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Preface

Introduction

Topological Hochschild homology (THH) of a “ring up to homotopy” has, after its
existence and even some calculations had been conjectured by Goodwillie in the
1980’s, appeared in several guises. Bökstedt, who gave the first rigorous definition
in [Bö], used an ad hoc construction on (simplicial) functors with smash products,
since a strictly symmetric monoidal model for the stable homotopy category was
not yet available. The construction of such categories via S-modules in [EKMM],
symmetric spectra in [HSS] and later via orthogonal spectra in [MMSS] has brought
forward various alternative versions that follow Goodwillies original idea of just
mimicking algebra more closely.

In particular, THH of a ring spectrum in either of the above categories can
be defined as the realization of a simplicial object closely resembling the algebraic
Hochschild complex where one uses the symmetric monoidal smash product instead
of the algebraic tensor product. These constructions have been carried out and
studied by the authors of [EKMM] in terms of S-algebras, by Shipley in the cate-
gory of symmetric ring spectra in [Sh] and more recently by Kro in the context of
orthogonal ring spectra in his thesis [Kr].

For the case of S-algebras in the sense of [EKMM], it is possible to encode the
same data via the categorical tensor with the circle group S1 (cf. [MSV, A]). How-
ever, care has to be taken: Already in [EKMM, IX.3.9] the authors remark that, for
a commutative S-algebra A, the categorical tensor A⊗S1, which canonically inherits
an S1-action from the second factor, does not necessarily have the right equivari-
ant homotopy type. This is particularly crucial since the S1-equivariant structure
of THH(A), that was already present in Bökstedt’s model, is the key ingredient in
Bökstedt, Hsiang and Madsen’s definition of Topological Cyclic homology (TC).

Recently efforts have been made to generalize the above and study iterated or
higher versions of both THH and TC of commutative ring spectra (e.g. [BCD,
CDD, Schl, BM]). Especially for these applications it is essential to have a model
for THH at hand that generalizes easily, while at the same time displaying the correct
equivariant structure. In [BCD] the authors address this by defining a topological



analogue of the Loday functor from algebra (cf. [L89]) in the style of Bökstedt’s
definition. This functor ΛX(A) produces THH when evaluated at X = S1, and the
equivariant structure necessary for calculating TC is the one induced by functoriality.
The much richer equivariant structure on evaluations of Λ−A on tori, leading to
Higher Topological Hochschild and Cyclic homology, has been investigated closely
in [BCD] and [CDD]. However, the construction of the Loday functor in [BCD] is,
due to the setting of simplicial functors, rather complicated and in particular a lot
of work has to be done to actually achieve functoriality.

The main goal of this thesis is to define and study the properties of a topological
Loday functor in a more accessible framework of spectra, for which we chose the
orthogonal spectra of [MMSS]. The main reason for this choice is that we have to
deal with the equivariant structure, for which the category of equivariant orthogonal
spectra of [MM], together with Kro’s exposition, forms a convenient basis.

However, the classical model structures on commutative orthogonal ring spectra
are not quite flexible enough for our purposes. To remedy this, we will develop the
convenient S-model structures as the main results of the first half of the thesis, both
in a non equivariant setting and taking actions of compact Lie groups into account
(cf. Theorems 1.3.28,1.3.29,2.3.37 and 2.3.38). This will then allow us to verify that
the following rather simple definition is appropriate:

Definition 1 (cf. 3.2.1). The Loday functor Λ−(−) on S-cofibrant commutative
orthogonal ring spectra is the categorical tensor.

In particular, for discrete input, the Loday functor specializes to the fundamental
example of the smash powers of commutative ring spectra mentioned in the title (cf.
3.2.5). We completely describe the equivariant structure of such smash powers in
terms of their geometric fixed points in Theorem 3.4.26. This result, together with
its non discrete analogue Theorem 3.4.48, forms the basis for the verifications that
our Loday functor indeed allows the study of higher analogues of THH and TC in
the sense of [BCD] and [CDD] in Section 3.6.

A key technical tool used in our construction of the S-model structures is the
Assembling Theorem B.2.8, which we formulate and prove in the appendix. It is
one of many instances throughout the thesis where we take advantage of so called
semi-free objects. Such objects have appeared in the context of symmetric spectra
in [S] and [Sh04], but to the authors knowledge a general treatment is given for the
first time in this thesis (cf. Subsections 2.2.2 and B.2).

Organization

The thesis is organized as follows. We begin Chapter 1 with a recollection of the
definition and elementary categorical properties of orthogonal spectra, before we de-



fine the semi-free objects and investigate their properties more closely in Subsection
1.2.2. We continue with a review of the classical model structures from [MMSS],
before we construct the convenient S-model structure for orthogonal spectra in Sec-
tion 1.3. The model structure is extended to commutative orthogonal ring spectra
in 1.3.4.

Chapter 2 is laid out parallel to the first, in the equivariant context. We again
start with recalling definitions before we spend some time on the semi-free equiv-
ariant spectra in Subsection 2.2.2, as they will play crucial roles in most of what
follows. We briefly collect some technical results about change of universe and
change of group functors as well as the classical model structures for equivariant
spectra from [MM]. The construction of the equivariant S-model structure is then
given in Section 2.3, and we pass to equivariant commutative ring spectra in 2.3.4.

Chapter 3 begins with a description of the algebraic Loday functor and the
categorical tensors for commutative orthogonal ring spectra that form the motivation
for our definition of several versions of topological Loday functors in Section 3.2. We
then recall definitions and elementary properties for geometric fixed points, before
turning to the fixed points of smash powers of different types of cells in 3.3.2, 3.3.3
and 3.3.5. We prove the existence of an equivariant cellular filtration on smash
powers of S-cofibrant spectra in 3.4.2, and use it to study geometric fixed points
of general smash powers in 3.4.26. Subsection 3.4.3 contains the generalization to
non discrete versions of the Loday functor, before we briefly review homotopical
properties in 3.5. Together these allow us to both compare our construction to that
of [BCD] in subsection 3.5.2, and also study the higher analogues of THH and TC
in section 3.6.

The appendix is split into 3 parts. Part A collects some of the category theory
we use heavily throughout the thesis, it focuses especially on the enriched theory.
Part B deals with model categories, and we in particular restate some of the less
commonly used definitions and properties. We collect what we need from unstable
homotopy theory in B.1.1, and from the theory of simplicial objects in B.1.2. All of
the results in either of these subsections must be well known, but can be hard to find
in the literature. In Section B.2 we give the constructions necessary to state and
prove the assembling Theorem B.2.8, which underlies the level model structures in
Chapters 1 and 2. In Part C we collect results from non stable equivariant homotopy
theory which seem to be even harder to find in the literature, in particular if one
is interested in formulations in terms of model categories. In Section C.2 we give a
brief account of Illman’s triangulation theorems, which are crucial for a lot of model
theoretic work with compact Lie groups.
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Chapter 1

Orthogonal Spectra

1.1 Introduction

Orthogonal spectra were first defined in [MMSS] in terms of diagram spaces, i.e.
functors from certain diagram categories to spaces. Already there, several equivalent
definitions were introduced and by now there exist even more descriptions that are
commonly used. For the purpose of this overview, let us work with the structurally
easiest definition:

Definition 1.1.1. An orthogonal spectrum X, consists of a sequence of spaces
{Xn}n∈N, often called the levels of X, together with the following extra structure:

• For each n ∈ N, an action of the orthogonal group On on the nth space Xn.

• For each n ∈ N, a structure map σn : Xn∧S1 → Xn+1, such that for any
n,m ∈ N, the iterated structure map

Xn∧Sm
∼= // Xn∧S1∧ . . .∧S1

σn+m−1◦...◦(σn∧Sm−1) // Xn+1+...+1
= // Xn+m

is an On ×Om-equivariant map.

Here, and everywhere throughout this thesis unless we explicitly state otherwise,
space means a based, compactly generated weak Hausdorff space (e.g. [St]), and
maps are assumed to be continuous. Actions of (topological) groups are implied to
be basepoint preserving and continuous (cf. A.2.19). The spheres Sn are equipped
with an action of On by viewing them as the one-point compactifications (Rn)+ of
the vector spaces Rn, which we always think of as being equipped with the standard
basis and inner product. The action of On×Om on Xn+m is by inclusion of (n,m)-
block matrices into On+m.

9



CHAPTER 1. ORTHOGONAL SPECTRA

Definition 1.1.2. A morphism f : X → Y of orthogonal spectra is a sequence of
maps {fn : Xn → Yn}n∈N such that all the diagrams

Xn∧S1

σn
��

fn∧S1
// Yn∧S1

σn
��

Xn+1
fn+1 // Yn+1

(1.1.3)

commute.
The category of orthogonal spectra together with these morphisms will be denoted
by SpO.

Example 1.1.4 (The Sphere Spectrum). The sphere spectrum S is the orthogonal
spectrum given in level n by the n-sphere

Sn := Sn,

with the action of the On as above by viewing Sn as the one-point compactification
of Rn. For the structure maps σn : Sn∧S1 → Sn+1 we once and for all chose linear
isometries Rn ⊕ R ∼= Rn+1 for all natural numbers and again take their one-point
compactifications.

Example 1.1.5 (Suspension Spectra). Let A be a space. The suspension spectrum
Σ∞A of A is given by

(Σ∞A)n := A∧Sn,

i.e. the levelwise smash product of A with S, and the structure maps inherited from
S. Note that the commutativity of the diagrams (1.1.3) implies that a morphism
Σ∞A→ Y of spectra is the same as a map A→ Y0 of spaces, i.e. we have a natural
isomorphism

SpO(Σ∞A, Y ) ∼= T (A, Y0). (1.1.6)

The category SpO of orthogonal spectra admits rich extra structure. Categori-
cally, it has been shown to be closed symmetric monoidal in [MMSS, 1.7], and hence
it permits the study of monoid objects, usually called orthogonal ring spectra, as
well as algebras and modules over such. The suspension functor above is a spe-
cific example of a rather big class of functors linking SpO with various categories of
spaces. We will review these properties and constructions throughout this section,
while also providing definitions of some equivalent categories of orthogonal spectra.
Moving towards homotopy theory, the suspension spectrum functor again serves as
a nice motivation, as the following definition provides an extension of the well known
stable homotopy groups of spaces through postcomposition:
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1.1. INTRODUCTION

Definition 1.1.7. For an orthogonal spectrum X and k ∈ Z, define the homotopy
groups πk(X) as the colimit

πk(X) := colim πk+n(Xn),

along the maps

πk+nXn
−∧S1

// πk+n+1Xn∧S1 σ∗ // πk+n+1Xn+1.

A map of spectra is called π∗-isomorphism if it induces isomorphisms on all such
homotopy groups.

This definition does not make use of the orthogonal group actions on the Xi, and
indeed in [MMSS, 0.1] the authors show that there is an equivalence between the
homotopy categories of orthogonal spectra, obtained by formally inverting the π∗-
isomorphisms, and the stable homotopy category SHC of classical sequential spectra
(e.g. [BF]). More precisely the following theorem holds:

Theorem 1.1.8. [MMSS, 9.2, 10.4, 12.6] The category SpO is a cofibrantly gen-
erated, stable, proper, monoidal, topological model category with respect to the π∗-
isomorphisms, q-cofibrations and q-fibrations. The forgetful functor is the right ad-
joint of a Quillen equivalence to the classical stable model structure on sequential
spectra.

We will review some results leading up to this theorem which will then be adapted
in our construction of the so called S-model structure on orthogonal spectra (1.3.10).
This model structure turns out to have similar favourable properties in addition to
being “convenient” when lifting model structures to commutative orthogonal ring
spectra – both in the literal, and in the technical sense of Theorem 1.3.29.

11



CHAPTER 1. ORTHOGONAL SPECTRA

1.2 Recollections

1.2.1 Definition(s)

Since having different viewpoints available to us will prove advantageous, we are
going to recall definitions for several equivalent categories of orthogonal spectra as
well as translations between them. A lot of this discussion can be extracted from
the above mentioned [MMSS], though we lean our exposition in a slightly different
direction.
To begin with, note that the enrichment of the category T of spaces over itself
(A.2.13) also gives SpO the structure of a topological category A.2.15:

Definition 1.2.1. The category SpO of orthogonal spectra is enriched (cf. A.2)
over (T ,∧, S0), by topologizing the set SpO(X, Y ) as the subspace of the product∏

n∈N T (Xn, Yn) in T , containing those sequences of maps that make the diagrams
(1.1.3) commute.

It is also tensored and cotensored (cf. A.2.24) over spaces by using the levelwise
smash product and function space on spaces, i.e.

Definition 1.2.2. For a spectrum X and a space A define the tensor or smash
product A∧X as the spectrum

(A∧X)n := A∧Xn,

and the structure maps induced from X.
The cotensor or function spectrum A t X := F (A,X) is the spectrum

F (A,X)n := T (A,Xn),

also with the structure maps induced from X.

The second definition of orthogonal spectra we give is in terms of S-modules.
Here the term module is to be understood as an object with a right action of a
monoid in some monoidal category (cf. A.1.16). To be precise consider the following
definition.

Definition 1.2.3. An orthogonal sequence or orthogonal space X is a sequence
{Xn}n∈N of spaces with an action of On on Xn. A morphism of orthogonal sequences
is a sequence of appropriately equivariant maps. Denote the category of orthogonal
sequences by IT .

As above, IT inherits a topological enrichment from T via the product

IT (X, Y ) :=
∏
n∈N

OnT (Xn, Yn),

12



1.2. RECOLLECTIONS

where the OnT denote the categories of spaces with On-action (cf. A.2.19).
The category IT is closed symmetric monoidal in the following way:

Definition 1.2.4. Let X = {Xn} and Y = {Yn} be orthogonal sequences, their
tensor product X ⊗ Y is the sequence given by

(X ⊗ Y )n :=
∨

p+q=n

On+∧Op×Oq(Xp∧Yq),

where the subscript + to On denotes an added disjoint basepoint and each of the the
wedge factors is the On-space created from the Op ×Oq-space by induction along
the inclusion of (p× q)-block matrices (cf. C.1.5).

The tensor product is associative by repeatedly using the associativity isomor-
phisms for the smash product of spaces and the symmetry isomorphisms for the
coproduct of spaces. It is also symmetric via the natural isomorphism induced on
wedge summands by:

On+∧Op×OqXp∧Yq → On+∧Oq×OpYq∧Xp

(A, x, y) 7→ (ATq,p, y, x),

where Tq,p is the orthogonal block matrix

(
0 Ip
Iq 0

)
that shuffles the first q past the

last p coordinates. A unit object is given by the orthogonal sequence {S0, ∗, ∗, . . .},
that has just the basepoint in all levels except zero, where it is S0.

Definition 1.2.5. Given an orthogonal sequence Y in IT , its m-fold shift is the
orthogonal sequence shm Y with

(shm Y )n := Ym+n.

The On-action is via inclusion of lower right block matrices, hence the whole se-
quence shm Y has an action of Om, using the levelwise inclusion of upper left block
matrices.

This allows us to identify the internal Hom functor of IT as the function se-
quence F (X, Y ), which is defined as

F (X, Y )m := IT (X, shm Y ), (1.2.6)

where the Om-action on shm Y gives the required action on F (X, Y )m.

13



CHAPTER 1. ORTHOGONAL SPECTRA

Remark 1.2.7. In the spirit of Example 1.1.5, we can embed the category of spaces as
those sequences that have just a basepoint in all levels except 0. Denote the image
of a space A under this functor by A∗. The analogue of the natural isomorphism
1.1.6 then gives

IT (A∗, X) ∼= T (A,X0), (1.2.8)

and we can use this in combination with the closed symmetric monoidal structure
on IT to define tensors and cotensors over T . Just as for spectra, these turn out to
be levelwise.

Remark 1.2.9. One can identify the category IT of orthogonal sequences as above
with the T -category [I, T ] of continuous functors I → T , where I is the category
with one object for each natural number, morphism spaces I(n, n) = On+ and
I(n,m) = ∗ for n 6= m. Then I is strict monoidal with product (− + −) and sym-
metric via the continuous natural isomorphism τp,q = Tp,q ∈ Op+q. The symmetric
monoidal structure on IT described above is an example of the one constructed in
[MMSS, §21].

Remark 1.2.10. This interpretation of IT as an enriched functor category, allows
us to reinterpret equation (1.2.8) as a special case of an evaluation adjunction, cf.
1.2.26.

Example 1.2.11 (The Sphere Sequence). Forgetting the structure maps of the
sphere spectrum S yields an orthogonal sequence, which we denote by the same
symbol. This sphere sequence is a commutative monoid in IT , where the unit map
is the identity in level 0 and the inclusion of the basepoint everywhere else. The
multiplication map is given on wedge summands by:

On+∧Op×Oq(Rp)+∧(Rq)+ → (Rn)+

(A, v, w) 7→ (A(v + w)).

Note that without the addition of the Tp,q in the definition of the symmetry mor-
phism above, the sphere spectrum would not be a commutative monoid.

The following lemma is then immediately verified by comparing the explicit
Definition 1.2.4 with (1.1.3)

Lemma 1.2.12. The category SpO is equivalent to the category of right S-modules
in IT . The equivalence is T -enriched, i.e. through continuous functors.

This in particular implies, that SpO is itself closed symmetric monoidal by A.1.16.
Formally we denote the resulting monoidal product and internal Hom functor by
∧S and FS, but we will usually drop the index S when the context is clear.

Another alternative definition of orthogonal spectra is as a category of continuous
functors itself. The appropriate diagram category is the following:

14



1.2. RECOLLECTIONS

Definition 1.2.13. Let O be the topological category with the same objects as I
and morphism spaces given by

O(n, n+m) := On+m+∧OmS
m,

if m ≥ 0 and just a basepoint otherwise. Composition is then given by inclusion of
upper left block matrices and matrix multiplication on one factor and induced by
the isomorphisms Sm∧Sm′ ∼= Sm+m′ on the other.

Remark 1.2.14. The notation is consistent in the sense that the endomorphism spaces
O(n, n) are given by the orthogonal groups On. Both ways of writing these have
their benefits, which will become more obvious in the next paragraphs, where we
discuss coordinate free spectra. For convenience, we will abbreviate [O, T ] as OT .

Lemma 1.2.15. There is an equivalence of categories SpO � OT , where OT is
the category of continuous functors O→ T and continuous natural transformations
between them.

Proof. This is a special case of Theorem [MMSS, 2.2]. The appropriate functors are
given in the following way:
Let X be an orthogonal spectrum in the sense of Definition 1.1.1. Then X defines
a continuous functor by setting X(n) := Xn for objects n ∈ O and using the map
adjoint to the composition

Xn∧On+m+∧OmS
m σ→ On+m+∧Xn+m

act.→ Xn+m

on morphisms.
Both the inverse equivalence and the construction of natural transformations from
morphisms of spectra are immediate.

In the discussion of orthogonal spectra and orthogonal sequences so far, the vec-
tor spaces Rn have played a pivotal role. This can be interpreted as a choice of basis
for any given finite dimensional vector space, which is of course non canonical. This
choice makes some computations easier, for example when dealing with homotopy
groups of spectra (e.g. 1.3.11) or when describing the explicit formulas for the tensor
product (1.2.4). However, it is also often helpful to be able to avoid it. This is done
via the so called coordinate free orthogonal spectra, another category equivalent to
SpO. These could again be studied analogous to 1.1.1, but we chose to present the
approach via functor categories:

Definition 1.2.16. Let I denote the topological category of all finite dimensional
euclidean vector spaces, and linear isometries between them.
Similarly, let O be the category with the same objects but morphism spaces con-
structed in the following way:

15
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Construction 1.2.17. For V and W finite dimensional euclidean vector spaces denote
by L(V,W ) the space of linear isometric embeddings of V into W , and note that
L(V,W ) = I(V,W ) if the dimensions of V and W are equal. Let E(V,W ) be the
subbundle of the trivial W -bundle over L(V,W ) given by all points

{(f, w) ∈ L(V,W )×W,w ∈ f(V )⊥},

i.e. where w is in the orthogonal complement of the image of f in W .
Define O(V,W ) as the Thom space of E(V,W ), obtained by one-point compacti-
fication at each fiber and gluing together all the added infinity points. Note that
E(V,W ) is empty if dimW < dimV , hence O(V,W ) is just a basepoint in that case.
Define composition in O as the continuous map:

O(W,U)∧O(V,W ) → O(V, U)

(g, u), (f, w) 7→ (g ◦ f, g(w) + u),

and the identity maps as (idV , 0) in O(V, V ).

Lemma 1.2.18. For any particular choice of isometric embedding i : V → W , such
that W ∼= i(V )⊕ V ′ is an orthogonal direct sum, there is an isomorphism

O(V,W ) ∼= OW+∧OV ′
SV

′
.

Proof. Let f be an isometric embedding V → W , then there exists a lift gf ,

V

i
��

f //W

W
∃gf

== ,

which is a self isometry of W . Define the desired isomorphism via:

O(V,W ) → OW+∧OV ′
SV

′

(f, w) 7→ (gf , g
−1
f w).

This is well defined, since the choice of lift only changes the image up to the action
of an element of OV ′ . Note that

[g, w] 7→ (g ◦ i, g(w))

gives a well defined inverse.
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Remark 1.2.19. In particular, we can consider the category O as the full subcate-
gory of O, containing the objects n = Rn, equipped with the standard basis, the
standard scalar product, and the standard inclusions Rn → Rn+1. Similarly I is a
full subcategory of I. In both cases the subcategories are skeleta. Hence from now
on, we will not differentiate the notation for morphism spaces and always use the
symbols O respectively I.

Remark 1.2.20. Note that all non trivial morphisms in O between vector spaces of
the same dimension are isomorphisms. Also, the composition maps

O(V,W )∧O(U, V )→ O(U,W )

factor through the quotient map

O(V,W )∧O(U, V )→ O(V,W )∧OV
O(U, V ) −→ O(U,W ),

where the quotient is taken along the diagonal action by postcomposition respec-
tively precomposition with the inverse. Here the latter map is an isomorphism if
and only if dimU = dimV or dimV = dimW .

Definition 1.2.21. Define the category OT of coordinate free orthogonal spectra as
the category [O, T ] of continuous functors O → T and continuous natural transfor-
mations between them.

Remark 1.2.22. Since O is in particular a skeleton of O, we immediately get an
equivalence of categories

OT � OT .
The right adjoint is the restriction to levels Rn, and the left adjoint is given by
the left Kan extension (cf. A.2.3), which in this case specializes to evaluating an
orthogonal spectrum X in OT at any vector space V :

XV := O(Rn, V )∧OnXn,

where n is the dimension of V . The generalized structure maps, i.e. the maps

O(V,W )∧XV → XW ,

are then given by the following compositions:

O(V,W )∧XV
= // O(V,W )∧O(Rn, V )∧OnXn

��
O(Rn,W )∧OnXn

∼=
��

O(Rm,W )∧OmO(Rn,Rm)∧OnXn

(id, σ)
��

XW O(Rm,W )∧OmXm
=oo

(1.2.23)

17
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where again n = dimV , m = dimW , the first vertical map is composition in O,
the second one is induced by the isomorphism from Remark 1.2.20, and σ is the
structure map of X.

Remark 1.2.24. In particular for a coordinate free orthogonal spectrum X, and for
V and W two euclidean vector spaces of the same dimension, there is an OW -
equivariant natural isomorphism

XW
∼= O(V,W )∧OV

XV .

1.2.2 Free and Semi-Free Spectra

In this subsection we generalize the suspension spectra of Example 1.1.5. This will
be done in two different ways. The first is via free spectra which had already been
discussed in [MMSS], and were put to great use in, for example, the construction
of (stable) model structures. The second method, via semi-free spectra is less well
studied. Analogues in the case of symmetric spectra have been studied by Schwede
in [S], and also featured prominently in Shipley’s constructions in [Sh04].

However, a detailed analysis of a more general, or even just the orthogonal case,
has to the author’s knowledge not been carried out before. We again chose to elab-
orate on the approach via functor categories, as it seems to generalize best to the
equivariant case, studied in later sections. A more general approach will also be
discussed in the Appendix (B.2), where we state some properties for more general
categories.

For now, let V be a finite dimensional euclidean vector space and consider the
following diagram of T -categories:

?

��

��<<<<<<<<<<<<<<<<<<<<<<<<<<<<

OV

��

##GGGGGGGGGGGGGGGGGGGGGG

I

�� ))SSSSSSSSSSSSSSSSSSSS

O // T ,

where ? is the trivial T -category with one object, say V (cf. A.2.3). It is included
into OV , the T -category with again only one object V , but endomorphism space
given by OV +. This one is included into I as the full subcategory containing the
vector space V . As before, I is included as a subcategory of O. Then an orthogonal
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spectrum X, viewed as a functor X : O → T , naturally defines underlying functors
out of ?, OV and I by restriction, or rather precomposition with the above inclusions.
These precompositions therefore define T -functors

OT //

evV

  

ev
′
V

GGIT //OV T // [?, T ]
∼= // T , (1.2.25)

assigning to a spectrum X its underlying orthogonal sequence, the OV -space XV

and the underlying space XV , respectively. All of the functors in diagram 1.2.25
have left adjoints. For the case of V = {0}, these are exactly the functors

OT IT
(−)⊗Soo O0T

Σ∞

VV
(−)∗oo T ,

∼=oo

Σ∞

��

studied above in 1.1.5 and 1.2.7.
In general we denote the respective left adjoints in the following way:

OT IT
(−)⊗Soo OV T

GV (−)

VV
oo T

(−)∧OV +oo

FV (−)

��
(1.2.26)

Formally, the existence of the left adjoints is proved using (topological) left Kan
extensions (cf. A.2.3). Since we will make excessive use of these functors however,
we will also provide the explicit formulas:

Definition 1.2.27. Let V be a finite dimensional euclidean vector space, let A ∈ T
be a space. Then the free orthogonal spectrum FVA is given in a level W by

(FVA)W := O(V,W )∧A,

with the structure maps induced by composition in O.
This assignment with the obvious extension to maps in T yields a functor

FV : T → OT .
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Remark 1.2.28. Note that for a chosen embedding V ↪→ V ⊕ V ′ ∼= W , this is
isomorphic to

(FVA)W ∼= OW+∧OV ′
A∧SV ′ ,

using Lemma 1.2.18.

The other instance of Σ∞ above generalizes to the semi-free case in the following
way:

Definition 1.2.29. Let V be a finite dimensional euclidean vector space, letK ∈ OV T
be a space with OV -action. Then the semi free orthogonal spectrum GVK is defined
in a level W via

(GVK)W := O(V,W )∧OV
K,

where the action of OV on O(V,W ) is by precomposition and diagonal on the smash
product. The structure maps are induced by composition in O. As in the free case,
this defines a functor

GV : OV T → OT .

Remark 1.2.30. Again using Lemma 1.2.18, an isometric embedding

V ↪→ V ⊕ V ′ ∼= W

yields an isomorphism

(GVK)W ∼= OW+∧OV ×OV ′
K∧SV ′ .

Remark 1.2.31. As indicated by the diagram 1.2.26 above, the free and semi-free
spectrum functors factor through IT , i.e. we have natural isomorphisms

FV (−) ∼= FIV (−)⊗ S

and
GV (−) ∼= GIV (−)⊗ S,

with the free respectively semi-free orthogonal sequence functors FIV and GIV given
by replacing O(V,W ) with I(V,W ) in Definitions 1.2.27 and 1.2.29. Note that the
free and semi-free sequences FIVA and GIVK have basepoints in all levels W not
isomorphic to V .

Remark 1.2.32. The other factorization indicated in diagram 1.2.26 is also immedi-
ately obvious in the spacewise definitions. There is a natural isomorphism

FV (−) ∼= GV (OV +∧−).

Hence free spectra are in particular semi-free.
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Finally, if the reader wants to escape the language of Kan-extensions completely,
the following lemma is a necessary exercise.

Lemma 1.2.33. The two diagrams 1.2.25 and 1.2.26 indeed display adjoint con-
tinuous functors, using the above definitions of the free and semi-free spectra. In
particular there are natural isomorphisms

OT (GVK,Z) ∼= OV T (K,ZV )

and
OT (FVL,Z) ∼= T (L,ZV ).

Proof. This can actually be checked using only the explicit description of the inter-
nal hom object and monoidal product in IT (1.2.4), respectively OT (1.2.12), the
definitions in 1.2.27 and the translation to the coordinate free world in 1.2.22.

One of the most important properties of (semi-) free spectra, is that it is easy
to calculate their smash products with other spectra and in particular with each
other. The following proposition makes this precise, and using Remark 1.2.31 also
generalizes Lemma [MMSS, 1.8]. It is analogous to Lemma [S, I.4.5-6] in the case
of symmetric spectra.

Proposition 1.2.34. Let V and W be finite dimensional euclidean vector spaces,
K ∈ OV T and L ∈ OWT . Then there is a natural isomorphism

GVK∧GWL ∼= GV⊕W (OV⊕W∧OV ×OW
K∧L).

Proof. We begin by showing the analogue for orthogonal sequences. Let Y ∈ IT ,
then there are continuous natural isomorphisms

IT (GIVK ⊗ GIWL, Y ) ∼= IT (GIVK,F (GIWL, Y ))
∼= OV T (K,F (GIWL, Y )V )
∼= OV T (K, IT (GIWL, shV Y ))
∼= OV T (K,OWT (L, YV⊕W ))
∼= (OV ×OW )T (K∧L, YV⊕W )

IT (GIV⊕W (OV⊕W+∧OV ×OW
K∧L), Y ) ∼= OV⊕WT (OV⊕W+∧OV ×OW

K∧L, YV⊕W ).

Hence the proposition holds for sequences, by the Yoneda lemma. Then the result
for spectra is implied by the fact that the definition of the smash product of modules
gives a natural isomorphism of spectra

(X ⊗ S)∧S(Y ⊗ S) ∼= (X ⊗ Y )⊗ S,

together with Remark 1.2.31.
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Before studying more general smash products, we give another useful property
for semi-free spectra, which has no immediate analogue in the free case:

Proposition 1.2.35. Let V and W be euclidean vector spaces of the same finite
dimension. Then for K ∈ OV T , there is a natural isomorphism between semi-free
spectra

GVK ∼= GW (O(V,W )∧OV
K).

Proof. Note thatO(V,W )∧OV
K is the evaluation (GVK)W by Remark 1.2.24. Again

we compare the defining right adjoints. Let Z be any orthogonal spectrum:

OT (GVK,Z) ∼= OV T (K,ZV )
∼= OWT (O(V,W )∧OV

K,O(V,W )∧OV
ZV )

∼= OWT (O(V,W )∧OV
K,ZW )

∼= OT (GWO(V,W )∧OV
K,Z)

Here the isomorphism in the second line is immediate after choice of basis, but
the actual choice has no influence on the map. For the third line one uses the
isomorphism given by the generalized structure maps (cf. Remarks 1.2.22, 1.2.24).

This allows us to state the following proposition in terms of coordinatized or-
thogonal spectra, saving us the definition of the coordinate free smash product of
sequences via the Kan extension.

Proposition 1.2.36. The smash product of a semi-free spectrum GnK with an or-
thogonal spectrum X is given in level m by

(GnK∧X)m ∼= Om∧On×Om−nK∧Xm−n,

whenever m ≥ n, and just a basepoint in lower levels. The structure maps are
induced from those of X and the Om-action is by multiplication on the left factor.

Proof. Again we use that GnK∧SX ∼= GInK ⊗ X, where the structure maps, or S-
module structure of the right spectrum are induced only from X. We evaluate the
tensor product according to Definition 1.2.4 to get the result.

Corollary 1.2.37. The smash product of a semi-free spectrum GVK with an or-
thogonal spectrum X is given in level W ∼= V ⊕ V ′ by

(GVK∧X)W ∼= OW∧OV ×OV ′
K∧XV ′ ,

and just a basepoint in levels which V does not embed into isometrically.
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Another property differentiating semi-free spectra from free ones is the following:

Lemma 1.2.38. Let G be a (topological) group. Then a (continuous) action of G on
a semi-free spectrum GVK is equivalent to a (continuous) action on K. Moreover,
the levelwise orbit spectrum [GVK]G is isomorphic to GV (KG).

Proof. An action of G on a spectrum is the same as a map of (topological) monoids
G → OT (GVK,GVK). By the defining adjunction for semi-free spectra that is the
same as a map G → OV T(K,K). To check the statement about orbits, recall that
the action of G is through maps of spectra, i.e. in particular through OV -equivariant
maps on K. That is the OV - and G-actions on K commute, and on levels W we get
the isomorphisms

[GVKW ]G = [O(V,W )∧OV
K]G ∼= [O(V,W )∧K]OV ×G

∼= O(V,W )∧OV
(KG).

In the light of our later treatment of G-equivariant spectra, one should note that
neither V nor W are considered to have actions of G here, i.e. they are both trivial
G-representations.

Remark 1.2.39. Note that semi-free spectra with actions of G are often more natu-
rally indexed on non-trivial representations. However, Proposition 1.2.35 allows us
to change the euclidean space used for the indexing as desired, without changing
the underlying spectrum. For example consider the spectrum

X := GVK∧GVK ∼= G
Σ2
V⊕V [OV⊕V∧OV ×OV

K∧K] .

There are many different combinations of Σ2-actions on the smash factors that are
possible. The one we are (usually) interested in is the one that comes from the
symmetry isomorphism for the smash product. Before applying Lemma 1.2.38 we
should switch indexing from the non trivial Σ2-representation V ⊕ V to an isomor-
phic vector space W on which Σ2 acts trivially. Then Proposition 1.2.35 gives the
isomorphism

X ∼= GW (O(V ⊕ V,W )∧OV ×OV
K∧K),

where the OW -action commutes with the Σ2-action, hence we can calculate the
orbits as in Lemma 1.2.38. It is then clear that the correct Σ2-action to consider on

OV⊕V∧OV ×OV
K∧K

is by permuting factors of K∧K and by multiplying with the block permutation
matrix from the right, i.e. by precomposition on OV⊕V .
Later, considering the smash product as an equivariant spectrum, we can get around
this change of indexing, and then the action on OV⊕V will be by conjugation (cf.
3.3.39).
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Remark 1.2.40. Considerations like these are our main reason for using the coordi-
nate free notation as often as possible. The author himself finds it almost impossible
to keep track of the correct actions using the language of SpO or even OT .

There are several other categorical constructions on orthogonal spectra that
would warrant a longer discussion. We will not present more details here, as the
presented material will suffice for our purposes in this thesis. However, the au-
thor hopes to get the opportunity to study twisted smash products analogous to
Schwede’s exposition for the symmetric case in [S, 4.5] in future work. In particular
understanding the effect on homotopy groups in relation to an orthogonal version
of the monoid M of injective self-maps of N (cf. [S, I.6.1]) would simplify technical
results like 1.3.11 and 2.3.29 significantly. For a detailed analysis of these one would,
for example, require more discussion about the shift functors shm of 1.2.4, its spec-
trum level analogues and various left adjoints associated to these. Another aspect
that we have completely neglected here, is that all the functors in diagram 1.2.25
also have right adjoints, i.e. there are cofree and cosemi-free spectra and sequences.

Remark 1.2.41 (Enrichment). So far, all categories discussed in the previous sec-
tions have been viewed as T -categories, and this will continue to be our usual view-
point. However, as closed symmetric monoidal categories, the categories IT and
OT of orthogonal sequences and spectra are naturally enriched over themselves (cf.
A.2.13). Additionally, the functor ev0(−) from above is strong symmetric monoidal
and transports the enrichment of OT over itself into the T -enrichment, i.e. the
relation

FS(X, Y )0
∼= OT (X, Y )

holds for all orthogonal spectra X and Y . In an analogous way, we can use the
(semi-)free functor F0 = G0 = Σ∞ to view T as enriched over OT .

1.2.3 Model Structures

The homotopical properties of the category SpO of orthogonal spectra have been
studied in [MMSS]. The authors construct various model structures, and several of
these will play central roles in the further discussions in this thesis. We will recall
the necessary definitions and useful properties of these structures in this section,
following the exposition in [MMSS, §6-9]

Definition 1.2.42. Let f : X → Y be a morphism of orthogonal spectra.

(i) f is a level equivalence if fn : Xn → Yn is a weak equivalence in T for all n ∈ N.

(ii) f is a level fibration if fn : Xn → Yn is a Serre fibration, i.e. a fibration in T
for all n ∈ N.
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(iii) f is a q-cofibration if f satisfies the left lifting property with respect to all maps
that are level acyclic fibrations, i.e. maps that are both level equivalences and
level fibrations.

Recall the sets I and J that formed the generating cofibrations for the Quillen
model structure on T (B.1.23). Let F I be the set of all maps Fni of orthogonal
spectra with n ∈ N and i ∈ I, and FJ the analogue construction. Using these
definitons, we can state Theorem [MMSS, 6.3]:

Theorem 1.2.43. The category SpO of orthogonal spectra is a compactly generated
proper topological model category with respect to the level equivalences, level fibra-
tions, and q-cofibrations. The sets F I and FJ are the generating q-cofibrations and
acyclic q-cofibrations, respectively.

Just as in the case of spaces, it is often convenient to also keep the h-cofibrations
in mind B.1.14. Note that an h-cofibration of orthogonal spectra is a levelwise
h-cofibration of spaces. In particular, Corollary B.1.29 implies the following:

Corollary 1.2.44. If all involved spectra are well based in each level, then the gen-
eralized cube Lemma B.1.7 and the generalized cobase change Lemma B.1.5 hold for
(levelwise) h-cofibrations and level homotopy equivalences as well as for (levelwise)
h-cofibrations and level weak equivalences of spectra.

Remark 1.2.45. Note that as in B.1.29, we can even relax the assumption of the
spectra being well based slightly.

Recall the definition of the homotopy groups of an orthogonal spectrum and
π∗-isomorphisms from 1.1.7. The following is a collection of properties of π∗-
isomorphisms that we will use throughout:

Proposition 1.2.46. [MMSS, 7.4,9.10], paraphrased

(i) For a based CW complex A, the functor −∧A on orthogonal spectra preserves
π∗-isomorphisms.

(ii) A morphism of orthogonal spectra is a π∗-isomorphism if and only if its suspen-
sion is. The natural map η : X → ΩΣX is a π∗-isomorphism for all orthogonal
spectra X.

(iii) The homotopy groups of a wedge of orthogonal spectra are the direct sums of the
homotopy groups of the wedge summands, hence a wedge of π∗-isomorphisms
is a π∗-isomorphism.

(iv) Cobase changes of maps that are π∗-isomorphisms and levelwise h-cofibrations
are π∗-isomorphisms.
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(v) The generalized cobase change and cube lemmas (B.1.5,B.1.7) hold for all or-
thogonal spectra, (levelwise) h-cofibrations and π∗-isomorphisms.

(vi) If X is the colimit of a sequence of h-cofibrations Xn → Xn+1, each of which
is a π∗-isomorphism, then the map from the initial term X0 into X is a π∗-
isomorphism.

(vii) For any morphism f : X → Y of orthogonal spectra, there are natural long
exact sequences

· · · → πq(Ff)→ πq(X)→ πq(X)→ πq−1(Ff)→ · · ·

· · · → πq(X)→ πq(Y )→ πq(Cf)→ πq−1(X)→ · · · ,

where Ff and Cf denote the (levelwise) homotopy fiber and cofiber of f . The
natural map Ff → ΩCf is a π∗-isomorphism.

In [MMSS, §9] the stable model structure for orthogonal spectra is constructed
by adding generating acyclic cofibrations to the level structure from Theorem 1.2.43,
so as to include the π∗-isomorphisms as weak equivalences. Alternatively one could
think of this as Bousfield localization at the class of π∗-isomorphisms, but the extra
control about the generating acyclic cofibrations proves helpful in several places. In
particular, since we are going to reuse the specific maps going into the construction,
we recall some details:

Definition 1.2.47. Let λn : Fn+1S
1 → FnS0 be the map adjoint to the inclusion

S1 → On+1+∧OnS
0∧S1,

sending the sphere to the copy indexed by the identity in On+1.

Definition 1.2.48. Once again recall the sets of generating cofibrations of spaces I
and of generating level acyclic cofibrations FJ from above. Factor all the maps λn
via the mapping cylinder as λn = rn ◦ kn with kn : Fn+1S

1 → Mλn a q-cofibration
and rn a deformation retraction. We define Kn to be the set of pushout product
maps of the form kn�i with i ∈ I. Let K be the union of FJ with the sets Kn for
n ∈ N.

Definition 1.2.49. A q-fibration of orthogonal spectra is a map that has the lifting
property with respect to K, hence with respect to all maps that are q-cofibrations
and π∗-isomorphisms.

The q-fibrations can be characterized more explicitly:
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Lemma 1.2.50. [MMSS, 9.5] A map p : E → B of orthogonal spectra is a q-
fibration, if and only if it is a level fibration and the diagrams

En
σ̃ //

pn

��

ΩEn+1

Ωpn+1

��
Bn σ̃

// ΩBn+1

(1.2.51)

are homotopy pullbacks for every n ≥ 0.

Definition 1.2.52. An orthogonal spectrum F is an Ω-spectrum, if all the maps
σ̄ : Fn → ΩFn+1 are weak equivalences.

Corollary 1.2.53. The map F → ? is is a q-fibration if and only if F is an Ω-
spectrum.

Then the following theorem combines [MMSS, 9.2,12.5 and 12.6 ] :

Theorem 1.2.54. The category SpO of orthogonal spectra is a compactly gener-
ated stable proper topological model category with respect to the π∗-isomorphisms,
q-cofibrations and q-fibrations. The sets of generating cofibrations and generating
acyclic cofibrations are given by F I and K, respectively. This model structure sat-
isfies the pushout product axiom and the monoid axiom.

This model structure is lifted to categories of orthogonal ring spectra and mod-
ules and algebras over such in §12 of [MMSS], following the general treatment of
such questions from [SS]. To move towards categories of commutative orthogonal
ring spectra, however, some more work is needed, and in particular one requires
a positive variation of the stable model structure, which is constructed in [MMSS,
§14]. The generating sets of cofibrations F+I, F+J and K+ are therefore defined
by excluding all maps that require the use of F0 from their absolute counterparts
(cf. 1.2.43 and 1.2.48).

Definition 1.2.55. Let f be a map of orthogonal spectra:

(i) f is a positive level fibration, if fn is a Serre fibration for all n > 0.

(ii) f is a positive level equivalence, if fn is a weak equivalence for all n > 0.

(iii) f is a positive q-cofibration if it is a q-cofibration and f0 is a homeomorphism.

(iv) f is a positive q-fibration if it has the right lifting property with respect to all
maps that are positive q-cofibrations and π∗-isomorphisms.
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Theorem 1.2.56. [MMSS, 14.1] The category SpO of orthogonal spectra is a com-
pactly generated proper topological model category with respect to the positive level
equivalences, positive level fibrations and positive q-cofibrations. The sets F+I and
F+J are the generating sets of cofibrations and acyclic cofibrations, respectively.

Theorem 1.2.57. [MMSS, 14.2] The category SpO of orthogonal spectra is a com-
pactly generated stable proper topological model category with respect to the π∗-
isomorphisms, positive q-fibrations and positive q-cofibrations. The sets F+I and
K+ are the generating sets of cofibrations and acyclic cofibrations, respectively. This
model structure satisfies the pushout product axiom an the monoid axiom.

Recall the functor E that creates free commutative ring spectra, i.e. commutative
S-algebras from A.1.19.

Theorem 1.2.58. [MMSS, 15.1] The category of commutative orthogonal ring spec-
tra is a compactly generated proper topological model category with fibrations and
weak equivalences created in the positive stable model structure of SpO. The sets
EF+I and EK+ are the generating sets of cofibrations and acyclic cofibrations, re-
spectively.

Theorem 1.2.59. [MMSS, 15.2] Let R be a commutative orthogonal ring spectrum
The category of commutative R-algebras is a compactly generated proper topological
model category whose weak equivalences, fibrations and cofibrations created in the
category of commutative orthogonal ring spectra.
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1.3 The Convenient Model Structure

In this section, we define a model structure on the category of commutative orthog-
onal ring spectra which is convenient in the sense that cofibrant objects are already
cofibrant as underlying orthogonal spectra. The existence of such a structure has
already been hinted at in [Sh04], where an analogue for symmetric spectra is dis-
cussed. The differences and, in particular, difficulties that come up when working
in the topological world of orthogonal spectra as opposed to the simplicial setup of
symmetric spectra, warrant a more detailed discussion.
We begin on space level, where we have to consider some more equivariant homotopy
theory before we can get started:

1.3.1 Mixed Model Structures for G-spaces

Let G be a compact Lie group, for example the orthogonal group OV of a finite
dimensional euclidean vector space V . There are various accounts of the homotopy
theory of G-spaces available, we review what we need here in the Appendix C, where
we give more detailed references.
Recall the naive and genuine model structures on the category GT of G-spaces
from C.1.8. For our purposes we want a mix between these two model structures,
analogous to [Sh04, 1.3]:

Definition 1.3.1. A map in GT is called a mixed cofibration if it is a genuine
cofibration. It is called a mixed equivalence if it is a naive weak equivalence. A
mixed fibration is a map that has the right lifting property with respect to all mixed
cofibrations that are also mixed equivalences.

Theorem 1.3.2. The mixed fibrations, cofibrations and equivalences give a com-
pactly generated model structure on GT.

Proof. Recall the sets IG and JG for the generating (acyclic) cofibrations for the gen-
uine model structure from C.1.8. We will have to add additional acyclic cofibrations:
Let H be a closed subgroup of G. Consider the projection

πH : (G×H EH)+ →
(
G�H

)
+
,

which is a naive weak equivalence. Factor πH via the mapping cylinder MπH as a
naively acyclic genuine cofibration jH followed by a G-deformation retraction rH .
Then we can define the set of generating acyclic mixed cofibrations as:

JGm := JG ∪ {jH�i,H ⊂ G, i ∈ IG}.

We check the conditions from [H, 2.1.19]. Obviously, every map in IG or JGm is
an h-cofibration. Also, every map in JGm is in IG−cof and a weak equivalence,
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because the genuine model structure satisfied the pushout product axiom (C.2.7)
and Lemma C.1.10(ii). This kind of maps(h-cofibration and naive weak equivalence)
is preserved under the cell complex construction. Therefore we immediately get,
that IG−inj ⊂ JGm−inj. Since every map in IG−inj is a genuine, thus naive, weak
equivalence, the only thing that remains is to show that any map that is both in
JGm−inj and a naive weak equivalence is already in IG−inj.
For a map f : X → Y it is equivalent to be in JGm−inj and that f is both a genuine
fibration and that it has the right lifting property with respect to all the maps jH�i
above. By adjointness B.1.12 the latter condition is equivalent to t�(jH , f) having
the right lifting property with respect to IG for all subgroups H. But since the
genuine model structure is G-topological (cf. C.2.7) this is equivalent to t�(jH , f)
being a genuine weak equivalence if f already was a genuine fibration. Recall that
the defining diagram for t�(jH , f) is given by the lower part of the diagram

TG

(
G�H+

, X
)

&&
∼
��

TG (MπH , X)

t�(jH ,f)

∼
))SSSSSSSSSSSSSSSSSSSS

TG

(
G�H+

, Y
)

∼
��

P
y

//

����

TG (MπH , Y )

����
TG ((G×H EH)+, X) // TG ((G×H EH)+ , Y ).

Here the two upper vertical maps are genuine weak equivalences because rH was
a G-homotopy equivalence. The lower right vertical map is a genuine fibration,
because jH is a genuine cofibration.
Now let f be in JGm−inj, i.e. a naive weak equivalence, such that fhH is a weak
equivalence. Passing to G-fixed points in the above diagram then yields:

XH

��
∼
��

GT (MπH , X)

∼
&&NNNNNNNNNNNN Y H

∼
��

PG

y
//

����

GT (MπH , Y )

����
XhH ∼ // Y hH .
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Hence for all subgroups H of G, the restriction to fixed points fH is a weak equiv-
alence by the two out of three property and right properness of the standard model
structure on spaces. But this exactly says that f is also a genuine equivalence, hence
in I−inj.

Remark 1.3.3. Note that this mixed model structure is not an instance of the mixing
of model structures described in [C, Theorem 2.1]. Applying Cole’s method would
yield a mixed structure that uses the naive weak equivalences and the genuine fi-
brations.

1.3.2 Level Structures

We will use semi-free spectra to assemble a model structure on orthogonal spectra
that makes use of the mixed model structures in each level. Note that in order
to use Theorem B.2.8, we have to restrict to a proper set of levels, i.e. a small
full subcategory of O (cf. B.2.5). The reader might want to think of the explicit
skeleton O, but we rather fix some unspecified small subcategory OV equivalent
to O, in order to get used to some of the notation that will be necessary in the
equivariant case (cf. 2.3). Call a vector space V a level if it is an object of OV, and
say that a property applies levelwise, if it applies for all V in OV.

Definition 1.3.4. A morphism f : X → Y of orthogonal spectra is called a level
mixed fibration, if for each level V , the map fV : XV → YV is a mixed fibration of
OV -spaces. It is called an S-cofibration if it has the left lifting property with respect
to level mixed fibrations that are also level equivalences.

Proposition 1.3.5. The S-cofibrations, level mixed fibrations and level equivalences
give a compactly generated model structure on SpO.

Proof. We check the prerequisites of Theorem B.2.21: The mixed model structures
on OV -spaces are cofibrantly generated by construction and satisfy the cofibration
hypothesis B.1.31.
As in B.2.6 define

GI :=
⋃
V ∈V

GV IOV
GJ :=

⋃
V ∈V

GV JOVm.

What is left to check, is that the set GJ consists entirely of level equivalences: For
f : X → Y a mixed acyclic cofibration of OV -spaces and W = V ⊕V ′ another level,
(GV f)W is the map:

OW+∧OV ×OV ′
X∧SV ′ → OW+∧OV ×OV ′

Y ∧SV ′ .
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Before factoring out the diagonal action of OV ×OV ′ , this is exactly the map

OW∧f∧SV
′
,

hence a weak equivalence by C.1.10(ii) and a genuine cofibration by Illman’s tri-
angulation theorem C.2.2 together with C.2.7(ii). Since OV × OV ′ acts freely on
source and target, C.1.10(iv) gives that they are naively cofibrant as OV × OV ′-
spaces. Finally C.1.10(iii) and Ken Browns Lemma ([H, 1.1.12]) imply that taking
the OV×OV ′ orbits preserves weak equivalences between naively cofibrant OV×OV ′-
spaces.

As with the standard level model structure, there is a positive variation of the
S-model structure:

Definition 1.3.6. A morphism f : X → Y of orthogonal spectra is called a positive
mixed fibration, if for each level V with dim(V ) 6= 0, the map fV : XV → YV is a
mixed fibration of OV -spaces. It is called a positive S-cofibration if it has the left
lifting property with respect to positive mixed fibrations that are also positive level
equivalences.

Note that the positive S-cofibrations are exactly the S-cofibrations, that are
isomorphisms in level 0.

Proposition 1.3.7. The positive S-cofibrations, positive mixed fibrations and posi-
tive level equivalences give a compactly generated model structure on SpO. The sets
of generating (acyclic) cofibrations are G+I and G+J , respectively.

Proof. Define G+I as the subset of GI using only non-trivial levels V , and anal-
ogous for G+J . The proof of Proposition 1.3.5 holds verbatim, if we replace the
mixed model structure on O0-spaces (or spaces), by the one where every map is a
fibration and weak equivalence, so that only isomorphisms are cofibrations. This
model structure is cofibrantly generated by an empty set of cofibrations.

1.3.3 Stable Structures

As in the classical case, we want to localize the level model structures to obtain
stable counterparts. Recall the λ-maps, that were already used for this purpose in
the classical case 1.2.47. Here we use the coordinate free variation:

Definition 1.3.8. For finite dimensional euclidean vector spaces V and W , define
λV,W : FV⊕WSW → F0S

0 to be the map adjoint to the inclusion

SW → O(V, V ⊕W ) ∼= OV⊕W+∧OW
SW ,
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that corresponds to the inclusion at the identity factor after choosing the embedding
V → V ⊕W indicated by the notation.
Factor the maps λV,W through the mapping cylinder as rV,W ◦ kV,W . Then denote
the set of all kV,W�i with V and W in V and i in F I = GI ′ by K. For the case of
the positive structures, form the analogous set K+ by excluding those kV,W�i where
V is trivial.

Definition 1.3.9. A morphism of orthogonal spectrum is a (positive) S-fibration, if
it has the right lifting property with respect to all (positive) S-cofibrations that are
also π∗-isomorphisms.

Proposition 1.3.10. The category SpO of orthogonal spectra admits a compactly
generated proper topological monoidal model structure where the cofibrations are
given by the (positive) S-cofibrations, the fibrations are the (positive) S-fibrations
and the weak equivalences are given by the π∗-isomorphisms. This (positive) S-
model structure satisfies the monoid axiom.

Proof. We again use [H, 2.1.19], treating the absolute (i.e. not positive) case in
detail. The positive variation follows similarly, and we point out the differences.
The generating cofibrations are given by SI := GI whereas the acyclic cofibrations
are generated by SJ := GJ ∪ K. Use the positive variations of the sets for the
positive structure to define S+I and S+J . Since every map in K is a q-cofibration it
has the left lifting property with respect to level acyclic level fibrations, thus with
respect to all level acyclic level genuine fibrations, and is therefore in SI−cof. Thus
we already have SJ−cof ⊂ SI−cof and SI−inj ⊂ SJ−inj.

Since every map in SJ is also both an h-cofibration and a π∗-isomorphism, every
map in SJ−cell is a π∗-isomorphism (cf. 1.2.46). Every map in SI−inj is a level
equivalence, thus a π∗-isomorphism. Finally, note that any map in SJ−inj is a q-
fibration since FJ ⊂ GJ . Therefore, if it is also a π∗-isomorphism, it is an acyclic
q-fibration, hence an acyclic level fibration, hence in particular in GJ−inj and a
level equivalence. But then it is already in GI−inj = SI−inj by the level structure.

For the pushout product axiom one can quickly check, that SI�SI ⊂ SI and
that SI�GJ ⊂ GJ by using that the semi-free spectrum functors and smashing
with (orbit-) spaces preserve pushouts, and again using the property C.1.10(ii) as
well as 1.2.34. It remains to show, that maps in SI�Kare π∗-isomorphisms. So let
i : A→ B in SI and k : C → D in K. Since the maps in K are q-cofibrations and π∗-
isomorphisms, and since the stable model structure on orthogonal spectra satisfies
the monoid axiom, the top and bottom maps in the following pushout diagram are
π∗-isomorphisms, therefore the cobase change is, since the left vertical map is an
h-cofibration. Thus the pushout product is a π∗-isomorphism via the two out of
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three property.

A∧C

��

// A∧D

��

��

B∧C

//

// P
p

$$
B∧D

The pushout product axiom also implies that the model structure is topological
by using that the tensor with a space is the same as the smash product with the
corresponding suspension spectrum. Since S-cofibrations are h-cofibrations and S-
fibrations are level fibrations, properness follows from [MMSS, 9.10]. The unit axiom
for monoidal model categories is satisfied in the absolute case because the sphere
spectrum S is cofibrant there. To show it in the positive case, we use Ken Brown’s
Lemma ([H, 1.1.12]) and the monoid axiom: Since smashing with an arbitrary space
sends acyclic cofibrations between cofibrant objects to weak equivalences, it pre-
serves the π∗-isomorphism between the sphere spectrum and its positive hence ab-
solute cofibrant replacement. Finally the monoid axiom itself can be proved as in
[MMSS, 12.5], using the following Proposition.

Proposition 1.3.11. S-cofibrant spectra are flat, in the sense that for any S-
cofibrant spectrum X, the functor X∧− preserves π∗-isomorphisms.

Proof. Because we have to calculate homotopy groups, we will prove this proposi-
tion in OT , i.e. restrict ourselves to those levels of an orthogonal spectrum, that
are indexed by the euclidean spaces Rn, abbreviated by the natural number n (cf.
1.2.22).
Since smashing with any spectrum preserves cofiber sequences, and by the long
exact sequence for homotopy groups 1.2.46(vi), it suffices to show that if Z is an
orthogonal spectrum with π∗(Z) = 0, then also π∗(X∧Z) = 0. Since smashing with
Z preserves the cell complex construction, we can further reduce to the case where
X is either the source or the target of one of the generating S-cofibrations, i.e. X
is of the form Gn

[
On�H+∧Sk+

]
or Gn

[
On�H+∧Dk

+

]
. Since Gn

[
On�H+∧K+

]
is equal to

Gn
[
On�H+

]
∧K+ and since we know that smashing with a cofibrant space preserves

π∗-isomorphisms it suffices to show that Gn
[
On�H+

]
∧Z has trivial homotopy groups,

if Z did.
Recall that (

Gn
[
On�H+

]
∧Z
)
n+m

= On+m+∧On×Om

(
On�H+∧Zm

)
∼= On+m�H+∧OmZm,

where the structure maps are the composite of the structure map of Z with the
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(upper left block) inclusion of On+m → On+m+1 and the projection to the quotient:

On+m�H+∧OmZm∧S1 id∧σ // On+m�H+∧OmZm+1
p◦inc // On+m+1�H+∧Om+1Zm+1.

The homotopy groups of Gn
[
On�H+

]
∧Z are therefore calculated via the following

colimit:
...

(p◦inc)∗
��

π∗(On+m�H+∧OmZm)
σ∗◦Σ // π∗+1(On+m�H+∧OmZm+1)

(p◦inc)∗
��

π∗+1(On+m+1�H+∧Om+1
Zm+1)

σ∗◦Σ // ...

We can add more edges to this diagram without changing the colimit, because
cofinal sequential colimits commute:

π∗(On+m�H+∧OmZm)
σ∗◦Σ // π∗+1(On+m�H+∧OmZm+1)

(p◦inc)∗
��

σ∗◦Σ // π∗+2(On+m�H+∧OmZm+2)

(p◦inc)∗
��

σ∗◦Σ // ...

π∗+1(On+m+1�H+∧Om+1
Zm+1)

σ∗◦Σ // π∗+2(On+m+1�H+∧Om+1
Zm+2)

(p◦inc)∗
��

σ∗◦Σ // ...

...

(1.3.12)

Here, taking the colimit along a line calculates the (shifted) homotopy groups of
an orthogonal spectrum On+m�H+∧OmZ which is defined in the following way:(

On+m�H+∧OmZ
)
k

= On+m�H+∧OmZm+k,

where the structure maps are inherited from Z. Thus if we show that spectra of this
type have trivial homotopy groups, we are done.
We know that On+m�H is a free (right) Om space, since H is a subgroup of upper
left n-block matrices in On+m. Therefore it is not only genuinely but also naively
cofibrant as an Om-space, i.e. in the cell complex structure of On+m�H appear only
free cells. Both levelwise smash product with spaces and taking levelwise Om-
orbits commute with (levelwise) colimits hence with the cell complex construction.
Therefore we can finally reduce to showing that (I ′Om∧OmZ)-cell complexes are
acyclic, where I ′Om

where the generating naive cofibrations on Om-spaces.

So suppose that ∗ = X0 → X1 → . . .→ Xl is the cellular filtration of On+m�H+,
and use induction on this filtration. From the cell structure we get the gluing
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diagrams of spectra:

Sp−1
+ ∧Om+∧OmZ

//

��

Xi∧OmZ

��

Sp−1
+ ∧Z //

��

Xi∧OmZ

��

∼=

Dp
+∧Om+∧OmZ // Xi+1∧OmZp Dp

+∧Z // Xi+1∧OmZ.p
(1.3.13)

Then as Z was acyclic, so are the two spectra in the left columns of the squares.
Therefore the top horizontal maps are π∗-isomorphisms, hence so are the bottom
maps since the left vertical maps are h-cofibrations. Thus Xi+1∧Z is acyclic, too.

Proposition 1.3.14. The identity functor on the category of orthogonal spectra SpO

gives a monoidal Quillen equivalence from the usual (positive) stable model structure
to the (positive) stable S-model structure.

Proof. Since any q-cofibration is an S-cofibration, the identity functor preserves
cofibrations. Since the weak equivalences are the same in both model structures, it
also preserves acyclic cofibrations and detects and preserves weak equivalences. The
identity trivially satisfies all other properties of monoidal Quillen functors.

Note that Proposition 1.3.10 allows us to use Theorem [SS, 4.1] so that for R an
orthogonal ring spectrum, we get absolute and positive R-model structures on the
categories of R-modules and if R is commutative on (associative) R-algebras.

Theorem 1.3.15. Let R be an orthogonal ring spectrum.

(i) The category of left R-modules is a compactly generated proper model category
with respect to the π∗-isomorphisms and the underlying (positive) S-fibrations.
The sets of generating cofibrations and acyclic cofibrations are R∧SI (R∧S+I)
and R∧SJ (R∧S+J).

(ii) If R is S-cofibrant, then the forgetful functor from R-modules to orthogonal
spectra preserves cofibrations. Hence every cofibrant R-module is cofibrant as
an orthogonal spectrum.

(iii) Let R be commutative. The model structures of (i) are monoidal and satisfy
the monoid axiom.

(iv) Let R be commutative. The category of R-algebras is a compactly generated
right proper model category with respect to the π∗-isomorphisms and the un-
derlying (positive) S-fibrations. The sets of generating cofibrations and acyclic
cofibrations are R∧ASI (R∧AS+I) and R∧ASJ (R∧AS+J), where A is the
free associative algebra functor from A.1.19.
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(v) Let R be commutative. Every cofibration of R-algebras whose source is (posi-
tive) cofibrant as an R-module is also a cofibration of R-modules. In particular,
every cofibrant R-algebra is cofibrant as an R-module.

All the above model structures are Quillen equivalent to the classical ones from
[MMSS, 12.1] via the identity functor as in 1.3.14.

Proof. Except for the properness statements, parts (i),(iii) and (iv) (v) are implied
by [SS, 4.1]. For part (ii) and the properness use that the necessary (co-)limits are
computed in the underlying category of orthogonal spectra.

Note that a positive analogue to (ii) and (v) in this theorem is not implied by [SS,
4.1], since the sphere spectrum is not positive S-cofibrant. In the next section, we
will deal with the lifting of the positive S-model structure to commutative orthogonal
ring spectra, and in particular give versions of these statements in Theorem 1.3.29.

1.3.4 Extension to Commutative Ring Spectra

From now on, except when explicitly stated otherwise, we only work with the positive
S-model structure. In particular we drop the adjective positive when talking about
S-cofibrations or S-cofibrant objects. To lift the S-model structure to commutative
orthogonal ring spectra, we want to mimic the methods from [MMSS, §15]. The basic
idea is to apply Lemma [SS, 2.3] to the free commutative ring spectrum functor E
(cf. A.1.19). In particular we check that ES+I and ES+J both satisfy the cofibration
hypothesis (B.1.31) to cover the smallness prerequisites, and that all the maps in
ES+J-cell are actually weak equivalences.
For the latter, we first consider the following two lemmas, which are the analogues
of [MMSS, 15.5] and [EKMM, III 5.1].

Lemma 1.3.16. Let Y be an orthogonal spectrum and let X = GV
[
K∧ (OV�H)+

]
,

for K a based CW -complex and V a non trivial euclidean space. Then the quotient
map

q :
(
EΣi+∧ΣiX

∧i)∧Y → X∧iΣi
∧Y

is a level homotopy equivalence.

Proof. We rewrite the target of q in the following way:

X∧iΣi
∧Y = GV⊕i

[
OV⊕i+∧∏iOV

(
K∧OV�H+

)∧i]
Σi
∧Y.

Here Σi acts on the smash product OV⊕i+∧∏iOV

(
K∧OV�H+

)∧i
diagonally, by per-

muting the copies of K∧OV�H+ and by multiplication from the right with block-
permutation matrices on OV⊕i . Letting Σi act on

∏
iOV by conjugation with the
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block permutation matrices, we can then rewrite the orbit space in terms of the
semi-direct product of

∏
iOV and Σi:[

OV⊕i+∧∏iOV

(
K∧OV�H+

)∧i]
Σi

= OV⊕i+∧∏iOV oΣi

(
K∧OV�H+

)∧i
∼= OV⊕i+∧∏iHoΣiK

∧i,

using the fact that OV acted trivially on K. Now let W ∼= V⊕i ⊕ V ′ be another
level. Corollary 1.2.37 implies that(

X∧iΣi
∧Y
)
W
∼= OW+∧(

∏
iHoΣi)×OV ′

K∧i∧YV ′ .

In a similar way we see that(
EΣi+∧Σi(GVK)∧i∧Y

)
W
∼= (EΣi ×OW )+ ∧(

∏
iHoΣi)×OV ′

Ki∧YV ′ ,

where Σi acts diagonally on EΣi ×OW . The desired quotient map is now induced
by q̂ : EΣi ×OW → OW . Since OW is a free (

∏
iOV oΣi)×OV ′ space, the theorems

C.2.2 and C.2.3 give, that q̂ is weak equivalence between naive (
∏

iOV o Σi) × OV ′-
equivariant cell-complexes, i.e. a (

∏
iOV oΣi)×OV ′-homotopy equivalence. Equiv-

ariant homotopy equivalences are preserved by smashing with any space, and yield
homotopy equivalences after passing to orbits with respect to subgroups.

Lemma 1.3.17. Let X be a positive S-cofibrant orthogonal spectrum. Then the
quotient map

q : EΣi+∧ΣiX
∧i → X∧iΣi

is a π∗-isomorphism.

Proof. We proceed by induction on i and a Σi-equivariant cellular filtration of X∧i.
The traditional reference for this in the case of free cells and external smash products
is [BMMS, p. 37-38], however, some translation work needs to be done in order
to apply their result to our case. We will instead use the filtration introduced by
Theorem 3.4.22. For the induction start i = 1, the statement is trivially true. Hence
let us assume it holds for all j < i and that X is built from A by attaching a single
cell GV

[
Dn

+∧OV�H+

]
, where A is itself positively cofibrant. Then Theorem 3.4.22

states that X∧i is built from A∧i by attaching induced cells of the form

Σi∧Σj×Σi−j

(
GWSn−1

+ ∧OW�P+

)�j ∧A∧(i−j)

��

Σi∧Σj×Σi−j

(
GWDn

+∧OW�P+

)∧j ∧A∧(i−j)
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(cf. 3.4.24), with cofiber Σi∧Σj×Σi−j

(
GWSn+∧OW�P+

)∧j ∧A∧(i−j). Both EΣi∧Σi−
and taking Σi-orbits preserve cofiber sequences, hence q̂ induces maps of long exact
sequences of homotopy groups (cf. 1.2.46). Thus, for the induction step, it suffices
to show that the map

EΣi∧Σj×Σi−j

(
GWSn+∧OW�P+

)∧j ∧A∧(i−j) →
[(
GWSn+∧OW�P+

)∧j ∧A∧(i−j)
]

Σj×Σi−j

is a π∗-isomorphism. We use that EΣi is Σj×Σi−j-equivariantly homotopy equivalent
to EΣj × EΣi−j to factor this map as:

EΣj∧Σj

(
GWSn+∧OW�P+

)∧j ∧EΣi−j∧Σi−jA
∧i−j

q̂∧ id

��[
GWSn+∧OW�P+

]∧j
Σj
∧EΣi−j∧Σi−jA

∧i−j

id∧q̂∧ id
��[

GWSn+∧OW�P+

]∧j
Σj
∧A∧i−jΣi−j

Here the first map is a level homotopy equivalence by Lemma 1.3.16. The second
map is a π∗-isomorphism by the induction hypothesis and Proposition 1.3.11, using

that the spectrum
[
GWSn+∧OW�P+

]∧j
Σj

is S-cofibrant by the following proposition.

Proposition 1.3.18. Let V be a non-trivial vector space and let X = GV [K+∧OV�H+]
for K either Sn or Dn and H some closed subgroup of OV . Then the orthogonal
spectrum X∧iΣi

is S-cofibrant. In particular the inclusion S→ EX is an S-cofibration.

Proof. We assume K is a sphere, the case for a disc is similar. The i-fold smash
power of X is the spectrum

(
GV [Sn+∧OV�H+]

)∧i ∼= GV⊕i
[(

Sni+ ∧

(
OV⊕i�∏

i

H

)
+

)]

Since the action on a semi-free spectrum GWL is adjoint to an action on L (1.2.38),
it suffices to show that

M : =

[
Sni+ ∧

(
OV⊕i�∏

i

H

)
+

]
Σi

is a genuine OV⊕i-complex. We prove this using Illman’s triangulation theorem
(C.2.2):
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Since OV⊕i operates transitively on OV⊕i�∏
iH

, the OV⊕i-orbit space of M is given by

(S∧ni+ )Σi . Then the proof of Illman’s triangulation Theorem C.2.4 implies that this
space admits a triangulation where the conjugacy class of the stabilizer subgroups
Stabs ⊂ Σi is constant on the open simplices, i.e. the Σi-isotropy type is constant
on open simplices.
We claim that this triangulation also has the property that the OV⊕i-isotropy type
is constant on open simplices. Let x = [(s, [A])] be an element of M in the preimage
of [s] ∈ (Sni+ )Σi . Then an element B ∈ OV⊕i is in Stabx if and only if BA =
Ahσ with h ∈

∏
iH and σ ∈ Stabs ⊂ Σi. Hence Stabx is exactly the subgroup

A(
∏

iH Stabs)A
−1, i.e. the OV⊕i-isotropy type is constant on the open simplices.

Hence C.2.2 implies that M is a genuine OV⊕i-complex.
Note that in particular the case K = D0, i.e. Dn

+ = Dni
+ = S0 is allowed here.

Corollary 1.3.19. Let X be GV
[
K∧ (OV�H)+

]
, for K a based CW -complex and

V a euclidean space, then the functor EX∧(−) on orthogonal spectra preserves π∗-
isomorphisms.

Proof. Smashing with X preserves π∗-isomorphisms by 1.3.11. Since EΣi is a free
Σi-cell complex, so does EΣi+∧Σi(−). Now we can apply Lemma 1.3.16 for each
wedge summand in EX.

Corollary 1.3.20. The functor E preserves π∗-isomorphisms between S-cofibrant
orthogonal spectra. In particular, each map in EJ is a π∗-isomorphism.

Proof. Iterated use of the pushout product axiom for the S-model structure 1.3.10
implies that the i-fold smash power of an acyclic cofibration between S-cofibrant
spectra is an acyclic cofibration. Both EΣi+∧Σi(−) and taking wedges preserve
π∗-isomorphisms hence Ken Brown’s Lemma gives the result.

We will need to calculate realizations of simplicial objects and some other specific
colimits in the category of commutative orthogonal ring spectra. Recall Proposition
3.1.13 and the following lemma from [MMSS], that allow us to do so in the underlying
category of spectra:

Lemma 1.3.21 ([MMSS, 15.11]). Let {Ri → Ri+1} be a sequence of maps of com-
mutative orthogonal ring spectra that are h-cofibrations of orthogonal spectra. Then
the underlying orthogonal spectrum of the colimit of the sequence in commutative
orthogonal ring spectra is the colimit of the sequence computed in the category of
orthogonal spectra.

The following Proposition is inspired by Lemma 15.9 in [MMSS], it deals with
the other part of the cofibration hypothesis for ES+I and brings us closer to the
convenience property 1.3.29.
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Proposition 1.3.22. Let f : X → Y be a wedge of maps in S+I and let EX → R
be a map of commutative orthogonal ring spectra. Then the cobase change j : R →
R∧EXEY is an underlying h-cofibration of spectra. If smashing with R additionally
preserves S-cofibrations, j is even an S-cofibration.

Proof. As in the proof of [MMSS, 15.9], we identify the inclusion Sn+ → Dn+1
+ of

spaces with the realization of the inclusion of 0-simplices of the simplicial space
B∗(S

n
+, S

n
+, S

0) (cf. B.1.36). Its q simplices are given by a wedge of q + 1 copies
of Sn+ with S0, with degeneracy maps the inclusions of wedge summands and face
maps induced from folding maps Sn+ ∨ Sn+ → Sn+, respectively the collapse map
Sn+ ∨ S0 → S0 for the last face in each simplicial level. Note that both the smash
product with an OV -orbit and the semi-free functors GV preserve colimits and ten-
sors, hence the simplicial realization. Thus we can express f analogously as the
inclusion of 0-simplices of the simplicial orthogonal spectrum B∗(X,X, T ), where
X =

∨
i GViS

ni
+ ∧

(
OVi�Hi

)
+

and T =
∨
i GViS

0∧
(

OVi�Hi
)

+
. Applying E, takes co-

products to smash products, fold maps to multiplication maps, and inclusions of
the basepoints to unit maps of commutative orthogonal ring spectra. It also pre-
serves tensors over U , i.e. sends X∧A+ to X ⊗ A, hence it sends the realization of
B∗(X,X, T ) to the realization of the bar construction B∗(EX,EX,ET ) as defined in
B.1.51. Finally, since we can compute geometric realizations in terms of the under-
lying spectra (3.1.13), and since smashing with R commutes with this realization,
we can identify

R∧EXEY ∼= R∧EXB(EX,EX,ET ) ∼= B(R,EX,ET ). (1.3.23)

We look at B∗(R,EX,ET ) in more detail: R includes into the 0-simplices R∧ET as
a wedge summand, i.e. via an h-cofibration. All the other wedge summands are of
the form

R∧
(
GViS

0∧OVi�Hi+
)∧k

Σk
,

hence they are S-cofibrant if smashing with R preserves S-cofibrations by 1.3.18.
Then in particular R∧ET is S-cofibrant and the inclusion of R is an S-cofibration.
The degeneracy maps are given by inclusions

R∧(EX)∧q∧ET = R∧(EX)∧r∧S∧(EX)∧q−r∧ET −→ R∧(EX)∧q+1∧ET.

Therefore the inclusion of degenerate simplices (B.1.42) is in each level q given by
the map

R∧(S→ EX)�q+1∧ET,

which is an h-cofibration because S → EX is an inclusion of a wedge summand.
Furthermore 1.3.18 states that S → EX is an S-cofibration. Hence by the pushout
product axiom, the inclusion of degenerate simplices is an S-cofibration if smashing
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with R preserves S-cofibrations. Hence the bar construction is h-proper, and even S-
proper for the stronger assumption on R. The result then follows using Proposition
B.1.46.

Remark 1.3.24. Note that particular examples of ring spectra R that preserve posi-
tive S-cofibrations under the smash product are all R that are (absolute) S-cofibrant.
This includes the very important case of the sphere spectrum S.

Corollary 1.3.25 ([MMSS, 15.9]). The set ES+I of maps of commutative orthog-
onal ring spectra satisfies the cofibration hypothesis. Since it consists of ESI-cell
complexes, so does ES+J .

Lemma 1.3.26 ([MMSS, 15.12]). Let i : R → R′ be an S-cofibration of commuta-
tive orthogonal ring spectra. Then the functor (−)∧RR′ on commutative R-algebras
preserves π∗-isomorphisms.

Proof. Assume inductively that i is a cobase change of a wedge of maps in ES+I.
Then as in 1.3.23 we can identify (−)∧RR′ with an appropriate B(−,EX,ET ).
This functor preserves π∗-isomorphisms by B.1.47, since the bar construction is h-
proper.

Finally we get the analogue of [MMSS, 15.4], using the same proof as in the
classical case (cf. [MMSS, p. 490]):

Proposition 1.3.27. Every relative ESJ-cell complex is a π∗-isomorphism.

This once more allows us to use Lemma [SS, 2.3], and we obtain the S-model
structure for commutative orthogonal ring spectra:

Theorem 1.3.28. The underlying positive S-fibrations and π∗-isomorphisms give a
compactly generated proper topological model structure on the category of commuta-
tive orthogonal ring spectra. The generating (acyclic) cofibrations are given by the
sets ES+I and ES+J , respectively.
Again the identity functor gives a Quillen equivalence to the classical model structure
from [MMSS, 15.1].

We call cofibrant objects in this model structure simply S-cofibrant, inspired by
the following Theorem, which is implied by the second statement of Proposition
1.3.22, and provides the main motivation for the constructions in this section:

Theorem 1.3.29. The S-model structure on commutative orthogonal ring spectra is
“convenient”, i.e. if E is a commutative orthogonal ring spectrum that is S-cofibrant,
it is already (positive) S-cofibrant as an orthogonal spectrum.

Even slightly more is true:
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Theorem 1.3.30. Let f : R→ R′ be a map of commutative orthogonal ring spectra,
that is a cofibration in the model structure of Theorem 1.3.28. If the smash product
with R preserves S-cofibrations of orthogonal spectra, then f is an underlying S-
cofibration.

Proof. Reduce to the case of a ES+I-cell complex. Induction on the cellular filtration
and the stronger second statement of Proposition 1.3.22 give the result.

Theorem 1.3.31. For a commutative orthogonal ring spectrum R, the S-model
structure induces a compactly generated proper topological model structure on com-
mutative R-algebras. This R-model structure is convenient with respect to the R-
model structure on R-modules from Theorem 1.3.15(i).
The identity functor on commutative R-algebras induces a Quillen equivalence to the
classical model structure of [MMSS, 15.2].

Proof. We can use [DS, 3.10]. An analogue of Theorem 1.3.29 is then immediate,
since the free commutative R-algebra functor ER satisfies ER(−) ∼= R∧E(−), and
thus any cofibration of commutative R-algebras is an underlying R-cofibration.
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Chapter 2

Equivariant Orthogonal Spectra

2.1 Introduction

This chapter mirrors Chapter 1 on orthogonal spectra in an equivariant setting. We
once again begin with introducing notation and recalling basic results. We loosely
follow the approach from [MM], where the equivariant orthogonal spectra were first
defined. Other good references include [Kr] and [S11].

Summing up section 1.2.1, we have described several equivalent categories of
orthogonal spectra: SpO, functor categories OT and OT as well as S-modules in
IT or IT . For the equivariant case, there are even more variations, only some
of which will be mentioned here. Again, our main focus will be on the functorial
approach analogous to 1.2.21, but we start once again with a down to earth version
that serves as a good basis for the intuition.

Throughout the whole section, let G ∈ T be a topological group. At a later stage
we will usually restrict to compact Lie- or discrete groups, but in this categorical
part this is not yet necessary.

Definition 2.1.1. A G-equivariant orthogonal spectrum is an orthogonal spectrum
X, with a continuous action of G, i.e. a morphism G → SpO(X,X) of monoids in
in T .

Similar naive ways of looking at equivariant spectra have come up before, but
have in other contexts been found insufficient in capturing all the desired (homotopy
theoretical) information. However, orthogonal spectra have a distinctive advantage
in that regard, which is expressed in the following construction:

Construction 2.1.2. Given a G-equivariant orthogonal spectrum X, and an orthog-
onal representation V of G, we can define the evaluation of X at V , as the G-space
XV analogous to 1.2.22 via:

XV := O(Rn, V )∧OnXn, (2.1.3)
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where n is the dimension of V . The action of G is then diagonal on the smash
product, with O(Rn, V ) inheriting an action via postcomposition from the action of
G on V .

Hence, even though X a priori only contains information at trivial represen-
tations, the actions of the orthogonal groups allow us to study X at any finite
dimensional orthogonal representation.

Example 2.1.4 (The Sphere Spectrum revisited). Recall the orthogonal spectrum
S from 1.2.11, and equip it with the “trivial” G-action. Then for all n, G acts
trivially on the evaluation SRn = Sn. However, this equivariant sphere spectrum is
far from trivial at more general representations. By 2.1.3 we have

SV = O(Rn, V )∧OnS
n,

for n the dimension of an orthogonal representation V of G. The G action on SV is
by postcomposition with the action on V on the first factor, which by the definition
of the On-action on Sn gives a G-equivariant homeomorphism

SV ∼= SV

to the representation sphere SV , i.e. the one-point compactification of V with the
induced G-action.

As this example shows, a lot more equivariant information is hidden in the datum
of a G-equivariant spectrum than might be obvious at first glance. The ability to
unwrap this information will prove instrumental in various instances, in particular
when studying(equivariant) homotopical properties. In the following sections, we
will give definitions for several equivalent categories of G-equivariant orthogonal
spectra which will shed more light on the above, and, as in the non equivariant case
of 1.2.2, allow us to state some of the more technical properties needed throughout.

As in Chapter 1, we will then go on to recall classical results on the stable
homotopy theory of G-equivariant orthogonal spectra, before we adapt the methods
from Section 1.3, and construct the equivariant S-model structure in 2.3.27. We
want to highlight that, contrary to the classical model structures described in [MM]
(cf. 2.2.46), the cofibrations in the equivariant S-model structure are independent
from the choice of G-universe (2.2.3,2.3.15), which is a consequence of the twisting
and untwisting Propositions 2.3.9 and 2.3.6. Both of these appear for the first time
in this thesis, and should be seen as analogues of formula (2.1.3) that allow some
level of control over fixed point spaces of the levels.
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2.2 More Recollections

2.2.1 Definition(s)

One of the first things we should address, is that we did not actually define mor-
phisms of G-equivariant orthogonal spectra in the previous section. The reason for
this is that there are actually two equally important different notions of morphisms,
forming categories enriched over GT or T , respectively.

Definition 2.2.1. Let X and Y be G-equivariant orthogonal spectra. The mor-
phism space SpO(X, Y ) inherits a G action by conjugation. We define the mor-
phism G-space SpOG (X, Y ) ∈ GT as SpOG (X, Y ) := SpO(X, Y ), and it is immedi-
ate that under the conjugation action, composition is in fact G-equivariant. This
gives a GT-category of G-equivariant orthogonal spectra SpOG . The G-fixed cate-
gory of SpOG is denoted by GSpO, which is a T -category, as usual. The morphisms
GSpO(X, Y ) = SpOG (X, Y )G exactly correspond to the G-equivariant morphisms of
spectra with G-action.

Remark 2.2.2. As mentioned above, there are various different viewpoints on this.
For example a map of monoids G+ → SpO(X,X) in T is of course the same as a
continuous functor from the one object category with morphism space G+ to SpO.
Hence as in A.2.8 we can form the enriched functor category [G,SpO] which turns
out to be equivalent to SpOG . That is, morphisms in SpOG correspond to natural
transformations of functors, whereas morphisms in GSpO are only the G-natural
transformations.
Similarly observe that the defining adjunctions of the tensor in orthogonal spectra
1.2.2 and the suspension spectrum functor Σ∞ give natural isomorphisms

T (G+,SpO(X,X)) ∼= SpO(G+∧X,X) ∼= SpO(Σ∞G+∧X,X).

Hence an action map µ : G+ → SpO(X,X) is adjoint to some µ̄ : Σ∞G+∧X → X,
and the fact that µ is a map of monoids exactly translates to X being a module
over the orthogonal ring spectrum S[G] := Σ∞G+ via µ̄. Then morphisms in SpOG
correspond to mere spectrum morphisms between S[G]-modules, whereas morphisms
in GSpO correspond to honest module maps.
Finally in the light of Definition 2.1.1, an action of G on an orthogonal spectrum
consists of actions of G on each level Rn, such that the structure maps σ are G-
equivariant. Then morphisms in SpOG are morphisms of spectra that are OV , but
not necessarily G-equivariant in each level Rn.

We welcome the reader to pick his favourite out of the above models for his
own intuition, however the author has found the approach analogous to 1.2.21 most
powerful in dealing with the later theory. Hence following [MM], we construct the
equivariant analogue of the category O in the equivariant context:
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Definition 2.2.3. Let OG be the topological G category with objects all finite
dimensional orthogonal G-representations and morphism G-spaces given by

OG(V,W ) := O(V,W ),

where the G-actions are given by the conjugation action through the G-actions on
V and W .
To be explicit once, let (V, φ : G→ OV ) and (W,ψ : G→ OW ) be finite dimensional
orthogonal G-representations. Then the space O(V,W ) has elements of the form
(f, w) with f : V → W an isometric embedding and w an element of the orthogonal
complement of the image of f in W . The group G acts on O(V,W ) by mapping

g, (f, w) 7→ (ψ(g) ◦ f ◦ φ(g−1), ψ(g)w).

Remark 2.2.4. Of course we could similarly define IG as an analogue to 1.2.3.

Analogous to the non equivariant case, we can then define equivariant spectra
as functors:

Definition 2.2.5. AG-equivariant orthogonal spectrum X is a continuousG-functor,
i.e. a GT-enriched functor

X : OG → TG.

Denote the GT-category [OG,TG] of such functors and their (not necessarily equiv-
ariant) natural transformations by OGT . The G-fixed category of only the G-
equivariant natural transformations [OG,TG]G will be written as GOT .

Proposition 2.2.6. The GT-categories SpOG and OGT are equivalent, and hence so
are their G-fixed categories GSpO and GOT .

Proof. We give GT-functors in both directions. Let X : OG → TG be a GT-functor.
Restricting to the trivial representations Rn in OG yields an orthogonal spectrum
consisting of G-spaces Xn ∈ TG. We need to check that the levelwise G-actions fit
together into an action on the spectrum, i.e. that all structure maps Xn∧Sm−n →
Xm are G-equivariant, or equivalently that the adjoint

O(Rn,Rm)→ TG(Xn, Xm)

is. This latter formulation is exactly what it meant for X to be a GT-functor. On
morphisms, an (equivariant) natural transformation X → Y between GT-functors
by definition consists of (G-equivariant) maps S0 → TG(XV , YV ) for all V ∈ OG,
sending the non-basepoint to αV : XV → YV , such that the diagram

XV
αV //

Xf
��

YV

Yf
��

XW αW
// YW
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is commutative for all f ∈ OG(V,W ). Restriction to the trivial representations thus
defines a morphism of spectra, which is equivariant if the transformation was.

In the other direction, for X and Y orthogonal spectra with G-action, we already
know how to evaluate them at general elements of OG by 2.1.2, so we only need to
check that the generalized structure maps from 1.2.22 actually yield a GT-functor,
i.e. that the composites

OG(V,W )→ O(V,W )→ TG(XV , YV )

are G-equivariant. The adjoint of the latter map is made explicit in the diagram
1.2.23, and all involved maps there are G-equivariant, using the conjugation G-action
on all the morphism spaces. Similarly one checks that (equivariant) morphisms of
spectra yield (equivariant) natural transformations.
Composing these two constructions in one way gives the identity functor on SpOG .
On the other hand the fact that the natural isomorphisms

XW
∼= OG(W,W )∧OW

XW

∼= OG(Rm,W )∧OmOG(W,Rm)∧OW
XW

∼= OG(Rm,W )∧OmXm

are G-equivariant then shows that the two categories are equivalent.

Remark 2.2.7. Mixing results from the non equivariant case with the ideas from
A.2.27, we see that SpOG is tensored and cotensored over GT. Tensors and cotensors
are calculated levelwise as in the non equivariant case, with the G-action on smash
products always being diagonal, and by conjugation on mapping spaces. We get the
defining GT-natural isomorphisms

TG(D,SpOG (X, Y )) ∼= SpOG (D∧X, Y ) ∼= SpOG (X,F (D, Y ))

for tensors ∧ and cotensors F . Again analogous to Example A.2.27, taking the
G-fixed points of the spaces above yields

GT(D,SpOG (X, Y )) ∼= GSpO(D∧X, Y ) ∼= GSpO(X,F (D, Y )),

hence for D having trivial G-action when considering D ∈ T ⊂ TG,

GT(D,GSpO(X, Y )) ∼= GSpO(D∧X, Y ) ∼= GSpO(X,F (D, Y )).

That is GSpO is tensored and cotensored over T .

Even more can be taken from the non equivariant case, without extra work:
Note that given X and Y orthogonal spectra with G-action, their smash product
X∧Y inherits a diagonal G-action. We can compatibly equip their internal function
spectrum with a conjugation G-action. This can be made explicit in terms of the
formulas 1.2.4 and 1.2.6, but we will only need the following
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Corollary 2.2.8. The categories SpOG and GSpO are closed symmetric monoidal,
with smash products and function spaces calculated in SpO, equipped with the diag-
onal or conjugation G-action, respectively.

Remark 2.2.9. Our choice of presentation for the definition of the smash product via
IT , respectively the induced tensor on the module category, has the advantage that
it is very explicit, and in particular when just dealing with non equivariant spectra
it provides a very helpful intuition. However, since we mainly deal with coordinate
free versions of (equivariant) spectra, respectively (enriched) functor categories we
should also give the equivalent formulation in these terms. The non equivariant
case is discussed in detail in [MMSS, §21] based on the more general statement of
[D, §3,4]. We give the key steps in the construction:
Let (D,⊕) be a skeletally small category enriched over GT whose underlying cat-
egory (cf. A.2.12) is symmetric monoidal, and let X and Y be enriched functors
D→ GT. They define an external smash product

X∧̄Y : D×D → TG.

(d, d′) 7→ Xd∧Yd′

Define the (internal) smash product as the GT -enriched left Kan extension

∧ := Lan⊕(−∧̄−) : D→ TG.

In particular, by [K, 4.25], we can write the smash product pointwise as the coend

(X∧Y )e =

(d,d′)∈D×D∫
D(d⊕ d′, e)∧Xd∧Yd′ .

Note that in the cases D = OG, and in particular in the non equivariant case for
G the trivial group, this definition agrees with the one given above up to canonical
natural isomophism. The fact that the definition given here indeed gives a closed
symmetric monoidal structure on the underlying category of [D, GT] in the more
general case can be checked by applying the enriched Kan-extension to the coherence
diagrams for D, using the fact that the Kan-extension is natural in all its inputs,
together with the fact that TG itself was closed symmetric monoidal.
Note that as in [MMSS, 3.3, 23.1-6], for i : D → D′ a strong symmetric monoidal
functor, the functor Ui : [D,TG] → [D′,TG] defined by precomposition is lax sym-
metric monoidal with respect to the smash product defined above. Its left adjoint,
again defined in terms of the enriched left Kan-extension is even strong symmetric
monoidal.
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2.2.2 Free and Semi-Free equivariant Spectra

Identifying SpOG with the enriched functor category OGT allows us to once more
study free and semi-free functors. Again the free case is well documented in the
literature as it has featured prominently in the constructions of [MM], whereas the
semi-free case makes its first appearance in this thesis. Since these are central to
our work, we again take some time to be explicit.
Consider for V some finite dimensional G-representation the following diagram of
GT-categories:

?

��

##GGGGGGGGGGGGGGGGGGGGGGG

OV

�� ))SSSSSSSSSSSSSSSSSS

O // T ,

where ? is the trivial GT-category with one object, say V and morphism G-space
S0. It is included into OV , the GT-category with again only one object V , but
endomorphism space given by OV +, with the conjugation G-action. Further include
OV as a full subcategory of OG. Then as in the non equivariant case, an orthogonal
spectrum X, viewed as a functor X : OG → TG, naturally defines underlying functors
out of ?, OV and I by precomposition with the above inclusions.
Once more there is a commuting diagram of functors

OGT

evV

��

ev
′
V

//OV T // [?, T ]
∼= // T , (2.2.10)

with the corresponding diagram of left adjoints given by the enriched left Kan-
extensions

OT OV TGGV (−)
oo T .

(−)∧OV +

oo

FGV (−)

��
(2.2.11)

Again we can easily compute the defining Kan-extension explicitly to get the fol-
lowing description of FGV :

Definition 2.2.12. Let V be a finite dimensional G-representation, let A ∈ TG be
a G-space. Then the free orthogonal G-spectrum FGV A is given in a level W by

(FGV A)W := OG(V,W )∧A,
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with the diagonal G-action, and the structure maps induced by composition in OG.
This assignment, with the obvious extension to maps in T , yields a functor

FGV : TG → OGT .

Since they do not differ on objects, we will denote the restriction toG-fixed categories
FGV : GT → GOT in the same way.

The semi-free case is of course similar, but it is worthwhile to first take a closer
look at the source category: By definition, an object of [OV ,TG] is a GT-functor
OV → TG, i.e. a space K with a continuous action of both G and OV , such that
the map

OV → TG(K,K)

is G-equivariant, i.e. such that the two actions are compatible in the following sense:

g(A(g−1k)) = (gAg−1)k for all A ∈ OV , g ∈ G and k ∈ K, (2.2.13)

where the left side only uses the actions on K, whereas on the right side, we first
act with g on A by conjugation, and then let the result act on k. Replacing k by gk′

in 2.2.13, we see that an object of [OV ,TG] is the same as a space with a continuous
action of the semi-direct product OVoG. Recall that the multiplication on OVoG
is defined as follows:

(A, g)(B, h) = (A(gBg−1), gh).

Then morphisms in [OV ,TG] are continuous maps that are OV -, but not necessarily
G-equivariant, so that the morphism spaces again inherit G-actions by conjugation.
The G-fixed category of [OV ,TG] has only those morphisms that are both OV - and
G-equivariant, i.e. it is isomorphic to the category OVoGT of OVoG-spaces. This
discussion signifies the importance of the study of semi-direct products for the theory
of equivariant orthogonal spectra and we will have to investigate specific properties
of spaces with OVoG-actions at several places throughout this thesis. Examples
include the twisting and untwisting Propositions 2.3.9 and 2.3.6 and Subsection
3.3.3, where we look at fixed points and orbits of OVoG-spaces.

Definition 2.2.14. Let V be a finite dimensional G-representation and let K ∈
OVoGT . Then the semi free orthogonal spectrum GGVK is defined in a level W via

(GVK)W := O(V,W )∧OV
K,

where the action of OV on the smash product is diagonal and on O(V,W ) by pre-
composition. The G-action is similarly diagonal on the smash product and by con-
jugation on O(V,W ). The structure maps, and hence the OW action, are induced
by postcomposition in OG. As in the free case, this defines a functor

GGV : [OV ,TG]→ OGT .
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Again we make no difference in notation when passing to G-fixed categories and still
write GGV : OVoGT → GOT .

Remark 2.2.15. Note that the GT-enriched adjunction yields adjunctions on G-fixed
categories, i.e the natural isomorphisms

OGT (GGVK,Y ) ∼= [OV ,TG](K,YV )

in GT yield natural isomorphisms

GOT (GGVK,Y ) ∼= OVoGT (K,YV ),

such that the objects GGVK have appropriate universal properties in both settings.

Remark 2.2.16. Note that forgetting the G-actions, the underlying spectrum of a
semi-free G-spectrum GGVK is GVK, i.e. again semi-free, generated by the underlying
OV -space of the OVoG-space K. The analogue statement holds for free G-spectra.
Compare to 1.2.38.

Therefore, if the target category is clear, we will often drop the superscript from
both FGV and GGV .
The following results are the analogues of 1.2.34 – 1.2.38, and will similarly prove
helpful in several calculations:

Proposition 2.2.17. Let V and W be finite dimensional G-representations, K ∈
OVoGT and L ∈ OWoGT . Then there is a natural isomorphism

GVK∧GWL ∼= GV⊕W (OV⊕W∧OV ×OW
K∧L),

where the G-action on V ⊕W and K∧L is diagonal.

Proof. Since the smash product in OGT is calculated in OT , it suffices to check that
the diagonal action on the smash product is the one described in the proposition.

Proposition 2.2.18. Let V and W be G-representations of the same finite dimen-
sion. Then for K ∈ OVoGT , there is a natural isomorphism between semi-free
spectra

GVK ∼= GW (O(V,W )∧OV
K).

Proof. The proof is exactly as that of 1.2.35, after one checks that the natural
isomorphisms used there are all G-equivariant.

Proposition 2.2.19. The smash product of a semi-free G-spectrum GVK with an
orthogonal G-spectrum X is given in level W ∼= V ⊕ V ′ by

(GVK∧X)W ∼= OW∧OV ×OV ′
K∧XV ′ ,

and just a basepoint in levels W which V does not embed into isometrically. The
G-action on the right space is again diagonal on all three smash factors, through the
conjugation action on the first.
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Proof. Again this is proven by identifying the diagonal G-actions on smash products
in 1.2.37.

Proposition 2.2.20. Let Γ be another (topological) group. Then a (continuous)
action of Γ on a semi-free G-spectrum GGVK ∈ GOT is equivalent to a (continuous)
action of Γ on the OVoG-space K, and the levelwise orbit spectrum

[
GGVK

]
Γ

is
isomorphic to GV (KΓ).

Proof. This again follows exactly as in 1.2.38 because we assumed that the action of
Γ is categorical, implying that Γ acts through G-equivariant maps, i.e. the actions
of Λ and G commute.

2.2.3 Universes

Traditionally, choices of universe have played a big role in stable equivariant homo-
topy theory. Working with orthogonal spectra, however, the universes move to the
background, at least for the categorical viewpoint. We recall some of the definitions,
so that we can make exact statements about where the choice of universe matters
(and where it does not).

Definition 2.2.21. A G-universe U is a sum of countably many copies of each or-
thogonal G-representation in some set of irreducible G-representations, that includes
the trivial representation. We say that U is complete if it contains all irreducible
representations, and that it istrivial if it contains only trivial representations.

Definition 2.2.22. Given a G-universe U , define OUG to be the full subcategory of
OG, containing only those objects V , that are subspaces of U . Then analogous to
Definition 2.2.5, let OUGT be the category of G-functors from OUG to TG.

Lemma 2.2.23. For any choice U of G-universe, the GT-category OUGT is equivalent
to OGT .

Proof. The inclusion of categories ι : OUG → OG defines a functor Uι : OGT → OUGT
by precomposition. This functor has a left adjoint we denote by Pι and because ι is
the inclusion of a full subcategory the composition UιPι is naturally isomorphic to
the identity functor. Since OUG in particular contains all trivial representations Rn,
the formula for evaluation at a general representation 2.1.2 shows that the functor
pair is an equivalence of categories.

Similarly we could talk about indexing collections instead of universes:

Definition 2.2.24. Let V be a collection of finite dimensional euclideanG-representations.
Call V good, if it contains the trivial one dimensional representation and is closed
under direct sums.
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Definition 2.2.25. Let U be a G-universe. An indexing G-space in U is a finite
dimensional sub-G-space of U , with the restricted inner product making it an orthog-
onal G-representation. Define V(U) to be the good collection of all G-representations
that are isomorphic to indexing G-spaces in U .

Similarly one can produce a G-universe out of a given good collection of G-
representations. Note that if U was complete, then V(U) is the collection of all finite
dimensional euclidean G-representation.

Definition 2.2.26. Given a collection V, define OV
G to be the full subcategory of

OG, containing only those objects V , that are elements of V. Then analogous to
Definition 2.2.5, let OV

GT be the category of G-functors from OV
G to TG.

Again all the categories defined from good collections in this way are equivalent
analogous to 2.2.23. Sometimes it is worthwhile to consider similar constructions for
collections of G-representations that are not good in the sense of 2.2.24, in particular
the following example will come up in our study of geometric fixed points of smash
powers:

Example 2.2.27. Let G be a non-trivial finite group, X a finite free G-set (e.g.
X = G), and let V be the collection of objects of the full subcategory Oreg

G of OG
containing all finite dimensional X-regular G-representations, that is representations
of the form V ⊗ R[X] for V ∈ OG. Then in particular Oreg

G is not good because it
only contains representations with dimensions a multiple of the order of X. As in
2.2.26, we can form the category of X-regular orthogonal spectra Oreg

G T . Again, the
inclusion i : Oreg

G → OG defines a pair of adjoint functors

Pi : Oreg
G T � OGT Ui

as above, which still has the property UiPi ∼= id, but is not an equivalence of
categories. However, we can as in 2.2.14 define free and semi-free functors for Oreg

G T .
Then the fact that for W in Oreg

G we can factor the inclusion OW → Oreg
G T → OG

implies the commutativity of the diagram

OT Oreg
G TPi

oo OV TGreg
W

oo

GW (−)

��

of left adjoints to the respective precomposition functors. In particular we get the
following natural isomorphism between semi-free functors:

Greg
W
∼= UiPiGreg

W
∼= UiGW . (2.2.28)

Note that we only used thatOreg
G was a full subcategory, so one could easily generalize

the formula 2.2.28.
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2.2.4 Model structures

Let for the rest of the section G be a compact Lie group. We recall the results
on model structures for G-equivariant orthogonal spectra as well as some technical
properties and tools from [MM]. The model structures on equivariant orthogonal
spectra constructed in [MM, III], depend heavily on a background choice of G-
universe that underlies the definition of the equivariant orthogonal spectra [MM,
II.2.6]. However, Theorem [MM, V.1.7] validates our viewpoint of not changing
the underlying category (as was originally done in [MM, II]). Still, to give exact
statements, fix some choice of universe U and a GT-skeleton skOV

G of skOUG ⊂ OG
throughout this subsection. We call objects of skOV

G levels, and say that some
property applies levelwise, whenever it holds for all levels V .
Recall the genuine model structure on GT from C.1.8, and in particular the sets IG
and JG of generating cofibrations and acyclic cofibrations, respectively.

Definition 2.2.29. Let f : X → Y be a morphism of orthogonal G-spectra.

(i) f is a level equivalence if fV : XV → YV is a genuine equivalence in GT for all
levels V .

(ii) f is a level fibration if fV : XV → YV is a genuine fibration in GT for all levels
V .

(iii) f is a q-cofibration if f satisfies the left lifting property with respect to all maps
that are both level equivalences and level fibrations.

Let F IG be the set of all maps FV i with V some level and i in IG, and FJG
the analogous construction. Then the following theorem is a combination of [MM,
IV.4.6] and [MM, V.1.7]:

Theorem 2.2.30. The category GOT of orthogonal G-spectra is a cofibrantly gen-
erated proper G-topological model category with respect to the level equivalences,
level fibrations and q-cofibrations. The sets F IG and FJG are the generating q-
cofibrations and level acyclic q-cofibrations, respectively.

Once more, we give a list of homotopical properties we use throughout. Again,
orthogonal G-spectra X are called well based if the levels XV are well based G-spaces
for all levels V .

Lemma 2.2.31. If all involved spectra are well based, then the generalized cube
lemma and the generalized cobase change lemma hold for levelwise h-cofibrations
and levelwise G-homotopy equivalences as well as for levelwise h-cofibrations and
level equivalences.

Remark 2.2.32. As in B.1.29, one can slightly relax the well-based assumption.
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Definition 2.2.33. For an orthogonal G-spectrum X, k ∈ Z and H a subgroup of
G, define the homotopy groups πHk (X) as the colimit

πHk X :=

{
colimV⊂U πk(Ω

VXV )H if k ≥ 0

colimRk⊂V⊂U π0(ΩV−RkXV )H if k ≤ 0

Remark 2.2.34. cf. [Kr, 3.3.3] Note that this definition depends on the choice of
universe U . To be precise, it depends on the choice of U only up to H-equivalence:
Let φ : V → W be an H-equivariant isometry between levels. Then the vertical
maps in the diagram

SV

φ∗
��

f // XV

Xφ
��

SW
g // XW

are H-equivariant homeomorphisms, and hence there is a homeomorphism between
(ΩVXV )H and (ΩWXW )H , sending a map f to the unique g that makes the diagram
commute. The same argument works when one replaces SV by SV−R

k
in the dia-

grams, i.e. for negatively indexed homotopy groups.
Similarly, for U cofinal in another G-universe U ′, i.e. if there is a G-equivariant
embedding U → U ′ such that every indexing space in U ′ is a G-equivariant subspace
of an indexing space in U , a map of G-spectra is a π∗-isomorphism with respect to
U , if and only if it is so with respect to U ′.

Definition 2.2.35. Let f : X → Y be a map of orthogonal G-spectra. Then f is
an π∗-isomorphism if for all (closed) subgroups H of G and k ∈ Z the induced map

f∗ : π
H
k X → πHk Y

is an isomorphism.

Again, this definition of course depends on the choice of universe. In cases where
the group G in question is ambiguous, we will sometimes introduce a superscript
and write πG∗ -isomorphism. Similarly, for H a family of subgroups of G, we write
πH
∗ -isomorphism for maps that induce isomorphisms on πH∗ for all H ∈H .

Definition 2.2.36. An orthogonal G-spectrum X is an Ω-spectrum, if for all levels
V and W , the map

σ̄ : XV → ΩWXV⊕W

adjoint to the structure map is a genuine G-equivalence.

Proposition 2.2.37. [MM, III.9.3] Let f : X → Y be a map of Ω-spectra and let
H be a closed family of subgroups of G. If πH∗ (f) is an isomorphism for all H ∈H ,
then (fV )H is a weak equivalence for all levels V .
In particular if f is a π∗-isomorphism, then f is a level equivalence.
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The following technical properties of π∗-isomorphisms will be used heavily through-
out our work:

Proposition 2.2.38. [MM, III.3.3, 3.5-3.11, 4.13, paraphrased]

(i) A level equivalence of orthogonal G-spectra is a π∗-isomorphism.

(ii) For a genuine G-cell complex A, the functor −∧A on orthogonal spectra pre-
serves π∗-isomorphisms.

(iii) A morphism f of orthogonal G-spectra is a π∗-isomorphism if and only if any
of its equivariant suspensions, i.e. ΣV f for some level V , is. The natural map
η : X → ΩV ΣVX is a π∗-isomorphism for all orthogonal spectra X.

(iv) The homotopy groups of a wedge of orthogonal G-spectra are the direct sums of
the homotopy groups of the wedge summands, hence a wedge of π∗-isomorphisms
is a π∗-isomorphism.

(v) Cobase changes of maps that are π∗-isomorphisms and levelwise h-cofibrations
are π∗-isomorphisms.

(vi) The generalized cobase change and cube lemmas (B.1.5,B.1.7) hold for all or-
thogonal G-spectra, levelwise h-cofibrations and π∗-isomorphisms.

(vii) If X is the colimit of a sequence of h-cofibrations Xn → Xn+1, each of which
is a π∗-isomorphism, then the map from the initial term X0 into X is a π∗-
isomorphism.

(viii) For any morphism f : X → Y of orthogonal G-spectra and any H ⊂ G, there
are natural long exact sequences

· · · → πq(Ff)→ πq(X)→ πq(X)→ πq−1(Ff)→ · · ·

· · · → πq(X)→ πq(Y )→ πq(Cf)→ πq−1(X)→ · · · ,

where Ff and Cf denote the (levelwise) homotopy fiber and cofiber of f . The
natural map Ff → ΩCf is a π∗-isomorphism.

All the above statements also hold with π∗-isomorphisms replaced by πH
∗ -isomorphisms

for some family H of (closed) subgroups of G.

Again the level model structures are localized at the π∗ isomorphisms to get
stable structures, cf. [MM, 3.4]. The following maps play the role analogue to
1.2.47 in the non equivariant case:
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Definition 2.2.39. For V and W in OG, let λV,W : FV⊕WSW → FV S0 be the map
adjoint to the inclusion

SW → OV⊕W+∧OV ×OW
S0∧SW ,

sending the sphere to the copy indexed by the identity in OV⊕W .

Lemma 2.2.40. [MM, III.4.5] The maps λV,W are π∗-isomorphisms.

Definition 2.2.41. Once again recall the sets IG of generating cofibrations for G-
spaces, and FJ of generating level acyclic cofibrations of orthogonal G-spectra from
above. Factor all the maps λV,W via the mapping cylinder as λV,W = rV,W ◦ kV,W ,
with rV,W a deformation retraction. If source and target of λV,W are q-cofibrant (e.g.
if V and W are levels), then kV,W is a q-cofibration. Let KG be the union of FJG
and the set of all maps of the form i�kV,W with i ∈ IG and V and W levels.

Definition 2.2.42. A q-fibration of orthogonal G-spectra is a map that has the
lifting property with respect to all maps that are q-cofibrations and π∗-isomorphisms.

Again there is a characterization analogous to 1.2.50

Lemma 2.2.43. [MM, 4.8] A map p : E → B satisfies the right lifting property with
respect to KG if and only if p is a level fibration and the diagrams

EV
σ̃ //

pV

��

ΩWEV+W

ΩpV+W

��
BV σ̃

// ΩWBV+W

(2.2.44)

are homotopy pullbacks for all levels V and W , that is the map from EV to the
pullback is a genuine equivalence of G-spaces.

Corollary 2.2.45. The map F → ? has the right lifting property with respect to
KG, if and only if F is an Ω-spectrum.

Then the following theorem combines [MM, III.4.2,III.7.4, 7.5 and IV 6.5]:

Theorem 2.2.46. The category GOT is a stable compactly generated proper G-
topological model category with respect to the π∗-isomorphisms, q-fibrations and q-
cofibrations. The sets F IG and KG are the generating cofibrations and acyclic cofi-
brations, respectively. This model structure satisfies the pushout product and the
monoid axiom.

An important fact is that this model structure is not just stable, but also equiv-
ariantly stable in the following sense:
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Theorem 2.2.47. [MM, III.4.14] For any V in U , the functor pair (ΣV ,ΩV ) is a
self Quillen equivalence of GOT , with respect to the model structure from 2.2.46.

This model structure is lifted to categories of orthogonal ring spectra and mod-
ules and algebras over such in [MMSS, III.7], following the general treatment of such
questions from [SS]. Again when trying to lift this model structure to commutative
orthogonal G-ring spectra, we have to consider positive variations of the definitions
above. Note that in the equivariant context, positive encodes a stricter condition
than non equivariantly: The generating sets of cofibrations F+IG, F+JG and K+

G

are therefore defined by excluding all maps that require the use of FV with V G = 0
from their absolute counterparts (cf. 2.2.29 and 2.2.41).

Definition 2.2.48. Let f be a map of orthogonal G-spectra:

(i) f is a positive level fibration, if fV is a genuine fibration for all V with V G 6= 0.

(ii) f is a positive level equivalence, if fV is a genuine equivalence for all V with
V G 6= 0.

(iii) f is a positive q-cofibration if it is a q-cofibration and fV is a homeomorphism
for all V with V G = 0.

(iv) f is a positive q-fibration if it has the right lifting property with respect to all
maps that are positive q-cofibrations and π∗-isomorphisms.

Theorem 2.2.49. [MMSS] The category GSpO of orthogonal spectra is a compactly
generated proper topological model category with respect to the positive level equiva-
lences, positive level fibrations and positive q-cofibrations. The sets F+IG and F+JG
are the generating sets of cofibrations and acyclic cofibrations, respectively.

Theorem 2.2.50. [MM, 5.3,7.4,7.5] The category GSpO of orthogonal G-spectra
is a compactly generated stable proper topological model category with respect to the
π∗-isomorphisms, positive q-fibrations and positive q-cofibrations. The sets F+IG
and K+

G are the generating sets of cofibrations and acyclic cofibrations, respectively.
This model structure satisfies the pushout product axiom an the monoid axiom.

Again recall the functor E from A.1.19.

Theorem 2.2.51. [MM, 8.1] The category of commutative orthogonal G-ring spec-
tra is a compactly generated proper topological model category with fibrations and
weak equivalences are created in the positive stable model structure of GSpO. The
sets EF+IG and EK+

G are the generating sets of cofibrations and acyclic cofibrations,
respectively.
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Theorem 2.2.52. Let R be a commutative orthogonal ring spectrum The category of
commutative R-algebras is a compactly generated proper topological model category
whose weak equivalences, fibrations and cofibrations created in the model structure
2.2.46 for the category of commutative orthogonal G-ring spectra.

2.2.5 Change of Groups

Just as in the case of the change of universe, the change of groups in the context of
orthogonal G-spectra is severely simplified by the formula for evaluating a spectrum
at general representations 2.1.2:

Definition 2.2.53. Let X be an orthogonal G-spectrum, and let V be any H-
representation of dimension n for i : H ⊂ G the inclusion of a subgroup. Then the
evaluation of X at V , is the H-space

XV := OH(Rn, V )∧OnXn,

where the action of H is diagonal on the smash product, by postcomposition on the
first factor and through the inclusion i on Xn (C.1.4).

Hence again, even though a G-spectrum classically only contains information
for H-representations that are restrictions of G-representations, an orthogonal G-
spectrum already carries all necessary equivariant information. Of course we should
assemble the levelwise information into a functor.

Definition 2.2.54. Let i : H → G be the inclusion of a subgroup. Then the as-
signment (i∗X)V := XV for all H-representations V gives the object part of the
restriction functor

i∗ : GOT → HOT .

On morphisms one checks easily that the maps on levels Rn induce morphisms of
H-spectra, which are compatible via the natural isomorphisms 2.1.2.

Remark 2.2.55. Note that for V an H-representation which is the restriction of a
G-representation, i.e. V ∼= i∗W , we have H-equivariant homeomorphisms

(i∗X)V ∼= i∗(XW ).

Remark 2.2.56. Considering the different enrichments, we can consider OGT as
an HT-enriched category by transporting the GT-enrichment along the space level
restriction functor, which is strong symmetric monoidal (cf. A.2.9). Doing so, the
functor i∗ becomes an HT -functor OGT → OHT , whose H-fixed point functor is
the one in Definition 2.2.54.
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The functor i∗ has both a left and a right adjoint, the latter of which will not be
used in our work, so we omit a formal definition.

Definition 2.2.57. Let Y be an orthogonal H-spectrum. Then the induced G-
spectrum G+∧HY is the orthogonal G-spectrum given by

(G+∧HY )V := G+∧HYi∗V ,

with the (G equivariant) structure maps given as the composite

OG(V,W )∧(G+∧HYi∗V ) ∼= G+∧H(i∗OG(V,W )∧Yi∗V )
∼= G+∧H(OH(i∗V, i∗W )∧Yi∗V )

→ G+∧HYi∗W ,

where the first first isomorphism is an instance of C.1.6, and the last map is the
structure map of the H-spectrum Y .

Remark 2.2.58. Again, viewing GOT as an HT-category, this even gives an enriched
functor.

The interactions of these change of group functors with the model structures
from the previous section are well documented in [MM, V.2]. We will only repeat
the ones that we explicitly use throughout. Let G be a compact Lie group and H a
closed subgroup.

Lemma 2.2.59. [MM, V.2.2] The restriction functor i∗ : GOT → HOT “preserves
π∗-isomorphisms”.

This looks innocent, but of course we should make the statement precise in terms
of the involved choice of universes. So to be specific let UG be a G-universe such
that i∗UG is cofinal in an H-universe UH , that is, any finite dimensional subspace V
of UH can be H-equivariantly embedded into a subspace of i∗UG.

Lemma 2.2.60. The restriction functor i∗ sends πG∗ -isomorphisms defined in terms
of the universe UG to πH∗ -isomorphisms defined in terms of the universe UH .

Here we implicitly used Remark 2.2.34. Under the same assumption the following
statement about the left adjoint is immediate:

Lemma 2.2.61. The induction functor G+∧H(−) maps levelwise H-homotopy equiv-
alences to levelwise G-homotopy equivalences.

Similarly, if we additionally assume that UH is even H-isomorphic to i∗UG, we
get the following lemma:

Lemma 2.2.62. The induction functor G+∧H(−) “preserves (acyclic) q-cofibrations”,
i.e. sends (acyclic) q-cofibrations defined in terms of UH to acyclic q-cofibrations de-
fined in terms of UG.
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2.3 Equivariant Convenient Model Structures

In this section we give analogues to the convenient model structure from Theorem
1.3.28 in the case of equivariant orthogonal (commutative ring) spectra. The non
equivariant case will serve as a blueprint for the constructions. Let again for the
whole section G denote a compact Lie group.

2.3.1 More Mixed Model Structures

Recall the evaluation G-functors from G-spectra to OVoGT , and their left adjoints
the semi free G-spectrum functors from Definition 2.2.14. Analogous to 1.3.5 we
want to construct a model structure on GSpO by lifting a family of model structures
on the various categories OVoGT along the functors GV .
For each orthogonal G-representation V , we therefore consider the genuine model
structure on OVoGT as in C.1.8. Recall that the generating (acyclic) cofibrations
were given by the sets

IOVoGT =
{
i : (Sn−1 ×OVoG�H)+ → (Dn ×OVoG�H)+, n ≥ 0, H closed

}
JOVoGT =

{
i0 : (Dn ×OVoG�H)+ → (Dn × [0, 1]×OVoG�H)+, n ≥ 0, H closed

}
.

We abbreviate the notation by writing IV := IOVoGT and JV := JOVoGT instead.
Also recall that for any closed family F of subgroups of OVoG (cf. C.1.1), the
F -equivalences are defined as those maps that are weak equivalences on H fixed
points, for all H in F (C.1.12). Similar to the mixed model structure we constructed
on general G-spaces, we want to construct model structures that are a mix between
the genuine and a more naive structure on OVoG-spaces. Compared to the struc-
ture above, we in the end want to relax the requirements on weak equivalences to
exactly allow for maps that are naive OV - but genuine G-equivalences. The precise
statement is the following theorem:

Theorem 2.3.1. Let F be a closed family of closed subgroups of OVoG. The cat-
egory OVoGT has a compactly generated model category structure with cofibrations
the genuine cofibrations and weak equivalences the F -equivalences.

Proof. Recall the universal F -space EF from C.1.18. Let H be a subgroup of
OVoG that is not in F . Then as in 1.3.2 consider the projection

πH : (OVoG×H EF )+ → (OVoG�H)+,

which is a F -equivalence (C.1.19). Factor πH = rH ◦ jH via the mapping cylinder
MπH as an F -acyclic genuine cofibration jH , followed by an OVoG-deformation
retraction rH . Then define the new set of generating acyclic mixed cofibrations as

JV m := JV ∪ {jH�i, i ∈ IV , H /∈ F}.
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The proof is then the same as the one of Theorem 1.3.2, if we substitute naive
equivalence by F -equivalences, and use that the F -model structure is G-topological
(C.1.13), instead of the fact that naive weak equivalences induce equivalences on
homotopy fixed points. The new reference for closure properties of F -equivalences
is C.1.16. As it is the main point of complication, we show again that any map that
is both in JV m−inj and a naive weak equivalence is already in IG−inj: For a map
f : X → Y it is equivalent to be in JV m−inj and that f is both a genuine fibration
and that it has the right lifting property with respect to all the maps jH�i from
above. By adjointness B.1.12 the latter condition is equivalent to t�(jH , f) having
the right lifting property with respect to IG for H not in F . But since the genuine
model structure is OVoG-topological (cf. C.2.7) this is equivalent to t�(jH , f) being
a genuine weak equivalence if f already was a genuine fibration. Again the defining
diagram for t�(jH , f) is given by the lower part of the diagram

TOVoG
(
OVoG�H+, X

)

!!
∼

��
TOVoG (MπH , X)

t�(jH,f)

∼

**UUUUUUUUUUUUUUUUUUUUU
TOVoG

(
OVoG�H+, Y

)
∼

��
P

y
//

����

TOVoG (MπH , Y )

����
TOVoG

(
(OVoG×H EF)+, X

) // TOVoG ((OVoG×H EF)+ , Y ).

In the situation we are interested in f is in JV m−inj and a F -equivalence, such
that also the lower horizontal map is a OVoG-equivalence since OVoG×H EF is
a F -complex. Passing to OVoG-fixed points in the above diagram then yields that
the maps fH are also weak equivalences for all H not in F , that is f is already a
genuine OVoG weak equivalence, hence in IV−inj.

Note the following fact from the proof:

Corollary 2.3.2. A map f : E → B is a fibration in the model structure of 2.3.1 if it
is a genuine OVoG-fibration, and the maps t� (jH , f) are genuine weak equivalences
of G-spaces for all P /∈ F .

Remark 2.3.3. Several variations on the family F will be important for us. Of most
immediate use will be the family of subgroups which generate OV -free orbits:

Free := {P ⊂ OVoG, s.t. OVoG�P is OV -free}
= {P ⊂ OVoG, s.t. P 63 (A, e) for A 6= idV }
= {P ⊂ OVoG, s.t. pr2 : P → G is injective}.
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We usually do not indicate the specific G-representation V in the notation for the
families; where confusion is possible, we add the superscript F V

ree.

2.3.2 Level Structures

In this section, we aim to use Theorem B.2.8 to assemble these various mixed model
structures to a mixed level model structure on G equivariant orthogonal spectra.
We will, however, begin with some more details about the cofibrations, weak equiv-
alences and fibrations that will form the assembled structure.

Definition 2.3.4. A morphism of orthogonal G-spectra is an S-cofibration, if it
has the left lifting property with respect to those morphisms that are levelwise
equivalences and fibrations in the model structures of Theorem 2.3.1, with respect
to the families Free.

It is important to notice that levelwise Free equivalences are not the same as
level equivalences in the sense of 2.2.29. The following definition and subsequent
corollaries will make the difference more obvious:

Definition 2.3.5. A morphism f : X → Y is a strong level equivalence (fibration)
if for all (closed) subgroups i : H↪→G the restriction (i∗f) to H-spectra has the
property that for all H-representations W , the map (i∗f)W is an H-equivalence
(fibration).
An orthogonal G-spectrum X is a strong Ω-spectrum if for all (closed) subgroups
i : H↪→G the restriction (i∗f) to H-spectra has the property that for all H-re-
presentations V and W , the adjoint structure map σ̄ : XV → ΩWXV⊕W is an H-
equivalence.

In particular the definitions of strong level equivalences, fibrations and Ω-spectra
are independent of the choice of universe. Comparisons to these strong types of maps
will be very useful when proving the model category axioms in Theorems 2.3.13 and
2.3.27. The core idea lies in the following two propositions, which should be seen as
analogues of the formulas for evaluating a spectrum at any G-representation, now
also including fixed points. For more information on the semi-direct product see
also Subsection 3.3.3, which gives a good intuition of why one needs to take care
when passing to fixed points.

Proposition 2.3.6 (Untwisting). Let X be an orthogonal G-spectrum and let (V, φ : G→
OV ) a G-representation. Then for any subgroup P ∈ F V

ree, there is a subgroup
i : H ↪→ G, a group homomorphism ψ : H → P and an H-representation V ′ of the
same dimension as V , such that there is an isomorphism

ψ∗(XV ) ∼= (i∗X)V ′

of H-spaces. In particular XP
V
∼= (i∗X)HV ′. This isomorphism is natural in X.
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Proof. Since the OV -action on OVoG�P is free, the group homomorphism

P
inc−→ OVoG

pr2−→ G

is injective. We denote the image of P in G by H. There is a splitting

ψ : H
∼=−→ P → OVoG

of the projection to G, and we denote ψ(h) := (Oh, h) ∈ P ⊂ OVoG. In particular
because ψ is a group homomorphism we get the following relations on the elements
Oh of OV :

Ogh = Ogψ(g)Ohψ(g)−1.

The same relations then guarantee, that the map ϕ : H → OV , h 7→ Ohφ(h) is a
group homomorphism. In particular we get a (new) H representation (V, ϕ), which
we denote by V ′. Now consider the isomorphisms from 2.1.2:

XV
∼= O(V, V )∧OV

XV (2.3.7)

(i∗X)V ′ ∼= O(V, V ′)∧OV
XV .

We need to check H-equivariance, so let us take a closer look at the actions:
Let [(f, x)] be an element in ψ∗(O(V, V )∧OV

XV ), then h ∈ H acts through ψ,
i.e. by sending [(f, x)] to [(Ohφ(h)fφ(h)−1, hx)]. Similarly, considering [(f, x)]
as an element of O(V, V ′)∧OV

XV , the action of h takes it to [(ϕ(h)fφ(h)−1, hx)].
Hence by construction of ϕ, the “identity map” sending [(f, x)] to [(f, x)] is an H-
homeomorphism from ψ∗XV to (i∗X)V ′ under the identifications 2.3.7. Naturality
in X is immediate from the construction.

Corollary 2.3.8. Strong level equivalences are levelwise Free-equivalences and strong
level fibrations are levelwise Free-fibrations.

Proposition 2.3.9 (Twisting). Let X be an orthogonal G-spectrum, (W,ϕ : G →
OW ) an n-dimensional G-representation and i : H ↪→ G a subgroup. For any n-
dimensional H-representation (V, φ : H → OV and any subgroup K ⊂ H, there is a
(continuous) homomorphism ψ : K ∼= L ⊂ OWoG, such that L is in FW

ree and there
is an isomorphism

(i∗X)V ∼= ψ∗(XW )

of K-spaces. In particular XL
W
∼= (i∗X)KV . This isomorphism is natural in X.

Proof. We chose bases for V and W in order to identify the orthogonal groups
OV and OW . Different choices of bases will in the end yield potentially different
subgroups L, but we are only concerned with the existence. It is enough to show
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the statement for K = H, since we can restrict X to a K-spectrum first. Again
consider

(i∗X)V ∼= O(W,V )∧OW
XW (2.3.10)

XW
∼= O(W,W )∧OW

XW .

Similar to the untwisting case, we look at the H-actions: For [(f, x)] in (i∗X)V ,
an element h ∈ H sends it to [(φ(h)fϕ(h)−1, hx)]. On elements [(f, x)] of XW , an
element (A, g) ∈ OWoG operates by sending it to [(Aϕ(g)fϕ(g)−1, gx)]. Hence
defining ψ : H → OWoG as

h 7→ (φ(h)ϕ(h)−1, h)

yields the desired H-isomorphism (i∗X)V ∼= ψ∗(Xn). Naturality in X is again
immediate from the construction.

Corollary 2.3.11. For all n ≥ 0 choose a G-representation Vn of dimension n.
Morphisms that are Free-equivalences (fibrations) in all levels Vn, are strong level
equivalences (fibrations).

Corollary 2.3.12. In particular, strong level equivalences and levelwise Free-equivalences
are the same.

Theorem 2.3.13. The S-cofibrations and strong level equivalences give a com-
pactly generated G-topological model category structure on the category GSpO of
G-equivariant orthogonal spectra.

Proof. We use the Assembling Theorem B.2.8. Proposition B.2.10 shows that the
resulting structure is G-topological. The sets of generating cofibrations are

GI :=

{ ⋃
V ∈OG

GV IV

}
and GJ :=

{ ⋃
V ∈OG

GV JV m

}
.

To apply Theorem B.2.8 we need to check that the maps in GJ are actually level-
wise Free-equivalences. So let Gf : GVX → GV Y a generating acyclic cofibration,
i.e. f : X → Y is a generating acyclic mixed cofibration, in particular a genuine
cofibration between genuine cofibrant OVoG-spaces, that is Free-acyclic. We prove
that GV f is a strong level equivalence. In particular, let first H = G, and W any
G-representation. Then fW is the map

fW : OG(V,W )∧OV
XV → O(V,W )∧OV

YV .

Before passing to the OV -orbits, this is the map O(V,W )∧fV , which is a Free-
equivalence between Free-cell complexes, by Lemma C.2.7(i) and (iii). Therefore
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B.1.3 implies that it is even a OVoG-homotopy equivalence, and hence a G-
equivalence after passing to OV -orbits.
Let now i : H ↪→ G be an inclusion of a closed subgroup and j the corresponding
inclusion OVoH ↪→ OVoG. Then 2.1.2 shows that for any OVoG-space K, the
H-spectra i∗(GGVK) and GHi∗V j∗K are isomorphic. Since j∗X → j∗Y is again a F i∗V

ree -
equivalence between genuinely cofibrant OVoH-spaces, the same argument as in the
above case of H = G shows that f is even a strong level equivalence.

Again note the following immediate consequence of the description of the fibra-
tions in the Assembling Theorem B.2.8, and Corollary 2.3.2:

Corollary 2.3.14. Any fibration in the model structure of Theorem 2.3.13 is a
genuine OVoG-fibration in each level, in particular a genuine G-fibration in each
level, and a strong level fibration by 2.3.9.

Finally we record the following property:

Lemma 2.3.15. The definition of S-cofibrations is independent from the choice of
universe.

Proof. By the proof of 2.3.13, the q-cofibrations are exactly retracts of GI-cell com-
plexes. For any n chose a G-representation Vn of dimension n (for example the trivial
one). We show that any GI-cell complex is already a

⋃
GVnIVn-complex. Indeed, let

dim(W ) = n and let

GW i : GW (Sk−1 ×OWoG�P )+ → GW (Dk ×OVoG�P )+

be in GI. By 2.2.18, it suffices to show that

OG(W,Vn)∧OW
OWoG�P+

is a genuine OVnoG-complex. Before passing to the orbits, this is the space
OG(W,Vn)∧(OWoG)+, which is a genuine P op × ((OVn × OW ) o G)-complex by
C.2.4, hence the result follows.

Corollary 2.3.16. The model structure in Theorem 2.3.13 is independent from the
choice of universe.

Again we can consider positive variations of this model structure analogous to
1.3.7, keep in mind, that in the equivariant setting a level V is called positive, if the
dimension of the fixed point space V G is positive.
Similar to [MM, IV.6], one can restrict attention to a specific closed family H of
subgroups of G. To do so, we only have to adapt the definition of the families Free

in 2.3.3, and accordingly the definition of appropriately strong level equivalences.
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Definition 2.3.17. Let H be a closed family of subgroups of G. For a represen-
tation V of G define the closed family FH

ree of subgroups of OVoG as the intersection
of Free ∩FH , where FH contains exactly those subgroups whose image under the
projection to G is in H .

Definition 2.3.18. A morphism f : X → Y is an H -strong level equivalence if for
all subgroups H ∈ H the restriction (i∗f) to H-spectra has the property that for
all H-representations W , the map (i∗f)W is an H-equivalence.

Then the assembling theorem B.2.8 implies the following analogue to 2.3.13

Theorem 2.3.19. The S-cofibrations and H -strong level equivalences give a com-
pactly generated G-topological model structure on the category GSpO of equivariant
orthogonal spectra.

Proof. The only thing we need to check, is that H -strong level equivalences are
levelwise FH

ree -equivalences, and that the proposed generating acyclic cofibrations
coming from the assembling theorem are indeed H -strong level equivalences. Both
are proved in the exact same way as above, together with the fact that the Twisting
and Untwisting propositions 2.3.9 and 2.3.6 respect the property that the projection
of a subgroup to the second factor is in H .

Again this model structure is independent of the choice of universe.

2.3.3 Stable Structures

We construct stable versions of the S-model structures analogous to [MM, III.4].
Unless explicitly stated otherwise, all π∗-isomorphisms are with respect to a com-
plete universe. Just as in the case of the usual stable model structure on orthogonal
G-spectra, we have to add more generating acyclic cofibrations.

Definition 2.3.20. For all closed subgroups iH ↪→ G and H-representations V and
W , define

λHV,W := FHV⊕WSW → FHV S0.

We induce up to G-spectra, setting λGV,W := G+∧HλHV,W . Then as in the classical
case, factor λGV,W via the mapping cylinder as λGV,W = rV,W ◦ kV,W and let SJ be the
union of GJ and the set of all maps of the form i�kV,W with i ∈ G0I0 = F0I0. For the
positive case, exclude those kV,W where V does not contain a trivial H-representation
of dimension at least 1.

Lemma 2.3.21. For all H-representations V and W as above, the map kV,W is an
S-cofibration and a π∗-isomorphism.
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Proof. We begin by showing that source and target of λGV,W are SIG-cofibrant, which
implies the first part of the statement since the level structure is (G-) topological.
Since source and target of λHV,W are SIH-cofibrant, 2.3.15 implies that it suffices
to show that the inducing up functor G+∧H(−) sends morphisms in GHRnIRn to
SI-cell complexes. By comparison of the respective right adjoints, we get natural
isomorphisms

G+∧HGHRnK ∼= GRn(G+∧HK) ∼= GRn(ORnoG∧ORnoHK).

Since the space level restriction functor preserves genuine fibrations, its left adjoint
preserves genuine cell complexes.
For the second part, using a cofibrant approximation functor (−)c for the classi-
cal level model structure on HOT with respect to the H-universe containing the
restricted G-representations. We get a diagram of H-spectra

(FHV⊕WSW )c //

��

(FHV S0)c

��
FHV⊕WSW

λHV,W // FHV S0,

in which the top horizontal map is a π∗-isomorphism between q-cofibrant H-spectra,
and the vertical maps are levelwise genuine H-equivalences between levelwise gen-
uine OVoH-complexes, hence H-homotopy equivalences. Applying the inducing up
functor to this diagram yields that λGV,W is a π∗-isomorphism by 2.2.61 and 2.2.62.

As usual for this kind of discussion, we need a characterization of the right lifting
property with respect to SJ :

Proposition 2.3.22. A morphism p : E → B of orthogonal G-spectra has the
right lifting property with respect to SJ (S+J), if and only if it is a fibration in the
(positive) level structure of Theorem 2.3.13, and the diagrams

(i∗E)V
σ̃ //

(i∗p)V
��

Ω(i∗E)V⊕W

ΩW (i∗p)V⊕W
��

(i∗B)V σ̃
// ΩW (i∗B)V⊕W

(2.3.23)

are homotopy pullbacks for all closed subgroups H ⊂ G and H-representations V
and W (which do contain trivial sub-H-representations, i.e. are positive).

Proof. Since SJ contains GJ , any map that has the right lifting property with
respect to SJ is a fibration in the level S-model structure. Additionally by the

70



2.3. EQUIVARIANT CONVENIENT MODEL STRUCTURES

adjunctions A.2.32, it has the lifting property with respect to all the maps i�kV,W ,
if and only if the maps OGT (k∗V,W , p∗) are genuine acyclic fibrations in GT. Since
kV,W is an S-cofibration, OGT (k∗V,W , p∗) is always a genuine fibration because the
level structure is G-topological. Since rV,W was a levelwise G-homotopy equivalence,
OGT (k∗V,W , p∗) is a genuine weak equivalence if and only if OGT ((λGV,W )∗, p∗) is.
Finally use the defining adjunctions to identify the diagram in the proposition.

Corollary 2.3.24. If the morphism E → ? has the right lifting property with respect
to SJ (S+J), then E is a strong (positive) Ω-spectrum, in particular for all closed
subgroups i : H ↪→ G, i∗E is a (positive) H-Ω-spectrum.

Proposition 2.3.25. A π∗-isomorphism between strong (positive) Ω-spectra is a
strong (positive) level equivalence.

Proof. Since for all subgroups i : H ↪→ G the functor i∗ preserves π∗-isomorphisms
by 2.2.60, this is a direct consequence of 2.2.37.

Definition 2.3.26. A morphism of orthogonal G-spectra is an S-fibration if it has
the right lifting property with respect to all morphisms that are S-cofibrations and
π∗-isomorphisms.

Theorem 2.3.27. The category GSpO of orthogonal G-spectra is a proper monoidal
model category with respect to the π∗-isomorphisms, (positive) S-fibrations and (pos-
itive) S-cofibrations. This (positive) S-model structure satisfies the monoid axiom.

Proof. The proof is similar to the classical case of [MM, III.4.2] and the non equivari-
ant case of 1.3.10. The generating cofibrations and acyclic cofibrations are given by
SI := GI and SJ , respectively S+I and S+J for the positive case. All the maps in SJ
are in SI−cof and π∗-isomorphisms, in particular also h-cofibrations, so that every
map in SJ−cell is a π∗-isomorphism. We have to check, that every map p ∈ SJ−inj
that is a π∗-isomorphism is already in SI−inj. By the level model structure and
Theorem 2.3.8 it suffices to show that p is a strong level equivalence. Since p has the
right lifting property with respect to SI it is in particular a levelwise Free fibration,
i.e. a strong level fibration by Corollary 2.3.11. Thus it suffices to prove that the
(levelwise) fiber F

F y
��

// E

p

��
? // B

is strong level acyclic, by the long exact sequences of homotopy groups for all (strong)
levels. But F → ? is again a π∗-isomorphism (2.2.38(viii)) and inherits the right
lifting property with respect to SJ . Hence F is a strong Ω-spectrum and therefore
strong level acyclic by 2.3.25.
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The new reference for properness is [MM, III.4.13]. The pushout product axiom fol-
lows from the fact that π∗-isomorphisms are preserved both under the smash product
with h-cofibrant spaces and under cobase change along h-cofibrations, together with
the following proposition. The monoid axiom is similar to the non equivariant case
implied by Proposition 2.3.29.

Proposition 2.3.28. SI�SI ⊂ SI−cell.

Proof. Let

GV
(
OVoG�H1+

∧
[
Sn−1 → Dn

])
and GW

(
OWoG�H2+

∧
[
Sm−1 → Dm

])
be maps in GI. Then their pushout product is isomorphic to:

GV⊕W
(
OV⊕W+∧OV ×OW

OVoG�H1+
∧OWoG�H2+

∧
[
Sn+m−1 → Dn+m

])
.

Since as a left adjoint, smashing with a space preserves colimits, it suffices to show
that

OV⊕W+∧OV ×OW
OVoG�H1+

∧OWoG�H2+

is a genuine OV⊕WoG-cell complex. As a OV⊕WoG-space, this is isomorphic to

OV⊕W o (G×G)�H1 ×H2+
,

where H1 ×H2 acts on OV⊕W o (G×G) from the right via:

[(A, g, g′).(J1, j1, J2, j2)] := A

(
gJ1g

−1 0
0 g′J2g

′−1

)
, gj1, g

′j2

So the manifold OV⊕W o (G×G)+ has an action by OV⊕WoG× (H1 ×H2)op and
is hence triangulable as an OV⊕WoG × (H1 ×H2)op-complex by [Ill83, 7.1]. Since
taking orbits preserves colimits, so is

OV⊕W o (G×G)�H1 ×H2+
.

Finally, since OV⊕WoG × (H1 × H2)op orbit types are triangulable as OV⊕WoG-
complexes by C.2.5, it is genuinely cofibrant as desired.

Proposition 2.3.29. S-cofibrant equivariant spectra are flat, in the sense that for
any S-cofibrant G-spectrum X, the functor X∧− preserves equivariant π∗-isomorphisms.
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Proof. Let Z be a G-spectrum with trivial equivariant stable homotopy groups.
Using the same arguments as in the proof of the non equivariant case (cf. Proposition

1.3.11), we can reduce to showing that GV OVoG�H+
∧Z is still acyclic. Using

Theorem [MM, 3.6] to replace Z by its shift by an arbitrary G-representation W =
V ⊕ V ′ and again following the non equivariant case yields that we can reduce to
showing that the levelwise smash product(

OV⊕V ′+∧OV
OVoG�H+

)
∧OV ′

Z

is still acyclic. The left space is a OV ′
op oG-complex by C.2.4, and like in the non

equivariant case, the right action by OV ′ is free. Then again a cell induction, this
time using Theorem [MM, III.3.11], gives the desired result.

Once again we can restrict attention to a closed family of subgroups of G, all the
results above hold with the π∗-isomorphisms replaced by πH

∗ -isomorphisms so that
we get:

Theorem 2.3.30. The category GSpO of orthogonal G-spectra is a proper monoidal
model category with respect to the πH

∗ -isomorphisms, (positive) SH -fibrations and
(positive) S-cofibrations. This (positive) SH -model structure satisfies the monoid
axiom.

Proposition 2.3.31. The identity functor on the category of equivariant orthogonal
spectra gives a monoidal Quillen equivalence from the classical (positive) stable model
structure to the (positive) stable SH -model structure.

Proof. Since any q-cofibration is an S-cofibration, the identity functor preserves
cofibrations. Since the weak equivalences are the same in both model structures, it
also preserves acyclic cofibrations and detects and preserves weak equivalences. The
identity trivially satisfies all other properties of monoidal Quillen functors.

Remark 2.3.32. The same proof implies a similar statement for the (positive) SH -
model structure and the “classical” (positive) stable H -model structure on GOT
from [MM, IV.6.5].

Analogous to 1.3.15 we use Theorem [SS, 4.1] to lift the (positive) S-model
structures to categories of modules and algebras:

Theorem 2.3.33. Let R be an orthogonal ring G-spectrum.

(i) The category of left R-modules is a compactly generated proper model category
with respect to the π∗-isomorphisms and the underlying (positive) S-fibrations.
The sets of generating cofibrations and acyclic cofibrations are R∧SI (R∧S+I),
and R∧S+J (R∧S+J).

73



CHAPTER 2. EQUIVARIANT ORTHOGONAL SPECTRA

(ii) If R is S-cofibrant, then the forgetful functor from R-modules to orthogonal
spectra preserves cofibrations. Hence every cofibrant R-module is cofibrant as
an orthogonal spectrum.

(iii) Let R be commutative. The model structures of (i) are monoidal and satisfy
the monoid axiom.

(iv) Let R be commutative. The category of R-algebras is a compactly generated
right proper model category with respect to the π∗-isomorphisms and the un-
derlying (positive) S-fibrations. The sets of generating cofibrations and acyclic
cofibrations are R∧ASI (R∧AS+I) and R∧ASJ (R∧AS+J).

(v) Let R be commutative. Every cofibration of R-algebras whose source is (posi-
tive) cofibrant as an R-module is also a cofibration of R-modules. In particular,
every cofibrant R-algebra is cofibrant as an R-module.

All the above model structures are Quillen equivalent to the classical ones from [MM,
III.7.6] via the identity functor as in 2.3.31, and admit variations for closed families
H of subgroups of G.

As in the classical case, we will deal with the lift to commutative algebras in a
separate section.

2.3.4 Extension to Commutative Ring Spectra

As usual, we only work with the positive S- or positive SH -model structure in this
section, to keep notation simpler, we will not indicate the choice of closed family in
the notation. Generally we will be rather brief, as most of the discussion is analogous
to section 1.3.4, and the discussion in the classical case from [MM, III.8]. Once again
we start with the technical lemmas analogous to 1.3.16 and 1.3.17:

Lemma 2.3.34. Let Y be an orthogonal G-spectrum and let X be GV
[
(OVoG�H)+ ∧K

]
,

for K a based CW -complex and V G 6= 0. Then the quotient map

q :
(
EΣi+∧ΣiX

∧i)∧Y → X∧iΣi
∧Y

is an eventual level G-equivalence, hence an equivariant π∗-isomorphism.

Proof. We prove that q is a G-equivalence in all levels W ∼=G V
⊕i ⊕ V ′. There the

target of qW is given by:[
OW+∧∏OV ×OV ′

(
OVoG�H+

)∧i
∧K∧i∧YV ′

]
Σi

.
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Before taking Σi orbits this is isomorphic as an OWoG-space to(
OWoG×i�∏

H

)
+

∧OV ′
K∧i∧Y V ′

in a similar way as in the proof of the pushout product axiom in Theorem 2.3.28.
Here, the group Σi acts diagonally on the first three factors, via multiplying with
block permutation matrices induced by permuting V -summands from the right on
the first, and by permuting (smash) factors on the second and third. Under this
identification, we can rewrite the orbit space as

OWoG×i+∧[
(
∏
HopoΣi)×OV ′

]K∧i∧YV ′ .
Doing the same for its source, we see that the map qW comes from taking the

Λ := (
∏
Hop o Σi) × OV ′-orbits of the map of Γ := G n

[
(
∏
Hop o Σi)×OV ′

]
-

spaces
q̂ : EΣi+∧OWoG×i∧K∧i∧YV ′ → OWoG×i∧K∧i∧YV ′ ,

that collapses EΣi. Note that EΣi is Γ-homotopy equivalent to EF , where F is the
family of subgroups that intersect trivially with Σi. Since OWoG×i is an F -complex,

q̂ is a Γ-homotopy equivalence, hence qW = q̂�Λ is a G-homotopy equivalence as
desired.

Lemma 2.3.35. Let X a positive S-cofibrant G-spectrum. Then the quotient map

q : EΣi+∧ΣiX
∧i → X∧iΣi

is a π∗-isomorphism.

Proof. The proof is exactly as the one of Lemma 1.3.17 when one replaces OW by
OWoG. The new reference for the very last step is the following proposition.

Proposition 2.3.36. Let V contain a positive dimensional trivial G-representation
and let X = GV [K+∧OVoG�H+] for K either Sn or Dn and H some closed subgroup of
OVoG. Then the orthogonal spectrum X∧iΣi

is S-cofibrant. In particular the inclusion
S→ EX is an S-cofibration.

Proof. We make the case of K a disc explicit this time, the argument for spheres is
similar. The i-fold smash power of X is the spectrum

(
GV [Dni

+∧OVoG�H]
)∧i ∼= GV ⊕i


Dni

+∧

OV ⊕ioG×i�∏
i

H


+


 .
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Here the actions on OV ⊕ioG×i are again as in the proof of Proposition 2.3.28, with
an additional action of Σi from the right on OV ⊕i and permuting factors of G. Hence
it suffices to show that Dni

+∧

OVoG×i�∏
i

H


+


Σi

is a OV ⊕ioG-complex. Again this follows from C.2.5,C.2.2 and C.2.6, using that
OV ⊕ioG×i is a manifold with an action of

Γ := (OV ⊕i oG)× (
∏
i

Hop o Σi),

and that Dni is a Σi- and hence also a Γ-complex.

From here on, the arguments from the non equivariant case apply verbatim. We
omit listing all the intermediate statements in their equivariant formulations, and
only give the final results:

Theorem 2.3.37. The underlying positive S-fibrations and π∗-isomorphisms give a
compactly generated proper topological model structure on the category of commu-
tative orthogonal G-ring spectra. The generating (acyclic) cofibrations are given by
the sets ES+I and ES+J , respectively.
Again the identity functor gives a Quillen equivalence to the classical model structure
from [MM, III.8.1].

As usual, we call cofibrant objects in this model structure simply S-cofibrant,
inspired by the following Theorem:

Theorem 2.3.38. The S-model structure on commutative orthogonal ring G-spectra
is “convenient”, i.e. if E is a commutative orthogonal G-ring spectrum that is S-
cofibrant, it is already (positive) S-cofibrant as a G-equivariant orthogonal spectrum.

As in the non equivariant case, even slightly more is true:

Theorem 2.3.39. Let f : R → R′ be a map of commutative orthogonal G-ring
spectra, that is a cofibration in the model structure of Theorem 2.3.37. If the smash
product with R preserves S-cofibrations of equivariant orthogonal spectra, then f is
an underlying S-cofibration.

Finally we can again change the underlying base ring:
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Theorem 2.3.40. For a commutative orthogonal G-ring spectrum R, the S-model
structure induces a compactly generated proper topological model structure on com-
mutative R-algebras. This R-model structure is convenient with respect to the R-
model structure on R-modules from Theorem 2.3.33(i).
The identity functor on commutative R-algebras induces a Quillen equivalence to the
classical model structure one would get by applying [DS, 3.10] to the structure from
[MM, III.8.1].
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Chapter 3

Smash Powers and the Loday
Functor

3.1 Introduction

3.1.1 Hochschild Homology

Hochschild Homology, since it was defined by Hochschild for the case of algebras
over fields in 1944 ([HH]), vas adapted to various more general contexts and has
proven a valuable tool both in algebra, topology and geometry. We will be very
brief in recalling some basics, not touching on most of the rich theory that follows.
A very readable and thorough introduction can for example be found in Loday’s
book on Cyclic Homology [L], where in particular everything that follows here can
be extracted from. We shall focus on the commutative setting, and will always
assume that the coefficients are the commutative algebra itself. Let for the whole
section R denote a commutative unital ground ring, and denote the tensor product
over R simply by ⊗.

Definition 3.1.1. Let A be a commutative R-algebra. Hochschild Homology of A
is the homology HH(A) of the chain complex

...
��

A ⊗ A ⊗
��

A ⊗ A

A ⊗ A

��

⊗ A

A ⊗
��

A

A
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CHAPTER 3. SMASH POWERS AND THE LODAY FUNCTOR

with differential

b =
n∑
i=0

(−1)ibi,

where for i < n the bi are given by

bi(a0, . . . , an) := (a0, . . . , ai.ai+1, . . . , an),

and the final bn by

bn(a0, . . . , an) := (an.a0, a1 . . . , an−1).

Loday realized that this definition could be seen as a special case of a functorial
construction on R-algebras (cf. [L89, 4.2]):

Definition 3.1.2. Let F in be the category of finite sets and RCAlg the category of
commutative R-algebras. Define the algebraic Loday Functor

Λ(−)(−) : F in×RCAlg → RCAlg,

on objects as the iterated tensor product

ΛX(A) := A⊗ . . .⊗ A︸ ︷︷ ︸ .
|X| − times

On morphisms (f, φ) : (X,A)→ (Y,B) by

(f, φ)(ax)x∈X :=

 ∏
f(x)=y

φ(ax)


y∈Y

,

where the product over an empty indexing set is to be understood as the unit in R.

Remark 3.1.3. Note that we really use that A is a commutative R-algebra when
defining the functor from F in. If we would restrict to the category of finite sets
and isomorphisms, the same formulas would give a functor with input mere R-
modules. Extending to non surjective maps requires a unit map of some sort, and
non injective but at least monotonous maps between ordered sets would only require
an associative multiplication.

It is this formula that we emulate in the topological setting of commutative
orthogonal ring spectra, where we construct a continuous analogue to the Loday
functor. One application of this topological Loday functor, is a convenient definition
of topological Hochschild homology in the same spirit as the following definition:
The algebraic Loday functor gives an explicit example of functors for which we can
define Hochschild homology:
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Definition 3.1.4. Let F : F in→ RAlg be a functor. Define its Hochschild homology
HH(F ) as the homology of the simplicial algebra

∆op S1

→ F in
F→ RAlg.

Then immediately, inspection of the defining chain complex yields that Hochschild
homology of commutative algebras is the same as Hochschild homology of the Loday
functor:

HH(A) = HH(Λ(−)A). (3.1.5)

3.1.2 Tensors in Commutative Orthogonal Ring Spectra

Before we move on to a more thorough discussion of the topological Loday functor
from the Introduction (Definition 1), we have to state some results about the tensor
in the category of commutative orthogonal ring spectra (cf. A.2.24). The results
and methods are the orthogonal spectrum analogues of those in [EKMM, VII.3].

We have already seen, that the category SpO is tensored and cotensored over T
in Remark 1.2.2. That the analogue is true for the associated categories of modules,
algebras and commutative algebras, i.e. for orthogonal ring spectra, commutative
ring spectra as well as modules and algebras over such, is an entirely categorical
argument:

Theorem 3.1.6. [EKMM, VII 2.10],[MMSS, 5.1] Let C be a topologically complete
and cocomplete category and let M : C→ C be a continuous monad that preserves re-
flexive coequalizers. Then the category C[M] of M-algebras is topologically bicomplete
with limits and cotensors created in C.

This is used in two different settings. For categories of R-modules, for R an
orthogonal ring spectrum, the defining monad is just the smash product with R,
which as a left adjoint satisfies the prerequisite of the theorem. In particular since
(enriched) left adjoints preserve (enriched) colimits, we get the slightly stronger

Corollary 3.1.7. Let R be an orthogonal ring spectrum, then the category of R-
modules is topologically bicomplete with limits, colimits, tensors and cotensors cal-
culated in the category SpO.

The other situation we want to apply Theorem 3.1.6 to, is the case of algebras
and, even more important, commutative algebras. One particular point where we
have to be careful is that in order to make correct sense of the forgetful functor
being topologically enriched, one should not use the category T for the enrichment.
This stems from the fact, that the trivial map between underlying spectra of two
ring spectra is almost never a map of ring spectra. Hence whenever we speak of a
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topological enrichment where ring spectra are involved, we will mean an enrichment
over the category U of unbased spaces, and transport all the T enrichments via the
forgetful lax monoidal U -functor T → U . (cf. A.2.15). Within this interpretation,
Theorem 3.1.6 still holds, and the following result allows us to apply it:

Theorem 3.1.8. [EKMM, II.7.2],[MMSS, 5.2] Let C be a cocomplete closed sym-
metric monoidal category. Then the monads that define monoids and commutative
monoids in C preserve reflexive coequalizers.

Corollary 3.1.9. Let R be a commutative orthogonal ring spectrum (e.g. R = S),
then the category of (commutative) R-algebras is topologically bicomplete with limits
and cotensors created in R-modules.

We will not review the proofs of these, but instead focus on the the part of
the theory that will help us compute tensors and cotensors. Obviously the case of
cotensors is simply:

Corollary 3.1.10. Let R be a commutative orthogonal ring spectrum (e.g. R = S),
then in categories of R-modules and (commutative) R-algebras limits and cotensors
are created in orthogonal spectra.

For the case of tensors, the result that will be most useful to us is the analogue to
[EKMM, VII.3.4]. In the following let always R denote a commutative orthogonal
ring spectrum as above, and let C denote either one of the categories of R-modules,
R-algebras or commutative R-algebras.

Theorem 3.1.11. Let A be an object of C and X∗ a simplicial space. There is a
natural isomorphism

A⊗C |X∗| ∼= |A⊗C X∗|

in C. Here the realization on the right side is to be understood in the category of
orthogonal spectra.

This is a consequence of the following two results, which are the orthogonal
spectrum versions of [EKMM, VII.3.2, VII.3.3]:

Proposition 3.1.12. Let A be an object of C and X∗ a simplicial space. There is
a natural isomorphism

A⊗C |X∗| ∼= |A⊗C X∗|C,

where the realization on the right side is in C.

Proof. As in [EKMM, VII.3.2], this is done by comparing the right adjoints of
the realization functors (cf. B.1.38) and using the defining adjunctions of tensors
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and cotensors (cf. A.2.24). Let B be some object of C, then we have natural
isomorphisms

C(A⊗C |X∗|, B) ∼= U(|X∗|,C(A,B))
∼= sU(X∗,∆ t C(A,B))
∼= sU(X∗,C(A,∆ tC B))
∼= sC((A⊗C X)∗,∆ tC B)
∼= C(|(A⊗C X)∗|C, B),

so the Yoneda-lemma gives the result.

Proposition 3.1.13. Let A∗ be a simplicial object of C, then we have a natural
isomorphism

|A∗|C ∼= |A∗|.

Proof. We should first describe how the realization |A∗| = |A∗|SpO is an object of C

again. We treat the case of commutative orthogonal ring spectra over R = S, all the
others are similar. For the unit morphism S→ |A∗| view S as |S∗|, the realization of
the constant simplicial spectrum, and use that since the simplicial structure maps of
A∗ are ring maps, the collection of unit maps of the Aq gives a map of simplicial ring
spectra S∗ → A∗ which induces a map on realizations. For the multiplication, first
recall that the geometric realization is defined as a coend (B.1.37). Since coends and
tensors in orthogonal spectra are defined levelwise, we have a natural isomorphism
|A∗|V ∼= |(A∗)V | in each level V . Recall the coend definition of the smash product of
orthogonal spectra and the fact that for simplicial spaces the realization commutes
with both the smash product and the inducing up functor. The Fubini theorem for
coends ([McL, IX.8]) then implies a natural isomorphism of spectra

|A∗|∧|A∗| ∼= |A∗∧A∗|.

Here the latter smash product is calculated separately in each simplicial level. Hence
the multiplication maps of the Aq induce multiplication maps on the realization. It
is tedious, but not too hard to verify the associativity, unitality, commutativity and
coherence conditions, and we omit more details here.
Going back to the proof, we continue as in case of (commutative) S-algebras in the
EKMM setting. For (commutative) orthogonal ring spectra A and B and a space X
we claim that a morphism A⊗CX → B of ring spectra determines and is determined
by a morphism of spectra

A⊗X = A∧X+ → B,

such that for all points x ∈ X the map

A ∼= A∧S0 A∧ix−→ A∧X+ −→ B
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is a map of ring spectra. To see this take a look at the defining adjunctions

C(A⊗C X,B) ∼= U(X,C(A,B)) −→ U(X,SpO(A,B)) ∼= SpO(A∧X+, B),

where the middle arrow is induced by the faithful (!) forgetful functor C → SpO.
Note that this is the point where the enrichment over U instead of T proves handy,
since otherwise we would have to be very careful with trivial maps here.
Given a simplicial object A∗ in C a morphism ĝ ∈ C(|A∗|, B) is completely deter-
mined by a morphism of spectra f̂ ∈ SpO(|A∗|, B), which by B.1.38 is adjoint to a
morphism of simplicial spectra f ∈ sSpO(A∗,∆ tSpO B). For each simplicial level

q, the morphism fq is adjoint to a morphism of spectra f̂q : Aq ⊗SpO ∆q → B that is
pointwise a morphism of ring spectra. As we saw above, these exactly correspond
to algebra morphisms ĥq : Aq ⊗C ∆q → B, whose adjoints fit together into a map
of simplicial ring spectra h ∈ sC(A,∆ tC B). Altogether we defined a natural
isomorphism

C(|A∗|, B) ∼= sC(A∗,∆ tC B),

i.e. we showed that |A∗| and |A∗|C have the same right adjoint. This proves the
proposition.

The immense usefulness of Theorem 3.1.11 stems from the fact, that for dis-
crete spaces X, tensors A⊗C X are easily computable in any topologically enriched
category:

Proposition 3.1.14. Let D be a category which is enriched and tensored over either
T or U . Let A be an object of D and X a discrete space in U . Then there is a
continuous natural isomorphism

A⊗X ∼=
∐
X

A.

Proof. We use the defining universal properties of tensors and coproducts. Let B
be some object of D, we have natural isomorphisms

D(A⊗X,B) ∼= T (X,D(A,B))

∼= T (
∐
x∈X

{x, ∗},D(A,B))

∼=
∏
X

D(A,B)

∼= D(
∐
X

A,B).

Hence the topological Yoneda lemma gives the desired continuous natural isomor-
phism. In the case that the enrichment is only over U , the adjunctions are completely
analogous.
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In the case we are most interested in, using Lemma A.1.18, we get

Corollary 3.1.15. Let A be a commutative orthogonal ring spectrum, X a discrete
space, then there is a (continuous) natural isomorphism

A⊗X ∼=
∧
X

A,

between the tensor of A with X and the X-fold smash power of A, i.e. the X-fold
smash product of A with itself.

This is the main point of motivation for the translation from the algebraic case
which we present in the next subsection.
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3.2 The Loday Functor

Let R be a commutative orthogonal ring spectrum, i.e. a commutative S-algebra in
SpO. Let A be a commutative R-algebra, and let X be a space. The aim of this
section is to give a functorial model for the X-fold derived smash product over R of
A with itself. For the case where both A is connective and R is the sphere spectrum
itself, a similar construction has been carried out in the world of Γ-spaces in [BCD,
Section 4]. The construction we give is much simpler than the one presented in op.
cit., so it will be crucial to study its properties in detail, so as to make sure, that
we indeed capture all the desired homotopy theoretic information. In particular the
equivariant homotopy type, when X is equipped with an action of some (compact
Lie-) group G, will require some care.

Let throughout the whole section, R denote a commutative orthogonal ring spec-
trum, for example the sphere spectrum R = S. Denote by RCAlg the category of
commutative R-algebras. The fundamental definition of this chapter is the analogue
of Definition 1 in the Introduction:

Definition 3.2.1. The Loday functor ΛR
(−)(−) : U×RCAlg → RCAlg is the continuous

bifunctor

ΛR
X(A) := A⊗RCAlg

X.

The functoriality and continuity in both variables is inherent in the definition
of the categorical tensor (cf. A.2.24). We will generally leave out the superscript
and just write ΛX(A) if R = S. As in the algebraic case we can extend the realm
of definition in the second variable, by restricting the first (cf. Remark 3.1.3). We
will describe these extensions in more detail, as they will help us with actually
evaluating the Loday functor. Let RMod be the category of modules over R and
F inI the category of finite sets and isomorphisms between them.

Definition 3.2.2. Define the Loday functor F inI ×RMod → RMod on objects via

ΛR
X(A) := A∧R . . .∧RA︸ ︷︷ ︸ .

|X|-fold

Functoriality in A is then immediate from the functoriality of ∧R, whereas functorial-
ity in X makes use of the shuffle permutation induced by the symmetry isomorphism
for ∧R.

This can be extended further: Let Setin be the category of Sets and injections
and let RuMod be the category of unital R-modules, or R-modules under R, i.e.
modules M with a distinguished map of R-modules ιM : R→M .
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Definition 3.2.3. Define the Loday functor Setin×RuMod → RuMod on objects via

ΛR
X(A) := colim

F⊂X,F∈F in
ΛR
F (A),

and on inclusions i : I → J of finite sets as follows:

ΛR
I (A) =

∧
I

A ∼=
∧
I

A∧R
∧
J\I

R
id∧

∧
J\I ιA−→

∧
J

A = ΛR
J (A)

To allow for non injective maps, we have to move to the category of (unital)
associative R-algebras RAlg. Let also Setord be the category of ordered sets.

Definition 3.2.4. Define the Loday functor Setord ×RAlg → RAlg on objects as in
3.2.2. The functoriality along non injective order preserving maps f : X → Y then
uses the multiplication map of the algebra on smash factors whose index is mapped
to the same element:

f∗ := ΛR
XA

//

∼=
��

ΛR
YA,

∧
y∈Y ΛR

f−1(y)A

∧
y∈Y µA

88qqqqqqqqqqq

where the multiplication out of an empty smash product is to be understood as
the unit map, and the smash factors have to be kept in the order induced from X,
respectively Y .

In the light of Proposition 3.1.14, we see that by embedding the various categories
of sets above as discrete spaces in U and by forgetting parts of the structures of
commutative R-algebras, all of the definitions above agree, whenever several of them
make sense. For the case of infinite discrete X we need to assume that the unit map
of A is an h-cofibration, so that the colimit in Definition 3.2.2 is the same when
calculated in the underlying category of spectra. In particular the final version,
analogous to Definition 3.1.2 in the algebraic case is the following:

Definition 3.2.5. The discrete Loday functor Set × RCAlg → RCAlg is defined on
objects via

ΛR
X(A) :=

∧
X

A =
∐
X

A,

where the coproduct is in RCAlg. On morphisms f : X → Y of sets, define ΛR
f (A)

via
f∗ := ΛR

XA
//

∼=
��

ΛR
YA,

∧
y∈Y ΛR

f−1(y)A

∧
y∈Y µA

88qqqqqqqqqqq
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where the first map in the composite reshuffles the smash factors using the symmetry
isomorphism. The choice of shuffle then does not influence the multiplication in the
second map, since A was strictly commutative.

Finally note that Proposition 3.1.11 implies the following lemma:

Lemma 3.2.6. For X the realization |Y∗| of a simplicial space Y∗ and A a commu-
tative R-algebra, there is a natural isomorphism

ΛR
X(A) ∼= |ΛR

Y∗(A)|,

where the realization on the right is in orthogonal spectra.

Remark 3.2.7. For a morphism ϕ : R→ S of commutative orthogonal ring spectra,
we get adjoint pairs of functors between the categories of R-, respectively S-modules,
-algebras and commutative S-algebras. All the left adjoints are given by induction,
i.e. using S∧R(−), which is strong monoidal and preserves tensors, hence commutes
with all versions of the Loday functor from above. The respective right adjoint
functors do in general not exhibit similar properties.

Note that since all group actions are through isomorphisms, a (continuous) action
of a (topological) group G on X induces (continuous) actions on the targets of the
Loday functor by precomposition as follows

G // A(X,X)
ΛR−A // C(ΛR

XA,Λ
R
XA) ,

where (A, C) is any of the pairs of categories for which we defined the Loday functor
above and A ∈ C. In this light, we can for each of the above definitions and any
(topological) group G consider equivariant analogues

Λ(−)(−) : [G,A]× C→ [G,C].

As already discussed in the Introduction, it is crucial to investigate the equivari-
ant properties of these Loday functors, to make sure that they are usable for our
applications. The next sections will be devoted to this topic.
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3.3 Fixed Points of Cells

We are interested in equivariant structures that actions of a compact Lie group G
on the space X that we use as input for the Loday functor induce on the output.
As usual in equivariant homotopy theory, this implies studying the associated fixed
point spectra. In our case, there is another version of fixed points which is much
more amenable to computation. We recall the definitions and some of the relations
between the two versions from [MM, V.4]. Since we want to work with the S-model
structure (1.3.28) for commutative orthogonal ring spectra we will have to extend
the classical results to a bigger class of (cofibrant) spectra throughout the following
sections.

3.3.1 Fixed Point Spectra

For a closed normal subgroup N of G, consider the short exact sequence E of
compact Lie-groups:

E : 1→ N → G
ε→ J → 1,

where ε denotes the projection on N -orbits.
Similar to the case of equivariant spaces C.1, where N -fixed points of G-spaces
inherit J-actions, we want to consider fixed point functors GSpO → JSpO, or rather
GOT → JOT .

Remark 3.3.1. Note that for subgroups H that are not necessarily normal, we can
first restrict the G-actions to the normalizer NH of H in G before taking fixed points,
to get a functor

GSpO → NHSpO → WHSpO,

to spectra with actions of the Weyl group WH := NH�H.

We give two different notions of N -fixed point spectra in JOT for a given G-
spectrum, both constructions make use of an intermediate category:

Definition 3.3.2. In the above situation denote by OE the J-category with objects
the same as OG, but where the morphisms are given by

OE(V,W ) := OG(V,W )N ,

i.e. the N -fixed points of the morphism space in OG, which are exactly the N -
equivariant morphisms.
Define two categories of E-spectra: The JT -category of JT -functors [OE, TJ ] de-
noted as OET , and its J-fixed T -category EOT i.e. continuous J-functors OE → TJ
and (J-) natural transformations (cf. A.2.8).
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As for all our previous examples of such enriched functor categories, we can con-
sider appropriate evaluation functors and their left adjoints, the free and semi-free
E-spectra given by enriched left Kan extensions (cf. 2.2.14). One can define a closed
symmetric monoidal structure on OET , but the approach analogous to 1.2.4 is not
particularly enlightening in this case. Thus we will from now on use the definition
of the smash product in terms of the (enriched) left Kan extension as in Remark
2.2.9.

Remark 3.3.3. Careful: The category OET depends on the choice of G-universe!
An E-spectrum X ∈ OET is not completely determined by its evaluations at trivial
representations if N is not trivial. In particular a formula computing the evaluation
at V from the evaluation at V ′ analogous to (2.1.2) requires an N -equivariant isom-
etry between V and V ′. We will unless otherwise stated use a complete G-universe,
i.e consider OE as the N -fixed category of OG. For some of the more technical
properties of the fixed point functors, however, we need to be able to change this
point of view (cf. 3.3.52). We will then indicate the universe via the superscript
O UE .

The first step in the definition of the fixed point functors is the following:

Definition 3.3.4. The levelwise N-fixed point functor

FixN : GOT → EOT

assigns to a G-spectrum X the E-spectrum FixNX, where [FixNX]V is given by XN
V

for every finite dimensional G-representation V . This indeed gives an E-spectrum,
since for V and W G-representations, the structure maps

XN
V ∧OE(V,W )→ XN

W

are restrictions of the structure maps for X to N -fixed points.

Remark 3.3.5. If one wants to view this functor as enriched, i.e. between OGT and
OET one needs to make them enriched over the same category first. In particular
one could take the N -fixed category of OGT , from where the above assignment
immediately gives a JT -functor. Since all model category theoretic considerations
happen in the G-fixed categories, we will not make use of this point of view however,
so Definition 3.3.4 is good enough for our purposes.

Remark 3.3.6. The functor FixN is lax symmetric monoidal. Indeed, by the universal
properties of the left Kan-extension that defines the smash products (cf. 2.2.9) there
is a natural isomorphism

OGT (X∧Y,X∧Y ) ∼= [OG ×OG,TG](X∧̄Y, (X∧Y ) ◦ ⊕).
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Which in particular says that for any level V ⊕W , the identity map of X∧Y deter-
mines morphisms

XN
V ∧Y N

W → (X∧Y )NV⊕W

on N -fixed points. The universal property of the smash product in OET assembles
these into a morphism

FixNX∧FixNY → FixN(X∧Y ).

Note that the unit object for the smash product in OET is FE0 S0 ∼= FixNS.

To define the fixed point functors, we need to close the gap between ESpO

and JSpO. Since these are both defined as categories of J-functors to TJ , functors
between their source categories will do the trick. In particular consider the following:

Definition 3.3.7. Let ν : OJ → OE be given on objects by

ν : OJ → OE
W 7→ ε∗W

and on morphisms by

OJ(V, V ′) → OE(ε∗V, ε∗V ′),

(f, s) 7→ (ε∗f, ε∗s) = (f, s)

where f : V → V ′ is an isometric embedding and s an element in the orthogonal
complement of f(V ).

Definition 3.3.8. Let φ : OE → OJ be given on objects by

φ : OE → OJ
V 7→ V N

and on morphisms by

OE(W,W ′) → OJ(WN ,W ′N).

(g, t) 7→ (gN , t)

Since OE(W,W ′) = OG(W,W ′)N , the isometry g as above indeed maps the N -fixed
points of W into those of W ′. Similarly t is indeed in W ′N .
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Both of these functors give “pullback” functors on OE- or OJ -spectra by precom-
position:

Uν : OET → OJT
Y 7→ Y ◦ ν

[UνY ]W = Yε∗W

Uφ : OJT → OET
X 7→ X ◦ φ

[UφX]V = XV N

Remark 3.3.9. Note that φ ◦ ν = id, and hence Uν ◦ Uφ = id.

Since TJ is enriched and bicomplete over itself, enriched left Kan extensions exist
and provide left adjoints to both of these functors (cf. A.2.34). We denote them by
Pν and Pφ, respectively. Similarly there exist right adjoints to Uν and Uφ, but we
will not make use of these.

We can finally define the fixed point functors:

Definition 3.3.10. Define the categorical N-fixed point functor

(−)N : GSpO → JSpO

as the composition (−)N := Uν◦FixN , and define the geometric N-fixed point functor

ΦN : GSpO → JSpO

as the composition ΦN := Pφ ◦ FixN .

Remark 3.3.11. The name categorical is validated by the fact that the categorical
fixed point functor is indeed the same as taking the categorical limit of the functor
N → G→ SpO that defines theN -action on an orthogonalG-spectrum (cf. 2.1.1), as
is easily checked on trivial representations. In particular, the categorical fixed point
functor does not depend on the choice of universe. Note that since the categorical
fixed point functor is lax monoidal, we can view the category GOT as enriched over
OT , with the G-fixed point spectrum of the internal function spectrum as morphism
object. From this viewpoint the fixed-point functor is then also the enriched right
adjoint of the functor ε∗, that equips a J-spectrum with the trivial G-action. Since
we rarely work with the spectral enrichment this viewpoint is not of particular
importance for us, except for the helpful Lemma 3.3.45

Remark 3.3.12. Note that this definition of the geometric fixed point ΦNX for a
G-spectrum X is the one introduced by Mandell and May in [MM, V.4.3]. However,
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this does not generally agree with the classical definition in terms of the categorical
fixed points (X∧ẼF )N , see e.g. [LMS, II.9]. Up to weak equivalence the two
concepts agree for sufficiently cofibrant G-spectra X. We will go into more detail in
subsection 3.5, where we in particular losen the cofibrancy condition far enough to
apply to equivariant spectra in the image of the Loday functor.

Remark 3.3.9 gives a comparison map between the two fixed point functors:

Definition 3.3.13. Let γ : XN → ΦNX be the natural map of J-spectra

UνFixNX

γ

$$Uν(η) // UνUφPφFixNX
= // PφFixNX

= // ΦNX,

induced by the adjunction unit η : id→ UφPφ.

The difference between (−)N and ΦN is usually significant. We will recall more
of the technicalities from [MM, V.4] in 3.5, before we give an exact statement in
Proposition 3.5.15, after we loosen the cofibrancy conditions from the classical case
in 3.5.11.

Remark 3.3.14. Note that this emphasizes the dependence of EOT and ΦN on the
choice of universe, since in particular for a G-universe U containing only trivial N -
representations, it is easily seen that the functor φ is an equivalence and hence the
functor ΦN

U is naturally isomorphic to (−)N via the natural map γ from above.

Before going into more detail though, we will list properties of the fixed point
functors and study their interaction with free spectra, which forms the basis for
computations on fixed points of smash powers.

Proposition 3.3.15. [MM, III.1.6] The geometric fixed point functor ΦN preserves
coproducts, pushouts along h-cofibrations, sequential colimits along h-cofibra-tions
and tensors with spaces.

Proof. The functor FixN preserves these by C.1.2. Since Pφ is a continuous left
adjoint, the result follows.

Proposition 3.3.16. [MM, IV.4.5] For any finite dimensional G-representation V
and any G-space K, there is a natural isomorphism of J-spectra

FJV NK
N ∼= ΦNFGV K.

Proof. Recall that FGV K is given in level W byOG(V,W )∧K where G acts diagonally
on the smash product, by conjugation on the morphism space and on K via its G-
space structure. Thus (FGV K)NW = OG(V,W )N∧KN = OE(V,W )∧KN , and hence

FixNFGV K = FEV KN . (3.3.17)
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The next step is showing that PφFEV L is isomorphic to FJV NL, so for any J-spectrum
Z take a look at the morphism space:

JOT (PφFEV L,Z) ∼= EOT (FEV L,UφZ)
∼= TJ(L, (UφZ)V )
= TJ(L,ZV N ) ∼= JOT (FJV NL,Z)

Hence the Yoneda lemma gives the desired natural isomorphism. Summing up, the
functors FEV and FJV N have the same right adjoint to TJ , and are therefore naturally
isomorphic.

Corollary 3.3.18. cf. [MM, IV.4.5] The geometric fixed point functor preserves
q-cofibrations and acyclic q-cofibrations.

Proposition 3.3.19. [MM, IV.4.7] The functor ΦN is lax monoidal and for q-
cofibrant orthogonal G-spectra X and Y the natural (equivariant) morphism of J-
spectra

α : ΦNX∧ΦNY → ΦN(X∧Y ),

is an isomorphism.

Both the proof of the acyclic part of 3.3.18 and the second half of 3.3.19 rely
on a good understanding of a cellular filtration of the �-product of cellular maps,
respectively the smash product of cellular objects. It seems hard to actually find
these explicitly spelled out in the literature, but since we are going to have to work
with such filtrations in more detail later, we will give some more details on the proofs
at the end of Subsection 3.4.1. First, we will investigate the geometric fixed points
of the spectra appearing as smash powers of generating cofibrations, and some more
specialised cells.

Of course, motivated by the discrete Loday functor from 3.2.5, the examples of
G-spectra where we are most interested in calculating geometric fixed points, are
smash powers of orthogonal spectra. We begin with studying the fixed points of
free and semi-free spectra before we move to more general spectra 3.3.5, and general
cofibrant spectra in Section 3.4.

3.3.2 Free Cells

Let us begin by investigating what happens in the case of free spectra. For X a
finite discrete set with an action of a discrete group G, the discrete Loday functor
ΛX sends an orthogonal spectrum A to its X-fold smash power A∧X . As in Remark
1.2.39, the action of G on X induces an action on ΛX(A) by permuting the smash
factors using the symmetry isomorphism for the smash product in OT .
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Lemma 3.3.20. For X a finite discrete G-set, K ∈ T a space and A = FVK a free
orthogonal spectrum, there is a natural isomorphism of G-spectra

ΛX(A) = (FVK)∧X ∼= FGV ⊕XK
∧X ,

where G acts on the vector space V ⊕X by permuting summands and on the spectrum
(FVK)∧X and the space K∧X by permuting smash factors.

Proof. Recall the symmetry isomorphism for orthogonal spectra induced by 1.2.4.
Evaluated at a trivial representation Rn, (1.2.34) gives the isomorphism

(FVK)∧XRn
∼= O(V ⊕X ,Rn)∧K∧X ,

where the permutation of smash factors translates to permuting smash factors
of K∧X and precomposing with the appropriate block-permutation matrices on
O(V ⊕X ,Rn). Thus the description of FGV ⊕X from 2.2.12 gives the desired result.

In combination with 3.3.16 we get:

Proposition 3.3.21. For X a finite discrete G-set, N a normal subgroup of G, K ∈
T a space and A = FVK a free orthogonal spectrum, there is a natural isomorphism
of J-spectra

ΦNΛX(A) ∼= FJV ⊕XNK
∧XN ∼= ΛXN (A),

where XN is the orbit J-space of X factoring out the N-action.

Proof. The only thing left to do is that the N -fixed point spaces of V ⊕X and K∧X

are indeed J-isomorphic to V ⊕XN respectively K∧XN . Specifying the actions on
elements makes this immediate.

Remark 3.3.22. This proposition serves as a good starting point for calculating
geometric fixed points of smash powers of general q-cofibrant orthogonal spectra.
This has for example been studied in the special case of G a cyclic group by Kro in
[Kr, 3.10.1] and Hill, Hopkins and Ravenel in [HRR, B.96]. However, since we are
ultimately interested in evaluating the Loday functor on commutative ring spectra,
we would rather not have to apply q-cofibrant approximation. In particular since
the classical stable model structure does not satisfy the convenience property of
1.3.29, a q-cofibrant replacement of an orthogonal ring spectrum is in general only
E∞ instead of strictly commutative. To remedy this, we first study smash powers
of semi-free spectra and later generalize to S-cofibrant spectra.
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3.3.3 Semi-Free Cells

Orbits and Fixed Points for semi-direct Products

Throughout our work, actions of groups that are semi-direct products appear in
various places. In particular every level AV of an orthogonal G-spectrum A is
equipped with an action of the semi-direct product OV o G. We will recall a few
elementary properties, before investigating the more complicated interactions of the
orbit and fixed point functors that play a role in computing the fixed points of smash
powers in Proposition 3.3.37. To begin with we restate the definition, in order to
fix some notation:

Definition 3.3.23. Let (G, ·, e) ∈ T be a topological group acting on another group
(O, ., E) ∈ T through automorphisms, i.e. via a group homomorphism φ : G →
Aut(O). For g ∈ G denote φg := φ(g). Then the semi-direct product O o G is the
product space O ×G equipped with the multiplication defined by

(O oG)× (O oG) → (O oG)

(A, g), (B, h) 7→ (A.φg(B), g · h)

It is usually far to cumbersome to explicitly write the signs “·” and “.” for the
of G and O, so we often omit them. The following properties are elementary:

Lemma 3.3.24. (i) Mapping A ∈ O to (A, e) ∈ O o G embeds O as a (closed)
normal subgroup.

(ii) Mapping g ∈ G to (E, g) ∈ O oG embeds G as a closed subgroup.

(iii) For A ∈ O and g ∈ G, the following elements of the semi-direct product are
equal:

(φg(A), e) = (E, g)(A, e)(E, g)−1

(iv) G is normal in OoG if and only if φ is trivial, i.e. the semi-direct product is
actually the direct product.

(v) The projection pr2 : OoG→ G to the second factor is a group homomorphism.

Motivated by the first three points in the lemma, we will often drop φ from the
notation as well, and instead use gAg−1 = φg(A).

Lemma 3.3.25. Let Z ∈ T be a space with an action of the semi-direct product
O o G, and denote for z ∈ Z its stabilizer by Stabz ⊂ O o G. Then the action of
O on Z is free (away from the basepoint), if and only if for any point z ∈ Z (except
the basepoint), the projection to the second factor pr2 : Stabz → G is injective.
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Proof. Note that, for z ∈ Z, its stabilizer under the restricted action is

StabOz = Stabz ∩(O o {e}).

Recall that an action is free (away from the basepoint) if and only if the stabilizers
for all elements (except the basepoint) are trivial.

For any space Z with an action of the semi-direct product, its orbit space ZO
inherits an action of G since O was normal in O o G. We want to investigate in
how far taking such O-orbits commutes with taking fixed points with respect to
subgroups of G.

Proposition 3.3.26. Let G be a group acting on another group O by group homo-
morphisms. Let Z be a space with compatible actions of both O and G, i.e. Z a
O oG-space. Further assume that O acts freely on Z (away from the basepoint).
Then the canonical map from the quotient of the fixed points into the fixed points of
the quotient

ZG

�OG →
[
Z�O

]G
(3.3.27)

is injective.

Proof. Assume [z1] and [z2] in ZG
�OG map to the same element in the target, i.e.

z1 = Az2, for some A in O. Then for any g in G we have

Az2 = z1 = gz1 = gAz2 = (gAg−1)gz2 = (gAg−1)z2.

But since the O action on Z was free, this implies that A = gAg−1 for all g ∈ G,
i.e. A ∈ OG and therefore [z1] = [z2].

Surjectivity can not be guaranteed in this generality, as the following example
illustrates:

Example 3.3.28. Let Z = S(C)+ the unit circle in C, with some disjoint basepoint.
Let O = Z4 and G = Z2 such that the action of the non trivial element in G maps an
element of O to its inverse. In particular O oG is the Dihedral group D4. Then O
acts freely on S(C) through rotations by 90 degrees, G acts by complex conjugation,
and one checks that the actions compatibly fit together into an action of D4. Take
a closer look at source and target of the map (3.3.27):
Note that OG is the subgroup of self inverse elements Z2 ⊂ Z4, i.e. generated by the
rotation by 180 degrees. The G-fixed point space (S(C))G has 2 points which are in
the same OG-orbit, i.e. the source of (3.3.27) contains only one point. On the other

hand, taking orbits first, we see that Z�O is isomorphic to S(C), with the action of
G again given by complex conjugation, i.e. target of (3.3.27) consists of 2 points,
such that the map can not be surjective.
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The intuition behind the failure in surjectivity is that there are “diagonal” copies
of G in O oG, and points with isotropy type of such a diagonal copy contribute to
the target of (3.3.27) but not to the source. Motivated by this, we will give a formal
sufficient condition for the surjectivity of (3.3.27). First, consider the simple case of
only one O oG-orbit, and take a closer look at the target space:

Lemma 3.3.29. Let in the setup of Proposition 3.3.26 the space Z consist of single

O-free OoG-orbit, i.e. Z = O oG�P for some (closed) subgroup P of OoG. Then

(Z�O)G contains at most one element, and is non empty if and only if the projection
pr2 : P → G to the second factor is an isomorphism.

Proof. The projection is injective by 3.3.25. Hence Z�O ∼=
G�pr2 P

as G-spaces,

and the latter has exactly one G-fixed point if and only if pr2(P ) = G, and is empty
otherwise.

On the other hand, the following elementary fact gives a characterization of the
source:

Lemma 3.3.30. Let H ∈ T be a group with subgroups P and G. Then the space(
H�P

)G
is non empty, if and only if G is subconjugate to G.

In particular the fixed point space is a quotient of the subspace of all those elements
h ∈ H, that conjugate G into P .

Proof. Let hP be a point in the orbit space. Then hP is G-fixed, if and only if for
all g ∈ G we have ghP = hP , or equivalently h−1gh ∈ P .

Proposition 3.3.31. If Z is a genuinely cofibrant OoG-space, such that for all orbit
types P appearing in the cell-decomposition of Z, the projection to the second factor
pr2(P ) ∼= G is an isomorphism, if and only if P is subconjugate to {E}oG ⊂ OoG,
then the map (3.3.27) is an isomorphism.

Proof. Note that both taking fixed points and taking orbits preserves the cell-
complex construction by C.1.2. Hence the natural map (3.3.27) induces a natural
isomorphism of cell diagrams, hence an isomorphism on the transfinite composi-
tion.

Corollary 3.3.32. If O o G has the property, that subgroups P are isomorphic
to G along the projection to the second factor if and only if they are subconjugate
to G, then for any genuinely cofibrant O o G-space the natural map (3.3.27) is an
isomorphism.
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Example 3.3.33. Note that 3.3.28 gives a non-example of this. In particular, the
semi-direct product D4 has a subgroup P of order 2 generated by (2, 1) ∈ Z4 o Z2

which acts on S(C) via the reflection with respect to the imaginary axis. Note
that since this element is in the center of D4 the subgroup it generates can not be
conjugate to G. In particular, since S(C) has two P -fixed points, an equivariant cell

decomposition will have to use a cell of type O oG�P+
∧S0.

The main example we want to apply Corollary 3.3.32 to is the following:

Example 3.3.34. Let G be a discrete group, X a discrete G-space and let V be a
finite dimensional G-representation. Let in the above notation O =

∏
XOV with G

acting by permuting the factors. Then the conditions of Corollary 3.3.32 are satis-
fied by the semi-direct product

∏
XOV oG:

Indeed, consider a subgroup P with pr2(P ) ∼= G and let

ψ : G → P ⊂ O oG

g 7→ ({Agx}x∈X , g)

be the inverse of pr2. Looking at the multiplication in O o G, the fact that ψ is a
group homomorphism, i.e. ψ(gh) = ({Aghx }x∈X , gh) gives formulas

AgxA
h
g−1x = Aghx ∀g, h ∈ G, x ∈ X (3.3.35)

Now chose a system of representatives R for the G-orbits in X. Let B = {Bx} ∈ O
be the element given by

Bx = Bhr := Ah
−1

r ,

where x = hr is the unique presentation of x with h ∈ G and r ∈ R. Combining the
formulas above gives us that for any ({Agx}, g) ∈ P , we have:

({Bx}, e)({Agx}, g)({Bx}, e)−1 = ({Ah−1
r Aghr}, g)({Bx}, e)−1

= ({Ah−1g
r }, g)({Ax}, e)−1

= ({Ah−1g
r }{(Ag−1hr)

−1}, g)

(E, g) = ({Ah−1g
r (Ah

−1g
r )−1}, g)

Hence P is subconjugate to {e} o G via B ∈ O and therefore taking O-orbits
commutes with taking G-fixed points.

Remark 3.3.36. Note that for non-discrete groups G and spaces X, a similar state-
ment still holds under slightly stronger assumptions: Let O be the group T (X,OV )
where G acts by precomposition with the action on X. Assume there exists a contin-
uous splitting of the projection X → XN . Then again for any continuous splitting

ψ of O o G
pr2→ G, the image ψ(G) is subconjugate to {conste} o G. The proof is

exactly as above with the slightly more complicated function notation.

99



CHAPTER 3. SMASH POWERS AND THE LODAY FUNCTOR

Proposition 3.3.37. Let G be a discrete group, X a discrete G-space and let V be a
finite dimensional G-representation. Let in the above notation O be the group

∏
XOV

with G acting by permuting the factors, then for all genuinely cofibrant OoG-spaces
Z, taking O-orbits commutes with taking H-fixed points for all subgroups H ⊂ G,
in the sense that the canonical map

ZH

�OH →
[
Z�O

]H
,

is an isomorphism.

Proof. Note that for subgroups H ⊂ G, any free G-set is a free H-set, and any
genuinely cofibrant

∏
XOV oG-space is also genuinely cofibrant as a

∏
XOV oH-

space by C.2.5. We can then apply Corollary 3.3.32 with the help of Example 3.3.34
for all choices of H.

Fixed Points of Semi-Free Cells

The result for semi-free spectra analogous to Proposition 3.3.21, is somewhat more
involved. In particular there is no general analogue of formula (3.3.17), as the
following counterexample shows:

Example 3.3.38. Let G be the group Z2 with two elements, and R2 the triv-
ial G-representation. Let S(2) be the unit sphere in R2 also with the trivial Z2-
action. Consider the semi-free Z2-spectrum GR2S(2). By 2.2.18, there is a natural
G-equivariant isomorphism

GR2S(2) ∼= GC
[
OZ2(R2,C)∧O2S(2)

] ∼= GCS(C),

where we consider C as a Z2-representation via the complex conjugation, and S(C)
is the unit sphere in C which inherits a Z2-action. Note that S(C) is an OC o Z2-
space.
If a formula analogous to 3.3.21 would hold for general semi-free spectra, i.e. if
ΦNGVK ∼= GV NK

N , the above would yield a contradiction since

GR2S1 6∼= GRS0.

Note that the methods of the proof in the free case break already in the first step,
since in particular(

OZ2(R2,C)∧O2S(2)
)Z2 6∼= OZ2(R2,C)∧O2

Z2S(2)Z2 ∼= S(C)Z2 ,

i.e. taking the Z2-fixed points does not commute with taking the O2-orbits for the
O2 o Z2-space O(R2,C)∧S(2).
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An analogous result to Proposition 3.3.20, however, still holds if we restrict
ourselves to certain “regular” semi free spectra.
Let us again start by investigating the X-fold smash powers of (semi-)free spectra,
where X still denotes a finite set with an action of a discrete group G.

Lemma 3.3.39. For X a finite discrete G-set, V a euclidean vector space, K ∈
OV T and A = GVK a semi-free orthogonal spectrum, there is a natural isomorphism
of G-spectra

ΛX(A) = (GVK)∧X ∼= GGV ⊕X
[
OV ⊕X∧∏

X
OV
K∧X

]
, (3.3.40)

where G acts on the vector space V ⊕X by permuting summands and on the spectrum
(GVK)∧X , the space K∧X and the group

∏
X

OV by permuting (smash) factors.

Proof. The product ΠXOV is a G-equivariant subgroup of OV ⊕X via the inclusion
as block-diagonal matrices. Note that K∧X is a ΠXOV o G space with the action
defined by ∏

X

OV oG+∧K∧X → K∧X .

({Ax}x∈X , g), {kx}x∈X 7→ {Axkg−1x}x∈X

so that the spectrum on the right side of (3.3.40) is indeed well defined. As above,
the formula (2.2.17) for the smash product of semi-free spectra gives the result after
identifying the action induced by the symmetry isomorphism.

So for the case of smash powers of semi-free spectra, we only need to calculate
geometric fixed points of very specific semi-free G-spectra. The following result will
be fundamental for our further work:

Theorem 3.3.41. Let A be the source or the target of a generating S-cofibration
and X a finite free G-set. Then there is a canonical isomorphism of J-spectra

ΛXN (A) ∼= ΦN(ΛX(A)).

We split the proof into two parts, dealing with FixN and Pφ separately. The first
part relies heavily on our findings about the interactions between orbits and fixed
points from Subsection 3.3.3. In particular Proposition 3.3.37 allows us to prove the
following:

Proposition 3.3.42. Let A = GVK be the source or the target of a generating
S-cofibration and X a finite free G-set. Then there is a canonical isomorphism of
E-spectra

FixN([GVK]∧X) ∼= GEV⊕X (OE(V⊕X , V⊕X)∧∏
XN

OV
K∧XN ).
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Proof. We show the isomorphism in each level W for W a G-representation. The
spectrum on the right side of the equation is given in that level by the OE(W )o J-
space

OE(V⊕X ,W )∧∏
XN

OV
K∧XN ,

where the group J acts diagonally, by conjugation on the morphism space and via
the permutation of factors on the smash product. Since the space level fixed point
functor is monoidal (cf. C.1.2), we can identify K∧XN with the diagonal copy of
itself in K∧X and similar for

∏
Xn

OV . Also, recall that FixN(GVK)∧X is given in
level W by

(OG(V⊕X ,W )∧∏
XOV

K∧X)N ,

where G acted diagonally, by conjugation on the morphism space and by permuta-
tion of the factors on the smash power.
Thus what we need to show is that the canonical inclusion of the coequalizer of the
fixed points into the fixed points of the coequalizer

OG(V⊕X ,W )N∧∏
XOV

N (K∧X)N → (OG(V⊕X ,W )∧∏
XOV

K∧X)N , (3.3.43)

is indeed an isomorphism. This is exactly Proposition 3.3.37, if we can check the
cofibrancy condition posed there. We shall make use of our assumption on A: Since

K = OV�P+
∧L, with L either a sphere or a disc, the map (3.3.43) is isomorphic to

OG(V⊕X ,W )N∧∏
XP

N (L∧X)N → (OG(V⊕X ,W )∧∏
XP
L∧X)N .

Then L∧X is again a sphere or disc, hence a manifold, with smooth action of G and
trivial action of

∏
XP , and therefore a genuine

∏
XPoG-complex by C.2.4. Since the

genuine model structure is monoidal C.2.7, the smash product OG(V ⊕X ,W )∧L∧X
is still cofibrant, hence Proposition 3.3.37 proves that the map (3.3.43) is an isomor-
phism.

The second part of the proof of Theorem 3.3.41 is then given by the following
lemma:

Lemma 3.3.44. For K an OV -space, X a finite discrete G-set, there is a canonical
isomorphism of J-spectra

PφGEV⊕X (OE(V⊕X , V⊕X)∧∏
XN

OV
K∧XN ) ∼= (GVK)∧XN .

Proof. This follows directly from the defining adjunctions of the involved functors,
similar to the free case in 3.3.20. Let Z be any J-spectrum, then maps from either
of the J-spectra in the proposition to Z are represented by maps of (ΠXNOV o J)-
spaces

K∧XN → (UφZ)V ⊕XN .

Hence the Yoneda lemma gives the desired isomorphism.
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This finishes the proof of Theorem 3.3.21. As mentioned before, it will form
the basis for the identification of the geometric fixed points of smash powers of
general S-cofibrant spectra in 3.4.26. We need two more crucial inputs, though.
The first is Kro’s observation on the interaction of the geometric fixed point functor
with induced spectra (cf. 2.2.57) from [Kr, 3.8.10]. Since we will in particular need
analogous results for the functors restricting to H-spectra for H a subgroup of G (cf.
2.2.54) to lift our results into to the case of G a compact Lie group, we will go into
more details in the next section. The second part is an equivariant cellular filtration
of the smash power via “regular” cells, and we will give the necessary constructions
in 3.4.1.

3.3.4 Fixed Points and Change of Groups

For the whole section let G be a compact Lie-group, and H a closed subgroup of G
with inclusion map i : H → G. Recall the definitions of the restriction functor

i∗ : GOT → HOT ,

from 2.2.54 and its left adjoint induction functor

G+∧H(−) : HOT → GOT

from 2.2.57. The following lemma will be helpful later, it is the spectrum level
analogue of C.1.6, and makes use of the spectral enrichment mentioned in Remark
3.3.11.

Lemma 3.3.45. For an orthogonal H-spectrum X and an orthogonal G-spectrum
Y , there is a natural isomorphism:

(G+∧HX)∧Y ∼= G+∧H(i∗X∧Y ).

Proof. Note that we intentionally use the category GSpO, since the spectral en-
richment there makes following the actions much easier. Let Z be any orthogonal
G-spectrum, there are natural isomorphisms

GSpO((G+∧HX)∧Y, Z) ∼= GSpO(G+∧HX,FG(Y, Z))
∼= HSpO(X, i∗FG(Y, Z))
∼= HSpO(X,FH(i∗Y, i∗Z)
∼= HSpO(X∧i∗Y, i∗Z)
∼= GSpO(G+∧H(X∧i∗Y ), Z),

so the Yoneda lemma gives the desired result.
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We recollect the material from [Kr, 3.8.2], both for completeness and to adapt
notation to our conventions. Afterwards we expand the results to the restriction
functor.
At first we need to give Kro’s Definition of the change of sequence functors for the
categories OET (cf. [Kr, 3.8.7]). The main point of difficulty stems from the fact
that, contrary to the case of G-spectra, the change of universe does not necessarily
give an equivalence of categories, as mentioned in 3.3.3.

Let j : E → E0 be the morphism of short exact sequences of compact Lie groups:

E0 :

j

��

1 // N

��

// H //

i
��

J0

i1
��

// 1

E : 1 // N // G // J // 1

, (3.3.46)

where N is normal in G and hence in H, and J and J0 denote the respective
quotients.

Definition 3.3.47. Let V ⊂ V′ be two good collections of G-representations. Then
the inclusion OV

G → OV′
G induces an inclusion of N -fixed categories and hence a

forgetful functor U : OV
ET → OV′

E T . It has a left adjoint P : OV′
E T → OV

ET . These
give the change of universe functors for OE spaces.

Now for V a good collection ofG-representations, let i∗V be the induced collection
of H-representations i∗V that appear as restrictions of some V ∈ V.

Definition 3.3.48. The change of sequence functor j∗ : OV
ET → Oi

∗V
E0
T is given by

sending an OV
E-space X to the Oi∗VE0

-space given by

(j∗X)i∗V := i∗1XV .

The structure maps are transported directly, using OE0(i∗V, i∗W ) ∼= i∗1OE(V,W ).

Again this functor has both a left and a right adjoint. We will only make use of
the left adjoint:

Definition 3.3.49. Let Y be a Oι∗VE0
-space, then the induced OV

E-space J+∧J0Y is
given by

(J+∧J0Y )V := J+∧J0Yι∗V

The (J-equivariant) structure maps are given as the composite

OV
E(V,W )∧(J+∧J0Yι∗V ) ∼= J+∧J0(ι∗1OV

E(V,W )∧Yι∗V )
∼= J+∧J0(Oι∗VE0

(ι∗V, ι∗W )∧Yι∗V )

→ J+∧J0Yι∗W .

Note that for N the trivial group, OE spaces are just orthogonal G-spectra, and
the change of sequence functors specialize to the change of groups functors from
2.2.5.
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Induced Spectra and (Geometric) Fixed Points

We give a recollection of [Kr, 3.8.3] before we prove further results in the same spirit
that will be needed in particular when dealing with infinite groups. Let as in (3.3.46)
E and E0 be exact sequences of compact Lie groups. The following condition is an
important prerequisite already in Kro’s exposition, and will be important for us as
well:

Condition 1. Let G be a compact Lie group and H a closed subgroup. Let W be
an orthogonal H-representation. Then there exists an orthogonal G-representation
V and an isometric embedding W → V that induces an isomorphism on H-fixed
point spaces, i.e. V H = WH .

Remark 3.3.50. To the authors knowledge it is not known if this condition is satisfied
in general. As Kro already states in [Kr, 3.8.11] it suffices to look at the irreducible
subrepresentations of V one at a time, and extending the trivial representation is
trivial. The condition is certainly satisfied when the index of H in G is finite since
for V irreducible and non trivial, both V H and (G ×H V )H are the zero vector
space, hence the induced representation (which is still finite dimensional) extends
V as desired. We prove that Condition 1 is satisfied for all finite subgroups of
tori in 3.4.45. Since the extension problem is transitive, this covers a big class of
configurations for H and G. Note that the case where H is finite suffices for all
applications of the theory we give, so a proof of Condition 1 for H a maximal torus
of a compact Lie group G would immediately be very fruitful. (cf. 3.4.50).

Proposition 3.3.51. [Kr, 3.8.10] Suppose Condition 1 is satisfied for the normal
subgroup N of G. Then for orthogonal H-spectra X, there is a natural isomorphism
of J-spectra

J+∧J0(ΦNX) ∼= ΦN(G+∧HX).

In particular Kro proves that the following diagram of functors commutes up to
an equivalence of categories

OW
H T

U
��

FixN // OW
E0
T

PW
ϕ0 //

U
��

OJ0
T

U
��

Oi∗VH T
G+∧H−

��

FixN // Oi∗VE0
T
J+∧J0

−
��

Pi∗V
ϕ0 // OJ0

T

J+∧J0
−

��
OV
GT

FixN // OV
ET

PV
ϕ // OJT ,

(3.3.52)

where W is the good collection associated to a complete H-universe (cf. 2.2.25), V

similar for a complete G-universe. As usual i∗V denotes the restricted H-collection.
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All the functors U are induced by the precomposition with some H-equivariant
inclusion of collections i∗V→W, with the center one being the change of sequence
functor 3.3.48, and the outer ones being instances of the equivalence of categories
from 2.2.23. Note that we omit the J- and J0-universes from the notation, since the
change of universe on the right hand side of the diagram is always an equivalence of
categories. The commutativity is proven piecewise, using the following lemmas:

Lemma 3.3.53. [Kr, 3.8.12] Suppose Condition 1 is satisfied for the normal sub-
group N of G. Then for OW

E -spaces Y , there is a natural isomorphism of J0-spectra

Pι∗Vφ0
UY ∼= UPW

φ0
Y.

In the proof of this lemma, Condition 1 is used to identify two specific coends.
We will not repeat the proofs.

Lemma 3.3.54. [Kr, 3.8.13] Let X be an orthogonal H-spectrum. There is a natural
isomorphism of OV

E spaces

J+∧J0(UFixNX) ∼= FixN(G+∧HUX).

Lemma 3.3.55. [Kr, 2.8.14] The following diagram of left adjoints commutes:

Oι∗VE0
T

Pι∗V
φ0 //

J+∧J0
−
��

OJ0T

J+∧J0
−

��
OV
ET

Pφ // OJT

Lemma 3.3.56. [Kr, 3.8.14] The following diagram of right adjoints commutes:

Oι∗VE0
T OJ0T

Uι∗V
φ0oo

OV
ET

j∗

OO

OJT
Uφoo

ι∗1

OO

Restricted spectra and (Geometric) Fixed Points

Let as in (3.3.46) E and E0 be exact sequences of groups. The following proposition
is similar in spirit to Kro’s 3.3.51 from above, we will use it when moving from finite
to compact Lie groups 3.4.50.
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Proposition 3.3.57. For orthogonal G-spectra Y , taking categorical N-fixed points
commutes with the restriction to H-spectra, i.e. there is a natural isomorphism of
J0-spectra

i∗0(Y N) ∼= (i∗Y )N .

If additionally N ⊂ G satisfies Condition 1, then the same holds for geometric
N-fixed points, i.e. there is a natural isomorphism of J0-spectra

i∗0ΦNY ∼= ΦN(i∗Y ).

Proof. For the first statement it suffices to compare the evaluations of i∗0(Y N) and
i∗0(Y N) at a trivial J0-representation V . Since for G-spaces, taking fixed points
commutes with the restriction (cf. C.1) they both evaluate to (YV )H .
The second statement needs more work. Let V and W be good collections associated
to complete G-, respectively H-universes as in 3.3.52. Then the desired result is the
commutativity of the outer square in the following diagram:

OW
H T

U
��

FixN // OW
E0
T

PW
ϕ0 //

U
��

OJ0
T

U
��

Oi∗VH T

P

OO

FixN // Oi∗VE0
T

P

OO

Pi∗V
ϕ0 // OJ0

T

P

OO

OV
GT

i∗

OO

FixN // OV
ET

i∗0

OO

PV
ϕ // OJT

i∗0

OO

(3.3.58)

That the lower left square commutes can again be checked on evaluations. Commu-
tativity of the top rectangle follows from a diagram chase: For the top right square
evaluating at levels shows immediately that the corresponding diagram of right ad-
joints commutes. Note that since Condition 1 is satisfied, Lemma 3.3.53 gives that
the two ways from the top center to the top right around the top right square differ
only by an equivalence of categories. In particular PW

ϕ0
is naturally isomorphic to the

factorization P ◦Pi∗Vϕ0
◦U. In the top left square note that P ◦FixN ∼= P ◦FixN ◦UP.

Since U and FixN commute, this implies P ◦ FixN ∼= PU ◦ FixH ◦ P. Postcomposing
the latter with PW

ϕ0
∼= P ◦ Pi∗Vϕ0

◦U yields P ◦ Pi∗Vϕ0
◦UPU ◦ FixN ◦ P which is equal to

P ◦ Pi∗Vϕ0
◦ U ◦ FixN ◦ P because Oi∗VE0

is a full subcategory of OW
E0

. This exactly says
that the top rectangle commutes.
The only thing left to prove is that the lower right square commutes. We again look
at evaluations at trivial representations Rn. For X in OV

E, the lower way around the
square evaluates as

i∗0

 V ∈V∫
OJ(V N ,Rn)∧XV

 =

V ∈V∫
i∗0OJ(V N ,Rn)∧i∗0XV .
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The upper way yields
i∗V ∈i∗V∫

OJ0((i∗V )N , Rn)∧i∗0XV .

Again we have (i∗0V )N = i∗0(V N), hence

i∗0OJ(V N ,Rn) = OJ0(i∗0(V N),Rn) = OJ0((i∗0V )N ,Rn),

and these identifications are natural with respect to morphisms in OJ . Thus the two
coends are naturally isomorphic. Alternatively we could have used that i∗ also has
a right adjoint.

3.3.5 Induced Regular Cells

We go back to finite discrete groups G for this subsection. As we have seen in Exam-
ple 3.3.38, the class of semi-free G-spectra is too big to fully control the geometric
fixed point functor. Our studies of the smash powers of semi-free non equivariant
spectra has given us a specific example of a class where such control is possible.
Now we will define classes of regular spectra, and induced regular spectra which the
smash powers are examples of.

Definition 3.3.59. Let V be a finite dimensional euclidean G-representation and let
K be an OVoG-space. Then K is called regular if there is a G-equivariant subgroup
Q ∼= ΠX(P ) of OV , such that X is a free G-set and K represents a QoG-space, i.e.
there is a G-equivariant isomorphism

K ∼= OV +∧QL ∼= OV +∧∏
X
PL.

A semi-free G-spectrum GVK is called regular if K is.

Remark 3.3.60. Note that free spectra are regular, since we can chose Q and P as
the trivial groups.

Note in particular that since Q ⊂ OV is G-equivariant, there are inclusions of
N -fixed subgroups QN ⊂ (OV )N for all subgroups N of G.

Remark 3.3.61. Since all the involved functors preserve colimits and since inducing
up preserves genuine cofibrations by C.1.17, the regular semi-free spectrum GVK ∼=
GV (OV +∧QL) is S-cofibrant if L is genuinely QoG-cofibrant.

Example 3.3.62. The most important example of a regular semi-free G-spectrum
is the smash power

(GVK)∧X ∼= GV⊕X [OV⊕X∧∏XOV
K∧X ],

where X is a finite free G-set.
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The following proposition is proved completely analogous to 3.3.41, using that
Proposition 3.3.37 is slightly more general than was needed there.

Proposition 3.3.63. Let N be a normal subgroup of G with quotient group denoted
by J . Let V be a finite dimensional euclidean G-representation and let GGVK be a
regular semi-free G-spectrum. Then there is a natural isomorphism of J-spectra

GJV NK
N ∼= ΦN(GGVK).

Combining this result with Proposition 3.3.51 for induced spectra motivates the
following definition.

Definition 3.3.64. A semi-free G-spectrum A is called induced regular if there is
an isomorphism of G-spectra

A ∼= G+∧HB,
for H a subgroup of G and B a regular semi-free H-spectrum.

Note that by Remark 3.3.50 Condition 1 is always satisfied in the case of finite
groups, so we get the following characterizations of geometric fixed points for induced
regular spectra which is analogous to Kro’s Lemma 3.10.8:

Theorem 3.3.65. Let G be a finite group and H and N subgroups with N normal.
Then for an induced regular semi-free G-spectrum G+∧HGVK its geometric fixed
points are given by the natural isomorphism:

ΦN(G+∧H [GVK]) ∼=

{
G�N+∧H�N [GV NK

N ] if N ⊂ H

∗ otherwise.

Proof. Only the second part needs additional comment. Note that already for H-
spaces K we have (G+∧HA)N ∼= ? if N is not contained in H, hence the functor
FixN is already trivial on the induced spectrum (cf. [Kr, 3.10.8]).

Note that since the S-cofibrations are independent from the choice of universe
by 2.3.15, an argument similar to the one in proof of 2.3.21 gives, that the inducing
up functor G+∧H(−) preserves S-cofibrations. Hence as above, the induced regular
semi-free spectrum G+∧HGHV K is S-cofibrant if K is genuinely Q o H-cofibrant.
Similarly one gets the following

Lemma 3.3.66. For V an H-representation, X a finite free H set, Q = ΠXP an
H-equivariant subgroup of OV and i a genuine cofibration of QoH-spaces, the map

f := G+∧HGHV [OV +∧Qi]

of G-spectra is an S-cofibration. Denote the class of S-cofibrations of this form by
SGreg.

109



CHAPTER 3. SMASH POWERS AND THE LODAY FUNCTOR

Remark 3.3.67. For SGreg-cell complexes, Theorem 3.3.65 allows us to easily compute
the geometric fixed points via a cell induction. This could be used to define a class
of cofibrations very much in the spirit of Kro’s induced cells ([Kr, 3.4.4]) and orbit
cells ([Kr, 3.4.6]), but more general than both. Since we are not going to construct
model structures or even replacement functors for any of these classes, we will not
go into this generality. Instead we will focus on the type of cells that will appear in
the cell structure for the smash powers.

Finally we give a name for the cells that we will use in the equivariant filtration
theorem:

Definition 3.3.68. An S-cofibration f of orthogonal G-spectra is an induced regular
cell if it arises from a generating S-cofibration i of orthogonal spectra via

f = G+∧Hi�H ,

for H a normal subgroup of G, and � the pushout product construction from A.2.28.
We denote the class of all induced regular cells by Indreg.

The significance of the pushout product will become more obvious in the next
section, when we give details on equivariant filtrations (cf. in particular Lemma
3.4.6). The following remark, however, is immediate:

Remark 3.3.69. Both source and target of an induced regular cell are induced reg-
ular in the sense of 3.3.64. For the target this is obvious, since for i the map

GV
(
OV�P+

∧[Sn−1→Dn ]
)

, the formula 1.2.34 together with the fact that inducing

up preserves colimits yield that i�H is isomorphic to the map

ı�H ∼= GV⊕H
(
OV⊕H�ΠHP+

∧[S|H|n−1 → D|H|n]
)
,

where |H| is the order of H. In particular it is represented by the inclusion of the
boundary sphere of the ΠHP oG space D|H|n, where ΠHP acts trivially, and H acts
by permuting coordinates blockwise.
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3.4 Fixed Points of Smash Powers

3.4.1 Cellular Filtrations

We construct the cellular structures that form the technical heart of this chapter.
We generalize Kro’s approach from [Kr, 2.2], correcting some minor mistakes along
the way. In particular we drop the assumption that all λ-sequences are N-sequences
in order to be able to attach cells one at a time, and work in general categories.
This allows us to apply the theory in a lot of different contexts, cf. 1.3.17, 2.3.35,
3.3.18 and 3.3.19, but also for a potential extension of our results to multiplicative
norm constructions (cf. Remark 3.4.44).

Pushouts and Pushout Products

Recall the following property of pushouts which is independent of the category we
work in:

Lemma 3.4.1. Let C be a category and consider the following diagram in C:

A //

��

B //

��

C

��
D // P // Q

(3.4.2)

(i) If both the left and the right subsquare of the diagram are pushout dia-
grams, then so is the outer rectangle.

(ii) If both the left subsquare and the outer rectangle are pushout diagrams,
then so is the right subsquare.

Proof. One either checks the universal properties directly, or uses cofinal subcate-
gories of the diagram categories underlying 3.4.2.

Lemma 3.4.3. Let C have all pushouts. Consider a commutative cube in C, where
either the top and bottom faces or the left and right faces are pushouts:

A0
//

��

�����
X0

��

�����

Y0
//

��

P0

��
A1

//

�����
X1

�����

Y1
// P1

. (3.4.4)
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Then extending the cube by taking the pushouts of the front- and back face, the
induced square is again pushout:

A0
//

��

�����
X0

��

�����

Y0
//

��

P0

��
A1

//

�����
Qb
p

��???
����

Y1
// Qf
p

��???
X1

�����

P1

. (3.4.5)

Proof. Assume the top and bottom faces of 3.4.4 are pushout. The composition of
the top- with the front face in 3.4.5 is pushout by 3.4.1 (i), hence also the bottom
face by (ii). Thus, again using 3.4.1(ii), so is the extended square. Analogously if
the composition of the left and the front face are pushout, the right face is, hence
the extended square.

From now on we work in a closed symmetric monoidal category, so that we can
talk about the pushout product construction of A.2.28.

Lemma 3.4.6. Let (C,∧) be closed symmetric monoidal and have all pushouts.
Then given two pushout squares

Ab
gb //

��

Xb

��

Bb
hb //

��

Yb

��
Af gf

// Xf
p

Bf
hf
// Yf
p

,

their row-wise pushout product is also a pushout square:

Qb

��

gb�hb // Xb∧Yb

��
Qf

gf�hf
// Xf∧Yf
p

.
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Proof. We want to use Lemma 3.4.3, the relevant cube is given by:

Ab∧Bb
//

��

wwppppp
Ab∧Yb

��

xxppppp

Af∧Bf
//

��

Af∧Yf

��

Xb∧Bb
//

wwppppp
Qb
p

&&MMMMMMM

xxpppppppp

Xf∧Bf
// Qf
p

&&MMMMMM Xb∧Yb
xxqqqqq

Xf∧Yf

(3.4.7)

Here we cannot use the above lemma directly, because the top face and the bottom
rectangle are in general not pushouts. However, we can split diagram 3.4.7 in two
pieces, factoring all the maps from the back to the front face:

Ab∧Bb //

��

wwooo
Ab∧Yb

��

wwppp
Ab∧Bf //

��

wwooo
Ab∧Yf

��

wwooo
Ab∧Bf //

��

Ab∧Yf

��

Af∧Bf //

��

Af∧Yf

��
Xb∧Bb //

wwooo
Qbp

''NNNN
wwppppp

Xb∧Bf //
wwooo

Qmp
''OOOO

wwooooo
Xb∧Bf // Qmp

''NNNN Xb∧Yb
wwppp

Xf∧Bf // Qfp
''OOOO Xb∧Yf

wwooo
Xb∧Yf Xf∧Yf

Since smashing with an object is a left adjoint it preserves pushouts, hence the
two extended cubes are both examples of 3.4.5. Therefore Lemma 3.4.3 gives that
both of the two extended squares are pushout, and Lemma 3.4.1(i) completes the
proof.

Relative Cellular Maps

We will use Lemma 3.4.6 to recognize a relative cellular structure on the �-product
of relative cellular maps. Recall the following definition (e.g. [H, 2.1.9]):

Definition 3.4.8. Let C be a category with pushouts, and I a class of morphisms
of C. Then a morphism f : A → X in C is relative I-cellular, if it is a transfinite
composition of pushouts of coproducts of elements of I.

Remark 3.4.9. Let f : A→ X be a relative I-cellular map, and let A = X0 → X1 →
. . . be a λ-sequence that exhibits this structure, i.e. λ an ordinal and for any α ≤ λ
we have pushout diagrams

Sα
σα //

iα

��

colim
β<α

Xα

fα
��

Dα
// Xα,
p
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where iα is a coproduct
∐
c∈Cα

ic, with all the maps ic in I, and Cα empty whenever

α is a limit ordinal. Then the union of the Cα is partially ordered, with ic ∈ Cα
smaller than id ∈ Cβ if and only if α < β. In this situation, we say that

⋃
α≤λCα

indexes the attached cells of f in the λ-sequence.

The following lemma helps with keeping the “length” of the transfinite compo-
sition in check when the domains of the morphisms in I are sufficiently small:

Lemma 3.4.10. Let f : A→ X be an I-cell complex and assume that the domains
of the maps in I are κ-small. Then there is a κ-sequence of maps exhibiting f as
relative I-cellular.

Proof. Assume that f is the transfinite composition of a λ-sequence {Xα}α≤λ that
exhibits the a cellular structure, i.e. for α < λ there are pushout diagrams

Sα
σα //

iα

��

colim
β<α

Xα

fα
��

Dα
// Xα,
p

such that iα is the identity of the initial object for α a limit ordinal, and a coproduct
of maps in I otherwise. For γ ≤ κ, define sets C<

γ and Cγ as well as commutative
diagrams

colim
δ<γ

Xδ
//

��

colim
δ<γ

Yδ

�� ""EEEEEEE

Xγ 99// Yγ, // X

(3.4.11)

by
by transfinite induction: Let C0 := 0 and Y0 := X0 = A. Continuing, for µ a limit
ordinal let Cµ be empty.Otherwise define the set

C<
γ := {α ≤ λ, σα factors through Yγ−1}.

Further let Cγ := C<
γ \

⋃
δ<γ C

<
δ . Finally define Yγ as the pushout∐
α∈Cγ Sα

��

// colim
δ<γ

Yδ

��∐
α∈Cγ Dα

// Yγ
p

Define a map Yγ → X on the attached cells Sα → Dα by going through the Xα.
Note that σγ : Sγ → X factors through colimδ<γ Xδ, hence we get a map Xγ → Yγ
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which fits into the diagram 3.4.11. Finally note that since Sα is κ-small, all attaching
maps σα for α ≤ λ factor through some Xγ, hence through Yγ. the union

⋃
γ≤κCγ

contains all α ≤ λ. Therefore there are canonical maps in both directions between
the colimits

colim
α≤λ

Xα
∼= colim

γ≤κ
Yγ,

which are isomorphisms by cofinality.

Remark 3.4.12. Note that attaching cells via coproducts, gives a partial order on the
set of cells. Every such partially ordered set can be linearly ordered as in [H, 2.1.11],
which corresponds to giving a λ-sequence in which the cells are attached one at a
time. Lemma 3.4.10 gives us a much more convenient way to revert this process,
than simply forgetting the extra information. Returning to a closed symmetric
monoidal category (C,∧), observe that taking coproducts interacts distributive with
the smash product, hence also with the �-product. We therefore allow ourselves
to switch freely between attaching cells one at a time or in bigger groups via the
coproduct.

The main theorem we aim for in this subsection is the following:

Theorem 3.4.13. Let (C,∧) be closed symmetric monoidal with all small colimits.
Let I and J be sets of morphisms in C and let f : A→ X and g : B → Y be relative
I- and J-cellular, respectively. Then their pushout product f�g is relative (I�J)-
cellular.
In particular, if λ and µ are partially ordered indexing sets for cells of f and g,
respectively, then λ× µ is a partially ordered indexing set for cells of f�g.

Proof. We assume without loss of generality (cf. 3.4.12) that λ and µ are ordinals
linearly indexing the cells of f and g, respectively. That is for each α ≤ λ we have
a pushout diagram

Sα

��

iα∈I // Dα

��
colim
γ<α

Xγ fα
// Xα,
p

such that the λ-sequence A = X0 → Xλ = X is the map f , and and analogous for
g. Chose the product partial order on λ× µ, i.e. (γ, δ) < (α, β) if and only if γ < α
and δ < β. Let E : λ× µ→ C be the sequence defined by the pushout diagrams

A∧B //

��

Xα∧B

��
A∧Yβ // Eα,β,

p
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and note that Eλ,µ is the source of f�g. We claim that the desired filtration is then
given by {Fα,β}, the (pointwise) pushout of λ× µ-sequences in the diagram:

Eα,β //

��

Xα∧Yβ

��
Eλ,µ // Fα,β,

p

(3.4.14)

where Eλ,µ is the constant sequence. To prove the claim, note that the transforma-
tion E → X(−)∧Y(−) of sequences factors through the sequence P , given pointwise
as the pushout

colim
γ<α,δ<β

Xγ∧Yδ //

��

colim
δ<β

Xα∧Yδ

��
colim
γ<α

Xγ∧Yβ // P(α,β)

p fα�gβ // Xα∧Yβ.

(3.4.15)

That is, Pα,β is the source of the map fα�gβ. We apply the cobase change as in
3.4.14 to this factorization to get the diagram

E //

��

P
f(−)�g(−) //

��

X(−)∧Y(−)

��
Eλ,µ // P qE Eλ,µ

p // F.
p

(3.4.16)

Now comparing the colimits pointwise, cofinality lets us identify Pα,β qE Eλ,µ as the
following pushout:

colim
γ<α,δ<β

Fγ,δ //

��

colim
δ<β

Fα,δ

��
colim
γ<α

Fγ,β // Pα,β qE Eλ,µ
p

// Fα,β.

In particular we have

P qE Eλ,µ ∼= colim
(γ,δ)<(α,β)

Fα,β,

and the map

colim
(γ,δ)<(α,β)

Fγ,δ → Fα,beta
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is a cobase change of fα�gβ. Therefore to show that F is indeed a filtration by I�J-
cells, it suffices by 3.4.16 to show that fα�gβ is the attaching of a I�J-cell. This is
a consequence of Lemma 3.4.6, which implies that there are pushout diagrams

S(α,β)

��

iα�jβ∈I�J // D(α,β)

��
P(α,β)

fα�gβ // Xα∧Yβ.
p

Note that as in Remark 3.4.12 we can extend the partial order on λ× µ to a linear
one, finishing the proof.

Remark 3.4.17. In a lot of cases of interest, for example C = T , with I and J the
sets of generating (acyclic) cofibrations, we will actually have that I�J ⊂ J(−cell),
such that the above proposition also gives f�g the structure of a relative J-cellular
map.

Remark 3.4.18. In categories where we can think of the maps in I, J and I�J as
inclusions, and of the filtered colimits as unions of subobjects, the intuition behind
the filtration in the theorem simplifies significantly. In particular the cellular maps
then give a λ-sequence of inclusions of subobjects

A ↪→ X1 ↪→ . . . ↪→ X,

and similar for B ↪→ Y . Note that f�g is the inclusion

f�g : X∧B ∪A∧B A∧Y = X∧B ∪ A∧Y ↪→ X∧Y,

and the filtration given by the theorem is through objects

Fα,β = X∧B ∪Xα∧Yβ ∪ A∧Y.

Corollary 3.4.19. The monoidal product X∧Y of an I-cellular X object with a
J-cellular object Y is I�J-cellular.

Corollary 3.4.20. In the situation of Theorem 3.4.13, the map f∧g is relative
(I�J)∪K-cellular, where K is the set of maps I∧B ∪A∧J . In particular, if A and
B are themselves I-, respectively J-cellular, f∧g is even I�J-cellular.

Proof. Use the theorem on the maps ? → A → X and ? → B → Y which are
I ∪ {? → A}-, respectively J ∪ {? → B}-cellular. Note that the indexing of the
filtrations is shifted, and the new filtration factors through F1,1 = A∧B. All the
later cells are then of type (I�J) ∪K.
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Corollary 3.4.21. Since the �-product is associative, Theorem 3.4.13 immediately
gives specific filtrations for iterated �-products of maps. The indexing set for the
cells of the iterated � is always given by the product of the indexing sets with some
(linear) order that is compatible with the product partial order.

We now give the proofs of Corollary 3.3.18 and Proposition 3.3.19:

Proof of 3.3.18. Recall the generating cofibrations and acyclic cofibrations from
2.2.30 and 2.2.41. By 3.3.16 and C.1.17, ΦN sends F IG cells to F IJ cells. Since it
also preserves the mapping cylinder construction and hence sends the maps kV,W in
the definition of the generating acyclic cofibrations in GOT to their counterparts in
JOT . Note that kV,W�i is mapped to kV N ,WN�iN , which is KJ -cellular by Theorem
3.4.13. By 3.3.15, ΦN preserves the cell complex construction.

Proof of 3.3.19. (cf. [MM, 4.7]) The natural map α is J-equivariant by definition. It
is an isomorphism for X and Y free G-spectra by 3.3.16. This implies that α induces
a bijection of sets along which we identify ΦN(FGI�FGI) and (ΦNFGI)�(ΦNFGI).
Abbreviate this set as Î. Let now X and Y be FGI-cellular, and chose specific
cellular filtrations with indexing sets C respectively D for the attached cells. Then
by Proposition 3.3.15, ΦNX is ΦN(FGI)-cellular with the cells still indexed by the
same set C, and similar for ΦNY . Theorem 3.4.13 then gives explicit filtrations of
ΦNX∧ΦNY and (ΦNX∧Y ) as Î-cellular objects with the same indexing set C ×D,
and α exactly transports one filtration diagram into the other. Since retracts are
preserved by any functor, this proves the proposition.

We will give more applications of Theorem 3.4.13 later, when we study filtrations
of smash powers (cf. 3.4.22).

3.4.2 Equivariant Cellular Filtrations

We finally give the equivariant cellular structure for smash powers. Let L be an
S-cofibrant orthogonal spectrum. For G a finite group and X a finite G-set, we will
give a filtration of the map

(?→ L)�X ∼= (?→ L∧X) = ΛX(L),

by S-cofibrations of G-spectra using Theorem 3.4.13. It will follow from the con-
struction that, when X is G-free, the attaching maps are all S-cofibrations between
induced regular S-cofibrant G-spectra. This allows us to calculate the geometric
fixed points of ΛX(A) along the lines of 3.3.41. Our methods are inspired by [Kr,
3.10.1], where a similar filtration is given for the case that X = G = Cq a finite
cyclic group.
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Theorem 3.4.22. Let G be a finite group and let X be a finite G-set. Then for L
an SI-cellular orthogonal spectrum, its X-fold smash power L∧X is an SIG-cellular
G-spectrum.
In particular let λ be an ordinal indexing the cells of L, then the X-fold product λ×X

has a G action and its set σ = (λ×X)G of G-orbits indexes the SIG-cells of L∧X ,
i.e.:

For every [α] ∈ σ there is a pushout diagram of G-spectra:

G+∧H
[
GHV (Sn−1 ×OV�P )+

]
//

��

G+∧H
[
GV (Dn ×OV�P )+

]
��⋃

[β]<[α]

(L∧X)[β] // (L∧X)[α],
p

where the map in the top row is induced up from a generating S-cofibration
of H-spectra, for H the stabilizer subgroup of [α] in G. These diagrams
define for each [α] in σ a subspectrum (L∧X)[α] of L∧X , such the union⋃

[α]∈D

(L∧X)[α] = L∧X .

Proof. Let ? = L0 → L1 → . . . → L be the λ-sequence exhibiting L as SI-cellular,
i.e. the maps are cobase changes of generating S-cofibrations. As in Remark 3.4.18,
we think of the Lµ as subspectra of L, since the S-cofibrations are in particular
levelwise inclusions. Recall from Theorem 3.4.13 that as an orthogonal spectrum
L∧X has a cellular filtration indexed by λ×X equipped with the product partial order,
i.e.

β = {βx}x∈X < α = {αx}x∈X ⇔ βx < αx ∀x ∈ X.

This implies that there is a λ×X-diagram of orthogonal spectra L∧Xα such that

colim
α∈λ×X

L∧Xα
∼= L∧X .

Note that since the S-model structure is monoidal, the maps L∧Xβ → L∧Xα for β < α
are S-cofibrations as well, so we similarly treat the L∧Xα as subspectra

∧
x∈X Lαx of

L∧X , and their filtered colimits as unions.
Now let α = {αx}x∈X represent an orbit [α] ∈ D, we define

(L∧X)[α] := colim
g∈G

L∧Xgα =
⋃
g∈G

L∧Xgα =
⋃
g∈G

∧
x∈X

Lαg−1x
,
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which is obviously independent of the choice of representative of [α], and invariant
under the G-action. Note that the L[α] are partially ordered by inclusion, compatibly
with

[β] < [α] ⇔ gβ < α ∀g ∈ G.
We investigate the attaching maps closer. For each αx there is a pushout diagram
Dαx of spectra

Dαx := GVx(S
nx−1 ×OVx�Px)+

��

// GVx(D
nx ×OVx�Px)+

��⋃
β<αx

Lβ // Lαx .
p

with the top map a generating S-cofibration. By 3.4.6 we can take the row-wise
�-product of all the diagrams Dαx for x ∈ X to get a pushout diagram

Dα := GV ′(Sn
′−1 ×OV ′�P ′)+

��

// GV ′(Dn′ ×OV ′�P ′)+

��⋃
β<α

∧
x∈X

Lβx //
∧
x∈X

Lαx .
p

Here V ′ =
⊕
x∈X

Vx, n
′ =

∑
x∈X

nx and P ′ =
∏
x∈X

Px. Note that each of the corners in the

diagram Dα has an action of the stabilizer subgroup Stabα of α in λ×X induced by
permuting smash factors, and the maps are all Stabα-equivariant.
Now G acts on all these diagrams {Dα}α∈λ×X by permutation, and we can form the
union over all the diagrams in the G-orbit of one particular diagram Dα to get the
final diagram D[α]:

D[α] : = G+∧Stabα

[
GV ′(Sn

′−1 ×OV ′�P ′)+

]
��

// G+∧Stabα

[
GV ′(Dn′ ×OV ′�P ′)+

]
��⋃

[β]<[α]

(L∧X)[β] // (L∧X)[α]

p

.

By Remark 3.3.66, the induced map in the top row is an S-cofibration of G-spectra
as desired. Note that if αx is a limit ordinal for any x ∈ X, the top row in D[α]

becomes trivial, hence the lower map is an isomorphism.

Looking closer at the cellular filtration given by Theorem 3.4.13 and Corollary
3.4.20, we can immediately get a relative version, admitting the same proof:
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Proposition 3.4.23. Let in the situation of Theorem 3.4.22 K be a sub-SI-cell
complex of L, then K∧X is an equivariant sub-SIG-cell complex of L∧X , and for
i : K → L the inclusion, so is the source of i�X .

Proof. We can find a cellular filtration as in the proof of Theorem 3.4.22, with
K = Lµ for some µ ∈ λ. Then in the notation from above,

K∧X = L∧X[µ̂] ,

where µ̂ is the element {µ}x∈X of λ×X , and i�X is the map

L∧X[δ] → L∧X ,

where [δ] is the colimit in the partially ordered set σ over all those elements [α] such
that αx ≤ µ for at least one x ∈ X.

Remark 3.4.24. Note that if L is built from K by attaching a single cell along a
generating S-cofibration i, then we can think of the map ? → K as another single
cell as in Corollary 3.4.20, i.e. think of λ as having 2 elements, one representing the
map ? → K, and one representing i. For G a symmetric group Σn acting on a set
X with n elements, σ also has n elements, and the cells one needs to attach to K∧X

to get L∧X are all of the form

Σn∧Σm×Σn−mi
�m∧K∧n−m.

In the case where the action of G on X is free, we can further identify the cells
in the filtration given by Theorem 3.4.22:

Proposition 3.4.25. Let in the situation of Theorem 3.4.22 the G-set X be free,
then the filtration is by induced regular cells, i.e. all the pushout diagrams D[α] are
of the form

D[α] : = G+∧H
[
GV (Sn−1 ×OV�P )+

]�H
��

// G+∧H
[
GV (Dn ×OV�P )+

]∧H
��⋃

[β]<[α]

(L∧X)[β] // (L∧X)[α]

p

,

where the top map is induced up from the H-fold �-product of a generating S-
cofibration of orthogonal spectra.
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Proof. We continue using the notation from the proof of Theorem 3.4.22. Recall
that the top map in the attaching diagram Dα above was given by the iterated �-
product of all the maps iαX for x ∈ X, with the Stabα-action permuting �-factors
that are identical. Since G acts freely on X, so does Stabα. Therefore choosing
any system of representatives R for the Stabα-orbits of X, we get Stabα-equivariant
isomorphisms

GV ′(Sn
′−1 ×OV ′�P ′)+

//

∼=
��

GV ′(Dn′ ×OV ′�P ′)+

∼=
��

[GV (Sn−1 ×OV�P )+]�Stabα // [GV (Dn ×OV�P )+]∧Stabα ,

where V : =
⊕
r∈R

Vr, n : =
∑
r∈R

nr and P : =
∏
r∈R

Pr.

Together with Theorem 3.3.65, we can now calculate the geometric fixed points
of smash powers of S-cofibrant spectra. Let as above

1→ N → G
ε→ J → 1,

be a short exact sequence of finite discrete groups, and X a finite free G-set.

Theorem 3.4.26. For S-cofibrant orthogonal spectra L and finite free G-set, there
is a natural isomorphism of J-spectra

ΛXNL
∼= ΦN(ΛXL).

Proof. This is again quite similar in spirit to the analogue theorem [Kr, 3.10.7]. It
suffices to look at SI-cellular L, since retracts are preserved by any functor. We
keep the notation from the proof of Theorem 3.4.22 as far as possible, and let σ′

denote the J-orbits of λ×XN . The projection εG→ J induces a “diagonal” map

ε∗ : λ×XN → λ×X ,

{κ[x]}[x]∈Xn 7→ {κ[x]}x∈X

which descends to orbits to give a map ε∗ : σ′ → σ. Note that in the cell structure
for  L∧X , cells that are not indexed by ε∗[α] do not contribute to the geometric fixed
points: By induction over the cellular filtration, assume that for all [β] < [α] in σ
we have

ΦN(
⋃

[δ]≤[β]

L∧X[δ] ) ∼= ΦN(
⋃

[ε∗κ]≤β

L∧X[ε∗κ]),

then the same is true for β replaced by α: In the case α ∈ ε∗σ′ there is nothing to do,
otherwise note that for [α] 6∈ ε∗σ′, the group N is not contained in Stabα, hence in
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the attaching diagram D[α], the top row has trivial geometric fixed points by 3.3.65.
Since taking geometric fixed points commutes with the cell-complex construction,
we therefore get colimit diagrams for ΦNL∧X and L∧XN of exactly the same shape,
with attaching diagrams indexed by ε∗σ′ ∼= σ′. Then again by induction on the
cellular filtration we show that the J-spectra L∧XN[κ] and ΦN(L∧Xε∗[κ]) are isomorphic.
Herefore compare the attaching diagrams:

⋃
[γ]<[κ]

ΦN (L∧X )[ε∗γ]

∼=

��

ΦN
(
G+∧H [GV (Sn−1 ×OV�P )+]�H

)oo //

∼=

��

ΦN
(
G+∧H [GV (Dn ×OV�P )+]∧H

)
∼=

��⋃
[γ]<[κ]

(L∧XN )[γ] J+∧J0 [GV (Sn−1 ×OV�P )+]�J0oo // J+∧J0 [GV (Dn ×OV�P )+]∧J0

where the vertical maps are isomorphisms by 3.3.65, hence induce an isomorphism
on pushouts. Naturality is after the discussion so far only obvious for cellular mor-
phisms. For all morphisms between S-cofibrant orthogonal spectra and for all iso-
morphisms of finite free G-sets naturality follows from the construction 3.4.28, cf.
Remark 3.4.32.

3.4.3 Fixed Points and the Loday Functor

The following proposition gives the important naturality property, which we will
need when generalizing the above result to infinite and non-discrete spaces. It is
inspired by Kro’s proposed “diagonal map” Lq → ΦCrLrq in the case of finite cyclic
groups. The definition given in [Kr, 3.10.4], however, seems to mix up the left and
right adjoints involved. The present author is doubtful that a strict map can be
defined in the way described there, even in the cyclic case, if L is not at least S-
cofibrant. We will instead define a natural zig-zag of maps, where the arrow in the
wrong direction becomes an isomorphism for S-cofibrant input.
Before we give the construction, recall the full subcategories of Oreg

G ⊂ OG and
Oreg
J ⊂ OJ associated to the sets X and XN from Example 2.2.27. Let as usual Oreg

E

be the N -fixed category of Oreg
G , and note that the following diagram of functors

commutes:
OE
φ

��

Oreg
E

ioo

φreg

��
OJ Oreg

Jj
oo

Where φreg is the restriction of φ, sending a regular representation V ⊕X to (V ⊕X)N .
Note that the latter is indeed regular and we usually identify (V ⊕X)N ∼= V ⊕XN . The
diagram then implies the following natural isomorphisms for the restriction functors
and their left adjoints:

PjPreg
φ
∼= PφPi Ureg

φ Uj ∼= UiUφ. (3.4.27)
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Proposition 3.4.28. For G a finite group and X a finite free G-space, and L any
orthogonal spectrum there is a natural diagonal zig-zag of J-spectra

L∧XN

∆(X,L)

99
PjUjL∧XN

εjoo // PφPiUiFixN(L∧X)
Pφ(εi) // ΦN(L∧X) .

For S-cofibrant spectra L, the first map is an isomorphism such that the pointed
composite ∆(X,L) exists and is the natural isomorphism from 3.4.26, which we
therefore call the diagonal isomorphism.

Proof. The maps εj and εi are the counits of the adjoint pair (Pj,Uj), respectively
(Pi,Ui) and are hence natural. The second map requires more work. First note that
by (3.4.27) its target is naturally isomorphic to PjPreg

φ UiFixN(L∧X), so it suffices to
define a natural map of regular J-spectra

UjL∧XN → Preg
φ UiFixN(L∧X),

to which we then apply Pj. We define the map levelwise, so let U = V ⊕XN be a
regular J-representation. By the coend definition of the smash products L∧X and
L∧XN , as well as the evaluation of Preg

φ , it suffices to give morphisms

∧
⊕
V[x]=U

LV[x]
−→

 W∈Oreg
E∫
Oreg
J (WN , UN) ∧

⊕
Wx
∼=W∫

OW∧∏X OWx

∧
x∈X

LWx


N

.

(3.4.29)
But since U is regular, W = V ⊕X gives a preferred point in the first coend, and for
each partition

⊕
Vx ∼= U the choice Wx = V[x] gives a preferred point in the second

coend, so that we can map
∧

[x]∈XN L[x] to the copy of
∧
x∈X L[x] indexed by the

identities of WN and W , via the diagonal map∧
[x]∈XN

L[x] −→
∧
x∈X

L[x].

{l[x] ∈ L[x]}[x]∈XN 7→ {l[x] ∈ L[x]})x∈X

Note that the map is obviously J-equivariant and maps into the coend of the fixed
points, hence into the fixed points of the coend. It is compatible with the structure
maps of L and natural with respect to all maps L→ K of orthogonal spectra.
To see that the instance of εj is an isomorphism for S-cofibrant L, note that it is
an isomorphism for any semi-free J-spectrum GVK with V regular by (2.2.28). By
Theorem 3.4.22, a cell induction then gives the result. Similarly it suffices to show
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that for semi-free spectra the zig-zag yields the isomorphism from 3.3.41. For R a
euclidean vector space and L = GRK, the maps (3.4.29) are represented by the map
of
∏

XN
OR-spaces out of K∧XN determined on the level U = R∧XN . Since this map

is adjoint to the unit map

ηφ : GEU
(
OR∧X∧∏X OR

K∧X
)N → UφPφGEU

(
OR∧X∧∏X OR

K∧X
)N

,

the result is implied by the Yoneda lemma and our description of the isomorphism
(3.3.41).

Corollary 3.4.30. Let L and L′ be S-cofibrant orthogonal spectra, then the natural
map α from 3.3.19 is an isomorphism

ΦN(ΛXL)∧ΦN(ΛXL
′) ∼= ΦN(ΛXL∧ΛXL

′).

Proof. Since ΛXL∧ΛXL
′ ∼= ΛX(L∧L′) via a G-equivariant shuffle permutation the

map α is up to isomorphism the map

L∧XN∧L′∧XN ∼= (L∧L′)∧XN .

Corollary 3.4.31. Let L be an S-cofibrant orthogonal spectrum and let B be an
Indreg-cellular G-spectrum, then the natural map α from 3.3.65 is an isomorphism

ΦN(ΛXL)∧ΦN(B) ∼= ΦN(ΛXL∧B).

Proof. First assume B is itself of the form B ∼= G+∧H(L′)∧H . If N is not contained
in H, both source and target of α are trivial. Otherwise we have

L∧X∧B ∼= G+∧H(L∧X∧L′∧H)

by 3.3.45. Hence Theorem 3.3.65 gives that α is J-isomorphic to a map

LXN∧G�N+
∧H�NL

′∧N ∼= G�N+
∧H�N(LXN∧L′N),

which is another instance of 3.3.45 The general result follows by a cell induction
over the cells of B.

Remark 3.4.32. Since the Loday functor for mere spectra is in the X-variable only
defined with respect to finite sets and isomorphisms between them, the best thing
one can hope for is that the diagonal zig-zag of 3.4.28 is natural in the X variable
with respect to isomorphisms of finite free G-sets. Then indeed, comparing the
appropriate shuffle permutations through which G and J act, naturality in X is
immediate for semi-free spectra, and can be followed through the coends in the
proof of 3.4.28 with little more effort.
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Corollary 3.4.33. The diagonal isomorphism respects decompositions of X into
G-orbits, i.e. for X a finite free G-set and L an S-cofibrant orthogonal spectrum,
we get a commutative diagram of natural isomorphisms

(X∧
G�N)∧XG

∆(G,L)∧XG

��

L∧XN

∆(X,L)

��

∼= //
∼=oo (L∧XG)∧

G�N

∆(G,L∧XG )

��

(ΦNL∧G)∧XG

α

��
ΦN((L∧G)∧XG) ΦNL∧X

∼=oo
∼= // ΦN((L∧XG)∧G)

with the lower left vertical map an iterated version of the isomorphism α from 3.3.19.

Proof. Note that for L S-cofibrant, a map out of L∧XN is completely determined by
its values on XN -regular levels by the universal properties of the semi-free spectra
appearing in the cell decomposition of Theorem 3.4.22. On these levels the right
rectangle commutes by definition of the diagonal zig-zag. For the left rectangle,
comparing the universal property defining α from 3.3.6 to the definition of the
middle map in the diagonal zig-zag 3.4.28 gives the result.

Varying the Input Categories

In 3.2, we have defined several versions of the Loday functor, with the input cate-
gories varying between finite discrete sets together with general orthogonal spectra,
to general spaces and commutative orthogonal ring spectra. In the previous dis-
cussion we have restricted the first input further, to finite free G-sets, to study the
equivariant structure induced on the output. Inspired by Remark 3.4.32, we will
from now view the diagonal isomorphism as a natural transformation of functors

∆(·,−) : Λ(·)N (−) −→ ΦN(Λ(·)(−)),

and study in how far we can vary the input categories.
We begin with checking naturality of the diagonal isomorphism with respect to

injections of finite free G-sets. As usual, we have to adapt the cofibrancy condition.

Definition 3.4.34. An orthogonal spectrum L is S-cofibrant under S if it is equipped
with a designated S-cofibration S→ L.

Example 3.4.35. Every S-cofibrant commutative orthogonal ring spectrum is S-
cofibrant under S via its unit map by 1.3.22, which in particular says that the unit
maps for the commutative ring spectra appearing in the generating S-cofibrations is
a positive S-cofibration.
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Lemma 3.4.36. The diagonal map is natural with respect to finite free G-sets and
equivariant inclusions, and spectra S-cofibrant under S.

Proof. Let L be cofibrant under S, and let X → Y be an equivariant inclusion of
finite free G-sets. There is an SI-cellular structure for L such that the designated
map S→ L is an inclusion of a subcomplex. Then L∧X → L∧Y is an inclusion of an
equivariant subcomplex as in 3.4.23. Similarly L∧XN is an equivariant subcomplex
of L∧YN and it follows as from the proof of 3.4.26 that the diagonal isomorphism
respects the inclusion of subcomplexes.

Moving towards infinite free G-sets X, the Loday functor is defined in 3.2.3 as
via the colimit along inclusions of finite free G-subsets of X.

ΛX(L) := colim
F⊂X finite

ΛFL.

Note that by the proof of the previous lemma, this is a filtered colimit along h-
cofibrations, so that it is preserved by ΦN .

Lemma 3.4.37. The diagonal isomorphism exists and is natural with respect to free
G-sets and equivariant inclusions, and spectra S-cofibrant under S.

Proof. We begin with the existence. Let L be cofibrant under S, and let X be a
free G-sets. The finite subsets of XN are orbits of finite subsets of X hence there
is a natural map ΛXNL→ ΦN(ΛXL) which is the colimit of isomorphisms hence an
isomorphism itself. Naturality follows since equivariant inclusions induce inclusions
of indexing categories for the colimits.

As an alternative proof, we can use Corollary 3.4.33: Let f : X → Y = X ∪ Z
be an equivariant inclusion of free G-sets. Then f respects the orbit decomposition,
i.e.

X ∼=G

⋃
XG

G, Y ∼=G

⋃
XG

G ∪
⋃
ZG

G,

and f corresponds to the obvious inclusion. Hence ΛfL is isomorphic to the map

ΛG(ΛXGL) ∼= ΛG(ΛXG∧ΛZGS)→ ΛYG(ΛYGL),

i.e. it is the smash power of a map of S-cofibrant spectra, so 3.4.28 gives the result.
In particular, we even get that the map ΛXGL → ΛYGL is a (non equivariant) S-
cofibration, thus the induced map of smash powers is an S-cofibration of G-spaces by
3.3.66. To see this, filter YG through finite sets Yi and let Xi = f−1Yi, Zi = Yi\f(Xi).
As in 3.4.23, each of the maps L∧Xi ∼= L∧Xi∧S∧Zi → L∧Yi is an S-cofibration, hence
so is their colimit.
Finally we move towards S-cofibrant commutative orthogonal ring spectra, where
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we want to work with the definition of the Loday functor in terms of the categorical
tensor with spaces, i.e. for X a space and A an S-cofibrant commutative orthogonal
ring spectrum, ΛXA = A ⊗X, where the tensor is in the category of commutative
orthogonal ring spectra (cf. 3.1.2). As discussed in 3.1.14, the tensor specializes to
the smash power for discrete inputs X, so all the results from above still apply. Note
that we can now extend the naturality results to not necessarily injective maps:

Lemma 3.4.38. The diagonal isomorphism from 3.4.37 is natural with respect to
free G-sets and equivariant maps, and S-cofibrant commutative orthogonal ring spec-
tra.

Proof. Let f : X → Y be an equivariant map between free G-sets. Similar to the
above discussion, we filter X and Y by finite free G-sets Xi and Yi and consider f
as a colimit of maps fi : Xi → Yi, where the transformations λfiA → fj for i ≤ j
are along S-cofibrations. Thus it suffices to check naturality for not necessarily
injective equivariant maps between finite free G-sets. Here we can once again use
the splitting into orbits, and the fact that the diagonal map is natural with respect
to all morphisms between S-cofibrant spectra. As in Corollary 3.4.33, we see that
for X → Y an equivariant morphism of free G-sets, the map on smash powers
ΛXA → ΛYA is the G-fold smash power of the map ΛXGA → ΛYGA, hence the
result follows.

We can finally move on towards non discrete spaces. We begin with spaces that
are geometric realizations of simplicial sets, since there we have Proposition 3.1.11,
which makes computing the Loday functor much easier and in particular allows the
following extension of the diagonal isomorphism:

Proposition 3.4.39. For free G-simplicial sets X∗ and equivariant maps between
them, and S-cofibrant commutative orthogonal ring spectra A, the diagonal map
exists and is a natural isomorphism

Λ|(X∗)|NA
∼= ΦN(Λ|X∗|A).

Proof. By 3.1.11, for a free G-simplicial set X∗, and an S-cofibrant commutative
orthogonal ring spectrum A, the tensor A ⊗ |X∗| is naturally isomorphic to the
realization of the simplicial orthogonal spectrum

q 7→ (A⊗Xq) ∼= A∧Xq ∼= ΛXqA.

By B.1.44, the geometric realization of this spectrum is the colimit along the skeleton
filtration, which is along levelwise h-cofibrations since the simplicial spectrum is h-
good (cf. B.1.49, B.1.50 and B.1.46): Every simplicial degeneracy map si is an
injection of free G-sets, hence as in the comment before Lemma 3.4.37, it induces an
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S- hence h-cofibration under the Loday functor. In particular, taking the geometric
fixed points commutes with the geometric realization, since FixN does. Therefore
the diagonal maps ∆(Xq, A) for each simplicial level induce an isomorphism on
realizations. It is natural since maps of free G-simplicial sets are levelwise maps of
free G-sets.

Remark 3.4.40. For X the realization of a simplicial set, the diagonal map con-
structed in 3.4.39, does not depend on the simplicial model. Given two simplicial
sets X∗ and Y∗ such that |X∗| ∼= |Y∗|, there is a zig-zag of maps of simplicial sets
between them, that realizes to the isomorphism, e.g. via the singular complex of
|Y∗|. Thus we can use the naturality for simplicial maps.

We can continue this to work towards general cofibrant free G-spaces X, in par-
ticular since the generating naive cofibrations are given by the inclusions G∧(Sn−1 →
Dn), which are the realizations of simplicial maps G∧(∂∆n → ∆n), we can write
every cofibrant G-space as a colimit of pushouts of maps between spaces that are
realizations of free G-simplicial sets. Note that tensoring with A of course preserves
this colimit, but also maps it to a colimit along S-cofibrations since the S-model
structure on commutative orthogonal ring spectra satisfies the pushout product ax-
iom. In particular particular we can take geometric fixed points before going to the
colimit, hence use the lemma for the simplicial case and a cell induction to get the
following:

Lemma 3.4.41. For naively cofibrant G-spaces X and equivariant maps between
them, and S-cofibrant commutative orthogonal ring spectra A, the diagonal isomor-
phism exists and is natural with respect to morphisms X → Y that are realizations
of simplicial maps.

Remark 3.4.42. Note that every equivariant map between naively cofibrant G-spaces
is homotopy equivalent to the realization of a simplicial map via the unit of the ad-
junction between spaces and simplicial maps and the general Whitehead theorem
B.1.3 for the naive model structure. Since the Loday functor is continuous in both
variables, this implies that the diagonal isomorphism of 3.4.41 is natural with re-
spect to all continuous equivariant maps up to homotopy equivalence. The homotopy
equivalence can be seen as one of orthogonal spectra which at each time is a mor-
phism of ring spectra (cf. proof of 3.1.13).

This concludes our study of the case of a fixed finite group, since we have reached
the other end of the generality of the definition of the Loday functor from 3.2. So
far we have not touched upon functoriality of the Loday functor or naturality of the
diagonal map for changing the group, so let now φ : H → G be a homomorphism of
topological groups. As usual we can look at the restriction functor φ∗ : GT → HT ,
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and it is immediate, that it commutes with the Loday functor in the sense that for
orthogonal ring spectra A, there is a natural isomorphism of commutative H-ring
spectra

Λφ∗XA ∼= φ∗ΛXA,

where on the right side φ∗ is the restriction functor on commutative ring spectra,
analogous to 2.2.5. Note, that since φ∗ does not send free G-sets to free H-sets if φ
is not injective, we have in general no control over the diagonal map. Therefore we
will only consider the case where φ is the inclusion i : H → G of a subgroup. For
N ⊂ H, this leads to the following:

Proposition 3.4.43. The restriction functor preserves the diagonal map.

Proof. Recall from Remark 3.3.50 that Condition 1 is always satisfied in the case of
finite groups. Hence as in the proof of Proposition 3.3.57 the right half of (3.3.58)
commutes, i.e. the restriction commutes with Pφ. Therefore all the functors in the
definition of the diagonal zig-zag commute with the restriction, and so does the
whole zig-zag. The restriction functor preserves the colimit along the inclusions of
finite subsets as well as the geometric realization and the cell complex construction,
which we used to extend the diagonal map from the case of spectra above.

Remark 3.4.44. The relation of the Loday functor with the induction of an H-set
X along the inclusion i : H → G is more subtle. Intuitively the Loday functor itself
should be viewed as the ∧-induction of a spectrum with action of the trivial group
to a spectrum with G-action. If one wants to start with an H-spectrum instead, this
generalizes the study of multiplicative norm constructions, where X is assumed to
be a discrete subgroup H of G. These norm functors have been famously put to use
in the recent proof of the Kervaire-invariant problem by Hill, Hopkins and Ravenel.
An introduction can be found in [HRR, A.3,4], or [S11, 8,9], both of which only
became available very shortly before this thesis was finished. The author learned
about the interplay from Stefan Schwede, during a visit in Bonn in November 2010,
where he presented the results of this thesis. As the study of multiplicative norms
of course has to address some of the same questions we discussed here, we point
out some similarities and differences to [HRR]. Due to the fact that the works are
independent, the notation and viewpoint are rather different. First of all one should
note the difference in model structures. We worked with the S-model structure
instead of the classical q-model structure on commutative orthogonal ring spectra,
in order to get around the q-cofibrant replacement (cf. 3.3.22). [HRR] address
this problem by proving that the symmetric powers appearing in the generating
q-cofibrations are “very flat” (cf. [HRR, B.13,63]), which allows them to construct a
natural weak equivalence calculating geometric fixed points. Their method has the
advantage that it is more easily applicable to the general multiplicative norm case

130



3.4. FIXED POINTS OF SMASH POWERS

they aim to study. Our method on the other hand allows us to recognize the diagonal
map as a natural isomorphism, strengthening their statement. Note that the “Slice
Cells” discussed in [HRR, 4.1] are special cases of generating SIG-cofibrations in
our language, and from this viewpoint the filtration given in [HRR, A.4.3] and our
Theorem 3.4.22 achieve similar goals – an equivariant filtration of the smash power
– with different methods. Finally note that the change of the indexing of the smash
power away from a non discrete set we worked for in this section, is only addressed
in the side note [HRR, A.35]. Since all groups discussed there are finite, this is not
a major point in [HRR], but as we are going to move towards tori and more general
compact Lie groups now, the details become important.

Infinite Groups

We now leave the realm of finite groups and move back to the case of compact Lie
groups that is the main focus of our results. In particular to deal with topological
Hochschild homology and (higher) Cyclic homology, we are interested in the case
where G is a torus. The first thing we should address is that Condition 1 is actually
satisfied in these cases:

Lemma 3.4.45. Condition 1 is satisfied when G is the n-torus and H is the kernel
of an isogeny of G, in particular for G ∼= S1 and H a finite subgroup.

Proof. Let G = S1 × . . . × S1 = Tn. Observe that the group structure on Tn is
inherited from (Rn,+) via the isomorphisms

R�Z ∼= S1

a+ b 7→ [a][b]

k · a 7→ [a]k for k ∈ Z

Given an isogeny α of Tn, its kernel L is a finite subgroup. Note that there is a matrix
A = (ai,j) ∈ Mn(Z) ∩ Gln(Q) such that α : Tn → T n is induced by (A·) : Rn →
Rn. Under this correspondence, the kernel of α is isomorphic to the projection of

A−1Zn ⊂ Qn ⊂ Rn to R
n
�Zn. Note that A−1Zn is finitely generated by the columns

c1, . . . cn of A−1. The orders ρi of these generators in R
n
�Zn are given by the least

common multiple of the denominators of entries ci,j of the respective columns ci. Let
W be an H-representation via φ : H → OW . We can restrict ourselves to irreducible
representations W , hence assume that dimW ≤ 2. (The orthogonal matrices φ(li)
commute and hence can be brought to normal form simultaneously). If W = R is
the trivial L-representation, we can define V := W as the trivial G-representation
and are done. If W is one dimensional, define V := C ∼=R R2 with the standard
metric and let W → V be the embedding as the real line. We prolong φ to OV ,
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by mapping the non-trivial element of OW to the rotation of order 2. For W of
dimension 2, note that no element of H can be mapped to an element with negative
determinant of OW – if it does it has two different eigenspaces which have to be
preserved by all other elements of φ(H), hence W could not have been irreducible.
The generators of H have to map to elements of OC of order that divides their own.
In particular φ(ci) acts on C by multiplication with a root of unity ζkiρi , such that
φ(ci)

x is well defined for x ∈ R. Define an action of Tn on V = C by:

Rn�Zn × V
A·×V // Rn�AZn × V

µ // V

[(x1, . . . , xn)], z � //
∏
i

φ(ci)
xi · z

The definition of the lower map obviously gives an action of (Rn,+) on V , since
the φ(ci) commute. To see that it descends to an action of Tn, we have to show
that it is trivial on Zn. Let ej be one of the standard base vectors of Rn. Then
multiplication with A takes ej to the coordinate vector (a1,j, . . . , an,j). We need to
check that

∏
i

φ(ci)
ai,j = 1 in C:

In H ⊂ R
n
�Zn we can form the Z-linear combination Σiai,jci. Since the ci were the

columns of A−1 this gives back the standard basis vector ej which is congruent to 0
modulo Zn, i.e. the Z-linear combination Σiai,jli is equal to the unit in L. Since φ is
a group homomorphism this implies that

∏
i

φ(li)
ai,j = 1 in OC, i.e.

∏
i

φ(ci)
ai,j = 1 in

C as desired. This action extends the action of W by construction, since a generator
ci of H maps to ei under the multiplication with A, hence acts via φ(ci) on V . The
fixed points of V under the Tn action are trivial, since no φ(ci) that is not trivial
fixes a point except the origin.

We will need some more properties of tori, we begin with the one dimensional
case.

Lemma 3.4.46. Let Cn be a finite (cyclic) subgroup of order n in S1. There is a
simplicial Cn-set (Sn)∗ such that |(Sn)∗| ∼= S1.

Proof. This is easily done by hand, or by applying edgewise subdivision to the
standard simplicial model of S1.

Lemma 3.4.47. Let H be the kernel of an isogeny α of the torus Tn. There is a
simplicial H-set T∗ such that |T∗| ∼= Tn.

Proof. We combine the methods of the two lemmas above. For the intuition that
underlies the following, it is best to think of Rn as the n-fold product of the infinite
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simplicial complex R, which has vertices lying on the points in Z, and edges between
them. We identify the action of H on this complex, and then produce a finer
complex where the action is simplicial. As above associate to α an integer matrix
A ∈ Mn(Z) ∩ Gln(Q). In the notation above, the action of an element H on an

element [r] ∈ RN
�ZN corresponds to adding a linear combinations of columns of

A−1 to r. All the columns of A−1 are in det(A) · Zn by Cramer’s rule. Hence the
difference of r to its image under the action of any h ∈ H is in det(A) · ZN as well.
Thus let T∗ be the n-fold product of simplicial sets

T∗ = S∗ × . . .× S∗,

where S∗ is a CdetA-equivariant simplicial model of S1. The action of H on the
realization corresponds to a simplicial action on the resulting simplicial complex,
hence T∗ is the desired H-simplicial set.

Finally we can state the result about the diagonal map for our main case of
interest:

Theorem 3.4.48. Let G = Tn and N the kernel of an isogeny (such that Condition
1 is satisfied). For an S-cofibrant commutative orthogonal ring spectrum A and a

naively cofibrant G-space X, there is an isomorphism of G�N-spectra

ΛXNA→ ΦNΛX .

The isomorphism is natural, and restricts to the diagonal isomorphism under the

restriction of the G-action to any finite subgroup of G�N .

Proof. We begin with constructing the map and check equivariance afterwards. Re-
stricting to an arbitrary finite subgroup K of G that contains H, Proposition 3.4.39
gives a diagonal map

ΛXNA→ ΦNΛXN

of K�N -spectra. For K1 and K2 two such subgroups, the two maps they define

restrict to the same map of K1 ∩K2�N -spectra, since the diagonal maps are pre-
served under restriction (3.4.43). In particular all of these maps restrict to the same
underlying map of spectra. Note that for normal subgroups N ⊂ G an element [g] in

the quotient group G�N has finite order, if and only if the subgroup generated by g
intersects H non trivially, and in particular if and only if the subgroup generated by
{g}∪N contains N as a subgroup of finite index. This implies that we constructed a
map between spectra with J-action, which is equivariant with respect to the action

of all points in J that have finite order. Since G�H is isomorphic to G, we know

that the points of finite order are exactly the rational points in G�H ∼= Tn. Since
the rational points are dense in TN , and the actions on J-spectra are continuous,
the map is indeed J-equivariant.
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Since every element of a compact Lie group lies in a maximal torus, and in
particular contains points of finite order in every one of its neighborhoods, this
argument can be used in more general settings, as soon as one has control over
Condition 1 and a property analogous to 3.4.47:

Condition 2. Let G be a topological group and H a subgroup. Assume there exists
a simplicial H-set G∗, such that there is a H-equivariant isomorphism

|G∗| ∼= G

.

Remark 3.4.49. As we have seen above, the tori Tn satisfy Condition 2 with respect
to all kernels of isogenies. To the knowledge of the author, the completely general
case is unknown. Note that Illman’s triangulation theorem C.2.4 constructs an H-
equivariant triangulation of G, but since the usual methods that produce simplicial
sets from simplicial complexes fail for Illmans equivariant simplices ([Ill83, §3]), this
is not enough.

Theorem 3.4.50. Let G be a compact Lie group, and N a normal subgroup. Assume
that G satisfies Conditions 1 and 2 with respect to all subgroups K containing N ,
such that N has finite index in K. For an S-cofibrant commutative orthogonal ring

spectrum A and a naively cofibrant G-space X, there is an isomorphism of G�N-
spectra

Λ
N
A→ ΦNΛXN.

The isomorphism is natural, and restricts to the diagonal map under the restriction

of the action to any finite subgroup of G�N .

Before we end this section, let us briefly say something about the change of base
rings. Recall that we defined R-model structures for the categories of R-modules
for R a commutative orthogonal ring spectrum. In particular, the generating R-
cofibrations were given by smashing R with the generating S-cofibrations. Recall
that the category of R-modules is symmetric monoidal with respect to the monoidal
product ∧R, defined via the coequalizer diagram A.1.17, and we defined the R-
Loday functor using this product in 3.2. We would like to state a result analogous
to Theorem 3.4.26, but there is an obstruction: There is a priori no guarantee that
for an arbitrary, or even for an S-cofibrant commutative orthogonal ring spectrum
the geometric fixed points of R equipped with the trivial G-action, are isomorphic
to R itself. Note that the sphere spectrum of course has this property by 3.3.16,
since S ∼= F0

S0 . Excluding this case, we still get the following

Theorem 3.4.51. Let G be a compact Lie group and N a normal subgroup. Assume
that G satisfies Conditions 1 and 2 with respect to all subgroups K containing N ,
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such that N has finite index in K. Let R be an S-cofibrant orthogonal ring spectrum
such that ΦNR ∼= R. There is a natural isomorphism

ΛR
XN
A ∼= ΦN(ΛR

XA),

if A is an R-cofibrant commutative R-algebra and X a naively cofibrant G-space, or
if A is an R-cofibrant R-module and X is a finite free G-set.

Proof. For the spectrum case, since L is R-cofibrant, it is isomorphic to R∧K with
K an SI-cellular spectrum. Applying The smash power L∧RX is then isomorphic to
R∧K∧X . Here G acts trivially on R and in the usual way on the smash power of
K. Then by 3.3.60 and 3.4.31 the result follows. For the algebra case we can follow
the discussion for R = S above.
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3.5 Homotopical Properties

We finally turn to investigating the homotopy theoretical properties of the Loday
functor. For one, this this will allow us to establish the comparison result to the
BCD model. On the other hand it is very good to know, that the S-model structures
and in particular the induced regular cells are sufficiently well behaved to allow for
the standard tools of equivariant stable homotopy theory to apply, without having
to resort to q-cofibrant replacements.

3.5.1 Homotopy Groups

The main point we want to establish is the characterization of geometric fixed points
for smash powers of 3.5.13. But before we can give precise statements, we have to
once again recall definitions from [MM, V.4], the first one being homotopy groups
for OE-spectra, geometric homotopy groups, and several homomorphisms between
the different homotopy groups associated to a G-spectrum. Let as usual

E : 1 // N // G
ε // J // 1

be a sequence of compact Lie groups.

Definition 3.5.1. [MM, 4.8] Let Y aOE-spectrum andX an orthogonalG-spectrum.

Let H�N = K ⊂ J , with H a subgroup of G containing N .

(i) Define the homotopy groups of Y via

πKq Y :=

{
colimV ∈OE πq(Ω

V NYV )K if q ≥ 0

colimRq⊂V ∈OE π0(ΩV N−RqYV )K if q ≤ 0

(ii) Define a natural homomorphism

ζ : πK∗ (UνY )→ πK∗ (Y ),

by restricting the defining colimit system of πK∗ Y to only those V such that
V = ν∗W , i.e. V = V N .

(iii) Define the geometric homotopy groups of X as

ρKq (X) := πKq (FixNX).

(iv) Define a natural homomorphism

ψ : πK∗ (XN)→ πH∗ (X),

by restricting the defining colimit system of πH∗ (X) to N -fixed V as above,
using that for these

(ΩVXN
V )K ∼= (ΩVXV )H .
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(v) Define a natural homomorphism

ω : πH∗ (X)→ ρK∗ (X),

by sending an element of πHq (X) represented by anH-equivariant map f : Sq∧SV →
XV to the element of ρKq (X) represented by theK-equivariant map fN : Sq∧SV N →
XN
V for q ≥ 0 and similar for q ≤ 0.

(vi) A morphism of OE-spectra is a π∗-isomorphism if it induces isomorphisms
on all homotopy groups πK∗ , a morphism of orthogonal G-spectra is a ρ∗-
isomorphism if it induces isomorphisms on all geometric homotopy groups
ρK∗ .

Note that ψ is a natural isomorphism if X is a G-Ω-spectrum, in particular we
can use the fixed point spectra of a fibrant approximation of X to calculate the
equivariant homotopy groups of X. This implies the following characterization

Lemma 3.5.2. Let H be a closed family of normal subgroups of G. A morphism
f of G-Ω-spectra is an πH

∗ -isomorphism if and only if FixHf is a non equivariant
π∗-isomorphism for all H ∈H .

We continue to follow through the arguments in [MM, V.4]:

Lemma 3.5.3. [MM, V.4.9] The natural homomorphisms in Definition 3.5.1 are
related via

ζ = ω ◦ ψ.

Lemma 3.5.4. [MM, V.4.10] For orthogonal J-spectra Z, the homomorphism

ζ : πK∗ (Z) = πK∗ (UνUφZ)→ πK∗ (UφZ)

is an isomorphism.

This allows the following definition:

Definition 3.5.5. For orthogonal G-spectra X, define a natural homomorphism

η∗ : ρ
K
∗ (X)

= // πK∗ FixNX
ηφ // πK∗ (UφPφFixNX)

ζ−1
// πK∗ (PφFixNX)

= // πK∗ (ΦNX),

where ηφ is the unit of the adjoint pair (Pφ,Uφ) from 3.3.8.

Recall the map γ from 3.3.13.
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Lemma 3.5.6. [MM, V.4.11] Let K = H�N , with N ⊂ H. For orthogonal Ω-G-
spectra X, the map γ∗ : π

K
∗ (XN) ∼= πK∗ (ΦNX) is the composite

πK∗ (XN)
∼= // πH∗ (X)

ω // ρK∗ (X)
η∗ // πK∗ (ΦNX).

The following lemma is the first point where we have to adapt the argument to
fit our more general cells:

Proposition 3.5.7. cf. [MM, V.4.12] The map η∗ : ρ
K
∗ (X) → πK∗ (ΦNX) is an

isomorphism for (Indreg ∪ F IG)-cellular orthogonal G-spectra X.

Proof. As in the classical case, because ΦN preserves cofiber sequences, wedges, and
colimits of sequences of h-cofibrations, it suffices to check that η∗ is an isomorphism
on all objects of the form

X := G+∧P (GV (L)∧P ),

with L a genuine OVoP -cell complex. Note that if N is not a subgroup of P , then
FixNX is trivial, hence there is nothing to prove. Otherwise, as in the proof of
Proposition 3.3.41 we get

FixNX = J+ ∧J1 GEV⊕P
[
OV⊕P ∧∏

J1

OV
L∧J1

]
,

where J1 = G�P . Writing down the defining colimit systems, we see that η∗ is the
map

colim
W∈ε∗OJ

colim
UN=W

πq

(
ΩW

[
J+∧J1OE(V ⊕P , U)∧∏

J1

OV
L∧J1

])K
−→ colim

W∈ε∗OJ
πq

(
ΩW

[
J+∧J1OJ(V ⊕J1 ,W )∧∏

J1

OV
L∧J1

])K
.

Hence it suffices to prove that

p : hocolim
UN=W

OE(V ⊕P , U)→ OJ(V ⊕J1 ,W )

is a ΠJ1 o J1-homotopy equivalence, where the map is induced by the restriction to
the N -fixed space V ⊕J1 ⊂ V ⊕P (cf. 3.3.8).
From the definition of OE (3.3.2), recall that OE(V⊕P , U) = OG(V⊕P , U)N . Note
that any N -equivariant isometry has to preserve fixed spaces and orthogonal com-
plements, hence for W ⊕ U ′ ∼= U and ⊕⊕J1V ′ ∼= V⊕P orthogonal decompositions,
there is an isomorphism

OE(V⊕P , U) ∼= OJ(V⊕J1 ,W )× L(V ′, U ′)N ,
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with L(V ′, U ′) the space of linear isometric embeddings from 1.2.17, and the map p
corresponds is induced from the projections to the first factor. It therefore suffices
to prove that L(V ′, colimU ′)N → ∗ is a ΠJ1OV o J1-homotopy equivalence. Since
V ′ was the orthogonal complement of V⊕J1 , the ΠJ1OV action is trivial, so [LMS,
II.1.5] gives the desired result.

We continue following [MM, V.4]: Recall the definition of the universal F -space
EF for a closed family of subgroups of G from C.1.18.

Definition 3.5.8. For N a normal subgroup, let F = F [N ] be the family of
subgroups of G that do not contain N . Let EF be the universal F -space, and let
ẼF be the cofiber of the quotient map EF+ → S0 that collapses EF to the non
basepoint. For orthogonal G-spectra X, the map λ : S0 → ẼF induces a natural
map λ : X → X∧ẼF .

Note that (ẼF )H = S0 if H contains N , and (ẼF )H is contractible otherwise.

Lemma 3.5.9. [MM, V.4.15] For orthogonal G-spectra X, the map

ΦNλ : ΦNX → ΦN(X∧ẼF )

is a natural isomorphism of orthogonal J-spectra.

The following lemma is another point where we need to be careful about the
type of cofibrant objects:

Lemma 3.5.10. cf. [MM, V.4.16] Let K = H�N , with N ⊂ H. For Indreg ∪ F IG-
cellular orthogonal G-spectra X, the map

ω : πH∗ (X∧ẼF )→ ρK∗ (X∧ẼF )

is an isomorphism.

Proof. Note that Proposition [LMS, 9.3], which is essential for the proof given in
[MM, 4.16] also holds for the weaker assumption of genuine G-cell complexes instead
of G-CW-complexes. In particular there are bijections

[A,B∧ẼF ]G ∼= [AN , B∧ẼF ]G ∼= [AN , B]G

between sets of G-homotopy classes for A any representation sphere and B a level
of an induced regular spectrum, which is a genuine G-cell complex by 3.3.66 and
C.2.5. Hence as in the classical case, the map

ω : colim
V

πq

[
ΩV (XV∧ẼF )

]H
→ colim

V
πq

[
ΩV N (XV∧ẼF )N

]K
is a colimit of isomorphisms.
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Finally we can state the main purpose of this excursion, with the classical proof
applying verbatim, using our modified results above:

Proposition 3.5.11. [MM, V.4.17] For Indreg-cellular orthogonal G-spectra X, the
diagram

R(X∧ẼF )N
γ→ ΦNR(X∧ẼF )

ΦN (ξλ)← ΦNX (3.5.12)

displays a pair of natural π∗-isomorphisms of orthogonal J-spectra, where R is a
fibrant replacement functor from the classical stable model structure.

Remark 3.5.13. The significance of this proposition stems from the fact, that there
are alternative definitions for the geometric fixed points of aG-spectrum. Classically,
one would take the leftmost J-spectrum in the zigzag (3.5.12) as the definition. The
proposition then tells us that the homotopy type of the geometric fixed points of an
Indreg-cellular G-spectrum calculated in terms of Definition 3.3.10 is “correct”, even
without first applying a q-cofibrant replacement functor. Note that in the spirit of
Remark 3.3.67, we could use the same proofs to extend 3.5.7 and 3.5.10 and hence
Proposition 3.5.11 and Proposition 3.5.15 below to Sreg-cellular spectra. However
the added generality makes the notation in the proofs even more convoluted, and
we only need the weaker result.

The importance of this remark stems from the fact that we want to be able to
use the “fundamental cofibration sequence”. It is the following homotopy-cofiber
sequence of (non equivariant) orthogonal spectra:

[R(X∧EF+)]N // [R(X)]N // [R(X∧ẼF )]N , (3.5.14)

which arises from the defining cofiber sequence of ẼF by smashing with X, fibrant
replacement and passing to categorical fixed points. We saw above, that the homo-
topy groups of the right spectrum are closely related to the homotopy groups of the
geometric fixed points of X. Together with Lemma 3.5.2 from above this implies
the following statement:

Proposition 3.5.15. Let H be a closed family of normal subgroups of G and let
X and Y be Indreg ∪ F IG-cellular. Then for a morphism f : X → Y , the following
are equivalent:

(i) The map f is a πH
∗ -isomorphism.

(ii) For all H ∈H the map ΦHf is a (non equivariant) π∗-isomorphism.

Proof. Note that since Indreg consists of S-cofibrations, X and Y are levelwise gen-
uine G- hence N -complexes. We compare the maps induced on the homotopy cofiber
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sequences for N ∈H :

[R(X∧EF+)]N

��

// [R(X)]N

��

// [R(X∧ẼF )]N

��
[R(Y ∧EF+)]N // [R(Y )]N // [R(Y ∧ẼF )]N

(3.5.16)

We use induction on the size of the family H , which is possible since G is compact
(cf. [tD, 1.25.15]). For the trivial family, the result is true. We claim first, that
both (i) and (ii) imply that the left vertical map is a π∗-isomorphism, for (i) this
is trivial by 2.2.37. For (ii) we use the induction hypothesis which implies that f
is an H ∩F -equivalence. Since F is the family of subgroups not containing N ,
H ∩F is the family FN of all proper subgroups of N . Note that as an N -space,
EF is a universal FN -space. Thus R(X∧EF+) → R(Y ∧EF+) is a levelwise FN

equivalence between genuine FN -complexes, thus an N -homotopy equivalence and
the claim follows. Finally Lemma 3.5.2 and Proposition 3.5.11 finish the proof, since
they show that property (i) is equivalent to the second vertical map in (3.5.16) being
a π∗-isomorphism for all N , and (ii) being equivalent to the third vertical map in
(3.5.16) being a π∗-isomorphism.

This has the following immediate consequences:

Corollary 3.5.17. Let G = Tn be the n-torus and let H be the family of kernels
of isogenies. Let X be a free cofibrant Tn-space. Then the Loday functor ΛX(−)
sends π∗-isomorphisms between S-cofibrant commutative orthogonal ring spectra to
πH
∗ -equivalences of commutative orthogonal Tn-spectra.

Proof. Since the S-model structure on commutative orthogonal ring spectra is topo-
logical, we know that the tensor with a cofibrant space non equivariantly preserves
π∗-isomorphisms between cofibrant commutative S-cofibrations. By Theorem 3.4.48,
it therefore also induces non equivariant π∗-isomorphisms in geometric fixed points
with respect to all subgroups H ∈H , so Proposition 3.5.15 gives the result.

Similarly for more general compact Lie groups Theorem 3.4.50 gives the following
analogue:

Corollary 3.5.18. Let G be a compact Lie group and let H be a closed family
of normal subgroups that is closed under extensions of finite index, such that G
satisfies Conditions 1 and 2 with respect to all H ∈ H . Let X be a free cofibrant
G-space. Then the Loday functor ΛX(−) sends π∗-isomorphisms between S-cofibrant
commutative orthogonal ring spectra to πH

∗ -equivalences of commutative orthogonal
G-spectra.
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Remark 3.5.19. Analogous results hold for the cases of mere S-cofibrant spectra and
finite free G-sets X as well as spectra S-cofibrant under S and infinite free G-sets X
(cf. Subsection 3.4.3).

3.5.2 Comparison to the [BCD]-model

We compare the Loday functor of Section 3.2 to the model constructed in Section 4
of [BCD]. Since op. cit. is written in the language of Γ-spaces, respectively simpli-
cial functors, we cannot do so directly, but instead have to use comparison theorems
such as the ones given in [MMSS, §0] and [SS03, §7]. As mentioned in the intro-
duction to [SS03, §7] the corresponding comparisons of categories of commutative
monoids do not extend over the whole range of the comparison. Developing such
comparison results beyond the scope of this thesis, hence we restrict our comparison
to the underlying spectra, respectively the equivariant structure. Since the weak
equivalences considered between commutative monoids are in both contexts created
in the underlying category, this seems satisfactory.
We begin with the non equivariant discussion. Recall the definition of a strong mo-
noidal Quillen equivalence from [SS03, 3.6]. The discussion in the introduction of
[MMSS] and [SS03, 7.1] state that there is a diagram of strong monoidal Quillen
equivalences

SF

PT

��
WT

U

>>__ OT ,

P

~~
(3.5.20)

where SF is the category of simplicial functors andWT is the category of continuous
functors from finite CW -complexes to spaces, respectively, and the model structure
on OT is the classical stable one from 1.2.54. The functor T is the postcomposition
with the simplicial complex, and the instances of P and FU are prolongation and
restriction functors analogous to 2.2.23. We displayed the strong monoidal left
adjoints as the top arrow.
Since these Quillen equivalences are not composable as such, we compare the two
constructions of the Loday functor inWT . However, since it would take us too far to
recall the whole construction from [BCD], we will immediatel reduce our comparison
to smash powers with the help of the following lemma. We denote the [BCD]-Loday
functor by Λ̂.

Lemma 3.5.21. [BCD, 4.4.4] If A is cofibrant and T is a finite set, then there is a
chain of stable equivalences between Λ̂TA and the T -fold smash product

∧
T A.

In particular the functor Λ̂T models the T -fold derived smash product of A with
itself. Since the Loday functor we defined for orthogonal spectra has the analogous
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property, and since by the (3.5.20) the homotopy categories of SF and OT are
monoidally equivalent, this could already be seen as a successful comparison. We can
say a little bit more: Recall that the identity functor on OT gave strong monoidal
Quillen equivalences between the absolute, positive and S-model structures:

OT

id

>>
OT +

id

  

id

~~
OT S.

id

aa (3.5.22)

Since the identity functors are in particular strong monoidal, the standard methods
for (monoidal) Quillen pairs (and [H, 1.3.13, (b)]) give:

Lemma 3.5.23. For A a cofibrant simplicial functor and X a finite set, there is a
chain of natural stable equivalences in WT connecting

PT(A∧X) ' P(( cof. U fib. PTA)∧X),

where fib. denotes a functorial fibrant replacement in WT , and cof. denotes a func-
torial S-cofibrant replacement in OT .

The comparison of the equivariant properties is similarly obstructed by the fact
that there seem to be no usable comparison results on model category level between
equivariant orthogonal spectra and equivariant simplicial functors. We therefore
only compare on equivariant homotopy categories, making use of our results on
the equivariant structure of ΛXA surrounding Proposition 3.5.15 and the analogous
result [BCD, 5.2.5]:

Lemma 3.5.24. Let G be a finite abelian group, X a free G-simplicial set and A a
commutative monoid in simplicial functors. The homotopy fiber of the map

[Λ̂XA]G → holim
06=H⊂G

[
Λ̂XHA

]G�H
(3.5.25)

induced by the restriction maps is connected by a chain of natural maps that are
stable equivalences to the homotopy orbit spectrum [Λ̂XA]hG.

There are two important translations to be made here. The first is identifying
the target of (3.5.25) with the geometric fixed points (defined in terms of ẼF , cf.
Remark 3.5.13) as in [HM, 2.1]. The second is the identification of the homotopy
fiber [ΛXA∧EF+]H of 3.5.14 with the homotopy orbits [ΛXA∧EF+]H in the ho-
motopy category via the Adams isomorphism as in [MM, VI.4.6]. Then the two
(co-)fiber sequences in homotopy category exactly say, that ΛXA and Λ̂XA have the
same equivariant structure, i.e. the same homotopy type on all fixed points with
respect to (finite) subgroups.
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3.6 THH and TC

We finish the discussion of the Loday functor by identifying the structure neces-
sary to define higher topological Hochschild homology and higher topological cyclic
homology. We follow Kro’s approach from [Kr, §5] for the one dimensional theory,
and use it as motivation and guideline for our treatment of the higher analogues in
subsection 3.6.2.

3.6.1 Classical Structure

Topological Hochschild Homology

We finally put the Loday functor we constructed to use in defining topological
Hochschild Homology for commutative orthogonal ring spectra. We do not try to
give more of an overview over the existing theory in other settings than was already
attempted in the introduction, and instead redirect the interested reader to [Sh]
for the case of symmetric spectra, [MSV] for S-algebras in the sense of [EKMM] or
[Mad] and [DGM] for a general overview over the classical approach and applications
towards TC and K-theory. As we already mentioned in the introduction, we will
use the following simple definition:

Definition 3.6.1. Let A be an S-cofibrant commutative orthogonal ring spectrum.
Define the topological Hochschild homology spectrum THH(L) to be the commutative
orthogonal S1-spectrum

THH(L) := ΛS1A ∼= A⊗ S1.

Of course a similar definition is possible for non-cofibrant commutative ring spec-
tra, but for the definition to have homotopical meaning, the assumption is necessary.
As usual, we can always precompose with a cofibrant replacement functor for the
S-model structure. We want to allow ourselves, however, to not cofibrantly replace
again if we start with a cofibrant spectrum though, so we do not put the S-cofibrant
replacement in the definition. We note once more, that contrary to the classical
model structure, the cofibrant replacement takes place in the category of commuta-
tive orthogonal ring spectra, so that the tensor definition still makes sense.
Note that Theorem 3.1.11, together with the standard simplicial model for S1, im-
plies the following lemma:

Lemma 3.6.2. For a commutative orthogonal ring spectrum A, the topological
Hochschild homology spectrum THH(A) is isomorphic to the geometric realization
of the simplicial commutative ring spectrum given by THH(A)q := A∧q+1, with the
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simplicial structure maps given by

di =

{
id∧i ∧µ∧ idq−i−1 for 0 ≤ i < q

(µ∧ id∧q−1) ◦ Tq,1 for i = q

si = id∧i+1 ∧η∧ idq−i

where µ and η are the multiplication respectively unit map of A and Tq,1 is the action
of the shuffle permutation mapping

A∧q+1 = A∧q∧A Tq,1−→ A∧A∧q = A∧q+1.

Recall that for A an orthogonal ring spectrum whose unit S → A is a q-
cofibration, Kro defines an orthogonal spectrum THH(A) in [Kr, 5.2.1] via a simpli-
cial spectrum analogous to the Lemma. Hence in particular, by 3.1.13 we get that
Definition 3.6.1 yields a commutative orthogonal ring spectrum THH(A) whose un-
derlying spectrum is isomorphic to THH(A) in Kro’s sense, so we immediately stop
distinguishing between the notation.
For a ring spectrum A whose unit S→ A is only a closed inclusion of spectra, Kro
further defines a functor Γ in [Kr, 2.2.13], such that Γ(A) → A is a map of ring
spectra which is an underlying level fibration of orthogonal spectra. Denote the cofi-
brant replacement functor in the S-model structure for commutative orthogonal ring
spectra by E. The following lemma shows that the homotopy type of the spectrum
THH(A) does not depend on which of the two cofibrant replacements we chose:

Lemma 3.6.3. For a commutative orthogonal ring spectrum A whose unit S → A
is a an underlying closed inclusion of spectra, there is a π∗-isomorphism

THH(Γ(A))→ THH(E(A)).

Proof. Since acyclic S-fibrations of commutative orthogonal ring spectra are in par-
ticular acyclic q-fibrations of underlying spectra, the lifting property in the q-model
structure gives a π∗-isomorphism f : Γ(A) → E(A). We use the simplical spectrum
from Lemma 3.6.2 to calculate THH. Both of the resulting simplicial spectra are
h-proper by the same argument as in the proof of in 1.3.22. Since both Γ(A) and
E(A) are S-cofibrant as spectra, f induces a π∗-isomorphism f∧q in each simplicial
level by the pushout product axiom for the S-model structure. Hence Proposition
B.1.47 implies, that the induced map on realizations is a π∗-isomorphism.

Of course we also need to know that the equivariant homotopy type agrees, which
will be an immediate consequence of Lemma 3.6.10 below.
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Definition 3.6.4. Let G = S1 be the circle and let H be the closed family of finite
(cyclic) subgroups. An morphism of orthogonal S1-spectra is called a cyclotomic
π∗-isomorphicm if it is a πH

∗ -isomorphism, i.e. if it induces isomorphisms on πC∗ for
all subgroups C ∈H .

Definition 3.6.5. For C ∈H , let ρC be the isomorphism

ρC : S1 ∼= S1

�C.

Denote as usual by ρ∗C the restriction functor from S1�C-equivariant orthogonal spec-
tra to S1-equivariant orthogonal spectra.

Then the following result extends Kro’s Theorem 5.2.5:

Theorem 3.6.6. Let A be an S-cofibrant commutative orthogonal ring spectrum
then there are isomorphisms of S1-equivariant commutative orthogonal ring spectra

ρ∗CΦC THH(A) ∼= THH(A).

For f : A→ B a π∗-isomorphism of S-cofibrant commutative orthogonal ring spectra,

THH(f) : THH(A)→ THH(B)

is a cyclotomic π∗-isomorphism of S1-equivariant commutative orthogonal ring spec-
tra.

Proof. The first part is immediate from Theorem 3.4.48 and the fact that ρ∗ΛXA ∼=
Λρ∗XA as in the discussion before 3.4.43. The second part is the one-dimensional
case of Corollary 3.5.17

This exhibits THH(A) as an especially strong example of a cyclotomic spectrum.
We are going to give the explicit definition after the next construction:

Construction 3.6.7. Let G = S1, and let C, D and E be finite subgroups such that

ρC(D) = E�C. In particular we have that for an S1 space X there is an isomorphism
of fixed points

(XC)
E�C ∼= XE, and hence (ρ∗C(XC))D ∼= XE.

The same formulas hold for categorical fixed points of an S1-spectrum L.
In other setups of equivariant stable homotopy theory and cyclotomic specta, one
can sometimes also identify

ρ∗DΦDρ∗CΦCL = ρ∗EΦEL, (3.6.8)
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see for example [HM, Definition 2.2]. However: care needs to be taken when adapt-
ing this to the orthogonal case, since both the classical Definition of the geometric
fixed point functor Φ is different from the one we used here (c.f Remark 3.5.13 and
[HM, p.32]), and there are “spectrification” functors hidden in the classical nota-
tion. In our setting, the equal sign in (3.6.8) is certainly not warranted. However,
by Proposition 3.3.57 there is a natural isomorphism

ρ∗DΦDρ∗CΦCL→ ρ∗Dρ
D
E

∗
Φ
E�CΦCL,

where ρDE : S
1
�D →

S1
�E is the isomorphism ρ−1

D ◦ ρE.
Writing down the defining coends one easily constructs a natural map

ΦEL→ Φ
E�CΦCL,

using that a coend of fixed points maps into the fixed points of the coend. For
induced regular semi-free spectra (3.3.64) this map is an isomorphism via the iden-
tifications of Theorem 3.3.65, hence the same is true for Sreg-cellular (3.3.67) and in
particular q-cofibrant or Indreg-cellular spectra by a cell induction argument.

This allows us to formulate the following definition:

Definition 3.6.9. (cf. [Kr, 5.1.3]) An orthogonal S1-spectrum L is cyclotomic, if
for all C ∈H there are π∗-isomorphisms

rC : ρ∗CΦCL→ L,

such that the diagrams

ρ∗DΦDρ∗CΦCL

ρ∗DΦDrC
��

ρ∗EΦELoo

rE

��
ρ∗DΦDL

rD // L

commute for all subgroups C, D and E in H , such that ρC(D) = E�C.
A map of cyclotomic spectra is a morphism of orthogonal S1-spectra which commutes
with the cyclotomic structure maps rC for all C ∈H .

Note that by the naturality of the diagonal map (3.4.39), the functor THH(−) ∼=
ΛS1(−) not only produces cyclotomic spectra, but also maps of cyclotomic spectra
from morphisms between S-cofibrant commutative ring spectra.
The following is a generalization of [Kr, 5.1.5]

Lemma 3.6.10. Let L and L′ be Sreg-cellular S1-spectra (e.g. q-cofibrant or Indreg-
cellular). A map f : L → L′ of cyclotomic spectra is a cyclotomic π∗-isomorphism
if and only if it is a non-equivariant π∗-isomorphism.
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Proof. The proof is immediate from Proposition 3.5.15 and the two out of three
property for cyclotomic π∗-isomorphisms.

Note that this looks weaker than [Kr, 5.1.3] on first glance, but Kro suppresses
the cofibrancy hypothesis, and in particular only provides proofs for the q-cofibrant
case. As a corollary we get that the cyclotomic homotopy type of the underlying
spectrum of our version of THH for commutative ring spectra agrees with the one
Kro constructs:

Corollary 3.6.11. The non equivariant π∗-isomorphism THH(Γ(A))→ THH(C(A))
in Lemma 3.6.3 is even a cyclotomic π∗-isomorphism of cyclotomic spectra.

Topological Cyclic Homology

We finally discuss TC. As in the previous paragraph, we do not try to give an
overview over the existing theory or even recall results, but rather show how to
adapt the definitions to the setting of orthogonal spectra in order to motivate the
approach to the higher theory. Better places to read about the classical constructions
are for example [BHM], [HM] and again [DGM] and [Mad]. We will again stay close
to Kro’s exposition from [Kr, 5.1].

Definition 3.6.12. (cf. [HM, 4.1]) Let I be the category with objects the nat-
ural numbers {1, 2, 3, . . .}. The morphisms of I are generated by the Restrictions
Rr : rm→ m and the Frobenii F r : mr → m, subject to the following set of relations:

. (3.6.13)
R1 = F 1 = idm

RrRs = Rrs

F rF s = F sr

RrF
s = F sRr

Note that we were careful about the ordering of products mr versus rm in N.
This is of course not of consequence here, but will become important when passing
to higher dimensional analogues.

Construction 3.6.14. A cyclotomic spectrum L defines a functor I → OT by map-
ping n ∈ I to the categorical fixed point spectrum LCn , where Cn is the cyclic
subgroup with n elements of S1. The actions of the Frobenius maps are then given
by the inclusions of fixed points

F r : LCmr ∼= (LCm)
Cr → LCm ,
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whereas the Restriction maps make use of the map γ from 3.3.13:

Rr : LCrm ∼= (LCr)Cm
γCm−→ (ΦCrL)Cm

rCr−→ LCm .

We suppressed several instances of maps ρ from the notation to keep the formulas
readable. The appropriate relations can then be checked using the definition of
cyclotomicity, but since we will spend more time on these later (3.6.27), we omit
the details for now.

Note that since the model structures on OT we discuss are topological in the
sense of B.1.10, it is in particular simplicial via the Quillen equivalence between
spaces and simplicial sets. Hence there is a concrete model in OT for the homotopy
limit (e.g. [Hir, 18.1.8]) in the following definition:

Definition 3.6.15. Let L be a cyclotomic spectrum, the topological cyclic homology
spectrum TC(L) is the orthogonal spectrum

TC(L) := holim
n∈I

TCn .

For a commutative orthogonal ring spectrum A, abbreviate TC(THH(A)) as TC(A),
and call TC(A) the topological Cyclic homology spectrum of A.

Remark 3.6.16. Note that talking about cyclotomic commutative ring spectra here
does not gain a lot of benefits, even though our construction of THH(A) gives the
structure for free: Since the homotopy limit involves some objectwise fibrant replace-
ment, we can only hope for TC(L) to have the correct homotopy type if L is at least
an Ω-spectrum. Since we cannot guarantee, that the fibrant replacement functor
in the S-model structure preserves the ΦN , we have to use a q-fibrant replacement
functor, which in general destroys the strict commutativity. The q-fibrant replace-
ment functor Q associated to the stable model structure on S1-spectra from 2.2.46
in particular also preserves cyclotomicity by [Kr, 5.1.10] so it seems most natural
to use it here. However, the functoriality of the Loday functor ΛX(A) will allow us
to identify the higher analogue of the cyclotomic structure much easier than in the
classical setup, so it is still worthwhile to use it even when dealing with TC and not
just THH.

3.6.2 Higher Structure

In this final section, we identify the higher structure on ΛG(A), that is used when
defining higher topological Cyclic homology or Covering Homology as in [CDD],
respectively [BCD]. We fix some compact Lie group G that satisfies Conditions 1
and 2 with respect to a closed family H of kernels of isogenies. The main example
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we have in mind is G = Tn the n-dimensional torus, with the family H of all kernels
of isogenies, since this is gives the higher analogue of topological Cyclic homology.
Since the structure we study below depends on the choice of H , or rather the choice
of the isogenies, i.e. self covers of G, this theory is usually titled Covering Homology
(cf. [CDD]).

Definition 3.6.17. Let A be an S-cofibrant commutative orthogonal ring spec-
trum. Define the higher topological Hochschild homology spectrum THHn(L) to be
the commutative orthogonal S1-spectrum

THHn(L) := ΛTnA ∼= A⊗ Tn.

Note that by the defining adjunctions of the categorical tensor, THHn(A) is iso-
morphic to the n-fold iterated application of THH to A, and in particular one could
study the S1-equivariant structure induced by each of these iterations separately,
however the Loday functor allows us to also investigate much more intricate diag-
onal phenomena since we have the whole Tn-equivariant structure available. We
begin with a proposed definition of the higher analogue of cyclotomicity mentioned
in [CDD, 2.1]:

Definition 3.6.18. Let G and H be as above. A morphism of orthogonal G-spectra
is called a cyclotomic π∗-isomorphism if it is a πH

∗ -isomorphism.

Definition 3.6.19. Let α : G → G be an isogeny with kernel denoted by Lα, such
that there is an isomorphism of groups

ρα : G ∼= G�Lα.

Denote the inverse of ρα by φα (cf. [CDD, 2.2]).

Remark 3.6.20. Note that the notation is coherent with Definition 3.6.5, where the
isogeny α of S1 associated to a cyclic subgroup of order n is of course the map
induced by raising a complex number z to the nth-power zn. Since in the one-
dimensional case such (orientation preserving) isogenies and their kernels are in one
to one correspondence, there is no loss of information in the indexing.

Construction 3.6.21. For α and β isogenies we can form their composite α ◦ β = αβ
and their kernels Lβ ⊂ Lαβ satisfy

ρβ(Lα) = Lαβ�Lβ.

Hence as in 3.6.7 there is a natural map

ΦLαβA→ Φ
Lαβ�LβΦLβA, (3.6.22)
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which using Proposition 3.3.57 induces a natural map

ρ∗αβΦLαβA→ ρ∗αΦLαρ∗βΦLβA,

and both of these become isomorphisms for Sreg-cellular G-spectra A.

Definition 3.6.23. A cyclotomic orthogonalG-spectrum is an orthogonalG-spectrum
A, together with cyclotomic π∗-isomorphisms

rα : ρ∗αΦLαA→ A,

for all isogenies α whose kernel Lα is in H , such that the diagrams

ρ∗αΦLαρ∗βΦLβA

ρ∗αΦαrβ
��

ρ∗αβΦLαβAoo

r

��
ρ∗αΦαA

rα // A

commute for all isogenies α and β with Lα, Lβ and Lαβ in H .
A map of cyclotomic spectra is a morphism of orthogonal S1-spectra which commutes
with the cyclotomic structure maps rα.

One can chose to fix a collection I of isogenies instead of the family H of kernels
and get a similar definition. For example to get a complete analogue of the one
dimensional case from Defintion 3.6.9, one should restrict to orientation preserving
isogenies of S1. The analogue of Theorem 3.6.6 uses our results 3.5.18 and 3.4.50 on
the equivariant structure of the Loday functor for more general compact Lie groups:

Proposition 3.6.24. Let A be an S-cofibrant commutative orthogonal ring spec-
trum then the underlying G-spectrum of ΛG(A) is cyclotomic and ΛG(−) sends π∗-
isomorphisms to cyclotomic maps that are cyclotomic π∗-isomorphisms.

We want to identify the Restriction and Frobenius maps that are used to de-
fine the covering homology and in particular higher topological Cyclic homology (cf.
[CDD, 2.2]). Since the indexing via isogenies and, in particular, the maps ρα com-
plicate the notation significantly, we start by defining relative versions, postponing
the coordinate change ensued by changing back to G-spectra to Definition 3.6.28:

Definition 3.6.25. Let N ⊂ H ⊂ G be a sequence of subgroups and denote by
ρNH : G�N → G�H the associated projection. For A an S-cofibrant commutative

orthogonal ring spectrum, the G�H-spectrum (ΛXA)H becomes a G�N -spectrum via

the restriction along ρNH . The Frobenius map FH
N is the morphism of G�N -spectra

FH
N : (ΛXA)H → (ΛXA)N

given by the inclusion of fixed points on on each level.
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Note that FH
N defines a natural transformation (−)H → (−)N .

Definition 3.6.26. Let N ⊂ H ⊂ G be a sequence of subgroups and let A be an
S-cofibrant orthogonal spectrum as above. The Restriction map RH

N is the natural

map of G�H-spectra

RH
N : (ΛXA)H ∼=

(
(ΛXA)N

)H�N γ
H�N−→

(
ΦNΛXA

)H�N ∼= (ΛXNA)
H�N

The following is the first example of a higher (relative) version of the relations
(3.6.13):

Proposition 3.6.27. The following diagram is commutative for all S-cofibrant or-
thogonal spectra A and configurations of subgroups N ⊂ H ⊂ J ⊂ G:

(ΛXA)J

FJH
��

RJN // (ΛXNA)
J�N

F
J�N
H�N��

(ΛXA)H
RHN

// (ΛXNA)
H�N

Proof. We split the diagram into the following:

(ΛXA)J
∼= //

FJH
��

(
(ΛXA)N

)J�N γ
J�N //

F
J�N
H�N��

(
ΦNΛXA

)J�N ∼= //

F
J�N
H�N��

(ΛXNA)
J�N

F
J�N
H�N��

(ΛXA)H ∼=
// ((ΛXA)N

)H�N
γ
H�N

// (ΦNΛXA
)H�N ∼=

// (ΛXNA)
H�N

The two right squares are commutative by the naturality of the Frobenius F
J�N
H�N

.

Commutativity of the left square can be checked levelwise: Let B be any J spectrum,

and V a representation of
J�N�H�N

∼= J�H, then the diagram of inclusions of fixed
points commutes:

(BV )J
∼= //

��

(
BN
V

)J�N
��

(BV )H
∼= // (BN

V

)H�N
Switching back to the isogeny notation, yields the following:
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Definition 3.6.28. Let α and β be isogenies of G as above, and view (ΛG)Lα as a
G-spectrum via ρα. Then define the Frobenius maps Fα as the natural morphism of
G-spectra

Fα := ρ∗β ◦ F
Lαβ
Lβ
◦ φ∗αβ : (ΛGA)Lαβ → (ΛGA)Lβ ,

and the Restriction maps Rβ as the natural morphism of G-spectra

Rβ := ρ∗α ◦ (ρ∗β)Lα ◦RLαβ
Lβ
◦ φ∗αβ : (ΛGA)Lαβ → (ΛG�Lβ

A)Lα ∼= (ΛGA)Lα ,

Corollary 3.6.29. The Restriction and Frobenius maps satisfy the following rela-
tions:

Fα = id for α invertible,

F βFα = Fαβ,

RβRα = Rβα,

RβF
α = FαRβ.

Proof. For the first one, use that ρNH = ρH ◦φN . The second one is immediate in the
relative version and the third one uses the isomorphism (3.6.22). The last relation
follows from (3.6.27). Note that even though γ is the identity map between the
categorical and geometric {e}-fixed points, Rα is not usually trivial for α invertible
because of the coordinate changes ρ∗ involved.

For completeness we very briefly repeat the higher analogues of Definitions 3.6.12
and 3.6.15, for more details, see [CDD, 2.3]:
Denote by C be the category with one object and morphisms the isogenies α ∈ I,
respectively with Lα ∈H .

Definition 3.6.30. Let ArC be the twisted arrow category of C, i.e. the category
with the isogenies as objects and morphisms α→ β given by diagrams

?

α

��

γ // ?

β

��
? ?

δ
oo

with composition given by horizontal concatenation of diagrams. Note that every
such morphism is represented by the equation α = δ ◦ β ◦ γ and factors as

?

α

��

id // ?
γ //

βγ

��

?

β

��
? ?

δ
oo ?

id
oo

.
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Construction 3.6.31. For A an S-cofibrant commutative orthogonal ring spectrum,
we define a functor from ArC → GOT , by sending the isogeny α to the categorical
fixed point spectrum (ΛGA)Lα , viewed as a G-spectrum via ρ∗alpha. Morphisms
δβ = δ ◦ β ◦ id are sent to the Frobenii F δ and morphisms βγ = id ◦β ◦ γ to
the Restrictions Rγ. Functoriality is a consequence of the relations from Corollary
3.6.29.

Definition 3.6.32. Let A be an S-cofibrant commutative orthogonal ring spectrum
the covering homology spectrum TCC(A) associated to C is the homotopy limit

TCC(A) := holim
α∈ArC

(ΛGA)Lα .

As in the the one dimensional case, this becomes homotopically meaningful, only
after applying a fibrant replacement to ΛG(A) (cf. Remark 3.6.16).
There is even more structure on ΛGA. In [CDD, 2.5,3.2], the authors define Ver-
schiebung maps for the general case and higher differentials for the special case of
the p-adic n-torus. Both the definitions and verifications of relations analogous to
3.6.29 rely heavily on a good understanding of the stable equivariant transfer:

Definition 3.6.33. [CDD, 2.4] Let G and I be as above. For α and β isogenies in I,
chose a finite dimensional orthogonal G-representation W and an open G-embedding

i : W ×G�Lβ → W ×G�Lαβ

over the projection ραβ ◦ φβ : G�Lβ →
G�Lαβ. Applying the Thom construction to

this embedding yields a G-equivariant map

trα = trαββ : SW∧(G�Lαβ)+ → SW∧(G�Lβ)+

called the transfer, which does not depend on the choice of W or the embedding i
up to stable equivariant homotopy.

Proofs for both the existence and the properties of the transfer maps are spread
throughout the literature, the author has found the exposition in the original paper
[KP] and its follow-up [KP78] very helpful, since in particular the existence is treated
nicely there, which is usually omitted in later accounts. The exposition in [LMS, IV]
is very thorough. A list of properties needed for the treatment of covering homology
is given in [CDD, Proposition 2.4] and since our notation agrees with the one used
in op. cit., we omit further details.
Again we start with a version of the definition of the Verschiebung maps, that omits
the coordinate changes:
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Definition 3.6.34. Let N ⊂ H ⊂ G be a sequence of subgroups and let

trHN : SW∧(G�N)+ → SW∧(G�H)+

be a model for the transfer. Define for an orthogonalG-spectrum B the Verschiebung
map V H

N be the natural stable map induced by the transfer on fixed points in the
following way

BN ' //

V HN

��

(ΩW shW B)N

=

��
FS(S

W , shW B)N

∼=
��

FS(S
W∧G�N+

, shW B)

(trHN )∗
��

FS(S
W∧G�H+

, shW B)

∼=
��

BH
'

// FS(S
W , shW B)H

The version including the instances of ρ is the following:

Definition 3.6.35. Let α and β be isogenies of G as above, and view (ΛG)Lα as
a G-spectrum via ρα. Then define the Verschiebung maps Vβ as the natural stable
morphisms of G-spectra

Vα := ρ∗αβ ◦ V
Lαβ
Lβ
◦ φ∗β : (ΛGA)Lβ → (ΛGA)Lαβ .

Again, there are various relations between the Verschiebung, Frobenius and Re-
striction maps, and the authors of [CDD] develop the theory nicely. Since their
methods are sufficiently general to be applied to our setting, we will only give a first
idea here:

Proposition 3.6.36. Restriction and Verschiebung commute, that is for α and β
in I, the following relation is satisfied in the homotopy category HoGOT :

VγRα = RαVγ.

Proof. The two compositions we want to compare are the outer ways around the
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following diagram:

(
A∧X

)Lβα

��

//
((
A∧X

)Lα)Lβα�Lα

��

// (A∧XLα )Lβα�Lα

��

// (A∧XLα )Lβ

��
FS(S

W∧G�Lβα+
, shW A∧X )G

��

// //

��

//

��

FS(S
W ′∧G�Lβ+

, shW ′ A
∧XLα )G

��
FS(S

W∧G�Lγβα+
, shW A∧X )G // // // FS(SW

′
∧G�Lγβ+

, shW ′ A
∧XLα )G

(
A∧X

)Lγβα

OO

//
((
A∧X

)Lα)Lγβα�Lα

OO

// (A∧XLα )Lγβα�Lα //

OO

(
A
∧XLα

)Lγβ

OO

Using the isomorphism FS(G�H,A)G ∼= FS(S
0, A)H several times, we reduce to

showing stable commutativity of the middle row, with the commutative center square
given by :

FS(S
W∧G�Lβ+

, shW FS(G�Lα+
,ΛXA)G)G

γ∗ //

(tr
Lγβ

Lβ
)∗

��

FS(S
W ′∧G�Lβ+

, shW ′(ΛXLα
A))G

(tr
Lγβ

Lβ
)∗

��

FS(S
W∧G�Lγβ+

, shW FS(G�Lα+
,ΛXA)G)G

γ∗ // FS(S
W ′∧G�Lγβ+

, shW ′(ΛXLα
A))G

The two outer squares in the middle row then both commute up to stable equivalence
since the transfer is compatible with the change of groups, i.e. ρ∗α(trγβαβα ) is a model

for the transfer trγββ .

We close our exposition by mentioning that for the case of G a (p-adic) torus,
there is a fourth kind of structure maps, the higher differentials, which are defined
using a stable splitting of S1

+ ' S0 ∨ S1, which can again be defined in terms of the
equivariant transfer above (cf. [CDD, 3]). An exhaustive list of relations between
these can be found in [CDD, 3.22], but it would go too far to reformulate them here,
since the indexing alone is intricate enough to require extensive study. However,
we have already seen above that the setting of orthogonal spectra with the Loday
functor of 3.2.1 is well equipped for the study of covering homology and the higher
structure surrounding it, while having the advantage of being much more concrete
than the Γ-space analogue.
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Appendix A

Category Theory

A.1 Some Category Theory

A.1.1 Categories

We recall some of the basics of category theory. We assume that the reader is
familiar with the notions in this chapter, but the explicit definitions allow for an
easier transition to monoidal and enriched categories in the next sections. The
canonical reference and source for these definitions is Chapter I of [McL], though we
have allowed ourselves some reformulations for the sake of uniformity when switching
to the enriched setting.

Definition A.1.1. A category C consists of the following data:

• A class Ob(C) of objects of C.

• For every two objects A and B of C a class C(A,B) of morphisms in C.
An element f of this class is called morphism from A to B. We write
f : A→ B and say that f has source A and target B.

• For every object A of C, a distinguished morphism idA ∈ C(A,A), called
the identity of A.

• For every three objects A, B and C of C a binary operation µ : C(B,C)×
C(A,B) → C(A,C), called the composition in C, we often write g ◦ f
instead of µ(g, f).

This data has to satisfy the following two conditions:

• (identity) For any morphism f : A→ B, the composites idB ◦f and f ◦idA
are equal to f .

• (associativity) If f ∈ C(A,B), g ∈ C(B,C) and h ∈ C(C,D) then the
composite h ◦ (g ◦ f) is equal to (h ◦ g) ◦ f .
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A category C is called locally small if for any two objects A and B of C, the class
C(A,B) is a set. It is called small if additionally the class Ob(C) is also a set.
Two morphisms f and g in C are called composable, if the source of g is the same
object as the target of f .

Definition A.1.2. A functor F between two categories C and D is a mapping that

• assigns to each object A of C an object F(A) of D.

• assigns to each morphism f : A → B in C a morphism F(f) : F(A) →
F(B) in D.

This assignment has to satisfy the following two conditions:

• (identity) For every object A in C, F(idA) is equal to idF(A).

• (composition) For any two composable morphisms f and g in C, F(g ◦ f)
is equal to F(g) ◦ F(f).

Example A.1.3. Note that for each category C there is a functor IdC : C→ C that
is the identity on both objects and morphisms. Also, the composition of functors
is associative, such that we get a category Cat of categories, with functors as the
morphisms. Cat has products ([McL, II.3]), in particular for C and C′ categories,
C× C′ is the category whose objects are pairs (C,C ′) with C ∈ C and C ′ ∈ C′, and
the analogous morphisms.

Definition A.1.4. A natural transformation η between functors F and G from C to
D, is a mapping that assigns to each object A of C a morphism ηA : F(A)→ G(A)
in D, such that the diagram

F(A)

ηA
��

F(f) // F(B)

ηB
��

G(A)
G(f)

// G(B)

is commutative in D for all f ∈ C(A,B).
A natural transformation η : F → G is a natural isomorphism if there is a natural
transformation η−1 : G → F such that both composites yield the identity functor.

Example A.1.5. Again, for any functor, there is an identity natural transforma-
tion, and composition of natural transformation is associative. Therefore the set of
functors C→ D, denoted by Cat(C,D) is itself a category with morphisms the nat-
ural transformations. A category arising in this way this is called functor category.
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A.1.2 Monoidal Categories

Again we repeat the basic definitions as far as they will be used in the enriched
setting in the next section. Again the definitions are only slight reformulations of
the ones in [McL, VII], adapted to our needs.

Definition A.1.6. A monoidal category consists of the following data:

• An underlying category C.

• A bifunctor (i.e. a functor out of the product category, see A.1.3) ⊗ : C×
C→ C, called the monoidal product.

• A designated object I of C, called the identity object.

• Natural isomorphisms λ : (I⊗ id)→ id and ρ(id⊗I)→ id expressing that
I is a left and right identity object for the monoidal product.

• A natural isomorphism a : [(−⊗−)⊗−]→ [−⊗ (−⊗−)] expressing that
the monoidal product is associative.

The natural transformations have to satisfy the following two coherence con-
ditions:

• For all objects A and B of C, the following diagram commutes:

(A⊗ I)⊗B
aA,I,B //

ρA⊗idB ''NNNNNNNNNNN
A⊗ (I⊗B)

idA⊗λBwwppppppppppp

A⊗B

• For all objects A, B, C and D of C, the following pentagon commutes:

(A⊗ (B ⊗ C))⊗D

aA,B⊗C,D
**VVVVVVVVVVVVVVVVVVVVV

((A⊗ B)⊗ C)⊗D

aA,B,C⊗idD

44hhhhhhhhhhhhhhhhhhhhh

aA⊗B,C,D
&&MMMMMMMMMMMM A⊗ ((B ⊗ C)⊗D)

idA⊗aB,C,D
xxqqqqqqqqqqqq

(A⊗ B)⊗ (C ⊗D)
aA,B,C⊗D

//A⊗ (B ⊗ (C ⊗D))

Instead of the tupel (C,⊗, I, λ, ρ, a), we often just refer to the monoidal category as
(C,⊗, I) or even just to C, when it is clear which monoidal structure is meant.

Definition A.1.7. A lax monoidal functor F : (C,⊗, I) → (D,×, J) between mo-
noidal categories consists of the following data:

• An underlying functor F : C→ D.
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• A natural transformation µ : [F ×F ]→ F(−⊗−).

• A designated morphism ι : J→ F(I) in D.

These have to satisfy the following coherence conditions:

• For all objects A, B and C of C, the following diagram commutes in D:

(F(A)×F(B))×F(C)

µA,B×id

��

aD // F(A)× (F(B)×F(C))

id×µB,C
��

F(A⊗B)×F(C)

µA⊗B,C
��

F(A)× (F(B ⊗ C))

µA,B⊗C
��

F((A⊗B)⊗ C)
F(aC)

// F(A⊗ (B ⊗ C))

• For every object A of C, the following diagrams commute in D:

F(A)× J ρD //

id×ιD
��

F(A) J×F(A)
λD //

ιD×id
��

F(A)

F(A)×F(I) µA,I
// F(A⊗ I)

F(ρC)

OO

F(I)×F(A) µI,A
// F(I × A)

F(λC)

OO

A lax monoidal functor (F , µ, ι) is strong monoidal if µ and ι are (natural) isomor-
phisms, it is strict monoidal if they are the identity (transformation).
Again we often only refer to F as the monoidal functor, suppressing µ and ι in the
notation, where they are not critical to the discussion.

Definition A.1.8. A monoidal category (C,⊗, I) is called cartesian, if ⊗ is the
categorical product and I is a terminal object.

Some monoidal categories have additional extra structure:

Definition A.1.9. A monoidal category (C,⊗, I) is called closed, if for all objects
A of C, the functor (− ⊗ A) : C → C has a right adjoint ([McL, IV.1]), denoted by
Hom(A,−).
Objects of C the form Hom(A,B) are called internal Hom objects, the counits of
these adjunctions are usually called the evaluations Hom(A,B)⊗ A→ B.

Lemma A.1.10. If (C,⊗, I) is closed monoidal, then there is a natural isomorphism:

Hom(A⊗B,C) ∼= Hom(A,Hom(B,C)).
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Proof. Let Z be any object of C, then we have the following chain of natural iso-
morphisms:

C(Z,Hom(A⊗B,C)) ∼= C(Z ⊗ (A⊗B), C)
∼= C((Z ⊗ A)⊗B,C)

C(Z,Hom(A,Hom(B,C))) ∼= C(Z ⊗ A,Hom(B,C))

Hence the Yoneda lemma ([McL, III.2.1]) gives the desired result.

Construction A.1.11. Note that for any locally small monoidal category (C,⊗, I),
we get a lax monoidal functor C(I,−) : C→ Set, where the category of sets has the
cartesian monoidal structure. The unit morphism ι sends the terminal one-point set
to the identity morphism of I, whereas the natural transformation

µ : C(I, A)× C(I, B)
⊗−→ C(I⊗ I, A⊗B) ∼= C(I, A⊗B),

uses the isomorphism λI : I ⊗ I → I. This functor assigns to objects of C their
underlying sets.
If C is additionally closed and A and B are objects of C, then the adjunction

(−⊗ A) : C� C : Hom(A,−)

gives the following natural isomorphism:

C(I⊗ A,B) ∼= C(I,Hom(A,B))

Since I⊗ A is isomorphic to A via λA, this implies that

C(A,B) ∼= C(I,Hom(A,B)),

i.e. the underlying set of the internal Hom object Hom(A,B) is indeed naturally
isomorphic to the morphism set C(A,B).
Considerations in this spirit lead to the study of enriched categories. We will discuss
these further in Section A.2.

For any monoidal category, there are categories of monoids and (left or right)
modules over such. Definitions can for example be found in [McL, VII.3,4], and will
be omitted here.

A.1.3 Symmetric Monoidal Categories

We repeat more of the definitions from [McL, XI], adapted to our notation.
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Definition A.1.12. A symmetric monoidal category is a monoidal category (C,⊗, I, λ, ρ, a),
together with a natural isomorphism τ

τ : ⊗ → ⊗ ◦ twist,

where twist is the bifunctor that permutes the two inputs.
This data has to satisfy additional coherence conditions:

• The composition of τ with itself is the identity, i.e.

τB,A ◦ τA,B = idA⊗B,

for all objects A and B of C.

• Compatibility with the unit, i.e.

ρ = λ ◦ τ−,I.

• For all objects A, B, and C of C, the following hexagon commutes:

(A⊗B)⊗ C a //

τ⊗idC
��

A⊗ (B ⊗ C) τ // (B ⊗ C)⊗ A
a

��
(B ⊗ A)⊗ C a

// B ⊗ (A⊗ C)
idB ⊗τ

// B ⊗ (C ⊗ A)

Example A.1.13. All cartesian or cocartesian monoidal categories are symmetric,
making use of the universal properties of (co-) products and the projections to re-
spectively inclusions of coproduct factors.

Since the following definition is widely used, but is only implicit in [McL], we
give a few more details:

Definition A.1.14. A commutative monoid in a symmetric monoidal category
(C,⊗, I, τ) consists of the following data:

• An object M of C.

• A morphism η : I→M in C, called the unit of M .

• A morphism µ : M ⊗M →M in C, called the multiplication of M .

Such that the following diagrams are commutative:

162



A.1. SOME CATEGORY THEORY

• unit:

I⊗M η⊗idM//

λ &&LLLLLLLLLLL M ⊗M
µ

��

M ⊗ IidM ⊗ηoo

ρ
xxrrrrrrrrrrr

M

• associativity:

(M ⊗M)⊗M
µ⊗idM

��

a //M ⊗ (M ⊗M)
idM ⊗µ//M ⊗M

µ

��
M ⊗M µ

//M

• commutativity:

M ⊗M

µ
$$IIIIIIIII
τ //M ⊗M

µ
zzuuuuuuuuu

M

Again we can define categories of commutative monoids and modules over such
as in the non-symmetric case. We work extensively with these in the case of C being
the category SpO of orthogonal spectra. The following lemmas are well known, but
it seems hard to find explicit references:

Lemma A.1.15. Let M be a commutative monoid, then the categories of left M-
modules and right M-modules are isomorphic.

Proof. For V a right M module with action map ν : V ⊗ M → V , define a left
module structure on V in the following way:

M ⊗ V τ //

ν′ &&LLLLLLLLLLL V ⊗M
ν

��
V

There are coherence diagrams to be checked:

V ⊗ I

��

η // V ⊗M

��

##HHHHHHHHH

V

ρ−1
<<xxxxxxxxx

λ−1
""FFFFFFFFF V

I⊗ V η
//M ⊗ V

;;vvvvvvvvv
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The left triangle commutes by the unit axiom for the symmetric monoidal struc-
ture, the middle square because the twist isomorphism is natural. Hence the lower
composite is the identity since the upper one was. For associativity of the new multi-
plication map, check commutativity of the outermost two ways around the following
diagram. We omit the categorical associativity isomorphisms, hence brackets, from
the notation.

M1 ⊗ V

&&NNNNNNNNNNN

M1 ⊗ V ⊗M2

ν

33fffffffffffffffffffffff
// V ⊗M2 ⊗M1

µ

��

ν // V ⊗M1

ν

��

M1 ⊗M2 ⊗ V //

µ

��

66nnnnnnnnnnnn
V ⊗M1 ⊗M2

66nnnnnnnnnnnn

((PPPPPPPPPPPP

M ⊗ V // V ⊗M
ν

// V

Here the center triangle commutes because M was commutative, and the lower right
square does so because V was a right M -module. The center parallelogram is an
instance of the hexagon coherence. The other subdiagrams both commute because
of the naturality of the twist isomorphism.
An analogous argument gives a functor from left to right M -modules, and they are
obviously inverses to each other.

Lemma A.1.16. Let M be a commutative monoid in the closed symmetric mo-
noidal category (C,⊗, I, τ). Assume that C has equalizers and coequalizers. Then
the category of (right) M-modules inherits a closed symmetric monoidal structure.

Proof. For M -modules V and W define the monoidal product V ⊗M W of as the
coequalizer

V ⊗M ⊗W ⇒ V ⊗W → V ⊗M W, (A.1.17)

where one of the arrows uses the action map on V , and the other the action on W
precomposed with the twist V ⊗ τM,W . The internal Hom object HomM(V,W ) is
the equalizer

HomM(V,W )→ Hom(V,W )⇒ Hom(V ⊗M,W ),

where one of the arrows is induced by the action map of V , and the other one is
induced by the adjoint of the action map of W , using the isomorphism Hom(V ⊗
M,W ) ∼= Hom(V,Hom(M,W )) (cf. A.1.10). Checking coherence diagrams is then
done using the universal properties of (co-)equalizers as well as the corresponding
diagrams in C together with the same isomorphism A.1.10.
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Lemma A.1.18. Let (C,⊗, I) be a symmetric monoidal category. Then ⊗ is the
coproduct in the category of commutative monoids in C.

Proof. The monoidal product of two commutative monoids M and N is again a
commutative monoid using the unit map

η : I λ−1−→ I⊗ I ηM⊗ηN−→ M ⊗N,

and the multiplication

µ : M ⊗N ⊗M ⊗N id⊗τ⊗id−→ M ⊗M ⊗N ⊗N µM⊗µN−→ M ⊗N.

Then given maps of commutative monoids M → C and N → C, we get a map

M ⊗N → C ⊗ C µC−→ C.

On the other hand given a map of commutative monoids M ⊗N → C, precompo-
sition with the units of N and M , respectively, yields maps M → C and N → C.
These two constructions are obviously inverse to each other, hence M ⊗N satisfies
the universal property of the coproduct ([McL, III.3]).

We will discuss monoids, (commutative) algebras and modules over such in var-
ious (symmetric) monoidal categories (C,⊗, I). Often we use that the forgetful
functors to C have left adjoints, and hence we recall how these adjoints are formed
in general:

Lemma A.1.19. Let R be a monoid in (C,⊗, I),

• the functor − ⊗ R is left adjoint to the forgetful functor from C to right R-
modules.

• the functor R ⊗ − is left adjoint to the forgetful functor from C to left R-
modules.

In both cases the action of R simply uses the multiplication R. If R is commutative,
and the category of R-modules has coproducts, then

• the functor A :=
∐

i∈N(−)⊗Ri is left adjoint to the forgetful functor from R-
algebras to R-modules.

If the category of R modules is cocomplete, then

• the functor E :=
∐

i∈N[(−)⊗Ri]Σi is left adjoint to the forgetful functor from
commutative R-algebras to R-modules.

165



APPENDIX A. CATEGORY THEORY

In both cases multiplication is by simply concatenating coproduct factors and the unit
map is the inclusion of R as the factor indexed by 0.

Here (−)⊗Ri denotes the i-fold tensor power over R. Then [−]Σi is taking the
orbits of the action of Σi that permutes tensor factors, i.e. the action induces a
functor from Σi viewed as a one-object category (cf. A.2.16) and [−]Σi denotes its
colimit. We could of course have given each of these functor in terms of the monads
that the unit of the adjunction induces on C.

A.2 Enriched Category Theory

A.2.1 Enriched Categories

Let (V,⊗, I) be a monoidal category.

Definition A.2.1. A category C enriched over V, is a V-category in the sense of [K,
1.2]. This amounts to the following structure:

• A class Ob(C) of objects of C.

• For every two objects A and B of C an object C(A,B) of V called the
Hom-object of A and B.

• For every object A of C, a distinguished morphism idA : I → C(A,A) in
V, called the identity of A.

• For every three objects A, B and C of C a morphism γ : C(B,C) ⊗
C(A,B)→ C(A,C), called the composition in C.

This data has to satisfy the following two conditions:

• For all objects A,B,C and D of C, the following diagram commutes in V:

(C(C,D)⊗ C(B,C))⊗ C(A,B)
a //

γ⊗id

��

C(C,D)⊗ (C(B,C)⊗ C(A,B))

id⊗γ

��
C(B,D)⊗ C(A,B)

γ

))SSSSSSSSSSSSSS C(C,D)⊗ C(A,C)

γ

uukkkkkkkkkkkkkk

C(A,D)

• For all objects A and B in C, the following diagram commutes:

I⊗ C(A,B)

idB ⊗ id
��

λ

((QQQQQQQQQQQQQ
C(A,B)⊗ I

id⊗ idA
��

ρ

vvmmmmmmmmmmmmm

C(B,B)⊗ C(A,B) γ
// C(A,B) C(A,B)⊗ C(A,A)γ

oo
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Example A.2.2. Note that the usual notion of a category generalizes to this con-
text, if we restrict ourselves to locally small categories. One checks easily that those
are the same as categories enriched over the cartesian monoidal category Set of sets.

Example A.2.3. For any (V, I), we can consider the trivial V-category ? with one
object C, and the morphism object ?(C,C) = I.

Definition A.2.4. A functor F enriched over V between two categories D and C

enriched over V consists of the following data:

• A mapping F : Ob(D)→ Ob(C).

• For all objectsA andB of D, a morphism FA,B : D(A,B)→ C(F(A),F(B))
in V.

These have to satisfy the following coherence conditions:

• (identity) For all objects A of D the following diagram commutes in V:

D(A,A)

FA,A

��

I

idF(A) &&MMMMMMMMMMMM

idA

88qqqqqqqqqqqq

C(F(A),F(A))

• (composition) For all objects A, B and C of D the following diagram
commutes in V:

D(B,C)⊗D(A,B)
γ //

F ⊗F
��

D(A,C)

F
��

C(F(B),F(C))⊗ C(F(A),F(B)) γ
// C(F(A),F(C))

Definition A.2.5. For two functors F ,G : D → C enriched over V, an enriched
natural transformation α : F → G consists of morphisms I → C(F(A),G(A)) in V

for all objects A of D, such that the following coherence diagrams commute in V for
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all objects A and B of D:

I⊗D(A,B)
αB⊗F // C(F(B),G(B))⊗ C(F(A),F(B))

γ

++VVVVVVVVVVVVVVVVVVV

D(A,B)

λ−1
77ooooooooooo

ρ−1 ''OOOOOOOOOOO
C(F(A),G(B))

D(A,B)⊗ I
G ⊗αA

// C(G(A),G(B))⊗ C(F(A),G(A))

γ

33hhhhhhhhhhhhhhhhhhh

(A.2.6)

Remark A.2.7. This definition gives the class [D,C]0(F ,G) of functors enriched over
V the structure of a category (one checks that there is an identity transformation
and that composition of natural transformations is associative). This makes the
category V-Cat of V-enriched categories and V-enriched functors into a 2-category,
i.e. into a category enriched over Cat.

Remark A.2.8. Under more assumptions, one can also define a V-enriched functor
category [D,C]. Let V be closed and complete and D be equivalent to a small
category. Then for two enriched functors F and G, the following end exists and
forms the morphism V-space [D,C](F ,G):∫
d∈D

C(F(d),G(d))→
∏
d∈D

C(F(d),G(d))⇒
∏

d,d′∈D

Hom(D(d, d′),C(F(d),G(d′))).

As indicated it can be expressed as the equalizer along two maps adjoint to the two
ways around diagram (A.2.6) above. Composition and identities are then inherited
from C (cf. [K, 2.1]).

Construction A.2.9. Note that if we have a distinguished (lax) monoidal functor
(M, µ, ι) : (V,⊗, I) → (W,×, J), any category C enriched over V gives a category
enriched over W, by just applyingM to all the Hom objects. The identity morphisms
are defined as the composites

id′A : J ι→M[I] M[idA]−→ M[C(A,A)].

The composition is given by

γ′ : M[C(B,C)]×M[C(A,B)]
µ→M[C(B,C)⊗ C(A,B)]

M[γ]−→M[C(A,C)].

One checks that the coherence diagrams still commute.
Also, in the same way V-enriched functors give W-enriched functors and V-enriched
natural transformations give W-enriched natural transformations via the monoidal
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functor M. (One checks that M(F) still takes identities to identities and respects
composition, and that the appropriate diagram for Mα still commutes using the
monoidal structure maps of M).

Remark A.2.10. In the spirit of the above Remark A.2.7, one can check that M in-
duces a Cat-enriched, or 2-functor M : V-Cat→W-Cat, i.e. that M takes the iden-
tity V-enriched natural transformations to the identity W-enriched natural transfor-
mations, and that it respects composition of enriched natural transformations.

Example A.2.11. In this way, if V is a locally small monoidal category, every
category enriched over V has a canonical underlying “normal” category, i.e. one
enriched over Set, with the same objects. The morphism sets are obtained by using
the monoidal functor V(I,−) from A.1.11 in the way described above.

Remark A.2.12. For D and C categories enriched over V as in A.2.8, the underlying
underlying Set-category of the functor V-category [D,C] is [D,C]0, if the former
exists.

Example A.2.13. Let (V0,⊗, I) be a closed monoidal category. Then there is a
V0-category V that restricts to V0 along the monoidal functor V(I,−).
Define V as having the same objects as V0 and for morphism objects set V(A,B) =
Hom(A,B). Then composition is adjoint to iterated evaluation, and the axioms for
an enriched category trivially hold. When discussing a specific category V0, we will
often identify V and V0 and therefore say that V is enriched over itself, but there are
also important cases where we explicitly keep the notation separate (e.g. A.2.19).

Remark A.2.14. When viewing V as enriched over itself in this sense, Lemma A.1.10
can be reformulated to state that the adjunctions between −⊗ A and Hom(A,−)
are actually enriched, i.e. imply natural isomorphisms even on morphism objects.

Example A.2.15. Let V = Top the cartesian monoidal category of topological
spaces. Then a category C enriched over Top is a usual category, with a choice of
topology on each morphism set, such that the composition law gives continuous (!)
maps. More important for us is the closed monoidal variation U , containing only
the compactly generated weak Hausdorff spaces.
For another example let V be the category T of based compactly generated weak
Hausdorff spaces, i.e. objects of U with a distinguished basepoint. We will usually
drop the extra adjectives and just call these spaces.
Since T has products and coproducts, it is monoidal in several ways: with the
cartesian product × and unit a one point space {∗}, or, more importantly for us,
with respect to the smash product ∧ and unit S0, the 0-sphere. The latter choice
makes T closed monoidal, and we will denote the internal Hom spaces merely as
T (−,−) in agreement with A.2.13. The identity functor (T ,∧, S0)→ (T ,×, {∗}) is
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lax monoidal, just as the functor T → U that forgets the basepoints. The monoidal
structure maps are given by the projections X×Y → X∧Y and the inclusion of {∗}
as the non-basepoint of S0. These functors give us a canonical way to view a cate-
gory enriched over (T ,∧, S0) as one enriched over (T ,×, {∗}), or U . The forgetful
functor from U to Set preserves products and is therefore strict monoidal, indeed it
is isomorphic to the functor described in A.1.11. Hence a category enriched over ei-
ther monoidal structure on T (or U) is a category. In the other directions, including
sets as discrete topological spaces and adding disjoint basepoints to spaces in U give
left adjoints to the forgetful functors and are also (strong) monoidal. Hence together
with A.2.13 we can view U and T as enriched over either themselves or each other.
Generally, categories enriched over any of the above are called topological categories.
Enriched functors between both Top- U - and T -categories are usually called the
continuous functors.

Definition A.2.16. For G a group, there is a category G associated to G. It consists
of one object ?, and the morphism set G(?, ?) is given as the group G. The neutral
element of the group is the identity morphism and the group multiplication gives
composition of morphisms. Often we use the group G and its associated category
synonymously.

If G is a topological group, its associated category is canonically a topological
category. If G is in U , its associated category is canonically enriched over U , and
adding a disjoint basepoint as above, enriched over T . The latter viewpoint is
often more useful than considering a specific element of G as the basepoint of the
morphism space.

Definition A.2.17. We denote the category of functors G → Set and natural
transformations between them by GSet instead of [G,Set]0, its objects are called
G-sets. Note that a G-set is the same as a set with a (left) action of G, and a
morphism of G-sets is a G-equivariant map.

Just like Set, the category GSet is a cartesian monoidal category with respect
to the usual cartesian product of sets, which is given the diagonal G-action. The
unit object is the trivial G-set consisting of only one point. Note that there are
two obvious monoidal functors GSet → Set. One is the forgetful functor, which
is obviously product preserving, but this is not the functor described in A.1.11. In
fact, GSet(?,X) assigns to a G-set X its set of G-fixed points XG, and this gives
the second monoidal functor. We distinguish this in language by saying X is a set,
but has XG as its underlying set (of G-fixed points).

Definition A.2.18. Let G be a group, a G-category is a category enriched over
GSet. We call the elements of the morphism G-sets morphisms, whereas the el-
ements of the underlying G-fixed point sets are called G-maps. As above, every

170



A.2. ENRICHED CATEGORY THEORY

G-category is also a category, and has an underlying G-fixed category.
A G-functor F : D → C between G-categories is an enriched functor of enriched
categories, i.e. the induced maps on morphism G-sets

F : D(X, Y )→ C(F X,F Y )

have to be G-equivariant.
Two types of natural transformations are important for us: A natural G-transformation
α : F → G between two G-functors, is an enriched natural transformation of en-
riched functors, i.e. it consists of a G-map αX ∈ C(F X,GX) for every object X of
D such that the diagrams

F X
αX
��

F f // F Y
αY
��

GX G f
// G Y

,

commute in C for all f ∈ D(X, Y ). These are the morphisms in the functor category
[D,C]0.
On the other hand, there are the natural tranformations, given as collections of
maps αX ∈ C(F X,GX). On the set of these transformation G again acts by
conjugation. Then as indicated in A.2.12, the G-natural transformations are exactly
the G-fixed natural transformations, so that the functor G-category [D,C] has the
functor category [D,C]0 as its underlying (G-fixed) category.

The following combination of the above definitions will be important in our
studies of equivariant orthogonal spectra. Let G be a (compactly generated weak
Hausdorff) topological group, respectively the associated one object T -category with
morphism space G+

Definition A.2.19. The category of G-spaces GT, consists of functors G→ T and
natural transformations between them. In particular, objects of GT are spaces with
a (left) action of G and morphisms are G-equivariant continuous maps.
Giving smash products the diagonal G-action, GT inherits a closed symmetric mo-
noidal structure from T . Again this allows us to view GT as enriched over itself,
and we shall use the notation TG for the ensuing enriched category (A.2.13), as well
as TG(−,−) for the internal Hom-functor of GT. Then TG has G-spaces as objects,
and morphisms are (not necessarily G-equivariant) continuous maps.

Definition A.2.20. A category CG is called a topological G-category if it is enriched
over GT. Such a CG has a G-fixed category GC that is obtained by applying the
fixed point functor to the morphism G-spaces.
The appropriate functors enriched over GT are called continuous G-functors. The
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appropriate enriched natural transformations are called continuous natural G-transformations.
([MM, p. 27] calls these natural G-maps between functors.) We will often drop the
extra adjective “continuous” in the future.

Remark A.2.21. Note that the fixed point functor (−)G : GT → T has a left adjoint
giving a space the trivial G-action. As (−)G, this preserves (smash-) products and
is therefore strict monoidal.

As above monoidal functors starting in GT allow us to transport enrichments as
in A.2.9. Transportation along functors in the commutative diagram

T // U // Set

forget.

OO

(−)G

��

GT

OO

//

��

GU

OO

//

��

GSet

OO

��
T // U // Set,

(A.2.22)

as well as their left adjoints, and even variations only using subgroups ofG (C.1)appears
at various points when doing equivariant homotopy theory. Usually this is omitted
in notation, as the sheer amount of viewpoints does not lend itself well to readable
notation. However, at least the author has fought with misunderstandings coming
from such omission, so throughout this thesis we try not to hide the enrichments
completely.

Example A.2.23. As it is defined, the GT-category TG has the underlying G-fixed
T -category GT, which is closed symmetric monoidal. Also, TG is closed symmetric
monoidal itself, when viewing it as a mere category using the upper way through
diagram A.2.22, using the same smash product and internal hom functor as in T .
One choice of internal Hom-functor for TG is TG(−,−), and we agree to use this
choice.

A.2.2 Tensors and Cotensors

Detailed treatment of the concepts of (indexed) limits and colimits in V-enriched
categories can be found in Chapter 3 of [K]. We will not give explicit definitions,
since we will mainly be concerned with the special case of tensors and cotensors:

Definition A.2.24. Let C be enriched over the closed symmetric monoidal category
V. Let V be an object of V and A an object of C. Then their tensor product V ⊗A
is an object of C, such that for objects B in C, there is a V-natural isomorphism:

C(V ⊗ A,B) ∼= Hom(V,C(A,B)),
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where Hom denotes the internal Hom-object in V.
Their cotensor product V t A is an object of C, such that again for objects B in C,
there is a V-natural isomorphism:

C(B, V t A) ∼= Hom(V,C(B,A)).

If all such (co-)tensor products exist we call C (co-)tensored. If we consider C as
enriched over different monoidal categories, we clarify the one used for (co-)tensors
by saying it is (co-)tensored over V.

Remark A.2.25. Note that for V = Set, being tensored and cotensored over Set is
equivalent to having all small copowers

∐
X

A. Dually, being cotensored over Set is

equivalent to having all small powers
∏
X

A.

Example A.2.26. Considering the closed symmetric monoidal category V as en-
riched over itself (cf. Example A.2.13), it is both tensored and cotensored over itself,
by the defining adjunction of the internal Hom-space A.1.9.

Example A.2.27. As mentioned in Remark A.2.23, the category TG is enriched over
GT, but also over itself, i.e. Hom(X, Y ) = TG(X, Y ). This immediately implies
that TG is both tensored and cotensored over both itself and GT, where both are
displayed by the same natural isomorphisms, considered either in GT or TG:

TG(D,TG(A,B)) ∼= TG(D∧A,B) ∼= TG(A,TG(D,B)).

Since TG has GT as its underlying G-fixed category, this implies natural isomor-
phisms in T :

GT(S,TG(A,B)) ∼= GT(S∧A,B) ∼= GT(A,TG(S,B)).

For S any object of T , i.e. with trivial G-action, this reduces to:

T (S,GT(A,B)) ∼= GT(S∧A,B) ∼= GT(A,TG(S,B)),

which shows that GT is tensored and cotensored over T .

The following construction is important for the compatibility of an enrichment
and the model structures on the involved categories, and also appears prominently
in a lot of our constructions of cellular filtrations:

Definition A.2.28. Let (V,∧, I) be a closed symmetric monoidal category. Let C

be enriched and tensored over V, and have pushouts. For i : A→ B a morphism in
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V, j : X → Y a morphism in the underlying category C0 of C. Define the pushout
product i�j to be the dotted map from the pushout in the diagram:

A⊗X id⊗j //

i⊗id
��

A⊗ Y

�� i⊗id

��

B ⊗X //

id⊗j ..

P
p

i�j

%%
B ⊗ Y

The dual construction is the following:

Definition A.2.29. Let (V,∧, I) be a closed symmetric monoidal category. Let C

be enriched and cotensored over V, and have pushouts. For i : A→ B a morphism
in V, p : E → F a morphism in the underlying category C0 of C. Define the map
t� (i, p) to be the dotted map to the pullback in the diagram:

B t X

p∗

((

i∗

��

t�(i,p)

%%
Q
y

//

��

A t X

p∗

��
B t Y

i∗
// A t Y

This again has an analogue living in the category V:

Definition A.2.30. Let (V,∧, I) be a closed symmetric monoidal category having
pullbacks. Let C be enriched over V. For j : X → Y and p : E → F be morphisms
in the underlying category C0 of C. Define the map C(j∗, p∗) to be the dotted map
to the pullback in the diagram in V:

C(Y,E)

p∗

''

j∗

��

C(j∗,p∗)

%%
R
y

//

��

C(X,E)

p∗
��

C(Y, F )
j∗
// C(X,F )

This construction can be used to characterize lifting properties in the enriched
setting:
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Lemma A.2.31. Assume that V is locally small, then in the situation of Definition
A.2.30, the pair (j, p) has the lifting property in C0, if and only if the map of sets
V(I,C(j∗, p∗))) is surjective.

Proof. Recall that morphisms X → Y in C0 correspond to elements of V(I,C(X, Y ))
from A.1.11. Then the universal property of the pullback gives that elements of
V(I, R) correspond exactly to commutative diagrams

A //

j

��

E

p

��
B // F

in C0. Then V(I,C(j∗, p∗))) sends maps f : B → E in C0 to the diagram with f ◦ i
as the top and p ◦ f as the bottom horizontal arrow, so that surjectivity indeed
corresponds exactly to the existence of the lift.

Given that all of the three above constructions are defined, there is the following
crucial relation between them:

Lemma A.2.32. Let (V,∧, I) be closed symmetric monoidal and have small limits.
Let C be enriched, tensored and cotensored over V and have pullbacks and pushouts.
Let i : A → B a morphism in V and j : X → Y and p : E → F morphisms in the
underlying category C0 of C. Then the following maps in V are naturally isomorphic:

C((i�j)∗, p∗) ∼= V(i∗,C(j∗, p∗)∗) ∼= C(j∗,t� (i, p))

Proof. Note that for the middle map we considered V as enriched over itself as in
A.2.13. By careful use of the universal properties of pushouts and pullbacks as well
as the defining adjunctions for tensors and cotensors A.2.24, one observes that all
three maps are naturally isomorphic to the map from V(B,C(Y,E)) to the limit of

V(A,C(Y,E))

�� ((RRRRRRRRRRRRR
V(B,C(Y, F ))

vvlllllllllllll

((RRRRRRRRRRRRR
V(B,C(X,E))

vvlllllllllllll

��
V(A,C(Y,E))

((RRRRRRRRRRRRR
V(A,C(X,E))

��

V(B,C(X,F ))

vvlllllllllllll

V(A,C(X,F ))

These two lemmas allow us to characterize lifting properties in C0 in terms of
those in V, which is of course of particular interest when C0 and V are model cate-
gories (cf. B.1.10).
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A.2.3 Kan Extensions

The discussion about enriched Kan extensions in [K, 4] is, due to its generality
rather technical. As in the case of enriched (co-) limits, extra care has to be taken
in several places. Since we do not need the full generality, we state a slightly simpler
definition and list only the explicit properties we make use of, without going into
much detail. We concentrate on the case of left Kan extensions, since the dual
notion will not appear outside of pure existence statements.
Let V be closed symmetric monoidal and consider the solid arrow diagram of V-
categories and V-functors:

C

LanKG

��

A

G
''OOOOOOOOOOOOOO

K
??�������

B,

where A is equivalent to a small V-category and B is cotensored over V.

Definition A.2.33. In the above situation, a left Kan extension LanKG of G along
K is a V-functor C→ B, together with a V-natural isomorphism

[C,B](LanKG,S) ∼= [A,B](G,S ◦K).

The image of the identity transformation for S = LanKG is a V-natural transfor-
mation φ : G→ LanKG ◦K and is called the unit of LanKG.

It is important to note, that in a situation where B is not cotensored, this defini-
tion is not adequate, in the sense that it does not describe the left Kan extension in
the sense of Kelly, but rather a weaker notion. For counterexamples see the discus-
sion after [K, 4.43].The following proposition will give us the existence of left Kan
extensions in all the cases that we will consider:

Proposition A.2.34. [K, 4.33] B admits all left Kan extensions LanKG, where
K : A → C and G : A → B, where A is equivalent to a small V-category, if and
only if it is enriched cocomplete.

To check the required cocompleteness, we will generally be able to use the fol-
lowing characterization, which is a combination of several statements in [K]:

Theorem A.2.35. Let B be enriched over V:

(i) B is cocomplete in the enriched sense, if and only if is tensored and admits all
small conical (enriched) colimits.
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(ii) B is complete in the enriched sense, if and only if is cotensored and admits all
small conical (enriched) limits.

(iii) Assuming B is cotensored, it admits all small conical colimits, if and only if
its underlying ordinary category B0 is cocomplete.

(iv) Assuming B is tensored, it admits all small conical limits, if and only if its
underlying ordinary category B0 is complete.

In particular for tensored and cotensored B, the conical (co-)limits are the ones
created in B0.

Proof. The precise references in [K] are: Theorem 3.73 for (ii), dualize for (i). The
discussion between 3.53 and 3.54 for conical (co-)-limits in B or B0, and the discus-
sion between 3.33 and 3.34 for the connection to classical (co-)completeness,

Since it is not always the enriched functor category from A.2.8 that is of interest
for us, we would also like a characterization of the left Kan extension in terms of the
underlying category of enriched functors and enriched transformations. Luckily our
assumption that B is cotensored allows us to use the following universal property
from [K, 4.43] and the discussion that follows it:

Theorem A.2.36. In the situation of Definition A.2.33, i.e. if B is cotensored, a
V-functor L is a left Kan extension of G along K, if and only if there is a natural
bijection of sets

[C,B]0(LanKG,S) ∼= [A,B]0(G,S ◦K).

In particular a V-functor L equipped with a V-natural transformation φ : G→ L◦K
is a left Kan extension of G along K, if and only if any V-natural transformation
α : G→ L ◦K factors uniquely as α = β ◦ φ.

Hence in the case of B tensored, cotensored and cocomplete, the two character-
izations together with the existence result A.2.34, allow us to state the following:

Proposition A.2.37. In the situation of Definition A.2.33, precomposition with
K defines a V-functor K∗ : [C,B] → [A,B]. The left Kan extension provides a left
adjoint, both in the enriched sense, and on underlying ordinary categories.

Finally, the following property helps to compute the Kan extensions in a lot of
interesting special cases:

Proposition A.2.38. [K, 4.23] In the situation of Proposition A.2.37, the V-functor
K is fully faithful if and only if the unit id[A,B] → K∗LanK− of the adjunction is a
natural isomorphism.
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Appendix B

Model Categories

We assume that the reader is familiar with the basic theory of model categories, an
introductory account can for example be found in [DS]. A more exhaustive source
is [H] or [Hir].

B.1 Recollections

Almost all of the model structures appearing in this thesis are cofibrantly generated,
we recall the definition and state the main theorem we use to recognize such model
structures from [H, 2.1.3]:

Definition B.1.1. Let C be a model category. It is called cofibrantly generated if
there are sets I and J of maps, such that:

(i) The domains of the maps of I are small with respect to I−cell,

(ii) The domains of the maps of J are small with respect to J−cell,

(iii) The class of fibrations is J−inj,

(iv) The class of acyclic fibrations is I−inj.

Theorem B.1.2 (Recognition Theorem [H, 2.1.19]). Suppose C is a category with
all small colimits and limits. Suppose W is a subcategory of C and I and J are sets
of maps of C. Then there is a cofibrantly generated model structure on C with I as
the set of generating cofibrations, J as the set of generating acyclic cofibrations, and
W as the subcategory of weak equivalences if and only if the following conditions are
satisfied:

(i) The subcategory W has the two out of three property and is closed under
retracts.

(ii) The domains of I are small relative to I−cell.
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(iii) The domains of J are small relative to J−cell.

(iv) J−cell ⊂ W ∩ I−cof.

(v) I−inj ⊂ W ∩ J−inj.

(vi) Either W ∩ I−cof ⊂ J−cof or W ∩ J−inj ⊂ I−inj.

The following lemmas are applicable in any model category. These are well
known and often used without further mention in the literature, but since they lie
at the heart of the homotopy theory we need, we recall the exact statements:

Lemma B.1.3 (Generalized Whitehead Theorem (cf. [DS, 4.24])). Let C be a model
category. Suppose that f : X → Y is a map in C with X and Y both fibrant and
cofibrant objects. Then f is a weak equivalence if and only if it is a homotopy
equivalence.

Recall the following definition from [GJ, II 8.5]):

Definition B.1.4. A category of cofibrant objects is a category D with all finite
coproducts, with two classes of maps, called weak equivalences and cofibrations,
such that the following axioms are satisfied:

(i) The weak equivalences satisfy the 2 out of 3 property.

(ii) The composite of two cofibrations is a cofibration. Any isomorphism is a
cofibration.

(iii) Pushouts along cofibrations exist. Cobase changes of cofibrations (that are
weak equivalences) are cofibrations (and weak equivalences).

(iv) All maps from the initial object are cofibrations.

(v) Any object X has a cylinder object Cyl(X), i.e. a factorization of the fold
map ∇ : X

∐
X → X as

X
∐

X
i→ Cyl(X)

σ→ X,

with i a cofibration and σ a weak equivalence.

In any model category, the cofibrant objects form a category of cofibrant objects
in the sense of [GJ, II.8]. This in particular lets us apply the following two important
lemmas:
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Lemma B.1.5 (Generalized Cobase Change Lemma (cf. [GJ, II.8.5])). Let C be a
category of cofibrant objects. Suppose

A

i
��

f // X

��
Y g

// P
p

(B.1.6)

is a pushout diagram in C, such that i is a cofibration and f is a weak equivalence.
Then g is also a weak equivalence.

Lemma B.1.7 (Generalized Cube Lemma (cf. [GJ, II.8.8])). Let C be a category
of cofibrant objects. Suppose given a commutative cube

A0
//

fA

��

i0

~~}}}}}}}
X0

fX

��

~~}}}}}}}}

Y0
//

fY

��

P0

fP

��

A1
//

i1

~~}}}}}}}
X1

~~}}}}}}}}

Y1
// P1

(B.1.8)

in C. Suppose further that the top and bottom faces are pushouts, that i0 and i1 are
cofibrations and that the vertical maps fA, fX and fY are weak equivalences. Then
the induced map of pushouts fP is also a weak equivalence.

Definition B.1.9. Inspired by these, we say that the generalized (cube) cobase
change lemma holds for a class of objects, a class of cofibrations and a class of
weak equivalences, if the analogous statements hold, without explicitly referring to
a category of cofibrant objects.

Note that not all examples of categories of cofibrant objects come from model
structures, in particular we will want to apply Lemma B.1.7 to cases where the cofi-
brations and weak equivalences come from different model structures on the same
category in B.1.21. In the case of topological model categories (cf. B.1.10), May
and Sigurdsson propose a more general treatment in [MS, 5.4], using so called well-
grounded categories of weak equivalences. There the statement of Lemma B.1.7
appears as one of the axioms of such categories. We will try to avoid to drag our
treatment into this generality though, since setting up the whole machinery of [MS]
would require significantly more effort and offer only slightly more insight. We will
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however handpick some of the statements in our Subsection B.1.1 on topological
model categories.

Definition B.1.10. Let (V,⊗, I) be a locally small closed symmetric monoidal
category, that is also a model category. Let C be a category enriched, tensored and
cotensored over V. Further let the underlying category C0 of C (cf. A.2.11) have a
model structure. Then this model structure on C is called enriched over V, if the
following two axioms hold:

(i) Pushout product axiom Let i be a cofibration in C0 and let j be a cofi-
bration in V. Then the map i�j in C0 is also a cofibration. If in addition
either one of i or j is acyclic, so is i�j.

(ii) Unit axiom Let q : Ic ∼→ I be a cofibrant replacement of the unit object
of V. Then for every cofibrant object A in C, the morphism

q ⊗ id : Ic ⊗ A→ I⊗ A ∼= A

is a weak equivalence.

If C is equal to V, i.e. we consider V as enriched over itself (cf. A.2.13), a model
structure satisfying the above axioms is called monoidal.

Note that the unit axiom is redundant, if the unit object of V is itself cofi-
brant, since it is then implied by the pushout product axiom. For monoidal model
categories, there is an additional important axiom:

Definition B.1.11. A monoidal model category (C,⊗) satisfies the monoid axiom,
if every map in

({acyclic cofibrations} ⊗ C)−cell

is a weak equivalence.

The pushout product axiom has several adjoint formulations:

Lemma B.1.12. In the situation of Definition B.1.10, the pushout product axiom
is equivalent to both of the following formulations:

• Let p be a fibration in C0 and let j be a cofibration in V, then t� (j, p) is a
fibration in C0, which is acyclic if either of p or j was.

• Let p be a fibration in C0 and let i be a cofibration in C0, then C(i∗, p∗) is a
fibration in D, which is acyclic if either of p or i was.

Proof. This is immediate from lemmas A.2.31 and A.2.32.
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Example B.1.13. Taking V to be the categories of simplicial sets, spaces, sym-
metric spectra or G-spaces, yields, under the choice of the usual model structures,
the well known notions of simplicial, topological, spectral and G-topological model
categories.

In particular the example of topological and G-topological model categories will
be very important for us. We discuss some of their distinct features in the following
subsection.

B.1.1 Topological Model Categories

In this subsection we have to discuss two different categories of topological spaces.
We distinguish between the category U of compactly generated weak Hausdorff
spaces, and the category T of such spaces with a distinguished basepoint. Alterna-
tively one can think of T as the under-category ∗ → U for ∗ any one-point object
in U .
Let I denote the unit interval in U , as usual it comes equipped with the two inclu-
sions of the endpoints. For any category C enriched and tensored over U , we can
then form homotopies in C0 in terms of the tensor with I:

{0} ⊗X

��

∼= // X
h0

��????????

I ⊗X h // Y

{1} ⊗X ∼=
//

OO

X

h1

??��������

Analogously for C enriched over T , we can add a disjoint basepoints and use the
tensor with I+ to define (based) homotopies.
There are two classical model structures on U that are important for us, the Strøm-
or h-model structure and the Quillen- or q-model structure. Especially the cofi-
brations of the former have very favorable properties, the defining one being the
homotopy extension property:

Definition B.1.14. Let C be enriched and tensored over U . A map i : A → X in
C0 is a free h-cofibration if it satisfies the free homotopy extension property. That
is, for every map f : X → Y and homotopy h : I ⊗ A → Y such that h0 = f ◦ i,
there is a homotopy H : I ⊗X → Y such that H0 = f and H ◦ (i⊗ id) = h.

The universal test case for this property is the mapping cylinder Y = Mi =
X ∪i (I ⊗ A), with the obvious f and h. The exact statement is the following
lemma.
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Lemma B.1.15. Let C be enriched and tensored over U and have pushouts. A map
i : A→ X in C0 is a free h-cofibration if and only if the canonical map Mi→ I×X
has a retraction.

Proof. The HEP gives the dotted arrow in the following diagram, which is a retrac-
tion by the universal property of Mi:

A

��

i // X

��

��

I ⊗ A I⊗i //

--

I ⊗X

$$
Mi

On the other hand, if the retraction is given, the universal property of the pushout
Mi gives the desired extensions.

Remark B.1.16. This implies a variety of closure properties of the class of free h-
cofibrations. In particular any functor that preserves pushouts and the tensor with
the interval also preserves h-cofibrations, since any functor preserves retractions.

Theorem B.1.17. [Str, Theorem 3], cf. [MS, 4.4.4] The homotopy equivalences,
Hurevicz fibrations and free h-cofibrations give a proper model structure on U .

Note that Strøm originally works in the category of all topological spaces, but
the intermediate objects for the factorizations he constructs are in U if source and
target were. Properness is not mentioned in the original article, but is implied by
the fact that all objects are fibrant and cofibrant.

Definition B.1.18. Let f be a map in U . Then f is a weak equivalence if it induces
isomorphisms on all homotopy groups. Call f a q-cofibration if it has the left lifting
property with respect to all Serre fibrations that are weak equivalences.

Remark B.1.19. Recall that every Hurevicz fibration is a Serre fibration and every
homotopy equivalence is a weak equivalence. Hence in particular any q-cofibration
is a free h-cofibration.

Theorem B.1.20. [Q, II.3.1], cf. [H, 2.4.25] The weak equivalences, Serre fibra-
tions and q-cofibrations give a proper model structure on U .

Again note that Quillen also works with general topological spaces, the transition
to U is well documented in [H, 2.4]. Properness is proved using that every object is
fibrant as well as the following lemma:
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Lemma B.1.21. The category U is a category of cofibrant objects (B.1.4) with
respect to the h-cofibrations and the weak equivalences. In particular the generalized
cobase change (B.1.5) and cube lemma (B.1.7) hold for these choices.

Moving to the context of based spaces, we can for example follow the discussion
after Remark 1.1.7 of [H] to transport both model structures from U to T . This
proves satisfactory in case of the Quillen model structure:

Theorem B.1.22. The category T is a proper model category using those based
maps that are q-cofibrations, Serre fibrations respectively weak equivalences in U ,
i.e. when forgetting the basepoints. Similarly the underlying free h-cofibrations,
Hurevicz fibrations and (free) homotopy equivalences give a proper model structure
on T .

Remark B.1.23. We will often make use of the the fact that the Quillen model
structures on U and T are cofibrantly generated. Generating sets of cofibrations
and acyclic cofibrations are given in the pointed case by:

I := {i : Sn−1
+ → Dn

+, n ≥ 0} and

J := {i0 : Dn
+ → (Dn × [0, 1])+, n ≥ 0.}

Remark B.1.24. Note that not all spaces in T are cofibrant with respect to the
second model structure in the above theorem. In particular the theorem only implies
pointed analogues to the versions of the generalized cube and cobase change lemmas
from B.1.21 above for so called well based spaces:

Definition B.1.25. An object X of T is called well based or well pointed if the
inclusion of the basepoint is a free h-cofibration.

We need a stronger version of the cube lemma when we work in the T -enriched
setting:

Definition B.1.26. Let C be enriched and tensored over T . A map i : A→ X in C0

is a based h-cofibration if it satisfies the based homotopy extension property. That is,
for every map f : X → Y and based homotopy h : I+∧A→ Y such that h0 = f ◦ i,
there is a based homotopy H : I+∧X → Y such that H0 = f and H ◦ (id∧i) = h.
In cases where no confusion is possible, we will usually omit the adjective based.

Remark B.1.27. Again there is a recognition lemma analogous to B.1.15 in terms
of a reduced mapping cylinder, implying a similar closure property as in Lemma
B.1.15. Also note that all (free or based) h-cofibrations are closed inclusions (cf.
[M, § 6, Ex 1,], [MMSS, 5.2 ff.]).
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The following proposition is a combination of Proposition 9 in [Str] and the
proposition on page 44 of [M], both are proved by explicitly constructing the required
homotopies, respectively retractions.

Proposition B.1.28. Let f : X → Y be a map between well based spaces in T .
Then f is a based homotopy equivalence if and only if it is a free homotopy equiva-
lence and it is a based h-cofibration if and only if it is a free h-cofibration.

Note that being a weak equivalence in T and U is always equivalent, so we have
the following corollary:

Corollary B.1.29. If all involved spaces are well based the generalized cube lemma
and the generalized cobase change lemma hold for based h-cofibrations and homotopy
equivalences. Also, they hold for h-cofibrations and weak equivalences if all the spaces
Ai and Yi in the diagrams B.1.6 and B.1.8 are well based.

Finally we record the following property from [MMSS, 6.8(v)]:

Lemma B.1.30. Transfinite composition of h-cofibrations that are weak equiva-
lences are weak equivalences.

The following condition on sets of maps in a topological category has proven very
helpful in several contexts. We use the formulation from [MMSS, 5.3], and hence use
T for the enrichment. Let A and C be categories enriched over T that are (enriched)
bicomplete and in particular tensored and cotensored. Let A be equipped with a
continuous and faithful forgetful functor A→ C.

Condition B.1.31. Cofibration Hypothesis Let I be a set of maps in A. We say
that I satisfies the cofibration hypothesis if it satisfies the following two conditions.

(i) Let i : A → B be a coproduct of maps in I. Then any cobase change of i
in A is an underlying h-cofibration, i.e. an h-cofibration in C after use of the
forgetful functor.

(ii) Viewed as an object of C, the colimit of a sequence of maps in A that are
underlying h-cofibrations is their colimit as a sequence of maps in C.

Remark B.1.32. In particular I-cell complexes in A are underlying sequential col-
imits along h-cofibrations in C.

The smallness conditions in the definition of a cofibrantly generated model cat-
egory are as lax as possible. In many of the topological examples, we can actually
be more strict, in order to get around having to deal with transfinite inductions as
much as possible. A convenient condition is the following, again taken from [MMSS,
5.6, ff.], with A and C as above:
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Definition B.1.33. An object X of A is compact if

A(X, colimYn) ∼= colim A(X, Yn),

whenever Yn → Yn+1 is a sequence of maps in A that are h-cofibrations in C.

Definition B.1.34. Let A be a model category. Then A is compactly generated,
if it is cofibrantly generated with generating sets of (acyclic) cofibrations I and J ,
such that the domains of all maps in I or J are compact, and I and J both satisfy
the cofibration hypothesis B.1.31.

B.1.2 Simplicial Objects in Topological Categories

In this section, we recall some basic simplicial techniques. A convenient reference
for a lot of the following discussion is [GJ, VII.3], but we need some rather spe-
cific technical lemmas which to the author’s knowledge have not been formulated
similarly before. We start by reminding the reader of the basic definitions:

Definition B.1.35. The simplicial category ∆ has the finite ordinal numbers as
objects and order preserving maps as morphisms between them.

To be more specific, we will denote objects of ∆ by n, i.e.

n := {0 < 1 < . . . < n}.

Recall the generating morphisms si and di in ∆ and the relations between them
from [GJ, I.1.2].

Definition B.1.36. Let C be a category. The category sC of simplicial objects in C

is the functor category [∆op,C].

Let from now on C be enriched and tensored over the category of simplicial sets.

Definition B.1.37. The geometric realization |X|C of a simplicial object X ∈ sC
is the coend

|X|C :=

k∈∆op∫
Xk ⊗∆k,

where ∆k is the simplicial n-simplex given by ∆k
n = ∆(n,k). With the obvious

extension on morphisms, this defines a functor | · |C : sC→ C.

We will often drop the subscript from | · |C when the category is clear. Note
that any functor C→ C′ that preserves colimits and tensors preserves the geometric
realization.
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Definition B.1.38. If C is also cotensored over simplicial sets, the geometric real-
ization has a right adjoint given by the functor that assigns to an object Y of C the
simplicial object ∆ t Y which is given in level k by

(∆ t Y )k := ∆k t Y.

Remark B.1.39. The most important special case for our applications will be when
the category C is actually enriched and tensored over T . In this case, we can first
transport the enrichment to U along the forgetful functor and then to simplicial sets
via the singular set functor as in A.2.9 since both of these are (lax) monoidal. Then
the defining adjunctions immediately give an isomorphism

Xk ⊗sSet ∆k ∼= Xk ⊗U |∆k| ∼= Xk ⊗T |∆k|+,

where the |∆k| denotes the topological k-simplex (with a disjoint basepoint on the
right).
Classical realization of simplicial sets is then a special case of the above by viewing
sets as discrete objects of T .

We want to filter the geometric realization, in analogy to the classical case where
the geometric realization admits a filtration via its structure as a CW -complex. For
this purpose consider for a natural number n the full subcategory ∆n of ∆ consisting
of all objects k with k ≤ n.

Definition B.1.40. For X ∈ sC a simplicial object, define the n-skeleton skn |X|C
as the coend

skn |X|C :=

∫ k∈∆op
n

Xk ⊗∆k.

Again, we will often simplify notation and just write skX instead of sk |X|C
when the context does not allow confusion.

Lemma B.1.41. The inclusions of categories ∆n → ∆n+1 → . . . → ∆ induce
morphisms of coends and we get

colim
n

sknX ∼= |X|.

Proof. We can rewrite the defining coends via coequalizer diagrams:∐
α:k→l∈∆op

Xk ⊗∆l ⇒
∐
k∈∆

Xk ⊗∆k −→ |X|C,

and analogously for skn |X|C. In the resulting diagram of coequalizer sequences, one
easily constructs a pair of inverse morphisms between the two different colimits.
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We define an analogue to the degenerate simplices, or rather the latching spaces
in the classical setting:

Definition B.1.42. Let X ∈ sC be a simplicial object. The latching object LnX
comes together with a distinct map LnX → Xn and is defined inductively as follows:
Let L0X be the initial object of C. Assuming LnX and LnX → Xn already defined,
let Ln+1X be an (n+1)-fold pushout of LnX → Xn, i.e. the colimit of the following
solid arrow diagram:

LnX //

**UUUUUUUUUUUUUUUUUUUUU

��-
--------------------- Xn

s0

��

· · · Xn

s1

""

· · ·

Xn
sn // Xn+1

(B.1.43)

The map Ln+1X → Xn+1 is then induced by the pointed instances of the simplicial
degeneracy maps si : Xn → Xn+1.

The importance of the latching objects lies in the following proposition:

Proposition B.1.44. [GJ, VII.3.8] Let X ∈ sC be a simplicial object. Then for all
n ≥ 0 there is a pushout diagram in C:

Xn ⊗ ∂∆n ∪LnX⊗∂∆n LnX ⊗∆n

��

// skn−1X

��
Xn ⊗∆n // sknX,

p

where the left vertical map is the pushout product of LnX → Xn with the inclusion
of the boundary ∂∆n → ∆n.

Definition B.1.45. Fix a class of morphisms called C-cofibrations in C. We call a
simplicial object X ∈ sC C-proper, if all the maps LnX → Xn are C-cofibrations.

We finally turn to the case of C being a topological model category, i.e. a model
category enriched over U in the sense of B.1.10.

Proposition B.1.46. Let C be enriched and tensored over U . Let the C-cofibrations
be a class of maps that is closed under cobase change and satisfies the pushout product
axiom with respect to the Quillen model structure on U (e.g. if C is a model category
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enriched over U in the sense of B.1.10). Then for any C-proper simplicial object X
in sC, the skeleton filtration of |X|C consists of C-cofibrations.

Xn ⊗ |∂∆n| ∪LnX⊗|∂∆n| LnX ⊗ |∆n|

��

// skn−1X

C−cof

��
Xn ⊗ |∆n| // sknX,

p

The next proposition concerns interactions of simplicial objects with weak equiv-
alences. Assume that C is enriched and tensored over U , with chosen classes of cofi-
brations and weak equivalences, such that the cofibrant objects form a category of
cofibrant objects in the sense of B.1.4. Assume that the cofibrations and weak equiv-
alences are compatible with the enrichment in the sense that the pushout product
axiom B.1.10(i) is satisfied.

Proposition B.1.47. Let C as above. Let X and Y in sC be proper simplicial
objects such that X0 and Y0 are cofibrant. If f : X → Y is a morphism of simplicial
objects that is a weak equivalence in each simplicial degree, then the induced map of
realizations

|f |C : |X|C → |Y |C
is a weak equivalence.

Proof. We begin with showing that all the Xn, Yn and LnX and LnY are cofibrant.
L1X = X0 is cofibrant by hypothesis, so assume inductively that Ln−1X is cofibrant.
SinceX is proper, the solid arrow part of diagram B.1.43 consists only of cofibrations,
hence in particular Xn is cofibrant. Since Ln+1X is an iterated pushout of Xn along
cofibrations it is cofibrant itself. We continue by induction on the skeleton filtration
of B.1.46 to show that the maps sknX → skn Y are weak equivalences. Note that the
tensor with a cofibrant space preserves weak equivalences between cofibrant objects
by [GJ, II.8.4]. Hence by the generalized cube lemma we only need to show that
the maps

Xn ⊗ |∂∆n| ∪LnX⊗|∂∆n| LnX ⊗ |∆n| −→ Yn ⊗ |∂∆n| ∪LnY⊗|∂∆n| LnY ⊗ |∆n|

are weak equivalences between cofibrant objects. Again using the generalized cube
lemma on the defining diagram for the pushout product of LnX → X and ∂∆n →
∆n, this reduces to showing that LnX → LnY is a weak equivalence. As above this
is proven inductively, by comparing the diagrams B.1.43 for X and Y and applying
the generalized cube lemma to each of the iterated pushouts.

Remark B.1.48. A very obvious example for categories C which satisfy the require-
ments of the above proposition is given by a model category enriched over U in the
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sense of B.1.10. However, we will in particular want to apply the proposition to
(levelwise) h-cofibrations and π∗-isomorphisms of orthogonal spectra, so the more
general formulation is necessary.

It can be hard to verify the properness of a simplicial object. Sometimes the
following is easier to check:

Definition B.1.49. Fix a class of morphisms called C-cofibrations in C. We call a
simplicial object X ∈ sC C-good, if for all n all the degeneracy maps s∗i : Xn → Xn+1

are C-cofibrations.

In particular in T and U , there is Lillig’s Union Theorem [Li], which implies the
following helpful statement:

Lemma B.1.50. For simplicial objects in the categories T or U , h-proper and h-
good are equivalent notions. Since colimits and tensors are computed levelwise, the
same is true for levelwise h-cofibrations of (equivariant) orthogonal spectra.

The following is an important example of a simplicial object, and in particular
comes up in the proofs of the convenience property for the S-model structures:

Definition B.1.51 (cf. [EKMM, IV.7.2]). Let (C,∧, I) be symmetric monoidal, let
(R, φ, η) be a monoid in C, (M,µ) a right R-module, (N, ν) a left R-module. Define
the bar construction B∗(M,R,N) ∈ sC by setting

Bp(M,R,N) = M∧R∧p∧N,

where R∧0 = I. The face and degeneracy operators on Bp(M,R,N) are

di =


µ∧ id

∧(p−1)
R ∧ idN if i = 0

idm ∧ id
∧(i−1)
R ∧φ∧ id

∧(p−i−1)
R ∧ idN if 0 < i < p

idM ∧ id
∧(p−1)
R ∧ν if i = p

and si = idm ∧ id∧iR ∧η∧ idp−iR ∧ idN if 0 ≤ i ≤ p.
Note that if M was an (R′, R)-bimodule, then B∗(M,R,N) is a simplicial R′-module.
In the case that C is enriched and tensored over simplicial sets, so that geometric
realization makes sense, we will usually denote the realization by

B(M,R,N) := |B∗(M,R,N)|.

14
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B.2 Assembling Model Structures

Given a model structure on a category C, one often wants to give corresponding
structures to categories of functors D→ C for some diagram category D. Theorems
on the possibility and methods to do this are well studied in many cases, examples
can be found in [Hir, 14.2.1] for cases of cofibrantly generated structures on C, in
[H, Chapter 5] for the case of D a Reedy category. More recently Angeltveit has
studied the Reedy approach in an enriched setting ([A]). The result of this section
is more in the direction of the former, in particular as a special case we will get
an enriched version of Hirschhorns Theorem [Hir, 11.6.1]. However, the significant
difference in our approach is, that we lift not just a single model structure on the
target category, but rather assemble a new model structure from several given ones.
Hirschhorns method uses the evaluation functors that any diagram category is
equipped with; we give a short recollection: Let D be small. Consider the triv-
ial category ? with one object ∗, and only one (identity) morphism. For each object
d of D it embeds into D sending ∗ to d. Then the evaluation functor evd assigns to
a functor X : D→ C the precomposition with the inclusion of ?:

?

incd

��

evdX

��
D

X
// C

Left Kan extension provides left adjoints to all these evaluation functors, denoted
by Fd(−), i.e. we have adjoint pairs:

Fd : C ∼= [?,C]� [D,C] : evd.

Then given a cofibrantly generated model structure on C, with generating sets of
(acyclic) cofibrations I and J , we can form the sets

F I :=
⋃
d∈D

FdI

and FJ analogous.

Theorem B.2.1. [Hir, 11.6.1] Let D be a small category, and let C be a cofibrantly
generated model category with generating cofibrations I and generating acyclic cofi-
brations J . Then the category [D,C] = [D,C]0 of D-diagrams in C is a cofibrantly
generated model category in which a map f : X → Y is
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• a weak equivalence if evd(f) : Xd → Yd is a weak equivalence in C for every
object d ∈ D,

• a fibration if evd(f) : Xd → Yd is a fibration in C for every object d ∈ C, and

• an (acyclic) cofibration if it is a retract of a transfinite composition of cobase
changes of maps in F I (FJ).

Let us now move to an enriched setting. Let (V,∧, I) be a locally small complete
closed symmetric monoidal category, and let C and D be enriched over V, such that
D is equivalent to a small category, hence the enriched functor category [D,C] exists
(A.2.8). Consider this time ? as the trivial V-category, i.e. as the D-category with
one object ∗ such that the morphism object ?(∗, ∗) is initial in D. Then analogous to
the discussion above, the inclusion of ? at any object of D yields evaluation functors
by precomposition. Under favorable conditions on C, these have left adjoints which
we again denote by Fd (e.g. if C is tensored, cotensored and cocomplete, cf. A.2.33).
However this time, we want to consider an intermediate functor category: Given an
object d ∈ D, denote by Ed the full subcategory containing only that object. Then
the inclusion of ? at d ∈ D factors in the following way

?

inc
�� evdX

��

Ed

incd
�� ev

′
dX &&MMMMMMMMMMMMM

D
X

// C,

(B.2.2)

and hence we have a factorization of evaluation functors

C [?,C]
∼=oo [Ed,C]oo [D,C]

ev
′
doo

evd

��
. (B.2.3)

Each of the functors in this factorization has an (enriched) left adjoint if and only if
the appropriate left Kan extensions exist (A.2.34), and in that case we denote them
in the following way:

C
∼= // [?,C]

Fd

��
Ed⊗− // [Ed,C]

Gd // [D,C] . (B.2.4)

We call objects of the form GdX semi-free, in analogy to the term free for objects
FdY . Note that the notation Ed ⊗ − is not accidental, as it is in fact given by the
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categorical tensor with the endomorphism D-object of d if it exists.

Remark B.2.5. We will from now on assume that D is small itself, for the general
case chose a small equivalent subcategory D̂, and only use objects d ∈ D̂ in the
constructions throughout.

Assume that for each d ∈ D, there is a cofibrantly generated model structure
Md on the underlying ordinary category [Ed,C]0 of [Ed,C], with generating (acyclic)
cofibrations Id and Jd, and classes of weak equivalences Wd, respectively. Assume
further that each [Ed,C] is tensored and cotensored over V, such that the semi-free
functors Gd all exist. Define the sets of maps GI and GJ in [D,C]0 as

GI :=
⋃
d∈D

GdId GJ :=
⋃
d∈D

GdJd. (B.2.6)

Define the class W of maps in [D,C]0 as

W := {f ∈ [D,C]0, s.t. ev
′

d(f) ∈ Wd ∀ d ∈ D}. (B.2.7)

Then the assembling theorem is the following

Theorem B.2.8. Let V be a complete closed symmetric monoidal category and let C

and D be enriched over V such that D is equivalent to a small subcategory. Assume
that each of the functor categories [Ed,C] is tensored and cotensored over V and that
we have a family of cofibrantly generated model structures {Md} as above.
Assume that the domains of the maps in GI are small relative to GI-cell, the do-
mains of the maps in GJ are small with respect to GJ-cell and that GJ-cell ⊂W.
Then the underlying category [D,C]0 of [D,C] is a cofibrantly generated model cate-
gory where a map f : X → Y is a fibration, if and only if each ev

′

df is a fibration in
the model structure Md on [Ed,C]0, and a weak equivalence if and only if it is in W.
The generating cofibrations are given by GI and the generating acyclic cofibrations
are given by GJ .

Proof. We check the conditions from the recognition theorem B.1.2. First of all,
enriched limits and colimits in [D,C] are calculated pointwise by [K, 3.3], i.e. the
(co-)limit of a diagram exists if and only if it does so after evaluating to the [Ed,C]
or equivalently to [?,C]. Since all the [Ed,C] had model structures, they were in
particular bicomplete. As they were also tensored and cotensored, they were en-
riched bicomplete hence so is [D,C]. The class W is a subcategory satisfying the 2
out of 3 axiom since it is defined by a levelwise property. By assumption, GJ-cell is
in W, and since as a left adjoint Gd preserves retracts and cell complexes, GdJd-cell
⊂ GdId-cof, hence GJ-cell ⊂ GI-cof. Since Gd is left adjoint to ev

′

d, a map has the
right lifting property with respect to GI if and only if for each d its evaluation is an
acyclic fibration, in particular if and only if it is in W and has the lifting property
with respect to GJ .
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Remark B.2.9. Similarly to the argument for the bicompleteness of [D,C], [K, 3.3]
implies that the assumption, that each of the [Ed,C] is tensored and cotensored, is
immediately satisfied if C was so itself.

Proposition B.2.10. In the situation of Theorem B.2.8 assume that [D,C] is itself
tensored and cotensored over V. If each of the model structures Md satisfies the
pushout product axiom (B.1.10(i)), then so does the assembled model structure on
[D,C]0.

Proof. By the adjoint formulations in B.1.12, it suffices to check the pushout product
axiom for i a generating cofibration. But Gd commutes with tensors and pushouts,
hence j�Gdi ∼= Gd(j�i). Since Gd also preserves cell complexes and retracts, that is
indeed a cofibration. The case of i or j being acyclic is exactly the same.

Remark B.2.11. Hence if we can guarantee the analogous proposition for the Unit
axiom, a family {Md} of enriched model assembles puzzles together to an enriched
model structure on CD. In particular if the unit object of V is cofibrant this is
trivial. A common other way to ensure this is demanding some sort of cofibration
hypothesis, cf. B.1.31 and a sufficiently general version of the cube lemma B.1.7.

Depending on the setting, the condition GJ-cell ⊂ W in can be hard to verify.
A way around this is using Shipley and Schwede’s lifting lemma [SS, 2.3] instead
of the recognition Theorem B.1.2. However, for that result to be applicable in our
case, we require another layer of constructions:
In the situation of Theorem B.2.8, consider the subcategogry ED of D, consisting of
all objects but only the endomorphisms. More precisely, define ED(d, d) := D(d, d)
but let E(d, e) be initial in D for d 6= e. Then the inclusions B.2.2 factor through
ED and hence we get further factorizations of the evaluation functors from B.2.3

C [?,C]
∼=oo [Ed,C]oo [ED,C]oo [D,C]

ev
′′

oo

ev
′
d

ZZ

evd

~~
.

The corresponding diagram of left adjoints B.2.4

C
∼= // [?,C]

Fd

  
Ed⊗− // [Ed,C]

Gd

DD

GE
d // [ED,C] // [D,C] .
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The induced functor pair [D,C]0 � [ED,C]0 induces a monad T on [ED,C]0 (cf.
[McL, IV.1]) and we claim that the associated category of T -algebras is isomorphic
to [D,C]0. To prove this we check the prerequisites of Beck’s Theorem in its weak
form from [B, Theorem 1] (cf. [McL, Ex. VI.7. 1-3]). Indeed, since [D,C] is
enriched cocomplete with colimits calculated pointwise by [K, 3.3], [D,C]0 has all
coequalizers and they are preserved under evaluation to [ED,C]0. Furthermore the
evaluation reflects isomorphisms, since a V-natural transformation {αd}d∈D is an
isomorphism if and only if each αd is.
Further note that [ED,C]0 ∼=

∏
d∈D[Ed,C]0 since the V-naturality condition A.2.6 is

void when ED(d, e) is initial. Hence given the family {Md}d∈D we get the product
model structure on [ED,C]0:

Proposition B.2.12. In the situation of Theorem B.2.8, there is a cofibrantly gen-
erated model structure on [ED,C]0, where a map is a fibration, cofibration or weak
equivalence if and only if it is one in Md, for all d ∈ D. The generating sets of
cofibrations and acyclic cofibrations are given by the sets GEI and GEJ , respectively,
which are defined analogous to B.2.6.

Definition B.2.13. In the situation of theorem B.2.8, an object P of [D,C] is a
path object of an object X of [D,C] if there is a factorization of the diagonal map

X

∆

��
w // P

p // X
∐
X,

with w ∈ W and p a pointwise fibration, i.e. a fibration in Md after evaluating to
[Ed,C]0 for all d ∈ D.

Then hypothesis (2) of [SS, 2.3] allows the following variation of Theorem B.2.8

Theorem B.2.14. The assembling Theorem B.2.8 still holds if we replace the as-
sumption GJ-cell ⊂W, with the following:
In each of the model structures Md, every object is fibrant and every object of
X ∈ [D,C] has a path object.

Remark B.2.15. We should note, that the category E as defined above is not a
complete analogue of the category I from 1.2.16. Indeed, I contains isomorphisms
between different objects, if they are of the same dimension. In both places, we could
have made due with the respective variation. Since the definition of I seems very
natural, while an analogue in the general setting would complicate our approach
here, we hope the reader can forgive this. Of course, restricting to skeleta of D, i.e.
looking at I instead of I, this distinction vanishes.

As promised we study an enriched version of Theorem B.2.1:
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Proposition B.2.16. Theorem B.2.1 holds in the case of categories enriched over
V, if we additionally assume that the domains of the maps in F I are small relative
to F I-cell, the domains of the maps in FJ are small with respect to FJ-cell and
that FJ-cell consists of maps that are level weak equivalences.

The proof works entirely analogous to the one of B.2.8. Note that we can refor-
mulate the extra assumptions slightly in the following way:

Lemma B.2.17. If tensoring with morphism objects of D preserves cofibrations and
acyclic cofibrations, the extra assumptions in B.2.16 are satisfied. In particular this
is true if there is a model structure on V, such that all the morphism objects of D

are cofibrant, and the model structure on C0 satisfies the pushout product axiom.

Proof. This is immediate once one checks that for objects d and e in D, the com-
position eve ◦ Fd is isomorphic to tensoring with D(d, e). Since colimits in [D,C]
are calculated pointwise ([K, 3.3]), maps in FJ cell are levelwise retracts of J-cell
complexes, and the same for I. Then all three extra assumptions follow immediately
from the axioms of a cofibrantly generated model category.

Corollary B.2.18. Since in every model structure cofibrations and weak equiva-
lences are preserved under coproducts, in the case V = Set Theorem B.2.16 reduces
to B.2.1.

B.2.1 Special Case: Orthogonal Spectra

The case of (equivariant) orthogonal spectra will be of particular interest for us, and
we state consequences and simplifications of the general version of Theorem B.2.8
that become available to us once we can impose a cofibration hypothesis in the sense
of B.1.31. In particular, this takes care of all smallness concerns by the following
lemma.

Lemma B.2.19. Any orthogonal spectrum is small with respect to levelwise inclu-
sions, in particular with respect to all h-cofibrations or levelwise h-cofibrations.

Proof. This must be well known, probably even in a far more general case of functor
categories, but an adequate reference escapes the author. We work with with SpO

for simplicity, but smallness is preserved under equivalences of categories so we do
not lose generality. Let X be an orthogonal spectrum, then for each n, there exists
κn such that both Xn and all O(n,m)∧X are κn-small with respect to inclusions
for some cardinal κn by [H, 2.4.1]. Let κ be a cardinal with κ > κn for n ≥ 0 and
κ > ℵ0. We claim that X is κ-small. So let

Y 0 → Y 1 → . . .→ Y β → . . .
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be a λ-sequence of levelwise inclusions for some κ-filtered ordinal λ. In particular λ
is κn-filtered for n ≥ 0. We want to show that the map

colim
β<λ

SpO(X, Y β)→ SpO(X, colim
β<λ

Y β)

is an isomorphism. For injectivity consider two elements on the left represented by
f : X → Y α and g : X → Y β that are mapped to the same morphism h : X → Y
on the right side, where Y denotes the colimit. That implies that for each n, fn
and gn induce the same map Xn → Yn, which implies that there is a γn < κn such

that the composites Xn
f→ Y α

n → Y γn
n and Xn

g→ Y β
n → Y γn

n are equal. Hence for
γ := sup γn < λ, f and g already induced the same element X → Y γ as desired. For
surjectivity let f : X → Y be a map to the colimit. As before we get an ordinal γ,
such that all the maps fn : Xn → Yn and fm ◦ σ, σ ◦ fn : O(n,m)∧Xn → Ym factor
through Y γ. Then for each pair (n,m), there is a cardinal γ < δn,m < λ such that

σ ◦ fn and fm ◦ σ are factor through the same map fn,m : O(n,m)∧Xn → Y
δn,m
m by

the argument for injectivity discussed before. Hence there is a factorization of maps
of spectra X → Y δ → Y for δ := sup δn,m < λ as desired.

Remark B.2.20. Hence any set I of maps in SpO that consists of cofibrations, in
particular has the property that domains of maps in I are small with respect to
I-cell. The same holds for A a category with a faithful forgetful functor to SpO and
I a set of maps in A satisfying the cofibration hypothesis in the sense of B.1.31.

Now let us state the version of Theorem B.2.8 that we are going to use in 1.3.5.
Let {Mn}n≥0 be a family of cofibrantly generated model structures on On-spaces,
each satisfying the cofibration hypothesis. Let In, Jn and Wn denote the respective
generating cofibrations, acyclic cofibrations and classes of weak equivalences. Define
GI, GJ and W as above.

Corollary B.2.21. If GGJ ⊂W, then there is a cofibrantly generated model struc-
ture on SpO with generating (acyclic) cofibrations GI (GJ) and W as its class of
weak equivalences.

Proof. Using Theorem B.2.8, the only thing left to check is the smallness conditions
on GI and GJ . These are satisfied as in Remark B.2.20, since all maps in GI and
GJ are h-cofibrations by B.1.16.
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Appendix C

Some Equivariant Homotopy
Theory

In this section we will recall some of the results from (non stable) equivariant homo-
topy theory needed throughout the thesis. We begin with a recollection on model
structures on G-spaces and will continue with some consequences of the results of
Illman from [Ill83]. We work in the pointed setting (cf. B.1.1) as this is the more
important case for us, but all results could be stated in U as well.

C.1 G-Spaces

Let, as always, T denote the category of (based, compactly generated, weak Haus-
dorff) spaces (cf. A.2.15). Let G be an arbitrary topological group in T , and let GT

be the category of spaces with a (continuous) action of G (cf. A.2.19). Recall that
limits and colimits in GT can be formed in T and then given the induced G-action.

Definition C.1.1. Define a continuous functor T → GT by equipping any space
with the trivial G-action. This functor has both a left and a right adjoint, which
are of particular importance for us: The left adjoint

(−)G : GT → T ,

assigning to a G-space its orbit space, and the right adjoint

(−)G : GT → T ,

assigning the subspace of G-fixed points.

The fact that they are adjoints, implies in particular that (−)G preserves colimits
and (−)G preserves limits, but even more is true (cf. [MM, III.1.6]):

199



APPENDIX C. SOME EQUIVARIANT HOMOTOPY THEORY

Lemma C.1.2. The functor (−)G preserves coproducts, pushouts of diagrams one
leg of which is a closed inclusion, and colimits along sequences of closed inclusions.
For X and Y in GT, we have (X∧Y )G = XG∧Y G.

For subgroups H of G, we can use the forgetful functors induced by the inclusion
of one point categories i : H → G to define fixed point functors

GT
i∗ // HT

(−)H // T ,

and analogous for orbit spaces. It is often convenient to factor these functors in a
different way, so that not all of the group action is forgotten: Let N be a normal

subgroup of G, then for a G-space X, the quotient group J := G�N acts on the
N -fixed points XN , and we can redefine the functor (−)N : GT → JT. The slight
double use of notation is remedied by the fact that the following diagram of functors
then commutes:

GT

(−)N

��

i∗1 // NT

(−)N

��
JT

i∗2 // T ,

where i1 : N → G and i2 : {e} → J are the inclusions.
Similarly we can consider the N -orbit functors GT → JT.

Adding to the established properties of the fixed point functors, the following
technicality proves to be helpful in several places:

Lemma C.1.3. The fixed point functors (−)H preserve h-cofibrations.

Proof. Use the characterization of h-cofibrations via the mapping cylinder (cf. B.1.15),
i.e. for i : A → X an h-cofibration of G-spaces the dotted arrow in the following
diagram is a retraction:

A

��

i // X

��

��

A∧I+
i∧I+ //

--

X∧I+

##
Mi

Since (−)H preserves smashing with the G-trivial interval as well as the mapping
cylinder by C.1.2, the induced diagram on H-fixed points gives the proof. The same
arguments also apply to the case where H is a normal subgroup and we consider

(−)H as a functor to G�HT.
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Remark C.1.4. The forgetful functor i∗ : GT → HT we used above is an important
example of a change of groups fuctor. As in several places before, their left adjoints
given by left Kan extension are just as crucial for our work.

Definition C.1.5. For an H-space Y ∈ HT the smash product G+∧Y has an action
of G × H, with G acting from the left on G+ and H acting diagonally, from the
right on G+ and from the left on Y . Define the induced G-space as

G+∧HY,

i.e. the orbit G-space of G+∧Y with respect to the H-action.

Note that the inducing up functor is generally not symmetric monoidal. However,
there is an important compatibility property with the smash product of spaces:

Lemma C.1.6. [Kr, 3.8.1] Let X ∈ HT, Y ∈ GT. Considering as always smash
products with the diagonal actions, there is a natural G-equivariant homeomorphism

(G+∧HX)∧Y ∼= G+∧H(i∗Y ∧X).

Proof. Define the map via ([g, x], y) 7→ [g, (x, g−1y)]. One easily checks that this
assignment is well-defined, equivariant and a homeomorphism.

C.1.1 Model Structures

There are several well known model structures on GT that we are going to make use
of. The two most important ones are the genuine and the naive structure:

Definition C.1.7. A map f : X → Y in GT is called a naive fibration (or weak
equivalence), if it is a fibration (or weak equivalence) in the usual model structure
for T . It is called a genuine fibration (weak equivalence), if for all closed subgroups
H ⊂ G the restriction fH : XH → Y H to H-fixed points is a fibration (weak
equivalence).

The following theorem is then a combination of the statements in [MM, III.1.8]
and [P, Theorem 6.3]:

Theorem C.1.8. The category GT, is a model category with respect to both the
naive and the genuine fibrations and weak equivalences. The cofibrations are given
in both cases by the left lifting property with respect to those maps that are both
fibrations and weak equivalences.
Furthermore both of these model structures are compactly generated with the gener-
ating (acyclic) cofibrations given by the sets of h-cofibrations

I ′G := {i : (Sn−1 ×G)+ → (Dn ×G)+, n ≥ 0} and
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J ′G := {i0 : (Dn ×G)+ → (Dn × [0, 1]×G)+, n ≥ 0}

for the naive model structure (spheres and disks with the trivial G-action) respectively

IG := {i : (Sn−1 ×G�H)+ → (Dn ×G�H)+, n ≥ 0, H ⊂ G} and

JG := {i0 : (Dn ×G�H)+ → (Dn × [0, 1]×G�H)+, n ≥ 0, H ⊂ G}

for the genuine model structure. Here H ⊂ G indicates that H should vary over
all closed subgroups of G. Both of these model structures satisfy the cofibration
hypothesis B.1.31.

Remark C.1.9. Both of these model structures are monoidal (cf. C.2.7). We will
use the term G-topological for model structures enriched over the genuine structure
in the sense of B.1.10

Since these form the basis for the mixed model structure of Theorem 1.3.2, we
need to study some more of the technical properties.

Proposition C.1.10. (i) The naive model structure satisfies the monoid axiom
with respect to the smash product.

(ii) Let j be a naive acyclic cofibration, and i an h-cofibration, then i�j is a weak
equivalence.

(iii) The functor (−)G : GT → T , sending a G space to its orbit space, is a left
Quillen functor, considered both from the naive and the genuine structure.

(iv) Genuinely cofibrant G-spaces with a free action, are already naively cofibrant.

Proof. We check that the maps in J ′G∧GT are weak equivalences. By the associativ-
ity of the smash product, this follows from the fact that the Quillen model structure
on T satisfies the monoid axiom [H04, 1.5, 1.7]. Since cell complexes built from
maps that are h-cofibrations and weak equivalences are again weak equivalences,
(i) holds. Then (i) implies (ii), and (iii) follows from the fact that the adjoint is
obiously a right Quillen functor. Use lemma C.1.2 to prove (iv): Since taking fixed
points commutes with the IG-cell complex construction, and since a space X has
free (based) G-action if and only if its fixed points with respect to all subgroups of
G are trivial, there appear only free G-cells in the cell structure of X.

Families

Definition C.1.11. Let G be a group. A family F of subgroups of G is called
closed, if it is closed under taking subgroups and conjugates. It is called open if it
is the complement of a closed family.
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Note that closed and open families sometimes appear with the reversed meaning,
depending on which part of the literature one looks at. Other conventions include
calling our closed families merely families, and then referring to our open families
as cofamilies.

The following model structures are mentioned already in [MM, IV.6.5].

Definition C.1.12. Given a family F of subgroups of G, a map f : X → Y in
GT is called a F -fibration (-equivalence), if the restriction to H-fixed points is a
fibration (weak equivalence) for all subgroups H ∈ F .

Theorem C.1.13. Let F be a closed family of subgroups of G. The category GT is
a compactly generated, proper, monoidal model category with the fibrations and weak
equivalences given by the F -fibrations and F -equivalences. The generating (acyclic)
cofibrations are given by restricting the sets IG and JG, using only the orbit types
G�H with H ∈ F .

The proof of the Theorem proceeds analogous to that of [MM, III.1.8], restricting
to the diagram category of orbits to those coming from subgroups in F . The
pushout product axiom and the condition of being G-topological, is an immediate
consequence of Illman’s triangulation theorem, and will be discussed in more detail
in the next section.

Remark C.1.14. The naive and genuine model structures of C.1.8, are special cases
of this, with the naive structure coming from the family only containing the trivial
subgroup, and the genuine structure coming from the family of all closed subgroups
of G.

Remark C.1.15. Since the smash product with the interval I+ provides cylinder
objects for all these model structures, the generalized Whitehead theorem B.1.3
yields honest G-homotopy equivalences from F -equivalences between F -cofibrant
G-spaces for all closed families F . This result has classically been called the F -
Whitehead theorem.

As mentioned before, it is often very convenient to have homotopical properties
of h-cofibrations at hand when working with topological model categories. The
following lemma sums up what we will use in the G-equivariant context:

Lemma C.1.16. Let F be a family of subgroups of G.

(i) sequential colimits of F -equivalences along h-cofibrations are F -equivalences

(ii) pushouts of F -equivalences along h-cofibrations between well based G-spaces
are F -equivalences

(iii) the cube lemma holds for F -equivalences and h-cofibrations between well-based
G-spaces
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(iv) the cube lemma holds for G-homotopy equivalences and h-cofibrations.

Proof. All points follow directly from the analogous statement about weak equiva-
lences in T , and the fact that all the fixed point functors preserve h-cofibrations, as
well as sequential colimits and pushouts along h-cofibrations.

For i : H ⊂ G an inclusion of a closed subgroup, recall the restriction and induc-
tion functors from above (C.1.5).

Lemma C.1.17. Let FH be a closed family of subgroups of H and FG a closed
family of subgroups of G. If FH ⊂ FG, then the restriction and induction functor
form a Quillen pair

G+∧H(−) : GT � HT : i∗.

Proof. The right adjoint obviously preserves fibrations and acyclic fibrations.

Definition C.1.18. Let F be a closed family of subgroups of G. A universal
F -space is a F -cofibrant G-space EF , such that the H-fixed points EFH are
contractible for H ∈ F and empty for H /∈ F .

A discussion of existence results for universal F -spaces can be found in the
survey article [Lü]. We will therefore not discuss existence but prove the following
statement which goes into our construction of the mixed model structures: 2.3.1

Lemma C.1.19. Let F be a closed family of subgroups of G. The projection p :
EF → ? induces an F -equivalence

πH : G+∧HEF+ → G�H+
,

for all H closed subgroups of G.

Proof. By C.2.5, we can filter G+ as a naive H-complex. The proof proceeds by

induction along this filtration: assume Xn∧HEF+ → Xn�H is a F -equivalence and
Xn+1 is constructed from Xn by attaching a free H-cell. Then the attaching diagram
for the cell yields the commutative cube:

Sk−1
+ ∧H+∧HEF+

//

��

i∧EF+

uukkkkkkkkkkkkkk
Xn∧HEF+

��

vvnnnnnnnnnnnnn

Dk
+∧H+∧HEF+

//

��

Xn+1∧HEF+

��

Sk−1
+

//

i

uullllllllllllllllllll
Xn�H

wwoooooooooooo

Dk
+

// Xn+1�H
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Since smashing with CW -complexes and preserves F -equivalences and since i and
i∧EF+ are h-cofibrations, the generalized cube lemma from C.1.16(iii) gives the
induction step.

C.2 Illman’s Triangulation Theorems

In several places we will need to check cofibrancy with respect to the genuine model
structure. By the general theory for model categories it will usually suffice to under-
stand the class of IG-cell complexes in GT. From here on for the rest of the section,
we restrict to the case of G a compact Lie group, where the reference of choice for
such questions is [Ill83], in particular Theorems 5.5, 6.1 and 7.1. For convenience,
we will recall the statements and the relevant definition from [Ill83] before we give
some important corollaries.

Definition C.2.1. Let X be a G-space. For [x] ∈ XG, define the G-isotropy type
of [x] as the conjugacy class of the stabilizer subgroup Stabx of G.
Since the stabilizer subgroups of elements in the same orbit are all conjugate, this
indeed only depends on the element [x] ∈ XG.

Then one of the main results of [Ill83] is the following theorem:

Theorem C.2.2 ([Ill83, 5.5], paraphrased). Let X be a G-space such that there
exists a G-simplicial complex K and a triangulation t : K → XG of the orbit space
XG, such that the G-isotropy type is constant on open simplices, i.e. for each open
simplex s̊ of K the G-isotropy type is constant on t(̊s) ⊂ XG. Then X admits an
equivariant triangulation.

We will not give the explicit definition of an equivariant triangulation, since we
will only use the above theorem with the following results in mind:

Proposition C.2.3 ([Ill83, 6.1], paraphrased). An equivariant triangulation of a
G-space X gives X the structure of a G-equivariant CW -complex, in particular X
is an IG-cell complex.

Theorem C.2.4 ([Ill83, 7.1]). Let M be a smooth G-manifold with or without bound-
ary. Then there exists an equivariant triangulation of M .

Proof. Note that Illman’s proof, uses the above Theorem C.2.2, after establishing
that MG admits a triangulation with constant isotropy type along open simplices.

As mentioned above, we will make frequent use of these theorems throughout
the thesis. The following corollaries are of particular importance:
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Corollary C.2.5. Let G be a compact Lie group and H a closed subgroup. Then a
genuinely cofibrant X in GT is also genuinely cofibrant in HT.

Proof. We restrict to the case where X is an IG-cell complex. By induction on the
cell structure, and since smashing with a space preserves colimits, it suffices to show

that for any closed subgroup K ⊂ G the orbit space G�K is an IH-cell complex.

Indeed, we will show that
(
G�K

)
H

admits a triangulation with the H-isotropy type

constant on open simplices. Consider the compact Lie group H × Kop which acts
on G via (h, k).g := hgk−1. This makes G into an H × Kop-manifold, hence the

orbit space
(
G�K

)
H

is triangulable where the H × Kop-isotropy type is constant

along open simplices. We claim that this triangulation is the desired one: Let e be

an element of the orbit space and [g] ∈ G�K one of its preimages. The stabilizer
subgroup of H for [g] is the given by all h ∈ H such that there exists some k ∈ K
with hg = gk or equivalently hgk−1 = g. But this is exactly the projection to H of
the stabilizer subgroup of g in H×Kop. Hence the H isotropy type of e depends only
on the H×Kop-isotropy type of e and is therefore constant along open simplices.

Corollary C.2.6. Let G be a compact Lie group and H and K closed subgroups of

G. Then the product G�H ×
G�K is again an IG-cell complex, and the only orbit

types that appear are G�L, with L subconjugate to both H and K.

Proof. Note that G�H ×
G�K is isomorphic to G×G�H ×K and embed G into

G × G as the diagonal (closed) subgroup. Then Corollary C.2.5 gives the result.
For the statement about orbit types, we check what kind of stabilizer subgroups can

appear in the product G�H ×
G�K. In fact if L is the stabilizer of [g1], [g2], then we

have that Lg1 ⊂ g1H or equivalently that L is subconjugate to H. The analogous
argument for K finishes the proof.

A first consequence of these is another lemma on properties of the model struc-
tures for GT from C.1.13

Lemma C.2.7. Let F and F ′ be closed families of subgroups of G.

(i) The F -model structure on GT is G-topological.

(ii) The F -model structure on GT is monoidal with respect to the smash product.

(iii) The smash product of an F -cofibrant G-space with an F ′-cofibrant G-space is
F ∩F ′-cofibrant.
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Proof. All three points are proved in the same way. We check the generating cofi-
brations. So let

i : (Sn−1 ×G�H)+ → (Dn ×G�H)+

and
j : (Sm−1 ×G�H ′)+ → (Dm ×G�H ′)+,

with H ∈ F and H ′ ∈ F ′. Then their pushout product is G-homeomorphic to

(Sn+m−1 ×G�H ×
G�H ′)+ → (Dn+m ×G�H ×

G�H ′)+,

which is a F ∩F ′-cofibration by Corollary C.2.6. If either of i or j is a generating
acyclic cofibration the proof is similar with the appropriate spheres replaced by
discs.
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