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Preface

Purpose. Cubical diagrams have become increasingly important over the last
two decades, both as a powerful organizational tool and because of their
many applications. They provide the language necessary for the Blakers–
Massey Theorems, which unify many classical results; they lie at the heart
of calculus of functors, which has many uses in algebraic and geometric topol-
ogy; and they are intimately related to homotopy (co)limits of diagrams and
(co)simplicial spaces. The growing importance of cubical diagrams demands
an up-to-date, comprehensive introduction to this subject.

In addition, self-contained, expository accounts of homotopy (co)limits and
(co)simplicial spaces do not appear to exist in the literature. Most standard
references on these subjects adopt the language of model categories, thereby
usually sacrificing concreteness for generality. One of the goals of this book
is to provide an introductory treatment to the theory of homotopy (co)limits in
the category of topological spaces.

This book makes the case for adding the homotopy limit and colimit of a
punctured square (homotopy pullback and homotopy pushout) to the essential
toolkit for a homotopy theorist. These elementary constructions unify many
basic concepts and endow the category of topological spaces with a sophis-
ticated way to “add” (pushout) and “multiply” (pullback) spaces, and so “do
algebra”. Homotopy pullbacks and pushouts lie at the core of much of what
we do and they build a foundation for the homotopy theory of cubical dia-
grams, which in turn provides a concrete introduction to the theory of general
homotopy (co)limits and (co)simplicial spaces.

Features. We develop the homotopy theory of cubical diagrams in a gradual
way, starting with squares and working up to cubes and beyond. Along the
way, we show the reader how to develop competence with these topics with
over 300 worked examples. Fully worked proofs are provided for the most

xi



xii Preface

part, and the reader will be able to fill in those that are not provided or have
only been sketched. Many results in this book are known, but their proofs do
not appear to exist. If we were not able to find a proof in the literature, we have
indicated that this is the case. The reader will also benefit from an abundance
of suggestions for further reading.

Cubical diagrams are an essential concept for stating and understanding
the generalized Blakers–Massey Theorems, fundamental results lying at the
intersection of stable and unstable homotopy theory. Our proofs of these
theorems are new, purely homotopy-theoretic in nature, and use only elemen-
tary methods. We show how many important results, such as the Whitehead,
Hurewicz, and Freudenthal Suspension Theorems, follow from the Blakers–
Massey Theorems. Another new feature is our brief but up-to-date discussion
of quasifibrations and of the Dold–Thom Theorem from the perspective of
homotopy pullbacks and pushouts. Lastly, most of the material on spectral
sequences of cubical diagrams also does not seem to have appeared elsewhere.

Our expositional preference is for (homotopy) limits rather than (homotopy)
colimits. This is partly due to a quirk of the authors, but also because the appli-
cations in this book use (homotopy) limits more than (homotopy) colimits. We
have, however, at least stated all the results in the dual way, but have omitted
many proofs for statements about (homotopy) colimits that are duals of those
for (homotopy) limits. If a proof involving (homotopy) colimits had something
new to offer, we have included it.

Audience. A wide variety of audiences can benefit from reading this book. A
novice algebraic topology student can learn the basics of some standard con-
structions such as (co)fibrations, homotopy pullbacks and pushouts, and the
classical Blakers–Massey Theorem. A person who would like to begin to study
the calculus of functors or its recent applications can read about cubical dia-
grams, the generalized Blakers–Massey Theorem, and briefly about calculus
of functors itself. An advanced reader who does not want to adopt the cubi-
cal point of view can delve deeper into general homotopy (co)limits (while
staying rooted in topological spaces and not going through the model-theoretic
machinery that other literature adopts), cosimplicial spaces, or Bousfield–Kan
spectral sequences. In addition, geometrically-minded topologists will appreci-
ate some of main examples involving configuration spaces, applications to knot
and link theory (and more general embedding spaces), as well as the geometric
proof of the Blakers–Massey Theorem.

Organization. The book is naturally divided into two parts. The first two
chapters of Part I can be thought of as the necessary background and may
be skimmed or even skipped and returned to when necessary. The book
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really begins in Chapter 3, where we study squares, homotopy pullbacks and
pushouts, and develop their arithmetic and algebraic properties. We can deduce
many standard results in classical homotopy theory using this language, and
this also provides the foundation of the theory for higher-dimensional cubes.
The payoff at the end of this introductory material is in Chapter 4, where we
present the Blakers–Massey Theorems for squares, tools for comparing homo-
topy pushouts and pullbacks. These are central results in homotopy theory,
and we give many applications. We then move to higher-dimensional cubes in
Chapter 5, and are able to bootstrap the material on squares to give an acces-
sible account which generalizes most of the material encountered thus far.
This treatment also provides a concrete introduction to more general homo-
topy (co)limits. Again we end with the Blakers–Massey Theorems in Chapter
6, but this time for higher-dimensional cubes.

Part II of the book explores more general categories and the definitions and
main properties of homotopy (co)limits. The hope is that the reader will have
acquired enough intuition through studying Part I, which is very concrete, to be
able to transition to some of the general abstract notions of Part II. We review
some general category theory in Chapter 7 but in Chapter 8 return to the cat-
egory of topological spaces in order to preserve concreteness and continue to
supply ample and familiar examples. We then move on to cosimplicial spaces
in Chapter 9, which are closely allied both with the general theory of homo-
topy limits and with the cubical theory developed in Part I of the book. We end
in Chapter 10 with a sequence of applications representing brief forays into
current research, including introductory material of both homotopy and man-
ifold calculus of functors and some applications. All of this uses the material
developed earlier – cubical and cosimplicial machinery as well as the Blakers–
Massey Theorem – in an essential way. An appendix serves to illustrate or
give background on some topics which are used throughout the text but are not
central to its theme, such as simplicial sets, spectra, operads, and transversality.

We have included a flowchart at the end of this preface to indicate the
interdependence of the chapters.

Acknowledgments. Above all, we thank Tom Goodwillie, who taught us most
of what we know about cubical diagrams. This project grew out of the notes
from a series of lectures he gave us while we were still graduate students. His
influence and generosity with the mathematics he has passed on to us cannot
be overstated.

We thank Phil Hirschhorn for his generous help, technical and mathemat-
ical. His careful reading and input into various parts of the book, especially
Chapters 2, 8, and 9, was invaluable.
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We thank Greg Arone for many helpful conversations and for his encour-
agement and enthusiasm for this project.

We also thank Emanuele Dotto, Dan Dugger, John Oprea, Ben Walter, and
the anonymous reviewers for useful comments and suggestions.

Lastly, we thank the editors and the staff at Cambridge University Press for
their support and patience during the writing of this book.

BRIAN A. MUNSON
ISMAR VOLIĆ
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Flowchart. The dotted lines in the chart below indicate that a reader who has
had some exposure to category theory can skip Chapter 7, which contains fairly
standard material (there might need to be an occasional look back at this chap-
ter for notation or statements of results). The left and the right columns of the
chart are precisely Parts I and II.

Chapter 1:
Preliminaries

Chapter 2:
Homotopy (co)fibers

Chapter 7:
Categories

Chapter 3:
Homotopy pullbacks and pushouts

Chapter 4:
Blakers–Massey for squares

Chapter 8:
Homotopy (co)limits

except 9.4

Chapter 5:
Cubes

Chapter 9:
Cosimplicial spaces

10.4

Chapter 6:
Blakers–Massey for cubes

10.1, 10.2, 10.3 Chapter 10:
Applications





PART I

Cubical diagrams





1

Preliminaries

This chapter establishes some notational conventions and fundamental con-
structions. It is not comprehensive, nor is all of it even necessary (the
unnecessary bits are meant to supply context), and we assume the reader is
familiar with most of it already. Some of the material presented in this chapter
is redundant in the sense that it will be revisited later. For instance, the cone,
wedge, and suspension of a space will be discussed later in terms of colimits,
a perspective more in line with the philosophy of this book. The essential top-
ics presented here which are utilized elsewhere are topologies on spaces and
spaces of maps, homotopy equivalences, weak equivalences, and a few proper-
ties of the class of CW complexes whose extra structure we will need from time
to time. Some familiarity with homotopy groups (mostly their definition) will
also be useful, and to a much lesser extent some exposure to homology. Many
proofs are omitted, and references are given instead. We will clarify which is
which along the way.

Most references given in this chapter are from Hatcher’s Algebraic topology
[Hat02]. There are a few other modern references which the authors have found
useful, and which contain most, if not all, of these preliminary results as well,
such as [AGP02, Gra75, May99, tD08] (we especially like [AGP02] since it
seems to be the most elementary text which follows this book’s philosophy;
[Gra75] is neither modern nor in print, but still a unique and valuable resource).
We owe all of these sources a debt, in this chapter and elsewhere.

1.1 Spaces and maps

A topological space is a pair (X, τ), where τ is a collection of subsets of X, the
members of which are called open sets, which contains both the empty set and
X, and which is closed under finite intersections and arbitrary unions. However,

3



4 Preliminaries

it is customary to suppress the topology from the notation, so we simply write
X in place of (X, τ), and typically denote generic topological spaces using cap-
ital Roman letters. A subbase for a topology τ on X is a subset of τ for which
every element of τ is a union of finite intersections of elements in the subset; it
is a sort of generating set for τ.

The complement of an open set U ⊂ X is called closed, and to spec-
ify a topology on X we may equivalently describe a system of closed sets
which contains both the empty set and X, and which is closed under arbi-
trary intersections and finite unions. If A ⊂ X, we write Å for its interior;
Å is the union of all open sets in X which are contained in A, and as such
is an open set. We will write A for the closure of A; by definition it is the
intersection of all the closed subsets of X which contain A, and is evidently
closed.

By a subspace A ⊂ X, we mean the topology on A whose open sets are of
the form A∩U where U is open in X. A collection of subspaces of a space X is
called a cover of X if their union is X. For a nested sequence X1 ⊂ X2 ⊂ · · · of
topological spaces, we endow the union X =

⋃∞
i=1 Xi with the weak topology: a

subset C ⊂ X is closed if C∩Xi is closed in Xi for each i. For a topological space
X with an equivalence relation ∼, we let X/∼ denote the set of equivalence
classes of X under ∼, and endow this space with the quotient topology: a set
of equivalence classes is called open if the union of those equivalence classes
forms an open set in X. For x in X, we denote by [x] the corresponding point
in X/∼. For the quotient of X by a subspace A, we write X/A for this space and
mean the quotient of X by the equivalence relation ∼ on X generated by x ∼ y
if x, y ∈ A.

We will write X × Y for the product, X 	 Y for the disjoint union, and when
X and Y are subspaces of some larger space, X ∪ Y for the union along the
intersection (which may be empty). Open sets of the product are generated by
products of open sets, and open sets in the disjoint union are disjoint unions of
open sets.

Several spaces are worthy of mention.

Definition 1.1.1

● The empty set ∅, that is, the space with no points.
● The one-point space ∗.
● The real numbers R, topologized using the metric d(x, y) = |x − y|.
● The unit interval I = {t ∈ R : 0 ≤ t ≤ 1}, topologized as a subspace of R.
● Euclidean n-space Rn, topologized using the usual metric | − |. By definition
R0 = {0}.
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● The n-dimensional cube In = {(t1, . . . , tn) ∈ Rn : 0 ≤ ti ≤ 1 for all i},
topologized as a subspace of Rn.

● The unit n-disk Dn = {x ∈ Rn : |x| ≤ 1} for n ≥ 0, topologized as a subset of
Rn. We define D−1 = ∅.

● The unit (n − 1)-sphere S n−1 = ∂Dn = {x ∈ Rn : |x| = 1} for n ≥ 0,
topologized as a subspace of Rn. Note that S −1 = ∅; we define S −2 = ∅.

● The n-simplex Δn = {(t1, . . . , tn) : 0 ≤ t1 ≤ · · · ≤ tn ≤ 1}. Alternatively,
Δn = {(x0, . . . , xn) ∈ Rn+1 : 0 ≤ xi ≤ 1 for all i and

∑
i xi = 1} (it is a

standard exercise to prove the two descriptions are equivalent; when we have
need of coordinates in the simplex we will utilize the latter description). A
simplex is topologized as a subspace of the Euclidean space of which it is a
subset. For 0 ≤ k ≤ n, let ∂kΔ

n ⊂ Δn denote the subset of Δn consisting of
those tuples (x0, . . . , xn) for which xk = 0. This is called a face of Δn, and it
is itself a simplex of dimension n − 1.

We assume our topological spaces to be compactly generated Hausdorff. To
be Hausdorff means that any two distinct points are contained in disjoint open
neighborhoods.

Definition 1.1.2 A space X is said to be compactly generated if it has the
property that a subset C of X is closed if and only if the intersection C∩K with
each compact subset K of X is also closed in X.

All of the spaces described in Definition 1.1.1 are compactly generated Haus-
dorff. We will denote by Top the category of compactly generated spaces. The
definition of a category can be found in Definition 7.1.1 (and we will not use
the language of categories in a serious way before Chapter 7). Any Hausdorff
space X can be made into a compactly generated space kX (same point set,
different topology: we take the smallest compactly generated topology which
contains the given one). The identity function kX → X is continuous and a
homeomorphism if and only if X is compactly generated. Moreover, kX and
X have the same compact subsets and the same homotopy groups (defined
below). The product of two compactly generated spaces is given the topol-
ogy of k(X × Y). Locally compact Hausdorff spaces, manifolds, metric spaces,
and CW complexes (see below) are all compactly generated spaces. One ben-
efit of working with compactly generated spaces is that this makes the duality
between the notions of cofibration and fibration cleaner to state by eliminating
the hypothesis of local compactness.

Maps between spaces will typically be denoted by a lower-case Latin letter
such as f or g; thus f : X → Y denotes a map between the topological spaces
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X and Y . In this case we say X is the domain of f and Y the codomain. The
term “map” means continuous map.

Several maps are worthy of mention.

Definition 1.1.3

● The identity map from a space X to itself will be denoted by 1X , defined by
1X(x) = x for all x.

● The map from X to Y which has constant value y ∈ Y will be denoted
cy : X → Y , and is referred to as a constant map.

● For a subspace A ⊂ X, we usually write ι : A → X for the inclusion map;
occasionally we may use i for this map. The subspace A is a retract of X if
there exists a map r : X → A, called a retraction, such that r ◦ ι = 1A.

● Given a map f : X → Y , we say a map g : Y → X is a section of f if the
composite f ◦ g = 1Y . Thus the inclusion map for a subspace which is a
retract is a section of the retraction.

● For a space X with equivalence relation ∼, there is a quotient map q : X →
X/∼ which sends each point to its equivalence class.

● For a space X, we write Δ : X → X × X for the diagonal map, defined by
Δ(x) = (x, x).

● For a space X, we write ∇ : X
∐

X → X for the fold map, defined to be the
identity 1X on each summand.

● Given a map f : X → Y and a subspace A ⊂ X, we let f |A : A → Y denote
the restriction of f to A.

● A map f : X → Y is called a homeomorphism if there exists a continuous
inverse g : Y → X for f ; i.e. we have g ◦ f = 1X and f ◦ g = 1Y . Spaces X
and Y are then homeomorphic and we write X � Y . This is the most basic
equivalence relation on the class of spaces we will consider.

Here is a useful result we will need later.

Lemma 1.1.4 If X is a Hausdorff space and A is a retract of X, then A is
closed in X.

Proof Let r : X → A be the retraction and consider the map X → X×X given
by x �→ (x, r(x)). The preimage of the diagonal in X × X is the set of fixed
points of r, which is A. But since X is Hausdorff, the diagonal is closed, and
hence A is closed. �

Returning again to a nested sequence X1 ⊂ X2 ⊂ · · · of topological spaces,
we note that the weak topology on X =

⋃∞
i=1 Xi has the property that, given a
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collection of maps fi : Xi → Y such that fi|Xi−1 = fi−1 for all i, there is a unique
map f : X → Y whose restriction to Xi is equal to fi for all i.

Often we consider diagrams of spaces, which simply means families of
spaces and maps between them. The language is chosen to suggest we are
thinking of a sort of picture of these spaces and maps. We will usually deal with
commutative diagrams, which means that all ways of getting from one space
to another by following maps are the same. The two we will most frequently
encounter are

where commutativity means g ◦ f = h and

where commutativity means g ◦ f ′ = f ◦ g′. We typically omit drawing the
composed map W → Z in squares such as the above. We will later use the lan-
guage of categories and functors to talk about diagrams (see Remark 7.1.16).
If a diagram is not necessarily commutative, we will be explicit about this.
One notable generally non-commutative diagram we will encounter first in
Chapter 7 is

where f � g.
The spaces in a diagram will often be parametrized by subsets of some finite

set, and so we shall encounter spaces such as XU to denote which member of
the family of spaces labeled “X” we mean. In the case that U is a subset of a
finite set, say U = {1, 2} ⊂ {1, 2, 3}, we will usually write X12 in place of X{1,2}
for cleaner presentation.

We will also often consider pairs of spaces (X, A). where X is a space and
A ⊂ X is a subspace. A map of pairs f : (X, A) → (Y, B) is a map f : X → Y
such that f (A) ⊂ B. When A = {x0} is a single point, then X will be called based
or pointed, x0 will be called the basepoint, and we will typically write (X, x0) in
place of (X, {x0}). A map f : X → Y of based spaces X and Y with basepoints
x0 and y0 respectively is based if it is a map of pairs (X, x0) and (Y, y0). We
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let Top∗ denote the category of based spaces (meaning the objects of interest
are based spaces and the maps of interest are based maps). A map of pairs
f : (X, A) → (Y, B) is called a homeomorphism of pairs if it has a continuous
inverse g : (Y, B) → (X, A). We can also consider based pairs (X, A, x0), where
x0 ∈ A is the basepoint, and consider based maps (X, A, x0) → (Y, B, y0) of
pairs, whose definition should be apparent.

The basepoint will often be suppressed from notation, but the reader should
be warned that many constructions which require a choice of basepoint are not
independent of that choice, such as the fundamental group. This should not
cause confusion, as we will be clear about choosing basepoints when we are
forced to do so.

Definition 1.1.5 A based space (X, x0) is called well-pointed if X × {0} ∪
{x0} × I is a retract of X × I. If (X, x0) is well-pointed, we call the basepoint x0

non-degenerate. We assume all spaces to be well-pointed.

Remark 1.1.6 We prefer the equivalent definition that the inclusion of the
basepoint {x0} → X is a cofibration, but we do not have this language available
yet. We will revisit this definition in Remark 2.3.20 once we have established
the notion of a cofibration. The reason we assume our spaces to be well-pointed
is to preserve homotopy invariance of various standard constructions, such as
the suspension. �

CW complexes, mentioned above, play an important role at various points in
this text and so it is worth recalling at least the idea of their construction.
For instance, in Chapter 8 we will frequently deal with the realization of a
simplicial complex, and it is easy to see how these can be considered as CW
complexes. We refer the reader to [Hat02, Chapter 0, Appendix A] for more
details on CW complexes. An n-cell en is simply the n-disk Dn, and ∂en = ∂Dn

is its boundary, the (n−1)-sphere. A CW complex X is a space built inductively
starting with the empty set X−1 = ∅, with Xn built from Xn−1 by attaching
cells en

α to Xn−1 via maps aα : ∂en → Xn−1. Here α ranges through a (possibly
empty) indexing set An. Thus X0 is a discrete set of points, and in general Xn

is a quotient space of Xn−1	α∈An en
α. The space X is then defined as ∪n≥0Xn and

is given the weak topology: A subset C ⊂ X is closed if C ∩ Xn is closed in Xn

for all n. We call Xn the n-skeleton of X. A subcomplex of a CW complex X is
a subset A which is a union of cells of X such that the closure of each cell is
contained in A.

A relative CW complex is a pair (X, A) where A is a topological space and
X a space which has been built from A by attaching cells as above. That is,
we use the same definition as above only with X−1 = A. The case where
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A = ∅ specializes to an ordinary CW complex, so we may assume all CW
complexes are relative CW complexes for the purposes of any statements
about such spaces. The space A need not have a cell structure itself. A rel-
ative CW complex (X, A) has dimension n if X = Xn and X � Xn−1. We
say it is finite if the number of its cells is finite; that is, each indexing set
An above is finite and there exists N such that An = ∅ for n ≥ N. Theorem 1.3.7
below says that any space can be approximated by a CW complex in a suitable
sense.

The notion of CW complex furnishes an enormous number of examples of
topological spaces built from disks. We now review some others basic con-
structions: the cone, suspension, join, wedge, and smash product of spaces. We
will encounter all of these again in Chapters 2 and 3 as examples of homotopy
(co)fibers and homotopy (co)limits, and will derive many results combining
and comparing them there.

Definition 1.1.7 For a topological space X, define X+ to be X with a disjoint
basepoint.

The space X+ is in fact the quotient of X by the empty set. This is easi-
est to see diagrammatically by consideration of universal properties, as in
Example 3.5.6.

Definition 1.1.8 For a space X, the cone CX on X is the quotient space

CX = X × I/(X × {1}).
If X = ∅, then CX is a point. If X is based with basepoint x0, the reduced cone
on X, by abuse also called CX, is the quotient space

X × I/(X × {1} ∪ {x0} × I).

Any map f : X → Y induces a map of cones,

C f : CX → CY, (1.1.1)

induced from the map f × 1I : X × I → Y × I by taking quotient spaces of the
domain and codomain. See Example 3.6.8 for an alternative definition of the
cone.

Remark 1.1.9 The quotient map from the cone to the reduced cone is a
homotopy equivalence because (X, x0) is well-pointed by assumption. See
Remark 2.3.20 for a discussion. �
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The cone on X is so named as it is created from the cylinder X× I by collapsing
one end. The space X is naturally a subspace of CX by the inclusion of X × {0}
in CX.

Definition 1.1.10 For a based space X with basepoint x0, the reduced
suspension ΣX of X is the quotient space

ΣX = X × I/(X × {0} ∪ {x0} × I ∪ X × {1}).
Its basepoint is the image of X × {0} ∪ {x0} × I ∪ X × {1} by the quotient map.
The unreduced suspension of a space X, based or not, is the quotient space

X × I/∼
where ∼ is the equivalence relation generated by (x1, 0) ∼ (x2, 0) and (x1, 1) ∼
(x2, 1). Inductively we define ΣnX = ΣΣn−1X.

The suspension is the union of two copies of the reduced cone CX glued
together by the identity map X × {0} → X × {0}. See Example 3.6.9 for an
alternative definition of suspension.1

Remark 1.1.11 We will also use ΣX to denote the unreduced suspension, and
we will refer to both versions simply as the suspension. It should always be
clear to the reader which version we mean, usually depending on the existence
of a basepoint, although we will try to be clear in instances where this may
cause confusion. In any case, if X is well-pointed (see Remark 1.1.6), then the
quotient map from the unreduced suspension to the reduced suspension of X is
a homotopy equivalence, so this is usually not a concern. �

Example 1.1.12 It is an easy exercise to see that there is a homeomorphism
ΣS n � S n+1 for all n ≥ −1. (The sphere S −1 is empty, but its suspension
is the quotient of the empty set by two points, and hence may be identified
with S 0.) �

Any map f : X → Y induces a map of suspensions,

Σ f : ΣX → ΣY, (1.1.2)

induced from the map f × 1I : X × I → Y × I.

1 Using the language of Section 2.4, another way to think of this is as the cofiber of the
cofibration X → CX.
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Definition 1.1.13 Let X and Y be based spaces with basepoints x0 and y0

respectively. Define the wedge or wedge sum X ∨ Y by

X ∨ Y = X × {y0} ∪(x0×y0) {x0} × Y.

Alternatively, it is the quotient of X 	 Y by the equivalence relation generated
by x0 ∼ y0. See Example 3.6.6 for an alternative definition of the wedge.

Example 1.1.14

● S 1 ∨ S 1 � “figure-8”.
● Σ(X ∨ Y) � ΣX ∨ ΣY .
● Suppose X is an n-dimensional CW complex, whose n-cells are indexed by

the set An. Then the quotient space X/Xn−1 = ∨An S n. If An = ∅ then this
wedge sum is a single point. �

Definition 1.1.15 Let X and Y be based spaces. Define the smash product
X ∧ Y by

X ∧ Y = X × Y/X ∨ Y.

See Example 3.6.10 for an alternative way to define the smash product.

Note that if X is a based space with basepoint x0, then we can still smash it
with an unbased space Y by adding a disjoint basepoint,

X ∧ Y+ = X × Y/{x0} × Y.

This is sometimes called the half-smash product.

Example 1.1.16

● Given based spheres S n and S m, we have S n ∧ S m � S n+m.
● More generally if X is a based space, we have S n ∧ X � ΣnX.
● If Y is another based space, then Σ(X ∧ Y) � (ΣX) ∧ Y � X ∧ (ΣY).
● If X and Y are unbased, then X+ ∧ Y+ = X × Y . �

Definition 1.1.17 Let X and Y be spaces. Define the join X ∗ Y by

X ∗ Y = CX × Y ∪X×Y X ×CY.

If X and Y are based spaces with basepoints x0 and y0 respectively, we define
the reduced join of X with Y as the quotient space X ∗ Y/(X ∗ {y0} ∪ {x0} ∗ Y).
See Example 3.6.12 for an alternative way to define the join.



12 Preliminaries

If Y is a point, then the join of X with Y is the cone on X, and if Y is
two points it is the unreduced suspension of X (two cones joined along their
bases). In general the join can be thought of as a Y-parameter version of the
cone. The reduced join is homotopy equivalent to the join X ∗ Y when X and Y
are well-pointed spaces.

Example 1.1.18

● X ∗ {∗} � CX.
● X ∗ S 0 � ΣX.
● S n ∗ S m � S n+m+1. �

1.2 Spaces of maps

It is useful to think of the set of maps between topological spaces X and Y as a
topological space itself. For instance, the set of all maps of the one-point space
∗ to a topological space X is, as a point-set, isomorphic with X itself, and so
we would like to topologize this space to reflect this.

Definition 1.2.1 For spaces X and Y , let Map(X,Y) denote the space of con-
tinuous maps from X to Y . It is occasionally useful to write YX in place of
Map(X,Y). A subbase for its topology consists of the sets

UK = { f ∈ Map(X,Y) | f (K) ⊂ U},
where K is a compact subset of X and U is an open subset of Y . This is called
the compact-open topology.

Of course, when we write Map(X,Y), we really mean k Map(X,Y).

Definition 1.2.2 For subsets A ⊂ X and B ⊂ Y , we let Map((X, A), (Y, B))
denote the space of continuous maps of pairs. Here f ∈ Map((X, A), (Y, B))
means that f : X → Y is continuous and f (A) ⊂ B. It is topologized as a
subspace of Map(X,Y).

When A = {x0} and B = {y0} are one-point sets, i.e. when X and Y are based,
we refer to this as the based mapping space. We write Map∗(X,Y) in place of
Map((X, {x0}), (Y, {y0})) for brevity. This space is itself naturally a based space
with basepoint the constant map cy0 : X → Y which sends every point of X to
the basepoint of Y .

A few examples are worth pointing out.
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Example 1.2.3 In the case where A = ∅, the space of maps of pairs (X, A) →
(Y, B) is just the space Map(X,Y). �

Example 1.2.4 (Path space) The space XI = Map(I, X) is called the space of
paths in X, or the path space of X. We will also denote it by PX. �

Example 1.2.5 (Loop space) If X = I, A = ∂I, and B = {y0} is a point
in Y , it is customary to write ΩY instead of Map((I, ∂I), (Y, y0)) (the notation
ΩY omits the basepoint y0 for brevity). This is called the loop space of Y . Its
basepoint is, as above, cy0 , the constant map which sends I to the basepoint y0.
Inductively we define ΩnY = ΩΩn−1Y . Since I/∂I � S 1, ΩY � Map∗(S 1,Y).
Using Theorem 1.2.7 (see below) and the homeomorphism In/∂In � S n, it is
not hard to see that ΩnY � Map∗(S n,Y).

A based map f : X → Y can also be “looped”, by which we mean that f
induces a map

Ωn f : ΩnX −→ ΩnY (1.2.1)

given by composing a based map S n → X with f . �

Example 1.2.6 (Free loop space) For X = S 1, the space Map(S 1,Y) is called
the free loop space of Y and is denoted by LY . �

There are two useful consequences of using the compact-open topology. The
first is that the composition map

Map(X,Y) × Map(Y,Z) −→ Map(X,Z)

which sends ( f , g) to g ◦ f is continuous. The same is true for based mapping
spaces. The other is known as the exponential law, most concisely expressed as

YX×Z � (YX)Z . (1.2.2)

More precisely,

Theorem 1.2.7 (Exponential law, unbased version) For spaces X,Y,Z, the
map

Map(X × Z,Y) −→ Map(Z,Map(X,Y))

which associates F : X × Z → Y with the map z �→ (x �→ F(x, z)) is a
homeomorphism.

It is important to note the standing assumptions here: the spaces X,Y , and Z
are compactly generated Hausdorff, and by X × Y we mean k(X × Y), and by
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Map(A, B) we mean k Map(A, B). This theorem is not true for arbitrary topo-
logical spaces. The proof of this theorem can be found, for example, in [Hat02,
Proposition A.16]. The based version requires the smash product construction:

Theorem 1.2.8 (Exponential law, based version) If X, Y, and Z are based,
the map

Map∗(X ∧ Z,Y) −→ Map∗(Z,Map∗(X,Y))

which associates F : X × Z → Y with the map z �→ (x �→ F(x, z)) is a
homeomorphism.

One consequence of the above theorem is that the suspension operation Σ is
dual to2 the loop space operation Ω = Map∗(S 1,−) in the following sense.

Theorem 1.2.9 Let Z and Y be based spaces. Then there is a homeomor-
phism

Map∗(ΣZ,Y) � Map∗(Z,ΩY).

Proof This follows from the based exponential law, Theorem 1.2.8, by setting
X = S 1. Then by Example 1.1.16, S 1∧Z � ΣZ and Map∗(S 1,Y) is by definition
ΩY . �

1.3 Homotopy

The natural notion of isomorphism of topological spaces is that of homeo-
morphism. Determining whether two spaces are homeomorphic is in general a
hopelessly difficult problem. The notion of homotopy, described below, gives
rise to a weaker notion of equivalence called homotopy equivalence.

Definition 1.3.1

● Maps f0, f1 : X → Y are homotopic if there exists a continuous map F : X ×
I → Y such that F|X×{i} = fi for i = 0, 1, and we write f0 ∼ f1. We regard
a homotopy F as an element of Map(I,Map(X,Y)), and in the case where X
and Y are based as an element of Map(I,Map∗(X,Y)) (thus a homotopy of
based maps is simply a path in the based mapping space).

● A map f : X → Y is null-homotopic if it is homotopic to a constant map.
● A subspace A ⊂ X with inclusion map ι : A → X is a deformation retraction

of X if there exists a retraction r : X → A such that ι ◦ r is homotopic to

2 Really, left adjoint to it; see Example 7.1.20.
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the identity 1X relative to A. That is, there exists H : X × I → X such that
H(x, 0) = x, H(x, 1) ∈ A, and H(a, t) = a for all t ∈ I, and all a ∈ A.

● A map f : X → Y is a homotopy equivalence if there exists a map g : Y → X
and homotopies from f ◦g and g◦ f to the identity functions 1Y and 1X on Y
and X respectively. In this case X and Y are said to be homotopy equivalent
and have the same homotopy type, and we write X � Y . We call the map g a
homotopy inverse to f .

● A space X is contractible if it has the homotopy type of a point. For instance,
for any space X the cone CX is contractible, since the inclusion of the cone
point (the equivalence class of (x, 1) in CX) is a homotopy equivalence.

If fi : Xi → Yi, i ∈ I, are a collection of homotopy equivalences, then the
induced maps

∏
i fi :

∏
i Xi → ∏

i Yi and
∐

i fi :
∐

i Xi → ∐
i Yi are homotopy

equivalences.
Homotopy is an equivalence relation on the space of maps from X to Y (and

more generally on the space of maps of pairs). For spaces X and Y , let [X,Y]
denote the homotopy classes of maps X → Y . For a map f : X → Y we let
[ f ] denote the corresponding element of [X,Y]. If A ⊂ X and B ⊂ Y , we write
[(X, A), (Y, B)] for the homotopy classes of maps of pairs (X, A) → (Y, B); in
this case the restriction of a homotopy of maps (X, A) → (Y, B) to A is required
to have image contained in B. In particular, when A = {x0} and B = {y0} are the
basepoints of X and Y , respectively, we get the homotopy classes of based maps
[(X, x0), (Y, y0)]. When the basepoints do not need to be mentioned explicitly,
we will write [X,Y]∗.

Homotopy theory studies those properties of topological spaces invariant
under homotopy equivalence (and more generally weak equivalence, which we
will describe below), and so we are largely interested in constructions which
depend only on the homotopy type of spaces. We are also especially inter-
ested in “fixing” otherwise useful constructions which are not invariant under
homotopy equivalence. For instance, homotopy and (co)homology groups (dis-
cussed in the next section) are invariant under homotopy equivalence. One way
to characterize the homotopy type of a space X is by the homotopy classes of
maps of all spaces into or out of X.

Proposition 1.3.2 Let f : X → Y be a map. The following are equivalent:

1. f is a homotopy equivalence.
2. The induced map

f ∗ : Map(Y,Z) −→ Map(X,Z)

h �−→ h ◦ f

is a homotopy equivalence for all spaces Z.
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3. The induced map

f∗ : Map(Z, X) −→ Map(Z,Y)

h �−→ f ◦ h

is a homotopy equivalence for all spaces Z.
4. The induced map f ∗ : [Y,Z] → [X,Z] is a bijection for all Z.
5. The induced map f∗ : [Z, X] → [Z,Y] is a bijection for all Z.

In particular, X has the homotopy type of a point if and only if Map(Z, X) � ∗
if and only if Map(X,Z) � Z for all spaces Z.

Proof It is clear from the definition that if f is a homotopy equivalence then
the induced maps Map(Z, X) → Map(Z,Y) and Map(Y,Z) → Map(X,Z) are
homotopy equivalences for all spaces Z. If the induced map Map(Z, X) →
Map(Z,Y) is a homotopy equivalence for all Z, then setting Z = ∗ shows that f
is a homotopy equivalence. The rest of the proof follows from Proposition 1.3.5
below. �

The last item above says that a map f : X → Y is a homotopy equivalence if
and only if the induced map Map(Z, X) → Map(Z,Y) is a bijection on the set
of path components. This leads to the notion of weak equivalence.

Definition 1.3.3 A map f : X → Y is a weak equivalence (or weak homotopy
equivalence) if f induces a bijection [K, X] → [K,Y] for all CW complexes K.
If X and Y are weakly equivalent, we write X � Y , and we say X and Y have
the same weak homotopy type.

Remark 1.3.4 We will use the same notation for weakly equivalent and
homotopy equivalent spaces, namely X � Y , but will in each instance be clear
about which one we mean. �

A map f : (X, A) → (Y, B) of pairs is a weak equivalence of pairs if for all
relative CW pairs (Z,W), where W is a subcomplex of Z, the induced map
[(Z,W), (X, A)] → [(Z,W), (Y, B)] is a bijection.

Note that we recover the definition of weak equivalence by taking A = B =
∅; this forces Z to be CW. Letting W = ∅, we see that a weak equivalence of
pairs (X, A) → (Y, B) implies that X → Y is a weak equivalence, and letting
Z = W we see that A → B is a weak equivalence. It is for this reason we insist
W is a subcomplex of Z rather than letting W be an arbitrary space; otherwise
this implies A → B is a homotopy equivalence by Proposition 1.3.2.
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What follows is an analog of Proposition 1.3.2, the proof of which com-
pletes the proof of that proposition. Note, however, that this is a comparatively
weaker statement.

Proposition 1.3.5 Let f : X → Y be a map. Suppose either of the induced
maps

Map(Y,Z) −→ Map(X,Z)

h �−→ h ◦ f

or

Map(Z, X) −→ Map(Z,Y)

h �−→ f ◦ h

is a weak equivalence for all spaces Z. Then f is a homotopy equivalence, and
hence a weak equivalence.

Proof If the induced map Map(Z, X) → Map(Z,Y) is a weak equivalence,
then f induces a bijection [Z, X] → [Z,Y], and letting Z = Y we may choose
g ∈ Map(Y, X) such that [g] ∈ [Y, X] corresponds with [1Y ] via f . This means
[ f ◦ g] = [1Y ]. Now letting Z = X, note that since f ◦ g ∼ 1Y as above, this
implies [ f ◦ g ◦ f ] = [ f ], and hence both [1X] and [g ◦ f ] map to [ f ] via the
induced map [X, X] → [X,Y], and since this map is assumed to be a bijection,
[1X] = [g ◦ f ]. So, in fact, f is a homotopy equivalence.

If the induced map Map(Y,Z) → Map(X,Z) is a weak equivalence, then the
same pattern of argument used above will show that f is a weak equivalence.
By choosing g such that [g] ∈ [Y, X] corresponds with [1X] via the bijection
induced by f , we get [g ◦ f ] = [1X]. Then noting that [1Y ] and [ f ◦ g] have
equal image in [X,Y] via the induced map since g ◦ f ∼ 1X shows that the
classes must be equal, so f ◦ g ∼ 1Y . �

Remark 1.3.6 If f : X → Y is a weak equivalence, it is not necessarily true
that the induced maps Map(Z, X) → Map(Z,Y) and Map(Y,Z) → Map(X,Z)
are weak equivalences. The following counterexample was communicated to
us by Phil Hirschhorn. Let X be the subspace of the plane that is the union
of:

● for each positive integer n, the straight line joining (0, 1) to (1/n, 0);
● for each positive integer n, the straight line joining (0,−1) to (−1/n, 0);
● the straight line joining (0, 1) and (0,−1).
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The map from X to the one-point space ∗ is a weak equivalence, but Map(X, X)
is not path-connected, since the identity map is not homotopic to a constant,
and hence the induced map of mapping spaces Map(∗, X) → Map(X, X) fails to
be surjective on path components, since the domain is clearly path-connected
(any two points can be joined by a path). Moreover, X → ∗ cannot be a
homotopy equivalence by Proposition 1.3.2.

However, if Z is a CW complex and f : X → Y is a weak equivalence, then
it is true that the induced map Map(Z, X) → Map(Z,Y) is also a weak equiva-
lence. Similarly, if X and Y are CW complexes, then Map(Y,Z) → Map(X,Z) is
a weak equivalence for all Z. The latter statement follows from Theorem 1.3.10
and Proposition 1.3.2.3 �

One may rightly ask why in the definition of weak equivalence we favor maps
from a CW complex rather than maps into a CW complex. The weak topology
on a CW complex tells us that a map from a CW complex is (essentially)
determined by its value on the cells, and as we will discuss below, it suffices
to understand [Z, X] when Z is a single cell. In the next section we will discuss
a local criterion, Proposition 1.4.4, which guarantees that a map is a weak
equivalence.

Sometimes it is more convenient to work with CW complexes instead of
general spaces owing to their extra structure. One such instance is in the proof
of Theorem 4.2.1, the centerpiece of the first half of this book. Every space
admits a weak equivalence from a CW complex. The proof of the following
can be found in [Hat02, Proposition 4.13, Corollary 4.19] (see also [AGP02,
Theorem 6.3.20]).

Theorem 1.3.7 (CW Approximation Theorem) Any space Y can be approx-
imated by a CW complex X in the sense that there exists a weak homotopy
equivalence f : Y → X. Moreover, any two such approximations have the same
homotopy type.

The relative version of the previous result is the following. For a proof, see
[AGP02, Theorem 6.3.21].4 A refinement appears later as Theorem 2.6.26.

3 In the more general settings of model categories, Map(−,−) preserves weak equivalences
when the domains are cofibrant and the targets are fibrant (see, for example, [Hir03, Corollary
9.3.3]). In the setting of spaces, CW complexes are cofibrant and all spaces are fibrant, so that
is how we get these two statements.

4 The statements of Theorem 1.3.7 and Theorem 1.3.8 in [AGP02] are slightly different than
ours and require a connectivity hypothesis. However, it is straghtforward to reduce the general
case presented here to the case with the connectivity hypothesis.
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Theorem 1.3.8 Any pair (Y, B) can be approximated by a CW pair (X, A) in
the sense that there exists a weak homotopy equivalence of pairs f : (X, A) →
(Y, B).

Furthermore, given a map (Y, B) → (Y ′, B′), there is a map (X, A) → (X′, A′)
of CW approximations where the obvious square commutes up to homotopy
(meaning the two compositions are not equal but homotopic; see for exam-
ple [Hat02, Proposition 4.18]). We can actually do better than this, and we
thank Phil Hirschhorn for pointing out the following result, the detailed proof
of which can be found in [Hir15a]. The idea is that, in the standard construc-
tion that yields commutativity up to homotopy, one chooses maps of spheres to
represent elements of homotopy groups to be killed by attaching disks; in this
one, no such choices are made, but instead one attaches cells using every pos-
sible map of a sphere. This construction thus attaches many more disks than
are needed but produces commutativity on the nose.

Theorem 1.3.9 Suppose we have a commutative diagram

Then there is a commutative diagram

such that i and j are inclusion maps of relative CW complexes, p and q are
weak equivalences, p ◦ i = f , q ◦ j = g, and the vertical maps are the ones
appearing in the first square.

It is clear from the definitions that a homeomorphism is a homotopy equiva-
lence and that a homotopy equivalence is a weak equivalence. However, for
CW complexes weak equivalence and homotopy equivalence give the same
equivalence classes of topological spaces.

Theorem 1.3.10 (Homotopical Whitehead Theorem) A map f : X → Y
between CW complexes is a weak equivalence if and only if it is a homotopy
equivalence.

For a proof, see [Hat02, Theorem 4.5].
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We express Theorems 1.3.7 and 1.3.10 by the following “equations”:

CW
homotopy equivalence

=
CW

weak equivalence
=

Spaces
weak equivalence

.

Many results in this book will be stated and proved (often in two different
ways) for homotopy and weak equivalence. On occasion, we will state and
prove an equivalence that may be weaker than the best one possible in order to
present the cleanest proof or to stay true to the scope and focus of this book.
We will indicate whenever this is the case to the best of our knowledge. That
said, the preferred notion of equivalence in this book is weak equivalence.

1.4 Algebra: homotopy and homology

Here we give a brief overview of homotopy and homology groups. Details can
be found in many sources, such as those referenced at the start of this chapter.
Our presentation is aimed at comparing properties of homotopy and homol-
ogy groups. Although these look vastly different from the definition, they
share many important properties, but one important one enjoyed by homol-
ogy but not by homotopy is “excision”, which accounts for the difference in
computational difficulty (homology groups being relatively easier to compute
than homotopy groups). The major theorems of the first part of this book,
Theorem 4.2.1 and Theorem 6.2.1, are concerned with the extent to which
homotopy groups do satisfy excision. Facts in the first section on homotopy
groups are essential to this text, whereas those in the section on homology
are not.

1.4.1 Homotopy groups

In the special case of a map of pairs where X = S n, A = {x0} is any point,
and B = {y0}, the common notation for [(S n, x0), (Y, y0)] is πn(Y, y0). This is
called the nth homotopy group of Y , denoted πnY or πn(Y) when the basepoint
is suppressed. In general πn(Y) is a pointed set for n ≥ 0 (and it is the empty set
for Y the empty space), a group for n ≥ 1, and an abelian group for n ≥ 2. If Y
is empty, then only the set π0(Y) = ∅ is defined. A map f : (X, x0) → (Y, y0) of
based spaces induces a homomorphism of groups

f∗ : πn(X, x0) → πn(Y, y0) (1.4.1)

for all n. The set π0 is the set of path components of Y , and we say Y is path-
connected if this set consists of a single point. We say Y is simply-connected
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if it is path-connected and π1(Y) = {e} is the trivial group. The sets/groups
πn(Y, y0) in general depend on y0, but if Y is a path-connected space they do
not.

Example 1.4.1 The homotopy groups of a one-point space are all trivial,
i.e. πk(∗) = {e}, k ≥ 0. �

Proposition 1.4.2 If based maps f , g : (X, x0) → (Y, y0) are homotopic, then
the induced homomorphisms on homotopy groups are equal: f∗ = g∗.

We also consider homotopy classes of based maps of pairs,

[(Dn, ∂Dn, ∗), (Y, B, y0)],

where ∗ ∈ ∂Dn and y0 ∈ B are the respective basepoints. In this case we
write πn(Y, B, y0) or simply πn(Y, B); these are called the relative homotopy
groups. Clearly πn(Y,Y, y0) = {e}. They are only defined for n > 0, and are only
groups for n > 1. None of them are defined if B = ∅. Equivalently, using
the homeomorphism of pairs (In, ∂In) � (Dn, ∂Dn), these could have been
defined in terms of cubes; we will use this later in the text at various points,
but for the most part it is convenient enough to work with disks. We refer
the reader to [Hat02, Section 4.1] for a discussion of the group structure on
these sets.

To the best of our knowledge, there does not exist a satisfactory definition
of relative π0. One could adopt one of two sensible approaches to defining a
relative version of π0. The first is to define it as homotopy classes of maps
of pairs (D0, S −1) → (X, A), noting that this is the same as homotopy classes
of maps D0 → X since S −1 = ∅. This is undesirable since for X = A � ∅,
π0(X, X) is not necessarily trivial; it is isomorphic to π0(X, x0) (as unpointed
sets). We will discuss the second approach after discussing the long exact
sequence.

Associated to a pair (X, A) is a long exact sequence of homotopy groups. For
a space-level version, see Theorem 2.2.17. For a more standard (and detailed)
treatment, see [Hat02, Theorem 4.3 and Theorem 2.20].

Theorem 1.4.3 (Homotopy long exact sequence of a pair) Let (X, A) be a
pair and x0 ∈ A be the basepoint. There is a long exact sequence

· · · → πn(A) → πn(X) → πn(X, A) → πn−1(A) → · · · → π0(A) → π0(X).

Exactness means the image of one map is equal to the kernel of the next map.
This still makes sense near the end of the sequence where the group structures
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are not defined. The map πn(A) → πn(X) is the map induced by the inclusion,
and the map πn(X) → πn(X, A) is similarly induced by the inclusion of maps of
pairs (Dn, ∂Dn, ∗) → (X, A, x0) which send ∂Dn to the basepoint x0 ∈ A ⊂ X.
The connecting map or boundary map πn(X, A) → πn−1(A) is induced by the
restriction of a map (Dn, ∂Dn, ∗) → (X, A, x0) to (∂Dn, ∗) → (A, x0).

To finish the discussion about relative π0 started above, the second idea
for its definition, and in our opinion the most reasonable, is to declare
π0(X, A, x0) = π0(X, x0)/π0(A, x0). In this case the long exact sequence above
can be extended to the right to π0(A) → π0(X) → π0(X, A) → {e} pro-
vided A � ∅. The trouble occurs when A = ∅. In this case, the set is not
even defined because of a lack of a basepoint. But we could then declare
π0(X, ∅) = π0(X)/∅ = π0(X)+, since we have defined π0(∅) = ∅. We are
therefore dealing with a sequence of sets π0(∅) = ∅ → π0(X) → π0(X)+,
which cannot be sensibly called exact at π0(X). For one, this is not a sequence
of pointed sets, so exactness is hard to pin down. Even still, if X � ∅,
then the image of the empty set in π0(X) is of course the empty set, and
this is not equal to the “kernel” of the inclusion π0(X) → π0(X)+ since
the latter is clearly the component of X containing the basepoint. One fix
would be to declare the new basepoint of π0(X)+ to be the disjoint point
added, but then π0(X) → π0(X)+ is no longer a map of pointed sets.
If X = ∅, then defining relative π0 to be empty is the only reasonable
solution.

An important identity involving homotopy groups that we will have use
for arises from the fact that the relationship from Theorem 1.2.9 passes to
homotopy classes (see e.g. [Hat02, Section 4.3] for details). Namely, we have

πn+1(X) � πn(ΩX). (1.4.2)

For f : X → Y to be a weak equivalence, it is enough to verify the defini-
tion for K = S n for all n ≥ 0. Thus for a map to be a weak equivalence
it is enough to verify that it induces an isomorphism on path components
and all homotopy groups, for every possible choice of compatible basepoints.
The following is a consequence of our Proposition 2.6.17 where we use the
case (Z, A) = (Dj, ∂Dj) to show both injectivity and the surjectivity of the
map f∗ and additionally setting h to be the constant map to the basepoint for
surjectivity.

Proposition 1.4.4 A map f : X → Y is a weak equivalence if and only if
the induced map f∗ : π0(X) → π0(Y) is an isomorphism and f∗ : πk(X, x0) →
πk(Y, f (x0)) is an isomorphism for all x0 ∈ X and all k ≥ 1.
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Remarks 1.4.5

● The characterization of a weak equivalence in terms of homotopy groups
given above is sometimes taken as the definition of a weak equivalence.
It is frequently incorrectly stated by saying f is a weak equivalence if the
induced map f∗ : πk(X, x) → πk(Y, f (x)) is an isomorphism for all x ∈ X
and for all k ≥ 0. The problem with this is that if X is empty, then the
empty set is weakly equivalent to every space. This is why we separated the
isomorphism on the path components from the isomorphisms on the higher
homotopy groups.

● We have now two competing and non-equivalent notions of “equivalence
up to homotopy” for spaces: homotopy equivalence and weak equivalence.
The notion of homotopy equivalence is both natural and provides a strong
duality between the notions of fibration and cofibration. Weak equivalence
is the natural limiting notion of k-connected map, a concept which will be
discussed Section 2.6 (also see below for a more elementary discussion).
We will see as we progress that weak equivalence gives a weaker duality
between fibrations and cofibrations, but as a limiting version of “k-connected
map” it is more useful for approximations of the homotopy types of spaces.

�

The characterization of weak equivalences in Proposition 1.4.4 can shed some
light on why the notion of weak equivalence is useful and natural. For a space
X a natural question is whether two points x0, x1 ∈ X can be connected by a
path γ : I → X (do x0 and x1 represent the same elements of π0(X)?). If so, a
next natural question to ask is whether any two such paths γ, γ′ : I → X are
themselves homotopic relative to the boundary. Together γ and γ′ determine
a map Γ : S 1 → X, and the existence of a homotopy between γ and γ′ is a
question about whether the class in π1(X) determined by Γ is zero. If so, it
determines a map D2 → X, and we can similarly ask whether any such two
are homotopic relative to the boundary, and so on. Such questions reduce to
questions about the homotopy groups πk(X).

1.4.2 Homology groups

While homotopy groups are clearly central to differentiating homotopy types,
they are largely uncomputable. This stands in stark contrast to homology
groups. The main difference in the two is “excision”, which is the focus of most
of our discussion here beyond the definitions. We focus on singular homology
with integer coefficients, and give the standard treatment based on simplices. A
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treatment based on cubes would better parallel our later discussion of excision
for homotopy groups (see Sections 4.4.2 and 6.3.2), but the technical details
are too numerous to justify given our brevity with background on homology
given here. None of the material in this section is crucial for this text and it is
only meant to provide context for the story yet to be told.

For a space X and integer k ≥ 0, let Ck(X) denote the free abelian group gen-
erated by maps σk : Δk → X, called singular simplices, and define C−1(X) =
{0}. We define a homomorphism ∂k : Ck(X) → Ck−1(X), called a differential,
by the unique linear extension of the map defined on a simplex σk by

∂k(σk) =
k∑

i=0

(−1)kσk |∂iΔk .

Then it is easy to check that ∂k ◦ ∂k+1 = 0 is the zero homomorphism (the
alternating nature of the sum together with the combinatorics of the faces of
a simplex make this work out), and so we have a chain complex of abelian
groups

· · · ∂k+2→ Ck+1(X)
∂k+1→ Ck(X)

∂k→ Ck−1(X)
∂k−1→ · · · → C0(X) → {0}.

Setting Zk(X) = ker(∂k) (the k-cycles) and Bk(X) = im(∂k+1) (the k-
boundaries), since ∂k ◦ ∂k+1 = 0, Bk(X) ⊂ Zk(X) and we define the quotient
group

Hk(X;Z) = Zk(X)/Bk(X),

and call it the kth singular homology group. For a pair (X, A) we can define
the relative homology groups by considering the quotient chain complex
Ck(X, A) = Ck(X)/Ck(A), which inherits a differential from Ck(X), and defining
Hk(X, A;Z) = Zk(X, A)/Bk(X, A).

The group H0(X;Z) was defined by letting C−1(X) = {0}. Alternatively, we
can define the reduced homology groups H̃k(X;Z) by instead using C−1(X) =
Z, and letting ∂0 : C0(X) → Z be defined by ∂0(

∑
i niσi) =

∑
i ni.

In parallel with Example 1.4.1, we have the following

Example 1.4.6 The reduced homology groups of the one-point space are all
trivial: H̃k(∗;Z) = {0}, k ≥ 0. �

We also have the following parallel with (1.4.1).

Proposition 1.4.7 A continuous map f : X → Y induces homomorphisms
f∗ : H̃k(X;Z) → H̃k(Y;Z) for all k.
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Moreover, associated with a pair (X, A) we have a long exact sequence, much
as with Theorem 1.4.3. For more details, see [Hat02, Theorem 2.16].

Theorem 1.4.8 (Homology long exact sequence of a pair) Let (X, A) be a
pair. There is a long exact sequence of abelian groups

· · · → Hk(A) → Hk(X) → Hk(X, A) → Hk−1(A) → · · · .

In contrast with homotopy groups, homology groups satisfy “excision.”

Theorem 1.4.9 (Homological excision) For subspaces A, B of a space X
whose interiors cover X, the inclusion of pairs (B, A ∩ B) → (X, A) induces
isomorphisms Hk(B, A ∩ B) → Hk(X, A) for all k.

Another formulation that better explains why Theorem 1.4.9 is referred to
as excision is the following. Suppose Z ⊂ A ⊂ X has the property that the
closure of Z is contained in the interior of A. Then the inclusion of pairs
(X − Z, A − Z) → (X, A) induces isomorphisms Hk(X − Z, A − Z) → Hk(X, A)
for all k. Putting Z = X − B translates from the version above to this
one. Thus excising the subspace Z does not change the relative homology.
This has many useful computational consequences that we will not explore
here.

A different version of homology, called cellular homology, is usually better
suited for computations. In this version, if X is a CW complex (which we can
always assume to be the case by Theorem 1.3.7), then one can construct the
cellular chain complex which in nth degree has basis with one generator for
each n-simplex of X. Denoting by HCW

n (X) the nth homology of this chain
complex, we then have the following standard result the proof of which can be
found, for example, in [Hat02, Theorem 2.35].

Theorem 1.4.10 For all n ≥ 0, there are isomorphisms

HCW
n (X) � Hn(X).

Perhaps remarkably, the value of reduced homology groups on finite CW com-
plexes is characterized by Example 1.4.6, Proposition 1.4.7, Theorem 1.4.8,
and Theorem 1.4.9, in the sense that the value of Hk(X) on a CW com-
plex X is entirely determined by the above data. From this perspective, the
fact that homotopy groups satisfy analogs of all of these with the excep-
tion of excision means that homotopy and homology groups are more closely
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related than is apparent from the definitions. We will explore an explicit rela-
tionship between homotopy and homology when we discuss the Hurewicz
Theorem, Theorem 4.3.2. We will also briefly note during our discussion of
the Dold–Thom Theorem, Theorem 2.7.23, that the reduced homology groups
as we have defined them here instead could instead have been defined as the
homotopy groups of the infinite symmetric product.

It is worth making some remarks about how one proves Theorem 1.4.9, since
a central theme of Part I this text is concerned with the extent to which homo-
topy groups satisfy excision. The following lemma, known as the “Lebesgue
Lemma” or the “Lebesgue Covering Lemma” is a key to excision arguments,
both the one used to prove Theorem 1.4.9 as well as those we will give later
verifying that excision for homotopy groups holds “in a range of dimensions”.
For the proof, see for example [Mun75, Lemma 27.5].

Lemma 1.4.11 (Lebesgue Lemma) Let (X, d) be a compact metric space with
an open cover U = {Ui}i∈I . Then there exists a number δ > 0 such that every
open set of diameter less than δ is contained in some Ui.

There are a lot of technical details in the proof of Theorem 1.4.9, but the main
idea is to take a singular simplex σk : Δk → X and barycentrically subdivide it
(roughly speaking, cut it into smaller simplices) so that the image of each of
these smaller simplices by the map σk lies in the interiors of one of A or B. This
can be achieved rather evidently by Lemma 1.4.11, since Δk inherits its metric
space structure by being a subspace of Euclidean space. This process leaves the
homology class [σk] ∈ Hk(X;Z) unchanged, and in this sense the homology
classes on A and B determine (and are determined by) the classes on X.

Although homotopy groups do not in general satisfy excision (see the begin-
ning of Section 4.1 for an example), a result related to Theorem 1.4.9 computes
the fundamental group π1(X) of a space covered by two open subsets. The
version of this theorem, known as the Seifert–van Kampen Theorem (some-
times just the “van Kampen Theorem”), presented below is a simplistic version
which serves a comparative purpose for us later on when we discuss excision
for homotopy groups and the Blakers–Massey Theorem. More general versions
are discussed both by Hatcher [Hat02, Section 1.2] and even more generally
by May [May99, Chapter 2.7].

For groups G and H, we let G ∗ H denote their free product, and for homo-
morphisms φg : K → G and φH : K → H we let G ∗K H denote the quotient of
G∗H by the normal subgroup generated by elements of the form φG(k)φH(k)−1

for k ∈ K.
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Theorem 1.4.12 (Seifert–van Kampen Theorem) Let (X, x0) be a pointed
space with path-connected open subsets A, B containing the basepoint x0 such
that X = A ∪ B and A ∩ B contains the basepoint and is also path-connected.
Then

π1(X, x0) � π1(A, x0) ∗π1(A∩B,x0) π1(B, x0).



2

1-cubes: Homotopy fibers and cofibers

Cubical diagrams are the central objects of study in this book. Some of these
are quite familiar: a 0-cube of spaces is just a space X, and a 1-cube is a map
of 0-cubes, or simply a map f : X → Y of spaces. Spaces were the subject of
the previous chapter, and maps are the subject of this one. Maps of maps are
squares, or 2-cubes, and these will be studied Chapter 3, although they will
appear at times here (sometimes implicitly when we reference results from the
next chapter).

A natural question in topology asks how well a map f : X → Y captures
the difference between X and Y . One might try to answer this by looking at its
fibers or cofiber:

Definition 2.1 For a map f : X → Y and for y ∈ Y , the space Fy = f −1(y) is
called the fiber of f over y. The space Y/ f (X) is called the cofiber of f .

If f is a homeomorphism, then the fiber and cofiber of f are both the one-point
space.1 The problem is that these spaces do not behave well under homotopy,
as illustrated by the following examples.

Example 2.2 (Fiber not homotopy invariant) Consider the unit circle S 1 ⊂
R2, the projection map to the x-axis f : S 1 → R, and the unique map f ′ : S 1 →
∗. While R � ∗, the fiber of f is either empty, one point, or two points, the fiber
of f ′ is S 1. �

Example 2.3 (Cofiber not homotopy invariant) Let f : S 1 → D2 be the usual
inclusion of S 1 as the boundary of D2 and compare this map to f ′ : S 1 → ∗.
1 The fibers of the identity map 1∅ : ∅ → ∅ are empty but its cofiber is the one-point space.

28
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Again the corresponding spaces are homotopy equivalent but the cofiber of f
is S 2 while the cofiber of f ′ is the one-point space. �

However, if f is a fibration, the fibers are preserved by homotopy equivalences
(see Theorem 2.1.20), and if f is a cofibration, the cofibers are preserved by
homotopy equivalences (see Theorem 2.3.17). This is the reason fibrations and
cofibrations are the most important kinds of maps in this book. In this chapter,
we shall see how any map can be “replaced” by a fibration or a cofibration.
Before studying these replacements, we review some of the most important
properties of fibrations and cofibrations. More details can be found in many
introductory algebraic topology books, including [AGP02, Hat02, May99].

2.1 Fibrations

Definition 2.1.1 A map p : X → Y is a fibration if it satisfies the homotopy
lifting property. That is, p is a fibration if for all spaces W and commutative
diagrams

(2.1.1)

the dotted arrow ĥ exists. Here i0 is the inclusion of W in W × I sending w to
(w, 0).

For example, the unique map X → ∗ to the one-point space is a fibration for all
spaces X (even X = ∅). Every homeomorphism is a fibration. Another exam-
ple is a covering space. Fiber bundles and vector bundles are also important
examples of fibrations.

Remark 2.1.2 The above defines a Hurewicz fibration. If p has the lifting
property with respect to CW complexes W, then it is called a Serre fibration.
In general one can define a C-fibration to be a map which has the homotopy
lifting property with respect to a class of topological spaces C. �

Returning to Definition 2.1.1, we often refer to X as the total space of the
fibration p and Y as the base space, and all three Fy → X → Y as a fibration
sequence (where Fy is as usual the fiber of p over y ∈ Y). We will also say that
X fibers over Y .
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Many authors require their fibrations to be surjective maps. We make no
such assumption, but note the following.

Proposition 2.1.3 (Fibrations are (mostly) surjective) Let p : X → Y be a
fibration. Suppose y ∈ Y is in the image of p, and y′ ∈ Y is in the same path
component as y. Then y′ is also in the image of p.

Proof To see this, in the definition above take W = ∗, g : ∗ → X the inclusion
of x in X for x a preimage of y, and h : ∗ × I → Y a path from p(x) to a point
y′. Then ĥ(∗, 1) is a point of X which maps to y′ via p. �

Here are a few more useful examples and elementary results.

Example 2.1.4 (Product of fibrations) If pi : Xi → Yi are fibrations for i =
1, 2, then so is their product p1 × p2 : X1 × X2 → Y1 × Y2. More generally,
if I is any indexing set and pi : Xi → Yi is a fibration for each i, the map∏

i pi :
∏

i Xi → ∏
i Yi is a fibration. �

Example 2.1.5 (Trivial fibration) Let X = Y × F, and let p : X → Y be the
projection. This is a fibration, called the trivial fibration. �

Example 2.1.6 (Hopf fibration) Identify S 2 = C ∪ ∞ and S 3 as the unit
sphere |z0|2 + |z1|2 = 1 in C2. The Hopf fibration is the map h : S 3 → S 2 given
by h(z0, z1) = z1/z0. The fibers of this map are circles, which can be seen by
writing the map h in polar coordinates:

h(r0eiθ0 , r1eiθ1 ) = (r0/r1)ei(θ0−θ1).

Then for reiθ ∈ S 2, there is a unique (r0, r1) such that r = r0/r1 and r2
0 + r2

1 = 1,
and clearly then the fiber is parametrized by one of the angles θi. We leave to
the reader the verification that this map is a fibration. We thus obtain a fibration
sequence S 1 → S 3 → S 2 which is called the Hopf fibration. For more on
this and related fibration sequences involving spheres, see [Hat02, Example
4.45]. �

Proposition 2.1.7 (Evaluation map) Let X and Y be spaces, and let x0 ∈ X
be the basepoint. The evaluation map

evx0 : Map(X,Y) −→ Y

given by f �→ f (x0) is a fibration.
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Proof We may replace Y with Map({x0},Y), and regard the evaluation map
as the restriction map Map(X,Y) → Map({x0},Y). We must show the dotted
arrow exists in the following lifting problem:

By Theorem 1.2.7, the top and bottom horizontal maps correspond respectively
to maps X → Map(W × {0},Y) and {x0} → Map(W × I,Y). Moreover, they fit
into a commutative diagram

where the vertical maps are, from left to right, the inclusion of the basepoint in
X and the restriction to W × {0}. Again using Theorem 1.2.7 on the horizontal
maps, we have maps {x0} × I → Map(W,Y) and X × {0} → Map(W,Y) which
agree on {x0}×{0} = {x0}× I∩X×{0} since the square above commutes. Hence
we have a map

b : {x0} × I ∪ X × {0} −→ Map(W,Y).

Since X is well-pointed (we always assume this), there exists a retraction r :
X × I → {x0} × I ∪ X × {0}, and so we may define a map

b ◦ r : X × I −→ Map(W,Y).

The map b ◦ r can be regarded using Theorem 1.2.7 as a map W × I →
Map(X,Y), and it is straightforward to check that this gives the desired lift. �

Remark 2.1.8 This result follows immediately from Proposition 2.5.1, and
we prefer the perspective of that result although we have not yet discussed
cofibrations. Its proof follows the same general outline as the one above. The
crucial point is the well-pointedness of the space X. �

At times we will want to solve a lifting problem when the space W in Defini-
tion 2.1.1 is a CW complex. The following tells us such solutions can be built
locally, cell by cell.
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Figure 2.1 A picture proof of the homeomorphism of pairs (Dk × I,Dk × {0}) �
(Dk × I,Dk × {0} ∪∂Dk×{0} ∂Dk × I).

Proposition 2.1.9 Let p : X → Y be a fibration. Then there exists a solution
to the lifting problem

Proof There is a homeomorphism of pairs (Dk × I,Dk × {0}) � (Dk × I,Dk ×
{0} ∪∂Dk×{0} ∂Dk × I) (see Figure 2.1).

�

Solutions to the lifting problem posed in the definition of fibration are not
unique, but any two lifts are homotopic.

Proposition 2.1.10 Suppose p : X → Y is a fibration, and consider the lifting
problem

If ĥ0, ĥ1 : W × I → X are solutions to this lifting problem, then there is a
homotopy ĥ0 ∼ ĥ1 relative to W × {0}.

Proof Since p ◦ ĥ0 = h = p ◦ ĥ1, we let H : W × I × I → Y be the constant
homotopy from h to itself: H(w, s, t) = h(w, t). Consider the lifting problem

where c : W× (I×{0}∪∂I× I) → X is defined as the composition W× I×{0} →
W → X of the natural projection with g, ĥ0 on W×{0}× I, and ĥ1 on W×{1}× I.
The homeomorphism of pairs (I × I, I × {0}) � (I × I, I × {0} ∪ ∂I × I) (as in
Proposition 2.1.9) transforms the above diagram into one of the form appearing
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in Definition 2.1.1, with W × I in place of W. Hence a solution Ĥ : W × I× I →
X exists. Moreover, Ĥ1 = Ĥ|W×{1}×I has the property that Ĥ1(z, 0) = ĥ0 and
Ĥ1(z, 1) = ĥ1, giving the desired homotopy. �

We then have the following useful result which tells us that maps into a
fibration induce a fibration of mapping spaces.

Proposition 2.1.11 (Maps preserve fibrations) Suppose p : X → Y is a
fibration. Then, for any space Z, the induced map

p∗ : Map(Z, X) −→ Map(Z,Y)

is a fibration. If Fy is the fiber of p over y ∈ Y, then the fiber of p∗ over the
constant map which sends Z to y is Map(Z, Fy). The same result is true if X
and Y are based and p is a based map.

Proof In the lifting problem

we can regard the horizontal arrows as elements of Map(W × Z, X) and
Map(W × Z × I,Y) respectively, which leads us to the lifting problem

In this case the lift W × Z × I → X exists since X → Y is a fibration. Then,
regarding this lift as a map W × I → Map(Z, X) using Theorem 1.2.7, it is
straightforward to check that this is the desired lift in the original square.

The proof is the same in the based case, and in both cases the identification
of the fibers is straightforward. �

Since the loop space is a mapping space, we immediately have the following

Corollary 2.1.12 (Loops preserve fibration sequences) If F → X → Y is a
based fibration sequence, then so is

ΩF −→ ΩX −→ ΩY.

Here the maps are the “loopings” of the maps in the original fibration
sequence (see (1.2.1)), and the basepoint of ΩY is the constant loop at the
basepoint of Y.
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Fibrations satisfy a number of properties important to us. The first, and most
basic, says that a fibration p : X → Y gives a measure of the difference in
homotopy between X and Y .

Theorem 2.1.13 (Homotopy long exact sequence of a fibration) Let p : X →
Y be a fibration of based spaces, where x0 ∈ X and y0 ∈ Y are the basepoints
of X and Y respectively, and let F = p−1(y0) be the fiber over y0 with basepoint
x0. Then there is a long exact sequence of groups

· · · → πn(F) → πn(X) → πn(Y) → πn−1(F) → · · ·
(where we have omitted the basepoints in the notation for brevity). This
sequence ends at π0(Y).

For a proof of this theorem, see, for example, [Hat02, Theorem 4.41]. Note
that implicit in our assumption above is that the fibers are non-empty; there is
no long exact sequence for basepoints y0 for which F = ∅.

Remark 2.1.14 For a trivial fibration p : Y × F → Y , the connecting map
πn(Y) → πn−1(F) in the long exact sequence above is equal to zero, because
any map s : Y → Y × F which is the identity on the y-coordinate produces
a map πn(Y) → πn(Y × F) whose composition with the map to πn(Y) is the
identity, and exactness then demands the map πn(Y) → πn−1(F) be zero. More
generally if p : X → Y is a fibration and there exists a section s : Y → X of p,
then the connecting map will be zero. In general, the connecting map of course
need not be zero. �

Remark 2.1.15 The long exact sequence in Theorem 2.1.13 is related to the
long exact sequence of the pair (X, F) (see Theorem 1.4.3) in that

πn(X, F)
�−→ πn(Y),

where the isomorphism is induced by p. Noting that p(F) = y0, we see that a
map of pairs (Dn, ∂Dn) → (X, F) gives rise to a based map Dn/∂Dn → Y upon
composing the map Dn → X with Y . �

Clearly the composition of fibrations is a fibration, but there are other useful
constructions which preserve this property. One is that the class of fibrations
is stable under “pullback”. For a fibration p : X → Y and a map f : Z → Y ,
define the pullback (of Y by f ) as

f ∗Y = X ×Y Z = {(x, z) ∈ X × Z : f (x) = p(y)}.
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This is a space “over Z” in a sense that it is equipped with a map to
Z, namely the projection. Pullbacks will be studied in detail in Section 3.1
(see Definition 3.1.1 in particular), though material from that section is not
necessary for the following result.

Proposition 2.1.16 (Fibrations are preserved by pullbacks) Suppose p : X →
Y is a fibration, and f : Z → Y is a map. Then the map

p∗ : f ∗Y −→ Z

(x, z) �−→ z

is a fibration, and the fibers of p∗ over z are canonically homeomorphic to the
fibers of p over f (z).

Proof Consider the following commutative diagram

We are interested in whether the dotted arrow exists. Since p is a fibration,
there exists a lift f̂ ◦ h : W × I → X. Define ĥ : W × I → X ×Y Z by

ĥ(w, t) =
(
f̂ ◦ h(w, t), h(w, t)

)
.

It is straightforward to check both the commutativity of the diagram and that
the fibers of p and p∗ are equal. �

Remark 2.1.17 The above property also follows immediately from the
universal property of the pullback discussed after Definition 3.1.1. �

The following result is proved as part of Corollary 3.2.18 with tools developed
in Chapter 3 and it is logically independent of those that follow. Alternatively,
see, for example, [Hat02, Proposition 4.61].

Proposition 2.1.18 (Fibrations have equivalent fibers) If p : X → Y is a fibra-
tion, then the fibers Fy = p−1(y) are homotopy equivalent for all y in the same
path component of Y.

This result allows us to speak of the fiber of a fibration without too much
ambiguity.
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Figure 2.2 Map with fibers that are homotopy equivalent but which is not a
fibration.

Example 2.1.19 It is not enough for all the fibers of a map to be homo-
topy equivalent for that map to be a fibration. Let I1 and I2 be unit intervals
with basepoint 0, let L = I1 ∨ I2 be the wedge of two intervals, and define
p : L → I by

p(t) =

⎧⎪⎪⎨⎪⎪⎩0, if t ∈ I1;

t, if t ∈ I2.

See Figure 2.2 for the picture of p.
The fibers of this map are either an interval I or a point, all of which are

clearly homotopy equivalent. This map is not a fibration. Let h : I → I be the
identity map, and define g : ∗ → L by g(∗) = 1 ∈ I1. Then in the commutative
diagram

the dotted arrow clearly cannot exist, so p fails to have the homotopy lifting
property. �

While this last example is not a fibration, it is the standard basic example of
what is called a quasifibration, a useful and important notion we will discuss
in Section 2.7.

The next result says that the homotopy type of the fibers is invariant under
homotopy equivalences of the base and total space.

Theorem 2.1.20 Suppose in the commutative diagram
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the vertical maps p1 and p2 are fibrations with fibers F1 = fiberx1 (p1)
and F2 = fiber fY (x1)(p2), respectively, and the maps fX and fY are homo-
topy equivalences. Then the induced map of fibers F1 → F2 is a homotopy
equivalence.

Remark 2.1.21 If one only cares about the weak homotopy type then this fol-
lows immediately from Theorem 2.1.13 by comparing the long exact sequence
of each fibration and using the five lemma. While we like this breezy expla-
nation, we present a proof for homotopy equivalences that uses the homotopy
lifting property and produces a homotopy, rather than weak, equivalence of the
fibers. Our proof is based on [May99, Section 7.4]. �

Proof of Theorem 2.1.20 Using Proposition 2.1.16, it is enough to prove this
in the case where Y1 = Y2 and fY = 1Y , as the fibration p∗2 : X2 ×Y2 Y1 → Y1 has
the same fibers as p2 and the natural map e : X1 → X2 ×Y2 Y1 has the property
that p∗2 ◦ e = p1. Henceforth let us assume we have a diagram

where f is a homotopy equivalence. Our goal is to show that the induced map
of fibers F1 → F2 over y ∈ Y is a homotopy equivalence. Let g′ : X2 → X1 be a
homotopy inverse to f . Note that any map homotopic to g′ is also a homotopy
inverse to f . The map g′ may not induce a map F2 → F1, and the homotopies
between g′ ◦ f (resp. f ◦ g′) and 1X1 (resp. 1X2 ) may not restrict to homotopies
which remain within the fibers. The idea is to use the homotopy lifting property
to make a homotopy of g′ and then a homotopy of those homotopies so that
the above two conditions are true.

Since f ◦g′ ∼ 1X2 and p2◦ f = p1, we have that p1◦g′ ∼ p2. Let h′ : X2×I →
Y be a homotopy from p1 ◦ g′ to p2. Consider the lifting problem

Since p1 is a fibration, the dotted arrow exists, and we see that this implies g′

is homotopic to a map g such that p1 ◦ g = p2. We claim that the restrictions of
f |F1 : F1 → F2 and g|F2 : F2 → F1 to the fibers are homotopy inverses of one
another.
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To see this, let h : X1 × I → X1 be a homotopy from g ◦ f to 1X1 . Consider
the lifting problem

Since p1 is a fibration, the dotted arrow exists, and it is a map p̂1 ◦ h : X1× I →
X1 with the properties that p̂1 ◦ h(−, 0) = g ◦ f , p̂1 ◦ h(−, 1) = 1X1 and that the
lower triangle commutes. This means that the family of maps Ht : X1 → X1

defined by this homotopy has the property that

commutes for every t, which tells us that the restriction of Ht is a map from
F1 to itself for all t. The homotopy from f ◦ g to 1X2 is treated in a similar
manner. �

A direct consequence of the proof of Theorem 2.1.20, which we will need to
establish the homotopy invariance of the homotopy pullback, Theorem 3.2.12,
is the following.

Corollary 2.1.22 Let

be a commutative diagram where the maps to Z are fibrations. If f is a
homotopy equivalence, then there exists a homotopy inverse g : Y → X such
that

commutes. In short, f is a homotopy equivalence if and only if it is a homotopy
equivalence of spaces which fiber over Z.

A related useful result is that the pullback of a homotopy (resp. weak)
equivalence by a fibration is a homotopy (resp. weak) equivalence.
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Proposition 2.1.23 If p : Y → Z is a fibration and f : X → Z is a homotopy
equivalence (resp. weak equivalence), then X ×Z Y → Y is also a homotopy
equivalence (resp. weak equivalence).

The reader may wish to look back at the following proof after studying pull-
backs, specifically Definition 3.1.1 and the discussion immediately following.
In fact, this proposition will be restated in terms of pullbacks as Proposi-
tion 3.2.3. The reader should also consult Remark 3.2.2 for an explanation of
why we state and prove this result for both weak and homotopy equivalences.
The proof below is inspired by Theorem 13.1.2 of [Hir03], who in turn cites
an unpublished manuscript of Reedy.

Proof Write W = X ×Z Y and let g : W → Y and p′ : W → X be the
projections. By Proposition 1.3.2 it is enough to show that the induced map
g∗ : [V,W] → [V,Y] is a bijection for all V . To show that g∗ is surjective, let
v : V → Y be a map, and consider the composed map p ◦ v : V → Z. Since f
is a homotopy equivalence, it follows again from Proposition 1.3.2 that there
exists a map v′ : V → X such that f ◦ v′ ∼ p ◦ v. Let H : V × I → Z be a
homotopy from p ◦ v to f ◦ v′. Consider the lifting problem

Since p is a fibration there exists a solution Ĥ : V × I → Y to this lifting
problem, and if we put v′′ = Ĥ|V×{1} : V → Y , then since Ĥ|V×{0} = v, v′′ ∼ v
and p ◦ v′′ = H|V×{1} = f ◦ v′. Now define u : V → W by u = (v′, v′′). The
fact that f ◦ v′ = p ◦ v′′ ensures this defines a map to W = X ×Z Y . Moreover,
g ◦ u = v′′ ∼ v, so g∗ is surjective.

The proof that g∗ is injective is similar. Let v, v′ : V → W be maps such that
g ◦ v ∼ g ◦ v′ : V → Y . We will construct a homotopy v ∼ v′. Let H be a
homotopy from g ◦ v to g ◦ v′. This gives rise to a homotopy p ◦H : V × I → Z
from p◦g◦v = f ◦p′◦v to p◦g◦v′ = f ◦p′◦v′. Since f is a homotopy equvalence,
Proposition 1.3.2 applied to the bijection f∗ : [V × I, X] → [V × I,Z] implies
that p′ ◦v ∼ p′ ◦v′. Choose a homotopy G : V× I → Y from p′ ◦v to p′ ◦v′; thus
f ◦G ∼ p◦H relative to V×∂I. Let K be a homotopy from f ◦G to p◦H relative
to V × ∂I. Let c : V × (I × {0} ∪ ∂I × I) → W denote the map whose restriction
to V × I is p ◦H, {0} × I is p ◦ g ◦ v, and {1} × I is p ◦ g ◦ v′. Consider the lifting
problem
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There is a homeomorphism of pairs (I× I, I×{0}) � (I× I, I×{0}∪∂I× I), and
the map p′ is a fibration by Proposition 2.1.16, and so by Proposition 2.1.9 a
solution K̂ : V × I × I exists with the properties

● K̂|V×I×{0} = p ◦ H;
● K̂|V×{0}×I = p ◦ g ◦ v;
● K̂|V×{1}×I = p ◦ g ◦ v′;
● p′ ◦ K̂|V×I×{1} = f ◦G.

Let K̂1 = K̂|V×I×{1}. Define U : V × I → W by u = (K̂1,G); we have already
seen that p′ ◦ K̂1 = f ◦G so this defines a map to W, and the properties above
tell us it represents the desired homotopy.

The argument in the case of a weak equivalence is identical to the above,
except we only need restrict attention to CW complexes V and note that V × I
can be given a CW structure (the reader may additionally note that all we
need to know about p is that it is a Serre fibration). But a simpler, more
algebraic, argument can be given: the map f is a weak equivalence and both
maps p′ and p are fibrations by Proposition 2.1.16. The map from the fibers
of p′ to the fibers of p is a homeomorphism, and hence a weak equivalence,
and the five lemma together with the long exact sequence of a fibration from
Theorem 2.1.13 finishes the argument. �

We finish with a statement about how fibrations are locally determined. A proof
can be found in [May99, Chapter 7.4].

Proposition 2.1.24 Suppose p : X → Y is a map and suppose there exists a
countable open cover {Ui}i∈I of Y such that

p|Ui : p−1(Ui) −→ Ui

is a fibration for all i. Then p is a fibration.

2.2 Homotopy fibers

In the sense of Theorem 2.1.13, the fibers of a map can give one measure
of the difference between X and Y . In general though, given a commutative
diagram
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(2.2.1)

where the horizontal arrows are homotopy equivalences, it is not necessarily
true that the induced map from the fibers of f1 to the fibers of f2 is a homo-
topy equivalence. This was illustrated by Example 2.2. However, if f1 and f2
are fibrations, the induced map of fibers is a homotopy equivalence by Theo-
rem 2.1.20. Fortunately, there is a way to turn any map of spaces f : X → Y
into a fibration, but it comes at the cost of replacing X with a more complicated
but homotopy equivalent space. This is accomplished essentially by using the
fact that the evaluation map Map(I,Y) → Y is a fibration by Proposition 2.1.7
and that the space of maps of I into Y which are fixed at one end is contractible.

Definition 2.2.1 Given a map f : X → Y , define the mapping path space of
f , denoted by Pf , to be the subspace of X × Map(I,Y) given by

Pf = {(x, α) : x ∈ X, α : I → Y, α(0) = f (x)}.

For instance, the mapping path space of the identity map 1X : X → X is home-
omorphic with the space of paths XI . See Example 3.1.6 for an alternative
description of the mapping path space in terms of limits.

Let cy : I → Y be the constant map at y. Then it is clear that f factors through
Pf as

where

i(x) = (x, c f (x)), p(x, α) = α(1).

Proposition 2.2.2 The evaluation map p is a fibration and the inclusion map
i is a homotopy equivalence; in fact i(X) is a deformation retract of P f .

Proof A homotopy inverse to i is the map Pf → X given by (x, α) �→ x.
The composition X → Pf → X is equal to the identity, and the composition
Pf → X → Pf is homotopic to the identity by shrinking the paths α; the map
H : Pf × I → Pf given by H((x, α), s) = (x, αs), where αs(t) = α(t(1 − s)), is
a homotopy from the identity to the composite Pf → X → Pf . It is fixed on
i(X).
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To prove the first part, consider the lifting problem

Write g(w) = (xw, γw). Define ĥ : W × I → Y by

h̃(w, s) = (xw, α(w,s))

where

α(w,s)(t) =

⎧⎪⎪⎨⎪⎪⎩γw(t + ts), if 0 ≤ t ≤ 1/(1 + s);

h(w, t + st − 1), if 1/(1 + s) ≤ t ≤ 1.

Clearly α(w,0) = γw and p ◦ ĥ(w, s) = h(w, (t + st − 1))|t=1 = h(w, s). �

The mapping path space Pf is homotopy invariant by construction. Suppose
the horizontal maps in the following commutative diagram are homotopy (or
weak) equivalences:

Then Pf1 � Pf2 since the former is homotopy equivalent to X1 and the latter
to X2. For the same reason, the map Y1 → Y2 does not affect the homotopy
type of Pf1 and Pf2 (and does not need even need to be an equivalence for the
homotopy type of the mapping path spaces to remain unchanged). In addition,
if f is changed by a homotopy, the homotopy type of Pf remains unchanged.
The proof of this, however, has to wait until the next chapter (Corollary 3.2.16).

Definition 2.2.3 Given a map f : X → Y , the homotopy fiber of f over y ∈ Y ,
denoted by hofibery( f ), is the fiber over y of the map p : Pf → Y . Explicitly,
hofibery( f ) is the subspace of X × Map(I,Y) given by

hofibery( f ) = {(x, α) : x ∈ X, α : I → Y, α(0) = f (x), α(1) = y}.

Example 2.2.4 Let X be a non-empty space. Then, for any x0 ∈ X,
hofiberx0 (1X) is contractible. The map ∗ → hofiberx0 (1X) sending ∗ to (x0, cx0 )
is a homotopy equivalence, since the homotopy (α(s), (t �→ α((1 − t)s + t))) is
homotopic to the identity map of hofiberx0 (1X). �
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Figure 2.3 A point (x, α) in hofibery( f ).

A pictorial representation of the homotopy fiber hofibery( f ) is given in
Figure 2.3.

Since p is a fibration, we now by definition have a homotopy invariant fiber
hofibery( f ) (by Theorem 2.1.20) as well as the homotopy long exact sequence
described in Theorem 2.1.13 for the fibration sequence

hofibery( f ) −→ Pf −→ Y.

We shall also see in Corollary 3.2.17 that the homotopy type of Pf is
unchanged if f is changed by a homotopy.

Remark 2.2.5 The homotopy fiber of a map is one of the most basic exam-
ples of a homotopy limit, and will be considered again from this more general
point of view in Example 3.2.8. �

As a result of Proposition 2.1.18, all homotopy fibers over a path-connected
space are homotopy equivalent, so we will often omit y from the notation,
although clearly the space itself depends on y, and we will always be care-
ful to name some choice of basepoint. Thus we often write hofiber( f ) instead

of hofibery( f ). We will also often write hofiber(X
f→ Y) when we want to

remember the spaces or just hofiber(X → Y) when f is clear from the context.
There is a canonical inclusion

fibery( f ) −→ hofibery( f ) (2.2.2)

x �−→ (x, c f (x)).

One indication that the way of replacing a map by a fibration described above
is natural is that this map is a homotopy equivalence when the original map is
itself a fibration:

Proposition 2.2.6 If f : X → Y is a fibration, then, for any y ∈ Y, the
inclusion of the fiber into the homotopy fiber from (2.2.2) is a homotopy
equivalence.
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Proof This is an immediate consequence of Theorem 2.1.20, applied to the
diagram

where the top horizontal map is the canonical one from (2.2.2). �

Another useful property of homotopy fibers is that their homotopy type is inde-
pendent of the homotopy class of the map. If α, β : I → X are paths in X
such that α(1) = β(0), we let α ∗ β : I → X be the path defined by α(2t) for
0 ≤ t ≤ 1/2 and β(2t − 1) for 1/2 ≤ t ≤ 1. We also let α−1 : I → X be given by
t �→ α(1 − t).

Proposition 2.2.7 Suppose f0, f1 : X → Y are homotopic. Then, for all y ∈ Y,
there is a homotopy equivalence hofibery( f0) � hofibery( f1) induced by any
homotopy ft from f0 to f1.

Proof Let ft be a homotopy from f0 to f1. Consider the map

hofibery( f0) −→ hofibery( f1)

given by (x, α) �→ (x, ( ft(x))−1 ∗ α), where ( ft(x))−1 is the inverse of the path
ft(x) from f0(x) to f1(x) given by f , and the superscript denotes this path is to
run backwards. The path multiplication γ ∗ ( ft(x))−1 makes sense since α(0) =
f0(x), and the map has the correct codomain since ( ft(x))−1 ∗ α is at f1(x) at
time zero. The homotopy inverse of this map is the one which maps (x, β) to
(x, ft(x) ∗ β), and it is straightforward to check these are homotopy inverses of
one another. �

Remark 2.2.8 Proposition 2.2.7 appears later as Corollary 3.2.17 with a dif-
ferent proof. It is also true that the mapping path spaces of homotopic maps
are homotopy equivalent, which we will prove in Corollary 3.2.16, and that
the homotopy fibers of a map over points in the same component are homo-
topy equivalent, which we will prove in Corollary 3.2.18; in particular, fibers
of a fibration over points in the same component are homotopy equivalent. �

Example 2.2.9 (Loop space as homotopy fiber) If f : y0 → Y is the inclusion
of a basepoint, then

hofibery0 ( f ) = ΩY,

the based loop space of Y . �
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Example 2.2.10 If f : X → Y is homotopic to a constant, then

hofiber( f ) � X ×ΩY.

To see this, choose a basepoint y ∈ Y and consider Mapb(I,Y), the space of
maps where endpoints are sent to fixed points in the component of y. This
space is homotopy equivalent to ΩY; this is easy to see by choosing paths
from the images of the endpoints of I to y and gluing them to an element of
Mapb(I,Y) to produce an element of ΩY . The same can be done for the map
back by gluing those same paths onto a loop. These are homotopy inverses
via reparametrization. A sleeker way to see this, without writing down explicit
homotopies, is to use Theorem 3.3.15 with X1 = X2 = Y1 = Y2 = ∗, X12 =

Z12 = Y12 = Y , and Z1 = Z2 = Y .
Now, if f is homotopic to a constant, it maps X to some component of Y .

Choose an arbitrary basepoint y in that component of Y so we can consider
ΩY . By Proposition 2.2.7, we have that hofiber( f ) is homotopy equivalent to
the homotopy fiber of a constant map from X to Y . By definition, this homotopy
fiber is the set of all (x, γ) such that γ(0) = f (x) and γ(1) = y. Since the map
from X to Y is now constant, this is clearly X × Mapb(I,Y), and by the above,
this is homotopy equivalent to X ×ΩY . �

Proposition 2.2.11 Suppose X, Y, and Z are based spaces with base-
points x0, y0, and z0 respectively. Let f : X → Y be a based map and
f∗ : Map∗(Z, X) → Map∗(Z,Y) be the induced map. There is a natural
homeomorphism

hofibercy0
( f∗) � Map∗

(
Z, hofibery0 ( f )

)
,

where the basepoint of Map∗(Z,Y) is the constant map cy0 : Z → Y.

Proof Let (g, α) ∈ Map∗(Z, X)×Map∗(Z,Y)I be a point in the homotopy fiber
of f∗, so that f ◦g = α(0) (here, for each t, α(t) : Z → Y is a based map). Using
Theorem 1.2.7, we may regard this as the map Z → hofibery0 ( f ) which sends
z to (g(z), αz), where αz : I → Y is given by t �→ αz(t). This defines the desired
homeomorphism. �

Example 2.2.12 (Homotopy fiber and loops commute) An important special
case of Proposition 2.2.11 is the case Z = S 1, in which case we get that there
is a homeomorphism

hofiber(Ω f ) � Ω hofiber( f ) (2.2.3)

(where byΩ f we mean the map induced by f on loop spaces of f as in (1.2.1)).
�
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Remark 2.2.13 As we shall see in Corollaries 3.3.16 and 8.5.8, the above is
an instance of two homotopy limits commuting. �

The above example plays a role in the following construction of a space-level
version of the homotopy long exact sequence for a map f : X → Y of based
spaces. The construction of the homotopy fiber can be iterated to define a
sequence

· · · p3−→ F2
p2−→ F1

p1−→ F0
p−→ X

f−→ Y (2.2.4)

where F0 = hofiber( f ), F1 = hofiber(p), and Fi = hofiber(Fi → Fi−1) for
i ≥ 2. Exactness of this sequence is expressed by the following proposition
and its corollary.

Proposition 2.2.14 Suppose f : X → Y is a map of based spaces and let
F = hofiber( f ). If g : Z → X is any based map, then f ◦ g is null-homotopic if
and only if there exists a lift ĝ : Z → F.

Proof Suppose g : Z → X is map such that f ◦ g : Z → Y is homotopic to cy0 ,
where y0 is the basepoint of Y . Let H : Z × I → Y be a based null-homotopy
from f ◦ g to cy0 (meaning if z0 ∈ Z is the basepoint, H({z0} × I) = y0).
Regard H as a map H̃ : Z → YI using Theorem 1.2.7. Define ĝ : Z → F
by ĝ(z) = (g(z), H̃(z)). To see that this really defines a map to the homotopy
fiber F, note that, since H(z, 0) = ( f ◦ g)(z), ev0 ◦ H̃(z) = f ◦ g(z), and since
H(z, 1) = y0, ev1 ◦ H̃(z) = y0.

If ĝ : Z → F exists, it is necessarily a map of the form ĝ(z) = (g(z), γz),
where γz ∈ YI satisfies γz(0) = f ◦ g(z) and γz(1) = y0, and γz0 (t) = cy0 .
Regard γz as a map Γ : Z × I → Y and we see the above conditions imply
Γ(z, 0) = f ◦ g(z), Γ(z, 1) = y0, and Γ(z0, t) = cy0 , which is precisely a based
null-homotopy of the composition f ◦ g. �

Corollary 2.2.15 With f , X,Y, F0 as above, for any based space Z the
sequence

[Z, F0]∗ −→ [Z, X]∗ −→ [Z,Y]∗

is exact at [Z, X]∗, that is, the image of [a] ∈ [Z, X]∗ in [Z,Y]∗ is the homotopy
class of the constant map if and only if there exists [b] ∈ [Z, F0]∗ mapping
to [a].

In fact, up to homotopy equivalences, the sequence appearing in
Equation (2.2.4) is
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· · · Ω
2 f−→ Ω2Y

−Ω j−→ ΩF0
−Ωi−→ ΩX

−Ω f−→ ΩY
j−→ F0

i−→ X
f−→ Y. (2.2.5)

This is called the fiber sequence or the dual Barratt–Puppe sequence. That is,

Lemma 2.2.16 There are natural homotopy equivalences

F1 = hofiber(F0 → X) � ΩY

and

F2 = hofiber(F1 → F0) � ΩX,

and the map F2 → F1 is −Ω f .

Proof These follow from results which appear later in this book. The first
equivalence is Example 3.3.13 and the second is Example 3.4.5. The statement
that the map F2 → F1 is the map −Ω f follows by inspection. (For the negative
sign, see the proof of Lemma 2.4.19 for a geometric explanation of why this
appears in the dual situation. Also see [tD08, Section 4.7].) �

From Corollary 2.2.15 and Lemma 2.2.16, we thus have

Theorem 2.2.17 The sequence (2.2.5) is homotopy exact, i.e. for Z a based
space, applying [Z,−]∗ to the sequence (2.2.5) produces an exact sequence (of
pointed sets which are groups starting at ΩY and abelian groups starting at
Ω2Y).

Considering again the fibration sequence hofiber( f ) → Pf → Y for a map
f : X → Y , we see that setting Z = S 0 in Theorem 2.2.17 and using Equa-
tion (1.4.2) gives precisely the homotopy long exact sequence for this fibration.
This is the sense in which the Barratt–Puppe sequence generalizes the long
exact sequence of homotopy groups and also realizes it on the level of spaces.

2.3 Cofibrations

Dual to Definition 2.1.1, we have

Definition 2.3.1 A map f : X → Y is a cofibration if it satisfies the homo-
topy extension property. That is, f is a cofibration if for all spaces Z and
commutative diagrams

(2.3.1)

the dotted arrow ĥ exists. Here ev0 is evaluation at 0.
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For instance, the inclusion of the empty set ∅ → Y is a cofibration for every
space Y . Every homeomorphism is a cofibration. In the definition above, it is
common to regard the map X → WI as a map X × I → W, and the “extension
problem” in the definition is to extend this homotopy to a homotopy Y×I → W
with given initial value at Y × {0}. This can be neatly organized in the diagram

Here h′ and ĥ′ correspond respectively to h, ĥ using the exponential law,
Theorem 1.2.7. Note that if W = X×I∪ f Y×{0} (meaning X×I	Y×{0}/∼, where
(x, 0) ∼ ( f (x), 0)), and if h′ and g are the natural inclusions, then the natural
map X× I∪Y×{0} → Y× I is a section of the solution to the extension problem
ĥ′. We will in fact see in the proof of Proposition 2.3.2 that X × I ∪ Y × {0} is
a retract of Y × I (the only observation that needs to be made to deduce this is
that a cofibration is an inclusion map).

Note that by reversing all the arrows in the diagram (2.1.1) in the definition
of a fibration and replacing W×I with its “dual”, Map(I,W) = WI (see (1.2.2)),
we obtain the diagram in the definition of cofibration.

For a cofibration f : X → Y , we will refer to the sequence X → Y → Y/ f (X)
as a cofibration sequence.

Dual to Proposition 2.1.3 and an important early observation is the
following.

Proposition 2.3.2 (Cofibrations are injective with closed images) Let
f : X → Y be a cofibration. Then f is injective, X × I ∪ Y × {0} is a retract of
Y × I, and f (X) is closed in Y.

Proof Consider the following extension problem

where g(y) = (y, 0) and h(x) is the path which sends t to (x, 1 − t) for t < 1
and (x, 0) ∼ ( f (x), 0) for t = 1. Since f is a cofibration, there is a solution ĥ to
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the extension problem. Let x1, x2 ∈ X and suppose f (x1) = f (x2) = y0. Since
ĥ ◦ f = h, h(x1) = h(x2); in particular ev1 ◦ h(x1) = x1 = x2 = ev1 ◦ h(x2).

To see that f (X) is closed in Y , we already noted above that the natural map
X × I ∪Y × {0} → Y × I is a section of the map Y × I → X × I ∪Y × {0}. That is,
since f is injective and hence X a subspace of Y , f (X) × I ∪ Y × {0} is a retract
of Y × I. Since Y is Hausdorff, so is Y × I, and so f (X)× I ∪Y × {0} is closed in
Y × I by Lemma 1.1.4 since it is a retract of Y × I. Hence f (X) × {1} is closed
in Y × {1} as well.2 �

In fact, the inclusion map ι : A → X of a closed subspace is a cofibration if
and only if A × I ∪ X × {0} is a retract of X × I, which we shall see below in
Proposition 2.3.10.

We leave the details omitted from the following examples to the reader.

Example 2.3.3 (Coproduct of cofibrations) If f1 : X1 → Y1 and f2 : X2 → Y2

are cofibrations, then so is their coproduct f1	 f2 : X1	X2 → Y1	Y2. In the case
where these are based maps of based spaces, the map f1∨ f2 : X1∨X2 → Y1∨Y2

is a cofibration. �

Example 2.3.4 The inclusion {0} → I is a cofibration. It is not difficult to
prove this directly. It is also a special case of Proposition 2.3.10. �

Example 2.3.5 For all n ≥ −1, the inclusion of the boundary S n = ∂Dn+1 →
Dn+1 is a cofibration.

We will sketch the idea. By Proposition 2.3.10 below, it is sufficient to check
that Dn+1 × {0} ∪ S n × I is a retract of Dn+1 × I. Let S n ⊂ Rn+1 be the natural
inclusion of the unit sphere, and embed S n× I ⊂ Rn+2 � Rn+1×R in the evident
way. Let P = (0, 2) ∈ Rn+1×R be a point just above the cylinder Dn+1×I. Given
a point (x, t) ∈ Dn+1× I, there is a unique point (y, s) ∈ Dn+1×{0}∪S n× I on the
ray emanating from P through (x, t). Define r : Dn+1 × I → Dn+1 × {0} ∪ S n × I
by r(x, t) = (y, s). It is not hard to check that this is continuous, and it is clearly
equal to the identity on Dn+1 × {0} ∪ S n × I, and hence is a retraction. This is
also a special case of Example 2.3.11, also using Proposition 2.3.10. �

Example 2.3.6 Generalizing the previous example, the inclusion of a space
X → CX into its cone is a cofibration. �

2 The limit of a convergent sequence of points in f (X) × {1} lies in f (X) × {1} because it lies in
f (X) × I ∪ Y × {0}.
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Example 2.3.5 also implies that the inclusion of a subcomplex of a CW
complex is a cofibration. More precisely, we have the following.

Example 2.3.7 For any space X, the inclusion of X in the space obtained by
attaching an n-cell to X is a cofibration. More generally, if (X, A) is a relative
CW complex, the inclusion A → X is a cofibration.

To see why the first statement is true, let en be an n-cell and f : ∂en → X a
map. The result now follows from Proposition 2.3.15 since, by Example 2.3.5,
the inclusion ∂en → en is a cofibration, and hence so is the map X → X ∪ f en.
For finite-dimensional CW complexes, the proof is similar. Let Xi denote the
i-skeleton of X, and let Ai denote the indexing set for the i-cells of X. For
each α ∈ Ai let fα : ∂ei → Xi−1 be the attaching map. The inclusion 	Ai∂ei →
	Ai e

i is a cofibration by Example 2.3.3, and since Xi = Xi−1 ∪∪α∈Ai fα ∪Ai e
i,

Proposition 2.3.15 tells us that the right vertical map in the diagram

is a cofibration. Since the composition of cofibrations is a cofibration, this
completes the proof. The result is still true if X has cells of arbitrarily high
dimension; the above defines a lift on all the cells because the lifts agree where
they have to and because X is given the weak topology. See Remark 2.6.23 for
an alternative argument. �

Dual to Proposition 2.1.10, with dual proof, the extension problems posed in
the definition of a cofibration are not unique, but any two such are homotopic.

Proposition 2.3.8 Suppose f : X → Y is a cofibration, and consider the
extension problem

If ĥ0, ĥ1 : W × I → X are solutions to this extension problem, regarded as maps
Ĥ0, Ĥ1 : X × I → W using Theorem 1.2.7, then there is a homotopy Ĥ0 ∼ Ĥ1

relative to X × {0}.

Dual to Proposition 2.1.11, we have the following.
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Proposition 2.3.9 Suppose f : X → Y is a cofibration. Then, for any space
Z, the map

f × 1Z : X × Z −→ Y × Z

is also a cofibration (whose hocofiber will be described in Example 2.4.13).

Proof We must show that the dotted arrow exists in the following square

By Theorem 1.2.7, both g and h correspond with maps G : Y → WZ and
H : X → (WI)Z . Using Theorem 1.2.7 again to obtain (WI)Z � (WZ)I (because
I × Y � Y × I), we have a commutative diagram

Here the dotted arrow exists because f is a cofibration, and it corresponds, via
Theorem 1.2.7, to the desired map Y × Z → WI . �

According to Proposition 2.3.2, a cofibration is an inclusion map with closed
image. We give several useful equivalent formulations of the notion of a
cofibration.

Proposition 2.3.10 ([May99, Section 6.4]) For A a closed subspace of X, the
following are equivalent.

1. The inclusion i : A → X is a cofibration.
2. A × I ∪ X × {0} is a retract of X × I.
3. There exists a function u : X → I such that u−1(0) = A and a homotopy

h : X× I → X such that h(x, 0) = x, h(a, t) = a for all a ∈ A, and h(x, 1) ∈ A
if u(x) < 1.

If A × I ∪ X × {0} is a retract of X × I, then it is in fact a deformation retract of
X × I. Let ι : A × I ∪ X × {0} denote the inclusion. If the retraction r : X × I →
A × I ∪ X × {0} is given by r(x, t) = (r1(x, t), r2(x, 2)), then the homotopy
H : X × I × I → X × I given by H(x, t, s) = (r1(x, (1 − s)t), (1 − s)r2(x, t) + st)
is easily seen to give a homotopy ι ◦ r ∼ 1X×I relative to A × I (see the lemma
in [Str66]).
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Proof of Proposition 2.3.10 We will show that conditions 1 and 2 are equiv-
alent and refer the reader to [May99] for the rest. In fact, we have already
seen that 1 implies 2 in Proposition 2.3.2. For the other direction, consider the
square

Suppose i is a cofibration. Let W = A × I ∪ X × {0} (by Example 3.5.7,
A × I ∪ X × {0} = colim(X ← A → A × I) � Mi is the mapping cylinder),
and g and h be the natural inclusion maps. Let u : X × I → A × I ∪ × {0} be the
dotted arrow. Then u defines a retraction, as is easily seen by the commutativity
of the diagram above.

Suppose now that A × I ∪ X × {0} is a retract of X × I, and let r : X × I →
A × I ∪ X × {0} be a retraction. In the extension problem above, a solution
e : X × I → W is given by the composition of r with the given maps g and h.
The fact that r is a retraction assures us that the diagram commutes. �

The third condition above can be used to show that the inclusion of a closed
submanifold is a cofibration:

Example 2.3.11 Let Nn be a smooth manifold and M ⊂ N be a smooth
closed submanifold (meaning it is compact and without boundary). Then the
inclusion i : M → N is a cofibration.

To see why, let ν(M,N) denote the normal bundle of M in N. By the tubular
neighborhood theorem, we may identify ν(M,N) with an open neighborhood
of M in N. In this identification M is identified with the zero section of ν(M,N).
Moreover, a choice of Riemannian metric on N allows us to speak of the disk
bundles Dρν(M,N) of radius ρ > 0. Define u : N → I as follows. If x ∈ N lies
outside the unit disk bundle D1ν(M,N), we set u(x) = 1. If x ∈ D1ν(M,N),
then there is a unique pair (y, v) ∈ ν(M,N) which represents x, where y ∈ M
and v ∈ TyN. In this case we set u(x) = |v|. Then u is continuous and u−1(0) is
the zero section of the normal bundle, which we have identified with M. The
idea for the homotopy h : N × I → N is simple enough: fiberwise contract the
unit disk bundle to the zero section, leaving everything outside D1+δν(M,N)
fixed for some fixed δ > 0. The details are slightly tedious to write down, but
we include them in any case.
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With δ > 0 as above, let ε : R → R be a map such that ε(y) = 1 for |y| ≤ 1
and ε(y) = 0 for |y| ≥ 1 + δ. We will use polar coordinates on each fiber
of D1+δν(M,N), so a point in the fiber over m ∈ M is a pair (v, r) where v
is a unit vector and 0 ≤ r ≤ 1 + δ. Define h : N × I → N by h(x, t) = x
if x lies outside D1+δν(M,N). Each x ∈ D1+δν(M,N) is uniquely represented
as a pair (m, (v, r)) (it is understood that we identify (m, v, 0) with (m, v′, 0)).
Then for x = (m, (v, r)) we let h((m, (v, r)), t) = (m, (v, (1 − t)r + tε(r))). Then
h(x, 0) = x for all x and h((m, (v, 0)), t) = (m, v, 0). Moreover, h(x, 1) ∈ M
if u(x) < 1 since u(x) < 1 if and only if n = (m, (v, r)) with r < 1, so that
ε(r) = 0, and in this case h((m, v, r), 1) = (m, v, 0). Thus h satisfies condition 3
in Proposition 2.3.10. �

Remark 2.3.12 One can make all the relevant functions in the above proof
smooth if so desired. The same proof as given above shows that the inclusion of
M in the Thom space of the normal bundle of M is a cofibration. The example
above is meant to illustrate the point that condition 3 in Proposition 2.3.10 is
telling us that a subspace for which the inclusion is a cofibration has an open
neighborhood of which it is a deformation retract. �

Another useful property of cofibrations, which can be used to establish
Proposition 2.3.10, is the following.

Proposition 2.3.13 ([May99, Lemma in Section 6.4]) If i : A → X and
j : B → Y are cofibrations, then so is the induced map

A × Y ∪A×B X × B −→ X × Y.

As was the case with fibrations, clearly the composition of cofibrations is
a cofibration. Once again we have three important properties: a long exact
sequence, this time in (co)homology, stability under “pushout”, and homotopy
invariance of the cofibers.

Theorem 2.3.14 (Homology long exact sequence of a cofibration) Let
f : X → Y be a cofibration, and let C = Y/ f (X) be the cofiber. Then there
is a long exact sequence of groups

· · · → H̃n(X) → H̃n(Y) → H̃n(C) → H̃n−1(X) → · · · .

A similar statement is true for cohomology groups.
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Sketch of proof It is a standard fact that the homology of a pair (X, A) is
isomorphic to the reduced homology of X/A if the inclusion A → X is a cofi-
bration (see e.g. [Bre93, Chapter VII, Corollary 1.7]). The result then follows
from the homology long exact sequence of a pair (Theorem 1.4.8) and the fact
that cofibrations are injective (Proposition 2.3.2). �

In Proposition 2.1.16, we saw that fibrations are preserved under pullbacks, and
dually cofibrations are preserved under pushouts. Namely, given maps f : X →
Y and g : X → Z, one can consider the space Z ∪X Y , called the pushout of Z
with Y along X, defined to be the quotient of the disjoint union Z 	 Y by the
equivalence relation ∼ generated by z ∼ y if there exists x ∈ X such that
f (x) = y and g(x) = z. Pushouts will be treated in detail in Section 3.5; see
Definition 3.5.1 in particular.

Proposition 2.3.15 (Cofibrations are preserved by pushouts) Suppose
f : X → Y is a cofibration and g : X → Z is a map. Then the map f∗ : Z →
Z ∪X Y given by the inclusion of Z is a cofibration.

Proof Dual to proof of Proposition 2.1.16. �

Remark 2.3.16 A remark similar to Remark 2.1.17 is in order: Proposi-
tion 2.3.15 follows immediately from the universal property of the pushout
Z ∪X Y; more will be said about this in Section 3.5. �

Theorem 2.3.17 Suppose in the commutative diagram

the vertical maps g1 and g2 are cofibrations with cofibers C1 and C2, respec-
tively, and maps fX and fY are homotopy equivalences. Then the induced map
of cofibers C1 → C2 is a homotopy equivalence.

A proof dual to the proof of Theorem 2.1.20 is left to the reader.
Dually to Corollary 2.1.22, we have the following statement. Its proof is also

a consequence of the proof of Theorem 2.3.17.
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Corollary 2.3.18 Let

be a commutative diagram where the maps from W are cofibrations. If f is a
homotopy equivalence, then there exists a homotopy inverse g : Y → X such
that

commutes. In short, g is a homotopy equivalence if and only if it is a homotopy
equivalence of spaces under W.

We also have the analog of Proposition 2.1.23.

Proposition 2.3.19 If p : X → Y is a cofibration and f : X → W is a
homotopy equivalence (resp. weak equivalence), then Y → W ∪X Y is also
a homotopy equivalence (resp. weak equivalence).

Proof For the homotopy equivalence case, the proof is dual to that of Proposi-
tion 2.1.23 and we omit it. However, the proof for the case of weak equivalence
does not dualize. (The short algebraic proof for the weak equivalence we
give at the end of the proof of Proposition 2.1.23 does not dualize either.)
We present the argument in this case in our restatement of this result later as
Proposition 3.6.2. �

Remark 2.3.20 With the notion of a cofibration under our belt, we can elab-
orate on the issue of basepoints a bit. As we mentioned in Remark 1.1.6, a
based space (X, x0) is well-pointed if and only if the inclusion of the basepoint
{x0} → X is a cofibration. This is a technical condition that makes a variety of
constructions easier, and in particular makes the theories of based and unbased
spaces parallel. We focus only on the question of homotopy invariance. We
would like constructions which depend on basepoints to be homotopy invari-
ant to the extent that if we change basepoints within a path component, we get
homotopy equivalent constructions. This may not be the case for spaces that
are not well-pointed. �
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2.4 Homotopy cofibers

As we saw in Example 2.3, the cofiber of a map also fails to be homotopy
invariant. In the commutative square

(2.4.1)

where the horizontal maps are homotopy equivalences, it does not follow that
the cofibers of the vertical maps are homotopy equivalent. However, if f1 and
f2 are cofibrations, then Theorem 2.3.14 says that these cofibers are homotopy
equivalent. As was the case for fibrations, there is a way to turn any map of
spaces f : X → Y into a cofibration, but this time it requires replacing the
codomain Y with a homotopy equivalent space.

Definition 2.4.1 Given a map f : X → Y , define the mapping cylinder of f ,
denoted by Mf , to be the quotient of (X × I) 	 Y given by

Mf = (X × I) 	 Y/∼,
where ∼ is the equivalence relation generated by (x, 0) ∼ f (x).

For instance, the mapping cylinder of the identity map 1X : X → X is the cylin-
der X × I. We already encountered the mapping cylinder in Proposition 2.3.2.

Remark 2.4.2 If X is based with basepoint {x0}, then one can define the
reduced mapping cylinder by also identifying {x0} × I to a point. The canon-
ical map from unreduced to reduced mapping cylinder is an equivalence if
the space is well-pointed. Since we always assume this is the case, we will
not explicitly make a distinction between these two versions of the mapping
cylinder. �

Remark 2.4.3 Following up on Remark 2.3.20, one way to make a well-
pointed space out of a based space X is to replace it with a homotopy equivalent
space which is the mapping cylinder of the map ∗ → X. �

It is again clear that f factors through Mf as
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where

j(x) = (x, 1), r(x, t) = f (x), r(y) = y.

In analogy with Proposition 2.2.2, we have the following.

Proposition 2.4.4 The inclusion map j is a cofibration and r is a homotopy
equivalence. In fact, Y is a deformation retract of Mf .

Proof That r is a homotopy equivalence is easy to see by collapsing X × I to
the image of X × {0} in Y . The inclusion i : Y → Mf clearly satisfies r ◦ i = 1Y ,
and the homotopy H : Mf × I → Mf given by H(x, t, s) = (x, t(1− s)) on X × I
in Mf and H(y, s) = y on i(Y) is a homotopy from 1Mf to i ◦ r relative to i(Y).
The proof that j is a cofibration is dual to the proof given in Proposition 2.2.2,
and is left to the reader. �

Just as in the case of the mapping path space, the mapping cylinder is
homotopy invariant. Replacing either of the spaces X or Y by a homotopy
(or weakly) equivalent one does not change the (weak) homotopy type of Mf .
This space is also unchanged if f is changed by a homotopy, as we shall see
in Corollary 3.6.20. Consequently, what is also unchanged by a homotopy (see
Corollary 3.6.21) is the notion of the homotopy cofiber:

Definition 2.4.5 The homotopy cofiber of f , denoted by hocofiber( f ), is the
cofiber of the inclusion j : X → Mf . That is,

hocofiber( f ) =
Mf

X × {1} .
More explicitly, it is the quotient space of (X × I)	 Y given by the equivalence
relation generated by (x, 1) ∼ (x′, 1) and (x, 0) ∼ f (x).

Figure 2.4 gives a picture of hocofiber( f ). When we want to emphasize the

spaces, we will also write hocofiber(X
f→ Y) or just hocofiber(X → Y) when f

is understood.

Figure 2.4 Homotopy cofiber hocofiber( f ).
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Remarks 2.4.6

1. The homotopy cofiber of a map f : X → Y is one of the most basic examples
of a homotopy colimit, and we shall see it again in Example 3.6.8.

2. Another name for hocofiber( f ) is the mapping cone of f , often denoted by
C f . We will use the notation and terminology interchangeably.

3. Looking back at Remark 2.4.2, Definition 2.4.5 has an obvious based ana-
log. If {x0} is the basepoint of X, then the reduced mapping cone also
has {x0} × I identified to a point. We will not distinguish between the two
versions unless it is necessary to do so. �

Dual to (2.2.2), we have a canonical map

hocofiber( f ) −→ cofiber( f ) = Y/ f (X) (2.4.2)

[x, t] �−→ [ f (x)]

y �−→ [y]

and an analog of Proposition 2.2.6, the proof of which is dual and is left to the
reader.

Proposition 2.4.7 If f : X → Y is a cofibration, then the map from (2.4.2) is
a homotopy equivalence.

Dual to Proposition 2.2.7 we have following.

Proposition 2.4.8 Suppose f0, f1 : X → Y are homotopic. Then there is a
homotopy equivalence hocofiber( f0) � hocofiber( f1), naturally induced by a
choice of homotopy ft from f0 to f1.

Proof This proof was communicated to us by Phil Hirschhorn. Suppose
f0 : X → Y and f1 : X → Y are homotopic, and let H : X × I → Y be a homo-
topy from f0 to f1. Consider the map hocofiber( f0) → hocofiber( f1) that is the
identity on Y , takes the lower half of the cone on X to the entire cone on X
(i.e. if 0 ≤ t ≤ 1/2, then the map takes (x, t) to (x, 2t)), and takes the upper half
of the cone on X to the homotopy (i.e. if 1/2 ≤ t ≤ 1, then the map takes (x, t)
to H(x, 2t − 1)).

One can define a map back using H−1, and the compositions are homotopic
to the identity maps for the same reason as in the proof of Proposition 2.2.7.

�
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Remark 2.4.9 The above result appears again later as Corollary 3.6.21 with
a different proof. We will also prove in Corollary 3.6.20 that, for homotopic
maps, the mapping cylinders are homotopy equivalent. �

Example 2.4.10 We have

hocofiber(X
1X→ X) � CX � ∗. �

Example 2.4.11 (Suspension as homotopy cofiber) There is a natural home-
omorphism

hocofiber(X −→ ∗) � ΣX,

where ΣX is the suspension of X. �

Example 2.4.12 Let f : W → X and g : Y → Z be maps of based spaces.
Then there is a natural homeomorphism

hocofiber( f ) ∨ hocofiber(g) � hocofiber( f ∨ g).

In particular, if g = 1Z : Z → Z is the identity map, using Example 2.4.10 we
see that

hocofiber( f ∨ 1Z) � CZ ∨ hocofiber( f ) � hocofiber( f ).

The verification of this is straightforward from the definition of homotopy
cofiber. The evident map of quotient spaces

(W ∨ Y) × I 	 X ∨ Z/ ∼−→ (W × I 	 X/∼) ∨ (Y × I 	 Z/∼)

is a homeomorphism. We prefer to view the special case where g = 1Z through
the lens of the last item in Corollary 3.7.19. �

The next two examples serve as the dual to Proposition 2.2.11.

Example 2.4.13 Let X,Y,Z be based spaces, and f : X → Y a map. Consider
the map

f × 1Z : X × Z −→ Y × Z.

There is a natural homeomorphism

hocofiber( f × 1Z) � hocofiber( f ) ∧ Z+.

If Y = ∗, so that hocofiber( f ) � ΣX by Example 2.4.11, then for the projection
X × Z → Z we have

hocofiber(X × Z → Z) � ΣX ∧ Z+.

This can also be verified from the definition, but it is somewhat cumbersome.
We refer the reader instead to Example 3.7.20, where this claim is verified. �
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Along the lines of the previous example, we also have the following.

Example 2.4.14 If f : X → Y is a map of based spaces and Z is any based
space, then for the map

f ∧ 1Z : X ∧ Z −→ Y ∧ Z,

there is a homeomorphism

hocofiber( f ∧ 1Z) � Z ∧ hocofiber( f ).

The proof of this will be given as part of Corollary 3.7.19 (Examples 2.4.10,
2.4.12, and 2.4.13 all play a role in that proof). �

Example 2.4.15 (Homotopy cofiber and suspension commute) One impor-
tant special case of Example 2.4.14 is Z = S 1, which is dual to Example 2.2.12.
Recall that the smash product of a based space X with S 1 is the suspension of
X. We have

hocofiber(Σ f ) � Σ hocofiber( f ),

where f : X → Y and Σ f : ΣX → ΣY is the suspension of f from (1.1.2). More
succinctly (this is how this statement often appears in the literature),

CΣ f � ΣC f . �

Remark 2.4.16 We will revisit this example in Corollaries 3.7.19, 5.8.10,
and 8.5.8. �

In analogy with the sequence from (2.2.4), one can iterate the homotopy cofiber
construction to get a sequence

X
f−→ Y

i−→ C0
i1−→ C1

i2−→ C2
i3−→ · · · (2.4.3)

where C0 = hocofiber( f ), C1 = hocofiber(i), and Ci = hocofiber(Ci−2 → Ci−1)
for i ≥ 2. Exactness is expressed by the following duals to Proposition 2.2.14
and Corollary 2.2.15.

Proposition 2.4.17 Suppose f : X → Y is a map of based spaces and let
C = hocofiber( f ) be the reduced homotopy cofiber. If g : Y → Z is any
based map,then f ◦ g is null-homotopic if and only if there exists an extension
ĝ : C → Z.

Proof Dual to the proof of Proposition 2.2.14. �
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Corollary 2.4.18 With f , X,Y,C0 as above, for any based space Z the
sequence

[C0,Z]∗ −→ [Y,Z]∗ −→ [X,Z]∗

is exact at [Y,Z]∗.

Up to homotopy equivalences, the sequence from (2.4.3) is what is known as
the cofiber sequence or the Barratt–Puppe sequence

X
f−→ Y

i−→ C0
q−→ ΣX

Σ f−→ ΣY
Σi−→ ΣC0

Σq−→ Σ2X
Σ2 f−→ · · · . (2.4.4)

This follows from the dual of Lemma 2.2.16, which is the following.

Lemma 2.4.19 There are natural homotopy equivalences

C1 = hocofiber(Y → C0) � ΣX

and

C2 = hocofiber(C0 → C1) � ΣY,

and the map C1 → C2 is −Σ f .

Proof The first statement is Example 3.7.16 and the second is Example 3.8.4.
That the map C1 → C2 is −Σ f follows by inspection. (As explained to us by
Phil Hirschhorn, the negative sign can be seen from the pictures of the cones
that are collapsed to form suspensions. Two of those cones meet at what is the
0 end for each of them. The map ΣX → ΣY is induced by sliding the cone on X
into the one on Y , and it is the 0 end of the cone on X that is moving toward the
1 end of the cone on Y . This is the reversal that produces the negative sign). �

From the above results, we thus have the following dual to Theorem 2.2.17.

Theorem 2.4.20 The sequence (2.4.4) is homotopy coexact, i.e. for Z
a based space, applying [−,Z]∗ to the sequence (2.4.4) produces an exact
sequence (of pointed sets which are groups starting at ΣY and abelian groups
starting at Σ2Y).

Setting Z = K(G, n), the Eilenberg–MacLane space that has an abelian group
G as its nth homotopy group and trivial homotopy groups otherwise in the
above recovers the cohomology long exact sequence of the pair (Y, X) (we
have already encountered this in Theorem 2.3.14). This is because of the iso-
morphism [X,K(G, n)] � Hn(X,G) (see, for example, [Hat02, Theorem 4.57]).
In fact, this relationship can be used as the definition of singular cohomology
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and further leads to the definition of a spectrum as a sequence of spaces satisfy-
ing certain properties that gives rise to a cohomology theory. For more details,
see [Hat02, Section 4.3] and for more on spectra, see Section A.3.

2.5 Algebra of fibrations and cofibrations

In this section we state and prove results which involve both fibrations and cofi-
brations. With the exception of Proposition 2.5.1 and Theorem 2.5.4, which
we will use in Chapter 3, we will not use these results until Chapter 8.
Our first result is a counterpart to Proposition 2.1.11 and a special case of
Proposition 3.9.1.

Proposition 2.5.1 (Maps takes cofibrations to fibrations) If f : X → Y is
a cofibration, then, for any space Z, the induced map f ∗ : Map(Y,Z) →
Map(X,Z) is a fibration. Furthermore, the fiber of f ∗ over the map which
sends all of X to z ∈ Z is Map∗(Y/X,Z), where the basepoint of Z is z and
the basepoint of Y/X is the image of X in the quotient space.

Proof Consider the lifting problem

Since f is a cofibration, the dotted arrow exists in the diagram

Using Theorem 1.2.7, the above diagram becomes

Again applying Theorem 1.2.7, the top and bottom arrows correspond to maps
W × I → Map(X,Z) and W → Map(Y,Z), and the dotted arrow corresponds to
a map W × I → Map(Y,Z), which is the desired lift. �
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The next two results discuss (co)fibrations which are also homotopy equiva-
lences, and are necessary for the proof of Theorem 2.5.4. Like Theorem 2.5.4,
they are independently useful facts extracted from [Str68, Theorems 8 and 9].

Proposition 2.5.2 Suppose i : A → B is a cofibration and a homotopy
equivalence. Then there exists a homotopy inverse j : B → A such that

1. j ◦ i = 1A (that is, A is a retract of B);
2. there is a homotopy i ◦ j ∼ 1B relative to i(A); that is, if i : A → B is a

cofibration and a homotopy equivalence, then A is a deformation retract of
B.

Proof Since i is a closed inclusion by Proposition 2.3.2, we will identify A
with i(A), and omit i whenever possible. Choose a homotopy inverse k to i and
let H be a homotopy from k ◦ i to 1A. Consider the extension problem

where the left vertical arrow is the inclusion and c = k ∪ H is the map which
is equal to k on B × {0} and H on A × I. To see that this defines a map on the
union along A × {0}, we only need to observe that H(a, 0) = (k ◦ i)(a) = k(a).
Using Proposition 2.3.2, we have a retraction r : B × I → B × {0} ∪A×{0} A × I.
The composite map c ◦ r : B × I → A defines the dotted arrow above, and the
resulting diagram evidently commutes. Let j = c ◦ r|B×{1}. Then j : B → A
is homotopic to k, as the extension c ◦ r defines this homotopy, so j is also a
homotopy inverse to i. Note that, for a ∈ A, c ◦ r ◦ ι(a, 1) = c(a, 1) = 1A(a) = a,
and so j ◦ i = 1A. This establishes the first claim.

For the second claim, let G : B × I → B be a homotopy from i ◦ j to 1B.
Consider the extension problem

where the top horizontal map C is given as follows: C(b, 0) = (s �→ i ◦ j(b)) is
a constant path, C(b, 1) = (s �→ G(b, 1 − s)), and C(a, t) = (s �→ G(a, t(1 − s)).
It is straightforward to check that this gives a well-defined map from the union
to BI , and it is also straightforward to check that the diagram above commutes.
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By Proposition 2.3.13, the left vertical map in the above square is a cofibration,
since both A → B and ∂I → I are cofibrations, the first by assumption, and
the second by Example 2.3.5. Hence an extension Ĝ : B × I → BI exists. This
corresponds by Theorem 1.2.7 to a map G̃ : B × I × I → B, and we claim
G̃|B×I×{1} : B× I → B gives a homotopy between i ◦ j and 1B relative to A. This
is again straightforward, and follows from ev1 ◦C(a, t) = G(a, 0) = i ◦ j(a) = a
(identifying a with i(a)), ev1 ◦ C(b, 0) = i ◦ j(b) and ev1 ◦ C(b, 1) = G(b, 1) =
1B(b). �

The next result is a dual of Proposition 2.5.2.

Proposition 2.5.3 Suppose p : X → Y is a fibration and a homotopy
equivalence. Then there exists a homotopy inverse q : Y → X such that

1. p ◦ q = 1Y (i.e. q is a section of p);
2. if q : Y → X is a cofibration, there is a homotopy q ◦ p ∼ 1X relative to

q(Y).

Proof Choose a homotopy inverse r to p, and let H : Y × I → Y be a
homotopy from p ◦ r to 1Y . Consider the lifting problem

Since p is a fibration, the dotted arrow exists, and there is a map Ĥ : Y × I → X
such that Ĥ ◦ i0 = r and p ◦ Ĥ = H. Let q = Ĥ|Y×{1}. Then q is homotopic to r
via Ĥ, and p ◦ q(y) = p ◦ Ĥ(y, 1) = H(y, 1) = 1Y (y).

The second statement follows from condition 2 of Proposition 2.5.2. �

We now have the following result, which will be used in the proof of
Theorem 8.3.2. The first statement is [Str68, Theorems 8 and 9]. We will also
recreate various results from [Str66] in the course of the proof.

Theorem 2.5.4 (The lifting axiom) Consider the lifting problem

where i is a cofibration and p is a fibration.
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1. If either i or p is a homotopy equivalence, then the dotted arrow exists and
makes the diagram commute.

2. If (B, A) is a relative CW complex, i an equivalence, and p a Serre fibration,
then the dotted arrow exists and makes the diagram commute.

Remark 2.5.5 For the reader interested in model categories, the first part of
the following theorem is the verification of the “lifting axiom” for the model
category structure on Top in which the cofibrations and fibrations are as in our
definitions here, and the weak equivalences are the homotopy equivalences.
The second part is quite close to the same thing for the model structure in which
the fibrations are the Serre fibrations and the weak equivalences are the weak
homotopy equivalences, but in this model structure the class of cofibrations is
much smaller than what we call a cofibration here. �

Proof of Theorem 2.5.4 We prove the first statement. The proof of the second
can be found in [Hir15d]. Assume p is a homotopy equivalence. By Proposi-
tion 2.5.3, there exists a homotopy inverse q : Y → X such that p ◦ q = 1Y . Let
H : X × I → X be a homotopy from q ◦ p to 1X . We first show how to construct
a solution to the lifting problem

Here π : B × I → B is the projection, and G(b, 0) = q ◦ h(b) and G(a, t) =
H(g(a), t). The formulas defining G agree on A× {0} and so define a map from
the union. It is straightforward to check that the square commutes. Let us see
how this is related to the original question. Suppose Ĥ : B× I → X is a solution
to this lifting problem, and let k = Ĥ|B×{1}. Then k : B → X satisfies p ◦ k(b) =
h(b) since p◦ Ĥ(b, t) = h(b), and clearly k ◦ i(a) = G(a, 1) = H(g(a), 1) = g(a).
Thus k defines a solution to the original lifting problem.

Now we show how to construct Ĥ. We are now in a situation where p is
a fibration and a homotopy equivalence and ι is the inclusion of a subspace
which is a retract of B × I. Let u : B × I → I be the function given by Proposi-
tion 2.3.10, so that u−1(0) = B × {0} ∪ A × I. Moreover, the remark following
Proposition 2.3.10 tells us that, since i is a cofibration, ι is inclusion of a sub-
space which is a deformation retract of B× I. Let r : B× I → B× {0} ∪A× I be
a retraction, and K : B × I × I → B × I a homotopy from ι ◦ r to 1B×I relative
to B × {0} ∪ A × I. Define K̃ : B × I × I → B × I by
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K̃(b, t, s) =

⎧⎪⎪⎨⎪⎪⎩K(b, t, s/u(b, t)), if s < u(b, t);

K(b, t, 1), if s ≥ u(b, t).

This formula defines a continuous function. Consider now the lifting problem

This diagram commutes since K̃(b, t, 0) = K(b, t, 0) = ι ◦ r(b, t) and p ◦ G =
h ◦ π. Since p is a fibration, a solution K̂ : B × I × I → X to this lifting
problem exists. We have K̂(b, t, 0) = G ◦ r(b, t) and p ◦ K̂ = h ◦ π ◦ K̃. If we let
Ĥ(b, t) = K̂(b, t, u(b, t)) : B× I → X, then p ◦ Ĥ(b, t) = h ◦ π ◦ K̃(b, t, u(b, t)) =
h ◦ π ◦ K(b, 1) = h ◦ π(b, 1) = h ◦ π(b, t). Moreover, Ĥ ◦ ι = G since K was a
homotopy relative to B× {0} ∪ A× I. This completes the construction of Ĥ and
this part of the proof.

Now assume i is a homotopy equivalence. By Proposition 2.5.2, there exists
a homotopy inverse j : B → A for i such that j ◦ i = 1A, and i ◦ j is homotopic
to 1B relative to A.

Let h̃ = g ◦ j. Then the diagram

commutes. Now we will deform this lift to fit in the original diagram, using
the fact that i ◦ j ∼ 1B relative to A, which implies h ◦ i ◦ j ∼ h relative to A.
Choose a homotopy H : B × I → Y from h ◦ i ◦ j to h relative to A. Consider
the lifting problem

where G is the map g ◦ j on B × {0} and the composition of the projection
A × I → A with the map g : A → X. This gives a well-defined map on the
union since j(a) = a for a ∈ A, and the square commutes. A solution Ĥ to this
lifting problem then provides the desired solution ĥ to the lifting problem in the
statement of the theorem by letting ĥ = Ĥ|B×{1}. But Ĥ exists using precisely
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the same argument as above, as we are in the same situation: ι is the inclusion
of a subspace which is a deformation retract of B × I, and p is a fibration. The
same argument as above proves that the desired extension exists. �

2.6 Connectivity of spaces and maps

The notion of connectivity of spaces and maps will be used heavily through-
out this book, so we review it here. Our definitions are all on the level of
spaces, for reasons we will elaborate on in Remark 2.6.8. Important algebraic
consequences of connectivity will be discussed as well.

Definition 2.6.1 A space X is k-connected if, for all −2 ≤ i ≤ k, every map
S i → X extends to a map Di+1 → X. If this is true for all k, we say X is
∞-connected or weakly contractible.

The above definition makes sense for i = −1,−2 since S i in both those cases is
defined to be the empty set. If X is k-connected then it is also j-connected for
every j ≤ k. Every non-empty space is (−1)-connected, path-connected spaces
are 0-connected, and simply-connected spaces are 1-connected. Every space,
including the empty set, is (−2)-connected. The proof of the following can be
found, for example, in [Hat02, p. 346].

Proposition 2.6.2 The following are equivalent for an integer k ≥ 0.

1. X is k-connected.
2. For all i ≤ k, every map S i → X is homotopic to a constant map.
3. For all 0 ≤ i ≤ k, πi(X, x0) = 0 for all basepoints x0.

Remark 2.6.3 In line with the last part of the previous result, it is also true
that the homology of a k-connected space X vanishes up to dimension k. This
is because, by Theorem 1.3.7, we can assume X is a CW complex, and the
k-connectedness implies by Theorem 2.6.26 that we can assume that it has a
single 0-cell and no others cells of dimension < k + 1. Recalling the setup for
cellular homology groups from the discussion preceding Theorem 1.4.10, this
immediately implies that the cellular homology groups vanish up to dimension
k, and hence, by Theorem 1.4.10, that the reduced singular homology groups
also vanish up to dimension k. �

We also have the notion of the connectivity of a pair (X, A).
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Definition 2.6.4 A pair (X, A) is k-connected if every map of pairs
(Di, ∂Di) → (X, A) is homotopic relative to ∂Di to a map Di → A for all
−1 ≤ i ≤ k. We say the pair is ∞-connected if this is true for all integers k.

If X is non-empty and k-connected, and ∗ is any point in X, then the pair (X, ∗)
is k-connected. The pair (X, ∅) is (−1)-connected if X is non-empty and ∞-
connected if X is empty.

The above definition is equivalent to saying that the relative homotopy
groups πi(X, A, x0) are trivial for 0 < i ≤ k and the map π0(A) → π0(X) is
surjective.3

To relate the relative and absolute cases we have the following result, the
verification of which we leave to the reader.

Proposition 2.6.5 A space X is k-connected if and only if the pair (CX, X) is
(k + 1)-connected.

Definition 2.6.6 A map f : X → Y is k-connected if hofibery( f ) is (k − 1)-
connected for all y ∈ Y .

It follows that every map is (−1)-connected. As with the connectivity of spaces,
if f is k-connected, then it is j-connected for every j ≤ k. If k = ∞, that is,
f is k-connected for all k, then f is a weak equivalence. This follows from
Proposition 2.6.17.

Remark 2.6.7 We have mentioned already that there are two notions of
equivalence we care about: homotopy equivalence and weak equivalence.
Weak equivalence is the natural limiting notion of a k-connected map, and
so we prefer this notion in settings where we pay attention to connectivites
of maps. The most important instances are in Theorems 4.2.1 and 4.2.2 and
their generalizations, Theorems 6.2.1 and 6.2.2. However, the notion of homo-
topy equivalence is useful because dualizing certain arguments is usually more
straightforward or even trivial when using homotopy equivalences whereas this
is not always the case with weak equivalences. A key instance of this, which
we have already discussed, is Proposition 1.3.2, which stands in contrast with
Proposition 1.3.5. �

Remark 2.6.8 Some authors define k-connectivity of a space in terms of the
homotopy groups, but we prefer the space-level version given above, especially

3 We have separated the case of π0 since, as mentioned in Section 1.3, we do not believe there is
a satisfactory definition of relative π0.
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since we give a space-level definition of k-connected map. The standard alge-
braic definition is to say that f : X → Y is k-connected if for all x ∈ X the
induced map f∗ : πi(X, x) → πi(Y, f (x)) is an isomorphism for all 0 ≤ i < k and
onto when i = k. Unfortunately this is not quite correct if X is empty. We have
noted above that every pair (Y, ∅) is (−1)-connected, and so the map ∅ → Y
should be a (−1)-connected map, but according to our algebraic definition the
map ∅ → Y is ∞-connected for logical reasons. �

Proposition 2.6.9 The following are equivalent for a map f : X → Y of
spaces.

1. f is k-connected.
2. The pair (Mf , X), where Mf is the mapping cylinder of f , is k-connected.

Either of these conditions implies the following one for any space X, and if X
is non-empty, the following condition is equivalent to the ones above.

3. For every x ∈ X the induced map f∗ : πi(X, x) → πi(Y, f (x)) is an
isomorphism for 0 ≤ i < k and a surjection for i = k.

In particular, if Y = ∗, then by Proposition 2.6.5 f : X → ∗ is k-connected
if and only if X is (k − 1)-connected. If instead X = ∗ and f : ∗ → Y is a
cofibration, then f is k-connected if and only if Y is k-connected.

Remark 2.6.10 If f : X → Y is a cofibration, the equivalence of parts 1
and 2 says that the pair (Y, X) is k-connected if and only if f is k-connected.
In particular, (CX, X) is (k + 1)-connected if and only if X → CX is (k +
1)-connected if and only if X is k-connected. �

Sketch of proof of proposition 2.6.9 The equivalence of the first two items is
trivial since the mapping cylinder is homotopy equivalent to Y (the codomain
of the map in question). The third item is obtained from the remarks preceding
the statement of this result. The “in particular” parts follow from conditions 1
and 2 directly. We leave it to the reader to fill in the details. �

Example 2.6.11 (Connectivity of a loop space) Let X be a based space. If
X is k-connected, then ΩX is (k − 1)-connected. To prove this requires 2(a) of
Proposition 3.3.11 applied to the square
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and using that the map ∗ → X is k-connected by Proposition 2.6.9. �

Proposition 2.6.12 Let f : X → Y be a map. If f is k-connected, then
hocofiber( f ) is k-connected.

Proof The proof uses a result from the next chapter: apply 2(a) of Proposi-
tion 3.7.13 by considering the square

�

Example 2.6.13 (Connectivity of a suspension) Suppose X is k-connected.
Then ΣX is (k + 1)-connected. This is true for both based and unbased sus-
pensions. In any case, X → ∗ is (k + 1)-connected by Proposition 2.6.9, and
by Example 2.4.11, hocofiber(X → ∗) � ΣX, so ΣX is (k + 1)-connected by
Proposition 2.6.12. �

The converse to Proposition 2.6.12 is not true. For example, Remark 3.7.14
gives an example of a space X for which the homotopy cofiber of X → ∗,
which is ΣX, is ∞-connected, yet the map X → ∗ is only 0-connected. Nev-
ertheless, there are instances when the connectivity of the homotopy cofiber
does say something about the connectivity of the map. In particular, we have
the following result, which will be proved later as Proposition 4.3.6.

Proposition 2.6.14 Suppose X is simply-connected and f : X → Y is a map
such that hocofiber( f ) is k-connected. Then f is k-connected.

The following basic result regarding compositions and connectivity will be
used and generalized in Propositions 3.3.20 and 5.4.14. We omit the proof, as
it amounts to unravelling the definitions.

Proposition 2.6.15 Given maps f : X → Y and g : Y → Z, we have the
following:
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1. If f , g are k-connected, then g ◦ f is k-connected.
2. If f is (k − 1)-connected and g ◦ f is k-connected, then g is k-connected.
3. If g is (k + 1)-connected and g ◦ f k-connected, then f is k-connected.

Note that these results are also true when k = ∞.

Proposition 2.6.16 Suppose p : X → Y is a fibration, and let Fy = p−1(y) be
a fiber. Then we have the following:

1. If Y is k-connected and Fy is k-connected for all y, then X is k-connected.
2. If X is k-connected and Fy is (k − 1)-connected for all y, then Y is

k-connected.
3. If X is k-connected and Y is (k + 1)-connected, then Fy is k-connected for

all y.

Proof For k ≥ 2, the statements follow from the long exact sequence of
homotopy groups associated to p. For k < 2, separate arguments are needed,
but at most they involve simple uses of the homotopy lifting property of p. �

We will use the following characterization of weak equivalences in the proof
of Lemma 3.6.14, which is an essential component of the theory of homotopy
cocartesian squares.

Proposition 2.6.17 A map f : X → Y is k-connected if and only if, for all
relative CW pairs (Z, A) of dimension ≤ k, the dotted arrow in the diagram

(2.6.1)

exists and satisfies G ◦ i = h and f ◦ G ∼ g relative to A. Futhermore, this is
true if and only if it holds for all pairs (Dj, ∂Dj) with −1 ≤ j ≤ k.

Moreover, f is a weak equivalence if and only if this is true for all relative
CW pairs (Z, A), if and only if this is true for all pairs (Di, ∂Dj) for all −1 ≤ j.

As a reminder, recall that Proposition 1.4.4, an important result which char-
acterizes weak equivalences in terms of homotopy groups, follows from the
above.

Before we embark on the proof of this result, we will need to state some
definitions and prove some lemmas that were given to us by Phil Hirschhorn;
they will be used in one part of the proof.
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For k ≥ 1 we let S k
+ and S k− be the upper and the lower hemispheres of S k,

respectively, i.e. the sets of points (x1, . . . , xk+1) on the sphere where xk+1 ≥ 0
or xk+1 ≤ 0. Also let p+ : S k

+ → Dk and p− : S k− → Dk be the homeomorphisms
given by forgetting the last coordinate of the point on the hemisphere.

Definition 2.6.18 If X is a space and α, β : Dk → X agree on ∂Dk, let
d(α, β) : S k → X be the map that is α ◦ p+ : S k

+ → X on the upper hemisphere
of S k and β ◦ p− : S k− → X on the lower hemisphere of S k. We call this the
difference map of α and β.

Lemma 2.6.19 Let X be a space and let α : Dk → X be a map. For any
[g] ∈ πk

(
X, α(p0)

)
(where p0 is the basepoint of Dk), there is a map β : Dk → X

such that β|∂Dk = α|∂Dk and [d(α, β)] = [g] in πk
(
X, α(p0)

)
.

Proof The basepoint of Dk is a strong deformation retract of Dk, and so any
two maps Dk → X are homotopic relative to the basepoint. Thus, the restriction
of g to S k

+ is homotopic relative to the basepoint to α ◦ p+. Since the inclusion
S k
+ ↪→ S k is a cofibration, there is a homotopy of g to a map h : S k → X such

that h|S k
+
= α ◦ p+; we let β = h ◦ (p−1− ), and we have h = d(α, β). �

Lemma 2.6.20 (Additivity of difference elements) If X is a space and
α, β, γ : Dk → X are maps that agree on ∂Dk, then in πk

(
X, α(p0)

)
(where p0 is

the basepoint of Dk) we have

[d(α, β)] + [d(β, γ)] = [d(α, γ)].

(If k = 1, addition should be replaced by multiplication.)

Proof Let T k = S k ∪ Dk, where we view Dk as the subset of Rk+1 given by

Dk =
{
(x1, x2, . . . , xk+1) : x2

1 + x2
2 + · · · x2

k ≤ 1, xk+1 = 0
}
.

Then T k is a CW complex that is the union of the k-cells S k
+, S k−, and Dk, which

all share a common boundary. We let t(α, β, γ) : T k → X be the map such that

t(α, β, γ)|S k
+
= α ◦ p+,

t(α, β, γ)|Dk = β,

t(α, β, γ)|S k− = γ ◦ p−.

Thus,

● the composition S k → T k t(α,β,γ)−−−−−→ X is d(α, γ);

● the composition S k → S k
+ ∪ Dk ⊂ T k t(α,β,γ)−−−−−→ X (where the first map is the

identity on S k
+ and is p− on S k−) is d(α, β);
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● the composition S k → Dk ∪ S k− ⊂ T k t(α,β,γ)−−−−−→ X (where the first map is p+ on
S k
+ and is the identity on S k−) is d(β, γ).

The basepoint of Dk is a strong deformation retract of Dk, and so the map
β : Dk → X is homotopic relative to the basepoint to the constant map to α(p0)
(where p0 is the common basepoint of S k and Dk). Since the inclusion Dk ↪→
T k is a cofibration, there is a homotopy of t(α, β, γ) relative to the basepoint to a
map t̂(α, β, γ) that takes all of Dk to the basepoint α(p0). If T k → S k∨S k is the

map that collapses Dk to a point, then t̂(α, β, γ) factors as T k → S k ∨ S k
αβ∨βγ−−−−→

X, where αβ : S k → X is homotopic to d(α, β) and βγ : S k → X is homotopic
to d(β, γ). Since the composition

S k ↪→ T k → S k ∨ S k αβ∨βγ−−−−→ X

is homotopic relative to the basepoint to d(α, γ), we have [d(α, γ)] = [d(α, β)]+
[d(β, γ)] if k > 1 and [d(α, γ)] = [d(α, β)] · [d(β, γ)] if k = 1. �

Lemma 2.6.21 If X is a space, α, β : Dk → X maps that agree on ∂Dk, and
[d(α, β)] the identity element of πk(X), then α and β are homotopic relative to
∂Dk.

Proof Since [d(α, β)] is the identity element of πk(X), there is a map
h : Dk+1 → X whose restriction to ∂Dk+1 is d(α, β). View Dk × I as the cone on
∂(Dk × I) = (Dk × {0}) ∪ (S k−1 × I) ∪ (Dk × {1}) with vertex at the center of
Dk × I. Let p : Dk × I → Dk+1 be the map that

● on Dk × {0} is the composition Dk × {0} pr−→ Dk (p+)−1

−−−−→ S k
+ ↪→ Dk+1;

● on Dk × {1} is the composition Dk × {0} pr−→ Dk (p−)−1

−−−−→ S k− ↪→ Dk+1;
● on S k−1 × I is the composition S k−1 × I

pr−→ S k−1 ↪→ S k
+ ∩ S k− ⊂ Dk+1;

● takes the center point of Dk × I to the center point of Dk+1;
● is linear on each straight line connecting the center point of Dk × I to its

boundary.

Here pr is the projection map. The composition Dk × I
p−→ Dk+1 h−→ X is then a

homotopy from α to β relative to ∂Dk. �

Proof of Proposition 2.6.17 We first argue that showing the statement for all
CW pairs (Z, A) is equivalent to showing it for all pairs (Dj, ∂Dj). Clearly
(Dj, ∂Dj) is an example of a CW pair so one direction is trivial.

For the other direction, let Z j denote the relative j-skeleton; recall that this is
A together with all the cells of Z of dimension ≤ j, and that Z−1 = A. Let Aj be
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the indexing set for the j-cells of Z j, and let aα : ∂Dj → Z j−1 be the attaching
map for the cell labeled by α ∈ Aj. To begin, we have the lifting problem

where g0 = g. For each α ∈ A0 we have an induced lifting problem

where g0,α is the restriction of g0 to the 0-cell D0 labeled by α. A solution G0,α

exists for all α since −1 ≤ j ≤ k and X → Y is k-connected. We then define a
solution to the lifting problem for g0|Z0 above by letting G0 : Z0 → X be equal
to G0,α on the cell labeled by α. This map is continuous because relative CW
complexes have the weak topology. The weak topology is also the reason that
the homotopies f ◦ G0,α ∼ go,α glue together to a homotopy (relative to A)
f ◦G0 ∼ g0|Z0 .

The inclusion Z0 → Z is a cofibration, and so the homotopy from
g0|Z0 : Z0 → Y to f ◦G0 can be extended to a homotopy (relative to A) H0 : Z×
I → Y from g0 to a map g1 : Z → Y , and we then have the lifting problem

(i.e. the solid arrow square commutes on the nose). For each α ∈ A1 we have
an induced lifting problem

where g1,α is the restriction of g1 to the 1-cell D1 labeled by α. A solution G1,α

exists for all α since −1 ≤ j ≤ k and X → Y is k-connected. We then define a
solution to the lifting problem for g1|Z1 above by letting G1 be equal to G1,α on
the cell labeled by α. This map is continuous because relative CW complexes
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have the weak topology. The weak topology is also the reason that the homo-
topies f ◦G1,α ∼ g1,α glue together to a homotopy (relative to Z0) f ◦G1 ∼ g1|Z1 .

The inclusion Z1 → Z is a cofibration, and so the homotopy from
g1|Z1 : Z1 → Y to f ◦G1 can be extended to a homotopy (relative to Z0) H1 : Z×
I → Y from g1 to a map g2 : Z → Y , and we then have the lifting problem

For each α ∈ A2 we have an induced lifting problem

where g2,α is the restriction of g2 to the 2-cell D2 labeled by α. A solution G2,α

exists for all α since −1 ≤ j ≤ k and X → Y is k-connected. We then define a
solution to the lifting problem for g2|Z2 above by letting G2 be equal to G2,α on
the cell labeled by α. This map is again continuous because relative CW com-
plexes have the weak topology, and the weak topology is also again the reason
that the homotopies f ◦G2,α ∼ g2,α glue together to a homotopy (relative to Z1)
f ◦ G2 ∼ g2|Z2 . The inclusion Z2 → Z is a cofibration, and so the homotopy
from g2|Z2 : Z2 → Y to f ◦ G2 can be extended to a homotopy (relative to Z1)
H2 : Z × I → Y from g2 to a map g3 : Z → Y .

For the general step, we have defined the map G j−1 : Z j−1 → X and a map
g j : Z → Y such that we have the lifting problem

For each α ∈ Aj we have an induced lifting problem
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where g j,α is the restriction of g j to the j-cell Dj labeled by α. A solution
G j,α exists for all α since −1 ≤ j ≤ k and X → Y is k-connected. We then
define a solution to the lifting problem for gj|Z j above by letting G j be equal
to G j,α on the cell labeled by α. This map is continuous because relative CW
complexes have the weak topology and, for the same reason, the homotopies
f ◦G j,α ∼ g j,α glue together to a homotopy (relative to Z j−1) f ◦G j ∼ g j|Z j . The
inclusion Z j → Z is a cofibration, and so the homotopy from g j|Z j : Z j → Y to
f ◦ G j can be extended to a homotopy (relative to Z j−1) Hj : Z × I → Y from
g j to a map g j+1 : Z → Y .

Having completed those steps for all j ≥ 0, the maps G j determine a map
G : Z → X (the restriction of G to Zj is G j) and we have G ◦ i = h. We define
a homotopy H : Z × I → Y from f ◦G to g by letting

H(z, t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

H0(z, 2t), if 0 ≤ t ≤ 1/2;

H1(z, 4t − 2), if 1/2 ≤ t ≤ 3/4;

H2(z, 8t − 6), if 3/4 ≤ t ≤ 7/8;

H3(z, 16t − 14), if 7/8 ≤ t ≤ 15/16;
...

Hn
(
z, 2n+1t + (2 − 2n+1)

)
, if 1 − 1

2n ≤ t ≤ 1 − 1
2n+1 ;

...

Hj(z, 1), if t = 1 and z ∈ Z j − Z j−1.

We must show that H is continuous. Since Z × I has the weak topology with
respect to the subspaces Z j×I, it is sufficient to show that the restriction of H to
each Z j × I is continuous, and since each homotopy Hj is a homotopy relative
to Z j−1, the restriction of H to Z j × I is the concatenation of only finitely many
homotopies. That is, the restriction of H to Z j× I is continuous when restricted
to each element of a finite cover of Z j× I by closed sets, and is thus continuous.

So now we want to show that f is k-connected if and only if, in the solid
arrow diagram

(2.6.2)

the dotted arrow exists for −1 ≤ j ≤ k and makes the upper triangle com-
mute on the nose and the lower triangle up to homotopy. First assume f is
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k-connected. We will first show that G as in the above diagram exists for j = k
as follows:

The map h defines an element [h] of πk−1(X) (at some basepoint) such that
f∗
(
[h]

)
= 0 in πk−1(Y). Let F be the homotopy fiber of f . Since πk−1(F) = 0

(as f is k-connected), the long exact homotopy sequence of a fibration implies
that [h] = 0 in πk−1(X), and so there is a map γ : Dk → X such that γ ◦ i = h.

The maps fγ : Dk → Y and g : Dk → Y agree on ∂Dk, and so there is a dif-
ference map d( fγ, g) : S k → X (see Definition 2.6.18) that defines an element
α of πk(Y). Since πk−1(F) = 0, the long exact homotopy sequence implies that
there is an element β of πk(X) such that f∗(β) = −α (if k > 1) or f∗(β) = α−1

(if k = 1), and Lemma 2.6.19 implies that we can choose a map G : Dk → X
that agrees with γ : Dk → X on ∂Dk such that [d(G, γ)] = β in πk(X). Thus,
Gi = h, and since [d( fG, fγ)] = [ f ◦ d(G, γ)] = f∗[d(G, γ)] = f∗(β) = −α
(if k > 1) or α−1 (if k = 1), Lemma 2.6.20 implies that [d( fG, g)] =
[d( fG, f jγ)] + [d( fγ, g)] = −α + α = 0 (with a similar statement if k = 1).
Thus Lemma 2.6.21 implies that fG is homotopic to g relative to ∂Dk.

The above argument only used that πk−1(F) = 0 and can be repeated for any
j ≤ k since π j(F) = 0 as f is k-connected.

Now assume G as in (2.6.2) exists for j ≤ k and it makes the upper tri-
angle commute and the lower triangle commute up to homotopy. We want to
show f is k-connected. Let g : S j−1 → hofibery( f ) be a (based) map. The goal
is to prove that it extends to a map of all of Dj provided that j is at most
k. let F = hofibery( f ), and let i be the inclusion F → X. The composition
f (i(g)) : S j → Y maps all of S j to y, and so trivially extends to the disk. Then
we have the diagram

where the top map is i(g) and the bottom map the trivial extension of f (i(g)) to
the disk Dj. By hypothesis a lift exists with the property that the upper triangle
commutes on the nose. This means that [i(g)] is equal to zero in π j−1(X), so [g]
is in the kernel of the map π j−1(F) → π j−1(X). Now we just need to argue that
π j−1(X) → pi j−1(Y) is injective to prove this kernel is in fact equal to π j−1(F)
by the long exact sequence of homotopy groups. But this is easy since the exis-
tence of the lifting solution above shows that the induced map on homotopy
groups is injective (if ∂Dj → X has null-homotopic composite to Y , then it is
also null-homotopic itself).
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Now we wish to prove that f is a weak equivalence if and only if, in the dia-
gram (2.6.1) (or diagram (2.6.2)), the lift G exists, making the top and bottom
triangle commute and commute up to homotopy, respectively.

For one direction, suppose G exists and set A = ∅, so Z is a CW complex.
Existence of the lift shows that [Z, X] → [Z,Y] is surjective. To get injectivity
we proceed similarly, this time with Z = Z × I and A = Z × ∂I as the relative
CW pair. Thus by definition f is a weak equivalence.

For the other direction, consider the square

Since f is a weak equivalence, there is a lift H of g but it need not agree with
the given lift h to X on ∂Di. To fix this, both H ◦ i and h are maps ∂Di → X.
They are equal in [∂Di,Y] (i.e. [ f ◦ H ◦ i] = [ f ◦ h]) since the bottom triangle
commutes up to homotopy (but, again, not necessarily relative to ∂Dj). But
f is a weak equivalence so [∂Di, X] = [∂Di,Y], and hence H ◦ i and h are
homotopic. Glue this homotopy to the lift Dj → X (essentially make a slightly
larger disk) to produce a lift H′ which makes the upper triangle commute on
the nose, while the lower triangle still commutes up to homotopy (essentially
since the larger disk can be retracted to the smaller one). �

A very closely related and useful result, called the Homotopy Extension Lifting
Property (HELP), is the following. We omit the proof, but the reader can fill it
in using the techniques from the last proof (or see [AGP02, Theorem 5.1.26]).

Theorem 2.6.22 (Homotopy Extension Lifting Property (HELP)) Suppose
f : X → Y is k-connected, and (Z, A) is a relative CW complex of dimension
≤ k, with ι : A → Z the inclusion. Let G : Z → Y and g : A → X be maps,
and suppose there exists a homotopy h : A × I → Y (represented by ht : A → Y
using Theorem 1.2.7) such that h0 = G ◦ ι and h1 = f ◦ g. That is, the diagram

commutes up to homotopy. Then there exists a map g̃ : Z → X and a homotopy
h̃ : Z × I → Y (̃ht : Z → Y) such that g̃ ◦ ι = g, h̃ ◦ ι = ht for all t, h̃0 = G, and
h̃1 = f ◦ g̃.
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Remark 2.6.23 An immediate consequence of Theorem 2.6.22 is that the
inclusion map ι : A → Z for a relative CW complex (Z, A) is a cofibra-
tion. To see this, let f = 1X : X → X in the statement, and use the
definition of cofibration. This gives an alternative argument for the result in
Example 2.3.7. �

We end this section with a discussion (without proofs) of some results on cel-
lular approximation. As we mentioned in Section 1.3, it is often useful to have
a CW structure on a space, and in that case a connectivity assumption can be
translated into an assumption about the dimension of various cells. We state
results from [Hat02] without proof.

Let f : (X, A) → (Y, B) be a map of pairs of relative CW complexes. We say
f is cellular if f (Xk) ⊂ Yk for all k. The proof of the following can be found,
for example, in [AGP02, Theorem 5.1.44].

Theorem 2.6.24 Every map f : (X, A) → (Y, B) of pairs of relative CW
complexes is homotopic relative to A to a cellular map.

The reader may also see [May99, Section 10.5] for a proof. The key ingre-
dients are Theorem 2.6.22 and the following lemma, which we will prove
using transversality (see Example A.2.16). We will utilize a related argument
in one version of our proofs of the Blakers–Massey Theorems (4.2.1 and 6.2.1).
For a proof using purely homotopy-theoretic techniques, see [Hat02, Lemma
4.10 and Corollary 4.12]. This is a non-trivial and delicate result which says
that maps of CW complexes may be assumed to behave well with respect to
dimension.

Lemma 2.6.25 The inclusion map X → X ∪ ek for attaching a k-cell to a
space X is (k − 1)-connected.

Finally, we may translate a hypothesis about connectivity into one about
dimensions for relative CW pairs. For the proof of the following, see for
example [Hat02, Corollary 4.16].

Theorem 2.6.26 Suppose (X, A) is a k-connected relative CW pair. Then
there exists a relative CW pair (Z, A) such that Z − A contains only cells
of dimension greater than k and a weak equivalence f : (Z, A) → (X, A)
restricting to the identity on A.

Remark 2.6.27 Related to Remark 2.6.3, if X is non-empty and k-connected,
then Hi(X) = 0 for i < k + 1. To see why, note that if ∗ ∈ X is any point, then
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(X, ∗) is k-connected, and Theorem 2.6.26 implies that there is a CW pair (Z, ∗)
weakly equivalent to (X, ∗) such that Z has cells in dimension > k. It follows
immediately that Hi(X) � Hi(Z) = 0 for i < k + 1. �

2.7 Quasifibrations

Proposition 2.2.2 says that every map of spaces can be turned into a fibra-
tion. However, in many instances the fiber of the replacement, which is the
homotopy fiber, is difficult to analyze. Quasifibrations are maps where the fiber
and the homotopy fiber are weakly equivalent. Such a map need not satisfy
the homotopy lifting property (see Example 2.1.19, to be discussed further
below), but it still gives rise to a long exact sequence in homotopy. More-
over, unlike fibrations, quasifibrations are not stable under pullback. This will
lead to two related notions – local quasifibration and universal quasifibration
– which we will also explore here. Roughly speaking, a local quasifibration
is one which is stable under restriction (pullback by an injective map), and a
universal quasifibration is one which is stable under arbitrary pullbacks. Our
modest contribution here is to introduce the notion of a universal quasifibra-
tion, due to Tom Goodwillie, and compare it with the notions of quasifibration
and local quasifibration.

Quasifibrations were first defined by Dold and Thom [DT58] who used them
in the proof of their famous theorem relating homotopy groups of the infinite
symmetric product on a space X and the homology of X; we state this result at
the end of the section, and prove a mild generalization of it in Theorem 5.10.5
(the generalization is mild in the sense that it uses the classical Dold–Thom
Theorem). Properties of quasifibrations were further studied and generalized in
[Har70, May90, Sta68], among other places. They have been used in a variety
of situations, ranging from the above-mentioned Dold–Thom Theorem and the
classical Dold–Lashof construction [DL59] to a recent proof of the Bott peri-
odicity [AP99, Beh02]. A more modern reference is Appendix A of [AGP02]
where a detailed account of quasifibrations and a proof of the Dold–Thom
Theorem is given. Another reference is the article [May90] by May.

We will find a use for quasifibrations in one version of the proof of Theorem
4.2.2, in one version of the proof of Theorem 5.10.8, as well as in the proof of
Theorem 8.6.11 (Quillen’s Theorem B).

Definition 2.7.1 A map f : X → Y is called a quasifibration if, for all y ∈ Y ,
the canonical map

fibery( f ) −→ hofibery( f )

from (2.2.2) is a weak equivalence.
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An immediate consequence is that a quasifibration f : X → Y is surjective
onto those components in the image of the induced map f∗ : π0(X) → π0(Y).
Since both the fiber and homotopy fiber of any map f : X → Y are empty over
components not in the image of f , we may as well assume our quasifibrations
are surjective, but this is not necessary.

Remark 2.7.2 For the reader who is familiar with homotopy pullback
squares or who has already looked at Chapter 3, Definition 2.7.1 is equivalent
to saying that f is a quasifibration if and only if, for all y ∈ Y , the (pullback)
square

is a homotopy pullback square. �

A fibration is a quasifibration. This is immediate from examining the long
exact sequence (the same proof as Proposition 2.7.4), but the converse is not
true since a quasifibration need not possess the homotopy lifting property, as
illustrated in the following example.

Example 2.7.3 (Quasifibration but not a fibration) Recall from Exam-
ple 2.1.19 the space L = I1∨I2, the wedge of two intervals along 0, and the map
p : L → I which maps I1 to 0 and I2 by the identity map. We have seen that it
is not a fibration, but it is a quasifibration since its fibers and homotopy fibers
are all contractible. Alternatively, we can use Proposition 2.7.4 below. �

A quasifibration can also be thought of as a map which gives rise to a long
exact sequence in homotopy, just like a fibration does (see Theorem 2.1.13).

Proposition 2.7.4 A map f : X → Y is a quasifibration if and only if, for all
y ∈ Y and x ∈ f −1(y), there is a long exact sequence

· · · −→ πi( f −1(y), x) −→ πi(X, x) −→ πi(Y, y) −→ · · ·

Proof Consider the diagram (where we omit the basepoints for simplicity)



82 1-cubes: Homotopy fibers and cofibers

If f is a quasifibration, the exactness of the bottom row follows immediately
from Theorem 2.1.13, the commutativity of the diagram, and the fact that the
vertical maps are all isomorphisms. If the bottom row is exact, then the iso-
morphism πi(fibery( f )) → πi(hofibery( f )) follows from the five lemma (this is
true even for i = 0, 1, where the five lemma does not apply), and this implies f
is a weak equivalence. �

Corollary 2.7.5 For Y contractible, f : X → Y is a quasifibration if and
only if the inclusion of the fiber into the total space f −1(y) → X is a weak
equivalence for all y ∈ Y.

We can use this immediately to give an example of a map which is not a quasfi-
bration, but whose cone is. In turn this gives an example of how quasifibrations
are not stable under restriction, and therefore under pullback.

Example 2.7.6 (Restriction of a quasifibration need not be a quasifibration)
We will utilize the topological sine curve to build various examples later, so
we introduce it now as an example of a map which is not a quasifibration but
whose cone is. This also gives a way to see the usefulness of Corollary 2.7.5.

Let X = {(x, y) ∈ R2 : 0 ≤ x ≤ 1, y = sin(1/x) if x > 0, y ∈ [−1, 1] if x =
0} be the topological sine curve, topologized in the usual way as a subset of
the plane. Let p : X → I be the projection map p(x, y) = x. This is not a
quasifibration by Corollary 2.7.5 since the fibers of p are either a point or an
interval, and in either case contractible, while the target I is contractible but X
is not (it is not path-connected).

Let Cp : CX → CI denote the cone of the map p: Cp(x, y, t) = (x, t). Then
Cp is a quasifibration by Corollary 2.7.5, as the fibers of Cp are contractible
since the fibers of p are, and CX is contractible because it is a cone.

This shows that the restriction of a quasifibration need not be a quasifibra-
tion, for if we restrict the quasifibration Cp to the base of the cone, we obtain
the map p : X → I described above, which we have seen is not a quasifibra-
tion. So the restriction, and hence pullback, of a quasifibration need not be a
quasifibration. We will build on this example below in Example 2.7.15. �

We also have the following useful “patching criterion” for quasifibrations due
to Dold and Thom [DT58, Section 2] which says that quasifibrations can be
recognized locally. An exposition of the proof can be found in [Hat02, Lemma
4K.3] (that lemma actually lists two other equivalent conditions characterizing
quasifibrations). Also see [May90, Corollary 2.3].
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Proposition 2.7.7 A map f : X → Y is a quasifibration if and only if Y is a
union of open sets U1 and U2 such that the restrictions

f −1(U1) −→ U1,

f −1(U2) −→ U2,

f −1(U1 ∩ U2) −→ U1 ∩ U2

are quasifibrations.

Definition 2.7.8 For f : X → Y and U ⊂ Y , we call U distinguished with
respect to f if f −1(U) → U is a quasifibration.

Proposition 2.7.9 ([AGP02, Theorem A.1.17]) Suppose f : X → Y is a map,
and Y = ∪∞i=1Yi, Yi ⊂ Yi+1, is Hausdorff with the union topology. If each Yi is
distinguished with respect to f , then f is a quasifibration.

Proof By Proposition 2.7.4 it is enough to show that the induced map

f∗ : πn(X,fibery( f )) → πn(Y, y)

is an isomorphism for all n. For each i, let Xi = f −1(Yi) and let fi : Xi → Yi

be the induced map. Our hypothesis says all maps fi are quasifibrations. Since
S n is compact for all n, any map g : S n → Y factors through some Yi for
some i (this uses the Hausdorff assumption). Using Proposition 2.7.4, we have
isomorphisms

( fi)∗ : πn(Xi,fibery( fi)) −→ πn(Yi, y)

for all i, and our given element [g] ∈ πn(Yi, y) therefore arises from an ele-
ment of πn(Xi,fibery( fi)) under this isomorphism, and then gives rise to an
element of πn(X,fibery( f )) by the map of pairs (Xi,fibery( fi)) → (X,fibery( f )).
This proves that f∗ is surjective. The proof that it is injective is similar: given
g0, g1 : (Dn, ∂Dn) → (X,fibery( f )) such that [ f (g0)] and [ f (g1)] are equal in
πn(Y, y), there is a (based) homotopy S n × I → Y from f (g0) to f (g1). Once
again we use compactness to deduce that this map factors through some Yj. �

Remark 2.7.10 For the argument above, it is enough if the inclusion Yi →
Yi+1 is relatively T1, meaning that for any open set U ⊂ Yi and any point
y ∈ Yi+1 \Yi there exists an open set W ⊂ Yi+1 such that U ⊂ W and y � W. See
[DI04, Appendix A] for more details. �
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The following technical lemma, the proof of which we omit, is due to Dold
and Thom [DT58]. We give a different reference in the statement of the lemma
since that one is in English. The result gives conditions under which we can
“thicken” a distinguished set. We will use it in the proof of Theorem 8.6.11.

Lemma 2.7.11 ([DL59, Lemma 1.3]) Let f : X → Y be a map, let Y0 ⊂ Y
be distinguished, and let X0 = f −1(Y0). Suppose there exist fiber-preserving
deformations Ht : X → X and ht : Y → Y such that the diagram

commutes and such that

● H0 = 1X, Ht(X0) ⊂ X0, H1(X) ⊂ X0;
● h0 = 1Y , ht(Y0) ⊂ Y0, h1(Y) ⊂ Y0.

Assume furthermore that for all y ∈ Y and all i ≥ 0 the induced map

(H1)∗ : πi( f −1(y)) → πi( f −1(h1(y))

is an isomorphism. Then f is a quasifibration.

Proposition 2.7.7 leads to the following definition, coined “local quasifi-
bration” by Tom Goodwillie. This is actually the original definition of a
quasifibration given by Dold and Thom in [DT56].

Definition 2.7.12 We say a map f : X → Y a local quasifibration if there
exists a cover of distinguished open setsU = {Ui}i∈I of Y such that for all y ∈ Y
and all open neighborhoods V of y there exists some Ui ∈ U so y ∈ Ui ⊂ V .

A local quasifibration is one for which there exists sufficiently small open
neighborhoods of each point over which f is a quasifibration. That is, there
exists a basis for the topology of Y such that the restriction of f to each open set
in the basis is a quasifibration. Local quasifibrations behave well with respect
to restriction to arbitrary open sets.

Proposition 2.7.13 If f : X → Y is a local quasifibration and W ⊂ Y is open,
then the restriction f −1(W) → W is a local quasifibration.
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Proof With the cover U = {Ui}i∈I from the definition of local quasifibration,
take a subcover consisting of those Ui such that Ui ⊂ W for all i. It is clear that
this covers W since every open neighborhood of y ∈ W contains some member
of the cover, and such a cover contains sufficiently small open neighborhoods
of each point by definition. �

For the proof of the following, see, for example, [AGP02, Theorem A.1.2].

Theorem 2.7.14 (Local fibration is a quasifibration) If f : X → Y is a local
quasifibration, then it is a quasifibration.

The converse of this result is false:

Example 2.7.15 (Quasifibration but not local quasifibration) In Example
2.7.6, we showed that the map Cp : CX → CI is a quasifibration. However,
it is not a local quasifibration, essentially for the same reasons given in that
example. To see this, we simply need to fatten things up into an open set.
Namely, let 0 < ε < 1 be given and let U = I × [0, ε) ⊂ CI. Then the nat-
ural map Cp−1(U) → U cannot be a quasifibration by Corollary 2.7.5. The
fibers of this map are still contractible, the base is still contractible, but the
total space is homotopy equivalent to X, the topological sine curve, which
is not path-connected. Hence by Proposition 2.7.13, Cp cannot be a local
quasifibration. �

Finally we have the notion of a universal quasifibration, which is a map
whose pullback by an arbitrary map is always a quasifibration. Recall the
notion of a pullback from the discussion prior to Proposition 2.1.16 (or see
Definition 3.1.1).

Definition 2.7.16 A map f : X → Y is a universal quasifibration if, for every
map g : Z → Y of any space Z to Y , the pullback map

Z ×Y X −→ Z

is a quasifibration.

Specializing to the case where Z is an open subset of Y and g is the inclu-
sion we see that a universal quasifibration is a local quasifibration. The case
where Z = Y and g = 1Y shows that a universal quasifibration is a quasifibra-
tion without reference to the fact that a local quasifibration is a quasifibration.
We have seen that not every quasifibration is a local quasifibration. It is also
true that not every local quasifibration is a universal quasifibration, since local
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quasifibrations are only stable under restriction to open sets, not arbitrary
pullbacks.

Example 2.7.17 (Local quasifibration but not a universal quasifibration)
Once again we will build our example from the topological sine curve. Let
X = {(x, y, z) ∈ R3 : 0 ≤ y ≤ x ≤ 1, z = sin(1/x) if x > y,−1 ≤ z ≤ 1 if x = y},
and let Y = {(x, y) ∈ R2 : 0 ≤ y ≤ x ≤ 1}. Topologize both X and Y as
subspaces of R3 with the usual topology. Let f : X → Y be the projection
f (x, y, z) = (x, y). The map f is a quasifibration by Corollary 2.7.5. First, it is
easy to check that the fibers of f are all contractible (they are either a single
point or an interval), and the base Y is clearly contractible, so it is enough to
show that X is contractible. To see this, let XΔ ⊂ X be the subset consisting of
those (x, y, z) such that x = y. Then XΔ is a deformation retract of X, since the
family of maps ht : X → X given by ht(x, y, z) = (x, xt + y(1 − t), z) gives the
desired homotopy relative to XΔ between the identity of X and the retraction
X → XΔ sending (x, y, z) to (x, x, z).

We claim that f is a local quasifibration but not a universal quasifibration.
The latter claim is easy: let A = {(x, 0) ∈ Y}, and A → Y be the inclusion.
Then A ×Y X = f −1(A) → A is not a quasifibration, as we have already seen in
Example 2.7.6.

Now we must show that f is a local quasifibration. By definition it is enough
to show that f −1(B) → B is a quasifibration for all open sets B which are the
intersection of an open ball inR2 with Y . Clearly any such B is contractible, and
since the fibers of f are either a single point or an interval (and in either case
contractible), it is enough by Corollary 2.7.5 to show that f −1(B) is (weakly)
contractible. There are two cases: (0, 0) � B and (0, 0) ∈ B. In the first case it
is easy to verify that f −1(B) is contractible (it is the union, along a contractible
set, of the graph of a function over a contractible set with another contractible
set). In the second case, this amounts to a microscopic version of checking that
f itself is a quasifibration. That is, the same proof as used above shows f −1(B)
deformation retracts to a contractible subspace. �

The following result says that to check if a map is a universal quasifibration it
suffices to check the pullback over disks.

Proposition 2.7.18 Suppose a map f : X → Y satisfies the property that, for
every map D → Y of a closed disk of any dimension, the projection D ×Y X →
D is a quasifibration. That is, for every ∗ ∈ D, the inclusion ∗ ×Y X → D ×Y X
is a weak equivalence. Then f is a universal quasifibration.
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Remark 2.7.19 A weaker version of this statement appears in [Goo92,
p. 316], where the conclusion is that f is a quasifibration. Since the proof of
this result is omitted in [Goo92], we provide it here. �

Proof of Proposition 2.7.18 Let g : Z → Y be a map. We are to show that
the canonical map p : Z ×Y X → Z is a quasifibration. We may assume Z
is connected since a map is a quasifibration if and only if it is a quasifibra-
tion over each path component of the target. Write E = Z ×Y X, and let
F = fiberz0 (E → Z), be the fiber. It is enough to show that the induced
map p∗πn(E, F, x0) � πn(Z, z0) for all basepoints z0 and x0 where x0 ∈ F and
p(x0) = z0. It is most convenient here to speak of homotopy groups based on
cubes and their boundaries rather than disks. For this map to be an isomor-
phism means that for all n ≥ 0 and for all maps a : (In, ∂In) → (Z, z0) there
is a map (unique up to homotopy) â : (In, ∂In) → (E, F) such that p ◦ â = a.
Writing In = In−1 × I, we may choose this lift to be the constant map at x0 on
the contractible subspace In−1 × {0} ∪ ∂In−1 × I ⊂ In−1 × I, and we are led to
the lifting problem

This lifting problem lives over In−1×I in the sense that if we can find the dotted
arrow in the diagram

then we have our desired lift. But such a lift must exist because we assume that
f is a quasifibration when pulled back over disks, and In−1 × I � Dn. �

Example 2.7.20 (Universal quasifibration but not fibration) Additionally, not
every universal quasifibration is a fibration. In this case, we can use Exam-
ple 2.7.3, which we claim is a universal quasifibration by Proposition 2.7.18.
Let p : L → I be the map from Example 2.7.3, and let g : D → I be a map
from a disk to the interval. It is enough to check that D×I L is contractible. Let
A = g−1(0), and assume that over each a ∈ A the fibers of D ×I L → D are



88 1-cubes: Homotopy fibers and cofibers

intervals. Define a deformation retraction of D×I L to D by shrinking all of the
intervals over A simultaneously to zero. �

Summarizing, we have strict containments

{fibrations} � {universal quasifibrations} � {local quasifibrations}
� {quasifibrations}.

We also have a “patching” result for universal quasifibrations, due to Tom
Goodwillie. This result shows that universal quasifibrations are local in a
strong sense.

Proposition 2.7.21 Suppose f : X → Y is a map and there exists an open
cover U = {Ui}i∈I of Y such that

f |Ui : f −1(Ui) −→ Ui

is a universal quasifibration for all Ui. Then f is a universal quasifibration.

Proof By Proposition 2.7.18, f is a universal quasifibration if for every closed
disk D of any dimension and any map g : D → Y , the projection D ×Y X → D
is a quasifibration. Pulling back the coverU to a cover g−1U = {g−1(Ui)}i∈I , we
obtain a cover of D with the property that the restriction of the map D ×Y X →
D to each member of the cover is a universal quasifibration. Thus we may also
assume Y = D is a disk. By compactness of D we may also assume the open
cover is finite.

Note that if U,V are open sets in the cover, then since f −1(U) → U is a
universal quasifibration, f −1(U∩V) → U∩V is a quasifibration (and evidently
a universal quasifibration), and by Proposition 2.7.7, f −1(U ∪V) → U ∪V is a
quasifibration as well. In fact, f −1(U∪V) → U∪V is a universal quasifibration,
since every open W ⊂ U ∪ V can be written as a union W = WU ∪ WV ,
where WU = W ∩ U and W ∩ V = WV . Once again, since f −1(U) → U and
f −1(V) → V are universal quasifibrations, f −1(WU) → WU , f −1(WV ) → WV

and f −1(WU ∩WV ) → WU ∩WV are quasifibrations, and hence so is f −1(W) →
W by Proposition 2.7.7.

Now we induct on the size k of the cover U = {Ui}ki=1. The case k = 1
is trivial. The base case of the induction, k = 2, is Proposition 2.7.7 and the
argument presented above. Assuming the result for all covers of size less than
k, let U = {Ui}ki=1 be given. Letting U′ = {U′

i }k−1
i=1 be the open cover defined

by U′
i = Ui for i < k − 1 and U′

k−1 = Uk−1 ∪ Uk, we are done by induction if
f −1(Uk−1 ∪Uk) → Uk−1 ∪Uk is a universal quasifibration. But this is precisely
the argument presented above. �
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We close by briefly discussing the Dold–Thom Theorem. A detailed proof
can be found, for example, in [AGP02, Appendix A]. A slight generalization
(or reinterpretation) will be given in Theorem 5.10.5.

Definition 2.7.22 For a space X, let SPn(X) be the quotient of Xn by the
action of Σn which permutes the coordinates of Xn. This is called the nth
symmetric product of X. Let [x1, . . . , xn] denote the equivalence class of a
tuple (x1, . . . , xn) ∈ Xn. Suppose now that X is based with basepoint ∗. We
have inclusion maps SPn(X) → SPn+1(X) given by sending [x1, . . . , xn] to
[x1, . . . , xn, ∗]. Then one can define the space

SP(X) =
⋃

n

SPn(X)

called the infinite symmetric product of X.

Note that a map f : X → Y induces a map SP( f ) : SP(X) → SP(Y) (in the
language of Chapter 7, the construction SP(−) is functorial). Moreover, if f is
a weak equivalence, then SP( f ) : SP(X) → SP(Y) is also a weak equivalence.

One version of the Dold–Thom Theorem is as follows.

Theorem 2.7.23 (Dold–Thom Theorem) Let A → X be a map, and let C =
hocofiber(A → X). The map SP(X) → SP(C) is a quasifibration with fiber
SP(A).

A consequence of this theorem is that the homotopy groups of SP(X) satisfy
excision. In fact, there is an isomorphism

πi(SP(X)) � H̃i(X;Z) (2.7.1)

for all i. Some authors call this statement the Dold–Thom Theorem; see for
example [Hat02, Theorem 4K.6]. Moreover, one could define homology in this
way, a point of view taken in [AGP02]. More about Dold–Thom and excision
will be said in Theorem 5.10.5 and Example 10.1.7 in the context of homotopy
calculus of functors.

We should remark that the isomorphism in (2.7.1) is not at all immedi-
ate from the statement of Theorem 2.7.23. We have not even defined a map
between the homotopy groups of the infinite symmetric product and the sin-
gular homology of X. Ignoring this, we noted after Theorem 1.4.9 that the
reduced homology groups of a finite CW complex are characterized by four
properties, three of which homotopy groups share. The one they do not share
is excision, and the Dold–Thom Theorem says that homotopy groups of infi-
nite symmetric products do satisfy excision (see especially our reformulation,
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Theorem 5.10.5). From this perspective it is enough to define a map between
the homotopy groups of the infinite symmetric product and the reduced homol-
ogy groups, and then prove this map is an isomorphism when X is a point
(which is easy to check).



3

2-cubes: Homotopy pullbacks and pushouts

In this chapter, we take a close look at square diagrams. In many ways, this is
the most essential chapter in this book since most of the main ideas involved
in understanding general cubical diagrams are built from and best illustrated
by those for squares. In fact, we wish to emphasize that most of the results
about cubes can, via combinatorics and bookkeeping, be reduced to results
about squares. Moreover, many results which do not appear to be results about
squares have proofs which are simplest with the language and techniques we
develop here.

This chapter is where we will first encounter and use homotopy (co)limits,
but the material presented here can be read independently of the material from
Chapter 8.

We cannot hope to learn much about spaces (0-cubes) without knowing
something about maps of spaces (1-cubes). This chapter makes the case for
the next obvious statement: If we want to learn more about maps of spaces, we
are going to need to know something about maps of maps of spaces. These are
exactly the square diagrams

or 2-cubes S, which have the additional convenient symmetry in that they can
be regarded as a map of maps in two ways:

(W → X) −→ (Y → Z)

and

(W → Y) −→ (X → Z).

91
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It will be natural even in this chapter to think of a “map of a map of maps” as
a three-dimensional cube (both Proposition 3.3.24 and Proposition 3.7.29 use
maps of squares), but such generalizations to higher-dimensional cubes will be
explored in more detail in Chapter 5.

We saw in the previous chapter that one purpose of replacing an arbitrary
map by a fibration or cofibration is to obtain a homotopy invariant fiber or
cofiber (the replacement also yields lifting properties etc., but we are deliber-
ately focusing just on homotopy invariance). We have also seen in Propositions
2.1.16 and 2.3.15 that fibrations are stable under pullback and cofibrations
under pushout. That is, if p : Y → Z is a fibration and f : X → Z is a map,
there is a naturally induced fibration over X, and dually if i : W → X is a cofi-
bration and g : W → Y is a map, there is a naturally induced cofibration with
domain Y .

The aforementioned properties of (co)fibrations are best organized by con-
sidering the “pullback” or “pushout” of a diagram consisting of three spaces
and two maps. These are diagrams

S0 = (X −→ Z ←− Y)

and

S1 = (X ←− W −→ Y).

Each of these is a subdiagram of the square S above. The subscripts 0 and 1
are meant to indicate that the “first” and “last” spaces in the square S have
been removed, respectively. We will thus also refer to S0 and S1 as punctured
squares.

Other notation which we will employ here, and to a greater extent in Chapter
5, was already introduced in Section 1.1. We often index the spaces in the
square by the subsets S of {1, 2} (without writing brackets {−} or commas) and
will thus also consider squares

and their relevant subdiagams

X0 = (X1 −→ X12 ←− X2)

and

X1 = (X1 ←− X∅ −→ X2).
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There are two natural situations in which square diagrams and the two relevant
subdiagrams appear. For the first, suppose p : Y → Z is a fibration (or a fiber
bundle, vector bundle, etc.), and let f : X → Z be a map, so that there is a

diagram X
f→ Z

p← Y . One often considers the pullback of the fibration p by
the map f ; that is, one forms the space p∗Y = {(y, x) ∈ Y × X : p(y) = f (x)}
which naturally fits into a commutative square diagram

For the second, consider the situation of building a CW complex by attach-
ing one cell at a time. At some intermediate stage, there is a space X and a
map f : S n−1 → X (the attaching map for that n-cell), and we form the space

X ∪ f Dn. That is, we begin with a diagram X
f← S n−1 → Dn, where the right

map is the inclusion of the boundary of the disk, and we form a commutative
square diagram

The spaces p∗E and X ∪ f Dn above are examples of pullbacks (limits) and
pushouts (colimits) respectively.

We are thus led to study pullbacks and pushouts of two important subdia-
grams S0 and S1 of a general commutative square S. For a generic square,
neither the limit of S0 nor the colimit of S1 is a homotopy invariant of the
spaces in the diagram (examples are given later) so the immediate goal in Sec-
tions 3.2 and 3.6 will be to replace them by something which is invariant under
homotopy equivalences, namely the homotopy pullback (homotopy limit) and
homotopy pushout (homotopy colimit), respectively. Of further interest is the
comparison between W and the homotopy pullback of S0 and between Z and
the homotopy pushout of S1. This is the subject of Sections 3.3 and 3.7.

Many examples and applications homotopy pullbacks and pushouts will be
given in Sections 3.3 and 3.7. We will give further examples of their interac-
tion in Section 3.9. The most interesting applications, however, will have to
wait until Chapter 4 where we use the Blakers–Massey (or Triad Connectivity)
Theorem for further comparisons between homotopy pushouts and pullbacks.
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3.1 Pullbacks

The notion of a pullback was already discussed in the last chapter, immediately
before Proposition 2.1.16. We give a formal definition and more careful study
here.

Definition 3.1.1 The pullback, or limit of the diagram S0 = (X
f→ Z

g← Y),

denoted by lim(X
f→ Z

g← Y) or lim(S0), is the subspace of X × Y defined as

lim(X
f→ Z

g← Y) = {(x, y) : f (x) = g(y)}.
We may also write X ×Z Y for this space and call it the fiber product of X and
Y over Z.

The terminology “limit” and the notation “lim” is used because the pullback
is an example of a more general notion of limit, as will be shown in Exam-
ple 7.3.13. Related to this is the fact that the pullback enjoys a “universal
property”: any map from a space W into the diagram S0 factors through
the limit. That is, suppose we are given a space W and maps g′ : W → X,
f ′ : W → Y , and h′ : W → Z such that h′ = f ′ ◦ g = g′ ◦ f . The universal
property means that there is a unique dotted arrow in the diagram

(3.1.1)

that makes the resulting diagram commute. It is easy to see that u(w) =
(g′(w), f ′(w)). As we mentioned in Remark 2.1.17, the fact that fibrations are
preserved under pullback is an immediate consequence of this universal prop-
erty of the limit, and as such it allows us to build new fibrations by mapping
into the base of an existing one. We will study universal properties and limits in
much more detail in Section 7.3; the pullback appears again in Example 7.3.13.

We now give a few examples of familiar constructions which are naturally
described as pullbacks.

Example 3.1.2 (Product as pullback) Given spaces X and Y , their product
can be thought of as a pullback:
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lim(X → ∗ ← Y) � X × Y

(we could write “=” instead of “�” and take this as the definition of the
product.) �

Example 3.1.3 The pullback of the diagram X
1X→ X

1X← X is X. In fact, the
canonical map

X −→ lim(X
1X→ X

1X← X)

given by x �→ (x, x) is a homeomorphism. (This also follows from Proposi-
tion 3.1.9 below.) �

Example 3.1.4 Let f : X → Y be a map. The pullback of the diagram Y
1Y→

Y
f← X is X. The projection

lim(Y
1Y→ Y

f← X) → X

given by (y, x) �→ x is a homeomorphism. �

Example 3.1.5 (Fiber as pullback) Let Y be a space, y0 ∈ Y , and f : X → Y
a map. The map

fibery0 ( f ) −→ lim({y0} ↪→ Y
f← X)

x �−→ (y0, x)

is a homeomorphism. Indeed, by definition, fibery0 ( f ) = f −1(y0), while the
limit is the set of all pairs (y0, x) such that f (x) = y0. These are clearly the
same set. �

Example 3.1.6 (Mapping path space as pullback) Let f : X → Y be a map.
Then

Pf = lim(X
f→ Y

ev0← Map(I,Y))

is precisely the mapping path space of f from Definition 2.2.1. �

Example 3.1.7 (Homotopy fiber as pullback) There is a homeomorphism

hofibery(X → Y) � lim(Pf → Y ← {y0}),
where Pf → Y is the evaluation of the path at time t = 1. This follows directly
from the definition of the homotopy fiber. �
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Example 3.1.8 (Pullback bundle) If p : X → Y is a fibration (or a fiber bundle
or a vector bundle), then for any map f : Z → Y , the map Z ×Y X → Z is a
fibration (or a fiber bundle or a vector bundle). The fact for fibrations was
established in Proposition 2.1.16. We leave the rest to the interested reader. �

Proposition 2.1.16 says that fibrations are preserved by pullback. So are two
other important classes of maps.

Proposition 3.1.9 (Pullbacks preserve injections and homeomorphisms) Let
p : X → Y be an injection (resp. homeomorphism). Then for any map
f : Z → Y, the induced map p∗ : X ×Y Z → Z is also an injection (resp.
homeomorphism).

Proof If p∗(x, z) = p∗(x′, z′) then z = z′ and p(x) = f (z) = p(x′) so x = x′ and
thus injectivity is preserved under pullback. If p : X → Y is a homeomorphism
with inverse q : Y → X, the map Z → X ×Y Z given by z �→ ((q ◦ f )(z), z) is
clearly a homeomorphism inverse to the canonical map X ×Y Z → Z. �

In the case where the map f : Z → Y is itself an injection, the first part of this
result simply states the obvious fact that the restriction of an injective map is
injective. Pullbacks do not, however, preserve homotopy equivalences. This is
precisely the defect of limits/pullbacks that we aim to fix in the next section.

Sometimes a map of punctured squares

(meaning three vertical maps XS → X′
S that make the above diagram commute)

which is an objectwise fibration (meaning XS → X′
S is a fibration for each S )

induces a fibration of limits. This hypothesis is not quite strong enough in
general,1 but the hypotheses given below are enough.2 We will require this
result in the proof of Theorem 8.6.1; it is not used elsewhere in this section.

Proposition 3.1.10 Let S0 = (X1 → X12 ← X2) and S′0 = (X′
1 → X′

12 ←
X′

2) be punctured squares in which the maps X2 → X12 and X′
2 → X′

12 are

1 Let X′12 = ∗ and let all other spaces be a space X, with all maps the identity or the unique map
to a point. Then the map of limits is the diagonal inclusion of X in X × X, which is rarely a
fibration.

2 These hypotheses might seem strange, but they really just say that a certain diagram is fibrant.
This will be discussed in Section 8.4.2.
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fibrations, and S0 → S′0 a map of punctured squares such that XS → X′
S

are fibrations for all S . Further assume X2 → lim(X12 → X′
12 ← X′

2) is a
fibration.3 Then the induced map limS0 → limS′0 is a fibration.

Proof In the lifting problem

we use the canonical projections to obtain the lifting problem

which can be solved since X1 → X′
1 is a fibration. We then use the maps

X1 → X12 and X′
1 → X′

12 to use this solution to give a compatible one for the
induced lifting problem for X12 → X′

12. Now consider the induced diagram and
lifting problem

where P = lim(X12 → X′
12 ← X′

2). By above, we already have a solution to the
lifting problem for the outer square, as depicted by the solid diagonal arrow.
Since the left square is a pullback, the dotted arrow exists by the universal
property of P. Finally, as X2 → P is a fibration, the evident lifting problem

has a solution. All of this amounts to a solution to the original lifting problem.
�

The following result will be used in Chapter 8 to prove that homotopy limits
preserve fibrations of diagrams. Formally it is similar to Theorem 2.5.4. In fact,
we will use the proof of Theorem 2.5.4 to prove it.
3 This hypothesis implies the map X2 → X′2 is a fibration.
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Proposition 3.1.11 (Pullback corner map) Suppose i : A → B is a cofibration
and p : X → Y is a fibration. Then the canonical map, the pullback corner map,

Map(B, X) −→ lim
(
Map(A, X) → Map(A,Y) ← Map(B,Y)

)
is a fibration which is a homotopy equivalence if either i or p is a homotopy
equivalence.

Proof Let P = lim
(
Map(A, X) → Map(A,Y) ← Map(B,Y)

)
, and consider

the lifting problem

Using Theorem 1.2.7, the map g corresponds to a map g̃ : B × Z × {0} → X,
and h corresponds to maps h̃A : A × Z × I → X and h̃B : B × Z × I → Y such
that the diagram

commutes. Since h̃A and g̃ agree on their common intersection A × Z × {0},
together they define a map c : A× Z × I ∪A×Z×{0} B× Z × {0} → X, and we may
then consider the lifting problem

A solution H̃ to this lifting problem gives rise to the desired solution Ĥ : Z ×
I → Map(B, X) using Theorem 1.2.7, which solves the original lifting problem.
To see why a solution exists, we observe that Proposition 2.3.9 tells us that
i× 1Z : A×Z → B×Z is a cofibration since i is, and so there exists a retraction
r : B× Z × I → A× Z × I ∪ B× Z × {0} by Proposition 2.3.10. We then proceed
exactly as in the proof of Theorem 2.5.4 to show that a solution to this lifting
problem exists (at the start of that proof, we found ourselves in precisely the
situation we are in now).
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Now consider the diagram

If p is a homotopy equivalence, then so are the induced maps
p∗ : Map(B, X) → Map(B,Y), and p∗ : Map(A, X) → Map(A,Y). By Propo-
sition 2.1.23, the map P → Map(B,Y) is a homotopy equivalence. It follows
that Map(B, X) → P is a homotopy equivalence. The argument assuming i is a
homotopy equivalence is analogous. �

Remark 3.1.12 The above proof fails if we assume i or p to be only a weak
equivalence, since if i (resp. p) is a weak equivalence it does not necessar-
ily follow that i∗ (resp. p∗) is a weak equivalence, by the remark following
Proposition 1.3.5. �

In light of the diagram (3.1.1), for a given commutative square it makes sense
to ask whether its “initial” space is in fact the pullback of the rest of the
diagram. More formally, we have the following.

Definition 3.1.13 We say a square diagram

is cartesian (or categorically cartesian, or a pullback, or a strict pullback) if
the canonical map

W −→ lim(X
f→ Z

g← Y)

w �−→ ( f ′(w), g′(w))

is a homeomorphism.

Example 3.1.14 Examples 3.1.2, 3.1.3, 3.1.4, and 3.1.5 can all be recast in
the language of cartesian squares. Respectively, they say that the squares
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are cartesian. (In the last square, ∗ → Y is the inclusion of the basepoint
y0 ∈ Y .) �

The notion of “cartesianness” of a square is one of the central themes of this
book.

3.2 Homotopy pullbacks

The fiber of a map is not homotopy invariant, and neither is the pullback of a
diagram S0 = (X → Z ← Y), since Example 3.1.5 says the fiber of a map is an
example of a limit. Here is another more concrete example.

Example 3.2.1 (Pullback not homotopy invariant) Consider the pullback of
the inclusion maps of the endpoints of the unit interval [0, 1]. The pullback of
the diagram

{0} −→ [0, 1] ←− {1}
is empty. But [0, 1] � ∗, and the pullback of

{0} −→ ∗ ←− {1}
is a single point.

In fact, there is even a map of diagrams from the first to the second (by which
we mean that there are maps of corresponding spaces that commute with the
maps in the diagrams) which is a homotopy equivalence objectwise, but the
map of pullbacks is not. �

However, if our generic diagram S0 = X → Z ← Y has the property that one
of the maps is a fibration, then the pullback is homotopy invariant. We will
establish this in Corollary 3.2.15. As a special case, consider X = ∗ and Y → Z
a fibration – this is now simply Theorem 2.1.20; the fibers of a fibration are
homotopy invariant. An essential result in this direction is that the property of
being a homotopy equivalence is preserved by pullback of a fibration. This was
the content of Proposition 2.1.23, which we restate below as Proposition 3.2.3
for convenience using the language introducted in this chapter.
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Remark 3.2.2 In the proof of Proposition 3.2.3/Proposition 2.1.23, we gave
separate arguments for homotopy equivalence and weak equivalence. In light
of Theorem 1.3.7, Theorem 1.3.10 and the remarks following, the reader may
wonder why we worry about the distinction between the two at all. The reason
is that everything in this and the previous section will be dualized in Sections
3.5 and 3.6 for pushouts and homotopy pushouts. Arguments such as those in
the proof of Proposition 2.1.23 (3.2.3) above, which utilize the lifting prop-
erty together with a homotopy inverse, dualize in a straightforward manner.
The same cannot be said about the analog of the more algebraically flavored
arguments which utilize the long exact sequence of a fibration, such as Propo-
sition 3.3.18. The difficulty here is that the dual of the long exact sequence
of a fibration is algebraically a homological, not a homotopical, object. More-
over, there is a stronger notion of duality between fibrations and cofibrations
when the notion of equivalence is homotopy equivalence, and we exploit this
at various points in the text. �

Proposition 3.2.3 (Restatement of Proposition 2.1.23) Suppose p : Y → Z is
a fibration and f : X → Z is a homotopy (resp. weak) equivalence. Then the
canonical projection

lim(X
f→ Z

p← Y) −→ Y

(x, y) �−→ y

is a homotopy (resp. weak) equivalence. That is, if in the cartesian square

p is a fibration and f is a homotopy (resp. weak) equivalence, then the

canonical projection lim(X
f→ Z

p← Y) −→ Y is a homotopy (resp. weak)
equivalence.

To make a homotopy invariant limit for an arbitrary diagram

S0 = (X
f→ Z

g← Y),

one idea is to change one of f or g into a fibration as discussed in Section 2.2
and then take the pullback. This works perfectly well, and is often how the
homotopy pullback is defined in the literature. However, we will give a more
symmetric and equivalent definition below which at least visually does not
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Figure 3.1 A picture of a point (x, α, y) in the homotopy pullback.

replace any of the spaces X,Y, or Z. We will discuss the equivalence of various
models in Proposition 3.2.5 that this model is equivalent to replacing a map by
a fibration and then taking the pullback.

Definition 3.2.4 The homotopy pullback, or homotopy limit, or homotopy

fiber product of the diagram S0 = (X
f→ Z

g← Y), denoted by holimS0 or

holim(X
f→ Z

g← Y), is the subspace of X × Map(I,Z) × Y consisting of

{(x, α, y) : α(0) = f (x), α(1) = g(y)}.

A picture of the homotopy pullback is given in Figure 3.1.
The terminology “homotopy limit” and the notation “holim” is used because

the homotopy pullback is an example of a homotopy limit, as we shall see in
Example 8.2.8.

There are canonical maps

(3.2.1)

This may seem unusual, since every space which maps to X and Y in a way
that is compatible with the maps f and g to Z is supposed to factor through
limS0. However, while the outer square and the two triangles commute, the
inner square does not commute (but it does up to homotopy). Nevertheless this
is something like the universal property that the limit enjoys. That said, we do
not want to work with diagrams that commute up to homotopy.

The homotopy pullback of X → Z ← Y can be expressed in a num-
ber of ways as an ordinary pullback. The proof of the following is clear by
inspection.
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Proposition 3.2.5 The map

lim(Pf
p→ Z

g← Y) −→ holim(X
f→ Z

g← Y)

((x, α), y) �−→ (x, α, y)

is a homeomorphism. In fact, the following five spaces are homeomorphic:

● holim(X
f→ Z

g← Y);
● lim(Pf → Z

g← Y);

● lim(X
f→ Z ← Pg);

● lim(Pf → Z ← Pg);

● lim
(

lim(X
f→ Z

ev0← ZI) −→ ZI ←− lim(Y
g→ Z

ev1← ZI)
)
.

Remark 3.2.6 We will not have much use for the last of these in this chapter,
but it is the closest of all to how we will define general homotopy limits in
Chapter 8. �

From now on, we will freely use any of the objects appearing in Proposi-

tion 3.2.5 as models for the homotopy pullback of the diagram S0 = (X
f→

Z
g← Y).
Here are some examples of homotopy pullbacks; we will encounter many

more throughout this chapter.

Example 3.2.7 We have that

holim(X → ∗ ← Y) � X × Y

and

holim(X
1X→ X

1X← X) � X.

Both are easy to argue from the definition; in the second square a homotopy

inverse to the natural map X → holim(X
1X→ X

1X← X) is given by (x, α, x′) �→
α(1/2). Alternatively, one could use Proposition 3.3.5 for both and refer to
Examples 3.1.2 and 3.1.3. �

Example 3.2.8 (Homotopy fiber as homotopy pullback) For a map f : X →
Y and {y0} → Y the inclusion of a basepoint, we have a homeomorphism

holim({y0} → Y
f← X) � hofibery0 ( f ).

This is immediate from the definitions. Thus Examples 2.2.9 and 2.2.10 could
be viewed as examples of homotopy pullbacks. �
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Example 3.2.9 (Mapping path space as homotopy pullback) Let f : X → Y
be a map. We have a natural homeomorphism

holim(X
f→ Y

1Y← Y) � Pf

given by sending (x, γ, y) to (x, γ). Since X is a deformation retract of Pf , we
then have a homotopy equivalence

holim(X
f→ Y

1Y← Y) � X. �

Example 3.2.10 (Loop space as homotopy pullback) As a special case of the
last example, in conjunction with Example 2.2.9, we have for a space X with
basepoint x0 a homeomorphism

holim({x0} −→ X ←− {x0}) � ΩX.

Explicitly, a point in the homotopy pullback is a triple (x0, α, x0) where α : I →
X satisfies α(0) = α(1) = x0. This defines a based quotient map α′ : S 1 =

I/∂I → X. �

Example 3.2.11 (Free loop space as homotopy pullback) If Δ : X → X × X
is the diagonal map Δ(x) = (x, x), then we have a homeomorphism

holim(X
Δ−→ X × X

Δ←− X) � LX,

where LX = Map(S 1, X) is the free loop space on X (see Example 1.2.6).
To see why, we note that a point in the homotopy limit is a triple (x, γ, x′)
where γ = (γ1, γ2) : I → X × X satisfies γ(0) = (x, x) and γ(1) = (x′, x′). We
associate to this data the map S 1 → X given by γ1 ∗ γ−1

2 , where ∗ denotes
path multiplication, and S 1 is identified with the quotient space I � I/ ∼,
where the copies of 0 (resp. 1) are identified. This defines the required
homeomorphism. �

Now we establish the homotopy invariance of the homotopy pullback. It is
the dual of what is known as the “gluing lemma” (see Theorem 3.6.13). Our
proof dualizes the proof of Theorem 3.6.13 we learned from Rognes [Rog].
The remainder of the section is devoted to deducing various consequences of
this result.

Theorem 3.2.12 (The matching lemma) Suppose we have a commutative
diagram
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where the vertical arrows are homotopy (resp. weak) equivalences. Then the
induced map

holim(X
f→ Z

g← Y) −→ holim(X′ f ′→ Z′
g′← Y ′)

(x, γ, y) �−→ (eX(x), eZ ◦ γ, eY (y))

is a homotopy (resp. weak) equivalence.

Proof We deal with the case of homotopy equivalence first. The main idea is
to factor the map to create two subproblems. Consider the related diagram

It is enough to show the homotopy limit of the first row is homotopy equivalent
to the homotopy limit of the second, and the homotopy limit of the second is
homotopy equivalent to the homotopy limit of the third.

Let us deal with the first two rows first. Our task is to find a homotopy
inverse to the induced map

holim(X → Z ← Y) −→ holim(X → Z′ ← Y).

Choose a homotopy inverse e′Z for eZ and homotopies ht : Z → Z with h0 = 1Z

and h1 = e′Z ◦eZ , and h′t : Z′ → Z′ with h′0 = 1Z′ and h′1 = eZ ◦e′Z . Define a map

holim(X → Z′ ← Y) −→ holim(X → Z ← Y)

by

(x, γ′, y) �−→ (x, (ht ◦ f (x)) ∗ (e′Z ◦ γ′(t)) ∗ (ht ◦ g(y))−1, y),

where ∗ denotes path multiplication and the inverse superscript denotes that the
path is to run backwards. Note first that h1 ◦ f (x) = e′Z ◦ γ′(0) and e′Z ◦ γ′(1) =
(h1 ◦ g)(y), so the expression above defines a path as required. Also note that
at t = 0 we have h0 ◦ f (x) = f (x) and at t = 1 we have h0 ◦ g(y) = g(y),
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Figure 3.2 A homotopy between γ and (ht ◦ f (x)) ∗ (e′Z ◦ eZ ◦ γ(t)) ∗ (ht ◦ g)−1.
In the figure all paths and homotopies have been reparametrized, whereas in the
proof they are not.

so the formula above defines a map to the homotopy pullback. We claim it is
homotopy inverse to the canonical map

holim(X → Z ← Y) −→ holim(X → Z′ ← Y)

which sends (x, γ, y) to (x, eZ ◦ γ, y). Consider the composed map

holim(X → Z ← Y) −→ holim(X → Z′ ← Y) −→ holim(X → Z ← Y)

which is given by

(x, γ, y) �→ (x, (ht ◦ f (x)) ∗ (e′Z ◦ eZ ◦ γ(t)) ∗ (ht ◦ g)−1(y), y).

Figure 3.2 indicates why γ is homotopic relative to its endpoints to (ht ◦ f (x))∗
(e′Z◦eZ◦γ(t))∗(ht◦g(y))−1 using the homotopy ht, and hence why this composed
map is homotopic to the identity. The other composed map is similar, except
that here the natural thing is to construct the homotopy between γ′ and the
resulting path in two steps. First we show as above that the composed path is
homotopic to e ◦ e′ ◦ γ′, and next we use the homotopy h′t to make a homotopy
of e ◦ e′ to the identity on Z.

Next we deal with the second and third rows and seek a homotopy inverse
to the induced map

holim(X → Z′ ← Y) −→ holim(X′ → Z′ ← Y ′).

First we call upon Proposition 3.2.5 and use lim(PeZ◦ f → Z′ ← PeZ◦g) and
lim(Pf ′ → Z′ ← Pg′ ) as models for holim(X → Z′ ← Y) and holim(X′ →
Z′ ← Y ′) respectively. It is enough to show that these are homotopy equivalent.
We have a commutative diagram
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and Corollary 2.1.22 tells us the outer two vertical maps have homotopy
inverses over Z′. It is clear by inspection that this is homotopy inverse to the
map in question.

The argument for weak equivalences is considerably easier. Consider the
diagram

The horizontal arrows are the homeomorphisms described in Proposition 3.2.5.
We will then argue that the right vertical map above is a weak equivalence. First
consider the square

The map of fibers of the vertical maps is a weak equivalence by comparing the
long exact sequences of the fibrations Pf → Z and Pf ′ → Z′ together with the
fact that the horizontal maps are weak equivalences (and using the five lemma).

Consider the square

The map from the fibers of the left vertical map to the fibers of the right vertical
map is a weak equivalence since the fibers of the left (resp. right) vertical map
are weakly equivalent to the fibers of Pf → Z (resp. Pf ′ → Z′). Since the
map Y → Y ′ is a weak equivalence and the vertical maps are fibrations by
Proposition 2.1.16, once again comparing the long exact sequences we see that
the top horizontal map above is a weak equivalence. �

It is useful to know when we can work with the ordinary limit rather than the
homotopy limit, as the space of paths is often unwieldy.
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Proposition 3.2.13 Consider the diagram

X
f−→ Z

g←− Y.

If f or g is a fibration, then the canonical map (see (3.2.1))

lim(X
f→ Z

g← Y) −→ holim(X
f→ Z

g← Y)

is a homotopy equivalence.

Proof Without loss of generality assume f is a fibration. Consider the
diagram

The bottom square is a pullback by Proposition 3.2.5, and by Proposi-
tion 2.1.16 the middle horizontal arrow is a fibration since f is. Since Y → Pg

is a homotopy equivalence, it follows from Proposition 3.2.3 that the top left
vertical arrow is a homotopy equivalence if we can show the top square is a
strict pullback. In this case, we are already implicitly using lim(X → Z ← Pg)
in place of holim(X → Z ← Y). It is straightforward to check that

lim
(

lim(X → Z ← Pg) → Pg ← Y
)
� lim(X → Z ← Y),

as the former consists of those (x, y, γ, y′) such that γ : I → Z satisfies γ(0) =
f (x) and γ(1) = g(y), and furthermore γ = cg(y′) is a constant path, so that the
projection map associating (x, y, γ, y′) with (x, y) defines a homeomorphism
from the space above to lim(X → Z ← Y). �

Remark 3.2.14 To verify that the upper square in the diagram in the above
example is a pullback easily follows from the analog of 1(a) of Proposi-
tion 3.3.20 for strict pullback squares. We leave it to the reader to fill in the
details. �

Thus limits of diagrams X → Z ← Y in which at least one map is a fibration
preserve homotopy equivalences.
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Corollary 3.2.15 Consider the commutative diagram

and suppose that the vertical maps are homotopy (resp. weak) equivalences
and at least one of f , g and at least one of f ′, g′ are fibrations. Then the map

lim(X
f→ Z

g← Y) −→ lim(X′ f ′→ Z′
g′← Y ′)

is a homotopy (resp. weak) equivalence.

Proof Consider the diagram

The horizontal arrows are homotopy (resp. weak) equivalences by Proposi-
tion 3.2.13, and the right vertical arrow is a homotopy (resp. weak) equivalence
by Theorem 3.2.12, and so the left vertical arrow is a homotopy (resp. weak)
equivalence. �

Another consequence of Theorem 3.2.12 is the homotopy invariance of the
mapping path space Pf (recall Definition 2.2.1) of a map f : X → Y under
homotopy of f . Thematically this belongs in the previous chapter, and although
we could have proved it there, we much prefer conceptually the proof we
present here.

Corollary 3.2.16 If f0, f1 : X → Y are homotopic, then there is a homotopy
equivalence

Pf0 � Pf1 .

Proof Suppose F : X × I → Y is a homotopy from f0 to f1. Consider the
commutative diagram

,
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where ι0 and ι1 are the obvious inclusions. The limits of the rows are, from
top to bottom, Pf0 , PF , and Pf1 . Since the evaluation map is a fibration by
Proposition 2.1.7, these limits are equivalent to the homotopy limits by Propo-
sition 3.2.13. Then because all of the vertical maps are homotopy equivalences,
by Theorem 3.2.12 the induced maps in the diagram Pf0 → PF ← Pf1 are
homotopy equivalences. �

Recalling Definition 2.2.3, the definition of the homotopy fiber, we now revisit
Proposition 2.2.7 and give a proof using techniques of this chapter.

Corollary 3.2.17 If f0, f1 : X → Y are homotopic, then, for any y ∈ Y,

hofibery( f0) � hofibery( f1).

Proof Again suppose F : X× I → Y is a homotopy from f0 to f1 and consider
the diagram

The maps ∗ → Y are the inclusion of y in Y , and the other maps are all of
the evident ones. The limit of each row, from top to bottom, is hofibery( f0),
hofibery(F), and hofibery( f1). The limit of each row is homotopy equivalent
to its homotopy limit by Proposition 3.2.13 because the left horizontal maps
are fibrations, and all of the vertical maps are homotopy equivalences using
Corollary 3.2.16. Thus Theorem 3.2.12 implies that the homotopy limits of
the rows are all homotopy equivalent, and hence the limits of the rows are all
homotopy equivalent as well. �

Corollary 3.2.18 For a map f : X → Y and any y1, y2 in the same path
component of Y,

hofibery1 ( f ) � hofibery2 ( f ).

If f is a fibration, then it follows that its fibers are homotopy equivalent.

Proof The proof is essentially the same as in the previous corollary: Let
H : I → Y be a homotopy between two maps ∗1 : ∗ → Y and ∗2 : ∗ → Y with
images y1 and y2, respectively. Let Pi be the mapping path space of ∗i : ∗ → Y ,
so we have a commutative diagram



3.3 Arithmetic of homotopy cartesian squares 111

As in the last proof, the limits of all the rows are homotopy equivalent. But
the limit of the top row is hofibery1 ( f ) and the limit of the bottom row is
hofibery2 ( f ).

The last statement now follows from Proposition 2.2.6. �

3.3 Arithmetic of homotopy cartesian squares

As mentioned in the introduction to this chapter, we will also be interested in
comparing the initial space in a square to the homotopy limit of the rest of it.
This gives us a way to measure how far a square

is from being homotopy cartesian. The natural way to measure this is in the
difference of the homotopy types of W and holim(X→Z←Y). This is simply
the square diagram analog of asking how highly connected a map of spaces is.
To formalize this, recall that there is a canonical map

a(S) : W −→ holim(X → Z ← Y) = holim(S0) (3.3.1)

given by composing the canonical maps W → lim(S0) (see (3.1.1) and the
discussion around it) and lim(S0) → holim(S0) (see discussion following
Definition 3.2.4). We then have

Definition 3.3.1 A square diagram

is

● homotopy cartesian (or ∞-cartesian, or a homotopy pullback) if a(S) is a
weak equivalence;

● k-cartesian if the map a(S) is k-connected.



112 2-cubes: Homotopy pullbacks and pushouts

Remarks 3.3.2

1. If a square is k-cartesian, then it is clearly j-cartesian for all j ≤ k.
2. The second part of the definition clearly generalizes the first since ∞-

connected means the same thing as a weak equivalence by Proposition 1.4.4
(which relies on the characterization of weak equivalences in Proposi-
tion 2.6.17). It is natural to define homotopy cartesian and k-cartesian
squares alongside one another since many of the properties we will develop
in this section hold equally well for both. However, while we will see an
abundance of interesting examples of homotopy cartesian squares in this
chapter, the main examples of k-cartesian squares will have to wait until
Chapter 4, since the Blakers–Massey Theorems will provide us with the
tools to construct them.

3. We remark for the final time on homotopy versus weak equivalence. In
addition to it being the limiting notion of k-connected map, we have cho-
sen weak equivalence in the definition above because we wish to freely
pass between spaces and CW complexes, the latter being a more conve-
nient category of spaces to work with at times because we can exploit the
cell structure. �

Example 3.3.3 Examples 3.2.7–3.2.11 can be recast as statements about
homotopy cartesian squares. Namely, they simply say that the squares

are homotopy cartesian. Most of these examples will be generalized to cubes
in Section 5.4. �

Remarks 3.3.4

1. Several of the squares above are not commutative, for example the square
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What we really mean here is to replace X by Pf , and f by the canonical
map Pf → Y to make an honest commutative square.

2. The squares in the previous example whose homotopy pullbacks are ΩX
and LX are homotopy cartesian but are not cartesian. For example, the pull-
back of ∗ → X ← ∗, where both maps include the basepoint of X is a point
(it is empty if the two maps are distinct). To obtain an equivalent square
which is both cartesian and homotopy cartesian one needs to replace one of
the maps ∗ → X with the mapping path space construction on this inclusion.
More generally we can obtain the space of paths between any two points in
X by a similar construction. �

The following is immediate from Proposition 3.2.13, and is a useful recogni-
tion principle for homotopy cartesian squares.

Proposition 3.3.5 Suppose

is cartesian and X → Z or Y → Z is a fibration. Then the square is homotopy
cartesian.

We now turn to studying the “arithmetic” of homotopy cartesian and k-
cartesian squares, that is, how they interact with themselves and various kinds
of maps. Some consequences and examples will also be given throughout.

To start, the pointwise product of homotopy cartesian squares is homotopy
cartesian. More precisely, we have the following

Proposition 3.3.6 Suppose

are homotopy cartesian. Then the square

is homotopy cartesian. If S1 and S2 are k1-cartesian and k2-cartesian,
respectively, then the square of products is min{k1, k2}-cartesian.
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Proof We prove the homotopy cartesian statement; the k-cartesian version is
essentially the same.

It is clear that W1 × W2 is homotopy equivalent to the product

holim(X1 → Z1 ← Y1) × holim(X2 → Z2 ← Y2).

Since maps of any space to a product are expressed as a pair of maps,

holim(X1 → Z1 ← Y1) × holim(X2 → Z2 ← Y2)

is homeomorphic to

holim(X1 × X2 → Z1 × Z2 ← Y1 × Y2). �

Remark 3.3.7 The homotopy cartesian part of Proposition 3.3.6 can also be
proved using Theorem 3.3.15, essentially because products can be thought of
as homotopy pullbacks. �

In particular, if W1 = X1 = Y1 = Z1 and the maps in the first square above are
all the identity, then we have the following

Corollary 3.3.8 (Products commute with homotopy pullbacks) If

is a homotopy cartesian diagram and V is any space, then

where all maps are induced from the previous diagram using the identity on V,
is homotopy cartesian. Similarly, if S is k-cartesian, so is S × V.

The cubical version is Corollary 5.4.6.
The following result says that the exponential of some homotopy carte-

sian squares is homotopy cartesian. (The reader should compare this with
Proposition 3.9.1, and eventually with Proposition 5.4.7.) Recall the notation
AB = Map(B, A).

Proposition 3.3.9 (Maps and homotopy cartesian squares) Suppose in the
square
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the map W → holim(X → Z ← Y) is a homotopy equivalence (so in particular
S is homotopy cartesian). Then, for any space V, the square

is homotopy cartesian. If S is k-cartesian and V has the homotopy type of a
CW complex of dimension d, then SV is (k − d)-cartesian.

Remark 3.3.10 The first statement of this result is not true if S is just
required to be homotopy cartesian. For example, let W be the space from
Remark 1.3.6. Then the square

is homotopy cartesian, but letting V = W and taking the square of mapping
spaces as in the statement of the result, the three corners other than the upper
left are a point, but the upper left is not path-connected.

However, the first statement could have been given for homotopy carte-
sian squares if the V was assumed to be a CW complex; see the end of
Remark 1.3.6. �

Proof of Proposition 3.3.9 For the first statement, it suffices to prove that
there is a homotopy equivalence

Map
(
V, holim(X → Z ← Y)

)
� holim

(
Map(V, X) → Map(V,Z) ← Map(V,Y)

)
.

First consider the case where Y → Z is a fibration. By Proposition 3.2.13,

holim(X → Z ← Y) � lim(X → Z ← Y).

Moreover, by Proposition 2.1.11 and Proposition 3.2.13 again, we also have a
homotopy equivalence

holim
(
Map(V, X) → Map(V,Z) ← Map(V,Y)

)
� lim

(
Map(V, X) → Map(V,Z) ← Map(V,Y)

)
.
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It is clear that the map

Map
(
V, lim(X → Z ← Y)

)
−→ lim

(
Map(V, X) → Map(V,Z) ← Map(V,Y)

)
which sends h to (hX , hY ) (the induced maps from W to X and Y respecitvely),
is a homeomorphism. If Y → Z is not a fibration, we replace g : Y → Z by
the fibration Pg → Z and note that Map(V,Y) � Map(V, Pg) since Map(V,−)
preserves homotopy equivalences by Proposition 1.3.2. We then again appeal
to Proposition 2.1.11 to see that Map(V, Pg) → Map(V,Z) is a fibration. The
proof then follows from the previous argument, using the homotopy invariance
of the homotopy pullback, Theorem 3.2.12.

For the latter statement, the key observation is that, if V is of dimension d
and f : X → Y is a k-connected map, then Map(V, X) → Map(V,Y) is (k −
d)-connected.4 �

The next result says that the homotopy pullback of a weak equivalence is
a weak equivalence and that any square with parallel maps which are weak
equivalences is a homotopy pullback.

Proposition 3.3.11 Consider the square diagram

1. (a) If the square is homotopy cartesian and the map Y → Z is a homo-
topy (resp. weak) equivalence, then the map W → X is a homotopy
(resp. weak) equivalence;

(b) If both W → X and Y → Z are homotopy (resp. weak) equivalences,
then the square is homotopy cartesian.

2. (a) If the square is k-cartesian and the map Y → Z is k-connected, then the
map W → X is k-connected.

(b) If W → X is k-connected and Y → Z is (k + 1)-connected, then the
square is k-cartesian.

Remarks 3.3.12

1. The third obvious statement, which tries to deduce the connectivity of
Y → Z from the square being k-cartesian and the map W → X being a
k-connected is not true. For example, if W = X = ∅, then the square is
trivially homotopy cartesian for any map Y → Z.

4 This comes down to the fact that ΩdX is (k − d)-connected if X is k-connected, which follows
from Example 2.6.11. We leave the details to the reader.
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2. Statements 1(a) and 1(b) imply each other (as do 2(a) and 2(b)). We will
use 1(a) to obtain 1(b), and we leave it as an exercise to the reader to prove
the second independently and use it to prove the first statement.

3. One way to read this result is that the homotopy pullback of a weak equiva-
lence is a weak equivalence and that a homotopy cartesian square is a “map
of weak equivalences that is a weak equivalence”. That is, what we mean
by a weak equivalence of maps (1-cubes) is a homotopy cartesian square
(homotopy cartesian 2-cube). �

Proof For simplicity we work with weak equivalences, though the proof is
the same for homotopy equivalences. For 1(a) it suffices to prove that the map

holim(X → Z ← Y) −→ X

is a weak equivalence, since the map

W −→ holim(X → Z ← Y)

is assumed to be a weak equivalence. Let g denote the map from Y to Z.
Consider the pullback square

By Proposition 3.2.3, the map holim(X → Z ← Y) → X is a weak equivalence.
For 1(b), consider the diagram

The map Pg → Z is a weak equivalence since Y → Pg and Y → Z are. Since
the lower square is homotopy cartesian, by 1(a) the map holim(X → Z ←
Y) → X is a weak equivalence, and since by hypothesis W → X is a weak
equivalence, so is W → holim(X → Z ← Y).

The proofs of 2(a) and 2(b) are immediate from the proofs of 1(a) and 1(b)
and an application of Proposition 2.6.15. �

We encountered the following example in the discussion of the dual
Barratt–Puppe sequence (2.2.5) (see Lemma 2.2.16). We are now ready to give
its proof as a consequence of Proposition 3.3.11. We could also deduce this
immediately from Proposition 3.3.18.
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Example 3.3.13 If F → X → Y is a fibration sequence, then

hofiber(F → X) � ΩY.

To see this, we have a homotopy cartesian square

That is, F → holim(X → Y ← ∗) is a weak equivalence by Proposition 2.2.6.
Consider the square

where X → X is the identity, F → X the inclusion, and

holim(X → Y ← ∗) −→ X

is projection onto X. This is also homotopy cartesian by Proposition 3.3.11,
because the two horizontal arrows are weak equivalences. Since the homotopy
fiber of holim(X → Y ← ∗) → X is ΩY (this can be seen directly from the
definitions or by using Theorem 3.3.15 below), we have a weak equivalence

hofiber(F → X) −→ ΩY. �

We can generalize the last example to an arbitrary homotopy cartesian square.

Example 3.3.14 Suppose

is homotopy cartesian. Then there is a weak equivalence

hofiber(W → X × Y) � ΩZ.

The argument is the same as above. The square
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is homotopy cartesian since both horizontal arrows are weak equivalences
(the reader should think about what all the maps in this diagram are). Taking
vertical homotopy fibers gives the desired weak equivalence since

hofiber
(

holim(X → X ← Y) → X × Y
)
� ΩZ.

Again we may use Theorem 3.3.15 to see this last weak equivalence. �

We next establish a useful fact about iterated homotopy pullbacks. It is a spe-
cial case of a more general result (Proposition 8.5.5) which says that homotopy
limits commute.

Theorem 3.3.15 Suppose we have a commutative diagram

Denote by holim(X), holim(Z), and holim(Y) the homotopy pullbacks of the
first, second, and third rows of this diagram respectively, and by holim(C1),
holim(C12), and holim(C2) the homotopy pullbacks of the first, second, and
third columns respectively. Then there is a natural homeomorphism

Taking X1 = X, X2 = Y , Y2 = Z and the rest of the spaces as points, this says
(X × Y) × Z � X × (Y × Z), and we think of this result as a sort of associative
law for multiplication of punctured squares.

Proof To avoid cumbersome notation, we assume all the maps in the diagram
above are inclusions (i.e. we suppress the functions). The proof in the general
case is the same, but with more notation. A point in

holim
(

holim(X) → holim(Z) ← holim(Y)
)

is a tuple

(x1, α12, x2, γ1,Γ12, γ2, y1, β12, y2)
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where α12 : I → X12, β12 : I → Y12 satisfy the obvious properties, and γi : I →
Zi for i = 1, 2 satisfy γi(0) = xi and γi(1) = yi for i = 1, 2. We may regard Γ12

as a map Γ12 : I × I → Z12 such that Γ12({0} × I) = γ1 and Γ12({1} × I) = γ2.
From this we produce a point in

holim
(

holim(C1) → holim(C12) ← holim(C2)
)

by sending the above tuple to

(x1, γ1, y1,Γ12|I×{0},Γ12,Γ12|I×{1}, x2, γ2, y2).

This map is clearly a homeomorphism. �

We then have the following consequence. The reader should compare this
with Example 2.2.12. Generalizations are given in Corollary 5.4.10 and
Corollary 8.5.8.

Corollary 3.3.16 (Homotopy pullbacks commute with loops) If Z1 → Z12 ←
Z2 is a diagram of based spaces, then

holim(ΩZ1 → ΩZ12 ← ΩZ2) � Ω holim(Z1 → Z12 ← Z2).

In particular, if we let Z2 = ∗ and f1 denote the map Z1 → Z12, then
hofiber(Ω f1) � Ω hofiber( f1).

Proof In the diagram from Theorem 3.3.15, set all the Xi and Yi to be
one-point spaces, with vertical maps inclusions of basepoints. Using Exam-
ple 3.2.10, which describes the loop space as a homotopy limit, the result then
immediately follows from Theorem 3.3.15. �

Even more generally, the square of homotopy fibers of a map of homotopy
cartesian squares is itself homotopy cartesian. Another way to say this is as
follows.

Corollary 3.3.17 There is a natural homeomorphism

holim
(

hofiber(X1 → Z1) → hofiber(X12 → Z12) ← hofiber(X2 → Z2)
)

� hofiber
(

holim(X1 → X12 ← X2) → holim(Z1 → Z12 ← Z2)
)
.

Proof In the statement of Theorem 3.3.15, take YS = ∗. �

The following will be generalized later as Proposition 5.4.12.
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Proposition 3.3.18 A square

is homotopy cartesian (k-cartesian) if and only if for all x ∈ X, the map

hofiberx(W → X) −→ hofiber f (x)(Y → Z)

is a weak equivalence (k-connected).

Remark 3.3.19 When the above square is a square of inclusions, Proposi-
tion 3.3.18 says that homotopy cartesian means that the map

πi(X,W) −→ πi(Z,Y)

is an isomorphism for all i. For the k-cartesian version, the map is an
isomorphism for i ≤ k and onto for i = k + 1. �

Proof of Proposition 3.3.18 We will prove the homotopy cartesian version of
the statement; the k-cartesian variant follows the same pattern.

Replacing the map Y → Z by a fibration, we have that the homotopy pull-
back is the pullback and the fiber of the pullback is homeomorphic to the
homotopy fiber of the map Y → Z. So we want to prove that the map from
W to the pullback is a weak equivalence if and only if for every point x ∈ X
the homotopy fiber hofiber(W → X) is weakly equivalent to the actual fiber
(which is weakly equivalent to the homotopy fiber) of the pullback. But this
follows from the long exact sequence.5 �

The following is a useful result on “factorizations” of squares that is analo-
gous to Proposition 3.3.11 (see Remark 3.3.22 for more on what we mean by
this). We will make use of such results frequently, especially in the proof of
Theorem 4.2.1. The more general version for cubes of arbitrary dimension is
Proposition 5.4.14.

Proposition 3.3.20 In the diagram

5 Note the use of the long exact sequence in this proof, as this result does not dualize. It does
dualize if we replace “weak equivalence” by “homology equivalence”, in which case the dual
proof works as well.
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let the left square be denoted by 1 , the right by 2 , and the outer square by

1 2 . Then

1. (a) If 1 and 2 are homotopy cartesian, then 1 2 is homotopy carte-
sian.

(b) If 2 and 1 2 are homotopy cartesian, then 1 is homotopy carte-
sian.

2. (a) If 1 and 2 are k-cartesian, then so is 1 2 .

(b) If 2 is (k + 1)-cartesian and 1 2 is k-cartesian, then 1 is
k-cartesian.

Remark 3.3.21 The third obvious statement is false in general. In the
diagram

1 and 1 2 are trivially homotopy cartesian, but 2 can be an arbitrary
square. Note that this does not contradict Proposition 3.3.18 in either way one
may view the homotopy fibers of the left square above. �

Proof of Proposition 3.3.20 We prove statements 1(a) and 1(b). The proof
of 2(a) and 2(b) is immediate from the proof of 1(a) and 1(b) together with
Proposition 2.6.15.

Consider the diagram

We will show in a moment that the square appearing in this diagram is homo-
topy cartesian. The square above is not strictly commutative; what we are
claiming though is that the homotopy limit of the evident punctured square
is weakly equivalent to holim(X2 → X12 ← X1). Assuming this is so, note
that both sets of hypotheses in statement 1 assume 2 is homotopy cartesian,
which means that the map

X1 −→ holim(X12 → X123 ← X13)

is a weak equivalence. By Proposition 3.3.11, the map

holim(X2 → X12 ← X1) −→ holim(X2 → X123 ← X13)
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is a weak equivalence. Both results now immediately follow. Now we establish
that the square

is homotopy cartesian. Consider the commutative diagram

Since the homotopy pullback of the first column is homotopy equivalent to
X1, it is evident that the homotopy pullback of the homotopy pullback of the
columns is homotopy equivalent to the homotopy pullback of the square in
question. By Theorem 3.3.15, the homotopy pullback in question is homeo-
morphic to the homotopy pullback of the homotopy pullback of the rows. Let
holim(X) denote the homotopy pullback of the last two (identical) rows. Then
the homotopy pullback of the homotopy pullback of the rows is

holim
(
holim(X1 → X12 ← X2) −→ holim(X)

=←− holim(X)
)
.

This is homotopy equivalent to holim(X1 → X12 ← X2) by 1(a) of
Proposition 3.3.11. �

Remark 3.3.22 We will see in Proposition 5.4.13 that Proposition 3.3.20 is
equivalent to a result which says that a map of homotopy cartesian squares
(a 3-cube) is homotopy cartesian, and the homotopy pullback of a homotopy
cartesian square is homotopy cartesian. This makes it more apparent how this
result is a generalization of Proposition 3.3.11. �

One might say we have taken the perspective that the limit operation is defec-
tive and so requires a replacement which satisfies the homotopy invariance
property. Another perspective takes the stance that the spaces and maps in the
diagram are defective, and so we should replace them with equivalent spaces
so that the limit does have the homotopy invariance property, as we explain
below. The reason we are discussing such replacements in this “arithmetic”
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section is that Proposition 3.3.24 can be thought of as saying that any square
can be replaced by a convenient representative; i.e. the equivalence classes of
squares have suitable representatives. We will generalize what follows from
squares to cubes in Definition 5.4.22 and Theorem 5.4.23.

Definition 3.3.23 We say that a square

is fibrant if

● X → Z and Y → Z are fibrations;
● W → lim(Y → Z ← X) is a fibration.

We say S is a fibrant pullback square if additionally W = lim(Y → Z ← X).

Note that, by Proposition 3.2.13, for a fibrant square we have that

lim(Y → Z ← X) � holim(Y → Z ← X). (3.3.2)

This is the observation we will seek to generalize in Proposition 5.4.26.
The next result says that every square S is weakly equivalent to a fibrant

square, called a fibrant replacement of S, and hence, by the observation above,
every associated punctured square (the diagram Y → Z ← X obtained by
removing the initial space W) has the property that its limit has the homotopy
invariance property.

By a homotopy (resp. weak) equivalence of squares S → S′, we mean a
commutative diagram

such that the maps XS → X′
S are homotopy (resp. weak) equivalences for

each S .
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Proposition 3.3.24 Every square admits a homotopy (and hence weak)
equivalence to a fibrant square. That is, given a square

there is a fibrant square

and a map of squares (a commutative diagram that looks like a 3-cube)

such that W → W ′, X → X′, Y → Y ′, and Z → Z′ are homotopy equivalences.
Every homotopy cartesian square admits an equivalence to a fibrant pullback
square.

Proof Define Z′ = Z. Let f : X → Z and g : Y → Z be the maps in the

square. Define X′ = Pf and Y ′ = Pg. Let h : W → holim(X
f→ Z

g← Y) be the
canonical map, and let W′ = Ph. Then

where the maps from W ′ → X′,Y ′ are the canonical projections and X′ → Z′

and Y ′ → Z′ are evaluation of the path at time t = 1, is a fibrant square. This is

because Proposition 3.2.5 says that holim(X
f→ Z

g← Y) is homeomorphic to
lim(Pf → Z ← Pg), so that the map Ph → lim(Pf → Z ← Pg) is a fibration
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(this is the composition of the fibration Ph → holim(X
f→ Z

g← Y) with the
homeomorphism to lim(Pf → Z ← Pg)).

The maps W → W ′, X → X′, and Y → Y ′ are all homotopy equivalences
as in Proposition 2.2.2, and it is straightforward to check that the diagram
(three-dimensional cube) commutes.

In the case where S is homotopy cartesian, we define W′ = lim(X′ → Z′ ←
Y ′), and let W → W ′ be the canonical map given by the universal property of
W ′. Then in the square

the right vertical map is a homotopy equivalence by Theorem 3.2.12, the
top vertical arrow is a weak equivalence by assumption, and the lower hor-
izontal arrow is a weak equivalence since the first map in the composition
W ′ → lim(Pf → Z ← Pg) → holim(Pf → Z ← Pg) is an equality and the
second is a weak equivalence by Proposition 3.2.13. Hence W → W′ is a weak
equivalence. �

Remark 3.3.25 Continuing with the same spaces as above, consider the
square

By homotopy invariance of the homotopy pullback, Theorem 3.2.12, the right
vertical map is a weak equivalence (it is a pointwise weak equivalence), and
so is the left vertical map. Thus the square is homotopy cartesian by 1(b) of
Proposition 3.3.11. If the lower horizontal map is k-connected, so is the top
horizontal map by 2(a) of Proposition 3.3.11 (see also Remark 3.3.12). So to
prove that S is k-cartesian, it suffices to prove S′ is. This goes the other way as
well; since both vertical maps are equivalences, if S′ is k-cartesian, then so is
S by 2(a) of Proposition 3.7.13. �

We will encounter fibrant replacements of cubical diagrams in Theorem 5.4.23
(and of more general diagrams in Section 8.4.2). The following result will be
useful there.
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Lemma 3.3.26 Suppose

is fibrant. Then every map XS → XT for S ⊂ T is a fibration.

Proof By definition Xi → X12 are fibrations, and so by symmetry it suffices to
prove that X∅ → X2 is a fibration since compositions of fibrations are fibrations.
The map X0 → X2 is the composition

X0 −→ lim(X2 → X12 ← X1) −→ X2.

By definition, the first of these is a fibration and the second is a pullback of the
fibration X1 → X12. Since a composition of fibrations is a fibration, we get the
desired result. �

3.4 Total homotopy fibers

For the square

Definition 3.3.1 can be interpreted as saying that the homotopy fiber of

a(S) : W −→ holim(X → Z ← Y)

measures the extent to which S is a homotopy cartesian square. We explore
this further in this section.

Note that, if S is a square of based spaces, then holim(X → Z ← Y) has
a natural basepoint consisting of the tuple (x0, γ, y0), where x0 and y0 are the
basepoints of X and Y respectively and γ is the constant path at their images in
Z (the basepoint of Z).

Definition 3.4.1 For S a square of based spaces, define its total (homotopy)
fiber to be

tfiber(S) = hofiber(a(S)),

where the homotopy fiber is taken over the natural basepoint of holim(X →
Z ← Y).
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Remark 3.4.2 The total fiber can be defined for a square of unbased spaces
by a choice of basepoint (x, γ, y) ∈ holim(X → Z ← Y). Dealing with only the
based case, as we do here, simplifies the presentation of certain facts. �

Proposition 3.3.18 says that the square S is k-cartesian if and only if the maps
hofiber(W → X) → hofiber(Y → Z) are k-connected. Thus the connectivity of
the homotopy fiber of the map of homotopy fibers also measures the extent to
which S is homotopy cartesian. This hints at an alternative description of the
total homotopy fiber as an iterated homotopy fiber.

Proposition 3.4.3 (Total homotopy fiber as iterated homotopy fiber) Let S
be the commutative square diagram of based spaces

(3.4.1)

and let the basepoint of holim(X → Z ← Y) be given by the basepoints of X
and Y and the constant path in Z between their images. Then

tfiber(S) � hofiber
(
hofiber(W → X) −→ hofiber(Y → Z)

)
,

where the basepoint of hofiber(Y → Z) is the pair consisting of the basepoint
of Y and the constant path at the basepoint of Z. Moreover,

tfiber(S) � hofiber
(
hofiber(W → Y) −→ hofiber(X → Z)

)
.

Remark 3.4.4

1. When we take (homotopy) fibers of (homotopy) fibers, we will refer to the
result as the “iterated (homotopy) fiber”.

2. In light of Proposition 3.3.18, a square is homotopy cartesian if and only if
its total homotopy fiber is weakly contractible. �

Proof of Proposition 3.4.3 Consider the diagram

The maps are all the evident ones, with the maps from the one-point space
the inclusion of the various basepoints. The homotopy pullbacks of the rows,
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from top to bottom, are hofiber(W → X), hofiber(Y → Z), and ∗, using
Example 3.2.8 for the first two and Example 3.2.9 for the last. The homo-
topy limit of the resulting diagram is evidently the iterated homotopy fiber,
hofiber(hofiber(W → X) → hofiber(Y → Z)). The homotopy pullbacks of
the columns, from left to right, are W, holim(X → Z ← Y) and ∗, the first
once again using Example 3.2.9. The homotopy limit of this is evidently the
total homotopy fiber of the square by definition. The two are homeomorphic by
Theorem 3.3.15. Note, however, that we get only a weak equivalence between
the total fiber and the iterated homotopy fiber because, for instance, the homo-
topy pullback of the first column is really the mapping path space of the map
W → Y , which is homotopy equivalent to W, but not equal to it.

It is also easy to see that the two iterated homotopy fiber descriptions of
the total homotopy fiber from Proposition 3.4.3 are homeomorphic directly by
applying Theorem 3.3.15 to the diagram

We leave the details to the reader. �

The next result is one of the inputs in the proof of Lemma 2.2.16 used in the
construction of the dual Barratt–Puppe sequence.

Example 3.4.5 The homotopy fiber of the map hofiber(F → X) −→ F
(i.e. what can be thought of as the map ΩX → F by Example 3.3.13) is weakly
equivalent to ΩY . To see this, consider the square

where the left vertical map is the identity. Computing its total homo-
topy fiber by taking horizontal homotopy fibers first gives (by definition)
hofiber(hofiber(F → X) −→ F). Taking vertical homotopy fibers first gives
hofiber(∗ → X) � ΩX. The two are weakly equivalent by Proposition 3.4.3
(again, the two iterated homotopy fibers are homeomorphic, but the above
identifications are up to weak equivalence). �
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Example 3.4.6 For any map f : X → Y , and any choice of point y0 ∈ Y , there
is a homotopy equivalence

hofiber(X
(1X , f )−→ X × Y) � ΩY,

where ΩY is the space of loops based at y0. This is because the homotopy fiber

hofiber(X
(1X , f )−→ X × Y) may be thought of as the total fiber of the diagram

If we think of this total fiber as an iterated homotopy fiber using Propo-
sition 3.4.3, then taking horizontal homotopy fibers yields ∗ → Y , whose
homotopy fiber is ΩY .

Note that by doing the iterated fibers in the other direction, we see that the
homotopy fiber of the natural projection hofiber( f ) → X is ΩY . �

Proposition 3.4.7 Suppose X → Y → Z are maps of based spaces. Then we
have a homotopy fiber sequence

hofiber(X → Y) → hofiber(X → Z) → hofiber(Y → Z).

That is, hofiber(X → Y) is weakly equivalent to the homotopy fiber of the map

hofiber(X → Z) → hofiber(Y → Z),

where the basepoint in hofiber(Y → Z) is the constant loop at the basepoint.

Proof Consider the square

We may identify the total fiber of this square by taking iterated fibers vertically
or horizontally using Proposition 3.4.3. This yields weak equivalences

hofiber(X → Y) � tfiber(S)

� hofiber
(

hofiber(X → Z) → hofiber(Y → Z)
)
. �

We next have two results relating the homotopy fibers of a retraction to the
homotopy fibers of the inclusion.
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Proposition 3.4.8 Suppose f : X → Y and g : Y → X are maps of based such
that g ◦ f is the identity (i.e. assume X is a retract of Y). Then there is a weak
equivalence

hofiber( f ) � Ω hofiber(g).

Proof Compare the vertical, horizontal, and total fibers of the square

using Proposition 3.4.3. �

As a generalization of Proposition 3.4.8, we have the following.

Proposition 3.4.9 Let X be the diagram of based spaces

and suppose there are maps XS∪i → XS for S ⊂ {1, 2} and i � S such that the
composition XS → XS∪i → XS is the identity. Then

tfiber(X) � Ω2 tfiber(X′),

where X′ is the square

Proof This follows from repeated application of Proposition 3.4.8. Consider
the diagram
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By Proposition 3.4.3,

tfiber(X) � hofiber
(
hofiber(X∅ → X1) −→ hofiber(X2 → X12)

)
,

and using Proposition 3.4.8 on each of the homotopy fibers above, we have

tfiber(X) � hofiber
(
Ω hofiber(X1 → X∅) −→ Ω hofiber(X12 → X2)

)
.

The induced map of loop spaces above is the loop of a map of homotopy fibers,
since it is induced by the map of total fibers of the left to the right square in the
3-cube

where we view the total fibers of the left and right squares iteratively (first
vertical, then horizontal fibers) using Proposition 3.4.3. By Example 2.2.12,
we have

tfiber(X) � Ω hofiber
(
hofiber(X1 → X∅) −→ hofiber(X12 → X2)

)
,

and the iterated homotopy fiber on the right side is precisely the total fiber
of the upper-right square in the diagram at the start of this proof. The same
argument shows that the total fiber of the upper-right square is weakly equiv-
alent to the loop space of the total fiber of the lower-right square, which is
tfiber(X′). �

We can also use the iterated fiber description of the total fiber given in Propo-
sition 3.4.3 to come to a reasonable definition of the homotopy groups of a
square diagram. For a map of based spaces f : X → Y (a 1-cube), with y ∈ Y
the basepoint, we may define the homotopy groups of the map f as

πk( f ) = πk−1 hofibery( f ). (3.4.2)

Here the basepoint of the homotopy fiber is the natural one, and k ≥ 1. The
reason for the dimension shift is Proposition 2.6.12, which says that f is k-
connected if and only if for all choices of basepoint ∈ Y , hofibery( f ) is (k − 1)-
connected. Iterating this for squares, which are really maps of 1-cubes, we have
the following definition and proposition.
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Let S be the square

of based spaces.

Definition 3.4.10 For k ≥ 2, define

πk(S) = πk−2(tfiberS).

It is easy to see, using the long exact sequence of homotopy groups together
with Proposition 3.4.3, that we have the following generalization of Proposi-
tion 3.4.7 (obtained by setting W = Y in the above square). A generalization
for cubes is given as Proposition 5.5.11.

Proposition 3.4.11 (Homotopy long exact sequence of a square) There is a
long exact sequence of homotopy groups

· · · → πi( f1) → πi( f2) → πi(tfiberS) → πi−1( f1) → · · · .
The sequence ends at π1( f2).

3.5 Pushouts

We now begin what is essentially a dualization of Sections 3.1–3.4. Nearly
everything from the previous section has a dual, with a few exceptions which
we point out along the way. The central object now will be the diagram

S1 = (X
f← W

g→ Y).

Definition 3.5.1 The pushout, or colimit, of the diagram S1 = (X
f← W

g→
Y), denoted by colim(X

f← W
g→ Y), or colim(S1), or X ∪W Y , is the quotient

space of X 	 Y defined as

colim(X
f← W

g→ Y) = X 	 Y/∼,
where ∼ is the equivalence relation on X 	 Y generated by f (w) ∼ g(w) for
w ∈ W.

Again, the terminology “colimit” and the notation “colim” is supposed to
indicate that there is something more general at play; indeed, we will show
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in Example 7.3.32 that the pushout is an example of a more general notion
of colimit. As was the case with the pullback, the pushout enjoys a “universal
property” in that every map out of the diagram S1 factors through the colimit.
That is, in any commutative solid arrow diagram

(3.5.1)

there is a unique dotted arrow u that makes the resulting diagram commute. It
is again easy to see that the formulas u([x]) = g′(x) and u([y]) = f ′(y) deter-
mine a well-defined map to Z. That cofibrations are preserved under pushout,
the content of Proposition 2.3.15, is immediate from the universal property.
We will revisit the pushout from the point of view of universal properties in
Example 7.3.32.

Here are some examples of familiar spaces and constructions which are
naturally described in the language of pushouts.

Example 3.5.2 (Disjoint union as pushout) A pushout along the empty set is
the disjoint union:

colim(X ← ∅ → Y) � X 	 Y.

In this case the equivalence relation on X 	 Y identifies no points. �

Example 3.5.3 (Wedge sum as pushout) For based spaces the above pushout
becomes the wedge sum.

colim(X ← ∗ → Y) � X ∨ Y. �

Example 3.5.4 The pushout of the diagram X
1X← X

1X→ X is homeomorphic
to X. �

Example 3.5.5 Let f : X → Y be a map. The pushout of the diagram X
1X←

X
f→ Y is Y; the inclusion Y → colim(X

1X← X
f→ Y) is a homeomorphism. �

Example 3.5.6 (Cofiber as pushout) For a map f : X → Y we have

cofiber( f ) = Y/ f (X) � colim(Y
f← X → ∗).
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This follows from the definition of the quotient space. One important special
case is when X = ∅, in which case we obtain Y+, the space Y together with a
disjoint point. Thus the quotient of a space Y by the empty set is Y+. �

Example 3.5.7 (Mapping cylinder as pushout) Let f : X → Y be a map. Let
i : X → X × I be the map that sends x to (x, 0). Then

colim(Y
f← X

i→ X × I) � Mf ,

the mapping cylinder of f . The colimit in question is precisely the space given
in Definition 2.4.1. We leave the slightly different case of the reduced mapping
cylinder to the reader; it is a quotient space of the colimit above. �

Example 3.5.8 (Homotopy cofiber as pushout) For a map f : X → Y , there
is a homeomorphism

hocofiber( f ) � colim(Mf ← X → ∗).
This is immediate from the definition of the homotopy cofiber. �

Example 3.5.9 (Attaching a cell as pushout) The procedure of attaching a
cell is a pushout:

colim(X
f← ∂en → en) = X ∪ f en. �

We now have a dual to Proposition 3.1.9.

Proposition 3.5.10 (Pushouts preserve surjections and homeomorphisms)
Suppose i : X → Y is a surjection (resp. homeomorphism), then for any map
f : X → Z, the induced map i∗ : Z → Y ∪X Z is also a surjection (resp.
homeomorphism).

Proof Let w ∈ Y ∪X Z and consider the quotient map Y 	 Z → Y ∪X Z. Either
w is the image of some point in Y or Z. If w is the image of some y ∈ Y , then
i(x) = y for some x ∈ X since i is surjective and since i(x) ∼ f (x) ∈ Z, we see
w is the image of f (x) ∈ Z. The other case is obvious.

If i is a homeomorphism with inverse j : Y → X, then the induced map
Z → Y ∪X Z has inverse Y ∪X Z → Z. This inverse is induced by the map
Y 	 Z → Z defined by w �→ ( f ◦ j)(w) for w ∈ Y and 1Z(w) = w for w ∈ Z. �

As with pullbacks, pushouts do not preserve homotopy equivalences, and
we deal with this issue in the next section. Next we have a dual to
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Proposition 3.1.10, proof is dual and which we omit. We will not need this
result until Chapter 8.6

Proposition 3.5.11 Let S1 = (X1 ← X∅ → X2) and S′1 = (X′
1 ← X′

∅ →
X′

2) be punctured squares in which the maps X∅ → X2 and X′
∅ → X′

2 are
cofibrations, and S1 → S′1 a map of punctured squares such that XS → X′

S are
cofibrations for all S . Further assume the canonical map colim(X′

∅ ← X∅ →
X2) → X′

2 is a cofibration. Then the induced map colimS1 → colimS′1 is a
cofibration.

Given a commutative square, looking back at the diagram (3.5.1), it again
makes sense to ask whether its “final” space is the pushout of the rest of the
diagram.

Definition 3.5.12 A square diagram

is called cocartesian (or categorically cocartesian, or a pushout, or a strict
pushout) if the canonical map

colim(X
f← W

g→ Y) −→ Z

from (3.5.1) is a homeomorphism.

Example 3.5.13 Examples 3.5.2–3.5.9 can all be recast in the language of
cocartesian squares, that is, they all say that certain squares are cocartesian.
For instance, Example 3.5.2 says that the square

is cocartesian. We leave it to the reader to revisit the other examples and write
down the obvious squares. �

We finish with a result about the interaction of pullbacks and pushouts. They
are both analogs of the familiar exponential laws from algebra – the first is
the analog of (ab)c = abc, and the second the analog of ab+c = abac. This will

6 As was the case with Proposition 3.1.10, the hypotheses below might seem unmotivated, but
they mean that a certain diagram is cofibrant; more details can be found in Section 8.4.2.
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be generalized in Proposition 7.5.1 (see also Proposition 3.9.1). We leave the
straightforward proof to the reader.

Proposition 3.5.14 There are natural homeomorphisms

Map
(
Z, lim(X ← W → Y)

) �−→ lim
(

Map(Z, X)

→ Map(Z,W) ← Map(Z,Y)
)
,

Map
(

colim(X ← W → Y),Z
) �−→ lim

(
Map(X,Z)

→ Map(W,Z) ← Map(Y,Z)
)
.

3.6 Homotopy pushouts

Just as in the case of pullbacks, pushouts are not homotopy invariant. This is
evident in the the following

Example 3.6.1 (Pushout not homotopy invariant) Consider the diagram

where the two top maps are the standard inclusions. The pushouts clearly have
different homotopy types. �

However, if one of the maps in the diagram S1 = (X ← W → Y) is a
cofibration, then the pushout is homotopy invariant. We will prove this in
Corollary 3.6.19, but we first need the following dual to Proposition 3.2.3.
This was already encountered as Proposition 2.3.19, but we now restate it and
give a proof for the weak equivalence case in a way that uses the language of
this chapter.

Proposition 3.6.2 Suppose i : W → Y is a cofibration and f : W → X is a
homotopy (resp. weak) equivalence. Then the inclusion

Y −→ colim(X
f← W

i→ Y)

is a homotopy (resp. weak) equivalence. That is, if in the cocartesian square
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i is a cofibration and f is a homotopy (resp. weak equivalence), then Y →
colim(X ← W → Y) is a homotopy (resp. weak) equivalence.

Proof As previously promised, we give a proof of the statement for weak
equivalences. It uses the homotopy equivalence version of this result, stated
originally as Proposition 2.3.19. The proof for homotopy eqiuvalences was
omitted there, but it is dual to the proof of Proposition 2.1.23 for homotopy
equivalences.

By Theorem 1.3.9 we have a commutative diagram

in which X′,W ′, and Y ′ are all CW complexes and the vertical maps are all
weak equivalences. Furthermore, using the same result we may assume that i′

is a cofibration. Since f and the vertical maps are weak equivalences, it follows
from Proposition 2.6.15 (with k = ∞) that f ′ is also a weak equivalence. Since
the domain and codomain of f ′ are CW complexes, f ′ is in fact a homotopy
equivalence by Theorem 1.3.10. Now consider the diagram

By Proposition 3.6.17 and Theorem 3.6.13, the right vertical map is a weak
equivalence, and by Proposition 2.3.19 (this is the statement of the result we
are proving in the case of homotopy equivalences), the top horizontal map is a
homotopy equivalence. The map Y ′ → Y is a weak equivalence by construc-
tion. Once again using Proposition 2.6.15, again with k = ∞, we can deduce
that the lower horizontal map is a weak equivalence. �

To make a homotopy invariant colimit for an arbitrary diagram

S1 = (X ← W → Y),

one approach is therefore to change one of the maps into a cofibration using
the mapping cylinder construction and then take the pushout. As we did for
limits, we will give a more symmetric and equivalent definition, and then in
Proposition 3.6.5 argue that this model is the same as the usual one.

Definition 3.6.3 The homotopy pushout, or homotopy colimit, of the diagram

S1 = (X
f← W

g→ Y), denoted by hocolimS1 or hocolim(X
f← W

g→ Y), is
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Figure 3.3 A picture of the homotopy pushout.

the quotient space of X 	 (W × I)	 Y under the equivalence relation generated
by f (w) ∼ (w, 0) and g(w) ∼ (w, 1) for w ∈ W. If W is a based space with
basepoint w0, we add the relation (w0, t) ∼ (w0, s) for all s, t ∈ I.

Remarks 3.6.4

1. The based homotopy colimit is a quotient of the unbased one where we
collapse the copy of an interval I associated with the basepoint. Since our
spaces are well-pointed, the two versions are homotopy equivalent. When-
ever we discuss statements for homotopy pushouts involving based spaces,
we always mean the based homotopy colimit as above, with the natural
basepoint.

2. Note that we can identify hocolim(X
f← W

g→ Y) with the union of Mf

with Mg along W × {1} ⊂ Mf ,Mg. Sometimes the homotopy pushout as we
define it here is known as the double mapping cylinder. �

A picture of the homotopy pushout is given in Figure 3.3.
As before, we use the terminology “homotopy colimit” and the notation

“hocolim” with an eye toward general homotopy colimits; we shall see in
Example 8.2.21 that the homotopy pushout is an example of a homotopy
colimit.

There are canonical maps

(3.6.1)

The maps ιX and ιY are inclusions and s : hocolimX → colimX projects away
from the interval coordinate. The inner square does not commute, since the
images of w ∈ W via ιX ◦ f and ιY ◦ g lie at opposite ends of the cylinder X × I.
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Dual to Proposition 3.2.5, we have the following models for the homotopy
pushout, which we will use interchangeably. Again the proof just consists of
unraveling the definitions.

Proposition 3.6.5 The following five spaces are homeomorphic:

● hocolim(X
f← W

g→ Y);
● colim(Mf ← W → Y);
● colim(X ← W → Mg);
● colim(Mf ← W → Mg);

● colim(colim(X
f← W

i0→ W × I) ←− W × I −→ colim(Y
g← W

i1→ W × I)).

Here are some examples of homotopy pushouts.

Example 3.6.6 (Disjoint union and wedge as homotopy pushouts) We have

hocolim(X ← ∅ → Y) � X 	 Y.

For based spaces, the corresponding statement is

hocolim(X ← ∗ → Y) � X ∨ Y.

The former is clear from the definition and the latter is straightforward to see
by shrinking the interval ∗ × I to a point. Also clear is the case

hocolim(X
1X← X

1X→ X) � X

because the homotopy pushout is X × I, which is clearly homotopy equivalent
to X. �

Example 3.6.7 (Mapping cylinder as homotopy pushout) For a map f : X →
Y , we have a homeomorphism

hocolim(X
1X← X

f→ Y) � Mf .

Since Y → Mf is the inclusion of a deformation retract, we have a homotopy
equivalence

hocolim(X
1X← X

f→ Y) � Y. �

Example 3.6.8 (Homotopy cofiber as homotopy pushout) For a map f : X →
Y , we have a homeomorphism

hocolim(∗ ← X
f→ Y) � hocofiber( f ).

This is true in both the based and unbased settings. �



3.6 Homotopy pushouts 141

Example 3.6.9 (Suspension as homotopy pushout) There is a homeomor-
phism

hocolim(∗ ← X → ∗) � ΣX.

This is a homeomorphism both in the unbased and based settings, and the proof
is immediate upon inspection. �

Example 3.6.10 (Smash product as homotopy pushout) For based spaces X
and Y , there is a weak equivalence

hocolim(∗ ← X ∨ Y → X × Y) � X ∧ Y.

To see why this is true, compare with Definition 1.1.15. There we defined

X ∧ Y = colim(∗ ← X ∨ Y → X × Y).

Since our spaces are well-pointed, Proposition 2.3.13 implies the inclusion
X ∨ Y → X × Y is a cofibration, then by Proposition 3.6.17, the canonical map
from the homotopy colimit to the colimit is a weak equivalence. �

Here is a consequence of the previous example.

Example 3.6.11 If X and Y are based connected spaces, there is a homotopy
equivalence

Σ(X × Y) � Σ(X ∨ Y) ∨ Σ(X ∧ Y)

induced by a section of the inclusion Σ(X ∨ Y) → Σ(X × Y).
To see this, by Example 3.6.10, we have a cofibration sequence

Σ(X ∨ Y) → Σ(X × Y) → Σ(X ∧ Y)

by applying Σ everywhere. Define a map s : Σ(X × Y) → Σ(X ∨ Y) by

s(t ∧ (x, y)) =

⎧⎪⎪⎨⎪⎪⎩2t ∧ (x, ∗), 0 ≤ t ≤ 1/2;

(2t − 1) ∧ (∗, y), 1/2 ≤ t ≤ 1.

This map is continuous at t = 1/2 since it is the basepoint in both formulas.
The composed map Σ(X ∨ Y) → Σ(X × Y) → Σ(X ∨ Y) is homotopic to the
identity, and the result follows in a manner dual to that described at the end
of Proposition 3.9.6. Alternatively, [Hat02, Proposition 4.I.1] gives a simple
geometric argument for proving that this splitting exists. �

Example 3.6.12 (Join as homotopy pushout) There is a homeomorphism

hocolim(Y ←− X × Y −→ X) � X ∗ Y.
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To see this, recall from Definition 1.1.17 that the join X ∗Y = CX×Y ∪X×Y X×
CY . Denote a point in this space as a pair ([x, t], [y, s]), and recall that in the
cone CZ on a space Z, [z, 1] = [z′, 1] for all z, z′ ∈ Z, and that we may consider
Z as the subspace of all pairs [z, 0] in CZ. By definition, hocolim(Y ←− X ×
Y −→ X) is the quotient space X 	 X × Y × I 	 Y/ ∼, where x ∼ (x, y, 0) and
(x, y, 1) ∼ y. Define a map

h : hocolim(Y ←− X × Y −→ X) −→ X ∗ Y

by the formulas h(x) = ([x, 0], [y, 1]), h(x, y, t) = ([x, t], [y, t]), and h(y) =
([x, 1], [y, 0]). It is easy to see that h is a homeomorphism. �

What follows is the result that establishes homotopy invariance of the homo-
topy pushout. The first proof of of this appears to be [Bro68, 7.5.7]. We give
an outline, which is a dualization of the proof of Theorem 3.2.12; for details,
see Rognes [Rog].

Theorem 3.6.13 (The gluing lemma) Consider the commutative diagram

where the vertical arrows are homotopy (resp. weak) equivalences. Then the
induced map

hocolim(X
f← W

g→ Y) −→ hocolim(X′ f ′← W ′ g′→ Y ′)(
[x] ∪ [w, t] ∪ [y]

)
�−→

(
[eX(x)] ∪ [eW (w), t] ∪ [eY (y)]

)
is a homotopy (resp. weak) equivalence.

Proof of Theorem 3.6.13 in case of homotopy equivalences The proof for
homotopy equivalences is dual to Theorem 3.2.12. In this case one factors the
map of diagrams in the statement as
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To see that the homotopy pushout of the first row is homotopy equivalent to the
homotopy pushout of the second row, use Corollary 2.3.18 and colim(Mf ←
W → Mg) from Proposition 3.6.5 for the homotopy pushouts of the first two
rows. To show that the homotopy pushouts of the second and third rows are
equivalent is to dualize the first part of the proof of Theorem 3.2.12. We will
treat the case of weak equivalences separately below, as it is more subtle. �

The proof of Theorem 3.6.13 in the case where the maps are assumed to be
weak equivalences is more delicate than the argument given in Theorem 3.2.12.
It follows from the following lemma due to Gray [Gra75], the proof of which
we will present here since the text in question is out of print. Another reason
that merits its inclusion is that the argument is also closely related to part of the
argument (appearing in Section 4.4.2) we will present to prove one of the main
theorems of this text: the Blakers–Massey Theorem, here Theorem 4.2.1. Both
cut a cube up into little pieces and make small deformations, much the way
one does in proving excision holds for homology groups, as we have breezily
discussed in Section 1.4.2.

Lemma 3.6.14 ([Gra75, Lemma 16.24]) Let X and Y be spaces with sub-
spaces X1, X2 ⊂ X and Y1,Y2 ⊂ Y such that the union of the interiors of the Xi

cover X and the union of the interiors of the Yi cover Y. Suppose f : X → Y is
a map such that, for i = 1, 2, f (Xi) ⊂ Yi, and the restrictions f : Xi → Yi and
f : X1 ∩ X2 → Y1 ∩ Y2 are weak equivalences. Then f is a weak equivalence.

We will present the proof shortly, but first we give some useful corollaries of
this, beginning with the proof of Theorem 3.6.13 where we assume the vertical
maps are weak equivalences.

Proof of Theorem 3.6.13 in case of weak equivalences By definition,

Z = hocolim(X ← W → Y)

is a quotient of X 	 W × I 	 Y , and similarly for

Z′ = hocolim(X′ ← W ′ → Y ′).

Let PX , PY ⊂ Z be the evident quotients of X	W×[0, 2/3) and W×(1/3, 1]	Y
respectively, and similarly define PX′ , PY ′ ⊂ Z′. Then {PW , PY } and {PX′ , PY ′ }
are open covers for Z,Z′ respectively. The canonical map e : Z → Z′ has the
property that e(PV ) ⊂ PV ′ for V = X,Y . The canonical projection PV → V
is a homotopy (and hence weak) equivalence, whose homotopy inverse is the
inclusion of V in PV (see Proposition 2.4.4; although PV is not exactly the
mapping cylinder of W → V , the same proof shows that PV → V is a homotopy
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equivalence), also for V = X,Y . Hence the restriction of e to PX , PY , and
PX ∩ PY = W × (1/3, 2/3) � W are all weak equivalences. It follows from
Lemma 3.6.14 that e is a weak equivalence. �

Two more corollaries of Lemma 3.6.14 are worth noting. The first is really a
useful restatement, which we learned from [DI04].

Corollary 3.6.15 Suppose f : X → Y is a map of spaces and {U,V} is an
open cover of Y. If f −1(U) → U, f −1(V) → V, and f −1(U ∩ V) → U ∩ V are
weak equivalences, then so is f .

A useful corollary, due to May [May90], the proof of which we also learned
from [DI04], is as follows.

Corollary 3.6.16 ([May90, Corollary 1.4]) Suppose f : X → Y is a map,
and {Ui}i∈I is an open cover of Y. For a subset S ⊂ I, write US = ∩i∈S Ui. If
f −1(US ) → US is a weak equivalence for every finite set S ⊂ I, then f is a
weak equivalence.

Sketch of proof. Consider the set of all open sets W ⊂ X such that f −1(W ∩
US ) → W ∩ US is a weak equivalence for all finite sets S (including the
empty set). Zorn’s lemma says that this set has a maximal element, and by
Lemma 3.6.14 it must be X itself. �

We now prove Lemma 3.6.14. We follow Gray’s presentation with a few
stylistic changes.

Proof of Lemma 3.6.14 Factor the map f : X → Y as X → Mf → Y as in
Proposition 2.4.4. Since Mf → Y is a homotopy equivalence, it is enough
to prove X → Mf is a weak equivalence. Hence, without loss of generality,
we may assume X → Y is a cofibration and hence an inclusion by Proposi-
tion 2.3.2. By Proposition 2.6.9, it is enough to prove that the pair (Y, X) is
∞-connected, which means (using a cubical variant of Definition 2.6.4) that
we must prove that every map of pairs (In, ∂In) → (Y, X) is homotopic relative
to ∂In to a map In → X for all n.

Suppose then that we are given a map of pairs g : (In, ∂In) → (Y, X), and
write g∂ : ∂In → X for the restriction of g to the boundary. We will construct
a map ĝ : In → X whose restriction to ∂In is g∂ and such that the composition
f ◦ ĝ ∼ g relative to ∂In. Recalling that Z̊ stands for the interior of Z, for
i = 1, 2 define

Ai = g−1(Yi − Y̊i) ∪ g−1
∂ (Xi − X̊i).
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Figure 3.4 Top: The sets Ai and a decomposition of I2 into cubes. Middle: The
cubes Ki are those which do not meet Ai. Bottom: The sets over which we begin
to construct the desired deformation.

Clearly the Ai are closed, and they are disjoint since for Z = X,Y the union
of the interiors of the Zi cover Z. Let Ui = In − Ai. Since the Ai are closed
and disjoint, {U1,U2} is an open cover of In, and by the Lebesgue covering
lemma (here Lemma 1.4.11), we may subdivide In into subcubes W (subsets
of In =

∏n
i=1[0, 1] of the form

∏n
i=1[ai, ai + ε], ε > 0) such that each W is

contained in some Ui (i.e. no W intersects both A1 and A2). See the top picture
in Figure 3.4 for a schematic in the case n = 2. This means no such W intersects
both A1 and A2.

For i = 1, 2, define Ki to be the union of those cubes W such that W∩Ai = ∅,
captured schematically by the middle two pictures in Figure 3.4. Then In =

K1 ∪ K2. Note also that g carries Ki to Yi. We will construct the desired lift
by first constructing it on K1 ∩ K2, and then make compatible lifts on K1 and
K2. Restricting g and f we have then a commutative diagram and a lifting
problem
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By hypothesis f : X1 ∩ X2 → Y1 ∩ Y2 is a weak equivalence, and by
Proposition 2.6.17 a lift G12 : K1 ∩ K2 → X1 ∩ X2 exists such that

● G12|∂In∩K1∩K2
= g∂;

● f ◦G12 ∼ g|K1∩K2 relative to ∂In ∩ K1 ∩ K2.

Strictly speaking, Proposition 2.6.17 does not apply here, because we have
not specified a CW structure, but this is easy enough to rectify. Each cube
W =

∏n
i=1[ai, ai + ε] has faces of dimension k for each 0 ≤ k ≤ n specified

by subspaces of W where precisely n − k coordinates are on the boundary of
the interval in which they lie. Each face is homeomorphic to a k-dimensional
cube and hence a k-dimensional disk. Moreover, these faces are attached to
one another along their boundaries. Hence we may endow In, with the given
decomposition into cubes W, with a CW structure by letting the k-cells be the
union of all the k-dimensional faces. This naturally gives rise to CW structures
on the Ki and ∂In and unions and intersections of these.

Extend the map G12 to a map G′
12→1 : (K1 ∩ K2) ∪ (K1 ∩ ∂In) → X1 by

G′
12→1 =

⎧⎪⎪⎨⎪⎪⎩G12, on K1 ∩ K2;

g, on K1 ∩ ∂In.

Clearly this map is well-defined and continuous since by construction G12 is
equal to g on K1 ∩ K2 ∩ ∂In. Moreover, the homotopy given by the solution to
the lifting problem above extends to a homotopy f ◦G′

12→1 ∼ g|(K1∩K2)∪(K1∩∂In)

relative to K1∩∂In; we simply extend on K1∩∂In using the constant homotopy.
Consider the extension problem

where the top horizontal map is the homotopy (relative to K1 ∩ ∂In) from
g|(K1∩K2)∪(K1∩∂In) to f ◦ G′

12→1. Since the left vertical map is a cofibration
by Example 2.3.7 (using the CW structure we described above), a solution
H1 : K1 → XI

1 to this extension problem exists. This amounts to a homotopy
from g|K1

to a map g1 : K1 → X1 such that g1|(K1∩K2)∪(K1∩∂In) = f ◦G′
12→1, and

this homotopy is constant on K1 ∩ ∂In. Now consider the diagram
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Since f |X1
: X1 → Y1 is a weak equivalence, again using Proposition 2.6.17, a

lift G1 : K1 → X1 exists, and satisfies

● G1|(K1∩K2)∪(K1∩∂In) = G′
12→1;

● f ◦G1 ∼ g1 relative to (K1 ∩ K2) ∪ (K1 ∩ ∂In).

Since g ∼ g1 relative to K1∩∂In, it follows that f ◦G1 ∼ g relative to K1∩∂In.
In a similar manner we construct G2 : K2 → X2 with the properties

● G2|(K1∩K2)∪(K2∩∂In) = G′
12→2;

● f ◦G2 ∼ g2 relative to (K1 ∩ K2) ∪ (K2 ∩ ∂In).

Similarly f ◦G2 ∼ g relative to K2 ∩ ∂In.
Since G′

12→1 and G′
12→2 agree on K1 ∩ K2, the restrictions of G1 and G2 to

K1 ∩ K2 are equal, and hence together define a map

Ĝ : In = K1 ∪ K2 −→ X

such that Ĝ
∣∣∣∣
Ki

= Gi, and hence by construction of the Gi, Ĝ
∣∣∣∣
∂In
= g∂.

All that is left to prove is that f ◦ Ĝ ∼ g relative to ∂In. To see why, note that
the homotopies f ◦G1 ∼ g and f ◦G2 ∼ g agree on (K1∩K2)×I, and hence form
a homotopy f ◦Ĝ ∼ g. This homotopy is fixed on ∂In = (K1∩∂In)∪ (K2∩∂In),
as we have observed above that f ◦G1 ∼ g relative to K1 ∩ ∂In and f ◦G2 ∼ g
relative to K2 ∩ ∂In. �

Dual to Proposition 3.2.13 we have the following.

Proposition 3.6.17 Consider the diagram

X
f←− W

g−→ Y.

If f or g is a cofibration, then the canonical map (see (3.6.1))

hocolim(X
f← W

g→ Y) −→ colim(X
f← W

g→ Y)

is a homotopy equivalence.
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Proof Assume f is a cofibration. The proof is dual to the proof of Proposi-
tion 3.2.13 upon considering the diagram

and using Propositions 3.6.5 and 3.6.2. �

Remark 3.6.18 In the previous proof, we only need to use the statement
of Proposition 3.6.2 in the case of homotopy equivalences. We point this out
since we use Proposition 3.6.17 in the proof of Proposition 3.6.2 for weak
equivalences. �

Corollary 3.6.19 Given a commutative diagram

suppose that the vertical maps are weak equivalences and one of f , g and one
of f ′, g′ are cofibrations. Then the map

colim(X
f← W

g→ Y) −→ colim(X′ f ′← W ′ g′→ Y ′)

is a weak equivalence.

Proof Dual to the proof of Corollary 3.2.15 using Proposition 3.6.17 and
Theorem 3.6.13. �

We now have the dual of Corollary 3.2.16. As was the case with that result,
the statement that follows fits better thematically in the previous chapter, but
the proof given here is much sleeker than the one that would only use the tools
from the previous chapter. Recall the definition of the mapping cylinder Mf

from Definition 2.4.1.

Corollary 3.6.20 If f0, f1 : X → Y are homotopic, then there is a homotopy
equivalence

Mf0 � Mf1 .
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Proof Suppose F : X × I → Y is a homotopy from f0 to f1. Consider the
diagram

where the unlabeled maps are all inclusions. The colimits of the rows are,
from top to bottom, Mf0 , MF , and Mf1 . These are equivalent to the homo-
topy pushouts since, in each row, the left horizontal arrow is a cofibration
by Example 2.3.4 and Proposition 2.3.9. Since all of the vertical maps are
homotopy equivalences, Theorem 3.6.13 says that the maps in the diagram
Mf0 → MF ← Mf1 are homotopy equivalences. �

Recalling the definition of the homotopy cofiber, Definition 2.4.5, we immedi-
ately have the following, the proof of which is dual to that of Corollary 3.2.17.

Corollary 3.6.21 If f0, f1 : X → Y are homotopic, then

hocofiber( f0) � hocofibery( f1).

3.7 Arithmetic of homotopy cocartesian squares

We now turn to square diagrams and a comparison of the homotopy colimit of
the subdiagram S1 to the last space of the square. That is, for any square

we have a canonical map

b(S) : hocolim(S1) = hocolim(X ← W → Y) −→ Z (3.7.1)

given by the composition of the canonical maps hocolim(S1) → colim(S1)
(see the discussion following (3.6.1)) and colim(S1) → Z (see (3.5.1) and
the discussion around it). Analogously to Definition 3.3.1, we then have the
following.
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Definition 3.7.1 A square diagram

is

● homotopy cocartesian (or ∞-cocartesian, or a homotopy pushout) if b(S) is
a weak equivalence;

● k-cocartesian if the map b(S) is k-connected.

If a square is k-cocartesian, then it is clearly j-cocartesian for all j ≤ k.

Example 3.7.2 Various examples from Section 3.6 can be restated in terms
of homotopy cocartesian squares. For instance, Examples 3.6.6, 3.6.7, 3.6.8,
3.6.9, 3.6.10, and 3.6.12 say that the squares

are homotopy cocartesian. Most of these results will be generalized to cubes in
Section 5.8. �

We remark that several of the squares above are not commutative, and what
we mean by them being homotopy cocartesian is that the homotopy colimit of
the evident punctured square is homotopy equivalent to the “last” space in the
square.

A common and useful square diagram is one that is given by a pair of open
sets which cover a given space Z, so we treat this separately.
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Definition 3.7.3 We call a square

an open pushout square or the triple (Z; X,Y) an open triad if Z is the union of
open sets X and Y along W.

Proposition 3.7.4 Every homotopy cocartesian square admits an equiva-
lence from an open triad.

Proof Given

write hocolim(Y ← W → X) = Y 	 W × I 	 X/ ∼, where ∼ is the evident
equivalence relation. By assumption the canonical map hocolim(Y ← W →
X) → Z is a weak equivalence. We may also assume Z = hocolim(Y ←
W → X). Let UY = Y 	 W × [0, 2/3)/ ∼ and UX = X 	 W × (1/3, 1]/ ∼
be the evident open subspaces of Z. Then the obvious projections UX ∩ UY =

W × (1/3, 2/3) → W, UY → Y , UX → X are homotopy equivalences, and we
have a map of squares (a commutative diagram)

such that the horizontal maps are all homotopy equivalences. �

Every open triad is itself homotopy cocartesian.

Example 3.7.5 Suppose U,V ⊂ X are open subsets such that X = U ∪ V .
The square of inclusions
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is homotopy cocartesian.
To see why this is true, let X′ = hocolim(V ← U∩V → U) and let PU , PV ⊂

X′ be as in the proof of Theorem 3.6.13. Then {PU , PV } forms an open cover
for X′, and we have a map of diagrams

where the vertical maps are given by projections, all of which are homotopy
(and hence weak) equivalences. By Lemma 3.6.14, the induced map of colimits
X′ = colim(PV ← PU ∩ PV → PU) → colim(V ← U ∩ V → V) = X is a
weak equivalence, and thus by definition the square in question is homotopy
cocartesian. �

The following dual to Proposition 3.3.5 follows immediately from Proposi-
tion 3.6.17.

Proposition 3.7.6 Suppose

is cocartesian and W → Y is a cofibration. Then S is homotopy cocartesian.

Here is another example that is a consequence of Lemma 3.6.14. In fact, the
same argument given in the proof of that lemma can be adapted to give the
following useful result.

Example 3.7.7 If X and Y are based spaces, and if X∨Y → X and X∨Y → Y
are the projections, the square

is homotopy cocartesian.
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To see this, note that Theorem 3.6.13 implies that the map induced by
projection

hocolim(X ∨CY ← X ∨ Y → CX ∨ Y) −→ hocolim(X ← X ∨ Y → Y)

is a weak equivalence. The inclusion X ∨ Y → X ∨ CY is a cofibration since
Y → CY is. Now, by Proposition 3.6.17,

hocolim(X ∨CY ← X ∨ Y → CX ∨ Y) � colim(X ∨CY ← X ∨ Y → CX ∨ Y),

and the latter space is evidently contractible since it is equal to CX ∨CY .
A generalization of this example to cubical diagrams can be found in

Example 5.8.21. �

Although we are restricting most of our attention to pushouts and pullbacks
of topological spaces, it is worth revisiting the Seifert–van Kampen Theorem,
here Theorem 1.4.12, as it has a succinct statement in terms of pushouts. Recall
that the notation G ∗K H stands for the amalgamated sum (see the discussion
before Theorem 1.4.12).

Theorem 3.7.8 (Seifert–van Kampen Theorem) Suppose we have a homo-
topy cocartesian square of based spaces

such that W, A, and B are path-connected. Then the square

is a pushout of groups. That is, the canonical map

π1(A) ∗π1(W) π1(B) −→ π1(X)

is an isomorphism.

We now look at some “arithmetic” properties of homotopy pushouts. First, dual
to Proposition 3.3.6, the pointwise union (coproduct) of homotopy cocarte-
sian squares is homotopy cocartesian. The proof is dual, but the homotopy
cocartesian part can also be proved using Theorem 3.7.18.
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Proposition 3.7.9 Suppose

are homotopy cocartesian. Then the square

is homotopy cocartesian. For based spaces, if we replace 	 with ∨, the result
remains true. If S1 and S2 are k1-cocartesian and k2-cocartesian, respectively,
then the squares of products and wedges are min{k1, k2}-cocartesian.

Corollary 3.7.10 (Wedge commutes with homotopy pushout) If

is a homotopy cocartesian square of based spaces and V is any based space,
then

is homotopy cocartesian. Analogously, if S is k-cocartesian, so is S ∨ V.

Proof Dual to the proof of Proposition 3.3.6. �

One can think of the following dual of Corollary 3.3.8 as the distributive law
of multiplication over addition.

Proposition 3.7.11 (Products commute with homotopy pushouts) Suppose
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is homotopy cocartesian. Then for any space V, the square

where all maps are induced from the previous diagram using the identity on
the V coordinate, is homotopy cocartesian. If S is k-cocartesian, S×V is also
k-cocartesian.

Proof This follows from the fact that there is a natural homeomorphism

hocolim(X × V ← W × V → Y × V) −→
(

hocolim(X ← W → Y)
)
× V.

The k-cocartesian version is also straightforward. �

Remark 3.7.12 More generally, Proposition 3.7.11 is true for fiber products
over a space. This will appear as Proposition 3.9.3. �

The next result, which is dual to Proposition 3.3.11, says that the homotopy
pushout of a weak equivalence is a weak equivalence, and that any square with
parallel maps which are weak equivalences is a homotopy pushout. Similarly
for the k-cocartesian version. More precisely, we have the following.

Proposition 3.7.13 Consider the square diagram

1. (a) If the square is homotopy cocartesian and the map W → X is a homo-
topy (resp. weak) equivalence, then Y → Z is a homotopy (resp. weak)
equivalence.

(b) If both W → X and Y → Z are homotopy (resp. weak) equivalences,
then the square is homotopy cocartesian.

2. (a) If W → X is k-connected and the square is k-cocartesian, then Y → Z
is k-connected.

(b) If W → X is (k − 1)-connected and Y → Z is k-connected, then the
square is k-cocartesian.

Proof Dual to the proof of Proposition 3.3.11, using Proposition 3.6.2. �
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Remark 3.7.14 Analogously to the first part of Remark 3.3.12, if Y → Z is
a weak equivalence and the square is homotopy cocartesian, then nothing in
general can be said about the map W → X. This happens due to the existence
of “acyclic” spaces X whose reduced homology groups vanish but which have
non-trivial fundamental group. We borrow example 2.38 from [Hat02]. Let X
be the space obtained from S 1 ∨ S 1 by attaching a pair of 2-cells via the words
a5b−3 and b3(ab)−2 (i.e. these words give a formula for maps S 1 → S 1 ∨ S 1).
The reduced homology groups of X vanish, π1(X) is a non-trivial perfect group
(a group whose abelianization is trivial), so X is not weakly contractible.
However, its suspension ΣX is 1-connected by Example 2.6.13, and since
Hi(ΣX) � Hi−1(X)7 for i ≥ 1 and X is connected, the homology groups of
ΣX vanish. By Theorem 4.3.5 the unique map ΣX → ∗ is a weak equivalence,
so ΣX is weakly contractible. Hence in the homotopy cocartesian square

the right-most map is a weak equivalence, whereas the map X → ∗ is only
0-connected. For more on acyclic spaces, see [Dro72].

The other parts of Remark 3.3.12 have valid analogs here, and we invite the
reader to formulate them. �

An easy application of Proposition 3.7.13 is to show that the quotient of a space
by a contractible subspace is equivalent to the original space.

Corollary 3.7.15 Suppose f : X → Y is a map with X contractible. Then
the natural map Y → hocofiber( f ) is a weak equivalence. In particular, the
quotient of a space Y by a contractible subspace X for which the inclusion
X → Y is a cofibration is weakly equivalent to Y.

Proof This is not hard to see by considering the homotopy pushout square

Since X is contractible, the map X → ∗ is a weak equivalence, by statement 1 of
Proposition 3.7.13 the induced map Y → hocofiber( f ) is a weak equivalence.

�
7 This follows from Theorem 2.3.14 for the homotopy cofibration sequence X → ∗ → ΣX using

that the reduced homology groups of a point are all zero.
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The following is dual to Example 3.3.13. We already saw it in Lemma 2.4.19,
giving rise to the Barratt–Puppe sequence (2.4.4).

Example 3.7.16 Suppose X → Y → C is a cofibration sequence. Then there
is a weak equivalence

ΣX � hocofiber(Y → C).

To see this, we have a homotopy cocartesian square

which says that hocolim(∗ ← X → Y) � C. Consider the square

where Y → hocolim(∗ ← X → Y) is the inclusion of Y . This square is homo-
topy cocartesian by 1(b) of Proposition 3.7.13, since both horizontal arrows
are weak equivalences. Since hocofiber(Y → hocolim(∗ ← X → Y)) � ΣX
(easy to see from the definitions or from Theorem 3.7.18), we have a weak
equivalence of vertical homotopy cofibers ΣX → hocofiber(Y → C). �

The next example generalizes the previous one and is a dual to Example 3.3.14.

Example 3.7.17 Suppose

is a homotopy cocartesian square of based spaces. Then

ΣX � hocofiber(Y ∨ Z → W).

The reasoning for this is the same as the above. The square



158 2-cubes: Homotopy pullbacks and pushouts

(this is the homotopy pushout in based spaces), where the top map is the
identity and the left vertical map is the wedge of the inclusion maps, is homo-
topy cocartesian since both horizontal arrows are equivalences. Taking vertical
cofibers gives the desired weak equivalence since

hocofiber(Y ∨ Z → hocolim(Y ← X → Z)) � ΣX,

again from Theorem 3.7.18. �

The following dual to Theorem 3.3.15 is a manifestation of the more general
fact that homotopy colimits commute (see Proposition 8.5.5). It can be thought
of as associativity of addition, dual to our remark following Theorem 3.3.15.
Since the proof is exactly dual to that of Theorem 3.3.15, we leave it to the
reader.

Theorem 3.7.18 Suppose we have a commutative diagram

Denote by hocolim(X), hocolim(Z), and hocolim(Y) the homotopy pushouts
of the first, second, and third rows of this diagram respectively, and
by hocolim(C1), hocolim(C∅), and hocolim(C2) the homotopy pushouts of
the first, second, and third columns respectively. Then there is a natural
homeomorphism

We now have the following corollary, the first part of which is dual to Corol-
lary 3.3.16. The reader should compare this with Example 2.4.15. Related
results also appeared as Examples 3.6.6, 3.6.9, 3.6.10, and 3.6.12. A gener-
alization to cubical diagrams is given in Corollary 5.8.10 and for more general
diagrams in Corollary 8.5.8.
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Corollary 3.7.19 If Z1 ← Z∅ → Z2 is a diagram of (based) spaces and V
is a based space, we then have

hocolim(V ∨ Z1 ← V ∨ Z∅ → V ∨ Z2) � V ∨ hocolim(Z1 ← Z∅ → Z2)

hocolim(V × Z1 ← V × Z∅ → V × Z2) � V × hocolim(Z1 ← Z∅ → Z2)

hocolim(V ∧ Z1 ← V ∧ Z∅ → V ∧ Z2) � V ∧ hocolim(Z1 ← Z∅ → Z2)

hocolim(V ∗ Z1 ← V ∗ Z∅ → V ∗ Z2) � V ∗ hocolim(Z1 ← Z∅ → Z2)

In particular,

hocolim(ΣZ1 ← ΣZ∅ → ΣZ2) � Σ hocolim(Z1 ← Z∅ → Z2).

If Z2 = ∗ is a point so that hocolim(Z1 ← Z∅ → ∗) � hocofiber(Z∅ → Z1), then

hocofiber(V ∨ Z∅ → V ∨ Z1) � CV ∨ hocofiber(Z∅ → Z1)

and

hocofiber(V ∧ Z∅ → V ∧ Z1) � V ∧ hocofiber(Z∅ → Z1).

Proof The first item is straightforward. The second item is Proposi-
tion 3.7.11. The third uses the first two, Theorem 3.7.18 applied to the diagram

and Example 3.6.10. The fourth item uses the second, Example 3.6.6, and an
application of Theorem 3.7.18, all applied to the diagram

The fifth item is a special case of the third, since suspension is the same as
smash product with the circle. The statements about homotopy cofibers seem to
require slightly different proofs. The first of them has already been established
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and is a matter of combining Example 2.4.10 with Example 2.4.12. For the
second, we use Example 2.4.13 and apply all three of the aforementioned
examples to the diagram

�

As promised in Example 2.4.13, we have the following result.

Example 3.7.20 Let X,Y,Z be based spaces, and f : X → Y a map.
Theorem 3.7.18 gives a homeomorphism

hocofiber( f × 1Z) � hocofiber( f ) ∧ Z+.

To see why, consider the diagram

Taking homotopy colimits first along the rows from top to bottom yields
Z × hocofiber(X → Y) using the third item in Corollary 3.7.19, then Z, and
finally ∗. Then taking the homotopy colimit of the result yields hocofiber(X →
Y)∧Z+. Instead taking homotopy colimits along the columns first and then the
homotopy colimit of the result yields hocofiber( f × 1Z). �

Dual to Corollary 3.3.17, the square of homotopy cofibers of a map of
homotopy cocartesian squares is itself a homotopy cocartesian square.

Corollary 3.7.21 There is a natural homeomorphism

hocolim
(
hocofiber(Z1 → X1) ← hocofiber(Z∅ → X∅)

→ hocofiber(Z2 → X2)
)

� hocofiber
(
hocolim(Z1 ← Z∅ → Z2)

→ hocolim(X1 ← X∅ → X2)
)
.
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Proof Let YS = ∗ for all S in the statement of Theorem 3.7.18. �

Theorem 3.7.18 relates the join and smash products in the following example.

Proposition 3.7.22 If X and Y are based spaces, then there is a weak
equivalence

X ∗ Y � Σ(X ∧ Y).

Proof Consider the diagram

where the map X ∨ Y → X × Y is the inclusion of the wedge into the product,
and the other maps are the obvious projections. The homotopy pushouts of the
columns, from left to right, are weakly equivalent to ∗, ∗, and X ∗Y . The first of
these is obvious, the second is Example 3.7.7, and the third is Example 3.6.12.
Hence the homotopy pushout of the homotopy pushouts of the columns is
homotopy equivalent to X ∗ Y by Example 3.6.7. By Theorem 3.7.18, this
iterated homotopy pushout is homeomorphic to the homotopy pushout of the
homotopy pushouts of the rows. From top to bottom, these are weakly equiva-
lent to ∗, X ∧ Y , and ∗. The first and last statements follow from Example 3.6.7
and the second is Example 3.6.10. Thus the homotopy pushout of the homo-
topy pushouts of the rows is homotopy equivalent to hocolim(∗ ← X∧Y → ∗),
which is weakly equivalent to Σ(X ∧ Y) by Example 3.6.9. �

We will give an alternative proof of this equivalence in Example 5.8.17. Here
is a consequence that we will find useful later.

Proposition 3.7.23 (Connectivity of the join) If X is p-connected and Y is
q-connected, then X ∗ Y is (p + q + 2)-connected. Moreover, X ∧ Y is (p + q +
1)-connected.

Proof If one of X or Y is empty, then the join is the other space, and the
result is still true; if they are both empty, the result is still true since it gives
the connectivity of the empty set, which is −2. So we can assume X or Y is
non-empty and can choose basepoints in each. By Proposition 3.7.22,

X ∗ Y � Σ(X ∧ Y).
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Without loss of generality, using Theorem 1.3.8, we may assume X and Y are
CW complexes, and by Theorem 2.6.26 we may additionally assume

X = ∗ ∪ {cells of dimension ≥ p + 1},
Y = ∗ ∪ {cells of dimension ≥ q + 1}.

Since X and Y are compactly generated, we may give a CW structure to the
product X × Y using the products of the cells of X and Y (see [Hat02, Theorem
A.6] for more on this point-set matter). To create the smash product from the
product, we identify X ∨ Y to a point, and so the cells of the form ∗ × en and
em × ∗ are identified to a point. Hence the minimal dimension of the cells in
X ∧ Y is p + q + 2. Using the definition of a k-connected pair, Definition 2.6.4
(with the pair (X∧Y, ∗)) and Theorem 2.6.24, we have that X∧Y is (p+q+1)-
connected. Then by Example 2.6.13 we have that Σ(X ∧ Y) � X ∗ Y is (p+ q+
2)-connected. �

We now have a partial dual of Proposition 3.3.18 that will be generalized later
as Proposition 5.8.12.

Proposition 3.7.24 Suppose the square

is homotopy cocartesian (k-cocartesian). Then the map

hocofiber(W → X) −→ hocofiber(Y → Z)

is a weak equivalence (k-connected).

Remark 3.7.25 The converse is not true in general. For instance, let X be the
space from Remark 3.7.14. The suspension ΣX is weakly contractible, whereas
X is not. Consider the square

Then the map of vertical homotopy cofibers is a weak equivalence since ΣX
is weakly contractible, but the square is not homotopy cocartesian because
hocolim(∗ ← ∗ → X) has the homotopy type of X, which is not weakly
contractible. �
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Proof We prove the homotopy cocartesian version and leave it to the reader
to provide the k-cocartesian version (by dualizing the k-cartesian part of
Proposition 3.3.18).

Consider the square

The top horizontal arrow (defined by the square below) is a weak equivalence
by 1(b) of Proposition 3.7.13 applied to the square

By assumption the lower horizontal arrow is a homotopy equivalence. It
suffices to show that the homotopy cofiber C of the map

hocolim(W
1W← W → Y) −→ hocolim(X ← W → Y)

is homotopy equivalent to hocofiber(W → X). To see this, consider the diagram

The homotopy pushout of the homotopy pushout of the rows is the homo-
topy cofiber C described above, using Example 3.6.7 on the middle row. By
Theorem 3.7.18, it is homeomorphic to the homotopy pushout of the homo-
topy pushouts of the columns; the middle and right-most columns are weakly
contractible by Example 3.6.7. But this latter iterated homotopy pushout is
equivalent to hocolim(X ← W → ∗), which is the homotopy cofiber of
W → X. �

Here is a dual to Proposition 3.3.20. Its generalization to higher-dimensional
cubes appears later as Proposition 5.8.14.
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Proposition 3.7.26 In the diagram

let the left square be denoted by 1 , the right by 2 , and the outer square by

1 2 . Then

1. (a) If 1 and 2 are homotopy cocartesian, then 1 2 is homotopy
cocartesian.

(b) If 1 and 1 2 are homotopy cocartesian, then 2 is homotopy
cocartesian.

2. (a) If 1 and 2 are k-cocartesian, then so is 1 2 .

(b) If 1 is (k − 1)-cocartesian and 1 2 is k-cocartesian, then 2 is k-
cocartesian.

Remark 3.7.27 The third obvious statement is false in general. Let X be the
space from Remark 3.7.14, and consider the diagram

The outer and right-most squares are homotopy cocartesian, but the left-most
square is not, because hocolim(∗ ← ∗ → X) � X is not contractible. �

Proof of Proposition 3.7.26 The proofs of parts 1(a) and 1(b) are dual to the
proof of Proposition 3.3.20, using Proposition 3.7.13 on the top horizontal
arrow in the diagram

The observation that the square in this diagram is homotopy cocartesian fol-
lows from an application of Theorem 3.7.18, and then Proposition 3.7.13 again,
to the diagram
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The proofs of the other two statements now follow from the above along with
Proposition 2.6.15. �

We close with the discussion dual to that of fibrant squares. Mirroring
Definition 3.3.23, we have the following.

Definition 3.7.28 We say a square

is cofibrant if

● W → X and W → Y are cofibrations;
● colim(Y ← W → X) → Z is a cofibration.

If in addition Z = colim(Y ← W → X), we say S is a cofibrant pushout square.

We observe that, in particular, a cofibrant square satisfies

hocolim(Y ← W → X) � colim(Y ← W → X)

by Proposition 3.6.17.
The proposition that follows is dual to Proposition 3.3.24, with a dual proof

using the mapping cylinders from Definition 2.4.1.

Proposition 3.7.29 Every square admits a homotopy (and hence weak)
equivalence from a cofibrant square. That is, given a square
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there is a cofibrant square

and a map of squares (a commutative diagram in the shape of a 3-cube)

such that W ′ → W, X′ → X, Y ′ → Y, and Z′ → Z are a homotopy equiv-
alences. Every homotopy cocartesian square admits an equivalence from a
cofibrant pushout square.

A square like S′ in the above result is called a cofibrant replacement of S.

Proof We sketch the proof, which is dual to the proof of Proposition 3.3.24.
Let f : W → X and g : W → Y be the maps in the diagram. Let W ′ = W,

X′ = Mf , and Y ′ = My. Let h : hocolim(X
f← W

g→ Y) → Z be the canonical
map and let Z′ = Mh. The resulting square is cofibrant by a dual argument to
that in the proof of Proposition 3.3.24. For V = W, X,Y,Z the maps V ′ → V are
the evident ones, as discussed after Definition 2.4.1 and in Proposition 2.4.4.
If S is homotopy cocartesian, we let Z′ = colim(Mf ← W → Mg). �

Remark 3.7.30 In analogy with Remark 3.3.25, X is k-cocartesian if and
only if X′ is. We leave it to the reader to fill in the details. �

We will encounter cofibrant replacements in Theorem 5.8.23 and in
Definition 8.4.12.

Let X1, X2 be based spaces. We have seen in Example 3.7.7 that the square
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is homotopy cocartesian. It turns out that a great many homotopy cocartesian
squares are of this form. We thank John Klein for explaining to us the following
result, due to Goodwillie, which appears in [KW12, Lemma 3.5]. The cubical
generalization is Proposition 5.8.29.

Proposition 3.7.31 Let

be a homotopy cocartesian square, and let ΣX be the square of suspensions.
Then ΣX is weakly equivalent to

Proof This proof is adapted from [KW12, Lemma 3.5]. Let X∅ = ∗. For each
S ⊂ {1, 2}, define a map ΣXS → ∨i∈SΣXi as follows. First use the pinch map
ΣXS → ΣXS ∨ΣXS (collapse the middle of the suspension to a point), and then
map the ith copy of ΣXS to ΣXi if i ∈ S by the given maps, or to a point if
i � S . This gives a map of squares from ΣX to X′.

Clearly the maps ΣXS → ∨
i∈S ΣXi are homotopic to the identity if |S | ≤ 1.

We are then left to show that the map

a : ΣX12 → ΣX1 ∨ ΣX2

is a weak equivalence. By Proposition 3.7.29 we may also assume X12 → X1

and X12 → X2 are cofibrations. Since X is homotopy cocartesian, we have a
weak equivalence X1/X12 � hocofiber(X12 → X1) → hocofiber(X2 → ∗) �
ΣX2 by Proposition 3.7.24, and similarly a weak equivalence X2/X12 → ΣX1.

By the Barratt–Puppe sequence (2.4.4), we have maps Xi/X12 → ΣX12 for
i = 1, 2, and so have an induced map

b : X2/X12 ∨ X1/X12 −→ ΣX12 ∨ ΣX12 −→ ΣX12,

where the last map is the fold map. The compositions a ◦ b and b ◦ a are
homotopic to the identities, and the result follows. �
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3.8 Total homotopy cofibers

For

the connectivity of the map

b(S) : hocolim(X ←− W → Y) → Z

measures the extent to which S is a homotopy cocartesian square. Hence it
is most natural to ask about the connectivity of the homotopy fiber of this
map when asking how cocartesian a square is. However, it is usually easier to
compute the homotopy cofiber of b(S), which provides partial information on
the connectivity of b(S). In analogy with Definition 3.4.1, we thus have the
following.

Definition 3.8.1 Define the total (homotopy) cofiber of the square S as

tcofiber(S) = hocofiber(b(S)).

Proposition 3.7.13 says that if the square is homotopy cocartesian, then Y → Z
has the same connectivity as the map W → X; that is, it says that connectivity
is preserved under pushouts. In fact, the map

hocofiber(W → X) → hocofiber(Y → Z)

is a weak equivalence. To see this, we will interpret total homotopy cofiber as
an iterated homotopy cofiber, just as we did with total homotopy fibers.

Proposition 3.8.2 (Total homotopy cofiber as iterated homotopy cofiber) Let
S be the square

(3.8.1)

Then

tcofiber(S) � hocofiber
(
hocofiber(W → X) → hocofiber(Y → Z)

)
.

Moreover,

tcofiber(S) �
(
hocofiber(W → Y) → hocofiber(X → Z)

)
.
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Proof Dual to the proof of Proposition 3.4.3. �

Remarks 3.8.3

1. In analogy with Remark 3.4.4, when we take (homotopy) cofibers of
(homotopy) cofibers, the result will be called the “iterated (homotopy)
cofiber”.
It is not hard to see that the two iterated homotopy cofibers in the above
result are in fact homeomorphic.

2. From the above result, along with Proposition 3.7.24, a square is homo-
topy cocartesian if and only if its total homotopy cofiber is weakly
contractible. �

The following is dual to Example 3.4.5 and was already encountered in the
discussion of the Barratt–Puppe sequence (Lemma 2.4.19).

Example 3.8.4 Suppose X → Y → C is a homotopy cofiber sequence. The
homotopy cofiber of the canonical map C −→ hocofiber(Y → C) (i.e. what can
be thought of as the map C → ΣX by Example 3.7.16) is weakly equivalent to
ΣY . To see this, consider the square

Computing its total homotopy cofiber in two ways using Proposition 3.8.2
gives the desired result. �

The following is dual to Proposition 3.4.7.

Proposition 3.8.5 For a sequence X → Y → Z of maps, we have a
cofibration sequence

hocofiber(X → Y) −→ hocofiber(X → Z) −→ hocofiber(Y → Z).

Proof Consider the square
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where the right map is the composite X → Y → Z. Comparing the total
cofiber by computing it iteratively using Proposition 3.8.2 in the horizontal
and vertical directions, we get

tcofiber(X) � hocofiber(Y → Z)

and

tcofiber(X) � hocofiber
(
hocofiber(X → Y) −→ hocofiber(X → Z)

)
. �

The following are generalizations of Proposition 3.4.8 and Proposition 3.4.9.

Proposition 3.8.6 Suppose f : X → Y and g : Y → X are maps such that
g ◦ f is the identity. Then

Σ hocofiber( f ) � hocofiber(g).

Proof Compare the vertical, horizontal, and total cofibers of the square

using Proposition 3.8.2. �

Generalizing this further, we have the following.

Proposition 3.8.7 Let X be the diagram

and suppose there are maps XS∪i → XS for S ⊂ {1, 2} and i � S such that the
composition XS → XS∪i → XS is the identity. Then

Σ2 tcofiber(X) � tcofiber(X′),

where X′ is the square

Proof Dual to the proof of Proposition 3.4.9. �
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Just as we defined the homotopy groups of a map and of a square diagram, we
can also define the homology groups of a map and of a square diagram in terms
of the total homotopy cofiber. Here a dimension shift is not required, as it was
in Definition 3.4.10, since a k-connected map has k-connected cofiber (even if
its domain is empty).

To start, for a map f : X → Y , we can define

Hk( f ) = Hk(Mf , j(X)), (3.8.2)

where j is the map from Proposition 2.4.4. Now let S be the square

Definition 3.8.8 For i ≥ 0, define

Hi(S) = Hi(tcofiberS).

Analogous to Proposition 3.4.11, we have the following.

Proposition 3.8.9 (Homology long exact sequence of a square) There is a
long exact sequence of homology groups

· · · → Hi( f1) → Hi( f2) → Hi(tcofiberS) → Hi−1( f1) → · · · .

3.9 Algebra of homotopy cartesian and cocartesian squares

We now present several “algebraic” examples in which various kinds of
squares interact. The homotopy pullback of X → Z ← Y is the homo-
topy invariant product of X with Y over Z, and the homotopy pushout of
X ← W → Y is the homotopy invariant coproduct (sum) of X with Y under W,
so combining them is something like “doing algebra”. The first result is related
to Proposition 3.3.9 and says that exponentiating a certain kind of homotopy
pushout results in a homotopy pullback (i.e. exponentiation takes sums to prod-
ucts). This will be generalized to cubical diagrams in Proposition 5.10.1, and
to arbitrary diagrams in Proposition 8.5.4.

Proposition 3.9.1 Suppose in the square
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the map hocolim(X ← W → Y) → Z is a homotopy equivalence (so in
particular S is homotopy cocartesian). Then, for any space V, the square

is homotopy cartesian.

Remark 3.9.2 As in Proposition 3.3.9, this result is not true if S is just
required to be homotopy cocartesian. Again let W be the “double comb space”
from Remark 1.3.6. Then the square

is homotopy cocartesian, but letting V = W and taking the square of mapping
spaces as in the statement of the result, the three corners other than the upper-
left are homeomorphic to W, but the upper-left is not path-connected.

A way to state the result in terms of homotopy cartesian squares (i.e. in terms
of weak equivalences) would have been to require that hocolim(X ← W → Y)
and Z be CW complexes (see the end of Remark 1.3.6). �

Proof of Proposition 3.9.1 If A → B is a homotopy equivalence, then the
induced map VB → VA is a homotopy equivalence by Proposition 1.3.2, so by
Proposition 3.7.29 we may also assume S is of the form

where X∅ → Xi are cofibrations for i = 1, 2. By inspection, the square

is cartesian (maps defined on a union of two sets are precisely those pairs of
maps, one for each of the sets, which agree on the intersection). By Propo-
sition 2.5.1, the map Map(X2,V) → Map(X∅,V) is a fibration, and hence by
Proposition 3.3.5 the square Map(S,V) is homotopy cartesian. �
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The following result follows directly from Proposition 3.5.14 since homotopy
pullback and homotopy pushout can be thought of as ordinary pullback and
pushout (Propostions 3.2.5 and 3.6.5). The result says that exponentiation takes
(homotopy amalgamated) sums to (homotopy fiber) products. Generalizations
of this result can be found in Propositions 5.10.1 and 8.5.4.

Proposition 3.9.3 Let

Let Y,Z be spaces, Z → Y a map, and suppose there is a map XS → Y for
each S such that the resulting diagram commutes. Then we have a natural
homeomorphism

Φ : hocolim (X1 ×Y Z ← X∅ ×Y Z → X2 ×Y Z)

−→ hocolim(X1 ← X∅ → X2) ×Y Z.

Hence the square

is homotopy cocartesian if S is homotopy cocartesian, and is k-cocartesian if
S is k-cocartesian.

Proof Define

φ : X1 ×Y Z 	 X∅ ×Y Z × I 	 X2 ×Y Z −→ (X1 	 X∅ × I 	 X2) ×Y Z

by φ(xi, z) = (xi, z) for xi ∈ Xi, i = 1, 2, and φ(((x0, z), t)) = ((x0, t), z) for
x0 ∈ X∅. It is straightforward to check that this gives rise to a map of the
quotient spaces which define the domain and codomain of Φ in the statement
and that this map has a continuous inverse. �

More generally, the above result is true if we replace XS ×Y Z with holim(XS →
Y ← Z) for each S . See the remarks following Theorem 5.10.10.

If in the statement above we take Y = ∗, then we note that we obtain Propo-
sition 3.7.11 as a corollary. If instead we take Z = ∗ we also have the following
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corollary, which will be generalized in Proposition 5.10.2 for cubical diagrams
and in Proposition 8.5.9 for arbitrary ones.

Corollary 3.9.4 Suppose the square

is homotopy cocartesian and there is a map XS → Y for each S such that
the resulting diagram commutes. Then, for any y ∈ Y, the square of homotopy
fibers

is homotopy cocartesian. That is, there is a weak equivalence

holim
(
hocolim(X1 ← X0 → X2) −→ Y ←− ∗

)
� hocolim

(
holim(X1 → Y ← ∗) ←− holim(X0 → Y ← ∗)

−→ holim(X2 → Y ← ∗)
)

Moreover, if we replace “homotopy pushout” with “k-cocartesian” in the
original square, the square of homotopy fibers is then k-cocartesian.

This result says that “factoring out” the space Y preserves the quality of being
homotopy cocartesian, which we think of as the distributive law of multiplica-
tion (homotopy pullback) over addition (homotopy pushout). As we mentioned
above, both this and Proposition 3.7.11 are special cases of Proposition 3.9.3,
but we can also see Proposition 3.7.11 as a special case of Corollary 3.9.4 if
we let XS = ZS × Y for all S and the maps in the diagram S �→ XS are the
identity on the Y-coordinate.

Proof For the homotopy cocartesian version, let y ∈ Y denote the basepoint,
and let fi : X∅ → Xi be the evident maps. By definition,

hocolim
(
hofibery(X2 → Y) ← hofibery(X∅ → Y) → hofibery(X1 → Y)

)
is equal to the quotient space

hofibery(X2 → Y) ∪ hofibery(X∅ → Y) × I ∪ hofibery(X1 → Y)/∼
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where (x0, γ, 0) ∼ ( f2(x0), γ) and (x0, γ, 1) ∼ ( f1(x0), γ). Clearly we have a
natural homeomorphism hofibery(X∅ → Y) × I � hofibery(X∅ × I → Y) where
the map X0× I → Y is the projection to X0 followed by the map X0 → Y . Using
this it is clear by inspection that the quotient space in question is, by definition,
the homotopy fiber over y of the map

hocolim(X2 ← X∅ → X1) −→ Y,

which is homotopy equivalent to hofibery(X12 → Y) since the square was
assumed to be homotopy cocartesian.

For the k-cocartesian statement, let P = hocolim(X2 ← X∅ → X1). Then by
the above, the square

is a homotopy pushout. By assumption, the canonical map P → X12 is k-
connected, and it follows from the long exact sequence of a fibration that the
induced map hofibery(P → Y) → hofibery(X12 → Y) is also k-connected,
hence the square in question is k-cocartesian. �

The next few examples are applications of Corollary 3.9.4.

Example 3.9.5 For based spaces X and Y and for

f : X ∨ Y −→ X × Y

the inclusion of the wedge into the product, we have

hofiber( f ) � ΩX ∗ΩY.

This is because the square

is a homotopy pushout as seen in Example 3.6.6 (it is a pushout and either
of the maps ∗ → X and ∗ → Y is a cofibration, as we assume all spaces are
well-pointed). We then apply Corollary 3.9.4 by taking fibers everywhere over
X × Y , and obtain a homotopy pushout
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That hofiber(X → X × Y) � ΩY (and hofiber(Y → X × Y) � ΩX) is
Example 3.4.6. �

We can say a bit more about Example 3.9.5 upon taking loop spaces.

Proposition 3.9.6 There is a homotopy equivalence

Ω(X ∨ Y) � Ω(X × Y) ×Ω(ΩX ∗ΩY)

induced by a section of the inclusion map

Ω(X ∨ Y) −→ Ω(X × Y).

Proof Example 3.9.5 establishes a fibration sequence

Ω(ΩX ∗ΩY) → Ω(X ∨ Y) → Ω(X × Y)

after applying Ω (and using Corollary 2.1.12). Denote a point in Ω(X × Y) by
a pair (γX , γY ), and define a map s : Ω(X × Y) → Ω(X ∨ Y) by

(γX , γY ) �−→ γX ∗ γY ,

where

γX ∗ γY (t) =

⎧⎪⎪⎨⎪⎪⎩γX(2t), if 0 ≤ t ≤ 1/2;

γY (2t − 1), if 1/2 ≤ t ≤ 1.

The composite map

Ω(X × Y) −→ Ω(X ∨ Y) → Ω(X × Y)

is the identity, and hence s is a section of the inclusion Ω(X ∨ Y) → Ω(X × Y).
The fibration Ω(ΩX ∗ ΩY) → Ω(X ∨ Y) → Ω(X × Y) is a principal fibration
with a section, and hence we have the desired splitting

Ω(X ∨ Y) � Ω(X × Y) ×Ω(ΩX ∗ΩY).

See [Hat02, p. 412] for the definition of principal fibration and [Hat02, Exer-
cise 22, Chapter 4.3] for the fact that principal fibrations with a section give
rise to the splitting we describe here. �
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Theorem 3.9.7 (Ganea’s Theorem) If F → X → Y is a fibration sequence,
then

hofiber(hocofiber(F → X) → Y) � F ∗ΩY.

Proof Consider the homotopy cocartesian square

Now take homotopy fibers everywhere over Y to obtain by Corollary 3.9.4
another homotopy cocartesian square

The composed map F → Y is null-homotopic (it is constant) and by Exam-
ple 2.2.10 it is homotopy equivalent (in fact equal to in this case) F×ΩY . Thus
we have a homotopy cocartesian square

It is not hard to check that the maps from F × ΩY to F and ΩY are the projec-
tions, and by Example 3.6.12 hofiber(hocofiber(F → X) → Y) admits a weak
equivalence from the join F ∗ΩY . �

Example 3.9.8 If f : X ∨ X → X is the fold map which sends each copy of
X in the wedge to X by the identity, then

hofiber( f ) � ΣΩX.

This follows from Corollary 3.9.4 by fibering the homotopy cocartesian square

over X and using Example 3.6.9. �
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Example 3.9.9 If f : X ∨ Y → Y is the map that sends X to the wedge point
and is the identity on Y , then

hofiber( f ) � X ∧ (ΩY)+.

To see this, consider the homotopy cocartesian square

Fibering over Y everywhere, using both f and the constant map at the basepoint
X → Y , an application of Corollary 3.9.4 gives a homotopy cocartesian square

and hence a weak equivalence

X ∧ (ΩY)+ = (ΩY × X)/(ΩY × ∗) � hofiber(X ∨ Y → Y). �

One application of Proposition 3.4.8 is

Example 3.9.10 There is a weak equivalence

hofiber(Y → X ∨ Y) � Ω(X ∧ΩY+).

This follows from Proposition 3.4.8 and Example 3.9.9. �

We can also use Corollary 3.9.4 to analyze the map in Lemma 2.6.25.

Example 3.9.11 There is a weak equivalence, induced by a map of homotopy
cofibers,

S n ∧Ω(X ∪ en)+
�−→ Σ hofiber(X → X ∪ en).

Alternatively, suppose Y is a CW complex and y ∈ Y is in the interior of an
n-cell. Then there is a weak equivalence

S n ∧ΩY+
�−→ Σ hofiber(Y − {y} → Y).



3.9 Algebra of (co)cartesian squares 179

This is clear by considering the homotopy pushout

Then taking fibers over X ∪ en and using Example 2.2.10 yields a homotopy
pushout

which, upon taking horizontal homotopy cofibers, produces a weak equiva-
lence

S n ∧Ω(X ∪ en)+ −→ Σ hofiber(X → X ∪ en)

by Proposition 3.7.13. �

The following consequence of Corollary 3.9.4 will be generalized to cubical
diagrams in Proposition 5.10.4.

Proposition 3.9.12 Suppose

is a homotopy pullback, and let D = hocolim(X1 ← X∅ → X2). Then the
homotopy fiber of the canonical map b(X) : D → X12 is

hofiber(X1 → X12) ∗ hofiber(X2 → X12).

Proof Fiber the homotopy pushout square
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everywhere over X12. By Corollary 3.9.4, the square of fibers

is also a homotopy pushout. Since X∅ � holim(X1 → X12 ← X2), fibering over
X12 yields an equivalence

hofiber(X∅ → X12) � hofiber(X1 → X12) × hofiber(X2 → X12).

(This step requires an application of Theorem 3.3.15 which we leave to the
reader.) That is, we have a homotopy pushout

and, by Example 3.6.12, a weak equivalence

hofiber(D → X12) � hofiber(X1 → X12) ∗ hofiber(X2 → X12). �

Example 3.9.13 (Fiberwise join) Let X → Y be a map. We define the
fiberwise join X ∗Y U of X with U over Y to be

X ∗Y U = hocolim(X ← X × U → Y × U).

To justify its name, we apply Corollary 3.9.4 to to show that

hofiber(X ∗Y U → Y) � hofiber(X → Y) ∗ U.

Consider the homotopy pushout square

and fiber this over the square of identity maps
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in the obvious way. Corollary 3.9.4 gives us another homotopy pushout square

which proves that the canonical map

hofiber(X → Y) ∗ U → hofiber(X ∗Y U → Y)

is a weak equivalence.
If U is empty then the fiberwise join is simply the space X. Two non-trivial

interesting cases of note are when U is a finite set of size one or two. These
give, respectively, the fiberwise cone CY X of X over Y and the fiberwise sus-
pension ΣY X of X over Y . The fiberwise cone CY X is homeomorphic with the
mapping cylinder of the map X → Y . More generally, if U is a finite set, the
fibers (over Y) of the fiberwise join X ∗Y U are the union along hofiber(X → Y)
of |U | − 1 copies of ΣY hofiber(X → Y). Continuing to assume U is a finite set,
if the map X → Y is k-connected, then so long as U is non-empty, the map
X ∗Y U → Y is (k+ 1)-connected, which can be seen upon consideration of the
fibers over Y .

There is a natural homeomorphism (X ∗Y U) ∗Y V � X ∗Y (U ∗ V) as spaces
over Y (where a space over Y is a space that comes with a map to Y and maps
of spaces over Y make the obvious triangle commute), the details of which we
leave to the reader. The homotopy fibers of (X ∗Y U) ∗Y V → Y are easily seen
to be hofiber(X → Y) ∗ U ∗ V , which are the same as the homotopy fibers of
X ∗Y (U ∗ V) → Y . As a special case, consider when V is a finite set of size
two. Then ΣY (X ∗Y U) � (ΣY X) ∗Y U as spaces over Y . �

Example 3.9.14 If U is a finite set, then X ∗ U � hocofiber(
∨

U X → X),
where

∨
U X → X is the “fold map”. To prove this we induct on |U |. When

|U | = 1 both spaces are clearly CX.8 For the inductive step, let u ∈ U and write∨
U X = X ∨∨

U−{u} X. Consider the diagram

8 When U = ∅, both sides result in X, as the wedge over no copies of X is a point.
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Here all maps are either the identity, the unique map to a point, or the fold
map. We use Theorem 3.7.18. First taking homotopy colimits along the rows
and using Example 3.6.7, we obtain the diagram

hocofiber

⎛⎜⎜⎜⎜⎜⎜⎝ ∨
U−{u}

X → X

⎞⎟⎟⎟⎟⎟⎟⎠ ← X → ∗.

By induction, hocofiber(
∨

U−{u} X → X) � X ∗ (U − {u}), and so the homotopy
colimit of the above diagram is diagram is

hocofiber
(
X → X ∗ (U − {u})

)
,

where X maps to the common “base” of the cones comprising the join. This
is evidently a cofibration, and so the homotopy cofiber above is homotopy
equivalent to the ordinary cofiber, which is easily seen to be X ∗ U.

If instead we first take homotopy colimits along the columns we obtain the
diagram

∗ ←
∨

U

X → X

whose homotopy colimit is hocofiber(
∨

U X → X). By Theorem 3.7.18, the
two descriptions are homeomorphic. �
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2-cubes: The Blakers–Massey Theorems

The last chapter explored two different definitions of “equivalence” of 1-cubes,
or maps of spaces. These are the notions of a homotopy cartesian and homo-
topy cocartesian square. In Section 3.9 we were essentially combining the two
notions. The Blakers–Massey Theorem (also known as the Triad Connectivity
Theorem) and its dual are theorems which directly compare these, giving an
idea to what degree a homotopy cocartesian square is homotopy cartesian and
vice versa.

The Blakers–Massey Theorem has far-reaching consequences in homotopy
theory and many classical results follow from it. For example, we will in this
chapter use the Blakers–Massey Theorem to deduce the Freudenthal Suspen-
sion Theorem, Serre’s Theorem, the (Relative) Hurewicz Theorem, and the
Homological Whitehead Theorem. It should also be noted that the proof of
the Blakers–Massey Theorem we give here is different than any other one we
know of in the literature, although it follows the ideas of Goodwillie [Goo92]
closely.

The general Blakers–Massey Theorem will be proved in Chapter 6.

4.1 Historical remarks

The original motivation for the work Blakers and Massey did in [BM49, BM51,
BM52, BM53a, BM53b] is the simple observation that homology groups sat-
isfy excision while homotopy groups do not. Namely, if a space X is a union
of two subspaces A and B, then, under some mild hypotheses, the inclusions

(A, A ∩ B) −→ (X, B)

(B, A ∩ B) −→ (X, A)

183
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induce isomorphisms on relative homology groups. However, this is not true
for homotopy groups (take e.g. X = S 2 with A and B two hemispheres inter-
secting in a circle). Nevertheless, the Blakers–Massey Theorem states that
excision for homotopy groups is satisfied through a range that depends on the
connectivities of the pairs of spaces. The early version of this theorem is given
below as Theorem 4.1.1. We include this as a convenient starting point for a
brief discussion on the history of this theorem, but our preferred statement is
Theorem 4.2.1, which is also more general.

Recall from Definition 2.6.4 the notion of the connectivity of a pair (X, A).
We then have the following.

Theorem 4.1.1 (Blakers–Massey or homotopy excision) Suppose X is a
union of two open subspaces A and B such that A, B, and A ∩ B are path-
connected. Suppose (A, A∩ B) is k1-connected and (B, A∩ B) is k2-connected,
with k1, k2 ≥ 1. Then the map

πi(A, A ∩ B) −→ πi(X, B)

induced by inclusion is a bijection for 1 ≤ i < k1 + k2 and a surjection for i =
k1+k2. In other words, the inclusion (A, A∩B) → (X, B) is (k1+k2)-connected.

The original statement of this theorem appears in [BM52, Theorem I] (with
stronger hypotheses than stated above, but those are only necessary for study-
ing the first non-vanishing homotopy group; see Theorem 4.1.2). Of interest is
also [Whi78, Section VII.7], which gives various ways of altering the hypothe-
ses to obtain a slightly weaker version of the theorem. Some of the alternative
proofs and improvements of the Blakers–Massey Theorem are due to Araki
[Ara53], tom Dieck et al. [tDKP70], Moore [Moo53], Namioka [Nam62],
Spanier [Spa67], and Witbooi [Wit95], among others.

More modern expositions of the proof of Theorem 4.1.1 can also be found
in [Hat02, Theorem 4.23] and [tD08, Theorem 6.4.1]. A proof that uses triad
homotopy groups (see below for what these are) can be found in [May99,
Chapter 11, Section 3]. The reader should be aware that, in some versions
of the Blakers–Massey Theorem, such as in [Hat02], the authors will be
explicit about requiring (X, A) and (X, B) to be CW pairs, but in light of Theo-
rem 1.3.7, which says that any space can be approximated by a CW complex,
this is not necessary (in fact, a proof that any excisive triad – see below for
what this means – can be replaced by a CW triad can be found in [May99,
Chapter 10, Section 7]). In addition, the definition of the homotopy groups
of a pair (X, A) in the literature sometimes includes π0 (perhaps defined as
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π0(X, A) = π0(X)/π0(A) because then one gets an exact sequence of homotopy
groups that makes sense at the tail; see e.g. [Hat02, p. 476]).

The Blakers–Massey Theorem states a range in which the triad homotopy
groups, are trivial, and hence it is sometimes referred to as the Triad Connec-
tivity Theorem. Namely, a space X with subspaces A and B is called a triad
and denoted by (X; A, B) (not to be confused with a triple (X, A, B) where we
require B ⊂ A). If, in addition, X = Å∪B̊ and A∩B � ∅, then the triad is said to
be excisive; this is of course the usual condition when discussing homological
excision and the Mayer–Vietoris sequence. One can define homotopy groups
of a triad, πk(X; A, B), for k ≥ 2, as homotopy classes of maps

α : Ik → X

satisfying

α(t1, . . . , tk)

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
∈ A, tk−1 = 0;

∈ B, tk = 0;

= ∗, (t1, . . . , tk) ∈ ∂Ik and tk−1 � 0 or tk � 0.

For k = 2 this is a based set and for k = 3, this may not be abelian (it is for
k > 3); for details, see [BM51, Part 2]. If B ⊂ A and k > 2, this reduces to
the usual definition of a relative homotopy group πk(X, A) from Section 1.3
[BM51, Theorem 3.2.1]. One then also has the long exact homotopy sequence
of a triad [BM51, (3.5)] which generalizes the usual homotopy long exact
sequence of a pair from Theorem 1.4.3:

· · · −→ πk+1(X; A, B) −→ πk(A, A ∩ B) −→ πk(X, B)

−→ πk(X; A, B) −→ · · ·
· · · −→ π2(X; A, B) −→ π1(A, A ∩ B) −→ π1(X, B).

It follows from this exact sequence that relative homotopy groups will satisfy
excision if the triad homotopy groups vanish. The original Blakers–Massey
Theorem says precisely this: under the connectivity hypotheses from The-
orem 4.1.1, the excisive triad (X; A, B) is (k1 + k2)-connected (where the
connectivity of the triad is defined in an analogous way to that of a pair; see
[BM51, (4.1)]).

To complete the picture, many authors, including Blakers and Massey, also
study the first non-vanishing triad homotopy group. We have the following.

Theorem 4.1.2 With hypotheses as in Theorem 4.1.1, the map

πk1+1(A, A ∩ B) ⊗ πk2+1(B, A ∩ B) −→ πk1+k2+1(X; A, B) (4.1.1)

given by the generalized Whitehead product, is an isomorphism.



186 2-cubes: The Blakers–Massey Theorems

The original statement of this theorem, with more restrictive hypotheses, can
be found in [BM53a, Theorem I]. Blakers and Massey put some conditions
on the relative homotopy groups of (B, A ∩ B) and (B, A ∩ B) if one or both
of k1 and k2 are equal to 1. Alternatively, one could require that A ∩ B be
simply-connected. The improvement stated here is due to Brown and Loday
[BL84], [BL87a, Theorem 4.2]. In particular, in low dimensions a non-abelian
tensor product defined by those authors has to be used to describe the map in
(4.1.1). The proof of Theorem 4.1.2 is algebraic, and we will give a space-level
explanation for a special case of it in Section 4.6, where we will also discuss a
space-level version of the generalized Whitehead products.

Theorem 4.1.1 can be recast as a statement about square diagrams. The
hypothesis that X is covered by subsets A and B (or that the triad (X; A, B)
is excisive) implies that the square

is homotopy cocartesian (this was Example 3.7.5). Recall from Remark 2.6.10
that an inclusion map X → Y is k-connected if and only if the pair (Y, X) is
k-connected, and recall also that πk hofiber(X → Y) � πk+1(Y, X). Then we can
reinterpret Theorem 4.1.1 as saying that the map

hofiber(A ∩ B → B) −→ hofiber(A → X)

is (k1 + k2 − 1)-connected for any choice of basepoint in B, and hence by
Proposition 3.3.18 that the square

is (k1 + k2 − 1)-cartesian. We can deduce the classical result, Theorem 4.1.1,
from Theorem 4.2.1 directly once we know the square above is homotopy
cocartesian; this is the content of Example 3.7.5. On the other hand, Exam-
ple 3.7.5 relies on the Homological Whitehead Theorem (Theorem 4.3.5) and
the Seifert–vanKampen Theorem (Theorem 1.4.12). The Homological White-
head Theorem, in turn, itself depends on Theorem 4.2.1. This may seem like
a convoluted path to follow, but it is the perspective of this book to emphasize
the importance of the more modern statement of Theorem 4.1.1, appearing
here as Theorem 4.2.1. Moreover, Theorem 4.2.1 is stronger in the sense that
it has weaker hypotheses: not only is that a statement about any homotopy



4.1 Historical remarks 187

cocartesian square but we also eliminate the hypothesis that the connectivity
of the pairs (A, A ∩ B) and (B, A ∩ B) be at least 1.

The Blakers–Massey Theorem can be regarded as a statement about how far
a homotopy pushout square is from being a homotopy pullback square. There
are several proofs in the literature that use this point of view. For example,
Mather [Mat73] proves a weaker version where k1, k2 ≥ 2 using the Second
Cube Theorem (see Theorem 5.10.8). Another proof that uses the language of
pushouts and pullbacks in combination with cellular approximations is due to
Chachólski [Cha97].

As we have discussed above, Theorem 4.1.1 can be thought of as a spe-
cial case of Goodwillie’s general Blakers–Massey Theorem [Goo92], which
appears in this text as Theorem 6.2.1. It is worth emphasizing again that Good-
willie improves the statement to eliminate the hypothesis on the connectivity of
the pairs. In addition, his techniques apply to squares which are not homotopy
cocartesian, but instead k-cocartesian for some k. These improvements are due
in part to working purely on the space level and reducing to a special case, and
in part due to the machinery of cubical diagrams. Goodwillie uses transversal-
ity arguments to argue a special case; we present this proof as well as a new,
purely homotopy-theoretic, version (see Sections 4.4.1 and 4.4.2). The first
time transversality techniques were used to prove the Blakers–Massey Theo-
rem appears to be [Gra75, Chapters 13 and 16]. We will present a different
proof that is related to Goodwillie’s approach in Section 4.4.

Goodwillie’s generalization of the Blakers–Massey Theorem uses cubical
diagrams, and this is the proof that is most relevant to us. Early versions of
the cubical approach are due to Barratt–Whitehead [BW56], Brown-Loday
[BL87a], and Ellis-Steiner [ES87]. These will be discussed in Section 6.1
before we provide our own proof of the generalized Blakers–Massey Theorem
in Section 6.3.

Finally, we should mention that the Blakers–Massey Theorem belongs in a
circle of seminal results in homotopy theory that uses the interplay between
homotopy and homology. The other such classical results from around the
same time are the Serre, the (Relative) Hurewicz, and the Homotopical and
Homological Whitehead Theorems. There are various ways to deduce these
important theorems from each other – many of the proofs of the original
Blakers–Massey Theorem mentioned above use the Hurewicz or Serre The-
orems, Serre’s Theorem can be deduced from the Hurewicz Theorem, etc. –
but what we will demonstrate in Section 4.3 is that the Blakers–Massey The-
orem (and its dual) can stand above all since the Serre, (Relative) Hurewicz,
and Homological Whitehead Theorems can all be deduced from it. For further
information about how these classical theorems are related, see [Ark11,
Section 6.4] or [Sel97, Section 7.4].
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4.2 Statements and applications

We first state the Blakers–Massey Theorem, its dual, and the generalizations
of those two statements. Note that now there are no restrictions on the ki. It
is even possible for one or both to be negative (though in the latter case the
statement of the theorem is vacuously true).

Theorem 4.2.1 (Blakers–Massey Theorem for squares) Suppose that

is homotopy cocartesian and that the maps X∅ → Xi are ki-connected for
i = 1, 2. Then X is (k1 + k2 − 1)-cartesian.

In light of Proposition 3.3.18, we may also read Theorem 4.2.1 as saying that

hofiber(X∅ → X2) −→ hofiber(X1 → X12)

is (k1 + k2 − 1)-connected for every choice of basepoint x ∈ X2 (which auto-
matically determines a basepoint in X12). Or, in the case where the square in
question is a square of inclusions, that the map of pairs (X2, X∅) → (X12, X1) is
(k1 + k2)-connected (recalling that πk(X, A) � πk−1(hofiber(A → X)) and with
the usual caveat about relative π0). Here is the dual to Theorem 4.2.1.

Theorem 4.2.2 (Dual Blakers–Massey Theorem for squares) Suppose that

is homotopy cartesian and that the maps Xi → X12 are ki-connected for i =
1, 2. Then X is (k1 + k2 + 1)-cocartesian.

This theorem follows immediately from Proposition 3.9.12 together with
Proposition 3.7.23, but we will give a different easy proof in Section 4.5 that
uses quasifibrations.

Just as in the above, Theorem 4.2.2 can be read as a statement about a map
of homotopy cofibers, this time using Proposition 3.7.24 (which is related to
Proposition 2.6.12), although we must be careful to say that Theorem 4.2.2
implies that the map
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hocofiber(X∅ → X2) −→ hocofiber(X1 → X12)

is (k1+k2+1)-connected, but the connectivity of the map of homotopy cofibers
does not in general imply that the square is highly cocartesian. When the
square in question is a square of inclusion maps, this tells us that the map
Hi(X2, X∅) → Hi(X12, X1) is an isomorphism for i < k1 + k2 + 1 and onto for
i = k1 + k2 + 1; see Remark 2.6.3. The reason for this is the isomorphism
H̃∗(X, A) � H̃∗(X/A) and, if X is a k-connected space, then H̃i(X) = 0 for i ≤ k.

We will also prove the following generalizations of Theorems 4.2.1 and
4.2.2.

Theorem 4.2.3 Suppose that

is j-cocartesian and that the maps X∅ → Xi are ki-connected for i = 1, 2. Then
X is min{k1 + k2 − 1, j − 1}-cartesian.

The dual version is the following.

Theorem 4.2.4 Suppose that

is j-cartesian and that the maps Xi → X12 are ki-connected for i = 1, 2. Then
X is min{k1 + k2 + 1, j + 1}-cocartesian.

Before proving these theorems, we present a few consequences and examples
of their uses. More are given in Section 4.3. The first few examples and results
are consequences of Theorem 4.2.1.

Example 4.2.5 If based spaces Xi are ki-connected for i = 1, 2, then the
inclusion

X1 ∨ X2 −→ X1 × X2

is (k1 + k2 + 1)-connected. This is because
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admits a homotopy equivalence from the square

the latter of which is evidently homotopy cocartesian. Since the map from a
space X to its cone CX has connectivity equal to the connectivity of X, the
square X is (k1 + k2 + 1)-cartesian by Theorem 4.2.1. �

Remark 4.2.6 The above example is related to the Hilton–Milnor Theorem,
here Theorem 6.5.9, which helps describe the homotopy type of a wedge of
suspensions. This example is also a first step in determining the second deriva-
tive of the identity functor in homotopy calculus of functors (more on functor
calculus can be found in Section 10.1). �

Example 4.2.7 For i = 1, 2, let Xi be ki-connected spaces. There is a (k1 +

k2 +min{k1, k2} + 1)-connected map

Σ(ΩX1 ∧ΩX2) −→ Ω(X1 ∧ X2),

induced by a map of homotopy fibers. To see this consider the homotopy
cocartesian square

which is K = (k1+k2+min{k1, k2}+1)-cartesian by Example 4.2.5 and Theorem
4.2.1. By Proposition 3.3.18 this implies that the map of horizontal homo-
topy fibers is K-connected. Now use Example 3.9.5 and Proposition 3.7.22
to rewrite the domain of this map of homotopy fibers to give the desired
result. �

Now recall from Theorem 1.2.9 that there is a natural homeomorphism

Map∗(X,ΩY) � Map∗(ΣX,Y). (4.2.1)

The following is a foundational result in stable homotopy theory.

Theorem 4.2.8 (Freudenthal Suspension Theorem) The map

S n −→ ΩΣS n,
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which corresponds to the identity map ΣS n → ΣS n via (4.2.1) (setting X = S n,
Y = ΣS n), is (2n − 1)-connected.

Proof Writing ΣS n � S n+1 = CS n ∪S n CS n as the union of hemispheres, we
have a homotopy cocartesian square

where the maps S n → CS n � ∗ are n-connected since S n is (n−1)-connected. It
follows from Theorem 4.2.1 that the square is (2n−1)-cartesian, which implies
that the map

S n −→ holim(CS n → ΣS n ← CS n) � ΩΣS n

is (2n − 1)-connected. �

Remark 4.2.9 The Blakers–Massey Theorem 4.2.1 gives the optimal con-
nectivity estimate in the sense that it predicts the best possible connectivity in
at least one case. For instance, Theorem 4.2.8 says that the map S 0 → ΩΣS 0 is
(−1)-connected, and it is in fact not 0-connected since the codomain ΩΣS 0 �
ΩS 1 has countably many path components, whereas the domain has only two.
Of course, Theorem 4.2.1 will not give the best estimate in all cases. For an
easy example, let X be a well-pointed k-connected space, and let ∗ → X and
∗ → S 0 be the inclusions of the basepoints. The cocartesian square

is homotopy cocartesian since ∗ → X is a cofibration (using Proposition 3.7.6)
but, according to Theorem 4.2.1, it is only (k − 2)-cartesian. To see that it is
homotopy cartesian, note that holim(X → X+ ← S 0) is the space of all (x, γ, y)
such that γ joins x with the image of y in X+. The set of all tuples with y not the
basepoint of S 0 is empty, and hence the homotopy limit is the space of paths
with one endpoint the basepoint of X, which is contractible. �

An easy generalization of Theorem 4.2.8 replaces the sphere with an arbitrary
highly connected space X.

Theorem 4.2.10 If X is an n-connected space, then the map

X −→ ΩΣX,
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which corresponds to the identity map ΣX → ΣX via (4.2.1), is (2n + 1)-
connected.

Example 4.2.11 Suppose X and Y are based spaces with X n-connected, and
let f : X → ΩY and g : ΣX → Y correspond via (4.2.1).

1. If f is k-connected, then g is (min{2n + 2, k} + 1)-connected.
2. If g is (k + 1)-connected, then f is min{2n + 1, k}-connected.

To see this, consider the commutative diagram

The top horizontal arrow is (2n + 1)-connected by Theorem 4.2.10. The result
now follows from Proposition 2.6.15, noting that Ωg is k-connected if g is
(k + 1)-connected. �

Example 4.2.12 Suppose X → Y is k-connected, and that X itself is
l-connected. Then there is a naturally induced (k + l)-connected map

hofiber(X → Y) −→ Ω hocofiber(X → Y).

Equivalently, there is a (k + l)-connected map

X −→ hofiber
(
Y → hocofiber(X → Y)

)
.

To see this, note that we have a homotopy cocartesian square

Since X is l-connected, the map X → ∗ is (l + 1)-connected and by hypothesis
X → Y is k-connected. Then Theorem 4.2.1 implies that this square is (k + l)-
cartesian. Using Proposition 3.3.18 in two different ways (on the horizontal
and vertical homotopy fibers respectively) gives the two equivalent results. �

We now give some applications of Theorem 4.2.2, the dual Blakers–Massey
Theorem.
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Example 4.2.13 Let X be a k-connected based space, and ∗ → X the
inclusion of the basepoint. The square

is a homotopy pullback, and the maps ∗ → X are k-connected, so Theo-
rem 4.2.2 implies that the square is (2k + 1)-cocartesian. This means that the
map

hocolim(∗ ← ΩX → ∗) � ΣΩX → X

is (2k + 1)-connected. �

It is easy to compute the connectivity of the join X1 ∗ X2 (given in Proposi-
tion 3.7.23) using Theorem 4.2.2. However, it is this very connectivity estimate
that is used in the proof of Theorem 4.2.2, so it would be dishonest to attempt
to derive it in this way. It is still, however, a good exercise for the novice to
verify the result in Proposition 3.7.23 using Theorem 4.2.2.

Here is an application of Propositions 3.7.23 and 3.9.12, due to Ganea,
involving the so-called “fiber–cofiber” construction. Before we state it, note
that if F → X → Y is a (homotopy) fibration sequence, then there is a natural
map hocofiber(F → X) → Y . Since F → X → Y is null-homotopic, this null
homotopy can be used to build a map hocofiber(F → X) = X ∪ CF → Y by
using X → Y on X and the null-homotopy to define a compatible map on the
cone CF.

Proposition 4.2.14 (Ganea’s fiber–cofiber construction, [Gan65]) Let X be a
based space. Consider the diagram

where

F j = hofiber(G j → X),

G1 = hocofiber(ΩX → PX) � ΣΩX,

G j+1 = hocofiber(F j → G j).
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Then G j+1 → X is (( j+ 2)(k+ 1)− 1)-connected, and hence F j+1 is (( j+ 2)(k+
1) − 2)-connected. Moreover,

F j+1 � ∗
j+2
ΩX.

Proof The reason the diagram commutes is that the composition Fi → Gi →
X is null-homotopic and so Gi → X factors through Gi+1 = hocofiber(Fi →
Gi). The result follows by induction on j using Proposition 3.9.12. We have a
homotopy pushout square

and a homotopy pullback square

By Proposition 3.9.12,

F j+1 = hofiber(G j+1 → X) � hofiber(∗ → X) ∗ hofiber(G j → X),

which implies

F j+1 � ΩX ∗ F j.

By induction, F j � ∗
j+1
ΩX. As for the connectivity of F j+1, since F1 � ΩX ∗

ΩX is 2k-connected by Proposition 3.7.23 and F j+1 � ΩX ∗ F j, again using
Proposition 3.7.23 and induction we compute that F j+1 is (( j + 2)(k + 1) −
2)-connected. �

Remarks 4.2.15

1. Proposition 4.2.14 gives a sequence of spaces

PX −→ ΣΩX � G1 −→ G2 −→ · · ·
admitting compatible maps to X which increase in connectivity as one
moves up the tower, provided that X is at least connected. We also obtain
an explicit description of the difference between X and the approximating
space G j as F j is the join of a number of copies of ΩX.
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2. If we were interested only in the connectivity of F j+1 in Proposition 4.2.14,
we could have used induction on j together with Theorem 4.2.2 applied to
the homotopy pullback square

If X is k-connected, then ∗ → X is k-connected, and by induction G j → X is
(( j+1)(k+1)−1)-connected, so by Theorem 4.2.2, the square is (( j+2)(k+
1)− 1)-cocartesian. This means G j+1 → X is (( j+ 2)(k+ 1)− 1)-connected,
and hence F j+1 = hofiber(G j+1 → X) is (( j + 2)(k + 1) − 2)-connected. �

Here is a dual to Proposition 4.2.14, the proof of which we leave to the reader.
The maps X → Gi are induced in a dual way to the maps Gi → X described
before the statement of Proposition 4.2.14.

Proposition 4.2.16 Let X be a space. Consider the diagram

where

C j = hocofiber(X → G j),

G1 = hofiber(CX → ΣX) � ΩΣX,

G j+1 = hofiber(G j → C j).

Then X → G j+1 is (( j + 1)k + 1)-connected, and hence C j+1 is (( j + 1)k
+1)-connected.

Remarks 4.2.17 In contrast to Proposition 4.2.14, we do not know of a good
explicit description of the spaces C j. We have a tower of spaces

CX ←− ΩΣX � G1 ←− G2 ←− · · ·
admitting compatible maps from X which increase in connectivity as one
moves up the tower assuming that X is at least 1-connected. Both of the last two
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results are related at least in spirit to Examples 6.2.6 and 6.2.7 which appear
later. �

Remark 4.2.18 Propositions 4.2.14 and Proposition 4.2.16 are some of the
most important tools in the subject of Lusternik–Schnirelmann category. For
more details, see [CLOT03]. �

The following example is a multi-relative generalization of Example A.2.21.
In Section A.2 we present the necessary machinery to discuss transversality,
which is utilized in the proof below. The reader unfamiliar with this topic
may still be able to do without the appendix and instead use the following
hazy statements. If P and Q are smooth p- and q-dimensional submanifolds
of a smooth n-dimensional manifold N respectively, they should “generically”
intersect in a manifold of dimension n − p − q (or not at all). In particular the
intersection is generically empty if p + q < n. Transversality theory says that
one can always arrange for the intersections to be generic.

Example 4.2.19 Let N be a smooth manifold and P1, P2 smooth closed sub-
manifolds of dimensions p1 and p2, respectively, whose intersection in N is
transverse. The square of inclusions

is (2n − p1 − p2 − 3)-cartesian. The square

is an open pushout square (see Definition 3.7.3), and by Example 3.7.5 is
homotopy cocartesian. Since P1 and P2 intersect transversely, P1 ∩ P2 has
dimension p1 + p2 − n. It follows that the natural map N − (P1 ∩ P2) → N is
(2n−p1−p2−1)-connected by Example A.2.21. Again by Example A.2.21, the
maps N − (P1 ∪P2) → N −Pi are (n− pi −1)-connected for i = 1, 2, and hence
by Theorem 4.2.3, since min{2n−p1−p2−3, 2n−p1−p2−2} = 2n−p1−p2−3,
the square C is (2n − p1 − p2 − 3)-cartesian. An important special case
occurs when the intersection of P1 with P2 is empty. In that case the square
above is homotopy cocartesian and hence (2n − p1 − p2 − 3)-cartesian by
Theorem 4.2.1. �
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Example 4.2.20 The utility of Theorem 4.2.3 can also be seen through con-
sidering the following disjunction problem. In the present context, this means
the following. Suppose we have a smooth map from a smooth manifold P to
a smooth manifold N which is homotopic to two different maps, one whose
image is disjoint from a submanifold Q1 ⊂ N and another whose image is dis-
joint from a submanifold Q2 ⊂ N. When is this map homotopic to a smooth
map which is disjoint from both submanifolds? We can actually give an answer
for families of such maps. Here is the setup. Recall from Definition A.2.7 the
space of smooth maps C∞(P,N) from P to N.

Suppose P is a smooth closed manifold of dimension p, and let N be a
smooth manifold of dimension n with smooth closed disjoint submanifolds
Q1,Q2 of dimensions q1, q2 respectively. Consider the square

We are going to use Theorem 4.2.3 to prove that M is (2n − 2p − q1 − q2 − 3)-
cartesian. We first claim thatM is (2n−2p−q1−q2−1)-cocartesian. First note
that if Q ⊂ N is a closed subset, then the inclusion C∞(P,N − Q) ⊂ C∞(P,N)
is open. To see this, consider the evaluation map ev : P × C∞(P,N) → N,
where ev(x, f ) = f (x). Since Q ⊂ N is closed, ev−1(Q) ⊂ P × C∞(P,N) is
closed, and since P is compact, the image of ev−1(Q) in C∞(P,N) is closed. By
construction, this is the subset of all f : P → N such that f (P) ∩ Q � ∅. In
particular, its complement, C∞(P,N − Q), is open. Let C = colim(C∞(P,N −
Q1) ← C∞(P,N−(Q1∪Q2)) → C∞(P,N−Q2)). If we replace C∞(P,N) with C
inM above we obtain a homotopy cocartesian square by Example 3.7.5, and so
to determine how cocartesian M is, we only need to compute the connectivity
of the inclusion map C → C∞(P,N). Let g : (Di, ∂Di) → (C∞(P,N),C) be a
map of pairs. This corresponds via Theorem 1.2.7 to a map g̃ : Di × P → N
such that

● for each t ∈ ∂Di, there exists j = 1, 2 so that g̃(t,−) : P → N − Qj.

We are to deform g̃ relative to ∂Di × M to a map satisfying this condition for
all t ∈ Di, provided i < 2n − 2p − q1 − q2. Since the Qj are closed in N and
P is compact, there exists a neighborhood N of the boundary ∂Di such that the
above condition holds for all t ∈ N. As in the proof of Theorem A.2.12, we can
use Theorem A.2.10 to make a homotopy of g̃ relative to ∂Di × P such that g̃
is smooth outside of N × P.
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Now we show that there is a dense set of maps g whose associated maps g̃
satisfy the bulleted condition above for all t ∈ Di provided i < 2n−2p−q1−q2.
To do this we invoke Theorem A.2.23 as follows. Consider the multijet space
J(2)

0 (Di × P,N). We could have (t, x1, x2) where t ∈ Di, x1, x2 ∈ P and x1 � x2

such that g̃(t, x1) ∈ Q1 and g̃(t, x2) ∈ Q2. Then the pair ((t, x1), (t, x2)) ∈ (Di ×
P)(2) maps to a submanifold B of J(2)

0 (Di×P,N) of codimension i+n−q1+n−q2

(i to make the two points of Di equal, and n−q j to account for g̃ mapping (t, x j)
to Qj for j = 1, 2). By Theorem A.2.23, a small homotopy of g̃ (relative to
∂Di × P) makes it transverse to B, and transverse will mean empty intersection
if codim(B) > dim(Di × P)(2) = 2i + 2p. Hence g̃ has a homotopy to a map g̃′

enjoying the bulleted property for all t ∈ Di if i + n − q1 + n − q2 > 2i + 2p, or
i < 2n−2p−q1−q2. It follows that there is g̃′ : Di×P → N which is associated
with a map g′ : Di → C∞(P,N) via Theorem 1.2.7 having the desired property
when i < 2n − 2p − q1 − q2, and so M is (2n − 2p − q1 − q2 − 1)-cocartesian.

Finally we claim that, for j = 1, 2, the maps

Map(P,N − (Q1 ∪ Q2)) −→ Map(P,N − Qj)

are (n − p − q j − 1)-connected. We can argue by a simpler version of the
arguments above, and for this we leave the details to the reader. Alterna-
tively, we can use Example A.2.21 together with the fact that since P has
dimension p, if X → Y is k-connected then the induced map Map(P, X) →
Map(P,Y) is (k − p)-connected (see Proposition 3.3.9; it is fine to invoke
that result since all the spaces here are manifolds and hence have the homo-
topy type of CW complexes). In any case, by Theorem 4.2.3 the square is
(2n − 2p − q1 − q2 − 3)-cartesian. �

4.3 Hurewicz, Whitehead, and Serre Theorems

As promised earlier, in this section we show how the classical theorems of
Hurewicz, Whitehead, and Serre follow from the Blakers–Massey Theorem
and its dual.

First we turn our attention to the Hurewicz Theorem, which asserts a rela-
tionship between the first non-trivial homotopy and homology groups of a
space. For the absolute version, we use Theorem 4.2.2 (dual Blakers–Massey),
whereas for the proof of the relative version, we use the absolute version and
Theorem 4.2.1 (Blakers–Massey).

To start, we need to discuss the Hurewicz map Hn, defined as follows: a
based map f : S n → X determines an element of πn(X, x0), where x0 is the
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basepoint of X, but it also defines an element of Hn(X) – choose a generator a
of Hn(S n) � Z, and let f∗ : Hn(S n) → Hn(X) be the induced map. Then define

hn : πn(X, x0) −→ Hn(X) (4.3.1)

[ f ] �−→ f∗(a).

See [Hat02, Proposition 4.26] for why this map is a homomorphism of groups.

Remark 4.3.1 The Hurewicz map is not obviously induced by a map of
spaces. In the spirit of our preference for space-level constructions, we make a
note about a space-level version of the Hurewicz map which uses constructions
from the Dold–Thom Theorem (Theorem 2.7.23). Namely, hn can be realized
using infinite symmetric products: recall from Definition 2.7.22 the construc-
tion of the infinite symmetric product SP(X) = ∪n(SPn(X)) of a based space X.
The inclusion X → SP(X) induces a map

πi(X) −→ πi(SP(X)) � H̃i(X)

with the latter being the isomorphism obtained using the consequence of The-
orem 2.7.23 mentioned following its statement. It can be shown that this map
coincides with the algebraically defined Hurewicz map hn in any degree i. For
details, see for example the end of Section 4.K in [Hat02]. �

Theorem 4.3.2 ((Absolute) Hurewicz Theorem) Suppose X is an (n − 1)-
connected space, with n ≥ 2. Then H̃i(X) = 0 for all i < n and the map

hn : πn(X) −→ Hn(X)

is an isomorphism.

Our proof follows [Ark11, Theorem 6.4.8].

Proof Recall from Example 1.2.4 the definition of the path space PX of X
(space of maps of I in X), and consider the homotopy cartesian square

On the one hand, since this square is homotopy cartesian we have isomor-
phisms πi(PX,ΩX) → πi(X, ∗) for all i; see Remark 3.3.19. On the other hand,
as X is (n − 1)-connected, the maps ∗ → X and ∗ � PX → X are both
(n − 1)-connected, and by Theorem 4.2.2, the square is (2n − 1)-cocartesian.
In particular, this means the induced map Hi(PX,ΩX) → Hi(X, ∗) � Hi(X)
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is an isomorphism for i < 2n − 1. To justify this, we use the fact that a k-
connected map has k-connected homotopy cofiber (Proposition 2.6.12), the
long exact sequence of a cofibration (Theorem 2.3.14), and the vanishing
homology of a highly connected space (see Remark 2.6.3). Finally, from the
long exact sequence of a pair, we have isomorphisms πi(PX,ΩX) → πi−1(ΩX)
and Hi(PX,ΩX) → Hi−1(ΩX) for all i, since PX is contractible. We can
summarize this in the commutative diagram

By the above, the right horizontal arrows and the top left horizontal arrow are
isomorphisms for all i, and the bottom left horizontal arrow is an isomorphism
if i < 2n − 1. To prove πn(X) → Hn(X) is an isomorphism, it suffices to prove
that πn−1(ΩX) → Hn−1(ΩX) is an isomorphism. This follows by induction:
since X is (n − 1)-connected, ΩX is (n − 2)-connected by Example 2.6.11, and
so πi−1(ΩX) → Hi−1(ΩX) is an isomorphism for all i−1 ≤ n−1. We have to be
a little careful when i = 2. In that case we must show that π1(ΩX) � H1(ΩX).
This follows from the fact that the abelianized fundamental group is the first
homology group, and that the fundamental group of a loop space is abelian and
hence equal to its own commutator subgroup. �

We can also define a relative version of the Hurewicz map,

hn : πn(X, A, x0) −→ Hn(X, A),

using (X, A) in place of X and (Dn, ∂Dn) in place of S n. Here a ∈ Hn(Dn, ∂Dn)
is a fixed generator of this infinite cyclic group, and again hn[ f ] = f∗(a), where
f∗ : Hn(Dn, ∂Dn) → Hn(X, A) is the map induced by f .

As a corollary of Theorem 4.3.2 and Theorem 4.2.1 we then obtain a relative
version of the Hurewicz Theorem.

Theorem 4.3.3 (Relative Hurewicz Theorem) Suppose (X, A) is an (n − 1)-
connected based pair with n ≥ 2 and basepoint x0 ∈ A, and suppose A is
1-connected. Then H̃i(X, A) = 0 for i < n and πn(X, A, x0) � Hn(X, A).

Proof Using homotopy invariance of homotopy groups we may also assume
the inclusion A → X is a cofibration by replacing X with the mapping cylinder
of the inclusion map. Let C = hocofiber(A → X) and F = hofiber(A → X).
Consider the homotopy cocartesian square
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Since A is 1-connected, the map A → ∗ is 2-connected. Since (X, A) is (n − 1)-
connected, it follows that A → X is (n − 1)-connected. By Theorem 4.2.1, the
square is n-cartesian, which implies that the induced map

F = hofiber(A → X) −→ hofiber(∗ → C) � ΩC

is n-connected. That is,

πi(F) −→ πi(ΩC)

is an isomorphism for i < n and onto for i = n. But πi(ΩY) � πi+1(Y) and
πi(hofiber(Y → Z)) � πi+1(Z,Y) (comparing the long exact sequences of a
fibration and a pair). Thus

π j(X, A) −→ π j(C)

is an isomorphism for j < n + 1 and onto for j = n + 1. Note that H j(X, A) �
H̃ j(C) for all j (this time comparing the long exact sequence of a cofibration
with the long exact sequence of a pair). Consider the commutative diagram

The horizontal maps are isomorphisms as described above. It suffices to show
that the right vertical map is an isomorphism. Since (X, A) is (n−1)-connected,
by Theorem 1.3.8 we may assume X − A contains only cells of dimension
greater than n− 1, so that C = X/A is clearly an (n− 1)-connected space. Thus
the right vertical map is an isomorphism by Theorem 4.3.2. �

Remark 4.3.4 One can eliminate the hypothesis that A is 1-connected but
the statement requires that the quotient of the relative homotopy groups
by the action of π1(A) be taken into account. See, for example, [Hat02,
Theorem 4.37]. �

We now show how the Homological Whitehead Theorem follows from the
Relative Hurewicz Theorem.
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Theorem 4.3.5 (Homological Whitehead Theorem) If f : X → Y is a map
of 1-connected spaces which induces an isomorphism in homology in all
dimensions, then f is a weak equivalence.

Proof Since both X and Y are 1-connected, π1(Y, X) = 0 and the first
non-trivial homotopy group of the pair (Y, X) is isomorphic to the first non-
trivial homology group by Theorem 4.3.3. But these are all zero if f induces
isomorphisms in homology. �

We can use Theorem 4.2.1 to deduce Proposition 2.6.14, which gives con-
ditions under which we can deduce the connectivity of a map from the
connectivity of its homotopy cofibers (recalling that the connectivity of a map
was defined in terms of the connectivity of its homotopy fibers). We restate it
here for convenience and give its proof.

Proposition 4.3.6 (Restatement of Proposition 2.6.14) Suppose X is simply-
connected and f : X → Y is a map such that hocofiber( f ) is k-connected. Then
f is k-connected.

Proof If k = −1 the statement is vacuously true. It is also easy to verify
that if C is 0-connected, then f is 0-connected. We only need to see that each
homotopy fiber of f is non-empty. Let y ∈ Y . Since C is connected, y must have
a path to f (X) (see Definition 2.4.5). So assume k ≥ 1, let C = hocofiber( f ),
and consider the homotopy cocartesian square

Since X is simply-connected, the map X → ∗ is 2-connected, and if C is
k-connected with k ≥ 1, we have seen above that f is 0-connected. By Theo-
rem 4.2.1, the square above is 1-cartesian, and by Proposition 3.3.18 the map
hofiber( f ) → hofiber(∗ → C) � ΩC is 1-connected for any choice of basepoint
in Y . In particular, it is an isomorphism on path components, which means
that π0 hofiber( f ) � π0ΩC � π1C = {e}, using Equation (1.4.2). Using the
long exact sequence of a fibration (Theorem 2.1.13) and Proposition 2.6.9, this
implies that f is in fact 1-connected. But this implies, using Theorem 4.2.1
once again, that the square above is in fact 3-cartesian, and we can repeat this
argument above to show that f is 2-connected provided k ≥ 2. Continuing in
this manner shows that f is k-connected whenever C is k-connected. �
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Lastly, we give the proof of the Serre Theorem.

Theorem 4.3.7 (Serre Theorem) Suppose F → X → Y is a fibration
sequence, X → Y is p-connected, and Y itself is q-connected. Then there is
a (p+q+1)-connected map, naturally induced as a map of homotopy cofibers,

hocofiber(F → X) −→ Y.

Proof We have a homotopy cartesian square

The map ∗ → Y is q-connected and the map X → Y is p-connected, which
implies, by Theorem 4.2.2, that there is a (p + q + 1)-connected map

hocofiber(F → X) −→ hocofiber(∗ → Y) � Y. �

Remark 4.3.8 Theorem 4.3.7 is in fact easy to read off from Theorem 3.9.7,
so no reference to Theorem 4.2.2 is actually necessary. We just have to note
that looping decreases connectivity by 1 (see Example 2.6.11), suspending
increases it by 1 (see Example 2.6.13), and smashing sums the connectivities
and adds 1 (see Proposition 3.7.23). �

4.4 Proofs of the Blakers–Massey Theorems for squares

Before we embark on the proofs of the Blakers–Massey Theorems –
Theorem 4.2.1 and its generalization Theorem 4.2.3 – we prove a key lemma
which is the heart of the proof of both. We do this in two ways – once
in Section 4.4.1 using transversality and once in Section 4.4.2 using purely
homotopy-theoretic methods. The proof using transversality is easier in the
sense that it invokes general position results that even the reader not familiar
with this theory should be able to believe. We will also follow that thread by
applying these theorems to situations involving smooth manifolds (see, e.g.,
Example 4.2.19). Since the transversality techniques needed for the proof of
the key lemma are not needed anywhere else in the book, the required back-
ground has been relegated to Section A.2. The more homotopy-theoretic proof
is included because it fits the general point of view of this book better. More-
over, both styles of proof will be generalized to prove a key lemma related to
Theorem 6.2.1. The proofs of the two Blakers–Massey theorems, which will
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follow by formal facts about squares developed in Chapter 3, will then be given
in Section 4.4.3.

4.4.1 The geometric step using transversality

The key lemma we need is concerned with the situation of attaching two cells
to a space X. It is this special case of Theorem 4.2.1 which implies the general
theorem.

Lemma 4.4.1 The square

where edj is a cell of dimension d j for j = 1, 2 and the maps are inclusions, is
(d1 + d2 − 3)-cartesian.

Proof For j = 1, 2, let p j ∈ edj be points in the interiors of the cells. Note
that p j has a neighborhood homeomorphic to Rd j , so that Y = X ∪ ed1 ∪ ed2 is
a manifold near the pj. It suffices to show that

is (d1 + d2 − 3)-cartesian, or, equivalently, that the map

Y − {p1, p2} −→ holim
(
(Y − {p1}) → Y ← Y − {p2}

)
is (d1 + d2 − 3)-connected.

By Example 3.3.3, the natural map Y − {p1, p2} → holim(Y − {p1, p2} →
Y − {p1, p2} ← Y − {p1, p2}) is a homotopy equivalence, and hence it suffices
to prove the inclusion

holim
(
Y − {p1, p2} → Y − {p1, p2} ← Y − {p1, p2}

)
−→ holim

(
(Y − {p1}) → Y ← Y − {p2}

)
is (d1+d2−3)-connected. Let Y1∩2 = holim(Y −{p1, p2} → Y −{p1, p2} ← Y −
{p1, p2}) and Y1∪2 = holim((Y−{p1}) → Y ← Y−{p2}). The advantage Y1∩2 has
over Y − {p1, p2} is that the inclusion Y1∩2 → Y1∪2 is open.1 Consider a map of
1 Let I × Y1∪2 → Y send (t, (y1, γ, y2)) to γ(t). The inverse image of {p1} ∪ {p2} ⊂ Y is closed,

and the projection of its complement to Y1∪2 is the set Y1∩2, which is therefore open.
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pairs g : (Di, ∂Di) → (Y1∪2,Y1∩2). Since the pi are closed and ∂Di is compact,
there is a neighborhood T of ∂Di such that g(T ) ⊂ Y1∩2. Let g̃ : Di × I → Y be
the map corresponding to g via Theorem 1.2.7, so that g̃(T × I) ⊂ Y − {p1, p2}
by our previous observations.

Our first goal is to find a smooth approximation for g̃. For i = 1, 2 let Bi ⊂ e̊di

be open neighborhoods of pi, chosen to lie in the interior of the cells so they
can be given the structure of a smooth manifold. We can choose the Bi small
enough so that g̃−1(Bi) has empty intersection with T × I for each i. Let B =
g̃−1(B1)∪ g̃−1(B2). Then Theorem A.2.10 clearly applies to g̃|B : B → ˚ed1 ∪ ˚ed2 ,
and we may assume that the homotopy used to smooth g̃|B is constant outside
of a small open neighborhood of g̃−1(p1) ∪ g̃−1(p2). Let B′ ⊂ B × B be the set
of all ((s, t1), (s, t2)) such that (s, ti) ∈ B and t1 � t2. Another small homotopy
makes the map

G : B′ −→ ( ˚ed1 ∪ ˚ed2 )2

given by G(s, t1, t2) = (̃g(s, t1), g̃(s, t1)) transverse to {p1} × {p2} by Theo-
rem A.2.23 (the argument is essentially the same as that given in Exam-
ple 4.2.20). In this case transverse means empty if i + 2 < d1 + d2, or
i < d1 + d2 − 2. Now the map g̃ is homotopic to a map g̃′ : Di × I → Y
which misses {p1, p2}, and the associated map g′ : Di → Y1∩2 is the desired
lift. Hence Y1∩2 → Y1∪2 is (d1 + d2 − 3)-connected. �

Remark 4.4.2 As we mentioned in the course of the proof, the transversality
argument used in this proof of Lemma 4.4.1 is in the same spirit as the one
used in Example 4.2.20. �

4.4.2 The geometric step using homotopy theory

In this section, we offer an alternative proof of Lemma 4.4.1 which does
not rely on transversality arguments, and is purely homotopy-theoretic in
nature. The proof given in the previous section is certainly shorter than the
one below, but there we made use of significant machinery which is only
sketched in the appendix, whereas here we rely on only elementary homotopy-
theoretic constructions. Thematically the proof given in this section is similar
to those for excision of ordinary homology in that it involves subdivision
and small deformations. It is based on a proof we learned from tom Dieck’s
book [tD08], who in turn cites Puppe [tDKP70] for the original idea. The
presentation here follows that of tom Dieck closely through Theorem 4.4.6,
and then we follow Goodwillie’s proof [Goo92] from there, replacing his
transversality argument (not exactly replicated above) with a “coordinate
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counting” argument. This entire chain of reasoning is generalized later to
give an alternative proof Lemma 6.3.1 (a crucial ingredient in the proof of
Theorem 6.2.1).

We begin with a definition followed by a technical lemma.

Definition 4.4.3 Let a = (a1, . . . , an) ∈ Rn, δ > 0, and L ⊂ {1, . . . , n}
(possibly empty). A cube W in Rn is a set of the form

W = W(a, δ, L) = {x ∈ Rn : ai ≤ xi ≤ ai + δ for i ∈ L, xi = ai for i � L} .
Define dim(W) = |L|. The boundary ∂W of W is the set of all x in W such that
xi = ai or xi = ai + δ for at least one value of i ∈ L. The boundary ∂W is a
union of faces. A face of a cube is also a cube.

Definition 4.4.4 With W as above and for j = 1, 2 and p ≥ 1, define

K j
p(W)

=

{
x ∈ W :

δ( j − 1)
2

+ ai < xi <
δ j
2
+ ai for at least p values of i ∈ L

}
.

Note that if p > dim(W), then K j
p(W) = ∅. If p ≤ q, then K j

q(W) ⊂ K j
p(W).

The following lemma gives the basic technical deformation result; it appears
as Lemma 6.9.1 of [tD08].

Lemma 4.4.5 Let Y be a space with a subspace A ⊂ Y, W a cube, j ∈ {1, 2},
and f : W → Y a map. For a given p ≤ dim(W) suppose that

f −1(A) ∩ W ′ ⊂ K j
p(W ′)

for all cubes W′ ⊂ ∂W. Then there exists a map g : W → Y homotopic to f
relative to ∂W such that

g−1(A) ⊂ K j
p(W).

Proof Without loss of generality W = In, n ≥ 1. We will construct a map
h : In → In homotopic to the identity and define g to be the composition of f
with h. Let x =

(
2 j−1

4 , . . . , 2 j−1
4

)
be the center of the cube

[
j−1
2 , j

2

]n
. For a ray

y emanating from x, let P(y) be its intersection with ∂
[

j−1
2 , j

2

]n
and Q(y) its

intersection with ∂In. Let h map the segment from P(y) to Q(y) onto the point
Q(y) and the segment from x to P(y) affinely onto the segment from x to Q(y).
Clearly h is homotopic to the identity of In relative to ∂In, and so g = f ◦ h is
homotopic to f relative to ∂In. It remains to check that g satisfies the property
in the conclusion of the theorem.
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Suppose z ∈ In and g(z) ∈ A. Write z = (z1, . . . , zn). If z ∈
(

j−1
2 , j

2

)
, then

z ∈ K j
n(W) ⊂ K j

p(W) and we are done. Suppose then that there exists i so that
either zi ≥ j

2 or z j ≤ j−1
2 . Then, by definition of h, we have h(z) ∈ ∂In, so

h(z) ∈ W′ for some face W ′ of dimension n − 1. Since g(z) = f (h(z)) ∈ A,
h(z) ∈ f −1(A), then by assumption h(z) ∈ K j

p(W ′). Thus for at least p values of
i, we have j−1

2 < h(z)i <
j
2 , where h(z)i denotes the ith coordinate of h(z). By

definition of h,

h(z)i =
2 j − 1

4
+ t

(
zi − 2 j − 1

4

)
for t ≥ 1.

Inserting this expression into the previous inequalities and solving for zi yields

− 1
4t
+

2 j − 1
4

< zi <
1
4t
+

2 j − 1
4

.

Since the lower bound increases with t and the upper bound decreases with t,
substituting t = 1 into each gives

j − 1
2

< zi <
j
2

so that z ∈ K j
p(W). �

Suppose Y is a space with open subsets Y∅,Y1,Y2 such that Y is the union of Y1

with Y2 along Y∅. Let f : In → Y be a map. By the Lebesgue covering lemma
(Lemma 1.4.11) we can decompose In into cubes W such that f (W) ⊂ Yj for
some j ∈ {∅, 1, 2} depending on W. The following appears as Theorem 6.9.2 in
[tD08]. The proof is nearly identical, and we include it for completeness and
because we will generalize all of this in one of our proofs of Theorem 6.2.1.

Theorem 4.4.6 With the Y j and f as above, assume that for each j, (Yj,Y∅)
is k j-connected, with k j ≥ 0 (i.e. the inclusion Y∅ → Yj is k j-connected). Then
there is a homotopy ft of f with f0 = f such that

1. if f (W) ⊂ Yj, then ft(W) ⊂ Yj for all t;
2. if f (W) ⊂ Y∅, then ft(W) = f (W) for all t;
3. if f (W) ⊂ Yj, f −1

1 (Yj \ Y∅) ∩ W ⊂ K j
kj+1(W).

Proof Let Cl be the union of cubes W with dim(W) ≤ l. The homotopy ft is
constructed inductively over Cl × I. If dim(W) = 0, then if f (W) ⊂ Y∅, we let
ft = f , which achieves the second condition. If f (W) ⊂ Yj and f (W) � Yi for
i � j, then since (Yj,Y∅) is k j-connected and k j ≥ 0, we may choose a path from
f (W) to some point in Y∅ and use this as the homotopy, so that f1(W) ⊂ Y∅.
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Then clearly the first condition holds and so does the third. This proves the
base case.

Since the inclusion ∂W ⊂ W is a cofibration for any cube W by
Example 2.3.5, we may extend over all cubes W so that the first and second
conditions hold. By induction suppose that f has been changed by a homotopy
satisfying all three conditions for cubes of dimension less than l, and let W be
a cube with dim(W) = l. If f (W) ⊂ Y∅, we let ft = f as usual. If f (W) ⊂ Yj

and f (W) � Yi for i � j, then we have the following.

● If dim(W) = l ≤ k j, since (Yj,Y∅) is k j-connected by definition there is a
homotopy ft of f relative to ∂W such that f1(W) ⊂ Y∅, and clearly the first
and third conditions hold.

● If dim(W) = l > k j, we use Lemma 4.4.5. Let A = Yj\Y∅ ⊂ Yj. By induction,
for all W ′ ⊂ ∂W

f −1(Yj \ Y∅) ∩ W ′ ⊂ K j
l (W ′) ⊂ K j

kj+1(W ′),

and by Lemma 4.4.5, there is a homotopy ft of f relative to ∂W such that
f −1
1 (Yj \ Y∅) ∩ W ⊂ K j

kj+1(W). �

Before we use these results to give a proof of Lemma 4.4.1, we need to do two
things:

1. Reduce to the case where the connectivities of the maps X → X ∪ edj for
j = 1, 2 are at least zero (i.e. we want dj ≥ 1 for j = 1, 2).

2. Convert the square in the statement of Lemma 4.4.1 into one where the
maps are inclusions of open sets in order to apply the previous results.

For the first item, note that it is enough by Proposition 3.3.18 to prove that, for
all choices of basepoint x ∈ X ∪ ed2 , the induced map

hofiberx(X → X ∪ ed2 ) → hofiberx(X ∪ ed1 → X ∪ ed1 ∪ ed2 )

has the desired connectivity. If d2 = 0 and the basepoint is chosen as the single
point ed2 = ∗ disjoint from X, then the result is trivially true, since the map
of homotopy fibers is the identity map of the empty set to itself. If not, then
the cell ed2 = ∗ plays no role in either of the homotopy fibers above, and the
map is a weak equivalence. Hence we may assume that d2 ≥ 1, and in this
case the basepoint may be chosen to lie in X itself by homotopy invariance of
homotopy fibers over path components (Corollary 3.2.18). Similarly we may
assume d1 ≥ 1.

For the second item, as in the proof of Lemma 4.4.1 presented above for
j = 1, 2 let pj ∈ edj be interior points, and let Y = X ∪ ed1 ∪ ed2 . Then the
square
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admits a weak equivalence from the square

by the natural inclusions, and if we put Y = Y12 = X∪ed1∪ed2 , Y∅ = Y−{p1, p2},
Y1 = Y − {p2}, and Y2 = Y − {p1}, we are in the situation of Theorem 4.4.6,
where k j = d j − 1 for j = 1, 2.

We now have everything set up to give an alternative proof of Lemma 4.4.1.
Our presentation now follows that of Goodwillie [Goo92] more closely,
although, as mentioned earlier, we have replaced his transversality argument
with a “coordinate counting” one using the tools developed above.

Alternative proof of Lemma 4.4.1 With YS as above, choose a basepoint y ∈
Y∅ = Y − {p1, p2}. We are to show that the map

hofibery(Y − {p1, p2} → Y − {p1}) −→ hofibery(Y − {p2} → Y)

is (d1 + d2 − 3)-connected. Let C be the contractible space

C = hofibery(Y − {p2} −→ Y − {p2}) � ∗.

Both

C ∩ hofibery(Y − {p1, p2} → Y − {p1}) = hofibery(Y − {p1, p2} → Y − {p1, p2})

and

C ∩ hofibery(Y − {p2} → Y) = hofibery(Y − {p2} → Y − {p2})

are contractible. The square
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is homotopy cocartesian by Example 3.7.5.2 It follows from statement 1 of
Proposition 3.7.13 that the inclusions

hofibery(Y − {p1, p2} → Y − {p1}) −→ C ∪ hofibery(Y − {p1, p2} → Y − {p1})
and

hofibery(Y − {p2} → Y) = C ∪ hofibery(Y − {p2} → Y)

are weak equivalences. Hence it suffices to show that

C ∪ hofibery(Y − {p1, p2} → Y − {p1}) → C ∪ hofibery(Y − {p2} → Y)

is (d1 + d2 − 3)-connected.
Let

φ : (In, ∂In) −→
(
C ∪ hofibery(Y − {p2} → Y),

C ∪ hofibery(Y − {p1, p2} → Y − {p1})
)

be a map of pairs. The map φ is associated via Theorem 1.2.7 to a map

Φ : In × I → Y

with boundary conditions

(B0) Φ(z, 0) = y ∈ Y − {p1, p2} is the basepoint for all z ∈ In;
(B1) Φ(z, 1) ∈ Y − {p2} for all z ∈ In;
(B2) For each z ∈ ∂In there exists i ∈ {1, 2} so that Φ(z, t) ∈ Yi for all t ∈ I.

We will make a homotopy of Φ preserving (B0)–(B2) such that (B2) holds for
all z ∈ In when n ≤ d1 + d2 − 3.

It is now convenient to change notation and recall that Y = Y12 = X∪ed1∪ed2 ,
Y∅ = Y − {p1, p2}, Y1 = Y − {p2}, and Y2 = Y − {p1}. We apply Theorem 4.4.6
to Φ : In × I → Y and obtain a decomposition of In × I into cubes W such that,
for each W, there is some j so Φ(W) ⊂ Yj, and a homotopy Φr for 0 ≤ r ≤ 1
of Φ = Φ0 such that

1. Φ(W) ⊂ Yj implies Φr(W) ⊂ Yj for all r;
2. Φ(W) ⊂ Y∅ implies Φr(W) = Φ(W) for all r;
3. Φ(W) ⊂ Yj implies Φ−1

1 (Yj \ Y∅) ∩ W ⊂ K j,k
d j

(W).

First we prove that Φr satisfies (B0)–(B2) for all r.

(B0) Since Φ(z, 0) = y ∈ Y∅ is the basepoint for all z ∈ In, we have for all
cubes W ⊂ In × {0} that Φ(W) = y, and the second condition above
implies Φr(W) = Φ(W) for all r, so that Φr(z, 0) = y for all r.

2 It is not difficult to verify that these are all open subsets of hofibery(Y → Y). We needed a
similar result in our first proof of Lemma 4.4.1.
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(B1) Since Φ(z, 1) ∈ Y1 for all z ∈ In, then for all cubes W ⊂ In × {1},
Φ(W) ⊂ Y1 by the first condition above, and so Φr(z, q) ∈ Y1 for all
z ∈ In and for all r.

(B2) For each z ∈ ∂In there exists j(z) ∈ {1, 2} such that Φ({z} × I) ⊂ Yj(z).
Let W1, . . . ,Wh be cubes in In × I such that {z} × I ⊂ W1 ∪ · · · ∪Wh and
such that each Wa contains a point of the form (z, t) for some t. Since
Φ({z}× I) ⊂ Yj(z), for each a = 1 to h we must haveΦ(Wa) ⊂ Yj(z), which
implies Φr(W1 ∪ · · · ∪ Wh) ⊂ Yj(z) for all r by the first condition above.

Now we show that Φ1 actually satisfies the stronger condition that for each
z ∈ In there exists j(z) ∈ {1, 2} so that Φ1(z, t) ∈ Yj(z) for all t ∈ I when
n ≤ d1 + d2 − 3. Let π : In × I → In be the projection. We claim that

π
(
Φ−1

1 (Y1 \ Y∅)
)
∩ π

(
Φ−1

1 (Y2 \ Y∅)
)
= ∅

if n ≤ d1 + d2 − 3. Let y be a point in the intersection above. Thus there exists
t1, t2 such that (y, t j) ∈ Φ−1

1 (Yj \ Y∅), and of course y = π(y, t j) for j = 1, 2,
and (y, t j) ∈ Wj for some cube Wj ⊂ In × I. Hence w( j) = (y, t j) ∈ Wj ∩
Φ−1

1 (Yi \ Y∅) ⊂ K j
dj

(Wj) for j = 1, 2 by item 3 of Theorem 4.4.6. Thus w( j)
has at least d j coordinates w( j)i such that ai + δ( j − 1)/2 < w( j)i < ai + δ j/2,
where Wj = W(a, δ, L) and a = (a1, . . . , an+1). Hence, for each j, y has at least
d j coordinates yi satisfying the same bounds. For j = 1, 2 the projection π(Wj)
is a cube containing y, and we may assume π(W1) = π(W2) by subdividing
further if necessary, thus making the bounds above the same bounds for each
j. Therefore y has at least d j coordinates satisfying the above bounds for all j,
which is impossible if n ≤ d1 + d2 − 3, so that the intersection above is indeed
empty. Hence there is some i(z) ∈ {1, 2} such that y � π

(
Φ−1

1 (Yi(z) \ Y∅)
)
; that

is, for all t, z = (y, t) � Φ−1
1 (Yi(z) \ Y∅). When n = 0, to show the map of

path components is surjective we require d1, d2 ≥ 1. We already noted just
before the start of this proof how the statement of the theorem was true if some
d j = 0. �

4.4.3 The formal step

Here we finally prove the Blakers–Massey Theorems for squares.

Proof of Theorem 4.2.1 Recall that we are trying to show that the homotopy
cocartesian square
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is (k1 + k2 − 1)-cartesian when the maps X∅ → Xi are ki-connected for i =
1, 2. Our goal is to reduce to the special case considered in Lemma 4.4.1. For
simplicity, write K = k1 + k2 − 1.

By Proposition 3.7.29 we may also assume the square above is of the form

where X∅ → X1 and X∅ → X2 are cofibrations. Furthermore, by Theorem 1.3.8
and Theorem 2.6.26 we may also assume for each i = 1, 2 that (Xi, X∅) is a
relative CW complex with Xi = X∅ ∪ {cells of dim ≥ ki + 1}. Letting X = X∅,
it suffices to prove that the square

is (k1 + k2 +1)-cartesian. Moreover, it is enough to prove this in the case where
the number of attached cells is finite. Indeed, suppose A is a space and (B, A),
(C, A), and (D, A) are relative CW complexes that fit into a square of inclusions

This square is K-cartesian if and only if hofiber(A → C) → hofiber(B →
D) is K-connected for all choice of basepoints in C by Proposition 3.3.18,
which amounts to proving every map of pairs (Di, ∂Di) → (hofiber(B →
D), hofiber(A → C)) is homotopic relative to ∂Di to a map Di → hofiber(A →
C) for i ≤ K. But Di → hofiber(B → D) corresponds via Theorem 1.2.7 to a
map Di × I → D, and by compactness of the domain and the topology on D, it
can map to only finitely many of the cells which build D from A.

To reduce further, consider the following diagram, where e1 and e2 are two
of the cells.



4.5 Proofs of the dual Blakers–Massey Theorem 213

If we can prove that the left square and the right square are K-cartesian, then
so is

by 1(a) of Proposition 3.3.20. One reduces to a single cell in the vertical direc-
tion in precisely the same manner, and now we may apply Lemma 4.4.1 to
complete the proof. �

We can now prove Theorem 4.2.3 using Theorem 4.2.1.

Proof of Theorem 4.2.3 Recall that we are to show that if the square

is j-cocartesian and X∅ → Xi is ki-connected, then the square is min{k1 + k2 −
1, j − 1}-cartesian. Let D = hocolim(X2 ← X∅ → X1). Consider the diagram

Here X′
1 is the mapping cylinder of the map X∅ → X1, so the map X1 → X′

1 is
a homotopy equivalence. The left square is homotopy cocartesian by Proposi-
tion 3.6.17 and hence (k1+k2−1)-cartesian by Theorem 4.2.1. The right square
is ( j − 1)-cartesian by Proposition 3.3.11. Then 2(a) of Proposition 3.3.20
implies the outer square is min{ j − 1, k1 + k + 2 − 1}-cartesian. �

4.5 Proofs of the dual Blakers–Massey Theorems for
squares

The proof of Theorem 4.2.2, the dual Blakers–Massey Theorem for squares, is
considerably easier than the proof of Theorem 4.2.1 because it does not require
anything like Lemma 4.4.1. We already mentioned after its statement that it fol-
lows immediately from Proposition 3.9.12 together with Proposition 3.7.23; in
this case the homotopy fiber of the canonical map from the homotopy pushout
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to the last space can be analyzed directly. Here we supply another proof using
quasifibrations (the reader should review the definitions from Section 2.7) and
the result about the connectivity of the join of two spaces, the aforementioned
Proposition 3.7.23. Note that the proof below mimics the proof of Theorem
4.2.1 in that it seeks to reduce the theorem to a special case. For Theorem
4.2.1, this meant replacing the maps X∅ → Xi with cofibrations, and in this
case we will replace maps Xi → X12 with fibrations. We begin with a lemma
about quasifibrations.

Lemma 4.5.1 Suppose

is a square in which all maps are fibrations. Then the canonical map

hocolim(X2 ← X∅ → X1) −→ X12

is a quasifibration.

Proof We will in fact show that this map is a universal quasifibration (see
Definition 2.7.16) using Proposition 2.7.18, and hence that it is a quasifibration
(see remarks following Definition 2.7.16). Let D be a disk and D → X12 a map.
Write X1 = X2 ← X∅ → X1 for short. By Remark 3.7.12, there is a natural
homeomorphism

hocolim(D ×X12 X1) −→ D ×X12 hocolim(X1),

where the diagram D ×X12 X1 is the entry-wise fiber products. Let ∗ be any
point in D, and consider the square

We have just discussed why the vertical arrows are homeomorphisms, and by
Theorem 3.6.13, the top vertical map is a weak equivalence since XS → X12 is
a fibration, so the maps ∗ ×X12 XS = lim(∗ → X12 ← XS ) → lim(D → X12 ←
XS ) = D×X12 XS are weak equivalences for each S using Proposition 3.2.13. It
follows that the bottom horizontal arrow is a weak equivalence. �
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We remark that by Proposition 3.3.24 that every square admits a homotopy
equivalence to a square which satisfies the hypotheses of this lemma. We are
now ready to proceed with a proof of Theorem 4.2.2.

Proof of Theorem 4.2.2 We wish to show that the homotopy cartesian dia-
gram

is (k1 + k2 + 1)-cocartesian when the maps Xi → X12 are ki-connected for
i = 1, 2. Again for simplicity write K = k1 + k2 + 1. By Proposition 3.3.24 we
may also assume the square in question is of the form

where X1 → X12 and X2 → X12 are fibrations. Let Fi = fiber(Xi → X12) for
i = 1, 2 (note that these are the strict fibers). By Lemma 4.5.1 the map

b : hocolim(X1 ← X∅ → X2) −→ X12

is a quasifibration. By Corollary 3.9.4, the strict fiber of b is

hocolim(F1 ← F1 × F2 → F2),

which is homotopy equivalent to F1 ∗ F2 by Example 3.6.12. Since the maps
Xi → X12 are ki-connected, Fi is (ki −1)-connected, and by Proposition 3.7.23,
F1 ∗ F2 is (k1 + k2)-connected. It follows that the square is (k1 + k2 + 1)-
cocartesian. �

We can now use Theorem 4.2.2 to prove Theorem 4.2.4, the more general
version of the dual of the Blakers–Massey Theorem. The proof is dual to the
proof of Theorem 4.2.3.

Proof of Theorem 4.2.4 We are to show that if the square

is j-cartesian and Xi → X12 is ki-connected, then the square is min{k1 + k2 +

1, j + 1}-cocartesian.
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Let P = holim(X2 → X12 ← X1). Consider the diagram

Here X′
2 is the path space construction for the map X2 → X12, so that X2 → X′

2
is an equivalence. The right square is homotopy cartesian and hence (k1 +

k2 + 1)-cocartesian by Theorem 4.2.2. The left square is ( j + 1)-cocartesian by
(2) of Proposition 3.7.13. Then Proposition 3.7.26 implies the outer square is
min{ j + 1, k1 + k2 + 1}-cocartesian. �

4.6 Homotopy groups of squares

The Blakers–Massey Theorem, Theorem 4.2.1, tells us a range in which
homotopy groups satisfy excision. Given a homotopy cocartesian square

in which the maps X∅ → X1 and X∅ → X2 are k1- and k2-connected respec-
tively, the square is (k1+k2−1)-cartesian, which means that the space tfiber(X)
is (k1 + k2 − 2)-connected. (According to Definition 3.4.10, this can also be
thought of as X being (k1+k2)-connected.) Thus we may think of the first non-
trivial homotopy group of tfiber(X) as a measure of the failure of the homotopy
groups of the square X to satisfy excision.

We will begin by computing the first non-trivial homotopy group of the
simplest kind of homotopy cocartesian square. We will then see in Proposi-
tion 6.5.1 that we can reduce the case of a generic homotopy cocartesian square
to the special case considered below.

Proposition 4.6.1 For i = 1, 2, suppose Xi is a ki-connected based space with
ki ≥ 1. The square

is (k1 + k2 − 1)-cartesian, and

πk1+k2−1(tfiber(X)) � πk1+1(X1) ⊗ πk1+1(X2).
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Remark 4.6.2 The homotopy pullback holim(X1 → X1 ∨X2 ← X2) is some-
times called the cojoin of X1 and X2 and denoted by X1∗̂X2. The above results
thus says that, if Xi is ki-connected, the cojoin is (k1+k2−1)-connected. We will
use this fact in the proof of the Berstein–Hilton Theorem, Theorem 6.2.15. �

Proof of proposition 4.6.1 The square is homotopy cocartesian and, since by
assumption Xi is ki-connected, the maps ∗ → ki are ki-connected. Thus, by
Theorem 4.2.1, the square is (k1 + k2 − 1)-cartesian.

For the second part, by Proposition 3.4.9, tfiber(X) is homotopy equivalent
to Ω2 tfiber(X′), where

Since πk(ΩX) � πk+1(X), the homotopy group in question is therefore

πk1+k2+1 hofiber(X1 ∨ X2 → X1 × X2).

Consider the homotopy cocartesian square

This square is (k1 + k2 + min{k1, k2} + 1)-cartesian by Example 4.2.7. In
particular, we have isomorphisms

πk1+k2+1

(
hofiber(X1 ∨ X2 → X1 × X2)

)
� πk1+k2+1

(
Ω(X1 ∧ X2)

)
� πk1+k2+2(X1 ∧ X2).

Since the Xi are ki-connected, X1 ∧ X2 is (k1 + k2 + 1)-connected by the proof
of Proposition 3.7.23. Then, by the Hurewicz Theorem (Theorem 4.3.2),

πk1+k2+2(X1 ∧ X2) � Hk1+k2+2(X1 ∧ X2).

By the Künneth formula and using the connectivities of X1 and X2,

Hk1+k2+2(X1 ∧ X2) � H̃k1+1(X1) ⊗ H̃k2+1(X2).

This is isomorphic to πk1+1(X1)⊗πk2+2(X2) using the Hurewicz Theorem again.
�

When the spaces X1, X2 above are both suspensions, we can not only identify
this first non-trivial group but also give a stable-range space-level description
of the homotopy groups of tfiber(X′), and hence tfiber(X). The discussion
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below will continue in Section 6.5 after we have stated and proved the
generalized Blakers–Massey Theorem, Theorem 6.2.1.

Theorem 4.6.3 Suppose X1 and X2 are based spaces, k1- and k2-connected
respectively. Consider the homotopy cocartesian square

Then there exists a (k1 + k2 +min{k1, k2} + 3)-connected map

P : Σ(X1 ∧ X2) −→ tfiber(X).

Note that the square X is (k1 + k2 + 3)-cartesian by Theorem 4.2.1, and hence
tfiber(X) is (k1 + k2 + 2)-connected, so that the map P may be thought of as
giving a “stable-range” description of the homotopy groups of tfiber(X).

The map P above is the generalized Whitehead product, to be defined below
(see [Ark62, Definition 2.2]; also see [Spe71, Definition 6.2] for a relative
version).

In the situation described in Theorem 4.6.3, the Whitehead product map P
is induced by a map W : Σ(X1 ∧ X2) → Σ(X1 ∨ X2) which is built from the
commutator, defined below.

Definition 4.6.4 Suppose X1 and X2 are based spaces, and define the
commutator map

C : ΩX1 ×ΩX2 −→ Ω(X1 ∨ X2)

by C(α, β) = α ∗ β ∗ α−1 ∗ β−1, where ∗ stands for path multiplication.

Let � : X → ΩΣX be the map associated with 1ΣX : ΣX → ΣX via
Theorem 1.2.7; this is the map which sends x to the loop (t �→ t ∧ x) = �(x)
(the map which naturally occurs in the Freudenthal Suspension Theorem,
Theorem 4.2.8). Let C̃ : X1 × X2 → ΩΣ(X1 ∨ X2) be given by C̃(x1, x2) =
C(�(x1), �(x2)), and let W̃ : Σ(X1 ×X2) → Σ(X1 ∨X2) be the associated map via
Theorem 1.2.7. We need to describe a few properties of W̃, so we explicitly
write its formula below to make filling in the necessary details easier for the
reader. We have

W̃(t ∧ (x1, x2)) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

4t ∧ (x1, ∗), if 0 ≤ t ≤ 1/4;

(4t − 1) ∧ (∗, x2), if 1/4 ≤ t ≤ 1/2;

(3 − 4t) ∧ (x1, ∗), if 1/2 ≤ t ≤ 3/4;

(4 − 4t) ∧ (∗, x2), if 3/4 ≤ t ≤ 1.



4.6 Homotopy groups of squares 219

It is not hard to see that W̃(t∧(x1, ∗)) and W̃(t∧(∗, x2)) are null-homotopic. We
leave the details to the reader, though this should be readily believable since
the idea is that the expression α ∗ β ∗ α−1 ∗ β−1 is null-homotopic if one of α or
β is null-homotopic.3 Hence the restriction of W̃ to Σ(X1 ∨ X2) ⊂ Σ(X1 × X2) is
null-homotopic. Choose a null-homotopy Ht : Σ(X1 ∨X2) → Σ(X1 ∨X2) where
H0 = W̃, and let H1 = W̃1. Since the inclusion Σ(X1 ∨ X2) → Σ(X1 × X2) is a
cofibration we may extend Ht to all of Σ(X1×X2). Thus we have a commutative
diagram

Definition 4.6.5 Define

W : Σ(X1 ∧ X2) −→ Σ(X1 ∨ X2)

to be the induced map of horizontal homotopy cofibers above. This is called
the generalized Whitehead product of the inclusion maps ΣXi → Σ(X1 ∨ X2).

The homotopy class of W is independent of the choice of homotopy Ht used
to define it. For the same reasons that W̃ is null-homotopic when restricted to
Σ(X1 ∨ X2), the composed maps pi ◦W : Σ(X1 ∧ X2) → ΣXi, where pi : Σ(X1 ∨
X2) → ΣXi is the projection, are null-homotopic for i = 1, 2. Hence W induces
a map

P : Σ(X1 ∧ X2) → tfiber(X) � hofiber
(
Σ(X1 ∨ X2) → ΣX1 × ΣX2

)
.

We will sketch a proof that this map has a high connectivity indirectly, appeal-
ing to Theorem 4.2.1 and its special case, the Freudenthal Suspension
Theorem.

Theorem 4.6.6 There is a diagram

which commutes up to homotopy, in which the map E is the canonical map

Σ(X1 ∧ X2) −→ ΩΣΣ(X1 ∧ X2) � Ω(ΣX1 ∧ ΣX2),
3 Analogously, the commutator of the identity element of a group with any other element is the

identity.



220 2-cubes: The Blakers–Massey Theorems

given by Theorem 4.2.10, and where H is induced by a map of homotopy fibers
in a homotopy cocartesian square. The map E is (2(k1+k2+2)+1)-connected,
H is (k1+k2+min{k1, k2}+4)-connected, and hence P is (k+1+k2+min{k1, k2}+
3)-connected.

Proof We will sketch the argument. Consider the homotopy cocartesian
square (noting the canonical homeomorphism Σ(X1 ∨ X2) � ΣX1 ∨ ΣX2)

Using the fact that the square in Theorem 4.6.3 is evidently (k1 + k2 + 3)-
cartesian, the top horizontal map in the above is thus (k1+k2+3)-connected. The
left vertical map is clearly (min{k1, k2}+ 2)-connected, and hence the square is
K = (k1 + k2 + min{k1, k2} + 4)-cartesian by Theorem 4.2.1. Thus the induced
map

H : tfiber(X) � hofiber
(
Σ(X1 ∨ X2) → ΣX1 × ΣX2

)
−→ Ω(ΣX1 ∧ ΣX2)

of horizontal homotopy fibers is K-connected. Now Σ(X1 ∧X2) is (k1 + k2 +2)-
connected, and the canonical map � : Σ(X1 ∧ X2) → ΩΣΣ(X1 ∧ X2) � Ω(ΣX1 ∧
ΣX2) is (2(k1+k2+2)+1)-connected by the Freudenthal Suspension Theorem.
It follows from Proposition 2.6.15 that W : Σ(X1 ∧ X2) → tfiber(X) is (K −
1)-connected provided that the diagram

commutes up to homotopy. For the details on this, we suggest [Joh95, Propo-
sition 6.8] and [Mun11, Theorem 4.3]. Both of these references are about
generalizations of this result, which we will encounter in Section 6.5, where a
few more details are discussed. �
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n-cubes: Generalized homotopy pullbacks and
pushouts

In Chapter 3, we were interested in comparing the initial (final) space of a
square to the homotopy limit (colimit) of the rest of the square. This led to the
notion of a homotopy (co)cartesian and k-(co)cartesian squares and we estab-
lished many interesting properties of such squares. This chapter is the cubical
version of this story. In particular, we will define homotopy (co)cartesian cubes
and their k-(co)cartesian counterparts and then discuss their various features.
The narrative here will very closely parallel that of Sections 3.3, 3.4, 3.7, 3.8,
and 3.9.

5.1 Cubical and punctured cubical diagrams

Here we set some notation and terminology. Let n ≥ 0 be an integer.
Informally, a n-cube or n-cubical diagram of spaces is a commutative dia-
gram in the shape of a n-cube. We have already studied 0-cubes (spaces),
1-cubes (maps of spaces), and 2-cubes (square diagrams), and even encoun-
tered the stray 3-cube. More formally, consider the poset P(n) of subsets
of n = {1, . . . , n}. The poset structure is given by containment, so S ≤ T
means S ⊂ T , and any poset may be considered as a category. In later
chapters, we will refer to P(n) as a cubical indexing category. An n-cube
of spaces X is a functor X : P(n) → Top (or to Top∗ for a cube of based
spaces). The language of categories is discussed in Chapter 7. In particular
the reader can consult Definition 7.1.1 and Definition 7.1.15 for the formal
definitions of category and functor. However, we can easily describe what
this means without the need for the language of functors and categories. An
n-cube X is:

● a space X(S ) = XS for each S ⊂ n;
● a map X(S ⊂ T ) = fS⊂T : XS → XT for each S ⊂ T such that

221
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● fS⊂S = 1XS ,
● for all R ⊂ S ⊂ T , the diagram

commutes.

As we already mentioned, a 0-cube is a space X∅, a 1-cube is a map of spaces
X∅ → X1, and a 2-cube is a commutative diagram

As in Chapter 3, we have written X1 and X12 in place of X{1} and X{1,2} above,
and we will continue to do so. Moreover, we only draw those arrows fS⊂T for
|T − S | = 1, as all other arrows are compositions of these. In addition, we do
not draw in the identity maps. Thus we depict a typical 3-cubical diagram of
spaces as

To create a cube of based spaces from an unbased one, we may choose a base-
point in X∅ (provided of course X∅ � ∅) to create compatible basepoints in the
other spaces using the unique map X∅ → XS .

Two important subposets of P(n) are P0(n), the subposet of non-empty sub-
sets of n, and P1(n), the subposet of proper subsets of n. Diagrams of spaces
that are functors from these categories/posets are referred to as punctured n-
cubes. We have already encountered punctured 2-cubes in Chapter 3. Here are
pictures of punctured 3-cubes of spaces, the first indexed by P0(3) and the
second indexed by P1(3):
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It is not hard to see that a punctured cube can be drawn in the shape of a
barycentrically subdivided simplex of dimension 1 less than the dimension of
the underlying cube. So, for example, we will often redraw the above punctured
cubes as

and

For brevity, we will say that a cube or a punctured cube of spaces is indexed by
P(n) (or by P0(n) or P1(n) as appropriate). We may also speak of S -cubes for
a finite set S . These are diagrams indexed by P(S ), the poset of subsets of S .

Definition 5.1.1 Let X be an n-cube of spaces. For subsets U ⊂ T ⊂ S , the
(|T | − |U |)-cube ∂T

UX is defined by V �→ X(V ∪U) for V ⊂ T −U. Such cubes
are called the faces of X.

It is common to let ∂TX stand for ∂T
∅ X and ∂UX stand for ∂n

UX, although we
will not use this notation extensively.
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We will also have some use for cubes of cubes. An n-cube of m-cubes is a
diagram in the shape of an n-cube each vertex of which is an m-cube, with maps
between the corresponding vertices. This can be regarded as an (n + m)-cube.
(For those familiar with the language of functors, this is a functor X : P(n) ×
P(m) → Top or a functor

X : P(n) −→ TopP(m) (5.1.1)

S �−→ (X(S ) : P(m) → Top).

Here TopP(m) is a functor category; see Example 7.1.30.)
In particular, a 1-cube of n-cubes X and Y and is a map X → Y defined

more explicitly as an (n + 1)-cube as follows.

Definition 5.1.2 Let X,Y : P(n) → Top be n-cubes. A map of n-cubes or a
natural transformation of n-cubes F : X → Y is a map fS : XS → YS for all S
such that the assignment Z : P(n + 1) → Top, S �→ ZS given by

ZS =

⎧⎪⎪⎨⎪⎪⎩XS , if S ⊂ n;

YS−{n+1}, if n + 1 ∈ S ,

defines an (n + 1)-cube. We will say that F : X → Y is a fibration, cofibration,
homotopy equivalance, weak equivalence, homeomorphism, etc., if it is such a
map objectwise, that is, if each fS is a fibration, cofibration, etc.

It should also be evident that, for n ≥ 1, every n-cube can be viewed (in n
distinct ways) as a map of (n − 1)-cubes.

For topological spaces X,Y there is a topological space of maps Map(X,Y),
which we may think of as the space of all 1-cubes X → Y . So too is there a
topological space of maps of n-cubes.

Definition 5.1.3 For n-cubes X and Y, let

Nat(X,Y) ⊂
∏

S∈P(n)

Map(XS ,YS )

denote the subspace consisting of all collections of maps ( fS )S∈P(n) in the prod-
uct of the mapping spaces Map(XS ,YS ) such that each collection determines a
map F : X → Y of n-cubes as in Definition 5.1.2. It is topologized as a sub-
space of this product of mapping spaces. The space Nat(X,Y) is called the
space of natural transformations from X to Y. Other notation we may use for
this space is NatP(n)(X,Y) when we want to emphasize the indexing category,
or NatP(n)(X(•),Y(•)) when we wish to emphasize the argument of the cubes,
or some combination of the above.
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We may also speak of the space of natural transformations between punctured
n-cubes in the obvious way.

We close this section with two simple examples. The first will be used in the
definition of the (co)limit of a punctured cube and the second in the definition
of the homotopy (co)limits of the punctured cube.

Example 5.1.4 (Constant punctured cubical diagram) If XS = X for all S in
P0(n) or in P1(n) and if all the maps are the identity, then we will refer to such
a diagram as a constant punctured cube at X and denote it by CX . Of most
interest is the case when X = ∗, a one-point space, in which case the punctured
cube will be denoted by C∗. �

Example 5.1.5 (Punctured cubical simplices) We will utilize two punctured
cubical diagrams repeatedly, one for homotopy limits of punctured cubes and
the other for homotopy colimits of punctured cubes.

Define Δ(•) : P0(n) → Top by

Δ(S ) =

⎧⎪⎪⎨⎪⎪⎩(t1, . . . , tn) : 0 ≤ ti ≤ 1,
∑

i

ti = 1, ti = 0 for i � S

⎫⎪⎪⎬⎪⎪⎭ ,
and for S ⊂ T let dS⊂T = Δ(S ⊂ T ) : Δ(S ) → Δ(T ) be the evident inclusion.
Note that Δ(n) � Δn−1, and in general Δ(S ) is homeomorphic to a simplex
of dimension |S | − 1. We will denote the value of Δ on S by Δ(S ) and, to
be consistent with the notation above, will drop braces and commas from our
notation for the set S (as in the figure below).

When n = 3, we have the punctured cubical diagram depicted in Figure 5.1.
For instance, Δ(12) is the face described in coordinates by tuples (t1, t2, 0) such
that t1 + t2 = 1.

Figure 5.1 Punctured 3-cube of simplices.
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Dually, we can consider

Δ(n − •) : P1(n) −→ Top,

where S ⊂ T gives rise to a natural inclusion dS⊂TΔ(n − T ) → Δ(n − S ) as
above. Note that Δ(n) = ∅. A picture for Δ(3−•) would be the same as the one
above.

Since our notation for a functor does not usually include the argument, when
there is no danger of confusion we will use simply Δ for Δ(•) or for Δ(n − •).

Both these punctured cubical simplex diagrams extend to the same cubical
simplex functor P(n) → Top in the obvious way. �

5.2 Limits of punctured cubes

Let X : P0(n) → Top be a punctured n-cube, and as usual write X(S ) = XS

and X(S ⊂ T ) = fS⊂T : XS → XT . Recall the constant punctured cube C∗ from
Example 5.1.4.

Definition 5.2.1 The pullback or limit of the punctured n-cube X, denoted
limP0(n) X, is the space

lim
P0(n)

X = Nat
S∈P0(n)

(C∗(S ),X(S )).

That is (using that a map from a point to a space is the same as choosing a
point in the space), the limit of X is the subspace of

∏
S∈P0(n) XS consisting

of all tuples (xS )S∈P0(n) such that fS⊂T (xS ) = fR⊂T (xR) for all T and for all
R, S ⊂ T .

Remarks 5.2.2

1. Note that when n = 2 this is slightly different than but equivalent to
Definition 3.1.1.

2. Alternatively, we may also write limS∈P0(n) XS or lim∅�S⊂n XS in place of the
above, or, when n is understood, simply limS�∅ XS . Fix finite sets R ⊂ T .
In the case where the cube is indexed by sets R ⊂ S ⊂ T , we will write
limS�R XS for the limit over the evident punctured cube.

3. We could have defined the limit to be the subspace of
∏

i∈n Xi consisting of
those tuples (x1, . . . , xn) such that f{i}⊂S (xi) = f{ j}⊂S (x j) for all S and for all
i, j ∈ S . It is straightforward to check this description is homeomorphic to
the definition given above. This alternative definition is simpler to visual-
ize and closer in spirit to Definition 3.1.1, but the Definition 5.2.1 is more
directly comparable to the homotopy limit, and more in line with a model
for limits for general diagrams of spaces from Proposition 7.4.16. �
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Remark 5.2.3 (Limit of a cube) One can also define the limit of a cubical
diagram X : P(n) → Top as the space

lim
P(n)

X = Nat
S∈P(n)

(C∗(S ),X(S )).

But it is not hard to see that this is homeomorphic to X∅. For a more general
result, see Example 7.3.9. �

Example 5.2.4 The limit, in the case of a punctured 3-cubeX : P0(3) → Top,
can be visualized as

The reader should compare this picture with the one in Example 5.3.3. �

The limit limP0(n) X enjoys a universal property analogous to the one enjoyed
by the pullback (see discussion following Definition 3.1.1). There are canoni-
cal projection maps pS : limP0(n) X → XS for each S such that, for all S ⊂ T ,
the diagram

commutes. Thus the assignment

S �−→
⎧⎪⎪⎪⎨⎪⎪⎪⎩

lim
P0(n)

X, if S = ∅;

XS , if S � ∅
defines an n-cube. Now suppose W is a space with maps qS : W → XS for each
S ∈ P0(n) so that the diagram
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commutes for all pairs (S ,T ) with S ⊂ T (i.e. so the XS with S � ∅ together
with W as the space indexed by ∅ define an n-cube). There is a unique map

u0 : W −→ lim
P0(n)

X

such that the diagram

commutes for all pairs (S ,T ) with S ⊂ T . With our description of limP0(n) X
as a subspace of

∏
i∈n Xi, the map u0 is easy to define: It is the map

(q1, q2, . . . , qn) : W → ∏
i∈n Xi. The fact that the maps qS are compatible in

the sense that fS⊂T ◦ qS = qT ensures that this defines a map to the limit.
Here are a few examples of limits of punctured cubes, the first two parallel

to Examples 3.1.2 and 3.1.3.

Example 5.2.5 Let X1, . . . , Xn be spaces, and define X : P0(n) → Top by
X(S ) =

∏
i�S Xi, with the maps X(S ⊂ T ) : X(S ) → X(T ) the obvious pro-

jections. Then limP0(n) X � ∏
i∈n Xi. To see why, we note that the limit is the

subspace of
∏

i∈n
∏

i� j∈n X j. Fix i, k distinct, and let pik :
∏

i� j∈n X j → Xk be
the canonical projection. It is clear using these projections and the definition of
the limit that all points in each appearance of the factor of Xk in the limit must
be equal. Hence the limit is the subspace homeomorphic to

∏
i∈n Xi. �

Example 5.2.6 There is another obvious way to write the product of the
spaces X1, . . . , Xn as a pullback. Let X : P0(n) → Top be given by X({i}) = Xi

and X(S ) = ∗ for |S | ≥ 2. Then limP0(n) X �∏
i Xi. �

Example 5.2.7 LetX : P0(n) → Top be the constant punctured cube CX from
Example 5.1.4. Then limP0(n) X � X is the diagonal subspace of Xn. �

The following useful result says that we may think of limits of punctured cubes
in an iterative way in terms of limits of punctured squares. The corresponding
fact for homotopy limits is Lemma 5.3.6, and is central to importing the theory
of squares into the proofs of the corresponding results about cubes.

Lemma 5.2.8 (Iterated pullback) Given a punctured n-cube X : P0(n) →
Top, n ≥ 2, there is a homeomorphism
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lim
S∈P0(n)

XS � lim

(
Xn → lim

R∈P0(n−1)
XR∪{n} ← lim

R∈P0(n−1)
XR

)
.

Proof Both sides of the isomorphism are clearly subspaces of
∏

S∈P(n) XS .
It is straightforward to check that they are contained in one another using
Definition 5.2.1 (and the definition of the pullback, Definition 3.1.1). �

Lemma 5.2.8 can sometimes provide insight when used in multiple ways to
view a punctured cube, as illustrated in the following.

Example 5.2.9 Suppose f : X → Y and g : Y → Z are based maps of based
spaces, with basepoints x0, y0, z0. Let h = g ◦ f be the composed map. We are
going to compare the fibers of f , g, and h. Consider the punctured 3-cube X
given by the diagram

where the maps ∗ → Y,Z are the inclusion of the basepoint. Using
Lemma 5.2.8, considering the “rows” above, we have

lim
P0(3)

X � lim
(
∗ → lim(∗ → Z ← Y) ← lim(∗ → Z ← X)

)
.

By Example 3.1.5, we have lim(∗ → Z ← Y) = fiberz0 (g), and similarly
lim(∗ → Z ← X) = fiberz0 (h), so that, again applying Example 3.1.5,

lim
P0(3)

X � fibery0

(
fiberz0 (h) → fiberz0 (g)

)
.

But we can also use Lemma 5.2.8 to see that

lim
P0(3)

X � lim
(
∗ → lim(∗ → Z

1Z← Z) ← lim(∗ → Y
f← X)

)
.

By Example 3.1.4, lim(∗ → Z
1Z← Z) � ∗, and clearly lim(∗ → ∗ ← ∗) = ∗, so

that

lim
P0(3)

X � lim(∗ → Y ← X) = fibery0 ( f ).
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Hence

fibery0 ( f ) � fibery0 (fiberz0 (h) → fiberz0 (g)).

The reader may wish to compare this with Proposition 3.4.7. �

We now have a generalization of Definition 3.1.13.

Definition 5.2.10 We say an n-cube X : P(n) → Top is cartesian (or
categorically cartesian, or a (strict) pullback) if the canonical map

X∅ −→ lim
P0(n)

X

is a homeomorphism.

Example 5.2.11 Revisiting Example 5.2.5, the cube X : P(n) → Top given
byX(S ) =

∏
i�S Xi is cartesian (as are all of its faces). Similarly, Example 5.2.7

can be restated by saying that the cube where each space is X and all the maps
are identity is cartesian. �

5.3 Homotopy limits of punctured cubes

As we have seen in Examples 3.2.1 and 3.6.1, limits and colimits of punctured
squares are not homotopy invariant. To fix this, we introduced homotopy limits
and colimits of punctured cubical squares, and we now generalize this to punc-
tured cubes. In Section 5.7, we will tell the dual story of homotopy colimits
of punctured cubes. Heuristically, homotopy limits and colimits are “fattened
up” limits and colimits, and it is this added “thickness” that endows them with
homotopy invariance.

The motivation for our definition of the homotopy limit of a punctured cube
is given by Lemma 5.3.6, which says that we may think of these homotopy
limits as iterated homotopy limits of punctured squares. From a pedagogical
viewpoint it may be better to use Lemma 5.2.8 as a motivation for defining
the homotopy limit of a punctured cube (define homotopy limits inductively
by replacing lim with holim), but we prefer to give a definition which is both
more symmetric and follows the conventions for more general homotopy limits
discussed in Chapter 8.

Recall the definition of a punctured cubical simplex Δ(•) : P0(n) → Top
from Example 5.1.5.
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Definition 5.3.1 For X : P0(n) → Top (or Top∗) a punctured cube, define the
homotopy limit of X as

holim
P0(n)

X = Nat
S∈P0(n)

(Δ(S ),X(S )).

Remark 5.3.2 (Homotopy limit of a cube) One could define the homotopy
limit of a cube (not punctured) as the space of natural transformations much
as in the above definition; see Proposition 8.2.2. However, as we shall see in
Proposition 9.3.4, the homotopy limit in this case is not so interesting since it
is homotopy equivalent to X∅. �

The homotopy limit of X is thus a subspace of
∏

S Map(Δ|S |−1, XS ). In the
case n = 2, this is precisely Definition 3.2.4. The statement that generalizes
Definition 5.3.1 to arbitrary diagrams of spaces is Proposition 8.2.2.

Example 5.3.3 We can visualize the homotopy limit in the case of a
punctured 3-cube X : P0(3) → Top as follows:

(5.3.1)

Comparing this picture above with the one in Example 5.2.4 illustrates the
heuristic that homotopy limit is a “fattened up” limit.

Unravelling this gives that a point in holimP0(3) X is a compatible list of
points xi in the spaces Xi, homotopies αi j in the spaces Xi j, and a 2-parameter
homotopy α123 in X123; one such point is depicted in Figure 5.2 below. �

Example 5.3.4 For the punctured cube indexed on P0(n) where all
the spaces are X and the maps are all identity, the homotopy limit is
Map(Δ2, X) � X. �

Example 5.3.5 (Loop spaces as holims of punctured cubes) Let X be a based
space, and let ∗ → X be the inclusion of the basepoint. We have already seen
in Example 3.2.10 that holim(∗ → X ← ∗) � ΩX is the loop space of X.
Consider now:
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Figure 5.2 A point in the homotopy limit of a punctured 3-cube.

By definition a point in this homotopy limit is a map Δ2 → X such that
the boundary ∂Δ2 maps to the basepoint of X. Thus this homotopy limit is
homotopy equivalent to Ω2X. We could have also used Lemma 5.3.6 to see
this.

Similarly, let X : P0(n) → Top∗ be a punctured n-cubical diagram given by
S �→ ∗ if S � n and n �→ X, where the maps in the diagram are either the
identity or inclusions of the basepoint. Then by induction using Lemma 5.3.6
below, holimX � Ωn−1X. �

The following analog of Lemma 5.2.8 exhibits the homotopy limit of a
punctured cube as an iterated homotopy pullback.

Lemma 5.3.6 (Iterated homotopy pullback) Given a punctured n-cube
X : P0(n) → Top, n ≥ 2, there is a homeomorphism
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holim
S∈P0(n)

XS � holim

(
Xn → holim

R∈P0(n−1)
XR∪{n} ← holim

R∈P0(n−1)
XR

)
.

Proof Write CΔn−1 = Δn−1 × I/Δn−1 × {1}. Define h : CΔn−1 → Δn by

h
(
[(t1, . . . , tn−1), t]

)
=

(
t1(1 − t), . . . , tn−1(1 − t), t

)
.

It is easy to see that h is a homeomorphism. A point in holimS∈P0(n) XS is a col-
lection of maps fS : Δ(S ) → XS for ∅ � S ⊂ n satisfying certain compatibility
properties. The homeomorphism in question is given by the map

( fS )S∈P0(n) �−→
(

fn(1),Γ, { fR}R⊂P0(n−1)

)
where

Γ : I −→ holim
R∈P0(n−1)

XR∪{n}

is the parametrized family of maps (gR(t))R∈P0(n−1), t ∈ I, given by

gR(t)(t1, . . . , tn−1) = fR∪{n}
(
h([(t1, . . . , tn−1), t])

)
. �

Remark 5.3.7 In the above statement, we could replace Xn by any of the Xi

but the way we have presented it is the cleanest to state and prove. �

Example 5.3.8 It is worth illustrating the previous proposition in the case
n = 3, since we will use it repeatedly later. In this case, we simply have the
homeomorphism

�

The following result establishes the homotopy invariance of the homotopy
limit, generalizing Theorem 3.2.12. The proof here is much easier because
it boils down to Theorem 3.2.12.

Observe that, if X and Y are punctured cubes indexed on P0(n) and if
N : X → Y is a map of cubes, then there is an induced map holimP0(n) X −→
holimP0(n) Y given by composing a map in NatP0(n)(Δ,X) with N.
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Theorem 5.3.9 (Homotopy invariance of homotopy limits, cubes case) Sup-
pose X,Y : P0(n) → Top are punctured n-cubes, and X → Y is a map of
punctured n-cubes which is a homotopy (resp. weak) equivalence (so X(S ) →
Y(S ) is a homotopy (resp. weak) equivalence for all S ). Then the induced map

holim
P0(n)

X −→ holim
P0(n)

Y

is a homotopy (resp. weak) equivalence.

Proof These statements are vacuously true when n = 0, 1. For n ≥ 2, these
follow by induction on n using Theorem 3.2.12 and Lemma 5.3.6 as follows:

The base case n = 2 is Theorem 3.2.12. Consider the diagram

By hypothesis the left vertical map is a homotopy (resp. weak) equivalence,
and by induction the middle and right vertical maps are homotopy (resp. weak)
equivalences, and hence, by Theorem 3.2.12, the induced map of homotopy
limits of the rows is a homotopy (resp. weak) equivalence. By Lemma 5.3.6 the
homotopy limits of these rows are holimP0(n) X and holimP0(n) Y respectively.

�

5.4 Arithmetic of homotopy cartesian cubes

This section parallels Section 3.3. Here we will generalize many examples and
results encountered there.

Let

X : P(n) −→ Top

S �−→ XS

be an n-cube of spaces (target could be Top∗ as well). and recall that P0(n)
indexes the punctured cube missing the initial space X∅. We have canonical
maps

X∅ −→ lim
P0(n)

X and lim
P0(n)

X −→ holim
P0(n)

X.

The map from X∅ to the limit was described immediately before
Definition 5.2.10, where we defined a cube to be cartesian if this map is
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a homeomorphism. The map from the limit to the homotopy limit is given
as follows. Recall the punctured cubical simplex Δ(•) : P0(n) → Top from
Example 5.1.5. There is a map of punctured n-cubes Δ(•) → C∗, where C∗ is
the constant punctured cube at the one-point space (see Example 5.1.4). This
induces a map

lim
P0(n)

X = Nat
P0(n)

(C∗,X) −→ Nat
P0(n)

(Δ(•),X) = holim
P0(n)

X.

As in (3.3.1), we will denote the composition of the above two maps by

a(X) : X∅ −→ holim
P0(n)

X. (5.4.1)

Definition 5.4.1 We say the n-cube X : P(n) → Top is

● homotopy cartesian (or ∞-cartesian) if the map a(X) is a weak equivalence;
● k-cartesian if the map a(X) is k-connected.

Remark 5.4.2 As the above definition generalizes that for a square, Defini-
tion 3.3.1, the remarks following that definition apply here. In particular, if a
cube is k-cartesian, then it is clearly j-cartesian for j ≤ k (we will use this at
various times throughout). �

Example 5.4.3 Examples 5.3.4 and 5.3.5 can be restated in terms of carte-
sian cubes. For example, Example 5.3.5 says that the n-cube with initial space
Ωn−1X, final space X, and the rest one-point spaces, is homotopy cartesian. �

Example 5.4.4 Let X be an n-cube, and define an (n + 1)-cube X̃ = X → X
as the identity map of n-cubes. Then X̃ is homotopy cartesian. To see this, by
Lemma 5.3.6 write

holim
P0(n+1)

X̃ � holim

(
X∅ → holim

P0(n)
X ← holim

P0(n)
X

)
,

where the right horizontal map is the identity map, so Example 3.2.9 implies
the result. �

Here is a generalization of Proposition 3.3.6.

Proposition 5.4.5 IfX andY are homotopy cartesian n-cubes of spaces, then
the n-cube X × Y given by (X × Y)(S ) = XS × YS (with the obvious maps) is
also homotopy cartesian. The same is true if “homotopy cartesian” is replaced
by “k-cartesian”.
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Proof The homeomorphism Map(X,Y×Z) � Map(X,Y)×Map(X,Z) induces
a homeomorphism Nat(Δ(•),X ×Y) � Nat(Δ(•),X) × Nat(Δ(•),Y). �

The following generalization of Corollary 3.3.8 is then immediate.

Corollary 5.4.6 (Products commute with homotopy limits, cubes case) If X
is a homotopy cartesian n-cube of spaces and V any space, then the n-cube
X × V (with the obvious maps) is also homotopy cartesian. The same is true if
“homotopy cartesian” is replaced by “k-cartesian”.

The following generalizes Proposition 3.3.9. A related statement is the first
part of Proposition 5.10.1 and, more generally, Proposition 8.5.4.

Proposition 5.4.7 (Maps and homotopy cartesian cubes) Suppose X is an
n-cube where the map a(X) : X∅ → holimP0(n) X is a homotopy equivalence
(so in particular X is homotopy cartesian). Then, for any space Z, the cube
XZ = Map(Z,X) is homotopy cartesian. If X is k-cartesian and Z has the
homotopy type of a CW complex of dimension d, then XZ is (k − d)-cartesian.

Remark 5.4.8 As mentioned in Remark 3.3.10, the first result could have
been stated in terms of homotopy cartesian cubes if Z was required to be a CW
complex. �

Proof of Proposition 5.4.7 The exponential law, Theorem 1.2.7, induces a
homeomorphism

Map(Z,Nat(Δ(•),X)) � Nat(Δ(•),XZ).

The result now follows since Map(Z,−) preserves homotopy equivalences
by Proposition 1.3.2. For the other statement, see our remarks surrounding
Proposition 3.3.9. �

We next have the following analog of Theorem 3.3.15, and in fact this analog
is a consequence of that result by induction. A generalization can be found in
Proposition 8.5.5.

Theorem 5.4.9 (Homotopy limits commute, cubes case) SupposeX : P0(n)×
P0(m) → Top is a diagram (S ,T ) → X(S ,T ) (an n-punctured cube of m-
punctured cubes, or an m-punctured cube of n-punctured cubes). Then there is
a homeomorphism

holim
P0(n)

holim
P0(m)

X � holim
P0(m)

holim
P0(n)

X.
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Proof By Theorem 3.3.15, the result is true for n = m = 2. By induction
suppose the result is true for (n,m) = (2,m−1). Then for X : P0(2)×P0(m) →
Top, consider the following sequence of homeomorphisms

holim
P0(2)

holim
P0(m)

X

� holim
S∈P0(2)

holim

(
X(S ,m) → holim

R∈P0(m−1)
X(S ,R)

← holim
R∈P0(m−1)

X(S ,R ∪ {m})
)

� holim

(
holim
S∈P0(2)

X(S ,m) → holim
S∈P0(2)

holim
R∈P0(m−1)

X(S ,R)

← holim
S∈P0(2)

holim
R∈P0(m−1)

X(S ,R ∪ {m})
)

� holim

(
holim
S∈P0(2)

X(S ,m) → holim
R∈P0(m−1)

holim
S∈P0(2)

X(S ,R)

← holim
R∈P0(m−1)

holim
S∈P0(2)

X(S ,R ∪ {m})
)

� holim
P0(m)

holim
P0(2)

X.

The first homeomorphism uses Lemma 5.3.6, the second follows from The-
orem 3.3.15, the third by induction, and the last uses Lemma 5.3.6 again.
A similar argument shows that the (2,m) case implies the (n,m) case for
n > 2. �

Using the description of the loop space as a homotopy limit (Example 3.2.10),
from the previous result we have the following consequence. This generalizes
Corollary 3.3.16.

Corollary 5.4.10 (Loops and homotopy limits commute, cubes case) If X is
a punctured cube of based spaces, then

holim
P0(n)

ΩX � Ω holim
P0(n)

X.

The commutativity of loops with the homotopy limit will be encountered again
in Corollary 8.5.8.

Here is a generalization of Corollary 3.3.17.

Corollary 5.4.11 Suppose X → Y is a map of punctured n-cubes and sup-
poseY is based. Consider the punctured n-cube S �→ FS = hofiber(XS → YS ).
Then there is a homeomorphism
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holim
S∈P0(n)

FS � hofiber

(
holim
S∈P0(n)

XS → holim
S∈P0(n)

YS

)
.

Proof We simply note that hofiber(X → Y) � holim(X → Y ← ∗) is itself a
homotopy limit (see Example 3.2.8) and then apply Theorem 5.4.9. �

Note that we could have deduced Corollary 5.4.10 from this result by recalling
from Example 2.2.9 that ΩY = hofiber(∗ → Y) and taking X to be a cube of
one-point spaces.

The following is a generalization of Proposition 3.3.18.

Proposition 5.4.12 A map X → Y of n-cubes is a k-cartesian (n+ 1)-cube if
and only if, for all y ∈ Y∅, the n-cube Fy = hofiber(X → Y) is k-cartesian.

Proof LetZ = (X → Y) be the (n+1)-cube representing the map of n-cubes,
so that Z is the cube

S �→
⎧⎪⎪⎨⎪⎪⎩XS , S ⊂ n;

YS−{n+1}, n + 1 ∈ S .

Let Ỹ = Y → Y be the (n + 1)-cube obtained by mapping Y to itself by the
identity. Consider the square

By Example 5.4.4, the lower horizontal arrow is a homotopy equivalence.
Using the long exact sequence of a fibration, the top horizontal arrow has the
same connectivity as the map

F∅ = hofiber(X∅ → Y∅) → hofiber

(
holim

S∈P0(n+1)
Z → holim

S∈P0(n+1)
Ỹ

)
.

By Corollary 5.4.11, we have a homeomorphism

hofiber

(
holim

S∈P0(n+1)
Z → holim

S∈P0(n+1)
Ỹ

)
� holim

S∈P0(n+1)
hofiber(Z → Ỹ).
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Regarding Z and Ỹ as maps of n-cubes, hofiber(Z → Ỹ) is homotopy
equivalent to the total homotopy fiber of the square

of n-cubes, which is evidently homotopy equivalent to the n-cube hofiber(X →
Y). Thus we have a (horizontal) map of fibration sequences

and the result now follows. �

Now we have a generalization of Proposition 3.3.11. Recall that a map of n-
cubes is an (n + 1)-cube (and that any n-cube can be regarded as a map of
(n − 1)-cubes in various ways).

Proposition 5.4.13 Suppose X and Y are n-cubes, and that (X → Y) is a
map of n-cubes, considered as an (n + 1)-cube.

1. (a) If (X → Y) and Y are homotopy cartesian, then X is homotopy
cartesian.

(b) If X and Y are homotopy cartesian, then (X → Y) is homotopy
cartesian.

2. (a) If (X → Y) and Y are k-cartesian, then X is k-cartesian.
(b) If X is k-cartesian and Y is (k + 1)-cartesian, then (X → Y) is

k-cartesian.

All the remarks as in Remark 3.3.12 apply here as well.
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Proof Consider the diagram

where Pa(Y) � Y∅ is the mapping path space of the canonical map a(Y) : Y∅ →
holimS�∅ YS , and the model for the homotopy limit in the upper-left corner
of the square that we use is lim(Pa(Y) → holimS�∅ YS ← holimS�∅ XS ). The
square above is evidently homotopy cartesian by Proposition 3.2.13, and hence
the connectivity of the lower horizontal arrow (given by how cartesian Y is) is
the same as the connectivity of the map

holim
(
Y∅ → holim

S�∅
YS ← holim

S�∅
XS

)
−→ holim

S�∅
XS

by 2(a) of Proposition 3.3.11. The result now follows immediately from
Proposition 2.6.15 (and by letting k = ∞ for statements 1(a) and 1(b)). �

Related to Proposition 5.4.13 is the following generalization of Proposi-
tion 3.3.20.

Proposition 5.4.14 Suppose X = (U → V) and Y = (V → W) are n-
cubes, and let Z = (U → W), all considered as maps of (n − 1)-cubes.
Then

1. (a) If X and Y are homotopy cartesian, then Z is homotopy cartesian.
(b) If Y and Z are homotopy cartesian, then X is homotopy cartesian.

2. (a) If X and Y are k-cartesian, then Z is k-cartesian.
(b) If Y is (k + 1)-cartesian and Z is k-cartesian, then X is k-cartesian.

See Remark 3.3.21 for an example where the third obvious statement fails.

Proof We will prove the k-cartesian version, which also proves the homotopy
cartesian one by setting k = ∞. Consider the following diagram of (n−1)-cubes

To prove 2(a), view the right-most square as a map of n-cubes X = (U →
V) → (W → W). Since (W → W) is homotopy cartesian and X is k-
cartesian, the right-most square, as an (n + 1)-cube, is k-cartesian by 2(b) of
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Proposition 5.4.13. We may view this (n + 1)-cube as a map Z = (U →
W) → (V → W) = Y. Since Y = (V → W) is k-cartesian, 2(a) of
Proposition 5.4.13 implies that Z = (U →W) is k-cartesian.

To prove 2(b), if Y = (V →W) is (k + 1)-cartesian, then since U → U is
homotopy cartesian, by 2(b) of Proposition 5.4.13, the left-most square above
is a k-cartesian (n + 1)-cube. Viewing it as a map X = (U → V) → (U →
W) = Z, sinceZ is k-cartesian, 2(a) of Proposition 5.4.13 impliesX = (U →
V) is k-cartesian as well. �

Remarks 5.4.15 When X = U → V, Y = V → W, and Z = U → W,
we will write Z = XY and think of this as a factorization of the cube Z. Such
factorizations will be used extensively in the proof of Theorem 6.2.3.

Propositions 5.4.13 and 5.4.14 are in fact equivalent (one can use Proposi-
tion 5.4.14 to prove Proposition 5.4.13). After all, they generalize Propositions
3.3.11 and 3.3.20 but the latter is itself a generalization of the former. We will,
however, need both statements in this and the next chapter, and this is why we
stated them both. �

What follows are a few results about cubes of cubes. These will be used in
Section 10.1. Recall from Section 5.1 that an n-cube of m-cubes is an n-cube
whose each vertex is an m-cube and with maps between the corresponding
vertices of of m-cubes (this can be viewed as an (n + m)-cube). An (n + 1)-
cube, regarded as a 1-cube of n-cubes, that is, a map of n-cubes, is an example
of this.

Proposition 5.4.16 Let X be an n-cube of m-cubes. Assume that X, viewed
as a (n + m)-cube, is k-cartesian, and that for each S ⊂ n, S � ∅, the m-cube
X(S ) is (k + |S | − 1)-cartesian. Then the m-cube X(∅) is k-cartesian.

Proof We induct on n. If n = 0 there is nothing to prove. For n = 1, we
have a map X(∅) → X(1) of m-cubes. By hypothesis, considered as an (m +
1)-cube it is k-cartesian, and since we also assume X(1) is k-cartesian, 2(a)
of Proposition 5.4.13 implies that X(∅) is k-cartesian. Now assume the result
is true for cubes of dimension n, and let X be an (n + 1)-cube of m-cubes.
Write X as a map of n-cubes (R �→ X(R)) → (R �→ X(R ∪ {n + 1})) for
R ∈ n.

We claim that, by induction, the n-cube of m-cubes R �→ X(R ∪ {n + 1}) is
k-cartesian, and since we assume X, considered as an (n + 1)-cube of m cubes,
to be k-cartesian, 2(a) of Proposition 5.4.13 implies that the p-cube R �→ X(R)
is also k-cartesian. It follows that X(∅) is k-cartesian.
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To see why the n-cube of m-cubes R �→ X(R ∪ {n + 1}) is k-cartesian, we
need to use 2(b) of Proposition 5.4.13. Again we apply induction. When n = 1
we may write the above as X(1) → X(12), and by hypothesis X(12) is (k + 1)-
cartesian and X(1) is k-cartesian, so the 1-cube of m-cubes (X(1) → X(12)) is
k-cartesian by 2(b) of Proposition 5.4.13. For n ≥ 2, write R �→ X(R ∪ {n + 1})
as (U �→ X(U ∪ {n})) → (U �→ X(U ∪ {n, n + 1})) for U ∈ n − 1. By induction
U �→ X(U ∪ {n}) is k-cartesian, and U �→ X(U ∪ {n, n+ 1}) is (k+ 1)-cartesian,
so by 2(b) of Proposition 5.4.13, R �→ X(R ∪ {n + 1}) is k-cartesian. �

Proposition 5.4.17 Let X be a functor from P0(n) to m-cubes of spaces (so
we think of X as an n-cube of m-cubes) and write X(S ,T ) = (X(S ))(T ).
If, for all S � ∅, X(S ) is a kS -cartesian m-cube, then the m-cube T �→
holimS�∅ X(S ,T ) is minS {1 − n + kS }-cartesian.

Proof Define an n-cube of m-cubesY by settingY(S ,T ) = X(S ,T ) for S � ∅
andY(∅,T ) = holimS�∅ Y(U,V). As an (n+m)-cube,Y is homotopy cartesian.
Proposition 5.4.16 now implies the result. �

We next discuss strongly cartesian cubes. Recall the notion of a face of a cube
from Definition 5.1.1.

Definition 5.4.18 We call an n-cube X strongly homotopy cartesian
(resp. strongly cartesian) if each of its faces of dimension ≥ 2 is homotopy
cartesian (resp. cartesian).

By 1(b) of Proposition 5.4.13, it is enough to require that all the square faces be
(homotopy) cartesian in order for the cube to be strongly cartesian. The same is
true for strongly cartesian cubes by replacing “holim” by “lim” everywhere in
Proposition 5.4.13 and using Proposition 3.1.9. In fact, by induction and using
those results, we have the following.

Proposition 5.4.19 A strongly (homotopy) cartesian cube is (homotopy)
cartesian.

Example 5.4.20 If CX is the constant n-cube with all spaces X and all
maps the identity, then X is strongly (homotopy) cartesian. This follows from
Example 3.3.3. �

Example 5.4.21 Suppose X1, . . . , Xn are spaces. Generalizing Exam-
ple 3.2.7, the cube
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X : P(n) −→ Top

S �−→
⎧⎪⎪⎨⎪⎪⎩
∏

i�S Xi, S � n;

∗, S = n,

where an inclusion T ⊂ S induces a projection X(T ) → X(S ) away from those
factors indexed by elements of S − T , is strongly (homotopy) cartesian and
hence (homotopy) cartesian. This is true because each square face of the cube
is of the form

for some T ⊂ n and j, k � T . This square is (homotopy) cartesian by
Example 3.3.3 and Corollary 3.3.8. �

Next we generalize the discussion of fibrant squares. To simplify the notation
in what follows, we set

lim
T�S

XS = lim
R⊂P0(n−S )

XR∪S

(and similarly for T ⊃ S ). We have the following analog to Definition 3.3.23.

Definition 5.4.22 We call a (punctured) n-cube X fibrant if for all S ⊂ n
(∅ � S ⊂ n) the map

XS = lim
T⊃S

XT −→ lim
T�S

XT

is a fibration. An n-cube is called a fibrant pullback cube if, in addition, XS =

limT⊃S XT for all |S | ≥ 2.

A straightforward induction on |S | shows that a fibrant pullback cube has XS

equal to the fiber product over Xn of Xn−{i} for i ∈ n − S (and the fiber product
itself may be defined iteratively in the evident way).

The following is a generalization of Proposition 3.3.24 and says that one
can always choose a fibrant cube as a “representative” for a given cube. Such a
representative is called a fibrant replacement of the original cube. The second
statement below is [Goo92, Proposition 2.2], but our terminology differs.

Theorem 5.4.23 Every (punctured) cube admits a homotopy equivalence to
a (punctured) fibrant cube. Every strongly homotopy cartesian cube admits a
homotopy equivalence to a fibrant pullback cube.
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Proof We give a proof for a cubical diagram; the proof is essentially the same
for punctured cubes. Let X = (S �→ XS ) : P(n) → Top be an n-cube. Define a
cubical diagram Y by

Y(S ) = YS = holim
T⊃S

XT ,

where this homotopy limit can be thought of as the mapping path space Pa(∂n
SX)

of the canonical map

a(∂n
SX) : XS −→ holim

T�S
XT ,

except in the case where S = n, in which case we define Yn = Xn. Note
that, in light of Remark 5.3.2, it makes sense that the homotopy limit of the
cube Y(∅) = holimT⊃∅ XT would be homotopy equivalent to X∅; here we are
essentially taking this as the definition of the homotopy limit of a cube, but the
reader can verify that this is homeomorphic to the homotopy limit of the cube
obtained from Definition 8.2.1 (or Proposition 8.2.2).

Evidently there is a map XS → YS which is a homotopy equivalence for each
S by Proposition 2.2.2, and we claim this induces a map of cubesX → Y. This
will be clear once we establish that Y is itself a cube (i.e. the diagram com-
mutes), which amounts to showing that if R ⊂ S ⊂ T , we have a commutative
diagram

But this is straightforward to check from the definitions.
Now we must show that Y is fibrant. The case n = 1 is amounts to Propo-

sition 2.2.2. The case n = 2 is Proposition 3.3.24. It is enough by induction to
verify that the map

Y∅ −→ lim
S∈P0(n)

YS (5.4.2)

is a fibration. That is, we may assume that for every T ∈ P0(n), YT →
limS�T XS is a fibration. We claim this map factors through a homeomorphism
limS∈P0(n) YS � holimS∈P0(n) XS , and that there is a commutative diagram
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where the horizontal maps are the evident ones and the vertical map is the
homeomorphism we will describe. This will complete the proof since the top
horizontal map is by definition of YS a fibration.

Now we prove holimS∈P0(n) XS � limS∈P0(n) YS . As in Remark 5.2.2 we will
think of limS∈P0(n) YS as a subspace of

∏
i∈n Yi. Using Definition 5.3.1, a point

in holimS∈P0(n) XS is a collection of maps fS : Δ(S ) → XS , and for each i the
subcollection of those fS where i ∈ S determines a point in Yi, and also a
point in limS∈P0(n) YS . We leave it to the reader to verify that this map is a
homoeomorphism.

Now suppose X is strongly homotopy cartesian. We can define its replace-
ment Y in a slightly different way to get a more concise formula for it. Let
Yn = Xn, and for each i ∈ n let Yn−{i} be the mapping path space of the map
Xn−{i} → Xn. Then for each |S | ≥ 2 let Yn−S be the fiber product of Yn−{i} for
i ∈ S . This can be defined inductively as an iterated limit as follows. Let s ∈ S ,
and define

Yn−S = lim

⎛⎜⎜⎜⎜⎜⎜⎝Yn−(S−{s}) →
∏
S−{s}

Yn ← Yn−{s}

⎞⎟⎟⎟⎟⎟⎟⎠ ,
where the left horizontal map is induced by the product over j ∈ S − {s} of the
maps Yn−{ j} → Yn, and the right horizontal map is |S − {s}| copies of the map
Yn−{s} → Yn.

SinceX is strongly homotopy cartesian it follows by induction on |n−S | that
the natural map X → Y is a homotopy equivalence as follows. For |n− S | ≥ 2,
consider the commutative diagram

By hypothesis, the left vertical map is a weak equivalence. Since XT → YT is
a weak equivalence for all T , Theorem 5.3.9 implies that the lower horizontal
arrow is a weak equivalence. The right vertical arrow is a weak equivalence
because we have a factorization

Yn−S −→ lim
T�n−S

YT −→ holim
T�n−S

YT .

Since Y is fibrant (not hard to see), the first map is a weak equivalence, and
by Proposition 5.4.26 the second map is a weak equivalence as well. It now
follows that the top horizontal arrow in the square above is a weak equivalence,
so that X → Y is an equivalence of cubes. �
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Remark 5.4.24 With X an n-cube and Y its fibrant replacement as in the
above, consider the square

Both vertical maps are homotopy equivalences, and so exactly the same
argument as in Remark 3.3.25 shows that X is k-cartesian if and only
if Y is. �

The following will be needed in the proof of Proposition 5.4.26.

Lemma 5.4.25 Suppose X = T �→ XT is a fibrant n-cube. Then every face
∂S

RX, R ⊂ S ⊂ n, is a fibrant (|S | − |R|)-cube.

Proof It is enough to prove by induction that every face of dimension n −
1 is fibrant. The case n = 1 is trivial and the case n = 2 is the content of
Lemma 3.3.26. By hypothesis, for each i ∈ n, the face ∂n

{i}X is fibrant. Then

by symmetry it is enough to prove that a face of the form ∂
n−{i}
∅ X is fibrant for

some i. Without loss of generality assume i = n. Consider the square

By Lemma 5.2.8, this is a strict pullback square. Since the cube is fibrant, the
lower horizontal arrow, is a fibration. Hence so is the upper horizontal arrow, by
Proposition 2.1.16. We also have by hypothesis a fibration X∅ → limS∈P0(n) XS .
Now consider the composite

X∅ −→ lim
S∈P0(n)

XS −→ lim
R∈P0(n−1)

XR.

We have shown both maps are fibrations, and hence so is their composite. �

The first part of the following result will be extended to more general diagrams
in Theorem 8.4.9 and will in fact be restated as the first part of Corollary 8.4.10.

Proposition 5.4.26 Let X be a fibrant (punctured) n-cube. Then the canoni-
cal map
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lim
S∈P0(n)

XS −→ holim
S∈P0(n)

XS

is a homotopy equivalence. Hence a fibrant cube X is k-cartesian if and only if

X∅ −→ lim
S∈P0(n)

XS

is k-connected.

Proof The case n = 2 is Proposition 3.2.13. By induction, assume the result
is true for all fibrant cubes of dimension less than n. For an n-cube X, using
Lemma 5.3.6 write

holim
P0(n)

X � holim

(
Xn → holim

P0(n−1)
XS∪n ← holim

P0(n−1)
XS

)
.

If we could rewrite all the homotopy limits as limits on the right ride of this
expression, we would be done.

Since all the faces of X are fibrant by Lemma 5.4.25, we have

holim
P0(n−1)

XS∪n � lim
P0(n−1)

XS∪n,

holim
P0(n−1)

XS � lim
P0(n−1)

XS .

So now we have

holim
P0(n)

X � holim

(
Xn → lim

P0(n−1)
XS∪n ← lim

P0(n−1)
XS

)
. (5.4.3)

But since X is fibrant, the left arrow in the diagram above is a fibration.
Hence the outermost homotopy limit may also be replaced with the limit by
Proposition 3.2.13. �

If a punctured square X1 → X12 ← X2 is fibrant, then in particular by Propo-
sition 3.2.13 its limit is weakly equivalent to its homotopy limit, although that
result says that it suffices that one of the maps be a fibration. A related result is
Proposition 3.3.5. Here is an analogous result for 3-cubes. We state it simply
because the question of when the limit of a punctured cube is the same as its
homotopy limit is a natural one to ask. The proof is motivated by the iterative
description of homotopy limits of punctured cubes, Lemma 5.3.6.

Proposition 5.4.27 Let X : P(3) → Top be a 3-cube. If X is cartesian and

1. either of X3 → lim(X13 → X123 ← X23) or lim(X1 → X12 ← X2) →
lim(X13 → X123 ← X23) is a fibration,

2. either of X13 → X123 or X23 → X123 is a fibration,
3. either of X1 → X12 or X2 → X12 is a fibration.

then X is homotopy cartesian.
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Remark 5.4.28 Permutations of {1, 2, 3} will generate other lists of suffi-
cient statements. This can be generalized to higher-dimensional cubes, though
it would require more bookkeeping and a better organization than we have
attempted here. We will not pursue such generalizations because, including
this very proposition, we really have no use for such statements. �

Proof of Proposition 5.4.27 We provide a sketch which the reader can fill in.
Consider the punctured 3-cube

Now apply Lemma 5.2.8 and use Proposition 3.2.13 on each of the three evi-
dent punctured squares, the first two being X1 → X12 ← X2 and X13 →
X123 ← X23. If we let Y12 and Y123 denote the limits of these punctured squares
respectively, the third is X3 → Y123 ← Y12. �

We finish with a result that will be generalized in Theorem 8.6.1. Suppose
X = S �→ XS is an n-cube. The inclusion S ⊂ n of a non-empty subset S gives
rise to a projection map

holim
T∈P0(n)

XT = NatP0(n)(Δ(•),X) −→ NatP0(S )(Δ(•),X) = holim
R∈P0(S )

XR. (5.4.4)

Proposition 5.4.29 The map in (5.4.4) is a fibration for every non-empty S .

Proof Since the composition of fibrations is a fibration, it suffices to prove
this for S ⊂ n − 1 with |S | = n − 1. By symmetry we may also assume S =
n − 1. By Lemma 5.3.6 we have a homeomorphism

holim
T∈P0(n)

XT � holim

(
Xn → holim

R∈P0(n−1)
XR∪{n} ← holim

R∈P0(n−1)
XR

)
.

By Proposition 3.2.5, we then have a homeomorphism

holim
T∈P0(n)

XT � lim

(
Pn → holim

R∈P0(n−1)
XR∪{n} ← holim

R∈P0(n−1)
XR

)
,
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where Pn is the mapping path space of the map Xn → holimR∈P0(n−1) XR∪{n}.
That is, we have a (strict) pullback square

Since the lower horizontal arrow is a fibration, so is the upper horizontal arrow
by Proposition 2.1.16. �

5.5 Total homotopy fibers

We now turn to the generalization of the definition of the total homotopy fiber
of a square (Definition 3.4.1).

For an n-cube X of spaces, recall from (5.4.1) the canonical map

a(X) : X∅ −→ holim
P0(n)

X. (5.5.1)

If X is an n-cube in Top∗ (a cube of based spaces), then holimP0(n) X has a
natural basepoint given by the element of Nat(Δ(•),X) which sends every face
Δ(S ) of Δ(n) � Δn−1 to the basepoint of the corresponding space XS .

Definition 5.5.1 Let X be an n-cube of based spaces. Define the total
homotopy fiber of X to be

tfiber(X) = hofiber(a(X)),

where the homotopy fiber is taken over the natural basepoint of holimP0(n) X.

Combining the above definition with Definition 5.4.1, we have that a cube is
k-cartesian if the total fiber is (k − 1)-connected.

Remark 5.5.2 The homotopy limit holimP0(n) X did not need to be based in
a natural way that comes from the basepoint of X∅. We could have used the
homotopy fiber over any basepoint in this homotopy limit, but our choice will
simplify matters later. �

Example 5.5.3 The total homotopy fiber of a 1-cube of based spaces X∅ →
X1 is simply the space hofiber(X∅ → X1). For a square, this is the same as
Definition 3.4.1. �
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In analogy with Proposition 3.4.3, we can think of the total homotopy fiber
inductively as an iterated fiber.

Proposition 5.5.4 (Total homotopy fiber as iterated homotopy fiber) Let X
be an n-cube of based spaces. Then

● if n = ∅, tfiber(X) = X∅;
● for n � ∅, view X = Y → Z as a map of (n − 1)-cubes, and we have

tfiber(X) � hofiber(tfiber(Y) → tfiber(Z)),

where the basepoint in tfiber(Z) is the natural one.

It is not a priori obvious that the above iterative description is independent of
the way we view the cube as a map of cubes of lower dimension, but we will
clear this up shortly. As with squares, when we repeatedly take (homotopy)
fibers, we will refer to the resulting space as the “iterated (homotopy) fiber”.

Proof Recall the notation for faces of a cube from Definition 5.1.1. It should
be evident from the proof of Lemma 5.3.6 that it is enough to prove that if we
write X = ∂n−1X → ∂

n
{n}X as a map of (n − 1)-cubes then

tfiber(X) � hofiber
(
tfiber(∂n−1X) → tfiber(∂n

{n}X)
)
.

By definition,

tfiber(∂n−1X) = hofiber

(
X∅ → holim

R∈P0(n−1)
XS

)
,

and

tfiber(∂n
{n}X) = hofiber

(
Xn → holim

R∈P0(n−1)
XR∪{n}

)
.

Hence

hofiber
(
tfiber(∂n−1X) → tfiber(∂n

{n}X)
)

is homeomorphic to the total homotopy fiber of the square
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by Proposition 3.4.3. But by definition the total homotopy fiber of this square
is the homotopy fiber of the map

X∅ −→ holim

(
Xn → holim

R∈P0(n−1)
XR ← holim

R∈P0(n−1)
XR∪{n}

)
.

The codomain of this map is homeomorphic to holimP0(n) X by Lemma 5.3.6,
and the result follows. It is now clear that this proof is independent of the
manner in which we write X as a map of (n − 1)-cubes, and hence the itera-
tive description of the total homotopy fiber is also independent of the choices
necessary to define it. �

Example 5.5.5 For each S ⊂ n, Let XS be a based space. Define an n-cube
Y = S �→ YS by YS =

∏
R⊂n−S XR, where the inclusion S ⊂ T gives rise to

a natural projection map YS → YT away from those factors XR for which R is
not a subset of n − T . Then tfiber(Y) � Xn, as an easy induction will show.

The result is clear in the case n = 1. For n ≥ 2, write Y =W→Z as a map
of (n − 1)-cubes, where

Z(S ) =
∏

R⊂n−1−S

XR

and

W(S ) =
∏

R⊂n−1

XR∪{n} ×
∏

R⊂n−1−S

XR.

By Proposition 5.5.4, tfiber(Y) � hofiber(tfiber(W) → tfiber(Z)). By induc-
tion, tfiber(Z) � Xn−1, and tfiber(W) � Xn × Xn−1. It is evident that the
map

tfiber(W) � Xn × Xn−1 −→ Xn−1 � tfiber(Z)

is the projection map, whose homotopy fiber is clearly equivalent to Xn. �

Example 5.5.6 (Cube of configuration spaces) For a space X, define the
configuration space of n points in X to be the space

Conf(n, X) = {(x1, x2, . . . , xn) ∈ Xn | xi � x j for i � j}.
This is therefore the space of distinct n-tuples of points in X, that is Xn with
the “fat” diagonal removed. We may also view Conf(n, X) as the subspace of
Map(n, X) = Xn consisting of all maps e : n → X such that e(i) � e( j) for all
i � j. Thus Conf(0, X) � ∗ and Conf(1, X) � X. It also easy to see that, for
example, Conf(2,Rm) � S m−1 (the mapping Rm × Rm \ ΔRm → S m−1 given by
(x, y) �→ (x − y)/|x − y| is a homotopy equivalence).
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We have a cubical diagram of configuration spaces

Conf(n − •, X) : P(n) −→ Top

S �−→ Conf(n − S , X).

The inclusion S ⊂ T gives rise to a restriction Conf(n − S ) → Conf(n − T );
these are maps that project a tuple to another tuple by forgetting the points not
indexed by n − T . To simplify notation, we are going to identify Conf(S , X)
with Conf(|S |, X) when this will not cause confusion.

The total homotopy fiber of this diagram is important in calculus of func-
tors and we will explore it further in Examples 6.2.9 and 10.2.25. The maps in
the cube are generated by projections Conf(n, X) → Conf(n − 1, X) which
are in fact fibrations [FN62]. When X = Rm, the fiber is Rm with n − 1
points removed, which is homotopy equivalent to a wedge of n − 1 spheres of
dimension m − 1. We thus have a fibration sequence∨

n−1

S m−1 −→ Conf(n,Rm) −→ Conf(n − 1,Rm).

From this and from Example 3.9.5, we can compute that the total homotopy
fiber of the 3-cube of configurations arising from three points in Rm is ΩS m−1 ∗
ΩS m−1:

The top square is homotopy equivalent to the square of fibers of the vertical
maps in the cube, and the upper-left space is the total homotopy fiber of the
top square. �

The following generalizes Proposition 3.4.9.
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Proposition 5.5.7 Let X be a n-cube of based spaces, and suppose there are
maps XS∪{i} → XS for S ⊂ n and i � S such that the composition XS →
XS∪{i} → XS is the identity. Then

tfiber(X) � Ωn tfiber(X′),

where X′ is the n-cube defined by S �→ Xn−S .

Proof This follows from induction on n using a repeated application of
Proposition 3.4.8. In constructing the proof the reader may wish to first take a
look at the proof of Proposition 3.4.9. �

We next give a few alternative descriptions of the total homotopy fiber.

Proposition 5.5.8 (Definition 1.1 [Goo92]) Let X be an n-cube of based
spaces. Then tfiber(X) is the subspace of

∏
S⊂n Map(IS , XS ) consisting of those

maps ΦS : IS → XS for which the following hold:

1. The diagram

commutes for all T ⊂ S ⊂ n, where the upper horizontal arrow takes a
function T → I and extends it by zero on S − T to a function S → I.

2. For each S , ΦS ((IS )1) maps to the basepoint, where (IS )1 = {u ∈ IS : us =

1 for some s ∈ S }.

Proof We use induction on n. The result is evidently true for n = 0, and the
case n = 1 is clear by inspection. Assume X is an n-cube, n ≥ 2, and write
X = ∂n−1X → ∂

n
{n}X as a map of (n − 1)-cubes. By Proposition 5.5.4,

tfiber(X) = hofiber
(
tfiber(∂n−1X) −→ tfiber(∂n

{n}X)
)
,

where the basepoint of tfiber(∂n
{n}X) is the pair (xn, c), with xn ∈ X{n} the

basepoint and c : I → holimP0(R∈n−1) XR∪{n} the constant path at the natural
basepoint of holimP0(R∈n−1) XR∪{n} (the element of NatP0(n−1)(Δ(•),X(• ∪ {n}))
which sends Δ(R) to the basepoint of XR∪{n} for all R).

By induction, the homotopy fiber in question is a subspace of∏
R⊂n−1

Map(IR, XR) ×
∏

R⊂n−1

Map(IR∪{n}, XR∪{n})
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consisting of those maps satisfying conditions 1 and 2 for all T ⊂ S ⊂ n − 1
and for all n ∈ T ⊂ S ⊂ n. For T ⊂ S with n ∈ S − T , it is straightforward to
check that conditions 1 and 2 are also satisfied. �

We can mix the iterative description of the total homotopy fiber with the
definition of total homotopy fiber of a square to obtain the following useful
characterization of the total homotopy fiber.

Proposition 5.5.9 Let X be an n-cube of based spaces, and let i ∈ n. Then
tfiber(X) is equivalent to the total homotopy fiber of the square

This is useful if X = Y → Z is a map of cubes.

Proof This follows immediately from the proof of Proposition 5.5.4. �

In analogy with the definition of homotopy groups of a square, Defini-
tion 3.4.10, we have the following.

Definition 5.5.10 For an n-cube X : P(n) → Top and for i ≥ n, define

πi(X) = πi−n(tfiberX).

One can also get a long exact sequence of homotopy groups in a couple of
different ways from the total homotopy fiber. There is of course the homotopy
fiber sequence

tfiber(X) −→ X∅ −→ holim
T∈P0(S )

XT ,

which gives rise to the usual long exact sequence in homotopy. But if we view
X = Y → Z as a map of (n− 1)-cubes, then we also have the following result,
which is really a restatement of Proposition 5.5.4.

Proposition 5.5.11 For X = Y → Z a map of cubes, there is a homotopy
fiber sequence

tfiber(X) −→ tfiber(Y) −→ tfiber(Z).

This fibration sequence then gives rise to a long exact sequence in homotopy.
This reduces precisely to the long exact sequence from Proposition 3.4.11 since
the total homotopy fiber of a 1-cube is just an ordinary homotopy fiber.
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5.6 Colimits of punctured cubes

We now begin the dual discussion for pushouts of punctured cubes. Let
X : P1(n) → Top be a punctured n-cube, and again write X(S ) = XS and
X(S ⊂ T ) = fS⊂T : XS → XT .

Definition 5.6.1 The pushout or colimit of the punctured n-cube X, denoted
colimP1(n) X, is the quotient space

colim
P1(n)

X =
∐

S∈P1(n)

XS
/∼

where the equivalence relation ∼ is generated by

fS⊂T (xS ) ∼ fS⊂T ′(xS )

for all T,T ′ and all S ⊂ T,T ′.

Remarks 5.6.2

1. In the case n = 2, the above definition reduces to Definition 3.5.1.
2. Alternatively, we may also write colimS∈P1(n) XS or colimS�n XS in place of

the above. Fix finite sets R ⊂ T . In the case where the cube is indexed by
sets which contain R and are contained in T , we will write colimS�T−R XS

for the limit over the evident punctured cube, and omit R from this notation
when it is empty.

3. The colimit could have been defined as the subspace of
∐

i∈n Xn−{i} mod-
ulo the equivalence relation generated by fS⊂n−{i}(xS ) ∼ fS⊂n−{ j}(xS ) where
i � j ranges over all i, j ∈ n and S ranges over all subsets of n − {i, j}. It is
straightforward to check that this description and the one in Definition 5.6.1
are homeomorphic. This alternative description is simpler to visualize than
what is given in Definition 5.6.1 and natural from the perspective of Defi-
nition 3.5.1, but Definition 5.6.1 is closer to the general model for colimits
of diagrams of spaces in Proposition 7.4.18. �

Remark 5.6.3 (Colimit of a cube) In analogy with Remark 5.2.3, the
colimit of a cube can be defined as in Definition 5.6.1 but over the cat-
egory P(n). However, this colimit is simply Xn. A more general result is
Example 7.3.27. �

As was the case for the limit, the colimit of a punctured cube enjoys a universal
property. There are canonical inclusions iS : XS → colimP1(n) X such that, for
all S ⊂ T , the diagram



256 n-cubes: Homotopy pullbacks and pushouts

commutes. Thus the assignment

S �−→
⎧⎪⎪⎪⎨⎪⎪⎪⎩

XS , if S � n;

colim
P1(n)

XS , if S = n

defines an n-cube. If Z is a space with maps jS : XS → Z for all S such that

commutes, then there is a unique map

u1 : colim
P1(n)

X −→ Z

such that the diagram

commutes.
Here are a few examples. Generalizing Examples 3.5.2 and 3.5.3, we have

the following.

Example 5.6.4 Let X1, . . . , Xn be spaces. Define X : P1(n) → Top by XS =∐
i∈S Xi. Then it is straightforward to see that colimP1(n) X = ∐

i∈n Xi. In the
category of based spaces, we replace ∅ with the one-point space ∗ and the
maps ∗ → Xi are the inclusion of the basepoint. In this case the colimit is the
wedge sum

∨
i∈n Xi. �

Example 5.6.5 An alternative description of the disjoint union of X1, . . . , Xn

is to define X : P1(n) → Top by
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X(S ) =

⎧⎪⎪⎨⎪⎪⎩∅, if |S | < n − 1;

Xi, if S = n − {i}.
In this case it is not hard to see that colimP1(n) X � ∐

i∈n Xi. For based spaces,
the evident changes give the wedge sum

∨
i∈n Xi as the colimit. �

The next example is a natural generalization of Example 3.5.4.

Example 5.6.6 Let X : P1(n) → Top be the constant punctured cube
CX . Then colimP1(n) X � X, as all copies of X are identified via the
identity map. �

We now have the following iterative description of the colimit of a punctured
cube, dual to Lemma 5.2.8 with dual proof which we omit.

Lemma 5.6.7 (Iterated pushout) Given a punctured n-cubeX : P1(n) → Top,
n ≥ 2, there is a homeomorphism

colim
S∈P1(n)

XS � colim

(
Xn−1 ← colim

R∈P1(n−1)
XR → colim

R∈P1(n−1)
XR∪{n}

)
.

Dual to Example 5.2.9, we have the following application of Lemma 5.6.7.

Example 5.6.8 Suppose f : X → Y and g : Y → Z are maps, and let h = g◦ f
be the composite. Consider the punctured 3-cube X given by the diagram

By Lemma 5.6.7 we have

colim
P1(3)

X � colim
(
Z ← colim(Y ← X

1X→ X) → colim(∗ ← ∗ → ∗)
)
.

Clearly colim(∗ ← ∗ → ∗) = ∗, and by Proposition 3.5.10, colim(Y ←
X

1X→ X) � Y , so the colimit of the punctured square describing colimP1(3) X
above is isomorphic to colim(Z ← Y → ∗). But this is precisely cofiber(g) by
Example 3.5.6. We can also use Lemma 5.6.7 to write

colim
P1(3)

X �
(
∗ ← colim(∗ ← X → Y) → colim(∗ ← X → Z)

)



258 n-cubes: Homotopy pullbacks and pushouts

or, again using Example 3.5.6,

colim
(
∗ ← cofiber( f ) → cofiber(h)

)
,

so that

cofiber(g) � cofiber
(

cofiber( f ) → cofiber(h)
)
. �

We now generalize of Definition 3.5.12. Again first note that if X is a cubical
diagram, then Xn admits a canonical map from the colimit of the remaining
punctured cube since it admits a map from each XS .

Definition 5.6.9 We say an n-cube X : P(n) → Top is cocartesian (or
categorically cocartesian, or a (strict) pushout) if the canonical map

colim
P1(n)

XS −→ Xn

is a homeomorphism.

Example 5.6.10 From Examples 5.6.4 and 5.6.6, we have that the cubes S �→∐
i∈S XS and S �→ X are cocartesian. �

5.7 Homotopy colimits of punctured cubes

Recall Example 5.1.5 for the definition of the punctured cubical simplex
Δ(n − •) : P1(n) → Top. Dual to Definition 5.3.1 we have the following.

Definition 5.7.1 ForX : P1(n) → Top a punctured cube, define the homotopy
colimit of X as

hocolim
P1(n)

X =
∐

S∈P1(n)

XS × Δ(n − S )/∼

where ∼ is the equivalence relation generated by

(xS , dS⊂T (t)) ∼ ( fS⊂T (xS ), t)

for all S ⊂ T � n.

Remark 5.7.2 (Pointed homotopy colimit) The above definition is also valid
for punctured cubes in Top∗, but more care has to be taken for general
diagrams; see Remark 8.2.14. �

Remark 5.7.3 (Homotopy colimit of a cube) Dually to Remark 5.3.2, one
could also define the homotopy colimit of a cube. The definition would
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resemble the one above; see Remark 8.2.13. However, as we shall see in
Proposition A.1.16, this homotopy colimit would simply be a space homotopy
equivalent to Xn. �

When n = 2, the above definition gives Definition 3.6.3. In the category Top∗
of based spaces, the homotopy colimit is a quotient of the above formula by the
subspace hocolimS∈P1(n) ∗S , where ∗S ∈ XS is the basepoint. We will, however,
use the same notation for both. For the extension of the above definition to
general diagrams of spaces, the reader should jump ahead to Definition 8.2.12
and Remark 8.2.13.

Example 5.7.4 For the punctured cube indexed onP1(n) where all the spaces
are X and the maps are all identity, the homotopy colimit is equal to X × Δn−1,
and is clearly homotopy equivalent to X. �

Example 5.7.5 (Suspensions as hocolims of punctured cubes) Let X be a
space. By Example 3.6.9, hocolim(∗ ← X → ∗) � ΣX is the unreduced
suspension (in Top∗, it is the reduced suspension). Similarly, by definition

is the quotient of X×Δ2 by X×∂Δ2, giving the unreduced two-fold suspension
Σ2X. To get the reduced suspension, if X is based then we quotient the above
by the homotopy colimit of the diagram which has the basepoint of X replacing
X above. It is also easy to use Lemma 5.7.6 to see this.

More generally, ifX : P1(n) → Top is defined byX(∅) = X andX(S ) = ∗ for
all ∅ � S � n, then using induction and Lemma 5.7.6 we see hocolimP1(n) X �
Σn−1X is the (n − 1)-fold unreduced suspension of X. �

Dual to Lemma 5.3.6, with a dual proof which we leave to the reader, we have
the following.

Lemma 5.7.6 (Iterated homotopy pushout) Given a punctured n-cube
X : P1(n) → Top, n ≥ 2, there is a homeomorphism
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hocolim
P1(n)

X � hocolim

(
Xn−1 ← hocolim

R∈P1(n−1)
XR → hocolim

R∈P1(n−1)
XR∪{n}

)
.

A remark analogous to Remark 5.3.7 applies equally well here. Here is the first
of many applications of Lemma 5.7.6 that we shall see.

Example 5.7.7 Let X1, . . . , Xn be based spaces, and consider the punctured
n-cube X : P1(n) → Top given by

X(S ) = XS =

⎧⎪⎪⎨⎪⎪⎩(x1, . . . , xn) ∈
n∏

i=1

Xi | x j = ∗i for all j � S

⎫⎪⎪⎬⎪⎪⎭ ,
where ∗i denotes the basepoint of Xi. The maps XS → XT for S ⊂ T are the
evident inclusions. Note that XS �

∏
i∈S Xi.

We claim that hocolimP1(n) X is homotopy equivalent to the space
W(X1, . . . , Xn) of all (x1, . . . , xn) such that xi = ∗i for at least one i. We call
W(X1, . . . , Xn) the fat wedge of the spaces X1, . . . , Xn.

Moreover, we claim that the canonical map

hocolim
P1(n)

X −→ colim
P1(n)

X

induced by the projections Δ(n − S ) × XS → XS is a weak equivalence, and
that colimP1(n) X � W(X1, . . . , Xn).

We will prove both claims by induction on n. The case n = 2 is obvious;
the punctured square in question is X1 ← ∗ → X2, and since our spaces are
well-pointed, the inclusion of the basepoint ∗ → Xi is a cofibration. Thus
the homotopy colimit and the colimit of these punctured squares are weakly
equivalent by Proposition 3.6.17, and W(X1, X2) = X1 ∨ X2.

Assume the result is true for cubes of dimension less than n, and consider
the n-cube at the beginning of this example. Using Lemma 5.7.6 we have a
homeomorphism

hocolim
P1(n)

X � hocolim

⎛⎜⎜⎜⎜⎜⎜⎜⎝ ∏
i∈n−1

Xi ← hocolim
P1(n−1)

X → hocolim
P1(n−1)

(X × Xn)

⎞⎟⎟⎟⎟⎟⎟⎟⎠ .
By Proposition 5.8.7, we have a weak equivalence of the above with

hocolim

⎛⎜⎜⎜⎜⎜⎜⎜⎝ ∏
i∈n−1

Xi ← hocolim
P1(n−1)

X → Xn × hocolim
P1(n−1)

X
⎞⎟⎟⎟⎟⎟⎟⎟⎠

where the right-most map is the evident inclusion of the homotopy colimit
using the basepoint of Xn. By induction, the canonical map hocolimP1(n−1) X →
colimP1(n−1) X is a weak equivalence, and hence the homotopy colimit above
admits a weak equivalence to



5.8 Arithmetic of homotopy cocartesian cubes 261

hocolim

⎛⎜⎜⎜⎜⎜⎜⎜⎝ ∏
i∈n−1

Xi ← colim
P1(n−1)

X → Xn × colim
P1(n−1)

X
⎞⎟⎟⎟⎟⎟⎟⎟⎠ ,

which, again by induction, is equal to

hocolim

⎛⎜⎜⎜⎜⎜⎜⎜⎝ ∏
i∈n−1

Xi ← W(X1, . . . , Xn−1) → Xn × W(X1, . . . , Xn−1)

⎞⎟⎟⎟⎟⎟⎟⎟⎠ .
Since the map W(X1, . . . , Xn−1) → ∏

i∈n−1 Xi is a cofibration (by induction
and Proposition 2.3.13), using Proposition 3.6.17 the homotopy colimit above
admits a weak equivalence to

colim

⎛⎜⎜⎜⎜⎜⎜⎜⎝ ∏
i∈n−1

Xi ← W(X1, . . . , Xn−1) → Xn × W(X1, . . . , Xn−1)

⎞⎟⎟⎟⎟⎟⎟⎟⎠ .
By inspection, this colimit is equal to W(X1, . . . , Xn) by definition. �

We now have the dual of Theorem 5.3.9, which establishes the homotopy
invariance of the homotopy colimit of a punctured cube.

Theorem 5.7.8 (Homotopy invariance of homotopy colimits, cubes case)
SupposeX,Y : P1(n) → Top are punctured n-cubes andX → Y is a homotopy
(resp. weak) equivalence. Then the induced map

hocolim
P1(n)

X −→ hocolim
P1(n)

Y

is a homotopy (resp. weak) equivalence.

Proof Dual to Theorem 5.3.9 using induction, Theorem 3.6.13, and
Lemma 5.7.6. �

5.8 Arithmetic of homotopy cocartesian cubes

This section is dual to Section 5.4 and corresponds to Section 3.7. The reader
should recall the definitions of homotopy cocartesian and k-cocartesian squares
(Definition 3.7.1).

Let as before X : P(n) → Top, S → XS , be an n-cube of spaces (or based
spaces), and recall that restricting X to P1(n) gives the punctured cube missing
the final space Xn. Then we have canonical maps

colim
P1(n)

X −→ Xn and hocolim
P1(n)

X −→ colim
P1(n)

X.
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The map from the colimit to Xn was discussed prior to Definition 5.6.9. In that
definition, we said X is cocartesian if this map is weak equivalence. The map
from the homotopy colimit to the colimit is the one induced by the projection
map Δ(n − S ) × XS → XS for each S , which induces a map of the appropriate
quotient spaces.

In analogy with (3.7.1), we have the composed map

b(X) : hocolim
P1(n)

X −→ Xn. (5.8.1)

Definition 5.8.1 We say the n-cube X : P(n) → Top is

● homotopy cocartesian (or ∞-cartesian) if the map b(X) is a weak equiva-
lence;

● k-cocartesian if the map b(X) is k-connected.

The comments made in Remark 5.4.2 apply here (in a dual sense). In
particular, a k-cocartesian cube is also j-cocartesian for all j ≤ k.

Example 5.8.2 Examples 5.3.4 and Example 5.7.5 can be restated in terms
of cocartesian terminology; for example, the latter says that the n-cube with
initial space a based space X, final space Σn−1X, and the rest one-point spaces,
is homotopy cocartesian. �

Example 5.8.3 Generalizing Example 3.7.5, suppose U1, . . . ,Un are open
subset of X and U1 ∪ · · · ∪ Un = X. Then the n-cube

X : P(n) −→ Top

S �−→
⎧⎪⎪⎨⎪⎪⎩
⋂

i�S Ui, S � n;

U1 ∪ · · · ∪ Un = X, S = n,

is homotopy cocartesian. This can be seen by employing the description of
the homotopy pushout of the punctured cube as an iterated homotopy pushout
by Lemma 5.7.6 and using Lemma 3.6.14. When n = 3, the punctured cube
indexed on P1(3) is
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The homotopy pushouts of the rows, from the top, are U1, (U1∩U2)∪(U1∩U3),
and U2 ∪ U3, where we have used Example 3.7.5 for the latter two (replacing
the homotopy colimit with the ordinary colimit). The homotopy pushout of the
punctured cube is then

hocolim(U3 ← (U1 ∩ U2) ∪ (U1 ∩ U3) → U2 ∪ U3).

But this is U1 ∪ U2 ∪ U3 = X, again by Example 3.7.5. The details of the
general case are left to the reader. �

Example 5.8.4 Dual to Example 5.4.4, if X is an n-cube and X̃ = X → X
is an (n + 1)-cube obtained from the identity map of X, then X̃ is homotopy
cocartesian. We leave the details to the reader. �

Here is a generalization of Proposition 3.7.9, dual to Proposition 5.4.5 with
dual proof. Parts 1 and 3 of this result, as well as the corollary following it,
will be generalized in Proposition 8.5.7.

Proposition 5.8.5

1. If X and Y are homotopy cocartesian n-cubes of spaces, then the n-cube
X 	 Y given by S �→ XS 	 YS (with the obvious maps) is also homotopy
cocartesian.

2. If X and Y and k1-cocartesian and k2-cocartesian, respectively, then X	Y
is min{k1, k2}-cocartesian.

3. If X and Y are cubes of based spaces, both statements above hold for the
cube X ∨Y given by S �→ XS ∨ YS .

As a consequence, we have a generalization of Corollary 3.7.10.

Corollary 5.8.6 (Wedge commutes with homotopy colimit, cubes case) If X
is a homotopy cocartesian cube of based spaces, so is the cube X ∨ V, for any
based space V. If X is k-cartesian, so is X ∨ V.

Dually to Proposition 5.4.7, we also have a generalization of Proposi-
tion 3.7.11. A related general statement is Corollary 8.5.6.

Proposition 5.8.7 (Products commute with homotopy colimits, cubes case)
If X is a homotopy cocartesian cube, so is the cube X × V, for any space V,
where the maps XS ×V → XT×V for S ⊂ T are fS⊂T×1V . IfX is k-cocartesian,
so is X × V.
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Proof The space hocolimP1(n) X × V is a quotient of
∐

S∈P1(n) XS × V , and
the evident homeomorphism

∐
S∈P1(n) XS × V � V × ∐

S∈P1(n) XS induces a
homeomorphism of quotient spaces hocolimP1(n) X × V � V × hocolimP1(n) X.

�

That products of cubes with fixed spaces commute with homotopy colimits
gives the following generalization of Example 3.6.12. It is an application of
Proposition 5.8.7.

Example 5.8.8 Let X1, . . . , Xn be spaces and consider the punctured n-cube

X : P1(n) −→ Top

S �−→
∏
i�S

Xi,

where all the maps are projections; an inclusion T ⊂ S induces a projection
X(T ) → X(S ) away from those factors indexed by elements of S − T . Then

hocolim
P1(n)

X � X1 ∗ · · · ∗ Xn.

To illustrate, consider the case n = 3. The punctured 3-cube in question is

Using Lemma 5.7.6, we can take homotopy colimits along the rows to see that
the homotopy colimit of the above diagram is homeomorphic to

Recalling the definition of the join and using Proposition 5.8.7, we see the
above is weakly equivalent to
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Again using the definition of the join, the above is weakly equivalent to
X1∗(X2∗X3) � X1∗X2∗X3. Note that the associativity of the join is easily proved
using these methods, since we already know that the various ways of view-
ing homotopy colimits iteratively are equivalent. The general proof follows by
straightforward induction. �

We now state the dual to Theorem 5.4.9, with dual proof using Lemma 5.7.6
and Theorem 3.7.18, which we omit. A generalization can be found in the
second part of Proposition 8.5.5.

Theorem 5.8.9 (Homotopy colimits commute, cubes case) Suppose
X : P1(n) × P1(m) → Top is a diagram (S ,T ) → X(S ,T ) (an n-punctured
cube of m-punctured cubes, or an m-punctured cube of n-punctured cubes).
Then there is a homeomorphism

hocolim
P1(n)

hocolim
P1(m)

X � hocolim
P1(m)

hocolim
P1(n)

X.

In particular we have the following result that generalizes Corollary 3.7.19.
The proof is identical to that special case of squares. We shall see this result
again in Corollary 8.5.8. Notice that the second equivalence essentially restates
Corollary 5.8.6.

Corollary 5.8.10 For a punctured cube X (in Top or Top∗) and V a (based)
space, there are weak equivalences

hocolim
P1(n)

ΣX � Σ hocolim
P1(n)

X,

hocolim
P1(n)

(V ∨ X) � V ∨ hocolim
P1(n)

X,

hocolim
P1(n)

(V ∧ X) � V ∧ hocolim
P1(n)

X,

hocolim
P1(n)

(V ∗ X) � V ∗ hocolim
P1(n)

X.

Dual to Corollary 5.4.11, we have the following.



266 n-cubes: Homotopy pullbacks and pushouts

Corollary 5.8.11 Let X → Y be a map of n-cubes, and define Z : P(n) →
Top by C(S ) = CS = hocofiber(XS → YS ). Then there is a homeomorphism

hocolim
S∈P1(n)

CS � hocofiber

(
hocolim

S∈P1(n)
XS → hocolim

S∈P1(n)
YS

)
.

Note that one could recover Corollary 5.8.10 from this result as well.
Here is a partial dual to Proposition 5.4.12 that generalizes Proposi-

tion 3.7.24.

Proposition 5.8.12 Suppose a map X → Y of n-cubes is a k-cocartesian
(n + 1)-cube. Then the n-cube hocofiber(X → Y) is k-cocartesian.

The converse is not true, as was already discussed along with Proposi-
tion 3.7.24.

Proof The proof is essentially dual to the proof of Proposition 5.4.12. The
only difference is that we need to apply Proposition 3.7.13 to the evident square
that arises by taking cofibers. �

The following two results generalize Propositions 3.7.13 and 3.7.26. They are
dual to Propositions 5.4.13 and 5.4.14.

Proposition 5.8.13 Suppose X and Y are n-cubes, and that (X → Y) is a
map of n-cubes, considered as an (n + 1)-cube.

1. (a) If (X → Y) and X are homotopy cocartesian, then Y is homotopy
cocartesian.

(b) If X and Y are homotopy cocartesian, then (X → Y) is homotopy
cocartesian.

2. (a) If X and (X → Y) are k-cocartesian, then Y is k-cocartesian.
(b) If X is (k − 1)-cocartesian and Y is k-cocartesian, then (X → Y) is

k-cocartesian.

Proof Consider the diagram

The square above is homotopy cocartesian by inspection, hence the connectiv-
ity of the upper horizontal arrow (given by how cocartesian X is) is the same
as the connectivity of the map
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hocolim

(
hocolim

S�n
YS ← hocolim

S�n
XS → Xn

)
−→ Yn.

The result now follows immediately from Proposition 2.6.15 (the homotopy
cartesian version is obtained by setting k = ∞). �

Proposition 5.8.14 Suppose X = (U → V) and Y = (V → W) are n-
cubes, and let Z = (U → W), all considered as maps of (n − 1)-cubes.
Then

1. (a) IfX andY are homotopy cocartesian, thenZ is homotopy cocartesian.
(b) IfX andZ are homotopy cocartesian, thenY is homotopy cocartesian.

2. (a) If X is k-cocartesian and Y is k-cocartesian, then Z is k-cocartesian.
(b) If X is (k − 1)-cocartesian and Z is k-cocartesian, then Y is k-

cocartesian.

Proof Consider the following diagram of (n − 1)-cubes:

To prove 2(a), view the left-most square as a map (U → U) → (V →W) =
Y. Since Y is k-cocartesian and U → U is homotopy cocartesian, 2(b) of
Proposition 5.8.13 implies the left-most square is a k-cocartesian (n+ 1)-cube.
Viewing this (n + 1)-cube as a map X = (U → V) → (U → W) = Z and
using the hypothesis that X is k-cocartesian, 2(a) of Proposition 5.8.13 now
implies Z is k-cocartesian.

To prove 2(b), view the right-most square as a map X = (U → V) →
(W → W) of n-cubes. Since X is (k − 1)-cocartesian and W → W is
homotopy cocartesian, 2(b) of Proposition 5.8.13 implies the right square is
a k-cocartesian (n + 1)-cube. Viewing this (n + 1)-cube as a map Z = (U →
W) → (V →W) = Y and using the hypothesis that Z is k-cocartesian, 2(a)
of Proposition 5.8.13 implies that Y is k-cocartesian. �

The next two propositions are duals of Proposition 5.4.16 and Proposi-
tion 5.4.17. Recall the notation and terminology for “cubes of cubes” from
there.

Proposition 5.8.15 Let X be an n-cube of m-cubes. Assume that X, viewed
as a (m+ n)-cube, is k-cocartesian, and that, for each S � n, the m-cube X(S )
is (k + |S | − 1 + n)-cocartesian. Then the m-cube X(n) is k-cocartesian.

Proof Dual to the proof of Proposition 5.4.16. �
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Proposition 5.8.16 Let X be a functor from P1(n) to m-cubes of spaces and
write X(S ,T ) = (X(S ))(T ). If, for all S � n, X(S ) is a kS -cocartesian m-cube,
then the m-cube T �→ hocolimU�∅ X(S ,T ) is minS {|T |−|S |−1+kS }-cocartesian.

Proof Dual to the proof of Proposition 5.4.17. �

Example 5.8.17 Here is another proof, first given in Proposition 3.7.22,
of the equivalence X ∗ Y � Σ(X ∧ Y) for based spaces X and Y . It uses
Proposition 5.8.16. Consider the following diagram of squares.

Each of the three square diagrams depicted are homotopy cocartesian. We may
view the above diagram as a square of punctured squares

By Proposition 5.8.16, the square of homotopy colimits of the diagram asso-
ciated with each vertex in the cube is homotopy cocartesian. This is weakly
equivalent to the square

Thus X∗Y → Σ(X∧Y) is a weak equivalence by 1(a) of Proposition 3.7.13. �

We now discuss strongly (homotopy) cocartesian cubes. Recall the notation for
faces of the cube from Definition 5.1.1.

Definition 5.8.18 We call an n-cube X strongly homotopy cocartesian
(resp. strongly cocartesian) if each face of dimension ≥ 2 is homotopy
cocartesian (resp. cocartesian).

By 1(b) of Proposition 5.8.13, the definition could have just required two-
dimensional faces to be homotopy cocartesian. Similarly for the cocartesian
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case, again by using Proposition 5.8.13 with “colim” in place of “hocolim”
everywhere, and Proposition 3.5.10. This implies the following.

Proposition 5.8.19 A strongly (homotopy) cocartesian cube is (homotopy)
cocartesian.

Example 5.8.20 Let X → Y be a map of spaces. Recall the notion of the
fiberwise join X ∗Y U from Example 3.9.13. Then, for U ⊂ n, the n-cube X =
U �→ X ∗Y U is strongly homotopy cocartesian. This follows from homotopy
pushouts commuting with joins; see Corollary 3.7.19. �

Example 5.8.21 We can now generalize Examples 3.6.6 and 3.7.7. Consider
the n-cubes

X : P(n) −→ Top

S �−→
⎧⎪⎪⎨⎪⎪⎩
∨

i∈S Xi, S � ∅;

∗, S = ∅,
and

Y : P(n) −→ Top

S �−→
⎧⎪⎪⎨⎪⎪⎩
∨

i�S Xi, S � n;

∗, S = n.

The maps in the first cube are inclusions and those in the second projec-
tions. These cubes are strongly homotopy cocartesian and hence homotopy
cocartesian.

To see this, for X, each square is of the form

for some T ⊂ n and j, k � T . These squares are homotopy cocartesian by
Corollary 3.7.10 and Example 3.7.2. �

Dually to Definition 5.4.22, we have the following generalization of Defini-
tion 3.7.28.

Definition 5.8.22 We call a (punctured) n-cube X a cofibrant cube if, for all
S ⊂ n (S � n), the map
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colim
T�S

XT −→ colim
T⊂S

XT = XS

is a cofibration. An n-cube X is called a cofibrant pushout cube if, in addition,
XS = colimT�S XT for all |S | ≥ 2.

It is easy to show that a cofibration pushout cube X has XS equal to the union
over X∅ of the Xi for i ∈ S .

The following generalizes Proposition 3.7.29 and dualizes Theorem 5.4.23.
The cofibrant cube that is equivlent to the given one is called a cofibrant
replacement of the original cube.

Theorem 5.8.23 Every (punctured) cube admits a homotopy equivalence
from a (punctured) cofibrant cube. Every strongly homotopy cocartesian
n-cube admits a homotopy equivalence from a cofibrant pushout cube.

Proof Dual to the proof of Theorem 5.4.23, but replace initial maps in the
cube by cofibrations. �

Lemma 5.8.24 Suppose X = T �→ XT is a cofibrant n-cube. Then every face
∂S

RX, R ⊂ S ⊂ n, is a cofibrant (|S | − |R|)-cube.

Proof Dual to the proof of Lemma 5.4.25. �

As in Proposition 5.4.26, the proof of the following is by induction and
we leave it to the reader. We shall see a restatement of the first part in
Corollary 8.4.10 (and a generalization in Theorem 8.4.9).

Proposition 5.8.25 Let X be a cofibrant (punctured) n-cube. Then the
canonical map

hocolim
S∈P1(n)

XS −→ colim
S∈P1(n)

XS

is a homotopy equivalence. Hence a cofibrant cube X is k-cocartesian if and
only if

colim
S∈P1(n)

XS → Xn

is k-connected.

Proposition 5.8.26 Suppose X is an n-cube such that, for each S ⊂ n, the
map XS → Xn is the inclusion of an open subset of Xn and XS∩T = XS ∩XT for
all S ,T ⊂ n. Then the canonical map
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hocolim
T∈P1(n)

XT −→ colim
T∈P1(n)

XT

is a weak equivalence.

Proof This follows by induction on n using Lemma 5.6.7, Lemma 5.7.6, and
Example 3.7.5. �

This last proposition covers many “standard” cases of cubes, such as the square
that arises when a space X is covered by two open subsets X1, X2 ⊂ X.

We invite the reader to state and prove a dual to Proposition 5.4.27; we have
no use for such statements so we omit it.

Remark 5.8.27 In analogy with Remark 5.4.24 it is easy to see that a cube
is k-cocartesian if and only if its cofibrant replacement is. We leave the details
to the reader. �

We now have the dual of Proposition 5.4.29, which will also be generalized in
Theorem 8.6.1. For any proper subset S � n, we have a natural inclusion map

hocolim
P1(S )

X −→ hocolim
P1(n)

X. (5.8.2)

Proposition 5.8.28 The map (5.8.2) is a cofibration.

Proof Dual to the proof of Proposition 5.4.29. �

To close, here is the generalization of Proposition 3.7.31 the proof of which
also follows immediately from that result.

Proposition 5.8.29 ([KW12, Lemma 3.5.12]) LetX = S �→ XS be a strongly
homotopy cocartesian n-cube of based spaces with Xn = ∗, and let ΣX denote
the cube of suspensions. Then ΣX is weakly equivalent to an n-cube Y = S �→
YS with Yn−{i} = ΣXn−{i} for all i and YS = ∨i�SΣXn−{i} for |S | ≥ 2.

5.9 Total homotopy cofibers

This section is essentially the dualization of Section 5.5.
Given an n-cube X of spaces, we have from (5.8.1) the usual canonical map

b(X) : hocolim
P1(n)

X −→ Xn. (5.9.1)
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Definition 5.9.1 Let X be an n-cube of spaces. Define the total homotopy
cofiber of X to be

tcofiber(X) = hocofiber(b(X)).

In the case of a cube of based spaces, we make the evident adjustments (using
the based homotopy colimit and the reduced mapping cone for the homotopy
cofiber).

Example 5.9.2 The total homotopy cofiber of a 1-cube of spaces X∅ → X1

is just the homotopy cofiber and, for a square, this reduces to Definition
3.8.1. �

Dual to Proposition 5.5.4 and generalizing Proposition 3.8.2, we have the
following.

Proposition 5.9.3 (Total homotopy cofiber as iterated homotopy cofiber) Let
X be an n-cube of spaces.

● The total homotopy cofiber of X is equivalent to X∅ if n = 0.
● For n > 0, view X = Y → Z as a map of (n − 1)-cubes and define

tcofiber(X) = hocofiber(tcofiber(Y) → tcofiber(Z)).

Proof Dual to the proof of Proposition 5.5.4. �

Example 5.9.4 Let X1, . . . , Xn be based spaces. Recall the punctured n-cube
X from Example 5.7.7 given by

X(S ) = XS =

⎧⎪⎪⎨⎪⎪⎩(x1, . . . , xn) ∈
n∏

i=1

Xi : x j = ∗i for all j � S

⎫⎪⎪⎬⎪⎪⎭ ,
where ∗i denotes the basepoint of Xi, and the maps XS → XT for S ⊂ T are the
evident inclusions. This can be extended to a cubical diagram in the obvious
way with X(n) the product of the Xi. By Example 5.7.7, there is a homotopy
equivalence

hocolim
P1(n)

X � W(X1, . . . , Xn),

where W(X1, . . . , Xn) is the fat wedge, that is, the space of all tuples (x1, . . . , xn)
where xi = ∗i for at least one i. Then tcofiber(X) � X1∧. . .∧Xn, since the inclu-
sion of W(X1, . . . , Xn) in X1 × · · · × Xn is a cofibration (use Proposition 2.3.13
and induction) and so the homotopy cofiber of this map is equivalent to the
cofiber.
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We claim that X1 ∧ · · · ∧ Xn � (X1 × · · · × Xn)/W(X1, . . . , Xn). This follows
by induction on n, with the base case n = 2 using the definition of the smash
product. Consider the diagram

The homotopy colimits of the columns are homotopy equivalent to the colimits
of the columns by Proposition 3.6.17 since the top vertical map in each column
is a cofibration. These are, from left to right, ∗, X1 ∧ · · · ∧ Xn−1 by induction,
and (Xn)+ ∧ (X1 ∧ · · · ∧ Xn−1) by induction and Example 2.4.13. The homotopy
colimits of the rows are also homotopy equivalent to the colimits of the rows
since all of the left-most horizontal arrows are cofibrations. These are, from top
to bottom,

∏
i∈n Xi by Example 3.5.5, W(X1, . . . , Xn) by Example 5.7.7, and ∗.

By Theorem 3.7.18, we obtain a homeomorphism

hocolim
(∗ ← X1 ∧ · · · ∧ Xn−1 → (Xn)+ ∧ (X1 ∧ · · · ∧ Xn−1)

)
� hocolim

(∏
i∈n

Xi ← W(X1, . . . , Xn) → ∗
)
.

The first homotopy colimit here is, by inspection, X1 ∧ · · · ∧Xn. The homotopy
colimits just appearing are colimits, once again due to the evident cofibra-
tions, and so the homotopy equivalence we have just derived here gives a
homeomorphism

X1 ∧ · · · ∧ Xn � X1 × · · · × Xn/W(X1, . . . , Xn). �

We now have a generalization of Proposition 3.8.7. This is dual to Propo-
sition 5.5.7. The proof is by induction on n using a repeated application of
Proposition 3.8.7.

Proposition 5.9.5 Let X be an n-cube of spaces, and suppose there are maps
XS∪{i} → XS for S ⊂ n and i � S such that the composition XS → XS∪{i} → XS

is the identity. Then

Σn tcofiber(X) � tcofiber(X′),

where X′ is the n-cube defined by S �→ Xn−S .
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Example 5.9.6 For based spaces X1, . . . , Xn, the n-cube X from
Example 5.9.4 satisfies the hypotheses of Proposition 5.9.5. In this case
the cube X′ in the statement of Proposition 5.9.5 is the one considered in
Example 5.8.8. Thus, combining Example 5.9.4 with Example 5.8.8 using
Proposition 5.9.5, we have a weak equivalence

Σn(X1 ∧ . . . ∧ Xn) −→ Σ(X1 ∗ · · · ∗ Xn).

We could get a “desuspension” of this result using only Proposition 3.7.22,
which says that for based spaces X and Y there is a weak equivalence
Σ(X ∧ Y) → X ∗ Y . If X1, . . . , Xn are based spaces, then repeated application
of Proposition 3.7.22 together with the homeomorphism Σ(X ∧ Y) � ΣX ∧ Y
gives us a weak equivalence

Σn−1(X1 ∧ . . . ∧ Xn) −→ X1 ∗ · · · ∗ Xn. �

We invite the reader to formulate a dual to Proposition 5.5.8. This is straight-
forward and comes down to bookkeeping, but we will not have any use for this
result and therefore omit it.

The following is dual to Proposition 5.5.9, with a dual proof.

Proposition 5.9.7 Let X be an n-cube of spaces, and let i ∈ n. Then
tcofiber(X) is homotopy equivalent to the total homotopy cofiber of the square

We can also now generalize the notion of the homology groups of a square
from Definition 3.8.8.

Definition 5.9.8 For an n-cube X : P(n) → Top and for i ≥ 0, define

Hi(X) = Hi(tcofiberX).

In analogy with Proposition 3.8.9, we can now view X = Y → Z as a map of
(n − 1)-cubes. Then we have

Proposition 5.9.9 For X = Y → Z a map of cubes, there is a cofibration
sequence

tcofiber(Y) −→ tcofiber(Z) −→ tcofiber(X).
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Using Theorem 2.3.14, this cofibration gives rise to a long exact sequence
in homology. Because the total homotopy cofiber of a map of spaces (1-cube)
is simply the homotopy cofiber, this reduces to the long exact sequence from
Proposition 3.8.9.

5.10 Algebra of homotopy cartesian and cocartesian cubes

We now examine how homotopy cartesian and cocartesian cubes interact with
each other and various constructions. Several results here are generalizations
of the statements appearing in Section 3.9 and will in turn be generalized in
Section 8.5.

Here is a generalization of Proposition 3.9.1 (see also Proposition 8.5.4).

Proposition 5.10.1 (Maps and homotopy (co)limits (cubes case)) For X an
n-cube of spaces, there are homeomorphisms

Map

(
Z, holim

S∈P0(n)
XS

)
�−→ holim

S∈P0(n)
Map(Z, XS ),

Map

(
hocolim

S∈P1(n)
XS ,Z

)
�−→ holim

R∈P0(n)
Map(Xn−R,Z).

In particular, if X is k-cartesian and Z has the homotopy type of a CW com-
plex of dimension d, then Map(Z,X) is (k − d)-cartesian. If X is homotopy
cocartesian then Map(X,Z) is homotopy cartesian.

Proof We have a homeomorphism Map(Z,NatP0(n)(Δ,X)) � NatP0(n)(Δ ×
Z,X), where Δ × Z : P0(n) → Top is given by Δ × Z(S ) = Δ(S ) × Z and,
for S ⊂ T , Δ × Z(S ) → Δ × Z(T ) is dS⊂T × 1Z (maps dS⊂T are described in
Example 5.1.5). Thus the first statement follows. The connectivity statement
follows from Proposition 3.3.9.

For the second homeomorphism, recall by definition that hocolimP1(n) X is
equal to ∐

S∈P1(n)

Δ(n − S ) × XS /∼

where ∼ is the equivalence relation generated by

(dS⊂T (t), xS ) ∼ (t, fS⊂T (xS )).

Thus a map g ∈ Map(hocolimP1(n) X,Z) consists of a collection of maps

gS : Δ(n − S ) × XS −→ Z
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such that, for all S ⊂ T , gS (dS⊂T (t), xS ) = gT (t, fS⊂T (xS )) for all t ∈ Δ(n − T )
and xS ∈ XS . By Theorem 1.2.7 the gS determine maps g̃S : Δ(n−S ) → XS ×Z,
and they satisfy

g̃S (dS⊂T (t)) = g̃T (t)

for all S ⊂ T , and for all t ∈ Δ(n − T ). The assignment g �→ {̃gR}R∈P0(n−R) then
determines the desired homeomorphism. �

We also have a generalization of Corollary 3.9.4 and a special case of
Proposition 8.5.9.

Proposition 5.10.2 Suppose X is a strongly homotopy cocartesian n-cube
and suppose that, for some space Y, there is a map XS → Y for each S such
that

commutes for all S ⊂ T (equivalently, that there exists a natural transforma-
tion from X to a cube Y such that Y(S ) = Y and Y(S ⊂ T ) = 1Y for all
S ⊂ T). Then, for any y ∈ Y, the n-cube of homotopy fibers hofibery(X → Y)
is strongly homotopy cocartesian.

Proof This is immediate from the n = 2 case, covered in Corollary 3.9.4
since all of the square faces are homotopy cocartesian. �

Remark 5.10.3 More generally, if the original cube is k-cocartesian, then so
is the cube of fibers. We leave the details to the reader. �

The following is used in the proof of Theorem 6.2.2, the dual of the general-
ized Blakers–Massey Theorem. It is a consequence of Proposition 5.10.2 and
generalizes Proposition 3.9.12 (using the latter result in the proof).

Proposition 5.10.4 Suppose X is a strongly homotopy cartesian n-cube of
spaces. Recall the canonical map b(X) : hocolimP1(n) → Xn. Then, for any
basepoint x ∈ Xn,

hofiber b(X) � ∗
i∈n

hofiber(Xn−{i} → Xn).

Proof The proof proceeds by induction on n. We first give the proof of
the case n = 3 as an illustration (n = 2 is Proposition 3.9.12). Let D =
hocolimS�3 XS . The claim is that for the strongly homotopy cocartesian cube
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we have hofiber(D → X123) = hofiber(X12 → X123) ∗ hofiber(X13 →
X123) ∗ hofiber(X23 → X123). Let D12 = hocolim(X1 ← X∅ → X2) and
D123 = hocolim(X13 ← X3 → X23). By definition of D, D12, D123 and using
the iterated homotopy colimit description of a punctured cube, Lemma 5.7.6,
we have

By Corollary 3.9.4, we have

Since the bottom face is homotopy cartesian, Proposition 3.9.12 implies that

hofiber(D123 → X123) � hofiber(X13 → X123) ∗ hofiber(X23 → X123).

It suffices to prove that

hofiber(D12 → X123) � (5.10.1)

hofiber(X12 → X123) ×
(
hofiber(X13 → X123) ∗ hofiber(X23 → X123)

)
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and that the maps in the diagram that result from replacing hofiber(D12 →
X123) by this equivalent space in the above punctured square are the projections
onto each factor. The latter part is straightforward and we leave it to the reader.
To see why (5.10.1) is true, note that the square

is homotopy cartesian since

hofiber(D12 → X12) � hofiber(X1 → X12) ∗ hofiber(X2 → X12)

� hofiber(X13 → X123) ∗ hofiber(X23 → X123)

� hofiber(D123 → X123)

The first and third equivalences use Proposition 3.9.12, and the second uses the
fact that the original cubical diagram is strongly homotopy cartesian. Therefore
the map

D12 → holim(X12 → X123 ← D123)

is a weak equivalence, which gives a weak equivalence

hofiber(D12 → X123) � holim
(
hofiber(X12 → X123) →

∗ ← hofiber(D123 → X123)
)

� hofiber(X12 → X123) × hofiber(D123 → X123)

Combining this with

hofiber(D123 → X123) � hofiber(X13 → X123) ∗ hofiber(X23 → X123)

proved above, this establishes the result for the case n = 3.
For the general case, let D = hocolimS�n XS , Dn−1 = hocolimS�n−1 XS , and

Dn = hocolimS�n−1 XS∪{n}. We have D � hocolim(Xn−1 ← Dn−1 → Dn). By
Corollary 3.9.4, we have
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By induction, hofiber(Dn → Xn) � ∗i∈n−1 hofiber(Xn−{i} → Xn). It suffices to
prove

hofiber(Dn−1 → Xn) � hofiber(Xn−1 → Xn) × ∗
i∈n−1

hofiber(Xn−{i} → Xn).

The square

is homotopy cartesian by comparing the vertical fibers using Proposition 3.9.12
and the fact that X is strongly homotopy cartesian. Hence the canonical map

Dn−1 → holim
(
Xn−1 → Xn ← Dn

)
is a weak equivalence, which gives rise to a weak equivalence

hofiber(Dn−1 → Xn) � holim
(
hofiber(Xn−1 → Xn) →

∗ ← hofiber(Dn → Xn)
)

� hofiber(Xn−1 → Xn) × hofiber(Dn → Xn). �

The following reconception of the Dold–Thom Theorem uses Proposition
3.7.29. Recall the definition of the symmetric product from Definition 2.7.22.
First we restate the Dold–Thom Theorem, Theorem 2.7.23, in language that
was not available to us before. The theorem states that if we have a homotopy
cocartesian square

then SP(X) → SP(C) is a quasifibration with fiber SP(A). By definition,
this means the natural map SP(A) → hofiber(SP(X) → SP(A)) is a weak
equivalence. In other words, the square

is homotopy cartesian.
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Theorem 5.10.5 (Dold–Thom Theorem for squares) Suppose

is homotopy cocartesian. Then

is homotopy cartesian.

Proof By Proposition 3.7.29, we may assumeX is a cofibrant pushout square,
so that in particular both X∅ → X2 and X1 → X12 are cofibrations. Consider
the 3-cube

Applying SP everywhere we obtain the 3-cube

By the Dold–Thom Theorem (Theorem 2.7.23), the left and right squares
are homotopy pullbacks, and hence the 3-cube is homotopy cartesian by
Proposition 5.4.13. Since SP takes weak equivalences to weak equivalences
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and the original square was a homotopy pushout, we have a weak equiva-
lence X2/X∅ → X12/X1 which induces a weak equivalence SP(X2/X∅) →
SP(X12/X1). Thus the bottom square is homotopy cartesian. By 1(a) of
Proposition 5.4.13, the top square is homotopy cartesian as well. �

Next we discuss Mather’s First and Second Cube Theorems. The proofs of the
Cube Theorems do not require the language of (co)cartesian cubical diagrams,
but are thematically similar to the results we have encountered in this chap-
ter. In fact, the case n = 3 of the proof of Proposition 5.10.4 above shares
some common ideas with the proof of the First Cube Theorem. Mather’s Cube
Theorems were originally stated and proved for homotopy commutative cubes,
but we will as usual always assume our diagrams are strictly commutative.

We first need the following lemma. Recall the definition of a quasifibration,
Definition 2.7.1.

Lemma 5.10.6 Suppose

is a strict pullback square and p is a fibration. Then the induced map of
mapping cylinders Mf → Mg is a quasifibration.

Proof Let p̃ : Mf → Mg be the induced map of mapping cylinders. We will
show that, for all x ∈ Mg, the inclusion fiberx( p̃) → hofiberx( p̃) is a weak
equivalence. First note that, depending on x, the strict fiber of p̃ is either
fiberx(X∅ → X2) or fiberx(X1 → X12).

Next consider the diagram

where the original horizontal arrows have been factored through the mapping
cylinders as in Proposition 2.4.4. The outer square is homotopy cartesian by
Proposition 3.3.5 since it is a strict pullback and p is a fibration. The right
square is homotopy cartesian by 1(b) of Proposition 3.3.11, and so the left
square is homotopy cartesian by 1(b) of Proposition 3.3.20. From this we con-
clude that the homotopy fibers of all of the vertical maps are weakly equivalent
by Proposition 3.3.18, and since X1 → X12 and X∅ → X2 are fibrations (the
latter by Proposition 2.1.16), the homotopy fibers of the outer two vertical
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maps are weakly equivalent to their homotopy fibers. But we have already
observed these to be the strict fibers of Mf → Mg. �

Theorem 5.10.7 (First Cube Theorem [Mat76]) In the diagram

suppose the left and back faces are homotopy pullbacks, and the top and bottom
faces are homotopy pushouts. Then the front and right faces are homotopy
pullbacks.

Proof It suffices to prove the front face is a homotopy pullback; the argument
for the right face is identical. We have to show that the square

is a homotopy pullback. Since the top and bottom faces are homotopy
pushouts, we have therefore to prove that

is homotopy cartesian, where q stands for the naturally induced map. We may
assume by Proposition 3.3.24 that the maps XS → XS∪{3} are fibrations for S =
∅, {1}, {2}. We claim that the map hocolim(X2 ← X∅ → X1) → hocolim(X23 ←
X3 → X13) is a quasifibration by Proposition 2.7.7. To see this, write

hocolim(X23 ← X3 → X13) = X23 	 X3 × I 	 X13/∼
where ∼ is the evident equivalence relation. Let U1,U2 ⊂ hocolim(X23 ←
X3 → X13) be the evident quotients of X13	X3×(1/3, 1] and X23	X3×[0, 2/3)
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(a similar construction was considered in the proof of Theorem 3.6.13 in
the case of weak equivalences, which appears following the statement of
Lemma 3.6.14). Then {U1,U2} forms an open cover for hocolim(X23 ← X3 →
X13), and q−1(U1) → U1, q−1(U2), and q−1(U1 ∩ U2) → U1 ∩ U2 are quasifi-
brations. The first two statements follow essentially from Lemma 5.10.6 (our
statement is for the mapping cylinder, and here we consider a slightly elongated
version which is open at one end, but the technique of proof still applies). The
statement about the intersection follows since q−1(U1 ∩ U2) → U1 ∩ U2 is a
fibration, as it is the product of a fibration with an identity map. Hence, by
Proposition 2.7.7, q is a quasifibration. The strict fiber of q can be identified
with the fiber(X∅ → X3). But since the left face is a homotopy pullback and
X2 → X23 is a fibration, this is weakly equivalent to the fiber of X2 → X23. �

Mather’s Second Cube Theorem can be proven using similar techniques.

Theorem 5.10.8 (Second Cube Theorem [Mat76]) In the diagram

suppose all the vertical faces are homotopy pullbacks and the bottom face is a
homotopy pushout. Then the top face is a homotopy pushout.

Proof We have to show that the map hocolim(X2 ← X∅ → X1) → X12 is a
weak equivalence. Consider the diagram

By hypothesis the bottom arrow is a weak equivalence. By 1(a) of Proposi-
tion 3.3.11, it suffices to show that the square is homotopy cartesian. To see
this, we once again compare the map of fibers. Without loss of generality
assume XS → XS∪{3} is a fibration for S = ∅, {1}, {2}. Then the left vertical map
above is a quasifibration as in the proof of Theorem 5.10.7, since the left and
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back faces are homotopy pullbacks. Moreover the fibers of this map are weakly
equivalent to fiber(X∅ → X3). But since the front face is also a homotopy pull-
back, these are the same as the homotopy fibers of the map X12 → X123. Hence
the square is homotopy cartesian, and hocolim(X2 ← X∅ → X1) → X12 is
a weak equivalence, and so the top face of the original cube is a homotopy
pushout. �

Here is an alternative proof, which does not use quasifibrations, due to Tom
Goodwillie.

Alternative proof of Theorem 5.10.8 We may assume by Proposition 3.7.4
that X123 is the union of the open sets X13 and X23 along the open set X3, so that
the bottom face is an open pushout square (see Definition 3.7.3). We may also
assume that X12 → X123 is a fibration and that all of the vertical squares are
strict pullbacks by replacing X12 → X123 by its mapping path space. Pulling
back along X12 → X123 yields a new square which is also an open pushout
square and whose map to the top square is a weak equivalence because the ver-
tical squares are homotopy pullbacks, and so the top square is also a homotopy
pushout. �

Our first proof of the Second Cube Theorem suggests that it may be more
closely related to the First Cube Theorem than is initially obvious. This is the
content of our third proof.

Third proof of Theorem 5.10.8: First Cube Theorem implies Second Cube
Theorem
Let

D12 = hocolim(X1 ← X∅ → X2).

Then the hypotheses of Theorem 5.10.7 are satisfied for the diagram

and hence the front and right faces are homotopy pullbacks. This immediately
implies that the canonical map D12 → X12 is a weak equivalence, so the top
square is a homotopy pushout. �
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Here is a result whose statement is similar to the Cube Theorems and will be
used in the proof of Theorem 5.10.10 below. It is an immediate consequence
of Proposition 3.3.20 and Proposition 3.7.26, and we sketch the proof with a
picture and let the reader fill in the details.

Proposition 5.10.9 Consider the 3-cube

1. If the front face of the cube is (k + 1)-cartesian and if the right and back
faces are k-cartesian, then the left face is k-cartesian.

2. If the front and left faces of the cube are k-cocartesian and if the back face
is (k − 1)-cocartesian, then the right face is k-cocartesian.

Of course, when k = ∞, we obtain statements in terms of homotopy pullbacks
and pushouts.

Proof Consider the diagram obtained from our cube by adding two diagonals:

Now apply Proposition 3.3.20 and Proposition 3.7.26 as appropriate. �

The following is an application of the Cube Theorems, due to Mather and
Walker [MW80]. It says that, under some circumstances, homotopy pullbacks
and pushouts commute. Just as for the Cube Theorems, the original statement
of this result is for homotopy commutative diagrams. The reader should also
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look back at Theorems 3.3.15 and 3.7.18; those results say that homotopy pull-
backs, as well as homotopy pushouts, commute with themselves, so the result
below establishes the third remaining possibility, of course under much stricter
hypotheses.

Theorem 5.10.10 ([MW80, Theorem 1]) Suppose we have a commutative
diagram

and suppose two left squares or two right squares are homotopy pullbacks.
Denote by holim(X), holim(Z), and holim(Y) the homotopy pullbacks of the
first, second, and third rows of this diagram respectively, and by hocolim(C1),
hocolim(C12), and hocolim(C2) the homotopy pushouts of the first, second, and
third columns respectively. Then there is a homotopy equivalence

As a special case, suppose X12 = Y12 = Z12 and the maps in the middle column
are the identity, and suppose X2 = Y2 = Z2 and the maps in the right column are
the identity. Then the right two squares are homotopy pullbacks and we recover
Proposition 3.9.3 from this result, the fundamental result of Section 3.9.

Proof of Theorem 5.10.10 Consider the cube
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where the top and bottom faces are homotopy pushouts and the left and
back faces are homotopy pullbacks. Thus by the First Cube Theorem, The-
orem 5.10.7, the front and right faces are also homotopy pullbacks.

Now consider the cube

(5.10.2)

The front, right, and back faces of this cube are homotopy pullbacks, and hence
by statement 1 of Proposition 5.10.9 so is the left one.

By considering analogous cubes, we can show that the remaining vertical
faces of the cube

(5.10.3)

are all homotopy pullbacks. Since the bottom face of this cube is a homotopy
pushout, it follows by the Second Cube Theorem, Theorem 5.10.8, that the top
face is also a homotopy pushout. In other words, the canonical map

is a homotopy equivalence. �
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The Blakers–Massey Theorems for n-cubes

In this chapter we prove the Blakers–Massey Theorem and its dual for
n-dimensional cubes, which encompass and generalize Theorems 4.2.1 and
4.2.2. We will focus on the three-dimensional case before presenting the com-
plete n-dimensional result. This three-dimensional case, which is much easier
to digest than the general case, contains most of the main ideas of the proofs.

As with Theorem 4.2.1, there is a geometric step for which we will provide
two proofs – one based on transversality (due to Goodwillie [Goo92]), and
the other using purely homotopy-theoretic methods (due to the first author
[Mun14]). The latter version replaces the “dimension counting” transversality
argument with a “coordinate counting” one. There is also a second formal step
which relies on general facts about connectivities of maps and (co)cartesian
cubes. Our proof of the formal step is organized differently than in Good-
willie’s original work, but it is otherwise very close. The spirit of this part
of the proof is best captured by the three-dimensional case.

6.1 Historical remarks

Before looking at this section, the reader might want to glance at Section 4.1
for the history of the original Blakers–Massey Theorem for triads and the
variant in terms of squares.

The general Blakers–Massey Theorem, also known as the Blakers–Massey
Theorem for n-cubes or (n + 1)-ad Connectivity Theorem is essentially a
statement about higher-order excision for homotopy groups. Some of its
far-reaching consequences will be recounted in Section 6.2 and in Chapter 10.

In its early form, the statement concerns the homotopy groups and the con-
nectivity of an (n+ 1)-ad (X; X1, . . . , Xn) which are defined analogously to that
of a triad (see Section 4.1). For details, see [BW56, Section 2].

288
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Theorem 6.1.1 ((n + 1)-ad Connectivity Theorem) Suppose (X; X1, . . . , Xn)
is an (n + 1)-ad where {Xi}1≤i≤n is an open cover of X. Suppose

⋂n
i=1 Xi is

path-connected. Let

X{i} =
⋂

1≤ j≤n
j�i

X j

and suppose

X =
n⋃

i=1

X{i}.

Finally suppose the pairs (X{i},
⋂n

i=1 Xi) are ki-connected, ki ≥ 1. Then

πk(X; X1, . . . , Xn) = 0 for k ≤ k1 + · · · + kn.

The first proof of this theorem is due to Barratt and Whitehead [BW56]
although the hypotheses there require

⋂n
i=1 Xi to be simply-connected and

ki ≥ 2. The improvement stated above is due to Ellis and Steiner [ES87] who
generalize techniques of Brown and Loday [BL87a].

As in the classical Blakers–Massey case, of special importance is also the
first non-vanishing homotopy group of the (n + 1)-ad, which Ellis and Steiner
[ES87], using work of Brown and Loday [BL87b], show to be given by an
isomorphism

⊕
(n−1)!

n⊗
i=1

πki+1(X{i},
n⋂

i=1

Xi) � πk1+···+kn+1(X; X1, . . . , Xn).

The group on the right is not necessarily abelian, and some abelian cases
were initially considered by Barratt and Whitehead. This is of course a
generalization of Theorem 4.1.2.

A simpler proof of Theorem 6.1.1 involving only space-level constructions
was given by Goodwillie [Goo92]. In that setup, Theorem 6.1.1 is translated
into the statement about cubical diagrams, just as in the classical case described
in Section 4.1. From the data in the hypotheses of Theorem 6.1.1, one can form
a cube of intersections and inclusions, as in Example 5.8.3, with

⋂n
i=1 Xi as the

initial space. By Example 3.7.5, this is a strongly homotopy cocartesian cube.
The connectivities of the pairs (X{i},

⋂n
i=1 Xi) translate into the connectivities of

the initial maps of the cube. Then Theorem 6.1.1 can be interepreted as saying
that this cube is (1− n+ k1 + · · ·+ kn)-cartesian. This is because, the homotopy
groups of an (n+ 1)-ad can be related to the homotopy groups of the total fiber
of this cube. This was explained in details for squares in Section 4.1 and we
leave the details to the reader.
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The cubical version of Theorem 6.1.1, which is a statement about any
strongly homotopy cocartesian cube and thus covers the situation above, is
stated as Theorem 6.2.1 below. Note that the hypotheses there are even more
general than in Theorem 6.1.1. This is essentially since Goodwillie [Goo92]
did not use homology in his proof but rather general position arguments. We
will provide a slightly different proof from Goodwillie’s in Section 6.3.

6.2 Statements and applications

Theorem 6.2.1 (Generalized Blakers–Massey Theorem) Let X = (T �→ XT )
be a strongly homotopy cocartesian S -cube with |S | = n ≥ 1. Suppose that,
for each i ∈ S , the map X∅ → Xi is ki-connected. Then X is (1 − n +

∑
i∈S ki)-

cartesian.

The dual version is the following.

Theorem 6.2.2 (Dual of the generalized Blakers–Massey Theorem) Suppose
X = (T �→ XT ) is a strongly homotopy cartesian S -cube with |S | = n ≥ 1.
Suppose that, for each i ∈ S , the map XS−{i} → Xn is ki-connected. Then X is
(−1 + n +

∑
i∈S ki)-cocartesian.

Both of these theorems have generalizations analogous to Theorems 4.2.3 and
4.2.4. We need some extra language regarding partitions of sets to state them.
If S is a finite set, a partition of S is a set {Tα}α∈A of pairwise disjoint non-
empty subsets of S which cover S . Each member Tα of a partition is called a
block.

Theorem 6.2.3 Let X = (T �→ XT ) be an S -cube with |S | = n ≥ 1. Suppose
that

1. for each ∅ � U ⊂ S, the U-cube ∂UX is kU-cocartesian;
2. for U ⊂ V, kU ≤ kV .

Then X is (1 − n +min{∑α kTα : {Tα} is a partition of S })-cartesian.

Dually, we have the following.

Theorem 6.2.4 Let X = (T �→ XT ) be an S -cube with |S | = n ≥ 1. Suppose
that
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1. for each ∅ � U ⊂ S , the U-cube ∂S−UX is kU-cartesian;
2. for U ⊂ V, kU ≤ kV .

Then X is (−1 + n +min{∑α kTα : {Tα} is a partition of S })-cocartesian.

Remark 6.2.5 The hypotheses kU ≤ kV for U ⊂ V in the statements of
Theorem 6.2.3 and Theorem 6.2.4 can be weakened, although we will not
pursue this here. See Remark 6.3.5 for a comment on this in the case n = 3. �

First we present a few examples and applications.

Example 6.2.6 Let X be a k-connected space, and consider the n-cube S �→
XS where X∅ = X, Xi = CX, the maps X∅ → Xi are the inclusion of X in
the cone, and XS = ∪i∈S Xi is the union along X of Xi for i ∈ S (when |S | = 2,
XS = ΣX is the suspension). This is precisely the fiberwise join cube XS = X∗S
studied in Example 3.9.13 and Example 5.8.20 (taking Y to be the one-point
space). From the latter example, we also know that this cube is by construction
strongly homotopy cocartesian (Example 5.8.20), and since X is k-connected,
the maps X∅ → Xi are (k+1)-connected. Hence the n-cube is (nk+1)-cartesian
by Theorem 6.2.1. That is, the map

X −→ holim
S�∅

XS

is (nk + 1)-connected. Thus we have a space, built from contractible spaces
by homotopy pullbacks, which approximates the homotopy type of X in an
increasingly large range if X is simply-connected.

Fiberwise join will play a key role in Section 10.1. �

Example 6.2.7 Dual to the previous example, consider a k-connected based
space (X, x0), and let PX = {γ : I → X | γ(0) = x0} be the path space. Define
an n-cube as follows: Xn = X, Xn−i = PX, and Xn−S is equal to the fiber
product over X of the Xn−{i} where i ranges over S . The n-cube S �→ XS

is strongly cartesian by construction (it is a fibrant pullback cube), and the
canonical maps PX → X are k-connected. By Theorem 6.2.2, the cube is
(n(k + 1) − 1)-cocartesian. That is, the map

hocolim
S�n

XS −→ X

is (n(k+1)−1)-connected. Thus we have built a space from contractible spaces
by homotopy pushouts which approximates the homotopy type in an increasing
range depending on n if X is at least connected.
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It is not hard to show that XS � (ΩX)n−|S |−1 when |n−S | ≥ 2 using induction
on n. To see this, it suffices to show X∅ � (ΩX)n−1 for n ≥ 2. When n = 2,
X∅ = ΩX. For an n-cube S �→ XS , n > 2, we have by Lemma 5.3.6

X∅ � holim

(
Xn → holim

∅�R⊂n−1
XR∪{n} ← holim

∅�R⊂n−1
XR

)
.

By definition, the map

Xn −→ holim
∅�R⊂n−1

XR∪{n}

is a weak equivalence, hence

X∅ � holim
∅�R⊂n−1

XR.

By induction, it follows that X∅ � (ΩX)n−1. �

Example 6.2.8 Let S p1 , . . . , S pn be spheres of dimensions p1, . . . , pn consid-
ered as based spaces, and consider the n-cube

W = (S �−→ ∨i∈S S pi ) .

Then W is (1 − n +
∑n

i=1 pi)-cartesian.
To see why, note that there is a natural trasformation of cubes W̃ → W,

where

W̃ =
(
S �−→ ∨i∈S S pi ∨ j�S Dpj+1

)
is given by projecting away from the disks Dpj+1. The cube W̃ is strongly
cocartesian since every square face is a pushout square of cofibrations, and
hence homotopy cocartesian by Proposition 3.7.6. Moreover, the natural inclu-
sion S pi → Dpi+1 is pi-connected, and hence the maps ∨i∈nS pi → ∨i∈n−{ j}S pi ∨
Dpj+1 are p j-connected for all j ∈ n. It follows from Theorem 6.2.1 that the
n-cube in question is (1 − n +

∑n
i=1 pi)-cartesian. �

Before our next example, which is important in calculus of functors, recall
from Example 5.5.6 that the configuration space of n points in X is denoted by
Conf(n, X) and that there is a natural n-cube associated to this space, namely
the one given by Conf(n−•, X) : P(n) → Top, where an inclusion S ⊂ T gives
rise to a restriction map Conf(n − S , X) → Conf(n − T, X).

Example 6.2.9 Let M be a smooth m-dimensional manifold. Consider the
n-cube C = (S �→ Conf(n−S ,M)). The cube C is ((n−1)(m−2)+1)-cartesian.
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To see this, regard the m-cube in question as a map of (m − 1)-cubes(
R �→ Conf({n} ∪ n − 1 − R,M)

)
−→

(
R �→ Conf(n − 1 − R,M)

)
,

where R ⊂ n − 1. Choose a basepoint (x1, . . . , xn−1) ∈ Conf(n − 1,M).
This gives rise to a basepoint in Conf(n − 1 − R,M) for all R ⊂ n − 1. By
Proposition 5.4.12, the map of (n − 1)-cubes, as an n-cube, is as cartesian
as the (n − 1)-cube of (homotopy) fibers. For each R, the restriction map
Conf({n}∪n − 1−R,M)) → Conf(n − 1−R,M)) above is a fibration whose fiber
is M\{xi : i ∈ n − 1−R} (see Example 5.5.6), which we write as M−(n − 1−R)
for short. The (m − 1)-cube of fibers is

R �−→ M − (n − 1 − R),

with M − (n − 1 − R) → M − (n − 1 − S ) the evident inclusion for R ⊂ S .
Further, M − (n − 1 − R) is an open subset of M − (n − 1 − S ) since it is the
complement of the closed subset S − R. Each square face of this (n − 1)-cube
is of the form

for R ⊂ n − 1 i, j � R, and i � j. It is clear by inspection that

M − (n − 1 − R) = M −
(
n − 1 − (R ∪ {i})

)
∩ M −

(
n − 1 − (R ∪ { j})

)
and

M −
(
n − 1 − (R ∪ {i})

)
∪ M −

(
n − 1 − (R ∪ { j})

)
= M −

(
n − 1 − (R ∪ {i, j})

)
.

Hence, by Example 3.7.5, this square is homotopy cocartesian, and so the (n−
1)-cube in question is strongly homotopy cocartesian. The maps

M − (n − 1) −→ M − (n − 1 − {i})
are (m−1)-connected for each i ∈ n − 1 by Example A.2.16. By Theorem 6.2.1,
this (n−1)-cube, and hence the original n-cube, is ((n−1)(m−2)+1)-cartesian.

�

Remark 6.2.10 As mentioned in Example 5.5.6, when M = Rm, the space
Rm− (n − 1−R) from the previous example is homotopy equivalent to a wedge
of n − 1 − |R| spheres of dimension m − 1. Moreover, the cube

R �−→ Rm − (n − 1 − R)
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is weakly equivalent to the cube

R �−→
∨

n−1−R

S m−1,

where the maps are projections away from wedge summands. This can be
related to Example 6.2.8 using Proposition 5.5.7: the total homotopy fiber
of the cube R �→ ∨

R S m−1 is weakly equivalent to the (n − 1)-fold loop
space of the total homotopy fiber of the cube R �→ ∨

n−1−R S m−1 by Propo-
sition 5.5.7, and so we can compute how cartesian the cube in question is by
using Example 6.2.8. �

In the previous example, we encountered the complement of a finite set
of points. More generally, we can consider a cube of pairwise disjoint
submanifolds.

Example 6.2.11 Let M be a smooth manifold of dimension m and P1, . . . , Pn

pairwise disjoint closed submanifolds of dimensions p1, . . . , pn. Consider the
n-cube S �→ M−⋃

i∈n−S Pi. Clearly this cube is strongly homotopy cocartesian;
every square face is of the form

for some open sets A and B, and such squares are homotopy cocartesian by
Example 3.7.5. For each j ∈ n, the inclusion map

M −
⋃
i∈n

Pi −→ M −
⋃

i∈n−{ j}
Pi

is (m − p j − 1)-connected by Example A.2.21, and hence the cube itself is
(nm + 1 −∑

i∈n(pi − 2))-cartesian by Theorem 6.2.1. �

Even more generally we can consider the complement of submanifolds which
may intersect, but only in a “nice” way. See Section A.2.3 for any unfamiliar
terms.

Example 6.2.12 Let M be a smooth manifold and P1, . . . , Pn smooth closed
submanifolds of dimensions p1, . . . , pn respectively whose intersections are all
transverse, in the sense that, for every S ⊂ n, the intersection

⋂
i∈S Pi is a
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smooth closed submanifold of M of codimension |S |m − ∑
i∈S pi, or is empty.

We claim that, for S ⊂ n, the n-cube of inclusions

C = S �−→ N −
⋃
i�S

Pi

is (1 + n(m − 2) −∑
i pi)-cartesian.

This will follow from Theorem 6.2.3 once we establish that the faces ∂SC
are (−1 + |S |m − ∑

j∈S p j)-cocartesian, since the numbers kU = (−1 + |S |m −∑
j∈S p j) satisfy kU ≤ kV when U ⊂ V , as pi ≤ m for all i. Moreover, the sum

over partitions is minimized when the partition of n consists of all singletons
because the sum of the numbers |S |m−∑

j∈S p j, where S ranges over the blocks
of a given partition, is in fact independent of the chosen partition.

Fix S ⊂ n. For i ∈ S , let Ui = M − Pi, and note that for a proper subset
R ⊂ S , ∂SC(R) = M −⋃

j�R Pj =
⋂

j�R U j. By Example 5.8.3, the |S |-cube

S �−→
⎧⎪⎪⎨⎪⎪⎩
⋂

j�R U j, R � S ;⋃
j∈S U j = (M −⋃

i�S Pi) −⋂
j∈S P j, R = S ,

is homotopy cocartesian. By assumption
⋂

i�S Pi is a submanifold of M of
codimension |S |m−∑

i∈S pi (or is empty), and by Example A.2.21, the inclusion
(M −⋃

i�S Pi) −⋂
j∈S P j → M −⋃

i�S Pi = ∂
SC(S ) is therefore (−1 + |S |m −∑

i∈S pi)-connected, so that ∂SC is (−1 + |S |m −∑
i∈S pi)-cocartesian. �

Remark 6.2.13 It should be apparent that the only assumption we really need
about the intersections

⋂
i∈S Pi is that they are submanifolds. The assumption

on their codimension is a simplification which makes the computations above
easier to follow, but is unnecessary. �

Let P be a smooth closed manifold and N a smooth manifold. An embedding
P → N is a smooth map which is a homeomorphism onto its image and for
which the derivative map T P → T N is a fiberwise injection (see Section 10.2
for more on embeddings). It is topologized as an open subset of the space of
smooth maps C∞(P,N) of P to N, whose topology is given in Definition A.2.7.
For the reader familiar with the terminology, the following example effectively
takes Example 6.2.11 and applies the functor Emb(P,−) to it.

Example 6.2.14 ([Goo], Proposition A.1) Let M and P1, . . . , Pn be as in
Example 6.2.12. Let Q be a smooth closed manifold of dimension q, and
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consider the n-cube E = S �→ Emb(Q,M − ⋃
i∈n−S Pi), S ⊂ n.1 Then E is

(1 +
∑

i∈n m − pi − q − 2)-cartesian.
We will induct on n using Theorem 6.2.3. We claim that for each non-empty

subset S ⊂ n, that the S -cube

ES =

⎛⎜⎜⎜⎜⎜⎜⎜⎝R �−→ Emb(Q, (M −
⋃

i∈n−S

Pi) −
⋃

j∈S−R

Pj)

⎞⎟⎟⎟⎟⎟⎟⎟⎠
is (−1+

∑
i∈S m−q− pi)-cocartesian. The case n = 1 asserts that the (inclusion)

map

Emb(Q,M − P1) −→ Emb(Q,M)

is (m − p1 − q − 1)-connected. This follows from transversality as follows. We
remark here that we are going to give arguments slightly less rigorous than
given, for instance, in the analogous Example 4.2.20. In particular, we will be
a little looser about our definition of k-connected map by ignoring basepoints:
X → Y is k-connected if for every map S j → Y , j ≤ k, there is a lift to a
map S j → X, and a lift for every homotopy S j × I → Y , j < k, with lifts
S j × {i} → X for i = 0, 1.

Given a map S j → Emb(Q,M), consider the problem of lifting it to a map
S j → Emb(Q,M − P1). The map S j → Emb(Q,M) corresponds via Theo-
rem 1.2.7 and Theorem A.2.9 to a smooth map S j × Q → M. Inside the space
of smooth maps Emb(S j×Q,M) is an open dense set of maps which are trans-
verse to P1, which follows from Corollary A.2.20.2 In particular, transverse
means the intersection is empty if j + q < m − p1, or j < m − p1 − q. A similar
argument holds for a 1-parameter family of maps, and so the map in question
is (m − p1 − q − 1)-connected.

A similar transversality argument works in general. Note that Proposi-
tion 5.8.26 applies to the cube ES , and we may reduce to studying the
connectivity of the map

colim
R�S

ER −→ ES (S ).

Consider a map S j → ES (S ) = Emb(Q,M − ∪i∈n−S Pi), given by s �→ fs. By
Theorem A.2.23,3 in Emb(Q,M − ∪ j∈S P j) there is an open dense set of maps
f such that the map

1 This is actually a cube of fibers of an (n + 1)-cube, namely the map of n-cubes
(S �→ Emb(Q 	 	i∈n−S Pi,M)) −→ (S �→ Emb(	i∈n−S Pi,M)).

2 Technically this result applies to the space of all smooth maps, but inside the space of all
smooth maps is the open set of embeddings, so this is the intersection.

3 With k = 0 and s = |S | in that theorem.
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S j × QS −→ (M − ∪i∈n−S Pi)
S

given by

(s, x1, . . . , xS ) �→ ( fx(x1), . . . , fs(xS ))

is transverse to
∏

j∈S P j ⊂ (M − ∪i∈n−S Pi)S . In particular the intersection is
empty if j + q|S | < ∑

j∈S m − p j, or j <
∑

j∈S m − p j − q. A similar argu-
ment with 1-parameter families establishes that the map in question is in fact
(−1 +

∑
j∈S m − p j − q)-connected. Then the sum over partitions appearing in

Theorem 6.2.3 is minimized when the partition of n consists of singletons, and
the n-cube E is therefore (1 +

∑
i∈n m − pi − q − 2)-cartesian. �

We finish this section with a proof of the Berstein–Hilton Theorem, which
gives sufficient conditions for a space to be the suspension of another.
Our proof follows that of [KSV97, Section 4], and that paper also has a
generalization which is proved in the same vein as the proof sketched below.

Let X be a based space with basepoint ∗, and let c∗ : X → X be the
constant map at the basepoint. A co-H space structure on a based space
X is a comultiplication map μ : X → X ∨ X such that the compositions
〈1X , c∗〉◦μ, 〈c∗〉, 1X)◦μ : X → X are homotopic to the identity 1X . Here 〈1X , c∗〉
denotes the composition of the wedge 1X∨c∗ with the fold map ∇ : X∨X → X.

Theorem 6.2.15 (Berstein–Hilton Theorem) Let n ≥ 2 and suppose X is an
(n − 1)-connected CW complex of dimension at most 3n − 3 with a co-H space
structure. Then there exists a based CW complex K and a weak homotopy
equivalence ΣK → X.

Proof Consider the diagram

where P3 = holimP0(3) X is the homotopy limit of the punctured cube,
i j : X → X ∨ X is the inclusion of the jth summand, and the maps ∗ → X
are all the inclusion of the basepoint. Thus, as a 3-cube, it is by definition
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homotopy cartesian. To apply Theorem 6.2.4, we need to compute how carte-
sian the other faces are. First, we claim the front, right, and bottom faces are
all (2n − 3)-cartesian. For the bottom face, this is Proposition 4.6.1. The front
face is homotopy cocartesian because the map 1X ∨ μ : X ∨ X → X ∨ X is
homotopic to 1X∨X since μ is the comultiplication on X; by Theorem 4.2.1, it
then follows that this face is (2n−3)-cartesian. The argument for the right face
is the same. Since X is (n− 1)-connected, the maps i1, i2, μ : X → X ∨ X are all
(n−1)-connected. It follows from Theorem 6.2.4 thatX is (3n−2)-cocartesian.
We will use this computation later.

Define R2 = holim(X
i1→ X ∨ X

i2← X), and P2 = holim(∗ → X ← ∗). Since
the bottom face of X is (2n − 3)-cartesian, we have that the map ∗ → R2 is
(2n − 3)-connected.

By Lemma 5.3.6, we have a homeomorphism P3 � holim(∗ → R2 ← P2),
and hence the square

is homotopy cartesian. By 2(a) of Proposition 3.3.11, the map P3 → P2 is
(2n − 3)-connected, and since P2 � ΩX (Example 3.2.10) and n ≥ 2, P3 is
itself (n − 2)-connected (and in particular connected since n ≥ 2).

Let M3 = hocolimP1(3) X. That is, M3 is the homotopy colimit of the diagram

Using Example 3.6.6, Example 3.6.9, and taking homotopy colimits along the
rows above using Lemma 5.7.6, we have a homotopy cocartesian square
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We showed above thatX is (3n−2)-cocartesian, which means that the canonical
map r3 : M3 → X ∨ X is (3n − 2)-connected. Since r3 ◦ g3 ∼ 1X∨X , it follows
from statement 3 of Proposition 2.6.15 that g3 is (3n−3)-connected. We cannot
quite deduce the connectivity of r2 from this because Proposition 3.7.13 does
not apply. However, using Proposition 3.8.9, we have isomorphisms Hi(r2) �
Hi(g3) for all i, and since g3 is (3n−3)-connected, Hi(g3) = 0 for 0 ≤ i ≤ 3n−3.
Since both X and ΣP3 are 1-connected, it follows from Theorem 4.3.3 that r2

is (3n − 3)-connected as well.
Using Theorem 1.3.7, there exists a weak homotopy equivalence P3 → K

for some CW complex K. The map r2 then induces a map ΣK → X. Since
dim(X) ≤ 3n− 3, H3n−3(X) is free abelian, generated by the (3n− 3)-cells of X.
The map ΣK → X is a homology isomorphism in dimension less than 3n − 3
and is onto in dimension 3n − 3. It follows that there is a CW complex Y with
the same (3n − 1)-skeleton as K and a map Y → K such that the composite
ΣY → X is an isomorphism in homology. Since ΣY and X are both simply-
connected, it follows from Theorem 4.3.2 that this map is a weak equivalence
and hence a homotopy equivalence by Theorem 1.3.10. �

6.3 Proofs of the Blakers–Massey Theorems for n-cubes

We will first prove Theorem 6.2.1 and will deduce Theorem 6.2.3 from it. To
prove Theorem 6.2.1, we begin by presenting two proofs of the geometric step,
then present a proof of the formal step in the three-dimensional case before
presenting the proof of the formal step in the n-dimensional case.

6.3.1 The geometric step

The key to the induction is the following lemma (compare to Lemma 4.4.1).
Suppose X = (S �→ XS ) is an n-cube of spaces formed by attaching cells ei

of dimension di+1 for 1 ≤ i ≤ n to a space X∅ = X(∅). Thus XS = X∅ ∪ {ei : i ∈
S } for S ⊂ {1, . . . , n} for some choice of attaching maps ∂ei → X. The cube X
is strongly cocartesian (and strongly homotopy cocartesian because the maps
in it are cofibrations).

Lemma 6.3.1 ([Goo92, Lemma 2.7]) Let X be as above. Choose a base-
point x ∈ X{n}, and for T ⊂ {1, . . . , n − 1} define an (n − 1)-cube F
by F (T ) =

(
hofiber(X(T ) → X(T

⋃{n}))). Then F is (−1 +
∑n

i=1 di)-
cocartesian. Equivalently, the pair

(
F (n − 1),

⋃
i∈n−1 F (n − 1 − i)

)
is (−1 +∑n

i=1 di)-connected.
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Proof The equivalence of the two connectivity statements is the content of
Proposition 2.6.9. Choose points ps ∈ es in the interior of each cell ei with
pn � x. Define a new n-cube X∗ by X∗

T = XT − {pi : i � T }. The inclusion
XT → X∗

T is natural in T and is a homotopy equivalence for each T , and so
it suffices to prove the result for the cube X∗, where we denote by F ∗ the
(n − 1)-cube corresponding to F . Let C = hofiberx(X∗

n−1 → X∗
n−1). Both C and

C ∩ F ∗(T ) = hofiberx(X∗
T → X∗

T ) are contractible. Consider the square

We claim that it is homotopy cocartesian for each T , and hence, by 1(a) of
Proposition 3.7.13, the inclusion F ∗(T ) → C ∪ F ∗(T ) is a weak equivalence
for each T . That the square above is homotopy cocartesian follows from Exam-
ple 3.7.5 – this is a square of maps which are inclusions of open sets. To
verify this carefully is straightforward enough, but it would distract us from our
immediate goal so we offer an outline and reference to the necessary results.
First, if X ⊂ Y is the inclusion of an open set, then the induced inclusion
Map(I, X) → Map(I,Y) is open by definition of the compact-open topology.
Next, if (X → Z ← Y) → (X′ → Z′ ← Y ′) is a map of diagrams such that
X → X′,Y → Y ′, and Z → Z′ are inclusions of open sets, then the induced
map of limits is the inclusion of an open set. Finally we use Examples 3.1.6
and 3.1.7 to express the mapping path space and homotopy fiber respectively
as limits of punctured squares.

Continuing, we observe that the map hocolimT�S C∪F ∗(T ) → colimT�S C∪
F ∗(T ) is a weak equivalence by Example 5.8.3 (noting that the open sets
F ∗(n − 1 − {i}) have the property that F ∗(n − 1 − R) = ∩i∈RF ∗(n − 1 − {i})).
Hence it suffices to prove that the pair

(A, B) =

⎛⎜⎜⎜⎜⎜⎝C ⋃
F ∗(n − 1),C

⋃
i

F ∗(n − 1 − i)

⎞⎟⎟⎟⎟⎟⎠
is (−1 +

∑n
i=1 di)-cocartesian.

For the remainder of the proof we switch the roles of 0 and 1 in the homotopy
fiber. That is, if f : X → Y is a map and y ∈ Y a point, write hofibery( f ) =
{(x, γ) : γ(0) = y, γ(1) = f (x)} (compare to Definition 2.2.3). This convention
is to make things as comparable with Goodwillie’s original work as possible,
should the reader want to consult it. Let Φ : (Ik, ∂Ik) → (A, B) be a map of
pairs. The map Φ corresponds via Theorem 1.2.7 to a map Ψ : Ik × I → Xn

such that
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● Ψ(z, 0) = x for all z ∈ Ik;
● Ψ(z, 1) � pn for all z ∈ Ik;
● for each z ∈ ∂Ik, there exists s such that Ψ(z, t) � ps for all t ∈ I.

When k ≤ −1 +
∑

i di, we will show that there is a homotopy of Ψ which pre-
serves these conditions and deforms Ψ into a map such that the last condition
above holds for all z ∈ Ik (not just on the boundary). To avoid manifolds with
corners and boundaries, extend Ψ to a slightly larger cube Ik

δ = (−δ, 1 + δ)k for
δ > 0 and a slightly longer interval [0, 1 + ε) for ε > 0. Consider the map

Ψ : Ik
δ × [0, 1 + ε)n −→ (Xn)n

given by

Ψ(z, t1, . . . , tn) = (Ψ(z, t1), . . . ,Ψ(z, tn)).

Since Xn has the structure of a manifold near each of the points pi (each pi

lies in the interior of a cell of dimension di + 1), (Xn)n has the structure of a
manifold near the point (p1, . . . , pn). By a small homotopy near the preim-
age of (p1, . . . , pn), we may assume Ψ is transverse to (p1, . . . , pn) using

Theorem A.2.10.4 By Theorem A.2.18, the space W = Ψ
−1

(p1, . . . , pn) is a
submanifold of Ik

δ × [0, 1+ ε)n of dimension k + n− (n+
∑k

i=1 di) = k −∑k
i=1 di,

since (p1, . . . , pn) ∈ (Xn)n has codimension n +
∑k

i=1 di. The manifold W is
clearly empty if k ≤ −1 +

∑n
i=1 di. This means that, for each z ∈ Ik, there

exists i such that Ψ(z, t) � pi for all t, which is what we set out to prove. �

6.3.2 Alternative proof of the key lemma

Here we give an alternative proof of Lemma 6.3.1 by replacing the “dimen-
sion counting” (transversality) argument above with an analogous “coodinate
counting” argument. It is a reproduction of an argument given by the first
author in [Mun14]. We first observe that, in the hypotheses of Lemma 6.3.1,
if di = −1 for all i, then the conclusion of Lemma 6.3.1 is vacuously true.
Without loss of generality we may assume dn ≥ 0. The basepoint in x ∈ X{n}
can therefore be joined by a path to some point in X∅, so we may also assume
the basepoint lies in X by the invariance of homotopy fibers over path compo-
nents (Corollary 3.2.18). If di = −1 for any other value of i, then X∅ → X{i}
is the inclusion of X∅ with a disjoint point added. This point plays no role
in any of the homotopy fibers appearing in the cube F , and we may ignore
it altogether. That is, for this value of i and a basepoint x ∈ X∅, we have
hofiberx(XT → XT∪{n}) = hofiberx(XT\{i} → XT\{i}∪{n}) for all T ⊂ n − 1. Thus

4 This can be done more carefully as in our first proof of Lemma 4.4.1.
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we may assume d j ≥ 0 for all 1 ≤ i ≤ n. The remainder of this section is a
generalization of material from Section 4.4.2.

Definition 6.3.2 For a cube W = W(a, δ, L) in Rk (as in Definition 4.4.3), for
each j = 1, . . . , n define

K j,n
p (W)

=

{
x ∈ W :

δ( j − 1)
n

+ ai < xi <
δ j
n
+ ai for at least p values of i ∈ L

}
.

If p ≤ q, then K j,n
q (W) ⊂ K j,n

p (W). The following lemma gives the basic tech-
nical deformation result, analogous to [tD08, 6.9.1] and appearing in this work
as Lemma 4.4.5.

Lemma 6.3.3 Let Y be a space with a subspace A ⊂ Y, W a cube, j, n positive
integers with j ≤ n, and f : W → Y a map. Suppose that for p ≤ dim(W) we
have

f −1(A) ∩ W ′ ⊂ K j,n
p (W ′)

for all cubes W′ ⊂ ∂W. Then there exists a map g : W → Y homotopic to f
relative to ∂W such that

g−1(A) ⊂ K j,n
p (W).

Proof Without loss of generality W = Ik, k ≥ 1. We will construct a map
h : Ik → Ik homotopic to the identify and define g to be the composition of
f with h. Let x = ((2 j − 1)/2n, . . . , (2 j − 1)/2n) be the center of the cube
[( j− 1)/n, j/n]k. For a ray y emanating from x, let P(y) be its intersection with
∂[ j − 1/n, j/n]k and Q(y) its intersection with ∂Ik. Let h map the segment from
P(y) to Q(y) onto the point Q(y) and the segment from x to P(y) affinely onto
the segment from x to Q(y). Clearly h is homotopic to the identity of Ik relative
to ∂Ik, and so g = f ◦ h is homotopic to f relative to ∂Ik. It remains to check
that g satisfies the property in the conclusion of the lemma.

Suppose g(z) ∈ A. Write z = (z1, . . . , zk). If z ∈ (( j − 1)/n, j/n)k, then z ∈
K j,n

k (W) ⊂ K j,n
p (W) and we are done. Suppose then that there exists i so that

either zi ≥ j/n or zi ≤ ( j − 1)/n. Then, by definition of h, we have h(z) ∈ ∂Ik,
so h(z) ∈ W′ for some face W ′ of dimension k − 1. Since g(z) = f (h(z)) ∈ A,
h(z) ∈ f −1(A), and by hypothesis h(z) ∈ K j,n

p (W ′). Thus, for at least p values
of i, we have ( j − 1)/n < h(z)i < j/n, where h(z)i denotes the ith coordinate of
h(z). By definition of h,



6.3 Proofs of the Blakers–Massey Theorems 303

h(z)i =
2 j − 1

2n
+ t

(
zi − 2 j − 1

2n

)
for t ≥ 1.

Inserting this expression into the previous inequalities for h(z)i and solving for
zi yields

− 1
t2n
+

2 j − 1
2n

< zi <
1

t2n
+

2 j − 1
2n

.

Since the lower bound increases with t and the upper bound decreases with t,
substituting t = 1 into each gives the desired inequalities

j − 1
n

< zi <
j
n

so that z ∈ K j,n
p (W). �

Suppose Y is a space with open subsets Y∅,Y1, . . . ,Yn such that Y is the
union of Y1, . . . ,Yn along Y∅. Let f : Ik → Y be a map. By the Lebesgue
covering lemma, Lemma 1.4.11, we can decompose Ik into cubes W such
that f (W) ⊂ Yj for some j depending on W. We may also assume that if
W = (a, δ, L) is such a cube, then δ is independent of W. We will use this near
the end of our alternative proof of Lemma 6.3.1. The following is a straightfor-
ward generalization of our alternative proof of Lemma 4.4.1, which appears in
Section 4.4.2, as is its proof.

Theorem 6.3.4 With the Y j and f as above, assume that, for each j, (Yj,Y∅)
is d j-connected, with d j ≥ 0 (i.e. the inclusion map Y∅ → Yj is d j-connected).
Then there is a homotopy ft of f such that

1. if f (W) ⊂ Yj, then ft(W) ⊂ Yj for all t;
2. if f (W) ⊂ Y∅, then ft(W) = f (W) for all t;
3. if f (W) ⊂ Yj, f −1

1 (Yj \ Y∅) ∩ W ⊂ K j,n
d j+1(W).

Proof Let Cl be the union of cubes W with dim(W) ≤ l. The homotopy ft
is constructed inductively over Cl × I. If dim(W) = 0, then if f (W) ⊂ Y∅ we
let ft = f , which achieves the second condition. Note that f (W) ⊂ Yi ∩ Yj for
i � j implies f (W) ⊂ Y∅. Hence we only need to deal with the case where
f (W) ⊂ Yj and f (W) � Yi for all i � j. In this case, since (Yj,Y∅) is d j-
connected and dj ≥ 0, choose a path from f (W) to some point in Y∅ and use
this as the homotopy, so that f1(W) ⊂ Y∅. Then the first condition holds and so
does the third (in this case, the third condition is vacuously satisfied since the
inverse image in question is empty). This proves the base case.

Since the inclusion ∂W ⊂ W is a cofibration (the proof is similar to Exam-
ple 2.3.5) for any cube W, we may extend over all cubes W so that the first
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and second conditions hold. By induction, suppose that f has been changed by
a homotopy satisfying all three conditions for cubes of dimension less than l,
and let W be a cube with dim(W) = l. If f (W) ⊂ Y∅, we let ft = f as above. If
f (W) ⊂ Yj and f (W) � Yi for all i � j, then we have the following.

● If dim(W) = l ≤ d j, then, as (Yj,Y0) is d j-connected, there is a homotopy
ft of f relative to ∂W such that f1(W) ⊂ Y∅, and clearly the first and third
conditions hold.

● If dim(W) = l > d j, we employ Lemma 6.3.3. Let A = Yj \ Y∅ ⊂ Yj. By
induction we have that, for all W′ ⊂ ∂W,

f −1(Yj \ Y∅) ∩ W ′ ⊂ K j,n
l (W ′) ⊂ K j,n

d j+1(W ′),

and, by Lemma 6.3.3, there is a homotopy ft of f relative to ∂W such that
f −1
1 (Yj \ Y∅) ∩ W ⊂ K j,n

d j+1(W).
�

We need to convert the strongly (homotopy) cocartesian cube X in the state-
ment of Lemma 6.3.1 into one where the maps are inclusions of open sets in
order to apply the previous results. For each 1 ≤ j ≤ n and corresponding cell
e j with attaching map f j : ∂e j → X∅, assume e j = Ddj+1, put Nj = Ddj+1 − {0}
and let Vj be the interior of Ddj+1. Define an n-cube Y = (S �→ YS ) for S ⊂ n
as follows. Let U = X∅ ∪ j N j; the inclusion X∅ → U is a homotopy equiva-
lence, and U is open in Xn. For S ⊂ n let YS = U ∪ j∈S V j. Then YS is open in
Yn = Xn for each S and the inclusion map XS → YS is a homotopy equivalence
which therefore gives rise to a map of cubes X → Y.

Alternative proof of Lemma 6.3.1 With Y = (S �→ YS ) as above, choose a
basepoint y ∈ Y∅, put F ′(T ) = hofibery(YT → YT∪{k}) for T ⊂ n − 1, and let C
be the contractible space C = hofibery(Yn−1 → Yn−1). As indicated in the proof
of Lemma 6.3.1, F ′(T ) � F (T ). It is therefore enough to show that the cube
T �→ F ∗(T ) = F ′(T ) ∪C is (−1 +

∑
j d j)-cocartesian; that is, that the pair

(A, B) =
(
F ∗(n − 1),∪ j∈n−1F ∗(n − 1 − j)

)
is (−1 +

∑
j d j)-connected. Let φ : (Ik, ∂Ik) → (A, B) be a map. We will show

that φ is homotopic relative to ∂Ik to a map Ik → B for all −1 ≤ k ≤ −1+
∑

j d j

(see Definition 2.6.4 to recall the definition). In the case k = −1 there is nothing
to show, and the case k = 0 is trivial.

The map φ is adjoint to a map Φ : Ik × I → Yn with the following boundary
conditions.
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(B0) Φ(z, 0) = y ∈ Y∅ is the basepoint for all z ∈ Ik.
(B1) Φ(z, 1) ∈ ∪ j∈n−1Yj = Yn−1 for all z ∈ Ik.
(B2) For each z ∈ ∂Ik there exists i(z) ∈ n such that Φ(z, t) ∈ ∪ j�i(z)Yj for all

t ∈ I.

We will make a homotopy of Φ preserving (B0)–(B2) such that (B2) holds for
each z ∈ Ik, not just on the boundary. To achieve this we apply Theorem 6.3.4
to Φ : Ik × I → Yn and obtain a decomposition of Ik × I into cubes W such
that for each W there is some j such that Φ(W) ⊂ Yj, and a homotopy Φr,
0 ≤ r ≤ 1, of Φ = Φ0 such that

(1) Φ(W) ⊂ Yj implies Φr(W) ⊂ Yj for all r;
(2) Φ(W) ⊂ Y∅ implies Φr(W) = Φ(W) for all r;
(3) Φ(W) ⊂ Yj implies Φ−1

1 (Yj \ Y∅) ∩ W ⊂ K j,n
d j+1(W).

First we prove that Φr satisfies (B0)–(B2) for all r.

(B0) Since Φ(z, 0) = y ∈ Y∅ is the basepoint for all z ∈ Ik, for all cubes W ⊂
Ik × {0} we have that Φ(W) = y, and (2) above implies Φr(W) = Φ(W)
for all r, so that Φr(z, 0) = y for all r.

(B1) Since Φ(z, 1) ∈ ⋃
j∈n−1 Yj = Yn−1 for all z ∈ Ik, then for all cubes W ⊂

Ik × {1}, Φ(W) ⊂ Yj for some 1 ≤ j ≤ n − 1. Hence Φr(W) ⊂ Yj by (1)
above, and thus Φr(z, 1) ⊂ Yn−1 for all r.

(B2) We know that for each z ∈ ∂In there exists i(z) ∈ n such that Φ({z} × I) ⊂⋃
j�i(z) Yj. Let W1, . . . ,Wh be cubes such that {z} × I ⊂ W1 ∪ · · · ∪ Wh

and so that each Wa contains a point of the form (z, t) for some t. Since
Φ({z}×I) ⊂ ⋃

j�i(z) Yj, for each a ∈ {1, . . . , h}we must haveΦ(Wa) ⊂ Yj(a)

for some j(a) � i(z). This impliesΦr(W1∪· · ·∪Wh) ⊂ Yj(1)∪· · ·∪Yj(h) ⊂⋃
j�i(z) Yj for all r.

Now we show that Φ1 actually satisfies the stronger condition that for each
z ∈ Ik there exists i(z) ∈ n so that Φ1(z, t) ∈ ⋃

j�i(z) Yj for all t ∈ I. Let
π : Ik × I → Ik be the projection. We claim that

n⋂
j=1

π
(
Φ−1

1 (Yj \ Y∅)
)
= ∅

if k <
∑

j(d j − 1). Let y ∈ π
(
Φ−1

1 (Yj \ Y∅)
)

for all j. For each j, choose t j so

(y, t j) ∈ Φ−1
1 (Yj \ Y∅), so that y = π(y, t j) and w( j) = (y, t j) ∈ Wj for some cube

Wj ⊂ In×I. Thus, for each j, w( j) ∈ Wj∩Φ−1
1 (Yj\Y∅) ⊂ K j,n

d j+1 by condition 3 of
Theorem 6.3.4. This means that w( j) has at least d j + 1 coordinates w( j)i such
that ai+δ( j−1)/n < w( j)i < ai+δ j/n, where Wj = W(a, δ, L). This implies that
y has at least d j coordinates yi with the same bounds (note here that the index i
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only ranges from 1 to n). For each j, the projection π(Wj) is a cube containing
y, and since we have assumed that the parameter δ is independent of the cube,
this means π(Wj) = W is independent of j. Thus y has at least d j coordinates yi

such that ai + δ( j − 1)/n < w( j)i < ai + δ j/n for all j simultaneously, which is
impossible if n <

∑
j d j. Hence the intersection of sets above is indeed empty.

Hence there is some i(y) ∈ n such that y � π(Φ−1
1 (Yi(y) \ Y∅); that is, for every t,

(y, t) � Φ−1
1 (Yi(y) \ Y∅). When k = 0, the argument above requires d j ≥ 1 for at

least one j, but the case d j = 0 for all j is trivial. �

6.3.3 The formal step for n= 3

As an illustration, we will first prove the three-dimensional case of Theo-
rem 6.2.3 by reducing to Theorem 6.2.1, Lemma 6.3.1, and Theorem 4.2.1.
It does not present every nuance of the general case, but it more clearly com-
municates the spirit of the proof. The philosophy for this argument is that we
imagine a set of cells, each of which is labeled by a non-empty subset of T ,
and each space XT in the cube X = (T �→ XT ) is built from X∅ by attaching
cells with labels in all the subsets of T . More generally we imagine for R ⊂ T
that XT is built from XR by attaching cells with labels in the set of subsets U
with R � U ⊂ T . The first case to consider is when the labeling sets for the
cells are just the singleton subsets of {1, 2, 3}, so that XT is the union of the Xi

for i ∈ T , and then move on to the more general case. We begin by proving
Theorem 6.2.1 for 3-cubes.

Proof of Theorem 6.2.1 in the three-dimensional case Suppose

is strongly (homotopy) cocartesian and that the maps X∅ → Xi are ki-connected
for i = 1, 2, 3. We first reduce to the case ki ≥ 1 for all i. Without loss of
generality suppose k1 ≤ 0. In this case consider X as a map of squares Y → Z
where
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and

By Theorem 4.2.1, Y is (k2 + k3 − 1)-cartesian. Since the maps X∅ → Xi

are ki-connected for k = 1, 2 and the faces ∂S
∅X are homotopy cocartesian

for S = {1, 2}, {1, 3}, 2(a) of Proposition 3.7.13 implies that X1 → X12 is k2-
connected and X1 → X13 is k3-connected. Hence, by Theorem 4.2.1, Z is also
(k2 + k3 − 1)-cartesian. By 2(b) of Proposition 5.8.13, it follows that the 3-cube
X is (k2 + k3 − 2)-cartesian. Since k1 ≤ 0 and k2 + k3 − 2 ≥ k1 + k2 + k3 − 2, we
obtain the desired result. Thus we may assume that k1 ≥ 1 and, by the same
argument, that ki ≥ 1 for all i.

We may further assume that X is a cofibrant pushout cube by Theo-
rem 5.8.23, and that (Xi, X) is a relative CW complex with cells of dimension
≥ ki + 1 by using Theorem 1.3.7 and then Theorem 2.6.26. By a similar
argument to that given in Theorem 4.2.1 (see Section 4.4.3), this time using
Proposition 5.4.14, we may reduce to the cube considered in Lemma 6.3.1.
That is, we may assume X is the cube

Let x ∈ X ∪ e3 be any basepoint and consider the square F =
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By Lemma 6.3.1, F is (k1 + k2 + k3 − 1)-cocartesian. By Theorem 4.2.1, the
left vertical map is (k2 + k3 − 1)-connected and the upper horizontal map is
(k1 + k3 − 1)-connected. It follows from Theorem 4.2.3 that F , and hence X, is
(k1 + k2 + k3 − 2)-cartesian. �

Proof of Theorem 6.2.3 in the three-dimensional case Now suppose the cube

satisfies the following conditions:

1. It is is k123-cocartesian.
2. For each T = {i, j} ⊂ {1, 2, 3} of cardinality 2, the square

is kT -cocartesian.
3. The maps X∅ → Xi are ki-connected.
4. For U ⊂ T , kU ≤ kT .

By Theorem 5.8.23, we may also assume X is a cofibrant cube. In particular,
this means the maps X∅ → Xi are cofibrations for i = 1, 2, 3.

Temporary notation: for R, S ⊂ {1, 2, 3}, we let R and S stand for XR and XS

respectively, and let R + S stand for the union of XR with XS along XR∩S . That
is, R + S will stand for colim(XR ← XR∩S → XS ). The maps in this diagram
are cofibrations, so this colimit is weakly equivalent to the homotopy colimit
of this punctured square by Proposition 3.6.17. Furthermore, we will write i j
in place of {i, j}, and so on.
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Let X({1, 2, 3}) denote the strongly homotopy cocartesian cube

It is (k1 + k2 + k3 − 2)-cartesian by Theorem 6.2.1; this was the content of the
previous proof. Now consider the 3-cube

This can be factored as a “product” X({12, 3}) = X({1, 2, 3})Z1,

The back face ∂13
∅ Z1 of Z1 is homotopy cartesian by 1(b) of Proposi-

tion 3.3.11, as the horizontal arrows are both weak equivalences. The front
face ∂123

2 Z1, namely
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is homotopy cocartesian as follows. Consider the diagram

The left, middle, and right squares are both cocartesian by construction. The
map ∅ → 3 is assumed to be a cofibration, and hence both 1 → 1 + 3 and then
1+2 → 1+2+3 are cofibrations by Proposition 2.3.15. Hence Proposition 3.7.6
implies each of these squares is homotopy cocartesian; in particular, the right-
hand square ∂123

2 Z1 is homotopy cocartesian.
The map ∅ → 3 is k3-connected, and by two applications of 2(a) of Propo-

sition 3.7.13 (the pushout of a k-connected map is k-connected), 1 + 2 →
1+ 2+ 3 is also k3-connected. Hence the square ∂123

2 Z1 above is (k3 + k12 − 1)-
cartesian by Theorem 4.2.1. It follows by 2(b) of Proposition 5.4.13 that Z1

is (k3 + k12 − 2)-cartesian, and by 2(b) of Proposition 5.4.14 that X({12, 3})
is (min{k1 + k2 + k3, k3 + k12} − 2)-cartesian. The remainder of the argu-
ment follows a similar vein, and we will omit references to the specific
results we were careful to cite above and let the reader fill in the details. The
3-cube
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can be factored as a product X({12, 3})Z2, that is,

The top face ∂12
∅ Z2 of Z2 is homotopy cartesian and its bottom face ∂123

3 Z2,
namely

is homotopy cocartesian. Once we have a number for how cartesian ∂123
3 Z2 is,

we will have one for Z2. The bottom face ∂123
3 Z2 itself factors as

The top square is homotopy cocartesian and (k2 + k13 − 1)-cartesian by Theo-
rem 4.2.1, and the bottom square is also homotopy cocartesian and (k12 + k13 −
1)-cartesian by Theorem 4.2.1. Since k2 ≤ k12, the product (the outer square) is
(k2+ k13−1)-cartesian, and so Z2 is (k2+ k13−2)-cartesian. Hence X({12, 13})
is (min{k1 + k2 + k3, k3 + k12, k2 + k13} − 2)-cartesian. Continuing, we factor
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as a product

(where Z3 is the bottom cube in the factorization). The back face ∂13
∅ Z3 of

Z3 is homotopy cartesian, and hence its front face ∂123
2 Z3 will determine how

cartesian Z3 is. We have

which is homotopy cocartesian. It factors as a product
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All three subsquares, left, middle, and right, are homotopy cocartesian. The-
orem 4.2.1 implies they are, respectively, (k1 + k23 − 1)-, (k12 + k23 − 1)-,
and (k13 + k23 − 1)-cartesian. Since k1 ≤ k12, k13, the outer square ∂123

2 Z3

is (k1 + k23 − 1)-cartesian, and hence Z3 is (k1 + k23 − 2)-cartesian. Thus
X(12, 13, 23) is (min{k1 + k2 + k3, k3 + k12, k2 + k13, k1 + k23} − 2)-cartesian.
Finally, the cube

factors as a product

(where Z4 is once again the bottom cube in the factorization). The face ∂13
∅ Z4

is homotopy cartesian, and hence the number for Z4 comes from a number for
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In this case the left face, the 1-cube 23 → 23, is homotopy cartesian and since
12+ 13+ 23 → 123 is k123-connected, the square is (k123 − 1)-cartesian. Hence
Z4 is (k123−2)-cartesian. Then X({123}) = X is (min{k1+ k2+ k3, k3+ k12, k2+

k13, k1 + k23, k123} − 2)-cartesian. �

Remark 6.3.5 Following the proof above it is easy to see that the hypothesis
kU ≤ kT for U ⊂ T can be weakened. In particular, we only used k2 ≤ k12,
and k1 ≤ k12, k13. This set of inequalities clearly depends upon our chosen
factorization of X in terms of the cubes X(A); different factorizations lead to
a different set of necessary inequalities. In the general case presented below,
the hypothesis can also be weakened, although to precisely determine a set of
minimal inequalities we would have to perform a more careful analysis of the
connectivities of various maps in our proofs. �

6.3.4 The formal step for n-cubes

The induction argument used to prove Theorems 6.2.1 and 6.2.3 is organized
as follows. We first prove Theorem 6.2.1 for n-cubes using Theorems 6.2.1
and 6.2.3 for cubes of dimension ≤ n − 1. We then prove Theorem 6.2.3 using
Theorem 6.2.1 for cubes of dimension ≤ n and Theorem 6.2.3 for cubes of
dimension ≤ n − 1.

Proof of the Blakers–Massey Theorem 6.2.1 for n-cubes using
Theorem 6.2.3 for (n − 1)-cubes

The goal is to reduce to the case where we only have to consider a strongly
(homotopy) cocartesian cube of the form considered in Lemma 6.3.1 and then
apply Proposition 5.4.12, which says that a map of n-cubes Y → Z is a k-
cartesian (n + 1)-cube if and only if the n-cube of fibers hofiber(Y → Z) is
k-cartesian.

Lemma 6.3.6 Theorem 6.2.1 holds if k j ≤ 0 for some j ∈ S .

Proof If k j ≤ 0 for some j, write X = (Y → Z) for (S − { j})-cubes Y =
(T �→ XT ) and Z = T �→ XT∪{ j}. Both Y and Z satisfy the hypotheses of
Theorem 6.2.1 with the same numbers ki, i ∈ S − { j}, as follows. This is trivial
for Y. For Z, note that 1(a) of Proposition 5.8.13 says that Z is homotopy
cocartesian since X and Y are; this also implies that Z is strongly homotopy
cocartesian for the same reason. The maps Z∅ → Zi are ki-connected since we
have for each i a homotopy cocartesian square
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and since Y∅ → Yi is ki-connected for each i, by 2(a) of Proposition 5.8.13
(which is a generalization of 2(a) of Proposition 3.7.13, which also applies),
Z∅ → Zi is also ki-connected for each i. Write k = 1−n+

∑
i∈S ki. By induction

using Theorem 6.2.1, both Y and Z are (k + 1)-cartesian since 1 − (n − 1) +∑
i� j ki ≥ 1 − n + 1 +

∑
i∈S ki = k + 1. By 2(b) of Proposition 5.8.13, X is

k-cartesian. �

Thus it suffices to prove Theorem 6.2.1 in the case ki ≥ 1 for all i ∈ S . We
may assume X is a cofibrant cube by Theorem 5.8.23; in partcular X∅ → Xi

is a cofibration for each i. Using Theorem 1.3.8 and Theorem 2.6.26 we may
assume (Xi, X∅) is a relative CW complex where Xi is obtained from X∅ by
attaching cells of dimension ≥ ki + 1, and we may assume the number of
cells is finite by compactness of spheres, simplices, and intervals as follows.
The question of whether X is highly cartesian involves the connectivity of
X∅ → holimT�∅ XT , which is, roughly speaking, a problem concerned with
the existence of lifts of maps S i → holimT�∅ XT and S i × I → holimT�∅ XT .
These give rise by Theorem 1.2.7 to a collection of maps S i × Δ|T | → XT

and S i × Δ|T | × I → XT satisfying certain conditions. By compactness of the
domains, the images of these maps intersect finitely many cells in XT for each
T , so it suffices to consider this case for each such map.

Now by induction using Proposition 5.8.13, we may reduce to the case con-
sidered in Lemma 6.3.1. This argument is essentially the same one presented
in the proof of Theorem 4.2.1 in Section 4.4.3, and we let the reader fill in the
details.

Lemma 6.3.7 Theorem 6.2.1 is true for a cube of the form appearing in
Lemma 6.3.1.

Proof Let X be as in Lemma 6.3.1. Choose any basepoint in Xn, and let F
be the associated (n − 1)-cube of homotopy fibers, which is (−1 +

∑n
i=1 ki)-

cocartesian. In fact, Lemma 6.3.1 implies that each face ∂T
∅ F is kT -cocartesian,

where kT = −1+kn+
∑

i∈T ki, since ∂T
∅ F is obtained from the (|T |+1)-cube R �→

XR, R ⊂ T ∪ {n} in precisely the same way F is obtained from X. Moreover,
these numbers satisfy the inequalities in the statement of Theorem 6.2.1, since
the ki are all positive. The sum

∑
α kTα is minimized by the trivial partition of

n − 1 consisting of one set because kn ≥ 1 and kT = −1 + kn +
∑

i∈T ki. Hence
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F is 1 − (n − 1) + −1 + kn +
∑

i∈n−1 ki = 1 − n +
∑

i ki = k-cartesian. Thus, by
Proposition 5.4.12, X is k-cartesian. �

Proof of Theorem 6.2.3 using Theorem 6.2.1 for n-cubes
We may assume that S = n. By Theorem 5.8.23, we may assume that X is a
cofibrant cube, which means that, for all T ⊂ n, the map

colim
U∈P1(T )

XU −→ colim
U⊂T

XU = XT

is a cofibration, so the first hypothesis in Theorem 6.2.3 says that for every
∅ � T ⊂ S the map

colim
U∈P1(T )

XU −→ XT (6.3.1)

is kT -connected.
We will be forming colimits over “convex” subsets of n other than P1(n),

although we can avoid using the machinery of general limits and colimits
developed in the second half of this book. Since we are assuming our cube
is a cofibrant cube, we may define colimA X, for any collection A ⊂ P(n) such
that ∅ ∈ A, to be the union along X∅ of XS where S ∈ A. Note that in the case
where A = P1(S ) for some S ⊂ n, this colimit agrees with the already defined
colimit colimP1(S ) X. Call a subset A ⊂ P(n) convex if A ∈ A and S ≤ A
implies S ∈ A. We say A ∈ A is maximal if whenever S ∈ A and A ⊂ S then
S = A.

Lemma 6.3.8 ([Goo92, Claim 2.8]) Suppose B and C are convex subsets of
P(n), and suppose X is a cofibrant n-cube. Then the square

is a pushout square of cofibrations, and hence a homotopy pushout.

A generalization of this appears as the second part of Proposition 8.6.6.

Proof Both C = colim(colimC X ← colimB∩C X → colimB X) and C′ =
colimB∪C X are quotients of

⊔
S∈B∪C XS by an equivalence relation. We only

need to show that the equivalence relations ∼C and ∼C′ used to generate the
quotients C and C′ respectively are the same. Let fS⊂T : XS → XT denote the
maps in the cube X. It is clear from the canonical map C′ → C that x ∼C y
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implies x ∼C′ y. The relation x ∼C′ y means that x ∈ XS and y ∈ XT for some
S ,T ∈ B ∪ C and that there exists z ∈ XR, R ⊂ S ,T , R ∈ B ∪ C such that
x = fR⊂S (z) and y = fR⊂T (z). By convexity of B and C, R ∈ B ∩ C, and so
x ∼C y as well.

If B ⊂ C is an inclusion of convex sets, then the induced map colimB X →
colimC X is a cofibration because it is composition of cofibrations. Choose a
sequence

B = B1 ⊂ B2 ⊂ · · · ⊂ Bk = C

of convex sets B1 such that Bi − Bi−1 consists of a single set Bi. This can be
done, for example, by choosing a minimal element B2 of C − B and letting
B2 = B1 ∪ {B2} – convexity of B and C ensures B2 is convex. Then Bi is
necessarily a maximal element of Bi, and we have by the above a pushout
square

Since X is a cofibrant cube, the top horizontal arrow is a cofibration,
and since the square is a pushout, so is the lower horizontal arrow by
Proposition 2.3.15. �

The above generalizes.

Lemma 6.3.9 Suppose that A1, . . . ,Ak are convex subsets of P(n), and that
X is a cofibrant n-cube. Then the k-cube Y = S �→ YS given by

YS =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
colim
∩i∈k−SAi

X, S � k;

colim
∪i∈kAi

X, S = k

is cocartesian and homotopy cocartesian.

Proof We use induction on k and use Lemma 6.3.8. The base case k = 2 is
Lemma 6.3.8. By Lemma 5.6.7, we have a homeomorphism

colim
S∈P1(k)

YS � colim

(
Yk ← colim

R∈P1(k−1)
YR → colim

R∈P1(k−1)
YR∪{k}

)
.
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By induction, colimR∈P1(k−1) YR � Yk−1 = colimA1∪···∪Ak−1 X, and by definition

colim
R∈P1(k−1)

YR∪{k} = colim
R∈P1(k−1)

colim
i∈∩k−R(Ai∩Ak)

X,

which, again using induction (this time with the Ai replaced with Ai ∩Ak), is
homeomorphic to

colim
Ak∩(A1∪···∪Ak−1)

X.

Thus we have a pushout square

and, by Lemma 6.3.8, colimP1(k) YS � colimA1∪···∪Ak X. That the original cube
is homotopy cocartesian follows from the fact that X is cofibrant. �

Lemma 6.3.10 Let X = S �→ XS be a cofibrant n-cube such that
colimU∈P1(T ) XU → XT is kT -connected for all T ⊂ n. If A is a convex subset
of P(n) and A ∈ A is a maximal element, then the map

colimA−{A} X −→ colimA X
is kA-connected.

Proof We proceed as in the proof of Lemma 6.3.8. Let B = A − A and
C = P(A). These are clearly convex. Then A − A ∩ P(A) = P1(A) and by
Lemma 6.3.8 we have a pushout square of cofibrations

Since colimP(A) X = X(A), 2(a) of Proposition 3.7.13 implies that
colimA−{A} X → colimA X is kA-connected since the top horizontal map is
assumed to be kA-connected by hypothesis. �

Recall that ∂T
UX is the (T −U)-cube R �→ XR for U ⊂ R ⊂ T (Definition 5.1.1);

this is the face of X indexed by the pair (U,T ). As in Section 6.3.3, we will
factor X by cubes XA indexed by various convex subsets A.
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Definition 6.3.11 For a convex subset A ⊂ P(n), define XA to be the n-cube

XA(T ) = colim
U∈A, U⊂T

XU .

Since A is convex, the indexing category for this colimit is equivalent to the
convex subcategory A∩ P(T ). Thus

XA(T ) = colim
U∈A∩P(T )

XU .

Proof of Theorem 6.2.3 Choose an increasing sequence A1 ⊂ A2 ⊂ · · · ⊂
Am of convex subsets of P(n) such that

● A1 = {S ∈ P(n) : |S | ≤ 1};
● Am = P(n);
● A j −A j−1 = {Sj} is a single subset Sj ∈ P(n);
● the sequence |Sj| is non-decreasing in j.

For j ≥ 2, we will show below how to factor XA j as XA j−1Z j for some n-
cube Z j (recall the product notation Z = XY for cubes from Remark 5.4.15).
Lemmas 6.3.12 and 6.3.13 will show that Z j is (1 − n + min{Tβ}{

∑
β kTβ })-

cartesian where the minimum is taken over all partitions {Tβ} of n which
contain Sj as one block, and for which all other blocks are elements of A j−1

(terminology for partitions was discussed just before the statement of Theo-
rem 6.2.3). Applying 2(a) of Proposition 5.4.14, together with the fact that
XA1 is (1 − n +

∑
i ki)-cartesian by Theorem 6.2.1, proves the result. �

The choice of increasing sequence above is arbitrary, and the condition that |Sj|
be non-decreasing in j is not strictly necessary but it streamlines the organiza-
tion. We now define the factorizations of the XA j for j ≥ 2. With A j and Sj as
above, write Sj = {a1, . . . , ak}, and note that by hypothesis k ≥ 2 for all j.

Define Z j to be the cube

Z j(T ) =

⎧⎪⎪⎨⎪⎪⎩XA j−1 (T ∪ {ak}), if ak � T ;

XA j (T ), if ak ∈ T .
(6.3.2)

The factorization XA j = XA j−1Z j is immediate, since if we write

Z j = ∂
n−{ak}
∅ Z j −→ ∂

n
{ak}Z j,

we have by definition ∂n−{ak}
∅ Z j = ∂

n
{ak}XA j−1 and ∂n

{ak}Z j = ∂
n
{ak}XA j . Note that

if R ⊂ n is a set which does not contain Sj, then

XA j (R) = XA j−1 (R) (6.3.3)
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because A j ∩ P(R) = A j−1 ∩ P(R) for such R. Equation (6.3.3) implies that
many of the faces of Z j are cartesian, and in particular means that we can find
a face of Z j which will tell us how cartesian Z j itself is.

Lemma 6.3.12 With Sj = {a1, . . . , ak} as above, if ∂
n
Sj−{ak}Z j is (K + |Sj| −

1)-cartesian, then Z j is K-cartesian.

Proof We need the following fact: if U ⊂ R ⊂ n satisfies ak � U, ak ∈
R, and Sj � R, then the face ∂R

UZ j is homotopy cartesian. This is true by
Example 5.4.4 since

∂R
UZ j = ∂

R−{ak}
U Z j −→ ∂R

U∪{ak}Z j

is a map of identical (|R| − |U | − 1)-cubes by definition of Z j and using
Equation (6.3.3). Now write

Z j =
(
∂

n−{a1}
∅ Z j −→ ∂

n
{a1}Z j

)
.

Since ∂n−{a1}
∅ Z j is homotopy cartesian by the fact above with U = ∅ and R =

n − {a1}, 2(b) of Proposition 5.4.13 implies that Z j is K-cartesian if ∂n
{a1}Z j is

(K + 1)-cartesian. More generally, for l < k write

∂
n
{a1,...,al−1}Z j =

(
∂

n−{al}
{a1,...,al−1}Z j −→ ∂

n
{a1,...,al−1,al}Z j

)
.

Then ∂
n−{al}
{a1,...,al−1}Z j is homotopy cartesian by the fact above with U =

{a1, . . . , al−1} and R = n−{al}. Again by 2(b) of Proposition 5.4.13, ∂n
{a1,...,al−1}Z j

is (K + l − 1)-cartesian if ∂n
{a1,...,al−1,al}Z j is (K + l)-cartesian. Hence Z j is

K-cartesian if ∂n
Sj−{ak}Z j is (K + |Sj| − 1)-cartesian. �

Our goal now is to use Theorem 6.2.3 for cubes of dimension less than n on
the (n − |Sj| + 1)-cube ∂n

Sj−{ak}Z j, noting that |Sj| ≥ 2 implies this is in fact a
cube of dimension strictly less than n.

Lemma 6.3.13 The cube ∂
n
Sj−{ak}Z j is (|Sj| − n + min{Tβ}{

∑
β kTβ })-cartesian,

where {Tβ} ranges over all partitions of n which contain Sj as one block, and
all other blocks are elements of A j−1. Hence Z j is (1 − n + min{Tβ}{

∑
β kTβ })-

cartesian, where {Tβ} is as above.

Proof We will use Theorem 6.2.3 for cubes of dimension less than n and
induction on j. In order to do this we need to establish how cocartesian the
various faces ∂R

Sj−{ak}Z j, Sj − {ak} ⊂ R ⊂ n are. We will prove the following.
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1. If |R − (Sj − {ak})| = 1, then ∂R
Sj−{ak}Z j is

⎧⎪⎪⎨⎪⎪⎩kSj -cocartesian if ak ∈ R, so R = Sj,

ka-cocartesian if ak � R, and R = Sj − {ak} ∪ {a}.

2. If |R − (Sj − {ak})| ≥ 2, then ∂R
Sj−{ak}Z j is

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
∞-cocartesian if ak ∈ R,

∞-cocartesian if ak � R,R − (Sj − {ak}) � A j−1,

kR−(Sj−{ak})-cocartesian if ak � R,R − (Sj − {ak}) ∈ A j−1.

Since the cube in question is indexed by those sets R such that Sj−{ak} ⊂ R ⊂ n,
the minimum over partitions of n appearing in Theorem 6.2.3 is over those
partitions of n which have a block containing Sj − {ak} as a proper subset.
Clearly the sum over such partitions is minimized when one of the parti-
tion blocks is the set Sj itself and all others are elements of A j−1, for any
other partition would yield ∞ for the overall estimate by the estimates claimed
above.

For the first item, if R = Sj, then

∂R
Sj−{ak}Z j =

(
Z j(Sj − {ak}) → Z j(Sj)

)
=

(
XA j−1 (Sj) → XA j (Sj)

)
=

(
colimU∈A j−1∩P(Sj) XU → colimV∈A j∩P(Sj) XV

)
�

(
colimU∈P1(Sj) XU → colimV∈P(Sj) XV = XSj

)
is kSj -connected by hypothesis. The last weak equivalence follows from the
fact that A j−1 contains all proper subsets of Sj, and using the fact that Sj is the
maximal element of P(Sj).

If R = Sj − {ak} ∪ {a}, then of course a � Sj and, since ak � R, we have

∂R
Sj−{ak}Z j =

(
Z j(Sj − {ak}) → Z j((Sj − {ak}) ∪ {a})

)
=

(
XA j−1 (Sj) → XA j−1 (Sj ∪ {a})

)
=

(
colimU∈A j−1∩P(Sj) XU → colimV∈A j−1∩P(Sj∪{a}) XV

)
�

(
colimU∈P1(Sj) XU → colimV∈A j−1∩P(Sj∪{a}) XV

)
.

We have to show that this map of spaces is ka-connected. Choose an increasing
sequence of convex sets

P1(Sj) = B1 ⊂ · · · ⊂ Bl = A j−1 ∩ P(Sj ∪ {a})
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such that Bi − Bi−1 consists of a single set Ri. The map

colim
Bi−1

X −→ colim
Bi

X

is kRi -connected by Lemma 6.3.10. Note that a ∈ Ri for all i sinceA j−1 contains
every proper subset of Sj but does not contain Sj itself. Moreover, for some i0,
we have Ri0 = {a}. Since we assume U ⊂ T implies kU ≤ kT , it follows that the
map

Z j(Sj − {ak}) = colim
B1

X → colim
Bl1

X = Z j((Sj − {ak}) ∪ {a})

is ka-connected.
The second item, when |R − (Sj − {ak})| ≥ 2, proceeds in a similar fashion.

We have to determine the connectivity of the map

colim
Sj−{ak}⊂U�R

Z j(U) −→ Z j(R). (6.3.4)

We will consider two cases: ak ∈ R and ak � R. First suppose ak ∈ R. The map
in Equation (6.3.4) can then be written as

It is enough to show that the square
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is homotopy cocartesian. Reindexing, the square above is equivalent to the
square

Finally, using the definitions of Z and XA, we obtain the equivalent square

Note that A j = A j−1 ∪ P(Sj), so A j ∩ P(R) = (A j−1 ∩ P(R)) ∪ P(Sj). Clearly
P(Sj) ⊂ A j ∩ P(U ∪ Sj) (in fact for every U). It follows that the union of the
convex set A j−1 ∩ P(R) with the convex set {A j ∩ P(U ∪ Sj) : U � R − Sj} is
equal toA j∩P(R), and Lemma 6.3.8 implies that the square above is homotopy
cocartesian.

Next suppose ak � R. In this case the map in Equation (6.3.4) can be
written as

colim
U�R−(Sj−{ak})

colim
V∈A j−1∩P(U∪Sj−{ak})

XV −→ colim
V∈A j−1∩P(R)

XV .

Observe that any set V ∈ A j−1 ∩P(R) which is not in {A j−1 ∩P(U ∪ Sj) : U �
R − (Sj − {ak})} must contain R − (Sj − {ak}). If R − (Sj − {ak}) � A j−1, then
the map is a weak equivalence by Lemma 6.3.9 since the collection {A j−1 ∩
P(U ∪ Sj) : U � R − (Sj − {ak})} is a covering of A j−1 ∩ P(R) by convex sets.
If R − (Sj − {ak}) ∈ A j−1, then choose an increasing sequence

{A j−1P(U ∪ Sj) : U � R − Sj} = B1 ⊂ · · · ⊂ Bl = A j−1 ∩ P(R)

such thatBi−Bi−1 = Ri consists of a single set Ri for i ≥ 2. Since kU ≤ kT holds
for all U ⊂ T and each Ri must contain R − (Sj − {ak}), and in fact be equal to
R−(Sj−{ak}) for some i, the map is therefore kR−(Sj−{ak})-connected. This estab-
lishes the connectivity estimates claimed above. It follows from Lemma 6.3.12
that Z j is (1 − n + min{Tβ}{

∑
β kTβ })-cartesian, where {Tβ} ranges over all par-

titions of n which contain Sj as one block and for which all other blocks are
elements of A j−1. �
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6.4 Proofs of the dual Blakers–Massey Theorems for
n-cubes

The proof of the dual of the generalized Blakers–Massey Theorem, Theo-
rem 6.2.2, is considerably easier than the proof of Theorem 6.2.1; the analog
of the geometric step is simpler and more straightforward as it immediately
follows from Proposition 5.10.4.

Proof of Theorem 6.2.2 SinceX is strongly (homotopy) cocartesian we apply
Proposition 5.10.4 to see that

hofiber(b(X)) = hofiber(hocolimS∈P1(n) XS → Xn)

� ∗
i∈n

hofiber(Xn−{i} → Xn)

for any choice of basepoint in Xn. Since the maps Xn−{i} → Xn are assumed
to be ki-connected for each i, the spaces hofiber(Xn−{i} → Xn) are (ki − 1)-
connected for each i. Repeated application of Proposition 3.7.23 then shows
that the n-fold join above is 2(n−1)+

∑n
i=1 ki−1 = (n−2+

∑n
i=1 ki)-connected, so

that b(X) is (−1+n+
∑n

i=1 ki)-connected andX is (−1+n+
∑n

i=1 ki)-cocartesian.
�

We now present the proof of Theorem 6.2.4, the proof of which is precisely
dual to the proof of Theorem 6.2.2, and so we omit a discussion of the three-
dimensional result and give an overall much sketchier treatment.

Proof of Theorem 6.2.4 Assume S = n. By Theorem 5.4.23 we may assume,
that, for all T ⊂ S, the map

Xn−T = lim
U∈P(T )

XU∪n−T −→ lim
U∈P0(T )

XU∪n−T

is a fibration. Hence the first hypothesis in Theorem 6.2.4 says that, for all
T � n, the map

Xn−T −→ lim
U∈P0(T )

XU∪n−T (6.4.1)

is kT -connected.
For a collection A ⊂ P(n) such that n ∈ A, we define limA X to be the

fiber product of XS , over Xn, where S ∈ A. Evidently if A = P0(S ) for some
S ⊂ n, this agrees with the already defined quantity limP0(S ) X. We call a subset
A ⊂ P(n) concave if A ∈ A and A ⊂ S implies S ∈ A, and we call an element
A ∈ A minimal if S ∈ A and S ⊂ A implies S = A. We have the following
generalizations of Lemmas 6.3.8, 6.3.9, and 6.3.10.
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Lemma 6.4.1 Suppose X is a fibrant cube and B,C are concave. Then the
square

is a pullback square of fibrations, and hence a homotopy pullback.

Proof Dual to the proof of Lemma 6.3.8. �

Lemma 6.4.2 Suppose thatA1, . . . ,Ak are concave subsets ofP(n), and that
X is a fibrant n-cube. Then the k-cube Y = S �→ YS given by

YS =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
lim∩i∈SAi

X, S � ∅;

lim∪i∈kAi

X, S = ∅

is cartesian and homotopy cartesian.

Proof Dual to the proof of Lemma 6.3.9. �

Lemma 6.4.3 SupposeX = S �→ XS is a fibrant n-cube and the map Xn−T →
limU∈P0(T ) XU∪n−T is kT -connected for each T . If A is a concave subset of P(n)
and A ∈ A is a minimal element, then the map

limA X −→ lim
A−{A}

X

is kn−A-connected.

Proof Dual to the proof of Lemma 6.3.10. �

Definition 6.4.4 For a concave subset A ⊂ P(n), define XA to be the n-cube

XA(T ) = lim
U∈A,T⊂U

XU . (6.4.2)

Proof of Theorem 6.2.4 Choose an increasing sequence of concave subsets
A1 ⊂ A2 ⊂ · · · ⊂ Am of P(n) such that

● A1 = {S ∈ P(n) : |S | ≥ n − 1};
● Am = P(n);
● A j −A j−1 = {Sj} is a single subset Sj ∈ P(n);
● the sequence |Sj| is non-increasing in j.
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For j ≥ 2 we will factor XA j = Z jXA j−1 for some n-cube Z j to be defined
below. Lemmas 6.4.5 and 6.4.6 will show that Z j is (−1+n+min{Tβ}{

∑
β kTβ })-

cocartesian where {Tβ} ranges over all partitions of n which contain Sj as one
block, and all other blocks are elements of A j−1. Applying 2(a) of Proposi-
tion 5.8.14 and using that XA1 is (−1+n+

∑
i ki)-cocartesian by Theorem 6.2.2

then proves the desired result. �

With A j and Sj as above, write n − Sj = {a1, . . . , ak}. Define Z j to be the cube

Z j(T ) =

⎧⎪⎪⎨⎪⎪⎩X
A j (T ), if ak � T ;

XA j−1 (T − {ak}), if ak ∈ T .
(6.4.3)

The factorization XA j = Z jXA j−1 is immediate. We claim now that the degree
to which Z j is cocartesian is determined by one of its subcubes.

Lemma 6.4.5 With n − Sj = {a1, . . . , ak} as above, if ∂
Sj∪{ak}
∅ Z j is (K − n +

|Sj| + 1)-cocartesian, then Z j is K-cocartesian.

Proof Suppose U ⊂ R ⊂ n are chosen so that ak � U, ak ∈ R, and U � Sj.
The face ∂R

UZ j is homotopy cocartesian since

∂R
UZ j =

(
∂R−{ak}

U Z j −→ ∂R
U∪{ak}Z j

)
is a map of identical (|R| − |U | − 1)-cubes by definition of Z j. Indeed, the
condition that U � Sj implies T � Sj for U ⊂ T , thus for such T we have
XA j (T ) = XA j−1 (T ).

Now write

Z j =
(
∂

n
∅Z j = ∂

n−{a1}
∅ Z j −→ ∂

n
{a1}Z j

)
.

The cube ∂n
{a1}Z j is homotopy cocartesian because the pair (U,R) = ({a1}, n)

satisfies the properties described above. Hence by 2(b) of Proposition 5.8.13,
if ∂n−{a1}

∅ Z j is (K − 1)-cocartesian then ∂n
∅Z j is K-cocartesian. More generally,

for l < k we have

∂
n−{a1,...,al−1}
∅ Z j =

(
∂

n−{a1,...,al−1,al}
∅ Z j −→ ∂

n−{a1,...,al−1}
{al} Z j

)
and (U,R) = ({al}, n − {a1, . . . , al−1}) satisfies the above properties, which

implies that ∂n−{a1,...,al−1}
{al} Z j is homotopy cocartesian and hence again by 2(b) of

Proposition 5.8.13, ∂n−{a1,...,al−1}
∅ Z j is (K − l + 1)-cocartesian if ∂n−{a1,...,al−1,al}

∅ Z j

is (K − l)-cocartesian. It follows that Z j is K-cocartesian if ∂n−{al,...,ak−1}
∅ Z j =

∂
Sj∪{ak}
∅ Z j is (K − n + |Sj| + 1)-cocartesian. �
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Lemma 6.4.6 The cube ∂
Sj∪{ak}
∅ Z j is (min{Tβ}{

∑
β kTβ } + |Sj|)-cocartesian,

where {Tβ} ranges over all partitions of n which contain Sj as one block
and for which all other blocks are elements of A j−1. Hence Z j is (−1 + n +
(min{Tβ}{

∑
β kTβ })-cocartesian, where {Tβ} is as above.

Proof Once we establish how cartesian the faces ∂
Sj∪{ak}
R Z j, R ⊂ n are, this

will follow from Theorem 6.2.4 for cubes of dimension less than n since |Sj| ≤
n − 2 for all j using the estimates below. We must show the following.

1. If |Sj ∪ {ak} − R| = 1, then ∂
Sj∪{ak}
R Z j is

⎧⎪⎪⎨⎪⎪⎩kn−Sj -cartesian if R = Sj,

ka-cartesian if Sj ∪ {ak} − R = {a}, a � ak.

2. If |Sj ∪ {ak} − R| ≥ 2, then ∂
Sj∪{ak}
R Z j is

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
∞-cartesian if ak � R,

∞-cartesian if ak ∈ R, n − (Sj ∪ {ak} − R) � A j−1,

kSj∪{ak}−R-cartesian if ak ∈ R, n − (Sj ∪ {ak} − R) ∈ A j−1.

For the first item, if R = Sj, then

∂
Sj∪{ak}
Sj

Z j =
(
Z j(Sj) −→ Z j(Sj ∪ {ak})

)
=

(
XA j (Sj) −→ XA j−1 (Sj)

)
=

(
lim

U∈A j,Sj⊂U
XU −→ lim

U∈A j−1,Sj⊂U
XU

)

�
(

lim
V∈P(n−Sj)

XV∪Sj −→ lim
V∈P0(n−Sj)

XV∪Sj

)

�
(
XSj −→ lim

V∈P0(n−Sj)
XV∪Sj

)
.

The penultimate equivalence follows from the concavity of the Ai. The last
map is kn−Sj -connected by hypothesis.

If Sj ∪ {ak} − R = {a} for some a � ak, then

∂
Sj∪{ak}
R Z j =

(
Z j(R) −→ Z j(Sj ∪ {ak})

)
=

(
XA j−1 (Sj − {a}) −→ XA j−1 (Sj)

)
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=
(

lim
U∈A j−1,Sj−{a}⊂U

XU −→ lim
U∈A j−1,Sj⊂U

XU

)
�

(
lim

U∈A j−1,Sj−{a}⊂U
XU −→ lim

V∈P0(n−Sj)
XV∪Sj

)
.

The last equivalence follows from the concavity of A j−1. We must show that
this last map is ka-connected. Choose an increasing sequence of concave sets

{V ∈ A j−1 : V ⊃ Sj} = B1 ⊂ · · · ⊂ Bl = {V ∈ A j−1 : V ⊃ Sj − {a}}

such that Bi − Bi−1 consists of a single set Ri. By Lemma 6.4.3, the map
limBi X → limBi−1 X is kn−Ri -connected. For some i0, we have Ri0 = n − {a}. In
this case, the map limBi0

X → limBi0−1 X is ka-connected. Moreover, {a} � Ri

for all i, and thus Ri ⊂ n − {a} for all i. Using that ka ≤ kn−Ri for all i, we see
that the composed limBl X → limB1 X is ka-connected.

For the second item, when |Sj ∪ {ak} − R| ≥ 2, there are two cases, both of
which claim something about the connectivity of the map

Z j(R) −→ lim
R�U⊂Sj∪{ak}

Z j(U). (6.4.4)

First suppose that ak � R. In this case the connectivity of the map in
Equation (6.4.4) is equal to how cartesian the square

is. Using the definitions of Z j and XA, this square is equal to the square

Since A j = A j−1 ∪ {Sj}, for V ∈ A j such that V contains R, then either V ∈
A j−1 or V = Sj (since A j−1 contains all subsets which contain Sj as a subset).
But in this case, since ak � R, R is a subset of Sj, and since |Sj ∪ {ak} − R| ≥ 2,
Sj contains R as a proper subset. Hence R � U ⊂ V and V ∈ A j. It follows that
{V ∈ A j : V ⊃ R} is covered by the concave subcategories {V ∈ A j−1 : V ⊃ R}
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and {V ∈ A j : V � R}, and by Lemma 6.4.2, the square is homotopy cartesian.
Hence the map in Equation (6.4.4) is a weak equivalence.

Now suppose ak ∈ R. In this case, using the definition of Z j and XA j−1 ,
Equation (6.4.4) can be written as

lim
V∈A j−1,V⊃R−{ak}

XV −→ lim
R�U⊂Sj∪{ak}

lim
V∈A j−1,V⊃U−{ak}

XV .

Observe that if V ∈ A j−1 contains R−{ak} but does not contain R−{ak}∪U for
all ∅ � U ⊂ Sj∪{ak}−R, then n−V contains Sj∪{ak}−R. That is, for such V , we
have V ⊂ n− (Sj∪{ak}−R). Hence if n− (Sj∪{ak}−R) � A j−1, then V � A j−1

by concavity, so there can be no such V and the map in Equation (6.4.4) must
be a weak equivalence. If n− (Sj ∪ {ak} −R) ∈ A j−1, then choose an increasing
sequence of concave sets

B1 ⊂ · · · ⊂ Bl

such that

B1 = {V ∈ A j−1 : U ⊃ R − {ak}},

Bl = {V ∈ A j−1 : V ⊃ R − {ak} ∪ U for ∅ � U ⊂ Sj ∪ {ak} − R},
and such that Bi − Bi−1 consists of a single set Ri. By the above, n − Ri must
contain Sj ∪ {ak} − R for all i, and moreover it must equal n − (Sj ∪ {ak} − R)
for some i. Using kU ≤ kT for U ⊂ T , we see that the composed map in the
sequence above is kSj∪{ak}−R-connected. �

6.5 Homotopy groups of cubes

As we remarked in Section 4.6, the Blakers–Massey Theorem gives us a van-
ishing range for homotopy groups of the total fiber of a space, but does not
tell us anything about the first non-trivial homotopy group. The focus in this
section will be to say something about the first non-trivial homotopy groups;
better yet, we will describe a space-level version of the homotopy type of the
total homotopy fiber in some special cases.

We begin by finishing what we started in Section 4.6 and first complete the
discussion of the first non-trivial homotopy group of an arbitrary homotopy
cocartesian square. Recall that the special case of this was considered in Propo-
sition 4.6.1. We will now use the three-dimensional version of Theorem 6.2.1
to prove the following.
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Proposition 6.5.1 Suppose

is a pushout square of inclusions of CW complexes where (Xi, X∅) is ki-
connected for i = 1, 2, and additionally assume X∅ is k-connected, where k ≥ 2.
Then the square is (k1 + k2 − 1)-cartesian and

πk1+k2−1(tfiber(X)) � πk1+1(X1/X∅) ⊗ πk2+1(X2/X∅).

Proof The strategy is to reduce to Proposition 4.6.1. Consider the 3-cube

where X and X/X∅ denote the left and right faces of this cube. The 3-
cube Y is homotopy cocartesian by 1(b) of Proposition 5.8.13 because it
is a map Y = X → X/X∅ of homotopy cocartesian squares, the latter of
which is homotopy cocartesian using Proposition 5.8.12. Evidently the top
and back faces are homotopy cocartesian as well, and it then follows from
1(a) of Proposition 5.8.13 that the 3-cube is strongly homotopy cocarte-
sian. Since X∅ → ∗ is (k + 1)-connected and X∅ → Xi are ki-connected
for i = 1, 2, the cube is (k1 + k2 + k − 2)-cartesian by Theorem 6.2.1.
In particular, using Proposition 5.5.4 we see that the map tfiber(X) →
tfiber(X/X∅) is (k1 + k2 + k − 2)-connected, and so πk1+k2−1(tfiber(X)) �
πk1+k2−1(tfiber(X/X∅)) provided k ≥ 2. The result now follows from
Proposition 4.6.1. �

Note that the right face in the 3-cube appearing in the last proof is homotopy
cocartesian and hence X12/X∅ � (X1/X∅) ∨ (X2/X∅). We can similarly reduce
the case of a general strongly homotopy cocartesian cube to the case of a cube
of wedges, again under a mild hypothesis.
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Proposition 6.5.2 Suppose X = (S �→ XS ) is a strongly homotopy cocarte-
sian n-cube of inclusions of CW complexes, that (Xi, X∅) is ki-connected for
each i ∈ n, and that X∅ is k-connected with k ≥ 2. Then the cube X is
(−1 + n +

∑
i∈n ki)-cartesian, and

π1−n+
∑

i∈n ki (tfiber(X)) � π1−n+
∑

i∈n ki (tfiber(Y)),

where Y = (S �→ YS ) is a strongly homotopy cocartesian n-cube with Y∅ = ∗,
Yi = Xi/X∅, and YS = ∨i∈S Yi for |S | ≥ 2.

Proof We sketch the proof, which is similar to the previous one. By Theo-
rem 6.2.1 the n-cube X is (1 − n +

∑
i∈n ki)-cartesian, and so its first possibly

non-trivial homotopy group occurs in dimension −1 + n +
∑

i∈n ki.
The cube X/X∅ = S �→ XS /X∅ is homotopy cocartesian by Proposi-

tion 5.8.12. In fact it is strongly homotopy cocartesian by the same result,
because X is itself strongly homotopy cocartesian. Define Y = (S �→ YS ) by
Y∅ = ∗, Yi = Xi/X∅, and YS = ∨i∈S Yi for |S | ≥ 2. Evidently X/X∅ � Y since
XS � YS for all S ≥ 2 because X and Y are strongly homotopy cocartesian.

We have an evident map X → X/X∅ which makes a homotopy cocarte-
sian (n + 1)-cube by 1(b) of Proposition 5.8.13. We claim that it is in fact
strongly homotopy cocartesian. This follows from 1(a) of Proposition 5.8.13,
the fact that X is strongly homotopy cocartesian, and the fact that squares of
the form

are homotopy cocartesian for all i ∈ n. By Theorem 6.2.1, the (n+1)-cubeX →
X/X∅ is (−n+ k+

∑
i∈n ki)-cartesian. By Proposition 5.5.4 the map tfiber(X) →

tfiber(X/X∅) � tfiber(Y) is then (−n+ k +
∑

i∈n ki)-connected, and in particular
is an isomorphism on π1−n+

∑
i ki since k ≥ 2. �

Note that the statement of Proposition 6.5.2 does not include a computation
of the first non-trivial homotopy group. The answer is a bit more complicated,
but we can give a glimpse of it here. The above result suggests studying cubes
which are comprised of wedges. We have the following stable-range descrip-
tion of the homotopy type of tfiber(X) when X is made up of a wedge of
suspensions, a generalization of Theorem 4.6.3.
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Theorem 6.5.3 Let X1 . . . , Xn be based spaces, where Xi is ki-connected.
Consider the strongly (homotopy) cocartesian n-cube

X(S ) =
∨

i∈n−S

ΣXi.

There exists a (mini{ki} + 1 + n +
∑n

i=1 ki)-connected map

P :
∨

(n−1)!

Σ(X1 ∧ · · · ∧ Xn) −→ tfiber(X).

This follows from Theorem 6.5.7, though we do not prove that result here. The
n-cube X in question is (1+n+

∑n
i=1 ki)-cartesian by Theorem 6.2.1, and hence

tfiber(X) is (n+
∑n

i=1 ki)-connected, and so we may, as in Theorem 4.6.3, view P
as giving a stable-range description of tfiber(X) in homotopy. The map P in the
statement is the “total generalized Whitehead product”, to be discussed below.
It is built from iterating the commutator construction (see Definition 4.6.4).
We will spend most of our time outlining the definition of the map P and only
briefly discuss its connectivity, as establishing this would require more work
than we can allot this topic.

Recall the map W : Σ(X1 ∧ X2) → Σ(X1 ∨ X2) from Definition 4.6.5. We
want to iterate these generalized Whitehead product maps. Also recall the map
� : X → ΩΣX for a based space X, which sends x to the path t �→ (t ∧ x), as
well as the commutator map of Definition 4.6.4: for based spaces X and Y , we
have a map

C : ΩX ×ΩY −→ Ω(X ∨ Y)

(α, β) �−→ α ∗ β ∗ α−1 ∗ β−1.

The commutator map can be iterated as follows.

Definition 6.5.4 Let X1, . . . , Xn be a based spaces, and let σ ∈ Σn be a
permutation of n. Define

Ĉσ :
∏
i∈n

Xi −→ ΩΣ
∨
i∈n

Xi

by

Ĉσ(x1, . . . , xn) = C
(
�(xσ−1(1)),C(�(xσ−1(2)),

C(· · · ,C(�(xσ−1(n−1)), �(xσ−1(n))) · · · ))
)
.
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Johnson [Joh95, Definition 6.6] defines a map

Cσ :
∏
i∈n

Xi −→ Ω tfiber

⎛⎜⎜⎜⎜⎜⎜⎜⎝S �→
∨

i∈n−S

ΣXi

⎞⎟⎟⎟⎟⎟⎟⎟⎠
such that the composition

∏
i�n

Xi
Cσ−→ Ω tfiber

⎛⎜⎜⎜⎜⎜⎜⎜⎝S �→
∨
n−S

ΣXi

⎞⎟⎟⎟⎟⎟⎟⎟⎠ pi−→ ΩΣ
∨
i∈n

Xi

with the canonical projection pi is equal to the map Ĉσ in Definition 6.5.4. We
omit the details.

Proposition 6.5.5 Cσ induces a map Dσ :
∧n

i=1 Xi → Ω tfiber
(
S �→ ∨

n−S

ΣXi).

Proof By symmetry it suffices to consider the case σ = ι, the identity permu-
tation. Define an n-cube R �→ ∏

i∈R Xi, where we regard
∏

i∈R Xi ⊂ ∏n
i=1 Xi as

the subspace of tuples (x1, . . . , xn) such that x j is the basepoint if j � R. The
restriction of Cι :

∏n
i=1 Xi to

∏
i∈R Xi maps to Ω tfiber

(
S �→ ∨

n∩R−S∩R ΣXi

)
.

Thus we have a map of n-cubes⎛⎜⎜⎜⎜⎜⎝R �→
∏
i∈R

Xi

⎞⎟⎟⎟⎟⎟⎠ −→
⎛⎜⎜⎜⎜⎜⎜⎜⎝R �→ Ω tfiber

⎛⎜⎜⎜⎜⎜⎜⎜⎝S �→
∨

n∩R−S∩R

ΣXi

⎞⎟⎟⎟⎟⎟⎟⎟⎠
⎞⎟⎟⎟⎟⎟⎟⎟⎠ ,

which induces a map of total homotopy cofibers (recall Definition 5.9.1)

tcofiber

⎛⎜⎜⎜⎜⎜⎝R �→
∏
i∈R

Xi

⎞⎟⎟⎟⎟⎟⎠−→ tcofiber

⎛⎜⎜⎜⎜⎜⎜⎜⎝R �→ Ω tfiber

⎛⎜⎜⎜⎜⎜⎜⎜⎝S �→
∨

n∩R−S∩R

ΣXi

⎞⎟⎟⎟⎟⎟⎟⎟⎠
⎞⎟⎟⎟⎟⎟⎟⎟⎠.

From Example 5.9.4 we have that tcofiber
(
R �→ ∏

i∈R Xi
)

is weakly equivalent
to

∧n
i=1 Xi. If R is a proper subset of n, the space Ω tfiber

(
S �→ ∨

n∩R−S∩R ΣXi

)
is contractible by Example 5.4.4 because two faces of the cube in question are
identical. Therefore

tcofiber

⎛⎜⎜⎜⎜⎜⎜⎜⎝R �→ Ω tfiber

⎛⎜⎜⎜⎜⎜⎜⎜⎝S �→
∨

n∩R−S∩R

ΣXi

⎞⎟⎟⎟⎟⎟⎟⎟⎠
⎞⎟⎟⎟⎟⎟⎟⎟⎠ � Ω tfiber

⎛⎜⎜⎜⎜⎜⎜⎜⎝S �→
∨
n−S

ΣXi

⎞⎟⎟⎟⎟⎟⎟⎟⎠,
and so we have an induced map

Dι :
n∧

i=1

Xi −→ Ω tfiber

⎛⎜⎜⎜⎜⎜⎜⎜⎝S �→
∨
n−S

ΣXi

⎞⎟⎟⎟⎟⎟⎟⎟⎠ .
�
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The map Dσ described above is associated via Theorem 1.2.7 with a map

D̃σ : Σ
n∧

i=1

Xi −→ tfiber

⎛⎜⎜⎜⎜⎜⎜⎜⎝S �→
∨
n−S

ΣXi

⎞⎟⎟⎟⎟⎟⎟⎟⎠
which we will call a generalized Whitehead product. Finally, we define the
map P as follows. Let Σn−1 ≤ Σn denote the subgroup of all permutations
which fix 1 ∈ n.

Definition 6.5.6 Define

P :
∨

σ∈Σn−1

Σ

n∧
i=1

Xi −→ tfiber

⎛⎜⎜⎜⎜⎜⎜⎜⎝S �→
∨

i∈n−S

ΣXi

⎞⎟⎟⎟⎟⎟⎟⎟⎠
by P = ∨σ∈Σn−1 D̃σ. We call P the total generalized Whitehead product.

One approach to proving that P has a high connectivity similar to that outlined
in Section 4.6 is to once again show that it fits into a commutative diagram of
highly connected maps as below. The following result is due to the first author,
who owes a debt to Koschorke’s work [Kos97, Theorem 3.1] as well as that of
Johnson [Joh95].

Theorem 6.5.7 ([Mun11, Theorem 4.3]) Let X1 . . . , Xn be based spaces, and
suppose Xi is ki-connected. There is a commutative (up to homotopy) diagram

in which E is (1 + 2
∑

i∈n ki)-connected, Hn is (2 + n +
∑n

i=1 ki + mini{ki})-
connected, and hence P is (1 + n +

∑n
i=1 ki +mini{ki})-connected.

The construction of the map Hn is significantly more complicated than in
Theorem 4.6.6, and is due to Johnson [Joh95].

Another more direct approach is to use the Hilton–Milnor Theorem below to
describe the first non-trivial group of a cube, which gives a description of the
weak homotopy type of a wedge of suspensions as a weak product of smash
products of the various summands. We will provide only scant details for this.
The indexing set for the weak product is given by a basis for a free Lie algebra.
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We start by introducing the terminology necessary for bookkeeping, following
Neisendorfer [Nei10, Section 4.3].

Definition 6.5.8 A Hall basis B of the free Lie algebra on the symbols
x1, . . . , xn is a countable union

B =
∞⋃

i=1

Bi

where Bi ⊂ Bi+1, |Bi+1 − Bi| = 1, and the sets Bi are defined by the following
inductive procedure.

Define L1 = {x1, . . . , xn}, and B1 = {x1}, and put B0 = ∅. For n ≥ 2,
inductively define

Ln = {ad(zn−1)i(x) : i ≥ 0, x ∈ Ln−1, x � zn−1}

where zn−1 is the unique element in Bn−1 − Bn−2, and ad(z) = [z,−] is the Lie
bracket. Choose an ordering for Ln in which elements of shortest length appear
first (the length of an element is equal to the number of brackets appearing in
that element’s expression as an iterated bracket). Let zn ∈ Ln be the smallest
element, and set Bn = Ln ∪ {zn}.

For instance, if L = {x1, x2, x3}, it is easy to compute that B3 = {x1, x2, x3} and
if we assume x3 ∈ B3 − B2 is the unique element, then

L4 = {[x1, x2], [x2, x3], [x2, x3], terms of length greater than 1},

and depending on the chosen ordering we will add one of the first three terms
to the basis. The number of basis elements in which xi appears exactly mi times
is equal to

∑
d | gcd(m1,...,mn)

μ (d)

(∑
i∈n mi

d

)
!(

m1
d

)
! · · ·

(
mn

d

)
!
,

where μ is the Möbius function. In particular, the number of basis elements in
which each xi appears exactly once is equal to (n − 1)!.

Suppose now that X1, . . . , Xn are based spaces. If ω(x1, . . . , xk) is an element
of B as above, we write ω(X1, . . . , Xn) for the corresponding space under the
correspondence xi ↔ Xi and [xi, x j] ↔ Xi ∧ Xj.
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Theorem 6.5.9 (Hilton–Milnor Theorem) Let X1, . . . , Xn be based spaces.
There is a weak equivalence

∏
ω∈B

wΩΣω(X1, . . . , Xk) −→ ΩΣ
⎛⎜⎜⎜⎜⎜⎜⎜⎝∨

i∈n

Xi

⎞⎟⎟⎟⎟⎟⎟⎟⎠ .
We will not discuss the definition of the map in this theorem. See [Whi78,
Section XI.6] for details. The superscript w on the product over ω ∈ B above
is meant to indicate that this product is not topologized using the product
topology, but rather the weak topology. That is, there are maps∏

ω∈Bn

ΩΣω(X1, . . . , Xn) −→
∏
ω∈Bn+1

ΩΣω(X1, . . . , Xn)

given by the inclusion, using the basepoint on the factor which is omitted. The
union over n of these spaces is the infinite product above, and it is topologized
as such an infinite union.

The weak equivalence in Theorem 6.5.9 is natural in the variables X1, . . . , Xn

in the sense that, for each j ∈ n, the projection map ΩΣ(
∨

i∈n Xi) →
ΩΣ(

∨
i∈n−{ j} Xi) corresponds to the projection of weak products away from

those factors indexed by elements ω(X1, . . . , Xk) in which the space Xj appears
in the corresponding smash product. Thus, using Example 5.5.5, we have a
weak equivalence

∏
ω∈B′
ΩΣω(X1, . . . , Xn) −→ tfiber

⎛⎜⎜⎜⎜⎜⎜⎜⎝S �→
∨

i∈n−S

ΩΣXi

⎞⎟⎟⎟⎟⎟⎟⎟⎠ , (6.5.1)

where B′ ⊂ B consists of those expressions ω in which each variable xi

appears at least once. It is easy to see from Equation (6.5.1) that tfiber(S �→∨
i∈n−S ΩΣXi) � Ω tfiber(S �→ ∨

i∈n−S ΣXi) is (−1 + n +
∑n

i=1 ki)-connected
if Xi is ki-connected, exactly as predicted by Theorem 6.2.1 for this cube.
Furthermore, one can additionally see from Equation (6.5.1) that the inclusion

∏
(n−1)!

ΩΣ
∧
i∈n

Xi −→
∏
ω∈B′
ΩΣω(X1, . . . , Xn) � tfiber

⎛⎜⎜⎜⎜⎜⎜⎜⎝S �→
∨

i∈n−S

ΩΣXi

⎞⎟⎟⎟⎟⎟⎟⎟⎠
is (min{ki} + −1 + n +

∑n
i=1 ki)-connected, as the least connectivity of the

remaining factors in the weak product is equal to min{ki} + n +
∑n

i=1 ki.
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7

Some category theory

In this chapter we give the basic definitions and examples from category theory
that will be needed for the development of general homotopy (co)limits in
Chapter 8. Most of this material is standard, and can be found for example in
[Bor94, Hir03, ML98]. Our treatment focuses on categories with (co)products,
as we believe these constructions are the most familiar. Of most interest to
us are the definitions of the limit and colimit of a diagram (Section 7.3). We
give the standard definitions of these objects using universal properties, but
also offer alternative ways to think about them (Section 7.4) that are more
suitable for our development of homotopy limits and colimits and match more
closely with the way pullbacks and pushouts were defined in Chapter 3. We
will give special attention to examples that have already appeared in Chapters 3
and 5.

7.1 Categories, functors, and natural transformations

Definition 7.1.1 A category C consists of

1. a class of objects Ob(C);
2. for each pair of objects X,Y ∈ Ob(C) a set of morphisms HomC(X,Y);
3. for each X ∈ Ob(C) an identity morphism 1X ∈ HomC(X, X);
4. a composition function

◦ : HomC(X,Y) × HomC(Y,Z) −→ HomC(X,Z)

satisfying
(a) f ◦ 1X = 1Y ◦ f = f ;
(b) f ◦ (g ◦ h) = ( f ◦ g) ◦ h.

339
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We will sometimes abuse notation and write X ∈ C for X ∈ Ob(C). A morphism
f from X to Y is typically depicted as an arrow f : X → Y , and we call X the
source and Y the target of f .

Here is some further terminology:

● A subcategory C′ of a category C is a category consisting of subclasses of
the classes of objects and morphisms of a category C.

● A subcategory C′ is full if, for all X,Y ∈ Ob(C′), HomC′ (X,Y) =
HomC(X,Y).

● A discrete category is a category with no non-identity morphisms. Any set
naturally gives rise to a discrete category with the elements of that set as the
objects.

● A category is finite if both its class of objects and its class of morphisms are
finite.

● A category is small if the classes of objects and morphisms are both sets. We
will remind the reader when the categories we are working with are required
to be small, but one standing assumption is that, whenever a category is used
to index a (co)product or a diagram, it is assumed to be small.

Example 7.1.2 (Poset as a category) A poset (partially ordered set) (P,≤)
is naturally a category. Its objects are elements of the underlying set P, and
there is a unique morphism a → b for each relation a ≤ b. For instance, let
(P({1, 2}),⊂) denote the poset of subsets of {1, 2}, where ⊂ denotes the usual
set containment. By omitting non-identity morphisms and those that factor as
non-trivial compositions (i.e. a factorization without identity morphisms), we
may depict this category as a square

Note that we did not draw in the identity morphisms. This is the standard
convention that we will follow throughout.

More generally, the poset (P(n),⊂) is a category which was of course cen-
tral in Chapter 5 (we will drop “⊂” from the notation from now on). Its shape
is that of an n-dimensional cube. The two familiar full subcategories (sub-
posets) associated with P(n) are P0(n), the category of non-empty subsets, and
the category P1(n) of proper subsets. The “simplex-like” depictions of these
categories should also be familiar from Chapter 5. �
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Here is a chart of some more basic examples. The ones we will mostly use
are Top and Top∗, the categories of topological spaces and based topological
spaces, respectively, with (based) maps as morphisms. Unless we need to, we
will not make a distinction between Top and Top∗, although we will try to
remind the reader in key places that most of our constructions and results work
the same way in Top as in Top∗.

Example 7.1.3

Category Objects Morphisms

Set sets functions
poset (P,≤) elements of P a → b means a ≤ b
VectF vector spaces over a field F F-linear maps
Top topological spaces continuous maps
Top* based topological spaces based continuous maps
(Ab) Grp (abelian) groups homomorphisms
Ring commutative rings ring homomorphisms
ChR chain complexes over a

ring R
chain maps

a group G a single object elements of G,
composition according
to group law

G-Set (for fixed group G) sets with (left) G-action equivariant G-functions
R-Mod (for fixed ring R) R-modules R-module maps

�

Example 7.1.4 The category Set is a full subcategory of Top (where sets are
regarded as spaces with discrete topology). Because of this, the constructions
we perform in Top, such as pushouts and pullbacks (as examples of (co)limits),
will automatically hold for Set. �

Remark 7.1.5 The categories Set and Top are not small, whereas the cate-
gory P(n) is. Another small category is the category associated to a group G
where there is one object and a morphism for each group element. The impor-
tant property that categories like Set and Top fortunately possess is that the
limits of small diagrams in those categories always exist; see Section 7.3 for
more details. �

Definition 7.1.6 Given a category C, define the opposite category of C to be
the category Cop whose objects are those of C and whose morphism sets are
defined by

HomCop (X,Y) = HomC(Y, X).
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Heuristically, Cop is C with the arrows “reversed”. Thus if C is the category
X → Z ← Y (again remember that we do not draw in the identity morphisms)
then Cop can be identified with the category X ← Z → Y in an evident way.

Definition 7.1.7 Given categories C andD, define the product category C×D
to be the category whose objects are pairs (X,Y) where X ∈ Ob(C) and Y ∈
Ob(D) and morphisms are pairs ( f , g) where f is a morphism in C and g a
morphism in D.

Example 7.1.8 We have already (secretly) considered the product of the
category P0({1, 2}) with itself in Theorem 3.3.15. We depict it as follows

�

Definition 7.1.9 A morphism f : X → Y in C is an isomorphism if it has an
inverse, that is, if there exists a morphism g : Y → X such that g ◦ f = 1X and
f ◦ g = 1Y . In this case we write X � Y .

Example 7.1.10 The notion of an isomorphism of objects coincides with
the usual notion of an isomorphism in the familiar categories. For example,
in Set, an isomorphism is a bijection, in Top (resp. Top∗), it is a homoemor-
phism (resp. based homeomorphism), and in Grp and Ring, it is a bijective
homomorphism. �

Here is a definition we will need later.

Definition 7.1.11 A small category C is said to be acyclic if only identity
morphisms have inverses and HomC(X, X) = {1X} for all objects X ∈ C.

It is easy to see that, for a finite category, acyclic means that there exists some
N ≥ 1 such that, for all compositions of morphisms fn ◦ fn−1 ◦ · · · ◦ f1 with
n > N, at least one morphism is the identity. For example, a poset is acyclic if
it is finite. We will have use for finite and acyclic categories in Chapter 9.1

1 In the literature, a finite and acyclic category is also sometimes referred to as “very small”.
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Definition 7.1.12 An object Xi ∈ C is an initial object if there exists a unique
morphism Xi → X for every object X in C. Dually, an object Xf ∈ C is a
terminal, or final, object if there exists a unique morphism X → Xf for every
object X in C.

Initial and final objects, when they exist, are unique up to isomorphism. This
follows directly from the definitions, but it is important in showing that objects
defined using a universal property (such as limits and colimits) are unique up
to isomorphism.

Example 7.1.13 The empty set ∅ is an initial object in P1(n) (and in P(n))
and n is a final object in P0(n) (and in P(n)). The category P0(n) has no initial
object and P1(n) has no final object. �

Example 7.1.14 In Set and Top, the empty set ∅ is an initial object, and the
one-point set ∗ is a terminal object. The one-point set ∗ is both initial and termi-
nal in the pointed category Top∗. In Grp and Ring, the trivial group/ring is both
an initial and final object. An initial/terminal object in C is a terminal/initial
object in Cop. �

We spent Chapters 3 and 5 studying diagrams of shape P0(n) and P1(n) in Top
and Top∗. This is encoded in the notion of a functor.

Definition 7.1.15 A (covariant) functor F : C → D between categories C
and D is a function which

1. associates to each object X ∈ C an object F(X) ∈ D;
2. associates to each morphism f ∈ HomC(X,Y) a morphism F( f ) ∈

HomD(F(X), F(Y)) such that
(a) F(1X) = 1F(X) for all X ∈ Ob(C),
(b) F(g ◦ f ) = F(g) ◦ F( f ) for all f ∈ HomC(X,Y) and g ∈ HomC(Y,Z).

A contravariant functor is a covariant functor whose domain is Cop. We often
think of contravariant functors as those that “reverse arrows” (i.e. satisfy the
obvious alterations to the above axioms).

Remark 7.1.16 A diagram in a category C is a functor F from a small
category I to C. The point of introducing such terminology is that it is
both common in this text and the literature, and moreover it emphasizes the
“picture” of the functor, and hence the shape of the indexing category, which
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we shall later see plays an important role in defining homotopy (co)limits. See
Section 8.1 and Definition 8.1.8 in particular. �

Functors can be thought of as functions from one category to another that
respect the categorical structure. When we speak in general of a functor with-
out mentioning its variance or some other context, it is understood to be
covariant.

Example 7.1.17 Here are some standard examples of functors. Unless
otherwise indicated, they are covariant.

● X : P(n) → Top, X(S ) = XS , is a cubical diagram, or n-cubical diagram,
or simply an n-cube, of topological spaces, and functors whose domain is
P0(n) or P1(n) are called punctured n-cubical diagrams, or just punctured
n-cubes.

● IC : C → C taking objects and morphisms to themselves (identity functor).
● If C is a discrete category then a functor F : C → D is a collection of objects

of D indexed by the objects of C.
● F : Set → Set, taking a set to its power set.
● F : VectF → VectF taking V to V∗, the dual of V (contravariant).
● The inclusion functor Set → Top which regards a set as a space with the

discrete topology.
● The forgetful functor F : Top → Set, which regards a space as its underlying

point-set.
● πk : Top∗ → Grp taking a based space to its kth homotopy group.
● Hn : Top → Ab, taking a space to its nth homology group; dually

Hn : Top → Ab, taking a space to its nth cohomology group (contravariant).
● For a fixed space Z, Map(−,Z) : Top → Top taking a space X to the space

of maps Map(X,Z) (contravariant), and Map(Z,−) : Top → Top taking a
space X to the space of maps Map(Z, X) (covariant). Similarly for based
versions. �

Definition 7.1.18 Functors F : C → D and G : D → C are adjoint if there is
a natural bijection

HomD(G(X),Y) � HomC(X, F(Y))

for every object X ∈ C and every object Y ∈ D. Functor F is called the right
adjoint of G and G is called the left adjoint of F.
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Example 7.1.19 The functor that associates a free abelian group to a set and
the forgetful functor that forgets the group structure in a group are adjoint. �

Example 7.1.20 (Loop and suspension are adjoint) The functor Ω that takes
a based space to its loop space and the functor Σ that takes a based space to its
suspension are adjoint functors on Top∗. This is the content of Theorem 1.2.9.
(These two are functors because a map can be looped and suspended; see
(1.1.2) and (1.2.1).) More generally, by Theorem 1.2.7 we have that, for a fixed
space X, functors X × − and Map(X,−) are adjoint. �

In order to talk about the homotopy invariance of the homotopy limit of a
punctured square, we required the notion of a “map of diagrams”. Here is the
formal definition.

Definition 7.1.21 A natural transformation (or map of diagrams) N : F →G
between functors F,G : C → D associates to each X ∈ Ob(C) a morphism
NX : F(X) → G(X) such that for every morphism f : X → Y the diagram

commutes.

If F and G are both contravariant, the horizontal arrows in the above square are
reversed. We will denote the class of natural transformations between functors
F and G by Nat(F,G).

We will at times need to speak of a natural transformation N : F → G
between functors F,G : C → Top (or Top∗) which is a “fibration”, “cofi-
bration”, “weak equivalence”, or some other property a map of spaces may
possess. All this means is that, for each c ∈ C, the map F(c) → G(c) induced
by N is a fibration, cofibration, weak equivalence, etc. Other terminology we
use which further emphasizes the point is to call a natural transformation a
“pointwise”, or “objectwise fibration, cofibration, weak equivalence, etc.”.

Example 7.1.22 Consider the category P(∅) of subsets of the empty set. It
has a single object and no non-identity morphisms. Functors F,G : P(∅) →
Top are simply topological spaces, and if we put F(∅) = X∅ and G(∅) = Y∅,
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then a natural transformation from F to G amounts to a map X∅ → Y∅ of
spaces.

Next consider the category P(1) of subsets of 1, which we may depict as
∅ → {1}. Let F,G : P(1) → Top be functors and put F(∅) = X∅, F({1}) = X1,
G(∅) = Y∅, and G({1}) = Y1. Then a natural transformation from F to G is a
commutative square of spaces

�

Example 7.1.23 (Constant diagram) If a functor F sends every object of a
small category I to an object X of C and every morphism to the identity mor-
phism, we will refer to it as the constant diagram at X and will denote it by CX .
For example, if C is Top and X the one-point space ∗, the constant functor at a
point will correspondingly be denoted by C∗. We have of course seen the con-
stant punctured cubes already (see Example 5.1.4). Every functor F : I → Top
admits a unique natural transformation to C∗. �

Definition 7.1.24

● A natural isomorphism I : F → G of functors F,G : C → D is a natural
transformation for which there exists an inverse, namely a natural transfor-
mation J : G → F such that J ◦ I = 1F and I ◦ J = 1G. Here 1F and 1G are
the identity natural transformations from F to F and G to G, respectively,

● We say categories C and D are equivalent and write C � D if there exist
functors F : C → D and G : D → C such that compositions G ◦ F : C → C
and F ◦ G : D → D are naturally isomorphic to the identity funtors IC and
ID, respectively. We say C and D are isomorphic if the composites above
are equal to the respective identity functors.

Remark 7.1.25 In general, C and Cop are not necessarily isomorphic; the
obvious candidate for an isomorphism, which is the identity on objects, is not
a covariant functor and thus cannot be an isomorphism by definition. �

Example 7.1.26 The linear transformation taking a vector space V to its dou-
ble dual, (V∗)∗, is a natural transformation between the identity functor and
the double dual functor. This natural transformation is an isomorphism if V if
finite-dimensional. �
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Example 7.1.27 There is an isomorphism of categories P(n) � P(n)op given
by S �→ n − S . This functor is its own inverse. �

Example 7.1.28 The categories P(n) × P(1) and P(n + 1) are isomorphic.
We leave it to the reader to fill in the straightforward argument. �

We finish with two “meta” examples of categories that we will use.

Example 7.1.29 (Category of small categories) The collection of small cat-
egories, where morphisms are functors between them is itself a category,
called the category of small categories, and denoted by Cat. (We require small
categories to avoid set-theoretic problems.) �

Example 7.1.30 (Functor category) The collection of all functors between
categories C and D can itself be thought of as a category, called functor cate-
gory and denoted by DC. The objects of this category are functors F from C
to D and the morphisms are natural transformations of functors. The class of
natural tranformation from a functor F to a functor G is denoted NatC(F,G) or
just Nat(F,G) when C is understood. �

7.2 Products and coproducts

In this section, we discuss products and coproducts from the categorical view-
point, since they are the building blocks for limits and colimits. We have
already seen how products and coproducts in Top play a role in building
limits and colimits of punctured squares and cubes (see Definitions 5.2.1
and 5.6.1).

When discussing limits and colimits in a general category we will always
assume that products and coproducts exist. In specific instances, such as in
Top, we must prove (co)limits exist. This will be easy to do once we provide
models for (co)limits built from (co)products. As our eventual goal is to discuss
homotopy (co)limits, the reader may wonder why we do not just axiomatize the
properties necessary to do “abstract” homotopy theory and work in a general
codomain category that has all the properties of Top that we need (i.e. so that
we can do “abstract” homotopy theory). There are many compelling reasons
to do this, but one reason not to is to avoid more machinery. Our focus is
to introduce (homotopy) (co)limits in as elementary and familiar a setting as
possible. In addition, there are already many references on abstract homotopy
theory [BK72a, DHKS04, Hir03, Hov99].
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We start our discussion of (co)products in the relatively simple setting of
the category of sets. One first notices that the product and the disjoint union of
sets enjoy what is called a universal property. For instance, for sets S and T ,
the disjoint union S 	 T has the property that, for every set R and every pair
of maps f : S → R, g : T → R, there exists a unique map H : S 	 T → R
compatible with the inclusions of S and T in the disjoint union. It is defined
by the formula h(s) = f (s) if s ∈ S and h(t) = g(t) if t ∈ T . Second, this map
H is also compatible with the maps f and g in the sense that H ◦ iS = f and
H ◦ iT = g, where iS and iT are the inclusions of S and T in the disjoint union.
That is, S 	 T is universal, in this case “initial”, among all sets which admit
maps from S and T in that every such pair of maps factors through S 	 T .
Dually, the product S × T enjoys the property that, for every set R and pair of
maps f : R → S and g : R → T , there exists a unique map H : R → S × T
compatible with the projections of S × T onto each of the factors. Thus the
product is “final” among all sets admitting maps to S and T in the sense that
every such pair of maps factors through the product.

The idea now is to look for constructions like product and disjoint union
(coproduct) in general categories. They often turn out to be familiar, and think-
ing about them in terms of universal properties clarifies their importance. The
wedge X∨Y is the coproduct in the category of based spaces in a sense similar
to the disjoint union of sets above. The product X × Y of a pair of based spaces
is the ordinary product, much like the product of two groups G and H (as sets)
gives rise to a group with the appropriate universal property. But (co)products
are not always easy to construct or identify. For example, the coproduct of
groups is less obvious essentially because all the maps have to be homomor-
phisms, and so using the familiar notion of coproduct of sets does not work.
The disjoint union does not satisfy the desired universal property, but it turns
out that the free product G ∗H does, and we leave it to the reader to verify this
after reading the definition of the coproduct, Definition 7.2.2.

Universal properties abound and have great importance. Some of the exam-
ples that satisfy universal properties are quite familiar: The supremum and the
infimum of a set of real numbers (where we think of the set of real numbers
as a poset in the evident way), or the greatest common divisor and the least
common multiple of a set of natural numbers (where we think of the natural
numbers as a category where a morphism a → b means that a divides b) are
all examples which appear below. It is important to note that the existence of
a universal object is a theorem – such objects are not guaranteed to exist, as
in the case of the supremum and infimum of a bounded set of rational num-
bers. This very shortcoming can be used to motivate the construction of the
real numbers from the rationals, at least from the perspective of real analysis.
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We will revisit the infimum and the supremum in Examples 7.3.6 and 7.3.24
using the language of limits and colimits.

We begin to formalize the above observations with the following.

Definition 7.2.1 Let X1, X2 be objects of a category C. The product of X1

with X2, denoted by X1 × X2, is an object of C together with two morphisms,
called (canonical) projections,

πi : X1 × X2 −→ Xi

for i = 1, 2 such that the following holds: if Y ∈ Ob(C) and fi : Y → Xi are
morphisms for i = 1, 2, then there exists a unique morphism f : Y → X1 × X2

such that the diagram

commutes for each i = 1, 2.

That is, the product is an object which is final among all other objects which
admit maps to X1 and X2. When the product exists, it is unique up to isomor-
phism. To see this is a straightforward exercise using the universal property
and uniqueness of the map to the product.

Products need not exist. The notation is chosen because, in the category of
sets, the product is the cartesian product. If there is ever any doubt, we assume
the existence of products in any instance where we require them. The same
comment applies to coproducts.

Definition 7.2.2 Let X1, X2 be objects of a category C. The coproduct of X1

with X2, denoted by X1 	 X2, is an object of C together with two morphisms,
called (canonical) injections,

ji : Xi −→ X1 	 X2

for i = 1, 2 such that the following holds: if Y ∈ Ob(C) and fi : Xi → Y are
morphisms for i = 1, 2, then there exists a unique morphism f : X1 	 X2 → Y
such that the diagram

commutes for each i = 1, 2.
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The coproduct is thus initial among all objects admitting maps from X1 and
X2. The product and the coproduct are dual in the sense that they satisfy the
same universal properties with the “arrows reversed”. The coproduct of two
objects, when it exists, is unique up to isomorphism. More generally we can
define (co)products indexed by an arbitrary indexing set.

Let I be an indexing set and let {Xi : i ∈ I} be a set of objects of a category C.

Definition 7.2.3 The product of the set {Xi}i∈I , denoted by
∏

i∈I Xi, is an
object of C and a collection of morphisms, called (canonical) projections,

πi :
∏
i∈I

Xi −→ Xi

such that the following holds: if Y ∈ Ob(C) and fi : Y → Xi are a collection of
morphisms, one for each i ∈ I, then there exists a unique morphism f : Y →∏

i∈I Xi such that the diagram

commutes for each i.

In the category C = Top or Top∗, we must also discuss the topology: we
topologize

∏
i∈I Xi to have the smallest topology such that the canonical pro-

jections
∏

i∈I Xi → Xi are continuous for all i ∈ I, and then take the compactly
generated topology of the resulting topological space.

Dually, we have the following.

Definition 7.2.4 The coproduct of the set {Xi}i∈I , denoted by
∐

i∈I Xi, is an
object of C and a collection of morphisms, called (canonical) injections,

ji : Xi −→
∐
i∈I

Xi

such that the following holds: If Y ∈ Ob(C) and fi : Xi → Y are a collec-
tion of morphisms, one for each i ∈ I, then there exists a unique morphism
f :

∐
i∈I Xi → Y such that the diagram

commutes for each i.
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Again if C = Top or Top∗ we topologize the coproduct
∐

i∈I Xi by choos-
ing the smallest topology such that the canonical injections Xi → ∐

i∈I Xi are
continuous.

Products and coproducts are already familiar in many categories. As we have
mentioned, the terminology is derived from the usual product and coproduct
of sets.

Example 7.2.5

Category Product Coproduct

Set Cartesian product disjoint union
VectF Cartesian product direct sum
Top Cartesian product disjoint union
Top* Cartesian product wedge sum
Grp direct product free product
Ab Grp direct product direct sum
Ring Cartesian product tensor product
ChR degree-wise

product
degree-wise coproduct

R-Mod Cartesian product direct sum
�

Remark 7.2.6 Suppose C is a category where all products exist. For simplic-
ity, to start let us assume we have objects Xi,Yi and morphisms fi : Xi → Yi

for i = 1, 2. Composing the canonical projections X1 × X2 → Xi with fi we
see by the universal property of X1 × X2 that the fi induce a unique morphism
X1 × X2 → Y1 × Y2, and we will denote this morphism by f1 × f2. This is more
generally true of arbitrary products indexed by an arbitrary set. That is, sup-
pose I is a set and we have for each i ∈ I objects Xi,Yi of C and a morphism
fi : Xi → Yi. Then there is a naturally induced morphism∏

i∈I
fi :

∏
i∈I

Xi →
∏
i∈I

Yi.

A dual remark applies to coproducts. Such induced morphisms will be
important when we build models for limits and colimits from products and
coproducts. �

In the next two sections, we generalize the notion of a product and a coproduct.

7.3 Limits and colimits

We begin this section by discussing limits, which are one of the most important
“universal” constructions. They generalize products, pullbacks, inverse limits,
and other familiar ideas.
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Definition 7.3.1 Suppose F : I → C is a diagram in C indexed on a small
category I. A cone on F is an object C ∈ Ob(C) and, for each X ∈ Ob(I), a
morphism γX : C → F(X) such that the following diagram commutes for all
X,Y ∈ Ob(I) and f ∈ HomI(X,Y):

The limit of a diagram is a universal cone; every cone factors through the limit.
More precisely, we have the following.

Definition 7.3.2 Suppose F : I → C is a diagram in C indexed on a small
category I. The limit of F, denoted by limC F is a cone on F such that, for any
other cone C on F and for any X,Y ∈ Ob(I) and f ∈ HomI(X,Y), there exists
a unique morphism u : C → limC F such that the following diagram commutes
(i.e. each triangle in the diagram commutes):

Here λX and λY are morphisms associated to the cone limC F.

If it exists at all, limC F is unique up to isomorphism (we leave it to the reader
to think this through). When there is no danger of confusion, we may suppress
the category and denote the limit by lim F.

The limit of a diagram may not exist in an arbitrary category, even if prod-
ucts exist. A category that contains limits of all small diagrams is called
complete. Examples of complete categories are Set, Top, Top∗, Grp, and
R-Mod. From now on, we will assume that we are working in a complete (and
small) category.

The notion of a limit reduces to some familiar constructions in many cases.
Here are some simple examples.

Example 7.3.3 If I is the empty category (no objects), then the limit of any
functor F : I → Top is the one-point space ∗. In the commutative diagram
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from Definition 7.3.2, all we need to find is a space which admits a map from
any other space. This is just a roundabout way to say that the one-point space
is the final object in the category of topological spaces. �

Example 7.3.4 (Product as limit) Suppose I = {•, •}, the discrete category
consisting of two objects and no non-identity morphisms, and let F : I → C be
a functor, so F(I) = {X,Y} for some X,Y ∈ Ob(C). The limit of this diagram
is precisely the product X × Y by definition, if it exists. More generally, if I
is any discrete category (again with no non-identity morphisms), one recovers
Definition 7.2.3. �

Example 7.3.5 (glb in a poset as limit) Let (P,≤) be a poset. If a, b are ele-
ments of P, then the product of a and b is their greatest lower bound (glb) in
P, since we are asking for the universal example of an element g of P which
satisfies g ≤ a and g ≤ b. If F : I → P is a functor, then limI F is the greatest
lower bound of the collection {F(i) : i ∈ I}, if it exists. Here is a diagrammatic
example of a poset in which greatest lower bounds do not all exist. Elements
are labeled by lower-case latin letters and x → y means x ≤ y in the poset
structure.

Here the greatest lower bound of {a, b} does not exist despite the existence of
common lower bounds for both a and b (the elements c and d). The trouble
is that c and d aren’t directly comparable, so neither can satisfy the universal
property. And e, despite being a common lower bound for a and b, fails to be
greater than c and d. �

Example 7.3.6 (Infimum as limit) Consider the real numbers R as a category,
with a morphism x → y if x ≤ y. The product of real numbers x and y in this
category is the real number min{x, y}. In general the product of an arbitrary set
of real numbers may not exist. Let F : C → R be any functor. The limit lim F
is the infimum of the set {F(c) : c ∈ C} (which may or may not exist). This
follows from the universal property: if it exists, lim F is a real number such
that lim F ≤ F(c) for all c ∈ C, and whenever z ≤ F(c) for all c ∈ C, z ≤ lim F.
Note that if C is the empty category (so we are considering the infimum of the
empty set), the the most reasonable candidate is +∞, though this is of course
not a real number. �



354 Some category theory

Example 7.3.7 (gcd as limit) Consider the natural numbers N as a category,
with a morphism a → b if a divides b. In this category the product of natural
numbers a and b is their greatest common divisor (gcd). More generally let
F : C → N be any functor where C is a small category. Then lim F is the
greatest common divisor of the set {F(c) : c ∈ C}. As in Example 7.3.6, this
follows from the universal property; lim F is a natural number which divides
F(c) for all c ∈ C, and whenever z ∈ N divides F(c) for all c, z divides lim F.
This limit does not exist if C is empty, since N has no final object in this poset
structure. �

Example 7.3.8 (Intersection as limit) Let S be a set, and consider the poset
P(S ) of all subsets of S . The product of sets R and T is their intersection
R ∩ T . Let C be any category and F : C → P(S ) any functor. Then lim F =
∩c∈CF(c). �

Example 7.3.9 (Categories with an initial object) If I has an initial object
i0, then if F : I → C is a functor, limI F = F(i0). This is due to the fact that
F(i0) satisfies the universal property required of the limit. For a more concrete
example, if I = {• ← • → •}, then

lim(X ← W → Y) � W.

Notice that cubical diagrams have an initial object, so taking their limit is not
interesting, as we saw in Remark 5.2.3. This is why we only considered limits
of punctured cubes in Section 5.2. �

Example 7.3.10 (Equalizer/kernel) Since this example is of special impor-
tance, we will write it out in some detail for easy referencing.

If I = { }, then lim( ) is called the equalizer of X and

Y (with respect to the maps f and g), and is denoted by Eq( ) or

Eq( f , g). According to Definition 7.3.2, if it exists, this is an object of C along
with a morphism λX : Eq( f , g) → X such that f ◦λX = g◦λX and such that, for
any morphism γ : Z → X satisfying f ◦ γ = g ◦ γ, there is a unique morphism
u : Z → Eq( f , g) making the diagram

(7.3.1)

commute.
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In Top (and Top∗), Eq( f , g) is given as

Eq( f , g) = {x ∈ X | f (x) = g(x)}
with λX the inclusion map. It inherits the subspace topology. It is easy to see
that this set satisfies the universal property since any γ : Z → X such that
f ◦ γ = g ◦ γ clearly factors through this subset of X.

In the category of abelian groups, the equalizer can be thought of as the
kernel of the difference f − g. Thus if one of the morphisms is the zero
homomorphism, we obtain the usual notion of a kernel. �

Remark 7.3.11 The category I = { } intuitively appears to have an
initial object, but this is not the case because there are two distinct morphisms
from the obvious candidate for an initial object to the other. Consequently,

lim( ) is not equivalent to X as it might visually appear, thinking of

Example 7.3.9, but is rather a subset of X. �

Example 7.3.12 (Inverse limit) If I = {• ← • ← • ← · · · }, then F(I) is
called an inverse system. The limit lim F is called the inverse limit and some-
times denoted by lim← F. It is also clear from the definitions that this coincides

with the usual notion of the inverse limit of, say, a tower of spaces or groups.
In particular, the p-adic integers Zp are an example of such an inverse limit.

The inverse limit is easily expressed as an equalizer as follows. It is conve-
nient to let the natural numbers index the category I, so that I = {1 ← 2 ←
· · · }. Let F(i) = Xi, and let pi : Xi → Xi−1 denote the morphism F(i → i − 1).
Let P :

∏
i Xi → ∏

i Xi be the map P(x1, x2, . . .) = (p2(x2), p3(x3), . . .). Then
by inspection there is a natural isomorphism

Thus a point in limI F is an infinite sequence (x1, x2, . . .) such that pi(xi) =
xi−1.

One could take this further and use Example 7.4.2 to write the equalizer as
a limit of a punctured 3-cube.

Perhaps the simplest way to write limi Xi as a the limit of a punctured
square is

lim
i

Xi �

⎛⎜⎜⎜⎜⎜⎝∏
i

Xi
Δ−→

∏
i

Xi ×
∏

i

Xi

(1∏
i Xi ,P)←−

∏
i

Xi

⎞⎟⎟⎟⎟⎟⎠ .
This is straightforward to verify. �
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Example 7.3.13 (Pullback as limit) We can now finally see why pullbacks,
one of the central objects of study in Chapter 3, are instances of limits; this
will justify the terminology and the notation “lim” that we used in Chapter 3.

If I = {• → • ← •}, lim(X
f→ Z

g← Y) is called the pullback, or fiber
product, and denoted by X ×Z Y . It consists of an object X ×Z Y of C and
morphisms λX : X ×Z Y → X and λY : X ×Z Y → Y such that the diagram

commutes. Further, if there is another object C and morphisms γX : C → X and
γY : C → Y which make the same square commute, then there exists a unique
morphism u : C → X ×Z Y such that the following diagram commutes:

(7.3.2)

In Top (or Top∗, as well as in Set), the pullback is given by

X ×Z Y = {(x, y) ∈ X × Y | f (x) = g(y)} (7.3.3)

with projection maps p1 : X ×Z Y → X and p2 : X ×Z Y → Y sending (x, y)
to x and y respectively. We leave it to the reader to check this. This is pre-
cisely the pullback from Definition 3.1.1. In Top, the pullback inherits the
subspace topology. More specific examples of pullbacks in Top were given
in Section 3.1. �

Remark 7.3.14 In Top, we can identify the equalizer in Example 7.3.10 as
an iterated pullback using the diagonal map. Let f , g : X → Y be as above. We
leave it to the reader to check that

Eq( f , g) = lim(X
Δ→ X × X ← X ×Y X),

where Δ : X → X × X is the diagonal map, and the map

lim(X
f→ Y

g← X) = X ×Y X → X × X

is the inclusion.
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It might be tempting to think of Eq( ) and lim(X
f→ Y

g← X) as the

same objects. However, the former is the set of all x ∈ X such that f (x) = g(x),
whereas the latter is the set of all (x1, x2) ∈ X × X such that f (x1) = g(x2).

Using the diagonal inclusion Δ : X → X × X we can realize Eq( ) as

a subset of lim(X
f→ Z

g← Y). But this inclusion need not be an isomorphism.
If, for example, X = Y = {1, 2}, f = 1X , and g(i) = 1 for i = 1, 2, then the
equalizer consists of a single point whereas the pullback consists of two points.
One case when the equalizer and pullback are isomorphic is when there exists
a map

h : Y −→ X

such that h◦ f = h◦g = 1X (i.e. h is a common section for f and g). In this case,

applying h to a point (x1, x2) satisfying f (x1) = g(x2) in lim(X
f−→ Y

g←− X),
we see that x1 = x2.2 �

Example 7.3.15 (Homotopy pullback as limit) We saw in Proposition 3.2.5

that the homotopy pullback holim(X
f→ Y

g← Z) can be realized as a pull-

back since it is homeomorphic to lim(Pf → Y
g← Z). By Example 7.3.13, the

homotopy pullback is an example of a limit.
As a special case, when Y = {z} is a point in Z and g is the inclusion, the

homotopy limit above is the homotopy fiber of f .
The space Pf itself is the pullback of the diagram

and is thus also an example of a limit. �

We provide one more example that is peripheral to our purposes but is
very important in topology. Namely, recall that a topological group G acts
continuously on a space X if there is a map

G × X −→ X

(g, x) �−→ gx

such that (gh)x = g(hx) and ex = x, where e is the identity in G. We then have
the set of fixed points of the action (set of points of X fixed by all elements of

2 This situation is what happens in Section 9.4 where the existence of codegeneracies allows us
to turn truncated cosimplicial digrams into punctured cubical diagrams that have the same
homotopy limit as the truncations.
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G), denoted by XG, and the orbit space of the action (quotient of X by orbits
of the action), denoted by XG.

Now think of a discrete group G as a category •G with one object • and
one morphism for each group element which compose according to the group
law. We then have the following result which follows from unravelling the
definitions.

Proposition 7.3.16 A functor F : •G → Top such that F(•) = X, determines
and is determined by a continuous group action on X.

Note that F(e) = 1X , where e is the identity element of G, is forced by the
axioms for a functor (see Definition 7.1.15).

We then have the following characterization of the G fixed points of X,
the space XG, as a limit. The corresponding statement for XG will appear as
Proposition 7.3.36.

Proposition 7.3.17 (Fixed points as limit) For a functor F : •G → Top where
F(•) = X and F(e) = 1X,

XG = lim•G

F.

Proof We will show that XG has the universal properties which defines the
limit. For each g ∈ G, group action gives a map g : X → X, and, as is cus-
tomary, we denote its value at x ∈ X by gx. Suppose Y is a space with a map
f : Y → X such that the following diagram commutes for all g ∈ G:

For each y ∈ Y , we have f (y) = gx for all g ∈ G, which implies f (y) is a fixed
point of the action of G. Hence f factors through a map u to the fixed point
set XG. That is, we have a map u : Y → XG which fits into the commutative
diagram

�



7.3 Limits and colimits 359

Limits can be regarded as functors. Recall from Example 7.1.30 the category
CI, which can be thought of as the category of I-shaped diagrams in C. The
limit is a functor3

lim
I

: CI −→ C (7.3.4)

because it associates an object in C to each diagram and, if

N : F −→ G

is a natural transformation of functors, there is a naturally induced morphism

lim
I

F −→ lim
I

G, (7.3.5)

which comes from the universal property of the limit. Observe that limI F is
a cone on the functor G via the composition of the canonical projection to F
and the natural transformation N : F → G. As such it is uniquely determined
because of the universality of limI F and limI G, and we have a commutative
diagram

for each object i ∈ I. Here pF,i and pG,i are the projections as in Defini-
tion 7.3.2, but for two different functors F and G.

We can also consider functoriality in the I component of the limit. Suppose
G : J → I is a functor. We have an induced functor G∗ : CI → CJ given by
F �→ F ◦G. This induces a map

lim
I

F −→ lim
J

(F ◦G) (7.3.6)

as follows. If j → j′ is a morphism, then we have a commutative diagram

where the vertical arrows are the canonical projections, which says that limI F
is a cone on the functor F ◦G, and hence there exists a unique map limI F →
limJ (F ◦ H).

3 This is right adjoint to the constant diagram functor.
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Remark 7.3.18 An easy way to remember which way the arrow from (7.3.6)
goes is to consider any example of a functor G : J → I which is the inclusion
of a subcategory and any functor F : I → Top. Since limI F is a subspace of∏

i∈I F(i) and limJ (F ◦ G) is a subspace of
∏

j∈J F( j), the natural projection∏
i∈I F(i) → ∏

j∈I F( j) induces the desired map of limits. �

The remainder of this section essentially consists of dual versions of the defi-
nitions and various examples from the first part of this section in the sense that
the arrows are reversed. Colimits are defined using a universal property and
generalize direct sums, pushouts, direct limits, and other familiar construc-
tions. Again suppose throughout that F : I → C is a diagram in C indexed on
a small category I.

Definition 7.3.19 A co-cone on F is an object C ∈ Ob(C) and, for each X ∈
Ob(I), a morphism γX : F(X) → C such that the following diagram commutes
for all X,Y ∈ Ob(I) and f ∈ HomI(X,Y):

Definition 7.3.20 The colimit of F, denoted by colimC F, is a co-cone on
F such that, for any other co-cone C on F and for any X,Y ∈ Ob(I) and
f ∈ HomI(X,Y), there exists a unique morphism u : colimC F → C such that
the following diagram commutes:

Here again λX and λY are morphisms associated to the co-cone colim F.

As was the case with limits, colimC F is unique up to isomorphism. We will
often denote the colimit simply by colim F. Colimits in general may not exist.
A category that contains colimits of all small diagrams is called cocomplete
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and we will always assume that we are working in such a category. Some
cocomplete categories are Set, Top, Top∗, Grp, and R-Mod.

Example 7.3.21 If I is the empty category, then the colimit of any functor F
from I to Top is the empty set, because, according to the commutative diagram
from Definition 7.3.20, all we need to find is a space which admits a map to
any other space. That is, the empty set is the initial object in the category of
topological spaces. In the category Top∗ of based spaces, however, the colimit
is the one-point space. �

Example 7.3.22 (Coproduct as colimit) Suppose I = {•, •}, the discrete cat-
egory consisting of two objects and no non-trivial morphisms, and F : I → C
a functor. Then F(I) = {X,Y} for some X,Y ∈ Ob(C). The colimit of this dia-
gram is precisely the coproduct X	Y by definition. More generally, if I is any
discrete category, one recovers Definition 7.2.4. �

Example 7.3.23 (lub in a poset as colimit) Let (P,≤) be a poset. If a, b are
elements of P, then the coproduct of a and b is their least upper bound (lub) in
P, which follows from the universal property in a way dual to the discussion in
Example 7.3.5. Reversing the arrows in the poset given in Example 7.3.5 gives
an example of a poset where the elements a and b have common upper bounds
but no least upper bound.

�

Example 7.3.24 (Supremum as colimit) Consider the real numbers R as a
category, with a morphism x → y if x ≤ y. The coproduct of two real numbers
is their maximum. Let F : C → R be any functor. Then colim F, if it exists, is
the supremum of the set {F(c) : c ∈ C}. �

Example 7.3.25 (lcm as colimit) Consider the natural numbers N as a cate-
gory, with a morphism a → b if a divides b. Let F : C → R be any functor.
Then colim F is the least common multiple of the set {F(c) : c ∈ C}. If C
is empty then the colimit is 1, since this is an initial object in this poset
structure. �

Example 7.3.26 (Union as colimit) For S a set and for F : C → P(S ) a
functor, the union

⋃
c∈C F(c) is the colimit of F. �
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Example 7.3.27 (Categories with a final object) If I has a final object i1,
then for a functor F : I → C, colimI F = F(i1), again because of the fact that
it satisfies the required universal property.

More concretely, if for example I = {• → • ← •}, then

colim(X → Z ← Y) = Z.

Cubical diagrams have a final object (see Remark 5.6.3), so considering colim-
its of punctured cubes is more interesting; this is why we considered colimits
of punctured cubes only, and not cubes, in Section 5.6. �

Example 7.3.28 (Direct sum/product of vector spaces) Consider R as a
1-dimensional vector space over itself. The direct sum R ⊕ R and direct prod-
uct R × R are isomorphic. Viewing these constructions categorically, think of
2 = {1, 2} as a discrete category, and let F : 2 → VectR be the constant functor
F(i) = R for all i. Then lim2 F = R×R and colim2 F = R⊕R, as can be readily
checked using the universal properties.

However, if the indexing category is infinite, the infinite direct sum and infi-
nite direct product are different. Think of N as a discrete category and define
F : N→ VectR as above. Then limN F is the countable product of copies of R,
and colimN F is the countable direct sum of copies of R. It is natural to think
of a point in each as a sequence {xi}i∈N, but in colimN F such a sequence must
eventually be zero, whereas there is no such condition on sequences in limN F.
It should be evident that limN F =

∏
N R by the universal properties, estab-

lishing the latter claim. To establish the former, we need only see that
⊕
N
R,

defined to be the set of all sequences which are eventually zero, satisfies the
universal property. We leave the details to the reader. �

The following two examples are dual to Examples 7.3.10 and 7.3.13.

Example 7.3.29 (Coequalizer/cokernel) If I = { }, then

colim( ) is called the coequalizer of X and Y (with respect to

the maps f and g), and is denoted by Coeq( ) or Coeq( f , g). The

pertinent diagram, dual to the one in (7.3.1), is

(7.3.7)
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In Set and Top, elements of Coeq( f , g) are points in Y/ ∼ where ∼ is generated
by relations f (x) = g(x) for all x ∈ X. In Top, Coeq( f , g) inherits the quo-
tient topology. It is again easy to verify that this quotient satisfies the required
universal property.

In the category of abelian groups, the coequalizer is the quotient of Y by the
image of the difference f − g. Thus if one of the homomorphisms is zero, this
reduces to the usual notion of a cokernel. �

Remark 7.3.30 We leave it to the reader to formulate the dual of
Remark 7.3.11. �

Example 7.3.31 (Direct limit) If I is the opposite category of the directed
poset in Example 7.3.12, namely • → • → • → · · · , then for a functor F : I →
C, F(I) is called a directed system. The colimit colimI F is called the direct
limit and sometimes denoted by lim→ F in the literature. We prefer and will

always use colim. This coincides with the usual notion of the direct limit in
other contexts.

Let C = Top and F(i) = Xi, so that F(I) = (X1 → X2 → · · · ), and let
ai : Xi → Xi+1 denote the maps in the diagram. The direct limit colimI F =
colimi Xi can be expressed as a coequalizer very simply. There is a natural
homeomorphism

where A :
∐

i Xi → ∐
i Xi is the map defined by A(xi) = ai(xi) if xi ∈ Xi ⊂∐

i Xi. Thus a point in colimI F is an equivalence class of points in
∐

i Xi,
where we identify x ∈ Xi with ai(x) ∈ Xi+1 and let this generate the evident
equivalence relation.

We can also express colimi Xi as the colimit of a punctured square. There is
a natural homeomorphism

colimi Xi �

⎛⎜⎜⎜⎜⎜⎝∐
i

Xi
∇←−

∐
i

Xi

∐∐
i

Xi

1∐
i Xi

∐
A−→

∐
i

Xi

⎞⎟⎟⎟⎟⎟⎠ ,
where the left arrow is the “fold” map ∇ which is the identity on each copy of∐

i Xi, and the right arrow is the identity on the first copy of
∐

i Xi and A on the
second copy.

We have seen an example of a direct limit already just after Definition 2.7.22.
There we defined the infinite symmetric product of a based space (X, x0) as a
union SP(X) =

⋃
n SPn(X). In categorical language, write I = 1 → 2 →
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3 → · · · , let F(i) = SPi(X), and let SPi(X) → SPi+1(X) be the map sending
[x1, . . . , xi] to [x1, . . . , xi, x0]. Then colimI F = SP(X). �

Example 7.3.32 (Pushout as colimit) Dually to Example 7.3.13, we can now
see why pushouts from Chapter 3 are examples of colimits.

Namely, if I = {• ← • → •}, then colim(X
f← W

g→ Y) is called the
pushout and denoted by X

∐
W Y . The relevant commutative diagram is

(7.3.8)

Here C is any object that makes the outer square commute, and u is a unique
map.

In Top, the pushout is given by

X
∐

W

Y = X
∐

Y/ ∼, (7.3.9)

where the equivalence relation ∼ is generated by f (w) = g(w) for all w ∈ W. It
inherits the quotient topology. To see that this satisfies the universal property,
suppose C is another set making the diagram (7.3.8) commute. Hence γX ◦ f =
γY ◦ g and letting u = γX

∐
γY defines it uniquely. This, of course, coincides

with the definition of the pushout from Definition 3.5.1.
If W is the intersection of X and Y , and f and g are inclusions of subsets,

then pushout is precisely the union of X and Y along their common intersection.
This is succinctly stated in a square which we have encountered repeatedly:

(7.3.10)

is pushout.
Furthermore, if one of the maps, say g, is the inclusion of a subspace, then

pushout is the union of X and Y along f , denoted by X ∪W Y , that is, it is the
space obtained from Y by gluing X to it along W using the attaching map f .
More examples of pushouts in Top were given in Section 3.5. �
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Remark 7.3.33 In analogy with Remark 7.3.14, in Top we can think of the
coequalizer in Example 7.3.29 as an iterated pushout. We have that

Coeq( f , g) = colim(X
∇← X 	 X

f	g→ Y)

where∇ is the codiagonal map (the map which is the identity on each summand
X in the coproduct). This is an iterated pushout since X 	 X is itself a pushout.

�

Example 7.3.34 (Homotopy pushout as colimit) We saw in Proposition 3.6.5

that the homotopy pushout hocolim(X
f← W

g→ Y) can be thought of

as a pushout: it is homeomorphic to colim(Mf ← W
g→ Y), and so by

Example 7.3.32 the homotopy pushout is an example of a colimit. If Y is a
one-point space, then the pushout of the diagram

(7.3.11)

is the cofiber of f , namely X/ f (W); see Example 3.5.6. According to Exam-
ple 3.6.8 (and Proposition 3.6.5), the homotopy cofiber of f is the pushout of
the diagram

where W → Mf is the inclusion in the mapping cylinder. The mapping cylinder
itself is a pushout of the diagram

where the right map sends w to (w, 1). �

Example 7.3.35 (Pushout in groups) Finally, in the category of groups, the
pushout of the diagrams of groups H ← K → G is the amalgamated product
G ∗K H. This is the precisely the construction one sees, for example, in the
Seifert–van Kampen Theorem (Theorem 1.4.12). �

Our last example is the dual of Proposition 7.3.17, so recall the notion of
the orbit space XG from the discussion prior to that result. We then have the
following.

Proposition 7.3.36 (Orbit space as colimit) For a functor F : •G → Top
where F(•) = X,

XG = colim•G
F.
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Proof Dual to the proof of Proposition 7.3.17, suppose Z is a space together
with a map h : X → Z such that the following diagram commutes for all g ∈ G:

Then, for each x ∈ X, we have h(x) = h(gx) for all g ∈ G, which implies h
factors through a map from the orbit space XG to Z. That is, there exists a map
u : XG → Z and a commutative diagram

�

The colimit can also be regarded as a functor4

colim
I

: CI −→ C

since, given a natural transformation

N : F −→ G,

there is a unique morphism

colim
I

F −→ colim
I

G (7.3.12)

induced by the universal property of the colimit, in analogy with the one in
(7.3.5).

Moreover, if G : J → I and F : I → C are functors, then we have a unique
induced morphism

colim
J

(F ◦G) −→ colim
I

F. (7.3.13)

Remark 7.3.37 A remark similar to Remark 7.3.18 applies here. For functors
to Top, and J → I the inclusion of a subcategory, we have an induced map of
coproducts

∐
j∈J F( j) → ∐

i∈I F(i) which induces the map of colimits above;
this is one way to remember which way the arrow goes. �

4 This is left adjoint to the constant diagram functor.
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7.4 Models for limits and colimits

In this section we present models for (co)limits in categories with (co)products.
In general of course one can still discuss (co)limits in a category without refer-
ence to (co)products, since they are defined by universal properties. However,
defining (co)limits by universal properties can make the object which is the
(co)limit seem a little elusive and abstract, while using products makes the
discussion more concrete and hands-on. The latter also translates well when
discussing (co)limits in Top, which is what we are ultimately interested in
anyway. The models presented here will serve as a basis for our models of
homotopy (co)limits in the next chapter.

We will use (co)products as encountered in Section 7.2 to give models for
(co)limits using (co)equalizers. At the end of the section, we will also give
further models for limits and colimits in Top using natural transformations and
quotients of disjoint unions; these will follow easily from the (co)equalizer
model we will have already established.

To start, we formally define equalizers as objects that satisfy a universal
property with respect to a certain diagram – rather then think of them as
examples of limits as in Example 7.3.10.

Definition 7.4.1 Let c1, c2 be objects of C and f , g morphisms from c1 to c2.

The equalizer of f and g, denoted by Eq( ) or Eq( f , g), is an object

of C together with a morphism e : Eq( f , g) → c1 such that

● f ◦ e = g ◦ e;
● if c is any other object and γ : c → c1 is a morphism satisfying f ◦ γ = g ◦ γ,

then there exists a unique morphism u : c → Eq( f , g) making the following
diagram commute:

(7.4.1)

Equalizers need not exist in C, even in a category with all products, but we
henceforth assume they do. One standard result that we will appeal to in the
proof of Proposition 7.4.3 is that, under the assumption that products and
equalizers exist, C is then in fact complete (all limits exist).

Example 7.4.2 (Equalizer as limit of a punctured 3-cube) Let X,Y be topo-
logical spaces and let f , g : X → Y be maps. The equalizer of X ⇒ Y can be
expressed as the limit of a punctured 3-cube. Note that
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lim(X ⇒ Y) = lim(X
Δ→ X × X

pro j← lim(X
f→ Y

g← X)),

and the latter limit is

�

Now suppose as usual that I is a small category and F : I → C is a diagram in
C. For the sake of brevity, we write a product indexed by the objects i of I as∏

i and a product indexed by the morphisms i → i′ of I as
∏

i→i′ . Recall from
Remark 7.2.6 that, in a category with products, a morphism Xi → Yi for each
i ∈ I induces a morphism

∏
i Xi → ∏

i Yi. On the one hand, the definition of
F gives a morphism F(i → i′) : F(i) → F(i′) for each morphism i → i′, and so
induces a morphism

a :
∏

i

F(i) −→
∏
i→i′

F(i′),

where the factor indexed by i maps to all factors indexed by the morphisms
with source i. On the other hand we have the identity 1F(i′) : F(i′) → F(i′), and
this induces a morphism

b :
∏

i′
F(i′) −→

∏
i→i′

F(i′),

where the factor indexed by i′ maps to all factors indexed by the morphisms
with target i′.

The following is standard, and we will not reproduce its proof here. See
[ML98, V.2 Theorem 2].

Proposition 7.4.3 (Limit as equalizer) Let F : I → C be a functor, where I
is small and C contains all products and equalizers. The equalizer

(7.4.2)

is canonically isomorphic to limI F.

Dually, we make a definition of a coequalizer endowed with the universal
property as follows.
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Definition 7.4.4 Let c1, c2 be objects of C and f , g morphisms from c1 to c2.

The coequalizer of f and g, denoted by Coeq( ) or Coeq( f , g), is an

object of C together with a morphism e : c2 → Coeq( f , g) such that

● e ◦ f = e ◦ g;
● if c is any other object and γ : c2 → c a morphism satisfying γ◦ f = γ◦g, then

there exists a unique morphism u : Coeq( f , g) → c making the following
diagram commute:

(7.4.3)

As before, we assume all coproducts and coequalizers exist, which implies that
that C is cocomplete (all colimits exist). Now let I be an indexing category and
F : I → C a diagram in C. Again for brevity, write a coproduct indexed by the
objects i ∈ I as

∐
i and a coproduct indexed by the morphisms i → i′ as

∐
i→i′ .

We have two maps

a, b :
∐
i→i′

F(i) −→
∐

i

F(i)

where a is induced by the morphism F(i → i′) and b is induced by the identity
morphism.

Dual to Proposition 7.4.3, we then have the following.

Proposition 7.4.5 (Colimit as coequalizer) For a functor F : I → C with I
small and C containing all coproducts and coequalizers, the coequalizer

(7.4.4)

is canonically isomorphic to colimI F.

We now give another way to think of (co)limits, namely as (co)ends. Under-
lying this model are again (co)equalizers, but now of a bifunctor; this initially
makes the (co)end perspective more complicated, but it will be useful to have it
to hand when discussing homotopy limits and colimits in the next chapter. For
simplicity we again assume that all categories we encounter here are complete
and cocomplete, although (co)ends can be discussed from the perspective of
universal properties.



370 Some category theory

Recall the notion of a product category from Definition 7.1.7 and let
F : Iop × I → C be a functor (such a functor is called a bifunctor).

Definition 7.4.6 The end of F, denoted by
∫
I F, is defined as

The maps are induced as follows. Let m : i → i′ be a morphism and let 1i and 1i′

denote the identity morphisms. The morphism (1i,m) : (i, i) → (i, i′) induces a
morphism F(1i,m) : F(i, i) → F(i, i′) and this in turn induces the morphism a.
A morphism (m, 1i′ ) : (i, i′) → (i′, i′) induces a morphism F(m, 1i′ ) : F(i′, i′) →
F(i, i′) and that in turn induces the morphism b.

Example 7.4.7 Suppose I is a small category, and let F,G : I → Top
be functors. We have a bifunctor Map(F,G) : Iop × I → Top given by
Map(F,G)(i, j) = Map(F(i),G( j)). Moreover, it is straightforward to verify
from the definition that ∫

I
Map(F,G) � Nat

I
(F,G)

is the space of natural transformations from F to G. �

Example 7.4.8 Consider the bifunctor F : P0(2)op × P0(2) → Top given by
F(S ,T ) = XT . Unraveling the definition we see that

∫
P0(2)

F is

,

where a and b are precisely as given before Proposition 7.4.3, and hence∫
P0(2)

F � lim(X1 → X12 ← X2). We leave it to the reader to check
the details. �

We did not use the full bifunctoriality in the last example. Any functor
F : I→C can be trivially viewed as a bifunctor F : Iop × I → C via compo-
sition with the canonical projection Iop ×I → I. Such a composition yields a
functor which is independent of the first argument.

Proposition 7.4.9 (Limit as end) Let F : I → C be a functor with C complete
and I small, and let P : Iop × I → I be the canonical projection. Then there
is a natural isomorphism
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lim
I

F �
∫
I

F ◦ P.

Proof Clear using the coequalizer model (7.4.2) and Proposition 7.4.3. �

Building on Example 7.4.8, and finally making use of bifunctoriality, we can
realize the homotopy pullback of spaces as an end of a bifunctor.

Example 7.4.10 Recall the covariant functor Δ(•) : P(n) → Top from
Example 5.1.5. Let F : P0(2)op × P0(2) → Top be given by F(S ,T ) =
Map(Δ(S ), XT ). Then∫

P0(2)
F � holim(X1 → X12 ← X2).

To see this, we simply unravel the definitions. For brevity write Map(X,Y) =
YX , and let γ ∈ Map(Δ(12),Y) in coordinates be given by (t1, t2) �→ γ(t1, t2),
where of course t1 + t2 = 1. We have

where

a(x1, x2, γ12) = (x1, x2, γ12, f1(x1), f2(x2))

and

b(x1, x2, γ12) = (x1, x2, γ12, γ12(1, 0), γ12(0, 1)).

Thus the equalizer is homeomorphic to the subspace of X1 × XI
12 × X2 of

all (x1, γ12, x2) such that γ12(0) = f1(x1) and γ12(1) = f2(x2), which is by
definition the homotopy limit of X1 → X12 ← X2, Definition 3.2.4. �

Dual to the notion of an end, Definition 7.4.6, we have the following.

Definition 7.4.11 The coend of a bifunctor F : Iop × I → C, denoted by∫ I
F, is defined as

,

where the maps are induced as follows: let m : i → i′ be a morphism and let 1i

and 1i′ denote the identity morphisms. Then a is induced by F(1i,m) and b is
induced by F(m, 1i′ ).
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Dual to Example 7.4.8, we have the following.

Example 7.4.12 Consider the bifunctor F : P1(2)op ×P1(2) → Top given by

F(S ,T ) = XT . Then
∫ P1(2)

F � colim(X1 ← X∅ → X2). We leave this as an
exercise for the reader. �

Then we have the analog of Proposition 7.4.9.

Proposition 7.4.13 (Colimit as coend) Let F : I → C be a functor with C
cocomplete and I small, and let P : Iop × I → I be the canonical projection.
Then there is a natural isomorphism

colim
I

F �
∫ I

F ◦ P.

Proof Again clear using the coequalizer model (7.4.4) and Proposition 7.4.5.
�

Example 7.4.14 Recall the contravariant functor Δ(n−•) : P(n) → Top from
Example 5.1.5. Consider the bifunctor F : P1(2)op × P1(2) → Top given by
F(S ,T ) = Δ(2 − S ) × XT . Then∫ Pi(2)

F � hocolim(X1
f1← X∅

f2→ X2).

The proof is dual to the explanation given in Example 7.4.10 and we leave it
to the reader. �

We now briefly discuss Kan extensions. These are indexed by over- and under-
categories which appear in Definition 8.1.1. The reader who does not to wish to
jump ahead to that definition at the moment may safely skip the next example;
Kan extensions will not appear again until Definition 8.4.2.

Example 7.4.15 (Kan extensions) Let F : I → C be functor with C com-
plete and cocomplete, and let G : I → J be a functor, with both I and
J small. There are two natural notions of extensions of F to J . Define
LGF,RGF : J→C by the formulas

LGF( j) = colim
(i,m)∈G↓ j

F(i)

and

RGF( j) = lim
(i,m)∈ j↓G

F(i),

called the left (resp. right) Kan extension of F along G.
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One important special case to consider is where G : I → J is the inclu-
sion of a subcategory. Note that if j is an object of I, then I ↓ j has a final
object, namely j ↓ j, and hence LGF( j) = F( j) by Example 7.3.27, and
similarly j ↓ G has an initial object j ↓ j, and hence RGF( j) = F( j) by
Example 7.3.9.

Limits and colimits are Kan extensions. If we letJ = ∗ be the category with
a single object, and G : I → ∗ the canonical functor, then LGF = colimI F and
RGF = limI F. �

We give one last model for limits and colimits, but now we will restrict our
attention to the category of spaces Top (everything works the same way in
Top∗).

Recall from Example 7.1.23 the constant functor at a point, C∗. Then if
X : I → Top is a diagram of spaces, one can consider the set of natu-
ral transformations between the constant diagram at a point in the shape of
I and X,

Nat
I

(C∗,X).

This has the structure of a topological space,, since

Nat
I

(C∗,X) ⊂
∏
i∈I

Map(∗, Xi) �
∏
i∈I

Xi.

This is analogous to the situation described in Definition 5.1.3.

Proposition 7.4.16 (Limit as natural transformations) Suppose X and C∗ are
as in above. There is a canonical homeomorphism

lim
I
X � Nat

I
(C∗,X).

Proof Using the identification Map(∗, Xi) � Xi and the canonical projections
pi :

∏
i Map(∗, Xi) → Map(∗, Xi), note that the following diagram commutes

for all morphisms i → i′:

But these are the same canonical projections that are used if we replace
Nat(C∗,X) with limI X (both are, after all, subspaces of

∏
i Xi), and so the

unique canonical map Nat(C∗,X) → limI X must be equal to the identity. �
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The result is of course a generalization of our definition of the limit of a punc-
tured cube, Definition 5.2.1. It says that the limit consists of those tuples in
the product of the spaces in the diagram that “map compatibly through the
diagram” in the sense that, whenever two points map to the same space, their
images should agree; this is precisely what is dictated by naturality. We will
see the analog of this model for the limit in Proposition 8.2.2 where we will
describe homotopy limits of spaces using natural transformations.

Remark 7.4.17 We can view Proposition 7.4.16 through the lens of
ends. For concreteness, rewriting the bifunctor in Example 7.4.8 as
F(S ,T ) = Map(∗S , XT ), the end of F is then a subspace of Map(∗, X1) ×
Map(∗, X2) × Map(∗, X12), and we saw it satisfied the appropriate universal
property. �

Dually, instead of maps of a one-point space giving the limit of a diagram
of spaces, the colimit can be realized in terms of products with the one-point
space. This may seem redundant since this model will not add anything sub-
stantial to the ones we have already encountered, but it will be the one that
will generalize nicely to homotopy colimit of a diagram in Section 8.2.2. It is
an easy exercise to deduce the following from either of the coequalizer or the
pushout models for the colimit (Proposition 7.4.5):

Proposition 7.4.18 For F : I → Top a diagram, there is a homeomorphism

colim
I

F �

⎛⎜⎜⎜⎜⎜⎜⎝∐
i∈I

Xi

⎞⎟⎟⎟⎟⎟⎟⎠ /∼ (7.4.5)

where the equivalence relation is generated by: for x ∈ Xi and x′ ∈ Xj, x ∼ x′

if there exists a map f in the diagram such that f (x) = x′.

It should be clear that this proposition is a direct generalization of the definition
of the colimit of a punctured cube, Definition 5.6.1.

To really dualize the description of the limit from Proposition 7.4.16, we can
simply take products with the one-point space:

colim
I

F �

⎛⎜⎜⎜⎜⎜⎜⎝∐
i∈I

Xi × ∗
⎞⎟⎟⎟⎟⎟⎟⎠ /∼ (7.4.6)

where the maps in the diagram are the same as in the original one with the
identity on the one-point space, and the equivalence relation is the obvious
extension of the one above. It may appear that taking products with points
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unnecessarily complicates the pictures, but the point is that we will obtain an
analogous model for the homotopy colimit of a diagram in Remark 8.2.13 by
essentially “blowing up” the points in the above expression.

7.5 Algebra of limits and colimits

We studied the algebra of homotopy pullbacks and pushouts in Section 3.9, and
it should be apparent that these results depended on interactions between limits
and colimits since pullbacks and pushouts are examples of those. This section
describes some more general results about how (co)limits interact with them-
selves, each other, and other functors. As usual, we will assume all the indexing
categories in sight are small, and all the categories in which our functors take
values are complete and cocomplete.

We first now examine the interaction of limits and colimits with the functors
Map(−,Z) and Map(Z,−) (see Example 7.1.17). Given F : I → Top, we can
compose it with these functors to get diagrams Map(F,Z) and Map(Z, F), by
which we mean diagrams F but with each space F(i) replaced by Map(F(i),Z)
or Map(Z, F(i)) (the former also has arrows reversed since Map(−,Z) is con-
travariant). These can also be thought of as functors in the Z variable. That is,
if f : Z → W is a map, we have induced natural transformations Map(F,Z) →
Map(F,W) and Map(W, F) → Map(Z, F).

For each i ∈ I there are canonical maps limI F → F(i) and F(i) →
colimI F which are compatible as i varies, that is, there is a map from the
space limI F to the I-diagram F. This induces a map Map(Z, limI F) →
Map(Z, F). By the universal property of limits, anything that maps to the
diagram Map(Z, F) factors through limI Map(Z, F), and hence there is a
canonical map Map(Z, limI F) → limI Map(Z, F). Similarly, we have a map
Map(colimI F,Z) → limIop Map(F,Z).

Proposition 7.5.1 (Maps and (co)limits) Let F : I → Top (or Top∗) be a
functor with I small. The canonical maps

Map
(
Z, lim

I
F
)
�−→ lim

I
Map(Z, F)

Map
(
colim

I
F,Z

)
�−→ lim

Iop
Map(F,Z)

are homeomorphisms that are natural in the Z variable.
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The proof of this statement can be found, for example, in [ML98, Theorem
1, p. 116] (for the proof of the second homeomorphism, see the discussion
following the proof of that theorem).

Remark 7.5.2 A functor such as Map(Z,−) for which the first homeomor-
phism in the above proposition holds is said to preserve limits. Even though
there is a map colimI Map(Z, F) → Map(Z, colimI F) (not hard to see), this is
not necesarily a homeomorphism, so the functor Map(Z,−) does not preserve
colimits. However, in general if a functor has a left adjoint, then it preserves
limits and this adjoint preserves colimits (see e.g. [Bor94, Proposition 3.2.2]
and the discussion at the end of Section 5, p. 119 of [ML98]). We could have
thus used this general fact to observe that Map(Z,−) preserves limits since it
has a left adjoint, Z × −, which in turn preserves colimits (this fact is not hard
to establish). �

For the next observation, recall the notion of a product category from Defini-
tion 7.1.7 and consider the product of two small indexing categories, I × J .
Given a functor F : I × J → C, it can be regarded as a diagram of diagrams
in two ways: as a diagram J → CI of I-diagrams indexed by J or a diagram
I → CJ of J-diagrams indexed by I. Then fixing i ∈ I or j ∈ J gives dia-
grams I → C and J → C. In other words, F can be restricted to subcategories
i × I or J × j for any i ∈ I or j ∈ J , which are naturally isomorphic to I
and J , respectively. It thus makes sense to consider (co)lim over one of the
categories and then over the other, as well as over I × J , regarded as a single
category. We then have the following.

Theorem 7.5.3 ((Co)limits commute with (co)limits) Suppose F : I × J →
C is any functor with I and J small and C complete and cocomplete. Then
there are canonical isomorphisms

lim
I×J

F � lim
J

lim
I

F � lim
I

lim
J

F,

colim
I×J

F � colim
J

colim
I

F � colim
I

colim
J

F

Proof We outline the proof in the case of limits and leave the other to the
reader to dualize. For i ∈ I fixed, consider the functor F(i,−) : J → C given
by j �→ F(i, j), and ( j → j′) �→ F(1i, j → j′). Let FJ = limJ F be the limit
of this functor, where FJ (i) = lim j∈J F(i, j). The universal property of limits
tells us that FJ : I → C is also a functor. Let L = limi∈I FJ (i). Now consider
the diagram
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where the unmarked morphisms are the canonical projections. This tells us that
L is a cone on the functor F(−, j) : J → C, and hence there exists a unique
morphism L → limI F = FI, where FI( j) = limi∈I F(i, j). Now we consider
the diagram

to see that L is also a cone on the functor FI : J → C, and hence there exists
a unique morphism L → limJ FI. What the above establishes is the existence
of a unique morphism L = limI limJ F → limJ limI F. By symmetry we
also have a unique morphism limJ limI F → limI limJ F. The composites
are forced to be the identity by the uniqueness and the universal property. �

We have already seen instances of (co)limits commuting. In particular, the
reader should look back at Examples 2.2.12 and 2.4.15. One can also consider
mixing limits and colimits, namely one can consider

colim
J

lim
I

F and lim
I

colim
J

F.

The two are not even weakly equivalent in general; see, for example, [Bor94,
Counterexample 2.13.9] (that example shows the two are not homeomorphic
but the same example works to show they cannot be weakly equivalent). How-
ever, if F is a functor to sets, then something more can be said for special
examples of I and J . We give some detail for this situation because it gives
us a chance to define a filtered category, which is a generalization of the idea
of a directed set.

Definition 7.5.4 A (non-empty) category J is filtered if

● for any two objects j and j′ in J , there exists an object k in J and
morphisms f : j → k and f ′ : j′ → k;

● for any two morphisms f , g : j → j′ in J , there exists an object k and a
morphism h : j′ → k such that h ◦ f = h ◦ g.
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For example, every category J with a terminal object is filtered, as is any
category that contains the coproduct of any two objects and the coequalizer of
any two morphisms.

We then have the following result, the proof of which can be found, for
example, in [ML98, Theorem 1, p. 215] (where one can also find the details on
how the canonical map below is defined).

Proposition 7.5.5 Suppose F : I×J → Set is a functor, I is a finite cat-
egory (finite number of objects and morphisms) and J is a small filtered
category. Then there is a canonical map

colim
J

lim
I

F −→ lim
I

colim
J

F

which is a bijection.

We finish this section by reminding the reader that the main problem with
limits and colimits is that they are not homotopy invariant. If C = Top, even if
the natural transformation N : F → G is a objectwise homotopy equivalence,
the induced maps (7.3.5) and (7.3.12) need not be. This was in fact already
illustrated by Examples 2.2 and 2.3 since fibers and cofibers are examples of
limits and colimits (Examples 7.3.15 and 7.3.34). This is why it is necessary to
develop the notion of homotopy limits and colimits, which we do in Chapter 8.



8

Homotopy limits and colimits
of diagrams of spaces

In this chapter, we generalize homotopy limits and colimits from cubical to
arbitrary diagrams of spaces. It should be clear by now that the motivation for
this is that limits and colimits are not homotopy invariant (see Examples 2.2
and 2.3) and that it is the job of homotopy limits and colimits to mend this
defect. Just as homotopy limits and colimits of punctured cubes are “fattened
up” versions of limits and colimits of such diagrams, so too are homotopy
limits and colimits over arbitrary indexing categories. The bookkeeping for
such fattenings is influenced by the “shape” of the diagram indexing the
(co)limit, and involves a certain amount of machinery from the theory of
simplicial sets. As we develop this machinery, we shall see how the construc-
tion of homotopy limits and colimits of punctured squares and cubes that we
have already encountered in Chapters 3 and 5 is indeed a special case of this
more general procedure, although this chapter can be read independently of
those earlier ones.

The first detailed study of homotopy limits and colimits (in the category
of simplicial sets) was undertaken by Bousfield and Kan [BK72a], who in
turn followed Segal’s definition of a homotopy colimit [Seg68]. Several other
special cases were already considered by Puppe [Pup58], Milnor [Mil63],
and others. Vogt [Vog73, Vog77] had also independently studied homotopy
(co)limits in detail, although much of it in the setting of homotopy commuta-
tive diagrams. Special cases of Vogt’s work were also considered by Mather
[Mat76] (see Theorem 5.10.7 and Theorem 5.10.8).

Bousfield and Kan’s preferred model for the homotopy limit of a diagram
(of spaces or simplicial sets) is the totalization of the cosimplicial replacement
of the diagram. One of the advantages of this point of view is that it leads
to spectral sequences computing the homotopy and homology groups of the
homotopy limit. We will devote considerable time to discussing this useful
feature of the cosimplicial approach in Chapter 9.

379
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One could also discuss homotopy (co)limits as objects that satisfy a
homotopical version of the universal properties for (co)limits (see [BK72a],
or [Hir03] for a more modern treatment), but the currently prevalent point of
view is driven by the modern category-theoretic language of model categories.
Homotopy (co)limits are derived functors of the (co)limit functors since the
latter do not necessarily exist in the homotopy category and the former are
thus their natural derived homotopy invariant replacements. The definition of
homotopy (co)limits as derived functors also endows them with a universal
property (which is “global” in the sense that it is universal with respect to all
possible homotopy invariant replacements of the (co)limit). Some standard ref-
erences for the derived point of view, including deeper study of the homotopy
theory of diagrams are [CS02, DS95, DHKS04, DK84, DFZ86, DF87, Hir03].

While all of these approaches and models for homotopy (co)lims are useful,
none of them is quite concrete enough for the scope of this book and some
require a large investment for the reader in terms of learning the background
material. We do not claim to improve upon this much, since we still rely upon
the machinery of simplicial sets and their realizations (the necessary details of
which have been relegated to the Appendix, Section A.1) and upon the famil-
iarity of the reader with CW/simplicial complexes. However, we will in this
chapter remain grounded in the category of topological spaces. In contrast,
limits and colimits were relatively easy to consider in any category, as they
are defined by universal properties. Such an approach, at least naively, will fail
because homotopy equivalence is a weaker notion of isomorphism than the nat-
ural one in a given category. Hence there is no counterpart to Section 7.3 in this
chapter. As we are driven by examples, specifically in the category of spaces,
we will mainly use the approach via (co)equalizers and natural transformations
since they are the most hands-on and, because they employ the definition of the
geometric realization of a category, are well suited to Top.

8.1 The classifying space of a category

Limits (in Top) can be thought of as collections of points in the product of all
the spaces in the diagram which map compatibly through the diagram. That
is, if Xi and Xj are spaces in the diagram X : I → Top, where I is small,
with a map Xi → Xj arising from a morphism i → j, then if xi ∈ Xi and
x j ∈ Xj are part of a tuple of points in the limit, the image of xi in Xj is
equal to x j. This is what is captured in the interpretation of the limit as the
space of natural transformations of the constant diagram into the diagram X
(Proposition 7.4.16).
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One way to think about the homotopy limit is in a similar manner, except
that the points match “up to coherent homotopy”. That is, with xi, x j as above,
instead of insisting that xi map to x j, we insist that there is a path in Xj between
the image of xi and x j, and this path is part of the data we collect. More-
over, we keep track of higher homotopies as well: if, for instance, part of the
diagram consists of maps Xi → Xj → Xk, and xi, x j, xk lie in the respective
spaces, then part of our data will be a path in Xj between the image of xi and
x j, a path in Xk from the image of x j to xk, a path in Xk between the image
of xi and xk in Xk via the composed map, and a “path of paths” (the image
of a 2-simplex) in Xk “filling in” the image in Xk of the path in Xj with the
other two paths in Xk. These paths and higher homotopies are all a part of
the data that comprise a point in the homotopy limit. Thus for every string of
maps Xi0 → · · · → Xik we will have a map of Δk into Xik satisfying certain
conditions.

Similarly, colimits are essentially quotients of the union of the spaces in
the diagram by subspaces determined by where points map. Then homotopy
colimits are constructed from coherent mapping cylinders of the spaces in the
diagram with face identifications according to the maps in the diagram.

The “shape” of the diagram indexing the (co)limit is therefore of inter-
est. In the situation above we have associated to the sequence i → j → k
of morphisms in I a 2-simplex which records coherence of a 2-parameter
family of homotopies which takes place in Xk. In general we will associate
to a chain i0 → · · · → ik in I a k-simplex with a map to Xik recording
homotopical coherence. This shape of a diagram is encoded by the nerve
of the associated category (Definition 8.1.8), which associates to a cate-
gory a simplicial set whose simplices are strings of morphisms, and then,
by geometric realization (Definition A.1.2), a topological space. This real-
ization may be familiar from elsewhere; one model for the classifying space
of a group regards the group as a category and then takes its realization
(Example 8.1.18).

In trying to understand the system of coherent homotopies at a space, we
will be interested in the local shape of the indexing category near the object
indexing that space. This is captured by the notions of overcategory and
undercategory.

Definition 8.1.1 Suppose I is a small category and i is an object of I.

● The category of objects over i, denoted by I ↓ i, is the category whose
objects are morphisms i′ → i and whose morphisms (i′ → i) → (i′′ → i) are
commutative diagrams
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● The category of objects under i, denoted by i ↓ I, is the category whose
objects are morphisms i → i′ and whose morphisms (i → i′) → (i → i′′) are
commutative diagrams

The identity morphism i → i is a final object in I ↓ i and an initial object in
i ↓ I. We refer to I ↓ i as an overcategory and i ↓ I as an undercategory.
Note that the overcategory and undercategory are dual in the sense that there
is a natural isomorphism of categories (i ↓ I)op � Iop ↓ i. Moreover, if I
has a final object i f , then there is a natural isomorphism I ↓ i f � I given by
forgetting the final object, and similarly if it has an initial object.

These definitions can be extended to functors between categories in the
following way:

Definition 8.1.2 If F : I → J is a functor, and j is an object of J , we
define the category of objects of I over j, denoted F ↓ j, as consisting of pairs
(i,m) where m : F(i) → j is a morphism. A morphism (i,m) → (i′,m′) in this
category is a morphism i → i′ such that m′ ◦ F(i → i′) = m. That is, the
diagram

commutes. In a similar way we define j ↓ F, the category of objects of I under
j. We may refer to F ↓ j as an overcategory of F and j ↓ F as an undercategory
of F.

In the special case where F = 1I is the identity functor in the above definition
we recover the notions of overcategory and undercategory.

Example 8.1.3 For the category P(1) = (∅ → {1}), P(1) ↓ {1} consists of
two objects: ∅ → {1} and {1} → {1} and one non-identity morphism induced
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by the unique morphism ∅ → {1}; of course P(1) ↓ {1} � P(1). The category
{1} ↓ P(1) contains only the object {1} → {1} and its identity morphism. �

Example 8.1.4 Consider P0(2) = ({1} → {1, 2} ← {2}). Then P0(2) ↓ {1, 2}
consists of three objects, {1, 2} → {1, 2}, {1} → {1, 2}, and {2} → {1, 2}, and two
morphisms induced by the unique morphisms {1} → {1, 2} and {2} → {1, 2}.
This can be drawn as

and P0(2) � P0(2) ↓ {1, 2}. The category {1, 2} ↓ P0(2) consists of a single
object and morphism. �

Example 8.1.5 Let P(n) be the usual cubical indexing category (see begin-
ning of Section 5.1), and let S ⊂ n be fixed. Then (P(n) ↓ S ) consists of an
object for each subset of S and a morphism for each inclusion R1 → R2 of sub-
sets of S . There is a natural isomorphism P(n ↓ S ) � P(S ) given on objects by
(R → S ) �→ R, as S is a final object in P(n) ↓ S . It restricts to an isomorphism
P0(n ↓ S ) � P0(S )

The story is similar for S ↓ P(n): There is one object for each subset of n
containing S , and one morphism for each inclusion of such subsets, and there
is a natural isomorphims S ↓ P(n) � P(n − S ) given by sending R to R − S ,
and it restricts to an isomorphism S ↓ P1(n) � P1(n − S ). �

Example 8.1.6 If I = , then I ↓ i2 consists of three objects

and two non-identity morphisms. In fact this overcategory is isomorphic to
P0(2). Here is a picture of I ↓ i2:

Note that while i2 is not a final object in I, the identity morphism i2 → i2
represents a final object in I ↓ i2. �

Example 8.1.7 If I = (1 ← 2 ← 3 ← 4 ← · · · ) indexes an inverse system
(as in Example 7.3.12), then I ↓ i has an object j → i for each j > i and one
morphism for each j > k > i induced by the unique morphism j → k. The
category i ↓ I is finite. �

If f : i → i′ is a morphism in I, then there are induced functors

I ↓ i −→ I ↓ i′ and i′ ↓ I −→ i ↓ I (8.1.1)
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given by composition with f . Every object over i is an object over i′ and every
object under i′ is an object under i by virtue of the morphism f : i → i′. The
over/under categories may be thought of as values of functors

I ↓ − : I −→ Cat

and

− ↓ I : Iop −→ Cat

given on objects by i �→ I ↓ i and i �→ i ↓ I respectively, and on morphisms
in the evident way.

We now describe a way to associate a simplicial set to a category, known
as the nerve. The reader may wish to refer to Section A.1 for background on
simplicial sets and in particular for the definition of the geometric realization
(Definition A.1.2).

Definition 8.1.8 Given a small category I, define a simplicial set B•I, called
the nerve of I, where the set of n-simplices BnI, n ≥ 0, is the set of all chains
of morphisms

i0 → i1 → i2 → · · · → in

in I. The face maps d j : BnI → Bn−1I are given by removing i j and using
the composition i j−1 → i j+1. That is, d j is “compose at i j”; in the case of d0

(resp. dn) we simply remove i0 (resp. in). The degeneracy maps s j : BnI →
Bn+1I are given by inserting the identity morphism at i j. A chain/simplex i0 →
· · · → in is called non-degenerate if it is not in the image of s j for any j.
Equivalently, no morphism in the chain is the identity map. We will denote by
ndBn(I) the set of non-degenerate n-simplices in the nerve of I.

The geometric realization of B•I is called the classifying space of the cat-
egory or the (geometric) realization of the category and is denoted by |I|
(instead of the more cumbersome but more correct |B•I|).

Remark 8.1.9 The realization |I| of the nerve of I is the realization of a
simplicial complex with one simplex Δk for each non-degenerate string of mor-
phisms i0 → · · · → ik (see discussion following Definition A.1.2 for why we
can disregard the degenerate strings), which are glued together via the face
and degeneracy maps described above. Each point in |I| is indexed uniquely
by a non-degenerate chain i0 → · · · → ik for some k. We shall see that it
is quite often useful to decompose the realizations of various categories into
their simplices in this way. �
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This process that associates to a category I its realization |I| is functorial in
the sense that a functor F : I → J gives rise to a continuous map |I| → |J|,
as the assignment I → B•I is itself a functor from categories to simplicial
sets, and the realization of a simplicial set is a functor from simplicial sets to
topological spaces (see (A.2)).

Example 8.1.10 If I = {i0, i1} is the discrete category with two objects, then
|I| is a discrete set consisting of two points. The reason is that there are no
non-degenerate simplices in degree greater than zero in B•I, and there are
precisely two simplices of degree zero, each associated with one of the two
distinct objects of I. More precisely, there are two simplices in B•I of degree
n for each n, each represented by a string of identity maps. Then, for any point
t ∈ Δn, (i j → · · · → i j, t) = (sn

0(i j), t) ∼ (i j, s0(t)) = (i j, 1) (recalling from
Definition 1.1.1 that 1 is the unique point in the 0-simplex Δ0). Since there are
obviously no strings of morphisms containing both i0 and i1, the realization is
evidently two points, naturally labeled by the objects of I. �

Example 8.1.11 For P(1) = (∅ → {1}), we have |P(1)| � I. To see this, the
simplicial set B•P(1) consists of two 0-simplices, one for each of the objects,
and a single non-degenerate 1-simplex given by the morphism ∅ → {1}. The
other two 1-simplices are degenerate. For n ≥ 2, Bn(P(1)) consists of n + 2
elements (two of which are strings of only identity morphisms, and the other n
of which consist of the morphism ∅ → {1} in one place and identity morphisms
elsewhere). Recalling the coordinates on simplices from Definition 1.1.1 and
the definition of the realization, Definition A.1.2, we have

(∅ → {1}, (0, 1)) = (∅ → {1}, d0(1)) ∼ (d0(∅ → {1}), {1}) = ({1}, 1)

and

(∅ → {1}, (1, 0)) = (∅ → {1}, d1(1)) ∼ (d1(∅ → {1}), 1) = (∅, 1).

Thus the non-degenerate 1-simplex associated with ∅ → {1} is glued along
its boundary to the two 0-simplices associated with ∅ and {1}. All higher sim-
plices are either identified with the non-degenerate 1-simplex or its endpoints.
A picture of the realization is given in Figure 8.1.

Figure 8.1 Realization of P(1).
�
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Figure 8.2 Realization of P0(2).

Figure 8.3 Realization of P0(3). The inside vertex is {1, 2, 3} and the inner edges
correspond to the morphisms {i} → {1, 2, 3} and {i, j} → {1, 2, 3} in the obvious
way.

Example 8.1.12 For P0(2) = ({1} → {1, 2} ← {2}), we have |P0(2)| � I
as follows. The simplicial set B•P0(2) consists of three 0-simplices (one
for each object), two non-degenerate 1-simplices associated with the arrows
{1} → {1, 2}, and {2} → {1, 2}, and the rest of the simplices are all
degenerate. These two non-degenerate 1-simplices are glued together along
the part of their boundary indexed by {1, 2}. This works in much the
same way as in Example 8.1.11. A picture of the realization is given in
Figure 8.2. �

Example 8.1.13 For the category P(n), we have |P(n)| � In, where In is sub-
divided into n-simplices associated with strictly increasing chains of subsets
∅ = S 0 � S 1 � · · · � S n = n.

Also, |P0(n)| � Δn−1, and in fact the geometric realization is a barycentri-
cally subdivided (n − 1)-simplex. Each non-degenerate simplex of dimension
n corresponds to a string S 1 ⊂ S 2 ⊂ · · · ⊂ S n = n where |S i| = i. A picture for
the case n = 3 is given in Figure 8.3. Similarly, |P1(n)| � Δn−1. We leave the
details to the reader. �

We will mostly be interested in the realizations of various overcategories and
undercategories, so we consider those in the following examples.

Example 8.1.14 For P(1) = (∅ → 1), we have |P(1) ↓ ∅| = ∗. Also P(1) ↓
{1} � P(1), and so as in Example 8.1.11, |P(1) ↓ {1}| � I. �
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Example 8.1.15 For P0(2) = ({1} → {1, 2} ← {2}), Example 8.1.12 shows
that |P0(2) ↓ {1, 2}| � I since P0(2) ↓ {1, 2} � P0(2). Also |P0(2) ↓ {i}| � ∗
for i = 1, 2 since, for such i, the overcategory consists of a single object and a
single morphism.

Since the category P1(2) = ({1} ← ∅ → {2}) is isomorphic to P0(2)op, we
also have |∅ ↓ P1(2)| � I, and |{i} ↓ P2(2)| � ∗ for the same reason that
|P0(2) ↓ {i}| � ∗. �

Example 8.1.16 Let I = (1 ← 2 ← · · · ) index an inverse system (we already
considered it in Example 8.1.7). Then |I| is an infinite-dimensional simplex
whose n-dimensional faces are indexed by strings i0 ← i1 ← · · · ← in with
i0 < i1 < · · · < in. The space |I ↓ i| is also an infinite-dimensional simplex for
any i. Moreover, for each i → j in I, the induced map |I ↓ j| → |I ↓ i| is the
inclusion of one of the infinite-dimensional faces in the infinite-dimensional
simplex |I ↓ i|. In fact, it is not hard to see that this face is of codimension j− i.

Also consider Iop = (1 → 2 → · · · ), the category indexing direct limits.
The natural isomorphism (i ↓ Iop)op � I ↓ i immediately gives the same
interpretation as above for these categories and their realizations. �

As we have mentioned above, a functor F : I → J induces a map of nerves
B•I → B•J and hence a continuous map of realizations:

|F| : |I| −→ |J|.
Furthermore, a natural transformation N : F → G between functors
F,G : I→J gives a homotopy between the maps |F| and |G|. To see why,
note that N can itself be regarded as a functor N : I × (∅ → {1}) → J , where
N(c, ∅) = F(c) and N(c, {1}) = G(c). Moreover, |I × (∅ → {1})| � |I| × I
by Theorem A.1.4, and |N| : |I| × I → |J| is in fact a homotopy between |F|
and |G| (we omit a careful proof). We will use this last fact in the proof of the
following proposition.

Proposition 8.1.17 If I has an initial or a final object, then |I| is con-
tractible.

Proof If 1I : I → I is the identity functor and F f : I → I is the constant
functor which sends every object to the final object i f ∈ C, then there is a nat-
ural transformation 1I → F f , since there is always a unique morphism to the
final object. This natural transformation gives rise to a homotopy between the
identity map |1I| and the constant map |F f |, and so |I| is homotopy equivalent
to a point. The argument is the same for the initial object, but the natural



388 Homotopy limits and colimits

transformation of functors is from the constant functor at the initial object to
the identity functor. �

The reader may wish to identify the categories with an initial or a final object
in the above examples and verify Proposition 8.1.17. We close this section with
one more interesting example.

Example 8.1.18 (Classifying space of a group) If C = G is a discrete group
(regarded in the usual way as a category with a single object and a morphism
for each group element), then |G| is precisely one model for the classifying
space of G, most often denoted BG.

It is a good exercise to work out the case G = Z/2. In this case there is a
single non-degenerate simplex of degree n for each n, and each one is attached
along its boundary to the simplex of one degree lower by a map of degree
2. The k-skeleton of this space is RPk with its usual CW structure, and the
classifying space BZ/2 = |Z/2| itself is RP∞. �

8.2 Homotopy limits and colimits

We are now ready to define homotopy limits and colimits in Top (and Top∗).
We do the former in Section 8.2.1 and the latter in Section 8.2.2, in terms
of (co)equalizers. This choice mirrors the concrete descriptions of (co)limits
via (co)equalizers from Section 7.4, makes the proofs of homotopy invariance
of homotopy (co)limits relatively easy to organize, and through these proofs
draws special attention to the importance of punctured squares and towers.

We defined homotopy (co)limits for punctured cubes in terms of natural
transformations and products (Definitions 5.3.1 and 5.7.1). The difference
between the natural transformations/products and the (co)equalizer definitions,
when both are available, is minimal and is simply a matter of reorganizing the
information. We will exhibit the equivalence of the definitions for homotopy
limits in Proposition 8.2.2 and for homotopy colimits in Remark 8.2.13.

8.2.1 Homotopy limits

Let I be a small category and F : I → Top a functor. At the start of Section
8.1 we vaguely described the homotopy limit as an “up to homotopy” version
of the limit, and used this to conclude that the overcategories I ↓ i have the
necessary combinatorics to keep track of homotopies (and higher homotopies)
between various points in F(i). The idea is to replace F(i) with the homotopy
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equivalent space Map(|I ↓ i|, F(i)) (it is homotopy equivalent because |I ↓ i| is
contractible by Proposition 8.1.17). This is no longer a functor of i in the way
that F was, but rather a bifunctor. Observe that there are two maps

a, b :
∏

i

Map (|I ↓ i|, F(i)) −→
∏
i→i′

Map
(|I ↓ i|, F(i′)

)
,

where a is induced by the map

Map(|I ↓ i|, F(i)) −→ Map(|I ↓ i|, F(i′))

given by applying Map(|I ↓ i|,−) to the map F(i) → F(i′). It sends the factor
indexed by i to those factors indexed by i → i′ for all such i′. The map b is
induced by the map

I ↓ i −→ I ↓ i′

by applying Map(−, F(i′)) to the induced map of realizations. It sends the fac-
tor indexed by i′ to the factors indexed by i → i′ for all such i. Together, a
and b capture the coherence in i ∈ I of the homotopies given by the maps
|I ↓ i| → F(i).

Definition 8.2.1 Given a functor F : I → Top (or Top∗), the homotopy limit
of F is the equalizer of the maps a and b above, that is,

To rephrase Definition 8.2.1 in terms of natural transformations (to match the
definition of the homotopy limit of a punctured cube, Definition 5.3.1), we
know that the realization of the nerve of the overcategory is a functor:

|I ↓ −| : I −→ Top

i �−→ |I ↓ i|.
Now let F : I → Top be a functor. The set NatI(|I ↓ −|, F) of natural trans-
formations is naturally a subset of

∏
i Map(|I ↓ i|, F(i)), and hence itself can

be thought of as a topological space by giving it the subspace topology.
Then we have the following characterization of homotopy limits in Top. It

is analogous to the model for the limit given in Proposition 7.4.16.

Proposition 8.2.2 (Homotopy limit as natural transformations) Suppose
F : I → Top (or Top∗) is a diagram. Then there is a natural homeomorphism

holim
I

F �Nat
I

(|I ↓ −|, F).
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Proof The homeomorphism is in fact the identity map. This is simply the
observation that by definition the homotopy limit of F is the equalizer

That is, holimI F ⊂ ∏
i Map(|I ↓ i|, F(i)) consists of those maps f = { fi}i∈I

such that, for all morphisms i → i′, the diagram

commutes, where the horizontal maps are those naturally induced by functori-
ality. This precisely describes the space of natural transformations. �

The expression in Definition 8.2.1 should be compared with the description of
the limit as an equalizer from (7.4.2). In particular, we can recover the ordi-
nary limit from the homotopy limit by replacing the realization of the nerve
of the overcategory with a point and using the canonical homeomorphism
Map(∗, X) � X. It is clear from the comparison with (7.4.2) that there is a
map

lim
I

F −→ holim
I

F (8.2.1)

induced by the natural transformation |I ↓ −| → C∗ of functors from I to Top,
where C∗ is the constant functor at the one-point space. More explicitly, this
map is induced on equalizers by the map of diagrams

(8.2.2)

The maps (2.2.2) and (3.2.1) are special cases of the map (8.2.1).
It is also clear that the map of spaces Map(∗, F(i′)) → Map(|I ↓ i|, F(i′))

is a homotopy equivalence for each i, because |I ↓ i| is contractible for each
i, but this does not in general induce a weak equivalence of equalizers, for the
same reason that limits are not homotopy invariant. This is, however, the sense
in which homotopy limit is a “fattened-up limit”. This fattening will afford it
the homotopy invariance property which the limit does not in general possess.
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Looking back at Definition 5.3.1, the definition of the homotopy limit of a
punctured cube, one easily confirms that it matches what appears in Proposi-
tion 8.2.2. Indeed, the punctured cubical simplex Δ(−) (or, as denoted there,
Δ(•)) is precisely the diagram |I ↓ −| when I = P0(n) (though without
the barycentric subdivision which comes with realizing the overcategory; see
Example 8.1.13). We will work out several special cases of punctured cubes
below, but will do so straight from Definition 8.2.1.

Example 8.2.3 If I is the empty category, then the homotopy limit of
F : I → Top is a point. �

Example 8.2.4 If I = {0, 1} and F(i) = Xi then holimI F is homeomorphic
to X0 × X1. �

Example 8.2.5 Suppose a small category I has an initial object i0. Then for
a functor F : I → Top, the projection

holim
I

F −→ Map(|I ↓ i0|, F(i0)) � F(i0)

is a homotopy equivalence. We will prove this in Proposition 9.3.4. This should
not be too surprising in light of the corresponding fact for ordinary limits,
Example 7.3.9. �

Example 8.2.6 Let CX : I → Top be the constant functor at the space X.
Then

holim
I

CX � Map(|I|, X).

In particular, if C∗ is the constant functor at the one-point space, then

holim
I

C∗ � ∗.
To see this, let f ∈ holimI CX . We define F ∈ Map(|I|, X) by describing its
values on the non-degenerate simplices of |I|. Let i0 → · · · → ik be a non-
degenerate k-simplex of |I|. Let Fi0→···→ik denote the restriction of F to the k-
simplex of |I| indexed by this simplex. Let Fi0→···→ik be equal to the restriction
of fik to the corresponding non-degenerate simplex (i0 → · · · → ik) → ik
where ik → ik is the identity map. Similarly, the fi may be defined from a map
F ∈ Map(|I|, X) by letting the value of fi on the non-degenerate k-simplex
(i0 → · · · → ik) → i be equal to the restriction of F to the k-simplex indexed
by i0 → · · · → ik.

That these correspondences determine elements of the spaces we claim they
do follows from Proposition 8.2.2, as a point f ∈ holimI CX amounts to maps
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fi : |I ↓ i| → X for each object i of I such that, for every morphism i → i′ in
I, the diagram

commutes. In particular, the value of fi on the non-degenerate simplex (i0 →
· · · → ik) → i is determined by the value of fik on the non-degenerate simplex
(i0 → · · · → ik) → ik, where the map ik → ik is the identity. �

Example 8.2.7 (Mapping path space as homotopy limit) Consider P(1)=
(∅→ {1}) and X : P(1)→ Top given by X(S )= XS . Let f =X(∅→ {1}) : X∅
→ X1. Then holimP(1) X is precisely the mapping path space of f , Pf (see Def-
inition 2.2.1). To see why, recall from Example 8.1.14 that |P(1) ↓ ∅| = ∗ and
|P(1) ↓ {1}| � I. It is natural to identify the map |P(1) ↓ ∅| � ∗ → |P(1) ↓ {1}| �
I as the inclusion of 0 in the interval. By definition, holimP(1) X is equal to

where a(x, γ) = (x, γ, f (x)) and b(x, γ) = (x, γ, γ(0)). Hence we obtain
precisely the set of all (x, γ) ∈ X∅ × XI

1 such that γ(0) = f (x). �

Example 8.2.8 (Homotopy pullback as homotopy limit) As usual, let
P0(2) = ({1} → {1, 2} ← {2}), and let X : P0(2) → Top be represented by

the diagram X1
f1→ X12

f2← X2. Let us use Definition 8.2.1 to confirm that
holimP0(2) X is homeomorphic to the homotopy pullback as defined in Defini-
tion 3.2.4. To see this, recall Example 8.1.15. We have |P0(2) ↓ {i}| = ∗ for
i = 1, 2, |P0(2) ↓ {1, 2}| � I, and we may identify the endpoints 0 and 1 as the
images of |P0(2) ↓ {1}| and |P0(2) ↓ {2}| in |P0(2) ↓ {1, 2}| respectively.

By definition, the homotopy limit of X is

,

where

a(x1, x2, γ) = (x1, x2, γ, f1(x1), f2(x2))

and

b(x1, x2, γ) = (x1, x2, γ, γ(0), γ(1)),
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so that the homotopy limit is the subspace of X1 × X2 × XI
12 of all (x1, x2, γ)

such that γ(0) = f1(x1) and γ(1) = f2(x2). But this is precisely the description
of the homotopy pullback given in Definition 3.2.4. �

Example 8.2.9 (Homotopy limit of a punctured 3-cube) Let I = P0(3) and
letX : P0(3) → Top be a punctured 3-cubical diagram of spaces. Let us recover
the description of holimP0(3) from Example 5.3.3 using Definition 8.2.1.

As usual let X(S ) = XS for ∅ � S ⊂ 3. The overcategories P0(3) ↓ − were
described in Example 8.1.5 and their realizations in Example 8.1.13.

The homotopy limit of X is thus

Unravelling this gives that a point in the homotopy limit is precisely the family
of spaces and homotopies as described in Example 5.3.3. �

Example 8.2.10 (Inverse homotopy limit) Let I = (1 ← 2 ← · · · ) be the
category indexing inverse systems, and let F : I → Top be given by F(i) =
Xi, let pi denote the maps Xi → Xi−1. By Proposition 8.2.2, holimI F is the
subspace of

∏
i Map(|I ↓ i|, Xi), called the inverse homotopy limit of F, such

that the diagram

commutes for each j ≤ i. As in Example 8.1.16, the map |I ↓ i| → |I ↓ j| is
the inclusion of an infinite-dimensional face of an infinite-dimensional simplex
(in fact the inclusion of a face of codimension i− j), and so a point in the limit
is a sequence of maps fi : |I ↓ i| → Xi such that the restriction of fi to the
(codimension 1) face |I ↓ i + 1| is equal to pi+1( fi+1).

This is a rather unwieldy description of an important standard example, basi-
cally due to the fact that we are mapping in infinite-dimensional simplices. For
a better (and perhaps more familiar) description, see Example 8.4.11. �

Example 8.2.11 (Homotopy fixed points as homotopy limit) Let G be a dis-
crete group and •G the category associated with G (one object •, one morphism
for each group element which composes according to the group law). Let
F : •G → Top be a functor, with F(•) = X.
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Then one can define homotopy fixed points XhG as

XhG = holim•G

F.

Although homotopy fixed points can be defined in other ways, this definition
is natural in light of Proposition 7.3.17. If the action of G on X is free, then the
canonical map XG → XhG from the fixed points to the homotopy fixed points
is a weak equivalence. �

We pause to briefly discuss functoriality. The homotopy limit has the same
functorial properties as the limit does, as discussed in Section 7.3. That is,

holim
I

(−) : TopI −→ Top

is a functor on the category of functors from I to Top; it is clear from the
definition that a natural transformation of functors F → G gives rise to a map
of homotopy limits

holim
I

F → holim
I

G. (8.2.3)

Varying the indexing category also induces a map of homotopy limits. Suppose
G : J → I is a functor, and suppose F : I → Top is a functor. Then G gives
rise to a map

holim
I

F −→ holim
J

(F ◦G), (8.2.4)

induced by G in the following way. The functor G induces a functor (J ↓
j) → (I ↓ G( j)) and hence a continuous map |J ↓ j| → |I ↓ G( j)|.
As holimI F ⊂ ∏

i Map(|I ↓ i|, F(i)), on the level of mapping spaces the
induced map is given by composition of the projection

∏
i Map(|I ↓ i|, F(i)) →∏

j Map(|I ↓ G( j)|, F ◦G( j)) away from those objects i not in the image of G,
followed by the map induced by |J ↓ j| → |I ↓ G( j)|. An important spe-
cial case occurs when G : J → I is the inclusion of a subcategory of I (see
e.g. Theorem 8.6.1). In this case we usually suppress the functor G from the
notation.

8.2.2 Homotopy colimits

To dualize Section 8.2.1, we start by giving the definition of the homotopy
colimit using coequalizers. After giving this definition we will immediately
see that it is equivalent to the definition of the homotopy colimit of a punctured
cube from Definition 5.7.1.
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First, there are maps

a, b :
∐
i→i′

F(i) × |(i′ ↓ I)op| −→
∐

i

F(i) × |(i ↓ I)op|

again induced by the morphisms i → i′. The map a is induced by the map

F(i → i′) × id : F(i) × |(i′ ↓ I)op| −→ F(i′) × |(i′ ↓ I)op|
and the map b is induced by the map

id × ((i′ ↓ I)op → (i ↓ I)op) : F(i) × |(i′ ↓ I)op| −→ F(i) × |(i ↓ I)op|.

Definition 8.2.12 Given a diagram F : I → Top, the homotopy colimit of F
is defined as the coequalizer of the maps a and b above, that is,

opop

Remark 8.2.13 It follows immediately from the definition, and dually to
Proposition 8.2.2, that hocolimI F is a quotient of

∐
i F(i) × |(i ↓ I)op| by

an equivalence relation generated by the maps a and b, in analogy with ordi-
nary colimits (see Proposition 7.4.18) and the cubical homotopy colimit (see
Definition 5.7.1). �

Remark 8.2.14 (Pointed homotopy colimit) The homotopy colimit construc-
tion we have described does not make a based space from a diagram of based
spaces. We fix that defect here. We can make a pointed homotopy colimit,
defined by

hocolim
I

F/hocolim
I

C∗,

where C∗ is the constant I-diagram of one-point spaces (see Example 7.1.23).
As we shall see in Example 8.2.18, hocolim

I
C∗ � |Iop|, and so the pointed

homotopy colimit is not necessarily equivalent to the one defined above. We
will not use special notation to denote the homotopy colimit in the category
of based spaces, and the reader should assume if a functor takes values in
based spaces, then when we construct the homotopy colimit we mean the based
homotopy colimit. �

The expression in Definition 8.2.12 should be compared with (7.4.4) which
gives a coequalizer description of an ordinary colimit. Therefore, analogous to

1 The reason we use (i ↓ I)op (following [Hir03]) is that it makes the proof of Proposition 8.5.4
essentially trivial. It would be equally correct to use i ↓ I instead of its opposite.
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the discussion leading to (8.2.1), if we replace the realizations |(i ↓ I)op| with
one-point spaces in Definition 8.2.12, we obtain the ordinary colimit and we
hence have a canonical map

hocolim
I

F −→ colim
I

F. (8.2.5)

induced by the map |(i ↓ I)op| → ∗. It “collapses” the homotopy colimit into
the colimit. The map (2.4.2) is a special case of this map.

Example 8.2.15 If I is the empty category, then the homotopy colimit of
F : I → Top is the empty set. �

Example 8.2.16 If I = {0, 1} and F(I) = {X0, X1} then hocolimI F is hom-
eomorphic to X0 	 X1 if the target of F is Top and X0 ∨ X1 if the target of F is
Top∗. �

Example 8.2.17 Suppose a small category I has a final object i1. Then, for
a functor F : I → Top, the canonical inclusion

F(i1) � F(i1) × |(i1 ↓ I)op| −→ hocolim
I

F

is a homotopy equivalence. We demonstrate this in Proposition A.1.16. The
corresponding fact for ordinary colimits is Example 7.3.27. �

Dual to Example 8.2.6, we have the following.

Example 8.2.18 Let CX : I → Top be the constant functor at the space X.
Then

hocolim
I

CX � X × |Iop|.
In particular, if C∗ is the constant functor at the one-point space, then, as we
have mentioned in Remark 8.2.14,

hocolim
I

C∗ � ∗ × |Iop| � |Iop|.
Though the proof is dual to that given in Example 8.2.6, we will demonstrate
the second fact. By definition,

op op

where a takes a summand indexed by i → i′ to the summand indexed by
i via the identity map, and b takes the summand indexed by i → i′ to the
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summand indexed by i′ using the induced map |(i ↓ I)op| → |(i′ ↓ I)op|. Send
the point x in the n-cell of |(i ↓ I)op| indexed by the non-degenerate chain
i′ → (i0 → · · · → in) in B•(i′ ↓ I)op to itself via the identity map (there is
a canonical homeomorphism between the n-simplex indexed by i′ → (i0 →
· · · → in) in |(i′ ↓ I)op| and the one indexed by i0 → · · · → in in |Iop|).
This defines a surjective map hocolimI C∗ → |I|, and it is injective as well,
since points x and y in hocolimI C∗ are mapped to the same point if and only
if they are identified by the maps a, b. It is easy to see this has a continuous
inverse. �

Example 8.2.19 (Mapping cylinder as homotopy colimit) Consider the cat-
egory P(1) = (∅ → {1}) and X : P(1) → Top given by X(S ) = XS . Let
f = X(∅ → {1}) : X0 → X1. Then hocolimP(1) X is precisely the mapping
cylinder of f , as in Definition 2.4.1. In more detail, to compute the homotopy
limit, we look at maps

a, b : X0 × I 	 X0 	 X1 −→ X0 × I 	 X1.

The map a is induced by the functor, so in this case that means that it is induced
by the map f or the identity maps. So

a((x0, t)) = (x0, t), a(x′0) = f (x′0), a(x1) = x1.

The map b is induced by the maps of undercategories, so

b((x0, t)) = (x0, t), b(x′0) = (x′0, 1), b(x1) = x1.

Then the only identifications we obtain are (x′0, 1) ∼ f (x′0), which gives the
mapping cylinder. �

Example 8.2.20 (Mapping torus as homotopy colimit) Let F be a functor
from the (co)equalizer category that sends both objects to the space
X, one morphism to the identity map and the other morphism to a self-map f .
Then the homotopy colimit of F is the mapping torus of f , the quotient of X× I
by (x, 0) ∼ ( f (x), 1). �

Example 8.2.21 (Homotopy pushout) Let P1(2) = ({1} ← ∅ → {2}) and let

X : P1(2) be represented by the diagram X1
f1← X∅

f2→ X2. Then hocolimP1(2) X
is precisely the homotopy pushout from Definition 3.6.3. We leave the details
to the reader. �

Dual to Example 8.2.10, we have the following.
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Example 8.2.22 (Direct homotopy colimit) Let I = (1 ← 2 ← · · · ) be the
category indexing inverse systems, and Iop = (1 → 2 → · · · ) its opposite,
the category indexing directed systems (introduced in Example 7.3.31). Let
F : Iop → Top be given by F(i) = Xi, and let ai denote the maps Xi → Xi+1.
Using Definition 8.2.12, hocolimIop F is a quotient space of

∐
i |(i ↓ Iop)op|×Xi

called the direct homotopy colimit of F.
We have already observed in Example 8.1.16 that |(i ↓ Iop)op| is an infinite-

dimensional simplex for each i and that a morphism j → i in Iop induces an
inclusion |( j ↓ Iop)op| → |(i ↓ Iop)op| of an infinite-dimensional face. Hence
the homotopy colimit consists of equivalence classes of points (ti, xi) ∈ |(i ↓
Iop)op| × Xi where we identify (ti, xi) with (ti, ai(xi)) (here ti is regarded as a
point in |(i + 1 ↓ Iop)op| via the inclusion described above).

As with Example 8.2.10, this is a rather unwieldy space due to the presence
of infinite-dimensional simplices. See Example 8.4.11 for a more a homo-
topy equivalent and more concrete description of this homotopy colimit as a
“mapping telescope”. �

Example 8.2.23 (Homotopy orbits as homotopy colimit) Dual to Exam-
ple 8.2.11, let •G be the category associated to a discrete group G and let
F : •G → Top be a functor, with F(•) = X. Then the homotopy orbit space
XhG is defined as

XhG = hocolim•G

F.

Again, it makes sense to define the homotopy orbit space this way since this is
the natural extension of orbit spaces as described in Proposition 7.3.36. If the
action of G on X is free, then the canonical map XhG → XG from the homotopy
orbits to the orbits is a weak equivalence. �

The homotopy colimit is a functor. We may regard

hocolim
I

(−) : TopI −→ Top

as functors on the category of functors from I to Top. It should be clear from
the definition that a natural transformation of functors gives rise to an induced
map of homotopy (co)limits, namely, given a natural transformation F → G,
we have a map

hocolim
I

F −→ hocolim
I

G. (8.2.6)

Varying the indexing category induces a map of homotopy colimits. Suppose
G : J → I is a functor, and suppose F : I → Top is a functor. Then G gives
rise to a map
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hocolim
J

(F ◦G) −→ hocolim
I

F. (8.2.7)

An important special case occurs when G : J → I is the inclusion of a
subcategory of I, which will be discussed in Theorem 8.6.1.

8.3 Homotopy invariance of homotopy limits
and colimits

Here we discuss homotopy invariance of homotopy (co)limits. This was done
for cubical diagrams in Theorems 5.3.9 and 5.7.8. We will tackle the homotopy
invariance of the homotopy limit first. It will require a little bit of background
on inverse limit towers, since we filter the spaces Map(|I ↓ i|, F(i)) by filtering
the simplicial complexes |I ↓ i| by their skeleta.

Theorem 8.3.1 (Homotopy invariance of homotopy limits) Let I be a small
category and F,G : I → Top (or Top∗) functors. Suppose we have a natural
transformation N : F → G such that F(i) → G(i) is a homotopy (resp. weak)
equivalence for all i. Then the natural map holimI F → holimI G from (8.2.3)
is a homotopy (resp. weak) equivalence.

The key ingredients in the proof of this theorem are the homotopy invariance
of homotopy pullbacks of punctured squares (Theorem 3.2.12), as well as the
homotopy invariance of limits of towers of fibrations (Theorem 8.3.2), which
we will establish below. The rest is a matter of using the simplicial machinery
for bookkeeping.

Theorem 8.3.2 Suppose that in the diagram

(8.3.1)

all of the horizontal maps are fibrations and all of the vertical maps fi are
homotopy (resp. weak) equivalences for all i ∈ N. Then the induced map
f : limi Xi −→ limi Yi is a homotopy (resp. weak) equivalence.

We split the proofs for the two notions of equivalence into separate proofs. Our
presentation in the case of homotopy equivalences below is based on [Geo79].
To the best of our knowledge the result in the case of homotopy equivalence
first appeared as [EH76, 3.4.1].
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Proof of Theorem 8.3.2 for homotopy equivalences The idea is to construct
a sequence of compatible homotopy inverses for the fn. Let Mfn denote the
mapping cylinder of fn for each n. For each n let jn : Yn → Mfn be the inclusion.
Let h1 : Mf1 → X1 be the homotopy inverse of the canonical inclusion X1 →
Mf1 (the inclusion is a homotopy equivalence because f1 is), and define g1 =

h1 ◦ j1 : Y1 → X1. Let H1 : X1 × I → X1 be the composition of the inclusion
of X1 × I in Mf1 followed by the map h1. Then H1(x1, 0) = x1 and H1(x1, 1) =
(g1 ◦ f1)(x1), and so H1 is a homotopy from 1X1 to g1 ◦ f1.

Let qn : Mfn+1 → Mfn be the induced map of mapping cylinders. Suppose
by induction that for i = 1 to n there exist maps hi : Mfi → Xi such that the
following diagrams

commute for i = 2 to n, where by definition gi = hi ◦ ji. Consider the lifting
problem

A solution hn+1 to this lifting problem exists by Theorem 2.5.4, since the left
vertical map is a cofibration which is also a homotopy equivalence, and the
right vertical map is a fibration by hypothesis. Then we define gn+1 = hn+1 ◦
jn+1. Note that by construction the map hn+1 is compatible with the maps qi in
the sense that the first square diagram appearing in this proof is commutative
for i = n + 1, and again by construction the second square diagram commutes
when i = n + 1.

With the hi as above, let Hi : Xi× I → Xi be the composition of the inclusion
Xi × I → Mfi with the map hi. Then
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commutes for all i, where the vertical maps are the evident ones induced by
Xi → Xi−1, and as with the case i = 1, Hi is a homotopy from 1Mfi

to gi ◦ fi.
Then the map g : limi Yi → limi Xi induced by the gi is homotopy inverse to
the map f : limi Xi → limi Yi induced by the fi because of the commutativity
of the previous square. To see that f ◦ g is homotopic to the identity of limi Yi,
we proceed similarly. This time, however, we find maps f ′i : Xi → Yi which
induce a map f ′ : limi Xi → limi Yi, and a homotopy 1Y ∼ f ′ ◦ g. This implies
f ∼ f ′ ◦ g ◦ f ∼ f ′, so that f is homotopy inverse to g. �

We need some algebraic results before we can proceed with the proof in the
case of weak equivalences. For a tower Z1 ← Z2 ← · · · of based spaces with
Z = limi Zi, there is a canonical map

πk(Z) −→ lim
i
πk(Zi).

This is because a map S k → Z gives rise to a sequence of maps S k → Zi via
the canonical projections limi(Zi) → Zi; it is not hard to see that this induces a
map to the inverse limit of the homotopy groups by the universal property. Let
Kk(Z) = ker (πk(Z) → limi πk(Zi)) be the kernel of this canonical map. When
n = 0 by “kernel” we mean the set of components of Z which map to the
inverse limit of the components of the Zi which contain the basepoints of the
Zi. An important observation is the following.

Lemma 8.3.3 Let Z1 ← Z2 ← · · · and Z = limi Zi be as above. For all k ≥ 0,
the canonical map πk(Z) → limi πk(Zi) is surjective. That is, we have a short
exact sequence (of groups if k ≥ 1, pointed sets if k = 0)

{e} −→ Kn(Z) −→ πk(Z) −→ lim
i
πk(Zi) −→ {e}.

Proof For each i, let pi : Zi → Zi−1 denote the given fibration, and let
(α1, α2, . . .) be an element of limi πk(Zi). Thus (pi)∗(αi) = αi−1. Let fi : S k → Zi

represent the class αi. Then we also have homotopies Hi : S k × I → Zi from
pi+1( fi+1) to fi. Consider the lifting problem

Since p2 is a fibration, this has a solution Ĥ1 : S k × I → X2 which represents
a homotopy from f2 to a map f̂2 such that p2( f̂2) = f1. Let f̂1 = f1, and by
induction assume we have constructed f̂2, . . . , f̂n−1 so that pi( f̂i) = f̂i−1 and
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f̂i ∼ fi for i = 2 to n − 1. Let H̃n−1 : S k × I → Xn−1 be a homotopy from pn( fn)
to f̃n−1. Then, as in the previous lifting problem, there is a lift of this homotopy
which represents a homotopy from fn to a map f̂n such that pn( f̂n) = f̂n−1. Thus
the sequence ( f̂1, f̂2, . . . , ) represents a map f : S k → Z, so its homotopy class
[ f ] ∈ πk(Z) maps to the given sequence (α1, α2, . . .). �

We also need the following lemma to complete the proof of Theorem 8.3.2
in the case of weak equivalences. The proof can be found in [Hir15b] and we
omit it.

Lemma 8.3.4 Suppose that in the diagram

all of the horizontal maps are fibrations and all of the vertical maps fi are weak
homotopy equivalences. Then, for any choice of basepoint of X, the induced
map Kn(X) → Kn(Y) is surjective for all n ≥ 0.

Proof of Theorem 8.3.2 for weak equivalences Let X = limi Xi and Y =

limi Yi, and let f : X → Y be the map induced by the fi. According to
Proposition 2.6.17 we must show that for all n ≥ 0 and for all commutative
diagrams

a solution to the lifting problem ĥ : Dn → X exists satisfying ĥ ◦ i = g and f ◦
ĥ ∼ h relative to ∂Dn. Let g j : ∂Dn → Xj and h j : Dn → Yj be the compositions
of g and h with the canonical projections X → Xj and Y → Yj. Write a j for the
map Xj → Xj−1 and b j for the map Yj → Yj−1.

Consider the lifting problem

Since f1 is a weak equivalence, Proposition 2.6.17 implies that there exists a
lift ĥ1 : Dn → X1 such that ĥ1 ◦ i = g1 and f1 ◦ ĥ1 ∼ h1 relative to ∂Dn. Suppose
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by induction that lifts ĥ1, . . . , ĥk−1 have been constructed so that ĥ j : Dn → Xj

satisfies

(1) ĥ j ◦ i = g j;
(2) f j ◦ ĥ j ∼ h j relative to ∂Dn;
(3) a j ◦ ĥ j = ĥ j−1

for all j = 1 to k − 1. We seek to construct ĥk : Dn → Xk satisfying (1)–(3).
As was the case with f1, since fk is a weak equivalence there exists a map

h̃k : Dn → Xk such that (1) and (2) hold for j = k. We will make a homotopy
of h̃k relative to ∂Dn to a map satisfying (3). The following diagram will make
the argument easier to follow:

Since fk ◦ h̃k ∼ hk relative to ∂Dn, bk ◦ fk ◦ h̃k ∼ bk ◦ hk = hk−1 relative to
∂Dn. Using commutativity of the right square above we have fk−1 ◦ ak ◦ h̃k ∼
fk−1 ◦ ĥk−1 relative to ∂Dn. Let Kk−1 denote a homotopy from fk−1 ◦ ak ◦ h̃k to
fk−1 ◦ ĥk−1 relative to ∂Dn. Consider the diagram

where the left vertical map is the inclusion, and O : ∂Dn × I ∪Dn × ∂I → Y is
the map defined by O(s, t) = gk−1(s) for all (s, t) ∈ ∂Dn× I, O(s, 0) = ak ◦ h̃k(s)
and O(s, 1) = ĥk−1(s) for s ∈ Dn. By Proposition 2.6.17 the dotted arrow exists,
call it K̂k−1, and represents a homotopy from ak◦h̃k to ĥk−1 relative to ∂Dn. Now
consider the lifting problem

where the left vertical map is the inclusion and C : ∂Dn × I ∪ Dn × {0} → Xk is
the map C(s, t) = gk(s) for (s, t) ∈ ∂Dn× I and C(s, 0) = h̃k(s) for s ∈ Dn. Since
ak is a fibration, a solution to this lifting problem exists by Proposition 2.1.9,
and if we let ĥk denote the restriction of this solution to Dn × {1}, the map ĥk is
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homotopic to h̃k relative to ∂Dn and ak−1 ◦ ĥk = ĥk−1. Thus ĥk satisfies (1)–(3)
above.

The maps {̂h j}∞j=1 now determine a map ĥ : Dn → X such that ĥ ◦ i = g. Thus

we have maps h, f ◦ ĥ : Dn → Y which agree on ∂Dn, and hence determine
an element [( f ◦ ĥ) ∪ h] = β ∈ πn(Y) (we assume some basepoint in ∂Dn has
been chosen, and the image of this basepoint by the map g bases X and hence
Y). The canonical projections h j and f j ◦ ĥ j agree on ∂Dn and also determine
elements of πn(Yj) for all j. Since h j ∼ f j ◦ ĥ j, the elements of πn(Yj) are all
zero (when n = 0 we mean these elements are all the components containing
the basepoints of the Yj). Thus β ∈ Kn(Y) = ker (πn(Y) → limi πn(Yi)), and by
Lemma 8.3.4 there exists α ∈ Kn(X) ⊂ πn(X) such that f∗(α) = β. Assume
for the moment n ≥ 1. Choose l : Dn → X such that l|∂Dn = ĥ|∂Dn and such
that l ∪ ĥ : S n = Dn ∪∂Dn Dn → X represents the homotopy class α−1. Hence
e = β−1 ∗ β = [( f ◦ l)∪ ( f ◦ ĥ)] ∗ [( f ◦ ĥ)∪ h] = [( f ◦ ĥ)∪ h] is the trivial class,
and so f ◦ l ∼ h, as desired.

When n = 0, we need a separate argument because of the lack of a group
structure on π0. Choose a path component of Y , and choose a basepoint of X.
We have the diagram of pointed sets

By Lemma 8.3.3 we can modify the choice of basepoint of X so that its
image in limi π0(Xi) maps to the image of the element of π0(Y) we started
with because the right vertical map is an isomorphism since the fi are
weak equivalences (i.e. the induced maps ( fi)∗ : π0(Xi) → π0(Yi) are iso-
morphisms). But now the element of π0(Y) we started with is an element of
K0(Y), and the map K0(X) → K0(Y) is surjective by Lemma 8.3.4, so we are
done. �

In the proof of Theorem 8.3.1, we will study homotopy limits by break-
ing them into pieces using the skeletal decomposition of the realization
of the overcategories used to define them. This decomposes the homotopy
limit into a tower of “truncated” homotopy limits. We formalize this as
follows.

Definition 8.3.5 Let I be a small category and F : I → Top a functor. For
each n ≥ 0 define
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(8.3.2)
Here a and b are the restrictions of the maps defining holimI F.

One should note that this definition relies on the fact that the map b, which is
induced by the map I ↓ i → I ↓ i′ for morphisms i → i′, takes n-simplices in
the nerve of I ↓ i to n-simplices in the nerve of I ↓ i′.

The following lemma constitutes most of the proof of Theorem 8.3.1, but
is also a useful result in its own right. For a category I and an integer n ≥ 0,
recall that ndBn(I) denotes the set of non-degenerate n-simplices in the nerve
of I (see Definition 8.1.8).

Lemma 8.3.6 Let I be a small category and F : I → Top a functor. Then
for each n ≥ 0 we have a pullback square

where the vertical maps are fibrations, and the horizontal maps are restric-
tions.

Proof We begin by more explicitly describing the horizontal maps in the
square above. By definition, holim≤n

I F is a subspace of
∏

i Map(|skn(I ↓
i)|, F(i)). Furthermore, for each i |skn(I ↓ i)| is a simplicial complex, and in
particular a quotient space of the coproduct over all simplices of dimension
≤ n. Thus

holim≤n
I F ⊂

∏
i

∏
k≤n

∏
(i0→···→ik)→i

Map(Δk, F(i)).

The top horizontal map above is this inclusion followed by projection onto
those factors indexed by non-degenerate chains (i0 → · · · → in) → i where
in → i is the identity morphism. The lower horizontal arrow is similar, but
a little trickier. In this case we treat the boundary ∂Δn as a union of sim-
plices indexed by the faces di(i0 → · · · → in); the restriction holim≤n

I F →
holim≤n−1

I F keeps track of the value of an element on the faces of each
n-simplex.



406 Homotopy limits and colimits

By Proposition A.1.13, we have for each n ≥ 0 and for each i ∈ I a pushout
square

in which the vertical maps are cofibrations. Apply
∏

i∈I Map(−, F(i)) every-
where to obtain the square

Since the functor Map(−,Z) takes cofibrations to fibrations by Proposi-
tion 2.5.1, pushouts to pullbacks by Proposition 3.5.14, pointwise products of
pullbacks are pullbacks (by Proposition 3.3.6), and products of fibrations are
fibrations by Example 2.1.4, the square above is a pullback square in which
the vertical maps are fibrations. For brevity we will write the pullback square
above as

Recall also that, by definition, holim≤ j
I is a subspace of Mj(F).

Now let f n ∈ holim≤n
I F, and let f n−1 ∈ holim≤n−1

I F be its restriction. The
element f n also determines a point in MΔn (F) =

∏
i∈I

∏
ndBn(I↓i) Map(Δn, F(i)).

Let x (resp. xi) stand for the non-degenerate chain (i0 → · · · in) → in in Bn(I ↓
in) where in → in is the identity (resp. the non-degenerate chain (i0 → · · · →
in) → i in Bn(I ↓ i)), and let fx (resp. fxi ) denote the restriction of f to these
simplices. By definition of holim≤n

I F as an equalizer, we have a commutative
diagram

Hence the value of f n ∈ holim≤n
I F on the n-simplex xi is completely deter-

mined by its value on the n-simplex labeled by the non-degenerate chain



8.3 Homotopy invariance of homotopy (co)limits 407

(i0 → · · · → in) → in, where the map in → in is the identity. We can encode
this in a diagram as follows. First, define a map

∏
(i0→···→in)∈ndBn(I)

Map(Δn, F(in)) −→
∏
i∈I

∏
ndBn(I↓i)

Map(Δn, F(i)),

whose projection onto the factor indexed by (i0 → · · · → in) → i is the
composition of the map Map(Δn, F(in)) → Map(Δn, F(i)) induced by the
map F(in → i) with the projection onto the factor Map(Δn, F(in)) indexed by
i0 → · · · → in.

Letting Φn(F) =
∏

(i0→···→in)∈ndBn(I) Map(Δn, F(in)), we have just observed
that, by restricting attention to the n-simplices, f n determines a point in

lim (Mn(F) −→ MΔn (F) ←− Φn(F)) .

Moreover, the behavior of f n on the n-simplices is determined by an element of
the limit above which agrees with f n−1 along the boundary of the n-simplices.
We can capture this coherence as follows. Let

∂Φn(F) =
∏

(i0→···→in)∈ndBn(I)

Map(∂Δn, F(in)).

Then holim≤n
I F is the limit of the punctured 3-cube

The middle row captures the coherence between f n−1 and the point in the
limit of the bottom row determined by f n. We can compute the limit of
this punctured 3-cube using our observation that the second displayed square
in this proof, appearing in the above diagram as the lower-left square, is
a pullback as follows. Using Lemma 5.2.8, the limit of this diagram is
homeomorphic to
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Since the second displayed square in this proof is a pullback, the top vertical
map in this diagram is a homeomorphism, and by Example 3.1.4 the limit
appearing above is therefore homeomorphic to the bottom-most space in this
diagram. That is, we have the desired pullback diagram

Unraveling the notation, it is easy to see that the right vertical map in this
square is a fibration. This follows from Proposition 2.5.1 and Example 2.1.4
since the inclusion ∂Δn → Δn is a cofibration (using Example 2.3.5 and the
homeomorphism of pairs (Δn, ∂Δn) � (Dn, ∂Dn)). �

Proof of Theorem 8.3.1 For brevity write the square in the statement of
Lemma 8.3.6 as

We also have the corresponding pullback square for G with all the same
properties that the one for F has:

It is enough by Theorem 8.3.2 to prove that the induced map

Fn = holim
I

≤nF −→ holim
I

≤nG = Gn
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is a homotopy (resp. weak) equivalence for each n. By induction using Corol-
lary 3.2.15 (an immediate corollary of Theorem 3.2.12), the vertical maps in
the diagram

are homotopy (resp. weak) equivalences, and hence induce a homotopy
(resp. weak) equivalence of homotopy limits and hence of limits Fn → Gn. To
get the induction started we need to verify that the map F0 → G0 is a homo-
topy (resp. weak) equivalence. It is not difficult to verify that F0 �

∏
i F(i)

and that the map F0 → G0 is the product, over i, of the maps F(i) → G(i).
This is evidently a homotopy (resp. weak) equivalence, since it is a product of
homotopy (resp. weak) equivalences. �

We now present the dual to Theorem 8.3.1 establishing the homotopy invari-
ance of the homotopy colimit.

Theorem 8.3.7 (Homotopy invariance of homotopy colimits) Let I be a
small category and F,G : I → Top functors. Suppose we have a natural
transformation N : F → G such that F(i) → G(i) is a homotopy (resp. weak)
equivalence for all i. Then the natural map (8.2.6) is a homotopy (resp. weak)
equivalence.

Again the key ingredients in the proof will be the homotopy invariance of
homotopy pushout (Theorem 3.6.13) and the homotopy invariance of colimits
of towers of cofibrations, which we will establish below as Theorem 8.3.8.

Theorem 8.3.8 Suppose that in the diagram

all of the horizontal maps are cofibrations and all of the vertical maps fi are
homotopy (resp. weak) equivalences for all i ∈ N. Then the induced map
f : colimi Xi −→ colimi Yi is a homotopy (resp. weak) equivalence.
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As we mentioned, the proof for homotopy equivalences is dual to the proof
presented above. However, since this is a fundamental result, let us outline
how to use Theorem 8.3.2 to prove this.

Proof of Theorem 8.3.8 for homotopy equivalences using Theorem 8.3.2 We
use Proposition 1.3.2, which says that a map X → Y is a homotopy equiva-
lence if and only if the induced map Map(Y,Z) → Map(X,Z) is a homotopy
equivalence for all Z. Let Z be arbitrary, and apply Map(−,Z) to the diagram
in the statement of the lemma. We then obtain the following diagram

By Proposition 1.3.2, the vertical maps are all homotopy equivalences since the
maps Xi → Yi are. By Proposition 2.5.1, the horizontal maps are all fibrations.
Hence by Theorem 8.3.2, the induced map

lim
i

Map(Yi,Z) −→ lim
i

Map(Xi,Z)

is a homotopy equivalence (note that the limit is taken over the opposite of the
indexing category we started with). By Proposition 7.5.1, limi Map(Yi,Z) �
Map(colimi Yi,Z) and limi Map(Xi,Z) � Map(colimi Xi,Z), and so the natural
map Map(colimi Y,Z) → Map(colimi Xi,Z) is a homotopy equivalence for all
Z, and hence, by Proposition 1.3.2 once again, the natural map colimi Xi →
colimi Yi is a homotopy equivalence. �

To prove Theorem 8.3.8 for weak equivalences we follow [DI04], and we thank
Phil Hirshhorn for helping us incorporate this work. The proof is considerably
simpler than its dual, basically because the homotopy groups of a direct limit
of inclusions of Hausdorff spaces are the direct limits of the homotopy groups.

Proof of Theorem 8.3.8 for weak equivalences Let X = colimi Xi and Y =
colimi Yi. Consider the diagram of groups

The top horizonal map is the map induced on homotopy groups by the canon-
ical maps Xi → colimi Xi = X; the same is the case for the lower horizontal
map. The vertical maps are induced by the map of towers. Observe that every
map of a compact space K to colimi Xi factors through some Xn. This follows
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from the fact that cofibrations are closed inclusions (Proposition 2.3.2) and
that our spaces are Hausdorff. See, for example, Lemma A.3 of [DI04], where
a more general statement is proved. This applies in particular to K = S n for all
n. It follows that the horizontal arrows are isomorphisms. It is enough to prove
that the left vertical map is an isomorphism for each n. For n = 0 it is plainly
true since π0(Xi) � π0(Yi) as sets and the diagram

commutes. For n ≥ 1, the proof is really no different. The inverses gi to the
isomorphisms ( fi)∗ : πn(Xi) → πn(Yi) make the diagram

commute, and hence they induce an inverse g to the canonical map
f∗ : X → Y . �

A proof dual to that given for Theorem 8.3.1 can also be given to prove
Theorem 8.3.7. Here is a definition and lemma dual to Definition 8.3.5 and
Lemma 8.3.6 that may be useful in such a proof.

Definition 8.3.9 Let I be a small category and F : I → Top a functor. For
each n ≥ 0 define

(8.3.3)
Here a and b are the restrictions of the maps defining hocolimI F.

Lemma 8.3.10 Let I be a small category and F : I → Top a functor. Then
for each n ≥ 0 we have a pushout square

where the vertical maps are cofibrations.
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8.4 Models for homotopy limits and colimits

In this section we give some other ways to view the homotopy (co)limit, and
give a few more examples. Other useful models we will encounter later are
cosimplicial replacements for homotopy limits and simplicial replacements
for homotopy colimits; we shall see those in Section 9.3 and Section A.1,
respectively.

8.4.1 Homotopy (co)limits as (co)ends and as Kan extensions

To start, homotopy (co)limits can be expressed as (co)ends of certain bifunc-
tors. In fact, the entire theory of homotopy (co)limits can be neatly organized
using this notion. Given a functor F : I → Top, we have naturally induced
bifunctors F0, F1 : Iop × I given by

F0(i, j) = Map(|I ↓ i|, F( j)) (8.4.1)

and

F1(i, j) = |(i ↓ I)op| × F( j). (8.4.2)

Now recall the definitions of an end and coend, Definitions 7.4.6 and 7.4.11.
Then we have the following statement, which follows immediately from the
definitions. The reader should compare them with Propositions 7.4.9 and
7.4.13.

Proposition 8.4.1 (Homotopy (co)limits as (co)ends) The end of F0 is the
homotopy limit of F, and coend of F1 is the homotopy colimit of F. That is,
there are natural homeomorphisms

holim
I

F �
∫
I

F0

and

hocolim
I

F �
∫ I

F1.

Recall the left and right Kan extensions, LGF( j) and RGF( j), from
Example 7.4.15. We have the following homotopy invariant analog.

Definition 8.4.2 Let I,J be small categories, F : I → Top a functor, and
G : I → J a functor. There are two natural notions of extensions of F to J .
We define the homotopy right (resp. left) Kan extensions of F along G by
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hRGF( j) = holim
(i,m)∈ j↓G

F(i)

and

hLGF( j) = hocolim
(i,m)∈G↓ j

F(i).2

To justify calling the above “extensions” of F, suppose G : I → J is the
inclusion of a subcategory. If i ∈ I ⊂ J , then (i, 1i) is an initial object in the
undercategory i ↓ G, and hence hRGF(i) � F(i) by Example 8.2.5. Similarly
(i, 1i) is a final object in the overcategory G ↓ i and so hLGF(i) � F(i) by
Example 8.2.17. The values at objects j ∈ J which are not objects of I are an
“average” of the values of the functor on the objects under/over j.

The homotopy limit and colimit of F can be realized as homotopy Kan
extensions:

Proposition 8.4.3 (Homotopy (co)limits as homotopy Kan extensions) Sup-
pose I and F are as in Definition 8.4.2, J = ∗ is the category with a single
object ∗ and a single morphism, and G : I → J is the unique functor. We have
canonical homeomorphisms

hRGF(∗) � holim
I

F

and

hLGF(∗) � hocolim
I

F.

Proof The categories ∗ ↓ G and G ↓ ∗ are canonically isomorphic to I. �

8.4.2 Homotopy (co)limits of towers and (co)fibrant replacements

A classical topic we have mostly neglected so far is the homotopy (co)limit
of a tower of spaces. We considered towers briefly in Examples 8.2.10 and
8.2.22, but the treatment there was not particularly satisfactory because our
definitions in this case do not give rise to nice models and instead produce
realizations of indexing categories that are infinite-dimensional. The “familiar”
models (if they are familiar to the reader at all), are the mapping telescope and
its dual, but our definitions do not yield these explicitly. The familiar models
are nonetheless valid and useful, and discussing them gives us an excuse to
talk briefly about (co)fibrant diagrams and (co)fibrant replacements. We give a

2 We think “homotopy initial Kan extension” (resp. “homotopy terminal Kan extension”) are
better names for homotopy right Kan extension (resp. homotopy left Kan extension). Dan
Dugger has suggested “relative homotopy (co)limit”.
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sketchy treatment of these topics; for a more thorough analysis (in the context
of model categories), see [Hir03].

The notion of (co)fibrant diagrams and replacements is useful in answer-
ing the following natural question: for a diagram F : I → Top, when are the
canonical maps

lim
I

F −→ holim
I

F

and

hocolim
I

F −→ colim
I

F

(weak) homotopy equivalences? This would mean that, for such F, its limit
or colimit would itself be homotopy invariant. We explored this in the case of
punctured cubes in Propositions 5.4.26 and 5.8.25. Finding a reasonably gen-
eral set of hypotheses which assures that the (co)limit and homotopy (co)limit
are weakly equivalent is more difficult, but we can supply the answer for a
class of diagrams of which the punctured cubes are a member.

Definition 8.4.4 We call a small category I a Reedy category if there exist

subcategories
→
I (the direct subcategory) and

←
I (the inverse subcategory) and

a function deg: Ob(I) → N called the degree such that the following hold:

● If m : i → i′ is a non-identity morphism in
→
I, then deg(i) < deg(i′).

● If m : i → i′ is a non-identity morphism in
←
I, then deg(i) > deg(i′).

● Every morphism m in I has a unique factorization m = r ◦ l, where r is a

morphism in
→
I and l is a morphism in

←
I.

For example,P(n) is a Reedy category, andP0(n) andP1(n) inherit their Reedy
category structure from this one. In this case the degree is given by deg(S ) =

|S |+1, and
→P(n) can be taken to be P(n) itself, and the inverse subcategory can

be taken to contain only the identity maps.
Other examples of Reedy categories include the categories indexing the

(co)equalizer (two parallel arrows), the inverse system (see Example 7.3.12),
and the directed system (see Example 7.3.31). The notion of a degree and of
the direct and inverse subcategories in each case is straightforward and left

to the reader. In all of these examples,
→
I or

←
I is trivial, in which case the

category itself is called “direct” or “inverse”, respectively. Another Reedy cat-
egory of importance to us is the cosimplicial indexing category Δ, which we
will study in depth in Chapter 9 (see in particular the discussion preceeding
Example 9.1.7).
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One family of examples of categories which are not Reedy are those asso-
ciated with non-trivial groups: the category with one object and one morphism
for each group element which compose according to the group law can-
not be Reedy. Furthermore, any category which has objects with non-trivial
automorphisms cannot be Reedy.

Definition 8.4.5 Let (
→
I ↓ i)1 and (i ↓

←
I)0 denote the full subcategories of

→
I ↓ i and i ↓

←
I with the identity morphism 1i : i → i removed. We call (

→
I ↓ i)1

the latching category of I at i, and (i ↓
←
I)0 the matching category of I at i.

Definition 8.4.6 Given a functor F : I → Top with I Reedy and an object
i ∈ I, define the matching space of F at i to be

Mi(F) = lim
(i↓

←
I)0

F.

There is an evident canonical map

F(i) −→ Mi(F)

called the matching map of F at i. If, for every i ∈ I, the matching map of F
at i is a fibration, then the functor F is said to be fibrant.

Definition 8.4.7 Dually, we can define the latching space of F at i to be

Li(F) = colim
(
→
I↓i)1

F.

There is again a canonical map

Li(F) −→ F(i)

called the latching map of F at i. If, for every i ∈ I, the latching map of F at i
is a cofibration, then the functor F is said to be cofibrant.

Remark 8.4.8 We may regard the category Top as Top∗, where ∗ is the cat-
egory with a single object and a single morphism, and we can thus say what
it means for a space to be (co)fibrant. Thinking of a space X in this way, i.e.
as a functor X : ∗ → Top, the above conditions say that X is fibrant (resp.
cofibrant) if the map X → ∗ (resp. ∅ → X) is a fibration (resp. cofibration).
This is always true for topological spaces and is trivial to check from our def-
inition of a (co)fibration. It is also true for Top∗; the key point here is that
we assume our based spaces are well-pointed. However, we want to reiter-
ate that we are not specifically using any model structure in this text, and
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“fibration” and “cofibration” as we know them here are merely examples of
a fibration/cofibration in some model structure on Top. �

We then have the following result, the proof of which we omit. Before we state
it, we need to define a connected category as a category where every pair of
objects is connected by a finite zig-zag of morphisms.

Theorem 8.4.9 ([Hir03, Theorem 19.9.1 and Proposition 15.10.2]) Let I be
a Reedy category.

1. If every latching category is empty or connected and F : I → Top is a
fibrant diagram, then the canonical map limI F → holimI F is a weak
equivalence.

2. If every matching category is empty or connected and F : I → Top is a
cofibrant diagram, then the canonical map hocolimI F → colimI F is a
weak equivalence.

Since the inverse and direct categories, as well as categories indexing
(punctured) cubes, have empty latching and matching categories, we then
immediately have

Corollary 8.4.10

1. If X : P0(n) → Top is a fibrant punctured n-cube, then the canonical map
limP0(n) X → holimP0(n) X is a weak equivalence.

2. IfX : P1(n) → Top is a cofibrant punctured n-cube, then the canonical map
hocolimP1(n) X → colimP1(n) X is a weak equivalence.

3. If I = (• ← • ← · · · ) is the category which indexes the inverse limit,
and F : I → Top is a fibrant diagram, then the canonical map limI F →
holimI F is a weak equivalence.

4. If I = (• → • → · · · ) is the category which indexes the direct limit, and
F : I → Top is a cofibrant diagram, then the canonical map hocolimI F →
colimI F is a weak equivalence.

Notice that the first two parts of the above corollary are restatements of
Propositions 5.4.26 and 5.8.25. (Those two results are in terms of homotopy
equivalences but the statements above have weak equivalences because they
use Theorem 8.4.9.) In fact, Corollary 8.4.10 in a sense brings us back to
the beginning of the story of homotopy (co)limits, which began for us with
homotopy pullbacks and pushouts. An important observation that we made
early on, Proposition 3.2.13 (or Example 7.3.15), states that if in the diagram
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X → Z ← Y either of the maps were fibrations, then the pullback of this
diagram was also its homotopy pullback; that is, it enjoyed the homotopy
invariance property. In light of the previous corollary it is enough if this dia-
gram is fibrant, which means in this case that both maps X → Z and Y → Z
are fibrations (this is stricly more than is necessary, but Corollary 8.4.10 is
a very general statement). Similarly for the diagram X ← W → Y and the
equivalence of its pushout and homotopy pushout; the diagram being cofibrant
means each of the maps W → X and W → Y are cofibrations (see Proposi-
tion 3.6.17 or Example 7.3.34). Propositions 5.4.26 and 5.8.25 are extensions
of these important observations from squares to cubes.

Example 8.4.11 (Inverse homotopy limit and direct homotopy colimit)
Using Corollary 8.4.10, we can now give a alternative way of constructing
the inverse homotopy limit (as it appears in Example 8.2.10) and the direct
homotopy colimit (as it appears in Example 8.2.22) of towers of spaces. Sup-
pose I = {0 ← 1 ← 2 ← · · · } and let X : I → Top be a functor with X(i) = Xi

and X(i → i − 1) = fi. Thus the diagram is an inverse system of spaces

X0
f1←− X1

f2←− X2
f3←− · · ·

For any Xi, the matching object Mi(X) is equal to Xi−1 by Example 7.3.9, as the
object i → i−1 is initial in the category indexing the limit which defines Mi(X).
For the above tower to be a fibrant diagram, it therefore suffices that the maps
fi : Xi → Xi−1 are fibrations for each i. Hence, according to Corollary 8.4.10, a
model for the homotopy inverse limit of a tower can be achieved by replacing
all of the maps systematically by fibrations.

To do this, we will define a new tower PX and a map of towers X → PX
that will be a homotopy equivalence. More explicitly, we will construct a
commutative diagram

where all the vertical maps are equivalences.
The tower PX is defined inductively: let PX(0) = X0, with the vertical map

being the identity. Then let PX(1) = Pf1 , with the maps X1 → PX(1) and
PX(1) → PX(0) being the natural maps. The vertical maps are homotopy
equivalences, and the map PX(1) → PX(0) is a fibration.



418 Homotopy limits and colimits

If PX(k−1) has been constructed, then define PX(k) via the pullback square

where PX(k − 1) → Xk−1 is the composition of the projection

PX(k − 1) = lim
(
PX(k − 2) → Xk−2 ← Pfk−1

)
−→ Pfk−1

with the canonical projection Pfk−1 → Xk−1.
Since the right vertical map in the above square is a fibration, so is the map

pk. Since the bottom horizontal map is a homotopy equivalence, so is the map
PX(k) → Pfk .

To define the map Xk → PX(k): we have a natural map Xk → Pfk and the
composition

Xk −→ Xk−1 −→ PX(k − 1),

and if we compose both of those with maps to Xk−1, they agree. Since Xk → Pfk

and PX(k) → Pfk are both homotopy equivalences, the map Xk → PX(k) is
also a homotopy equivalence.

Because the maps pi are fibrations, by the homotopy invariance of the homo-
topy limit (Theorem 8.3.1), the induced map holimI PX → holimI X is a
homotopy equivalence. Since PX is fibrant, Corollary 8.4.10 implies that the
natural map limI PX → holimI PX is a weak equivalence.

It remains to describe limI PX explicitly. The map pk : PX(k) → PX(k − 1)
sends a pair (zk−1, (xk, γk−1)) to zk−1. It is then straightforward to verify that
a point in limI PX consists of a sequence of points (x0, x1, . . .) and paths
(γ0, γ1, . . .) where xi ∈ Xi and γi : I → Xi has the property that γi(0) =
fi+1(xi+1) and γi(1) = xi. A rough picture, the mapping microscope (the ter-
minology parallels that of the mapping telescope, to be encountered shortly),
is given below.

Figure 8.4 The mapping microscope of an inverse system of spaces.
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Another way to achieve the same model is to use the description of limI X
given in Example 7.3.12. There we showed that there is a homeomorphism

lim
I
X � lim

⎛⎜⎜⎜⎜⎜⎝∏
i

Xi
Δ−→

∏
i

Xi ×
∏

i

Xi

(1∏
i Xi ,F)←−

∏
i

Xi

⎞⎟⎟⎟⎟⎟⎠
where F = ( f1, f2, . . .), and Δ is the diagonal. We leave it to the reader to check
that

lim

⎛⎜⎜⎜⎜⎜⎝PΔ −→
∏

i

Xi ×
∏

i

Xi

(1∏
i Xi ,F)←−

∏
i

Xi

⎞⎟⎟⎟⎟⎟⎠
yields the same model as given above, where PΔ is the mapping path space.
The motivation for this model is simple: to create a homotopy invariant limit,
we replace one map by a fibration.

Dually, suppose I = {0 → 1 → 2 → · · · } indexes a directed system of
spaces Y : I → Top, namely

Y0
g0−→ Y1

g1−→ Y2
g2−→ · · ·

In this case, the latching object Li(Y) of Yi is Yi−1 and it thus suffices for all
the maps in this system to be cofibrations in order for it to be cofibrant. Define
a tower MY inductively as follows: MY(0) = Y0, MY(1) = Mg0 , and

MY(k) = colim(MY(k − 1) ←− Yk−1 −→ Mfk−1 ).

The maps mk : MY(k) → MY(k + 1) are the canonical inclusions MY(k) →
colim(MY(k) ← Xk → Mfk ). Then, by an argument dual to the above, this
gives a tower of cofibrations with a map Y → MY which is a pointwise
homotopy equivalence, and so hocolimI Y � colimI MY by Corollary 8.4.10.

This colimit colimI MY is called the mapping telescope of the diagram Y
and can be pictured as in Figure 8.5.

Figure 8.5 The mapping telescope of a directed system of spaces.
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Alternatively, we could take the description of the direct limit given in
Example 7.3.31, where we showed that there is a homeomorphism

colimI Y �
⎛⎜⎜⎜⎜⎜⎝∐

i

∇←−
∐

i

Yi

∐∐
i

Yi

1∐
i Yi

∐
G−→

∐
i

Gi

⎞⎟⎟⎟⎟⎟⎠ ,
where ∇ is the “fold” map and G(yi) = gi(yi) for yi ∈ Yi. In this case we turn ∇
into a cofibration, and the space⎛⎜⎜⎜⎜⎜⎝M∇ ←−

∐
i

Yi

∐∐
i

Yi

1∐
i Yi

∐
G−→

∐
i

Gi

⎞⎟⎟⎟⎟⎟⎠
gives precisely the mapping telescope described above. �

We now return to general diagrams. The following says that every diagram can
be replaced by a (co)fibrant one, by a process called (co)fibrant replacement.

Definition 8.4.12 Let F : I → Top be a functor. Define F̌, F̂ : I → Top by

F̌(i) = holim
(i′,m)∈(i↓I)

F(i′)

and

F̂(i) = hocolim
(i′,m)∈(I↓i)

F(i′).

F̌ is called the fibrant replacement of F and F̂ is called the cofibrant
replacement of F.

The following result says that the formulas defining F̌ and F̂ are functors which
are pointwise homotopy equivalent to F, so it is in this sense that F̌ and F̂
are “replacements” of F. The justification of the “(co)fibrant” part of the ter-
minology is beyond the scope of this book; for more details, see [DHKS04,
Section 23].

Proposition 8.4.13 The formulas for F̌ and F̂ in Definition 8.4.12 define
functors F̌, F̂ : I → Top, and there exist natural transformations F → F̌ and
F̂ → F such that F(i) → F̌(i) and F̂(i) → F(i) are homotopy equivalences for
each i.

Proof We verify these claims for F̌ and leave the case of F̂ to the reader.
A morphism i → j gives rise to a functor j ↓ I → i ↓ I, and hence defines a
map F̌(i) → F̌( j). It is straightforward to verify that the identity morphism is
sent to the identity map and that the composition of two morphisms is sent to
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the evident composite from the definitions. Hence the formula defining F̌(i) is
a functor of i.

Since i ↓ I has initial object (i, 1i), using Example 7.3.9, we have a
canonical map

F(i) � lim
(i′,m)∈(i↓I)

F(i′) −→ holim
(i′,m)∈(i↓I)

F(i′) = F̌(i),

which is a functor of i. These maps are homotopy equivalences, since by Exam-
ple 8.2.5 the projection holimi↓I F → Map(|(i ↓ I) ↓ (i, 1i)|, F(i)) � F(i)
is a homotopy equivalence, and the map F(i) � Map(∗, F(i)) → Map(|(i ↓
I) ↓ (i, 1i)|, F(i)) induced by the canonical map above is clearly a homotopy
equivalence, as it is induced by the canonical map |(i ↓ I) ↓ (i, 1i)| → ∗. �

By the homotopy invariance of homotopy (co)limits, Theorems 8.3.1 and
8.3.7, the natural transformations F → F̌ and F̂ → F induce homotopy
equivalences

holim
I

F −→ holim
I

F̌

and

hocolim
I

F̂ −→ hocolim
I

F.

The following result says that the (co)limit and homotopy (co)limit of
(co)fibrant replacement agree.

Theorem 8.4.14 The canonical maps

lim
I

F̌ −→ holim
I

F̌

and

hocolim
I

F̂ −→ colim
I

F̂.

are homotopy equivalences.

Proof We will sketch the proof of the statement for homotopy limits and leave
the rest of the proof and its dual to the reader. We will show how to construct
a homeomorphism h : limI F̌ → holimI F such that
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commutes, where the vertical arrow is the homotopy equivalence given by
Proposition 8.4.13 and Theorem 8.3.1, and the diagonal arrow is the map in
question.

For each object i, by definition, F̌(i) = holimi↓I F, and we define, for each
non-negative integer n,

F̌≤n(i) = holim
i↓I

≤n F.

Thus,

and clearly limI F̌ � limn limI F̌≤n. We will argue by induction on n that there
are homeomorphisms limI F̌≤n � holim≤n

I F for each n, and that these are com-
patible in the sense that they give rise to a homeomorphism limI F̌ � holimI F.
We leave it to the reader to check that there is a natural homeomorphism
limI F̌≤0 � holim≤0

I F.
We claim that the square

is a pullback square (similar to the square appearing in Lemma 8.3.6). The
main point is that the value of a point in limI F̌≤n on a non-degenerate sim-
plex indexed by i → (i0 → · · · → in) is determined by its value on the
non-degenerate simplex indexed by i0 → (i0 → · · · → in), where the map
i0 → i0 is the identity map. This follows from the description of limI F̌≤n

above as an equalizer. We know from Lemma 8.3.6 that we have a pullback
square



8.5 Algebra of homotopy limits and colimits 423

and by induction a homeomorphism hn−1 : limI F̌≤n−1 → holim≤n−1
I F induces

a homeomorphism hn : limI F̌≤n → holim≤n
I F by inducing an evident home-

omorphism of pullbacks of the above two squares. The homeomorphisms hn

collectively define the desired homeomorphism h : limI F̌ → holimI F. �

8.5 Algebra of homotopy limits and colimits

In this section we explore some properties and interactions of homotopy
(co)limits with themselves and with other functors. This section parallels and
extends various results we have already established for punctured squares and
cubes, as well as for ordinary limits and colimits. We will thus in this section
see generalizations of results from Sections 3.3, 3.7, 3.9, 5.4, 5.8, 5.10, and
7.5. In Section 8.6, we also extend some of those results in a different direc-
tion, as we are now not limited by a particular shape of the diagram (punctured
cubical) and can also consider functorial properties of homotopy (co)limits in
the indexing variable.

From Theorems 8.3.1 and 8.3.7 and from the discussion preceding them,
we have that holimI and hocolimI preserve (weak) homotopy equivalences as
functors on the category of functors from I to Top. The next result says they
also preserve (co)fibrations. Recall that when we speak of a natural transfor-
mation of diagrams that is a (co)fibration, we mean that it is an objectwise
(co)fibration.

Theorem 8.5.1 (Ho(co)lims preserve (co)fibrations) Suppose F,G : I →
Top are diagrams and N : F → G is a natural transformation.

1. If N is a fibration, then the map holimI F → holimI G is a fibration.
2. If N is a cofibration, then the map hocolimI F → hocolimI G is a

cofibration.

The argument is very similar to the one used to prove Theorem 8.3.1. So simi-
lar, in fact, that we will use parts of that argument below. We first need a lemma
concerning towers of fibrations.

Lemma 8.5.2 Let X0 = (X0 ← X1 ← · · · ) and Y0 = (Y0 ← Y1 ← · · · ) be
towers of fibrations, and letX0 → Y0 be a map of diagrams such that X0 → Y0

is a fibration and the canonical map Xi+1 → lim(Xi → Yi ← Yi+1) is a fibration
for all i ≥ 0. Then the induced map limX0 → limY0 is a fibration.
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Dually, let X1 = (X0 → X1 → · · · ) and Y1 = (Y0 → Y1 → · · · ) be towers
of cofibrations, and let X1 → Y1 be a map of diagrams such that X0 → Y0

is a cofibration and the canonical map colim(Yi ← Xi → Xi+1) → Yi+1 is a
cofibration for all i ≥ 0. Then the induced map colimX1 → colimY1 is a
cofibration.

Proof We prove the first statement; the second is dual and we omit it (or it
can be proved using the first statement after applying the functor Map(−,Z)).

Let pi : Xi → Xi−1 be the maps in the diagram X0. A solution to the lifting
problem

amounts to a sequence of solutions

such that pi ◦ ĥi = ĥi−1. When i = 0, there is a solution ĥ0 since X0 → Y0 is a
fibration. Now suppose by induction that we have constructed lifts ĥ0, . . . , ĥi−1.
Define ĥi as follows. Let Pi = lim(Xi−1 → Yi−1 ← Yi), and let u : Xi → Pi be
the canonical map. Then in the diagram

the right-most square is a pullback, and hence the given lift ĥi−1 : W× I → Xi−1

gives rise to a lift h̃i : W × I → Pi by the universal property of Pi. This gives
rise to a lifting problem
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The right vertical map is a fibration by hypothesis, and the dotted arrow is the
desired lift. �

Remark 8.5.3 The hypothesis that Xi+1 → lim(Xi → Yi ← Yi+1) is a fibration
implies that Xi → Yi is a fibration for all i by induction using the fact that
X0 → Y0 is a fibration. However, it is not enough to assume that Xi → Yi is
a fibration for all i to obtain a fibration of limits. We leave it to the reader to
dualize this remark for the second statement above. �

Proof of Theorem 8.5.1 We prove the first statement and leave the dualization
to the reader. By Lemma 8.3.6, the square

is a pullback and the vertical maps are fibrations. Recall that the products on
the right side of the square are indexed by non-degenerate chains i0 → · · · → in
in the nerve of the indexing category. For brevity write

Fn = holim≤n
I F,

∂Φn(F) =
∏

(i0→···→in)∈ndBn(I)

Map(∂Δn, F(in)),

Φn(F) =
∏

(i0→···→in)∈ndBn(I)

Map(Δn, F(in)),

and similarly for G. Then the above becomes a pullback square

in which the vertical maps are fibrations. We are going to apply Lemma 8.5.2,
so we begin by noting that F0 �

∏
i F(i) and G0 �

∏
i G(i), and since

F(i) → G(i) is a fibration for all i, F0 → G0 is a fibration (the map F0 → G0,
when composed with the homeomorphisms F0 �

∏
i F(i) and G0 �

∏
i G(i),

becomes the obvious map). We then wish to prove that Fn → lim(Fn−1 →
Gn−1 ← Gn) is a fibration. By induction we may assume Fn−1 → Gn−1 is a
fibration. Using the pullback square above, we are led to the following lifting
problem:
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The composition of h with the canonical projection gives a map hFn−1 : W×I →
Fn−1. We now seek a lift hΦn(F) : W × I → Φn(F) of h such that hFn−1 and hΦn(F)

equalize when projected to ∂Φn(F). That is, in the following diagram, we seek
a solution to a lifting problem making the diagram commute.

Unraveling the definitions, it is straightforward to see that Φn(F) →
lim(∂Φn(F) → ∂Φn(G) ← Φn(G)) is a fibration by Proposition 3.1.11. Hence
the desired lift exists; we first pull the given lift back to lim(∂Φn(F) →
∂Φn(G) ← Φn(G)) using the universal property of the limit, and then pull
this lift back to Φn(F) using that the aforementioned map is a fibration. �

Next we have an analog of Proposition 7.5.1 and a generalization of Proposi-
tion 5.10.1 (and of Proposition 3.9.1).

Proposition 8.5.4 (Maps and homotopy (co)limits) Let F : I → Top (or
Top∗) be a functor. The canonical maps

Map
(
Z, holim

I
F
)
�−→ holim

I
Map(Z, F),

Map
(
hocolim

I
F,Z

)
�−→ holim

Iop
Map(F,Z)

are homeomorphisms that are natural in the Z variable.

Proof For the first statement, by definition holimI Map(Z, F) ⊂ ∏
i Map

(|I ↓ i|,Map(Z, F(i))) consists of those maps f = { fi}i∈I such that for all
morphisms i → i′, the diagram
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commutes. Here the horizontal arrows are induced by the morphism i → i′. By
Theorem 1.2.7 we may regard the above square as a commutative diagram

where the top vertical map is the identity on the Z component for all i → i′,
and the { f̃i}i∈I are the adjoints of { fi}i∈I. This precisely describes a Z-parameter
family of elements of holimI F; in other words, a point in Map(Z, holimI F).

For the second statement, by definition

Now apply Map(−,Z) to this diagram. The isomorphism of categories (i ↓
I)op � (Iop ↓ i),3 the fact that Map(−,Z) takes coproducts to products (Propo-
sition 3.5.14), and the exponential law (Theorem 1.2.7) transform the above
diagram to obtain

Finally we need to note that Map(−,Z) takes coequalizers to equalizers to
obtain the result. �

Next we have analogs of Theorem 7.5.3 and Proposition 7.5.5 (note that the
latter is a statement for functors to sets only, while its analog below is for
spaces). They are also generalizations of Theorem 3.3.15 and Theorem 3.7.18.
In addition, a part of the result below is a generalization of Theorems 5.4.9 and
5.8.9. A nice exposition of the first two statements in the result below can be
found in [Vog77], which is where they first appear in this generality.

Recall the setup leading to Theorem 7.5.3, the notion of a filtered cate-
gory from Definition 7.5.4, and the definition of an acyclic category from
Definition 7.1.11.

3 Following [Hir03], it is for this reason we have defined homotopy colimits using (i ↓ I)op

rather than i ↓ Iop.
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Proposition 8.5.5 (Commuting ho(co)lims) LetI andJ be small categories,
and F : I × J → Top (or Top∗) a functor. Then

holim
I×J

F � holim
J

holim
I

F � holim
I

holim
J

F,

hocolim
I×J

F � hocolim
J

hocolim
I

F � hocolim
I

hocolim
J

F.

If in addition I is finite and acyclic and J is filtered, then there is a zig-zag of
weak equivalences which produce a weak equivalence

hocolim
J

holim
I

F � holim
I

hocolim
J

F.

Proof We prove the first two statements and give a sketchy treatment of the
(highly non-trivial) proof of the last, along with a reference.

That homotopy limits commute follows from the following facts about the
functor Map(−,−):

● There is a natural homeomorphism

(straightforward from the definition).
● Map(Z,

∏
i Xi) �

∏
i Map(Z, Xi) (by the universal property of the product;

see Definition 7.2.3).
● The exponential law, Theorem 1.2.7: Map(Z,Map(X,Y)) � Map(Z × X,Y).
● For small categories C and D, |C × D| � |C| × |D| (Theorem A.1.4).

The first two facts are easily checked, and we leave the rest of the proof, and
its dual, to the reader.

For the last statement, here is an outline due to Phil Hirschhorn. A more
complete proof can be found in [Hir15c]. In the category of sets, finite limits
commute with filtered colimits (Proposition 7.5.5). Since limits and colimits
in the category of simplicial sets are constructed dimensionwise, finite limits
also commute with filtered colimits for diagrams of simplicial sets.

Filtered colimits of simplicial sets have two other useful properties:

1. For filtered diagrams of simplicial sets, the homotopy colimit is weakly
equivalent to the colimit.

2. If K is a simplicial set with finitely many non-degenerate simplices, then
taking the space of maps from K commutes with filtered colimits.
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If I is a finite and acyclic category and J is a filtered category, then given
an I × J-diagram of topological spaces we can take the total singular com-
plex (see Remark A.1.5) of each space F(i, j) to obtain an I × J-diagram
of fibrant simplicial sets. If E is the indexing category for equalizer diagrams
(Definition 7.4.1), we can then construct a E × J-diagram F from this such
that limE F is isomorphic to holimI F, and for this diagram we have that
colimJ limE F � limE colimJ F. Since I is finite and acyclic, all the nerves
of the overcategories will have finitely many non-degenerate simplices, and so
taking colimJ F leaves us with a diagram whose limit over E is isomorphic to
its homotopy limit over I. Thus, up to weak equivalences, limE colimJ F is
weakly equivalent to holimI hocolimJ F and colimJ limE F is weakly equiv-
alent to hocolimJ holimI F. We omit the discussion of how this result for
simplicial sets implies the result for topological spaces. �

Next we have a generalization of Proposition 5.4.5 (and its consequence
Corollary 5.4.6).

Corollary 8.5.6 Let F,G : I → Top be functors with I small, and let F ×
G : I → Top be the functor given by (F ×G)(i) = F(i) ×G(i) with the obvious
maps given on factors by F and G. Then

holim
I

(F ×G) � holim
I

F × holim
I

G.

In particular, for CV : I → Top the constant functor at the space V, we have,
by Example 8.2.6,

holim
I

(F ×CV ) � holim
I

F × Map(|I|,V).

Proof We can write the product as a homotopy limit: F × G = holim(F →
C∗ ← G). Alternatively, this result follows from the homeomorphism
Map(X,Y × Z) � Map(X,Y) × Map(X,Z) using the definition of homotopy
limit. �

Note that the second statement above is consistent with Corollary 5.4.6 since
the punctured cubical indexing category P0(n) is in that case contractible.

Dually, we have a generalization of parts 1 and 3 of Proposition 5.8.5 (and
its consequence Corollary 5.8.6) as well as of Proposition 5.8.7.

Corollary 8.5.7 If F,G : I → Top are diagrams, let F 	G : I → Top be the
diagram given by (F 	G)(i) = F(i) 	G(i). Then

hocolim
I

(F 	G) � hocolim
I

F 	 hocolim
I

G.
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If CV : I → Top is the constant functor at V, by Example 8.2.18, we have

hocolim
I

(F 	CV ) � hocolim
I

F 	 (V × |Iop|).

If F and G are diagrams of based spaces, then

hocolim
I

(F ∨G) � hocolim
I

F ∨ hocolim
I

G,

with the understanding that the homotopy colimit in Top∗ is the ordinary homo-
topy colimit quotiented by the homotopy colimit of the constant functor at the
one-point space (see Remark 8.2.14).

If CX is the constant functor at the space X, then

hocolim
I

(CX × F) � X × hocolim
I

F.

Proof The first three statements follow from the fact that disjoint unions (and
wedges) are themselves homotopy colimits. For the last statement, we have a
homeomorphism X × (Y 	 Z) � X × Y 	 X × Z. �

Recall that the loop space can be expressed naturally and functorially as a
homotopy limit (Example 3.2.10), and the suspension as a homotopy colimit
(Example 3.6.9). Proposition 8.5.5 thus provides the following useful conse-
quence, which is in turn a generalization of Corollaries 5.4.10 and 5.8.10. We
note that the homotopy colimits appearing in the next result are in the category
of based spaces (see Remark 8.2.14).

Corollary 8.5.8 For F : I → Top∗ a functor and V a based space, there are
natural homeomorphisms

holim
I
ΩF � Ω holim

I
F,

hocolim
I

ΣF � Σ hocolim
I

F,

hocolim
I

(CV ∨ F) � V ∨ hocolim
I

F,

hocolim
I

(CV ∧ F) � V ∧ hocolim
I

F,

where (CV ∨ F)(i) = V ∨ F(i) and (CV ∧ F)(i) = V ∧ F(i).

Proof For the first statement, ΩF(i) = holim(C∗(i) → F(i) ← C∗(i)), and
holimI C∗ � ∗ by Example 8.2.6. The second statement is a consequence of the
fourth statement when V = S 1. For the third statement, F ∨G = hocolim(F ←
C∗ → G), and we need to recall that the homotopy colimit in the categoory
of based spaces is as in Remark 8.2.14. For the fourth statement, CV ∧ F =
hocolim(CV × F ← CV ∨ F → C∗), and we once again need the based version
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of homotopy colimit together with the last statement in Proposition 8.5.7 and
the third statement here. �

The following is a generalization of the “distributive law”, Corollary 3.9.4.

Proposition 8.5.9 Let I be a small category and X : I → Top a functor.
Suppose Y ∈ Top is a co-cone on X. Then, for any y ∈ Y, there is a natural
homeomorphism

hofibery

(
hocolim

I
X → Y

)
� hocolim

I
hofibery(X → Y),

where hofibery(X → Y) is the functor whose value at i is hofibery(X(i) → Y).

Proof The proof boils down to the fact that if X × Z → X is the projection,
and f : X → Y is any map, then the homotopy fiber of the composed map
X × Z → Y is homeomorphic to Z × hofibery(X → Y). �

8.6 Algebra in the indexing variable

This section gives an overview of the behavior of homotopy (co)limits under
the change of indexing category by a functor. We supply selected details and
leave others to the literature. This section does not have a counterpart in earlier
chapters since there we were restricted by the punctured cubical shape of the
indexing category.

To begin, we have already seen in Equation (8.2.4) and Equation (8.2.7) that
for F : I → Top and G : J → I, there are induced maps

holim
I

F −→ holim
J

F ◦G (8.6.1)

and

hocolim
J

F ◦G −→ hocolim
I

F. (8.6.2)

We would like to know under what circumstances these maps are weak equiv-
alences. We would like the answer to be “when G is a weak equivalence”,
and this turns out to be true in a certain sense. The obvious definition of G
being a weak equivalence would for us be to say that it is a weak equiv-
alence if it induces a weak equivalence of realizations, and this turns out
to be more or less correct. A more precise statement is Theorem 8.6.5, but
we begin with a few basic facts about those G which are inclusions of sub-
categories as a warm-up. The following is a generalization of Propositions
5.4.29 and 5.8.28, and the technique of proof of Theorem 8.5.1 is used to
prove it.
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Theorem 8.6.1 Given a functor F : I → Top, the inclusion J → I of a
subcategory induces a fibration

holim
I

F −→ holim
J

F

and a cofibration

hocolim
J

F −→ hocolim
I

F.

Proof We will prove the first statement; the second is dual and left to the
reader. Recall holim≤n

I F from Definition 8.3.5. We claim that the inclusion
J → I induces a fibration

holim≤0

I
F −→ holim≤0

J
F

and a fibration

holim≤n

I
F −→ lim

(
holim≤n

J
F → holim≤n−1

J
F ← holim≤n−1

I
F

)
for all n ≥ 1. It then follows from Lemma 8.5.2 that the map

holim
I

F −→ holim
J

F

is a fibration. In the first case, this is the statement that
∏

i∈I F(i) → ∏
j∈J F( j)

is a fibration, which is evident since it is a projection away from those objects
not in J . By induction assume that the map holim≤n−1

I F → holim≤n−1
J F is a

fibration.
By Lemma 8.3.6, for C = I,J the squares

are pullback squares in which the vertical maps are fibrations. For brevity, as
in the proof of Theorem 8.5.1, write

Fn(C) = holim≤n
C F,

∂Φn(F(C)) =
∏

(i0→···→in)∈ndBn(C)

Map(∂Δn, F(in)),

Φn(F(C)) =
∏

(i0→···→in)∈ndBn(C)

Map(Δn, F(in))
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for C = I,J . The fact that the above square is a pullback says in our new nota-
tion that Fn(C) � lim(Fn−1(C) → ∂Φn(F(C)) ← Φn(F(C))), and the inductive
hypothesis says Fn−1(I) → Fn−1(J) is a fibration.

Unraveling all of this, we have to find a solution to the lifting problem

A solution ĥ to this lifting problem amounts to lifts ĥFn−1(I) : W × I → Fn−1(I)
and ĥΦn(I) : W × I → Φn(F(I)), which equalize when mapped to ∂Φn(F(I)).

Write h = (hFn−1(I), hFn(J)). Define ĥFn−1(I) = hFn−1(I), and define ĥΦn(I) as fol-
lows. There is a natural homeomorphism Φn(F(I)) � Φn(F(J))×Φn(F(Jc)),
where Φn(F(Jc)) is the product of those factors of Φn(F(I)) indexed by non-
degenerate chains with at least one morphism not inJ . On the factorΦn(F(J))
we let ĥΦn(I) equal the composition of hJ : W × I → Fn(J) with the canonical
projection Fn(J) → Φn(F(J)). On the factor Φn(F(Jc)), we encounter the
lifting problem

where the bottom horizontal arrow is the composition of hFn(J) with the pro-
jection Fn(I) → ∂Φn(F(Jc)). This lifting problem has a solution since the
right vertical map is evidently a fibration.

It is then straightforward to see that the maps ĥFn−1(I) and ĥΦn(I) define the
desired lifts. �

Continuing to try to answer the question of when the maps (8.6.1) and (8.6.2)
are weak equivalences, we have the following.

Definition 8.6.2 A functor G : J → I is homotopy initial if, for every object
i of I, the realization |G ↓ i| is contractible, and it is homotopy terminal if
|i ↓ G| is contractible.4

Example 8.6.3 Consider the category P(1) = (∅ → {1}). The inclusion
I∅ : ∅ → P(1) of the subcategory with the single object ∅ in P(1) is homo-
topy initial, but it is not homotopy terminal, since {1} ↓ I∅ is the empty

4 These conditions are in the literature sometimes called “left cofinal” and “right cofinal”.
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category, whose realization is the empty set. Dually, the inclusion of the subcat-
egory consisting only of the object {1} is homotopy terminal but not homotopy
initial. �

Example 8.6.4 Consider the category P0(2) × P(1), depicted as

The inclusion of the subcategory P0(2) × ∅ (the top row) is homotopy initial,
while the inclusion of the subcategory P0(2) × {1} is homotopy terminal. �

The following theorem finally answers the question of when the maps (8.6.1)
and (8.6.2) are weak equivalences. This is known as the cofinality theo-
rem for homotopy (co)limits, and is due to Bousfield and Kan. We omit the
proof.

Theorem 8.6.5 (Cofinality Theorem [BK72a, Ch. XI, 9.2]) Suppose F : I →
Top and G : J → I are functors with I and J small. If G is homotopy initial,
then the induced map

holim
I

F −→ holim
J

(F ◦G)

is a homotopy equivalence. If G is homotopy terminal, then the induced map

hocolim
J

(F ◦G) −→ hocolim
I

F

is a homotopy equivalence.

What follows are a couple of relatively straightforward consequences of The-
orem 8.6.1. These serve as an introduction to a family of statements which
includes Quillen’s Theorems A and B (here Theorems 8.6.10 and 8.6.11), and
Thomason’s homotopy colimit theorem (here Theorem 8.6.17).

Proposition 8.6.6 ([Goo92, Proposition 0.2]) Suppose I is a category with
subcategories I1 and I2 such that B•I = B•I1 ∪ B•I2. Then, for any functor
F : I → Top, the square of fibrations
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is a pullback square, and hence a homotopy pullback square. Dually, the
square of cofibrations

is a pushout square, and hence a homotopy pushout square.

Proof We prove the first statement and leave its dualization to the reader. The
hypothesis that B•I = B•I1 ∪ B•I2 implies that, for all objects i ∈ I1 ∪ I2,
|(I1 ∪ I2) ↓ i| � |I1 ↓ i| ∪|(I1∩I2)↓i| |I2 ↓ i|. Hence the square

is a pullback square by definition of the homotopy limit, since Map(A ∪C

B,Z) � Map(A,Z) ×Map(C,Z) Map(B,Z). That the square comprises fibrations
is Theorem 8.6.1, and that it is a homotopy pullback square follows from
Proposition 3.3.5. �

More generally, we have the following.

Proposition 8.6.7 ([Goo92, Lemmas 1.9 and 1.10]) Let S be a finite set, and
suppose I is a category with a finite collection {Is}s∈S of subcategories such
that

⋃
s∈S B•Is = B•I and

⋃
s∈T B•Is = B•

⋃
s∈T Is for all T ⊂ S . Then, for

any functor F : I → Top, the canonical maps

holim
I

F −→ holim
T∈P0(S )

holim
∩s∈TIs

F

and

hocolim
T∈Pi(S )

hocolim
∩s∈S−TIs

F −→ hocolim
I

F

are weak equivalences.
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Proof This follows from induction on |S | using Proposition 8.6.6 and 1(a)
of Proposition 3.3.20 or, in the case of homotopy colimits, 1(a) of Proposi-
tion 3.7.26. We leave the details to the reader. �

Example 8.6.8 We present an example which can be used to establish the
key result of Proposition 3.3.20. Consider the category

which gives rise to a diagram of topological spaces

Let

and

Then I1 ∪ I2 = I (in the sense of Proposition 8.6.6) and I1 ∩ I2 = (12 →
123 ← 13). The inclusions (2 → 123 ← 13) → I1 and (2 → 12 ← 1) → I2

are homotopy initial, and I2 has initial object 1. It follows from Theorem 8.6.5
and Example 8.2.5 that the square

is homotopy cartesian. �

Remark 8.6.9 Let I be a small category and F : I → Top a functor. Let
P(I) denote the poset of subcategories ofI: objects are subcategories ofI, and
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morphisms are inclusions of subcategories (meaning both object and morphism
sets satisfy the containment). Call a square

in P(I) a pushout if B•I12 = B•I1 ∪B•I∅ B•I2. Then we can think of Proposi-
tion 8.6.6 as saying that the functor holim(−) F : P(I) → Top takes pushouts of
categories to homotopy pullbacks, and dually that hocolim(−) F : P(I) → Top
takes pushouts of categories to homotopy pushouts. This is analogous with
Proposition 3.9.1, which says that Map(−,Z) takes certain kinds of homo-
topy pushouts to homotopy pullbacks, and with Proposition 3.7.11, which
says that homotopy cocartesian squares are preserved by pointwise prod-
ucts. Proposition 8.6.7 says more generally that holim(−) F takes strongly
homotopy cocartesian cubes to homotopy cartesian cubes, and dually that
hocolim(−) F takes strongly homotopy cocartesian cubes to homotopy cocarte-
sian cubes. �

In light of the following two results, given a functor G : J → I, one may think
of the categories G ↓ i and i ↓ G as the fibers of G in some sense.

Theorem 8.6.10 (Quillen’s Theorem A [Qui73]) Suppose G : J → I is
a functor such that |i ↓ G| is contractible for all i. Then the induced map
|G| : |J| → |I| is a homotopy equivalence. The same result is true if instead we
assume |G ↓ i| is contractible for all i.

We will show that this is a consequence of Theorem 8.6.11. In fact, the part of
the proof of Theorem 8.6.11 that we omit (which amounts to Lemma 8.6.14)
is precisely what is necessary to prove Theorem 8.6.10.

Quillen’s Theorem B, stated below, says that the spaces |i ↓ G| measure
the extent to which |G| fails to be a homotopy equivalence, as they are, up
to homotopy, the homotopy fibers of |G|. Recall that |i ↓ I| is contractible
for all i.

Theorem 8.6.11 (Quillen’s Theorem B [Qui73]) Suppose G : J → I is a
functor such that, for every morphism i → i′ in I, the induced map |i′ ↓ G| →
|i ↓ G| is a homotopy equivalence. Then the square
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is homotopy cartesian. Here the horizontal maps are induced by the forgetful
maps (forget the morphism from i), and the vertical maps are induced by G.
Dually, if |G ↓ i| → |G ↓ i′| is a homotopy equivalence for all i → i′, then the
square with |G ↓ i| replacing |i ↓ G| and |I ↓ i| replacing |i ↓ I| is homotopy
cartesian.

We will need the following lemma and follow Quillen’s original presentation
for its proof. Recall the notion of a quasifibration from Definition 2.7.1.

Lemma 8.6.12 ([Qui73, Lemma for Theorem B]) SupposeX : I → Top, i �→
Xi is a functor. The natural transformation X → C∗ to the constant functor at
the one-point space induces a map

p : hocolim
I

X −→ hocolim
I

C∗ � |Iop|,

and if, for every morphism i → i′, the map Xi → Xi′ is a homotopy equiva-
lence, then p is a quasifibration whose fiber over a point in the interior of a
simplex indexed by the non-degenerate chain i0 → · · · → in in Iop is equal
to Xin .

Proof We begin by noting that p−1(|sknIop|) = hocolim≤n
I X, which follows

from the identification hocolim≤n
I C∗ � |sknIop| indicated in the statement of

the lemma. By Proposition 2.7.9 it is enough to prove that each induced map
pn : hocolim≤n

I X → |sknIop| is a quasifibration. For i = 0 this is trivial; the
map is in fact a fibration whose fiber over a point indexed by the object i is Xi.

By induction assume pn−1 is a quasifibration. By Proposition 2.7.7 it is
enough to cover |sknIop| by open sets U and V such that p−1

n (U) → U,
p−1

n (V) → V and p−1
n (U ∩ V) → U ∩ V are quasifibrations. We define U

and V as follows. Recall from Proposition A.1.13 that we have a pushout (and
homotopy pushout) square
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Let b denote the barycenter of each copy of the simplex Δn. Define

U = colim

⎛⎜⎜⎜⎜⎜⎜⎝ ∐
(i0→···→in)∈ndBn(Iop)

Δn − {b} ←
∐

(i0→···→in)∈ndBn(Iop)

∂Δn → |skn−1Iop|
⎞⎟⎟⎟⎟⎟⎟⎠

and

V = |sknIop| \ |skn−1Iop|.
Note that U ∩ V is the disjoint union of copies of Δ̊n − {b}, one for each non-
degenerate chain i0 → · · · → in inIop. The map p−1

n (V) → V is a quasifibration
since it is a disjoint union of projection maps∐

(i0→···→in)∈ndBn(Iop)

Δ̊n × Xin −→
∐

(i0→···→in)∈ndBn(Iop)

Δ̊n.

In fact, this map is clearly a fibration. Hence p−1
n (U∩V) → U∩V is a fibration,

as it is the pullback of the fibration p−1
n (V) → V to U ∩ V . It remains to show

p−1(U) → U is a quasifibration. This follows from Lemma 2.7.11, as follows.
We have

p−1(U) = colim

⎛⎜⎜⎜⎜⎜⎜⎝ ∐
(i0→···→in)∈ndBn(Iop)

Xin × Δn − {b}

←
∐

(i0→···→in)∈ndBn(Iop)

Xin × ∂Δn → hocolim≤n−1
I X

⎞⎟⎟⎟⎟⎟⎟⎠ ,
and it is clear that the inclusion hocolim≤n−1

I X → p−1(U) is a deformation
retract (retract radially from the barycenters of the n-simplices). Moreover
this can clearly be done fiberwise over U, and the hypothesis that Xi → Xi′

is a homotopy equivalence for all morphisms i → i′ now guaranteess the
hypotheses of Lemma 2.7.11 are satisfied. �

Before we give a sketch of the proof of Theorem 8.6.11, we state a definition.

Definition 8.6.13 Let G : J → I be a functor. Define the twisted arrow
category of G to be the category S (G) whose objects are triples ( j, i,m), where
j is an object of J , i is an object of I, and m : i → G( j) is a morphism in
I. A morphism ( j, i,m) → ( j′, i′,m′) consists of morphims n : j → j′ and
m′′ : i′ → i such that the diagram

commutes. For a category I, define S (I) = S (1Iop ).
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Note that there are forgetful functors, “source” and “target”, s : S (G) → J
and t : S (G) → Iop. We will utilize the following results of Quillen about the
realizations of these functors in our proof of Theorem 8.6.11 below. We omit
the proof.

Lemma 8.6.14 Let I and J be small categories. The source and target
functors s : S (I) → Iop and t : S (I) → I induce homotopy equivalences
|s| : |S (I)| → |Iop| and |t| : |S (I)| → |I|.

If G : J → I is a functor, then the source functor s : S (G) → J induces a
homotopy equivalence |s| : |S (G)| → |J|.

Sketch of the proof of Theorem 8.6.11 For each object i of I, let S (G)(i)
denote the subcategory of S (G) consisting of those tuples ( j, i,m) and mor-
phisms ( j, i,m) → ( j′, i,m) where i → i is the identity morphism. This defines
a functor S (G)(−) : Iop → Cat and so a functor |S (G)(−)| : Iop → Top by
composing with geometric realization. Moreover, there is a canonical isomor-
phism S (G)(i) � i ↓ G given on objects by ( j, i,m) �→ (m : i → G( j)), and
on morphisms in the evident way. Our hypothesis says that, for all i → i′,
|i′ ↓ G| → |i ↓ G| is a homotopy equivalence, Hence the functor |S (G)(−)|
satisfies the hypothesis of Lemma 8.6.12 and we have a quasifibration

hocolim
Iop

|S (G)(−)| −→ |I|.

Moreover, there is an evident homeomorphism hocolimIop |S (G)(−)| � |S (G)|
(the same technique of proof as in Example 8.2.18 can be used). Hence we
have a homotopy cartesian square

The functor S (G) → Iop (which induces the map of realizations above) which
on objects sends ( j, i,m) to i and is the evident functor on morphisms factors
as a composition of functors S (G) → S (1I) → Iop. Here S (G) → S (1I)
on objects sends ( j, i,m) to (G( j), i,m) and is given in the obvious way on
morphisms, and S (I) → Iop is the source functor s. Moreover, this induces
the functor i ↓ G → i ↓ I in the statement of the theorem. Thus we have a
diagram
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By Lemma 8.6.14, |s| : |S (1I)| → |Iop| is a homotopy equivalence, and since
|i ↓ I| is contractible, the left vertical map in the bottom square above is also
a homotopy equivalence, and hence the bottom square is homotopy cartesian
by 1(b) of Proposition 3.3.11. It follows from 1(b) of Proposition 3.3.20 that
the top square is homotopy cartesian as well. Finally, the functor i ↓ G → J
factors through S (G) in the evident way, and similarly i ↓ I → I factors
through S (1I), and we have another diagram

Again using Lemma 8.6.14, the maps |s| : |S (G)| → |J| and |t| : |S (1I)| →
|I| are homotopy equivalences, and again using 1(b) of Proposition 3.3.11
the right-most square above is homotopy cartesian. It follows from 1(a) of
Proposition 3.3.20 that the outer square is homotopy cartesian as well. �

Note that Theorem 8.6.10 is an easy consequence of Theorem 8.6.11 since
|I ↓ i| � ∗, and so if |G ↓ i| � ∗ for all i, then since the square appearing
in Theorem 8.6.11 is homotopy cartesian, we have that |J| → |I| is a weak
homotopy equivalence by Proposition 3.3.18.5

We now return to Proposition 8.6.6, especially Remark 8.6.9. Given F : I →
Top, Remark 8.6.9 says that in the category of subcategories of I, denoted here
by Cat≤I, the functor holim− F : Cat≤I → Top (resp. hocolim− F : Cat≤I →
Top) takes pushouts of categories to homotopy pullbacks (resp. homotopy
pushouts) of spaces. From the perspective of homotopy (co)limits, our notion
of pushout of categories (the nerve of the union is the union of the nerves) in

5 For the spirit of the idea of the proof, think of the I ↓ i as a neighborhood of i, and so the
collection of all such neighborhoods forms a cover of I. Thus |I| � hocolimI |I ↓ i|. The
categories G ↓ i form a cover of J by pullback by G, and so |J| � hocolimI |G ↓ i|. The
hypothesis |G ↓ i| � ∗ means the natural map |G ↓ i| → |I ↓ i| is a weak equivalence, and so
Theorem 8.3.7 implies |J| � |I|.
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Cat≤I is therefore the right one, and we would like to elaborate on this a little
here. Recall from Example 7.1.29 the category Cat of small categories. The
basic question is: given a functor D : C → Cat, what should we mean by the
category colimC D?

Definition 8.6.15 Let C be a small category and D : C → Cat a functor.
Define the Grothendieck construction of D, denoted ΣC(D), as the category
with

● objects the pairs (c, i) ∈ Ob(C) × Ob(D(c));
● morphisms HomΣC(D)((c1, i1), (c2, i2)) the pairs

(α, μ) ∈ HomC(c1, c2) × HomD(c2)(D(α)(i1), i2).

We leave the description of the composition of morphisms to the reader, as
well as the verification of the axioms for a category.

Example 8.6.16 If C = ∗ is the category with one object and one morphism,
then Σ∗(D) is canonically isomorphic to the category D(∗).

If D : C → Cat is the constant functor C∗ with value D(c) = D, then ΣC(D)
is canonically isomorphic to C ×D. �

We now can state Thomason’s Homotopy Colimit Theorem, which describes
the realization of the Grothendieck construction as a homotopy colimit.

Theorem 8.6.17 (Thomason’s Homotopy Colimit Theorem, [Tho79, Theorem
1.2]) Let C be a small category and D : C → Cat a functor. Then there is a
natural homotopy equivalence

hocolim
C

|D| −→ |ΣC(D)|.

We omit the proof, but remark that the philosophy here is that ΣC(D) plays the
role of the homotopy pushout of the categories D(c).
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Cosimplicial spaces

Cosimplicial spaces were championed by Bousfield and Kan [BK72a] who, in
the process of defining R-completions (see Example 9.2.8), initiated a care-
ful study of their properties. The main feature of cosimplicial spaces is that
one way to construct the homotopy limit of a diagram is to first perform its
“cosimplicial replacement”. Theorem 9.3.3 says that the “totalization” of this
cosimplicial replacement is equivalent to the homotopy limit of the original
diagram. In fact, because of this result, the cosimplicial approach is often taken
as the definition of the homotopy limit.

For our purposes, defining homotopy limits this way requires too much extra
machinery, but there are other important properties of cosimplicial spaces that
we wish to explore, and they are undoubtedly a useful organizational tool.
Most importantly, a feature that is important in the context of this book is that
the results in Section 9.4 say that any diagram can be turned into a sequence
of punctured cubical ones by passing through a cosimplicial diagram. Thus
studying homotopy limits in some sense reduces to studying punctured cubical
ones. We will elaborate on this at the end of Section 9.4.

Another quality of cosimplicial spaces is that they come equipped with spec-
tral sequences converging (under favorable circumstances) to the homology
and homotopy groups of their totalizations. This gives an important computa-
tional tool for studying homotopy limits of diagrams. We will describe these
spectral sequences in Section 9.6 and will see some of their applications in
Section 10.4.

Because of the duality of cosimplicial and simplicial spaces as well as homo-
topy limits and colimits, this entire chapter could have been written in terms
of simplicial spaces and homotopy colimits. The choice of taking the cosim-
plicial/homotopy limit point of view is due to the fact that the authors initially
came to the subject that way. In addition, the applications in Chapter 10 use
the language of homotopy limits more than homotopy colimits. Nevertheless,

443
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we will in Section A.1 list some of the most important simplicial/homotopy
colimits versions of the constructions and results from this chapter.

Some additional topics on cosimplicial spaces, such as the model category
structure on the category of cosimplicial diagrams, can be found in [BK72a,
GJ99]. Other references are provided throughout the chapter.

9.1 Cosimplicial spaces and totalization

Consider the category Δ whose objects are [n] for n ≥ 0 and whose morphisms
are weakly monotone functions. Thus for a morphism f : [m] → [n], f (i) ≤
f ( j) for all 0 ≤ i ≤ j ≤ m. The category Δ is called the cosimplicial indexing
category. The morphisms are generated by (i.e. are compositions of) coface
maps, denoted by di, and codegeneracy maps, denoted by s j. The coface maps
are injections that “omit i” and are defined by

di : [n − 1] −→ [n], 0 ≤ i ≤ n,

k �−→
⎧⎪⎪⎨⎪⎪⎩k, k < i;

k + 1, k ≥ i;

and the codegeneracy maps are surjections that “double i” and are defined by

si : [n + 1] −→ [n], 0 ≤ i ≤ n,

k �−→
⎧⎪⎪⎨⎪⎪⎩k, k ≤ i;

k − 1, k > i.

They satisfy the relations, called cosimplicial identities,

d jdi = did j−1, i < j;

s jdi =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
dis j−1, i < j;

Id, i = j, i = j + 1;

di−1s j, i > j + 1;

(9.1.1)

s jsi = si−1s j, i > j.

The category Δ is usually represented as

Remark 9.1.1 Dually, the simplicial indexing category is defined as Δop. We
already needed the simplicial language in Section 8.1 to define the nerve of a
category; more can be found in Section A.1. �
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Remark 9.1.2 In Chapter 5, we used Δ as the functor from P(n) or its punc-
tured versions to Top whose image was a (punctured) cubical simplex (see
Example 5.1.5). HereΔ is used as notation for an indexing category. This dupli-
cation in notation should not cause confusion and, should the two notations
appear near each other, the argument of the functor Δ will also be provided so
as to distinguish the two. �

Definition 9.1.3 A functor F : Δ→ C is called a cosimplicial diagram in C.

In the literature, the functor F and the category Δ are often suppressed, and a
bullet decoration is used instead, such as X•. A cosimplicial diagram is then
simply described as a sequence of objects X[n], namely

X• = {X[n]}∞n=0 or X• = {X[n]},
along with maps between these objects satisfying the identities from (9.1.1).
These maps, which are the images of cofaces and codegeneracies via the
underlying functor X•(di) and X•(si), are by abuse of terminology also called
cofaces and codegeneracies and denoted by di and si (so the functor is sup-
pressed). Here we will almost exclusively be interested in cosimplicial spaces,
i.e. functors Δ→ Top (or Top∗).

It is sometimes convenient to visualize a cosimplicial diagram as a diagram
where the only arrows are the generating morphisms di and si, as in

(9.1.2)

Example 9.1.4 (Cosimplicial simplex) One important cosimplicial space is
the cosimplicial simplex Δ•, which is a cosimplicial diagram in Top given by
the functor

Δ• : Δ −→ Top

[n] �−→ Δn,

where Δn is the standard n-simplex. The morphisms di, si : [n] → [k] corre-
spond to inclusions of and projections onto faces. It is convenient to have an
explicit description of these maps. Write

Δn =

⎧⎪⎪⎨⎪⎪⎩(t0, . . . , tn) : ti ∈ I,
∑

i

ti = 1

⎫⎪⎪⎬⎪⎪⎭ .
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For i = 0 to n, define

di : Δn−1 −→ Δn

(t0, . . . , tn−1) �−→ (t0, . . . , ti−1, 0, ti, . . . , tn−1)

and

si : Δn+1 −→ Δn

(t0, . . . , tn+1) �−→ (t0, . . . , ti−1, ti + ti+1, ti+2, . . . , tn+1).

Then, for example, d1 includes a 1-simplex into the edge of Δ2 ⊂ R3 with
endpoints t0 = 1 and t2 = 1, while s1 is the projection of Δ2 ⊂ R3 onto the
1-simplex in the t0t2-plane. �

More examples of cosimplicial spaces are given in Section 9.2. Dualizing the
notion of the realization of a simplicial set, Definition A.1.2, we have the
notion of totalization. Its usefulness will become apparent in Section 9.3 when
we prove that the homotopy limit of an arbitrary functor can be computed as
the totalization of its cosimplicial replacement.

Definition 9.1.5 For a cosimplicial space X•, define its totalization Tot X•

to be the space Nat(Δ•, X•) of natural transformations from Δ• to X•, i.e. the
space of sequences of maps

fn : Δn −→ X[n], n ≥ 0,

such that the diagrams

commute for all cofaces d j and codegeneracies s j.

The space Tot X• is topologized as the subspace of the product∏
n Map(Δn, X[n]).
We will refer to a point x ∈ X[n] as a cosimplex and will call it codegenerate

if it is in the image of a codegeneracy.
If X• is a based cosimplicial space, then Tot X• has a natural basepoint

given by the sequence of maps f n that send the simplices Δn to the basepoint
of X[n].



9.1 Cosimplicial spaces and totalization 447

Remark 9.1.6 (Totalization as equalizer) In analogy with Remark A.1.3,
totalization can be written as an equalizer. Namely, we have

(9.1.3)

The maps a and b are defined as in Definition 8.2.1. That is, a map [n] →
[k] induces a map Map(Δn, X[n]) → Map(Δn, X[k]) in the evident way, and
this induces the map a. Similarly we have an induced map Map(Δk, X[k]) →
Map(Δn, X[k]) which induces b. �

Given a map of cosimplicial spaces f : X• → Y•, by which we mean a natural
transformation of functors, there is an evident induced map

Tot f : Tot X• −→ Tot Y•

given by composition of the maps Δ• → X• with f . Totalization is thus a
functor, but it is not a homotopy functor. That is, if f is an objectwise weak
equivalence, it does not necessarily follow that Tot f is a weak equivalence.

This situation is reminiscent of the problem we had with ordinary limits that
prompted us to devise the homotopy invariant homotopy limit. The totalization
fits between the limit and the homotopy limit in the sense that the natural map
from the limit to the homotopy limit of a cosimplicial space factors through the
totalization. To explain, first note that there is an obvious map of cosimplicial
spaces

Δ• −→ C•
∗ , (9.1.4)

where C•∗ is the cosimplicial space with X[n] = ∗ for all n. This gives rise to a
map

Nat(C•
∗ , X

•) −→ Nat(Δ•, X•).

The domain is precisely the limit of the diagram X•, while the codomain is its
totalization.

There is also a natural transformation

(Δ ↓ •) −→ Δ•, (9.1.5)

where (Δ ↓ •) is the cosimplicial space given by [n] �→ |Δ ↓ [n]| and whose
cofaces and codegeneracies are induced in the obvious way from those in Δ
(there is nothing special going on here; for any category I the overcategory
I ↓ − is a functor from I to categories). The map (9.1.5) is given as follows:
We have a functor of [n]

(Δ ↓ [n]) −→ P0([n])
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which associates to an object [m] → [n] its image in [n] as a (necessarily)
non-empty subset. This in turn induces a natural transformation of functors
of [n]

|Δ ↓ [n]| −→ |P0([n])| � Δn

(the homeomorphism on the right follows by exactly the same argument as in
Example 8.1.13). We therefore have a map

Nat(Δ•, X•) −→ Nat(|Δ ↓ •|, X•).

The left side is again the totalization, but the right is precisely the homotopy
limit of the diagram X• by Proposition 8.2.2. To summarize, we have maps

and a natural question to ask is when these maps are weak equivalences. One
situation where we know that the limit and the homotopy limit are weakly
equivalent is in the setting of Theorem 8.4.9 when a diagram is fibrant and the
indexing category has empty or contractible latching objects. Replacing the
constant cosimplicial space C•∗ by the thicker cosimplicial space Δ• does not
quite give the totalization enough “room” for homotopy invariance, but it does
get it closer.1 It turns out that for totalization to be homotopy invariant, it is
only necessary that the diagram be fibrant. We will state this more precisely
below as Proposition 9.1.8, but we first want to be more explicit about what it
means for a cosimplicial space to be fibrant.

Recall the notion of a Reedy category, Definition 8.4.4, and note that the

cosimplicial indexing category is a Reedy category; we can take
→
I to con-

sist of all the objects and iterated coface maps (i.e. all maps generated by the

cofaces) and
←
I to consist of all the objects and iterated codegeneracy maps.

Then, recalling Definition 8.4.6, the matching space at [n], for n ≥ 0, of a
cosimplicial space X•, is given by

Mn(X•) = lim
([n]↓

←
I)0

X•.

1 In the sense that Δ• is cofibrant; see [Hir03, Corollary 15.9.11].
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It is easy to see (essentially from the definition) that this limit can be
rewritten as

Mn(X•) =
{
(x0, x1, . . . , xn−1) ∈ (X[n−1])n | si(x j) = s j−1(xi), 0 ≤ i < j ≤ n − 1

}
.

(9.1.6)
The nth matching map is then given by

X[n] −→ Mn(X•) (9.1.7)

x �−→ (s0(x), s1(x), . . . , sn−1(x)).

We then say that X• is fibrant if these matching maps are fibrations.

Example 9.1.7 We will see many examples of fibrant cosimplicial spaces
in Section 9.2. An example of a cosimplicial space that is not fibrant is the
cosimplicial simplex from Example 9.1.4. Namely, the map X[2] → M2(Δ•) is
the map X[2] → Δ1×Δ1 given by two projections. But this map is not surjective
(for example, (1, 0) is not in the image) and hence not a fibration. �

Proposition 9.1.8 ([BK72a], XI.4.4) For X• fibrant, the natural map

Tot X• −→ holim X•

is a homotopy equivalence.

We omit the proof (the jist of which is that the map |Δ ↓ •| → Δ• is a trans-
formation of cofibrant diagrams which induces an equivalence of the mapping
spaces to an arbitrary fibrant diagram).

Because homotopy limits preserve weak equivalences, we then immediately
have the following.

Corollary 9.1.9 Suppose X• and Y• are fibrant and f : X• → Y• is an
objectwise weak equivalence. Then the induced map

Tot X• −→ Tot Y•

is also a weak equivalence.

To make a totalization that respects weak equivalences, one can thus first
perform a fibrant replacement of X•, for instance as it was done in Defini-
tion 8.4.12.

Definition 9.1.10 The totalization of a fibrant replacement of X• is called the
homotopy invariant totalization and denoted by hoTot X• or T̃otX•.



450 Cosimplicial spaces

For simplicity, we will usually use Tot X• but will be explicit about whether
we have assumed X• is fibrant or not.

A natural question is why we need totalization at all – why not just take the
homotopy limit of a cosimplicial space? For one, totalization is the dual of the
geometric realization, which is a natural construction (albeit also not homotopy
invariant in general). Secondly, the homotopy limit is unwieldy since |Δ ↓ [n]|
is infinite-dimensional, so it is nice to have the more manageable construc-
tion at hand. Lastly, some cosimplicial spaces are already fibrant, so we can
work with totalization right away and not worry about fibrant replacements.
This is in fact the case with the central example we care about, the cosim-
plicial replacement of a diagram. We will devote Section 9.3 to cosimplicial
replacements.

Another way to arrive at a homotopy invariant space from a cosimpli-
cial space is to consider cosimplicial spaces without codegeneracies, the
so-called restricted cosimplicial spaces or semicosimplicial spaces. Dropping
the codegeneracies does not affect the totalization. More precisely, if Δinj is
the cosimplicial indexing category but only with cofaces, that is, the injective
maps, then the totalization is defined as

TotΔinj X• = Nat(Δinj, X
•).

This is the same as taking the equalizer from Remark 9.1.6 but only over the
injective maps [n] → [k]. We then have the following.

Proposition 9.1.11 The inclusion Δinj ↪→ Δ is homotopy initial, and so, for
a fibrant X•, the induced map

Tot X• −→ TotΔinj X•

is a homotopy equivalence.

The proof can be found in, for example, [DD77, Lemma 3.8] or [Lur09,
Lemma 6.5.3.7], but it also follows readily from Theorem 8.6.5.

It should be noted that the fibrancy condition in Proposition 9.1.11 is
important. In general, TotΔinj X• is not equivalent to Tot X•.

Remark 9.1.12 The totalization TotΔinj X• is the dual of the “fat realization”.
The dual to the above proposition is Proposition A.1.8. �

A nice feature of a semicosimplicial space is that it is always fibrant (we leave
it to the reader to check this) and so TotΔinj X• is always homotopy invariant.
Thus an alternative to making a homotopy invariant totalization is to drop the
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codegeneracies in X• and then take the semicosimplicial totalization TotΔinj X•.
But, as is the case with replacing Δ by |Δ ↓ •|, dropping the codegeneracies
will typically produce a totalization that is much larger.

Now let Δ[≤n] be the full subcategory of Δ whose objects are the sets [k] for
0 ≤ k ≤ n. We then have the following.

Definition 9.1.13 The nth truncation of X• is the composite

trnX• : Δ[≤n] ↪→ Δ X•
−→ Top .

Using truncations, we can define the n-skeleton of a cosimplicial space X•,
denoted by sknX•, as the cosimplicial space that is in degree k given by

colim
(Δ[≤n]↓[k])

X•.

The category over which the colimit is taken consists of an integer j with j ≤ n
and a cosimplicial map [ j] → [k], and the value of X• on that object is X[ j].
Because we are taking the colimit, it suffices to take it over just the coface
maps. As a result, in degree ≤ n, sknX• agrees with X• (the identity of X[ j],
j ≤ n, is terminal), and in degree > n, consists of the image of the iterated
cofaces from Δ[ j], j ≤ n.

Note that, in degree n+ 1, sknX• is precisely the latching object Ln+1(X•). It
is also clear that

X• � colim(sk0X• → sk1X• → sk2X• → · · · ) (9.1.8)

(remembering that we are taking the colimit of diagram indexed on Δ × Z≥0

and that taking the colimit of an I×J-diagram amounts to taking it separately
for each object i ∈ I).

Remark 9.1.14 It can easily be seen that the n-skeleton is the left Kan exten-
sion (see Example 7.4.15) along the inclusion of the nth truncation of Δ into
Δ, that is,

LΔ[≤n]↪→ΔtrnX• � sknX•. (9.1.9)

It is also a matter of unravelling the definitions that this is a left adjoint to the
truncation functor X• �→ trnX•. �

Now we can define the “partial totalizations” of a cosimplicial space, dual to
the realizations of the n-skeleta of a simplicial space (Definition A.1.10).
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Definition 9.1.15 Define the nth partial totalization Totn X• of X• as the
space

Totn X• = Nat(sknΔ
•, X•).

Then we have the following.

Proposition 9.1.16 There is an equivalence, for each n ≥ 0,

Totn X• � Nat(trnΔ
•, trnX•).

On the right is the space of natural transformations between the nth truncations
of Δ• and X•, that is, maps fi : Δi → Xi, 0 ≤ i ≤ n that are compatible with
cofaces and codegeneracies.

Proof From (9.1.9), we have that

Totn X• = Nat(sknΔ
•, X•) � Nat (LΔ[≤n]↪→ΔtrnΔ

•, X•) ,

and since LΔ[≤n]↪→Δ is adjoint to truncation, we have that

Nat (LΔ[≤n]↪→ΔtrnΔ
•, X•) � Nat(trnΔ

•, trnX•). �

We prefer to work with truncations X[≤n] since those are what will be turned
into punctured cubical diagrams in Section 9.4.

The same proof as in Proposition 9.1.8 shows that, for a fibrant X•, the
natural map

Totn X• −→ holim
Δ[≤n]

trnX• (9.1.10)

is a weak equivalence (in fact, one way to prove Proposition 9.1.8 is to prove
the above and then use Proposition 9.1.17). Just as we will on occassion use
hoTot X• for the homotopy invariant totalization of X•, we will also sometimes
use hoTotn X• for the nth partial totalization of a fibrant replacement of X•.

For n ≥ 1, there is a natural map

Totn X• −→ Totn−1 X• (9.1.11)

given by restricting the collection of maps fi : Δi → X[i], 0 ≤ i ≤ n, to the
collection fi, 0 ≤ i ≤ n − 1.

We thus get a tower of partial totalizations Tot0 X• ← Tot1 X• ← · · · called
the total tower, totalization tower, or Tot tower, and we have the following.

Proposition 9.1.17 For any cosimplicial space X•,

Tot X• � lim(Tot0 X• ←− Tot1 X• ←− · · · ).
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Proof From (9.1.8), we have

Δ• � colim
i

skiΔ
•

and thus

Tot X• = Nat(Δ•, X•) � Nat
(
colim

i
skiΔ

•, X•
)

(since Nat take homeomorphisms to homeomorphisms). But by Proposi-
tion 7.5.1, the right side is homeomorphic to

lim
i

Nat (skiΔ
•, X•) ,

which is, by Definition 9.1.15, precisely limi Toti X•. �

The totalization Tot X• is sometimes denoted by Tot∞ X• as an indication that
it is an inverse limit of a tower. The corresponding statement for simplicial
spaces is Proposition A.1.14.

Remark 9.1.18 One can also work backward from the total tower to
construct a homotopy invariant totalization. Namely, an alternative way to
construct a homotopy invariant totalization of X• is to replace Totn X• by the
homotopy limit of the restriction of X• to Δ≤n (or as the homotopy limit of the
pullback to the poset of non-empty subsets of [n]). Then hoTot X• is the inverse
(homotopy) limit of the tower of these homotopy limits. �

For X• a based cosimplicial space, we observed earlier that Tot X• has a nat-
ural basepoint given by the sequence of constant maps Δi → X[i], and hence
Totn X• has a natural basepoint given by truncating the sequence at f n. We will
be interested in the fibers, over these basepoints, of the maps in the totaliza-
tion tower for a fibrant X•. To get a handle on these, consider the fiber of the
nth matching map (9.1.7) (we can talk about the fiber of this map since X• is
assumed to be fibrant), called the nth normalization of X•. This is given by

NnX• = fiber
(
X[n] −→ Mn(X•)

)
= X[n] ∩

n−1⋂
i=0

fiber(si). (9.1.12)

The following result then says that the totalization tower for a based fibrant
cosimplicial space is in fact a tower of fibrations and gives a description of its
fibers.

Proposition 9.1.19 (Fibers of the totalization tower) For a fibrant cosimpli-
cial space X•, the map Totn X• → Totn−1 X• is a fibration with fiber

LnX• := ΩnNnX•.
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Remark 9.1.20 It should be noted that the square encountered at the
beginning of the proof below is reminiscent of one in the statement of
Lemma 8.3.6. �

Proof of Proposition 9.1.19 We will first argue that there exists a pullback
square2

(9.1.13)

Since

Totn−1 X• = Nat(skn−1Δ, X
•) � Nat(Δ[≤(n−1)], X[≤(n−1)])

and

Totn X• = Nat(sknΔ, X
•) � Nat(Δ[≤n], X[≤n])

we are in fact trying to extend a map of (n− 1)-truncations to a map of n-
truncations. To do this, we must choose a map Δn → X[n] that behaves well
with respect to the coface and codegeneracy operators.

A point s of Totn−1 X• (i.e. a map of (n− 1)-truncations) defines a map
L(s) : Ln(Δ) → Ln(X•) of latching objects and a map M(s) : Mn(Δ) → Mn(X•)
of matching objects. Since Ln(Δ) = ∂Δn, each point s of Totn−1 X• defines a
solid arrow diagram

(9.1.14)

which in turns defines the point (i′ ◦ L(s),M(s) ◦ p) of

Map(∂Δn, X[n]) ×(∂Δn,Mn(X•)) Map(Δn,Mn(X•)). (9.1.15)

We thus have a map

Totn−1 X• −→ Map(∂Δn, X[n]) ×(∂Δn,Mn(X•)) Map(Δn,Mn(X•)).

Extending a map of (n− 1)-truncations to a map of n-truncations is equivalent
to choosing a dotted arrow in diagram (9.1.14) (i.e. a point t of Map(Δn, X[n]))

2 This pullback square appears in [GJ99, p. 391] but the proof presented here that it is a
pullback is due to Phil Hirschhorn.
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that makes both squares commute (see [Hir03, Section 15.2.11]). Each dotted
arrow t : Δn → X[n] in diagram (9.1.14) determines the point (t ◦ i, p′ ◦ t) of
(9.1.15), and that dotted arrow t is an extension of the point s in Totn−1 X•

exactly when its image in (9.1.15) equals the image there of the point s ∈
Totn−1 X•, namely when i′ ◦ L(s) = t ◦ i and M(s) ◦ p = p′ ◦ t. That is, the
square (9.1.13) is a pullback.

Since the inclusion ∂Δn → Δn is a cofibration, and since the map X[n] →
Mn(X•) is a fibration as X• is fibrant, the right vertical map in the square
(9.1.13) is a fibration by Proposition 3.1.11. Therefore the left vertical map
is also a fibration since the square is a pullback, using Proposition 2.1.16.

Proposition 2.1.16 also tells us that the fibers of the two vertical maps are
homeomorphic, and clearly the fibers of the right vertical map are the iterated
fibers of the square

But the map of horizontal fibers is

Map(Δn,NnX•) −→ Map(∂Δn,NnX•)

and the fibers of this map, by Proposition 2.1.11, are

Map(Δn/∂Δn,NnX•) � ΩnNnX•. �

We close this section with the discussion of the augmentation of a cosimplicial
space and cosimplicial contractions, which we will have use for on occassion
(e.g. in Examples 9.2.8 and 9.6.19).

Definition 9.1.21 An augmentation of a cosimplicial space X• is a space X−1

and a map d0 : X−1 → X[0] such that

d1d0 = d0d0 : X−1 −→ X[1]. (9.1.16)

(Thus d0 equalizes the two cofaces from X[0] to X[1].)

Notice that if X−1 augments X•, then there is a unique map

X−1 −→ X[n], n > 0, (9.1.17)

given by composing d0 : X−1 → X[0] with the cofaces in X•; the condition
(9.1.16) and cosimplicial identities ensure that the choice of which coface to
compose with at each stage does not matter. We can thus equivalently think of
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the augmentation as a cosimplicial map from C•
X−1 , the constant cosimplicial

space at X−1 (see Example 9.2.1), to X•. Consequently, there is a map

d0 : Tot(C•
X−1 ) � X−1 −→ Tot X•. (9.1.18)

This is analogous to the fact we have encountered before that if a space maps
into a diagram, then it canonically maps into its homotopy limit. In fact, we
shall see in Remark 9.4.5 that the question of how connected the above map is
is precisely the question of how cartesian certain cubical diagrams are.

Remark 9.1.22 An alternative definition of an augmented cosimplicial space
is that this is a covariant functor from Δ+ to Top, where Δ+ is the usual cosim-
plicial indexing category (i.e. the category of finite totally ordered sets) but
with the empty set, and morphisms the usual ones. �

Remark 9.1.23 Augmentation can be used to define a based, or pointed
cosimplicial space as a cosimplicial space which is augmented by a point;
this provides a natural basepoint to each X[n] and the assignnment is compati-
ble with the cosimplicial maps. Notice that a pointed cosimplicial space gives
rise to a pointed Tot tower – the collection of constant maps from Δn to the
basepoint in X[n], n ≥ 0, serves as the basepoint for Totn X•. �

Definition 9.1.24 A left contraction of an augmented cosimplicial space
X−1 → X• is a collection of maps, called extra codegeneracies,

s−1 : Xn+1 −→ Xn, n ≥ −1,

satisfying

s−1d0 = Id,

s−1di = di−1s−1, i ≥ 1,

s−1si = si−1s−1, i ≥ 0.

Proposition 9.1.25 If an augmented cosimplicial space X−1 → X• has a left
contraction, then the map d0 from (9.1.18) is a homotopy equivalence.

Proof Think of the map d0 as d0 composed with itself n times (by the
comments above, any composition of cofaces gives the same map). Now, com-
posing s−1 with itself n times gives a map X[n] → X−1. Furthermore, this gives
a map X• → C•

X−1 because of the identities defining the contraction s−1, and

hence a map s−1 : Tot X• → Tot(C•
X−1 ) � X−1. Since s−1d0 is the identity, it
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follows that the composed map X−1 → X[n] → X−1 is the identity and thus the
composition s−1 d0 is the identity on Tot(C•

X−1 ) � X−1.

It is also not hard to see that d0 s−1 is homotopic to the identity on Tot X•, and
hence that d0 is a homotopy equivalence. The homotopy is given by the maps
s−1. Namely, suppose ( f0, f1, . . . , fn, . . .) is a point in Tot X•. To start inducting
on n, we want d0 ◦ s−1 ◦ f0 ∼ f0. In other words, we want a path between points
(d0 ◦ s−1 ◦ f0)(Δ0) and f0(Δ0) in X0. Call these points x and x′, respectively.
Now, we have a path between d0(x) and d1(x) given by f1(Δ1), which is a path
in X1 with endpoints d0(x) and d1(x). Because of the identities satisfied by s−1,
we then have (s−1 ◦ d0)(x) = x and (s−1 ◦ d1)(x) = (d0 ◦ s−1)(x′). In other
words, applying s−1 to the path between d0(x) and d1(x) gives the desired path
between x and x′.

We can now proceed inductively: we want (d0)n+1 ◦ (s−1)n+1 ◦ fn ∼ fn. We
have

(d0)n+1 ◦ (s−1)n ◦ fn = (d0)n ◦ (s−1)n+1 ◦ dn+1 ◦ fn

∼ (d0)n ◦ (s−1)n+1 ◦ d0 ◦ fn

= (d0)n ◦ (s−1)n ◦ fn

∼ Id ◦ fn = fn.

The homotopy between dn+1 ◦ fn and d0 ◦ fn is given by the map fn+1 : Δn+1 →
Xn+1 (since the two compositions are images under fn+1 of two faces of Δn+1

because of cosimplicial compatibility conditions) and the second homotopy is
given by induction. �

The homotopy equivalence from Proposition 9.1.25 is called a cosimplicial
contraction of the augmented cosimplicial space X−1 → X•.

Remark 9.1.26 The maps s−1 are an example of a cosimplicial homo-
topy [Mey90, Definition 2.1] which induces a homotopy equivalence X−1 �
Tot C•

X−1 � Tot X•. The notion of a cosimplicial homotopy is more gen-
eral – if there is a cosimplicial homotopy between maps f , g : X• → Y•, then
Tot X• � Tot Y•. �

There is an obvious parallel notion of a right contraction, where the extra
codegeneracy is sn+1, which enjoys similar properties. In particular, Propo-
sition 9.1.25 still holds. For more details, see, for example, [CDI02, Section
3.2] or [DMN89, Section 6].
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9.2 Examples

Example 9.2.1 (Constant (or discrete) cosimplicial space) Given a space X,
consider the cosimplicial space C•

X with X[n] = X for all n and all cofaces and
codegeneracies identity maps. This cosimplicial space is fibrant because X is
fibrant and the identity map is a fibration (recall that, according to our defini-
tions, every space is fibrant; see Remark 8.4.8). Its totalization is X because
any map f : Δ• → X• is determined by what it does on Δ0 in degree 0. That is,
we have for example that the commutativity of the square

forces the image of f1 to be that of f0, namely a point in X. Inductively, the
same is true for fn, n > 1. Thus

Tot X• � Map(∗, X) � X. �

Example 9.2.2 (Cosimplicial resolution of a space) A cosimplicial resolu-
tion of a space X is any cofibrant cosimplicial space that is weakly equivalent to
the constant cosimplicial space at X (see Example 9.2.1).3 The canonical exam-
ple is the cosimplicial space X × Δ• which in degree n has X × Δn. The coface
and codegeneracies are the product of the identity on X with the coface and
codegeneracies on the cosimplicial simplex, described in Example 9.1.4. �

Example 9.2.3 (Cosimplicial model for the loop space) The following is
an instance of a geometric cobar construction. Suppose X is a based space
with basepoint ∗. Consider the cosimplicial space X• whose nth space is
Xn = Map({0, 1, . . . , n}, X) (X0 = ∗ is the 0th space). Now define the cofaces by

di : Xn −→ Xn+1 (9.2.1)

(x1, x2, . . . , xn) �−→

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
(∗, x1, x2, . . . , xn), i = 0;

(x1, x2, . . . , xi, xi, . . . , xn), 1 ≤ i ≤ n;

(x1, x2, . . . , xn, ∗), i = n + 1,

and codegeneracies by

si : Xn −→ Xn−1 (9.2.2)

(x1, x2, . . . , xn) �−→ (x1, x2, . . . , xi, xi+2, . . . xn).

3 Here X should also be cofibrant, but this is always the case with our definitions; see
Remark 8.4.8.
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This is a fibrant cosimplicial space because, by (9.1.6), the matching map is
given by

(x1, x2, . . . , xn) �−→ ((x2, . . . , xn), (x1, x3, . . . , xn), . . . , (x1, x2, . . . , xn−1)),

which has an evident inverse, so the map Xn → Mn(Xn) is a homeomorphism
(an hence a fibration).

Given a map f : Δ• → X•, consider, for n > 1, the square

Here fn = ( f 1
n , f 2

n , . . . , f n
n ) since fn maps to a product. Then

s j ◦ fn = ( f 1
n , f 2

n , . . . , f j
n , f j+2

n , . . . , f n
n ).

However, by commutativity of the diagram, this must be the same as

fn−1 ◦ s j = ( f 1
n−1 ◦ s j, f 2

n−1 ◦ s j, . . . , f n−1
n−1 ◦ s j).

So fn is determined by fn−1. All the relevant information to describe the
totalization is thus contained in the diagram

The commutativity of the squares and cosimplicial identities imply that f is
a map I → X which sends both endpoints to the basepoint. Thus we get a
homeomorphism

ΩX −→ Tot X•

given by projecting Tot X• homemorphically to a smaller product, and this
smaller product is identified with ΩX.

Another way to think about this is that there is an evaluation map, for all
n ≥ 0,

ΩX × Δn −→ Xn (9.2.3)

(α, x1, . . . , xn) �−→ (α(x1), . . . , α(x2))

with the obvious adjoint

ΩX −→ Map(Δn, Xn). (9.2.4)
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It is not hard to see that the collection of maps, for all n, is compatible with the
cofaces and codegeneracies in Δ• and X•, so that we get a map

ΩX −→ Tot Xn.

This map can be shown to be a homeomorphism by an argument that amounts
to what was already done above.

For an operad point of view on the cobar construction described in this
example, see Example A.4.14. �

Example 9.2.4 (Cosimplicial model for the free loop space) A version of the
cosimplicial space from Example 9.2.3 whose totalization gives LX, the free
loop space on X, is obtained by taking the nth space to be Xn+1 (so the 0th space
is X, first is X × X, etc.) and only the diagonal cofaces (those that do not insert
the basepoint). This is sometimes called the cyclic cobar construction. �

Example 9.2.5 (Cosimplicial model for the homotopy pullback) Another
version of the cosimplicial space from Example 9.2.3 gives a cosimplicial

model for the homotopy pullback of the diagram X = (A
f→ X

g← B). This is
called the two-sided geometric cobar construction. It is performed as follows.
Consider the cosimplicial space X• whose nth space is

A × Xn × B

and whose cofaces and codegeneracies are as in (9.2.1) and (9.2.2) with a slight
modification that the basepoint is replaced by the images of f and g. Define
the cofaces by

di : A × Xn × B −→ A × Xn+1 × B

(a, x1, x2, . . . , xn, b) �−→

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
(a, f (a), x1, x2, . . . , xn, b), i = 0;

(a, x1, x2, . . . , xi, xi, . . . , xn, b), 1 ≤ i ≤ n;

(a, x1, x2, . . . , xn, g(b), b), i = n + 1,

and codegeneracies by

si : A × Xn × B −→ A × Xn−1 × B

(a, x1, x2, . . . , xn, b) �−→ (a, x1, x2, . . . , xi, xi+2, . . . xn, b).

It is then not hard to see, following the same argument as in Example 9.2.3,
that a point in the totalization of this space is a point in A, a point in B, and a
path in X that begins and ends at the images of the points in A and B under f
and g, respectively. This is precisely the description of the homotopy limit of
the diagram X from Definition 3.2.4. Replacing A and B by one-point spaces
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and setting f and g to be inclusions of the basepoint of X, we obtain Example
9.2.3. �

Example 9.2.6 (Cosimplicial model for the mapping space) Given a sim-
plicial model Y• for a space Y (by applying the singular complex functor
to Y; see Remark A.1.5) and given a space X, one gets a cosimplicial
model for the mapping space Map(Y, X) simply by applying the functor
Map(−, X) objectwise to Y•. In fact, taking the standard simplicial model for
S 1 consisting of one 0-simplex, one 1-simplex and with all other simplices
degenerate, we get precisely the cosimplicial model for LX = Map(S 1, X)
from Example 9.2.4. �

Example 9.2.7 (Triple resolution) A triple (or monad) 〈F, φ, ψ〉 on the
category of spaces (or simplicial sets) is a functor F along with natural trans-
formations φ : ITop → F and ψ : F2 → F (where F2 means the composition of
F with itself) satisfying ψ ◦ (Fψ) = ψ ◦ (ψF) and ψ ◦ (Fφ) = ψ ◦ (φF). Then,
given a space X, there is a cosimplicial space F•X with (F•X)[n] = Fn+1X,
called the triple resolution of X. The cofaces and codegeneracies are given by

di =Fi ◦ ψ ◦ Fn−i+1 : (F•X)[n] −→ (F•X)[n+1],

si =Fi ◦ φ ◦ Fn−i : (F•X)[n+1] −→ (F•X)[n].

This cosimplicial space is naturally augmented by X, with the augmentation
map X → (F•X)[0] = F(X).

More on triple resolutions can be found, for example, in [Bou03, BK72a].
�

Example 9.2.8 (R-completion of a simplicial set) As an example of a triple
resolution from the previous example, suppose X• = {Xn}∞n=0 is a based simpli-
cial set with basepoint ∗ in each Xn and suppose R is a commutative ring with
unit. Let R ⊗ X• denote the free simplicial R-module generated by X•. More
precisely, this is at the nth level given as

R ⊗ Xn/R ⊗ ∗
where R ⊗ Xn is the free R-module generated by the set Xn. The faces and
degeneracies in R⊗ X• are induced by the ones in X•. Now let RX• be the subset
of R ⊗ X• generated by simplices

∑
rixi with

∑
ri = 1 (1 is the multiplicative

identity). This subset turns out to also be a simplicial R-module [BK72a, I.2.2].
It is clear that R is a functor from the category of simplicial sets to itself.

One of its most important properties is a version of the Dold–Thom Theorem
[BK72a, I.2], which we already encountered as Theorem 2.7.23:
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π∗(|RX•|) � H̃∗(|X•|; R). (9.2.5)

One can iterate this and define RnX• = R(Rn−1X•) with R0X• = X•. These
simplicial sets were first studied in detail in [BK72a].

We then have maps of simplicial sets (that are also R-module homomor-
phisms)

φ : X• −→ RX•
x �−→ 1 ⊗ x

and

ψ : R2X• −→ RX•
(r ⊗ (s ⊗ x)) �−→ rs ⊗ x

satisfying the conditions for a triple from Example 9.2.7. The collection
{Rn+1X•}∞n=0 thus forms a cosimplicial simplicial set R•X•, called the R-
resolution of X•. Explicitly, the cofaces and codegeneracies are given by

di : RnX• −→ Rn+1X•
r1 ⊗ r2 ⊗ · · · ⊗ rn ⊗ x �−→ r1 ⊗ r2 ⊗ · · · ⊗ ri ⊗ 1 ⊗ ri+1 · · · ⊗ rn ⊗ x

si : Rn+1X• −→ RnX•
r1 ⊗ r2 ⊗ · · · ⊗ rn+1 ⊗ x �−→ r1 ⊗ r2 ⊗ · · · ⊗ riri+1 ⊗ ri+1 ⊗ · · · ⊗ rn ⊗ x

A cosimplicial simplicial set is said to be grouplike if the cofaces (except pos-
sibly d0) are group homomorphisms [BK72a, X.4.8]. Grouplike cosimplicial
simplicial sets are fibrant [BK72a, X.4.10]. Since R•X• is grouplike, it is thus
also fibrant.

The totalization Tot R•X• is a simplicial set called the R-completion of X•.
The map φ is an augmentation (Definition 9.1.21) so that one has a natural map

f : |X•| −→ |Tot R•X•|,
which has useful properties. For example, if f induces isomorphisms on
reduced homology (i.e. X• is R-good), then a map |X•| → |Y•| induces iso-
morphisms on reduced homology if and only if the induced map |Tot R•X•| →
|Tot R•Y•| is a homotopy equivalence [BK72a, I.5.5]. In addition, the homo-
topy type of |Tot R•X•| is determined by H̃

∗
(|X•|; R). �

Example 9.2.9 (Z-nilpotent completion of a space) For a based space X,
there is a cosimplicial space where X[n] = ∨nΣX (and X[0] = CX). This can be
thought of as the cosimplicial space sk0Δ

•∗X, where sk0Δ
[n] is the 0-skeleton of

Δn, that is, the set of its vertices, and ∗ is the join. Since sk0Δ
n ∗X � ∨nΣX (the



9.2 Examples 463

homotopy equivalence is induced by quotienting out by one copy of the cone,
the inclusion of which is a cofibration and which is a contractible subspace),
the maps in this cosimplicial space are induced by the maps in Δ•.

If X is connected, the totalization of this cosimplicial space is Z∞X, the
Z-nilpotent completion of X. This completion was first studied in detail in
[BK72a], and computations using the spectral sequence associated to this
cosimplicial space (called the Barratt’s desuspension spectral sequence) were
performed in [Hop, Goe93]. �

Example 9.2.10 (Box product) Given cosimplicial spaces X• and Y•, one can
form a new cosimplicial space called the box product, denoted by X•�Y•. The
nth space in this product is

where the two maps are (dp+1, 1Yq ) and (1Xp , d0). The cofaces and the
codegeneracies are given by

di =

⎧⎪⎪⎨⎪⎪⎩(di, 1Yq ), 0 ≤ i ≤ p + 1;

(1Xp , di−p−1), p + 2 ≤ i ≤ n + 1,

and

si =

⎧⎪⎪⎨⎪⎪⎩(si, 1Yq ), 0 ≤ i ≤ p − 1;

(1Xp , si−p), p ≤ i ≤ n − 1.

Batanin [Bat98] has shown that this product provides a monoidal structure on
the category of cosimplicial spaces. More details about this product can also
be found in [MS04a, Section 2]. The form presented here comes from [AC15,
Definition 1.4]. �

Example 9.2.11 (Hochschild homology) This example takes us outside of
the realm of topological spaces, but we include it for the interested reader since
it is of much importance. Let k be a field, R a k-algebra, and M a bimodule
over R. There is a cosimplicial R-module given by [n] �→ Homk(R⊗n,M) with
cofaces and codegeneracies given by

(di f )(r0, . . . , rn) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
r0 f (r1, . . . , rn), i = 0;

f (r0, , . . . , ri−1ri, . . . , rn), 0 < i < n;

f (r0, . . . , rn−1)rn, i = n,
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and

(si f )(r0, . . . , rn) = f (r0, . . . , ri, 1, ri+1, . . . , rn).

Letting d denote the alternating sum of cofaces, there is also a cochain complex

0
d−→ Homk(R,M)

d−→ Homk(R⊗2,M) −→ · · ·
Then the Hochschild homology of R with coefficients in M is defined as
the cohomology of this cochain complex. (We shall see the alternating sum
of cofaces repeatedly when we study the spectral sequences associated to
cosimplicial spaces in Section 9.6.) �

For another example of an interesting cosimplicial space that is impor-
tant in applications of manifold calculus of functors to knot theory, see
Proposition 10.4.8.

9.3 Cosimplicial replacement of a diagram

In this section, we describe a way of turning any diagram of spaces into a
cosimplicial one in such a way that the totalization of the cosimplicial diagram
is the homotopy limit of the original diagram. This is especially useful since,
as we shall see in Section 9.6, one has spectral sequences trying to compute the
homotopy and the homology of the totalization, so this gives a way to get at the
homotopy and the homology of the homotopy limit of an arbitrary diagram. In
fact, many authors take the totalization of the cosimplicial replacement of a
diagram as the definition of its homotopy limit.

Of special interest for us is that this process can be taken a step further into
the setting of cubical diagrams. Namely, a cosimplicial space can be turned into
a sequence of punctured cubical diagrams whose homotopy limits converge to
the totalization. This will be discussed in Section 9.4.

Given a diagram F : I → Top, with I small, consider the space

ΠnF =
∏

i0→···→in

F(in). (9.3.1)

The product is taken over all composable morphisms of length n in I. (Com-
posable morphisms of any length always exist in a diagram because of the
existence of identity maps.) Note that

Π0F =
∏
i∈I

F(i).
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We have already seen a construction like (9.3.1) in Definition 8.1.8 of the nerve
N(I) of I. In fact, the coface and codegeneracy maps in the cosimplicial
replacement are determined by faces and degeneracies in N(I). The coface
maps d j are defined as follows. The projection of

d j :
∏

i0→···→in−1

F(in−1) −→
∏

i′0→···→i′n

F(i′n), 0 ≤ j ≤ n, (9.3.2)

onto the factor F(i′n) indexed by i′0 → · · · → i′n is the composition of the
identity map of F(i′n) with the projection onto the factor indexed by i′0 → i′1 →
· · · → i′j−1 → i′j+1 → · · · → i′n = d j(i′0 → · · · → i′n). The codegeneracies

s j :
∏

i0→···→in+1

F(in+1) −→
∏

i′0→···→i′n

F(i′n), 0 ≤ j ≤ n, (9.3.3)

are defined similarly. The projection onto the factor F(i′n) indexed by i′0 →
· · · → i′n is the composition of the identity map of F(i′n) with the projection
onto the factor indexed by i′0 → i′1 → · · · → i′j → i′j → · · · → i′n = s j(i′0 →
· · · → i′n).

These cofaces and codegeneracies satisfy the cosimplicial identities since
the maps d j and s j in the definition of N(I) satisfy the simplicial identities.

Definition 9.3.1 The cosimplicial space

Π•F = {ΠnF}∞n=0

with coface and codegeneracy maps as described above is called the cosimpli-
cial replacement of the diagram F : I → Top.

Remark 9.3.2 We could have used F(i0) instead of F(in) in (9.3.1); this
would result in a cosimplicial replacement whose totalization is homeomorphic
to the totalization of the replacement defined above. �

Theorem 9.3.3 (Cosimplicial model for the homotopy limit) Suppose
F : I → Top is a diagram of spaces with I small. Then there is a
homeomorphism

holim
I

F � TotΠ•F.

Proof Recall the truncated homotopy limits holim≤n
I F from Definition 8.3.5.

We will show that there are homeomorphisms hn : holim≤n
I F → TotnΠ•F for

each n ≥ 0 such that the diagram
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commutes. It then follows that

holim
I

F = lim
n

holim
I

≤n F � lim
n

Totn Π•F = TotΠ•F.

By definition,

Totn Π•F ⊂
∏
0≤k

Map

⎛⎜⎜⎜⎜⎜⎜⎝sknΔ
k,

∏
i0→···→ik

F(ik)

⎞⎟⎟⎟⎟⎟⎟⎠ .
We claim that the projection

p1 : TotnΠ•F −→
∏

0≤k≤n

Map

⎛⎜⎜⎜⎜⎜⎜⎝sknΔ
k,

∏
i0→···→ik

F(ik)

⎞⎟⎟⎟⎟⎟⎟⎠
�

∏
0≤k≤n

Map

⎛⎜⎜⎜⎜⎜⎜⎝Δk,
∏

i0→···→ik

F(ik)

⎞⎟⎟⎟⎟⎟⎟⎠
is a homeomorphism onto its image. To see why, let f = { fk}∞k=0 ∈ TotnΠ•F.
We claim that the maps fk for k > n are determined by f1, . . . , fn. Let k ≥ n be
fixed. For each 0 ≤ j ≤ k + 1, we have a commutative diagram

Every point in sknΔ
k is in the image of some d j since k ≥ n, and so the value

of fk+1 is determined by the value of fk for k ≥ n.
We will now construct a homeomorphism from holim≤n

I F to the image of
p1. In the proof of Lemma 8.3.6 we observed that

holim≤n
I F ⊂

∏
i

∏
0≤k≤n

∏
(i0→···→ik)→i

Map
(
Δk, F(i)

)
.

We have a projection map∏
(i0→···→ik)→i

Map
(
Δk, F(i)

)
−→

∏
i0→···→ik

Map
(
Δk, F(ik)

)
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onto those factors indexed by simplices (i0 → · · · → ik) → ik in the overcate-
gory for which the map ik → ik is the identity. Using the homeomorphism

∏
i0→···→ik

Map
(
Δk, F(ik)

)
� Map

⎛⎜⎜⎜⎜⎜⎜⎝Δk,
∏

i0→···→ik

F(ik)

⎞⎟⎟⎟⎟⎟⎟⎠ ,
we then have a map

p2 : holim≤n
I F −→

∏
0≤k≤n

Map

⎛⎜⎜⎜⎜⎜⎜⎝Δk,
∏

i0→···→ik

F(ik)

⎞⎟⎟⎟⎟⎟⎟⎠
by composing with the above projection. The map p2 is a homeomorphism
onto its image as follows. An element G ∈ holim≤n

I F is a collection G =
{Gi}i∈I of maps Gi : skn|I ↓ i| → F(i), and each Gi is itself a collection Gi =

{gα→i}, where α → i = (i0 → · · · → ik) → i is a k-simplex in the nerve of the
overcategory I ↓ i. For each α → i = (i0 → · · · → ik) → i we have, by the
definition of holim≤n

I F as an equalizer, a factorization

where α→ ik = (i0 → · · · → ik) → ik is the k-simplex in the overcategory I ↓
ik for which the map ik → ik is the identity. The images of p1 and p2 are equal
because the coface and codegeneracy maps in Totn

∏• F are determined by
the face and degeneracy maps of the nerve of I, which are precisely the same
instructions we use to build skn|I ↓ i|. Define hn : holim≤n

I F → Totn
∏• F

to be p2 composed with the inverse of p1 : Totn
∏• F → p1(Totn

∏• F). It is
clear from the constructions above that, for each n, hn and hn−1 are compatible
in the sense described at the beginning of this proof, and the collection of the
hn give the desired homeomorphism. �

We can combine Theorem 9.3.3 with Proposition 9.1.25 to prove without
reference to Theorem 8.6.5 that the homotopy limit of a functor over a category
with an initial object is the value of the functor at that initial object. This is the
content of Example 8.2.5.

Proposition 9.3.4 Suppose I is a small category with initial object i0, and
let F : I → Top be a functor. Then the projection

holim
I

F −→ F(i0)

is a homotopy equivalence.
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Proof Define
∏[−1] F = F(i0), and define d0 : F(i0) → ∏[1] F =

∏
i F(i) by

using the map F(i0) → F(i) induced by the unique morphism i0 → i for each i.
It is easy to see that this satisfies the conditions in Definition 9.1.21 and defines
an augmentation of the cosimplicial replacement. Define s−1 :

∏[n] F →∏[n−1] F by taking the factor F( jn) indexed by i0 → j1 → · · · → jn by the
identity map to the factor F( jn) indexed by j1 → · · · → jn, and projecting
away from all factors not indexed by strings starting with the initial object. It
is straightforward to check this satisfies the hypotheses of Proposition 9.1.25
and therefore the induced map d0 : F(i0) → Tot

∏• F is a homotopy equiva-
lence. Composing this with the homeomorphism given by Theorem 9.3.3 gives
the desired result. �

Remark 9.3.5 As mentioned earlier, because of Theorem 9.3.3, the defini-
tion of the homotopy limit of a diagram is often taken to be the totalization
of the associated cosimplicial replacement. One important result that has to
be established for this to be a valid definition is that Π• should be a fibrant
cosimplicial space (this is not hard to see; the matching map is simply a projec-
tion and hence a fibration) and that the totalization is then homotopy invariant.
For details, see for example [BK72a, Ch. XI, Section 5] or [GJ99, Ch. VIII,
Section 2]. �

Remark 9.3.6 Note that, from Proposition 7.4.3, we have

One has an evident map from this to TotΠ•F, and this is precisely the usual
map lim F → holim F. �

Before we provide some examples, we observe that the identity maps in the
strings of morphisms indexing the cosimplicial replacement in a sense do not
matter. Namely, let S n denote the set of n-simplices in B•I (the nerve of I; see
Definition 8.1.8), and let nd(S n) denote the set of non-degenerate n-simplices,
namely those strings that do not contain any identity maps. Then we have a
projection

p :
∏
n≥0

Map

⎛⎜⎜⎜⎜⎜⎜⎝Δn,
∏

i0→···→in

F(in)

⎞⎟⎟⎟⎟⎟⎟⎠ −→ ∏
n≥0

Map

⎛⎜⎜⎜⎜⎜⎜⎝Δn,
∏

i0→···→in∈nd(S n)

F(in)

⎞⎟⎟⎟⎟⎟⎟⎠ .
Because Map(Δn,−) commutes with products, this is homeomorphic to the
projection
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p :
∏
n≥0

∏
i0→···→in

Map (Δn, F(in)) −→
∏
n≥0

∏
i0→···→in∈nd(S n)

Map (Δn, F(in)) .

Proposition 9.3.7 Let I be a small category, F : I → Top a functor, and
Π•F its cosimplicial replacement. Then the restriction of p to Tot(Π•F) is a
homeomorphism onto its image.

Proof The main point is that an element of F( jk) in the totalization indexed
by the codegenerate simplex Jk = j0 → · · · → jk is determined by the ele-
ment of the factor F(in) indexed by In = i0 → · · · → in which is the unique
non-degenerate simplex such that s(In) = Jk, where s is a composition of
degeneracy operators. More precisely, let fJk ∈ Map(Δk, F(ik)) denote the pro-
jection of an element f ∈ Tot(Π•F) onto the factor indexed by the degenerate
simplex Jk, and let s be as above. Then fIn ◦ s = fJk .

The inverse q of the restriction of p maps the factor indexed by the non-
degenerate simplex In by sending an element fIn of that factor to all factors
indexed by s(In) for all s which are compositions of degeneracy operators by
sending fIn to the map fIn ◦ s. �

Now recall the notion of a finite and acyclic indexing category from the list of
terminology following Definition 7.1.1; this is a finite category with a bound
on the length of composable non-identity morphisms. For such a category,
the cosimplicial replacement beyond some stage will necessarily be indexed
on strings that all contain identity maps. Then an immediate consequence of
Proposition 9.3.7 is the following.

Corollary 9.3.8 For a finite and acyclic diagram F with maximum length of
composable non-identity morhisms k,

holim F � Totk Π•F.

In particular, we can perform the replacement only up to ΠkF since, by
Proposition 9.1.16, that will determine Totk.

Example 9.3.9 Consider the diagram X = (X1
f−→ X2). Then
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The various copies of X2 correspond to the various ways that the identity
morphisms and the map f can be composed with X2 as the final target. By
Corollary 9.3.8, we can truncate this diagram after the second stage. The
cofaces and the codegeneracy are

d0(x1, x2) = (x1, x2, x2),

d1(x1, x2) = (x1, x2, f (x1)),

s0(x1, x2, x
′
2) = (x1, x2).

The totalization is the space of all maps f = ( f0, f1) making the diagram

commute. A point in TotΠ•X then consists of a point x1 ∈ X1 and a path in X2

that begins at f (x1) (and ends at x2, but this could be any point in X2). But this
is precisely the description of the mapping path space from Definition 2.2.1
(which is of course the homotopy limit). �

Example 9.3.10 Consider the punctured 3-cube

Because of Corollary 9.3.8, the part of the cosimplicial replacement Π•X
relevant for the totalization then looks like

Π0X = X1 × X2 × X3 × X12 × X13 × X23 × X123,

Π1X = X1 × X2 × X3 × X3
12 × X3

13 × X3
23 × X4

123,

Π2X = X1 × X2 × X3 × X4
12 × X4

13 × X4
23 × X13

123.

Following the same procedure as in the previous example, it is not hard to see
that the totalization can then be efficiently represented as the space of natural
transformations
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(9.3.4)

But this is homeomorphic to the space of natural transformations producing
the homotopy limit of X in Example 5.3.3. �

Example 9.3.11 The cosimplicial replacement behaves as one would expect
it to for cosimplicial diagrams and their truncations (see Definition 9.1.13). A
simple application of (9.1.10) and Theorem 9.3.3 shows that, if X• is a fibrant
cosimplicial space,

Tot(Π•X[≤n]) � Totn X•,

and hence Tot(Π•X•) � Tot X•. In other words, the cosimplicial replacement
of a cosimplicial space preserves the totalization. �

9.4 Cosimplicial spaces and cubical diagrams

In this section we explain how a truncated cosimplicial diagram X[≤n] can be
turned into a punctured cubical diagram X in such a way that the totaliza-
tion of the truncation, namely the partial totalization Totn X•, is equivalent to
holimX. Thus the techniques of Chapter 5 can be used for studying partial
totalizations and Tot towers. In fact, combining the notion of a cosimplicial
replacement of a diagram from Section 9.3 with the results in this section, we
get that the homotopy limit of any diagram can be studied using homotopy lim-
its of punctured cubical diagrams. We will say more about this at the end of
this section.

Similarly, if one has a tower of homotopy limits arising from a sequence of
punctured cubical diagrams, one can look for a cosimplicial space that models
it and use cosimplicial techniques to study it. An example of this will be given
in Section 10.4.2.

Many of the definitions and results in this section first appeared in [Sin09],
with some expansions, details, and proofs that did not exist in the literature
provided in [MV14]. We expand futher here and provide some dual results at
the end of Section A.1.
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Most of the results in this section require the cosimplicial space to be fibrant.
We remind the reader that this is not a big imposition since we can always
replace a cosimplicial space by a fibrant one as discussed in Section 9.1.
Alternatively, we could have written hoTot X• and hoTotn X• for the (par-
tial) totalization of the fibrant replacement of X• (see Definition 9.1.10) and
dropped the fibrancy assumptions in our statements.

In what follows, P([n]) will be the category of subsets of [n] = {0, 1, . . . , n}
andP0([n]) will be the category of non-empty subsets of [n] (not to be confused
with P(n) and P0(n), which were the categories of (non-empty) subsets of
n = {1, 2, . . . , n}). Thus P([n]) and P0([n]) can be used as indexing categories
for (punctured) (n + 1)-cubes. In this section, we prefer the indexing set for
cubes that includes 0 since the first space in a cosimplicial space is indexed on
0 and it will thus be easier to keep track of some of the functors we are about
to define.

Definition 9.4.1 ([Sin09, Definition 6.3]) Let cn : P0([n]) → Δ be the
(covariant) functor defined by S �→ [|S | − 1], which sends S ⊂ S ′ to the
composite [|S | − 1] � S ⊂ S ′ � [|S ′| − 1], where the two isomorphisms are the
unique isomorphisms of ordered sets.

Definition 9.4.2 Given a cosimplicial space X•, the punctured (n + 1)-cube
associated to (the nth truncation of) X• is the pullback

c∗n(X•) = X• ◦ cn : P0([n]) −→ Top .

Example 9.4.3 Let n = 2, S = {1, 2}, and S ′ = {0, 1, 2}. Then S � [1] by
1 �→ 0 and 2 �→ 1, and S ′ � [2] by i �→ i for i = 0, 1, 2. Hence the map
[1] → [2] induced by the inclusion S ⊂ S ′ is the map 0 �→ 1 and 1 �→ 2. The
diagram that indexes the punctured 3-cube associated to X• is

The maps are cofaces in Δ and which one goes where in the cube is determined
by which element of a subset of {0, 1, 2} was missed. Recalling that we write
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X[n] for the value of X• on [n], the punctured 3-cube X• ◦ c2 associated to X•

is thus

�

Note that the codegeneracies play no role in the construction of the punctured
cube. This is fine, since, in light of Proposition 9.1.11, they do not affect the
(partial) totalization of a fibrant X•.

The following is [Sin09, Theorem 6.6] (see also [Sin06, Lemma 2.9] or
[DGM13, Lemma 7.1.1]).

Theorem 9.4.4 For a cosimplicial space X•, there is a weak equivalence

Totn X• � holim
P0([n])

(X• ◦ cn).

Remark 9.4.5 If X• is augmented, namely if there exists a space X−1 and
a map d0 : X−1 → X[0] satisfying d1d0 = d0d0 (Definition 9.1.21), then this
means precisely that X−1 fits as the initial space in the punctured cube X• ◦ cn

(the condition d1d0 = d0d0 makes the resulting cube commutative). Thus if we
are interested in the connectivity of the map

X−1 −→ Totn X•,

by Theorem 9.4.4, this is the same as the connectivity of the map

X−1 −→ holim
P0([n])

(X• ◦ cn).

But the latter is precisely the question of how cartesian the cubical diagram
resulting from the augmented cosimplicial space is. �

For the following lemma it will be convenient to write the homotopy lim-
its in a way that indicates functoriality more explicitly for reasons that will
become apparent shortly. Thus we will sometimes write holimc∈C F(c) in place
of holimC F.
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Recall from Proposition 9.1.19 that we define LnX• as the fiber of the fibra-
tion Totn X• → Totn−1 X•. Here is a description of LnX• in terms of the functor
cn. Note that having a based X• bases the punctured cubes X• ◦ cn and hence
their homotopy limits.

Lemma 9.4.6 For a based fibrant cosimplicial space X•, there is an equiva-
lence

LnX• � hofiber

(
X[0] −→ holim

S∈P0([n−1])
(X• ◦ cn−1(S ∪ {n}))

)
.

The map on the right side of the equivalence is given by the cosimplicial iden-
tities, which determine how X[0] maps into the punctured cube X• ◦ cn−1 and
hence to its homotopy limit. We leave it to the reader to fill in the details.

The above lemma thus says that LnX• is the total homotopy fiber of an n-
cube of spaces. Another description in terms of a total fiber of a different cube
will be given in Proposition 9.4.10 below.

Proof By Theorem 9.4.4,

LnX• = hofiber

(
holim

T∈P0([n])
(X• ◦ cn(T )) → holim

S∈P0([n−1])
(X• ◦ cn−1(S ))

)
.

By Lemma 5.3.6,

Fibering this over holim
P0([n−1])

(X• ◦ cn−1(S )) and using Theorem 3.3.15 (recalling

that a homotopy fiber is a homotopy limit) yields

LnX• � hofiber

(
X[0] → holim

P0([n−1])
(X• ◦ cn−1(S ∪ {n})

)
. �

Example 9.4.7 When n = 2, Lemma 9.4.6 says that L2X• is the total
homotopy fiber of the square

�
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Definition 9.4.8 ([Sin09, Definition 7.2]) Let c!
n : P(n) → Δ be the functor

defined by c!
n(S ) = [n − |S |], and which associates to an inclusion S ⊂ S ′ the

map

[n − |S |] � [n] − S −→ [n] − S ′ � [n − |S ′|].

Here the middle map sends i ∈ [n] − S to the largest element of [n] − S ′ less
than or equal to i.

Example 9.4.9 Suppose n = 3, S = {2}, and S ′ = {2, 3}. Then [2] � [3] −
{2} = {0, 1, 3} by the map 0 �→ 0, 1 �→ 1, and 2 �→ 3. The map {0, 1, 3} →
{0, 1} = [3]− {2, 3} sends 0 to 0, 1 to 1, and 3 to 1. Finally, [3]− {2, 3} � [1] by
the identity map. Putting this all together, the map [2] → [1] induced by the
above inclusion sends 0 to 0, 1 to 1, and 2 to 1. �

Proposition 9.1.19 says that, for a fibrant X•, the fiber LnX• of the fibration
Totn X• −→ Totn−1 X• is ΩnNnX•, where NnX• is the nth normalization of X•

from (9.1.12). Here is another description of LnX• as a loop space in terms
of cubical diagrams. Although the codegeneracies did not play a role previ-
ously, they will play an important one in the following proposition. This result
is useful in that it gives a way of checking whether the homotopy spectral
sequence for X• converges to the totalization (see Corollary 9.6.8). Again note
that having a based X• bases the cubes X• ◦ c!

n and hence their total fibers.

Proposition 9.4.10 ([Sin09, Theorem 7.3]) For a based fibrant cosimplicial
space X•, there is an equivalence

LnX• � Ωn tfiber(X• ◦ c!
n).

Proof By Theorem 9.4.4, we have an equivalence

LnX• � hofiber

(
X[0] −→ holim

S∈P0([n−1])
(X• ◦ cn−1(S ∪ { j}))

)
.

We may write homotopy fiber on the right side of this equivalence as the
total homotopy fiber of an n-cube tfiber(S �→ (X• ◦ cn−1(S ))). Then by
Proposition 5.5.7 we obtain an equivalence

tfiber(S �−→ (X• ◦ cn−1(S ))) � Ωn tfiber(S �−→ (X• ◦ cn(n − S ))).

We leave it to the reader to check, using codegeneracies and the cosimplicial
identities, that the hypotheses of Proposition 5.5.7 are satisfied. �
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The results of this and the previous section say that, to understand homotopy
limits of diagrams, it suffices to understand homotopy limits of punctured cubi-
cal diagrams (and inverse limits). Namely, given a diagram F : I → Top, we
have a cosimplicial diagram Π•F such that

holim
I

F � TotΠ•F

(Theorem 9.3.3). But this totalization is the inverse limit of the tower of fibra-
tions of partial totalizations Totn Π•F (Proposition 9.1.17). In turn, each partial
totalization can be realized as the homotopy limit a punctured cube, that is, by
Theorem 9.4.4, we have

TotnΠ•F � holim
P0([n])

(Π•F ◦ cn).

Combining all this, we thus have

holim
I

F � lim
n

(
holim
P0([n])

(Π•F ◦ cn)

)
.

One could go even further and reduce to the case of homotopy pullbacks, since,
by Lemma 5.3.6, the homotopy limit of a punctured cube is an iterated pull-
back. This brings us back to the main theme of this book: homotopy pullbacks
are the building blocks of all homotopy limits. In summary, we thus have that

the homotopy limit of any diagram of spaces is an inverse limit of spaces,
each of which can be obtained by a sequence of homotopy pullbacks.

9.5 Multi-cosimplicial spaces

One is often interested in generalizations of cosimplicial spaces to diagrams
of spaces that are “cosimplicial in each direction” [DMN89, Eld13, Goe96,
MV14, Shi96].

Let

(Δ)m = Δ × Δ × · · · × Δ
be the m-fold product of the category Δ with itself.

Definition 9.5.1 An m-cosimplicial space is a covariant functor

X�• : (Δ)m −→ Top .

The notation for the functor X�• makes no reference to m, but this will be
understood from the context.
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Fixing a simplex in all but one of the factors of (Δ)m gives an ordinary
cosimplicial space X• with cofaces and codegeneracies which satisfy the usual
identities (9.1.1). Let �n = (n1, n2, . . . , nm) and denote by X[�n ] the value of the
functor X�• on [�n ] = ([n1], [n2], . . . , [nm]) ∈ (Δ)m.

Now let Δ�• be the m-cosimplicial version of Δ•, namely the m-cosimplicial
space whose �n entry is

Δ[�n] = Δn1 × Δn2 × · · · × Δnm .

In analogy with Definition 9.1.5, we then have the following.

Definition 9.5.2 The totalization Tot X�• of an m-cosimplicial space X�• is the
space of cosimplicial maps from Δ�• to X�•.

We then have a straightforward generalization of Proposition 9.1.8. Now that
we know that a totalization is the inverse limit of partial totalization, one way
to prove it is to use Proposition 9.5.4 below and simply take the limit as all ni

go to infinity.

Proposition 9.5.3 For X�• fibrant,

Tot X�• −→ holim X�•

is a homotopy equivalence.

We again have partial totalizations of X�•. Namely, fixing �n = (n1, n2, . . . , nm)
we define

Tot�n X�• ⊂
∏
�ı≤�n

Map(sk�i Δ
�•, X�•)

(where sk�i is the natural generalization of ski) as the subset of such maps which
are compatible with all the cofaces and codegeneracies (i.e. compatible with
cosimplicial maps “in any direction” in X�•). Here�i ≤ �n means i j ≤ n j for all
j = 1 to m. In analogy with (9.1.10), we have that, for a fibrant X�•, the map

Tot�n X�• −→ holim
Δ≤�n

X�• (9.5.1)

is a weak equivalence. Here Δ≤�n is the subcategory of Δ�• generalizing Δ≤n as
a subcategory of Δ• in the obvious way.

To state the next result, it will be useful to have notation which says to which
“direction” a partial totalization applies. Let Totki be the kth partial totalization
of a multicosimplicial space X�• in the ith direction (or ith variable).
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Proposition 9.5.4 For a fibrant X�•, there is a homotopy equivalence

Tot�n X�• � Totn1
1 Totn2

2 · · ·Totnm
m X�•.

Moreover, the order of the Totni
i does not matter.

Proof From (9.5.1), we have

Tot�n X�• � holim
Δ≤�n

X�•. (9.5.2)

We also have

holim
Δ≤�n

X�• = holim
Δ≤n1×Δ≤n2×···×Δ≤nm

X�•,

and, by Proposition 8.5.5,

holim
Δ≤n1×Δ≤n2×···×Δ≤nm

X�• � holim
Δ≤n1

holim
Δ≤n2

· · · holim
Δ≤nm

X�•.

The order in which we write the homotopy limits does not matter, again by
Proposition 8.5.5. Using (9.5.1) again finishes the proof. �

One nice feature of an m-cosimplicial spaces is that, for the purposes of
totalization, it can be reduced to a single cosimplicial space.

Definition 9.5.5 Given X�•, define its diagonal cosimplicial space X�•
diag to be

the composition of X�• with the diagonal functor Δ→ (Δ)m. More explicitly,

X�•
diag = {X([i],[i],...,[i])}∞i=0

with the cofaces and codegeneracies the compositions of cofaces and codegen-
eracies from X�• with the same index:

s j = (s j, s j, . . . , s j) and d j = (d j, d j, . . . , d j).

It is not hard to see that the identities (9.1.1) are satisfied with this definition.
We then have the following useful result. The proof can be found in [Shi96,

Proposition 8.1] (although that proof is for bicosimplicial spaces, it generalizes
immediately to m-cosimplicial spaces).

Proposition 9.5.6 The diagonal functor Δ → (Δ)m induces a weak equiva-
lence

Tot X�• −→ Tot X�•
diag. (9.5.3)
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Remark 9.5.7 Proposition 9.5.6 is not true for partial totalizations, namely,
it is not true that

Totn X�•
diag � Totn1 Totn2 · · ·Totnm X�•.

However, if Totpi

i X• � Toti X• (i.e. totalization is realized at a finite stage in
each direction of X•), then we have

Totp1+···+pm X�•
diag � Totp1

1 Totp2

2 · · ·Totpm
m X�•.

This result is proved in [Eld13, Proposition 3.2] where the approach is the
study of cosimplicial spaces and their totalization through coskeleta. More
details can also be found in [Eld08]. �

We finally have the following result the proof of which can be found in [Hir15e,
Corollary 2.4]. Combined with the previous proposition, it allows us to say that
the homotopy totalizations of X�• and X�•

diag are weakly equivalent.

Proposition 9.5.8 If X�• is fibrant, so is X�•
diag.

9.6 Spectral sequences

We now look at some spectral sequences computing the homology and
homotopy of homotopy (co)limits of cubical diagrams and totalizations of
cosimplicial spaces. Most of the spectral sequences considered here arise from
towers of fibrations and cofibrations, so we first make some general remarks
about towers and their spectral sequences in Section 9.6.1.

In Section 9.6.2, we apply the setup from Section 9.6.1 to (punctured) cubes
to set up spectral sequences that compute the homotopy and homology of
homotopy (co)limits and total (co)fibers. To do this, we first construct towers of
fibrations and cofibrations that in a sense filter these homotopy (co)limits. Such
an approach to spectral sequences of cubical diagrams is not well known and,
to the best of our knowledge, has only been considered in [Sin01, Proposition
3.3]. We will also see another, more standard, way to arrive at these spectral
sequences via cosimplicial replacements (see Examples 9.6.20 and A.1.18).

By contrast, the homotopy and homology spectral sequences of a cosimpli-
cial space, which are the subject of Sections 9.6.3 and 9.6.4, have been studied
in depth. This is partly due to the fact that any diagram F : I → Top can be
turned into a cosimplicial diagram Π•F (Section 9.3) and that the homotopy
limit of F is equivalent to the totalization of Π•F (Theorem 9.3.3), so that
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these spectral sequences provide a computational tool for understanding the
homotopy limit of any diagram.

The homotopy spectral sequence was developed by Bousfield and Kan
[BK72a, BK72b, BK73], and it arises from the tower of fibrations of partial
totalizations. Our goal is to recall the main features of this construction (one
further reading that provides more details is [GJ99]). In [BK72b], the authors
consider the special case of this spectral sequence associated to their motivat-
ing construction, the R-completion of a space X (see Example 9.2.8) which we
briefly mention in Example 9.6.19. This is an example of an unstable Adams
spectral sequence since it has homology as input and tries to compute the
(unstable) homotopy groups of X. This spectral sequence has been further stud-
ied and generalized in [Bou89, BCM78, BT00, Bou03]. One of its important
applications was in the solution of the Sullivan Conjecture [Mil84] (see also
[DMN89]). Other applications and extensions of the theory include [BB10,
BD03, Goe90, LL06, Smi02]. For an algorithmic approach to computations in
the Bousfield–Kan unstable Adams spectral sequence, see [Rom10].

The homology spectral sequence of a cosimplicial space does not arise
from a tower but rather from a double complex. It was first constructed by
Anderson [And72]. A special case was considered earlier in [Rec70], where
the Eilenberg–Moore spectral sequence is exhibited as the homology spectral
sequence of a cosimplicial space obtained as a two-sided cobar construction on
a pullback square where one of the maps is a fibration. This is why the general
homology spectral sequence of a cosimplicial space is sometimes called the
generalized Eilenberg–Moore spectral sequence. The convergence properties
of this spectral sequence were studied by Bousfield in [Bou87] (based on the
results of [Dwy74]) and further by Shipley in [Shi96] (see also [Goo98]). An
alternative spectral sequence for computing the homology of homotopy limits
is given in [Goe96]. The operations in the homology spectral sequence of a
cosimplicial infinite loop space were considered in [Tur98] and more recently
in [Hac10]. Other related results and applications appear in [BO05, Pod11],
among others.

Both homotopy and homology spectral sequences of a cosimplicial space
have in recent years also been used for the study of spaces of knots and links
[ALTV08, LTV10, MV14, Sak08, Sin09]. More details about this will be given
in Section 10.4.4.

For the remainder of this section, we will assume that

● the reader is familiar with the basics of spectral sequences (the standard
introduction is [McC01b]);

● all cosimplicial spaces are fibrant (if not, we use their fibrant replacements).
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9.6.1 Spectral sequences for towers of fibrations and
cofibrations

What follows is a brief review of the construction of the homotopy spectral
sequence for a tower of fibrations and the homology spectral sequence of a
tower of cofibrations. Further details can be found in [BK72a, GJ99, KT06].

Consider the pointed tower of fibrations (fibers Fi are also pictured)

(9.6.1)

To simplify the exposition, we will assume that each Yi is connected with
abelian fundamental group. The discussion of the generalization to the case
when this is not assumed can be found in [BK72a, Chapter IX, §4] or [GJ99,
Section VI.2]. Applying the homotopy groups, one gets exact sequences of
abelian groups

(9.6.2)

which in turn give rise to an exact couple and hence a spectral sequence (see
[McC01b, Theorem 2.8] and the discussion leading up to it for details of how
this works in general). Here ∂ is the connecting homomorphism that reduces
the degree as in Theorem 2.1.13.

Now define, for q ≥ p ≥ 0 and r ≥ 1,

πi(Y
p,r) = im(πi(Y

p+r) −→ πi(Y
p)).

Here the map is the composition of the maps f j
∗ . Then consider

Zr
p,q = ker

(
πq−p(F p) −→ πq−p(Y p)/πq−p(Y p,r−1)

)
,

where the map is given by ip
∗ (followed by the quotient map), and

Br
p,q = ker

(
πq−p+1(Y p−1) −→ πq−p+1(Y p−r))

)
,

where the map is again the composition of the f j
∗ s. Finally set

Er
p,q = Zr

p,q/∂(Br
p,q),

where ∂ is the connecting homomorphism from π∗+1(Y p−1) to π∗(F p). If p = q,
then Br

p,q acts on Zr
p,q and the quotient above is meant to be the set of orbits;
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otherwise ∂(Br
p,q) is a normal subgroup of Zr

p,q so the quotient makes sense as
written.4 The differential

dr : Er
p,q −→ Er

p+r,q+r−1

is defined through the composition Er
p,q → πq−p(Y p,r−1) → Er

p+r,q+r−1. The first
map is induced by ip

∗ : πq−p(F p) → πq−p(Y p) and the second by applying δ to
a preimage of an element in πq−p(Y p) in πq−p(Y p+r−1) (under the compositions
of the maps f i∗ from πq−p(Y p+r−1) to πq−p(Y p)). It is easy to see that this is inde-
pendent of the choice of the preimage. We will say more about the particular
case of d1 below.

Definition 9.6.1 ([BK72a, Ch. IX, §4]) The collection {Er
p,q, d

r}r≥1 as defined
above is the homotopy spectral sequence of the tower of fibrations (9.6.1).

For a fixed r, {Er
p,q, d

r} is called the rth page of the spectral sequence. Because
the differentials dr raise degree, this is a second quadrant spectral sequence
and is usually depicted in the second quadrant by placing E∗

p,q in the slot
(−p, q). Because of this, the notation for its pages in the literature is sometimes
Er−p,q.

Remark 9.6.2 Another point of view on this spectral sequence is via the
derived homotopy long exact sequences built out of the πi(Y p,r). See [BK72a,
Ch. IX, 4.1] or [GJ99, Ch. VI, Lemma 2.8] for details. �

It is worth observing what the {E1
p,q, d

1} page of this spectral sequence is. We
have that

πq−p(Y p,0) = πq−p(Y p),

and so

Z1
p,q = ker

(
πq−p(F p) −→ πq−p(Y p)/πq−p(Y p)

)
= ker

(
πq−p(F p) −→ {e}

)
= πq−p(F p),

B1
p,q = ker

(
πq−p+1(Y p−1) −→ πq−p+1(Y p−1))

)
= {e}.

Thus

E1
p,q = πq−p(F p). (9.6.3)

4 Some authors follow the notational convention where Er+1 = Zr/Br; we are following the
conventions from [GJ99].
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The first differential is given by maps in (9.6.2) as

d1 : E1
p,q = πq−p(F p) −→ E1

p+1,q = πq−p−1(F p+1) (9.6.4)

α �−→ ∂(ip
∗ (α))

To start answering the natural first question as to what

E∞
p,q = lim

r
Er

p,q

might be computing (the hope is that it computes π∗(lim Y j)), let

e∞p,q = ker
(

im
(
πq−p(lim Y j) → πq−p(Y p)

) −→ im
(
πq−p(lim Y j) → πq−p(Y p−1)

))
.

There is a natural inclusion

e∞p,q ↪→ E∞
p,q, (9.6.5)

and if this inclusion is an isomorphism, then the spectral sequence converges
conditionally to the inverse limit lim π∗(Y j) (see [GJ99, Ch. VI, Lemma 2.17
and discussion following Definition 2.19] or [BK72a, Ch. IX, §5.3]).

The second issue is whether the canonical map

πi(lim Y j) −→ lim πi(Y
j) (9.6.6)

is an isomorphism. This map was described and studied in Lemma 8.3.3 and in
the discussion leading to it. To handle this, one has to consider the lim1 terms
of the tower of fibrations (which were called Kn(Z) in Lemma 8.3.3). These
are the terms that make the sequences

{e} −→ lim1 πi+1(Y j) −→ πi(lim Y j) −→ lim πi(Y
j) −→ {e} (9.6.7)

exact for j, i ≥ 0. More details about how the lim1 is defined can be found in
[GJ99, pp. 317–319] and [BK72a, Ch. IX, §2]. Clearly, if lim1 πi+1(Y j) = 0,
then (9.6.6) holds. If lim1 πi+1(Y j) � 0, it is not clear what the spectral sequence
converges to; see [GJ99, Ch. VI, Example 2.18].

Combining these two conditions, we get the following.

Proposition 9.6.3 The spectral sequence from Definition 9.6.1 converges to
πi(lim Y j) for i ≥ 1 if

1. the inclusion e∞p,q ↪→ E∞
p,q, is an isomorphism for all q > p ≥ 0;

2. lim1 πi+1(Y j) = 0 for i ≥ 0.

When the above two conditions are satisfied, we say that the spectral sequence
converges completely.
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A condition equivalent to the two conditions above is the content of the
following lemma, which is useful for computations. First recall that, for a tower
of abelian groups and homomorphisms {Gn, fn}n≥0, lim1

n is defined by the exact
sequence

{e} −→ lim
n

Gn −→
∏

n

Gn −→
∏

n

Gn −→ lim
n

1Gn −→ {e}

where the middle map is given by gn �→ (gn − fn+1(gn+1)). Since {Er
p,q}r≥0 form

such a tower of groups, we can consider lim1
r Er

p,q. For more details about lim1

for towers, see [GJ99, Ch. VI, Section 2].

Lemma 9.6.4 (Complete Convergence Lemma, [BK72a, Ch. IX, 5.4]) The
two conditions from Proposition 9.6.3 are satisfied if and only if

lim1

r
Er

p,q = 0

for all q > p ≥ 0.

For a detailed proof of this result, see [GJ99, Ch. VI, Lemma 2.20].
Another useful characterization of complete convergence that follows from

Lemma 9.6.4 is given as follows.

Definition 9.6.5 ([BK72a, Ch. IX, 5.5]) The spectral sequence from Defini-
tion 9.6.1 is Mittag–Leffler if, for every p ≥ 0 and every i ≥ 1, there exists an
integer N(p) > p such that

EN(p)
p,p+i � E∞

p,p+i.

This condition says that, for each (p, q) the spectral sequence converges after
finitely many steps. From this, the following is easy to establish (details are in
[GJ99, Corollary 2.22 and Lemma 2.23]).

Lemma 9.6.6 ([BK72a, Ch. IX, Lemma 5.6]) If the spectral sequence from
Definition 9.6.1 is Mittag–Leffler, then it converges completely.

The main reason we have introduced the Mittag–Leffler condition is because it
leads to the following two simple and useful characterizations of convergence
(Proposition 9.6.7 and Corollary 9.6.8).

Proposition 9.6.7 Suppose that the spectral sequence from Definition 9.6.1
has the property that, for each total degree i, there exists a page Er such that
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there are finitely many p with Er
p,p+i � 0. Then the spectral sequence converges

completely.

Proof For the Mittag–Leffler condition to be satisfied, it is sufficient that there
be only finitely many non-zero differentials going to or from bidegree (p, p+ i)
(because once r is high enough so that all those possibly non-zero differen-
tials have been used, Er

p,p+i = E∞
p,p+i at that bidegree). Since every differential

lowers total degree by 1, the hypothesis implies that this is true. �

Note that one way that a spectral sequence can satisfy the hypothesis from the
previous result is if there exists an r such that Er

p,q = 0 for q < kp where
k > 1 (k is a real number), i.e. if there is a vanishing line that is steeper than
the diagonal.

Corollary 9.6.8 The spectral sequence from Definition 9.6.1 converges com-
pletely if the connectivity of the fibers F j of the maps f j : Y j → Y j−1 from
(9.6.1) increases with j (and F1 is connected).

Proof In this situation we have a vanishing line at E1 that is steeper than
the diagonal and so, by the comment above, the spectral sequence converges
completely. �

Remark 9.6.9 One can set up the above spectral sequence for a finite tower
of fibrations. The spectral sequence then has a finite number of columns
and converges to the initial space as the conditions of Proposition 9.6.7 are
automatically satisfied. �

Analogously to what has been said so far, we can also consider a tower of
cofibrations

(9.6.8)

where the Ci are the cofibers.
Taking homology, we get

(9.6.9)



486 Cosimplicial spaces

where connecting homomorphism ∂ shifts the degree down (see Theo-
rem 2.3.14 for the long exact sequence of a cofibration).

We then have the following.

Proposition 9.6.10 (Homology spectral sequence of a tower of cofibrations)
Let p, q ≥ 0. Given a tower of cofibrations as in (9.6.8), there is a first quadrant
spectral sequence with

E1
p,q = Hq+p(Cp)

(with any coefficients) and

d1 : E1
p,q −→ E1

p−1,q

α �−→ ∂(ip
∗ (α)).

This is a standard homological spectral sequence of a double complex and
can also be thought of as a generalization of the homology spectral sequence
associated to a filtered complex (for which the cofibrations are inclusions of
skeleta). Because the literature on this abounds (for spectral sequences of gen-
eral double complexes, see [McC01b], and for the homology spectral sequence
of a filtered complex, see e.g. [MT68, Chapter 7]), we omit the more general
description of the pages, the differentials, and the conditions under which this
spectral sequence converges to the (homotopy) colimit of the tower. In par-
ticular, this is true if the tower of cofibrations is finite or if some page of the
spectral sequence has a vanishing line of slope greater than 1. We also leave it
to the reader to set up the cohomological version of this spectral sequence.

9.6.2 Spectral sequences for cubical diagrams

The homotopy spectral sequence of a tower of fibrations and the homology
spectral sequence of a tower of cofibrations can be used to construct homo-
topy and homology spectral sequences associated with punctured cubical and
cubical diagrams, as we will explain below. Another, less direct (but perhaps
more familiar), way to construct the same spectral sequences for the punc-
tured cubical case as in Propositions 9.6.11 and 9.6.13 is to first perform the
cosimplicial replacement as explained in Section 9.3 and then use the spectral
sequences for cosimplicial spaces which are discussed in Sections 9.6.3 and
9.6.4. The advantage of the approach given in this section is that it gives spec-
tral sequences not only for the homotopy (co)limit of a punctured cube but also
for the total (co)fiber of a cube.

We first have the following.
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Proposition 9.6.11 (Homotopy spectral sequence of a punctured cube) Let
X : P0(n) → Top∗ be a punctured cube of connected based spaces. Then there
is an n-column homotopy spectral sequence with E1 term given by

E1
p,q =

∏
S⊂P0(n)
|S |=p+1

πq(XS )

and with the first differential

d1 :
∏

S⊂P0(n)
|S |=p+1

πq(XS ) −→
∏

T⊂P0(n)
|T |=p+2

πq(XT ),

whose projection on the factor indexed by T is given by

d1 =
∑
i∈T

(−1)|T |·i f (T \ {i} → T )∗.

This spectral sequence converges to π∗(holimX).

Proof We illustrate the argument on the case n = 3. The general case is
completely analogous and we will make some comments about it at the end of
the proof. Given a based punctured cube

consider the punctured cubes
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and

The subscript (i) indicates that all spaces XS with |S | > i have been replaced
by one-point spaces.

The obvious maps of cubes X → X(2) → X(1) are fibrations, and, by
Theorem 8.5.1, we thus get a tower of fibrations

holimX −→ holimX(2) −→ holimX(1).

From (9.6.3), the spectral sequence for this tower has as its E1 page the homo-
topy groups of F0 = holimX(1), F1 = hofiber(holimX(2) → holimX(1)), and
F2 = hofiber(holimX → holimX(2)). These spaces are

F0 = holimX(1) � X1 × X2 × X3

An easy way to see this is to use Lemma 5.3.6, which expresses the homotopy
limit of a puctured cube as an iterated homotopy pullback, along with Exam-
ple 3.2.10 as well as the fact that homotopy limits commute with homotopy
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fibers (as homotopy limits commute with themselves; see Proposition 8.5.5).
So we have

E1
0,q = πq(X1 × X2 × X3) � πq(X1) × πq(X2) × πq(X3),

E1
1,q = πq−1(ΩX12 ×ΩX13 ×ΩX23) � πq(X12) × πq(X13) × πq(X23),

E1
2,q = πq−2(Ω2X123) � πq(X123).

In the more general case, one would “filter” the punctured cube X by punc-
tured cubes X(i) where all the spaces XS for |S | > i are replaced by one-point
spaces. This would result in a tower of fibrations of height n with holimX as
the initial space. The fibers of this tower are homotopy limits of cubes that have
one-point spaces except for a fixed |S | and this homotopy limit is the product∏

S Ω
|S |−1XS .

We leave it to the reader to verify that the first differential is indeed the d1

given in the statement of the proposition.
That this spectral sequence converges to holimX follows from the fact

that this is an n-column spectral sequence (and is thus Mittag–Leffler; see
Definition 9.6.5). �

We can easily extend the previous result to total fibers of cubical diagrams.

Proposition 9.6.12 (Homotopy spectral sequence of the total fiber) Let
X : P(n) → Top∗ be a cube of connected based spaces. Then there is an
(n + 1)-column homotopy spectral sequence with E1 term given by

E1
p,q =

∏
S⊂P(n)
|S |=p

πq(XS )

with the first differential

d1 :
∏

S⊂P(n)
|S |=p

πq(XS ) −→
∏

T⊂P(n)
|T |=p+1

πq(XT )

given in the same way as in Proposition 9.6.11. This spectral sequence
converges to tfiber(X).

Proof The proof is the same as in Proposition 9.6.11, except all the punctured
cubes filtering the original punctured cube encountered there are now cubes
with the initial space X∅. The columns of the spectral sequence are obtained by
taking total fibers. So we thus have, in the case n = 3,
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The last two total fibers have been computed using Examples 2.2.10 and 5.3.5,
respectively. The fibers here are the loopings of the fibers from the previous
proposition because total fiber is the homotopy fiber of the map from the ini-
tial space to the homotopy limit of the rest of the cube, which in these cases
is the map from a point to the homotopy limits of punctured cubes from the
previous proposition. Then we use that the homotopy fiber of ∗ → X is ΩX
(Example 2.2.9). �

We can also obtain analogous results for the spectral sequences computing the
homology of the homotopy colimit of a punctured cube and the total cofiber of
a cube using Proposition 9.6.10.
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Proposition 9.6.13 (Homology spectral sequence of a punctured cube) Let
X : P1(n) → Top be a punctured cube of spaces. Then there is an n-column
homology spectral sequence whose E1 term is

E1
p,q =

⊕
S⊂P0(n)
|S |=n−p−1

Hq(XS )

with the first differential

d1 :
⊕

S⊂P0(n)
|S |=n−p−1

Hq(XS ) −→
⊕

T⊂P0(n)
|T |=n−p−2

Hq(XT )

whose restriction to the summand indexed by S is

d1|Hq(XS ) =
∑
i�S

(−1)|S |·i f (S → S ∪ {i})∗.

This spectral sequence converges to H∗(hocolimX).

Proof Consider the sequence of punctured cubes X(i) which, for |S | < i, have
one-point spaces and otherwise agree with X. Then, because homotopy colim-
its preserve cofibrations of diagrams by Theorem 8.5.1, there is a sequence of
cofibrations

hocolimX(n−1) −→ hocolimX(n−2) −→ · · · −→ hocolimX(1) −→ hocolimX.
For n = 3, we get the cofibers
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(For the based case, the disjoint unions are replaced by wedges.) An easy way
to see that these are the correct homotopy colimits is to use Lemma 5.7.6, along
with Examples 3.6.6 and 3.6.9 and the fact that homotopy colimits commute,
Proposition 8.5.5.

In general, the cofibers are Ci � ∐
|S | ΣiXS where |S | = n − i − 1. Then

E1
0,q = Hq(X12 � X13 � X23) � Hq(X12) ⊕ Hq(X13) Hq(X23),

E1
1,q = Hq+1(ΣX1 � ΣX2 � ΣX3) � Hq(X1) ⊕ Hq(X2) ⊕ Hq(X3),

E1
2,q = Hq+2(Σ2X∅) � Hq(X∅).

We again leave it to the reader to verify that the differential d1 is the one given
in the statement of the proposition.

The convergence is due to the fact that this spectral sequence has finitely
many columns. �

Finally, in analogy with Proposition 9.6.12, the spectral sequence from the
previous result can be extended to total cofibers. We leave the details of the
proof to the reader.

Proposition 9.6.14 (Homology spectral sequence of the total cofiber) Let
X : P(n) → Top be a cube of spaces. Then there is an (n+1)-column homology
spectral sequence whose E1 term is

E1
p,q =

⊕
S⊂P(n)
|S |=n−p

Hq(XS )

with the first differential

d1 :
⊕

S⊂P(n)
|S |=n−p

Hq(XS ) −→
⊕

T⊂P(n)
|T |=n−p−1

Hq(XT )

given in the same way as in Proposition 9.6.13. This spectral sequence
converges to tcofiber(X).
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9.6.3 Homotopy spectral sequence of a cosimplicial space

The (Bousfield–Kan) homotopy spectral sequence for X• is the spectral
sequence for a pointed tower of fibrations from Section 9.6.1 as it applies to
the totalization tower

Tot0 X• ←− Tot1 X• ←− · · · .
from Proposition 9.1.17 (see Remark 9.1.23 for the pointed setup). We will
examine only the first page of the homotopy spectral sequence for this tower
and leave it to the reader to translate what has been developed so far for a
general tower of fibrations to this special case.

Recall that LpX• stands for the (homotopy) fiber of the map from Totp X• to
Totp−1 X•. Then, from (9.6.3), Proposition 9.1.19, and (9.1.12), the first page
of the homotopy spectral sequence is given by

E1
p,q = πq−p(LpX•) = πq−p(ΩpN pX•) = πq(N pX•) = πq

⎛⎜⎜⎜⎜⎜⎜⎝X[p] ∩
p−1⋂
i=0

fiber(si)

⎞⎟⎟⎟⎟⎟⎟⎠
(9.6.10)

It turns out that this can be rewritten in a way that is more amenable for
computation.

Proposition 9.6.15 ([BK72a, Ch. X, 6.2]; see also [GJ99, Ch. VIII, Lemma
1.8]) There is an equivalence

πq

⎛⎜⎜⎜⎜⎜⎜⎝X[p] ∩
p−1⋂
i=0

ker(si)

⎞⎟⎟⎟⎟⎟⎟⎠ = πq(X[p]) ∩
p−1⋂
i=0

ker(si
∗),

where si∗ : πq(X[p+1]) → πq(X[p]) are the maps induced on the qth homotopy
groups by the codegeneracies si in X•.

We can therefore write

E1
p,q = πq(X[p]) ∩

p−1⋂
i=0

ker(si
∗). (9.6.11)

The expression on the right side of this equivalence is called the pth nor-
malization of the cosimplicial group π∗X•, and is denoted by N pπ∗X•.5 The
statement of Proposition 9.6.15 is then simply that normalization commutes
with homotopy groups:

π∗(N pX•) � N pπ∗(X•). (9.6.12)

5 This is a functor from the category of cosimpicial spaces to the category of groups.
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The normalization also allows us to see what the first differential d1 is. In
general, given a cosimplicial abelian group G•, taking the alternating sum of
the cofaces di gives a non-negatively graded cochain complex(

G•,
∑

(−1)idi
)
.

A smaller (and usually better) complex is the Dold–Kan normalization(
NG•,

∑
(−1)idi), defined as above by intersecting with the kernels of code-

generacies. The Dold–Kan correspondence (see [Wei94, Section 8.4] or [GJ99,
Ch. III, Theorem 2.5]) states that the inclusion

NG• ↪→ G• (9.6.13)

is a quasi-isomorphism, that is, it induces isomorphisms on cohomology.
Thus, given a cosimplicial space X• we can as above form a cosimpli-

cial abelian group πq(N∗X•) for each q ≥ 0, if each X[p] is connected to an
abelian fundamental group. Taking the alternating sum of the maps induced on
homotopy by cofaces di gives the cochain complex(

N∗πq(X•),
∑

(−1)idi
∗
)
.

We can then take the cohomology H∗ of this complex (Bousfield and Kan
[BK72a] call this the cohomotopy of the complex and denote it by π∗). If X• is
not connected to an abelian fundamental group, more care has to be taken (see
[GJ99, p. 393]), but the following result still makes sense even in that case.

Proposition 9.6.16 ([BK72a, Ch. X, §7]; see also [GJ99, Ch. VIII, Proposition
1.15]) For q ≥ p ≥ 0, the E2 term of the homotopy spectral sequence for X•

is given by

E2
p,q = Hq (

N∗πp(X•), d1),
where

d1 : E1
p,q −→ E1

p+1,q

α �−→
p+1∑
i=0

(−1)idi
∗(α).

Remark 9.6.17 One could take as the E1 term the usual homotopy groups
of X[p], in which case that page is just the cochain complex of the cosimplicial
group π∗(X•) if each X[p] is connected (i.e. just remove the intersections of the
kernels in (9.6.10)). As mentioned above, intersecting with the kernel of the
codegeneracies gives a more efficient way of constructing E1, but whether X•

is normalized or not, the Dold–Kan correspondence (9.6.13) guarantees that
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the E2 page will come out to be the same. A result along the same lines is
Proposition 9.1.11. �

The homotopy spectral sequence for Tot X• converges to π∗(Tot X•) if any of
the general conditions for complete convergence from Section 9.6.1 hold. In
particular, we have from Corollary 9.6.8 that this is the case if the connectivity
of the fibers LpX• grows with p. Note that Proposition 9.4.10 gives us a way
of checking if this is the case, provided we have a handle on how cartesian the
relevant cubical diagrams are.

Remark 9.6.18 The case when X• is not pointed was studied by Bous-
field [Bou89], who develops obstruction theory for the problem of lifting the
basepoint up the Tot tower. �

Example 9.6.19 The homotopy spectral sequence associated to the R-
completion of a simplicial set X•, R•X (see Example 9.2.8), was constructed
in [BK72b] and was what motivated Bousfield and Kan to define the more
general homotopy spectral sequence for a cosimplicial space [BK73, BK72a].
They prove in [BK72b] that, under certain hypotheses (such as if X is
simply-connected), the homotopy spectral sequence for

● Z•X• converges to π∗(|X•|);
● Q•X• converges to π∗(|X•|) ⊗ Q;
● Z•pX• converges to π∗(|X•|)/(torsion prime to p).

(See also [Rom10, Theorem 3].)
Because of (9.2.5), each column in the E1 page can be computed as the

homology of the previous one. It is in this sense that the Bousfield–Kan spectral
sequence “goes from R-homology of X• to homotopy of X•”.

In the stable range, the Bousfield–Kan spectral sequence agrees with the
Adams spectral sequence [BK72b, §5]. �

Example 9.6.20 (Homotopy spectral sequence of a homotopy limit) Given a
diagram F : I → Top∗, recall from Definition 9.3.1 that we can construct its
cosimplicial replacement, Π•F, whose totalization is a model for its homotopy
limit. If it converges, the homotopy spectral sequence for Π•F then computes
π∗(holimI F). From (9.6.11), we then have

E1
p,q = πq

⎛⎜⎜⎜⎜⎜⎜⎜⎝ ∏
Ip∈nd(S p)

F(ip)

⎞⎟⎟⎟⎟⎟⎟⎟⎠ = ∏
Ip∈nd(S p)

πq(F(ip)),
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where nd(S p) is the set of non-degenerate composable strings of length p
(those that do not contain identity maps). The degenerate strings have been
removed since that is precisely the result of intersecting with the kernel of
codegeneracies as in (9.6.11).

When F is a based punctured n-cubical diagram, this means that the E1 page
is given as

E1
p,q =

∏
S⊂P0(n)
|S |=p+1

πq(XS ).

This recovers the spectral sequence for the homotopy groups of the homotopy
limit of a punctured cube from Proposition 9.6.11. �

One interesting example that is outside the scope of this book is the spec-
tral sequence for the two-sided cobar construction from Example 9.2.5. For
the interested reader, a good discussion and an overview of literature on this
problem is given in [KT06, Section 5.6].

Another example of a homotopy spectral sequence associated to a cosimpli-
cial space will be given in Section 10.4.4.

9.6.4 Homology spectral sequence of a cosimplicial space

The homology spectral sequence for X• is the usual second quadrant spectral
sequence associated to a double complex.

The double complex, that is, the E0 term of the homology spectral sequence,
is obtained by applying the chains (with any coefficients) to X•. This pro-
duces, for any q ≥ 0, a cosimplicial abelian group Cq(X•). However, as in
the homotopy spectral sequence case, we can use the Dold–Kan normaliza-
tion functor and the quasi-isomorphism (9.6.13) to instead use N∗ Cq(X•) and
obtain a cochain complex (

N∗ Cq(X•),
∑

(−1)idi
∗
)
.

Now the maps di∗ are those induced on chains by the cofaces di in X•. It is
immediate from the cosimplicial identities that the composition of the alter-
nating sum of the di∗ with itself is indeed zero. This differential serves as the
horizontal one in the E0 page.

One of course also has, for each p, the usual chain complex (C∗(X[p]), ∂),
where ∂ is the usual differential on the chains. This differential restricts to the
subcomplex N p C∗(X•) ↪→ C∗(X[p]) and we thus get the vertical complexes in
E0 for each p,
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(
N p C∗(X•), ∂

)
.

Thus

E0
∗,∗ = N∗ C∗(X•)

with the differentials as described above.
To construct the rest of the spectral sequence we proceed in the usual way

when the starting point is a double complex by filtering vertically (in the
q direction) or horizontally (in the p direction). That is, we form the total
complex T (E0∗,∗) of the double complex E0∗,∗ which in degree n is given by

T (E0
∗,∗)n =

∏
i≥0

Nn+i Ci(X
•).

Notice that that n need not be non-negative so this is a Z-graded complex (and
we naturally assume N<0 Ci(X•) = 0). The differential ∂T in T (E0∗,∗) is the sum
of the vertical and the horizontal differentials in E0:

∂T = ∂ + (−1)idi
∗.

This total complex is filtered by subcomplexes F pT (E0∗,∗), p ≥ 0, which in
degree n are given by

F pT (E0
∗,∗)n =

∏
i≥p

Nn+i Ci(X
•).

Each quotient

Tp(E0
∗,∗) = T (E0

∗,∗)/F
pT (E0

∗,∗)

is thus a complex which can be thought of as the total complex of the dou-
ble complex obtained from E0∗,∗ by replacing everything to the left of the pth
column by zero. In particular, Tp(E0∗,∗) is zero in degrees < −p.

There is an evident surjection

Tp(E0
∗,∗) −→ Tp−1(E0

∗,∗)

since Tp(E0∗,∗) is built out of a double complex that has one more non-zero
column than the double complex for Tp−1(E0∗,∗) and the two are otherwise
identical, so we get a tower of chain complexes{

Tp(E0
∗,∗)

}
p≥0

, (9.6.14)

and this gives rise to the homology spectral sequence of X•.
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The E1 page is obtained by taking the homology with respect to the vertical
differential, i.e.

E1
p,q = Hq−p

(
F pT (E0

∗,∗)/F
p+1T (E0

∗,∗)
)
= N p Hq(X•) = Hq(X[p]) ∩

p−1⋂
i=0

ker(si
∗).

(9.6.15)
This is of course completely analogous to the homotopy spectral sequence E1

term from (9.6.11).
The d1 differential is the horizontal differential in E0, but now the alternating

sum is taken over maps induced by the di on homology (rather than chains).
We thus get the following analog of Proposition 9.6.16.

Proposition 9.6.21 ([Bou87, Section 2.1]) For q, p ≥ 0, The E2 term of the
homology spectral sequence for X• is given by

E2
p,q = Hq (

N∗ Hp(X•), d1)
where

d1 : E1
p,q −→ E1

p+1,q

β �−→
p+1∑
i=0

(−1)idi
∗(β).

The remainder of the spectral sequence is given in the usual way from the
filtration F pT (E0∗,∗), p ≥ 0, with differentials

dr : Er
p,q −→ Er

p+r,q+r−1.

Remark 9.6.22 All of the above can be done by filtering horizontally rather
than vertically, that is, truncating N∗ C∗(X•) with horizontal lines. See [Goo98,
Section 4] for more details about how these two ways are related. �

Remark 9.6.23 Since we do not require q ≥ p, it is possible that the E∞ page
could have terms in negative total degree. Goodwillie [Goo98] has shown that,
over Zp, the spectral sequence vanishes in negative dimensions. He also gives
examples to demonstrate that this may not be true over Z or Q. �

The issue of the convergence of the homology spectral sequence for X• is more
sensitive than that of the homotopy spectral sequence. Philosophically, this is
because cosimplicial spaces and totalizations go with homotopy limits, and
homotopy limits go with homotopy groups (essentially since there is a long
exact sequence of homotopy groups for homotopy fibers). Bousfield [Bou87]
and Shipley [Shi96] have used the tower from (9.6.14), as well as an exact
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couple that can be extracted from it, as a starting point for analyzing conver-
gence (for any coefficients, but have obtained most results for Z/p and related
coefficients). It would take us too far afield to discuss this in detail, and we will
instead just state one of the most useful sufficient conditions for convergence.

Theorem 9.6.24 ([Bou87, part of Theorem 3.2]) Suppose the homology
spectral sequence for X• satisfies the following:

1. Each X[p] is simple (connected, has abelian fundamental group, and fun-
damental group acts trivially on higher homotopy groups; in particular, if
X[p] has trivial fundamental group, it is simple).

2. Er
p,q = 0 for q ≤ p.

3. For each i ≥ 1, there exist finitely many p such that Er
p,p+i = 0.

Then the spectral sequence converges completely, that is, it converges to
H∗(Tot X•) (for coefficients in any ring).

Otherwise, the best that can be said is that, if the spectral sequence converges, it
converges to H∗(Tot C∗ X•), that is, the homology of the totalization (in the cat-
egory of bicomplexes; see e.g. [Wei94, Section 1.2]) of the cosimplicial chain
complex obtained by applying chains to X•. One then has a canonical map

H∗(Tot X•) −→ H∗(Tot C∗ X•), (9.6.16)

which may or may not be an isomorphism. More about the issue of what the
spectral sequence converges to (i.e. about the exotic convergence) can be found
in [Shi96, Section 7].

Remark 9.6.25 Everything discussed here can be dualized in order to obtain
the (second quadrant) cohomology spectral sequence of X•. For example, its
E1 page is

Ep,q
1 = Hq(X[p])

/ ⎛⎜⎜⎜⎜⎜⎝ p∑
i=0

im((si)∗)
⎞⎟⎟⎟⎟⎟⎠ , (9.6.17)

which can also be written as

Ep,q
1 = coker

⎛⎜⎜⎜⎜⎜⎜⎝
p−1∑
i=0

im((si)∗ : Hq(X[p−1]) −→ Hq(X[p])

⎞⎟⎟⎟⎟⎟⎟⎠ . (9.6.18)

The first differential is again induced by the sum of cofaces (restricted to this
cokernel):
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d1 =

p+1∑
i=0

(−1)i(di)∗ : Ep,q
1 −→ Ep+1,q

1 .

We leave it to the reader to fill in the details. �

Example 9.6.26 (Homology spectral sequence of a homotopy limit) Just as
in Example 9.6.20, given a diagram F : I → Top we can apply the homology
spectral sequence to the cosimplicial model for its homotopy limit, Π•F. If it
converges, the homology spectral sequence thus computes H∗(holimI F). �

Example 9.6.27 Recall Example 9.2.3 and set X = S n, n ≥ 1. Since the
generators (integrally) of the products of spheres are pulled back from a sin-
gle sphere, most of the terms in the E0 page of the spectral sequence for the
cosimplicial model of ΩS n are degenerate, and the spectral sequence has a
particularly simple form, from which it is immediate, using Theorem 9.6.24,
that the spectral sequence collapses. It is a simple exercise in chasing the
differentials to see that we ultimately get

Hi(ΩS n) =

⎧⎪⎪⎨⎪⎪⎩Z, (n − 1)|i;
0, otherwise. �

Another example of a homology spectral sequence associated to a cosimplicial
space will be given in Section 10.4.4.

We close this section with some comments that apply to both the homotopy
and the homology spectral sequences.

In the spirit of Example 9.3.11, we first have an unsurprising result about
spectral sequences for truncations of cosimplicial spaces.

Recall the definition of a truncation X[≤n] of X• (Definition 9.1.13). For a
chain complex K, let K≤n be the nth truncation of K, the complex which agrees
with K up to degree n but is zero after that.

Proposition 9.6.28 ([LTV10, Lemma 4.2 and Proposition 4.3]) Suppose the
homotopy and homology spectral sequences for X• converge strongly (so they
converge to π∗(Tot X•) and H∗(Tot X•)). Then (compare with Propositions
9.6.16 and 9.6.21) the following hold.

1. The homotopy and homology spectral sequences for Π•X[≤n] have as their
E2 terms

E2
p,q = Hq (

N∗
≤nπp(X•)

)
and E2

p,q = Hq (
N∗
≤n Hp(X•)

)
.

2. These spectral sequences converge strongly to π∗(Totn X•) and H∗(Totn X•).
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Remark 9.6.29 Lemma 4.2 in [LTV10] proves statement 1 for the homotopy
spectral sequence, but it is not hard to also deduce the same for the homology
spectral sequence. In addition, the statement of Proposition 4.3 in [LTV10]
demonstrates part 2 for spectral sequences that are “above the diagonal”, but
the generalization to the hypothesis where any kind of strong convergence is
assumed is also not difficult to see. �

Recall the notion of a homotopy initial functor from Definition 8.6.2. Another
result concerning spectral sequences of cosimplicial replacements is the
following natural analog of Theorem 8.6.5.

Proposition 9.6.30 ([LTV10, Proposition 4.5]) Suppose G : I′ → I is a
functor between finite categories and F : I → Top∗ is a diagram of based
spaces. If G is homotopy initial then the homotopy and rational homology
spectral sequences associated to Π•F and Π•(F ◦G) have isomorphic E2 (and
subsequent) pages.

The last comment is that the homotopy and homology spectral sequences can
be compared via a Hurewicz map. Namely, the Hurewicz maps

πq(X[p]) −→ Hq(X[p]), q ≥ 1, p ≥ 0

induce a map from the homotopy spectral sequence for X• to the homology
spectral sequence for X•. In particular, on E1 it will simply be the Hurewicz
map restricted to the normalization

N pπq(X•) −→ N p Hq(X•).

The sequence of these maps will converge to the Hurewicz map

πq−p(Tot X•) −→ Hq−p(Tot X•).

For more details, see [Bou89, Sections 2.7 and 10.8].
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Applications

This chapter is meant to be a brief account of some of the recent developments
and results that utilize some of the techniques developed in this book. As this
is meant to be an overview, many details and proofs have been omitted, but
ample references for further reading have been supplied. The central applica-
tion is to introduce the calculus of functors, and we present two of its flavors –
homotopy and manifold calculus – in Sections 10.1 and 10.2. Section 10.3 is an
application of manifold calculus to spaces of embeddings, and Section 10.4 is
an account of how manifold calculus, in combination with cosimplicial spaces
and their spectral sequences, provides information about spaces of knots.

One important application that we did not have space to include is the
Lusternik–Schnirelmann category. Some of the main results in that theory use
Ganea’s Fiber-Cofiber Construction (Proposition 4.2.14), Mather’s Cube The-
orems (Theorems 5.10.7 and 5.10.8) and other cubical techniques developed
in this book. For more details, the reader should consult [CLOT03].

10.1 Homotopy calculus of functors

This and the next section are devoted to a brief outline of the calculus of
functors, an organizing principle in topology which takes some inspiration
from Taylor series in ordinary calculus. Our focus will be narrow, only briefly
describing two flavors, known as “homotopy calculus” and “manifold cal-
culus”, but we will pay special attention to how cubical diagrams play an
important role in each of these theories.

We will not attempt to answer the very general question of what a cal-
culus of functors is, but a few philosophical remarks are in order. Given a
functor F : C → D, the general idea is to approximate F by a sequence of
functors TkF : C → D which are “polynomial of degree k”, and with natural

502



10.1 Homotopy calculus of functors 503

transformations F → TkF and TkF → Tk−1F compatible in the obvious way.
These functors and natural transformations form a “Taylor tower” for F, the
analog of the Taylor series of a function f : R→ R. We are typically interested
in the homotopy type of the values of the functor F, so the category D should
be one in which we have a reasonable notion of homotopy theory. Model cate-
gories are the usual setting for that, but, as we have done throughout this book,
we will stick to the case where D is the category of topological spaces or spec-
tra for concreteness (all the necessary background material on spectra can be
found in Section A.3).

In order for the polynomial approximations TkF to be useful, their homo-
topy type should be easier to compute than that of F. Moreover, they should
be classifiable in some way. That is, the theory should compute something for
free. In both of our examples, this means having a classification of “homo-
geneous” functors of degree k. We also hope that the homotopy type of the
approximations TkF is related to that of F. If we are lucky, the map F → TkF
will be highly connected, and this connectedness will increase with k, that is,
the Taylor tower will converge. However, this is not strictly necessary for the
functors TkF to be useful, as will be illustrated in the applications of manifold
calculus to knots in Section 10.4. In the next two sections, we will thus focus
on three topics: the polynomial functors and polynomial approximations, the
classification of homogeneous functors, and convergence.

For parallels with ordinary calculus, we will find that the difference f (x +
h) − f (x) appearing in the definition of the derivative of a function f : R → R
has an analog – the homotopy fiber of a map between values of the functor F.
We will also see that the degree k part of the Taylor series for f , f (k)(0)xk/k!,
has an analog in the description of the homogeneous layers of the Taylor tower
for F, and whether some input for f is within the radius of convergence of
its Taylor series has an analog in terms of the connectivity of the input space
(homotopy calculus) or handle index of the input (manifold calculus).

There are a few glaring omissions in our treatment of calculus of func-
tors. For example, applications of homotopy calculus are largely omitted. To
name a few, homotopy calculus has been used to study Waldhausen’s func-
tor A [CCGH87, Goo92, Ogl13], its application to the identity functor has
yielded information about the unstable homotopy groups from the stable ones
[AD01, AM99, Joh95], the Taylor tower of the mapping space Map(K, X),
where K is a complex, has provided stable homotopy information about that
space [AK02, Aro99], [Kuh04] exhibits a close relation between the Taylor
tower and the chromatic filtration, and [Beh12] does the same for the EHP
sequence. The reason a detailed treatment of these topics is omitted (we will
only mention some of them in passing) is simply because to include them



504 Applications

would require a significant investment into the machinery of stable homo-
topy theory and model categories, both of which go beyond the intended scope
of this book. Instead, we have opted to present two applications of manifold
calculus (Sections 10.3 and 10.4) which are closer in spirit to the techniques
employed throughout this book.

Another topic we have not covered is the third brand of functor calculus
currently in existence, namely orthogonal calculus, due to Weiss [Wei95].
While this theory has also resulted in interesting applications [Aro02, ALV07,
Mac07, MW09], it is not based on cubical diagrams to the extent that the other
two are, and hence does not fit thematically here.

We now turn to discussing the homotopy calculus of functors. The main ref-
erences we draw from are Goodwillie’s foundational papers [Goo92, Goo03]
(see also [Kuh07] for a nice overview of the theory). Further developments of
the theory can be found in [AC11, AC14, AC15, BCR07, Chi05, Chi10, Cho,
Joh95, JM99, JM04, JM08, KM02, KR02, LM12, McC01a].

Homotopy calculus is concerned with functors F : C → D, where C is Top∗
or TopY , and D is Top∗ or Spectra. Here TopY is the category of spaces over a
fixed space Y where all the objects come with a map to Y and all the morphisms
commute with these maps. The source category will throughout this section
mostly be Top∗ and we will make some comments about TopY at the end of
Section 10.1.3.

We assume our functors satisfy the following axioms.

Definition 10.1.1

1. A functor F is a homotopy functor if whenever X → Y is a weak
equivalence, the induced map F(X) → F(Y) is a weak equivalence.

2. A functor F is finitary if, given a diagram I → C, i �→ Xi, where I is
filtered (see Definition 7.5.4), the canonical map

hocolim
i∈I

F (Xi) −→ F
(
hocolim

i∈I
Xi

)
is a weak equivalence.

The condition that the functor is finitary means that it is determined by its
values on finite complexes. If we do without this axiom, we could choose to
define the value of our functor on infinite complexes via the homotopy colimit
above, since every space can be written as a filtered homotopy colimit of finite
complexes. We will generally ignore the finitary axiom, although it is crucial
to the classification of homogeneous functors; see the discussion leading to
Theorem 10.1.48.
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We will also sometimes assume F is reduced, which means that if X is
weakly equivalent to a point, then F(X) is weakly equivalent to a point. If the
codomain of F is based spaces, then the functor X �→ hofiber(F(X) → F(∗)) is
reduced for any F.

Example 10.1.2 For X a (based) space and C a spectrum, the following are
homotopy functors:

● X �−→ Xn, n ≥ 1;
● X �−→ Σ∞X;
● X �−→ Ω∞Σ∞X (see Example 10.1.10);
● X �−→ Map(K, X), where K is a finite complex (see Remark 1.3.6);
● X �−→ C ∧Ω∞X+;
● C �−→ Σ∞Ω∞C. �

10.1.1 Polynomial functors

In this section we define and discuss the “polynomial approximations” of
homotopy functors. Recall the notions of homotopy cartesian (Definition 5.4.1)
and strongly homotopy cocartesian (Definition 5.8.18) cubes.

Definition 10.1.3 We call a homotopy functor F : C → D k-excisive, or poly-
nomial of degree ≤ k, if it takes strongly homotopy cocartesian (k + 1)-cubes
X to homotopy cartesian (k + 1)-cubes F(X).

Proposition 10.1.4 If F is k-excisive, then it is l-excisive for l ≥ k.

Proof It suffices to argue this for l = k + 1. Regard a (k + 2)-cube Z as a
map of k-cubes X → Y. Since the original cube is strongly homotopy cocarte-
sian, so are X and Y. Since F is k-excisive, F(X) and F(Y) are homotopy
cartesian. But then so is F(Z) = F(X → Y) = F(X) → F(Y) by 1(b) of
Proposition 5.4.13. �

Remark 10.1.5 The reason the definition of a k-excisive functor uses
strongly homotopy cocartesian cubes rather than just cocartesian ones is
because the former is necessary for the previous result to be true. �

Example 10.1.6 A 0-excisive functor F takes all maps to weak equivalences
and is therefore, in a sense, constant. �
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A 1-excisive functor, sometimes also just called excisive or, if it is also reduced,
linear, is one which takes homotopy cocartesian squares to homotopy cartesian
squares, that is, it satisfies the excision axiom.

Example 10.1.7 Consider the infinite symmetric product X �→ SP(X), where
X is based (see Definition 2.7.22). Certainly SP is a homotopy functor, and the
Dold–Thom Theorem, Theorem 5.10.5, says that SP is 1-excisive. �

Example 10.1.8 The identity functor from spectra to spectra is 1-excisive
(and hence k-excisive for any k > 1). This is precisely the content of Propo-
sition A.3.13. The identity functor from spaces to space is not 1-excisive. For
example, the square

is cocartesian but not cartesian because the map S 0 → holim(∗ → S 1 ← ∗) �
ΩΣS 0 is not an equivalence (S 0 has two components but ΩΣS 0 has countably
many components). �

Example 10.1.9 Let C be a spectrum. The functors X �→ C ∧ X and X �→
Ω∞(C ∧ X) are 1-excisive (and hence k-excisive for any k > 1). In some sense
these are the universal examples of 1-excisive functors from spaces to spectra
or from spaces to spaces; see Theorem 10.1.48.

To see why these are 1-excisive, let

be a homotopy pushout square. By Proposition A.3.10 we may also assume
C is an Ω-spectrum, so that the canonical maps Ci → ΩCi+1 are weak
equivalences for all i. Note that if Ci is n-connected, then by statement 1
of Example 4.2.11, the canonical map ΣCi → Ci+1 is (2n + 3)-connected.
Since C1 is non-empty (our spectra are sequences of based spaces), it is (−1)-
connected and hence ΣC1 → C2 is a 1-connected map from the 0-connected
space ΣC1 to C2, and it follows that C2 is 0-connected. By induction, Cn is
(n− 1)-connected. Thus if X is non-empty, Cn ∧ X is also (n− 1)-connected by
Proposition 3.7.23. Further, since smashing with a space preserves homotopy
pushouts by Corollary 3.7.19, the square
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is a homotopy pushout. The two initial maps Cn ∧ X∅ → Cn ∧ Xi are
(n − 1)-connected since they are maps of (n − 1)-connected spaces. By the
Blakers–Massey Theorem, Theorem 4.2.1, this square is (2n − 3)-cartesian.
Since applying Ωn decreases connectivity by n, and since Ωn commutes with
homotopy limits by iterated application of Corollary 3.3.16, the square

is (n − 3)-cartesian, again by Blakers–Massey. Letting n go to infinity in the
above two squares gives the desired result. �

Example 10.1.10 Since S ∧ X = Σ∞X (see Example A.3.9), where S is the
sphere spectrum from Example A.3.4, a special case of the previous example
is that the functor X �→ Σ∞X is 1-excisive.

Now recall the functor QX = Ω∞Σ∞ : Top∗ → Top∗ from (A.7). This
functor is 1-excisive. This again follows from Example 10.1.9 since QX =
Ω∞(S ∧ X). �

Remark 10.1.11 One place where the analogy between functor calculus and
ordinary calculus breaks down is that the composition of 1-excisive functors is
not necessarily 1-excisive. For example, even though functors C �→ Ω∞C and
X �→ Σ∞X are 1-excisive, the composition C �→ Σ∞Ω∞C is not. �

We can generalize Example 10.1.9 to construct functors which satisfy higher-
order excision, but we first need to develop a couple of tools which make this
easier. This will give us a chance to use some of the material on cubical dia-
grams and more general homotopy limits we have developed earlier in this
book.

Proposition 10.1.12 ([Goo92, Proposition 3.3]) Suppose F is n-excisive and
X = S �→ XS is a strongly homotopy cocartesian m-cube. Then the canonical
map

F(X∅) −→ holim
|m−S |≤n

F(XS )

is a weak equivalence.
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Proof If m ≤ n, then the indexing category for the homotopy limit has ∅ as an
initial object, and by Example 7.3.9, the homotopy limit is weakly equivalent
to F(X∅). If m = n + 1, then by definition of n-excisive the result is true. For
m > n + 1 we induct on m. Define an m-cube Y = S �→ YS by the formula

YS = holim
T⊃S ,|m−T |≤n

F(XT ).

There is a natural map of cubes F(X) → Y given by composing the canonical
map

F(XS ) −→ holim
T⊃S

F(XT )

(a weak equivalence since the indexing category has S as an initial object) with
the evident restriction map of homotopy limits. We are to prove that F(X∅) →
Y∅ is a weak equivalence. By induction, F(XS ) → YS is a weak equivalence for
all S � ∅ (the inductive argument requires the case m = n+1 as well). By The-
orem 5.3.9 and the definition of homotopy cartesian, it is enough to show that
F(X) and Y are homotopy cartesian. For F(X) this is Proposition 10.1.4. For
Y this follows from Proposition 8.6.7 for I = P(m) covered by the collection
of subcategories {I j}mj=1, where I j = {T ⊂ m : j ∈ T, |m − T | ≤ n}. �

The next result concerns functors of more than one variable, and gives a way
to build functors satisfying higher-order excision from multivariable functors
satisfying lower-order excision in each variable.

Proposition 10.1.13 ([Goo92, Proposition 3.4]) Suppose F : Ck −→ D is di-
excisive in the ith variable. If Δk : C → Ck denotes the diagonal inclusion, then
the composition F ◦ Δk is

∑
i di-excisive.

Proof Let X = S �→ XS be a strongly homotopy cocartesian n-cube, where
n > d. Define an n-cube Y = S �→ YS by

YS = holim
Ti⊃S ,|m−Ti |≤di

F(T1, . . . ,Tk).

As in the previous proof, there is an evident natural transformation of
cubes F ◦ Δ(X) → Y which is a weak equivalence for all S by Proposi-
tion 10.1.12 used k times, once in each variable. It is enough now to prove
that Y is homotopy cartesian. This follows from Proposition 8.6.7 with I =
{(T1, . . . ,Tk) : |m−Ti| ≤ di for all i}, which is covered by the collection {I j}kj=1,
where I j = {(T1, . . . ,Tk) : j ∈ Ti, |m − Ti| ≤ di for all i}. �

Example 10.1.14 For any spectrum C the functors X �→ C∧ (X+)∧k and X �→
Ω∞(C∧ (X+)∧k) are k-excisive. This is because these are functors in k variables
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that are 1-excisive in each variable by Example 10.1.9. But Proposition 10.1.13
says that if F : Ck −→ D is 1-excisive in each variable, it is k-excisive.

As a special case, the functors X �→ Σ∞X∧k and X �→ Ω∞Σ∞X∧k are
polynomial of degree k. �

We close with one more property of excisive functors and its useful conse-
quence.

Proposition 10.1.15 Suppose I is a small category and we have an I-
diagram of k-excisive functors Fi, i ∈ I (so this is a functor from I to functors
from C to D). Then holimi∈I Fi is also k-excisive.

Proof If X is a strongly homotopy cocartesian (k + 1)-cube, then by assump-
tion each of the functors Fi has the property that Fi(X) is homotopy cartesian.
This means Fi(X(∅) → holimS�∅ Fi(X(S )) is a weak equivalence. Let F =
holimI Fi. We want to know whether the map F(X(∅)) → holimS�∅ F(X(S ))
is a weak equivalence. Unraveling, this becomes the map

holimI Fi(X(∅)) −→ holimS�∅ holimI Fi(X(S )),

and the last space is homeomorphic to holimI holimS�∅ Fi(X(S )) by Propo-
sition 8.5.5. Taking the homotopy limit over S � ∅ gives something weakly
equivalent to Fi(X(∅)) for each i, so by Theorem 8.3.1 we have the desired
result. �

Since the fiber of a fibration can be thought of as a homotopy limit, from the
previous result we immediately get the following.

Corollary 10.1.16 Let G → H be a natural transformation of k-excisive
functors from C → Top∗. Then F = hofiber(G → H) is k-excisive.

Proof Let I = P0(2), and Φ : P0(2) → TopC∗ be defined by Φ({1}) = G,
Φ({1, 2}) = H, and Φ({2}) = C∗, the constant functor at a point. The natural
transformations Φ({1} → {1, 2}) and Φ({2} → {1, 2}) are the given one and the
inclusion of the basepoint, respectively. �

10.1.2 The construction of the Taylor tower

We now turn to the construction of polynomial approximations PkF of a homo-
topy functor F. This is done in two steps. The first is to create a new functor
TkF which is in a sense closer to being k-excisive, and the second is to iterate
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this process to create a k-excisive functor PkF. The meaning of “closer” in this
context will be explained below.

Definition 10.1.17 A functor F is stably k-excisive if it satisfies the condition
Ek(c, κ), given below, for some constants c, κ:

Ek(c, κ): If X = S �→ XS is any strongly homotopy cocartesian
(k + 1)-cube such that X∅ → Xi is di-connected for all i
and di ≥ κ for all i, then the cube F(X) is (−c +

∑
i di)-

cartesian.

Roughly speaking, this says that F takes a special class of strongly homotopy
cocartesian cubes to highly cartesian cubes. If F satisfies Ek(−∞,−1), then F
is k-excisive.

Example 10.1.18 Let F = I be the identity functor. Theorem 6.2.1 says that
I satisfies Ek(k − 1,−1) for all k. �

Definition 10.1.19 We say F and G agree to order k if there exists a natural
transformation F → G that satisfies the condition Ok(c, κ), given below, for
some constants c, κ.

Ok(c, κ): For every d ≥ κ and every d-connected map X → ∗
(i.e. for all (d − 1)-connected spaces X), the map F(X) →
G(X) is (−c + (k + 1)d)-connected.

Remark 10.1.20 If C = TopY , the condition about the connectivity of the
map X → ∗ stays the same, but now for the map X → Y . �

The construction of TkF uses the strongly homotopy cocartesian (k + 1)-cube
U �→ X ∗ U, U ∈ P(k + 1), studied in Examples 3.9.13 and 5.8.20 (we will set
Y = ∗ in what follows).

Definition 10.1.21 For a functor F, define

TkF(X) = holim
U∈P0(k+1)

F(X ∗ U).

For some intuition about this definition, see [Goo03, Remark 1.1].

Example 10.1.22 For T0F, note that X ∗ {1} = CX � ∗. Thus

T0F = holim F(CX) = F(CX) � F(∗).
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The last equivalence is true because F is a homotopy functor. If F is reduced
(so F(∗) � ∗), T0F � ∗. �

Example 10.1.23 To construct T1F, first note that X ∗ {1} = X ∗ {2} = CX,
and X ∗ {1, 2} = ΣX. Then

Thus, if F is reduced, we have

by Example 3.2.7. In the further special case when F is the identity functor,
we have that T1F(X) � ΩΣX. �

Since F is a homotopy functor and since homotopy limits are homotopy invari-
ant, we have that Tk is also a homotopy functor. Furthermore, there is an
evident natural transformation

tk(F) : F −→ TkF (10.1.1)

since X ∗ ∅ = X is the initial space of the cube U �→ X ∗ U. Moreover, the
natural inclusion k → k + 1 gives an inclusion of categoriesP0(k) → P0(k + 1)
and hence a natural transformation given by restriction of homotopy limits

TkF −→ Tk−1F. (10.1.2)

This map is a fibration by Proposition 5.4.29.
Finally, a natural transformation F → G induces a natural transformation of

their homotopy limits

TkF −→ TkG. (10.1.3)

Proposition 10.1.24 ([Goo03, Proposition 1.4]) Suppose F is a homotopy
functor that satisfies Ek(c, κ). Then the following hold.

1. TkF satisfies Ek(c − 1, κ − 1).
2. The transformation F → TkF satisfies Ok(c, κ). In particular, when F

is k-excisive (so c = −∞), this transformation is an objectwise weak
equivalence.
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Proof For condition 1, let X = S �→ XS be a strongly homotopy cocartesian
(k + 1)-cube such that X∅ → Xi is ki-connected where ki ≥ κ − 1 for all i. We
must show that the map

TkF(X∅) −→ holim
S∈P0(k+1)

TkF(XS )

is (1 − c +
∑

i ki)-connected (i.e. the cube S �→ TkF(XS ) is (1 − c +
∑

i ki)-
cartesian). Unraveling further, we need to show that the map

holim
U∈P0(k+1)

F(X∅ ∗ U) −→ holim
S∈P0(k+1)

holim
U∈P0(k+1)

F(XS ∗ U)

is (1 − c +
∑

i ki)-connected. Let U � ∅ be fixed. The (n + 1)-cube X �→
XS ∗ U is strongly homotopy cocartesian by Corollary 5.8.10. Moreover, the
maps X∅ ∗U → Xi∗U are (ki+1)-connected by Proposition 3.7.23 since U � ∅,
and since F satisfies Ek(c, κ), the cube S �→ F(XS ∗ U) is (−c +

∑
i(ki + 1))-

cartesian, or (n + 1 − c +
∑

i ki)-cartesian. That is, the functor X �→ F(X ∗ U)
satisfies Ek(c − (n + 1), κ − 1) for U � ∅. By Proposition 5.4.16, TkF satisfies
Ek(c − 1, κ − 1). We leave it to the reader to verify that the hypotheses of that
proposition are satisfied.

For condition 2, this is also a matter of unraveling the definitions. For a
(d − 1)-connected space X, the (k + 1)-cube S �→ X ∗ S is strongly homotopy
cocartesian and the maps X → X ∗ {i} = CX are d-connected, and so this
satisfies the hypotheses of Definition 10.1.17. Hence the canonical map

F(X) −→ holim
S∈P0(k+1)

F(X ∗ S ) = TkF(X)

is (−c+ (k + 1)d)-connected, and so F → TkF satisfies Definition 10.1.19. �

The point of the construction so far is that the class of special strongly homo-
topy cocartesian cubes has been enlarged since the connectivity condition and
the constant c have been decreased by 1, which means that if X is a strongly
homotopy cocartesian cube satisfying the connectivity assumptions about the
maps X∅ → Xi, then the cube TkF(X) is more highly cartesian than the cube
F(X). It is in this sense that TkF is closer to being k-excisive.

The construction of Tk can be iterated using the map tk(F), so that we have
a directed system

F
tk(F)−→ TkF

tk(Tk F)−→ TkTkF = T 2
k F

tk(T 2
k F)−→ TkT 2

k F = T 3
k F −→ · · ·

This is used to produce the polynomial approximations to F, as follows.

Definition 10.1.25 Define the kth polynomial approximation of F to be

PkF(X) = hocolim
n

T n
k F.
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Example 10.1.26 Continuing Example 10.1.22, P0F � F(∗) and, if F is
reduced, P0F � ∗. �

Example 10.1.27 Continuing Example 10.1.23, and again assuming F is
reduced, we have

P1F(X) � hocolim
n
ΩnF(ΣnX).

This can be thought of as Ω∞F(X) where F(X) is the spectrum {F(ΣnX)}.
To see what the maps are, we start with the map F(X) → ΩF(ΣX) demon-
strated in Example 10.1.23. Replacing X with ΣX and looping gives that
F(ΣX) → ΩF(ΣΣX) loops to ΩF(ΣX) → Ω2F(Σ2X). Iterating this gives the
desired maps. If F is the identity functor, we then have

P1F(X) � Ω∞Σ∞X = QX. �

Again, since F is a homotopy functor and homotopy colimits are homotopy
invariant, PkF is a homotopy functor. Also, since F maps to the directed system
defining PkF, there is a canonical transformation

pk(F) : F −→ PkF.

As we have mentioned above, we have a canonical natural transformation

qk(F) : TkF −→ Tk−1F (10.1.4)

and

PkF −→ PkG. (10.1.5)

Using the first two of the above three maps, we thus have that a homotopy
functor F determines a tower of functors
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called the Taylor tower of F. Here P∞F = holimk PkF and p∞(F) is the map
to this inverse homotopy limit of the tower induced by the maps pk(F) (for
inverse limits of towers, see Example 8.4.11).

The rest of this section is devoted to the discussion of properties of PkF. One
important result that goes beyond the scope of this book is that the PkF are in a
sense the best possible polynomial approximations to F. That is, they satisfy a
universal property in the associated homotopy category [Goo03, Theorem 1.8].

Proposition 10.1.28 ([Goo03, Proposition 1.5]) If F is stably k-excisive, then

1. PkF is k-excisive;
2. F agrees to order k with PkF (in the sense of Definition 10.1.19).

Proof By induction using part 1 of Proposition 10.1.24, we have that T i
kF

satisfies Ek(c− i, κ− i). Then the direct limit defining PkF satisfies Ek(−∞,−∞)
and hence PkF is k-excisive. By part 2 of Proposition 10.1.24, we have that
tk(T i

kF) satisfies Ok(c− i, κ− i). But this means, by definition, that tk(T i
kF) also

satisfies Ok(c, κ). Then the composition of all tk(T i
kF) also satisfies Ok(c, κ),

and this is precisely the map pk(F) : F → PkF. In other words, F and PkF
agree to order k. �

Remark 10.1.29 One way to view the construction of PkF is to think of the
process of iterating TkF as forcing the functor to behave well on special kinds
of strongly homotopy cocartesian cubes, namely those of the form U �→ X ∗U.
Thus one key in seeing that PkF is k-excisive, that is, that it takes any strongly
homotopy cocartesian (k+1)-cubeX to a cartesian (k+1)-cube Pk(X), is that the
map F(X) → TkF(X) factors through some homotopy cartesian (k + 1)-cube.

Proposition 10.1.30 ([Goo03, Proposition 1.6]) Suppose F → G is a natural
transformation between homotopy functors. If F and G agree to kth order, then
the induced map PkF → PkG is a weak equivalence, and the converse is true
if F and G are stably k-excisive.

We omit the proof, but prove an analog of this statement in manifold calculus
in the next section, Theorem 10.2.14.

We then have the following result, the proof of which we omit. The key input
is [Goo03, Lemma 1.9] which says that, for any strongly homotopy cocarte-
sian cube X and a homotopy functor F, the map of cubes (tkF)(X) : F(X) →
(TkF)(X) (see (10.1.1)) factors through a cartesian cube (for a shorter proof
than the one in [Goo03], see [Rez13]).
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Theorem 10.1.31 ([Goo03, Theorem 1.8]) For any homotopy functor F, PkF
is k-excisive.

We close with some properties that will be useful later.

Proposition 10.1.32

1. If F → G → H are natural transformations such that F(X) → G(X) →
H(X) is a fibration sequence for all X, then

PkF(X) → PkG(X) → PkH(X)

is a fibration sequence for all X as well.
2. [Goo03, Corollary 1.11] For 0 ≤ l ≤ k, the map

PlF
pl(pk(F))−→ PlPkF

is a weak equivalence.

Proof The first statement follows from the fact that homotopy limits com-
mute with themselves and with filtered homotopy colimits (both facts appear
here as Proposition 8.5.5). The second follows from formal properties of PkF;
see [Goo03] for details. �

10.1.3 Homogeneous functors

If PkF is like a degree k polynomial approximation of F, then we should be
interested in its degree k term, namely the homogeneous polynomial of degree
k that contains information about F that is not already contained in Pk−1F.

Definition 10.1.33 A homotopy functor F is k-reduced if Pk−1F � ∗. It is
homogeneous of degree k or k-homogeneous if it is k-excisive and k-reduced.

In particular, the notions of F 1-homogeneous and linear (1-excisive and
1-reduced) are the same.

Example 10.1.34 If F → G is a natural transformation with F
l-homogeneous and G k-homogeneous, then hofiber(F → G) is k-excisive.
This follows from Corollary 10.1.16. �

Here is the analog of Proposition 10.1.13 for homogeneous functors.
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Proposition 10.1.35 ([Goo03, Lemma 3.1]) Suppose F : Ck −→ D is
1-reduced in each variable. If Δk : C → Ck denotes the diagonal inclusion,
then the composition F ◦Δk is k-reduced. In particular, if F is also mulitilinear,
namely linear in each variable, F ◦ Δ is k-homogeneous.

Example 10.1.36 Functors from Example 10.1.14 are homogeneous of
degree n by Proposition 10.1.35 since they are multilinear. �

Example 10.1.37 Continuing the previous example, recall the notion of a
group acting on a spectrum and the definition of the homotopy orbits of such an
action (see (A.8)). Note that X∧k has an obvious action of the symmetric group
Σk and suppose a spectrum C also has one. One can then consider functors

X �−→ (C ∧ X∧k)hΣk and X �−→ Ω∞(C ∧ X∧k)hΣk.

These functors are also homogeneous of degree k (because homotopy colimits
commute) and are in in a way the most important ones; see Theorem 10.1.48.

�

Definition 10.1.38 Define the kth layer of the homotopy calculus Taylor
tower of F to be

DkF = hofiber
(
PkF

qk(F)−→ Pk−1F
)
.

Note that DkF is a homotopy functor as PkF and Pk−1F are, and since F is a
functor to based spaces, Pk−1F is based.

Proposition 10.1.39 The kth layer DkF is homogeneous of degree k.

Proof The homotopy fiber DkF can be thought of as a homotopy limit

DkF � holim (PkF −→ Pk−1F ←− ∗) .
Then DkF is k-excisive by Proposition 10.1.15 because it is a homotopy limit
of k-excisive functors.

To see that it is k-reduced, consider the fibration sequence

DkF −→ PkF −→ Pk−1F

and apply the functor Pk−1 to it. By part 1 of Proposition 10.1.32, the result is
again a fibration sequence. By part 2 of the same result, we have Pk−1PkF �
Pk−1F and Pk−1Pk−1F � Pk−1F, so that the fibration sequence in fact looks like

Pk−1DkF −→ Pk−1F −→ Pk−1F.
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Since the right-most map is a weak equivalence, it follows that Pk−1DkF � ∗
and so DkF is k-reduced. �

Here is one of the main results about homogeneous functors.

Theorem 10.1.40 ([Goo03, Theorem 2.1]) Suppose F : Top∗ → Top∗ is a
homogeneous functor of degree k. Then F(X) is an infinite loop space for all
X ∈ Top∗.

The key in proving this theorem is the following lemma.

Lemma 10.1.41 (Delooping homogeneous functors [Goo03, Lemma 2.2])
Suppose F is a reduced homotopy functor with values in Top∗. Then there is a
degree k homogeneous functor RkF and a fibration sequence

PkF −→ Pk−1F −→ RkF.

Sketch of proof of Theorem 10.1.40 If F : Top∗ → Top∗ is homogeneous of
degree k, then PkF � F and Pk−1F � ∗ and Lemma 10.1.41 says that there is
a fibration sequence F → ∗ → RkF. By Example 2.2.9, we then have a weak
equivalence F � ΩRkF. The functor RkF is thus a delooping of F.

This construction can be iterated and we get a sequence of functors Rn
k F,

n ≥ 1, with weak equivalences Rn
k F � ΩRn+1

k F. This defines a spectrum
RkF(X) for each X ∈ Top∗ and so we therefore have a functor RkF : Top∗ →
Spectra. That this is a homotopy functor and that it is homogeneous of degree
k follows from the fact that each of the functors Rn

k F is.
Is it also immediate from the contruction that the composition

F �−→ RkF �−→ Ω∞RkF

is a weak equivalence of functors. This shows that F(X) is an infinite loop
space for all X. �

Remark 10.1.42 It is also not hard to show that, given a k-homogeneous
functor F : Spectra → Top∗, the composition

F �−→ Ω∞F �−→ RkF Ω∞F

is a weak equivalence of functors. We therefore have a bijection

�
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Now remember from Proposition 10.1.35 that, if F : Ck → D is multilinear,
then F ◦ Δk is k-homogeneous. If in addition F is invariant under the permu-
tations of the coordinates of Ck, it is said to be symmetric. For a symmetric
multilinear functor F, the k-homogeneous functor F ◦ Δk also has an action of
Σk. Furthermore, since homotopy orbits are an instance of a homotopy colimit,
if F is a functor into spectra, then the functor

(F ◦ Δk)hΣk

is also k-homogeneous. This is because, if F is spectrum-valued, TkF and PkF
commute with homotopy colimits.

Thus a symmetric multilinear (spectrum valued) functor gives rise to a k-
homogeneous functor. We wish to construct an inverse, and to give some
intuition for this, we recall how this works in the realm of real-valued func-
tions (or functions over any field). If f (x1, x2, . . . , xk) is multilinear, we can
compose it with the diagonal map Δk to get a map

g(x) = ( f ◦ Δk)(x) = f (x, x, . . . , x).

This is a homogeneous function of degree k because of multilinearity:

g(ax) = f (ax, ax, . . . , ax) = ak f (x, x, . . . , x) = akg(x).

Thus a multilinear function gives rise to a degree k homogeneous function. In
this analogous example we did not need symmetry.

But we can go back as well. To do this, we use the notion of a cross-effect,
which was classically used to study the measure of the failure of a real-valued
function to be degree n. We give a brief review of cross-effects below; for more
details, see, for example, [JM04, Section 1].

For example, given a function g(x), its second cross-effect, a function of two
variables, is defined to be

cr2g = cr2g(x1, x2) = g(x1 + x2) − g(x1) − g(x2) + g(0). (10.1.6)

This symmetric function is zero if and only if g(x) is linear. In addition, g(x)
is quadratic if and only if cr2g(x1, x2) is linear in each variable. In this case
cr2g(x1, x2) = a2x1x2 and so cr2g(x, x)/2 recovers the quadratic term of g(x)
(i.e. it gives a measure of the failure of g to be linear).

More generally, given a function g(x), one can define the kth cross-effect
crkg, a function of k variables, inductively starting with cr1g(x) = g(x) − g(0)
and defining

crkg(x1, . . . , xk) = crk−1g(x1 + x2, . . . , xk) (10.1.7)

− crk−1g(x1, x3, . . . , xk) − crk−1g(x2, x3, . . . , xk).
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This is a symmetric function which can be seen to vanish if and only if g(x) is
a polynomial of degree k−1 and it is equal to n!ak x1x2 · · · xk if g(x) is a degree
k polynomial (and is hence evidently multilinear). Thus again, if g(x) is degree
k, we can recover its homogeneous degree k term as

1
n!

f (x, x, . . . , x) = ak xk.

The kth cross-effect provides an inverse to f ◦ Δk. The analog of f ◦ Δk in
our setting is F ◦ Δk, for F a symmetric multilinear functor, so what remains
to be done is to generalize the cross-effect to functors. This generalization is
originally due to Eilenberg and MacLane [EML54] and we will review it in
the language of cubical diagrams that is more suitable for our purposes. More
details can be found in [BJR15, Goo03, JM04, MO06].

Definition 10.1.43 For F : Top∗ → Top∗ a homotopy functor, define the kth
cross-effect cube, CRkF(X1, . . . , Xk) to be the k-cube given by

S �−→ CRkF(X1, . . . , Xk)S = F

⎛⎜⎜⎜⎜⎜⎜⎝∨
i�S

Xi

⎞⎟⎟⎟⎟⎟⎟⎠
and with CRkF(X1, . . . , Xk)S → CRkF(X1, . . . , Xk)T induced by the identity on
Xi if i � T and the map to the basepoint if i ∈ T .

Then define the kth cross-effect of F, crkF(X1, . . . , Xk) to be the total
homotopy fiber of CRkF(X1, . . . , Xk).

The second cross-effect of a functor F is the total fiber of the square

Thinking of homotopy fibers as differences between spaces, the total fiber can
be thought as “(F(X1 ∨ X2)− F(X1))− (F(X2)− F(∗)) = F(X1 ∨ X2)− F(X1)−
F(X2) + F(∗)”. This is precisely the functor analog of (10.1.6). In general, the
kth cross-effect of F is in this sense precisely analogous to the expression in
(10.1.7). For some examples of cross-effects, see [JM04, Example 1.4].

Some immediate properties of crkF are that it is symmetric, it is a homotopy
functor (in each variable), and that it is reduced (or (1, . . . , 1)-reduced). The
last property is true because, if Xi � ∗ for some i, then the cube in ques-
tion is homotopy cartesian by Proposition 5.4.12, as it is a map of cubes
of one lower dimension which is a pointwise weak equivalence, and hence
crkF(X1, . . . , Xk) � ∗.
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The following is analogous to the fact that crkg of a degree-(k − 1) function
is trivial and is multilinear if g is degree k.

Proposition 10.1.44 ([Goo03, Proposition 3.3]) If F is (k − 1)-excisive, then
crkF � ∗. If F is k-excisive, then crkF is multilinear (and symmetric).

If F is a functor to spectra, then the converse of the first statement is also true
(see proof of [Goo03, Proposition 3.4]).

Proof This follows by induction by writing cr jF(X1, . . . , Xk−1, A) as
cr j−1(hofiber F(X ∨ A) → F(X))(X1, . . . , Xj−1) and using the fact that, if F
is j-excisive, hofiber F(X ∨ A) → F(X) is ( j − 1)-excisive. �

Now consider any homotopy functor F. Since Pk−1F is (k − 1)-excisive, we
have that crkPk−1F � ∗. Thus

crkPkF � hofiber(crkPkF → ∗) � hofiber(crkPkF → crkPk−1F)

� crk(hofiber(PkF → Pk−1F)) = crkDkF.

(The weak equivalence before the last equality is true because homotopy limits
commute.) In particular, if F is k-excisive, so that F � PkF, we have that
crkF � crkDkF, that is, the kth cross-effect of a k-excisive functor detects only
the k-homogeneous part.

We further have the following property of the cross-effect of a spectrum-
valued functor.

Proposition 10.1.45 ([Goo03, Proposition 3.4]) Suppose F,G : Top∗ →
Spectra are k-excisive and suppose a natural transformation N : F → G
induces a weak equivalence crkF → crkG. Then N is a weak equivalence.

Thus a symmetric multilinear spectrum-valued functor F gives rise to a
k-homogeneous one via the functor F �→ (F ◦ Δk)hΣk . Conversely, a k-
homogeneous functor gives rise to a symmetric multilinear functor via F �→
crkF. We then have the the following important theorem.

Theorem 10.1.46 ([Goo03, Theorem 3.5]) Let Lk(Top∗,Spectra) denote the
category of symmetric multilinear functors of degree k from Top∗ to Spectra
and Hk(Top∗,Spectra) denote the category of homogeneous degree k functors
Top∗ → Spectra.

Up to natural weak equivalence, the functors

(− ◦ Δk)hΣk : Lk(Top∗,Spectra) −→ Hk(Top∗,Spectra)
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and

crk : Hk(Top∗,Spectra) −→ Lk(Top∗,Spectra)

are inverses.

This is more generally true if we replace Top∗ with TopY . In the case of the
homogeneous functor DkF, where F is a functor to spectra, the above tells us
that there is a weak equivalence

DkF � (crkDkF ◦ Δk)hΣk = ((crkDkF)(X, . . . , X))hΣk .

Definition 10.1.47 The spectrum-valued functor crkDkF is denoted by D(k)F
and called the k-fold differential of F.

If F is a space-valued functor, then the above weak equivalence is given by

DkF � Ω∞ (
(B∞crkDkF)(X, . . . , X)hΣk

)
.

Here B∞ is the inverse to Ω∞; these two functors give an equivalence of cat-
egories of spectrum- and space-valued multilinear symmetric functors, along
the lines of the equivalence from Remark 10.1.42; see [Goo03, Proposition
3.7]. In this case the k-fold differential is the functor B∞crkDkF and is again
denoted by D(k)F.

Now suppose C is a spectrum with an action of Σk. Then the functor C∧X1∧
· · · ∧ Xk from Topk

∗ to Spectra is multilinear and symmetric. On the other hand,
if L is a multilinear functor from Topk

∗ to Spectra, then there is an assembly
map

L(S 0, . . . , S 0) −→ L(X1, . . . , Xk)

(see [Goo90, page 5]) that is a weak equivalence for all finite complexes Xj

[Goo03, Proposition 5.8]. Since every space is a filtered homotopy colimit
of finite complexes, it follows that the above map is a weak equivalence for
all spaces if L is finitary (see Definition 10.1.1). This means that there is a
correspondence

It folows that the differential D(k)F is determined (on finite complexes, or on
all spaces if F is finitary, as this implies D(k)F is finitary) by some spectrum
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with a Σk-action. This spectrum is called the kth derivative of F at the one-
point space and denoted by ∂(k)F(∗) (both for space-valued and spectra-valued
functors). Thus, for space-valued functors F, we have

∂(k)F(∗) � (D(k)F)(S 0, . . . , S 0),

and, for spectrum-valued F, we have

Ω∞∂(k)F(∗) � (D(k)F)(S 0, . . . , S 0).

We can then summarize this discussion in the following theorem that classifies
homogeneous functors from based spaces.

Theorem 10.1.48 (Classification of homogeneous functors [Goo03, Section
5]) If F : Top∗ → Spectra is a finitary homotopy functor, then the kth layer
of its Taylor tower is given by

DkF(X) �
(
∂(k)F(∗) ∧ X∧k

)
hΣk

.

For a homotopy functor F : Top∗ → Top∗, the kth layer is given by

DkF(X) � Ω∞
(
∂(k)F(∗) ∧ X∧k

)
hΣk

.

Remark 10.1.49 One of the ways in which functor calculus resembles ordi-
nary calculus of analytic functions is in the way the above formula for DkF(X)
corresponds nicely to the term f (k)(0) · xk/k! of the Taylor series of f , where
dividing by k! corresponds to taking the quotient by the Σk action. �

For some model-theoretic improvements to this result, see [BCR07]. As an
application of the material developed so far, see [Goo03, Section 8].

One modification that could be made in everything that has been said so
far is to replace the source category by the category of spaces over Y , TopY .
This is a lot like expanding the Taylor series of f at a point other than zero.
In this case, if FY denotes a functor on TopY , TkFY is defined using the cube
FY (X ∗Y U) (rather than F(X ∗U)) and the Taylor tower of FY has FY (Y) as its
P0 approximation (rather than F(∗)). The kth layer of the Taylor tower is now
Dk

Y F and the kth derivative of F at (Y, y1, . . . , yk), where yi are points in Y , is
then denoted by

∂(k)
y1,...,yk

F(Y).

For F a spectrum-valued functor, we then have

∂(k)
y1,...,yk

F(Y) � (Dk
Y F)(Y ∨y1 S 0, · · · ,Y ∨yk S 0),

and, for a space-valued F, we take Ω∞ on the left as before.
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10.1.4 Convergence

Recall the notion of a stably excisive functor from Definition 10.1.17.

Definition 10.1.50 A homotopy functor F is called ρ-analytic if there exists
a number q such that F satisfies Ek(kρ − q, ρ + 1) for all k ≥ 1.

The number ρ is called the radius of convergence of F for the following reason.

Theorem 10.1.51 (Convergence of the Taylor tower [Goo03, Theorem 1.13])
If F is ρ-analytic and the map X → ∗ is (ρ + 1)-connected (i.e. X is ρ-
connected), the connectivity of the natural map pk(F) : F → PkF increases
to infinity with k, so F(X) is weakly equivalent to P∞F.

Remark 10.1.52 For functors on TopY , the condition that X → ∗ is (ρ + 1)-
connected generalizes to the condition that the map X → Y should be (ρ +
1)-connected.

Proof of Theorem 10.1.51 If F is ρ-analytic, then it satisfies Ek(kρ− q, ρ+ 1)
for some q. By the proof of Proposition 10.1.28, pk(F) satisfies Ok(kρ−q, ρ+1).
But this means that, if X → ∗ is (d + 1)-connected, the map pk(F) is (q + d +
1 + k(d + 1 − ρ))-connected. Thus, provided d + 1 > ρ, that is, as long as X is
at least ρ-connected, the connectivity of pk(F) increases to infinity with k. �

Example 10.1.53 For F : Top → Top the identity functor, the Taylor
tower of a space X converges to X if X is 1-connected. This is because, by
Example 10.1.18, identity is 1-analytic. In fact, the Taylor tower of the identity
converges at all nilpotent spaces X (π1X is a nilpotent group and acts nilpo-
tently on higher homotopy groups). For more details about the identity functor,
see [Goo03, Section 8] or [Kuh07, Section 6.4]. �

Example 10.1.54 Let K be a finite CW complex. Then the functors X �→
Σ∞ Map(K, X) and X �→ Ω∞Σ∞ Map(K, X) are dim(K)-analytic [Goo92,
Example 4.5]. This can be used to conclude that every Taylor coefficient spec-
trum for the functor from spectra to spectra given by X �→ Σ∞Ω∞X is the
sphere spectrum S. The Taylor tower of this functor was studied in detail in
[Aro99, AK02]. For an exposition of these results, see [Kuh07, Sections 6.1
and 6.2]. �

The following result can be thought of as the “uniqueness of analytic continu-
ation”.
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Proposition 10.1.55 (Uniqueness of analytic continuation [Goo92, Proposition
5.1]) Suppose N : F → G is a natural transformation where F is ρ1-analytic
and G is ρ2-analytic. Suppose that, for some k, the map F(X) → G(X) is a
weak equivalence for all k-connected spaces X. Then F(X) → G(X) is a weak
equivalence for all ρ-connected spaces X, where ρ = max{ρ1, ρ2}.

Proof We let the reader fill in the details of the following sketch. Consider
the square

Now apply Proposition 10.1.30, Theorem 10.1.51, and part 3 of Proposi-
tion 2.6.15. �

One way to investigate the homotopy groups of the inverse limit P∞F of the
Taylor tower is to consider its Bousfield–Kan homotopy spectral sequence
from Section 9.6.3. This spectral sequence starts with the homotopy groups
of the layers of the tower, namely E1

a,b = πb−a(DaF) (see (9.6.3)). One way to
ensure its convergence to π∗(P∞F) is for the connectivity of the fibers DkF to
increase with k (see Corollary 9.6.8). This in fact happens under the conditions
from Theorem 10.1.51: if F is ρ-analytic and X is d-connected, then we have
that the map pk(F) is (q + d + 1 + k(d + 1 − ρ))-connected, and hence the map
qk(F) : PkF → Pk−1 is (q + d + 1 + (k − 1)(d + 1 − ρ))-connected (the lower of
the connectivity numbers for pk(F) and pk−1(F); see Proposition 2.6.15). This
in turn means that DkF = hofiber(qkF) is (q + d + 1 + (k − 1)(d + 1 − ρ) − 1)-
connected. Again this number increases with k as long as d+1 > ρ, i.e. as long
as X is at least ρ-connected.

10.2 Manifold calculus of functors

We now turn our attention to manifold calculus of functors, developed by
Weiss [Wei99] and Goodwillie–Weiss [GW99]. Another reference is the sur-
vey [Mun10]. The reader may wish to review the notion of a handlebody
decomposition from Section A.2, which plays an important role in proofs
throughout this section.

Let M be a smooth closed manifold of dimension m. Let O(M) denote the
poset of open subsets of M. Thus the objects are open sets U ⊂ M and the
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morphisms are inclusions U ⊂ V . The manifold calculus of functors stud-
ies contravariant functors F : O(M) → Top. It was originally built to study
the space of embeddings of M in a smooth manifold N of dimension n. This
space is denoted Emb(M,N) and its topology is discussed below (see also
Theorem A.2.12). This is a contravariant functor of U ∈ O(M) since an inclu-
sion U ⊂ V gives rise to a restriction map Emb(V,N) → Emb(U,N). Some
authors refer to manifold calculus as “embedding calculus”.

All the functors we will apply the manifold calculus to will be contravariant,
and we will occasionally remind the reader that this is the case.

Before we state the axioms our functors need to satisfy, we make a few
definitions. For smooth manifolds, let C∞(P,N) denote the space of smooth
maps from P to N. This is topologized using the Whitney C∞ topology (see
Definition A.2.7).

Definition 10.2.1 Let P and N be smooth manifolds. The space of embed-
dings, denoted Emb(P,N), is the set of all smooth maps f : P → N such
that

● f is a homeomorphism onto its image;
● the derivative d f : T P → T N is a fiberwise injection.

The space of immersions, denoted Imm(P,N) is the set of all smooth maps sat-
isfying the second condition above. Both spaces are topologized as subspaces
of C∞(P,N). A path in the space of embeddings is called an isotopy while a
path in the space of immersions is called a regular homotopy.

Definition 10.2.2 An inclusion i : U → V in O(M) is an isotopy equivalence
if there exists a smooth embedding e : V → U such that the compositions i ◦ e
and e ◦ i are isotopic to the identity map.

We assume all of our functors satisfy two axioms.

Definition 10.2.3 We say a contravariant functor F : O(M) → Top is

1. an isotopy functor if it takes isotopy equivalences to homotopy equiva-
lences;

2. finitary if for every increasing sequence U1 ⊂ U2 ⊂ · · · ⊂ Uk · · · in O(M)
with ∪iUi = U, the canonical map F(U) → holimi F(Ui) is an equivalence.

The first condition says that F behaves well with respect to “equivalences”
(in O(M) we think of equivalences as “thickenings”). The second says that F
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is determined by its values on open sets U which are the interior of a com-
pact codimension-zero submanifold of M. To begin to see why, for every open
set U we may choose an increasing sequence U1 ⊂ U2 ⊂ · · · such that⋃

i Ui = U and such that each Ui is the interior of a compact codimension-
zero submanifold of U. These conditions are analogous with those given in
Definition 10.1.1.

Remarks 10.2.4

1. A functor that satisfies the above two axioms is sometimes referred to as
good in the literature.

2. The second axiom is not strictly necessary in many examples, because we
are often interested only in the values of the functor F when the input is the
interior of some manifold. We could instead restrict attention to functors
defined only for such open sets and declare its values on an arbitrary open
set using axiom 2. We would of course then need to show that the homotopy
type of values of the functor are independent of the increasing union. We
will not pursue this here. �

Example 10.2.5 Let N be a smooth manifold. The following are all con-
travariant finitary isotopy functors:

● U �−→ Map(U, X) (where this is the space of all maps from U to X, with
compact-open topology, X an arbitrary space);

● U �→ C∞(U,N) (really this is the same example as the last – see
Theorem A.2.12);

● U �−→ Imm(U,N);
● U �−→ Emb(U,N). �

10.2.1 Polynomial functors

As in homotopy calculus of functors, the “polynomial approximations” of
functors are of interest to us.

Definition 10.2.6 A contravariant finitary isotopy functor F : O(M) → Top
is said to be polynomial of degree ≤ k if, whenever U ∈ O(M) and A0, . . . , Ak

are pairwise disjoint closed subsets of U, the (k + 1)-cube

P(k + 1) −→ Top

S �−→ F(U − ∪i∈S Ai)

is homotopy cartesian.
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On the face of it, this looks quite a bit different than Definition 10.1.3, but
really it is not. Roughly speaking, a polynomial functor of degree ≤ k takes
strongly homotopy cocartesian (k + 1)-cubes to homotopy cartesian (k + 1)-
cubes. For the (k + 1)-cube S �→ U − ⋃

i∈S Ai in Definition 10.2.6, its square
faces are of the form

for some open set V and i � j. This square is homotopy cocartesian by
Example 3.7.5.

Note that a polynomial functor of degree ≤ 0 is essentially constant with
value F(∅); for U ∈ O(M), choose A0 = U, so that the map F(U) → F(∅) is a
weak equivalence.

One fact of note is the following, which uses 1(b) of Proposition 5.4.13. This
is analogous to Proposition 10.1.4.

Proposition 10.2.7 If a finitary isotopy contravariant functor F is
polynomial of degree ≤ k, then it is polynomial of degree ≤ l for all
l ≥ k.

Proof It is enough to prove this for l = k + 1. Let U ∈ O(M), and let
A0, . . . , Ak+1 be pairwise disjoint closed in U. Let US = U − ∪i∈S Ai. We may
write the (k + 2)-cube S �→ US as a map of (k + 1)-cubes (R �→ UR) → (R �→
VR), where R ⊂ 0, . . . , k + 1, and VR = UR − Ak+2. Then the (k + 1)-cubes
R �→ F(UR) and R �→ F(VR) are homotopy cartesian since F is polynomial of
degree ≤ k. Hence the (k+2)-cube (R �→ F(UR)) → (R �→ F(VR)) is homotopy
cartesian by 1(b) of Proposition 5.4.13. �

Example 10.2.8 The functor U �→ Map(U, X) is polynomial of degree ≤ 1
(i.e. linear) for any space X. The idea is that, for any U and A0, A1 disjoint
closed in U, the square

is homotopy cartesian since Map(−, X) takes homotopy cocartesian squares to
homotopy cartesian squares by Proposition 3.9.1. This is correct in spirit, but
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Proposition 3.9.1 requires the map from the homotopy colimit of the punctured
square to the last space in the square to be a homotopy equivalence (not just
a weak equivalence). See Remark 10.2.9. If we put Vi = U − Ai above, then
U = V0 ∪ V1 and U − (A0 ∪ A0) = V0 ∩ V1, so the test for whether a functor
F is a polynomial of degree ≤ 1 is whether F takes the homotopy cocartesian
square

to a homotopy cartesian square. �

Remark 10.2.9 The square

appearing in the previous example is homotopy cocartesian, but we establish
this using Example 3.7.5 and Lemma 3.6.14, and from this we deduce that
hocolim(V0 ← V0 ∩ V1 → V1) → V0 ∪ V1 is a weak equivalence. However,
as mentioned in Remark 1.3.6, the functor Map(−, X) does not preserve weak
equivalences (it does preserve homotopy equivalences).

If V0 and V1 are the interiors of smooth compact codimension-zero subman-
ifolds L0 and L1 of M whose boundaries intersect it transversely (and hence M
is itself a submanifold), then L0∩L1, L0, L1, and L0∪L1 all have the homotopy
type of (finite) CW complexes, as does hocolim(L0 ← L0 ∩ L1 → L1), and
the weak equivalence hocolim(L0 ← L0 ∩ L1 → L1) → L0 ∪ L1 is therefore a
homotopy equivalence. Moreover, the inclusions V0∩V1 → L0∩ L1, V0 → L0,
V1 → L1, and V0 ∪ V1 → L0 ∪ L1 are homotopy equivalences, and the square

is homotopy cocartesian in the stronger sense that hocolim(L0 ← L0 ∩ L1 →
L1) → L0 ∪ L1 is a homotopy equivalence. It follows that applying Map(−, X)
to the above square yields a homotopy cartesian square by Proposition 3.9.1.
Hence the square
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is also homotopy cartesian, because it is pointwise homotopy equivalent to
a homotopy cartesian square. We can arrange for the Vi to be the interiors
of such Li using the finitary axiom, and writing each as an increasing union
of manifolds Ki

0 ⊂ Ki
1 ⊂ · · · which are smooth compact codimension-zero

submanifolds such that the boundaries of K0
j and K1

j intersect transversely. See
[Wei99, Example 2.3] for more details. �

Example 10.2.10 The functor U �→ Imm(U,N) is polynomial of degree ≤ 1,
for essentially the same reasons as in the last example (immersions, like maps,
are locally determined). However, the argument is a little more delicate. We
refer the reader to [Wei99, Example 2.3] for the details, but we nonetheless
give a sketch.

Let U ⊂ M be open, A0, A1 ⊂ U be pairwise disjoint closed sets, and put
US = U −⋃

i∈S Ai. Then the square of restriction maps

is by inspection categorically cartesian. The Smale–Hirsch Theorem says that
if K ⊂ L are compact codimension-zero submanifolds of M whose boundaries
intersect transversely, then the restriction map Imm(L,N) → Imm(K,N) is a
fibration. We then use the same method as in Remark 10.2.9 together with
Proposition 3.3.5 to conclude that the square above is homotopy cartesian. �

Example 10.2.11 The functor U �→ Map(Uk, X) is a polynomial of degree
≤ k. This follows from the pigeonhole principle as follows: let U ∈ O(M),
let A0, . . . , Ak be pairwise disjoint closed subsets of U, and put US = U −
∪i∈S Ai. Then we have a (k + 1)-cube S �→ US (contravariant in S ). By
Proposition 5.8.26, the canonical map

hocolim
S�∅

(US )k −→ colim
S�∅

(US )k

is a weak equivalence. By the pigeonhole principle,

Uk = colim
S�∅

(US )k
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since, for each set of k points in U, one must lie in the complement of some
Ai. By Proposition 8.5.4, the functor Map(−, X) takes (homotopy) colimits to
(homotopy) limits, and hence we obtain a weak equivalence

Map(Uk, X) −→ holim
S�∅

Map((US )k, X).

This implies that the cube S �→ Map((US )k, X) is homotopy cartesian. As men-
tioned in Remark 10.2.9, this argument is technically deficient, but morally
correct. �

Example 10.2.12 Recall from Example 5.5.6 the configuration space
Conf(k,U) of k distinct ordered points in U. The symmetric group Σk acts
freely on Conf(k,U) by permuting the coordinates and we let

(
U
k

)
denote the

quotient by this action. Thus
(

U
k

)
is the space of unordered configurations in

U. The same argument as in the previous example shows that both U �→
Map (Conf(k,U), X) and U �→ Map(

(
U
k

)
, X) are polynomial of degree ≤ k.

More generally, let p : Z →
(

M
k

)
be a fibration, and let Γ

((
M
k

)
,Z; p

)
denote

its space of sections. This is a contravariant functor of U ∈ O(M), since a
section defined on

(
U
k

)
can be restricted to a section on

(
V
k

)
for V ⊂ U. More-

over, the same argument we just cited also proves that U �→ Γ
((

U
k

)
,Z; p

)
is

polynomial of degree ≤ k. The reader who thinks of spaces of sections as
twisted mapping spaces should find this at least plausible. The space of sec-
tions functor is almost a universal example of a polynomial functor of degree
≤ k. We say almost since every homogeneous functor of degree k is built using
a space of sections functor as above. We will explore this below in more detail
in Example 10.2.22 and especially in Theorem 10.2.23. �

The next result is analogous to the fact that a polynomial p : R → R of degree
k is completely determined by its values on a set of k+ 1 distinct real numbers.

Definition 10.2.13 Let Ok(M) be the full subcategory of O(M) consisting of
those open sets U which are diffeomorphic to a disjoint union of at most k open
balls.

Theorem 10.2.14 Suppose F → G is a natural transformation of contravari-
ant finitary isotopy functors, both polynomial of degree ≤ k, and suppose
F(U) → G(U) is an equivalence for all U ∈ Ok(M). Then F(U) → G(U)
is an equivalence for all U ∈ O(M).
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Proof It is enough by axiom 2 of Definition 10.2.3 to prove this in the case
where U is the interior of a smooth compact codimension-zero submanifold
L of M. We will proceed by induction on the handle index of L. We offer
a slightly revised version of the argument given by Weiss in [Wei99], as the
same pattern of argument will be used below in the discussion of convergence.

Suppose the handle index (see Definition A.2.5) of L is equal to zero, so
that L is diffeomorphic to a disjoint union of finitely many closed balls, and
its interior U is therefore some number of open balls. If the number of balls
is less than or equal to k, by assumption the map F(U) → G(U) is a weak
equivalence and we are done. Suppose then that U is diffeomorphic to l open
balls, where l > k, and write U = B0 	 · · · 	 Bl−1. Let Ai = Bi for all i = 0
to k. This is a collection of pairwise disjoint closed subsets of U (since these
are the interiors of closed pairwise disjoint balls in M). Put US = ∪i∈S Ai for
S ⊂ {0, . . . , k}. Consider the commutative diagram

Since both F and G are polynomial of degree ≤ k, the vertical arrows are
weak equivalences, and by induction on l, the map F(US ) → G(US ) is a weak
equivalence for all S � ∅, and hence the lower horizontal arrow is an equiv-
alence. Hence the top horizontal map is a weak equivalence. The remainder
of the proof is exactly the same, only we will choose the closed subsets Ai

differently.
Suppose the result is true for all L with handle index less than j. Suppose

L, again with interior U, has handle index j and has s handles of index j. Let
e1, . . . , es : Dj × Dm− j → L be the embeddings representing the j-handles of
L. Since j ≥ 1, we may choose pairwise disjoint closed disks C0, . . . ,Ck in Dj

and set Di = Ci × Dm− j. For each i = 0 to k, let

Ai =

s⋃
h=1

eh(Ci × Dm− j) ∩ U.

Each Ai is closed in U and if we set US = U − ⋃
i∈S Ai for S ⊂ {0, . . . k}, for

S � ∅, US has a handle decomposition with handle index at most j− 1, so that
F(US ) → G(US ) is an equivalence by induction for such S . See Figure 10.1
for a visualization.
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Figure 10.1 A picture of four disks Ci and their thickenings Di in a 1-handle
D1 × D1 attached to L along ∂D1 × D1. Note that removing at least one of the Di

leaves the manifold with one fewer 1-handles and possibly increases the number
of 0-handles.

Once again consider the diagram

The vertical arrows are equivalences since F and G are polynomial of degree
≤ k, and the lower horizontal arrow is an equivalence since homotopy limits are
homotopy invariant. Hence the map F(U) → G(U) is a weak equivalence. �

10.2.2 The construction of the Taylor tower

We now define the polynomial approximations TkF to a functor F. The con-
struction is simply a “restrict and extend” procedure (specifically, we are taking
Kan extensions). This is the manifold calculus analog of Definition 10.1.25.

Definition 10.2.15 For a finitary isotopy contravariant functor F, define, for
each U ∈ O(M), the kth polynomial approximation of F to be

TkF(U) = holim
V∈Ok(U)

F(V).

In the language of Definition 8.4.2, TkF is the homotopy right Kan extension
of F along the inclusion Ok(M) → O(M). When k = 0, O0(M) consists only
of the empty set, and hence T0F(U) = F(∅) for all U. By definition, TkF(U) is
determined by its values on at most k open balls in U, although it is somewhat
delicate to prove this functor is polynomial of degree ≤ k. The indexing cate-
gory is rather unwieldy, but we will see below in Example 10.2.18 that, for any
U which is the interior of a smooth compact codimension zero submanifold L
of M, TkF(U) can be expressed as a homotopy limit of F evaluated on at most



10.2 Manifold calculus of functors 533

k open balls. In this case the finite indexing category will depend, among other
things, on a handle decomposition of L.

Theorem 10.2.16 ([Wei99, Theorems 3.9 and 6.1])

1. TkF is polynomial of degree ≤ k.
2. There is a natural transformation of contravariant functors τk : F → TkF

which is a weak equivalence if the input is diffeomorphic to at most k open
balls.

3. If F is polynomial of degree ≤ k, then F → TkF is a weak equivalence.
4. The natural transformation τk : TkF → Tk(TkF) is a weak equivalence.
5. If F → G is a natural transformation and G is polynomial of degree ≤ k,

then up to weak equivalence the transformation factors through TkF.

Proof We omit the proof of the first statement owing to its length, but we
strongly encourage the reader to look at [Wei99, Theorem 3.9] and the pre-
ceding discussion. The ideas are thematically related to those used to prove
homology satisfies excision, and in particular the ideas are in the same vein
as our purely homotopy-theoretic proof of Theorem 6.2.1. The inclusion
Ok(U) → O(U) of categories gives rise to a map of homotopy limits

holim
V∈O(U)

F(V) −→ holim
V∈Ok(U)

F(V).

By definition the target of this map is TkF(U). Since U ∈ O(U) is the final
object, the domain is weakly equivalent to F(U) by Example 8.2.5 (remem-
ber that F is contravariant, so U is actually an initial object in the opposite
category). The last item is a straightforward unraveling of the definitions. �

Example 10.2.17 For U ∈ O(M), let U �→ Emb(U,N) be the embedding
functor. We claim that T1 Emb(U,N) = Imm(U,N), the space of immer-
sions. To see this, note that if U is at most one open ball, then the inclusion
Emb(U,N) → Imm(U,N) is a homotopy equivalence (because evaluation
of the derivative at some point in the ball fibers each space over the space
of vector bundle monomorphisms, and the fibers of each of these fibra-
tions are contractible). It follows from Theorem 10.2.14 that the induced
map T1 Emb(U,N) → T1 Imm(U,N) is a weak equivalence for all U. But
Imm(U,N) � T1 Imm(U,N) since, from Example 10.2.10, we know that the
immersions functor is polynomial of degree ≤ 1. �

Example 10.2.18 We will use the following in Section 10.4.1. This example
details how to express TkF in a non-functorial way (i.e. by a space which is
not a functor of U) by a homotopy limit over a finite and acyclic category.
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For any functor F, if U is the interior of a smooth compact codimension-zero
submanifold L of M, then TkF(U) can be expressed as a finite homotopy limit
of values of F on at most k open balls in M. We will sketch the argument of how
to do this using the proof of Theorem 10.2.14 and part 3 of Theorem 10.2.16.
Suppose the handle index of L is p. Choosing pairwise disjoint closed subsets
{Ai}ki=0 in U and letting US = U −⋃

i∈S Ai as in the proof of Theorem 10.2.14,
the canonical map

TkF(U) −→ holim
S�∅

TkF(US )

is an equivalence since TkF is polynomial of degree k and each US is the
interior of a smooth compact codimension-zero submanifold of M with handle
index less than p. Hence TkF(U) can always be expressed by a finite homotopy
limit of values of TkF on open sets which have handle index strictly smaller
than that of U. We can continue to apply this to each TkF(US ) for S � ∅, noting
that each US is the interior of a compact codimension-zero submanifold of M
and hence has finitely many handles of a given index. Continuing in this way,
we may choose Ai(S ) for each S so that the handle dimension of US−∪i∈RAi(S )
has strictly smaller handle dimension than US . We can thus reduce to only
needing the values of TkF at open sets which are themselves a finite union of
open balls, noting that F and TkF agree when the input is at most k open balls.
Furthermore, we can reduce to at most k open balls using the base case of the
induction in Theorem 10.2.14. Finally, part 3 of Theorem 10.2.16 tells us that
we may replace TkF(V) with F(V) if V is a disjoint union of at most k open
balls. �

The sequence of inclusions O0(M) ⊂ O1(M) ⊂ · · · ⊂ Ok(M) ⊂ · · · ⊂ O(M)
gives rise to a sequence of restriction maps of homotopy limits TkF → Tk−1F,
and hence to the Taylor tower of F:



10.2 Manifold calculus of functors 535

By Theorem 8.6.1, this is in fact a tower of fibrations. Here T∞F denotes the
homotopy inverse limit of this tower, holimk TkF (though we may also use the
ordinary inverse limit since this is a tower of fibrations).

Our next goal is to classify homogeneous degree k functors. Although their
definition is independent of the Taylor tower, they arise naturally in this setting
as the difference between the stages of the tower.

10.2.3 Homogenous functors

Definition 10.2.19 We call a contravariant functor F : O(M) → Top homoge-
nous of degree k if it is polynomial of degree ≤ k and Tk−1F � ∗. That is,
Tk−1F(U) is weakly contractible for all U.

Here is the analog of Definition 10.1.38.

Definition 10.2.20 Define the kth layer of the manifold calculus Taylor tower
of F to be

LkF = hofiber(TkF −→ Tk−1F).

Example 10.2.21 Suppose F : O(M) → Top is any contravariant functor.
Choose a basepoint in F(M), assuming one exists. This bases TkF(U) for all
U and for all k. Then LkF = hofiber(TkF → Tk−1F) is homogeneous of degree
≤ k. It is polynomial of degree ≤ k since it is a homotopy limit of polynomials
of degree ≤ k by Proposition 10.1.15, and it is homogeneous of degree k since

Tk−1LkF � hofiber(Tk−1TkF → Tk−1Tk−1F) � ∗

as Tk commutes with homotopy limits (Proposition 8.5.5) and since TkTlF is
Tmin{k,l}F (this is easy to see). �

Example 10.2.22 Recall the space of k unordered configurations
(

M
k

)
from

Example 10.2.12, let p : Z →
(

M
k

)
be a fibration, and as before let Γ

((
M
k

)
,Z; p

)
denote its space of sections. As mentioned in Example 10.2.12, the functor
U �→ Γ

((
U
k

)
,Z; p

)
is polynomial of degree ≤ k. Let N be the poset of all

neighborhoods of the fat diagonal (i.e. neighborhoods containing all diagonals)
in

(
M
k

)
. Define a contravariant functor on O(M) by

U �−→ Γ
(
∂

(
U
k

)
,Z; p

)
= hocolim

Q∈N
Γ

((
U
k

)
∩ Q,Z; p

)
.
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It can be shown that Γ
(
∂
(

U
k

)
,Z; p

)
is a contravariant finitary isotopy functor.

It is polynomial of degree ≤ k basically for the same reasons Γ
((

U
k

)
,Z; p

)
is. However, it is also polynomial of degree ≤ k − 1. The idea is to use
Theorem 10.2.14 as well as its proof together with the pigeonhole principle, as
follows. By Theorem 10.2.14 it is enough to prove that the map

Γ

(
∂

(
U
k

)
,Z; p

)
−→ Tk−1Γ

(
∂

(
U
k

)
,Z; p

)

is a weak equivalence for U ∈ Ok(M) since both domain and codomain are
polynomial of degree ≤ k − 1. If U ∈ O j(M) for some j < k then this is
automatic, as U is a final object in the indexing category for Tk−1, and so we
only need prove it is an equivalence when U is diffeomorphic to a disjoint
union of exactly k open balls B0, . . . , Bk−1. Let Ai = Bi, so that the Ai are
pairwise disjoint closed in U, and let US = U −⋃

i∈S Ai. In the diagram

the right vertical arrow is an equivalence because objectwise it is a weak equiv-
alence and by the homotopy invariance of homotopy limits (Theorem 8.3.1).
The bottom horizontal arrow is a weak equivalence since Tk−1Γ

(
∂
(

U
k

)
,Z; p

)
is

polynomial of degree ≤ k−1. The upper horizontal arrow is a weak equivalence
because, by the pigeonhole principle,(

U
k

)
∩ Q =

⋃
i

(
U − Ai

k

)
∩ Q

for a sufficiently small neighborhood Q (the reader may wish to draw a picture
of this in the case k = 2 with U an open interval). It follows that the left vertical
arrow is a weak equivalence. �

It can be shown that in fact

Tk−1Γ

((
U
k

)
,Z; p

)
� Tk−1Γ

(
∂

(
U
k

)
,Z; p

)

and hence the functor

U �−→ hofiber

(
Γ

((
U
k

)
,Z; p

)
−→ Γ

(
∂

(
U
k

)
,Z; p

))
.
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is homogeneous of degree k. The next result says that this is the universal
example of a homogeneous degree k functor.

Theorem 10.2.23 ([Wei99, Theorem 8.5], Classification of homogeneous
functors) Let E : O(M) → Top be homogeneous of degree k. Then for some
fibration p : Z →

(
U
k

)
there is a weak equivalence

E(U) −→ Γc

((
U
k

)
,Z; p

)
natural in U (i.e. a weak equivalence of functors).

We omit the proof. For F : O(M) → Top a contravariant functor, Theo-
rem 10.2.23 thus says that the homogeneous degree k functor LkF is equivalent
to the space of compactly supported sections of a fibration. That is,

LkF(U) � Γc

((
U
k

)
,Zk; pk

)
.

The fibers p−1
k (S ) over S ∈

(
U
k

)
are the total homotopy fibers of a cubical

diagram of values of F on a tubular neighborhood of F. That is,

p−1
k (S ) � tfiber(T �→ F(BT ))

where T ⊂ S and BT is a tubular neighborhood of S T in U. In place of p−1
k (S )

we write F(k)(∅), and think of the fibers as the derivatives of F evaluated at the
empty set. We justify this as follows. By definition,

F(1)(∅) = hofiber(F(B) → F(∅))

is the analog of f (h) − f (0), part of the difference quotient arising in the def-
inition of the derivative of a single-variable real-valued function. The space
F(2)(∅) is the total homotopy fiber of the square

If we try to write the second derivative of f : R → R strictly in terms of f ,
we will encounter the expression f (h1 + h2) − f (h1) − f (h2) + f (0) in our
difference quotient, in analogy with thinking of the total homotopy fiber above
as an iterated homotopy fiber.

Thus, through the lens of single-variable calculus, the Taylor tower of a
finitary isotopy contravariant functor F : O(M) → Top is the analog of the
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Maclaurin series of f : R → R. The analog of f (k)(0)xk/k! is precisely our
section space: the space of (twisted) maps from

(
M
k

)
to F(k)(∅).

Example 10.2.24 We will compute the first two derivatives of the embedding
functor U �→ Emb(U,N). Clearly Emb(∅,N) = ∗, so

Emb(1)(∅) = hofiber(Emb(B,N) → ∗) � Imm(B,N)

is the space of immersions of an open ball in N. For the second derivative,
first note that if B1 	 · · · 	 Bk is a disjoint union of k open balls in M, then
Emb(B1	· · ·	Bk,N) � Conf(k,N)×∏k

i=1 Imm(Bi,N), where Conf(k,N) is the
configuration space of k points in N, and the equivalence is given by the obvi-
ous extension of the equivalence Emb(B,N) � Imm(B,N) for an open ball B,
described in Example 10.2.17. Therefore Emb(2)(∅,N) is homotopy equivalent
to the total homotopy fiber of the square

where all of the maps are the obvious restrictions to one or no points. Viewing
this total homotopy fiber as the map from the initial space to the homotopy
limit of the punctured square, it is clear that the total homotopy fiber of the
square above is homotopy equivalent to the total homotopy fiber of the square

One could be content with this answer, but it is interesting to try to pin down the
homotopy type a bit better. If we think of the total homotopy fiber iteratively,
by taking homotopy fibers vertically and noting that the vertical restriction
maps are fibrations, we see that Emb(2)(∅,N) � hofiber(N − {y} → N), where
(x, y) ∈ Conf(2,N) is the basepoint. To analyze this space further, let T be a
closed tubular neighborhood of y in N (a closed ball surrounding y), and note
that the inclusion N − T → N − {y} is a homotopy equivalence. Consider the
square of inclusions
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This is a homotopy pushout square, and if we fiber over N everywhere, by
Corollary 3.9.4 we obtain a homotopy pushout square

The map of vertical cofibers is an equivalence, and the homotopy cofiber of
the top horizontal map is equivalent to ΣnΩ(N)+ by thinking of T as a (trivial)
bundle over T . Thus we have a weak equivalence

ΣnΩ(N)+ � Σ hofiber(N − {y} → N) � ΣEmb(2)(∅,N). �

Example 10.2.25 The “cancellation” of the contribution of the space of
immersions in the higher derivatives persists, and the derivatives of embed-
ding spaces are given by the total homotopy fibers of cubes of configurations
as above. Although the homotopy type of Emb(k)(∅,N) is difficult to get a han-
dle on, one very important observation is that the connectivities of these spaces
increases to infinity with k, provided n > 2. This was the subject of Examples
5.5.6 and 6.2.9. �

10.2.4 Convergence

There are two questions to ask regarding convergence of the Taylor tower.
First, does the tower converge to anything at all? More precisely, for a fixed
j ≥ 0, is π j(TkF) constant for all k ≥ k j for some k j? The second question
is whether or not the tower converges to F. That is, does the connectivity of
the map F → TkF increase to infinity with k, or, put another way, is the map
F → T∞F a weak equivalence?

These are of course separate questions, the first analogous to the conver-
gence of the series

∑∞
k=0 f (k)(0)xk/k!, and the second analogous to studying for

what values of x, if any, the difference f (x)−∑∞
k=0 f (k)(0)xk/k! is equal to zero.

The question of whether or not the series converges is easier to deal with, so we
tackle it first. A fairly satisfactory answer can be obtained from the connectiv-
ities of the layers LkF = hofiber(TkF → Tk−1F), and these connectivities can
sometimes be computed using the Blakers–Massey Theorem (Theorem 6.2.1).

The fibers of the classifying fibration give one way to answer the first
question. Recall that, for spaces X and Y with Y k-connected and X a CW
complex of dimension d, the space Map(X,Y) is (k − d)-connected (see
Proposition 3.3.9). The same is true of spaces of sections: the connectivity of
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the fibers minus the dimension of the base gives the connectivity of the space
of sections. Hence we have the following general result, which follows from
the classification Theorem 10.2.23.

Proposition 10.2.26 For a contravariant finitary isotopy functor F, if F(k)(∅)
is ck-connected, then LkF(M) is (ck−km)-connected (where m is the dimension
of M). More generally, if U has handle index j, then LkF(U) is (ck − k j)-
connected.

In any case, the Taylor tower of F converges for all U of handle index ≤ j if
ck − k j tends to infinity with k. This suggests the handle index should play
some role in an analog of radius of convergence. To begin exploring this,
consider the real-valued function case. We are often interested in the error
Rk(x) = | f (x)−Tk f (x)| for certain x, where Tk f stands for the kth degree Taylor
approximation. For f smooth on [−r, r] and satisfying | f (k+1)| ≤ Mk on (−r, r),
we have Rk(x) ≤ Mkrk+1/(k + 1)!. If Mkrk+1/(k + 1)! → 0 as k → ∞, then we
would say that f is analytic on (−r, r); that is, its Taylor series converges to it.
This will lead us to the notion of a radius of convergence, the importance of
the connectivities of the derivatives of F (and more general cubical diagram
than just those involving balls), and some ideas about how to tackle the “error”
RkF = hofiber(F → TkF).

The radius of convergence is a positive integer ρ. An open set V which is
the interior of a smooth compact codimension-zero submanifold L of M is
within the radius of convergence if the handle index of L is less than ρ. Sup-
pose F : O(M) → Top is a contravariant functor and ρ > 0 is an integer. For
k > 0, let P be a smooth compact codimension-zero submanifold of M, and
Q0, . . . ,Qk be pairwise disjoint compact codimension-zero submanifolds of
M − P̊. Suppose further that Qi has handle index qi < ρ. Let US = ˚(P ∪ QS ).
We then have the following manifold calculus analog of Definition 10.1.50.

Definition 10.2.27 The contravariant functor F is ρ-analytic with excess c if
the (k + 1)-cube S �→ F(US ) is (c +

∑k
i=0(ρ − qi))-cartesian.

This is the analog of a bound on f (k)(x) for x close to 0. In this case, “close to
zero” means having small handle index, and the (k + 1)-cube S �→ F(US ) is
reminiscent of our definition of F(k)(∅), with P replacing ∅, and with handles
of arbitrary index added, not just handles of index zero. The number ρ gives
the radius of convergence of the Taylor tower of F; that is, it tells us the input
values for which the inverse limit of the tower converges to the functor. The
next theorem is an estimate for the error RkF = hofiber(F → TkF).
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Theorem 10.2.28 ([GW99, Theorem 2.3]) Let F be a contravariant finitary
isotopy functor. If F is ρ-analytic with excess c, and if U ∈ O(M) is the interior
of a smooth compact codimension 0 submanifold of M with handle index q < ρ,
then the map F(U) → TkF(U) is (c + (k + 1)(ρ − q))-connected.

The following gives a general criterion which guarantees the Taylor tower
converges to the functor being approximated.

Corollary 10.2.29 (Convergence of the Taylor tower [GW99, Corollary 2.4])
Suppose F is ρ-analytic with excess c. Then, for each U ∈ O(M) which is the
interior of a compact codimension-zero submanifold of handle index less than
ρ, the map

F(U) −→ T∞F = holimk TkF(U)

is a weak equivalence.

This immediately follows since the connectivities of the maps F(U) →
TkF(U) increase to infinity with k if the handle index of U is less than ρ.

We will not give the proof of Theorem 10.2.28, but a sketch will suggest
its similarity to the proof of Theorem 10.2.14. We are interested in the con-
nectivity of the map F(U) → TkF(U) and, as usual, it suffices to study the
special case where U is the interior of a smooth compact codimension-zero
submanifold L of M. Using a handle decomposition, we select pairwise dis-
joint closed subsets A0, . . . , Ak such that, for S � ∅, US = U − ⋃

i∈S Ai is
the interior of a compact smooth codimension-zero submanifold whose han-
dle index is strictly less than the handle index of L. We then consider the
diagram

The right vertical arrow is a weak equivalence since TkF is polynomial of
degree ≤ k, and by induction we can get a connectivity estimate for the bottom
horizontal arrow. We have a connectivity for the left vertical arrow by assuming
F is ρ-analytic. Together these give an estimate for the connectivity of F(U) →
TkF(U) using Proposition 2.6.15 and Proposition 5.4.17.

The next result is the analog of uniqueness of analytic continuation.
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Corollary 10.2.30 ([GW99, Corollary 2.6]) Suppose F1 → F2 is a natu-
ral transformation of ρ-analytic contravariant finitary isotopy functors, and
F1(U) → F2(U) is a weak equivalence whenever U ∈ Ok(M) for some k. Then
F1(V) → F2(V) is a weak equivalence for each V which is the interior of a
smooth compact codimension-zero submanifold of handle index less than ρ.

Proof Suppose V ∈ O(M). Consider the following diagram.

Since F1(U) → F2(U) is a weak equivalence whenever U is in Ok(M) for
any k, it follows from Theorem 10.2.14 that TkF1 → TkF2 is an equivalence
for all k. Hence the lower horizontal arrow is an equivalence for all V . If the
handle index of V is less than ρ, then F1(V) → holimk TkF1(V) and F2(V) →
holimk TkF2(V) are equivalences by Corollary 10.2.29, so F1(V) → F2(V) is
an equivalence. �

The question of convergence of the Taylor tower for the embedding functor
F(U) = Emb(U,N) is especially interesting and will be discussed separately
in Section 10.3.

We end by remarking that a lack of convergence does not necessarily mean
the Taylor tower does not contain anything interesting. In fact, for classical
knots (where Theorem 10.3.1 does not give convergence because the codimen-
sion is 2), [Vol06b] shows that the Taylor series for the embedding functor
contains finite type invariants of knots (see Section 10.4.4). On a related
note, one can study multivariable contravariant functors such as (U,V) �→
Link(U,V; N). Here U and V are open subsets of smooth closed manifolds
P and Q, and Link(U,V; N) is the space of “link maps” U → N, V → N
whose images are disjoint. It is not known whether its (multivariable) Tay-
lor series converges to it, but it is clear that its polynomial approximations
are interesting, since, for example, hofiber(Link(P,Q; N) → T1Link(P,Q; N))
contains the information necessary to define the generalized linking number.
See [Mun08] and [GM10].

10.3 Embeddings, immersions, and disjunction

Here we present an application of the manifold calculus of functors discussed
in Section 10.2. The main point is to give an overview of the analyticity of the
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embedding functor and try to give a sense of the kind of results that go into
proving such statements. In particular we want to demonstrate the importance
of Theorem 6.2.3, the generalization of the Blakers–Massey Theorem. We will
mostly focus our attention on the first-degree Taylor approximations to the
embeddings functor, carefully obtaining a connectivity estimate for the maps
Emb(M,N) → T1 Emb(M,N) � Imm(M,N) (see Example 10.2.17) in two
ways. We will also discuss the disjunction results for embeddings necessary to
get estimates Emb(M,N) → T j Emb(M,N) in general, although the particular
results we can prove here are weaker than the best-known estimates.

10.3.1 Convergence of the Taylor tower for spaces of embeddings

The following theorem, due to Goodwillie and Klein, concerns the conver-
gence of the Taylor tower for the embedding functor. A version for spaces of
Poincaré embeddings has appeared in [GK08], which is itself an important step
in proving the result below, which appears in [GK15].

Theorem 10.3.1 The functor U �→ Emb(U,N) is (n− 2)-analytic with excess
3−n. Hence, if M is a smooth closed manifold of dimension m, and N a smooth
manifold of dimension n, then the map

Emb(M,N) −→ Tk Emb(M,N)

is (k(n − m − 2) + 1 − m)-connected. In particular, if n − m − 2 > 0, then the
canonical map

Emb(M,N) −→ holim
k

Tk Emb(M,N)

is a weak equivalence.

We will refer to a statement about the connectivity of the natural transformation
F → TkF as a connectivity estimate.

Remark 10.3.2 It is shown in [Wei04] that the Taylor tower for Emb(M,N)
also converges on homology for n − 4m + 1 > 0. That is, the inverse limit of
the homology groups of the Taylor tower agree with those of the embedding
space in this range of dimensions. This will be useful in Section 10.4.4. �

The proof of Theorem 10.3.1 is too difficult to present here, but we will
illustrate a few elementary ideas that go into it.

One can obtain the connectivity of Emb(M,N) → T1 Emb(M,N) “by hand”
without too much work. Some of the ideas that go into one version of this
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computation (the second proof of Theorem 10.3.4) are important in obtain-
ing estimates for all k. We will also discuss weaker estimates than predicted
by Theorem 10.3.1 for the maps Emb(M,N) → T j Emb(M,N) for j ≥ 2
in Theorem 10.3.7, which relies on the material from Section 10.3.2. The
techniques required for the stronger results above involve deeper relation-
ships between embeddings, pseudoisotopies, diffeomorphisms, as well as some
surgery theory.

There are two main ingredients in the proofs of the connectivity estimates
we present here. One is “handle induction”, as in the proof of Theorem 10.2.14,
where we use the property that the polynomial approximations to a functor in
the manifold calculus (a) behave well with respect to certain kinds of cubes
(roughly, a polynomial of degree ≤ k takes strongly homotopy cocartesian
(k+1)-cubes to cartesian (k+1)-cubes), and (b) are determined by their values
on open balls to reduce to a special case where the manifold in question is built
from 0-handles, that is, is a union of open balls. The other main ingredient is
“multiple disjunction” for spaces of embeddings, where we use Theorem 6.2.3
to obtain certain connectivity estimates for embedding spaces necessary in the
handle induction arguments. The disjunction problems are a little technical, so
we have relegated that material to Section 10.3.2.

Connectivity of the derivatives of the embedding functor
The first step in understanding some of the ideas that go into establishing
the analyticity of the embedding functor is to compute the connectivity of its
derivatives. This turns out to be an easy application of Theorem 6.2.3 which
we have essentially already presented in Example 6.2.9. We demonstrate here
how to carefully reduce to that case.

Recall from the discussion following Theorem 10.2.23 the notion of the kth
derivative of a functor F evaluated at the empty set, F(k)(∅).

Theorem 10.3.3 Let U =
∐

i Bi ⊂ M be a disjoint union of k open balls.
For S ⊂ k, let US = U − ⋃

i∈S Bi. The k-cube S �→ Emb(US ,N) is ((k −
1)(n − 2) + 1)-cartesian. That is, if E(U) = Emb(U,N), then Emb(k−1)(∅,N) is
(k − 1)(n − 2)-connected.

Proof We will simplify to Example 6.2.9. For a subset S of k, the projection
map

∏
i�S Bi × Emb(US ,N) → Emb(US ,N) is a homotopy equivalence, natu-

ral in S , because balls and products of balls are contractible (if S = k, we take∏
i�S Bi to be a point). Let Conf( j,N) as usual denote the configuration space

of j points in N. The map
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∏
i�S

Bi × Emb(US ,N) −→ Conf(k − |S |,N) × Imm(US ,N)

induced by the map

((x1, . . . , xk), f ) �→ (( f (x1), . . . , f (xk), (d fx1 , . . . , d fxk ))

is a homotopy equivalence for all S (where again the product of balls is
taken to be a point if S = k). Hence S �→ Emb(US ,N) is K-cartesian if
and only if S �→ Conf(k − |S |,N) × Imm(US ,N) is K-cartesian. The cube
S �→ Imm(US ,N) is homotopy cartesian whenever k ≥ 2 because Imm(−,N)
is polynomial of degree ≤ 1. Therefore S �→ Emb(US ,N) is K-cartesian if and
only if S �→ Conf(k− |S |,N) is K-cartesian for k ≥ 2 by Proposition 5.4.5. But
Example 6.2.9 shows that K = (k − 1)(n − 2). �

Connectivity estimates for the linear stage
Theorem 10.3.3 turns out to be a very useful special case, as we shall
see below, in obtaining connectivity estimates for the maps Emb(M,N) →
T1 Emb(M,N) � Imm(M,N). We begin with the map Emb(M,N) →
T1 Emb(M,N). Our proof requires a disjunction result from Section 10.3.2.

Theorem 10.3.4 The map

Emb(M,N) −→ T1 Emb(M,N) � Imm(M,N)

is (n − 2m − 1)-connected. In fact, if V ⊂ M is the interior of a compact
codimension-zero handlebody with handle index k, then the map is (n − 2k −
1)-connected.

Proof We induct on the handle index k. For the base case k = 0, let l be the
number of components of V . The result is trivial, and the map in question is a
homotopy equivalence, when l = 0, 1. Suppose l ≥ 2. Consider the sequence
(from the Taylor tower of embeddings)

Emb(V,N) → Tl Emb(V,N) → Tl−1 Emb(V,N) →
· · · → T1 Emb(V,N). (10.3.1)

The map Emb(V,N) → Tl Emb(V,N) is a weak equivalence since V is a final
object in Ol(V), using Proposition 9.3.4. By the classification Theorem 10.2.23
of homogeneous functors,

Lj Emb(V,N) = hofiber(T j Emb(V,N) → T j−1 Emb(V,N))



546 Applications

is weakly equivalent as a functor of V to a space of sections

Γc

((
V
j

)
,Emb( j)(∅)

)
.

Since V has handle index 0,
(

V
j

)
also has handle index 0, and so these section

spaces are ( j−1)(n−2)-connected by Theorem 10.3.3, for when
(

V
j

)
has handle

index zero, it has the homotopy type of a set of points. In other words, the map
T j Emb(V,N) → T j−1 Emb(V,N) is (( j−1)(n−2)+1)-connected. This is true no
matter what basepoint is chosen, provided m < n. It follows that the composed
map Emb(V,N) → T1 Emb(V,N) is (n − 1)-connected.

Now suppose k > 0. Let V = L̊. For j = 1 to s, let e j : Dk×Dn−k → L denote
each of the k-handles. Assume e−1

j (∂L) = ∂Dk × Dn−k for all j. Since k > 0, as
in the proof of Theorem 10.2.14 we may choose pairwise disjoint closed disks
D0,D1 in the interior of Dk, and put Aj

i = e j(Di × Dn−k) ∩ V . Then each Aj
i is

closed in V , and if we set Ai =
⋃s

j=1 Aj
i , then for each non-empty subset S of

{0, 1}, VS = V −⋃
i∈S Ai is the interior of a smooth compact codimension-zero

submanifold of M of handle index strictly less than k.
In the diagram

the right vertical arrow is a weak equivalence because T1 Emb(−,N) is polyno-
mial of degree ≤ 1. By induction for all S � ∅, Emb(VS ,N) → T1 Emb(VS ,N)
is (n−2(k−1)−1)-connected, and by Proposition 5.4.17, the map of homotopy
limits has connectivity equal to n − 2(k − 1) − 1 − 2 + 1 = n − 2k. By Corol-
lary 10.3.16, the left vertical map is (n − 2k − 1)-connected, and it follows that
the top horizontal map is (n − 2k − 1)-connected. �

Remark 10.3.5 The base case of the induction on handle index above
required an argument which was different than the inductive step. Although it is
tempting to try to use Proposition 5.4.17 in the way we did above in the handle
index zero case, it will not give the desired estimate, and genuinely appears
to require a different method. Fortunately all it required was connectivity
information about the derivatives, which is the content of Theorem 10.3.3. �

Connectivity estimates for the higher stages
The second proof of Theorem 10.3.4 can be adapted to prove the following
restatement of Theorem 10.3.1 with very few changes.
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Theorem 10.3.6 If M is a smooth closed manifold of dimension m, N a
smooth manifold of dimension n, n − m ≥ 2, and V is the interior of a smooth
codimension-zero submanifold of handle index j, then the map

Emb(V,N) −→ Tk Emb(V,N)

is (k(n − j − 2) + 1 − j)-connected.

The only changes (besides the connectivity estimates themselves) are that the
pairwise disjoint closed subsets Ai chosen in the proof of Theorem 10.3.4 are
k + 1 in number, and instead of referencing Proposition 10.3.9, we reference
Theorem 10.3.10. However, we do not provide a proof of Theorem 10.3.10
here, but instead a weaker version, Theorem 10.3.11, which then gives a
weaker estimate than above. We leave the details to the reader to sketch a proof
of the following result.

Theorem 10.3.7 (Weak version of Theorem 10.3.6) If M is a smooth closed
manifold of dimension m, N a smooth manifold of dimension n, n−m ≥ 2, and
V is the interior of a smooth codimension-zero submanifold of handle index j,
then the map

Emb(V,N) −→ Tk Emb(V,N)

is (k(n − 2 j − 2) + 1)-connected.

Remark 10.3.8 The numbers in Theorem 10.3.7 and Theorem 10.3.6 agree
when k = 1, but otherwise the estimate in Theorem 10.3.6 is better than the
one in Theorem 10.3.7.

10.3.2 Disjunction results for embeddings

For the second proof of Theorem 10.3.4 we needed an estimate for how
cartesian a square of the form

is. Here V = V∅ is the interior of some smooth compact codimension-zero
submanifold of M with handle index k, and, for S � ∅, the VS are the interiors
of compact codimension-zero submanifolds of handle index strictly less than
k. As in the proof of Theorem 10.3.4, let V = L̊. We chose each Ai to be a
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union of products of a k-dimensional disk with an (m − k)-dimensional disk.
Note that LS = L − ⋃

i∈S Ai is not compact, but its interior is the interior of
a smooth compact codimension-zero submanifold of M. This is important to
note because below we will work not with the open sets that appear in E, but
with their closed counterparts L and the Ai.

Let us first consider a formally similar situation.

Proposition 10.3.9 Suppose Q0 and Q1 are smooth closed manifolds of
dimensions q1 and q2 respectively, and N is a smooth closed n-dimensional
manifold. The square

is (n − q0 − q1 − 1)-cartesian.

Proof It is enough by Proposition 5.4.12 to choose a basepoint in e ∈
Emb(Q0 ∪ Q1,N), take fibers vertically, and compute the connectivity of the
map of homotopy fibers. By the isotopy extension theorem [Kos93, Theorem
5.2], the map Emb(Q0 ∪ Q1,N) → Emb(Q1,N) is a fibration with fiber over e
equal to Emb(Q0,N − e(Q1)). We thus have to show that the inclusion map of
vertical fibers Emb(Q0,N−e(Q1)) → Emb(Q0,N) is (n−q0−q1−1)-connected.

Let h : S k → Emb(Q0,N). We may regard this as a map h̃ : S k × Q0 → N,
and by a small homotopy of h we may assume h̃ is both smooth and trans-
verse to e(Q1) ⊂ N by Theorem A.2.9 and Theorem A.2.19 with k = 0.
By Theorem A.2.18, h̃−1(e(Q1)) is a submanifold of S k × Q0 of dimension
k+q0+q1−n, and hence is empty if k < n−q0−q1. A similar argument shows
that any homotopy S k × I → Emb(Q0,N) lifts to Emb(Q0,N − e(Q1)) if k <
n−q0−q1−1, and hence the map in question is (n−q0−q1−1)-connected. �

The problem solved in Proposition 10.3.9 is known as a disjunction problem.
The question we are answering is this: when do embeddings Q0 → N and
Q1 → N give rise to an embedding (up to isotopy) of Q0	Q1 in N? That is, we
are asking when we can eliminate possible intersections between the manifolds
Q0 and Q1 in N. We already discussed disjunction in Example 4.2.20, whose
problem is the fiber of a disjunction problem like the one we are posing here.

The proof of the following goes beyond the scope of this book.

Theorem 10.3.10 (Strong disjunction [GK08, Conjecture A]) Suppose
Q0,Q1, . . . ,Qk are smooth closed manifolds of dimensions q0, . . . , qk, and N
is a smooth closed n-dimensional manifold. The k-cube
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S �−→ Emb(QS ,N)

is (1 − q0 +
∑k

i=1(n − qi − 2))-cartesian.

A more symmetric way to write the number above is 1 + (n − 2) −∑k
i=0 qi. We

will prove the following weaker version, which gives rise to weaker estimates
for the maps Emb(M,N) → T j Emb(M,N).

Theorem 10.3.11 (Weak disjunction [Goo, Proposition A.1]) Suppose
Q0,Q1, . . . ,Qk are smooth closed manifolds of dimensions q0, . . . , qk, and N
is a smooth closed n-dimensional manifold. Assume q0 ≤ qi for i = 1 to k, and
let QS = ∪i�S Qi. The k-cube

S �−→ Emb(QS ,N)

is (1 +
∑k

i=1(n − q0 − qi − 2))-cartesian.

The hypothesis that q0 ≤ qi for all i = 1 to k can clearly be achieved in general
by choosing the minimum of {q0, q1, . . . , qk} and relabeling so that it is q0.

Proof The proof is very similar to the proof of Proposition 10.3.9, except that
we need to invoke Theorem 6.2.3. Choose a basepoint in e ∈ Emb(Q∅,N), and
consider the k-cube of homotopy fibers

R �−→ hofibere

⎛⎜⎜⎜⎜⎜⎜⎝Emb(Q0

⋃
i�R

Qi,N) → Emb(
⋃
i�R

Qi,N)

⎞⎟⎟⎟⎟⎟⎟⎠ ,
where R ⊂ k. By Proposition 5.4.12 the (k + 1)-cube S �→ Emb(QS ,N) is
K-cartesian if the k-cube

R �−→ hofibere

⎛⎜⎜⎜⎜⎜⎜⎝Emb(Q0

⋃
i�R

Qi,N) → Emb(
⋃
i�R

Qi,N)

⎞⎟⎟⎟⎟⎟⎟⎠
is K-cartesian. For each R the map

Emb

⎛⎜⎜⎜⎜⎜⎜⎝Q0

⋃
i�R

Qi,N

⎞⎟⎟⎟⎟⎟⎟⎠ −→ Emb

⎛⎜⎜⎜⎜⎜⎜⎝⋃
i�R

Qi,N

⎞⎟⎟⎟⎟⎟⎟⎠
is a fibration with fiber over e equal to Emb(Q0,N − e(

⋃
i�R Qi)).

Consider a face ∂R
∅ Emb(Q0,N−⋃

i�R Qi). We claim this face is (−1+ |R|(n−
q0)+

∑
i∈R qi)-cocartesian. Without loss of generality assume R = r. First, note

that this is a cube of inclusions of open sets, so

hocolim
T�R

Emb

⎛⎜⎜⎜⎜⎜⎜⎝Q0,N − e

⎛⎜⎜⎜⎜⎜⎜⎝⋃
i�R

Qi

⎞⎟⎟⎟⎟⎟⎟⎠
⎞⎟⎟⎟⎟⎟⎟⎠ � colim

T�R
Emb

⎛⎜⎜⎜⎜⎜⎜⎝Q0,N − e

⎛⎜⎜⎜⎜⎜⎜⎝⋃
i�R

Qi

⎞⎟⎟⎟⎟⎟⎟⎠
⎞⎟⎟⎟⎟⎟⎟⎠
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by Example 5.8.3. Let S j → Emb(Q0,N−e(
⋃

i�R Qi)) be a map, and let h : S k×
Q0 → N −⋃

i�R Qi be its adjoint. We wish to deform this to a map which, for
each s ∈ S j, misses some Qi for some i � R. Consider the map

H : S j ×
∏
i∈R

Q0 −→
∏
i∈R

N

given by H(s, x1, . . . , xr) = (h(s, x1), . . . , h(s, xr)). By a small homotopy of h
using Theorems A.2.9 and A.2.19 with k = 0 we may assume this map is
smooth and transverse to

∏
i∈R Qi ⊂ ∏

i∈R N, and hence by Theorem A.2.18
the inverse image H−1(

∏
i∈R Qi) is a smooth submanifold of S j × ∏

i∈R Q0 of
dimension j + |R|q0 −∑

i∈R(n − qi) and is therefore empty if j < |R|(n − q0) −∑
i∈R qi. A similar argument with 1-parameter families shows that a homotopy

S j× I → Emb(Q0,N−∪i�RQi) lifts to the colimit in question if j < −1+ |R|(n−
q0)−∑

i∈R qi, and therefore ∂R
∅ Emb(Q0,N−∪i�RQi) is (−1+|R|(n−q0)−∑

i∈R qi)-
cocartesian. By Theorem 6.2.3 the k-cube R �→ Emb(Q0,N − ∪i�RQi) is (1 −
k − k + k(n − q0) − ∑k

i=1 qi)-cartesian, since the sum over partitions is clearly
minimized for the partition of k consisting of blocks which are singletons. This
number is equal to 1 +

∑k
i=1(n − q0 − qi − 2). �

For the remainder of the details of how to turn statements like Theorem 10.3.11
into the sort of results required in the proof of Theorem 10.3.4, we will focus on
Proposition 10.3.9. What we need is to “thicken up” the result in that statement
so that it applies to embeddings of codimension-zero submanifolds a smooth
closed manifold M, which is what arises in the proof of Theorem 10.3.4. First
note that we can generalize the situation in Proposition 10.3.9 to a relative
setting. That is, suppose Q0, Q1, and N have boundary, and that embeddings
ei : ∂Qi → ∂N have been selected to have disjoint images. Let QS = ∪i�S Qi,
and let Emb∂(QS ,N) be the space of embeddings f : QS → N such that the
restriction of f to ∂QS is equal to eS , and such that f −1(∂N) = ∂QS . The same
argument used to prove Proposition 10.3.9 proves the following.

Proposition 10.3.12 With N,Q0,Q1 as described in the paragraph above,
the square

is (n − q0 − q1 − 1)-cartesian.
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We can make a further generalization to the case of compact manifold tri-
ads (see the discussion after Definition A.2.5). Suppose the Qi are compact
n-dimensional manifold triads of handle index qi, where n − qi ≥ 3, and N
is an n-dimensional smooth manifold with boundary. In this case embeddings
ei : ∂0Qi → ∂N have been chosen, and we let Emb∂0 (QS ,N) stand for the
obvious thing.

Theorem 10.3.13 ([GW99, Theorem 1.1]) The square

is (n − q0 − q1 − 1)-cartesian.

This can be generalized to the case where the dimension of the Qi is m ≤ n,
essentially by a thickening of the m-dimensional Qi by the disk bundle of an
(n − m)-plane bundle.

Proposition 10.3.14 ([GW99, Observation 1.3]) If dim(Qi) = m ≤ n then
Theorem 10.3.13 is true.

The rough idea of the proof is to assume that N is embedded in Rn+k and let
Grn−m = colimk Grn−m+k(Rn+k) be a colimit of Grassmannians. Consider the
map Emb(QS ,N) → Map(QS ,Grn−m) given by assigning an embedding f to
its normal bundle ν f . The homotopy fiber of this map over some η can be iden-
tified with the space of embeddings of the disk bundle of η over QS . Since
S �→ Map(QS ,Grn−m) is homotopy cartesian (because Map(−, X) is polyno-
mial of degree ≤ 1), by Proposition 5.4.12, the square of homotopy fibers is
(n − q0 − q1 − 1)-cartesian if and only if the square S �→ Emb∂(QS ,N) is
(n − q0 − q1 − 1)-cartesian. However, this introduces more corners, since the
closed disk bundle of a smooth manifold with boundary is already a compact
manifold triad itself. The new corners due to the disk bundle are introduced
along the corner set of the original compact manifold triad, and we will ignore
the details.

We may also assume the Qi are submanifolds of an m-dimensional manifold
M. Now we are in a position to describe a situation which is directly related
to the square E from the beginning of this section, and we generalize this sit-
uation further by introducing a new manifold P. Suppose that P is a smooth
compact codimension-zero manifold triad in M; Q0,Q1 are smooth compact
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codimension-zero manifold triads in M − P̊; and that the handle index of Qi

satisfies n − qi ≥ 3. Let QS =
⋃

i�S Qi.

Proposition 10.3.15 The square S �→ Emb(P ∪ QS ,N) is (n − q0 − q1 −
1)-cartesian.

Proof The square S �→ Emb(P,N) is homotopy cartesian by Example 5.4.4
since all maps are the identity, and hence S �→ Emb(P ∪ QS ,N) is (n − q0 −
q1 − 1)-cartesian if the square of homotopy fibers

S �−→ hofiber(Emb(P ∪ QS ,N) → Emb(P,N))

is (n − q0 − q1 − 1)-cartesian for all choices of basepoint in Emb(P,N) by
Proposition 5.4.12. The map of squares Emb(P ∪ QS ,N) → Emb(P,N) is a
fibration whose fiber is the square Emb∂0 (QS ,N − P), which is (n − q0 − q1 −
1)-cartesian by Theorem 10.3.13. �

We finally arrive at the technical statement which relates the open sets in the
square E appearing at the beginning of this section with the closed sets we have
been considering.

Corollary 10.3.16 ([GW99, Corollary 1.4]) Let P,Q0,Q1 be as in Proposi-
tion 10.3.15, and set VS = ˚(P ∪ QS ). Then S �→ Emb(VS ,N) is (n − q0 − q1 −
1)-cartesian.

To connect this explicitly with the square E, we choose the Qi to be the Ai

considered in Theorem 10.3.4, and let P be the closure of L − (A0 ∪ A1).
Let Q0, . . . ,Qk be smooth closed manifolds of dimensions q0, . . . , qk, and

let N be a smooth n-dimensional manifold. Assume we can choose a basepoint
e ∈ Emb(Q0 ∪ · · · ∪ Qk,N). Then the proof of Theorem 10.3.11 showed that
the k-cube R �→ Emb(Q0,N −⋃

i�R Qi) is (1 +
∑k

i=1 n − q0 − qi − 2)-cartesian.
Compare that with the following result.

Proposition 10.3.17 Let Q0 be a smooth closed q0-dimensional manifold,
and Q1, . . . ,Qk be smooth closed submanifolds of dimensions q1, . . . , qk of a
smooth n-dimensional manifold N. For S ⊂ k, let QS =

⋃
i�S Qi. Then k-cube

S �−→ Map(Q0,N − QS )

is (1 − q0 +
∑k

i=1 n − qi − 2)-cartesian. In fact, the same is true if we replace
Map(Q0,N − QS ) with Imm(Q0,N − QS ).
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Proof The key observation is that Map(−,N − QS ) : O(Q0) → Top is poly-
nomial of degree ≤ 1. We will prove that if V is the interior of a smooth
compact codimension-zero submanifold of Q0 of handle index at most j, then
S �→ Map(V,N − QS ) is (1 − j +

∑k
i=1 n − qi − 2)-cartesian.

The base case j = 0 asserts that if Q0 = 	m
i=1Bi is a disjoint union

of open balls, then the cube S �→ Map(	m
i=1Bi,N − QS ) is (1 +

∑k
i=1 n −

qi − 2)-cartesian. This boils down to Example 6.2.11 as follows. The functor
Map(−; Z) : O(Q0) → Top is a homotopy functor, so that, given any selection
of points xi ∈ Bi, the natural map Map(	m

i=1Bi,Z) → ∏m
i=1 Map(xi,Z) � Zm is

a homotopy equivalence. By Proposition 5.4.5 it therefore suffices to prove the
assertion in the case where Q0 is a single point. But Map(∗,Z) � Z, and so we
have reduced to the case considered in Example 6.2.11.

Now suppose V is the interior of a smooth compact codimension-zero sub-
manifold of Q0 with handle index ≤ j. We let the reader fill in the details of
the remainder of the argument, as it is similar enough to the one presented in
Theorem 10.3.4. One eventually encounters a diagram of the form

where S ⊂ k and R ⊂ 2, and the VS have handle index ≤ j − 1. The vertical
arrows are weak equivalences since Map(−,Z) is polynomial of degree ≤ 1,
and the lower horizontal arrow is (1− j+

∑k
i=1 n−qi−2)-connected by induction

using Proposition 5.4.17. �

A much simpler proof can be given based on the fact that if K has the homotopy
type of a p-dimensional CW complex, then Map(K,−) takes k-connected maps
to (k − p)-connected maps. We also need the fact that if a smooth manifold
admits a handle decomposition with handles of index at most p, then M has the
homotopy type of a CW complex of dimension p. The proof above, however,
does not require any of this.

10.4 Spaces of knots

Manifold calculus of functors from Section 10.2 has in the past ten years been
used effectively for the study of spaces of knots [ALTV08, LTV10, Sin09,
Vol06a, Vol06b]. Recent generalizations to links [MV14] and embeddings of
planes [AT14] have also demonstrated the usefulness of the functor calculus
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approach. Our focus here will be on spaces of knots since that is the case that
has yielded the most results thus far.

Since knots are examples of embeddings and manifold calculus was
designed to study spaces of embeddings, it is not surprising at first glance
that this theory should have something to say about knots. However, as was
first suggested in [GKW01, Example 5.1.4], one gets more mileage out of this
example than the theory suggests through the use of the finite model for the
Taylor tower (see Example 10.2.18). Each stage of the Taylor tower is a homo-
topy limit of a punctured cubical diagram (details are in Section 10.4.1) and
this tower thus becomes an example of much of the theory developed in the pre-
vious chapters. The Taylor tower also has a cosimplicial model (Section 10.4.2)
which demonstrates the connection between cubical diagrams and cosimplicial
spaces described in Section 9.4. In addition, the spectral sequences from Sec-
tion 9.6 will play an important role in the description of the rational homology
and homotopy of spaces of knots in dimension ≥ 4 (Section 10.4.4).

10.4.1 Taylor tower for spaces of long knots

Let e be the standard linear embedding of R in Rn, n ≥ 3, given by t �→
(t, 0, . . . , 0) for all t. Let Embc(R,Rn) be the space of long knots in Rn, that
is, the space of smooth embeddings R → Rn which agree with e (so e can be
thought of as the long unknot) outside the interval (“c” stands for “compact
support”). More precisely

Embc(R,Rn) = { f ∈ Emb(R,Rn) | f (t) = (t, 0, 0, . . . , 0) for t � [0, 1]}.
A related space is the space of long immersions Immc(R,Rn) with the
same prescribed linear behavior outside a compact set. As mentioned before,
these spaces are equipped with the Whitney C∞ topology (and, in particular,
Embc(R,Rn) is topologized as a subspace of Emb(R,Rn)). Since there is an
inclusion Emb(M,N) ↪→ Imm(M,N), we set

Kn = hofibere(Embc(R,Rn) ↪→ Imm(cR,R
n)).

From Definition 2.2.3, the definition of the homotopy fiber, a point in Kn is
thus a long knot along with a path (isotopy) to the unknot e through immer-
sions. We will refer to the spaceKn as the “space of knots modulo immersions”
(it is also sometimes called the space of “tangentially straightened long knots”;
see [DH12]).

Since, by the Smale–Hirsch Theorem [Sma59], Imm(R,Rn) � ΩS n−1,
and since the inclusion Embc(R,Rn) ↪→ Immc(R,Rn) is null-homotopic
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[Sin06, Proposition 5.17], spaces Embc(R,Rn) and Kn are related using
Example 2.2.10 by

Kn � Embc(R,Rn) ×Ω2S n−1. (10.4.1)

Remark 10.4.1 The reason one chooses to work with long knots rather than
ordinary closed ones (embeddings of S 1 in Rn or S n) in this setup is that some
of the more technical arguments work out better in this case. In addition, long
knots are naturally an H-space via the operation of stacking (or concatenation)
which gives them extra structure that is useful when studying their rational
homotopy type (see Section 10.4.4). In practice, however, most of what we
describe here works equally well for ordinary knots. The relationship between
closed knots in the sphere and long knots is also well-understood [Bud08,
Theorem 2.1] and is given by

Emb(S 1, S n) � Embc(R,Rn) ×SOn−1 SOn+1 . �

Classical knot theory is mostly concerned with π0(Embc(R,R3)), the set of
knot types or isotopy classes of knots, as well as H0(Embc(R,R3)), the space of
knot invariants, which are functions on isotopy classes of knots, that is, locally
constant functions on Embc(R,R3) (we will say more about invariants in Sec-
tion 10.4.4). Working with the space of classical knots modulo immersions
does not change the questions or the context very much due to the following

Proposition 10.4.2 ([Vol06b, Proposition 5.12]) There is a one-to-one corre-
spondence between isotopy classes of K3 and isotopy classes of framed knots
(not modulo immersions) whose framing number is even.

For Embc(R,Rn), n > 3, the questions of isotopy classes or invariants are not
interesting since the space of knots is in this case connected. However, higher
homotopy and homology groups are very interesting, even for n > 3, as we
shall see in Section 10.4.4.

To set up the Taylor tower for Embc(R,Rn) or Kn, we can use the finite
model for its stages from Example 10.2.18. We will demonstrate the construc-
tion for Kn since this is what we will mostly be concerned with in Section
10.4.4, but the reader should keep in mind that everything goes through the
same way for Embc(R,Rn).

Given a k ≥ 0, let I j = [5/2 j+3, 7/2 j+3] for 0 ≤ j ≤ k. Thus I0, . . . , Ik are
pairwise disjoint subintervals of R. (The reason for setting up the intervals like
this is that we will take the stages TkKn, defined below, for all k at the same
time when we put them together into a Taylor tower.) Let
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∅ � S ⊆ {0, . . . , k},
and let eS be the long unknot with (the images of) intervals indexed by S
removed. Then define

Kn
S = hofibereS (Embc(R \ ∪i∈S Ii, R

n) ↪→ Immc(R \ ∪i∈S Ii, R
n)) . (10.4.2)

This can be thought of as a space of “punctured knots modulo immersions”.
The analogous construction for ordinary knots would use Embc(R\∪i∈S Ii, R

n).
Note that these are connected spaces even for n = 3 (and hence not inter-

esting from the point of view of classical knot theory). However, there are
maps Kn

S → Kn
S∪{i} given by restricting an embedding to an embedding with

one more puncture. Taken together, these spaces and maps form a punctured
cubical diagram S �→ Kn

S of punctured knots. For example, when k = 2, we get

(10.4.3)

(As usual, we drop commas and parentheses from the set notation in the sub-
scripts.) Then from Example 10.2.18, we have, for n ≥ 3 and k ≥ 0, the kth
(polynomial) approximation for Kn:

TkKn = holim
∅�S⊆{0,..,k}

Kn
S .

(The diagram defining the stages for Embc(R,Rn) would consist of the spaces
Embc(R\∪i∈S Ii, R

n).) This kind of a homotopy limit is of course familiar from
Section 5.3.

Example 10.4.3 We have T0Kn � ∗ (and T0 Embc(R,Rn) � ∗) because
the punctured cubical diagram is simply the space of long knots with
one puncture, but such knots can be retracted “to infinities”. (We also
know from the discussion following Definition 10.2.15 that T0 Emb(M,N) =
Emb(∅,N) � ∗.) �

Example 10.4.4 From Example 10.2.17, we have that T1 Embc(R,Rn) =
Imm(R,Rn) and this, as mentioned before, is equivalent to ΩS n−1 (by the
Smale–Hirsch Theorem). To see this geometrically, a knot with two punctures
is homotopy equivalent to a point with a vector attached – the outer arcs are
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retracted to infinity and the middle arc is retracted to, say, the midpoint, but
since we had an embedding, the derivative information is retained in the form
of the vector (this is given more precisely and more generally in (10.4.5)).
Since the knot starts and ends in the direction of the long unknot, the homo-
topy limit defining T1 Embc(R,Rn) gives a path of vectors that starts and ends
in this standard direction. In other words, we have a loop on S n−1. However,
since Kn is the space of knots “modulo immersions”, the derivative data is
removed and so T1Kn � ∗. �

Example 10.4.5 For T2Kn, Example 5.3.3 tells us that a point in this Taylor
polynomial is a point in each Kn

i , an isotopy in each Kn
i j, and a two-parameter

isotopy in Kn
123, where everything is compatible with the restriction maps in

the diagram. �

Note that Kn maps into the diagram Kn
S by restriction (punching holes in a

knot). From (5.4.1), there is therefore a canonical map

Kn −→ TkKn (10.4.4)

for all k ≥ 0. There is also a fibration

TkKn −→ Tk−1Kn

for all k ≥ 1; since the diagram defining Tk−1Kn is a subdiagram of the dia-
gram defining TkKn, there is a canonical map from the homotopy limit of the
bigger diagram to the homotopy limit of the subdiagram, which is a fibration
by Proposition 5.4.29. Putting this together, we get the Taylor tower for the
space of knots (modulo immersions) Kn, n ≥ 3:
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As usual, we set

T∞Kn = holim
k

TkKn.

(As in the case of the general Taylor tower in manifold calculus of functors,
we could have said lim instead of holim since this is a tower of fibrations; see
Example 8.4.11.)

From Theorem 10.3.1, we then have that, for n ≥ 4,

T∞Kn � Kn.

Remark 10.4.6 For k ≥ 2, Kn is the actual pullback of the punctured cubes
defining the stages TkKn. One has a natural map

Kn −→ lim
∅�S⊆{0,..,k}

Kn
S

for the same reason one has a map (10.4.4), but there is now also a map going
back. This is because one can reconstruct a knot from compatible punctured
knots Kn

i ; each once-punctured knot knows how to fill in k holes punctured in
the other knots and these filled-in pieces do not intersect. Contrast this with
the case k = 1 where the pieces of the knot filled in by each once-punctured
knot might intersect if one tries to reconstruct a knot, thereby not producing an
embedding. �

10.4.2 Cosimplicial model for the Taylor tower for long knots

In this section we describe the cosimplicial model for the Taylor tower for Kn

(and for Embc(R,Rn)). That this could be done was suggested in [GKW01,
Example 5.1.4] but was written down carefully in [Sin06, Sin09].

Recall the definition of the (ordered) configuration space Conf(p,M) of p
points in a manifold M from Example 5.5.6 and recall that Conf(0,M) = ∗,
Conf(1,M) � M, and Conf(2,Rn) � S n−1. It is then not hard to see that there
is an equivalence [Sin09, Proposition 5.15]

Embc(R \ ∪i∈S Ii, R
n) � Conf(|S | − 1,Rn) × S (|S |−1)(n−1). (10.4.5)

The equivalence is given by retracting each arc of the punctured knot to, say,
its midpoint. The midpoints are distinct since the punctured knot is an embed-
ding, so the first space in the product in the target is a configuration space.
The second factor comes from the fact that embeddings contain derivative data
(kept track of by the immersion part of embeddings), so what is left is not
just a point but also a derivative vector. Also note that, when S = 0 = {0},
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Conf(|S | − 1,Rn) = Conf(0,Rn) � ∗. This corresponds to the fact that, when
one hole is punctured in the long knot, the resulting arcs are retracted to ±∞.
The tangent vector is prescribed there – it is the vector �e = (1, 0, . . . , 0) point-
ing in the direction of the standard embedding ε or R in Rn – since long knots
are linear outside a compact set.

Similarly we have

Kn
S � Conf(|S | − 1,Rn). (10.4.6)

This is because modding out by immersions takes out the tangential data cap-
tured by the spheres. One of the reasons one often works with Kn

S rather than
with Embc(R,Rn) is precisely because of this simplification.

The restriction maps “add a point”, as pictured in Figure 10.2. To make this
addition of points precise, we need to introduce a certain compactification of
the configuration space Conf(k,Rn).

Denote a configuration in Conf(p,Rn) by (x1, x2, . . . , xp). For 1 ≤ i < j <
k ≤ p, consider the maps

φi j : Conf(p,Rn) −→ S n−1 (10.4.7)

(x1, x2, . . . , xp) −→ x j − xi

‖x j − xi‖
and

δi jk : Conf(p,Rn) −→ [0,+∞] (10.4.8)

(x1, x2, . . . , xp) −→ ‖xk − xi‖
‖x j − xi‖ .

(Here [0,+∞] is the one-point compactification of the positive reals.) Let

φ =(φi j)1≤i< j≤p,

δ =(δi jk)1≤i< j<k≤p.

Figure 10.2 Restriction maps “add a point”.
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Definition 10.4.7

● The Fulton–MacPherson compactification of Conf(p,Rn), denoted by
Conf[p,Rn], is the closure of the image of the map

φ × δ : Conf(p,Rn) −→
∏

1≤i< j≤p

S n−1 ×
∏

1≤i< j<k≤p

[0,+∞]. (10.4.9)

● The Kontsevich compactification of Conf(p,Rn), denoted by Conf〈p,Rn〉, is
the closure of the image of the map

φ : Conf(p,Rn) −→
∏

1≤i< j≤p

S n−1. (10.4.10)

These definitions were independently made in [Kon99, KS00] (see also the
correction by [Gai03, Section 6.2]) and in [Sin04], although Sinha was the
first to explore the difference between the two spaces and to show that they are
both homotopy equivalent to Conf(p,Rn) [Sin04, Theorem 5.10] as well as to
the original Fulton–MacPherson compactification [AS94, FM94] (which uses
blowups along diagonals in Rkn).

The main feature of the definitions is that configuration points are allowed to
collide while the direction of collision is kept track of (by the various spheres
S n−1). In addition, the relative rates of approach are recorded in Conf[p,Rn]
(by the copies of [0,+∞]). The space Conf〈p,Rn〉 can be thought of as the
quotient of Conf[p,Rn] by subsets of three or more points colliding along a
line. Since the configuration space itself does not appear in the target (some
versions of the maps in Definition 10.4.7 in the literature also contain an
inclusion factor), both Conf[p,Rn] and Conf〈p,Rn〉 are compactifications of
Conf(p,Rn) modulo the action of the group of translations and positive dilation
of Rn.

The Fulton–MacPherson compactification Conf[p,Rn] is a manifold with
corners (an n-dimensional manifold with corners that are modeled on [0,∞)k×
Rn−k as k varies). It can be defined for configurations in any manifold M
and it is compact if M is compact (so our definition above does not pro-
duce a compact manifold even though the term “compactification” is used;
another, perhaps better, term used by Sinha is “completion”). The stratification
of Conf[p,Rn] has nice connections to certain categories of trees [Sin04, Sec-
tion 2]. An important observation is that Conf[p,R] is precisely the Stasheff
associahedron Ap−2 [Sta63].

The Kontsevich compactification Conf〈p,Rn〉 is not a manifold with corners
(as mentioned above, it is just a quotient of one) but it turns out that this is
the version that lends itself to a cosimplicial structure as follows. Recall the
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standard inclusion ε of R in Rn from Section 10.4.1. Let �e be the unit vector
along this inclusion, namely �e = (1, 0, . . . , 0). Then we have the coface maps

di : Conf〈p,Rn〉 −→ Conf〈p + 1,Rn〉, 0 ≤ i ≤ p + 1, (10.4.11)

which are essentially given by repeating the ith configuration point, that is,
repeating all the vectors indexed on the ith point. The vector between the ith
and its double, which is now the (i + 1)th point in Conf〈p + 1,Rn〉, is taken to
be �e. The first and last coface maps correspond to “doubling at ±∞”. This can
be made precise by considering “knots in a box”, namely embeddings of I in
I ×Rn−1 with endpoints going to prescribed points in {0} ×Rn−1 and {1} ×Rn−1

with prescribed derivatives. The spaces of such knots and long knots as we
have defined them are homotopy equivalent. Then doubling at infinity means
doubling at the endpoints of the knot in the box. See [Sin09] for details.

We also have codegeneracies

si : Conf〈p + 1,Rn〉 −→ Conf〈p,Rn〉, 0 ≤ i ≤ p, (10.4.12)

which simply forget the ith configuration point, that is, forget all the vectors
indexed on the ith point.

Proposition 10.4.8 ([Sin09, Corollary 4.22]) For n ≥ 3, the collection of
spaces

{Conf〈p,Rn〉}p≥0

with coface and codegeneracy maps as described above, forms a cosimplicial
space denoted by (Kn)•.

Remarks 10.4.9

1. Using the Fulton–MacPherson, rather than Kontsevich, compactification
would not result in an honest cosimplicial space, but only one up to homo-
topy. More details about this issue (as well as a pictorial explanation of it)
can be found at the end of [Sin04].

2. The above definition of (Kn)• can also be made for configurations with
vectors attached to them (this is in fact what Sinha’s original construction
has; see [Sin04, Corollary 6.8] or [Sin09, Corollary 4.22]). In that case,
we get a cosimplicial space Embc(R,Rn)• whose Tot tower would model
ordinary long knots knots Embc(R,Rn) and not knots modulo immersions.

�

The motivation for this cosimplicial space of course comes from the definition
of the Taylor tower for Kn whose stages are homotopy limits of the punctured
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cubical diagram. On the other hand, from Section 9.4 (and in particular from
Theorem 9.4.4), we know how to construct punctured cubes from truncations
of a cosimplicial space. So, for example,

gives rise to the punctured cube

where the maps are as in Example 9.4.3. Because of the equivalence (10.4.6),
the spaces in this cube are homotopy equivalent to the spaces in the cube

(10.4.13)

What remains to be shown is that this spacewise equivalence is an actual equiv-
alence of diagrams. This is essentially the argument given by Sinha in [Sin09].
In particular, we have the following.

Theorem 10.4.10 ([Sin09, Section 6]) There is an equivalence, for all k ≥ 0
and n ≥ 3,

TkKn � hoTotk(Kn)•,

where hoTotk(Kn)• denotes the kth partial (homotopy invariant) totalization of
(Kn)• (see Definition 9.1.10 and the discussion following (9.1.10)).
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The same result is true when Kn is replaced by Embc(R,Rn), and, in fact, the
statements in [Sin09] are for the latter space (the proofs are the same in both
cases).

Taking the inverse limit over k, we then have, for n ≥ 3,

T∞Kn � hoTot(Kn)•.

From Theorem 10.3.1 we further have that, for n ≥ 4, Kn � T∞Kn, and so we
have the following.

Theorem 10.4.11 (Cosimplicial model for the space of knots) For n ≥ 4, the
cosimplicial space (Kn)• models the space of knots modulo immersions Kn,
that is, there is an equivalence

Kn � hoTot(Kn)•.

The same is true for the cosimplicial space Embc(R,Rn)• modeling Embc

(R,Rn) for n ≥ 4.
The map from the equivalence in Theorem 10.4.11 is essentially given as a

collection of compatible evaluation maps. Namely, given f ∈ K3, one has a
map, for each p ≥ 0,

evk(k) : Δp −→ Conf〈p,Rn〉 (10.4.14)

given by evaluating a knot on a point in the simplex (thought of as p points on
the interval). This map has been studied in detail in [Sin06, Section 5.2]. These
maps are compatible with the cofaces and codegeneracies in (Kn)• and so one
gets a map

ev : Kn −→ hoTot(Kn)•. (10.4.15)

This map is the same up to homotopy as the canonical map

Kn −→ TkKn (10.4.16)

from (10.4.4) [Sin06, Theorem 5.13].

Remark 10.4.12 In light of Example 9.2.3, it is not surprising that (Kn)•

models the space of knots. Namely, suppose we wanted to modify the con-
struction described in Example 9.2.3 so that it applies to embeddings of the
interval in Rn with fixed behavior at endpoints rather than maps (thinking of
ΩRn as the space of such maps). The problem is that we would need to impose
an injectivity condition on the cofaces since embeddings are injective. But this
is achieved precisely by replacing (Rn)k as the kth space in the cosimplicial
model from Example 9.2.3 by Conf(k,Rn). Another way to think about that is
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that replacing ΩX by the space of embeddings in the map (9.2.3) changes the
codomain of that map to Conf(k, X). The compactificion is then necessary so
that the doubling maps from (9.2.1) make sense. �

10.4.3 The Kontsevich operad and the Taylor tower
for long knots

Sinha [Sin06] also noticed that another way to arrive at (Kn)• is via the
Gerstenhaber–Voronov/McClure–Smith framework discussed in Section A.4
(the relationship between operads and cosimplicial spaces has been relegated
to the appendix since it is peripheral to the rest of this book and is only
used here). Namely, the spaces Conf〈p,Rn〉, n ≥ 1, form an operad called
the Kontsevich operad, denoted by KOn (this was first noticed by Kont-
sevich [Kon99]) in which ◦i operations are essentially given by making a
configuration “infinitesimal” and inserting it into the kth point of another
configuration. The details of this procedure are spelled out, with pictures, in
[Sin06, Section 4].

Fulton–MacPherson compactifications Conf[p,Rn] (see Definition 10.4.7)
also form an operad in the same way the Kontsevich compactifications do.
For a detailed reference of this construction, see [LV14, Chapter 5]. A nice
summary of the history of how compactified configurations have been used to
define operads can be found at the beginning of [Sin06, Section 4]. It is also not
hard to see that these two operads are homotopy equivalent (this is immediate
from the fact that the two compactifications are homotopy equivalent [Sin04,
Theorem 5.10] and that the operad structure maps are the same). One also has
the following.

Proposition 10.4.13 ([Sal01, Proposition 4.9]) The little n-cubes operad Cn

and the Fulton–MacPherson operad (and hence the Kontsevich operad) are
weakly equivalent as topological operads.

One of the main differences between the Kontsevich and the Fulton–
MacPherson operads is that Proposition 10.4.14 is true only for the former.

Recall Definition A.4.8. Then we have the following.

Proposition 10.4.14 The Kontsevich operad KOn is an operad with multi-
plication, that is, KOn admits a morphism

Ass −→ KOn.
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Sketch of proof The morphism is given as follows: spaces Conf〈p,R〉 are
homeomorphic to the symmetric groups Σp on p letters (with discrete topol-
ogy). One can take the component corresponding to the linearly ordered
configuration on R. Since colinear configurations are identified in the Kont-
sevich compactification, we thus get an operad KO1

lin in which every space is
equivalent to the one-point space. Hence

KO1
lin � Ass.

On the other hand, we have the inclusion e : R → Rn from the beginning of
Section 10.4.1, which induces a morphism of operads

e∗ : KO1
lin � Ass −→ KOn

sending a configuration in R to the configuration in the image of e. �

One can therefore associate a cosimplicial space (KOn)• to the operad KOn

as in Definition A.4.10. There is an obvious relation between the cosimplicial
space (Kn)• from Proposition 10.4.8 and (KOn)•; the spaces comprising the
two operads are the same and the cofaces and codegeneracies are given by
doubling and forgetting configuration points. The only difference is in the first
and the last coface map, but the two cosimplicial spaces are likely homotopy
equivalent. In any case, their totalizations, at least for n ≥ 4, are the same, as
we have a result for KOn that is identical to Theorem 10.4.10.

Theorem 10.4.15 ([Sin06, Theorem 1.1]) There is an equivalence, for all
k ≥ 0 and n ≥ 3,

TkKn � hoTotk(KOn)•,

and in particular

T∞Kn � hoTot(KOn)•.

Again from Theorem 10.3.1 we thus further have the following.

Theorem 10.4.16 ([Sin06, Corollary 1.2]) For n ≥ 4, the cosimplicial space
(KOn)• models the space of knots modulo immersions Kn, that is, there is an
equivalence

Kn � hoTot(KOn)•.

Combining this with Corollary A.4.12, we immediately have the following.

Corollary 10.4.17 For n ≥ 4, the space of long knots Kn is a two-fold loop
space.
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The two-fold delooping of Kn has recently been described as the space of
derived morphisms between the little cubes operads C1 and Cn in [DH12,
TT14].

Remark 10.4.18 Operad actions on knot spaces were also studied by Budney
[Bud07, Bud10], although the motivation there does not come from manifold
calculus or cosimplicial spaces. A variant of Corollary 10.4.17 for ordinary
knots (not modulo immersions) and framed knots was proved by Salvatore in
[Sal06].

10.4.4 Spectral sequences for spaces of long knots

One way to try to compute the homotopy and homology of Kn (or
Embc(R,Rn)) for n ≥ 4 is to use the spectral sequences associated to (the
fibrant replacements of) either of the cosimplicial spaces (Kn)• or (KOn)• from
the previous section. We choose to work with the latter cosimplicial space since
that is the one mostly considered in the literature and in particular in [LTV10]
where most of the results stated in this section come from. However, the reader
should bear in mind that everything we say in this section can be repeated with
(Kn)• in place of (KOn)•.

Keeping in mind that spaces Conf〈p,Rn〉 are homotopy equivalent to ordi-
nary configuration spaces Conf(p,Rn), we have from (9.6.11) that the E1 page
for the homotopy spectral sequence associated to (KOn)• is

E1
p,q = πq(Conf(p,Rn)) ∩

p−1⋂
i=0

ker(si
∗), (10.4.17)

where the si are the forgetting maps from (10.4.12). Similarly, from (9.6.15)
we have that the homology spectral sequence for (KOn)• starts with

E1
p,q = Hq(Conf(p,Rn)) ∩

p−1⋂
i=0

ker(si
∗). (10.4.18)

These spectral sequences are defined for n ≥ 3, but they converge to
hoTot(KOn)• for n ≥ 4 because that is when they have a steep vanishing line
(more on this later). By Theorem 10.4.11, they then converge to π∗(Kn) for
n ≥ 4 (because of the Goodwillie–Klein convergence of the Taylor tower; see
Theorem 10.3.1) and to H∗(Kn) for n ≥ 4 (because of the Weiss convergence
of the Taylor tower on homology; see Remark 10.3.2).

The homology spectral sequence had appeared before the approach of study-
ing knot spaces through manifold calculus of functors was developed. Vassiliev



10.4 Spaces of knots 567

had in [Vas90] studied the discriminant set, that is, the complement of the set
of long knots in the space of all smooth maps from R to Rn with fixed behavior
at infinity. This set consists of maps with singularities and is stratified in a way
that yields a natural filtration from which a homology spectral sequence can
be constructed. As is the case for the homology spectral sequences for (Kn)•

from (10.4.18), this Vassiliev spectral sequence is defined for n ≥ 3, but it only
converges to H∗(Kn) when n ≥ 4 [Vas90, Section 6.6].

The relationship between the Vassiliev spectral sequence and the one from
(10.4.18) was established by Turchin, who studied the combinatorics and per-
formed many computations in the Vassiliev spectral sequence [TT04, TT06,
TT07]. He proves the following.

Proposition 10.4.19 ([TT07, Proposition 0.1]) For n ≥ 3, the E2 page of
the homology spectral sequence associated to (KOn)• is isomorphic (through
a regrading) to the E1 page of the Vassiliev homology spectral sequence.

This statement was first proved for Embc(R,Rn) [TT04]. The result stated
above is a consequence of [TT07, Theorem 8.4] and [TT06, Proposition 3.1
and Lemma 4.3].

Vassiliev has conjectured a stable splitting of the resolved discriminant
which would imply that his spectral sequence collapses at the E1 page [Vas99].
This collapse was proved rationally by Kontsevich in dimension n = 3 along
the diagonal E1

p,p. The proof uses the famous Kontsevich Integral which pro-
duces all finite type invariants of classical knots K3 [Kon93] (more about
these will be said at the end of the section). In [CCRL02], Cattaneo, Cotta-
Ramusino, and Longoni proved the collapse along the main diagonal for n ≥ 4,
but the collapse everywhere was finally established in [LTV10]:

Theorem 10.4.20 ([LTV10, Theorems 1.1 and 1.2]) The homology spec-
tral sequence associated to (KOn)• collapses at the E2 page rationally for
n ≥ 4. By Proposition 10.4.19, the Vassiliev homology spectral sequence thus
collapses at the E1 page rationally for n ≥ 4.

Remark 10.4.21 The same result for n = 3 was recently announced
independently in [Mor12] and [ST14]. �

The main ingredient in the proof of Theorem 10.4.20 is the (stable) formality
of the little n-cubes operad, which says that singular chains on the little n-
cubes operad is quasi-isomorphic, over the real numbers, to its homology as
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operads of chain complexes [Kon99, Tam03] (see also [LV14]). This applies
to the Kontsevich operad and one can then use the following general result:

Proposition 10.4.22 ([LTV10, Proposition 3.2]) If a cosimplicial space X•

is stably formal over some field of characteristic zero, then the Bousfield–Kan
homology spectral sequence for X• collapses at the E2 page over any field of
characteristic zero.

The reason this is true is essentially that the vertical differential in the spectral
sequence associated to a formal cosimplicial space can be replaced by the zero
differential.

The little n-cubes operad also turns out to be coformal, that is, rationally
determined by its homotopy Lie algebra [NM78] (formality in turn says that
the rational homotopy type is determined by the cohomology algebra). This, in
conjunction with Theorem 10.4.20, leads to the collapse of the rational homo-
topy spectral sequence associated to (KOn)• [ALTV08] (this was reproved in
[LT09] using Koszul duality).

Theorem 10.4.20 thus gives a description of any rational homology group
of the space of long knots modulo immersions in codimension 3 or more.
Further, the homology spectral sequence for (KOn)• has various useful com-
binatorial features. One can exploit the fact that the cohomology and rational
homotopy of configuration spaces are well known [Arn69, CLM76, Coh73,
Coh95, Koh02] and can even be expressed pictorially via chord diagrams.

With the combinatorics of configuration spaces in hand, it is in principle pos-
sible to compute any rational (co)homology group of a space of long knots in
dimension at least 4. However, the computations are difficult, and the spectral
sequence is still not very well understood. Turchin has taken the combinato-
rial investigation of the E2 term the farthest [TT04, TT06, TT07, TT10]. Other
results can be found in [CCRL02, Pel11, Sak08, Sak11, ST14]. The homo-
topy spectral sequence for (KOn)• was investigated, among other places, in
[LT09, SS02].

We finish with some comments on that special case of much interest –
that of classical long knots (modulo immersions) K3. Unfortunately, one
no longer has the Goodwillie–Klein comparison of Theorem 10.3.1, but the
Taylor tower still provides a lot of information about classical knot theory
and in particular about knot invariants. Namely, it was shown in [Vol06b]
that an algebraic version of the Taylor tower for K3 classifies real-valued
finite type knots invariants, which is a class of invariants conjectured to
separate knots. For introductory literature on finite type invariants, see for
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example [BN95, CDM12]. The connection between integral finite type invari-
ants and the genuine Taylor tower (not its algebraic counterpart) was studied in
[BCSS05, Con08], and there is currently evidence that the classification result
also holds in this case [BCKS14].

The fact that the algebraic Taylor tower classifies finite type invariants can
also be interpreted as the collapse of the homology spectral sequence associ-
ated to (KO3)• on the main diagonal, that is, in degree zero. It has recently been
shown that this spectral sequence in fact collapses everywhere [Mor12, ST14],
but this collapse cannot be related as easily to the homology and homotopy of
K3 as we could for K>3. One problem is that Theorem 10.3.1 is not known to
be true in this situation, so it is not known whether hoTot(KO3)• models K3.
In addition, the homology spectral sequence for (KO3)• has a vanishing line of
slope −1, which is not steep enough to deduce the convergence of the spectral
sequence. We thus only have maps

H∗(K3) −→ H∗(hoTot(KO3)•) −→
∞⊕

i=0

E2
i,∗+i,

and it is an open question whether they are isomorphisms. The right map is in
fact precisely an instance of the map (9.6.16) which is in general not known
to be an isomorphism. Nevertheless, the collapse of the spectral sequence still
potentially has many implications for our understanding of the topology of the
space of classical knots.



Appendix

This chapter is neither comprehensive nor thorough, but is merely in the service
of other content in this book.

A.1 Simplicial sets

The purpose of this section is both to supply the necessary machinery to define
homotopy (co)limits in Chapter 8 and to highlight some facts about simplicial
sets which are analogous to those in Chapter 9 and in particular in Section 9.4.
For more details about simplicial sets, see for example [GJ99, May92].

Let Δ be the cosimplicial indexing category (already introduced at the
beginning of Section 9.1) whose objects are the linearly ordered sets [n] =
{0, 1, . . . , n} and the morphisms are the order-preserving functions. Here we
will be interested in Δop which has the same objects and whose morphisms are
generated by faces and degeneracies, denoted by di and si. These satisfy the
relations

did j = d j−1di, i < j;

dis j =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
s j−1di, i < j;

Id, i = j, i = j + 1;

s jdi−1, i > j + 1;

(A.1)

sis j = s j+1si, i ≤ j.

Definition A.1.1 A simplicial space is a contravariant functor X• : Δ → Top
(i.e. a functor X• : Δop → Top). A based simplicial space is the same, only
we replace Top by Top∗. The space of n-simplices of X• is the set/space Xn =

X[n]. A map X• → Y• of simplicial sets/spaces is a natural transformation of
functors.

570
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The category Set is naturally a subcategory of Top (those spaces with the dis-
crete topology), and so a simplicial set is a functor whose codomain is Set.
Therefore when we speak of simplicial spaces from now on, this will implicitly
include the case of simplicial sets.

As was the case with cosimplicial diagrams, we write di and si in place of
X•(di) and X•(si) respectively when X• is understood. We also call di and si the
ith face and degeneracy maps respectively. For a simplex x ∈ Xn, we call dix
its ith face and say x is degenerate if there is an (n − 1)-simplex x′ such that
si(x′) = x for some i.

The following construction is the dual of the totalization of a cosimplicial
space (Definition 9.1.5).

Definition A.1.2 Given a simplicial space X• : Δop → Top, its geometric
realization (or classifying space) |X•| is the space

|X•| =
⎛⎜⎜⎜⎜⎜⎜⎝∐

n≥0

X[n] × Δn

⎞⎟⎟⎟⎟⎟⎟⎠
/(

(di(x), t) ∼ (x, di(t)), (si(x), t) ∼ (x, si(t))
)
.

One observation is that the degenerate simplices in a way do not con-
tribute to the realization, essentially because the equivalence relation says
that the non-degenerate simplices determine where the degenerate ones
must map. In other words, each degenerate simplex is equivalent to a non-
degenerate one; in fact it is the degeneracy of a unique non-degenerate
simplex (and the iterated degeneracy operator is unique as well). For more
details (with pictures) about how this follows from the equivalence relations,
see [Fri12, Section 4].

Remark A.1.3 Dually to Remark 9.1.6, the realization can be described as
a coequalizer (or coend of a bifunctor) as follows. For a simplicial space,
we have naturally associated to it a bifunctor X• × Δ• : Δop × Δ → Top.
Then

We leave it to the reader to define the maps a and b. �

One nice feature of the realization is that, for a simplicial set X•, |X•| is a CW
complex with one n-cell for each non-degenerate n-simplex of X• [May92,
Theorem 14.1]. Another useful result says that realization commutes with
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products, stated below. For a proof, see for example [May92, Theorem 14.3].
The product of two simplicial sets is defined levelwise, with the obvious faces
and degeneracies.

Theorem A.1.4 For X• and Y• simplicial sets, there is a homeomorphism (in
the category of compactly generated Hausdorff spaces)

|X• × Y•| � |X•| × |Y•|.

The collection of simplicial sets with maps (natural transformations) between
them forms a category, denoted by SSet. Realization is a functor from this
category to Top; that is, given a map f : X• → Y•, we have an induced map

| f | : |X•| −→ |Y•|. (A.2)

Remark A.1.5 The realization functor | − | has an adjoint (see Defini-
tion 7.1.18) called the total singular complex functor S . This is essentially
given by mapping the cosimplicial simplex into a space. That is, given a space
X, define Xn = Map(Δn, X). Precomposing with the cofaces di and codegen-
eracies si in the cosimplicial simplex yields the faces and degeneracies di and
si in S X. We leave it to the reader to check that S is the right adjoint to |− |. �

Remark A.1.6 (Čech complex) Given a space X and an open cover U of X,
one can also construct a simplicial space called the Čech complex, denoted by
Č(U), equipped with a canonical map |Č(U)| → X. It is a classical result of
Segal [Seg68] that the canonical map |Č(U)| → X is a homotopy equivalence
if X has a partition of unity subordinate to U. This result was extended in
[DI04] where it was proved that this map is a weak equivalence for any open
cover U of X. �

Because realization of a simplicial space is a colimit (compare the above
coequalizer to the one in (7.4.4)), it is not homotopy invariant. The most that
can be said in general is that there are maps

hocolim X• −→ |X•| −→ colim X•.

However, for a cofibrant simplicial space, namely one for which the latching
maps (see Definition 8.4.7)
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Ln(X•) =
n−1⋃
i=0

si(Xn−1) −→ Xn

are cofibrations, we have the following dual of Proposition 9.1.8.

Proposition A.1.7 ([DI04, Appendix A]) If X• is a cofibrant simplicial
space, then the natural map

hocolim X• −→ |X•|
is a homotopy equivalence.

Taking the coequalizer from Remark A.1.3 only over the injective maps [n] ↪→
[m] produces the fat realization of X•, denoted by ||X•||. This is the same as
dropping the degeneracies in a simplicial space and then taking the realization.
For such a semisimplicial space, we have the same statement as above: given an
objectwise weak equivalence of simplicial spaces X• → Y•, the induced map
of realizations ||X•|| → ||Y•|| is also an equivalence. In general, the simplicial
and semisimplicial realization are different, but we have the following result.
Recall the notion of a homotopy terminal functor from Definition 8.6.2.

Proposition A.1.8 The inclusion Δop
inj ↪→ Δop is homotopy terminal so that,

for a cofibrant simplicial space X•, the map

||X•|| −→ |X•|
is a homotopy equivalence.

The disadvantage of a semisimplicial realization is that it is typically very
large; even when X• is a constant simplicial space at a point, |X•| has a simplex
in each dimension.

Recall that Δ≤n is the full subcategory of Δ whose objects are the sets [k] for
0 ≤ k ≤ n. Here is a definition that is analogous to Definition 9.1.13.

Definition A.1.9 The nth truncation of a simplicial space X• is the composite
functor

trnX• : Δ≤n ↪→ Δ X•−→ Set /Top .

The truncations trnX• of X• themselves gives rise to simplicial spaces as
follows.
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Definition A.1.10 The n-skeleton of a simplicial space X• is the simplicial
space sknX• such that sknXk = Xk if k ≤ n and for k > n it contains precisely
the degenerate subspaces of X•.

Remark A.1.11 In analogy with Remark 9.1.14, the n-skeleton is really a
(left) Kan extension and it is (left) adjoint to the truncation functor. �

Note that sknX• ⊂ skn+1X•, in the sense that sknXk ⊂ skn+1Xk for all k. Dually
to (9.1.8), the union of the n-skeleta of X• is equal to X•. More precisely, in
analogy with (9.1.8) and Proposition 9.1.17, we have the following.

Proposition A.1.12 If X• is a simplicial space, then colimnsknX• is naturally
isomorphic to X•.

The realization |sknX•| can be built out of |skn−1X•| using a pushout diagram
that is dual to the one appearing in the proof of Proposition 9.1.19. For details,
see [GJ99, Chapter VII, Proposition 1.7]. However, if X• satisfies certain con-
ditions, that pushout square simplifies. (These conditions are always satisfied
in the case of the simplicial replacement diagram, defined below, which is the
case we care about most.) Namely, the n-skeleton is roughly built out of the
(n − 1)-skeleton by attaching the non-degenerate simplices, but this cannot be
done as easily as for simplicial sets since, for a simplicial set, one would in each
Xn use the disjoint union over all non-degenerate simplices, but, for spaces, this
would produce a discrete set of non-degenerate simplices which is usually not
discrete in Xn. One thus defines a simplicial space X• to be degeneracy-free if
each Xn contains a subspace Nn as a direct summand that represent the non-
degenerate part of Xn. This subspace is then used for building the n-skeleton
out of the (n−1)-skeleton. For a precise definition and further explanation, see
[DI04, Definition A.4] (also see [GJ99, Chapter VII, Definition 1.10]).

We then have the following statement, the details of which can be found in
[GJ99, Chapter 7, Equation (3.10)] (also [DI04, Equation (A.1)]).

Proposition A.1.13 The commutative diagram
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is a pushout. Therefore, since the left vertical map is a cofibration by
Proposition 2.3.9 (and since ∂Δn → Δn is a cofibration), it follows by
Proposition 2.3.15 that the right vertical map is also a cofibration.

The following is the dual of Proposition 9.1.17 and is the analog of Proposi-
tion A.1.12 on the level of realizations.

Proposition A.1.14 ([GJ99, Chapter 7, Equation 3.9]) For a simplicial space
X•, there is a natural homeomorphism

|X•| � colim (|sk0X•| −→ |sk1X•| −→ · · · ) .

An augmentation of a simplicial space X• is a space X−1 and a map X0 → X−1

that coequalizes the two faces from X1 to X0. For an augmented simplicial
space, there is also a natural map

|X•| −→ X−1 (A.3)

that is dual to that in (9.1.18).
For a diagram F : I → Top, we can construct its simplicial replacement∐
• F. The nth space of this simplicial space is given by

�nF =
∐

i0
α0←i1

α1←i2
α2←···αn−1← in

F(in).

We leave it to the reader to fill in what the face and degeneracy maps must be.
We then have this analog of Theorem 9.3.3.

Theorem A.1.15 (Simplicial model for the homotopy colimit) For F : I →
Top a small diagram of spaces, there is a homeomorphism

hocolim
I

F � |�•F| .

We then also have the dual of Proposition 9.3.4 with the dual proof that uses
augmentations mentioned above as well as the dual of Proposition 9.1.25
whose formulation we leave to the reader.

Proposition A.1.16 Suppose I is a small category with final object i1, and
let F : I → Top be a diagram of spaces. Then the map

F(i1) −→ hocolim
I

F

is a homotopy equivalence.
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We invite the reader to formulate the duals of Proposition 9.3.7 and
Corollary 9.3.8.

Combining Proposition A.1.14 and Theorem A.1.15, we thus have that,
given a diagram of spaces F, there is a tower of cofibrations

|sk0 �• F| −→ |sk1 �• F| −→ · · · (A.4)

whose (homotopy) colimit is hocolim F. One might wonder what the cofibers
of this tower are, in analogy with the description of the fiber of the totaliza-
tion tower from Proposition 9.1.19. While that result gives the fibers for any
cosimplicial space, below we give the cofibers for the special case of simpli-
cial replacement of a diagram and leave the general case to the reader. Recall
that Bn(I) denotes the set of n-simplices in B•I and ndBn(I) denotes the set of
non-degenerate n-simplices, namely the strings of length n without the identity
maps.

Proposition A.1.17 For a diagram F : I → Top, the cofibers of the
associated tower of cofibrations from (A.4) are given as∐

In∈ndBn(I)

ΣnF(in)+.

Proof The simplicial replacement is always degeneracy-free [Dug01, Proof
of Lemma 2.7] and so we have the pushout square from Proposition A.1.13:

where Nn is the non-degenerate subspace of Xn. The space Xn, in turn, is the
degree n part of the simplicial replacement of the diagram F and it is thus the
coproduct indexed by Bn(I) of F(in). Then Nn is a subcoproduct of that; it
is the coproduct, indexed by ndBn(I), of F(in). The above square is thus the
same as

The cofiber of the right vertical map is what we are interested in. That map is
a cofibration since the left vertical map is and the square is a pushout. Thus
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the cofibers of the two vertical maps are homeomorphic, and the left ones are
those we can compute, using Example 2.4.13:∐

In∈ndBn(I)

Δn/∂Δn ∧ F(in)+.

But since Δn/∂Δn = S n (the sphere has a natural basepoint given by the col-
lapsed boundary of the n-simplex) and smashing with the sphere is the same
as suspending, the above is the same as∐

In∈ndBn(I)

ΣnF(in)+. �

Example A.1.18 (Homology spectral sequence of a homotopy colimit) We
can use Proposition A.1.17 to set up a homology spectral sequence for
the homology of the homotopy colimit of a diagram F. In particular, we
can apply the spectral sequence associated to a tower of cofibrations from
Proposition 9.6.10 to the tower from (A.4) so that we get

E1
p,q = Hq+p

(
cofiber

(∣∣∣skp−1 �• F
∣∣∣ −→ ∣∣∣skp �• F

∣∣∣)) .
But this cofiber has been computed in Proposition A.1.17 and we have

E1
p,q = Hq+p

⎛⎜⎜⎜⎜⎜⎜⎜⎝ ∐
Ip∈ndBp(I)

ΣpF(ip)+

⎞⎟⎟⎟⎟⎟⎟⎟⎠ � ⊕
Ip∈ndBp(I)

Hq(F(ip)+).

The first differential d1 is the alternating sum of the maps induced on homology
by the face maps in �•F.

In the special case when F is a punctured cube, this spectral sequence
reduces precisely to the one encountered in Proposition 9.6.14. �

Recall the functor cn : P0([n]) → Δ from Definition 9.4.1. Here is the definition
that is dual to Definition 9.4.2.

Definition A.1.19 Given a simplicial space X•, the punctured (n + 1)-cube
associated to (the nth truncation of) X• is the pullback

c∗n(X•) = X• ◦ cn : P0([n]) −→ Top .

The contravariance of X• means the puncture is in the final entry in the cube.
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Example A.1.20 Let n = 2. Given a simplicial set X•, we obtain the
following punctured 3-cube:

�

Here is the analog of Theorem 9.4.4.

Theorem A.1.21 For a simplicial space X•, there is a weak equivalence

|sknX•| � hocolim
P0([n])

(X• ◦ cn).

In analogy with Remark 9.4.5, we have that, for an augmented simplicial space,
the question of the connectivity of the map |sknX•| → X−1 is the same as the
question of how cocartesian the cubical diagram

X• ◦ cn −→ X−1

is.
We conclude this section by observing that the dualization of Section 9.5 is

straightforward and we leave it to the reader.

A.2 Smooth manifolds and transversality

Although purely homotopical arguments are given in this book whenever pos-
sible, we still like to (and sometimes need to) invoke “dimension counting”
arguments from the smooth category. We give proofs of the Blakers–Massey
Theorem and its generalizations that utilize such arguments, though we also
present a purely homotopy-theoretic proof. Several of our applications (see
Examples 4.2.19, 4.2.20, 6.2.11, 6.2.12, and 6.2.14) of the Blakers–Massey
theorem are for smooth manifolds, and for these examples we need some of
the material from this section. We also need some of it in our discussion on
manifold calculus in Section 10.2, particularly in Section 10.3.
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At their heart, transversality arguments are an expression about our intu-
ition regarding dimension. This intuition is developed from the study of affine
spaces, where, for instance, generically the intersection of a k-dimensional
affine set and an l-dimensional affine set in an m-dimensional affine set is an
affine set of dimension m−k−l. In particular, they will generically not intersect
at all when k + l < m. Although we claim such arguments are often intuitive,
this is not to say that the theory behind them is not difficult or subtle.

As usual in this Appendix, this section is light on explanation and empha-
sizes definitions and results, sometimes not expressed in their most powerful
incarnation, but rather in a way suited to how we use them. The reader may
wish to consult [GG73], [Kos93], and [Lee03] for further details. Above
all, we assume the reader is already familiar with smooth manifolds. We
begin with a few words about handle decompositions of smooth manifolds,
smooth approximation of continuous maps, and then talk about regular values
and transversality before moving on to discuss jet bundles and the Whitney
topology, which sets the stage for the Thom Transversality Theorem, Theo-
rem A.2.19. More details for much of the material in this section can be found
in [GG73, Hir94, Lee03, Mil63].

A.2.1 Handle decompositions

Handle decompositions are not related to the rest of the material in this section,
but they are used in our discussion of manifold calculus in Section 10.2. A
handle decomposition of a smooth manifold is the smooth analog of a CW
structure on a topological space. This gives us a refined notion of dimension in
the following sense. Suppose N is a smooth manifold of dimension n and Q ⊂
N is a smooth closed submanifold of dimension q. A tubular neighborhood T
of Q has the structure of a manifold of dimension n, but for many purposes
we may treat T as a manifold of dimension q. We illustrate the uses of this
principle in several places, including Theorems 10.2.14, 10.2.28, 10.3.4, and
10.3.6.

Definition A.2.1 Let m be a fixed non-negative integer. For each 0 ≤ j ≤ m,
we let H j = Dj × Dm− j and refer to H j as a j-handle, where j is called the
handle index.

Definition A.2.2 Let L be a smooth m-dimensional manifold with boundary
∂L. Let e : ∂Dj × Dm− j → ∂L be a smooth embedding. The quotient space
L ∪e H j is referred to as L with a j-handle attached, and we call this process
attaching a j-handle to L.
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Attaching a j-handle to L in this way is analogous to attaching a j-cell to L in
the CW sense.

Definition A.2.3 A handle decomposition for a smooth compact m-
dimensional manifold M is a nested sequence

M−1 = ∅ ⊂ M0 ⊂ M1 ⊂ · · · ⊂ Mm = M,

where Mj is obtained from Mj−1 by attaching handles of index j.

Given a handle decomposition of a smooth manifold M, we may refer to M as
a handlebody.

Theorem A.2.4 Let M be a smooth closed manifold. Then M admits a handle
decomposition.

This can be proved using Morse theory. The (non-degenerate) critical points of
index j for a smooth function f : M → R correspond with handles of index j.

Definition A.2.5 For a smooth compact m-dimensional manifold M, we say
M has handle dimension j if j is the least positive integer such that M admits
a handle decomposition with handles of index at most j.

The m-dimensional manifold H j = Dj×Dm− j is a manifold with corners, since
∂H j = ∂Dj×Dm− j∪∂Dj×∂Dm− j D j×∂Dm− j. The union is taken along the “corner
set” ∂Dj × ∂Dm− j. This is the basic example of a “smooth manifold triad”.
Roughly speaking a smooth manifold triad is a triple (M, ∂0M, ∂1M) consisting
of a smooth manifold M with boundary ∂M decomposed as ∂M = ∂0M∪∂1M,
where the union is taken along a “corner set” ∂0M ∩ ∂1M. This corner set
should have the structure of a smooth manifold of dimension m− 2. We do not
need a precise definition for the purposes of this text and we refer the reader to
[GW99, Section 0] for more details.

A.2.2 Jet bundles and the topology on spaces of smooth maps

We will use jet bundles to define the topology of the space of smooth maps
C∞(M,N) between smooth manifolds M and N. We use separate notation
to distinguish it from the ordinary space of maps Map(M,N) (see Defini-
tion 1.2.1). We compare this topology with the compact open topology below
in Theorem A.2.12. Our main reference for material in this section is [GG73],
and the following is Chapter 2, Definition 2.1 there.
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Definition A.2.6 Let M and N be smooth manifolds and x ∈ M a point, and
suppose f , g : M → N are smooth maps.

1. f has zeroth order contact with g at x if f (x) = g(x) = y. We write f ∼0 g
at x.

2. f has first order contact with g at x if f has zeroth order contact with g at x
and Dx f = Dxg as maps TxM → TyN. We write f ∼1 g at x.

3. f has kth order contact with g at x if D f : T M → T N has (k − 1)th order
contact with Dg at every point in TxM. In this case we write f ∼k g at x.

4. Let Jk(M,N)(x,y) denote the set of equivalence classes of the relation ∼k at
x on the space of maps f : M → N such that f (x) = y.

5. Let Jk(M,N) =
⊔

(x,y)∈M×N Jk(M,N)(x,y), and call an element σ ∈ Jk(M,N)
a k-jet from M to N.

6. Each σ ∈ Jk(M,N) is an element of Jk(M,N)(x,y) for some pair (x, y) ∈ M ×
N, and we call x the source of σ and y the target, and we let α : Jk(M,N) →
M and β : Jk(M,N) → N denote the source and target maps respectively.

Given a smooth map f : M → N we have a map jk f : M → Jk(M,N) called
the k-jet of f , whose value at x is the equivalence class of f in Jk(M,N)(x, f (x)).
We have J0(M,N) = M × N and j0 f = (x, f (x)) is the graph of f . In fact
there is a map jk : M × C∞(M,N) → Jk(M,N) which sends (x, f ) to jk f (x). A
naive way of thinking about this map is that it associates the pair (x, f ) to the
Taylor polynomial of degree k at x. In fact, by [GG73, Chapter II, Corollary
2.3], f ∼k g at x if and only if the Taylor expansions of f and g at x of order k
agree.

If m and n are the dimensions of M and N respectively, then the k-jet space
Jk(M,N) is a smooth manifold of dimension m + n + dim(Bk

n,n), where Bk
m,n is

the direct sum of n copies of the vector space of polynomials of degree at most
k in m variables.

We now define the topology on the space C∞(M,N) of smooth maps from
M to N.

Definition A.2.7 ([GG73, Chapter II, Definition 3.1]) With M and N as
above, fix a non-negative integer k. For a subset U ⊂ Jk(M,N) let

B(U) = { f ∈ C∞(M,N) | jk f (M) ⊂ U}.

The family {B(U)}, where U ranges over all open sets of Jk(M,N), forms a
basis for a topology called the Whitney Ck topology, and we let Wk denote
the set of open subsets of C∞(M,N) in this topology. Note that Wk ⊂ Wl if
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k ≤ l. The Whitney C∞ topology on C∞(M,N) is the topology whose basis is
W = ∪∞k=0Wk.

One important property of the Whitney C∞ topology is that C∞(M,N) is a
Baire space in this topology: every countable intersection of open dense sets is
dense.

A.2.3 Smooth approximation of continuous maps

Every map between smooth manifolds is homotopic to a smooth map. The
following can be found, for example, in [Lee03, Theorem 6.15].

Theorem A.2.8 (Whitney Approximation Theorem) Let M be a smooth
manifold and f : M → Rk be continuous. Then for any positive continuous
function δ : M → R there exists a smooth map f ′ : M → Rk δ-close to f .

More generally we have the following (see e.g. [Lee03, Theorem 6.19]).

Theorem A.2.9 (Whitney approximation for manifolds) Suppose M and
N are smooth manifolds and f : M → N is a continuous map. Then f is
homotopic to a smooth map f ′ : M → N.

Here is a relative version. It can be found in [AGP02, page xxvii]; the authors
use it for precisely same reason we include it here – to get the connectiv-
ity of the inclusion map X → X ∪ en when attaching an n-cell to X (see
Example A.2.16).

Theorem A.2.10 Let f : U → V be a map between bounded open sets, U ⊂
Rm, V ⊂ Rn. Given any open sets W,W ′ such that W ⊂ W ′ ⊂ W ′ ⊂ U, there
exists g : U → V such that g|W : W → V is smooth, f |U−W′ = g|U−W′ , and f ∼ g
relative to U − W ′.

Remark A.2.11 This result can be applied to spaces which are only locally
manifolds. For instance, suppose X is a space and X∪ en is the result of attach-
ing an n-cell to X. Let f : P → X ∪ en be a map, where P is a smooth closed
manifold. Let x ∈ en be in the interior of the n-cell. We are going to change
f by a homotopy which is smooth in a neighborhood of f −1(x); the smooth
structure on the interior of en is the usual one inherited from Rn. Let V ⊂ e̊n

be an open set containing x, so that U = f −1(V) is an open set containing
f −1(x). We can clearly choose open sets W,W′ as in Theorem A.2.10 such that
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f −1(x) ⊂ W since f −1(x) is closed and therefore compact since P is compact.
By Theorem A.2.10, we can make a homotopy of f relative to U−W′ to a map
g which is smooth on W. �

Finally we compare the Whitney C∞ topology with the compact open topology.

Theorem A.2.12 Let M and N be smooth manifolds with M closed. The
inclusion C∞(M,N) → Map(M,N) is a weak homotopy equivalence.

Proof We sketch the idea, using the characterization of weak equiv-
alences given in Proposition 2.6.17. A map of pairs f : (Di, ∂Di) →
(Map(M,N),C∞(M,N)) is homotopic relative to the boundary to a map Di →
C∞(M,N) as follows. Using Theorem 1.2.7 f : Di → Map(M,N) corresponds
to a map f̃ : Di × M → N, and since M is compact and the inclusion
C∞(M,N) → Map(M,N) is open, there exists an open neighborhood T of
∂Di such that f |T×M : T × M → N is already smooth. Since T necessarily
contains a neighborhood of ∂Di of the form ∂Di × [0, ε), we may also assume
T = ∂Di × [0, ε) for some 0 < ε < 1. Let U ⊂ Di be an open disk of radius
1−ε/2 centered at 0 ∈ Di, so that U∪T = Di. We can clearly choose W,W ′ ⊂ U
as in Theorem A.2.10 with W a slightly smaller open disk and W∪T = Di. Now
apply Theorem A.2.10 to f̃ : Di × M → N to produce a map g̃ : Di × M → N
which is smooth and equal to f̃ on T ×M. This corresponds via Theorem 1.2.7
to the desired map g : Di → C∞(M,N). �

A.2.4 Transversality

Here we review some standard notions from differential topology. Our main
reference for this part is [GG73]. The following is Chapter II, Definition 1.11
there.

Definition A.2.13 Let M and N be smooth manifolds and f : M → N a
continuously differentiable map. Let x ∈ M, and let Dx f : TxM → T f (x)N
denote the derivative of f at x. Then

● corankDx f = min{dim M, dim N} − rankDx f ;
● x is called a critical point of f if corankDx f > 0;
● a point y ∈ N is called a critical value of f if it is the image of some critical

point of f ;
● a point y ∈ Y is called a regular value of f if f −1(y) contains no critical

points of f ; in particular, if y is not in the image of f then y is a regular value
of f .
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The following theorem is known as Sard’s Theorem, which can be found for
example in [GG73, Chapter 2, Theorem 1.12] (see also [Hir94] or [Mil63]). It
states that most values of f are regular values.

Theorem A.2.14 (Sard’s Theorem) Let M and N be smooth manifolds and
f : M → N a smooth map. Then the set of critical values of f has measure zero
in Y.

For the following consequence of Sard’s Theorem, see for example [GG73,
Chapter II, Corollary 1.14].

Corollary A.2.15 The set of all regular values of f is dense in N.

As a consequence, we can deduce the connectivity of the inclusion X →
X ∪ en. We first learned this proof from [BT82, Proposition 17.11].

Example A.2.16 Let X be a space, and f : ∂en → X be a map encoding
the attachment of an n-cell to X. Then the inclusion map X −→ X ∪ f en is
(n − 1)-connected.

To see this, let f : (Di, ∂Di) → (X ∪ en, X) be a map of pairs. Let V ⊂ e̊n

be an open set. As in Remark A.2.11 we may also assume f is smooth on
U = f −1(V). By Corollary A.2.15, there is a regular value x ∈ V for f . If
i < n, this means x is not in the image of f , so f may be considered as a map
Di → X∪en−{x}. X is a deformation retract of X∪en−{x}, and so f is homotopic
relative to ∂Di to X. This implies that X → X ∪ en is (n − 1)-connected. �

The remainder of the material in this portion of the appendix is here so that
we can showcase various applications of Theorems 4.2.3 and 6.2.3 to smooth
manifold theory.

Definition A.2.17 Let f : M → N be a smooth map of smooth manifolds,
Y ⊂ N a submanifold, and x ∈ M a point. We say f is transverse to Y at x,
written f � Y at x, if either f (x) � Y , or f (x) ∈ Y and

Dx f (TxM) + T f (x)Y = T f (x)N.

We say f is transverse to Y , written f � Y , if f is transverse to Y at every point
x ∈ X.

A straightforward and typical consequence of this is the following. Let
f : M → N be smooth and Y ⊂ N a submanifold. Suppose dim(M)+ dim(Y) <
dim(N), that is, dim(M) < codim(Y). Then f � Y if and only if f (M) ∩ Y = ∅.
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Theorem A.2.18 ([GG73, Chapter II, Theorem 4.4]) Let M and N be smooth
manifolds and Y ⊂ N a submanifold. Suppose f : M → N is smooth and f � Y.
Then f −1(Y) is a submanifold of M and codim( f −1(Y) ⊂ M) = codim(Y ⊂ N).
In fact, the normal bundle of f −1(Y) in M is the pullback of the normal bundle
of Y in N via the mapping f .

The following well-known result can be found, for example, in [GG73, Chapter
II, Theorem 4.9].

Theorem A.2.19 (Thom Transversality Theorem) Let M and N be smooth
manifolds and Y a submanifold of Jk(M,N). Let

TY = { f ∈ C∞(M,N) | jk f � Y}.

Then TY is the countable intersection of open dense sets in the Whitney C∞
topology, and if Y is closed, then TY is also open.

For the following consequence, see for example [GG73, Chapter II, Corollary
4.12]

Corollary A.2.20 (Elementary Transversality Theorem) Let M and N be
smooth manifolds and Y a submanifold of N. The subset of C∞(M,N) con-
sisting of those smooth maps transverse to Y is dense in C∞(M,N) and open if
Y is closed.

Additionally, we have the following relative version. Suppose U1 ⊂ U2 ⊂ M
are open sets such that U2 contains the closure of U1. Let f : M → N be
smooth and let V be any open neighborhood of f in C∞(M,N). Then there
exists g in V such that g is transverse to Y outside U2 and g = f on U1.

This follows from Theorem A.2.19 by choosing k = 0 so that J0(M,N) =
M × N, by noting that the inverse image of Y in M × N via the projection is
a submanifold of the product, and noting that if the 0-jet (i.e. graph) of j is
transverse to this inverse image, then f is transverse to Y .

Revisiting Example A.2.16, if Y = X ∪ en has the structure of a smooth
manifold of dimension n, then we can restate Example A.2.16 as saying that
the inclusion Y − {x} → Y is (n − 1)-connected. Here is a generalization.

Example A.2.21 Suppose M,N are manifolds with M ⊂ N a smooth closed
submanifold of codimension k. Then the inclusion N − M → N is (k − 1)-
connected.
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To see this, let f : (Di, ∂Di) → (N,N−M) be a map of pairs. By compactness
of M, there exists a neighborhood U of ∂Di such that f (U) ∩ M = ∅. By
Theorem A.2.10 the f : Di → N is homotopic relative to U to a map which
is smooth away from U (the details are similar to those found in the proof of
Theorem A.2.12). By abuse continue to call this map f . By Corollary A.2.20 f
is homotopic relative to ∂Di (in fact, relative to an open neighborhood of ∂Di)
to a map which is transverse to M. If i +m < n this means f misses M, so f is
homotopic to a map Di → N − M if i < n − m; in other words, the inclusion
N − M → N is (n − m − 1)-connected.

We end by discussing multijets and the relevant transversality theorem.

Definition A.2.22 Let Ms be the product of s copies of M, and recall the con-
figuration space Conf(s,M) ⊂ Ms as the set of all (x1, . . . , xs) ∈ Ms such that
xi � x j for all i � j. We then have the s-fold source map αs : (Jk(M,N))s →
Ms, and we define

Jk
s (M,N) = (αs)−1(Conf(s,M)).

The space Jk
s (M,N) obtains its manifold structure by being an open subset of

the manifold (Jk(M,N))s. Define jks f : Conf(s,M) −→ Jk
s (M,N) by

jks f (x1, . . . , xs) = ( jk f (x1), . . . , jk f (xs)).

For more details of the following, see for example [GG73, Chapter II, Theorem
4.13].

Theorem A.2.23 (Multijet Transversality Theorem) Let M and N be smooth
manifolds and Y a submanifold of Jk

s (M,N). Let

TY = { f ∈ Map(M,N) : jks f � Y}.
Then TY is the countable intersection of open dense sets in the Whitney C∞
topology, and if Y is compact, then TY is also open. �

A.3 Spectra

In this section we briefly review the notion of a spectrum and some basic
results about spectra. There are many good introductory sources on this mate-
rial [Ada78, Hat02, tD08]. We will mostly use spectra in Section 10.1 and,
as usual in this appendix, our goal is to present just enough basic definitions
along with motivating examples to provide for a self-contained exposition. One
important aspect of the theory of spectra that we will not pursue since we do
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not have use for it is that spectra “represent” cohomology theories. This was
alluded to in the discussion following Theorem 2.4.20.

Definition A.3.1 A spectrum E is a sequence of based spaces {En}n∈N
together with basepoint-preserving maps

ΣEn −→ En+1,

or equivalently by Theorem 1.2.9, maps

En −→ ΩEn+1.

If the latter maps are weak equivalences, then E is called an Ω-spectrum.

Example A.3.2 The spectrum ∗ whose every space is a point is an Ω-
spectrum. �

Example A.3.3 (Suspension spectrum) Given a based space X, let En = Σ
nX.

The structure maps ΣEn → En+1 are then identity and we have the suspen-
sion spectrum of X, denoted by Σ∞X. This is not necessarily an Ω-spectrum
since if ΣEn → En+1 is an equivalence, that does not necessarily imply that
the corresponding map En → ΩEn+1 is also an equivalence. If X = ∗, then
Σ∞∗ is precisely the spectrum ∗ from the previous example since the (reduced)
suspension of a point is a point. �

Example A.3.4 (Sphere spectrum) Setting X = S 0 in the previous example
gives an important special case of a suspension spectrum, namely the sphere
spectrum Σ∞S 0, which we will denote by S. Since ΣS n = S n+1, this spectrum
consists of spheres. �

Example A.3.5 (Eilenberg–MacLane spectrum) Suppose G is an abelian
group and set En = K(G, n), an Eilenberg–MacLane space (so K(G, n) has
no homotopy other than in dimension n, where πn(K(G, n)) � G). Using the
fact that, for any space X, πn+1(X) � πn(ΩX) (see (1.4.2)), we have a weak
equivalence

K(G, n) � ΩK(G, n + 1)

and we thus have an Ω-spectrum called the Eilenberg–MacLane spectrum,
denoted by HG. �

Example A.3.6 (Real and complex K-theory) Let O and U be the infinite-
dimensional orthogonal and unitary groups (direct limits of finite-dimensional
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orthogonal and unitary groups, which form sequences of inclusions). By Bott
periodicity, there are equivalences O → Ω8O and U → Ω2U, so this gives two
periodic Ω-spectra KO and KU, called complex and real K-theory (since these
spectra give rise to those two cohomology theories). �

A spectrum can be smashed with a space. That is, given a spectrum E and a
based space X, we can define the spectrum E ∧ X by

(E ∧ X)n = En ∧ X.

Recalling Example 1.1.16, we have

Σ(En ∧ X) = (ΣEn) ∧ X −→ En+1 ∧ X,

so the structure maps in E ∧ X are the product of stucture maps in E and the
identity map.

Suppose X is an n-connected space. By the generalization of the Freudenthal
Suspension Theorem (see Theorem 4.2.10), the suspension map

πi(X) −→ πi+1(ΣX) (A.1)

is an isomorphism for i ≤ 2n. Iterating this map therefore gives a sequence

πi(X) −→ πi+1(ΣX) −→ πi+2(Σ2X) −→ · · · (A.2)

where the maps necessarily eventually become isomorphisms even without
any assumption on the connectivity of X. Given a sequence of groups and
homomorphisms

G0
h0−→ G1

h1−→ · · · ,
the direct limit, or colimit, of this sequence is defined as

Gn =
∐

n

Gn/∼,

where g ∼ g′ if ( f j ◦ f j−1 ◦· · ·◦ fi+1 ◦ fi)(g) = g′ for some i, j. (This is analogous
to the colimit of sequence of spaces; see Example 7.3.31.) We can thus define
the ith stable homotopy group of X, πs

i (X), as the colimit of the sequence (A.2):

πs
i (X) = colim

n
πi+n(ΣnX). (A.3)

In particular, for X = S 0, we have the stable homotopy groups of spheres,

πs
i (S 0) = colim

n
πi+n(S n)
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which are one of the most important (and difficult) objects in homotopy theory.
Note that, again by Freudenthal Suspension Theorem,

πs
i (S 0) = πi+n(S n)

for n > i + 1.
For a spectrum E, there are maps

πi+n(En) −→ πi+n+1(En+1) (A.4)

given as the composition of the suspension map (1.1.2) and the map induced
on homotopy groups by the spectrum structure map:

πi+n(En)
Σ−→ πi+n+1(ΣEn) −→ πi+n+1(En+1).

It thus makes sense to mimic (A.3) and define the ith homotopy group of the
spectrum E as

πi(E) = colim
n

πi+n(En). (A.5)

Notice that a spectrum could have homotopy groups in negative dimensions.
We say a spectrum is connective if it does not have any negative homotopy
groups.

Thus for the suspension spectrum Σ∞X of a space X, by definition we
have

πi(Σ
∞X) = πs

i (X).

In particular, stable homotopy groups of spheres can be regarded as the
homotopy groups of the spectrum Σ∞S 0 = S.

It follows that, for an Ω-spectrum E, we have

πi(E) = πi+n(En), n ≥ 0. (A.6)

In particular, we have the following.

Example A.3.7 Let HG be the Eilenberg–MacLane spectrum from Example
A.3.5. Then

πi(HG) =

⎧⎪⎪⎨⎪⎪⎩G, i = 0;

0, otherwise. �

Definition A.3.8 A map of spectra f : E → F is a collection of maps

fn : En −→ Fn, n ≥ 0,



590 Appendix

that commute with the structure maps in E and F. Such a map is a weak
equivalence of spectra if

f∗ : πi(E) −→ πi(F)

is an isomorphism for all i.

Example A.3.9 From the definitions, we have a weak equivalence S ∧ X �
Σ∞X. �

Using maps of spectra as defined above, we can define the category of spectra
which we will denote by Spectra.

The following standard and easy result says that, up to weak equivalence, we
can assume we are working with an Ω-spectrum. For a proof, see, for example
[Ada78, Sections 1.6 and 1.7].

Proposition A.3.10 Every spectrum is weakly equivalent to an Ω-spectrum.

For an Ω-spectrum E, we have from the definitions that, for any En,

En
�−→ ΩkEn+k.

Therefore En is a k-fold loop space for any k, and is for this reason called
an infinite loop space. From the examples we have had so far, we see
that Eilenberg–MacLane spaces and the infinite-dimensional orthogonal and
unitary groups are all infinite loop spaces.

One can create an infinite loop space out of any space X as follows. Let

Ω∞ : Spectra −→ Top∗

be the functor which, given a spectrum E, replaces it by an equivalent Ω-
spectrum F and then picks off the first space F0 which is an infinite loop space
by the above comments. Composing this with the functor

Σ∞ : Top∗ −→ Spectra

which assigns to a space X its suspension spectrum, we get the infinite loop
space functor, usually denoted by Q:

Q = Ω∞Σ∞ : Top∗ −→ Top∗ . (A.7)

This can also be thought of as

QX = Ω∞Σ∞X = hocolim
n
ΩnΣnX.
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The maps are given using Theorem 1.2.7. We have a commutative diagram

where the vertical maps are the inclusion Y → ΣY (induced by the inclusion
Y × {1/2} → Y × I). The horizontal maps correspond via Theorem 1.2.7 to
maps X → ΩnΣnX and X → Ωn+1Σn+1X and the vertical maps above induce
maps ΩnΣnX → Ωn+1Σn+1X.

Example A.3.11 Unravelling the definitions gives

πi(Σ
∞S 0) = πi(QS 0). �

Given a diagram E → G ← F, we can define its homotopy pullback

holim(E → G ← F)

levelwise. Namely, the nth space in this spectrum is

holim(En → Gn ← Fn)

and the structure maps

holim(En → Gn ← Fn) −→ Ω holim(En+1 → Gn+1 ← Fn+1)

are induced by the structure maps in the three spectra using the fact that loops
commutes with homotopy pullbacks (Corollary 3.3.16).

Similarly one can define the homotopy pushout of a diagram E ← H → F
levelwise. For the structure maps, one uses the fact that suspension commutes
with homotopy pushouts (Corollary 3.7.19).

Now, given a commutative square

of spectra, we have canonical maps

a(S) : H −→ holim(E → G ← F)

and

b(S) : hocolim(E ← H → F) −→ G

induced by the canonical levelwise maps from (3.3.1) and (3.7.1).
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Definition A.3.12 The commutative square diagram S is homotopy cartesian
if a(S) is a weak equivalence and it is homotopy cocartesian if b(S) is a weak
equivalence.

The following says that the notions of homotopy cartesian and homotopy
cocartesian squares of spectra are the same. A proof can be found in [LRV03,
Lemma 2.6].

Proposition A.3.13 Suppose S is a commutative square of spectra. Then this
square is homotopy cartesian if and only if it is homotopy cocartesian.

Remark A.3.14 Using homotopy pullbacks and pushouts of spectra, we
could define homotopy limits and colimits of punctured cubes of spectra
via iterated homotopy pullbacks and pushouts (inspired by Lemma 5.3.6 and
Lemma 5.7.6). Furthermore, we could then define what it means for a cube
of spectra to be homotopy (co)cartesian or strongly (co)cartesian. Proposi-
tion A.3.13 then says that a cube of spectra is homotopy cartesian if and only
if it is homotopy cocartesian. �

The previous result gives a special and important relationship between homo-
topy fibers and homotopy cofibers of maps of spectra. Given a map of spectra
f : E → F, we can define its homotopy fiber and cofiber as a levelwise
homotopy fiber and cofiber. Or, since we know what homotopy pullbacks and
pushouts of spectra are, as

hofiber( f ) = holim(∗ → F
f← E)

and

hocofiber( f ) = hocolim(∗ ← E
f→ F),

where ∗ denotes the constant spectrum.
We then have the following consequence of Proposition A.3.13.

Corollary A.3.15 Homotopy fibration sequences of spectra are the same as
homotopy cofibration sequences of spectra. Namely, given a sequence E →
F → G, we have

E � hofiber(F → G) ⇐⇒ G � hocofiber(E → F)

Furthermore, for a map f : E → F of spectra, we have a weak equivalence

hofiber( f ) � Ω hocofiber( f )

(where looping a spectrum means looping levelwise).
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Proof Consider the square

If this square is homotopy cartesian, that means that there is a weak equiva-
lence E � hofiber(F → G) and, if it is homotopy cocartesian, that means that
there is a weak equivalence G � hocofiber(E → F). But the two notions are
equivalent by Proposition A.3.13.

For the second part, the square

is homotopy cocartesian and so, by Proposition A.3.13, it is also homotopy
cartesian. By levelwise application of Proposition 3.3.18, this means that there
is a weak equivalence hofiber( f ) � hofiber(∗ → hocofiber( f )). But the right
side is Ω hocofiber( f ) by levelwise application of Example 2.2.9. �

The second part of the above result is of course false in the realm of topo-
logical spaces, but as we saw in Example 4.2.12, for a map f : X → Y of
based spaces, there is a map hofiber( f ) → Ω hocofiber( f ) whose connectivity
is roughly the sum of the connectivity of X with the connectivity of f .

There is another familiar result that can be deduced from Proposition A.3.13.

Corollary A.3.16 For any spectrum E, there are weak equivalences E �
ΣΩE and E � ΩΣE (where the suspension of a spectrum is taken levelwise).

Proof The first equivalence immediately follows from considering the homo-
topy cartesian square

By Proposition A.3.13, this square is also homotopy cocartesian, and hence
ΣΩE � E. For the second statement, we start with the homotopy cocartesian
square
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Again by Proposition A.3.13, this square is also homotopy cartesian, and hence
we have a weak equivalence E � ΩΣE. �

Remark A.3.17 One of the equivalences in the previous result can be argued
directly. Namely, the map E → ΩΣE given levewise by the Freudenthal maps
En → ΩΣEn (see Theorem 4.2.10) has an inverse given levelwise by the maps
ΩΣEn → ΩEn+1 � En (we can assume these are weak equivalences since E is
weakly equivalent to an Ω-spectrum). �

We also want to extend the notion of a group action to spectra. This is done
levelwise. Namely, a group G acts on a spectrum if there is a map G×En → En

for each n satisfying the usual axioms of an action that is compatible with
the spectrum structure maps. To explain this, the map G × En → En can be
regarded as a map G → En × En and, for each g ∈ G, the suspension of the
map fn,g : En → En and the map fn+1,g : En+1 → En+1 fit into the commutative
diagram

In terms of functors, this means that there is a functor

F : •G −→ Spectra

with F(•) = E and g �→ ( fg : E → E) (where fg is the collection of maps fn,g).
Then one can define the spectra of homotopy fixed points and homotopy orbits
as

ChG = holim•G

F and ChG = hocolim•G

F, (A.8)

where the homotopy limit and colimit are taken levelwise as in Examples
8.2.11 and 8.2.23. These levelwise homotopy (co)limits inherit structure maps
from C and therefore form spectra, because homotopy limits commute with
loops and homotopy colimits commute with suspensions. In Section 10.1, we
are especially interested in the action of Σk on certain spectra.
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A.4 Operads and cosimplicial spaces

This section contains a brief introduction to the relationship between operads
and cosimplicial spaces. The details for most of what will be explained here can
be found in the papers of McClure and Smith [MS02, MS04a, MS04b], who
have used this relationship for a proof of the Deligne’s Hochschild cohomology
conjecture. An application of this operadic machinery that is useful to us is to
spaces of knots, and this is the subject of Section 10.4.2. For basics on operads
(in any category), including motivation for their study, see [MSS02] (see also
Theorem A.4.6 below for one of the earliest and most important applications
of operads).

We will only consider operads in the category of spaces. The basic definition
is the following.

Definition A.4.1 A non-symmetric, or non-Σ, (topological) operad O is a
collection of spaces {O(k)}k≥0 along with an element 1 ∈ O(1) called the
identity and structure maps

γ : O(k) × O( j1) × · · · O( jk) −→ O( j1 + · · · + jk)

for all k, j1, . . . , jk ≥ 0, satisfying the following.

● Identity axiom: for x ∈ O(k), γ(1, x) = γ(x, 1, . . . , 1) = x.
● Associativity axiom: the diagram

commutes.

This is equivalent to the standard definition of an operad except the axioms
having to do with the action of the symmetric group have been removed. Non-
symmetric operads are thus also called operads without permutations.
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A special case of the operad structure maps are the circle-i operations

◦i : O(k) × O( j) −→ O(k + j − 1) (A.1)

given by

(x, y) �−→ (x, 1, . . . , 1, y, 1, . . . , 1),

where y on the right appears in the slot i + 1. It is easy to see that all operadic
structure maps are generated by these operations so that it suffices to specify
the ◦i maps.

Example A.4.2 (Associative non-symmetric operad) The associative non-
symmetric operad Ass is defined by Ass(k) = ∗ for all k. �

Example A.4.3 (Little n-cubes operad) The little n-cubes operad (or little n-
disks operad or little n-balls operad) Cn = {Cn(k)}k≥0, where Cn(k) is the space
of embeddings of In × k in In and where the embedding on each summand In

is of the form f (�x) = D�x + �c, for some invertible matrix D. We take Cn(0) to
be the one-point space.

The structure maps essentially consist of “shrinking the cubes and insert-
ing them into others”. For a detailed description of these maps, see [MSS02,
Section 2.2]. �

Remark A.4.4 One standard way to define non-Σ operads is via a category of
rooted trees [Boa71, MSS02, Sin06]. Roughly, these are (isomorphism classes
of) rooted, planar trees with labeled leaves. The ◦i operation is given by graft-
ing the root of one tree onto the ith leaf of another. A topological non-Σ operad
is then simply a functor from the category of such trees (where the morphisms
are defined by contractions of edges) to Top satisfying the obvious axioms (see
e.g. [Sin06, Definition 2.13]). �

Definition A.4.5 For O a non-symmetric operad and X a space, an action of
O on X consists of maps

fk : O(k) × Xk −→ X

satisfying

● fk(1, x) = x for all x ∈ X;
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● the diagram

commutes.

One of the main uses of operads in topology is in the following recognition
principle.

Theorem A.4.6 ([BV73, May72]) If a connected space X admits an action
of the little n-cubes operad, then it is homotopy equivalent to an n-fold loop
space.

Definition A.4.7 A morphism f : O → P of operads is a collection of maps

fk : O(k) −→ P(k), k ≥ 0,

which are compatible with the structure maps and the identity.

Definition A.4.8 A non-symmetric operad with multiplication is a non-
symmetric operad O together with a morphism Ass → O.

It is not hard to see a multiplicative structure on an operad O as defined above
is equvalent to the existence of morphisms

e : 1 −→ O(0) and μ : 1 −→ O(2)

satisfying

μ ◦1 μ = μ ◦2 μ and μ ◦1 e = μ ◦2 e = Id. (A.2)

Remark A.4.9 The motivating example for Definition A.4.8 is that of the
endomorphism operad End(A), where A is an associative algebra. �

Using the multiplicative structure, one can then associate a cosimplicial space
to an operad with multiplication as follows.
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Definition A.4.10 ([GV95]) For an operad with multiplication O, the associ-
ated cosimplicial spaceO• is defined byO[n] = On with cofaces di : On → On+1

defined by

di(x) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
μ ◦2 x, i = 0;

x ◦i m, 1 ≤ i ≤ n;

μ ◦1 x, i = n + 1,

and codegeneracies si : On+1 → On defined by

si(x) = x ◦i e, 0 ≤ i ≤ n.

It is easy to see that, because of identities (A.2), the cosimplicial identities in
O• are indeed satisfied.

The following important result is due to McClure and Smith.

Theorem A.4.11 [MS02, Theorem 3.3] The totalization Tot(O•) of the
cosimplicial space associated to an operad with multiplication admits an
action of an operad equivalent to the little 2-cubes operad C2. The same is
true for the homotopy invariant totalization hoTot(O•) [MS04a, Theorem 15.3
and Proposition 10.3] (see also [Sin06, Theorem 7.3]).

Combining Theorem A.4.11 with Theorem A.4.6, we have

Corollary A.4.12 For O an operad with multiplication, there is a homotopy
equivalence

Tot(O•) � Ω2X

for some space X.

Remark A.4.13 McClure and Smith prove a more general result than The-
orem A.4.11 in [MS04a]: if a cosimplicial space X• is an algebra over a
certain functor-operad Ξn, then Tot X• admits an action of an operad equiv-
alent to Cn [MS04a, Theorem 9.1]. In this context, having a Ξ2 structure on a
cosimplicial space amounts to having an operad with multiplication that gives
rise to that cosimplicial space [MS04a, Section 10], so the result reduces to
Theorem A.4.11.

It should also be noted that the result which serves as the basis for this gen-
eralization is due to Batanin [Bat98] (a simplified proof is given in [MS04a]).
Namely, he proves that, if X• has a certain cup product (see discussion prior
to Theorem 4.3 in [MS04b] or [MS02, Definition 2.1]), then Tot X• is an
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A∞ space (it has an action of an A∞ operad, i.e. a non-symmetric operad
whose each space is weakly equivalent to a point) and is therefore equivalent
to a loop space. Batanin’s proof uses the box product described in Exam-
ple 9.2.10. McClure and Smith conjecture that totalization in fact gives a
Quillen equivalence between cosimplicial spaces with this cup product and
A∞ spaces. �

Example A.4.14 Suppose X is a topological monoid, so that there exists a
continuous multiplication X × X → X, and the basepoint acts as the unit. Let
O(k) = Xk and define

◦i : O(k) × O( j) −→ O(k + j − 1)

(x1, . . . , xk) ◦i (y1, . . . , y j) �−→ (x1, . . . , xi−1, xiy1, xiy2, . . . , xiy j, xi+1, . . . , xn).

If morphisms e and μ are simply the basepoints, then O• is precisely the cobar
construction from Example 9.2.3. �

Example A.4.15 The above can be generalized to produce a cosimplicial
space whose totalization is the k-fold loop space of a based space X for k ≥ 2.
Again O(k) = Xk but the ◦i operations are more complicated and arise from the
maps of the simplicial k-sphere to X. For details, see [MS02, Example 3.6]. �

Another example that is relevant in the study of the topology of spaces of
knots is that of compactified configuration spaces; see Section 10.4.2.
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[DS95] W. G. Dwyer and J. Spaliński. Homotopy theories and model categories. In

Handbook of algebraic topology, pp. 73–126. North-Holland, Amsterdam,
1995.

[DT56] Albrecht Dold and René Thom. Une généralisation de la notion d’espace
fibré. Application aux produits symétriques infinis. C. R. Acad. Sci. Paris,
242:1680–1682, 1956.

[DT58] Albrecht Dold and René Thom. Quasifaserungen und unendliche sym-
metrische Produkte. Ann. Math. (2), 67:239–281, 1958.

[Dug01] Daniel Dugger. Universal homotopy theories. Adv. Math., 164(1):144–
176, 2001.

[Dwy74] W. G. Dwyer. Strong convergence of the Eilenberg–Moore spectral
sequence. Topology, 13:255–265, 1974.

[EH76] David A. Edwards and Harold M. Hastings. Čech and Steenrod homo-
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associative operad, 596
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a cell, 8
as pushout, 135
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map, 93

augmentation
of a cosimplicial space, 455
of a simplicial space, 575

Barratt’s desuspension spectral sequence, 463
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and homotopy long exact sequence, 47
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space, 7
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Berstein–Hilton Theorem, 217, 297
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Blakers–Massey Theorem, 290
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and optimal connectivity estimate, 191
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dual, 188
generalization, 189
key lemma, 204

formal step for n = 3, 306
generalization, 290
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key lemma, 299
original version, 184, 289

block of a partition, 290
boundary map, 22
box product, 463

cartesian cube, 230
cartesian square, 99

and homotopy cartesian square, 113
category, 339

acyclic, 342
classifying space, 384
cocomplete, 360
colimit, 360
complete, 352
composition function, 339
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coproduct, 349, 350
cosimplicial indexing, 444
degree of an object, 414
direct, 414
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nerve, 384
objects, 339
of R-modules, 341
of (abelian) groups, 341
of based spaces, 8, 341
of chain complexes, 341
of commutative rings, 341
of compactly generated spaces, 5
of objects over i, 381
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of open subsets of a manifold, 524
of sets, 341
of simplicial sets, 572
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of spaces over a space, 504, 522
of spectra, 590
of topological spaces, 341
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opposite, 341
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product, 342, 349, 350
realization, 384
Reedy, 414
simplicial indexing, 444
small, 340
twisted arrow, 439
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cellular
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map, 79

chain complex, 24
circle-i operations, 596
classifying space, 571
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of a group, 388

co-H space, 297
co-cone, 360

cobar construction
cyclic, 460
geometric, 458
two-sided, 460

cocartesian cube, 258
cocartesian square, 136

and homotopy cocartesian square, 152
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coend, 371

model for colimit, 372
model for homotopy colimit, 412

coequalizer, 362, 369
as iterated pushout, 364
model for colimit, 369

cofaces, 444
cofiber, 28

and homotopy cofiber, 58
and homotopy invariance, 28
as pushout, 134
homotopy, see homotopy cofiber
of tower of skeleta, 576

cofibrant
cube, 269

colimit is homotopy colimit, 270, 416
functor, 415
pushout cube, 269
pushout square, 165
replacement, 166, 420

and k-cocartesian square, 166
colimit is homotopy colimit, 421
of a cube, 270

space, 415
square, 165

colimit is homotopy colimit, 165
cofibration, 47

and basepoints, 55
and composition, 53
and homotopy equivalence, 55
and homotopy invariance, 54
and inclusion, 51
and injectivity, 48
and pushout, 54, 55, 137
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long exact sequence, 53
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preserved by homotopy colimit, 423
sequence, 48
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Cofinality Theorem, 434
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of little cubes operad, 568
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cojoin, 217
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and maps, 375
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as functor, 366
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commutes with
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mapping cylinder, 365
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of a sequence of groups, 588
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orbit space, 365
over product category, 376
pushout as, 133
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commutative diagram, 7
commutator map, 218

iterated, 332
compact-open topology, 12
compactly generated space, 5
complete category, 352
concave subset, 324
cone, 9, 59, 352

fiberwise, 181
mapping, 58
of a map, 9
reduced, 9

configuration space, 251, 292, 530, 558
Fulton–MacPherson compactification, 560
Kontsevich compactification, 560
unordered, 530, 535

connected category, 416

connecting map, 34
in homotopy exact sequence, 22

connective spectrum, 589
connectivity

of a space, 67
of loop space, 69
of suspension, 70

connectivity estimate, 543
constant

cosimplicial space, 458
diagram, 346
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spectrum, 587

contact
kth order, 581
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and homotopy cofiber, 156
weakly, 67

contravariant functor, 343
convex subset, 316
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in a category, 349, 350
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cosimplex, 446
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cosimplicial
contraction, 457
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homotopy, 457
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indexing category, 444, 570
model for homotopy pullback, 460
model for loop space, 458
model for mapping space, 461
replacement, 465

and homotopy limit, 465
of finite acyclic diagram, 469

resolution of a space, 458
simplex, 445

cosimplicial space, 445
associated to an operad, 598
augmentation, 455
based, 456
box product, 463
cohomology spectral sequence, 499
constant, 458
cubical replacement, 472
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diagonal, 478
fibrant, 449
homology spectral sequence

and homotopy initial functor, 501
and Hurewicz map, 501
complete convergence, 499
E1 term, 498
E2 term, 498
exotic convergence, 499
of a truncation, 500

homotopy spectral sequence
and homotopy initial functor, 501
and Hurewicz map, 501
E1 term, 493
E2 term, 494
of a truncation, 500

left contraction, 456
matching map, 449
matching space, 449
multi-, 476
non-fibrant, 449
normalization, 453
right contraction, 457
totalization, 446
truncation, 451

and homology spectral sequence, 500
and homotopy spectral sequence, 500

covariant functor, 343
covering space, 29
critical

point, 583
value, 583

cross-effect
cube, 519
of a functor, 519

cube, 221, 344
and fibers of totalization tower, 474, 475
as map of cubes, 224
based, 222
cartesian, 230
cocartesian, 258
cofibrant, 269

colimit is homotopy colimit, 270, 416
cofibrant pushout, 269
cofibrant replacement, 270
colimit, 255
cross-effect, 519
equivalent to cofibrant cube, 270
equivalent to fibrant cube, 243
face, 223
factorization, 240, 241, 267

fibrant, 243
limit is homotopy limit, 246, 416

fibrant pullback, 243
fibrant replacement, 243
homology groups, 274
homotopy cartesian, 235
homotopy cocartesian, 262
homotopy colimit, 258
homotopy groups, 254
homotopy limit, 231
k-cartesian, 235
k-cocartesian, 262
limit, 227
of configuration spaces, 252, 292
of cubes, 224, 241, 242, 267, 268
of embedding spaces, 296
of open inclusions, 262
of products and join, 264, 274
of submanifolds, 294
of suspensions, 271
punctured, 222, 344
pushout, 258
strongly cartesian, 242

equivalent to pullback cube, 243
strongly cocartesian, 268

and homotopy fibers, 276
equivalent to pushout cube, 270

total homotopy cofiber, 272
total homotopy fiber, 249

Cube Theorem
First, 282
Second, 187, 283

cubical
diagram, see cube
indexing category, 221, 386
replacement of cosimplicial space, 472

CW approximation, 18
CW complex, 8

dimension, 9
finite, 9
relative, 8

CW pair, 8
cyclic cobar construction, 460

deformation retraction, 14
degeneracies, 571
degeneracy-free simplicial space, 574
degenerate simplex, 571

does not contribute, 571
degree of an object, 414
derived functor, 380
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diagonal
cosimplicial space, 478
map, 6

diagram, 343
commutative, 7
constant, 346
cosimplicial, 445
cosimplicial replacement, 465
cubical, see cube
natural transformation, 345
non-commutative, 7
of spaces, 7
simplicial replacement, 575

difference map, 72
differential of a functor, 521
direct

homotopy colimit, 398, 416, 417
limit, 363

of a sequence of groups, 588
product of vector spaces, 362
subcategory, 414
sum of vector spaces, 362

directed system, 363
of spaces, 419

discrete category, 340
disjoint union

as homotopy pushout, 140
as pushout, 134

disjunction, 548
strong, 548
weak, 549

disjunction problem, 197
distinguished open set, 83
distributive law, 174, 431
Dold–Thom Theorem, 89, 506

cosimplicial version, 461
generalization, 280

dual Barratt–Puppe sequence, 117
dual Blakers–Massey Theorem, see

Blakers–Massey Theorem

Eilenberg–MacLane
space, 61
spectrum, 587

homotopy groups, 589
Elementary Transversality Theorem, 585
embedding, 295

disjunction, 548
space, 525

embedding functor
connectivity estimate

for linear stage, 545
for Taylor tower stages, 547

convergence of Taylor tower, 543
first two derivatives, 538

empty set, 4
end, 370

model for homotopy limit, 412
model for limit, 370

equalizer, 354, 367
as iterated pullback, 356
model for limit, 368
vs. limit, 356

equivalence
homotopy, 15
isotopy, 525
of categories, 346
weak, 16

error estimate in Taylor tower, 541
evaluation map, 30
excision, 25

and pairs of spaces, 25
homology, 183
and multivariable functors, 508

excisive functor, 506
universal examples, 506

exponential law, 13
based, 14
unbased, 13

exponentiation
commutes with homotopy limits, 236
commutes with homotopy pullback, 114
preserves homotopy cartesian cubes, 236
takes cocartesian to cartesian, 171

faces, 571
factorization

of cubes, 240, 267
of squares, 121, 163, 436

fat
realization, 573
wedge, 260, 272

fiber, 28
and homotopy fiber, 43
and homotopy invariance, 28
as pullback, 95
bundle, 29
homotopy, see homotopy fiber
of totalization tower, 453

and cubical replacement, 474, 475
product, 356

and homotopy pushout, 173
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of spaces, 94
sequence, 47

fiber–cofiber construction, 193
fiberwise

cone, 181
join, 180, 291
suspension, 181

fibrant
cosimplicial space, 449
cube, 243

limit is homotopy limit, 246, 416
functor, 415
pullback cube, 243
pullback square, 124
replacement, 124, 420

and k-cartesian square, 126
limit is homotopy limit, 421
of a cube, 243

space, 415
square, 124

limit is homotopy limit, 124
fibration, 29

and composition, 34
and homotopy equivalence, 39
and homotopy invariance, 36
and open cover, 40
and pullback, 35, 39, 101
and surjectivity, 30
and uniqueness of lifts, 32
and weak equivalence, 39
but not a universal quasifibration, 87
homotopy equivalent fibers, 35
homotopy long exact sequence, 34
Hopf, 30
Hurewicz, 29
locally determined, 40
of homotopy limits, 432
preserved by homotopy limit, 423
preserved by maps, 33
product, 30
sequence, 29

of total homotopy fibers, 254
preserved by loops, 33

Serre, 29
space of sections, 530
that is a homotopy equivalence, 64
trivial, 30

filtered
category, 377
colimit commutes with finite limit, 378

homotopy colimit commutes with finite
homotopy limit, 427

final object, 343
and contractible realization, 387
and homotopy colimit, 396

finitary functor, 504, 525
finite

category, 340
homotopy limit commutes with filtered

homotopy colimit, 427
limit commutes with filtered colimit, 378

finite type knot invariants, 568
First Cube Theorem, 282
first homotopy group of a square, 216, 330
first order contact, 581
fixed points, 357

as limit, 358
fold map, 6, 177
formality of little cubes operad, 567

and collapse of Bousfield–Kan spectral
sequence, 568

free loop space, 13
as homotopy pullback, 104

Freudenthal Suspension Theorem, 190, 588
generalization, 191

full subcategory, 340
Fulton–MacPherson

compactification, 560
operad, 564

equivalent to little cubes, 564
functor, 343

k-excisive, 505
adjoint, 344
agree to order k, 510
category, 347
cofibrant, 415
colimit, 366
colimit-preserving, 376
constant, 346

and homotopy colimit, 396
and homotopy limit, 391

contravariant, 343
covariant, 343
cross-effect, 519
derived, 380
differential, 521
embedding, see embedding functor
excisive, 506
fibrant, 415
finitary, 504, 525
good, 526
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Grothendieck construction, 442
homogeneous, 515, 535

and infinite loop space, 517
homotopy, 504
homotopy initial, 433
homotopy terminal, 433
identity, 344
isotopy, 525
left adjoint, 344
limit, 359
limit-preserving, 376
linear, 506, 527
overcategory, 382
polynomial, 505, 526
polynomial approximation, 512, 532

finite model for knot space, 555
finite model in manifold calculus, 533
for knots, 556

ρ-analytic
homotopy calculus, 523
manifold calculus, 540

reduced, 505
right adjoint, 344
stably k-excisive, see stably k-excisive

functor
symmetric, 518
undercategory, 382
vs. diagram, 343

functor-operad, 598

Ganea’s Fiber-Cofiber Construction, 193
dual, 195

Ganea’s Theorem, 176
generalized

Eilenberg–Moore spectral sequence, 480
Whitehead product, 186, 219, 334

geometric cobar construction, 458
two-sided, 460

geometric realization, see realization
gluing lemma, 142

dual, 104
good functor, 526
Grassmannian, 551
greatest common divisor, 354
greatest lower bound, 353
Grothendieck construction, 442
group action

continuous, 357
on a spectrum, 594

group as a category, 341
grouplike simplicial set, 462

half-smash product, 11
Hall basis, 335
handle, 579

attaching, 579
decomposition, 580
dimension, 580
index, 579

and radius of convergence of Taylor
tower, 540

handlebody, 580
Hilton–Milnor Theorem, 190, 334, 336
Hochschild homology, 463
homeomorphic spaces, 6
homeomorphism, 6

and homotopy equivalence, 19
of pairs, 8

homogeneous functor
homotopy calculus, 515
manifold calculus, 535

homological excision, 25
Homological Whitehead Theorem, 187, 202
homology, 24

and k-connected map, 67
and k-connected space, 79
differential, 24
Hochschild, 463
long exact sequence of a pair, 25
of a cube, 274
of a map, 171
of a square, 171
reduced, 24
relative, 24

homology spectral sequence
for long knots, 566

collapses, 567
of cosimplicial space

and homotopy initial functor, 501
and Hurewicz map, 501
complete convergence, 499
E1 term, 498
E2 term, 498
exotic convergence, 499

of homotopy colimit, 577
of homotopy limit, 500
of punctured cube, 490
of total cofiber, 492
of tower of cofibrations, 486
of truncation of cosimplicial space, 500

homotopic maps, 14
and homotopy cofiber, 149
and homotopy fiber, 110
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and mapping cylinder, 148
and mapping path space, 109

Homotopical Whitehead Theorem, 19, 187
homotopy

inverse, 15
classes of maps, 15

based, 15
of pairs, 15

cosimplicial, 457
equivalence, 15
equivalent spaces, 15
long exact sequence of a pair, 21

boundary map, 22
connecting map, 22

type, 15
homotopy calculus of functors

homogeneous functor, 515
and infinite loop space, 517

layer of Taylor tower, 516
classification, 522
is homogeneous, 516

polynomial approximation, 512
ρ-analytic functor, 523
radius of convergence, 523
Taylor tower, 514

homotopy cartesian cube, 235
and exponentiation, 275
and homotopy fibers, 238
and map of cubes, 239
and products, 235

homotopy cartesian square, 111, see also
homotopy pullback

and cartesian square, 113
and exponentiation, 171
and homotopy fibers, 120
and products, 113
and relative homotopy groups, 121
and weak equivalence, 116
equivalent to fibrant pullback square, 125
of spectra, 592

homotopy cocartesian cube, 262
and disjoint unions, 263
and exponentiation, 275
and homotopy cofibers, 266
and map of cubes, 266
and wedges, 263

homotopy cocartesian square, 150, see also
homotopy pushout

and cocartesian square, 152
and coproduct, 153
and exponentiation, 171

and homotopy cofibers, 162
and union, 153
and weak equivalence, 155
equivalent to cofibrant pushout square, 165
of spectra, 592

homotopy coexact sequence, 61
homotopy cofiber, 57

and cofiber, 58
and contractible space, 156
and homotopic maps, 149
and long exact sequence, 60
and projection map, 59
and retracts, 170
as colimit, 365
as homotopy colimit, 58
as homotopy pushout, 140
as pushout, 135
commutes with suspension, 60
iterated, 169
of map of spectra, 592
total, 168, 272, see also total homotopy

cofiber
homotopy colimit, 395

and colimit, 396
and constant factor, 396
and covering category, 434, 435
and exponentiation, 275, 426
and final object, 396, 575
and realization, 573
as coend, 412
as functor, 398
as homotopy Kan extension, 413
as quotient, 395
commutes with

homotopy colimit, 265, 427
homotopy limit, 428
join, 265
products, 263, 429
smash product, 265
suspension, 265, 430
union, 429
wedge, 263, 265, 429

direct, 416, 417
homology spectral sequence, 577
homotopy orbits, 398
is homotopy invariant, 409
of a cube, 258
of a punctured cube, 258

and suspension, 259
is homotopy invariant, 261
of identity maps, 259



Index 621

of a tower, 398
over the empty category, 396
pointed, 258, 395
preserves cofibrations, 423
restriction induces cofibration, 271, 432
special case of homotopy pushout, 138
Thomason’s Theorem, 442
truncated, 411

homotopy equivalence
of squares, 124
preserved by maps, 15
vs. weak equivalence, 16, 68, 100, 112

homotopy exact sequence, 47
homotopy excision, see Blakers–Massey

Theorem
homotopy extension property, 47
homotopy fiber, 42

and fiber, 43
and homotopic maps, 110
and long exact sequence, 46
and loop space, 44
and retracts, 131
as homotopy limit, 43, 103
as homotopy pullback, 103
as limit, 357
as pullback, 95
commutes with loops, 45
iterated, 128
of map of spectra, 592
of mapping spaces, 45
total, 127, 249, see also total homotopy fiber

homotopy fiber product, 102
homotopy fixed points, 394

spectrum, 594
homotopy functor, 504
homotopy groups, 20

of a cube, 254
of an Eilenberg–MacLane spectrum, 589
of a map, 132
of a spectrum, 589
of a square, 133
of a triad, 185
relative, 21
stable, 588

homotopy initial functor, 433
Cofinality Theorem, 434

homotopy invariance
of colimit of tower of cofibrations, 409
of homotopy colimit, 409
of homotopy colimit of punctured cube, 261
of homotopy limit, 399

of homotopy limit of punctured cube, 234
of homotopy pullback, 104
of homotopy pushout, 142
of limit of tower of fibrations, 399

homotopy invariant totalization, 449
homotopy Kan extension, 412
homotopy lifting property, 29
homotopy limit, 389

and constant factor, 391
and covering category, 434, 435
and exponentiation, 275, 426
and initial object, 391, 467
and limit, 390
and totalization, 448
as end, 412
as functor, 394
as homotopy Kan extension, 413
as natural transformations, 389
commutes with

exponentiation, 236
homotopy colimit, 427
homotopy limit, 236, 427
loops, 237, 430
product, 236, 429

homology spectral sequence, 500
homotopy fixed points, 394
homotopy spectral sequence, 495
inverse, 416, 417
is homotopy invariant, 399
of a cube, 231
of a punctured cube, 230

and loop space, 231
as iterated homotopy pullback, 232
is homotopy invariant, 234
of identity maps, 231

of a punctured square, 102
of a tower, 393
over the empty category, 391
preserves fibrations, 423
restriction induces fibration, 248, 432
truncated, 404

homotopy orbits, 398
spectrum, 594

homotopy pullback, 102, see also homotopy
cartesian square

and free loop space, 104
and homotopy fiber, 103
and loop space, 104
and universal property, 102
and weak equivalence of diagrams, 108
as end, 371
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as homotopy limit, 392
as limit, 357
as pullback, 102
commutes with

exponentiation, 114, 236
homotopy pullback, 236
homotopy pushout, 286
loops, 120, 237
product, 114

cosimplicial model, 460
distributes over homotopy pushout, 174, 431
is homotopy invariant, 104
iterated, 119, 232
of identity maps, 103
of spectra, 591

homotopy pushout, 138, see also homotopy
cocartesian square

and fiber product, 173
and homotopy cofiber, 140
and homotopy fibers, 174
and identity maps, 140
and join, 141
and mapping cylinder, 140
and products, 154
and smash product, 141
and suspension, 141
and weak equivalence of diagrams, 148
as coend, 372
as colimit, 365
as homotopy colimit, 397
as pushout, 140
commutes with

homotopy pullback, 286
homotopy pushout, 265
join, 159
products, 263
smash product, 159
suspension, 159
wedge, 154, 159

iterated, 158, 259
of spectra, 591

homotopy spectral sequence
and steep vanishing line, 485
complete convergence, 483
conditional convergence, 483
for long knots, 566
for Taylor tower, 524
Mittag–Leffler, 484
of cosimplicial space

and homotopy initial functor, 501
and Hurewicz map, 501

E1 term, 493
E2 term, 494

of homotopy limit, 495
of punctured cube, 487
of total fiber, 489
of tower of fibrations, 482
of truncation of cosimplicial space, 500

homotopy terminal functor, 433
Cofinality Theorem, 434

Hopf fibration, 30
Hurewicz

fibration, 29
map, 198

and infinite symmetric product, 199
Hurewicz Theorem

Absolute, 199
Relative, 187, 200

identity
map, 6
morphism, 339

identity functor, 344
and excisiveness, 506
convergence of Taylor tower, 523
stably excisive, 510

immersion
is a linear functor, 529
space, 525

inclusion
and cofibration, 51
map, 6

indexing category
cosimplicial, 444, 570
cubical, 221, 386
simplicial, 444

infimum as a limit, 353
infinite loop space, 590
infinite symmetric product, 89, 280, 506

and excision, 89
and homology groups, 89
as colimit, 364

infinitely-connected
map, 68
pair, 68
space, 67

initial object, 343
and contractible realization, 387
and homotopy limit, 391

intersection as limit, 354
inverse

category, 414
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homotopy limit, 416, 417
in a category, 342
limit, 355

as equalizer, 355
morphism, 342
system, 355

of spaces, 417
isomorphism

natural, 346
of objects in a category, 342

isotopy, 525
equivalence, 525
functor, 525

iterated
commutator map, 332
homotopy cofiber, 168, 169

and total homotopy cofiber, 168, 272
homotopy fiber, 128

and total homotopy fiber, 128, 250
homotopy pullback, 119, 232
homotopy pushout, 158, 259
pullback, 228
pushout, 257

j-handle, see handle
join, 11

as homotopy pushout, 141
commutes with

homotopy colimit, 265
homotopy pushout, 159

connectivity, 161
fiberwise, 180, 291
of loop spaces, 175
reduced, 11

K-theory spectrum, 587
k-cartesian

cube, 235
and homotopy fibers, 238

square, 111
and homotopy fibers, 120
and products, 113

k-cocartesian
cube, 262

and homotopy cofibers, 266
square, 150

and homotopy cofibers, 162
k-connected

map, 68
and attaching a cell, 79
and cofibration, 69

and compositions, 70
and homology, 67
and homotopy cofiber, 70
and homotopy groups, 69
and mapping cylinder, 69

pair, 68
and CW complexes, 79
and relative homotopy groups, 68

space, 67
and homology, 79

k-excisive functor, 505
k-fold differential of a functor, see differential

of a functor
k-jet, 581

of a smooth map, 581
source, 581
target, 581

kth cross-effect, see cross-effect of a functor
kth layer of the Taylor tower, see layer of the

Taylor tower
kth order contact, 581
kth polynomial approximation, see polynomial

approximation
Kan extension, 372
kernel as equalizer, 355
knot

invariants, 555
finite type, 568

long vs. closed, 555
space, 554

and Kontsevich operad, 565
cosimplicial model, 561
is two-fold loop space, 565
modulo immersions, 554

types, 555
Kontsevich

compactification, 560
Integral, 567
operad, 564

and Taylor tower for knots, 565
equivalent to little cubes, 564

latching
category, 415
map, 415
space, 415

layer of the Taylor tower
classification, 522, 537
homotopy calculus, 516
manifold calculus, 535

least common multiple as colimit, 361
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least upper bound as colimit, 361
Lebesgue lemma, 26
left cofinal, 433
left contraction of a cosimplicial space, 456
left Kan extension, 372

homotopy, 412
lifting axiom, 64
limit, 352

and maps, 375
and totalization, 448
as end, 370
as functor, 359
as natural transformations, 373
commutes with

colimit, 378
limit, 376

direct, 363
equalizer model, 368
fixed points, 358
greatest common divisor, 354
greatest lower bound, 353
homotopy, see homotopy limit
homotopy fiber, 357
homotopy pullback, 357
infimum, 353
intersection, 354
inverse, 355
of a cube, 227
of a punctured cube, 226

as iterated pullback, 228
of a tower of (co)fibrations, 423
of a tower of fibrations, 399
over product category, 376
path space, 357
pullback, 94, 356
vs. equalizer, 356

linear functor, 506, 527
link maps, 542
little n-cubes operad, 596
local quasifibration, 84

but not universal quasifibration, 86
is a quasifibration, 85

long exact sequence
of a cofibration, 53
and quasifibrations, 81
Barratt–Puppe, 61
dual Barratt–Puppe, 47
homotopy coexact, 61
homotopy exact, 47
in homology, 25
in homotopy, 21

of a fibration, 34
and of a pair, 34

of a triad, 185
of homology groups of a square, 171
of homotopy groups of a square, 133

long unknot, 554
loop space, 13, 44

and join, 175
as homotopy fiber, 44
as homotopy limit of a punctured cube, 231
as homotopy pullback, 104
connectivity, 69
free, 13
infinite, 590

looping a map, 13
loops

adjoint to suspension, 14
commute with

homotopy fibers, 45
homotopy limits, 237, 430
homotopy pullbacks, 237
pullback, 120

preserve fibration sequences, 33
Lusternik–Schnirelmann category, 196, 502

m-cosimplicial space, see multi-cosimplicial
space

manifold
triad, 580
with corners, 560, 580

manifold calculus of functors
analytic continuation, 542
homogeneous functor, 535

classification, 537
layer of Taylor tower, 535

classification, 537
is homogeneous, 535

polynomial approximation, 532
for knots, 556

ρ-analytic functor, 540
radius of convergence, 540
Taylor tower, 534

for long knots, 557
map

of pairs, 12
and loop space, 13
based, 7
commutator, 218
constant, 6
diagonal, 6
evaluation, 30
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fold, 6
homology groups, 171
homotopy groups, 132
Hurewicz, 198

and infinite symmetric product, 199
∞-connected, 68
identity, 6
inclusion, 6
k-connected, 68
latching, 415
matching, 415
null-homotopic, 14
of cubes, 224

and homotopy cartesian cubes, 239
and homotopy cocartesian cubes, 266

of diagrams, 345
of simplicial sets/spaces, 570
of spectra, 589
of squares, 125
of tower of (co)fibrations, 423
of weak equivalences, 117
pullback corner, 98
quotient, 6
restriction, 6
transverse to

point, 584
submanifold, 584

mapping
cone, 58

reduced, 58
cylinder, 56

and homotopic maps, 148
as colimit, 365
as homotopy colimit, 397
as homotopy pushout, 140
as pushout, 135
double, 139
homotopy invariant, 57
reduced, 56

microscope, 418
path space, 41

and homotopic maps, 109
as homotopy limit, 392
as homotopy pullback, 104
as pullback, 95
homotopy invariant, 42

space, 12
and weak equivalences, 17
based, 12
cosimplicial model, 461

telescope, 419

torus, 397
maps

and colimit, 375
and homotopy colimit, 275, 426
and homotopy limit, 275, 426
and limit, 375
as a bifunctor, 370, 389
as a homotopy limit, 391
codegeneracy, 444
coface, 444
degeneracy, 571
face, 571
homotopic, see homotopic maps
is a linear functor, 527
preserve fibrations, 33
preserve homotopy equivalences, 15
takes cocartesian to cartesian, 171
takes cofibrations to fibrations, 62

matching
category, 415
lemma, 104
map, 415

for cosimplicial space, 449
space, 415

for cosimplicial space, 449
maximal subset, 316
minimal subset, 324
Mittag–Leffler condition, 484
model category, 380
monad, 461
morphism

identity, 339
in a category, 339
inverse, 342
of operads, 597

multi-cosimplicial space, 476
totalization, 477

Multijet Transversality Theorem, 586
multivariable functor and excision, 508

n-cell, 8
n-cube, see cube
n-simplex, 5
n-skeleton, 8, see also skeleton
nth homotopy group, 20
nth symmetric product, 89
nth truncation, see truncation
natural isomorphism, 346
natural transformation

and homotopy between realizations, 387
objectwise, 345
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of diagrams, 345
pointwise, 345
space, 373

and limit, 373
as end, 370

nerve of a category, 384
non-commutative diagram, 7
non-degenerate

basepoint, 8
chain of morphisms, 384

normalization of a cosimplicial space, 453
null-homotopic map, 14

Ω-spectrum, 587
object

final, 343
initial, 343
of a category, 339

objectwise natural transformation, 345
one-point space, 4
open pushout square, 151
open triad, 151
operad

action, 596
on knot space, 566

and cosimplicial space, 598
associative, 596
associativity axiom, 595
circle-i operations, 596
Fulton–MacPherson, 564
identity axiom, 595
identity element, 595
Kontsevich, 564
little n-cubes, 596

coformality, 568
formality, 567

morphism, 597
non-symmetric, 595
recognition principle, 597
structure maps, 595
with multiplication, 564, 597
without permutations, 595

opposite category, 341
orbit space, 358

as colimit, 365
overcategory, 382

of a functor, 382

p-adic integers, 355
pair, 7

CW, 8

∞-connected, 68
k-connected, 68

and relative homotopy groups, 68
partial totalization, 452
partition of a set, 290
path components, 20
path space, 13

as limit, 357
path-connected space, 20
pointed

homotopy colimit, 258, 395
space, 7

pointwise natural transformation, 345
polynomial approximation

for knots, 556
in homotopy calculus, 512
in manifold calculus, 532

finite model, 533, 555
polynomial functor

in homotopy calculus, 505
in manifold calculus, 526

poset, 340
of open subsets of a manifold, 524

product
amalgamated, 365
and colimit, 374
as limit, 353
as pullback, 94
category, 342
commutes with

homotopy colimit, 263, 429
homotopy limit, 236, 429
homotopy pullback, 114

half-smash, 11
in a category, 349, 350
of k-cartesian squares, 113
of fibrations, 30
of homotopy cartesian squares, 113
preserves homotopy cocartesian cubes, 263
preserves homotopy pushouts, 154
smash, 11

pullback, 35
and exponentiation, 137
and fiber, 95
and homeomorphisms, 96
and homotopy fiber, 95
and injections, 96
and mapping path space, 95
and product, 94
as limit, 356
bundle, 96
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corner map, 98
in a category, 356
iterated, 228
not homotopy invariant, 100
of a fibration, 35, 39, 93, 101
of a punctured cube, 226
of identity maps, 95
of spaces, 94
square, 99
strict, 99, 230

punctured
knots, 556
square, 92

punctured cube, 222, 344
associated to cosimplicial space, 472
associated to simplicial space, 577
constant, 225
homology spectral sequence of, 490
homotopy colimit of, 258
homotopy limit of, 230
homotopy spectral sequence of, 487
of simplices, 225

Puppe sequence, see Barratt–Puppe sequence
pushout, 133

and attaching a cell, 135
and cofiber, 134
and exponentiation, 137
and homeomorphisms, 135
and homotopy cofiber, 135
and mapping cylinder, 135
and surjections, 135
and wedge, 134
as a colimit, 364
cube, 258
in a category, 364
iterated, 257
not homotopy invariant, 137
of a cofibration, 54, 55, 137
of a punctured cube, 255
of categories, 437
of groups, 365
of identity maps, 134
open pushout, 151
square, 136
strict, 136, 258
union, 364

quasifibration, 80
and homotopy long exact sequence, 81
and mapping cylinders, 281
but not a fibration, 36, 81

definition via pullbacks, 81
local, 84
patching criterion, 82
universal, 85

Quillen’s Theorem A, 437
Quillen’s Theorem B, 437
quotient

by the empty set, 135
map, 6
space, 4
topology, 4

R-completion of a simplicial set, 461
homotopy spectral sequence, 495

R-resolution of a simplicial set, 462
ρ-analytic functor

homotopy calculus, 523
manifold calculus, 540

realization, 571
and cubical homotopy colimit, 578
and homotopy colimit, 573
as a colimit of realizations of skeleta, 575
as a functor, 572
as a homotopy colimit, 396
commutes with products, 572
contractible, 387
fat, 573
is a CW complex, 571
of a category, 384
of a cubical indexing category, 386
of a tower indexing category, 387

reduced
join, 11
suspension, 10
cone, 9
functor, 505
homology, 24
mapping cone, 58

Reedy category, 414
regular

homotopy, 525
value, 583

relative homotopy groups, 21
and k-connected pair, 68
and homotopy cartesian square, 121

Relative Hurewicz Theorem, 187, 200
replacement

cofibrant, 420
fibrant, 420
simplicial, 575



628 Index

restricted cosimplicial space, see
semicosimplicial space

retract, 6, 131
is closed, 6

retraction, 6
right cofinal, 433
right contraction of a cosimplicial space, 457
right Kan extension, 372

homotopy, 412
rooted trees, 596

S -cube, see cube
Sard’s Theorem, 584
Second Cube Theorem, 187, 283

implies First Cube Theorem, 284
second-quadrant spectral sequence, 482
section, 6
Seifert–van Kampen Theorem, 26, 153, 365
semicosimplicial space, 450
semisimplicial space, 573
sequence

cofibration, 48
fibration, 29

Serre fibration, 29
Serre Theorem, 187, 203
set

of path components, 20
simplicial, 571

simplex, 5
cosimplicial, 445
degenerate, 571

does not contribute, 571
punctured cubical, 225
singular, 24

simplicial
indexing category, 444
replacement, 575

and homotopy colimit, 575
set, 571

as colimit of its skeleta, 574
grouplike, 462
R-good, 462

space, 570
augmentation, 575
degeneracy-free, 574

simply-connected space, 20
singular

homology, 24
simplex, 24

skeleton, 574
Smale–Hirsch Theorem, 529, 556

small category, 340
smash product, 11

as a homotopy pushout, 141
commutes with homotopy colimit, 265
commutes with homotopy pushout, 159
of a spectrum with space, 588

smooth manifold triad, 580
space
∞-connected, 67
base, 29
based, 7
co-H, 297
cofibrant, 415
compactly generated, 5
configuration, 251
connectivity, 67
contractible, 15
Eilenberg MacLane, 61
fibrant, 415
k-connected, 67
latching, 415
mapping, 12
matching, 415
of embeddings, 525
of immersions, 525
of knot invariants, 555
of knots modulo immersions, 554
of link maps, 542
of long immersions, 554
of long knots, 554

cosimplicial model, 561
is a two-fold loop space, 565

of maps, see mapping space
of maps of cubes, 224
of natural transformations, 373

and limit, 373
as end, 370
of cubes, 224

of paths, see path space
of punctured knots, 556
of sections, 530
path-connected, 20
pointed, 7
semisimplicial, 573
simplicial, 570
simply-connected, 20
total, 29
triple resolution, 461
weakly contractible, 67
well-pointed, 8, 55, 56

spaces
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homotopy equivalent, 15
homeomorphic, 6
pair, 7

k-connected, 68
spectral sequence, see also

homology/homotopy spectral sequence
Barratt’s desuspension, 463
generalized Eilenberg–Moore, 480
rth page, 482
second-quadrant, 482
unstable Adams, 480
Vassiliev, 567

spectrum, 587
K-theory, 587
category, 590
connective, 589
constant, 587
Eilenberg–MacLane, 587
equivalent to Ω-spectrum, 590
homotopy fixed points, 594
homotopy groups, 589
homotopy orbits, 594
smashing with a space, 588
sphere, 587
structure maps, 587
suspension, 587
weak equivalence, 590

sphere spectrum, 587
square

as a map of maps, 92
cartesian, 99
cocartesian, 136
cofibrant, 165

colimit is homotopy colimit, 165
pushout, 165
replacement, 166

equivalent to cofibrant square, 165
equivalent to fibrant square, 125
factorization, 121, 163, 436
fibrant, 124

limit is homotopy limit, 124
pullback, 124
replacement, 124

first non-vanishing homotopy group, 216,
330

homology groups, 171
homotopy cartesian, see homotopy cartesian

square
equivalent to fibrant pullback square, 125

homotopy cocartesian, see homotopy
cocartesian square

equivalent to cofibrant pushout square,
165

homotopy groups, 133
homotopy pullback, see homotopy pullback

square
homotopy pushout, see homotopy pushout

square
k-cartesian, 111
k-cocartesian, 150
long exact sequence of homology groups,

171
long exact sequence of homotopy groups,

133
of spectra

homotopy cartesian, 592
homotopy cocartesian, 592

of suspensions, 167
pullback, 99
punctured, 92
pushout, 136
total homotopy cofiber, 168
total homotopy fiber, 127

stable homotopy groups, 588
of spheres, 588

stably k-excisive functor, 510
Stasheff associahedron, 560
strict

pullback, 99, 230
pushout, 136, 258

strongly cartesian cube, 242
equivalent to pullback cube, 243

strongly cocartesian cube, 268
and homotopy fibers, 276
equivalent to pushout cube, 270

structure maps
operad, 595
spectrum, 587

subcategory, 340
full, 340

subcomplex, 8
subset

concave, 324
convex, 316
maximal, 316
minimal, 324
partition, 290

supremum as a colimit, 361
suspension

adjoint to loops, 14
as homotopy cofiber, 59
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as homotopy colimit of a punctured cube,
259

as homotopy pushout, 141
commutes with

homotopy cofiber, 60
homotopy colimit, 265, 430
homotopy pushout, 159

connectivity, 70
fiberwise, 181
of a map, 10
of a sphere, 10
reduced, 10
unreduced, 10

suspension spectrum, 587
as excisive functor, 507

symmetric functor, 518
symmetric product

infinite, 89, 280
nth, 89

Taylor tower
convergence for embeddings, 543
error estimate, 541
for long knots, 557
homotopy calculus, 514

layer, 516
homotopy spectral sequence, 524
manifold calculus, 534

layer, 535
radius of convergence

homotopy calculus, 523
manifold calculus, 540

Thom Transversality Theorem, 585
Thomason’s homotopy colimit theorem, 442
topology

compact-open, 12
on a coproduct, 351
on a product, 350
on a totalization, 446
Whitney, 582

total
complex, 497
generalized Whitehead product, 334
space, 29
tower, 452

total cofiber, see total homotopy cofiber
total fiber, see total homotopy fiber
total homotopy cofiber

and iterated homotopy cofiber, 168
and retracts, 273
and suspension, 273

as iterated homotopy cofiber, 272
as total homotopy cofiber of a square, 274
cofibration sequence, 274
homology spectral sequence, 492
of a cube, 272
of a square, 168

total homotopy fiber
and loops, 252
and retracts, 252
as iterated homotopy fiber, 128, 250
as total homotopy fiber of a square, 254
fibration sequence, 254
homotopy groups in stable range, 218, 332
homotopy spectral sequence, 489
of a cube, 249
of a square, 127

totalization, 446
and homotopy limit, 448, 449, 477
and limit, 448
as a functor, 447
as an equalizer, 447
based, 446
homotopy invariant, 449
of a multi-cosimplicial space, 477
partial, 452
tower, 452

tower
homotopy colimit, 398
homotopy limit, 393
of cofibrations

colimit is homotopy invariant, 409
homology spectral sequence, 486
of skeleta, 576

of fibrations
homotopy spectral sequence, 482
limit is homotopy invariant, 399

of partial totalizations, 452
realization of indexing category, 387
Taylor, see Taylor tower

Transversality Theorem
Elementary, 585
Multijet, 586
Thom, 585

transverse map, 584
triad

homotopy groups, 185
excisive, 185
first non-zero homotopy group, 185
long exact homotopy sequence, 185
smooth manifold, 580

triple, 185, 461
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resolution of a space, 461
trivial fibration, 30
truncation

of a cosimplicial space, 451
homology spectral sequence, 500
homotopy spectral sequence, 500

of a homotopy colimit, 411
of a homotopy limit, 404
of a simplicial set, 573

twisted arrow category, 439

undercategory, 382
of a functor, 382

union
as pushout, 364
of homotopy cocartesian squares, 153

unit
disk, 5
interval, 4
sphere, 5

universal property, 348
of the colimit of a punctured cube, 255
of the limit of a punctured cube, 227
of the pullback, 94
of the pushout, 133

universal quasifibration, 85
and pullback over disks, 86
is a local quasifibration, 85
patching criterion, 88

unordered configuration space, 530, 535
unreduced suspension, 10
unstable Adams spectral sequence, 480

van Kampen Theorem, see Seifert–van
Kampen Theorem

Vassiliev invariants, see finite type knot
invariants

Vassiliev spectral sequence, 567
collapses, 567

vector bundle, 29
vector space

direct product, 362
direct sum, 362

very small category, 342

weak equivalence, 16
and homotopy cartesian square, 116
and homotopy cocartesian square, 155
and homotopy groups, 22
and mapping spaces, 17
of maps, 117
of pairs, 16
of spectra, 590
of squares, 124
vs. homotopy equivalence, 16, 68, 100, 112

weak topology, 4
weakly contractible space, 67
wedge, 11

as a homotopy pushout, 140
as a pushout, 134
commutes with

homotopy colimit, 263, 265, 429
homotopy pushout, 154, 159

fat, 260, 272
wedge sum, see wedge
well-pointed space, 8, 56
Whitehead product

generalized, 186, 219, 334
total generalized, 334

Whitehead Theorem
Homological, 187, 202
Homotopical, 187

Whitney Approximation Theorem, 582
for manifolds, 582

Whitney topology, 582

Z-nilpotent completion, 462
zeroth order contact, 581
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