we construct multiplicative cocycles with our additive co-
cycles as leading terms. This will allow us to write a cocycle F3 over R〈3〉 in
Sect. 3.6.1. For some of our additive cocycles in characteristic p (precisely,
those we call c′(d)), we are only able to write down a multiplicative cocycle
of the form 1+a c′(d) by assuming that ap = 0 (mod p); these correspond
to the divided-power generators in R〈3〉.

In Sect. 3.7, we show that the condition ap = 0 (mod p) is universal,
completing the proof of the isomorphism (3.11).

3.4.1. Divided powers. For convenience we recall some facts about divided-
power rings.

i. A divided power sequence in a ring R is a sequence

(1 = a[0], a = a[1], a[2], a[3], . . . )

such that

a[m]a[n] = (m + n)!
m!n! a[m+n]

for all m, n ≥ 0. It follows that am = m!a[m]. We write D1(R) for the
set of divided power sequences in R. It is clear that D1 = spec D[x].

ii. An exponential series over R is a series α(x) ∈ R[[x]] such that α(0) = 1
and α(x + y) = α(x)α(y). We write Exp(R) for the set of such series.
It is a functor from rings to abelian groups.

iii. Given a ∈ D1(R), we define exp(a)(x) = ∑
m≥0 a[m]xm ∈ R[[x]]. By

a mild abuse, we allow ourselves to write exp(ax) for this series. It is
an exponential series, and the correspondence a �→ exp(a)(x) gives
an isomorphism of functors D1 ∼= Exp. In particular both are group
schemes.
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iv. The mapQ[x] → DQ[x] sending x to x has inverse x[m] �→ xm/m!, and
this gives an isomorphism

D1 × spec(Q) ∼= A1 × spec(Q).

v. We write Tp[x] for the truncated polynomial ring Tp[x] = Fp[x]/x p,
and we write αp = spec Tp[x]. Thus αp(R) is empty unless R is an
Fp-algebra, and in that case αp(R) = {a ∈ R | ap = 0}.

vi. Given a Z(p)-algebra R and an element a ∈ R, we define texp(ax) =∑p−1
k=0 akxk/k!. Here we can divide by k! because it is coprime to p.

vii. Over Fp the divided power ring decomposes as a tensor product of
truncated polynomial rings

DFp[x] ∼=
⊗
r≥0

Tp[x[pr ]]

Moreover there is an equation

exp(ax) =
∏
r≥0

texp(a[pr ]x pr
) (mod p).

Each factor on the right is separately exponential: if a ∈ αp(R) then

texp(a(x + y)) = texp(ax) texp(ay).

In other words, the map

a �→ (a[1], a[p], a[p2], . . . )

gives an isomorphism

D1 × spec(Fp) =
∏
m≥0

αp,

and the resulting isomorphism∏
m≥0

αp
∼= Exp× spec(Fp)

is given by

b �→
∏
m≥0

texp(bm x pm
).

3.4.2. Grading. It will be important to know that the maps OCk(Ĝa,Gm) →
R〈k〉 we construct may be viewed as maps of connected graded rings of
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finite type: a graded ring R∗ is said to be of finite type over Z if each Rn is
a finitely generated abelian group.

We let Gm act on the scheme Ck(Ĝa,Gm) by

(u.h)(x1, . . . , xk) = h(ux1, . . . , uxk),

and give OCk(Ĝa,Gm) the grading associated to this action. One checks that the
coefficient of xα = ∏

i xαi
i in the universal cocycle has degree |α| = ∑

i αi .
If k > 0 then the constant term is 1 and the other coefficients have strictly
positive degrees tending to infinity, so the homogeneous components of
OCk(Ĝa,Gm) have finite type over Z.

The divided power ring D[x] can be made into a graded ring by setting
|x[m]| = m|x|. We can then grade our rings R〈k〉 by setting the degree of ad
to be d. It is clear that R〈1〉 is a connected graded ring of finite type over Z,
and R〈k〉 is a connected graded ring of finite type over Z(p) for k > 1.

This can be described in terms of an action of Gm on Zk = spec R〈k〉.
We have

Z0
∼= Gm ×

∏
d≥1

A1

Z1
∼=

∏
d≥1

A1

Z2
∼=

∏
d≥2

A1 × specZ(p)

Z3
∼=

∏
d≥3

Z3,d

where

Z3,d =
{
A1 × specZ(p) d  = 1 + pt

D1 × specZ(p) d = 1 + pt .

We let Gm act on A1 or Gm by u.a = ua, and on D1 by (u.a)[k] = uka[k].
We then let Gm act on Zk by

u.(ak, ak+1, . . . ) = (uk.ak, uk+1.ak+1, . . . ).

The resulting grading on R〈k〉 is as described. For k ≤ 2, it is easy to check
that the map Zk → Ck(Ĝa,Gm) classifying Fk is Gm-equivariant.

As an example of the utility of the gradings, we have the following.

Proposition 3.12. The ring OC2(Ĝa,Gm) is polynomial over Z on countably
many homogeneous generators.

Proof. As OC2(Ĝa,Gm) is a connected graded ring of finite type over Z, it
suffices by well-known arguments to check that Z(p) ⊗ OC2(Ĝa,Gm) is poly-
nomial on homogeneous generators for all primes p. By Proposition 3.9, we
have an isomorphism of rings Z(p) ⊗ OC2(Ĝa,Gm)

∼= OZ2 = Z(p)[ad | d ≥ 2],
and it is easy to check that ad is homogeneous of degree d. ��
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3.5. Additive cocycles. In this section we describe the group Ck(Ĝa,

Ĝa)(A) for various k and A. The results provide the list of candidates
for leading terms of multiplicative cocycles. Proofs are given in the Ap-
pendix A.

Fix an integer k ≥ 1. We write Ck(A) for Ck(Ĝa, Ĝa)(A), and we write
Ck

d(A) for the subgroup Ck
d(Ĝa, Ĝa) of series which are homogeneous of

degree d. Note that Ck
d(A) = 0 for d < k.

Given a set I ⊆ {1, . . . , k} we write xI = ∑
i∈I xi . One can easily check

that for g ∈ A[[x]] = C0(A) we have

(δkg)(x1, . . . , xk) =
∑

I

(−1)|I |g(xI ).

For example, if g(x) = xd then

(δ2g)(x, y) = (x + y)d − xd − yd

(δ3g)(x, y, z) = −(x + y + z)d + (x + y)d + (x + z)d + (y + z)d

− xd − yd − zd.

3.5.1. The rational case. Rationally, the cocycles δkxd for d ≥ k are a basis
for the additive cocycles.

Proposition 3.13 (A.1). If A is a Q-algebra, then for d ≥ k the group
Ck

d(A) is the free abelian group on the single generator δkxd.

3.5.2. Divisibility. Now we fix an integer k ≥ 2 and a prime p.

Definition 3.14. For all n let νp(n) denote the p-adic valuation of n. For
d ≥ k we let u(d) be the greatest common divisor of the coefficients of
the polynomial δk(xd). We write v(d) for the p-adic valuation νp(u(d)).
Let c(d) be the polynomial c(d) = ((−δ)k(xd))/pv(d) ∈ Z[x1, . . . , xk] (We
have put a sign in the definition to ensure that c(d) has positive coefficients).
It is clear that

c(d) ∈ Ck
d(Z).

If we wish to emphasize the dependence on k, we write uk(d), ck(d), and
vk(d).

We will need to understand the integers v(d) more explicitly.

Definition 3.15. For any nonnegative integer d and any prime p, we write
σp(d) for the sum of the digits in the base p expansion of d. In more detail,
there is a unique sequence of integers di with 0 ≤ di < p and

∑
i di pi = d,

and we write σp(d) = ∑
i di .
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The necessary information is given by the following result, which will
be proved in Appendix A.

Proposition 3.16 (A.10). For any d ≥ k we have

v(d) = max
(

0,

⌈
k − σp(d)

p − 1

⌉)
.

The important examples of Proposition 3.16 for the present paper are
k = 2 and k = 3:

Corollary 3.17.

v2(d) =
{

1 σp(d) = 1
0 otherwise

v3(d) =


2 σ2(d) = 1 and p = 2
1 σp(d) = 1 and p > 2
1 σp(d) = 2
0 σp(d) > 2.

In other words, v2(d) = 1 if d is a power of p, and 0 otherwise. We have
v3(d) = 2 if p = 2 and d has the form 2t with t > 1, and v3(d) = 1 if p = 2
and d has the form 2s(1 + 2t). On the other hand, when p > 2 we have
v3(d) = 1 if d has the form pt or 2pt or ps(1 + pt) (with s ≥ 0 and t > 0).
In all other cases we have v3(d) = 0. ��

In particular, the calculation of v2(d) shows that the cocycle c2(d) in
Definition 3.14 coincides with the cocycle c(d) in the formula (3.4).

3.5.3. The modular case. We continue to fix an integer k ≥ 2 and a prime p,
and we analyze Ck(A) when p = 0 in A.

For any ring A we define an endomorphism φ of A[[x1, . . . , xk]] by
φ(xi) = x p

i . If p = 0 in A one checks that this sends Ck(A) to Ck(A) and
Ck

d(A) to Ck
dp(A). Moreover, if A = Fp then ap = a for all a ∈ Fp and thus

φ(h) = h p.
In particular, we can consider the element φ j c(d) ∈ Z[x1, . . . , xk],

whose reduction mod p lies in Ck
p j d

(Fp). The following proposition shows
that this rarely gives anything new.

Proposition 3.18. If νp(d) ≥ v(d) then

c(pj d) = c(d)p j = φ jc(d) (mod pνp(d)−v(d)+1).

It is clear from Proposition 3.16 that v(pd) = v(d), so even if the above
proposition does not apply to d, it does apply to pid for large i.
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Proof. We can reduce easily to the case j = 1. Write v = v(pd) = v(d), so
that c(d) = (−δ)k(xd)/pv and c(pd) = (−δ)k(x pd)/pv. Write w = vp(d),
so the claim is equivalent to the assertion that

φ(−δ)k(xd) = (−δ)k(x pd) (mod pw+1).

The left hand side is
∑

I ±φ(xd
I ) = ∑

I ±φ(xI )
d. It is well-known that

φ(xI ) = (xI )
p (mod p), and that whenever we have a = b (mod p) we

also have api = bpi
(mod pi+1). It follows easily that φ(xI )

d = (xI )
pd

(mod pw+1). As the right hand side of the displayed equation is just∑
I ±(xI )

pd, the claim follows. ��

3.5.4. The case k = 3. In this section we set k = 3, and we give basis for
the group of additive three-cocycles over an Fp-algebra. In order to describe
the combinatorics of the situation, it will be convenient to use the following
terminology.

Definition 3.19. We say that an integer d ≥ 3 has type

I if d is of the form 1 + pt with t > 0.
II if d is of the form ps(1 + pt) with s, t > 0.
III otherwise.

If d = ps(1 + pt) has type I or II we define c′(d) = φsc(1 + pt) ∈ C3
d(Fp).

Note that d has type I precisely when σp(d − 1) = 1, and in that case we
have c′(d) = c(d).

Proposition 3.20 (A.12). If A is an Fp-algebra then C3(A) is the product
of the free modules of rank 1 over A generated by the elements c(d) for
d ≥ 3 and the elements c′(d) for d of type II.

3.6. Multiplicative cocycles. We fix a prime p and an integer k ≥ 1.
In this section we write down the basic multiplicative cocycles. We need
the following integrality lemma; many similar results are known (such
as [Haz78, Lemma 2.3.3]) and this one may well also be in the literature
but we have not found it.

Lemma 3.21. Let A be a torsion-free p-local ring, and φ : A −→ A a ring
map such that φ(a) = ap (mod p) for all a ∈ A. If (bk)k>0 is a sequence
of elements such that φ(bk) = bk+1 (mod pk+1) for all k, then the series
exp(

∑
k bkx pk

/pk) ∈ (Q⊗ A)[[x]] actually lies in A[[x]].
Proof. Write f(x) = exp(

∑
k bkx pk

/pk). Clearly f(0) = 1, so there are
unique elements aj ∈ Q ⊗ A such that f(x) = ∏

j>0 E(aj x j), and it is
enough to show that aj ∈ A for all j. By taking logs we find that∑

k

bkx pk
/pk =

∑
i, j

api

j x jpi
/pi .
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It follows that aj = 0 unless j is a power of p, and that bk = ∑
k=i+ j piap j

pi .
We may assume inductively that a1, ap, . . . , ap j−1 are integral. It follows
that for i < j we have φ(api ) = ap

pi (mod p), and thus (by a well-known
lemma) that

φ
(

ap j−i−1

pi

)
= φ(api )p j−i−1 = ap j−i

pi (mod pj−i).

It follows that

pjap j = bj −
j−1∑
i=0

piap j−i

pi

= bj −
j−1∑
i=0

piφ(api )p j−i−1
(mod pj)

= bj − φ(bj−1)

= 0 (mod pj),

or in other words that ap j is integral. ��
Recall from (3.6) that E(t) ∈ Z(p)[[t]] denotes the Artin-Hasse exponen-

tial.

Corollary 3.22. If d is such that νp(d) ≥ v(d), then δk×E(bxd )p−v(d) ∈
Q[b][[x1,. . .,xk]] actually lies in Ck(Ĝa,Gm)(Z(p)[b])⊆Z(p)[b][[x1,. . . ,xk]].
It has leading term bc(d).

Proof. The symmetric cocycle conditions are clear, so we need only check
that the series is integral. Using the exp in the Artin-Hasse exponential gives
the formula

δk
×E(bxd )p−v(d) = exp

(∑
i≥0

bpi
δk(xdpi

)

pi+v(d)

)
= exp

(∑
i≥0

bpi
c(dpi )

pi

)
.

In view of Lemma 3.21, it suffices to check that φ(c(dpi )) = c(dpi+1)
(mod pi+1), where φ is the endomorphism of Z(p)[[x1, . . . , xk]] given by
φ(xi) = x p

i . This follows from Proposition 3.18. ��
Definition 3.23. If R is a Z(p)-algebra, b is an element of R, and if d is such
that νp(d) ≥ v(d), we define

E(k, d, b)
def= δk

×E(bxd )p−v(d)

to be the element of Ck(Ĝa,Gm)(R) given by the corollary.

In order to analyze the map δ×, we need the following calculation.
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Lemma 3.24. If νp(d) ≥ v(d) we have

E(k, d, b)p = E(k, pd, bp) (mod p).

Proof. We can work in the universal case, where A = Z(p)[b] is torsion-free,
so it makes sense to use exponentials. We have

E(k, d, b) = exp(
∑

k

bpk
c(pkd)/pk),

and it follows easily that E(k, d, b)p/E(k, pd, ap) = exp(pac(d)). One
checks easily that the series exp(pt) − 1 has coefficients in pZ(p), and the
claim follows. ��

We need one other family of cocycles, given by the following result.

Proposition 3.25. Let B be the divided-power algebra on one generator
b over Z(p). Then the series δk× exp(bxd/pv(d)) = exp((−1)kb c(d)) lies in
Ck(Ĝa,Gm)(B) ⊆ B[[x1, . . . , xk]]. ��

3.6.1. The case k=3. Suppose that d ≥ 3 is not of the form 1 + pt .
Then Corollary 3.17 shows that νp(d) ≥ v(d), and so Definition 3.23 gives
cocycles

g3(d, ad)
def= E(3, d, ad) ∈ C3(Ĝa,Gm)(Z(p)[ad]). (3.26)

For d = 1 + pt and t ≥ 1, let

g3(d, ad)
def= exp(−ad c(d)) ∈ C3(Ĝa,Gm)(DZ(p)

[ad])
be the cocycle given by Proposition 3.25.

Note that if d = 1 + pt then in Fp ⊗ DZ(p)
[ad] we have an equation

g3(d, ad) =
∏
s≥0

texp
( − a[ps]

d c′(dps)
)

(3.27)

as in Sect. 3.4.1, and each factor on the right is separately an element of
C3(Ĝa,Gm)(Tp[a[ps ]

d ]).
Let F3 be the cocycle

F3 =
∏
d≥3

g3(d, ad)

over
Z3 = specZ(p)[ad | d  = 1 + pt ] ⊗

⊗
t≥1

DZ(p)
[a1+pt ].
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Proposition 3.28. The map Z3 → C3(Ĝa,Gm)× spec(Z(p)) classifying F3
is an isomorphism.

Proof. Let h denote this map. It is easy to check that it is compatible with the
Gm-actions described in Sect. 3.4.2, so the induced map of rings preserves
the gradings.

We will show that the map h(R) : Z3(R) −→C3(Ĝa,Gm)(R) is an iso-
morphism when R is aQ-algebra or an Fp-algebra. This means that the map
h∗ : OC3(Ĝa,Gm)⊗Z(p) −→OZ3 becomes an isomorphism after tensoring with
Q or Fp. As both sides are connected graded rings of finite type over Z(p),
it follows that h is itself an isomorphism.

Suppose that R is aQ-algebra. In this case we get divided powers for free,
and an element of Z3(R) is just a list of elements (a3, a4, . . . ). According
to Proposition 3.13, the additive cocycle c(d) generates C3

d(Ĝa, Ĝa)(R).
Since gd has leading term adc(d), the process of successive approximation
suggested by Lemma 3.3 shows that h(R) is an isomorphism.

We now suppose instead that R is an Fp-algebra. As DFp[x] = Tp[x[pi ] |
i ≥ 0], we see that a point of Z3(R) is just a sequence of elements ad ∈ R

for d ≥ 3, with additional elements ad,i = a[pi ]
d when d has type I, such

that ad,0 = ad and ap
d,i = 0. We write a′

dpi = ad,i . With this reindexing, an
element of Z3(R) is a system of elements ad (where d has type II or III)
together with a system of elements a′

d (where d has type I or II) subject only
to the condition (a′

d )p = 0.
On the other hand, suppose that f ∈ C3(Ĝa,Gm)(R) is a cocycle with

leading term c of degree d. If d has type III, then Proposition 3.20 shows
that c = adc(d) for a unique c in R. If d has type I, then c = a′

d,0c′(d) for
some unique a′

d,0 in R. Finally, if d has type II , then c = adc(d) + a′
dc′(d)

for some unique ad and a′
d in R. We shall show in Proposition 3.29 that in

fact (a′
d)

p = 0. The process of successive approximation gives a point of
Z3(R) which clearly maps to f under the map h(R). ��

In the course of the proof, we used the following result, whose proof
will be given in Sect. 3.7.

Proposition 3.29. Suppose that R is an Fp-algebra and that f ∈ C3(Ĝa,
Gm)(R) has leading term a c′(d) (so that d has type I or II). Then ap = 0.

Corollary 3.30. The ring OC3(Ĝa,Gm) is a graded free abelian group of finite
type.

Proof. Proposition 3.28 shows that this is true p-locally for every prime p,
so it is true integrally. ��

3.7. The Weil pairing: cokernel of δ× : C2(Ĝa,Gm) → C3(Ĝa,Gm). We
continue to fix a prime p and work over specZ(p).
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The first result of this section is a proof of Proposition 3.29, which
completes the calculation in Proposition 3.28. The analysis which leads to
this result also gives a description of the cokernel of the map

C2(Ĝa,Gm)
δ×−→ C3(Ĝa,Gm),

which we shall use to compare C3(Ĝa,Gm) to BU〈6〉HP.
More precisely, the scheme Z3 decomposes as a product of schemes

Z3 = Z ′
3 × Z′′3

where

Z ′
3 = spec DZ(p)

[a1+pt | t ≥ 1]
Z ′′

3 = specZ(p)[ad | d not of the form 1 + pt ].
We shall show that δ× maps C2(Ĝa,Gm) × spec Fp surjectively onto Z ′′

3 ×
spec Fp, and that the cokernel Z ′

3 × specFp has a natural description as
the scheme Weil(Ĝa) of Weil pairings. In Sect. 4.5.1, we shall see that this
scheme is isomorphic to the scheme associated to the even homology of
K(Z, 3). In this paper we give a bare-bones account of Weil pairings. The
reader can consult [Bre83,Mum65,AS01] for a more complete treatment.

Definition 3.31. Let R be any ring, and h an element of C3(Ĝa,Gm)(R).
We define a series e(h) ∈ R[[x, y]] by the formula

e(h)(x, y) =
p−1∏
k=1

h(x, kx, y)

h(x, ky, y)
.

In Sect. 3.7.1, e will be interpreted as giving a map of group schemes

C3(Ĝa,Gm) × spec Fp −→Weil(Ĝa).

Proposition 3.32. We have

e(h)(x, y) e(h)(x, z) = e(h)(x, y + z)
h(px, y, z)

h(x, py, pz)
= e(h)(x, y + z) (mod p),

and e(h)(x, y)p = 1 (mod p).

Proof. Recall the cocycle relation R(w, x, y, z) = 1, where

R(w, x, y, z) = h(x, y, z)h(w, x + y, z)

h(w + x, y, z)h(w, x, z)
.
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By brutally expanding the relation

R(y, z, k(y + z), x)R(ky, (k + 1)z, y, x)R((k + 1)z, y, ky, x)
· R(ky, kz, z, x)R(kx, x, y, z)R(x, y, z, kx) = 1,

and using the symmetry of h, we find that

h(x, kx, y)

h(x, ky, y)
.
h(x, kx, z)

h(x, kz, z)

= h(x, kx, y + z)

h(x, ky + kz, y + z)
.

h(x, ky, kz)

h(x, (k + 1)y, (k + 1)z)
.
h((k + 1)x, y, z)

h(kx, y, z)

We now take the product from k = 1 to p− 1. We note that the second term
on the right has the form f(k)/ f(k+1), so the product gives f(1)/ f(p). After
dealing with the last term in a similar way and doing some cancellation, we
find that

e(h)(x, y) e(h)(x, z) = e(h)(x, y + z) h(px, y, z) h(x, py, pz)−1,

as claimed. For any cocycle h we have h = 1 (mod xyz), so our expression
reduces to e(h)(x, y+ z) modulo p. This means that e(h) behaves exponen-
tially in the second argument, so e(h)(x, y)p = e(h)(x, py) = 1 (mod p). ��

We can also consider an additive analogue of the above construction.
Given c ∈ C3(Ĝa, Ĝa)(R), we write

e+(c)(x, y) =
p−1∑
k=1

(c(x, kx, y) − c(x, ky, y)).

By applying the definitions and canceling in a simple-minded manner we
find that

e+(δ3 f )(x, y) = f(x) − f(x + py) − f(y)+ f(y + px) − f(px) + f(py).

Thus e+(δ3 f ) = 0 (mod p).
The following calculation is the key to the proof of Proposition 3.29,

and it also permits the identification of Z ′
3 with the scheme of Weil pairings.

Lemma 3.33. Let d = ps(1 + pt) with s ≥ 0 and t ≥ 1. Then

e+(c′(d)) = x ps
yps+t − x ps+t

y ps
(mod p).

Proof. Let n = 1 + pt . As c′(psn)p = c(n)ps+1
, it suffices to calculate

e+(c(n)) (mod p). By Corollary 3.17, we have c(n) = δ3(xn)/p, so that

pe+(c(n)) = xn − (x + py)n − yn + (y + px)n − pn xn + pn yn

= −pnxn−1 y + pnxyn−1 (mod p2)

= p(xypt − x pt
y) (mod p2).

Thus e+(c(1 + pt)) = xypt − yx pt
(mod p) as required. ��
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We can now give the

Proof of Proposition 3.29. Suppose that R is an Fp-algebra and that h ∈
C3(Ĝa,Gm)(R) has leading term a c′(d) (so that d has type I or II).

It is easy to see that e(h) = 1 + ae+(c′(d)) (mod (x, y, z)d+1), and
thus that e(h)p = 1+ape+(c′(d))p (mod (x, y, z)pd+1). On the other hand,
we know from Proposition 3.32 that e(h)p = 1. Lemma 3.33 shows that
e+(c′(d))p is a nonzero polynomial overFp which is homogeneous of degree
pd. It follows that ap = 0. ��
3.7.1. The scheme of Weil pairings. In this section we work over spec(Fp).
We note that a faithfully flat map of schemes is an epimorphism.

We also recall [DG70, III, Sect. 3, n. 7] that the category of affine com-
mutative group schemes over Fp is an abelian category, in which spec f :
spec A → spec B is an epimorphism if and only if f : B → A is injective.

Let R be an Fp-algebra. We write Weil(Ĝa)(R) for the group (under
multiplication) of formal power series f(x, y) ∈ R[[x, y]] such that

f(x, x) = 1
f(x, y) f(x, z) = f(x, y + z)
f(x, z) f(y, z) = f(x + y, z).

(3.34)

Note that this implies f(x, y) f(y, x) = 1 by a polarization argument. We
write Weil(Ĝa)(R) = ∅ if R is not an Fp-algebra.

Proposition 3.32 shows that, if R is an Fp-algebra and h ∈ C3(Ĝa,Gm)
is a three-cocycle, then e(h) is a Weil pairing. In other words, e may be
viewed as a natural transformation

e : C3(Ĝa,Gm) −→Weil(Ĝa).

In this section, we show that there is a commutative diagram

C2(Ĝa,Gm) //
δ×

����

C3(Ĝa,Gm) // //e
Weil(Ĝa)

Z ′′
3

// // Z ′
3 × Z ′′

3

OO
∼=

// // Z ′
3

OO
∼=

(3.35)

of group schemes over spec Fp, with exact rows and with epi, mono, and iso-
morphisms as indicated. In Sect. 4.5, we compare the top row to a sequence
arising from the fibration K(Z, 3) → BU〈6〉 → BSU .

To begin, we note that Weil(Ĝa) is an affine group scheme over Fp.
The representing ring OWeil(Ĝa) is the quotient of the ring Fp[akl | k, l ≥ 0]
by the ideal generated by the coefficients of the series f̃ (x, x) − 1 and
f̃ (x + y, z)− f̃ (x, z) f̃ (y, z) and f̃ (x, y + z)− f̃ (x, y) f̃ (x, z), where f̃ is
the power series

f̃ (x, y) =
∑

aklx
k yl.
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We let Gm act on Weil(Ĝa) by (u. f )(x, y) = f(ux, uy), and this gives
a grading on OWeil(Ĝa)

making it into a graded connected Hopf algebra
over Fp. If

f(x, y) =
∑
i, j

aij x
i y j

is the universal Weil pairing, then the degree of aij is i + j.
We are grateful to the referee for providing the following, which is better

than our earlier description of Weil(Ĝa).

Lemma 3.36. The ring OWeil(Ĝa)
is isomorphic to

Fp[amn|0 ≤ m < n < ∞]/(
ap

mn

)
,

the universal example of a Weil pairing being

f =
∏
m<n

texp
(
amn(x

pm
ypn − x pn

ypm
)
)
.

Proof. A pointed biadditive map

Ĝa × Ĝa → Gm

is just a map of groups

Ĝa → Exp .

Over spec Fp we have the isomorphism∏
m≥0

αp
∼= Exp× spec(Fp)

described in Sect. 3.4.1, the universal exponential series being∏
m≥0

texp
(
bm x pm )

.

In particular the group structure in Exp corresponds to the usual addition
in αp. The scheme of homomorphisms

Ĝa → αp

over Fp is specFp[am |m ≥ 0]/(am)p, the universal homomorphism being

g(x) =
∑

m

am x pm
.

The scheme of biadditive maps

Ĝa × Ĝa → Gm
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is therefore spec Fp[amn |m, n ≥ 0]/(amn)
p, the universal example being

g(x) =
∏

n

texp
(
(
∑

m

amnx pm
)ypn )

=
∏
m,n

texp
(
amnx pm

ypn)
.

The subscheme of Weil pairings is given by the equations

amn = −amn

amm = 0. ��
Let j denote the splitting map

Z ′
3 → C3(Ĝa,Gm).

Note that Z ′
3 is a group scheme, because

Z ′
3
∼=

∏
D1 × spec(Z(p)) ∼=

∏
Exp× spec(Z(p)).

It is easy to check that j is a map of group schemes (even over spec(Z(p))).
The first step in the analysis of the Diagram 3.35 is the following.

Proposition 3.37. The map of group schemes

e j : Z ′
3 −→Weil(Ĝa)

is an isomorphism.

Proof. First, when R is an Fp-algebra we can identify Z ′
3(R) with

∏
d{a ∈

R | ap = 0}, where d runs over integers d ≥ 3 of type I or II, and according
to (3.27), j(a) is the cocycle

j(a) =
∏

d

texp(−adc′(d)).

Lemma 3.33 shows that if d = ps(1 + pt) then

e(texp(−adc′(d)) = 1 − ad(x
ps

yps+t − x ps+t
y ps

) (mod (x, y)d+1).

It follows that e j induces an isomorphism of indecomposables. Moreover,
e j induces a map of graded rings if OZ ′

3
is given the grading with a′

d in
dimension d. We thus a map of connected graded algebras, both of which
are tensor products of polynomial algebras truncated at height p, and our
map gives an isomorphism on indecomposables. It follows that the map is
an isomorphism. ��

To show that Z ′′
3 is the kernel of e, we first observe that C2(Ĝa,Gm)

maps to the kernel.



Elliptic spectra 647

Lemma 3.38. If R is an Fp-algebra and g ∈ C2(Ĝa,Gm)(R) then
e(δ×g) = 1.

Proof. By definition we have δ×g(x, kx, y)=g(x, y)g(kx, y)/g((k+1)x, y).
As δ×g is symmetric, we have δ×g(x, ky, y) = g(x, y)g(x, ky)/
g(x, (k + 1)y). By substituting these equations into the definition of e(δ×g)
and canceling, we obtain e(δ×g)(x, y) = g(x, py)/g(px, y), which is 1
because p = 0 in R. ��

Next we show that δ× actually factors through the inclusion Z ′′
3 →

C3(Ĝa,Gm). Let w and θ be given by the formulae

w(2) = 1
w(d) = v3(d) − v2(d) d ≥ 3

θ(d) = pw(d)d.

By Corollary 3.17, it is equivalent to set w(d) = 1 if d is of the form
ps(1+ pr) with r ≥ 0, and w(d) = 0 otherwise. It follows also that θ gives
a bijection from {d | d ≥ 2} to {d | d ≥ 3 and d is not of the form 1 + pt}.

Let r : Z2 = spec R〈2〉 → Z ′′
3 be given by the formula

r∗aθ(d) = apw(d)

d .

It is clear that r is faithfully flat.

Lemma 3.39. The diagram

C2(Ĝa,Gm)
δ×−−−→ C3(Ĝa,Gm)

∼=
� �
Z2

r−−−→ Z ′′
3

commutes over spec(Fp). In particular, over spec(Fp), δ× factors through
a faithfully flat map C2(Ĝa,Gm) → Z ′′

3.

Proof. This follows from the equations

δ×g2(d, a) = δ3
×E(axd )p−v2(()d) = E(3, d, a)pw(d)

= E(3, θ(d), apw(d)

) = g3(θ(d), apw(d)

).

The only equation which is not a tautology is the third, which is Lemma 3.24.
Actually the lemma does not apply in the case d = 2, but the result is valid
anyway. One can see this directly from the definitions, using the fact that
δ3(x2) = 0. ��
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Proposition 3.40. The kernel of the map

e : C3(Ĝa,Gm) −→Weil(Ĝa)

is Z ′′
3 (which is thus a subgroup scheme). Moreover, we have C3(Ĝa,Gm) =

Z ′
3 × Z ′′

3 as group schemes.

Proof. We know from Lemma 3.38 that eδ× = 1, and faithfully flat maps
are epimorphisms of schemes, so Lemma 3.39 implies that Z ′′ ≤ ker(e).
As the map ( f ′, f ′′) �→ f ′ f ′′ gives an isomorphism Z ′ × Z ′′ −→C3, and
e : Z ′ −→ Weil(Ĝa) is an isomorphism, it follows that Z ′′ = ker(e). This
means that Z ′′ is a subgroup scheme, and we have already observed before
Proposition 3.37 that the same is true of Z ′. It follows that C3 = Z ′ × Z ′′ as
group schemes. ��

We summarize the discussion in this section as the following.

Corollary 3.41. If we work over spec(Fp) then the following sequence of
group schemes is exact:

C2(Ĝa,Gm)
δ−→C3(Ĝa,Gm)

e−→Weil(Ĝa) → 0. ��

3.8. The map δ× : C1(Ĝa,Gm) → C2(Ĝa,Gm). In the course of compar-
ing BSU HP to C2(Ĝa,Gm) in Sect. 4, we shall use the following analogue
of Corollary 3.41.

Proposition 3.42. For each prime p, the map

C1(Ĝa,Gm) × spec(Fp)
δ×−→ C2(Ĝa,Gm) × spec(Fp)

is faithfully flat.

Proof. In order to calculate δ×, it is useful to use the model for C1 which is
analogous to our model Z2 for C2. Let Z1 be the scheme

Z1 = specZ(p)[ad | d ≥ 1],
and let

F1
def=

∏
d≥1

E(1, d, ad)

=
∏
d≥1

E(adxd)

be the resulting cocycle over OZ1 . It is clear that the map

Z1 → C1(Ĝa,Gm) × spec(Z(p))
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classifying F1 is an isomorphism. Thus if k = 1 or 2, and if R is a Z(p)-
algebra, then Zk(R) is the set of sequences (ak, ak+1, . . . ) of elements of R.

For d ≥ 1 let θ(d) = pv2(d)d, with the convention that v2(1) = 1. The
calculation of v2(d) in Corollary 3.17 shows that θ induces a bijection from
the set {d | d ≥ 1} to the set {d | d ≥ 2}. Let r : Z1 → Z2 be the map which
sends a sequence a = (a1, a2, . . . ) ∈ Z1(R) to the sequence

r(a)θ(d) = apv2 (d)

d .

Thus r is a product of copies of the identity map A1 → A1 (indexed by
{d | v(d) = 0}), together with some copies of the Frobenius map A1 → A1

(indexed by {d | v(d) = 1}). These maps are faithfully flat, and so r is
faithfully flat. The Proposition then follows once we know that the diagram

C1(Ĝa,Gm) × spec(Fp)
δ×−−−→ C2(Ĝa,Gm) × spec(Fp)

∼=
� �∼=

Z1 × spec(Fp)
r−−−→ Z2 × spec(Fp)

commutes. The commutativity of the diagram follows from the equations
(modulo p)

δ×E(axd) = E(2, d, a)pv2 (d)

= E(2, θ(d), apv2 (d)

)

= g2(θ(d), apv2(d)

).

The first and last equations are tautologies; the middle equation follows
from Lemma 3.24. ��

3.9. Rational multiplicative cocycles. Given k > 0, let Yk(R) be the set
of formal power series f(x) ∈ R[[x]] such that f(x) = 1 (mod xk). This
clearly defines a closed subscheme Yk ⊂ C0(Ĝa,Gm)

Proposition 3.43. Over spec(Q), the map δk× : Yk −→ Ck(Ĝa,Gm) is an
isomorphism.

Proof. Let R be a Q-algebra, and let g ∈ R[[x1, . . . , xk]] be an element of
Ck(Ĝa,Gm)(R). We need to show that g = δk×( f ) for a unique element
f ∈ Yk(R). If I = (x1, . . . , xk) then g = 1 (mod I) so the series log(g) =
−∑

m>0(1 − g)m/m is I -adically convergent. One checks that it defines
an element of Ck(Ĝa,Ga)(R), so Proposition 3.13 tells us that there is
a unique h ∈ R[[x]] with h = 0 (mod xk) and δk(h) = log(g). The series
exp(h) = ∑

m hm/m! is x-adically convergent to an element of Yk (R), which
is easily seen to be the required f . ��
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4. Topological calculations

In this section we will compare our algebraic calculations with known
topological calculations of E∗BU , H∗BSU , and H∗BU〈6〉, and we deduce
that BU〈2k〉E = Ck(PE,Gm) for k ≤ 3. We start with the cases k = 0 and
k = 1, which are merely translations of very well-known results. We then
prove the result for all k when E = HPQ (the rational periodic Eilenberg-
MacLane spectrum); this is an easy calculation.

Next, we prove the case k = 2 with E = HP. It suffices to do this with
coefficients in the field Fp, and then it is easy to compare our analysis of
the scheme C2(Ĝa,Gm) to the short exact sequence

PHP −→BU HP −→BSU HP.

For BU〈6〉 we recall Singer’s calculation of H∗(BU〈6〉;Fp), which is
based on the fibration

K(Z, 3) −→BU〈6〉 −→BSU.

Most of the work in this section is to produce the topological analogue of
the exact sequence

C2(Ĝa,Gm) //
δ×

C3(Ĝa,Gm) //e
Weil(Ĝa)

// 0

of Corollary 3.41; see (4.9). Having done so, we can easily prove the
isomorphism BU〈6〉E ∼= C3(PE,Gm) for E = HPFp. The isomorphism
for integral homology follows from the cases E = HPQ and E = HPFp.
Using a collapsing Atiyah-Hirzebruch spectral sequence and its algebraic
analogue, we deduce the case E = MP, and we find that MP0 BU〈6〉 is free
over MP0. It is then easy to deduce the isomorphism for arbitrary E.

4.1. Ordinary cohomology. We begin with a brief recollection of the or-
dinary cohomology of BU , in order to fix notation. We refer the reader
to [MM65] for the basic facts about Hopf algebras, including primitives and
indecomposables.

It is well-known that H∗BU is a formal power series algebra generated
by the Chern classes. It follows easily that the corresponding thing is true
for HP0 BU: we can define Chern classes ck ∈ HP0 BU for k > 0 and we
find that HP0 BU = Z[[ck | k > 0]]. We also put c0 = 1. We define a series
c(t) ∈ HP0[[t]] by c(t) = ∑

k≥0 cktk . We then define elements qk by the
equation tc′(t)/c(t) = ∑

k qktk . The group of primitives is

Prim HP0 BU = {
∑

i

niqi | ni ∈ Z} ∼=
∏
i>0

Z.

There is an inclusion S1 = U(1)
j−→U and a determinant map U

det−→ S1

with det ◦ j = 1. These give maps P
B j−→ BU

B det−−→ P with B det ◦B j = 1,
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and the fiber of B det is BU〈4〉 = BSU . In fact, if i : BSU −→ BU is the
inclusion then one sees easily that i + j : BSU × P −→ BU induces an
isomorphism of homotopy groups, so it is an equivalence.

We have HP0P=Z[[x]] with B det∗x=c1 and B j∗c1=x and B j∗ck = 0
for k > 1. It follows (as is well-known) that the inclusion BSU −→BU gives
an isomorphism HP0 BSU = HP0 BU/c1 = Z[[ck | k > 1]].

In particular, both BU and BSU are even spaces.
The Hopf algebra HP0 BU is again a polynomial algebra, with generators

bk for k > 0. We also put b0 = 1 and b(t) = ∑
i≥0 biti . The pairing between

this ring and HP0 BU satisfies

〈
ck,

∏
i

bαi
i

〉 = {
1 if

∏
i bαi

i = bk
1

0 otherwise.

The group of primitives in HP0 BU is generated by elements rk, which are
characterized by the equation

t d log(b(t))/dt = t b′(t)/b(t) =
∑

k

rktk.

4.2. The isomorphism for BU〈0〉 and BU〈2〉
Proposition 4.1. For k = 0 and k = 1 and for any even periodic ring
spectrum E, the natural map

BU〈2k〉E −→Ck(PE,Gm)

is an isomorphism.

Proof. We treat the case k = 1, leaving the case k = 0 for the reader.
A coordinate x on PE gives isomorphisms

OPE = E0 P ∼= E0[[x]]
O∨

PE
= Ẽ0 P ∼= E0{β1, β2, . . . }

E0(BU) ∼= E0[b1, b2, . . . ]
OC1(PE ,Gm)

∼= E0[b′1, b′2, . . . ].

Here the βi ∈ Ẽ0 P are defined so 〈xi, β j〉 = δij , and bi = (E0ρ1)(βi),
where ρ1 : P −→BU classifies the virtual bundle 1 − L . The b′i are defined
by writing the universal element of C1(PE,Gm) as 1 + ∑

i≥1 b′i xi .
By Definition 2.29, the map BU E → C1(PE,Gm) classifies the element

b ∈ E0 BU⊗̂E0 P ∼= E0 BU[[x]] which is the adjoint of the map E0ρ1. It is
easy to see that b = ∑

i bi xi . ��
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Recall that Cartier duality (2.2) gives an isomorphism

PE ∼= Hom(PE,Gm).

The construction f �→ 1/ f gives a map

Hom(PE,Gm)
i−→C1(PE,Gm).

Corollary 4.2. The diagram

PE //(B det)E

��
∼=

BU E

��
∼=

Hom(PE,Gm) //i
C1(PE ,Gm)

commutes.

Proof. It will be enough to show that the dual diagram of rings commutes.
As E0 BU is generated over E0 by (E0ρ1)(Ẽ0 P), it suffices to check com-
mutativity after composing with E0ρ1. It is then clear, because B det ◦ρ1
classifies det(1 − L) ∼= L−1, and so has degree −1. ��
4.3. The isomorphism for rational homology and all k

Proposition 4.3. For any k > 0 we have

HP0(BU〈2k〉;Q) = HP0(BU;Q)/(c1, . . . , ck−1) = Q[[cn | n ≥ k]].
We also have an isomorphism

BU〈2k〉HPQ ∼= Ck(Ĝa,Gm) × spec(Q).

Proof. We have fibrations BU〈2k + 2〉 −→BU〈2k〉 −→K(Z, 2k). It is well-
known that

H∗(K(Z, 2k);Q) = Q[u2k]
with |u2k| = 2k. We know that the map BU〈2k〉 −→K(Z, 2k) induces an iso-
morphism on π2k(−) and we may assume inductively that H∗(BU〈2k〉;Q)=
Q[[cn | n ≥ k]], so the Hurewicz theorem tells us that u2k hits a nontrivial
multiple of ck . It now follows from the Serre spectral sequence that

H∗(BU〈2k + 2〉;Q) = Q[[cn | n ≥ k + 1]] = H∗(BU;Q)/(c1, . . . , ck).

Dually, we know that H∗(BU;Q) is generated by primitive elements ri
such that ri is dual to ci , and we find that H∗(BU〈2k〉;Q) = Q[ri | i ≥ k].
These are precisely the functions on C1(Ĝa,Gm) that are unchanged when
we replace f ∈ C1(Ĝa,Gm)(R) by f exp(g) for some polynomial g of
degree less than k, as we see from the definition of the ri . We see from
the proof of Proposition 3.43 that these are the same as the functions that
depend only on δk−1

× ( f ), and thus that BU〈2k〉HPQ can be identified with
Ck(Ĝa,Gm) × spec(Q), as claimed. ��
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4.4. The ordinary homology of BSU

Proposition 4.4. The natural map

BSU HP −→C2(Ĝa,Gm)

is an isomorphism.

Proof. It is enough to prove this modulo p for all primes p, so fix one. Con-
sider the diagram of affine commutative group schemes (in which everything
is taken implicitly over Fp)

PHP //

��
∼=

BU HP //

��
∼=

BSU HP

��
Hom(Ĝa,Gm) // C1(Ĝa,Gm) //

δ×
C2(Ĝa,Gm).

The diagram commutes by Corollaries 2.30 and 4.2. The splitting BU =
BSU × P implies that the top row is a short exact sequence. It is clear
that Hom(Ĝa,Gm) is the kernel of δ×, so it remains to show that δ× is an
epimorphism. That is precisely the content of Proposition 3.42. ��

4.5. The ordinary homology of BU〈6〉. The mod p cohomology of BU〈2k〉
was computed (for all k ≥ 0) by Singer [Sin68]. We next recall the calcula-
tion for k = 3. Note that BU〈6〉 is the fiber of a map BSU −→K(Z, 4) and
ΩK(Z, 4) = K(Z, 3) so we have a fibration

K(Z, 3)
γ−→BU〈6〉 v−→BSU.

In this section we give an algebraic model for the ordinary homology of this
fibration, in terms of the theory of symmetric cocycles and Weil pairings.

Classical calculations show that for p > 2 we have

H∗(K(Z, 3);Fp) = E[u0, u1, . . . ] ⊗ Fp[βu1, βu2, . . . ],

where |uk| = 2pk + 1, uk+1 = P pk
uk, and E denotes the exterior algebra

over Fp on the indicated generators. We also set βu0 = 0. We write A∗ for
the polynomial subalgebra generated by the elements βuk for k > 0. We
also write A = ∏

k≥0 A2k , which is an ungraded formal power series algebra
over Fp. In the case p = 2 we have

H∗(K(Z, 3);F2) = F2[u0, u1, . . . ],
with |uk| = 2k+1 + 1 and uk+1 = Sq2k+1

uk, and we let A∗ be the subalge-
bra generated by the elements u2

k . We write A∨ for the vector space dual
Hom(A∗,Fp).
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Lemma 4.5. In the Serre spectral sequence

H∗(BSU; H∗(K(Z, 3);Fp)) *⇒ H∗(BU〈6〉;Fp)

the class ut survives to E2pt+2, and then there is a differential d2pt+2(ut) =
q1+pt , up to a unit in Fp.

Proof. We treat the case p > 2 and leave the (small) modifications for
p = 2 to the reader. As BU〈6〉 is 5-connected, we must have a transgressive
differential d4(u0) = c2 (up to a unit in Fp). We can think of H∗(BU;Fp) as
a ring of symmetric functions in the usual way, so we have c2 = ∑

i< j xi x j .
One checks by induction that

P pt−1
. . . P p P1(c2) =

∑
i  = j

xi x
pt

j = q1+pt

1 − q1+pt

for t > 0. We also have q1 = c1 (which vanishes on BSU) and thus
P pt−1

. . . P p P1(c2) = −q1+pt in H∗(BSU;Fp). It follows from the Kudo
transgression theorem and our knowledge of the action of the Steenrod
algebra that ut survives to E2pt+2 and d2pt+2(ut) = q1+pt . ��
Proposition 4.6. We have a short exact sequence of Hopf algebras

H∗(BSU;Fp)/(c2, q1+pt | t > 0)� H∗(BU〈6〉;Fp)� A∗.

Moreover, H∗(BU〈6〉;Fp) is a polynomial ring over Fp, concentrated in
even degrees, with the same Poincaré series as Fp[ck | k ≥ 3].
Proof. Note that qk = kck modulo decomposables, so we can take q1+pt as
a generator of H2(1+pt)(BSU) p-locally when t > 0. Thus

H∗(BSU;Fp) = Fp[q1+pt |t > 0] ⊗ Fp[ck|k ≥ 2 is not of the form 1 + pt ]
Using this, one can check that Lemma 4.5 gives all the differentials in the
spectral sequence, and that

E∞ = H∗(BU;Fp)/(c2, q1+pt | t > 0) ⊗ A∗

= Fp[ck | k ≥ 2 is not of the form 1 + pt] ⊗
Fp[βuk | k > 0].

By thinking about the edge homomorphisms of the spectral sequence, we
obtain the claimed short exact sequence of Hopf algebras. As the two outer
terms are polynomial rings in even degrees, the same is true of the middle
term. As |βuk| = |q1+pk |, we have the claimed equality of Poincaré series.

��
Corollary 4.7. BU〈6〉 is a even space, and H∗BU〈6〉 is a polynomial al-
gebra of finite type over Z.
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Proof. It is easy to see that BU〈6〉 has finite type. The remaining statements
are true p-locally for all p by the Proposition, and the integral statement
follows because everything has finite type. ��
Corollary 4.8. The sequence of group schemes over Fp

BSU HPFp −→BU〈6〉HPFp −→spec(A∨) −→0

is exact.

4.5.1. The Weil scheme and HP0 K(Z, 3). In this section, we work over Fp
unless otherwise specified. In particular, homology is taken with coefficients
in Fp.

We now have the solid arrows of the diagram

BSU HP

��
f2 ∼=

// BU〈6〉HP

��
f3

// spec(A∨)

��
λ∼=
�
�
�

// 0

C2(Ĝa,Gm) //
δ×

C3(Ĝa,Gm) //e
Weil(Ĝa)

// 0.

(4.9)

The diagram commutes by Corollary 2.30. Moreover the rows are exact (by
Corollaries 3.41 and 4.8), and the map f2 is an isomorphism by Proposi-
tion 4.4. It follows that there is a map λ making the diagram commute. Our
next task is to show that this map is an isomorphism.

We can give an explicit formula for this map. Recall from Sect. 2.3.3
that f3 classifies the 3-cocycle ρ̂3 ∈ HP0 P⊗̂HP0 BU〈6〉. Here ρ̂3 is the
adjoint of HP0ρ3, where ρ3 is the map

P3 ρ3−→ BU〈6〉
whose composite to BU classifies the bundle

∏
i(1 − Li). Let W : P2 →

BU〈6〉 be the map whose composite to BU classifies the virtual bundle

p−1∑
k=1

(
(1 − L1)

(
1 − Lk

1

)
(1 − L2) − (1 − L1)

(
1 − Lk

2

)
(1 − L2)

)
∼= (1 − L1)(1 − L2)

p−1∑
k=1

Lk
2 − Lk

1. (4.10)

Let Ŵ be the adjoint in HP0 P2⊗̂HP0 BU〈6〉 of the map HP0W . Let
x = −c1L1 and y = −c1L2 be the indicated generators of HP0 P2. Then
Ŵ gives a power series

Ŵ(x, y) ∈ HP0(BU〈6〉)[[x, y]] ∼= HP0 P2⊗̂HP0 BU〈6〉.
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Lemma 4.11. The power series Ŵ(x, y) has coefficients in the subring
A∨[[x, y]]. As such it is an element of Weil(Ĝa)(A∨). The map λ : spec(A∨)

→ Weil(Ĝa) classifying Ŵ(x, y) makes the Diagram (4.9) commute.

Proof. Recall that the map e : C3(Ĝa,Gm) → Weil(Ĝa) takes the power
series f(x, y, z) to the power series

e( f )(x, y) =
p−1∏
k=1

f(x, kx, y)

f(x, ky, y)
.

Recall also that the H-space structure of BU〈6〉 corresponds on the algebraic
side to the multiplication of power series and on the topological side to
addition of line bundles. The H-space structure of P corresponds on the
algebraic side to addition in the group Ĝa and on the topological side to the
tensor product of line bundles.

Putting these observations together shows that

Ŵ = e(ρ̂3).

The lemma follows from this equation and the structure of the solid Dia-
gram (4.9). ��
Lemma 4.12. For s ≥ 1, we have an equation

W∗q1+ps = p(xyps − x ps
y) mod p2

in the integral cohomology HP0 P2.

Proof. As x = −c1L1 and y = −c1L2, the total Chern class of the bundle
(4.10) is given by the formula

W∗c(t) = (1 − yt)(1 − pxt)(1 − (x + py)t)

(1 − xt)(1 − pyt)(1 − (px + y)t)
.

We have q(t) = td log c(t). Modulo p2 we have equations

td log(1 − xt) =− tx(1 + xt + (xt)2 + . . . )

td log(1 − pxt) =− pxt

td log(1 − (x + py)t) = (x + py)t

(1 − (x + py)t)

=− pyt(1 + xt + (xt)2 + . . . )

− xt(1 + xt + (xt)2 + . . . )

− pxyt2(1 + 2xt + 3(xt)2 + . . . ).

With these formulae it is easy to verify the assertion. ��
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Note that Lemma 4.11 implies that the map (of Fp–modules)

HP0W : HP0 P2 −→HP0 BU〈6〉
factors through the inclusion of A∨ in HP0 BU〈6〉.
Proposition 4.13. The map of group schemes λ : spec(A∨) → Weil(Ĝa)
is an isomorphism.

Proof. First note that A is a formal power series algebra on primitive gener-
ators (because u0 is primitive and the Steenrod action preserves primitives).
It follows that A∨ is a divided power algebra over Fp and thus a tensor
product of rings of the form Fp[y]/yp. We know from Lemma 3.36 that
OWeil(Ĝa) also has this structure. It will thus suffice to show that the map
Ind(OWeil(Ĝa)) −→Ind(A∨) = Prim(A)∨ is an isomorphism, or equivalently
that the resulting pairing of Ind(OWeil(Ĝa)) with Prim(A) is perfect. (See for
example [MM65] for the basic facts about Hopf algebras.)

Define elements bi ∈ H∗P by setting 〈bi, x j〉 = δij , and define elements
bij ∈ A∨ by setting

bij = H∗W(bi ⊗ bj).

It is clear that the Weil pairing g(x, y) associated to HP0W is given by the
formula

g(x, y) =
∑

ij

bij x
i y j.

Let f(x, y) = ∑
i, j aij xi y j be the universal Weil pairing defined over

OWeil(Ĝa), so our map sends f to g and thus aij to bij . We know from
Lemma 3.36 that the elements api ,p j (with i < j) form a basis for
Ind(OWeil(Ĝa)). On the other hand, the elements (βuk)

pm
(with k > 0 and

m ≥ 0) are easily seen to form a basis for Prim(A).
The calculation of the Serre spectral sequence in Lemma 4.5 and the

characteristic class calculation in Lemma 4.12 together imply that

W∗βuk = ε(xypk − x pk
y)

in H∗(P2), where ε is a unit in Fp. It follows that the inner product
〈bpi ,p j , (βuk)

pm 〉 in A is the same (up to a unit) as the inner product

〈bpi ,p j , x pm
ypk+m − x pk+m

ypm〉 in H∗(P2), and this inner product is just
δimδ jk. This proves that the pairing is perfect, as required. ��
Corollary 4.14. For periodic integral homology, the map BU〈6〉HP −→
C3(Ĝa,Gm) is an isomorphism.

Proof. It is enough to prove this mod p for all p. We can chase the Dia-
gram 4.9 to see that the map BU〈6〉HPFp −→C3(Ĝa,Gm) × spec(Fp) is an
epimorphism. We see from Propositions 4.3 and 3.28 that the corresponding
graded rings have the same Poincaré series, so the map must actually be an
isomorphism. ��
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4.6. BSU and BU〈6〉 for general E. Let FGL be the scheme of formal
group laws and let G = Â1 × FGL . There is a canonical group struc-
ture σ : G ×FG L G = Â2 × FGL → Â1 × FGL = G given by the
formula σ(a, b, F) = (a +F b, F). We define an action of Gm on FGL by
(u.F)(x, y) = u−1 F(ux, uy). This gives a grading on OFG L ; explicitly, if
F(x, y) = ∑

i, j aij xi y j is the universal formal group law, then aij is a ho-
mogeneous element of OFG L of degree i + j − 1. It is clear that OFG L is
generated (subject to many relations) by the elements aij . It is a theorem of
Lazard (see [Ada74] for example) that OFG L is a graded polynomial algebra
with one generator in each degree i > 0.

The scheme C = C3(G,Gm) is the functor that assigns to each ring
R the set of pairs (F, f ), where F is a formal group law over R and
f ∈ R[[x1, x2, x3]] is symmetric, congruent to 1 modulo x1x2x3, and satisfies
the cocycle condition

f(x1, x2, x3) f(x0 +F x1, x2, x3)
−1 f(x0, x1 +F x2, x3) f(x0, x1, x3)

−1 = 1.

The action of Gm on FGL extends to an action on C by the formula
u.(F, f ) = (u.F, u. f ), where

(u. f )(x1, x2, x3) = f(ux1, ux2, ux3)

and

(u.F)(x, y) = u−1 F(ux, uy).

This gives OC the structure of a graded OFG L-algebra. If f(x1, x2, x3) =∑
i, j,k≥0 bijkxi

1x j
2 xk

3 then bijk can be thought of as a homogeneous element of
OC with degree i + j + k. Moreover, we have b000 = 1.

It is clear that OC is generated over OFG L by the elements bijk , and thus
that OC is a connected graded ring of finite type over Z.

Lemma 4.15. The ring OC is a graded free module over OFG L. In particu-
lar, it is free of finite type over Z.

Proof. Let I be the ideal in OC generated by the elements of positive degree
in OFGL, so the associated closed subscheme V(I ) ∼= spec(Z) ⊂ FGL
just consists of the additive formal group law. It follows that OC/I =
OC3(Ĝa,Gm), which is a free abelian group by Corollary 3.30. We choose
a homogeneous basis for OC/I and lift the elements to get a system of
homogeneous elements in OC . Using these, we can construct a graded free
module M over OFGL and a map M

α−→OC of OFGL-modules that induces
an isomorphism M/IM ∼= OC/IOC. It is easy to check by induction on the
degrees that α is surjective. Also, M is free over OFGL, which is free over Z,
so M is free over Z. Now, if we have a surjective map f : A −→B of finitely
generated Abelian groups such that A is free and A⊗Q ∼= B ⊗Q, it is easy
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to see that f is an isomorphism. Thus, if we can show that M has the same
rational Poincaré series as OC , we can deduce that α is an isomorphism.

If (F, f ) is a point of C over a rational ring R, then we can define
a series expF in the usual way and get a series g = f ◦ (exp3

F) defined
by g(x1, x2, x3) = f(expF(x1), expF(x2), expF(x3)). Clearly we have g ∈
C3(Ĝa,Gm)(R), and this construction gives an isomorphism C×spec(Q) −→
FGL×C3(Ĝa,Gm) × spec(Q). It follows that the Poincaré series of OC is
the same as that of OFGL ⊗ OC3(Ĝa,Gm), which is the same as that of M by
construction. ��
Proposition 4.16. For any even periodic ring spectrum E, the natural maps

BSU E −→C2(PE,Gm)

and

BU〈6〉E −→C3(PE,Gm)

are isomorphisms.

Proof. Let k = 2 or 3. Because BU〈2k〉 is even, we know that the Atiyah-
Hirzebruch spectral sequence

H∗(BU〈2k〉; E∗) *⇒ E∗BU〈2k〉
collapses, and thus that E1 BU〈2k〉 = 0 and E0 BU〈2k〉 is a free module
over E0. If we have a ring map E ′ −→E between even periodic ring spectra
then we get a map E0 ⊗E′

0
E ′

0 BU〈2k〉 −→E0 BU〈2k〉, and a comparison of
Atiyah-Hirzebruch spectral sequences shows that this is an isomorphism, so
BU〈2k〉E = BU〈2k〉E′ ×SE′ SE . On the other hand, because the formation
of Ck commutes with base change, we have

Ck(PE,Gm) = Ck(PE′ ×SE′ SE,Gm) = Ck(PE′,Gm) ×SE′ SE.

It follows that if the theorem holds for E ′ then it holds for E. It holds for
E = HP by Proposition 4.4 or Corollary 4.14, and we have ring maps

HP −→HPQ −→HPQ ∧ MU = MPQ,

so the theorem holds for MPQ.
For any E, we can choose a coordinate on E and thus a map MP −→E

of even periodic ring spectra, so it suffices to prove the theorem when
E = MP, in which case SE = FGL. In this case we have a map of graded
rings OC −→MP0 BU〈2k〉 = MU∗BU〈2k〉, both of which are free of finite
type over Z. This map is a rational isomorphism by the previous paragraph,
so it must be injective, and the source and target must have the same
Poincaré series. It will thus suffice to prove that it is surjective. Recall that I
denotes the kernel of the map MP0 −→Z = HP0 that classifies the additive
formal group law, or equivalently the ideal generated by elements of strictly
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positive dimension in MU∗. By induction on degrees, it will suffice to prove
that the map OC/I −→ MP0 BU〈2k〉/I is surjective. Base change and the
Atiyah-Hirzebruch sequence identifies this map with the map OC3(Ĝa,Gm) −→
HP0 BU〈2k〉, in other words the case E = HP of the proposition. This case
was proved in Proposition 4.4 (k = 2) or Corollary 4.14 (k = 3). ��

Appendix A. Additive cocycles

The main results of this section are proofs of Propositions 3.13, 3.16, and
3.20. We use the notation of Sect. 3. In particular, we abbreviate Ck(A)
for Ck(Ĝa, Ĝa)(A), and for d ≥ 1 we write Ck

d(A) for the subgroup of
polynomials which are homogeneous of degree d.

For d ≥ 1 let xd be considered as an element of C0(Ĝa, Ĝa)(Z). Then
we have polynomials δk(xd) ∈ Z[x1, . . . , xk] giving elements of Ck(Z). For
example

δ2(xd) =xd
1 + xd

2 − (x1 + x2)
d

δ3(xd) =xd
1 + xd

2 + xd
3 − (x1 + x2)

d − (x1 + x2)
d

− (x2 + x3)
d + (x1 + x2 + x3)

d.

A.1. Rational additive cocycles

Proposition A.1 (3.13). If A is a Q-algebra, then for d ≥ k the group
Ck

d(A) is the free abelian group on the single generator δkxd.

Proof. If h ∈ Ck(A) then there is a unique series f(x) such that h(x, ε,
. . . , ε) = εk−1 f(x) (mod εk), and moreover f(0) = 0. It follows that there
is a unique series g ∈ C0

≥k(A) whose (k − 1)’st derivative is f . We can thus
define an A-linear map π : Ck(A) −→C0

≥k(A) by π(h) = (−1)kg. We claim
that this is the inverse of δk.

To see this, suppose that g ∈ C0
≥k(A), so that g(k−1)(0) = 0. From the

definitions, we have

(δkg)(x, ε, . . . , ε) =
∑

I

(−1)|I |(g(|I |ε) − g(x + |I |ε))

=
k−1∑
j=0

(−1) j

(
k − 1

j

)
(g( jε)− g(x + jε)),

where I runs over subsets of {2, . . . , k}. To understand this, we introduce
the operators (T f )(x) = f(x + ε) and (D f )(x) = f ′(x). Taylor’s theorem
tells us that T = exp(εD). It is clear that
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k−1∑
j=0

(−1) j

(
k − 1

j

)
g(x + jε) = ((1 − T )k−1g)(x)

= ((1 − exp(εD))k−1g)(x)

= (−ε)k−1g(k−1)(x) (mod εk).

If we feed this twice into our earlier expression and use the fact that
g(k−1)(0) = 0, we find that

(δkg)(x, ε, . . . , ε) = (−1)kεk−1g(k−1)(x) (mod εk).

This shows that πδk = 1.
To complete the proof, it suffices to show that π is injective. Suppose

that h ∈ Ck(A) and that π(h) = 0, so that h(x, ε, . . . , ε) = 0 (mod εk). If
k = 2 we consider the cocycle condition

h(y, z)− h(x + y, z) + h(x, y + z) − h(x, y) = 0.

If we substitute z = ε and work modulo ε2 then the first two terms become
zero and we have h(x, y + ε) = h(x, y), or equivalently ∂h(x, y)/∂y = 0.
By symmetry we also have ∂h(x, y)/∂x = 0, and as A is rational we can
integrate so h is constant. We also know that h(0, 0) = 0 so h = 0 as
required.

Now suppose that k > 2. We know that h has the form g(x1, . . . , xk)xk
for some series g. By assumption, εk divides h(x, ε,. . ., ε) = εg(x, ε,. . ., ε)
so g(x, ε, . . . , ε) = 0 (mod εk−1). On the other hand, x2, . . . , xk−1 also
divide g so it is not hard to see that g(x, ε, . . . , ε, 0) = g(x, ε, . . . , ε) = 0
(mod εk−1). Moreover, the series g(x1, . . . , xk−1, 0) lies in Ck−1(A), so
by induction on k we find that g(x1, . . . , xk−1, 0) = 0. This shows that
h(x1, . . . , xk−1, ε) = 0 (mod ε2). The argument of the k = 2 case now
shows that h = 0. ��
A.2. Divisibility. Recall that u(d) = uk(d) is the greatest common divisor
of the coefficients of the polynomial δkxd . Let

c(k, d) = δkxd

u(d)
.

It is clear that Ck(Z) = Ck(Q)∩Z[[x1, . . . , xk]], so Proposition A.1 has the
following corollary.

Corollary A.2. For d ≥ k, the group Ck
d(Z) is a free abelian group on the

single generator c(k, d) ��
We fix a prime p and an integer k ≥ 1. In Sect. 3 it is convenient work

p-locally, and then to use the cocycles

c(d) = (−δ)k(xd)

pv(d)
,
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which locally at p are unit multiples of c(k, d) (see Definition 3.14). In this
section we study v(d) = νp(u(d)).

It is clear that u(d) is the greatest common divisor of the multinomial
coefficients

d!
α1! · · · · · αk! ,

where αi ≥ 1 and
∑

αi = d.
We start with some auxiliary definitions.

Definition A.3. For any nonnegative integer d, we write σp(d) for the
sum of the digits in the base p expansion of d. In more detail, there is
a unique sequence of integers di with 0 ≤ di < p and

∑
i di pi = d, and we

write σp(d) = ∑
i di . Given a sequence α = (α1, . . . , αk) of nonnegative

integers, we write

|α| =
∑

i

αi

xα =
∏

i

xαi
i

α! =
∏

i

αi !

supp(α) = {i | αi > 0}.
Lemma A.4. We have

v(d) = inf{νp(d!/α!) | |α| = d and αi > 0 for all i}. ��
To exploit this, we need some well-known formulae involving multino-

mial coefficients.

Lemma A.5. We have νp(n!) = (n − σp(n))/(p − 1).

Proof. The number of integers in {1, . . . , n} that are divisible by p is ,n/p-.
Of these, precisely ,n/p2- are divisible by a further power of p, and so on.
This leads easily to the formula vp(n!) = ∑

k,n/pk-. If n has expansion∑
i ni pi in base p, then ,n/pk- = ∑

i≥k ni pi−k . A little manipulation gives
vp(n!) = ∑

i ni(pi − 1)/(p − 1) = (n − σp(n))/(p − 1) as claimed. ��
Corollary A.6. For any multi-index α we have

νp(|α|!/α!) =
(∑

i

σp(αi) − σp(|α|)
)

/(p − 1).

Thus

v(d) = inf
{ ∑

i σp(αi) − σp(d)

p − 1

∣∣∣∣ |α| = d and αi > 0 for all i

}
.

��
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It is not hard to check the following description of the minimum in
Corollary A.6.

Lemma A.7. The minimum in Corollary A.6 is achieved by the multi-index
α such that summing

d = α1 + · · · + αk

in base p involves “carrying” the fewest number of times; and v(d) is equal
to the number of carries. ��

The proof of Proposition 3.16 involves working out this number of
carries. To make the argument precise, we introduce a few definitions.

Definition A.8. We let A(p, k, d) denote the set of doubly indexed se-
quences α = (αij), where i runs from 1 to k, j runs over all nonnegative
integers, and the following conditions are satisfied:

i. For each i, j we have 0 ≤ αij ≤ p − 1.
ii. We have

∑
i, j αij p j = d.

iii. For each i there exists j such that αij > 0.

By writing multi-indices in base p, we see that v(d) is the minimum
value of (

∑
ij αij − σp(d))/(p − 1) as α runs over A(p, k, d).

Definition A.9. We let B = B(p, k, d) be the set of sequences β = (β j)
(where j runs over nonnegative integers) such that

i. For each j we have 0 ≤ β j ≤ k(p − 1).
ii. We have

∑
j β j p j = d.

iii. We have
∑

j β j ≥ k.

We also write B̃ = B̃(p, k, d) for the larger set of sequences satisfying
only conditions i and ii. Given β ∈ B̃ we write τ(β) = ∑

j β j , so β ∈ B

if and only if τ(β) ≥ k. If d has expansion d = ∑
k β̃k pk in base p, then

β̃ = (β̃0, β̃1, . . . ) is an element of B̃, with τ(β̃) = σp(d).

Proposition A.10 (3.16). For any d ≥ k we have

v(d) = max

(
0,

⌈
k − σp(d)

p − 1

⌉)
.

Alternatively, v(d) is equal to the minimum number of “carries” in base-p
arithmetic, when d is calculated as the sum of k integers a1, . . . , ak with
ai ≥ 1.
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Proof. Consider the map ρ : A(p, k, d) −→ B(p, k, d) defined by ρ(α) j =∑
i αij . It is easily seen that ρ is surjective and that τρ(α) = ∑

ij αij .
It follows that v(p, k, d) = inf{(τ(β) − σp(d))/(p − 1) | β ∈ B}. If
k ≤ σp(d) = τ(β̃) then β̃ ∈ B and this makes it clear that v(d) = 0. From
now on we assume that k > σp(d).

We define a map θ : B̃ \ B −→ B̃ as follows. If β ∈ B̃ \ B then
∑

j β j < k
and

∑
j β j p j = d. As d ≥ k this clearly cannot happen unless there exists

some i > 0 with βi > 0. We let j denote the largest such i. We then define

θ(β)i =


i = j β j − 1
i = j − 1 β j−1 + p
i  = j − 1, j βi .

We claim that the resulting sequence lies in B̃. The only way this could fail
would be if β j−1 + p > k(p − 1), but as β j > 0 this would imply

τ(β) ≥ β j + β j−1 ≥ 1 + (k − 1)(p − 1) ≥ k,

contradicting the assumption that β  ∈ B.
Note that τθ(β) = τ(β)+(p−1). It follows that for some i, the sequence

β = θ i(β̃) is defined, lies in B, and satisfies k ≤ τ(β) = σp(d)+ i(p−1) <
k + p − 1. It follows that

i = τ(β) − σp(d)

p − 1
=

⌈
k − σp(d)

p − 1

⌉
,

and thus that v(d) ≤ /(k−σp(d))/(p−1)0. By definition we have τ(γ) ≥ k
for all γ ∈ B, and this implies the reverse inequality. Thus v(d) =
/(k − σp(d))/(p − 1)0. ��

A.3. Additive cocycles: The modular case. In this section we give the
description of C3(A) when A is an Fp-algebra, as promised in Proposi-
tion 3.20. For convenience, we recall what we need to prove.

Let φ be the endomorphism of A[[x1, . . . , xk]] defined by φ(xi) = x p
i ,

and we observed that if p = 0 in A then this sends Ck(A) to Ck(A) and
Ck

d(A) to Ck
dp(A). Moreover, if A = Fp then ap = a for all a ∈ Fp and thus

φ(h) = h p.

Definition A.11. We say that an integer d ≥ 3 has type

I if d is of the form 1 + pt with t > 0.
II if d is of the form ps(1 + pt) with s, t > 0.
III otherwise.

If d = ps(1 + pt) has type I or II we define c′(d) = φsc(1 + pt) ∈ C3
d(Fp).

Note that d has type I precisely when σp(d − 1) = 1, and in that case we
have c′(d) = c(d).
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Proposition A.12 (3.20). If A is an Fp-algebra then C3(A) is the product
of the free A modules of rank 1 generated by the elements c(d) for d ≥ 3
and the elements c′(d) for d of type II.

The proof will be given at the end of this section. It is based on the
observation that a cocycle h = h(x, y, z) ∈ C3

d(A) can be written uniquely
in the form

∑
i hi(x, y)zi . Each hi must be a two-cocycle, and so a multiple

of c2(d − i). The symmetry of h restricts how the hi can occur.
It is convenient to have the following description of the image of φ.

Lemma A.13. If p = 0 in A and h ∈ Ck(A) and h(x1, . . . , xk−1, ε) = 0
(mod ε2) then h = φ(g) for some g ∈ Ck(A). Moreover, if h is homogeneous
of degree d, then g is homogeneous of degree d/p, which means that h = 0
if p does not divide d.

Proof. The cocycle condition gives

h(x1, . . . , xk) − h(x1, . . . , xk−1, xk + ε)

+ h(x1, . . . , xk−1 + xk, ε) − h(x1, . . . , xk−2, xk, ε) = 0.

Modulo ε2, the last two terms vanish and we conclude that ∂h/∂xk = 0.
This shows that powers x j

k can only occur in h if p divides j, or in other
words that h is a function of x p

k . By symmetry it is a function of x p
i for all i,

or in other words it has the form φ(g) for some g. It is easy to check that g
lies again in Ck(A). The extra statements for when h is homogeneous are
clear. ��
Definition A.14. Given an integer d ≥ 3 and a prime p, we let τ = τ(d)
be the unique integer such that pτ + 1 < d ≤ pτ+1 + 1.

Definition A.15. We define a map π : C3
d(A) −→A as follows. Given a co-

cycle h ∈ C3
d(A), write

h(x, y, z) =
d∑

i=0

hi(x, y)zi.

Then we can write h(x, y, z) uniquely in the form
∑d

i=0 hi(x, y)zi . It is
easy to check that hi is a two-cocycle, and so Lemma 3.5 implies that
hi = aic2(d − i) for a unique element ai ∈ A. Set π(h) = apτ(d) .

Lemma A.16. There is a unit λ ∈ Fp
× such that π(ac(d)) = λa, so π

is always surjective. If d is not divisible by p then π : C3
d(A) −→ A is an

isomorphism. If d is divisible by p then the kernel of π is contained in the
image of the map φ : C3

d/p(A) −→C3
d(A).
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Proof. For the first claim we need only check that when A = Fp, the element
λ = π(c(d)) is nonzero. Equivalently, we claim that some term xi y j z pτ

(with i + j + pτ = d) occurs nontrivially in c(d). Given Corollary A.6 and
Proposition 3.16, it is enough to show that there exist integers i, j > 0 with
i + j + pτ = d and

σp(i) + σp( j)+ 1 − σp(d)

p − 1
= max

(⌈
3 − σp(d)

p − 1

⌉
, 0

)
.

If σp(d) ≥ 3 then this reduces to the requirement that σp(i) + σp( j) =
σp(d) − 1. We cannot have d = pτ+1 or d = pτ+1 + 1 because in those
cases σp(d) < 3, so we must have pτ + 1 < d < pτ+1. It follows that
in the base-p expansion d = ∑τ

i=0 di pi we have dτ > 0, and thus that
σp(d − pτ ) = σp(d) − 1 ≥ 2. It is now easy to find numbers i, j > 0 such
that i+ j = d− pτ and the sum can be computed in base p without carrying,
which implies that σp(i) + σp( j) = σp(d − pτ ) as required.

We now suppose that σp(d) ≤ 2. In this case, we need to find i, j > 0
such that i + j + pτ = d and

3 − σp(d) ≤ σp(i) + σp( j)+ 1 − σp(d) < 3 − σp(d) + p − 1,

or equivalently

2 ≤ σp(i) + σp( j) < p + 1.

Assuming that p > 2, the possible values of d, together with appropriate
values of i and j, are as follows.

d = pτ+1 i = j = 1
2(p − 1)pτ

d = 1 + pτ+1 i = 1 , j = (p − 1)pτ

d = ps + pτ (0 < s ≤ τ) i = ps−1 , j = (p − 1)ps−1

In the case p = 2, the possibilities are as follows.

d = 2τ+1 (τ > 0) i = j = 2τ−1

d = 1 + 2τ+1 i = 1 , j = 2τ

d = 2s + 2τ (0 < s < τ) i = j = 2s−1

This completes the proof that λ = π(c(d)) is nonzero. For general A we
have π(ac(d)) = λa, and it follows immediately that π is surjective.

We next show that the kernel of π is contained in the image of φ (and
thus is zero if p does not divide d). Suppose that h ∈ C3

d(A) and π(h) = 0.
Let ai be as in Definition A.15, so that apτ = π(h) = 0. By Lemma A.13, it
suffices to check that h is divisible by x2. We already know that it is divisible
by x, so we just need to know that a1 = 0. Let λi, j ∈ Fp be the coefficient
of xi y j in c2(i + j), so we have

h =
∑

i+ j+k=d

λi, jakxi y j zk.



Elliptic spectra 667

As h is symmetric in x, y, and z, we conclude that λi, j ak = λi,ka j . In
particular, we have

a1λpτ ,d−pτ−1 = apτ λ1,d−pτ−1 = 0.

It is thus enough to check that λpτ ,d−pτ−1 is a unit in Fp. In the case
d = pτ+1 + 1 we have c2(pτ+1) = ((x + y)pτ+1 − x pτ+1 − ypτ+1

)/p and thus

λpτ ,d−pτ−1 =
(

pτ+1

pτ

)
/p. Corollary A.6 tells us that this integer has p-adic

valuation 0, so it becomes a unit in Fp. In the case when d < pτ+1 + 1, we

have c2(d−1) = (x+ y)d−1−xd−1− yd−1 and thus λpτ ,d−1−pτ =
(

d − 1
pτ

)
.

It is not hard to see that we have a base-p expansion d − 1 = ∑τ
i=0 di pi

in which dτ > 0. Given this, Corollary A.6 again tells us that λpτ ,d−1−pτ is
a unit, as required. ��
Lemma A.17. If d has type II then π(c′(d)) = 0.

Proof. We have d = ps(1 + pt) with s > 0 and 1 + pt ≥ 3. As s > 0 we
have 1 + ps+t < ps + ps+t ≤ 1 + ps+t+1, so τ(ps + ps+t) = s + t. We thus
have to prove that there are no terms of the form xi y j z ps+t

in c(1+ pt)ps
, or

equivalently that there are no terms of the form xi y j z pt
in c(1+ pt). This is

clear because c(1+ pt ) has the form xyz f(x, y, z), where f is homogeneous
of degree pt − 2. ��
Proof of Proposition A.12. It is clear from Lemma A.16 that C3(A) is gener-
ated over A by the elements φs c(d) for all s and d. However, Proposition 3.18
and Corollary 3.17 tell us that φsc(d) = c(psd) unless νp(d) < v(d), where

v(d) =


2 σ2(d) = 1 and p = 2
1 σp(d) = 1 and p > 2
1 σp(d) = 2
0 σp(d) > 2.

Suppose that d is one of these exceptional cases. We clearly cannot have
σp(d) > 2. If σp(d) = 1 then d = pt for some t. The inequality νp(d) <
v(d) means that t < 2 if p = 2 and t < 1 if p > 2. We also must have
d ≥ 3, so t > 0, and t > 1 if p = 2. These requirements are inconsistent, so
we cannot have σp(d) = 1. This only leaves the possibility σp(d) = 2, so
d = pr(1+ pt) with t ≥ 0, and t > 0 if p = 2. The inequality νp(d) < v(d)
now means that r = 0. The inequality d ≥ 3 means that the case t = 0 is
excluded even when p > 2.

In other words, φsc(d) = c(dps) unless s > 0 and d has the form 1+ pt

with t > 0, so psd has type II. Thus C3(A) is spanned by the elements c(d)
for d ≥ 3 and c′(d) for d of type II.
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It is easy to see that C3
d(A) = C3

d(Fp) ⊗ A, and in the case A = Fp
we know from Lemmas A.16 and A.17 that our spanning set is linearly
independent. The proposition follows. ��

Appendix B. Generalized elliptic curves

In this appendix, we outline the theory of generalized elliptic curves. We
have tried to give an elementary account, with explicit formulae wher-
ever possible. This has both advantages and disadvantages over the other
available approaches, which make more use of the apparatus of schemes
and sheaf cohomology. For more information, and proofs of results merely
stated here, see [Del75,KM85,Sil94,DR73]. Note, however, that our defin-
ition is not quite equivalent to that of [DR73]: their generalized elliptic
curves are more generalized than ours, so what we call a generalized elliptic
curve is what they would call a stable curve of genus 1 with a specified
section in the smooth locus.

We shall again think of non-affine schemes as functors from rings to
sets. The basic example is the projective scheme Pn , where Pn(R) is the set
of submodules L ≤ Rn+1 such that L is a summand and has rank one. If
we have elements a0, . . . , an ∈ R such that

∑
i Rai = R then the vector

(a0, . . . , an) ∈ Rn+1 generates such a submodule, which we denote by
[a0 : . . . : an]. This is of course a free module. In general, L may be a non-
free projective module, so it need not have the form [a0 : . . . : an], but
nonetheless it is usually sufficient to consider only points of that form. For
more details, and a proof of equivalence with more traditional approaches,
see [Str99a, Sect. 3].

Definition B.1. A Weierstrass curve over a scheme S is a (non-affine)
scheme of the form

C = C(a1, a2, a3, a4, a6)

= {([x : y : z], s) ∈ P2 × S | y2z + a1(s)xyz + a3(s)yz2

= x3 + a2(s)x
2z + a4(s)xz2 + a6(s)z

3}

for some system of functions a1, . . . , a6 ∈ OS. (Whenever we write
(a1, . . . , a6), it is to be understood that there is no a5.) For any such
curve, there is an evident projection p : C −→ S and a section 0 : S −→C
given by s �→ ([0 : 1 : 0], s). We write WC(R) for the set of 5-tuples
(a1, . . . , a6) ∈ R5, which can clearly be identified with the set of Weier-
strass curves over spec(R). Thus, WC = spec(Z[a1, . . . , a6]) is a scheme.
We define various auxiliary functions as follows:

b2 = a2
1 + 4a2

b4 = a1a3 + 2a4
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b6 = a2
3 + 4a6

b8 = a2
1a6 − a1a3a4 + 4a2a6 + a2a2

3 − a2
4

c4 = b2
2 − 24b4

c6 = −b3
2 + 36b2b4 − 216b6

∆ = −b2
2b8 − 8b3

4 − 27b2
6 + 9b2b4b6

j = c3
4/∆ .

The function ∆ ∈ OS is called the discriminant. We say that a Weierstrass
curve C is smooth if its discriminant is a unit in OS. In particular j is only
a rational function on WC, and may be undefined on a given Weierstrass
curve.

Definition B.2. A generalized elliptic curve over S is a scheme C equipped

with maps S
0−→C

p−→ S such that S can be covered by open subschemes
Si such that Ci = C ×S Si is isomorphic to a Weierstrass curve, by an
isomorphism preserving p and 0. An elliptic curve is a generalized elliptic
curve that is locally isomorphic to a smooth Weierstrass curve. We shall
think of S as being embedded in C as the zero-section. We write ωC/S for
the cotangent space to C along S, or equivalently ωC/S = �S/�

2
S , where �S

is the ideal sheaf of S. One checks that this is a line bundle on S. We say
that C/S is untwisted if ωC/S is trivializable.

It is possible to give an equivalent coordinate-free definition, but this requires
rather a lot of algebro-geometric machinery.

Let C be a Weierstrass curve. Note that if we put z = 0 then the defining
equation becomes x3 = 0, so the locus where z = 0 is an infinitesimal
thickening of the locus x = z = 0, which is our embedded copy of S. Thus,
the complementary open subscheme C1 = C \ S is just the locus where z
is invertible. This can be identified with the curve in the affine plane with
equation

y2 + a1xy + a3 y = x3 + a2x2 + a4x + a6.

Weierstrass curves are often described by giving this sort of inhomogeneous
equation.

A given generalized elliptic curve can be isomorphic to two different
Weierstrass curves, and it is important to understand the precise extent
to which this can happen. For this, we define a group scheme WR of
“Weierstrass reparameterizations”: for any ring R, WR(R) is the group of
matrices of the form

M(u, r, s, t) =
 u2 0 r

su2 u3 t
0 0 1
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with u ∈ R×. Such a matrix acts by multiplication on P2 × spec(R) in the
obvious way, and one checks that it carries C(a1, . . . , a6) to C(a′

1, . . . , a′
6),

where

a′
1 = a1u − 2s

a′
2 = a2u2 + a1su − 3r − s2

a′
3 = a3u3 − a1ru + 2rs − 2t

a′
4 = a4u4 + a3su3 − 2a2ru2 + a1(t − 2rs)u + 3r2 + 2rs2 − 2st

a′
6 = a6u6 − a4ru4 + a3(t − rs)u3 + a2r2u2

+ a1(r
2s − rt)u + 2rst − t2 − r2s2 − r3

(These equations are equivalent to [Del75, Equations 1.6] with ai and a′
i

exchanged.)
We therefore have an action of WR on WC, and a map from WR × WC

to the scheme of triples (C, C ′, f ) where C and C ′ are Weierstrass curves
and f is an isomorphism C −→C ′ of pointed curves. One can check that
this map is an isomorphism.

If we define c′4, c′6, ∆′ and j ′ in the obvious way then we have

c′4 = c4u4

c′6 = c6u6

∆′ = ∆u12

j ′ = j.

Definition B.3. Let C be a generalized elliptic curve over S. We will define
various things as though C were a Weierstrass curve; one can check that the
definitions are local on S and invariant under reparameterization, so they
are well-defined in general. We write

Sell = D(∆)

Ssing = V(∆)

Smult = D(c4) ∩ V(∆)

Sadd = V(c4) ∩ V(∆),

and call these the elliptic, singular, multiplicative and additive loci in S,
respectively. Here as usual, D(a) is the locus where a is invertible and V(a)
is the locus where a = 0. Let f be a standard Weierstrass equation for C, and
write fx = ∂ f/∂x and so on. Let Csing be the closed subscheme of C where
fx = fy = fz = 0, and let Creg be the complementary open subscheme.

It turns out that Creg has a canonical structure as an abelian group scheme
over S such that the map 0 : S −→Creg is the zero section (see [DR73, p. 189]
or [Del75]). If C is a Weierstrass curve, then any three sections c0, c1, c2 of
Creg with c0 + c1 + c2 = 0 are collinear in P2, or equivalently the matrix
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formed by the coordinates of the ci has determinant zero. Any map of
generalized elliptic curves (compatible with the projections and the zero-
sections) is automatically a homomorphism. One can check that the negation
map is given by

−[x : y : z] = [x : −a1x − y − a3z : z].
The formal completion of C along S is written Ĉ. If C is defined by

a Weierstrass equation f = 0 then we have

Ĉ(R) = {(x, z, s) ∈ Nil(R)2 × S(R) | f(x, 1, z) = 0},
where Nil(R) is the set of nilpotent elements in R. One checks using the
formal implicit function theorem that there is a unique power series ξ(x) =∑

k>0 ξkxk ∈ OS[[x]] such that ξ(x) = x3 (mod x4), and (x, z, s) ∈ Ĉ(R) if
and only if z = ξ(x). This proves that Ĉ ∼= S×Â1, so that Ĉ is a formal curve
over S. The rational function x/y gives a coordinate; we normally work in
the affine piece y = 1 so this just becomes x. The group structure on C thus
makes Ĉ into a formal group over S (i.e. a commutative, one-dimensional,
smooth formal group). If we define

χ(x0, x1, x2) =
∑

i, j,k≥0

ξi+ j+k+2xi
0x j

1xk
2

then one can check that χ(x0, x1, x2) = x0 + x1 + x2 mod (x0, x1, x2)
2 and∣∣∣∣∣ x0 1 ξ(x0)

x1 1 ξ(x1)
x2 1 ξ(x2)

∣∣∣∣∣ = (x0 − x1)(x0 − x2)(x1 − x2)χ(x0, x1, x2).

One can deduce from this that χ(x0, x1, x2) is a unit multiple of x0 +F
x1 +F x2, and that the series G(x0, x1) = [−1]F(x0 +F x1) is uniquely
characterized by the equation χ(x0, x1, G(x0, x1)) = 0. We also have

[−1]F(x) = −x/(1 + a1x + a3ξ(x)).

More generally, if C is an untwisted generalized elliptic curve then Ĉ is
still a formal group, although we do not have such explicit formulae in this
case.

B.0.1. Modular forms

Definition B.4. A modular form of weight k over Z is a rule g that assigns
to each generalized elliptic curve C/S a section g(C/S) of ω⊗k

C/S over S, in
such a way that for each pull-back square

C //f̃

��
p

C ′

��
p′

S //
f

S′
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of generalized elliptic curves, we have f ∗g(C ′/S′) = g(C/S). (We will
shortly compare this with the classical, transcendental definition.) We write
MFk for the group of modular forms of weight k over Z. More generally,
for any ring R, we define modular forms over R by the same procedure,
except that S is required to be a scheme over spec(R).

Let C = C(a1, . . . , a6) be the obvious universal Weierstrass curve over
the scheme

WC = spec(Z[a1, . . . , a6]).
We have a projection map π : WR × WC −→ WC and also an action map
α : WR × WC −→WC defined by

α(a1, . . . , a6, r, s, t, u) = (
a′

1, . . . , a′
6

)
,

where the elements a′
i are as in the previous section.

We can regard WR × C as a generalized elliptic curve over WR × WC,
and we have maps

π̃, α̃ : WR × C −→C (B.5)

covering π and α. The first of these is just the projection, and the second is
given by the usual action of WR < GL3 on P2. It is clear that the group of
modular forms of weight k over Z is precisely the set of sections g(C/WC)

of ω⊗k
C/WC such that

α∗g(C/WC) = π∗g(C/WC). (B.6)

More explicitly, there is the following.

Proposition B.7. The space MFk can be identified with the set of functions
h ∈ OWC = Z[a1, . . . , a6] such that α∗h = ukh. Moreover, we have an
isomorphism of graded rings

MF∗ = Z[c4, c6,∆]/(
1728∆ − c3

4 + c2
6

)
,

where c4 ∈ MF4, c6 ∈ MF6 and ∆ ∈ MF12. (The prime factorization of
1728 is 26 33.)

Proof. To understand the condition (B.6) more explicitly, we notice that x/y
defines a function on a neighborhood of the zero-section in C, so we have
a section d(x/y)0 of ωC/WC, which is easily seen to be a basis. Moreover, we
have π∗d(x/y)0 = d(x/y)0 and α∗d(x/y)0 = u−1d(x/y)0. Thus, a section
g(C/WC) of ω⊗k

C/WC is of the form g(C/WC) = h d(x/y)k
0 for a unique

h ∈ OWC = Z[a1, . . . , a6]; and equation (B.6) is equivalent to the equation
α∗h = ukπ∗h (and we implicitly identify π∗h with h). It follows that c4,
c6 and ∆ correspond to modular forms of the indicated weights, and one
checks directly from the definitions that c3

4 − c2
6 = 1728∆. The proof that

MF∗ is precisely Z[c4, c6,∆]/(1728∆ − c3
4 + c2

6) can be found in [Del75]
and will not be reproduced here. ��
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Definition B.8. The q-expansion of a modular form g is the series h(q) ∈
Z[[q]] = ODTate such that g(CTate/DTate) = h(q)d(x/y)k

0.

Note that if τ lies in the upper half plane then the analytic variety
Cτ = C/Z{1, τ} has a canonical structure as a scheme over spec(C), which
makes it an elliptic curve. Moreover, if z is the obvious coordinate on C,
then the form dz on C gives an invariant differential on Cτ . Thus, for
any modular form g of weight k we have a complex number f(τ) such that
g(Cτ/ spec(C)) = f(τ)(dz)k. If

(
a b
c d

) ∈ SL2(Z) and τ ′ = (aτ+b)/(cτ+d)

then multiplication by (cτ + d)−1 gives an isomorphism Cτ −→ Cτ ′ . The
pull-back of dz along this is (dz)/(cτ + d), so we conclude that f(τ ′) =
(cτ + d)k f(τ). One can check that this construction gives an isomorphism
of C ⊗ MF∗ with the more classical ring of holomorphic functions on the
upper half plane, satisfying the functional equation f(τ ′) = (cτ + d)k f(τ)
and a growth condition at infinity. Moreover, if g has q-expansion h(q) then
the power series h(e2πiτ ) converges to f(τ).

B.0.2. Invariant differentials. As Creg is a group scheme, the sections of
ωC/S over S biject with the sections of Ω1

C/S over Creg that are invariant
under translation. This is proved by the same argument as the corresponding
fact for Lie groups. Another way to say this is as follows. A section of Ω1

C/S

is the same as a section of �∆/� 2
∆, where ∆ is the diagonal in Creg ×S Creg,

and �∆ is the associated ideal sheaf. In other words, it is a function α(c0, c1)
that is defined when c0 is infinitesimally close to first order to c1, such that
α(c, c) = 0. In these terms, a section of the form g dh becomes the function
(c0, c1) �→ g(c0)(h(c0) − h(c1)). A section of Ω1

C/S is invariant if and only
if α(c + c0, c + c1) = α(c0, c1). On the other hand, a section of ωC/S is
a function β(c) that is defined when c is infinitesimally close to first order
to 0, such that β(0) = 0. These biject with invariant sections of Ω1

C/S by
β(c) = α(c, 0) and α(c0, c1) = β(c0 − c1).

We refer to invariant sections of Ω1
C/S as invariant differentials on C. We

next exhibit such a section when C is a Weierstrass curve. Suppose that C
is given by an equation f = 0, where

f(x, y, z) = y2z + a1xyz + a3 yz2 − x3 − a2x2z − a4xz2 − a6z3.

We write fx = ∂ f/∂x and so on. Next, observe that a point that is infinites-
imally close to 0 = [0 : 1 : 0] has the form [ε : 1 : 0] with ε2 = 0. We
need to calculate [x : 1 : z] + [ε : 1 : 0]. We know that −[x : 1 : z] =
[−x : 1 + a1x + a3z : −z] and −[ε : 1 : 0] = [−ε : 1 + a1ε : 0], and one
checks that ∣∣∣∣∣ −ε 1 + a1ε 0

−x 1 + a1x + a3z −z
x + ε fz 1 z − ε fx

∣∣∣∣∣ = 0 (mod ε2)

and

f(x + ε fz, 1, z − ε fx) = 0 (mod ε2).
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This shows that

[x : 1 : z] + [ε : 1 : 0] = [x + ε fz : 1 : z − ε fx] (mod ε2).

Thus, if we define a section β0 of ωC/S by β0([ε : 1 : 0]) = ε, then the
corresponding invariant differential α0 satisfies

α0([x + ε fz : 1 : z − ε fx], [x : 1 : z]) = ε,

and thus α0 = dx/ fz . It is convenient to rewrite this in terms of homogeneous
coordinates: it becomes α0 = y2 d(x/y)/ fz. We rewrite this again, and also
introduce two further forms α1 and α2, as follows:

α0 = y2d(x/y)/ fz = (y dx − x dy)/ fz

α1 = z2d(y/z)/ fx = (z dy − y dz)/ fx

α2 = x2d(z/x)/ fy = (x dz − z dx)/ fy.

We claim that any two of these forms agree wherever they are both defined.
Indeed, one can check directly that

α0 − α1 = (y d f − 3 f dy)/( fx fz)

α1 − α2 = (z d f − 3 f dz)/( fy fx)

α2 − α0 = (x d f − 3 f dx)/( fz fy),

and the right hand sides are zero because f = 0 on C and thus d f = 0
on C. Thus, we get a well-defined differential form α on the complement
of the closed subscheme Csing where fx = fy = fz = 0. We have seen that
α0 is invariant wherever it is defined, and it follows by an evident density
argument that α is invariant on all of Creg.

B.1. Examples of Weierstrass curves. In this section, we give a list of
examples of Weierstrass curves with various universal properties or other
special features. We devote the whole of the next section to the Tate curve.

B.1.1. The standard form where six is invertible. Consider the curve C =
C(0, 0, 0, a4, a6) over the base scheme S = spec(Z[ 1

6 , a4, a6]) given by the
equation

y2z = x3 + a4xz2 + a6z3,

equipped with the invariant differential

α = −z dx + x dz

2yz
= y dz − z dy

3x2 + a4z2
= y dx − x dy

y2 − 2a4xz − 3a6z2
.
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We have

c4 = −243a4

c6 = −2533a6

∆ = −24
(
4a3

4 + 27a2
6

)
j = 2833a3

4/
(
4a3

4 + 27a2
6

)
This is the universal example of a generalized elliptic curve over a base
where six is invertible, equipped with a generator α of ωE/S. More precisely,
suppose we have a scheme S′ where six is invertible in OS′, and a generalized
elliptic curve C ′ −→ S′. Suppose that the line bundle ωC′/S′ over S′ is
trivial, and that α′ is a generator. Then there is a map f : S′ −→ S, and an
isomorphism g : C ′ ∼= f ∗C, such that the image of α under the evident map
induced by f and g, is α′. Moreover, the pair ( f, g) is unique.

Here is an equivalent statement: there is a unique quadruple (x ′ , y′, a′
4, a′

6)
with the following properties:

i. x ′ and y′ are functions on C ′
1 = C ′ \ S′.

ii. a4 and a6 are functions on S′.
iii. The functions x ′ and y′ induce an isomorphism of C ′

1 with the curve
(y′)2 = (x ′)3 + a4x ′ + a6 in A2 × S.

iv. The form α′|C′
1

is equal to −dx ′/(2y′).

B.1.2. The Jacobi quartic. The Jacobi quartic is given by the equation

Y 2 = 1 − 2δX2 + εX4

over Z[ 1
6 , δ, ε]. The projective closure of this curve is singular, so instead

we consider the closure in P3 of its image under the map [1, X, Y, X2]. This
closure (which we will call C) is defined by the equations

Y 2 = W2 − 2δWZ + εZ2

WZ = X2.

For generic δ and ε, the curve C is smooth and is the normalization of the
projective closure of the Jacobi quartic. In all cases, C is isomorphic to the
Weierstrass curve

y2z = (x − 12δz)((x + 6δz)2 − 324εz2)

via

x = 6((3ε − δ2)X2 + 2δ(Y − 1))

Y + δX2 − 1

y = 2233(δ2 − ε)X

Y + δX2 − 1
X = 6(12δ − x)/y

Y = (2534δ(δ2 − 3ε) + 2333(δ2 + 3ε)x − 36δx2 + y2)/y2.



676 M. Ando et al.

The standard invariant differential is as follows

α = −dX/(6Y ) = −dx/(2y) = dy/(2233(δ2 + 3ε) − 3x2).

The zero section corresponds to the point

[W : X : Y : Z] = [1 : 0 : 1 : 0].
There is also a distinguished point P of order two, given by

[W : X : Y : Z] = [1 : 0 : −1 : 0] or [x : y : z] = [12δ : 0 : 1].
The curve C over Z[1/6, δ, ε, (δ2 − ε)−1] is the universal example of a gen-
eralized elliptic curve with a given generator of ωE and a given smooth point
of order two, over a base scheme where six is invertible. Indeed, given such
a curve, the last example tells us that there is a unique quadruple (x, y, a4 , a6)
giving an isomorphism of C with the curve y2 = x3 + a4x + a6, such that
the given differential is d(x/y)0. The points of exact order two correspond
to the points where the tangent line is vertical. It follows that we must have
y(P) = 0 and x(P) = 12δ for some δ, so that 123δ3 + 12a4δ + a6 = 0, so
x − 12δ divides x3 + a4x + a6. As the coefficient of x in this polynomial
is zero, one checks that the remaining term has the form x2 + 12δ + η for
some η, or equivalently the form (x + 6δ)2 + 324ε for some ε. The claim
follows easily from this.

The modular forms for the Jacobi curve are

c4 = 2634(δ2 + 3ε)

c6 = 2936δ(δ2 − 9ε)

∆ = 212312(ε − δ2)2ε

j = 26 (δ2 + 3ε)3

ε(ε − δ2)2
.

B.1.3. The Legendre curve. Consider the Weierstrass curve over Z[ 1
2 , λ]

given by

y2z = x(x − z)(x − λz).

The modular forms are

c4 = 24(1 − λ + λ2)

c6 = 25(λ − 2)(λ + 1)(2λ − 1)

∆ = 24λ2(λ − 1)2

j = 28(1 − λ + λ2)3/((λ − 1)2λ2)

If we restrict to the open subscheme where λ and (1−λ) are invertible, then
the kernel of multiplication by 2 is a constant group scheme, with points

0 = [0 : 1 : 0] P = [0 : 0 : 1] Q = [1 : 0 : 1] P + Q = [λ : 0 : 1].
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B.1.4. Singular fibers. The curve y2z + xyz = x3 is a nodal cubic, with
multiplicative formal group. There is a birational map f from P1 to the
curve, with inverse g:

f [s : t] = [st(s − t) : t2s : (s − t)3]
g[x : y : z] = [x + y : y].

The map f sends 1 to [0 : 1 : 0], and sends both 0 and infinity to the singular
point [0 : 0 : 1]. If s0s1s2 = 1 then the points f [s0 : 1], f [s1 : 1] and
f [s2 : 1] are collinear, which shows that the restriction toGm = P1 \ {0,∞}
is a homomorphism. The discriminant is zero and the j invariant is infinite.

The curve y2z = x3 is a cuspidal cubic, with additive formal group.
There is a birational map f from P1 to the curve, with inverse g:

f [s : t] = [t2s : t3 : s3]
g[x : y : z] = [x : y].

This sends infinity to the singular point [0 : 0 : 1] with multiplicity two,
and sends 0 to [0 : 1 : 0]. If s0 + s1 + s2 = 0 then the points f [s0 : 1],
f [s1 : 1] and f [s2 : 1] are collinear, which shows that the restriction to
Ga = P1 \ {∞} is a homomorphism. The discriminant is zero and the j
invariant is undefined.

B.1.5. Curves with prescribed j invariant. If a and b = a − 1728 are
invertible in R then we have a smooth Weierstrass curve C over spec(R)
with equation

y2z + xyz = x3 − 36xz2/b − z3/b.

The associated modular forms are

c4 = −c6 = a/b

∆ = a2/b3

j = a.

If 6 is invertible in R we can put a = 0 and get the singular curve (y+ x/2)2

= (x + 1/12)3, which has c4 = ∆ = 0 so that j is undefined.

B.2. Elliptic curves over C. Let C be an elliptic curve over C. It is well-
known that there exists a complex number τ in the upper half plane and
a complex-analytic group isomorphism C ∼= Cτ = C/Λ, where Λ is the
lattice generated by 1 and τ . We collect here a number of formulae, which
are mostly proved in [Sil94, Chapter V] (for example). We write q = e2πiτ ,
so the map z �→ u = e2πiz gives an analytic isomorphism Cτ

∼= C×/qZ. We
also have an analytic isomorphism of Cτ with the curve

Y 2 Z = 4X3 − g2 X Z − g3 Z3,
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where gk = ∑
ω∈Λ\0 ω−2k. The isomorphism is given by (z mod Λ) �→

[℘(z) : ℘′(z) : 1], where

℘(z) = z−2 +
∑

ω∈Λ\0

((z − ω)−2 − ω−2).

This is to be interpreted as [0 : 1 : 0] if z lies in Λ. We also have an analytic
isomorphism of Cτ with the Weierstrass curve

y2z + xyz = x3 + a4xz2 + a6z3,

where a4 and a6 are given by the same formulae as for the Tate curve in
Sect. 2.6. This isomorphism sends u = e2πiz to [x : y : 1], where x and y
are again given by the same formulae as for the Tate curve. We have the
following identities.

X = (2πi)2(x + 1/12)

Y = (2πi)3(2y + x)

a4 = −(2πi)−4g2/4 + 1/48

a6 = −(2πi)−6g3/4 − (2πi)−4g2/48 + 1/1728.

B.3. Singularities

Proposition B.9. Let C be a generalized elliptic curve over S. Then C is
flat over S.

Proof. We can work locally on S and thus assume that S is affine and
that C is a Weierstrass curve. Let C0 be the locus where z is invertible,
which is isomorphic to the affine curve where z = 1, which has equation
y2 + a1xy + a3 y = x3 + a2x2 + a4x + a6. Thus, the ring of functions on
C0 is a free module of rank 2 over OS[x], or of rank 3 over OS[y]. Either
description makes it clear that OC0 is free as a module over OS, so C0 is flat
over S. Similar arguments show that the locus C1 (where y is invertible) is
also flat. The union of C0 and C1 is the complement of the closed subscheme
where y = z = 0. On this locus the defining equation gives x3 = 0, which
is impossible as x, y and z are assumed to generate the unit ideal. It follows
that C0 ∪ C1 = C, and thus that C is flat over S. ��
Proposition B.10. The singular locus Csing is contained in the open sub-
scheme C0 = C \ S. The projection p : C −→S sends Csing into Ssing.

Proof. Our claims are local on S so we may assume that C is a Weierstrass
cubic, defined by an equation f = 0 in the usual way. On S ⊂ C we
have x = z = 0 and y is invertible, so we can take y = 1. We then have
fz = y2 = 1, so clearly S ⊆ Creg and Csing ⊆ C0.
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Now consider a point P = [x : y : z] of C. If z = 0 then the defining
equation gives x3 = 0, so P lies in an infinitesimal thickening of S ⊂ C.
It follows that C0 is the same as the complementary open locus where z is
invertible.

Now consider a point P = [x : y : z] of Csing. By the above, z is
invertible so we may assume z = 1. We can then shift our coordinates so
that x = y = 0. This changes f but does not change ∆, as we see from the
standard transformation formulae. Let the new f be

f(x, y, 1) = (y2 + a1xy + a3 y)− (
x3 + a2x2 + a4x + a6

)
.

We must have f(0, 0, 1) = fx(0, 0, 1) = fy(0, 0, 1) = 0, so a3 = a4 =
a6 = 0. It follows that the parameters bk are given by b2 = a2

1 + 4a2 and
b4 = b6 = b8 = 0, and thus that ∆ = 0. In other words, P lies over Ssing as
claimed. ��

B.4. The cubical structure for the line bundle � (0) on a generalized
elliptic curve. In this section we give a proof of Proposition 2.57.

B.4.1. Divisors and line bundles. We need to express the relationship be-
tween relative divisors and line bundles in a form which is valid for
non-Noetherian schemes. Mostly our account follows [KM85] (and also
[EGA IV, Sects. 20, 21]), but we need to generalize this slightly to deal
with divisors on C ×S C ×S C over S, for example.

If X = spec B is an affine scheme, then the ring of “meromorphic
functions on X” is the localization obtained by inverting the regular elements
of B. For a general scheme X this defines a presheaf of OX-algebras,
whose associated sheaf is denoted MX , the sheaf of “germs of meromorphic
functions on X”; the natural map

OX −→MX

is injective.

Definition B.11. Let X be a scheme. A fractional ideal of X is a sub-
OX-module of MX . A fractional ideal is invertible if it is an invertible
OX-module. We write Id. inv(X) for the set of invertible fractional ideals
of X. We also write Id. inv+(X) for the subset of Id. inv(X) consisting of
invertible ideal sheaves in OX .

Proposition B.12 ([EGA IV, (21.2.2), (21.2.7)]). A fractional ideal � is
invertible if and only if X admits a cover by open sets U such that � |U ∼=
f OU for some f ∈ MX(U)×. It is an invertible (genuine) ideal if and only
if in addition f is a regular element of OX(U). ��

The adjoint of the multiplication map

MX ⊗OX � −→MX
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is a homomorphism
MX

µ−→Hom(� ,MX).

Let � ∗ be the sheaf
� ∗ = µ−1(Hom(� ,OX)).

Lemma B.13 ([EGA IV, (21.2.3)]). Let � and � ′ be invertible fractional
ideals of X. The product map

� ⊗OX � ′ −→�� ′

is an isomorphism. The sheaf � ∗ is an invertible fractional ideal, and the
natural map

�−1 −→� ∗

is an isomorphism of OX-modules. ��
The lemma shows that Id. inv(X) is an abelian group, which contains
Id. inv+(X) as a submonoid. Moreover, if Pic(X) is the group (under tensor
product) of isomorphism classes of line bundles on X, then the natural map

Id. inv(X) → Pic(X)

is a homomorphism.

Definition B.14. Let X be a scheme over a scheme S. An effective divisor
on X over S is a closed subscheme Y ⊆ X such that the ideal sheaf �Y is
invertible and the map Y −→S is flat.

Suppose that S = spec(A) and X = spec(B) for some A-algebra B, and
that Y = spec(B/b) for some regular element b. Then �Y corresponds to
the principal ideal Bb in B, and Y is a divisor if and only if B/b is a flat
A-module. Conversely, if Y is a divisor then one can cover S by open sets
of the form S′ = spec(A) and the preimage X ′ of S′ by sets of the form
spec(B) in such a way that Y ∩ spec(B) has the form spec(B/b) as above.

If Y and Z are effective divisors on X over S, let Y + Z be the closed
subscheme defined by the ideal sheaf �Y�Z (which is isomorphic as a line
bundle to �Y ⊗OX �Z by Lemma B.13).

Proposition B.15. The closed subscheme Y + Z is an effective divisor on
X over S.

Proof. Lemma B.13 shows that the ideal sheaf �Y+Z is invertible. It remains
to check that Y + Z is flat over S. It suffices to check this in the case that
S = spec(A), X = spec(B), Y = spec(B/b), and Z = spec(B/c) for
regular elements b and c of B. We have a short exact sequence

B/b // //c B/bc // // B/c

with B/b and B/c flat over A, so B/bc is also flat over A. ��
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Proposition B.15 gives Div+(X/S) the structure of an abelian monoid,
equipped with a homomorphism

Div+(X/S) −→Id. inv+(X).

Definition B.16. We write Div(X/S) for the group completion of the mono-
id Div+(X/S), and refer to its elements as divisors.

Remark B.17. The natural homomorphism

Div(X/S) −→Id. inv(X)

sends the divisor Y = Y+ − Y− to the invertible fractional ideal �Y =
�Y+(�Y−)∗ ∼= �Y+ ⊗OX �−1

Y− .

Proposition B.18. Let f : X ′ −→X be a flat map. Then the pull-back along
f gives a homomorphism Div+(X/S) −→Div+(X ′/S), with � f ∗Y = f ∗�Y
as line bundles over X ′. This extends to give an induced homomorphism
f ∗ : Div(X/S) −→Div(X ′/S).

Proof. Let Y ⊂ X be a divisor, and write Y ′ = f ∗Y = Y ×X X ′. It is
clear that this is a closed subscheme of X ′. The induced map f ′ : Y ′ −→Y
is a pull-back of a flat map so it is again flat. The map Y −→ S is flat
because Y is a divisor, so the composite Y ′ −→ S is flat. Let j : Y −→ X
and j ′ : Y ′ −→ X ′ be the inclusion maps. Essentially by definition we have
f ∗OX = OX ′ and f ∗ j∗OY = j ′∗( f ′)∗OY = j ′∗OY ′ . We have a short exact
sequence of sheaves �Y −→OX −→ j∗OY , where j : Y −→X is the inclusion.
As f is flat, the functor f ∗ is exact, so we have a short exact sequence
f ∗�Y −→OX ′ −→ j ′∗OY ′ . It follows that �Y ′ = f ∗�Y , and f ∗�Y is clearly
a line bundle. Thus, Y ′ is a divisor, as required. It is easy to see that f ∗ is
a homomorphism, and it follows by general nonsense that it induces a map
of group completions. ��
Proposition B.19. Let g : S′ −→ S be an arbitrary map, and write
X ′ = g∗X. Then pull-back along g gives a homomorphism Div+(X/S) −→
Div+(X ′/S′), with �g∗Y = g∗�Y as line bundles over X ′. This extends to
give an induced homomorphism f ∗ : Div(X/S) −→Div(X ′/S).

Proof. The proof is similar to that of the previous result. ��
Definition B.20. Let L be a line bundle over X, and u a section of L. Then
there is a largest closed subscheme Y of X such that u|Y = 0. If this is
a divisor, we say that u is divisorial and write div(u) = Y . If so, then u is
a trivialization of the line bundle L ⊗ �Y , so L ∼= �−1

Y .

If v is a divisorial section of another line bundle M then one can check
that u⊗v is a divisorial section of L⊗M with div(u⊗v) = div(u)+div(v).
One can also check that the formation of div(u) is compatible with the two
kinds of base change discussed in Propositions B.18 and B.19.
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Definition B.21. A meromorphic divisorial section u of a line bundle L is
an expression of the form u+/u−, where u+ and u− are divisorial sections
of line bundles L+ and L− with a given isomorphism L = L+/L−. These
expressions are subject to the obvious sort of equivalence relation. We define
div(u) = div(u+) − div(u−), which is well-defined by the above remarks.
We again have L ∼= �−1

div(u).

Lemma B.22. Let C be a subscheme of P2 × S defined by a single homoge-
neous equation f = 0 of degree m, such that the coefficients of f generate
the unit ideal in OS. Let Creg be the open subscheme D( fx)∪ D( f y)∪ D( fz)
of C, where fx, fy and fz are the partial derivatives of f . Let σ be a section
of Creg over S. Then σS ⊂ C is a divisor.

Proof. Let U , V and W be the open subschemes of S where fx ◦ σ , f y ◦ σ
and fz ◦ σ are invertible. Because σ is a section of Creg we know that
S = U ∪V ∪W . We restrict attention to U; a similar argument can be given
for V and W . After replacing S by U , we may assume that fx◦σ is invertible.
Let C1 and C2 be the open subschemes where y and z are invertible. Because
f is homogeneous of degree m we have x fx+y fy+z fz = m f and f ◦σ = 0
so x = −y fy/ fx−z fz/ fx on the image of σ . Thus, on the closed subscheme
where y = z = 0 we also have x = 0, so this subscheme is empty, which
implies that C = C1 ∪ C2. Write Ui = σ−1Ci , so that U = U1 ∪ U2. We
restrict attention to U2; a similar argument can be given for U1. In this
context we can work with the affine plane where z = 1, and x, y and f can
be considered as genuine functions. Write x0 = x ◦ σ and y0 = y ◦ σ . As
f ◦ σ = 0 we have f = (x − x0)g + (y − y0)h for some functions g and h.
Clearly, g(x0, y0) = fx(x0, y0) and this is assumed invertible, so D(g) is an
open subscheme of C2 containing σU2. On this scheme we have f = 0 and
thus x = x0 − (y − y0)h/g. Thus

D(g) ∩ V(y − y0) = D(g) ∩ V(x − x0, y − y0) = D(g) ∩ σS.

Thus, in the open set D(g), our subscheme σS is defined by a single equation
y = y0, so the corresponding ideal sheaf is generated by y − y0.

We still need to verify that y− y0 is not a zero-divisor on D(g)∩C2. It is
harmless to shift coordinates so that y0 = x0 = 0. Suppose that r ∈ OS[x, y]
is such that ry = 0 on D(g)∩C2; we need to show that r = 0 on D(g)∩C2.
We have gkry = s f in OS[x, y] for some k and s. It follows that gk+1rx =
gkr( f − hy) = (gkr − hs) f and thus (gkr − hs)y f = gk+1rxy = gsx f .
As the coefficients of f generate OS we know that f is not a zero-divisor
in OS[x, y] so (gkr − hs)y = gsx. It follows easily that y divides gs, say
gs = ty, and then gk+1ry = gs f = t fy so gk+1r = t f . On C2 we have
f = 0 and thus gk+1r = 0, so on D(g) ∩ C2 we have r = 0 as required.

This shows that the intersection of σS with D(g)∩C2 is a divisor. Similar
arguments cover the rest of σS with open subschemes of C in which σS is
a divisor. Trivially, the (empty) intersection of σS with the open subscheme
C \ σS is a divisor. This covers the whole of C, as required. ��
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Corollary B.23. If C is a generalized elliptic curve over S then the zero
section of C is a divisor. ��
B.4.2. The line bundle � (0). Let C be a generalized elliptic curve over S,
and let � (0) denote the ideal sheaf of S ⊂ C. The smooth locus Creg is
a group scheme over S, so we can define Θ3(� (0)) over Creg and thus the
notion of a cubical structure. In this section we give a divisorial formula for
Θ3(� (0)).

Consider the scheme C3
S = C ×S C ×S C. A typical point of C3

S will be
written as (c0, c1, c2). We write [c0 = c1] for the largest closed subscheme
of (Creg)

3
S on which c0 = c1, and so on. This is the pull-back of the divisor

S ⊂ Creg under the map g : (c0, c1, c2) �→ c0−c1. This map is the composite
of the isomorphism (c0, c1, c2) −→ (c0 − c1, c1, c2) with the projection
map (Creg)

3
S −→ Creg, and the projection is flat because C is flat over S

(Proposition B.9). Thus, g is flat. It follows from Proposition B.18 that
[c0 = c1] is a divisor, and the associated ideal sheaf is g∗� (0). Similar
arguments show that the subschemes [ci = 0], [ci = c j ], [ci + c j = 0] and
[c0 + c1 + c2 = 0] are all divisors (assuming that i  = j). We can thus define
divisors

D1 = [c0 = 0] + [c1 = 0] + [c2 = 0]
D2 = [c0 + c1 = 0] + [c1 + c2 = 0] + [c2 + c0 = 0]
D3 = [c0 + c1 + c2 = 0]
D4 = [c0 = c1] + [c1 = c2] + [c2 = c0].

There is (almost by definition) a canonical isomorphism of line bundles

Θ3(� (0)) = � (0)0�−D1+D2−D3 = ωC�D2�
−1
D1+D3

.

B.4.3. A formula for the cubical structure

Definition B.24. Let C = C(a1, a2, a3, a4, a6) be a Weierstrass curve.
A typical point of (Creg)

3
S will be written as (c0, c1, c2), with ci = [xi :

yi : zi]. We define s(a) by the following expression:

s(a)(c0, c1, c2)

=
∣∣∣∣∣ x0 y0 z0

x1 y1 z1
x2 y2 z2

∣∣∣∣∣
−1 ∣∣∣∣ x0 z0

x1 z1

∣∣∣∣ ∣∣∣∣ x1 z1
x2 z2

∣∣∣∣ ∣∣∣∣ x2 z2
x0 z0

∣∣∣∣ (z0z1z2)
−1d(x/y)0.

Proposition B.25 (2.57). s(a) is a meromorphic divisorial section of the
line bundle p∗ωC over (Creg)

3
S (where p : C3

S −→ S is the projection). Its
divisor is −D1 + D2 − D3 (in the notation of Sect. B.4.2), so it defines
a trivialization of

(p∗ωC) ⊗ �−D1+D2−D3 = Θ3(� (0)),

which is equal to s(C/S).
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Proof. By an evident base-change, we may assume that C is the universal
Weierstrass curve over S = spec(Z[a1, a2, a3, a4, a6]), and thus that S is
a Noetherian, integral scheme.

We have a bundle O(1) over C, whose global sections are homogeneous
linear forms in x, y and z. We can take the external tensor product of three
copies of O(1) to get a bundle L over C ×S C ×S C. We define a section u
of L by

u(c0, c1, c2) =
∣∣∣∣∣ x0 y0 z0

x1 y1 z1
x2 y2 z2

∣∣∣∣∣ .

We claim that this is divisorial, and that div(u) = D4+D3. This is plausible,
because one can easily check that u = 0 on the divisors [ci = c j] (whose
sum is D3) and also on the divisor [c0+c1+c2 = 0] (because any three points
that sum to zero are collinear). Let U0 be the open subscheme of (Creg)

3
S

where c1  = c2, and define U1 and U2 similarly. Then the complement
of U = U0 ∪ U1 ∪ U2 is the locus where c0 = c1 = c2, which has
codimension 2. Given this, it is enough to check that u|Ui is divisorial
and that div(u|Ui ) = (D4+ D3)∩Ui for 0 ≤ i ≤ 2 (see [Har77, Proposition
II.6.5]). By symmetry, we need only consider the case i = 0. Let V0 be
the complement of the diagonal in (Creg)

2
S, so that U0 = Creg ×S V0, which

we can think of as the regular part of a generalized elliptic curve over V0.
The diagonal is defined by the vanishing of the quantities x1 y2 − x2 y1,
y1z2 − y2z1, and z1x2 − z2x1, so on V0 these quantities generate the unit
ideal. It follows from this that the map

h : [s1 : s2] �→ [s1x1 + s2x2 : s1 y1 + s2 y2 : s1z1 + s2z2]
gives an isomorphism of P1 with the locus in P2 where the determinant
vanishes. The addition law on C is defined by the requirement that the
intersection of h(P1) with C×S V0 is [c0 = c1]+[c0 = c2]+[c0 = −c1−c2].
Moreover, we have [c1 = c2]∩U0 = ∅. Thus, div(u)∩U0 = (D4+D3)∩U0
as required.

We now define sections v and w of L and L2 by

v(c0, c1, c2) = z0z1z2

w(c0, c2, c2) =
∣∣∣∣ x0 z0

x1 z1

∣∣∣∣ ∣∣∣∣ x1 z1
x2 z2

∣∣∣∣ ∣∣∣∣ x2 z2
x0 z0

∣∣∣∣ .

By methods similar to the above, we find that

div(z0) = 3[c0 = 0]
div(x0z1 − x1z0) = [c0 = 0] + [c1 = 0] + [c0 = c1] + [c0 + c1 = 0]

and thus

div(v) = 3D1

div(w) = 2D1 + D2 + D4.
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We also have s(a) = u−1wv−1d(x/y)0 so as claimed this is a meromorphic
divisorial section of p∗ωC, with divisor −D1 + D2 − D3. As explained
earlier, it therefore gives rise to a trivialization of Θ3(� (0)).

Recall that Θ3(� (0)) is canonically trivialized on the locus where c2 = 0.
In terms of our picture of Θ3(� (0)) involving rational one-forms, this iso-
morphism sends a one-form to its residue at c2 = 0. To calculate this for s(a),
we may as well restrict attention to the affine piece where y0 = y1 = y2 = 1,
and let x2 tend to zero. The 3 × 3 determinant in the definition of s(a) ap-
proaches − ∣∣ x0 z0

x1 z1

∣∣. The defining cubic gives the relation

z2
(
1 + a1x2 − a2x2

2 + a3z2 − a4x2z2 − a6z2
2

) = x3
2,

which shows that z2 is asymptotic to x3
2 and thus that

∣∣ x1 z1
x2 z2

∣∣ is asymptotic
to −x2z1 and

∣∣ x2 z2
x0 z0

∣∣ is asymptotic to x2z0. (Here we say that two functions
f and g are asymptotic if there is a function h on a neighborhood of the
locus c2 = 0 such that f = gh and h = 1 when c2 = 0). It follows
that s(a)(c0, c1, c2) is asymptotic to x−1

2 d(x)0, and this means that s(a) has
residue 1, as required.

We now see that s(a) is a rigid section of Θ3(� (0)), so that f =
s(a)/s(C/S) is an invertible function on (Creg)

3
S, whose restriction to S

is 1. It follows that f = 1 on the open subscheme p−1 Sell, which is dense
in (Creg)

3
S, so f = 1 everywhere. Thus s(a) = s(C/S). ��
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