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1. INTRODUCTION

The goal of this text is to overview the Fargues–Fontaine curve, its role in p-adic
Hodge theory, and its relation to Scholze’s theory of perfectoid spaces and diamonds.
On the other hand, we do not touch on the role of the curve in local class field theory
[11, 14] or in the local Langlands correspondence [13].
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1.0.1. The literature. — The definitive text on the foundations of the curve is the
book by Fargues and Fontaine [16]. There exist several more introductory articles, in
particular Colmez’s extensive preface [7] to the book, Fargues’ recent ICM text [15],
and Fargues–Fontaine’s Durham survey [17]. In view of these articles, which were very
useful when preparing the current text and which we highly recommend to readers with
a background in p-adic arithmetic geometry, we have attempted to present the theory
here with the non-expert in mind. In particular, Sections 2–3 should be accessible to
any reader with a knowledge of elementary algebraic geometry.

Concerning diamonds, Scholze’s Berkeley lecture notes [32] contain the main con-
cepts, while [31] is the source for the technical foundations, and his ICM text [29] gives
an overview. Section 4 on diamonds is sparse on details but we have attempted to
indicate some of the main ideas of the theory.

1.0.2. What is the curve? — Let us begin by recalling the old analogy between the
integers Z and the ring C[z] of polynomials in one variable over the complex numbers.
They are both principal ideal domains, even Euclidean domains, with Euclidean func-
tion given respectively by the usual absolute value |·| coming from R and by polynomial
degree. Geometrically, C[z] (whose monic prime polynomials identify with the complex
plane via x 7→ z− x) is the set of functions on the Riemann sphere P1

C whose only pole
is at infinity, and the degree of a polynomial is precisely the order of this pole. Analo-
gously, arithmetic geometry views Z as functions on the set of prime numbers, with an
extra point at infinity being provided by the real numbers or equivalently by | · |. Mo-
tivated by this analogy, it is not uncommon to develop analogues of geometric tools for
the Riemann sphere (e.g., vector bundles, sheaves, cohomology,...) when doing arith-
metic geometry over Z. This approach, although fruitful, can only be taken so far, since
the point at infinity for Z is no longer algebraic and so the compactification-at-infinity
{primes} ∪ {| · |} is no longer an algebro-geometric object.

The theory of Fargues and Fontaine takes this analogy much further if we focus on a
given prime number p and replace arithmetic geometry over Z by arithmetic geometry
over Zp or Qp. The Euclidean domain Z or C[z] is now replaced by a certain Qp-
algebra Be (coming from p-adic Hodge theory), which is again (almost) a Euclidean
domain with the Euclidean structure arising from a point at infinity. But, whereas in
the case of Z the point at infinity was outside the world of algebraic geometry, we are now
in a situation much closer to that of the Riemann sphere: there exists an actual curve
(in a sense of algebraic geometry) XFF whose functions regular away from a certain point
at infinity are the ring Be and whose geometric and cohomological properties (which
are similar to those of P1

C) encode significant information about arithmetic geometry
over Qp. This is the fundamental curve of p-adic Hodge theory, or the Fargues–Fontaine
curve.
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1.0.3. Overview. — We will return to the above point-at-infinity perspective after
Theorem 1.1 but first, given our goal of diamonds, we wish to introduce the Fargues–
Fontaine curve as a space of untilts. Here “untilt” refers to the tilting–untilting corre-
spondence of Scholze through which one passes between geometry over the characteristic
zero field Qp and over the characteristic p field Fp [23, 30]. For example, let Cp be the
“p-adic complex numbers”, i.e., the p-adic completion of the algebraic closure of Qp;
then its tilt C[

p, whose definition we will recall in Section 2.1, is a field with similar su-
perficial structure to Cp but it is an extension of Fp rather than of Qp. A fundamental
motivating question for both the curve and for diamonds is the following:

Putting F = C[
p, do there exist fields C ⊇ Qp other than Cp such that C[ = F ?

Informally, do there exist other ways of passing back to characteristic zero from
characteristic p ?

More precisely, since equality is clearly not the right notion, let |YF | denote the set
of untilts (C, ι), where C is a suitable extension of Qp and ι : F '→ C[ is a specified
isomorphism; such pairs are taken up to an obvious notion of equivalence. A coarser
notion of equivalence is obtained by taking the Frobenius automorphism ϕ : F '→ F ,
x 7→ xp, into account, thereby leading to the set of untilts up to Frobenius equivalence
|YF |/ϕZ. The remarkable theorem of Fargues and Fontaine states that this set of untilts
admits the structure of a “smooth, complete curve” (see Definition 2.6), now known as
the Fargues–Fontaine curve XFF

F of F .

Theorem 1.1 (Fargues–Fontaine). — The set |YF |/ϕZ is the underlying set of points
of a complete curve XFF

F .

We can now make more precise paragraph 1.0.2 about points at infinity; see Sections
2.2–2.3 for details. The original field Cp is itself an untilt of F , thereby giving us a
preferred point ∞ ∈ XFF

F . The ring of functions on XFF
F which are regular away from ∞

turns out to equal the Frobenius-fixed subring Be := Bϕ=1
crys of the classical crystalline

period ring of Fontaine [21]; meanwhile, the completed germs of meromorphic functions
at∞ equals his classical de Rham period ring BdR. The classical (and subtle) so-called
fundamental exact sequence of p-adic Hodge theory

0 −→ Qp −→ Be −→ BdR/B
+
dR −→ 0

then translates into a simple cohomological vanishing statement about the curve XFF
F .

In this way the Fargues–Fontaine curve may be viewed as subtly gluing together Be

(which is almost a Euclidean domain) and BdR (which is a complete discrete valuation
field), in the same way as the Riemann sphere P1

C glues together C[z] (= functions
on P1

C regular away from infinity) and C((1
z
)) (= completed germs of meromorphic

functions at infinity). Moreover, just as for P1
C, the sum of the orders of zeros/poles of

any meromorphic function on XFF
F is zero, which is precisely what it means for XFF

F to
be “complete”.
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Another similarity between the Fargues–Fontaine curve and the Riemann sphere
is their vector bundles. On the Riemann sphere, a theorem of Grothendieck states
that any vector bundle is isomorphic to ⊕m

i=1OP1
C
(λi) for some unique sequence of

integers λ1 ≥ · · · ≥ λm, where OP1
C
(λ) is the usual twisted line bundle of degree λ.

On the Fargues–Fontaine curve the situation is more complicated, as there exist non-
decomposable “rational twists” OXFF

F
(λ), for λ ∈ Q (this is only a line bundle if λ ∈ Z;

in general its rank is given by the denominator of λ), but then Fargues and Fontaine
establish the following analogue of Grothendieck’s theorem:

Theorem 1.2 (Fargues–Fontaine). — Let E be a vector bundle on XFF
F . Then there

exists a unique sequence of rational numbers λ1 ≥ · · · ≥ λm such that E is isomorphic
to ⊕m

i=1OXFF
F

(λi).

The proof of Theorem 1.2, which we discuss in Section 3.2 but which is beyond the
scope of this survey, requires a range of deep techniques including p-divisible groups
and p-adic period mappings. Conversely, it encodes enough information to have im-
portant applications to classical questions in p-adic Hodge theory. For example, we
use it in Section 3.3 to explain a short proof of Fontaine’s “weakly admissible implies
admissible” conjecture about Galois representations from 1988 [22] (resolved first by
Colmez–Fontaine in 2000 [8]). The key idea is that many linear algebraic objects of
p-adic Hodge theory (modules with filtration, with Frobenius,...) may be used to build
vector bundles on XFF

F , which may then be analysed through Theorem 1.2. An im-
portant technique in such analyses is the general rank-degree formalism of Harder and
Narasimhan [25], which applies to vector bundles on any curve; we review their theory
in Section 3.1.

We now turn to Scholze’s theory of diamonds. Recall that our motivating goal is
to classify untilts of the characteristic p field F . In the world of diamonds, such an
untilt corresponds to a “morphism” from Qp to F : of course, algebraically there exist
no homomorphisms between fields of different characteristic, but diamonds provide a
theory of p-adic geometry in which everything is of characteristic p in some sense. Even
more interestingly, the choice of two untilts of F (i.e., two points of |YF |) corresponds
to a morphism from Qp⊗Qp to F , where −⊗− refers to an absolute tensor product for
diamonds. (To avoid misleading the reader, we caution that there is no set-theoretic
object Qp ⊗ Qp, nor set-theoretic map Qp → F , only the associated diamond.) Weil’s
simple proof [34] of the Riemann hypothesis for a curve C over a finite field Fq crucially
depends on the geometry of the surface C ×Fq C, and a well-known philosophy predicts
that there should exist a similar object “Z ⊗F1 Z” in arithmetic geometry. Diamonds
appear to provide this object p-adically. (We emphasise that this is not an empty
philosophy: the “shtukas” of Drinfeld [9] which are central in the geometric Langlands
correspondence for C also involve C ×Fq C, and Fargues and Scholze’s ongoing work
on arithmetic local Langlands uses diamonds to develop an analogous theory over Qp

[18, 32].)
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In Section 4 we attempt to explain these ideas more precisely by defining the category
of diamonds. Scholze associates to any reasonable adic space X (e.g., the analytification
of a variety over a non-archimedean field such as Qp, Cp, or F ) a diamond which
classifies certain untilts of perfectoid spaces. For example, Qp and F themselves give
rise to diamonds Spd(Qp) and Spd(F ) and, as we suggested in the previous paragraph,
morphisms of diamonds Spd(F )→ Spd(Qp) are exactly the untilts of F (the morphism
has changed direction, as usual when passing from algebra to geometry). From the
point of view of diamonds, the Fargues–Fontaine curve gains the following beautiful
interpretation:

Theorem 1.3 (Scholze). — The diamond associated to the Fargues–Fontaine curve
XFF
F is naturally isomorphic to the product

Spd(F )/ϕZ × Spd(Qp).

Finally, in Section 5 we give a detailed sketch of the construction of the Fargues–
Fontaine curve; this is necessarily slightly technical (though, in principal, it only requires
some elementary algebraic geometry and some comfort manipulating large p-adic al-
gebras) and may be safely ignored by readers uninterested in the actual construction.
It begins by observing that Fontaine’s infinitesimal period ring Ainf,F := W (OF ) (i.e.,
Witt vectors of the ring of integers of F ) may be naturally viewed as a ring of func-
tions on the set |YF |. Fargues and Fontaine substantially develop this point of view
by introducing a topological structure on |YF | and replacing Ainf,F by a larger ring of
functions BF ; this is the largest reasonable ring of continuous functions on |YF | in the
sense that y 7→ {f ∈ BF : f(y) = 0} identifies |YF | with the closed maximal ideals of
BF (see Prop. 5.4). Moreover, each of these ideals is principal, generated by a so-called
primitive element of degree one, indicating that |YF | is one-dimensional in some sense.

The Frobenius action on |YF | from before Theorem 1.1 turns out to be properly
discontinuous, whence |YF |/ϕZ inherits a topology making it locally homeomorphic
to |YF |. The next step is to construct functions on |YF |/ϕZ. Unfortunately, the only
ϕ-invariant functions on |YF | are constant. Instead, Fargues and Fontaine develop
a theory of Weierstrass products to construct, for each point y ∈ |YF |, a function
ty ∈ BF satisfying ϕ(ty) = pty and with a simple zero at each point of the discrete set
ϕZ(y) ⊆ |YF | and no other zeros or poles. So, given any other function g ∈ BF satisfying
ϕ(g) = pg, we obtain a meromorphic function g/ty on |YF |/ϕZ which is regular away
from the image of y. Fargues and Fontaine prove that this process generates all functions
on |YF |/ϕZ or rather, in more precise algebro-geometric language:

Theorem 1.4 (Fargues–Fontaine). —(1) The graded ring ⊕k≥0 B
ϕ=pk

F is graded fac-
torial, with irreducible elements of degree one.

(2) The closed points of the scheme Proj(⊕k≥0 B
ϕ=pk

F ) canonically identify with the
set |YF |/ϕZ.
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Part (1) of Theorem 1.4 is a central result in the entire theory; in particular, it more
or less formally implies that the Fargues–Fontaine curve, which we may now define,
really is a curve:

Definition 1.5. — The Fargues–Fontaine curve is

XFF
F := Proj(

⊕
k≥0

Bϕ=pk

F ).

We will see earlier in Section 2.3 a similar (and ultimately equivalent) definition
of XFF

F in terms of the crystalline period ring.

Acknowledgements. — I am grateful to Colmez, Fargues, Fontaine, and Scholze for
their answers to my questions and their feedback on preliminary versions of the text.

All results herein are due to Fargues, Fontaine, and Scholze, while all errors and
excessive simplifications are due to the author.

2. EXISTENCE OF THE CURVE

In this section we present two points of view on the Fargues–Fontaine curve. The
first of these, in §2.1, states that the curve classifies certain equivalence classes of untilts
of a perfectoid field. The second, given in §2.2, instead characterises it via its functions
(given by a certain period ring of p-adic Hodge theory) together with a point at infinity
(corresponding to another period ring). In §2.3 we use the second approach to derive
and motivate a precise scheme-theoretic definition of the curve.

2.1. As a space of untilts of a perfectoid field

The first interpretation of the Fargues–Fontaine curve which we will explore, which
is the most important from the point of view of Scholze’s diamonds, is that it classifies
untilts of perfectoid fields. We therefore begin by summarising the essential ideas of
tilting and untilting.

Let C be a field with the following properties:
(Pf0) C is algebraically closed, contains Qp, and is complete with respect to
a non-archimedean absolute value | · |C : C → R≥0 extending the usual p-adic
absolute value on Qp.

For example, the standard choice is to take C = Cp the “p-adic complex numbers”,
i.e., the completion of the algebraic closure of Qp. The tilt F = C[ of C (to employ
Scholze’s terminology [30]; the construction exists since the early days of p-adic Hodge
theory) will be a field with the following similar properties but now of characteristic p:

(Pfp) F is algebraically closed, contains Fp, and is complete with respect to a
non-trivial non-archimedean absolute value | · |F : F → R≥0.
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There are other ways in which C and its tilt C[ are related: they have the same residue
field and there is a multiplicative map # : C[ → C, called the untilting map.

Let us now define the tilt C[. As a set, C[ is the set of p-power compatible sequences
in C, i.e.,

(1) C[ := {(a0, a1, . . . ) : ai ∈ C, api = ai−1}.

We define multiplication in C[ term-wise, while addition is defined by the rule

(2) (a0, a1, . . . ) + (b0, b1, . . . ) := (c0, c1, . . . ), where ci := lim
i≤n→∞

(an + bn)pn−i

,

where the limit is a convergent limit in the complete field C. It is not hard to check,
and in any case classical, that these operations give C[ the structure of a perfect field
of characteristic p. The promised untilting map # : C[ → C is simply the canonical
projection α = (a0, a1, . . . ) 7→ α# := a0, and then the absolute value | · |C on C induces
an absolute value on C[ by |α|C[ := |α#|C . It is easy to check that C[ is complete under
this absolute value and has the same residue field as C; careful use of Hensel’s lemma
shows that it is also algebraically closed. We refer the reader to [23, §1.3] [30] for more
on tilting.

Example 2.1. — (1) Fixing a compatible sequence of p-power roots of p (respectively,
of unity), we obtain elements

p[ := (p, p1/p, p1/p2
, . . . ), ε := (1, ζp, ζp2 , . . . )

of the field C[ which play an important role.
(2) If C = Cp, then C[ is isomorphic to the completion of the algebraic closure of the
Laurent series field Fp((t)), in such a way that t 7→ p[.

Let us now attempt to go in the opposite direction: given a field F as in (Pfp), does
there exist a field C as in (Pf0) such that C[ = F ? Can we classify all such C ? To
make this more precise, one defines an untilt of F to be a pair (C, ι) where C is a field
with properties (Pf0) and ι : F '→ C[ is an isomorphism of valued fields.(1) We say that
two untilts (C, ι) and (C ′, ι′) are equivalent if there exists an isomorphism C ∼= C ′ such
that the induced isomorphism between their tilts is compatible with ι and ι′. Although
it might not be clear at present, we will see using elementary algebra in Proposition 5.1
that F admits many untilts; in particular the following set |YF | is non-empty.

Definition 2.2. — Let |YF | be the set of equivalence classes of untilts of F .

Given an untilt (C, ι) of F , we may construct new untilts (C, ι ◦ ϕm), for all m ∈ Z,
where ϕ : F '→ F , x 7→ xp is the absolute Frobenius automorphism. These are not
interesting new untilts: therefore we say that untilts (C, ι) and (C ′, ι′) are Frobenius

(1)More precisely this would usually be called an “untilt of characteristic zero” in the literature.
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equivalent if there exists m ∈ Z such that (C, ι) and (C ′, ι′ ◦ ϕm) are equivalent. The
set of Frobenius equivalence classes of untilts is given by the quotient

|YF |/ϕZ

where the infinite cyclic group ϕZ is acting on |YF | via ϕm(C, ι) := (C, ι ◦ ϕm).
The first existence statement of the Fargues–Fontaine curve asserts that this space

of untilts |YF |/ϕZ admits the structure of a “smooth, complete curve”, and that it
therefore makes sense to study its geometric and cohomological properties. We refer to
Definition 2.6 for the precise definition of a complete curve.

Theorem 2.3 (Fargues–Fontaine). — There exists a complete curve XFF
F whose

points(2) are in natural bijection with |YF |/ϕZ. (Moreover, the point of XFF
F correspond-

ing to a given untilt (C, ι) has residue field C.)

To simplify notation, we fix a field F as in (Pfp) for the rest of the text, and write

|Y | = |YF |, XFF = XFF
F .

The reader is welcome to suppose that F is the tilt of Cp.

2.2. As a period ring with a point at infinity
The next point of view on the Fargues–Fontaine curve is that it is obtained by

compactifying (the spectrum of) a period ring of p-adic Hodge theory by adding a
point at infinity, in the same way as the Riemann sphere P1

C is obtained from the
complex plane by adding a point at infinity.

We begin with some reminders on Riemann surfaces(3) and their functions. Let X be
a Riemann surface (or more generally a smooth projective curve over any algebraically
closed field) and let C(X) denote its field of meromorphic functions. Given a mero-
morphic function f ∈ C(X), its order of vanishing ordx(f) at a point x ∈ X is defined
as usual: namely, expanding the function as f = ∑

n�−∞ anz
n
x , where zx is a local

coordinate at x, we have

ordx(f) := min{n : an 6= 0} ∈ Z ∪ {∞}.

Each function ordx : C(X) → Z ∪ {∞} is a valuation,(4) and we recall the classical
degree formula that

(3)
∑
x∈X

ordx(f) = 0

for all f ∈ C(X), which reflects the compactness of X.
The Fargues–Fontaine curve most closely parallels the Riemann sphere P1

C, so let us
now consider that case from a more algebraic point of view. Let∞ ∈ P1

C be the point at

(2)Points mean closed points.
(3)Always compact and connected.
(4)i.e., ordx is surjective, multiplicative, and satisfies ordx(f) =∞⇔ f = 0 and the non-archimedean
inequality ordx(f + g) ≤ max{ordx(f), ordx(g)}.
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infinity, so that P1
C \ {∞} identifies with the complex plane. The field of meromorphic

functions on P1
C is precisely C(z), i.e., the field of rational functions in one variable z;

meanwhile, the meromorphic functions which are regular away from infinity form the
algebra C[z] ⊆ C(z) of polynomials in z.

The theory of the Riemann sphere P1
C is almost completely encoded in the alge-

bra C[z], except that we have lost the point at infinity; to record this extra point, we
keep track of the valuation ord∞. In conclusion, we can completely encode the Riemann
sphere in the following algebraic pair of data:

algebra C[z], valuation on its field of fractions ord∞ : C(z)→ Z ∪ {∞}.

The degree formula (3) now takes the algebraic form

(4) ord∞(f) +
∑

p⊆C[z]
ordp(f) = 0

for all f ∈ C[z], where p runs over the non-zero prime ideals of C[z] (each such ideal p is
generated by z − x for some unique x ∈ C, and then ordx is precisely the associated p-
adic valuation ordp on C[z]). The Fargues–Fontaine curve will provide us with another
example of such a pair.

We first further analyse the properties of the pair (C[z], ord∞). Given f ∈ C[z], its
order of vanishing ord∞(f) at the point ∞ is simply − deg(f): indeed, the expansion
of f = ∑deg f

n=0 anz
n in terms of the coordinate z∞ = 1/z at infinity is exactly f =∑0

n=− deg f anz
n
∞. Thus − ord∞ = deg : C[z]→ N ∪ {−∞} is the usual degree function,

which is a Euclidean function on C[z]. Recall here that a Euclidean function on an
integral domain B is a function deg : B → N ∪ {−∞} with the following properties:

(E1) for f ∈ B, we have deg(f) = −∞ if and only if f = 0;
(E2) for non-zero f, g ∈ B, we have deg(f) ≤ deg(fg);
(E3) for all f, g ∈ B with g 6= 0, there exist q, r ∈ B such that f = gq + r and

deg(r) < deg(g).
The fact that C[z] is equipped with a Euclidean function implies in particular that it
is a principal ideal domain. In conclusion, C[z] is a principal ideal domain, equipped
with an extra valuation ord∞ on its field of fractions such that the degree formula (3)
holds, and such that deg = − ord∞ is a Euclidean function on C[z].

For the Fargues–Fontaine curve, it turns out that unfortunately the analogue of deg
fails to be a Euclidean function, and therefore Fargues and Fontaine introduce the
notion of an almost Euclidean function deg : B → N ∪ {−∞}, which is defined by
replacing (E3) by the following pair of strictly weaker axioms [16, Déf. 5.2.1]:

(E3′) for f ∈ B such that deg(f) = 0, we have f ∈ B×;
(E3′′) for f, g ∈ B with deg(g) ≥ 1, there exist q, r ∈ B such that f = gq + r and

deg(r) ≤ deg(g).
We reach the following axiomatisation of the algebraic pairs of interest to us (the
following simplistic definition does not appear in the work of Fargues and Fontaine,
but will be helpful for expository purposes):



1150–10

Definition 2.4. — An algebraic P1 is a pair (B, ν) consisting of a principal ideal do-
main B and a valuation ν : Frac(B) → Z ∪ {∞} such that −ν is an almost Euclidean
function on B. We say that the pair is complete(5) if the degree formula

ν(f) +
∑
p⊆B

ordp(f) = 0

is satisfied for all f ∈ B. (As in (4), here p runs over the non-zero prime ideals of B
and ordp denotes the associated p-adic valuation on B.)

As explained above, the prototypical example of an algebraic P1 is (C[z], ord∞).

We may now give an algebraic statement approximating the existence of the Fargues–
Fontaine curve in terms of the classical crystalline and de Rham period rings Bcrys
and BdR of p-adic Hodge theory. These are large Qp-algebras which have been central
in p-adic Hodge theory since their introduction by Fontaine [20, 21, 24]; their role in the
theory of p-adic Galois representations will be reviewed in §3.3. Their precise definitions
(which may be found in §5.3) are for the moment unimportant as we will only need the
following three properties: BdR is a complete discrete valuation field (on which we will
denote the valuation by νdR) of residue characteristic zero [21, §1.5.5]; Bcrys is a subring
of BdR [21, §4.1]; Bcrys is equipped with an endomorphism ϕ known as its Frobenius
[21, §2.3.4]. Let Be := Bϕ=1

crys be the ring of Frobenius-fixed points of Bcrys, and continue
to write νdR for the restriction of νdR to Frac(Be) ⊆ BdR.

Theorem 2.5 (Fargues–Fontaine). — The pair (Be, νdR) is a complete algebraic P1.

Theorem 2.5 succinctly encodes a range of fundamental results about the period rings.
Firstly, the theorem states that the ring Be is in fact a principal ideal domain; the first
indication of this was Berger’s surprising result [4, Prop. 1.1.9] that it is a Bézout ring
(i.e., all its finitely generated ideals are principal).

Secondly, the fact that −νdR is an almost Euclidean function on Be turns out to be a
formal algebraic consequence (see [16, §5.2]) of the classical fundamental exact sequence
of the period rings
(5) 0 −→ Qp −→ Be −→ BdR/B

+
dR −→ 0

[6, Prop. 1.17] [8, Prop. 1.3(iv)], where B+
dR := {f ∈ BdR : νdR(f) ≥ 0} is the ring

of integers of the discrete valuation field BdR. Thus the fundamental exact sequence
translates into the existence of an almost Euclidean function, which we will see in a
moment corresponds to a cohomological vanishing statement on the Fargues–Fontaine
curve. Thus we see a first example of how the geometry of the curve encodes algebraic
results of p-adic Hodge theory.

The problem with Theorem 2.5 is that it is not a geometric statement: there is no
actual curve. To remedy this, we adopt first the following definition (which was already
used in Theorem 2.3 when stating the existence of XFF):

(5)By analogy with Riemann surfaces one might prefer to say “compact”, but “complete” is the more
traditional terminology in algebraic geometry.
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Definition 2.6 ([16, Déf. 5.1.1]). — A curve is a regular, Noetherian, separated, con-
nected, one-dimensional scheme X; it is complete if the degree formula ∑x∈X ordx(f) =
0 holds for all f in the function field of X.(6)

Curves are related to algebraic P1s by elementary algebraic geometry as follows.
Suppose that X is a complete curve together with a chosen point ∞ ∈ X such that
X \ {∞} is affine, say Spec(B). The point ∞ defines a valuation ord∞ on Frac(B) (=
the function field of X), and we wish to characterise whether the pair (B, ord∞) is an
algebraic P1 purely in terms of geometric properties of X and ∞:

– One defines the degree of a Weil divisor ∑x∈X nx[x] to be ∑x∈X nx; the assumption
that X is complete states that this is trivial on the divisor of any rational function,
and thus it induces deg : Pic(X)→ Z. It is straightforward to see that B is a principal
ideal domain if and only if the degree map deg : Pic(X) → Z is an isomorphism [16,
Lem. 5.4.1].

Let OX(1) := OX(∞) be the line bundle on X associated to the Weil divisor [∞],
and more generally OX(k) = OX(1)⊗k the line bundle associated to k[∞] for any k ∈ Z.

– It is easy to check that − ord∞ defines a Euclidean function on B if and only if
H1(X,OX(k)) = 0 for all k ≥ −1 [16, Prop. 5.4.2], e.g., X = P1

C.
– Similarly, − ord∞ defines an almost Euclidean function on B if and only if

H1(X,OX(k)) = 0 for all k ≥ 0 [16, Prop. 5.4.2], e.g., X = XFF by Theorem 2.7.
– The completeness of X tautologically implies the completeness of the pair

(B, ord∞).
In conclusion, the geometric and cohomological hypotheses

(6) deg : Pic(X) '→ Z and H1(X,OX(k)) = 0 for all k ≥ 0

imply that the pair (B = H0(X \ {∞},OX), ord∞) is a complete algebraic P1 in the
sense of Definition 2.4.

Fargues and Fontaine prove that the pair (Be, νdR) from Theorem 2.5 arises in this
way from their curve. To state the result, we should mention that the de Rham and
crystalline period rings implicitly depended on having chosen an untilt of F , thereby
giving rise to a preferred point ∞ ∈ XFF via Theorem 2.3.

Theorem 2.7 (Fargues–Fontaine). — XFF is a complete curve which, together with the
point ∞, satisfies properties (6) ; the associated algebraic P1 is (Be, νdR).

Thus the Fargues–Fontaine curve “glues together” the period rings of p-adic Hodge
theory to form a complete curve with similar geometric and cohomological properties
to the Riemann sphere. Given the unwieldy nature and enormity of the period rings,
it is remarkable that they underlie a reasonable geometric object. We warn the reader

(6)More generally we could also include the data of a specified integer deg(x) ≥ 1 for each closed point
x ∈ X, and replace the degree formula by

∑
x∈X deg(x) ordx(f) = 0. However, in this survey we have

chosen to focus entirely on the Fargues–Fontaine curve associated to an algebraically closed field F , in
which case the degrees deg(x) turn out to all be 1 and hence may be suppressed.
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however that, although the ring of globally regular functions on the Fargues–Fontaine
curve is H0(XFF,OXFF) = Qp (to prove this, calculate Čech cohomology of OXFF using
the fundamental exact sequence (5)), the curve is not at all of finite type over Qp:
indeed, Theorem 2.3 tells us that its residue fields are all algebraically closed (hence
are not finite extensions of Qp).

2.3. First definition of the curve

Now we address the following question, which will motivate our first definition of XFF:
assuming the validity of Theorem 2.7, how can we reconstruct the curve XFF from the
algebraic data (Be, νdR)?

In the case of the Riemann sphere from §2.2, we may recover P1
C from the correspond-

ing pair (C[z], ord∞ = − deg) by observing that there is an isomorphism of graded rings

C[z0, z1] '→
⊕
k≥0

Filk C[z], z0, z1 7→ z, 1 ∈ Fil1 C[z],

where Filk C[z] := {f ∈ C[z] : deg f ≤ k}. Therefore P1
C
∼= Proj(⊕k≥0 Filk C[z]).

Analogously for the Fargues–Fontaine curve, Theorem 2.7 suggests that XFF might
be Proj of the graded ring ⊕k≥0 Filk Be, where Filk Be := {b ∈ Be : νdR(b) ≥ −k}. It
is customary to rewrite this isomorphically by using the following classical facts about
the crystalline period ring: there exists a Qp-subalgebra B+

crys ⊆ Bcrys and an element
t ∈ B+

crys such that
– Bcrys = B+

crys[1
t
],

– ϕ(t) = pt and νdR(t) = 1, and
– if an element b ∈ Bcrys ∩ B+

dR satisfies ϕ(b) = pkb for some k ≥ 0 then b ∈ B+
crys

[21, Th. 5.3.7(i)]; in short, Bϕ=pk

crys ∩B+
dR = B+ϕ=pk

crys .

It formally follows that we have a bijection Filk Be
'→ PFF

k := B+ϕ=pk

crys , b 7→ btk for each
k ≥ 0. We may assemble these into an isomorphism of graded rings⊕

k≥0
Filk Be

'−→ PFF =
⊕
k≥0

B+ϕ=pk

crys

and so reach a definition of the Fargues–Fontaine curve:

Definition 2.8. — The Fargues–Fontaine curve is the scheme XFF := Proj(PFF).

Revisiting the earlier results, Theorem 2.7 asserts in particular that Proj(PFF) is a
complete curve satisfying (6). This turns out to be a formal consequence of the following
central result in the theory:

Theorem 2.9 (Fargues–Fontaine). — The graded ring PFF is graded factorial with
irreducible elements of degree one. That is, any non-zero element f ∈ PFF

k may be
written uniquely (up to re-ordering and multiples of Q×p ) as a product f = t1 · · · tk,
where ti ∈ PFF

1 .
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Theorem 2.9 should be compared to the analogous fact that C[z0, z1] is also graded
factorial with irreducible elements of degree one: indeed, any homogeneous polynomial
in C[z0, z1] may be written uniquely (up to re-ordering and multiples of C×) as a product
of linear homogeneous polynomials. Moreover, just as points of P1

C correspond to C-lines
in the two-dimensional vector space Fil1 C[z] = C + Cz via

P1
C
'→ (Fil1 C[z])/C×, x 7→

z − x x ∈ C,
1 x =∞,

so too do points of Proj(PFF) correspond to Qp-lines in the infinite dimensional Qp-vector
space PFF

1 .
In fact, Theorem 2.9 is the essential result underlying the construction of XFF: Far-

gues and Fontaine check directly, using only elementary algebraic geometry, that if a
graded ring P = ⊕

k≥0 Pk is graded factorial with irreducibles of degree one and P0 is
a field (and a more technical hypothesis which we omit, but which in the case of the
Fargues–Fontaine curve essentially follows from the fundamental exact sequence (5)),
then Proj(P ) is a complete curve satisfying (6) for any choice of closed point ∞. See
[16, Ths. 5.2.7 & 6.5.2].

However, it seems difficult to directly prove Theorem 2.9 using classical results about
the crystalline period ring. Instead, Fargues and Fontaine return to the untilting point
of view of §2.1 and reconstruct the graded ring PFF by studying various rings of functions
on |Y |. Their construction is the focus of §5.

3. VECTOR BUNDLES

In this section we explain how vector bundles on the Fargues–Fontaine curve are
related to p-adic Galois representations and to various categories of linear algebraic
objects which have appeared in p-adic Hodge theory. We begin by reviewing the classical
slope theory of Harder and Narasimhan, which applies to vector bundles on any curve.

3.1. Harder–Narasimhan theory

To review briefly the classical theory of Harder and Narasimhan, let X be a Riemann
surface such as P1

C, or more generally a smooth projective curve over any algebraically
closed field. To any vector bundle E on X we may associate two fundamental invariants:

– its rank rkE ∈ N;
– its degree degE ∈ Z, defined to be the degree of its determinant line bundle; recall

here that the degree of a line bundle L is defined, for example, by identifying L with a
Weil divisor ∑x∈X nx[x] up to rational equivalence and setting degL := ∑

x∈X nx.
From these one defines the third invariant of E, its slope µ(E) := degE/ rkE ∈ Q.

The vector bundle E is said to be semi-stable if µ(E ′) ≤ µ(E) for every sub-bundle
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E ′ ⊆ E.(7) The following classical theorem was proved by Harder and Narasimhan in
1974 [25] and is fundamental in the study of vector bundles on curves:

Theorem 3.1 (Harder–Narasimhan [25]). — Let E be a vector bundle on X. Then E

posseses a unique filtration by sub-bundles

0 = E0 ⊂ E1 ⊂ · · · ⊂ Em = E

with the following two properties:

– the quotient bundle Ei/Ei−1 is semi-stable for each i = 1, . . . ,m, and
– µ(E1/E0) > · · · > µ(Em/Em−1).

There exist several axiomatisations of Harder and Narasimhan’s theory, the most
general of which is due to André [1]. We do not adopt André’s formalism in greatest
generality, but the special case which appears in [10, 16]. Let E be a category and
assume that to each object E ∈ E there are associated two invariants

rkE ∈ N, degE ∈ Z

(which only depend on E up to isomorphism), and then define the slope of E as µ(E) :=
degE/ rkE. These are subject to the following additional assumptions in order that
the theory should work:

(HN1) E is an exact category (e.g., projective/free modules over a ring – possibly
equipped with extra structure such as a filtration, endomorphism, etc. – or vector
bundles on a scheme/space);

(HN2) the rank function rk factors through an abelian category in a manner subject
to certain hypotheses [16, §5.5.1], which we do not reproduce here.

Under these assumptions, the category E behaves like vector bundles on a curve: in
particular, any object of E possesses a Harder–Narasimhan filtration as in Theorem 3.1.

We now turn to examples of categories which are subject to this axiomatic Harder–
Narasimham formalism; each category should be viewed as vector bundles on a curve
in a generalised sense, even if the curve is not evident.(8)

3.1.1. Vector bundles on a curve. — Let X be a Riemann surface, or more generally a
smooth projective curve over a field, or even more generally any complete curve in the
sense of Definition 2.6; let Vect(X) be the category of vector bundles on X. Equipped
with the usual notion of rank and degree, as defined above, the category Vect(X)
satisfies the necessary axioms and we recover Harder–Narasimhan’s original theory.

(7)By sub-bundle we mean that E′ is locally a direct summand of E.
(8)Strictly speaking this is slightly misleading: if we impose extra structure such as a polarisation, then
the Harder–Narasimham formalism can in fact be extended to higher dimensional varieties [1, §3.1.2].



1150–15

3.1.2. Vector bundles on P1
C. — We now restrict attention to P1

C and give an algebraic
description of its vector bundles purely in terms of the pair (C[z], ord∞) from §2.2.

Let E be a vector bundle on P1
C. The sections of E on the complex plane form a

finite free C[z]-module M , while the completed germ of sections of E at the remaining
point ∞ ∈ P1

C form a finite free C[[z∞]]-module M∞, where z∞ = 1/z is our preferred
coordinate at ∞. The fact that the modules M and M∞ arise from the same vector
bundle corresponds to an identification of M∞ as a C[[z∞]]-lattice inside the finite
dimensional C((z∞))-vector spaceM⊗C[z]C((z∞)). In this way we arrive at the following
equivalence of categories(9) which describes vector bundles on P1

C purely in terms of the
pair (C[z], ord∞):

Vect(P1
C) '−→ {pairs (M,M∞), where M is a finite free C[z]-module and

M∞ is a C[[z∞]]-lattice inside M ⊗C[z] C((z∞))}.

Under this equivalence, the rank of a vector bundle is given by rkC[z] M = rkC[[z∞]] M∞,
while the degree can be expressed by comparing bases of the free modules M and M∞.

3.1.3. (B, ν∞)-pairs : vector bundles on an algebraic P1. — Let (B, ν) be a complete
algebraic P1, in the sense of Definition 2.4. Motivated by Example 3.1.2, we may define
a (B, ν)-pair, or more informally a “vector bundle over the pair (B, ν)”, to be the
data of a pair (M,M∞), where M is a finite free B-module and M∞ is an Oν-lattice
inside the finite dimensional Kν-vector space M ⊗B Kν . Here Kν is the completion
of K = Frac(B) with respect to the discrete valuation ν, and Oν denotes its ring of
integers. In the case of the pair (P1

C, ord∞), these are precisely C((z∞)) and C[[z∞]].
The rank of a pair (M,M∞) is defined to be the rank of the module M (or, equiva-

lently, of M∞), while its degree is defined by comparing bases of M and M∞ as in §3.1.2.
The category of (B, ν)-pairs is thus subject to the Harder–Narasimhan formalism.

Suppose that (B, ν) arises from a complete curve X and a chosen point ∞ ∈ X

satisfying hypotheses (6), as in §2.2. Then the same argument as in §3.1.2 shows
that (B, ν)-pairs identify with actual vector bundles on X, and that moreover this
identification is compatible with rank and degree.

In the case of the algebraic P1 of the Fargues–Fontaine curve (Be, νdR), such pairs
were introduced first by Berger and called more simply B-pairs [4, §2],(10) whence
our terminology. Repeating the above definition for clarity, a (Be, νdR)-pair is a pair
(M,MdR) whereM is a finite freeBe-module andMdR is aB+

dR-lattice insideM⊗BeBdR.
(Here we have implicitly used that the inclusion Frac(Be) ⊆ BdR becomes an equality
upon νdR-adic completion, but this is an easy consequence of the surjectivity in the
fundamental exact sequence (5).) By the previous paragraph, Theorem 2.7 implies the
following:

(9)Proving that this functor is really an equivalence of categories is a well-known application of the
Beauville–Laszlo theorem [2].
(10)More precisely, Berger’s B-pairs were also equipped with a Galois action.
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Proposition 3.2 ([16, §8.2.1.1]). — The category of (Be, νdR)-pairs identifies with the
category Vect(XFF) of actual vector bundles on the Fargues–Fontaine curve.

3.1.4. Filtered vector spaces. — Given a field extension L/F , let VectFilL/F be the
category of pairs (V,Fil• VL), where V is a finite dimensional F -vector space and Fil•
is a separated and exhaustive filtration on VL := V ⊗F L. The rank and degree of
(V,Fil• VL) are defined to be

rk(V,Fil• VL) := dimF V, deg(V,Fil• VL) :=
∑
i∈Z

i dimL(gri VL).

The category VectFilL/F is thus subject to the Harder–Narasimhan formalism.

3.1.5. Isocrystals. — Now we turn to an example from the theory of p-adic cohomol-
ogy, which will be used to build vector bundles on the Fargues–Fontaine curve. Let k
be a perfect field of characteristic p and K0 := Frac(W (k)), where W (k) denotes the
p-typical Witt vectors of k. Recall that K0 is a complete discrete valuation field of
mixed characteristic (0, p) and with residue field k; moreover, the Frobenius automor-
phism ϕ : k '→ k, x 7→ xp, induces a field automorphism of K0, still denoted by ϕ. For
example, if k = Fq, then K0 = Qp(ζq−1) and ϕ ∈ Gal(K0/Qp) is uniquely characterised
by the identity ϕ(ζq−1) = ζpq−1. We will review Witt vectors further at the start of §5.1.

An isocrystal over k is a pair (D,ϕD) where D is a finite dimensional K0-vector space
and ϕD : D → D is a ϕ-semilinear isomorphism (here ϕ-semilinear means ϕD(ad) =
ϕ(a)ϕD(d) for all a ∈ K0 and d ∈ D). The rank and degree of an isocrystal are defined
by

rk(D,ϕD) := dimK0 D, deg(D,ϕD) := − deg+ det(D,ϕD),

where deg+ of a rank one isocrystal (L, ϕL) is defined by choosing any basis element e ∈
L, writing ϕL(e) = ae for some a ∈ K0, and setting deg+(L, ϕL) := νp(a). The category
ϕ -ModK0 of isocrystals is then subject to the Harder–Narasimhan formalism.(11)

For example, given a rational number λ ∈ Q written uniquely as λ = d/h with
d, h ∈ Z, h > 0, (d, h) = 1, we may define an isocrystal (Dλ, ϕλ) ∈ ϕ -ModK0 as
follows. We set Dλ = Kh

0 as a K0-vector space, with basis elements e1, . . . , eh, and
define ϕλ : Dλ → Dλ to be the unique ϕ-semilinear endomorphism satisfying

ϕλ(ei) =

ei+1 i = 1, . . . , h− 1,
p−de1 i = d.

The isocrystal (Dλ, ϕλ) has rank h, degree d, and slope λ.

(11)The seemingly strange minus sign in front of deg+ is designed to ensure that Lemma 3.3 and the
resulting functor E(−) are compatible with degrees. In fact, deg+ itself is also a valid degree func-
tion on ϕ -ModK0 , leading to a different Harder–Narasimhan formalism. The two associated Harder–
Narasimhan filtrations are the same but run in opposite directions, i.e., they are split; this gives the
classical Dieudonné–Manin decomposition of the isocrystal.
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3.2. Classification of vector bundles on the Fargues–Fontaine curve

We now focus our attention to vector bundles on the Fargues–Fontaine curve XFF;
recall from Proposition 3.2 that these correspond to (Be, νdR)-pairs. Berger observed
that these may be constructed from isocrystals over Fp as follows [4, Ex. 2.1.2]; we omit
the proof, although it is not difficult:

Lemma 3.3. — Let (D,ϕD) ∈ ϕ -ModQp be an isocrystal over Fp. Then

((Bcrys ⊗Qp D)ϕ=1, B+
dR ⊗Qp D)

is a (Be, νdR)-pair, with rank and degree (as in §3.1.3) given by the rank and degree of
the isocrystal (D,ϕD) (as in §3.1.5)

The lemma functorially associates to any isocrystal (D,ϕD) a vector bundle on XFF,
which is denoted by E(D,ϕD). In the particular case of the isocrystal (Dλ, ϕλ), for λ ∈
Q, we write instead OXFF(λ) := E(Dλ, ϕλ). Since both Proposition 3.2 and Lemma 3.3
are compatible with rank and degree, we see that the vector bundle OXFF(λ) has rank
h, degree d, and slope λ.

The following is the classification theorem of vector bundles on XFF:

Theorem 3.4 (Fargues–Fontaine [16, Thm. 8.2.10]). — Let E be a vector bundle on
XFF. Then there exists a unique sequence of rational numbers λ1 ≥ · · · ≥ λm such that
E is isomorphic to ⊕m

i=1OXFF(λi)

Corollary 3.5. —(1) The functor E(−) : ϕ -ModQp → Vect(XFF) is essentially sur-
jective.

(2) Let E be a vector bundle on X and let λ ∈ Q. Then E is semi-stable of slope λ if
and only if it is isomorphic to OXFF(λ)m for some m ≥ 1.

(3) The category of semi-stable, slope-zero vector bundles on XFF is equivalent to the
category of finite dimensional Qp-vector spaces, via

E 7→ H0(XFF, E), V 7→ V ⊗Qp OXFF .

Proof. — The proof of the classification theorem is a tour de force beyond the scope of
this text, requiring p-divisible groups and Hodge–Tate period mappings. We refer to
[16, §8] for details and to [17, §6.3] for a sketch.

The corollary is an easy consequence of the theorem. (For part (3), the reader should
recall that H0(XFF,OXFF) = Qp, as we saw just after Theorem 2.7.)

Remark 3.6. — Theorem 3.4 may be used to show that the Fargues–Fontaine curve is
geometrically simply connected [16, Th. 8.6.1]. In other words, every finite étale cover
of XFF is of the form XFF ⊗Qp E for some finite extension E of Qp, and hence the étale
fundamental group of the curve is the absolute Galois group of Qp:

πét
1 (XFF) = Gal(Qp/Qp).
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Since the goal of p-adic Hodge theory, local class field theory, and the local Langlands
programme is, loosely, to understand Gal(Qp/Qp), the above identification epitomises
the way in which the curve offers a new geometric approach to these subjects.

3.3. An application to p-adic Galois representations

We are now ready to present one of the main applications of the theory of vector
bundles on the Fargues–Fontaine curve to the theory of p-adic Galois representations,
which will reveal the strength of the classification theorem.

Let K be an extension of Qp and GK = Gal(K/K) its absolute Galois group; let
K0 = Frac(W (k)) ⊆ K be the maximal unramified subextension of K, where k is the
residue field of K. The reader is welcome to assume K = K0 = Qp. The study of
p-adic Galois representations is concerned with continuous representations of GK on
finite dimensional Qp-vector spaces; we denote the category of such representations by
Rep(GK). Fontaine classically defined various classes of such representations, notably
Hodge–Tate, de Rham, crystalline and (potentially) semi-stable representations in terms
of his period rings, which reflect different types of reduction on the geometric side of the
picture. We now recall his formalism [21, 22]. Let B be a (typically large) Qp-algebra,
equipped with an action by GK ; write F = BGK for its subalgebra of fixed elements,
which we assume is a field. Given a p-adic Galois representation V ∈ Rep(GK), we
may consider the F -vector space DB(V ) := (B⊗Qp V )GK , where GK acts diagonally on
B ⊗Qp V . The representation V is said to be B-admissible if dimF DB(V ) = dimQp V ,
which encodes a certain compatibility between the ring B and the representation V , and
one writes RepB(GK) ⊆ Rep(GK) for the set of B-admissible representations. Under
certain axiomatic hypotheses on B (namely that it is GK-regular [22, §1.4]), Fontaine
showed that the functor

DB : RepB(GK) −→ {finite dim. F -vector spaces}

is faithful [22, Prop. 1.5.2] (and moreover exact and compatible with tensor products).
If the algebra B is equipped with additional structure, such as a grading, filtration,

endomorphism, etc. compatible with the GK-action, then this structure is formally
inherited by the vector space DB(V ); for example, if ϕ is an endomorphism of B which
is Qp- and GK-linear, then ϕ⊗ 1 defines an endomorphism of B ⊗Qp V and of DB(V ).
In that case DB becomes a functor

DB : RepB(GK) −→ {finite dim. F -vector spaces with additional structure}

which we can hope is now fully faithful (since adding extra structure to vector spaces
restricts the permitted morphisms). If so, and if we can identify the image of the functor,
then we will have a purely linear algebraic description of the category of B-admissible
p-adic Galois representations; this is a major goal of p-adic Hodge theory.

Example 3.7. — (1) A p-adic Galois representation is said to be de Rham if it is BdR-
admissible. Since BdR is a complete discrete valuation field, it is filtered by its valuation
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Filk BdR := {b ∈ BdR : νdR(b) ≥ k}. Moreover BGK

dR = K [21, §1.5.7] and so Fontaine’s
formalism provides a faithful functor

DdR : RepdR(GK) −→ {finite dim. filtered K-vector spaces}, V 7→ (BdR⊗QpV )GK .

(2) A p-adic Galois representation is said to be crystalline if it is Bcrys-admissible.
Since Bcrys is equipped with the Frobenius endomorphism ϕ and is known to satisfy
BGKcrys = K0 [22, Prop. 5.1.2], Fontaine’s formalism yields a faithful functor

Dcrys : Repcrys(GK) −→ ϕ -ModK0 , V 7→ (Bcrys ⊗Qp V )GK .

Geometrically, de Rham (resp. crystalline) p-adic Galois representations arise from
the étale cohomology of smooth p-adic varieties (resp. of good reduction).

In these examples, although we have embedded de Rham and crystalline represen-
tations into linear algebraic categories, neither are the embeddings fully faithful nor
have we identified the images; therefore we cannot claim to have yet provided a linear
algebraic description of either class of p-adic Galois representations. Fontaine overcame
this problem as follows by simultaneously taking both the filtration and Frobenius into
account.

Let ϕ -ModFilK/K0 denote the category of triples (D,ϕD,Fil•DK) where D is a finite
dimensional K0-vector space, ϕD : D '→ D is a ϕ-linear isomorphism, and Fil• is a
separated and exhaustive filtration on DK := D ⊗K0 K; that is, (D,ϕD) ∈ ϕ -ModK0

and (D,Fil•DK) ∈ VectFilK/K0 . We define rank as usual and a degree by adding those
on ϕ -ModK0 and VectFilK/K0 :

rk(D,ϕD,Fil•DK) := dimK0 D

deg(D,ϕD,Fil•DK) := deg(D,ϕD) + deg(D,Fil•DK).

The resulting Harder–Narasimhan formalism on the category of filtered isocrystals
ϕ -ModFilK/K0 encodes information about the interaction of the Frobenius and the
filtration.

If V is a crystalline Galois representation, then Fontaine’s formalism (and the in-
clusion of the period rings Bcrys ⊆ BdR) implies that V is also de Rham and that
DdR(V ) = Dcrys(V ) ⊗K0 K [22, §5.1.7]. Therefore combining the two parts of Exam-
ple 3.7 upgrades Dcrys to a functor

Dcrys : Repcrys(GK) −→ ϕ -ModFilK/K0 .

This can be shown moreover to be fully faithful by writing down an explicit left inverse

Vcrys : ϕ -ModFilK/K0 −→ Repcrys(GK)
(D,ϕD,Fil•DK) 7→ {v ∈ Bcrys ⊗K0 D : ϕ(v) = v and v ∈ Fil0(BdR ⊗K DK)}

(this will gain a natural geometric interpretation in terms of the Fargues–Fontaine curve
in the proof of Theorem 3.8).
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Fontaine conjectured that a filtered isocrystal was in the essential image of Dcrys
if and only if it was weakly admissible [19, §5.2.6] [22, Conj. 5.4.4]; we do not repro-
duce Fontaine’s original definition of weakly admissible, but remark that in terms of
the Harder–Narasimhan formalism on ϕ -ModFilK/K0 defined above, it is tautologically
equivalent to asking that it be semi-stable and of slope zero. The “only if” direction in
Fontaine’s conjecture is easy [22, Prop. 5.4.2]. Note that the resolution of the conjecture
gives an equivalence of categories

Dcrys : Repcrys(GK) '−→ ϕ -ModFilw.a.
K/K0 ,

where w.a. denotes the full subcategory of weakly admissible filtered isocrystals. This
indeed resolves a goal of p-adic Hodge theory by describing a large class of p-adic Galois
representations purely in terms of linear algebraic data.

Fontaine’s conjecture was proved first by Colmez–Fontaine in 2000 [8] and a different
proof was given by Berger in 2008 [4, 5]. Both these papers contained important ideas
which contributed to the discovery of the Fargues–Fontaine curve. Conversely, the
Classification Theorem 3.4 of vector bundles on XFF provides a short conceptual proof
of Fontaine’s conjecture:

Theorem 3.8 (Colmez–Fontaine). — Fontaine’s above conjecture is true.

Proof. — In §3.2 we associated to any isocrystal (D,ϕD) ∈ ϕ -ModQp a vector bundle
E(D,ϕD) on XFF. More generally, given a filtered isocrystal D = (D,ϕD,Fil•DK) ∈
ϕ -ModFilK/K0 , it may be checked that

((Bcrys ⊗K0 D)ϕ=1,Fil0(BdR ⊗K DK))

is a (Be, νdR)-pair and hence defines a vector bundle E(D,ϕD,Fil•DK) on XFF, of the
same rank and degree as D.

Now suppose that D is semi-stable of slope zero, i.e., weakly admissible, and put
E := E(D,ϕD,Fil•DK). Note that

H0(XFF, E) = (Bcrys ⊗K0 D)ϕ=1 ∩ Fil0(BdR ⊗K DK) = Vcrys(D),

where the first equality is a Čech cohomology calculation on the curve, and the second
equality is by definition. This is the cohomological interpretation of Vcrys(D) which we
mentioned earlier.

Since D is semi-stable of slope zero, the vector bundle E is also: this is not com-
pletely automatic from Harder–Narasimhan formalism, but is not hard to check [7,
Prop. 5.6(iii)]. Therefore Corollary 3.5 states that E is constant in the sense that

H0(XFF, E)⊗Qp OXFF
'−→ E,

whence dimQp Vcrys(D) = dimK0 D. This equality of dimensions forces D to coincide
with Dcrys(Vcrys(D)) [8, Prop. 4.5], which completes the proof.
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Remark 3.9. — More generally the above argument describes the category of semi-
stable(12) p-adic Galois representations as weakly admissible filtered isocrystals with
monodromy operator. This was also conjectured by Fontaine [21, §5.4.4] and proved
first by Colmez–Fontaine. We refer the reader to Colmez’s preface [7, §5.2].

4. DIAMONDS, D’APRÈS SCHOLZE

We now change direction slightly to give an introduction to Scholze’s theory of di-
amonds [31, 32] and the relation to the Fargues–Fontaine curve. This will require
overviewing some aspects of the theory of adic and perfectoid spaces.

4.1. Huber pairs

The theory of adic spaces, developed by Huber [26], is an approach to rigid analytic
geometry, i.e., a theory of algebraic geometry in which topologies such as the p-adic
topology are taken into account. The class of topological rings for which the theory
works are the Huber rings: a topological ring R is called Huber if there exists an
open subring R0 ⊆ R and a finitely generated ideal I of R0 such that the subspace
topology on R0 is the I-adic topology. The possibilities R0 = R or I = 0 are not
excluded. We stress that R0 and I are not part of the data: in general there are many
choices. The easiest way to build a Huber ring is to start with a ring R0 and a non-
zero-divisor π ∈ R0, and to give R := R0[ 1

π
] the topology with basis f + πmR0, for

f ∈ R, m ≥ 0; such a Huber ring R is called a Tate ring. For example, given a field K

topologised by a non-archimedean absolute value | · | : K → R≥0, the rings K and
K〈T 〉 := {∑n≥0 anT

n : an ∈ K, an → 0 as n→∞} are Tate rings.
Huber enriches the topology by specifying which elements of R should correspond to

bounded functions: this enrichment takes the form of a chosen subring R+ ⊆ R which
is open, integrally closed in R, and such that each element f ∈ R+ is “power-bounded”
(i.e., the sequence fn does not tend to infinity as n → ∞). The pair R = (R,R+) is
called a Huber pair, or a Tate–Huber pair if R is Tate. It is sometimes the case that
R+ = R0, but other times this is not even allowed (R0 might not be integrally closed);
on the other hand there is always a largest possibility for R+, namely the subring of
all power-bounded elements of R. In the case of the field K of the previous paragraph,
one almost always takes K+ = OK , and so writes K as shorthand for the Tate–Huber
pair (K,OK).

We will be mainly interested in Tate–Huber pairs;(13) these are, in short, the “rings”
which will underly our geometric objects (just as usual rings underlie schemes). A

(12)This use of “semi-stable” is completely unrelated to the semi-stable appearing in the Harder–
Narasimhan theory.
(13)For experts: we ignore the fact that the pair might not be sheafy.
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homomorphism of Tate–Huber pairs is a continuous map which restricts to the +-
subrings.

4.2. Perfectoid pairs
We say that a Tate–Huber pair S = (S, S+) is perfect if S is topologically complete

and is a perfect Fp-algebra (i.e., each element of S has a unique pth-root).
Dropping the characteristic p assumption, a Tate–Huber pair T = (T, T+) is said to

be perfectoid [23, 30] if T is topologically complete and there exists an element π ∈ T+

such that
– the topology on T+ is the π-adic topology;
– p ∈ πpT+;
– given f ∈ T+ there exists g ∈ T+ such that f ≡ gp mod πT+.

The hypotheses imply that T+ (and hence T ) has many p-power roots. A Tate–Huber
pair of characteristic p is perfectoid if and only if it is perfect [31, Prop. 3.5].

For example, if C (resp. F ) is a field as in (Pf0) (resp. (Pfp)), then (C,OC)
(resp. (F,OF )) is perfectoid. Moreover, the tilting formalism we have explained
for fields in §2.1 extends to perfectoid pairs: given a perfectoid Tate–Huber pair
T = (T, T+), its tilt T [ = (T [, T+[) is a perfect Tate–Huber pair. Here the rings T [
and T+[ are defined exactly as we did for C in line (1), namely by equipping the set of
compatible p-power sequences in T and T+ with termwise multiplication and addition
as in line (2).

4.3. Properties and examples of diamonds
Just as any ring A gives rise to a scheme by taking its spectrum Spec(A) of prime

ideals, any Tate–Huber pair R gives rise to a diamond spectrum Spd(R). Although
we will not define the category of diamonds until §4.4, we may nevertheless state some
properties of this process (at the risk of oversimplifying the theory).

Firstly, we warn the reader that the contravariant functor R 7→ Spd(R) loses infor-
mation, unless we impose a suitable smoothness or perfectoid hypothesis: in particular,
we will see that the contravariant functor

(7) Spd : Aff-Perf := {perfect Tate–Huber pairs} −→ {diamonds}

is fully faithful.
Given a diamond X, its points with value in a perfect Tate–Huber pair S are the

elements of the set
X(S) := Homdiamonds(Spd(S), X).

Such points provide a conservative family of test objects: a morphism f : X → Y of
diamonds is an isomorphism if and only if X(S) → Y (S) is a bijection for all perfect
Tate–Huber S. In particular, any diamond X is determined by its associated functor
of points

X(−) : Aff-Perf −→ Sets,
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and so we may use this perspective to completely describe some diamonds.
For example, the functor of points associated to the diamond Spd(Qp) := Spd(Qp,Zp)

will turn out to be

(8) S 7→ {equivalence classes of untilts of S}.

Similarly to §2.1 for fields, here an untilt of S is a pair (T , ι) consisting of a per-
fectoid Tate–Huber pair T of characteristic zero (i.e., T ⊇ Qp) and an isomorphism
ι : S '→ T [;(14) the equivalence relation is as for fields. Since the category of diamonds
has products we may form a new diamond Spd(Qp) × Spd(Qp), which was implicitly
mentioned in the introduction: its S-points are pairs of untilts of S.

More generally, given any Tate–Huber pair R = (R,R+), we may look at untilts
over R of S: by definition such an untilt is a triple (T , ι, f) consisting of a perfectoid
Tate–Huber pair T , an isomorphism ι : S '→ T [, and a homomorphism f : R→ T . The
notion of equivalence is the obvious one. The functor of points associated to Spd(R) is
precisely

S 7→ {equivalence classes of untilts over R of S}.

Using this we can check the following: given any perfectoid Tate–Huber T , then there
is a natural identification of diamonds

Spd(T ) = Spd(T [).

Indeed, in light of the above description of these diamonds, this follows from the fol-
lowing tilting equivalence:

Proposition 4.1 (Scholze [30, Th. 5.2 & Lem. 6.2]). — Let T be a perfectoid Tate–
Huber pair. Then tilting induces an equivalence of categories

{perfectoid Tate–Huber pairs over T} '→ {perfect Tate–Huber pairs over T [}

Proof. — We stress that this is one of the easier tilting equivalences in the theory:
it is essentially proved by repeating the arguments of Proposition 5.1 after replacing
W (OC[) by W (T+). See [30] [31, §3] for details.

Any algebraic variety X over Qp gives rise to a diamond X�. Indeed, X is built from
the spectra of various Qp-algebras, from which one may build Tate–Huber pairs via
a p-adic completion process, then glue the associated diamond spectra. The process
X 7→ X� should be viewed as a generalisation of tilting, which now applies to finite-type
objects such as varieties, whereas tilting itself only applies to (large) perfectoid objects.
Moreover, this process does not lose any information under suitable hypotheses:(15)

(14)As in §2.1, we abusively abbreviate “untilt of characteristic zero” to “untilt”.
(15)For experts, let us explain what is really true. Firstly, we may replace Qp by any complete extension
K. Then any rigid analytic variety X over K admits a diamond-ification X� ∈ Diam, and the functor

{seminormal rigid analytic varieties over K} −→ {diamonds over Spd K}, X 7→ X�
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Proposition 4.2 (Scholze [31, Prop. 10.2.4] + GAGA). — The above diamond-
ification functor
{proper smooth varieties over Qp} −→ {diamonds over SpdQp}, X 7→ X�

is fully faithful.

Remark 4.3. — The theory of diamonds also contains geometric objects which do not
arise from varieties. One of the most important is the B+

dR-affine Grassmannian. We
restrict to the case of GLn, although the following discussion continues to work for other
algebraic groups.

It is known classically that the quotient
GLn(C((t)))/GLn(C[[t]]),

which classifies C[[t]]-lattices inside C((t))n, admits the structure of an ind complex
analytic space; alternatively, from an algebraic point of view, the functor
(9) C -Algs 3 A 7→ GLn(A((t)))/GLn(A[[t]]) = {A[[t]]-lattices inside A((t))}
is represented by an ind projective scheme. This geometric object is known as the
affine Grassmannian and is fundamental in the geometric Langlands programme [3, 28]
(notably in the geometric Satake correspondence).

In p-adic arithmetic geometry the analogues of C((t)) and C[[t]] are BdR and
B+

dR, as we have seen in §2.2, and therefore one considers instead the quotient
GLn(BdR)/GLn(B+

dR), which classifies B+
dR-lattices inside Bn

dR. Recall that BdR and
B+

dR implicitly depend on both F and a chosen untilt (C, ι). More generally, given any
perfect Tate–Huber pair S and chosen untilt over C (i.e., morphism Spd(S)→ Spd(C)),
it is possible to define analogues of these de Rham period rings and therefore an ana-
logue of (9) on the category of perfect Tate–Huber pairs over Spd(C). This so-called
B+

dR-affine Grassmannian is an ind diamond [32, §19] which is expected to appear in
the arithmetic Satake correspondence.

4.4. Definition of diamonds via adic spaces
As we mentioned in §4.1, Huber pairs are the building blocks of Huber’s approach to

rigid analytic geometry. More precisely, to each Huber pair R = (R,R+) one associates
its adic spectrum Spa(R), which is a topological space of continuous absolute values | · |
on R such that |f | ≤ 1 for all f ∈ R+. Such valuations arise from choosing a prime
ideal p ⊆ R and writing down an absolute value on the fraction field of R/p; since
the trivial absolute value is allowed, we see that Spa(R) is a refinement of Spec(R) by
taking into account the topology on R and the boundedness of R+.

Just as varieties and schemes are built by gluing together the spectra of rings, adic
spaces are built by gluing together the adic spectra of Huber pairs. As for schemes,

is fully faithful. The seminormality hypothesis is a necessary consequence of the fact that all perfectoid
rings are seminormal and so cannot detect the difference between a ring and its seminormalisation. To
obtain the proposition we restrict to the proper smooth case and apply GAGA.
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there is a robust theory of étale cohomology for adic spaces, due to Huber under suitable
finiteness hypotheses [26] and to Scholze in greater generality [31].

A perfectoid space is an adic space built by gluing the adic spectra of perfectoid
Tate–Huber pairs. It can be shown (though it is somewhat technical [31, §6]) that the
tilting process T 7→ T [ is compatible with gluing; therefore one may associate to any
perfectoid space Z its tilt Z[, which is a perfectoid space of characteristic p (i.e., an
adic space built by gluing the adic spectra of perfect Tate–Huber pairs).

Since perfectoid spaces are rather large, it is better to replace the étale topology by
a pro-étale variant [31, §8], in which infinite limits of étale covers are allowed. Scholze
uses this pro-étale topology on perfectoid spaces to define diamonds as follows:

Definition 4.4 (Scholze [31, Def. 11.1] [32, §8]). — Let Perf denote the site of perfectoid
spaces of characteristic p equipped with the pro-étale topology. A diamond X is a sheaf
of sets on Perf of the form X = Z/R, where Z,R ∈ Perf and R ↪→ Z × Z is a
equivalence relation such that the two projection morphisms R → Z are pro-étale.
(Here we identify Z with the sheaf HomPerf(−, Z) on Perf, and similarly for R.)

In short, a diamond X is an algebraic space for the site Perf. Informally, X is
obtained by gluing perfectoid spaces of characteristic p along pro-étale overlaps.

To relate this definition to the discussion in §4.3, the key is to check the following,
in which we globalise in the obvious way the notion of “untilts over”:

Proposition 4.5 (Scholze [31, Prop. 15.4]). — Let R be a Tate–Huber pair. Then

Spd(R) : Perf −→ Sets, Z 7→ {equivalence classes of untilts over Spa(R) of Z}

is a diamond in the sense of Definition 4.4.

Proof. — By adding to R many p-power roots of elements it is possible to construct
a perfectoid-isation R∞ of R, such that the resulting map of adic spectra Spa(R∞) →
Spa(R) is a pro-étale cover [31, Prop. 15.4].

Proposition 4.1 then shows that Spd(R), as defined in the statement of the current
proposition, is a quotient of the representable sheaf HomPerf(−, Spa(R[

∞)). It remains
to check that we are quotienting by a pro-étale equivalence relation, which Scholze does
by establishing various general results about pro-étale torsors.

More generally, Proposition 4.5 associates a diamond X� to any analytic adic space
X, given by

X� : Perf −→ Sets, Z 7→ {equivalence classes of untilts over X of Z}.

Here “analytic” means that that X is built from Tate–Huber pairs, not general Huber
pairs, so Proposition 4.5 may be glued to define X�. As already mentioned in §4.3, the
diamond X� should be viewed as a generalised tilt of X.

We now invite the reader to return to §4.3 with the definition of diamonds and check
some of the claims we made there. For example, the fully faithful embedding of line (7)
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is simply Spa : Aff-Perf ↪→ Perf followed by the Yoneda embedding, while the functor
of points view is valid since diamonds are by definition sheaves on Perf.

In [31], Scholze puts diamonds on a firm geometric and cohomological footing by
establishing a theory of étale cohomology, including a six functor formalism. The theory
of diamonds is part of the framework in which Fargues and Scholze carry out their work
on the local Langlands correspondence [18, 32].

4.5. The Fargues–Fontaine curve as a diamond

We now return to the Fargues–Fontaine curve XFF = XFF
F associated to the field F as

in (Pfp). The appearance of topologies, convergent series, etc. in the construction of XFF

from §5 is a reflection of the fact that there exists a closely related adic space XFF, known
as the adic Fargues–Fontaine curve [12]. To construct it, let Y be the adic space ob-
tained by removing the vanishing loci of the elements p, [π] ∈ Ainf from Spa(Ainf, Ainf).
Here Ainf is defined in §5.1, π is an arbitrary non-zero element of mF , and the topology
on Ainf is the (p, [π])-adic topology. Just as we will see for the topological space |Y |
in §5.2, the Frobenius on Ainf induces a totally discontinuous Frobenius action on Y ,
and so XFF := Y/ϕZ is a well-defined adic space. Thus the adic Fargues–Fontaine curve
may be defined relatively quickly.

There is a morphism of ringed spaces XFF → XFF under which XFF behaves like an
analytification of the scheme XFF. In particular, a GAGA theorem asserts that the two
spaces have the same vector bundles and cohomology [27, Th. 8.7.7] [12, Th. 3.5].

As explained in §4.4, there is then a diamond XFF� associated to the adic Fargues–
Fontaine curve. This turns out to have a beautifully simple description in terms of the
diamond spectra of our fields:

Theorem 4.6 (Scholze [31, §15.2.6]). — There are natural isomorphisms of diamonds

Y� ∼= Spd(F )× Spd(Qp), XFF� ∼= Spd(F )/ϕZ × Spd(Qp).

Proof. — We will sketch the first isomorphism, the second then being obtained by
modding out by the Frobenius action on F .

According to the functor of points perspective explained in §4.3, we must show that
Y� and Spd(F )×Spd(Qp) naturally have the same S-points for all perfect Tate–Huber
pairs S. We calculate these points:

– By the full faithfullness of (7), an S-point of Spd(F ) is simply a morphism of
Tate–Huber pairs f : (F,OF )→ (S, S+).

– By (8), an S-point of Spd(Qp) is an untilt (T , ι) of S.
– Using the definitions of YF and the diamond-ification process, it can be shown

that an S-point of Y� is an untilt (T , ι) of S together with a continuous homomorphism
Ainf → T+ which extends to Ainf[ 1

p
, 1

[π] ]→ T (see the proof of [32, Prop. 11.2.1]).
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Therefore, to produce a map of diamonds Spd(F ) × Spd(Qp) → Y� we should show,
given any morphism f : (F,OF ) → (S, S+) and untilt (T , ι) of S, how to produce a
natural continuous homomorphism Ainf → T+ which extends to Ainf[ 1

p
, 1

[π] ] → T . For
this homomorphism we take

Ainf = W (OF ) −→ W (S+) ∼= W (T+[) θT−→ T+,

where the first arrow is induced by f , the isomorphism is induced by ι, and the θ

map is a generalisation of Fontaine’s map from Proposition 5.1. (Indeed, this whole
construction is essentially the same argument as Proposition 5.1, but now phrased in
the diamond language.)

Conversely, every such homomorphism Ainf → T+ can be constructed in this way
(by a universal property of Witt vectors), which means that the map of diamonds is an
isomorphism.

Throughout this text we focus on the Fargues–Fontaine curve associated to a field F
with properties (Pfp); in fact, Fargues and Fontaine work more generally with the condi-
tion “F is perfect” rather than “F is algebraically closed”. Using perfectoid spaces and
diamonds much more possible: there exists a Fargues–Fontaine “relative curve over Z”
XFF
Z = YZ/ϕZ associated to any perfectoid space Z of characteristic p. The objects YZ

and XFF
Z are again adic spaces, whose associated diamonds satisfy the analogous formu-

lae of the previous proposition [32, §11.2 & §15.2].

5. CONSTRUCTION OF THE CURVE

We now turn to the actual construction of the Fargues–Fontaine curve and to sketch-
ing the main theorems stated in §2. As already mentioned, Fargues and Fontaine do
not do this in terms of the classical period rings of §2.2–2.3, but instead adopt the point
of view of §2.1 that the curve should be an enrichment of a space of untilts; they there-
fore introduce and study various rings of “holomorphic functions in p” on the spaces of
untilts |Y | and |Y |/ϕZ.

We have fixed a field F as in (Pfp) and drop the subscript F from our notation
wherever possible (including from the forthcoming rings Ainf, Bb+, Bb, B+, B, all of
which depend on F ).

5.1. The infinitesimal period ring Ainf

We begin by recalling some theory of Witt vectors [33, §6]. Let W (F ) be the ring of
p-typical Witt vectors of the field F : each element of W (F ) may be written uniquely
as a sequence (α0, α1, . . . ), where αi ∈ F , and addition and multiplication are given by
certain universal polynomials such as

(α0, α1, α2, . . . ) + (β0, β1, β2, . . . ) = (α0 + β0, α1 + β1 −
p−1∑
i=1

1
p

(
p

i

)
αi0β

p−i
0 , . . . )
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(α0, α1, α2, . . . ) · (β0, β1, β2, . . . ) = (α0β0, α
p
0β0 + βp0α1 + pα1β1, . . . )

The fact that F is a perfect field of characteristic p means that its Witt vectors are
well-understood: W (F ) is a complete discrete valuation ring such that W (F )/pW (F ) =
F . Any element of W (F ) may be expressed uniquely as a p-adically convergent sum∑
n≥0[αn]pn = (α0, α

p
1, α

p2

2 , . . . ) for some coefficients αn ∈ F ; here [α] := (α, 0, 0, 0, · · · )
denotes the Teichmüller lift of an element α ∈ F .

We will in fact be more interested in the Witt vectors Ainf := W (OF ) of the ring
of integers OF ; this is the subring Ainf ⊆ W (F ) consisting of series ∑n≥0[αn]pn such
that all the coefficients αn belong to OF . The ring Ainf is known as the infinitesimal
period ring, sometimes denoted by A or Ainf, and may be characterised as the unique
p-complete and p-torsion-free ring such that Ainf/pAinf = OF [33, §II.5–II.6]. It is a
foundational building block of Fontaine’s various p-adic period rings and of the Fargues–
Fontaine curve. Although Ainf is a “large” ring (in particular, non-Noetherian), it is
sufficiently explicit to be amenable.

An element ξ = ∑
n≥0[αn]pn ∈ Ainf is said to be primitive if α0 6= 0 and there exists

k ≥ 0 such that αk ∈ O×F ; the smallest such k is called the degree of ξ. Let Primk ⊆ Ainf
denote the set of primitive elements of degree k. It is easy to see that Prim0 = A×inf
and that Primk ·Priml ⊆ Primk+l; in particular, if a principal ideal I ⊆ Ainf can be
generated by a primitive element of degree k, then any generator of I is a primitive
element of degree k. Primitive elements of degree one play an important role thanks
to the following correspondence, which identifies the set |Y | as part of the prime ideal
spectrum of Ainf and is a provisional form of Theorem 2.3.

Proposition 5.1 ([27, Th. 3.6.5] [23, Prop. 1.1.1]). — There is a natural bijective
correspondence between |Y | (i.e., equivalence classes of untilts of F ) and the set of
ideals of Ainf generated by a primitive element of degree one.

Proof. — Let us explain here how the correspondence is defined and give some notation
which will be needed in the rest of the section. See [16, §2.2] for further details.

Given a field C satisfying (Pf0), there is a distinguished surjective homomorphism
θC : W (OC[)→ OC which plays an important role throughout p-adic Hodge theory. It
was introduced by Fontaine as

θC : W (OC[) −→ OC ,
∑
n≥0

[αn]pn 7→
∑
n≥0

α#
n p

n

where αn ∈ OC[ and # is the untilting map from §2.1. The difficulty is to verify
that θC is a ring homomorphism, which is done by examining the explicit rules for
addition and multiplication in Witt vectors, or by judicious use of universal properties.
The kernel Ker θC is a principal ideal of W (OC[) generated by p− [p[] (where p[ ∈ C[ is
the element from Example 2.1), which is manifestly primitive of degree one in W (OC[).

Changing the point of view, now suppose that y = (Cy, ιy) is an untilt of F , i.e., a
point of |Y |. Then the previous paragraph yields a surjective homomorphism

θy : Ainf = W (OF ) ∼= W (OC[) θC−→ OC
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(where the isomorphism is induced by ιy : F '→ C[) with kernel py := Ker θy generated
by a primitive element of degree one; such a generator is often denoted by ξy, which
the previous paragraph shows may be taken to be p− [ι−1

y (p[)]. This defines the desired
correspondence

|Y | −→ {ideals generated by a primitive element of degree one}, y 7→ py = Ker θy.

To prove that this is a bijection, one checks directly that if p ⊆ Ainf is an ideal
generated by a primitive element of degree one, then (Ainf/p)[ 1

p
] is indeed a field as in

(Pf0) which untilts F .

The proposition has two immediate consequences. Firstly, it means that elements
of Ainf define functions on |Y |, with varying field of value in the usual sense of algebraic
geometry: namely, given f ∈ Ainf and y ∈ |Y |, we may write f(y) := θy(f) ∈ OCy .
Strangely, p should be viewed as a variable.

Secondly, Fargues and Fontaine use the proposition to equip the set |Y | with a topo-
logical structure [16, §2.3]. Given ideals I, J ⊆ Ainf, define the distance d(I, J) between
them to be the smallest ρ ∈ [0, 1] such that I + aρ = J + aρ, where aρ := {f ∈ Ainf :
|f mod p|F ≤ ρ} ⊆ Ainf. Restricted to ideals generated by a primitive element of degree
one, it is easy to check that d(−,−) is an ultrametric distance function and so turns |Y |
into an ultrametric space. Moreover, the space |Y | resembles a punctured open disk in
the following sense: given y ∈ |Y | with corresponding ideal py, define its distance to the
origin to be r(y) := d(py, 0). This defines a continuous map r : |Y | −→ (0, 1) such that

|Yρ| := {y ∈ |Y | : r(y) ≥ ρ}

is complete (under the above distance function d) for any ρ > 0.
Exploiting this geometric perspective on |Y |, Fargues and Fontaine establish the

following preliminary form of Theorem 2.9:

Theorem 5.2 (Fargues–Fontaine [16, Th. 2.4.1]). — Let f ∈ Ainf be a primitive ele-
ment of degree k ≥ 1. Then there exist primitive elements ξ1, . . . , ξk ∈ Ainf of degree
one such that f = ξ1 · · · ξk.

Corollary 5.3 (Weierstrass factorisation for Ainf). — Let f ∈ Ainf be a primitive
element of degree k ≥ 1. Then there exist non-zero x1, . . . , xk ∈ mF and a unit u ∈ A×inf
such that

f = u(p− [x1]) · · · (p− [xk]).

Proofs. — The corollary is obtained from the theorem by recalling that any primitive
element of degree one can be written up to unit as p − [x] for some non-zero x ∈ mF

(as we saw in the proof of Proposition 5.1)
To prove the theorem it suffices to show that f , viewed as a function on |Y |, has a

zero. Indeed, given y ∈ |Y | such that f(y) = 0, this means precisely that f is divisible
by any generator ξy of py; writing f = gξy with g ∈ Ainf, one sees that g is necessarily
primitive of degree k − 1 and then proceeds by induction on k.
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It remains to show that f has a zero, which is a key result in the theory. Write
f = ∑

n≥0[αn]pn and let Newt(f) denote the decreasing Newton polygon in R2 associated
to the points (n,− logp |αn|F )n≥0. If f can be written as in the corollary, then the
valuations of the elements xi are precisely the slopes of Newt(f). Conversely, Fargues
and Fontaine use the slopes of Newt(f) to find approximate zeros, eventually taking
the limit in |Y | (using that each |Yρ| is complete) to construct an actual zero of f .

The appearance of Newton polygons in the previous sketch is not isolated: it is the
main technique which Fargues and Fontaine use to analyse elements of Ainf and of the
forthcoming rings Bb+, Bb, B+, B.

5.2. Holomorphic functions on |Y | in the variable p

As we have just seen in §5.1, it is helpful to view Ainf as functions on the topological
space |Y |. Fargues and Fontaine substantially develop this point of view by introducing
further rings of functions Bb+, Bb, B+, B on |Y | as follows. These will fit together as in
the following diagram, in which we have also included the period rings for convenience:

Ainf ⊆ Bb+ ⊆ B+ = “bounded functions on |Y |” ⊆ B+
crys ⊆ B+

dR

⊇ ⊇ ⊇ ⊇ ⊇

W (F )[ 1
p
] ⊇ Bb ⊆ B = “functions on |Y |” Bcrys ⊆ BdR

⊆
Be

We begin by defining the incomplete rings of functions Bb+ and Bb:

Bb+ := Ainf[ 1
p
] =

{ ∑
n�−∞

[αn]pn : αn ∈ OF
}

⊇

Bb := Ainf[ 1
p
, 1

[π] ] =
{ ∑
n�−∞

[αn]pn : αn ∈ F, |αn|F is bounded as n→∞
}

(where π is an arbitrary non-zero element of mF ). For any y ∈ |Y |, it is easy to check
that the homomorphism θy : Ainf → OCy extends to θy : Bb → Cy (but not all the way
to W (F )[ 1

p
]), and therefore we may think of Bb+ and Bb as rings as function on |Y | via

f(y) := θy(f).
With this in mind we introduce the Gauss norms

|| · ||ρ : Bb → R≥0, ||
∑

n�−∞
[αn]pn||ρ := sup

n
|αn|ρn

for all ρ ∈ (0, 1). These norms are multiplicative (this is rather subtle and is a novel
observation of Fargues and Fontaine [16, Prop. 1.4.9]) and satisfy the maximum modulus
principle that || · ||ρ ≤ max{|| · ||ρ1 , || · ||ρ2} whenever 0 < ρ1 ≤ ρ ≤ ρ2 < 1. Let B+

and B be the Fréchet Qp-algebras obtained by completing Bb+ and Bb with respect to
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this family of norms. Given y ∈ |Y |, the homomorphism θy : Bb → Cy is continuous
with respect to the Gauss norm || · ||r(y) and therefore again extends to a continuous
homomorphism θy : B → Cy; this shows that B+ and B may also be viewed as rings of
functions on |Y |, and also that pyB is a closed maximal ideal of B equal to {f ∈ B :
f(y) = 0}.

In fact B is the largest reasonable ring of continuous functions on |Y |, in the sense
that its spectrum of closed maximal ideals identifies with |Y | (this also provides an
intrinsic definition of |Y | without reference to primitive elements):

Proposition 5.4 (Fargues–Fontaine [16, Cor. 2.5.4]). — The association y 7→ pyB

defines a bijection between |Y | and the set of closed maximal ideals of B.

Proof. — This results from a finer statement about rings BI : here I is a compact
interval of (0, 1) and BI is defined to be the completion of Bb with respect to the Gauss
norms || · ||ρ for ρ ∈ I. If I = [ρ1, ρ2] then the maximum modulus principle shows
that it is sufficient to complete with respect to max{|| · ||ρ1 , || · ||ρ2}, and thus BI is a
Qp-Banach algebra. Note that, by definition, we have B = lim←−I BI , where I varies over
all compact intervals of (0, 1).

The same argument as immediately before the proposition shows that pyBI is a
maximal ideal of BI for each y ∈ |Y | such that r(y) ∈ I. Fargues and Fontaine show
that this association identifies the “closed annulus” |YI | := {y ∈ |Y | : r(y) ∈ I} with the
set of maximal ideals of BI , and that moreover BI is a principal ideal domain. To do
this, they write a typical element f ∈ BI as a limit f = limn→∞ fn of elements fn ∈ Bb

and then argue similarly to the proof of Theorem 5.2: namely, an examination of the
Newton polygons of the fn allows them to construct a factor of f of the form p− [x] for
some x ∈ mF such that |x|F ∈ I. Since the Newton polygon of f itself has only finitely
many slopes (this is the crucial application of I being compact), this process may be
repeated finitely many times to factor f into a product of primitive elements of degree
one, which proves all the claims about BI .

The assertion about B itself then follows by taking the limit over all compact intervals
I ⊆ (0, 1).

The previous proof also shows that |Y | is a curve in a certain sense : it is the increasing
union of the subspaces |YI |, each of which identifies with the maximal ideal spectrum of a
principal ideal domain BI . The fact that BI is a principal ideal domain also implies that
its non-zero ideals, as a monoid under multiplication, is isomorphic to Div+(YI); here
Div+(YI) denotes the monoid of formal finite sums ∑y∈|YI | ny[y] with ny ∈ N. Taking the
limit over all compact intervals yields a description of the monoid of the non-zero closed
ideals of B. To state it, Fargues and Fontaine introduce Div+(Y ) = lim←−I Div(YI); in
other words, Div+(Y ) is the monoid of formal sums ∑y∈|Y | ny[y] with ny ∈ N satisfying
the following finiteness condition: for any compact interval I ⊆ (0, 1), the support
{y ∈ |YI | : ny 6= 0} is finite. Taking the limit obtains:
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Corollary 5.5. — Div+(Y ) is isomorphic to the monoid of non-zero closed ideals of
B under multiplication.

To explicitly write the isomorphism of the previous corollary, let ordy : B → N∪{∞}
be the discrete valuation associated to any y ∈ |Y |: indeed, we know that pyB is a
maximal ideal of B generated by a single element (namely the primitive element of
degree one generating py), whence BpyB is a discrete valuation ring and so ordy is
well-defined. The correspondence of the previous corollary is then given by

Div+(Y ) '→ {closed ideals of B}∑
y∈|Y |

ny[y] 7→ {f ∈ B : ordy(f) ≥ ny for all y ∈ |Y |}.

Alternatively, note that each non-zero f ∈ B defines a divisor

div(f) :=
∑
y∈|Y |

ordy(f)[y] ∈ Div+(Y ),

and then the previous correspondence may be rewritten D 7→ {f ∈ B : div(f) ≥ D}.
At this stage we have a good understanding of |Y | and of its ring of functions B. To

construct the Fargues–Fontaine curve we must pass to |Y |/ϕZ by taking the Frobenius
ϕ into account. Recall from §2.1 that ϕ acts on |Y | by sending an untilt (C, ι) to
(C, ι◦ϕ), where the latter ϕ denotes the absolute Frobenius automorphism of F . On the
algebraic side Ainf also possesses a Frobenius automorphism, given by ϕ(∑n≥0[αn]pn) :=∑
n≥0[αpn]pn; this is easily seen to extend to automorphisms of Bb+, Bb, B+ and B, and

to induce isomorphisms ϕ : B[ρ1,ρ2]
'→ B[ρp

1,ρ
p
2] [16, §1.6.1].

An element ξ ∈ Ainf is primitive of degree one if and only if ϕ−1(ξ) is, thereby inducing
an automorphism ϕ of the set of ideals generated by a primitive element of degree one,
which is compatible with the correspondence of Proposition 5.1. The action of ϕ on |Y |
satisfies d(ϕ(y1), ϕ(y2)) = d(y1, y2)1/p and r(ϕ(y)) = r(y)1/p; in particular, the action
of the group ϕZ on the topological space |Y | is properly discontinuous, whence the
quotient |Y |/ϕZ inherits the structure of a Hausdorff space for which the quotient map
π : |Y | → |Y |/ϕZ is a local homeomorphism.

This also shows that Div+(Y/ϕZ), the monoid of formal finite sums of points of
|Y |/ϕZ, identifies with {D ∈ Div+(Y ) : ϕ∗D = D} via the pull-back

(10) Div+(Y/ϕZ) ↪→ Div+(Y ),
∑

y∈|Y |/ϕZ

ny[y] 7→
∑
y∈|Y |

nπ(y)[y]

[16, Lem. 6.2.3]. Using this identification, one clearly has div(f) ∈ Div+(Y/ϕZ) for any
non-zero f ∈ Bϕ=pk , thereby giving rise to a morphism of monoids

div :
⊔
k≥0

(B \ {0})ϕ=pk −→ Div+(Y/ϕZ).

Fargues and Fontaine establish the following fundamental isomorphism relating such
Frobenius eigenspaces of B to the space |Y |/ϕZ; from this we will easily construct the
curve XFF and deduce its main properties in §5.3.
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Theorem 5.6 (Fargues–Fontaine [16, Th. 6.2.1]). — The morphism of monoids

div : (
⊔
k≥0

(B \ {0})ϕ=pk)/Q×p −→ Div+(Y/ϕZ)

is an isomorphism.

Proof. — We first prove injectivity. Given non-zero f, g ∈ B with div(f) = div(g) ∈
Div+(Y ), projecting to Div+(YI) (which we have seen is isomorphic to the monoid of
non-zero ideals of the principal ideal domain BI) shows that the images of f, g in BI

differ by a (unique) unit; this being true for every compact interval I, taking the limit
implies there is u ∈ B× such that f = gu. If moreover f ∈ Bϕ=pk and g ∈ Bϕ=pk′ then
u ∈ Bϕ=pk−k′ . But Newton polygon arguments show that

Bϕ=pk−k′ =

Qp k′ = k

0 k′ > k

[16, Prop. 4.1.1, Prop. 4.1.2].
Next we explain the proof of surjectivity. Identifying Div+(Y/ϕZ) with a submonoid

of Div+(Y ) as in (10), we see that Div+(Y/ϕZ) is generated by its elements of the form∑
n∈Z[ϕn(y)], for y ∈ |Y |. Therefore it is enough, given any y ∈ |Y |, to find ty ∈ Bϕ=p

satisfying div(ty) = ∑
n∈Z[ϕn(y)], i.e., a function ty with a simple zero at each ϕZ-

translate of y and no other zeros or poles. Let ξy = p− [x] ∈ Ainf be a primitive element
of degree one corresponding to y, where x ∈ mF .

Consider first the infinite product

Π+(ξy) :=
∏
n≥0

ϕn( ξy

p
) =

∏
n≥0

(1− [xpn ]
p

).

This product converges in B+ and satisfies ξyϕ(Π+(ξy)) = pΠ+(ξy) and div(Π+(ξy)) =∑
n≥0[ϕn(y)]. Secondly, the existence of Artin–Schreier roots and p − 1st roots in F

implies that, given any g ∈ Bb, the equation ϕ(T ) = gT has a non-zero solution in Bb

[16, Prop. 6.2.0]; in particular there exists a non-zero element Π−(ξy) ∈ Bb satisfying
ϕ(Π−(ξy)) = ξyΠ−(ξy), which can be checked to satisfy automatically div(Π−(ξy)) =∑
n<0[ϕ(y)] [16, Lem. 6.2.12]. In conclusion, the element ty := Π−(ξy)Π+(ξy) ∈ Bϕ=p

satisfies div(ty) = ∑
n∈Z[ϕn(y)], as desired.

5.3. Second definition of the curve and proofs of the main theorems

We now explain how the results of the section thus far imply the main theorems
we have stated about the Fargues–Fontaine curve, namely Theorems 2.3, 2.7, 2.9. We
begin with the definition of the curve (which we will soon see does not conflict with
Definition 2.8).

Definition 5.7 ([16, Déf. 6.5.1]). — The Fargues–Fontaine curve is the scheme

XFF := Proj(
⊕
k≥0

Bϕ=pk).
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We have the following fundamental consequence of Theorem 5.6:

Corollary 5.8 ([16, Th. 6.2.1]). — The graded ring ⊕k≥0 B
ϕ=pk is graded factorial

with irreducible elements of degree 1.

Proofs. — Using a Newton polygon argument once again, one checks that if f ∈ Bϕ=pk

then div(f) has degree k [16, Prop. 6.2.6] (here the degree of a divisor ∑y∈|Y |/ϕZ ny[y] is
defined as usual to be ∑y∈|Y |/ϕZ ny). Therefore the morphism of monoids of Theorem 5.6
is even an isomorphism of graded monoids. But Div+(Y/ϕZ) is by definition the free
monoid on its degree one elements, whence the theorem tells us that the same is true of
(⊔k≥0(B \ {0})ϕ=pk)/Q×p , which is precisely the desired unique factorisation claim.

As explained in the paragraph after Theorem 2.9, the previous unique factorisation
corollary more-or-less formally implies that XFF = Proj(⊕k≥0 B

ϕ=pk) is a complete curve
in the sense of Definition 2.6. Let us now briefly indicate why it satisfies all the theorems
we have stated about it.

5.3.1. Relation of XFF to untilts. — Theorem 2.3, namely that the points of XFF cor-
respond to |Y |/ϕZ, is now easy to check. Indeed, Corollary 5.8 implies that the points
of XFF correspond to (B \ {0})ϕ=p up to units; but in turn this corresponds to |Y |/ϕZ

by the graded isomorphism of Theorem 5.6.

5.3.2. Relation of XFF to classical period rings. — Let us now explain how XFF is
related to the classical de Rham and crystalline period rings of §2.2–2.3. As mentioned
before Theorem 2.7, these period rings depend on the choice of an untilt (C, ι) of F ; to
simplify notation we suppress ι and write F = C[. Let ∞ ∈ |Y | be the corresponding
point, and also write∞ for the resulting points of |Y |/ϕZ and XFF. Let ξ = ξ∞ ∈ Ainf =
W (OC[) be a primitive element of degree one generating the ideal Ker θC corresponding
to ∞.

The period ring B+
crys from §2.3 is by definition obtained by adjoining to Ainf the

“divided power” elements ξn/n! for all n ≥ 1, then p-completing, then inverting p:

B+
crys := ̂Ainf[ ξ

n

n! : n ≥ 1][ 1
p
].

The Frobenius automorphism ϕ of Ainf extends to an endomorphism ϕ of B+
crys, and

elementary manipulations with Gauss norms show that there is a natural identification
B+ = ⋂

n≥0 ϕ
n(B+

crys) [16, §1.10.3], or in other words B+ is the largest subalgebra of
B+

crys on which ϕ is an automorphism. We then have equalities of eigenspaces

(11) B+ϕ=pk

crys = B+ϕ=pk = Bϕ=pk

,

the first equality being a trivial consequence of the previous sentence, and the second
following from a Newton polygon argument [16, Prop. 4.1.3]. Therefore Definitions 2.8
and 5.7 coincide, and so in particular Corollary 5.8 is exactly Theorem 2.9.

We now sketch part of the proof of Theorem 2.7, namely that the algebraic P1 as-
sociated to XFF really is (Be, νdR). Let t = t∞ ∈ Bϕ=p be the element constructed in
the course of the proof of Theorem 5.6; this is the element t alluded to in §2.3, and in



1150–35

particular Bcrys = B+
crys[1

t
]. By definition of the Proj construction and the fact that t

was constructed to vanish only on the set ϕZ(∞) ⊆ |Y |, it follows that XFF \ {∞} is
Spec of the ring ⋃k≥1 B

+ϕ=pk
t−k, which may be re-written using (11) as Bϕ=1

crys = Be, as
desired.

Next, the ring of integers B+
dR of the de Rham period ring is by definition the ξ-

adic completion of Ainf[ 1
p
]. But we saw at the beginning of §5.2 that the map θC :

Ainf[ 1
p
] → C extended to θC : B → C, and therefore it is equivalent to take the ξ-adic

completion of B. But the composition Bϕ=p ↪→ B
θC−→ C can be shown to be surjective

by observing that it identifies with the logarithm of a Lubin–Tate group, whence an
elementary argument about local rings of the Proj construction shows that B+

dR is
also the completed local ring of the point ∞ ∈ XFF. Related arguments reprove the
fundamental exact sequence (5). See [16, §6.4–6.5] for further details.
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