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1. Introduction

In [4] Pierre Conner and Edwin Floyd proved that the Todd orien-
tation MU → K induces an isomorphism

K∗ ⊗MU∗
MU∗(X)→ K∗(X).

K homology is thus algebraically determined from complex cobor-
dism as an MU∗ module. Their proof used the fact that K∗(−) is
already known to be a homology theory, but the theorem raised the
question of what it was about K∗ as an MU∗ algebra which makes
X 7→ K∗ ⊗MU∗

MU∗(−) a homology theory. This question was an-
swered by Peter Landweber [9], who gave conditions on an MU∗ mod-
ule R which are necessary and sufficient to make M 7→ R ⊗MU∗

M an
exact functor on the category of MU∗MU comodules. This has the
effect of creating new spectra from the multiplicative structure of the
spectrum MU . Among the most important spectra produced in this
way are the spectra representing Elliptic cohomology theories.

Landweber’s proof is based on ingenious use of the theory of primary
decomposition of modules. It is natural to hope for a proof using more
standard localization methods, and incorporating Lazard’s classifica-
tion of formal groups over separably closed fields in a more direct way.
In the spring of 1999, Mike Hopkins gave a course at MIT which con-
tained such a proof of the most useful cases of Landweber’s theorem,
expressed in the language of stacks. The relies on ideas of Jack Morava
(as does all work in this area) and of Neil Strickland.

Our purpose in this note is to free the proof of exotic language, But
we precede this very direct proof with musings on several aspects of the
theory of formal groups which are motivated by the stack perspective.
It is common to employ a setting in which formal groups may be con-
sidered without specifying a parameter or coordinate. The resulting
category is however equivalent to the category of formal group laws,
so the gain is merely notational. The descent conditions associated to
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stacks leads to a true generalization, however, and we describe that
here.

In formulations originating with Morava and Hopkins, one begins
with an ungraded formal group law over a ring R and defines a graded
formal group law over R[u±1] by conjugating with the parameter u
(which is to be regarded as a generator for the bundle of invariant
differentials). Using objects which are given by a formal group law
only locally in the flat topology allows us to extend these ungraded
methods to handle spectra whose coefficient ring is not periodic.

We also describe the construction of the symmetric monoidal cate-
gory of MU∗MU comodules in the ungraded setting in which we choose
to work. This leads to the notion of a “spin formal group,” which is a
formal group together with a choice of square root of its line bundle of
invariant differentials.

The last half of the paper describes the proof of a version of the exact
functor theorem. The proof is based directly on the theorem of Lazard
(as modified by Strickland) classifying formal groups in terms of their
height.

It is a pleasure to thank the residents of the Homotopy Hut at the
Institute for Advanced Study for their interest in this project.

2. Formal group laws and comodules

We will adopt, at the start, the most pedestrian attitude towards
formal group laws. For more detail see [5], [1].

Definition 2.1. A formal group law over a ring R is a formal power
series F (x, y) ∈ R[[x, y]] such that

F (x, 0) = x , F (0, y) = y,

F (x, F (y, z)) = F (F (x, y), z) , F (x, y) = F (y, x)

A homomorphism F → G of formal groups over R is a formal power
series θ(x) ∈ R[[x]] such that θ(0) = 0 and

θ(F (x, y)) = G(θ(x), θ(y))

An easy induction shows that there is automatically an “inverse,”
a power series [−1](x) such that F (x, [−1](x)) = x = F ([−1](x), x).
Formal groups laws over R form a pre-additive category, in which com-
position of morphisms is given by composition of formal power series,
and the sum of α, β : F → G is G(α(x), β(x)). The set of endo-
morphisms of a formal group thus forms a ring, and the natural map
Z→ EndR(F ) is written n 7→ [n].
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Standard examples include the additive formal group law Ga(x, y) =
x+ y and the multiplicative formal group law Gm(x, y) = x+ y − xy.

Let FR denote the category of formal group laws overR and their iso-

morphisms. These are the homomorphisms θ(x) for which θ′(0) ∈ R×.
Given a formal group law F (x, y) and an invertible power series θ(x),
the target of θ(x) as a homomorphism from F is uniquely determined;
it is

θF (x, y) = θ(F (θ−1(x), θ−1(y)).

A ring homomorphism f : R→ S determines a functor which I will
also denote by f , f : FR → FS, by applying f to all coefficients.

This groupoid-valued functor of rings is representable by a “Hopf
algebroid” [8]. The functor of objects is represented by the “universal
formal group law” Gu(x, y) over the Lazard ring L. The universal
morphism is represented by the power series

θu(x) =
∞∑

i=0

bix
i+1

over
W = L[b±1

0 , b1, b2, . . .].

In this expression, the L algebra structure is provided by the map clas-
sifying the source. The various structure maps defining the groupoid
FR are represented by ring homomorphisms

ηL : L−→W ←−L : ηR , source, target

∆ : W −→W ⊗LW , composition

ε : W −→L , c : W −→W , identity, inverse

Definition 2.2. An even cobordism comodule is a comodule for the
Hopf algebroid (L,W ).

This means we have an L module M together with an L module map
ψ : M → W ⊗L M which is unital and associative. Even cobordism
comodules form an abelian category. Here are two examples:

Example 2.3. L[2n] is the L module L with coaction determined by
ψ(1) = bn0 ⊗ 1.

Example 2.4. W is a comodule with the coaction ∆ : W → W ⊗LW .

The various categories FR come together to form the category F of
formal group laws, in which an object is a pair F/R consisting of a ring
R and a formal group law over it, and a morphism from F/R to G/S
is a ring homomorphism f : R → S together with an isomorphism of
formal group laws θ : fF → G over S.
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An even cobordism comodule M defines a functor on this category,

which we will denote by M̃ . Its value on F/R is R⊗LM , and its value
on the morphism (f, θ) : F/R→ G/S is given by the composite

(f, θ)∗ : R⊗LM
1⊗ψ
−→R⊗L (W ⊗LM) = (R⊗LW )⊗LM

(f,θ∗)⊗1
−→ S⊗LM,

where (f, θ∗) is the ring homomorphism R ⊗L W → S induced by
f : R→ S and the ring homomorphism θ∗ : W → S inducing θ.

Definition 2.5. A formal group law F/R is Landweber exact if M 7→

R⊗LM = M̃(F/R) is an exact functor on the category of even cobor-
dism comodules.

The following lemma will be important.

Lemma 2.6. (1) The map ηR : L→ R⊗LW is a natural transforma-

tion from the constant functor on F with value L to the functor W̃ .
(2) The map R ⊗L W → S ⊗L W induced by (f, θ) : F/R → G/S is
flat if f is and is faithfully flat if f is.

Proof. The first statement comes from the fact that ∆ is a map of right
L modules. For the second, notice that (f, θ)∗ can be obtained as the
composite

R⊗LW
f⊗1
−→S ⊗LW

(1,θ)∗
−→ S ⊗LW

and that this is (faithfully) flat if f is, since W is faithfully flat (in fact
free) as a left L module and (1, θ)∗ is an isomorphism (with inverse
(1, θ−1

∗ ).

The condition of Landweber exactness can be expressed in terms of
a property of this natural transformation evaluated at the even cobor-
dism comodule W :

Lemma 2.7 (G. Laures). The formal group law F/R is Landweber
exact if and only if the map ηR : L→ R⊗LW is flat.

Proof. The maps ψ and ε render the functor M 7→ R⊗LM a retract of
the functor M 7→ R⊗L (W ⊗LM) = (M ⊗LW )⊗LM , which is exact
when ηR is flat.

Conversely, let A → B be a monomorphism of L modules. The
inversion isomorphism c : W → W swaps ηR and ηL. W is visibly flat
over L under ηL, so it is also flat over L under ηR. Thus W ⊗L A →
W ⊗L B is a monomorphism of even cobordism comodules. If F/R is
Landweber exact, it follows that R⊗L (W ⊗L A)→ R⊗L (W ⊗L B) is
a monomorphism, whence ηR : L→ R⊗LW is flat.
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3. Even cobordism sheaves

Definition 3.1. An even cobordism sheaf is a functor M : F → Ab

together with an R module structure on the abelian group M(F/R)
for each F/R ∈ F , with the property that the homomorphism (f, θ)∗ :
M(F/R)→M(G/S) induced by (f, θ) : F/R→ G/S is R linear and
induces an isomorphism

S ⊗RM(F/R)
∼=
−→M(G/S).

Even cobordism sheaves form a category in which morphisms are nat-
ural transformations which are R linear when evaluated at any object
F/R.

We have constructed a functor from even cobordism comodules to
even cobordism sheaves, sending M to M̃ .

Proposition 3.2. The functor M 7→ M̃ is an equivalence of categories.

Proof. If M is an even cobordism sheaf, let M = M(Gu/L). This is
an L module, and we proceed to define on it the structure of an even
cobordism comodule. There are canonical morphisms in F ,

(ηL, θu) : Gu/L−→ ηRGu/W ←−Gu/L : (ηR, 1),

inducing the top maps in the diagram

M(Gu/L) M(ηRGu/W ) M(Gu/L)

W ⊗LM(Gu/L)

-

Q
Q

Q
Q

Q
QQs

ψ

�

�
�

�
�

�
��+

6
∼=

Here the right diagonal is the inclusion ofM(Gu/L) into its extension
to a W module, and the vertical map is the extension of (ηR, 1)∗ to
a W module map. We receive the map ψ since the vertical map is
an isomorphism. We refer to [6] for the check that this defines the
structure of an even cobordism comodule on M , and that this defines

a quasi-inverse to M 7→ M̃ .

Example 3.3. We denote by ωn the even cobordism sheaf correspond-
ing to the even cobordism comodule L[2n].
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4. Formal groups

To any evenly graded commutative and associative cohomology the-
ory E∗(−) we may associate a formal group law over the graded ring
E∗(CP∞) by means of the map CP∞ × CP∞ → CP∞ classifying the
tensor product of line bundles, after a choice of “complex orientation”
x ∈ E2(CP∞). One can carry out this theory by various means without
choosing such an orientation, but from a certain point of view these
devices are redundant, since it is easy to see that the formal group
law is canonical, in the following sense. There is a functor from the
category whose objects are complex orientation of E∗(−), with exactly
one morphism between any two objects, to the category FE∗

; that is,
the formal group laws associated to the various complex orientations
are canonically and compatibly isomorphic. This is as well defined as
things get in mathematics.

On the other hand, there are genuine extensions of the notion of a
formal group law, which are well understood in the context of algebraic
geometry and which do in fact occur in topology. These objects, which
we will call formal groups, admit an intrinsic description, and constitute
the objects of a “stack,” but we content ourselves here with a somewhat
ad hoc definition of the objects.

To make this definition, we begin by defining the descent Hopf al-

gebroid associated to any ring homomorphism R → S as (S, S ⊗R S).
The structure maps are forced by ηLs = s ⊗ 1 and ηRs = 1 ⊗ s. The
structure map for a comodule M over this Hopf algebroid is an R mod-
ule map ψ : M → S ⊗RM which is unital and associative in the sense
that

M S ⊗RM M S ⊗RM

M S ⊗RM S ⊗R S ⊗RM

-
ψ

Q
Q

Q
Q

Q
Q

QQs

1

?

ϕ

-
ψ

?

ψ

?

δ⊗1

-
1⊗ψ

where ϕ is the S module structure and δs = s⊗ 1.

Define the primitives of the (S, S ⊗R S) comodule M to be

Prim(M) = {x ∈M : ψx = 1⊗ x}.

The following fact constitutes “faithfully flat descent for modules.”

Lemma 4.1. The primitives give a functor from (S, S⊗RS) comodules
to R modules which is an exact equivalence if R→ S is faithfully flat.

6



Proof. If x ∈M is primitive and r ∈ R then rx is again primitive since
ψ(rx) = rψx = r(1 ⊗ x) = 1 ⊗ rx because the tensor product is over
R. For a quasi-inverse, let N be an R module and define an S ⊗R S
comodule structure on the S module S ⊗RM by ψ(s⊗ x) = s⊗ 1⊗ x.
We leave as an exercise the standard check (due to Grothendieck) that
if R→ S is faithfully flat then this is a quasi-inverse.

Definition 4.2. A formal group over a ring R is a faithfully flat map
R→ S together with a map of Hopf algebroids (L,W )→ (S, S ⊗R S).

A formal group over R is thus a formal group law F over some
faithfully flat extension S of R, together with an isomorphism of formal
group laws θ : ηLF → ηRF over S ⊗R S which satisfies appropriate
cocycle conditions.

A formal group law over R determines a formal group over R, by
taking S = R and θ(x) = x.

If G = (S, F, θ) is a formal group over R and f : R → T is a
ring homomorphism, T → S ⊗R T is faithfully flat and fG = (S ⊗R
T, fF, (f ⊗ f)θ) is a formal group over T . This gives a functor f from
formal groups over R to formal groups over T .

If G = (S, F, θ) is a formal group over R and M is an even cobordism
comodule, then S ⊗L M is a comodule over (S, S ⊗R S) and we may
define the R module

M̃(S, F, θ) = Prim(S ⊗LM).

We leave it as an exercise to check that this definition extends the
definition on formal group laws, and continues to satisfy the sheaf con-
dition

T ⊗R M̃(G/R)
∼=
−→ M̃(fG/T ).

We are concerned with the property of Landweber exactness. This
condition extends verbatim to apply to a formal group. The sheaf
condition shows that if f : R → T is faithfully flat, then G/R is
Landweber exact if and only if fG/T is; this follows from the exactness
clause in Lemma 4.1.

5. Line bundles and invertible modules

We recall another example in which the descent problem can be
solved explicitly. The relevant Hopf algebroid is (Z,Z[t±1]) with ∆t =
t⊗ t.

Definition 5.1. A line bundle over a ring R is a faithfully flat exten-
sion R → S together with a map (Z,Z[t±1]) → (S, S ⊗R S) of Hopf
algebroids.
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A line bundle is thus a faithfully flat extension S of R together with
a unit (the image of t) c =

∑
c′i ⊗ c

′′
i ∈ (S ⊗R S)× which satisfies the

“cocycle conditions”
∑

c′ic
′′
i = 1 ,

∑
c′i ⊗ c

′
kc

′′
i ⊗ c

′′
k =

∑
c′j ⊗ 1⊗ c′′j .

Line bundles of the form (S, c) are said to split over S.

A line bundle (S, c) determines an (S, S ⊗R S) comodule structure
on S, ψc : S → (S ⊗R S) ⊗S S ∼= S ⊗R S, given by the left S module
map sending 1 to c: x 7→ (x⊗ 1)c. Write S[c] for S with this comodule
structure. Write L(c) for the R module of primitives in this comodule,

L(c) = Prim(S[c]) = {s ∈ S : (s⊗ 1)c = 1⊗ s}.

This is an R submodule of S with the property that the inclusion

extends to an isomorphism S ⊗R Prim(S[1])
∼=
−→S.

In order to recognize what this is, we recall that if p is a prime ideal
in A then we may localize R at p by inverting elements not in p, to
obtain a local ring Rp. Denote the residue field by k(p). We may
localize M to obtain an Rp-module Mp, and hence a vector space Mp/p
over k(p). The rank of M at p is the dimension of Mp/p over k(p). The
rank is a locally constant function from SpecR to cardinals.

A projective P of constant rank n is said to be split over the faithfully
flat R algebra S if S ⊗R P is free of rank n over S.

Definition 5.2. An R module M is invertible if it is projective of
constant rank 1.

We adopt this definition despite the fact that it is subject to the
following criticism. It would be more natural to say that an R module
P is “invertible” if the natural map P ⊗R HomR(P,R) → R is an
isomorphism. This is the case if P is projective of rank 1, but for
the converse one must apparently assume in advance that P is finitely
generated ([2] II §5.4 Theorem 3, p. 114). In our context it is natural
because it is local in the flat topology:

Theorem 5.3 ([2] II. §5 Ex. 8, pp. 147 f). A module P over R is
projective of constant rank n if and only if there is a faithfully flat map
R → S such that S ⊗R P is free of rank n over S. Such a module is
automatically finitely generated.

We conclude that L(c) is an invertible R module, and that for any
invertible R module P there is a faithfully flat extension R → S and
an R module inclusion P ↪→ S which extends to an isomorphism S⊗R
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P
∼=
−→S. Let c =

∑
c′i ⊗ c

′′
i 7→ 1 under this isomorphism, and regard

c′′i ∈ S. Then c ∈ (S ⊗R S)× is a cocycle, and P ∼= L(c) as R modules.

It is easy to check that if b and c are two units in S ⊗S R satisfying
the cocycle conditions, then bc and b−1 satisfy them as well, and

L(bc) = L(b)⊗R L(c) , L(1) = R.

L(c) is free of rank one if and only if c = a⊗ a−1 for some unit a ∈ S×.

6. Gradings and spin formal groups

Even cobordism comodules admit a natural grading, via the following
observation.

Lemma 6.1. The R module underlying an (R,R[t±1]) comodule M
splits naturally as

M =
⊕

n∈Z

Mn , Mn = {x ∈M : ψx = tn ⊗ x}.

This assignment constitutes a natural equivalence from the category of
(R,R[t±1]) comodules to the category of Z graded R-modules.

Proof. If M is a comodule, the equation

ψx =
∑

ti ⊗ πix

determines R linear operators πi on M . Associativity forces these to
be commuting idempotents, and unitality forces them to sum to the
identity on M . We let Mi = πiM . Conversely, a grading determines
projection operators πi, which give a coaction by the same formula.

The category of comodules over any Hopf algebroid (A, V ) admits a
symmetric monoidal product defined by forming the tensor product as
left A modules. In working with Hopf algebroids, the notation −⊗A−
invariably refers to a right A action on the left variable, so we write
the tensor product of left A modules using the nonstandard notation
−⊗A −. Then the coaction on M ⊗A N is given by

ψ(x⊗ y) =
∑

x′iy
′
j ⊗ x

′′
i ⊗ y

′′
j .

With (A, V ) = (Z,Z[t±1]), this gives the usual graded tensor product,
with the signless symmetric monoidal structure.

Define a Hopf algebroid map (L,W ) → (Z,Z[t±1]) by classifying
the additive formal group law Ga(x, y) = x + y over Z and the auto-
morphism t2x : Ga → Ga. Any even cobordism comodule M thereby
admits a natural even grading as an abelian group, with

M2n = {x ∈M : ψx = bn0 ⊗ x+ · · · }.
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In particular, L itself, being a comodule, admits an even grading, and
the L module structure on M respects that grading.

In the context of topology, L with its even grading is the complex
bordism ring MU∗. Cobordism comodules are supposed to capture
MU∗(X), but even cobordism comodules fail to do so because MU∗(X)
may not be evenly graded. The easy out is to consider the even part
and odd part as independent evenly cobordism comodules. This fails
to account adequately for the symmetric monoidal structure, however.
The remedy is to work over a larger Hopf algebroid. Let

W s = L[e±1
0 , b1, b2, . . .],

and regard W as embedded in W s by sending b0 to e20 and bi to bi for
i > 0. Define a Hopf algebroid structure on (L,W s) so that (L,W ) is
a sub Hopf algebroid and

∆e0 = e0 ⊗ e0.

We have thus adjoined a square root of b0.

Definition 6.2. A cobordism comodule is a comodule over (L,W s).

The Hopf algebroid map (L,W s) → (Z,Z[t±1]) classifying the ad-
ditive formal group law and sending e0 7→ t and bi 7→ 0 for i > 0
endows cobordism comodules with full Z gradings, and the category of
cobordism comodules is naturally equivalent to the category of (graded)
(MU∗,MU∗MU) comodules.

To define the correct symmetric monoidal structure on the category
of cobordism comodules, we may use the theory of cobraidings of Hopf
algebras as described in [7], extended to the case of Hopf algebroids.
Rather than elaborate this theory in generality here, we merely point
out that there is unique left L bilinear pairing

〈−,−〉 : W s ×W s−→L

such that

〈xy, z〉 =
∑
〈x, z′i〉〈y, z

′′
i 〉 , 〈x, yz〉 =

∑
〈x′i, y〉〈x

′′
i , z〉

and

〈e0, e0〉 = −1 , 〈e0, bi〉 = 〈bi, bj〉 = 0.

The symmetry is then given on M ⊗L N by

c(x⊗ y) =
∑
〈x′i, y

′
j〉y

′′
j ⊗ x

′′
i .

The Hopf algebroid (L,W s) defines a stack just as the Hopf algebroid
(L,W ) defined the stack of formal groups.
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Definition 6.3. A spin formal group over R is a faithfully flat map
R→ S together with a Hopf algebroid map (L,W s)→ (S, S ⊗R S).

Thus a spin formal group over R consists in a formal group (S, F, θ)
over R, together with a choice e of square root of θ′(0) ∈ (S ⊗R S)×.

The Hopf algebroid map (Z,Z[t±1])→ (L,W s) sending t to e0 asso-
ciates to any spin formal groupG = (S, F, θ, e) overR a line bundle over
R. Write λG for the corresponding invertible module; thus λG = L(e).

Only the square of this module, ωG = λ2
G, is determined by the

underlying formal group. A spin structure consists of a square root of
the canonical line bundle ωG attached to a formal group G. Of course,
if G is a formal group law, then ωG comes equipped with a trivialization
and hence with a preferred square root.

A cobordism comodule M determines a cobordism sheaf M̃ , sending
a spin formal group (S, F, θ, e) to the R module

M̃(S, F, θ, e) = Prim(S ⊗LM).

7. Laurent algebras

In the topological context, we have a graded formal group law in
hand. We will now explain how such objects relate to formal groups
as we have defined them. The graded rings involved will be of the
following form.

Definition 7.1. A Laurent algebra over a ring R is an evenly graded
R algebra E∗ such that E0 = R, E2 is an invertible R module, and
for every m,n ∈ Z the multiplication E2m ⊗R E2n → E2(m+n) is an
isomorphism.

The invertible R module ω = E2 determines the Laurent algebra;
E2n is naturally isomorphic to ωn for n ∈ Z. We may write R(ω) for
the Laurent algebra with ω in degree two.

Note that if R→ S is a faithfully flat map spitting ω—so that there
is an inclusion of R modules ω ↪→ S which extends to an isomorphism

S ⊗R ω
∼=
−→S—then embedding ωn into S〈un〉 defines an injection of

graded R algebras

R(ω) ↪→ S[u±1] , |u| = 2.

The fact that this is an embedding implies that R(ω) is commutative.

Since S⊗Rω
∼=
−→S, S⊗RR(ω)

∼=
−→S[u±1], and from the fact thatR→ S

if faithfully flat it follows that R(ω)→ S[u±1] is faithfully flat as well.
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If f : R → S is a ring homomorphism and ω is an invertible R
module, then S ⊗R ω is an invertible S module which we will write
fω. There are natural isomorphisms (fω)n ∼= f(ωn), and f induces
a graded R algebra map R(ω) → S(fω) with the property that its S
module extension S ⊗R R(ω)→ S(fω) is an isomorphism.

The formalism of comodules over (Z,Z[t±1]) provides a systematic
way to grade objects. Thus a graded ring is a comodule algebra over
this Hopf algebra. It is evenly graded if in fact it is a comodule over the
sub Hopf algebra (Z,Z[t±2]). A formal group law F (x, y) =

∑
ai,jx

iyj

over the evenly graded ring E∗ is graded if ai,j ∈ E2(i+j−1).

A graded formal group law F (x, y) over a Laurent algebra R(ω)
determines a formal group over R in the following way. Let S split ω
and let ω = L(c) be determined by the cocycle c ∈ (S ⊗R S)×. Since
ωn ⊆ S for all n, we may regard the formal power series F (x, y) as
defined over S, and as such it defines a formal group law over S. The
fact that ai,j ∈ ω

i+j−1 means that

(ai,j ⊗ 1)ci+j−1 = 1⊗ ai,j,

and these together say that

ηLF (cx, cy) = cηRF (x, y).

That is to say, (S, F, cx) is a formal group over R, with canonical
invertible module given by ω. A different choice of cocycle c gives a
canonically isomorphic formal group.

Lemma 7.2. The formal group (S, F, cx) is Landweber exact if and
only if the formal group law F/R(ω) is Landweber exact.

Proof. F is Landweber exact over R(ω) if and only if it is Landweber
exact over S[u±1], since R(ω) ↪→ S[u±1] is faithfully flat. Over S[u±1],
F is isomorphic to F cx, which is the image under the faithfully flat
map R → S of the formal group (S, F, cx), so they are Landweber
exact together by Lemma 4.1.

8. Scales

We will now set up some general ideas about sequences of ideals of
the type occuring in the statement of Landweber’s theorem.

Definition 8.1. An increasing sequence 0 = I0 ⊆ I1 ⊆ · · · of ideals in
a ring R is a scale if there exist elements v0, v1, . . . in R such that for
each n ≥ 0,

In+1 = In +Rvn.

Such a sequence of elements is a defining sequence for the scale.
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Here are two easy lemmas.

Lemma 8.2. Let v0, v1, . . . define a scale 0 = I0 ⊆ I1 ⊆ · · · in R. A
sequence w0, w1, . . . of elements in R defines the same scale if and only
if for each n there is an element u ∈ R which is a unit modulo In and
is such that wn ≡ uvnmod In.

Lemma 8.3. Suppose two sequences v0, v1, . . . and w0, w1, . . . define
the same scale in R, and let M be an R-module. Then vn|(M/InM) is
monic for all n if and only if wn|(M/InM) is monic for all n.

We will say that a scale acts regularly on M in this case. If M = R
we will call the scale regular. We will also say that the scale acts finitely

on M if InM becomes constant for large n, and that the scale itself is
finite if it acts finitely on R.

Given a scale with defining sequence v0, v1, . . ., we have a diagram of
R-modules

M
v0−→ M −→ v−1

0 M
↓

M/I1
v1−→ M/I1 −→ v−1

1 M/I1
↓

M/I2
v2−→ M/I2 −→ v−1

2 M/I2
↓
...

in which the vertical maps are the cokernels of the left horizontals, and
the right horizontal maps are the localization homomorphisms. This
diagram is independent, up to isomorphism, of the choice of defining
sequence. If the scale acts regularly on M then the left horizontal maps
are monic, so we have short exact sequences

0−→M/In−1
vn−1
−→M/In−1−→M/In−→ 0.

If the scale is finite on M , the modules in the diagram are eventually
zero.

Lemma 8.4. If the scale I0 ⊆ I1 ⊆ · · · ⊆ R is regular then, for each
n ≥ 0, R/In has flat dimension at most n over R.

Proof. We use upward induction on n, starting with the fact that
R/I0 = R is flat over R. The long exact sequence associated to

0−→R/In−1
vn−1
−→R/In−1−→R/In−→ 0

reads in part

TorRn+1(R/In−1,−)−→TorRn+1(R/In,−)−→TorRn (R/In−1,−).
13



The inductive assumption is that the left and right terms are zero so
the middle term is zero as well, establishing the induction.

We will actually be interested in the localizations of these quotients,

Mn = v−1
n M/In.

This is naturally a module over the ring Rn = v−1
n R/In, in a way

independent of choice of defining sequence. Since localization is exact
TorRk (Rn,−) = v−1

n TorRk (R/In,−), so the flat dimension of Rn is at
most n:

Corollary 8.5. If the scale I0 ⊆ I1 ⊆ · · · ⊆ R is regular then Rn has
flat dimension at most n over R.

Lemma 8.6. Assume that the scale I0 ⊆ I1 ⊆ · · · ⊆ R acts regularly
and finitely on M . If in addition Mn has flat dimension at most n over
R for all n ≥ 0, then M is flat over R.

Proof. We prove that TorRn (M/In−1,−) = 0 by downward induction on
n ≥ 1. The induction ends with TorR1 (M,−) = 0, which is equivalent
to the flatness of M . The assumption M/In = 0 for large n grounds the
induction, so suppose TorRn+1(M/In,−) = 0. The short exact sequence

0−→M/In−1
vn−1
−→M/In−1−→M/In−→ 0.

leads to a long exact sequence in TorR, which reads in part

TorRn+1(M/In,−)−→TorRn (M/In−1,−)
vn−1
−→TorRn (M/In−1,−).

By the inductive assumption the first term is zero, so vn−1 induces a
monomorphism on TorRn (M/In−1,−). On the other hand, localization
is exact, so the assumption that Mn−1 has flat dimension at most n
implies that

v−1
n−1TorRn (M/In−1,−) = TorRn (v−1

n−1M/In−1,−) = 0.

Putting these two facts together gives us the next step in the induction:
TorRn (M/In−1,−) = 0.

The action of R on Mn factors through an action of Rn, so there is
a spectral sequence ([3], XVI §5 (2)2)

TorRn

p (Mn,TorRq (Rn,−)) =⇒ TorRp+q(Mn,−).

By Lemma 8.5, the spectral sequence vanishes above the (n+ 1)st row
if the scale is regular, so if Mn is flat over Rn then it has flat dimension
at most n over R and we can apply Lemma 8.6 to obtain

Proposition 8.7. If a regular scale I0 ⊆ I1 ⊆ · · · ⊆ R acts regularly
and finitely on the R-module M , and Mn is flat as an Rn-module for
each n ≥ 0, then M is flat as an R-module.
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9. Statement of the exact functor theorem

Let F/R be a formal group law. For a prime number p and an integer
n ≥ 0, define

Ip,n = Ip,n(F/R) = (a0, . . . , apn−1−1)

to be the ideal generated by the coefficients of the p-series

[p](x) =
∞∑

i=1

ai−1x
i

through the coefficient of xp
n−1

. Then Ip,0 = 0, and, since a0 = p,
Ip,1 = (p). In fact,

Lemma 9.1. For any prime p, Ip,0 ⊆ Ip,1 ⊆ · · · ⊆ R is a scale.

This is standard, but we pause to give the proof anyway. It is based
on the following observation. Let

v(x) = xp

and if R is a ring of characteristic p write φ : R→ R for the Frobenius,
a 7→ ap. Then v : φF → F is a homomorphism.

Lemma 9.2. Let R be a ring of characteristic p, let F and G be formal
group laws over R, and let θ : F → G be a homomorphism. If θ′(0) = 0
then there is a unique power series θ1(x) such that

φF G

F

-
θ1

�
���

v

@
@I

θ

commutes.

Proof. Differentiate θ(F (x, y)) = G(θ(x), θ(y)) with respect to y and
set y = 0:

θ′(F (x, 0))F2(x, 0) = G2(θ(x), 0)θ′(0).

F (x, 0) = x, and F2(x, 0) is a unit in the power series ring, and by
assumption θ′(0) = 0, so θ′(x) = 0. This implies that θ(x) = θ1(x

p) for
an obviously unique power series θ1(x), which is the result.

Proof of Lemma 9.1. a0 = p so I1 = pR. Apply Lemma 9.2 to the
endomorphism [p](x) of F over R/I1. We learn that the coefficients
of [p](x) ∈ R[[x]] up to the coefficient of xp lie in pR. Continue this
argument by induction.

In fact, it is easy to check that Ip,0 ⊆ Ip,1 ⊆ · · · ⊆ R is a sheaf of

scales:
15



Lemma 9.3. (1) If (f, θ) : F/R→ G/S, then

S ⊗R Ip,n(F/R)
∼=
−→ Ip,n(G/S).

(2) For any formal group F over the Z(p) algebra R, there is a natural

isomorphism Rn ⊗LW
∼=
−→(R⊗LW )n such that the diagram

L Rn ⊗LW

Ln (R⊗LW )n

-
ηR

? ?

∼=

-
(ηR)n

commutes.

Here is the main theorem, first proven by a different method in [9].

Theorem 9.4 (P. S. Landweber). Let G/R be a formal group such
that for every prime p the scale Ip,0(G/R) ⊆ Ip,1(G/R) ⊆ · · · is finite
and regular. Then G/R is Landweber exact.

Example 9.5. The multiplicative group Gm/Z satisfies these hypothe-
ses and hence is Landweber exact. First, p is a non zero divisor in Z.
Next, [p](t) = 1 − (1 − t)p, so the coefficient of tp in [p](t) is 1 and
Ip,2(Gm/Z) = Z.

Remark 9.6. In fact Landweber proves something slightly different.
Recall that an L-module M is coherent if it is finitely generated and
every finitely generated submodule is finitely presented. Landweber
restricts himself to the category of comodules which are coherent as
L-modules, and shows that the functor M 7→M ⊗L R is exact on this
category if and only if the height scale in R is regular for every prime.
A result from [10] shows that every comodule is a union of coherent
subcomodules, and it follows that one may dispense with the coherence
condition here. The theorem we prove is thus less general; for us, the
height scales have to be finite at every prime.

On the other hand, suppose that for some prime p the scale Ip,•(F/R)
is not finite. Over R(p), F is isomorphic to a p-typical formal group
law, which is represented by a map BP∗ → R(p).

Conjecture 9.7. If Ip,•(F/R) is not finite then BP∗ → R(p) is flat.

If this is the case, then F/R is necessarily Landweber exact at p, and
Landweber’s full assertion follows. In any case, the height scales are
finite in the most important applications.
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10. Proof of the exact functor theorem

The proof of Theorem 9.4 will use the criterion of Lemma 2.7: we
must show that

ηR : L→ R⊗LW

is flat. We can proceed one prime at a time, by virtue of the following
lemma, in which A(p) denotes the localization of an abelian group A at
the prime number p: A(p) = A⊗ Z(p).

Lemma 10.1. Let R be a ring. An R module M is flat over R if and
only if M(p) is flat over R(p) for all prime numbers p.

Proof. This is based on the observation that for any abelian group A
the map

s : A→
∏

p

A(p) ,

whose factors are the localization maps at the rational prime numbers,
is injective. To see this, let a ∈ ker s. Let n0 ∈ Z generate the
annihilator ideal of a. For each prime p, a dies in A ⊗ Z(p), so there
exists an integer np which is not divisible by p and for which npa = 0.
If p|n0, then p|np since n0|np. Thus n0 is not divisible by any primes,
and the conclusion is that n0 = ±1 and so a = 0.

Now let i : A → C be a monomorphism of R-modules. Then i(p) :
A(p) → C(p) is again a monomorphism, since localization is exact, and
hence M(p) ⊗R(p)

i(p) = (M ⊗R i)(p) is a monomorphism by hypothesis.
Thus the bottom row of the diagram

M ⊗R A M ⊗R C

∏

p

(M ⊗R A)(p)

∏

p

(M ⊗R C)(p)

-

? ?

-

is a monomorphism, since in the category of abelian groups a product of
monomorphisms is a monomorphism. We just checked that the vertical
maps are too, so the top horizontal map is monomorphic, and this
shows that M is flat over R.

To show that ηR : L→ R⊗LW is flat it will thus suffice to show that
ηR (p) is flat for each prime number p. Since (R⊗LW )(p) = R(p)⊗LW ,
we can restrict out attention to formal group laws over Z(p) algebras.

The ingredients necessary to apply Proposition 8.7, using the height
scale at p, are contained in Proposition 10.2 below. To lighten notation,
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we will tacitly replace L by L(p). This leaves the meaning of Ln un-
changed except when n = 0, but by L0 we will intend p−1L(p) = L⊗Q

rather than p−1L. We will suppress the prime p from notation for the
height scale at p. What we need to know is:

Proposition 10.2. For any formal group law F over a Z(p) algebra R,
the map (ηR)n : Ln → (R⊗LW )n is flat for all n ≥ 0.

The ring homomorphism L→ Ln is universal among maps classifying
formal groups over Z(p) algebras which are of “strict height n.”

Definition 10.3. A formal group F over the Z(p) algebra R is of strict

height n provided that its p series has the form

[p](x) = apn−1x
pn

+ · · · , apn−1 ∈ R
×.

Let Fn(S) denote the groupoid of formal group laws over S, a Z(p)

algebra, which are of strict height n at p. This condition is unchanged
by conjugation. Consequently the groupoid Fn(S) is split; that is to
say, it is isomorphic to the translation groupoid of the group Γ(S) of
formal power series f(t) ∈ S[[t]] with f(0) = 0 and f ′(0) ∈ S×, under
composition, acting by conjugation on the set Fn

0 (S) of objects. Such a
groupoid valued functor is represented by a split Hopf algebroid. The
map L → S representing a formal group law of strict height n at p
factors through Ln = v−1

n L/In, by definition, and since L → Ln is an
epimorphism in the category of rings this factorization is unique. This
shows that the functor Fn0 is represented by the ring Ln. Denote by
Wn the ring representing the morphisms in the groupoid Fn. Then

Wn = Ln ⊗B,

where B = Z[b±1
0 , b1, . . .]. As usual there are structure maps ηR, ηL :

Ln → Wn, representing source and target, and they are swapped by the
conjugation c : Wn → Wn, representing inverse. Since Wn is clearly
flat—even free—over Ln using ηL to define the module structure, it
follows that the ring homomorphism ηR : Ln →Wn is flat as well.

This relates to our earlier work, since

Wn
∼= Ln ⊗LW ∼= (Ln ⊗LW )(n).

Thus the universal formal group law of strict height n, over Ln, provides
one example in which Proposition 10.2 holds. This single example
in fact suffices, because of the following important fact (in which we
continue to assume our rings are localized at a prime p).

Proposition 10.4 (M. Lazard, N. S. Strickland). Let G/R and H/S
be formal groups over Z(p) algebras, both of strict height n ≥ 0. Then
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there is a formal group K/T and morphisms from G/R to K/T and
from H/S to K/T with the property that both the ring homomor-
phisms R→ T and S → T are faithfully flat.

Sketch of proof. If n = 0, both R and S are Q algebras, and we may
take T = R ⊗Q S, since any two formal groups over a Q algebra are
isomorphic. Henceforth assume n > 0. Then both R and S are Fp
algebras. They map to the common algebra R⊗Fp

S by faithfully flat
maps. The images of F and G may not yet be isomorphic there, but
at least we get to assume that F and G are defined over a single ring,
say R. Now the proof of Lazard’s theorem, as found in [5], has two
steps. First one shows that, up to isomorphism, over an Fp algebra
any two formal groups both having [p](t) = tp

n

are isomorphic. For
the second step, one enlarges the ring of definition so as to make a
given formal group of strict height n isomorphic to one with p series of
this form. Lazard and Froehlich work over a field, and adjoin roots of
irreducible polynomials. Following Strickland, one can instead simply
adjoin a polynomial generator x and divide by the ideal generated by
the appropriate polynomial (which is of the form xp

n−1 − a for a unit
a, or xp

n

− x+ a). This is a free extension, so the direct limit of all of
them is faithfully flat. If one performs this construction first for F and
then for the G over the new ring, one achieves the result.

Proof of Proposition 10.2. Let F be any formal group law of strict
height n over a Z(p) algebra R. Let i : R → T and j : Ln → T
be faithfully flat maps as in Proposition 10.4, and θ : iF → Gu the
isomorphism. Using naturality of the map ηR, together with the fact
that L → Ln is an epimorphism in the category of rings, we obtain a
commutative diagram

Ln

R⊗LW S ⊗LW Ln ⊗LW

�
�

�
�

��+ ?

Q
Q

Q
Q

QQs
-

(i,1)∗
�
(j,θ)∗

The right diagonal is flat, as we have seen, and (j, θ)∗ is flat by Lemma
2.6, so the vertical arrow is flat. The map (i, 1)∗ is faithfully flat by
Lemma 2.6, and it follows that the left diagonal is flat.
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