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Abstract. We provide a new method to compute the (homotopy) fixed-points of the permu-

tation action on HF2 ∧ HF2 by relating it to Real bordism. More precisely, we identify the

C4-pullback of the C2-spectrum NC2
e HF2 with a localization of NC4

C2
MUR. This allows us to

use the localized slice spectral sequence for the computation of πC2
F NC2

e HF2. From this we

compute the first eight homotopy groups and deduce an infinite family of differentials in the
homotopy fixed point spectral sequence.
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1. Introduction

The Segal conjecture is a deep result in equivariant homotopy theory. In its original formula-
tion, it was proven by Lin [Lin80] for the group C2 and by Carlsson [Car84] for all finite groups,
building in particular on the work of [MM82] and [AGM85]. Focusing on the group C2, the most
general formulation can be found in [LNR11] and [NS18]: for every bounded below spectrum X,
the map X → (N2

1X)tC2 into the Tate construction is a 2-adic equivalence. Here, we denote
by N2

1X the norm of X, i.e. the spectrum X ∧ X with the permutation C2-action. Moreover,
Nikolaus–Scholze observed that the complete result follows from the case when X is HF2, which
also has been reproved recently in [HW19].

The equivalence N2
1 (HF2)tC2 ' HF2 is mysterious from the point of view of the Tate spectral

sequence. The E2-page is the C2-Tate cohomology of the conjugation action on the dual Steenrod
algebra A∗ = π∗(HF2 ∧HF2) and thus highly non-trivial. However, on the E∞-page, everything
is concentrated at a single spot, namely an F2 at (0, 0). The pattern of differentials that achieves
this is unknown. In the present work, as a consequence of our main theorems, we compute
the Tate spectral sequence in a range and exhibit the first infinite family of differentials (see
Theorem 6.8).

One may ask what use there is for a partial spectral sequence computation when the target is
already known. One reason is that the Tate spectral sequence essentially contains the homotopy
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2 MEIER, SHI, AND ZENG

fixed points spectral sequence, which computes π∗N2
1 (HF2)hC2 . Indeed, the computation of

π∗N2
1 (HF2)hC2 is one of our main goals and we obtain the following result.

Theorem 1.1. (Theorem 4.4) The first 8 stems of π∗N2
1 (HF2)hC2 are

i 0 1 2 3 4 5 6 7 8
πi Z/4 Z/2 Z/4 Z/2⊕ Z/2 Z/2 Z/2 Z/4⊕ Z/2 Z/2⊕ Z/2⊕ Z/2⊕ Z/2 Z/2⊕ Z/2⊕ Z/2

Given the current knowledge of differentials in the slice spectral sequence of BP ((C4)) [HHR17,
HSWX18], we can actually use the method described in this paper to compute the first 30 stems of
π∗N2

1 (HF2)hC2 . The goal of the current paper is to describe our method and give low dimensional
computations. In a future paper, we will focus on the higher stem computations.

Before discussing our method, we would like to remark that there are two interesting natural
C2-actions on the spectrum HF2 ∧HF2. The first action is the trivial C2-action, where C2 acts
trivially on the two factors. For this action, one can completely compute π∗(HF2 ∧HF2)hC2 by
using the homotopy fixed point spectral sequence. In fact, Hu and Kriz [HK01] completely com-

puted πC2

F (HF2 ∧HF2) and determined the Hopf algebroid structure of (HF2F
, (HF2 ∧HF2)F).

Their computation is a crucial input for the C2-equivariant Adams spectral sequence.
We consider instead the permutation C2-action on HF2 ∧ HF2, where the two factors are

permuted. Unlike the first action, this C2-action induces a nontrivial action on the dual Steenrod
algebra A∗. As a consequence, the homotopy fixed point spectral sequence is much harder to
compute. For instance, even a complete algebraic presentation of the E2-page is not known
(though it can be computed by a computer program in any finite range). The Segal conjecture
implies that the pattern of differentials must be complicated. This stands in constract to the
trivial C2-action, where there are no differentials and the spectral sequence degenerates after the
E2-page.

While Theorem 1.1 is a significant advance on our knowledge of the spectrum N2
1 (HF2)hC2 ,

we deem our methods as more interesting than our result. Note first that the Segal conjecture
implies an equivalence N2

1 (HF2)hC2 ' N2
1 (HF2)C2 as N2

1 (HF2)ΦC2 ' HF2 agrees with the Tate
construction. This allows for an attack using methods from genuine equivariant homotopy theory.

Our starting point is the equivalence ΦC2BPR ' HF2 for the Real Brown–Peterson spectrum
BPR from [HK01]. This suggests the relevance of norms of BPR for the study of N2

1 (HF2).
Let P ∗C4/C2

(−) denote the pullback functor SpC4/C2
→ SpC2

(see [Hil12, Definition 4.1]). The

following theorem is a special case of Theorem 2.2:

Theorem 1.2. Let λ denote the irreducible 2-dimensional real representation of C4 and let aλ
denote the Euler class S0 → Sλ. There is an equivalence

a−1
λ BP ((C4)) ' P ∗C4/C2

N2
1 (HF2),

where BP ((C4)) := NC4

C2
BPR.

This theorem implies in particular an isomorphism between πC2∗ N2
1 (HF2) and πC4∗ a−1

λ BP ((C4)).
Moreover, it can be easily generalized to obtain a similar equivalence between a pullback of

N2k

1 (HF2) and a localization of BP ((C
2k+1 )).

The slice spectral sequence, invented by Hill–Hopkins–Ravenel in their solution of the Kervaire
invariant one problem, is an excellent tool to compute norms of BPR and MUR (see [HHR16]

and [HHR17]). In order to compute a−1
λ BP ((C4)), we introduce a new spectral sequence which is

a variant of the original slice spectral sequence. We call it the localized slice spectral sequence.
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The E2-term of this spectral sequence is computable due to [Zen]. The convergence is provided
by the following theorem:

Theorem 1.3 (Theorem 3.1). Let X be a C2n-spectrum, and let {P •} denote the slice tower for
X. Let V be an orthogonal C2n-representation such that V C2n = 0 and aV : S0 → SV be the
Euler class. Consider the tower

{Q•} := {a−1
V P •}

obtained by localizing {P •} at aV . The spectral sequence associated to {Q•} converges strongly
to the homotopy groups of a−1

V X.

Importing and extending differentials from [HHR16] and [HHR17], we compute the localized

slice spectral sequence for a−1
λ BP ((C4)) in a range. It is actually from this that we deduce Theo-

rem 1.1 and the differentials in the homotopy fixed points spectral sequence and the Tate spectral
sequence (see Figure 7 and Theorem 6.8).

In computing the localized slice spectral sequence, the norm map plays an essential role.
However, localizing at an Euler class such as aλ will never preserve the commutative ring structure
on which the norm map is based, because the underlying spectrum of such localization is always
contractible. To overcome this problem, we apply the theory of N∞-operads from [BH15]. More
precisely, in Section 2.3, by establishing a criterion generalizing the result of [HH14], we show
that aV -localization preserves the algebra structure over a certain N∞-operad, which depends
on the class aV . Therefore, the homotopy of the aV -localization of an equivariant commutative

ring such as MU ((G)) forms an incomplete Tambara functor [BH18], and the norm map essential
to our computation is still available. Furthermore, in Section 3.4, we draw consequences of the
behavior of norms in the localized slice spectral sequence.

As an outlook, we will comment about how our results fit into the grander scheme of things.
The Real bordism spectrum and its norms are central to understanding chromatic homotopy
theory. By the Goerss–Hopkins–Miller theorem, the Lubin–Tate spectra En are acted upon by
the Morava stabilizer group, and in particular they can be viewed as genuine G-spectra for any

finite subgroup G of the Morava stabilizer group. The higher real K-theories E
hC

2k
n play a crucial

role in approaches to understand the chromatic tower and the K(n)-local sphere. Moreover, a

computation of EhC8
4 could possibly resolve the last remaining open case of the Kervaire invariant

one problem.
To study these higher real K-theories, Hahn and the second author [HS20] proved that at the

prime 2, the classical complex orientation for En can be refined to a Real orientationMUR −→ En.
If we further localize at the prime 2, then the Real orientation becomes

BPR −→ En.

Furthermore, for any finite subgroup G containing C2, the Real orientation extends to a G-
equivariant orientation

BP ((G)) −→ En,

where BP ((G)) := NG
C2
BPR. This makes the computation of πG∗ BP

((G)) a major open problem
in stable homotopy theory as it contains crucial information about computational problems of
Lubin–Tate spectra. In particular, by the recent work of Beaudry–Hill–Shi–Zeng [BHSZ20],
computational problems about the Lubin–Tate spectra can be turned into computations with

norms of BPR and its quotients. Essentially, this implies that computation of E
hC

2k
n would follow

from that of π
C

2k∗ BP ((C
2k

)) at all heights n.
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When G = C2, the homotopy groups of EhC2
n have been completely computed at all heights

[HS20]. When G = C4, the homotopy groups of EhC4
2 have been computed by Behrens–Ormsby

[BO16], Hill–Hopkins–Ravenel [HHR17], and Beaudry–Bobkova–Hill–Stojanoska [BBHS19]; the

homotopy groups of EhC4
4 has been computed by Hill–Shi–Wang–Xu [HSWX18].

The computations above present the slice spectral sequence as a powerful tool in computing
BP ((C2n )) and the higher real K-theories. The slice spectral sequence is stratified into different
regions, each containing classes corresponding to the different representations of C2n . The local-
ized spectral sequence is a more refined spectral sequence than the slice spectral sequence because
it can analyze each of these regions separately. By choosing to localize at different Euler classes

(which corresponds to smashing with ẼF [C2i ] for different subgroups C2i ⊆ C2n), the localized
slice spectral sequence will only contain specific regions of the original slice spectral sequence
(which corresponds to computing the geometric fixed points at each level). As a consequence,
one can localize at different Euler classes to study each of the regions in the original slice spectral

sequence separately. In the extreme case when we are smashing with ẼG ∼= ẼF [C20 ] (when
i = 0), the differentials in the localized spectral sequence recovers all of the differentials in the
original slice spectral sequence.

In a future paper, we will focus on exploiting the localized slice spectral sequence to demon-

strate the interplay of differentials in the slice spectral sequences of BP ((C2n )) as n varies. This

will give an inductive approach to computing BP ((C2n )) and higher real K-theories. In particular,
differentials in the smaller height and smaller group spectral sequences can be directly imported
to the bigger height, bigger group spectral sequences.

While the flow of information in this paper is mainly from BP ((C4)) to N2
1 (HF2), there is

also significant potential for a flow of information in the other direction. If one can compute
the homotopy of N2

1 (HF2) by other methods, it will greatly help in understanding the localized

slice spectral sequence of a−1
λ BP ((C4)). Besides the localized slice spectral sequence and the

homotopy fixed point spectral sequence, there are several other approaches to the computation
of N2

1 (HF2). In particular, one can use the Adams spectral sequence, the C2-equivariant Adams
spectral sequence, and a new THH-based spectral sequence by [HW19]. An Adams spectral
sequence computation of the first six stems was actually already obtained a few years ago in
unpublished work of Quigley, who observed that in the Adams spectral sequence for N2

1 (HF2)hC2

there cannot be any differentials in this range. It is a current project of Bruner, Quigley and
the third author to study the interplay between the Adams spectral sequence, the localized slice
spectral sequence and the Tate spectral sequence. So far, the localized slice spectral sequence
is the most effective spectral sequence, and its interplay with the other spectral sequences may

allow for further advances in the computation of N2
1 (HF2) and hence of BP ((C4)).

Outline of paper. We now turn to a summary of the contents of this paper. In Section 2,
we recall a few basics of equivariant homotopy theory. In particular, we discuss the interplay
between the norm functor, the geometric fixed point functor, and the pull back functor. We prove
Theorem 2.2, from which Theorem 1.2 directly follows as a special case. We also investigate the
multiplicative structure of localizations and give a criterion for a localization at an element to
preserve multiplicative structures.

In Section 3, we recall the spectrum MU ((G)), BP ((G)), and their slice spectral sequences. We
then introduce the main computational tool for this paper, the localized slice spectral sequence.
Theorem 3.1 proves the strong convergence of the localized slice spectral sequence. We also
discuss extensions and norms in the localized slice spectral sequence.
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Sections 4 and 5 are dedicated to the computation of the localized slice spectral sequence

of a−1
λ BP ((C4)). In Section 4, we give an outline of the computation and list our main results

(Theorem 4.1 and Theorem 4.4). The detailed computations are in Section 5. While computing
differentials, we make full use of the Mackey functor structure of the spectral sequence. Certain
differentials are proven using exotic extensions and norms by methods established in Section 3.3
and 3.4.

In Section 6, we turn our attention to the Tate spectral sequence of N2
1HF2. We use the

computation of the localized slice spectral sequence of BP ((C4)) to prove families of differentials
and compute the Tate spectral sequence in a range. In particular, Theorem 6.8 describes the first
infinite family of differentials in the Tate spectral sequence.

Acknowledgments. The authors would like to thank Bob Bruner for sharing his computation
on the Tate generators of the dual Steenrod algebra, and J.D. Quigley for sharing his computation
of the Adams spectral sequence of NC2

e HF2. The authors would furthermore like to thank Gijs
Heuts, Mike Hill, Viet-Cuong Pham, Doug Ravenel, John Rognes and Jonathan Rubin for helpful
conversations.

Conventions.

(1) Given a finite group G, all representations will be finite-dimensional and orthogonal. Per
default actions will be from the left.

(2) We denote by ρG the real regular representation of a finite group G and we abbreviate
ρC2 to ρ2.

(3) All spectral sequences use the Adams grading.

2. Equivariant stable homotopy theory

2.1. A few basics. We work in the category of genuine G-spectra for a finite group G, and our
particular model will be the category of orthogonal G-spectra SpG. For us these will be simply G-
objects in orthogonal spectra as in [Sch14], which will often be just called G-spectra. This category
is equivalent to the categories of orthogonal G-spectra considered in [MM02] and [HHR16]. In
particular, we are able to evaluate a G-spectrum at an arbitrary G-representation to obtain a
G-space. We refer to the three cited sources for general background on G-equivariant stable
homotopy theory, of which we will recall some for the convenience of the reader.

For each G-representation V , we denote by SV its one-point compactification. Denoting further
by ρG the regular representation, we obtain for each subgroup H ⊂ G and each G-spectrum its
homotopy groups

πHn (X) = colimk[SkρG+n, X(kρG)]H .

These assemble into a Mackey functor πn(X). A map of G-spectra is an equivalence if it induces
an isomorphism on all πn. Inverting the equivalences of G-spectra in the 1-categorical sense
yields the genuine equivariant stable homotopy category Ho(SpG) and inverting them in the ∞-
categorical sense the∞-category of G-spectra Sp∞G . These constructions are well-behaved as there
is a stable model structure on SpG with the weak equivalences we just described [MM02, Theorem
III.4.2]. The fibrant objects are precisely the Ω-G-spectra.

By [MM02, Proposition V.3.4], the categorical fixed point construction SpG → Sp is a right
Quillen functor. We call the right derived functor (−)G : Sp∞G → Sp∞ the (genuine) fixed points.
We can define fixed point functors for subgroups H ⊂ G by applying first the restriction functor
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SpG → SpH and then the H-fixed point functor. One easily shows that πnX
H ∼= πHn X. Thus, a

map is an equivalence if it is an equivalence on all fixed points.
Note that if H ⊂ G is normal, the categorical fixed points carry a residual G/H-action. The

resulting functor SpG → SpG/H is a right Quillen functor as well [MM02, p. 81] and thus H-fixed

points actually define a functor Sp∞G → Sp∞G/H . The left adjoint of this is the inflation functor p∗

associated to the projection p : G→ G/H.
As πHn translates filtered homotopy colimits into colimits, we see that fixed points Sp∞G → Sp∞

preserve filtered homotopy colimits. As they preserve homotopy limits as well (as they are
induced by a Quillen right adjoint) and are a functor between stable ∞-categories, they preserve
all finite homotopy colimits [Lur17, Proposition 1.1.4.1] and hence all homotopy colimits [Lur09,
Proposition 4.4.2.7]. By the associativity of fixed points, the same is true for (−)H : Sp∞G →
Sp∞G/H for a normal subgroup H ⊂ G.

2.2. Norms and pullbacks. In this section, we will identify certain localizations of norm func-

tors with pullbacks of norms from quotient groups. In the case of BP ((G)) this is a central
ingredient of this paper.

First, we will recall the norm construction. For a group G, let BG denote the category with one
object and having G as morphisms. Given an arbitrary symmetric monoidal category (C,⊗,1),
there is for a subgroup H ⊂ G a norm functor

CBH → CBG, X 7→ X⊗HG

from H-objects to G-objects, where the G-action is induced by the right G-action on G. In the
case of spaces or sets, one can identify X×HG with MapH(G,X) and for based spaces or sets,
one can likewise identify X∧HG with Map∗H(G,X). In the case of orthogonal spectra, one can
by [HHR16, Proposition B.105] left derive the functor (−)∧HG to obtain a functor NG

H . (Often,
NG
H is also used for the corresponding underived functor, but the derived functor will be more

important for us.) The functor NG
H commutes with filtered (homotopy) colimits by [HHR16,

Propositions A.53, B.89]. Note moreover that NG
HΣ∞X ' Σ∞Map∗H(G,X) (if X is cofibrant or

at least well-pointed) as Σ∞ is symmetric monoidal.

Lemma 2.1. Let G be a finite group, K,H ⊂ G be two subgroups and X be a (based) topological
H-space. Let H\G/K = {Hg1K, . . . ,HglK}. Then there are (based) homeomorphisms

MapH(G,X)K ∼= Xg1Kg
−1
1 ∩H × · · · ×XglKg

−1
l ∩H

and

(1) Map∗H(G,X)K ∼= Xg1Kg
−1
1 ∩H ∧ · · · ∧Xg−1

l Kg−1
l ∩H ,

where the K-action on the mapping spaces is induced by the right K-action on G. In particular,
if H = K is normal, we obtain a G/H-equivariant homeomorphism

Map∗H(G,X)H ∼= Map∗(G/H,XH).

Proof. The first two statements follow from theH-K-equivariant decomposition ofG into
∐l
i=1HgiK.

For the last one observe that if H = K is normal, H\G/K = G/H and G/H permutes the factors
of the decomposition in (1). �
Theorem 2.2. Let H ⊂ G be a normal subgroup and X be an H-spectrum. Then we have an
equivalence of G-spectra

ẼF [H] ∧NG
HX ' P ∗G/H(NG/H

e ΦH(X)).
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Proof. As a first step to construct a natural map from the left hand side to the right hand side,
we observe that

(2) ΦHNG
HX ' NG/H

e ΦHX

for all H-spectra X. Indeed: If X is a suspension spectrum, this reduces to the space-level
statement Map∗H(G,X)H ' Map∗(G/H,XH), which is part of Lemma 2.1. Both sides of (2) are

symmetric monoidal and commute with filtered homotopy colimits. As Ho(SpG) is generated by
the S−V ∧ Σ∞Z, the claim follows.

As noted above, the functor P ∗G/H is right adjoint to ΦH : Ho(SpG)→ Ho(SpG/H). Thus, the

equivalence ΦHNG
HX ' N

G/H
e ΦHX induces a natural map

NG
HX → P ∗G/HΦHNG

HX ' P ∗G/H(NG/H
e ΦH(X)).

As smashing with ẼF [H] is idempotent, this in turn induces a map

(3) ẼF [H] ∧NG
HX → P ∗G/H(NG/H

e ΦH(X)),

which we will show to be an equivalence, first for suspension spectra and then in general. For
X = Σ∞Z, the map (3) is obtained by applying Σ∞ to the map

(4) ẼF [H] ∧ Z∧HG → ẼF [H] ∧ (ZH)∧G/H .

If we apply K-fixed points for H ⊂ K ⊂ G, the map becomes equivalent to the K-fixed points

of Z∧HG → (ZH)∧G/H and this is an equivalence by Lemma 2.1; moreover, ẼF [H]K ' ∗ if H
is not contained in K ⊂ G. Thus, the map (4) is an equivalence after taking K-fixed points for
every subgroup K ⊂ G and hence a G-equivalence. This shows that (3) is an equivalene if X is
a suspension spectrum.

By [Hil12, Corollary 4.6], we have for an arbitraryH-representation V an equivalence S−V
⊗HG∧

P ∗G/H(−) ' P ∗G/H(S−(V H)⊗G/H ∧ (−)), using the isomorphism (V H)⊗G/H ∼= (V ⊗HG)H . We thus

obtain for X = S−V ∧ Σ∞Z a chain of equivalences

ẼF [H] ∧NG
HX ' ẼF [H] ∧ S−V ⊗HG ∧NG

HΣ∞Z

' S−V ⊗HG ∧ P ∗G/H(NG/H
e ΦHΣ∞Z)

' P ∗G/H(S−(V H)⊗G/H ∧NG/H
e ΦHΣ∞Z)

' P ∗G/H(NG/H
e ΦH(S−V Σ∞Z)),

showing that the map (3) is also an equivalence if X = S−V ∧ Σ∞Z. It remains to observe that
both sides of (3) commute with filtered homotopy colimits as Sp∞H is generated under filtered
colimits by H-spectra of the form S−V ∧ Σ∞Z. �

Corollary 2.3. Let K ⊂ H ⊂ G be subgroups and assume that H ⊂ G is normal. Let moreover
X be a K-spectrum. Then there is an equivalence of G-spectra

ẼF [H] ∧NG
KX ' P ∗G/H(NG/H

e ΦK(X)).

Proof. This follows from Theorem 2.2 by applying it to NH
KX. Here, we use NG

KX ' NG
HN

H
KX

and ΦHNH
KX ' ΦKX. �
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As we will recall below, there is a C2-spectrum BPR with geometric fixed points HF2. For

G = C4 and H = C2, we can express ẼF [H] as S∞λ, where λ is the 2-dimension representation

of C4 rotating by an angle of π2 . Denoting the norm NC4

C2
BPR by BP ((C4)), we obtain the following

result already stated in slightly different form in the introduction.

Corollary 2.4. There is an equivalence

BP ((C4)) ∧ S∞λ ' P ∗C4/C2
N2

1 (HF2).

2.3. Multiplicative structures of localizations. In many cases, smashing with ẼF [H] is
equivalent to localization at a certain element in πG∗ S (for example if G is cyclic). The goal of
this section is to investigate which kind of multiplicative structure localization at such an element
preserves. More specifically let us fix an N∞-operad O, i.e. an operad O in (unbased) G-spaces
such that each O(n) is a universal space for a family Fn of graph subgroups of G×Σn, containing
all H × {e}. This notion was introduced in [BH15]. In the maximal case, we speak of a G-E∞-
operad and by [BH15, Theorem A.6] every algebra over such an operad can be strictified to a
commutative G-spectrum. In the minimal case, we speak of a (naive) E∞-operad.

Essentially, the different versions of N∞-operads encode which norms we see in the homotopy
groups of anO-algebra. To be more precise, call anH-set T admissible if the graph of theH-action
on T lies in F|T |. By [AB18, Remark 5.15] an O-algebra R admits norms NH

K : πKV R→ πH
IndHK V

R

if H/K is admissible, and the groups πHFR assemble into an RO(G)-graded incomplete Tambara
functor.

As already observed in [McC96], localizations only need to preserve naive E∞-structures, but
not G-E∞-structures. Later, [HH14] gave a criterion when localizations indeed preserve G-E∞-
structures and this was extended in [Böh19] to N∞-algebras, albeit only for localizations of
elements in degree 0. In this section, we will extend this work to elements in non-trivial degree
and follow the proof strategy of [Böh19, Proposition 2.30].

Let us first recall what localizing at some x ∈ πGV S means. We say that a G-spectrum X is
x-local if x acts invertibly on E or, equivalently, on πG∗ E. Given a G-spectrum E, we construct
its x-localization as

x−1E = hocolim
(
E

x−→ Σ−V E
x−→ Σ−2V E

x−→ · · ·
)
.

Note that x−1E ' E ∧ x−1S.

Example 2.5. Given a G-representation V , let aV : S0 → SV be the Euler class. Then a−1
V S '

S∞V and hence in general a−1
V E ' S∞V ∧E. In particular, we can reformulate Corollary 2.4 as

a−1
λ BP ((C4)) ' P ∗C4/C2

N2
1 (HF2).

A map f : E → F is an x-local equivalence if f ∧ x−1S is an equivalence; by abuse of notation,
we call for H ⊂ G a map of H-spectra an x-equivalence if it is a ResGH(x)-equivalence.

Definition 2.6. Localization at x preserves O-algebras if for every O-algebra R, we can lift the
morphism R→ x−1R in Ho(SpG) (up to isomorphism) to a morphism in Ho(O −Alg).

We will use the following specialization of a criterion of [GW18, Corollary 7.10]:

Proposition 2.7. Localization at x preserves O-algebras if and only if

NH
K ResGK : SpG∞ → SpH∞

preserves x-equivalences for every K ⊂ H ⊂ G such that H/K is admissible as an H-set.
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To reformulate this criterion, we need the following lemma.

Lemma 2.8. There is an equivalence NH
K ResGK(x−1S) ' (NH

K ResGK(x))−1(SH) for SH the H-
equivariant sphere spectrum.

Proof. Applying NH
K ResGK to

S x−→ Σ−V S x−→ Σ−2V S x−→ · · · ,
we obtain precisely

SH
NHK ResGK(x)−−−−−−−−→ Σ− IndHK ResGK V SH

NHK ResGK(x)−−−−−−−−→ Σ−2 IndHK ResGK V SH
NHK ResGK(x)−−−−−−−−→ · · ·

Here we have used that the norm of a representation sphere is computed by induction. As both
NH
K and ResGK preserve filtered homotopy colimits, the result follows. �

Proposition 2.9. Localization at x preserves O-algebras if and only if NH
K ResGK(x) divides a

power of ResGH(x) for every K ⊂ H ⊂ G such that H/K is admissible as an H-set.

Proof. Let K ⊂ H ⊂ G be subgroups such that H/K is admissible as an H-set. By Proposi-

tion 2.7, we have to show that NH
K ResGK(x) divides a power of ResGH(x) if and only if

NH
K ResGK : SpG∞ → SpH∞

preserves x-equivalences.
Assume first that NH

K ResGK preserves x-equivalences. By the preceding lemma, we see in

particular that SH → (NH
K ResGK(x))−1SH is an x-equivalence, i.e. NH

K ResGK(x) becomes a unit

after inverting ResGH(x) and just must divide a power of it.

Assume now that NH
K ResGK(x) divides a power of ResGH(x). Then the map SH → ResGH(x)−1SH

factors over the standard map SH → (NH
K ResGK(x))−1SH .

Let now f : E → F be an x-equivalence of G-spectra, i.e. we assume that f ∧ x−1S is an
equivalence. As NH

K and ResGH are symmetric monoidal, we see that NH
K ResGH(f ∧ x−1S) is

equivalent to NH
K ResGH(f) ∧ (NH

K ResGK(x))−1SH , which is thus an equivalence. Tensoring with

ResGH(x)−1SH over (NH
K ResGK(x))−1SH yields the result. �

We specialize now to the case that x is the Euler class aV : S0 → SV . In this case we
have NG

K ResGH aV = aIndGK ResGH V . Thus to see which multiplicative structure localization at aV
preserves, we only have to understand divisibility relations between Euler classes. In particular,
we obtain the following corollary:

Corollary 2.10. Let V be a G-representation. Assume that IndHK ResGK V is a summand of a

multiple of ResGH V for every K ⊂ H ⊂ G such that H/K is an admissible H-set. Then localizing
at aV preserves O-algebras.

Example 2.11. Let G = C2n and λ = λn be the two-dimensional representation of C2n given

by rotation by an angle of 2π
2n . We observe that Res

Cn2
C

2k
λn = λk and Ind

Cm2
C

2k
λk = 2m−kλm unless

k = 1. Thus localizing at aλ preserves O-algebras if the following holds: H/K is H-admissible
if and only if K 6= e. In particular, we see that for any commutative C2n -spectrum R, the

localization a−1
λ R admits norms from π

C
2k∗ to πC2n∗ for 0 < k < n, but will not admit norms from

πe∗ unless the target is zero. The example we care most about is a−1
λ MU ((C2n )).
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3. The slice spectral sequence and the localized slice spectral sequence

3.1. The slice spectral sequence of MU ((C2n )) and BP ((C2n )). Our main computational tool
in this paper is a modification of the equivariant slice spectral sequence of Hill–Hopkins–Ravenel.
In this subsection, we list some important facts about the slice filtration for norms of MUR and
BPR, which we will need for the rest of the paper. For a detailed construction of the slice spectral
sequence and its properties, see [HHR16, Section 4] and [HHR17].

Let G = C2n be the cyclic group of order 2n, with generator γ. The spectrum MU ((G)) is
defined as

MU ((G)) := NG
C2
MUR.

The underlying spectrum of MU ((G)) is the smash product of 2n−1-copies of MU .
Hill, Hopkins, and Ravenel [HHR16, Section 5] constructed elements

ri ∈ πC2
iρ2
MU ((G))

such that
πC2
∗ρ2MU ((G)) ∼= Z[G · r1, G · r2, . . .],

Here, G · x denotes the set {x, γx, γ2x, . . . , γ2n−1

x}, and the Weyl action is given by

γ · γjri =

{
γj+1ri 0 ≤ j ≤ 2n−1 − 2
(−1)iri j = 2n−1 − 1.

Adjoint to each map

ri : Siρ2 −→ i∗C2
MU ((G))

is an associative algebra map from the free associative algebra

S0[ri] =
∨
j≥0

(Siρ2)∧j −→ i∗C2
MU ((G)).

Applying the norm and using the norm-restriction adjunction, this gives a G-equivariant associa-
tive algebra map

S0[G · ri] = NG
C2
S0[ri] −→MU ((G)).

Smashing these maps together produces an associative algebra map

A := S0[G · r1, G · r2, . . .] =

∞∧
i=1

S0[G · ri] −→MU ((G)).

Note that by construction, A is a wedge of representation spheres, indexed by monomials in the

ris. By the Slice Theorem [HHR16, Theorem 6.1], the slice filtration of MU ((G)) is the filtration
associated with the powers of the augmentation ideal of A. The slice associated graded for

MU ((G)) is the graded spectrum

S0[G · r1, G · r2, . . .] ∧HZ,
where the degree of a summand corresponding to a monomial in the ri generators and their
conjugates is the underlying degree.

As a consequence of the slice theorem, the slice spectral sequence for the RO(G)-graded ho-

motopy groups of MU ((G)) has E2-term the RO(G)-graded homology of S0[G · r1, G · r2, . . .] with
coefficients in the constant Mackey functor Z. To compute this, note that S0[G · r1, G · r2, . . .]
can be decomposed into a wedge sum of slice cells of the form

G+ ∧Hp S
|p|
|Hp|

ρHp ,
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where p ranges over a set of representatives for the orbits of monomials in the γjri generators, and
Hp ⊂ G is the stabilizer of p (mod 2). Therefore, the E2-page of the integer graded slice spectral
sequence can be computed completely by writing down explicit equivariant chain complexes for

the representation spheres S
|p|
|Hp|

ρHp .
The exact same story holds for norms of BPR as well. By [HK01, Theorems 2.25, 2.33], the

classical Quilllen idempotent MU −→ MU lifts to a multiplicative idempotent MUR → MUR
with image BPR, resulting in particular in a multiplicative C2-equivariant map

MUR −→ BPR.

Taking the norm NG
C2

(−) of this map produces a multiplicative G-equivariant map

MU ((G)) −→ BP ((G)) =: NG
C2
BPR.

The exact same technique in [HHR16, Section 5] show that there are generators

ti ∈ πC2

(2i−1)ρ2
BP ((G))

such that

πC2
∗ρ2BP

((G)) ∼= Z(2)[G · t1, G · t2, . . .].
For a precise definition of these generators, see formula (1.2) in [BHSZ20].

Just like MU ((G)), we can build an equivariant refinement

S0[G · t1, G · t2, . . .] −→ BP ((G))

from which the Slice Theorem implies that the slice associated graded for BP ((G)) is the graded
spectrum S0[G · t1, G · t2, . . .] ∧HZ(2).

Since the slice filtration is an equivariant filtration, the slice spectral sequence is a spectral

sequence of RO(G)-graded Mackey functors. Moreover, the slice spectral sequences for MU ((G))

and BP ((G)) are multiplicative spectral sequences and the natural maps between them are mul-

tiplicative as well (see [HHR16, Section 4.7]), and the slice spectral sequence for BP ((G)) is a

spectral sequence of modules over the spectral sequence of MU ((G)) in Mackey functors.

3.2. The localized spectral sequence. In this subsection, we introduce a variant of the slice
spectral sequence which we call the localized slice spectral sequence. This will be our main

computational tool to compute a−1
λ BP ((C4)) in the later sections.

Let λ2n−i denote the 2-dimensional real C2n -representation corresponding to rotation by
(

π
2n−i

)
and σ denote the real sign representation of C2n . Given a C2n -spectrum X, we have an equivalence

ẼF [C2i ] ∧X ' S∞λ2n−i ∧X ' a−1
λ2n−i

X

for all 1 ≤ i ≤ n. For example, there are equivalences

ẼF [C2n ] ∧X ' a−1
λ1
X = a−1

2σX = a−1
σ X,

ẼF [C2n−1 ] ∧X ' a−1
λ2
X,

ẼF [C2n−2 ] ∧X ' a−1
λ4
X.

The following theorem shows that one can compute the homotopy groups of ẼF [C2i ] ∧X =

a−1
λ2n−i

X by smashing the slice tower of X with ẼF [C2i ]. The resulting localized slice spectral

sequence will converge to the homotopy groups of a−1
λ2n−i

X.
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Theorem 3.1. Let X be a C2n-spectrum, and let {P •} denote the slice tower for X. Consider
the tower

{Q•} := {ẼF [C2i ] ∧ P •}
obtained by smashing {P •} with ẼF [C2i ]. The spectral sequence associated to {Q•} converges

strongly to the homotopy groups of ẼF [C2i ] ∧X.

Proof. Let λ := λ2n−i . Consider the tower

S∞λ ∧X lim←−(S∞λ ∧ P •X)

...

S∞λ ∧ PnX S∞λ ∧ PnnX

S∞λ ∧ Pn−1X S∞λ ∧ Pn−1
n−1X

...

We will first show that the spectral sequence converges to the limit, lim←−(S∞λ ∧ P •X). Since
smash products commute with colimits, we have the equivalence

lim−→(S∞λ ∧ P •X) ' ∗.
The slices PnnX satisfy PnnX ≥ n for all n. Furthermore, since S∞λ ≥ 0, we also have

S∞λ ∧ PnnX ≥ n
by [HHR16, Proposition 4.26]. Applying Proposition 4.40 in [HHR16] to S∞λ ∧PnnX shows that
the homotopy groups

πk(S∞λ ∧ PnnX) = 0 if

{
n ≥ 0 and k < b n|G|c,
n < 0 and k < n.

This gives a vanishing line on the E2-page of the spectral sequence. Since the colimit of the tower
is contractible, the spectral sequence converges strongly to the homotopy groups of the limit,
πk lim←−(S∞λ ∧ P •X) [Boa99, Section 5-6].

To finish our proof, it suffices to show that the map

S∞λ ∧X −→ lim←−(S∞λ ∧ P •X)

is an equivalence.
Consider the cofiber sequence

Pn+1X −→ X −→ PnX

used in the definition of the slice tower. In the cofiber sequence, Pn+1X ≥ n+ 1 and PnX ≤ n.
Smashing this cofiber sequence with S∞λ produces a new cofiber sequence

S∞λ ∧ Pn+1X −→ S∞λ ∧X −→ S∞λ ∧ PnX.
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Since S∞λ ≥ 0, [HHR16, Proposition 4.26] implies that

S∞λ ∧ Pn+1X ≥ n+ 1.

Applying [HHR16, Proposition 4.40] to S∞λ ∧ Pn+1X shows that

πk(S∞λ ∧ Pn+1X) = 0 if

{
n+ 1 ≥ 0 and k < bn+1

|G| c,
n+ 1 < 0 and k < n+ 1.

The cofiber sequence above induces the following long exact sequence in homotopy groups:

πk(S∞λ ∧ Pn+1X) −→ πk(S∞λ ∧X) −→ πk(S∞λ ∧ PnX) −→ πk−1(S∞λ ∧ Pn+1X) −→ · · ·
It follows from this long exact sequence and the discussion above that

πk(S∞λ ∧X) ∼= πk(S∞λ ∧ PnX) if

{
n+ 1 ≥ 0 and k < bn+1

|G| c,
n+ 1 < 0 and k < n+ 1.

This means that for any k, the kth homotopy groups of S∞λ ∧ X and S∞λ ∧ PnX will be
isomorphic when n is large enough. In particular, the map S∞λ ∧ Pn+1X → S∞λ ∧ PnX will
induce an isomorphism on πk. It is then immediate that the system πk(S∞λ ∧P •X) satisfies the
Mittag–Leffler condition and therefore

πk lim←−(S∞λ ∧ P •X) ∼= lim←−πk(S∞λ ∧ P •X) ∼= πk(S∞λ ∧ PnX)

for n large.
Another way to observe this is by using the localized slice spectral sequence. As we have shown,

the spectral sequence associated to the tower {Q•} := {S∞λ ∧ P •} converges to the homotopy
groups of lim←−(S∞λ ∧ P •X). It takes the form

Es,n2 = πn−s(S
∞λ ∧ PnnX) =⇒ πn−s lim←−(S∞λ ∧ P •X).

By [HHR16, Proposition 4.40], the homotopy groups

πn−s(S
∞λ ∧ PnnX)

do not contribute to πk lim←−(S∞λ ∧ P •X) when n ≥ 0 and k < b n|G|c, or when n < 0 and k < n

(see Figure 1). Therefore,

πk lim←−(S∞λ ∧ P •X) ∼= πk(S∞λ ∧ PnX) if

{
n ≥ 0 and k < b n|G|c,
n < 0 and k < n.

For any k, consider the diagram

πk(S∞λ ∧X) πk lim←−(S∞λ ∧ P •X)

πk(S∞λ ∧ PnX)

∼=
∼=

We have proven that when n is large enough (n > k), the vertical arrow and the diagonal arrow
are isomorphisms. Therefore, the horizontal arrow induces an isomorphism

πk(S∞λ ∧X) ∼= πk lim←−(S∞λ ∧ P •X)

for all k. It follows that S∞λ ∧X ' lim←−(S∞λ ∧ P •X), as desired. �

From the discussion in [HHR16, Section 4.7] and our discussion in Section 3.1, it follows that

the localized slice spectral sequences of MU ((G)) and BP ((G)) are multiplicative spectral sequences.
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m

b n|G|c

contribution from P n
n (S

∞λ ∧X), n ≥ 0

contribution from Pm
m (S∞λ ∧X), m < 0

t− s

s

slope |G| − 1

n

Figure 1. Spectral sequence associated to the tower {ẼF [C2i ] ∧ P •}.

3.3. Exotic transfers. If the transfer of a given class in the slice spectral sequence is zero, it
might still support a non-trivial exotic transfer in a a higher filtration. Understanding these
is both crucial for understanding the Mackey functor structure of the spectral sequence and
also quite helpful to deduce differentials and extensions inside the spectral sequence. While the
concept of exotic transfers is pretty transparent for permanent cycles, it is slightly more subtle
for exotic transfers just happening on finite pages. Following the lead of [BBHS19] (in the case
of the Picard spectral sequence), we will give a precise definition of this phenomenon and show
how it behaves with respect to differentials. It turns out that it is no more difficult to treat a
more general setting, which specializes to several different known spectral sequences and allows
also for more general operations than just transfers.

We consider a tower

· · · → Xi+1 → Xi → Xi−1 → · · ·



NORMS OF EILENBERG–MAC LANE SPECTRA AND REAL BORDISM 15

of G-spectra. Recall that to this we can associate a spectral sequence as follows: Let Xm
n =

fib(Xm → Xn−1). For V a virtual G-representation of dimension t, we set Es,V2 = πV−s(X
t
t ) and

more generally

Es,Vr = im(πV−sX
t+(r−2)
t → πV−sX

t
t−r+2).

The differentials dr : Es,Vr → Es+r,V+r−1
r are defined as the restrictions of the boundary maps

δ : πV−sX
t
t−r+2 → πV−s−1X

t+r−1
t+1 . See e.g. [Lur17, Section 1.2.2] for some details in the setting

of an ascending filtration. Our setting specializes in particular to the following spectral sequences:

(1) Given a spectrum Z with a G-action, set Xi = (τ≤iZ)EG+ . We recover the homotopy
fixed point spectral sequence.

(2) Given a spectrum Z with a G-action, set Xi = (τ≤iZ ∧ ẼG)EG+ . We recover the Tate
spectral sequence.

(3) Given a G-spectrum Z, set Xi = P iZ, the slice tower. We obtain the slice spectral
sequence.

(4) Given a C2n -spectrum Z and 1 ≤ j ≤ n, set Xj = ẼF [C2i ] ∧ P jZ. We obtain the
localized slice spectral sequence. This will be the main example of relevance for us.

We fix an arbitrary map Σ∞G/K → Σ∞G/H and denote the resulting operation πHn → πKn by

w. The most important case for us will be H ⊂ K and w = TrKH . But equally well w might be a
restriction map, multiplication by a fixed element like 2, or any combination of these.

Definition 3.2. Let x ∈ Es,tr (G/H). By definition, we may lift the corresponding element in
πHt−sX

t
t−r+2 to an element x̃ ∈ πHt−sXt+r−2

t . Given 0 ≤ p ≤ r − 2, consider the image of w(x̃)

in πKt−sX
t+p
t+p−r+2. If this image lies in Es+p,t+pr (G/K), we call it a w-operation of x of filtration

jump p. If p > 0, we speak of an exotic w-operation, which, depending on w, might be an exotic
transfer, exotic restriction etc.

Note that with x and x̃ fixed, a w-operation of filtration jump p can only exist if all w-
operations of lower filtration jump vanish. Indeed, if the image of w(x̃) in πKt−sX

t+p
t+p−r+2 lies in

Es+p,t+pr (G/K), it is in the image of πKt−sX
t+p+r−2
t+p . The map from this group to πKn X

t+p−1
t+p−r+1

factors through πKt−sX
t+p−1
t+p = 0.

Remark 3.3. A different viewpoint on this definition may make it more transparent: With x

as above, we consider the modified tower X̃• with X̃i = Xi
t for i ≤ t + r − 1 and X̃i = Xt+r−2

t

if i ≥ s + r − 2 and denote the associated spectral sequence by Ẽ∗,∗∗ . Note that Es,tr (G/K) is

a quotient of Ẽs,tr (G/H) and any lift of x becomes a permanent cycle in the modified spectral
sequence, represented by some x̃ ∈ πHXt+r−2

t . If w(x̃) is nonzero, it must be detected in some

Ẽs+p,t+pr , the result being a w-operation in Ẽ of filtration jump p. If x̃ is fixed, the resulting class
is well-defined.

The fixing of x̃ is essential though: There might be, for example, a class z in Es+q,t+q2 with
0 < q < p whose class [z] supports a non-trivial non-exotic transfer, then the exotic transfer
associated to x̃ + z has filtration jump q. Thus, exotic w-operations are not well-defined in
general. In the extreme case a vanishing class might support a non-trivial exotic transfer of some
filtration jump p, caused by another transfer of smaller filtration jump – thus it might be better
to think of transfers of filtration jump p as having filtration jump at most p.

Proposition 3.4. Let x ∈ Es,tr (G/H) and z a class with dr(z) = x. Suppose dr+q(w(z)) is zero
for q < p. Then dr+p(w(z)) is a w-operation of x of filtration jump p.
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Proof. We choose a lift of z ∈ πHt−s+1X
t−r+1
t−2r+3 to z̃ ∈ πHt−s+1X

t−1
t−r+1. As δ(z̃) in the diagram below

is a lift of x, contemplating the fate of w(z̃) passing along the two different travel paths from the
upper left corner to the lower right corner proves the proposition.

πKt−s+1X
t−1
t−r+1

δ //

��

πKt−sX
t+r−2
t

��
Es−r,t−r+1
r ⊆ πKt−s+1X

t−r+1
t−2r+3

��

πKt−sX
t+p
t+p−r+2 ⊇ Es+p,t+pr

��
Es−r,t−r+1
r+p ⊆ πKt−s+1X

t−r+1
t−2r+3−p

δ // πKt−sX
t+p
t−r+2 ⊇ Es+p,t+pr+p �

While the definition and results so far are very general (and our proofs would also apply to
other settings than equivariant homotopy theory), we want also to formulate a result specific to
cylic 2-groups. Both statement and proof are a variant of those of [HHR17, Proposition 4.4], but
also work for exotic transfers and restrictions on finite pages.

Proposition 3.5. Let H ⊂ G be an index 2 subgroup of a cyclic 2-group and V ∈ RO(G).

(i) Let y ∈ Es,Vr+1(G/G) with aσy = 0 ∈ Es+1,V+1−σ
r+1 (G/G). Then y is an exotic transfer of

filtration jump (at most) r − 1.

(ii) Let z ∈ Es,Vr+1(G/H) with Tr(z) = 0 ∈ Es,Vr+1(G/G). Then z is an exotic restriction from

Es−r+1,V−r+2−σ
r+1 of filtration jump (at most) r − 1.

Proof. For the first part, fix the bidegree of y to be (0, 0). The term E0,0
r+1(G/G) injects into

πG0 X
r−1
0 . Using the long exact sequence induced by G/H+ → S0 aσ−→ Sσ, we see that aσy = 0 im-

plies y = Tr(w̃) with w̃ ∈ πH0 Xr−1
0 . By definition, this defines an element w ∈ E−r+1,−r+1

r+1 (G/H)
such that y is an exotic transfer of w.

For the second part, fix the bidegree of z to be (0, 0). We see that z is the restriction of some

ṽ ∈ πG1−σXr−1
0 . By definition, this defines an element v ∈ E−r+1,−r+2−σ

r+1 (G/G) such that z is an
exotic restriction of v. �

3.4. The behaviour of norms. This section is about the behaviour of norms in the (regular)
slice spectral sequence and its localized variant. We will formulate a generalization of [Ull13] and
then discuss how it applies both to Ullman’s original setting, the regular slice spectral sequence,
and to the localized slice spectral sequence.

We will first work in an abstract setting: Let (Xi) be a tower of G-spectra and E∗,∗∗ be the
associated spectral sequence as in the preceding subsection. Set X∞ = limiX

i and Xn = X∞n .
Let H ⊂ G be a subgroup of index h. We assume that we have maps NG

HXn → Xhn and
NG
HX

n
n → Xhn

hn that are (up to homotopy) compatible with the maps Xn → Xn−1 and Xn → Xn
n .

We call it a norm structure. It induces norm maps NG
H : Es,V+s

2 → E
hs,IndGH V+hs
2 .

Proposition 3.6. Let x ∈ E2(G/H) be an element representing zero in Er+2(G/H). Then
NG
H (x) represents zero in Erh+2(G/G).

Proof. The proof is the same as that of [Ull13, Proposition I.5.17]. �
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Example 3.7. Our first example of this setting is the regular slice tower of [Ull13], which co-
incides with the slice tower of [HHR16] for norms of MUR and BPR – thus there should be no
danger of confusion if we use the same notation P iX for the regular slice tower.

Ullman constructs in [Ull13, Corollaries I.5.10 and I.5.11] for every H-spectrum X natural
compatible maps NG

HPnX → PnhN
G
HX and NG

HP
n
nX → PnhnhN

G
HX. Moreover the square

NG
HPnX

//

��

PhnN
G
HX

��
NG
HPn−1X // Phn−hNG

HX

commutes, as NG
HPnX is ≥ hn by [Ull13, Corollary I.5.8] and both maps into NG

HPnX →
Phn−hNG

HX are compatible with the respective maps to NG
HX.

Given now a G-commutative ring spectrum R, we obtain a map NG
H ResGH R. Setting X =

ResGH R, the composite NG
HPn ResGH X → PnhN

G
H ResGH R→ PnhR and its analogue for Pnn define

a norm structure on the regular slice tower of R.

Example 3.8. Let R be a G-commutative ring spectrum with G = C2n . We will define a norm
structure on the tower Xi = a−1

λ P iX defining the localized regular slice spectral sequence. Using
the observations above for the regular slice spectral sequence, it suffices to produce natural maps
NG
H ResGH a

−1
λ PnR → a−1

λ NG
H ResGH PhnR and similarly for Pnn . As NG

H and ResGH are monoidal
and by Lemma 2.8 it thus suffices to provide a natural map

a−1
λ SG ' a−1

λ NG
HSH → NG

H ResH aλ−1SG ' a−1
IndGH ResGH λ

SG

As observed before, IndGH ResGH λ is a multiple of λ if H 6= e and contains a trivial summand if
H = e. This produces the norm structure if H 6= e. In contrast for H = e, all norms would have
to be zero.

We remark that we have not used the full strength of our considerations in Section 2.3 here,
but we expect that these will be necessary for deeper considerations about norms.

We will use the following proposition without further comment.

Proposition 3.9. Both in the regular slice spectral sequence and in the localized regular slice
spectral sequence of a G-commutative ring spectrum, the norms are multiplicative: NG

H (xy) =
NG
H (x)NG

H (y).

Proof. This follows from the commutativity of

NG
H (PmX ∧ PnY ) //

��

NG
H (Pm+nX ∧ Y )

��
PhmN

G
HX ∧ PhnNG

HY
// Phm+hnN

G
H (X ∧ Y )

for G-spectra X and Y . This in turn follows as there is up to homotopy just one map

NG
H (PmX ∧ PnY )→ Phm+hnN

G
H (X ∧ Y )

compatible with the maps to NG
H (X ∧ Y ) as NG

H (PmX ∧PnY ) ≥ h(m+ n) by [Ull13, Corollaries
I.4.2 and I.5.8]. �



18 MEIER, SHI, AND ZENG

4. The localized slice spectral sequences of BP ((G)): summary of results

We now turn to analyze the localized slice spectral sequence of BP ((G)) for G = C2n . From
now on, everything will be implicitly 2-localized. In this section, we list our main results and give
an outline of the computation. Detailed computations of the results stated in this section are in
Section 5.

As we discussed in Section 3, the Slice Theorem [HHR16, Theorem 6.1] implies that the slice
associated graded of BP ((C2n )) is

HZ[G · t1, G · t2, . . .],
where ti ∈ πC2

(2i−1)ρ2
BP ((C2n )) (see also [HHR16, Section 2.4] for details).

For the rest of the paper, we use λ for the 2-dimensional real representation of C2n which is
rotation by

(
π

2n−1

)
, and σ for the 1-dimensional sign representation of G. We use σ2 for the sign

representation of the unique subgroup C2 in G. Let i < j ≤ n, we will use Res2j

2i , Tr2j

2i and N2j

2i

for restrictions, transfers and norms between C2i and C2j as subgroups of G. If their subscript
and superscript are omitted, they mean the restriction, transfer and norm between C2 and C4.

Theorem 4.1.

(1) Let G = C2n and H = C2 be the subgroup of order 2 inside G. There is a RO(G/H)-
graded spectral sequence of Mackey functors a−1

λ SliceSS(BP ((G))) that converges to the

RO(G/H)-graded homotopy Mackey functor of N
G/H
e HF2. The E2-page of this spectral

sequence is
a−1
λ HZF[G · t1, G · t2, · · · ].

(2) The integral E2-page of a−1
λ SliceSS(BP ((G))) is bounded by the vanishing lines s = (2n −

1)(t − s) and s = −(t − s) in Adams grading. In other words, at stem t − s, the classes
with filtrations greater than (2n − 1)(t− s) or less than −(t− s) are all zero.

(3) On the integral E2-page, the aλ-localizing map

SliceSS(BP ((G)))→ a−1
λ SliceSS(BP ((G)))

induces an isomorphism of classes in positive filtrations. The kernel of this map consists

of transfer classes in SliceSS(BP ((G))) from the trivial subgroup in filtration 0. These
classes are all permanent cycles.

Proof. By Theorem 3.1, a−1
λ SliceSS(BP ((G))) computes the homotopy of ẼG∧BP ((G)). By Propo-

sition 2.2 and the fact that ΦC2(BPR) ' HF2,

ẼG ∧BP ((G)) ' P ∗G/C2
(N

G/C2

1 HF2).

Since the E2-page of the slice spectral sequence of BP ((G)) has the form

HZF[G · t1, G · t2, . . .],
the E2-page of a−1

λ SliceSS(BP ((G))) is

a−1
λ HZF[G · t1, G · t2, . . .]

Together with Theorem 2.2 and Theorem 3.1 this proves (1).
The top vanishing line s = (2n − 1)(t − s) follows from the fact that πi(S

kρG+lλ ∧ HZ) = 0
for k, l ≥ 0 and i < k (See [HHR16, Theorem 4.42]). For the second vanishing line y = −x, note
that in stem t − s, classes in filtration less than −(t − s) are contributed by slices of negative
dimension, but BP ((G)) has no negative slices. This proves (2).
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To prove (3), by unpacking the description of the E2-page, we need to show that for k, l ≥ 0,
the aλ-multiplication map

aλ : πGi (SkρG+lλ ∧HZ) 7−→ πGi (SkρG+(l+1)λ ∧HZ)

is an isomorphism for k ≤ i < k|G| + 2l and is surjective with kernel consisting of transfer
classes from trivial subgroup for i = k|G|+ 2l. This is a direct consequence of the cellular chain
computation of the representation spheres. Since the underlying tower of the slice tower is the
Postnikov tower, all the class in the trivial subgroup and their transfers are permanent cycles. �

Remark 4.2. In fact, (2) and (3) of Theorem 4.1 hold in a greater generality. For instance, they
are true for any (−1)-connected G-spectrum. We will investigate properties of the localized slice
spectral sequences in a future paper.

By [LNR11] and [BBLNR14], all C2n norms of HF2 are cofree, therefore we will not distinguish
between their fixed points and homotopy fixed points.

Corollary 4.3. The 0-th homotopy group of (N2n−1

1 HF2)hC2n−1 is isomorphic to Z/2n.

Proof. In a−1
λ SliceSS(BP ((G))), the only Mackey functor contributing to the 0-stem is π0(a−1

λ HZ),
and we claim that

πG0 (a−1
λ HZ)(G/G) ∼= Z/2n.

Indeed, the maps πG0 (Snλ∧HZ)→ πG0 (S(n+1)λ∧HZ) are isomorphisms for n ≥ 1 and πG0 (Sλ∧HZ)

is the cokernel of the transfer Tr2n

1 : πe0HZ→ πC2n

0 HZ, i.e. of multiplication by 2n on Z. �

For the rest of the paper, we focus on the case G = C4. We compute the first 8 stems of

a−1
λ SliceSS(BP ((C4))).

Theorem 4.4. The first 8 stems of πC4∗ (a−1
λ BP ((C4))) ∼= πC2∗ N2

1HF2 are shown in the following
chart:

i 0 1 2 3 4 5 6 7 8
πi Z/4 Z/2 Z/4 Z/2⊕ Z/2 Z/2 Z/2 Z/4⊕ Z/2 Z/2⊕ Z/2⊕ Z/2⊕ Z/2 Z/2⊕ Z/2⊕ Z/2

On the E∞-page of the localized spectral sequence, the black subgroups are those generated by
non-exotic transfers from A∗ = π∗(HF2 ∧HF2), and the red subgroups consist of everything else.
For the Mackey functor structure, see Figure 6.

Modulo transfers from A∗, the homotopy groups has the following generators:

(1) π1 is generated by η = N(t1)aλaσ, the image of the first Hopf invariant one element;

(2) π2 is generated by η2

2 = 2uλ
aλ

;

(3) π3 is generated by ν = N(t2)a3
λa

3
σ, the image of the second Hopf invariant one element;

(4) π6 is generated by ν2

2 =
2u3
λ

a3λ
;

(5) π7 is generated by N(t3)a7
λa

7
σ and N(t2)uλu2σa

2
λaσ, and one of them detects the third

Hopf invariant one element σ.

(6) π8 is generated by Tr4
2(t

2
2t

2
1a

8
σ2

) + Tr4
2(t3t1a

8
σ2

) +N(t2)N(t1)u2
2σa

4
λ.

In [Rog], Rognes shows that the unit map S0 → (N2
1HF2)hC2 induces a splitting injection

on mod 2 homology as an A∗-comodule thus a splitting injection on the E2-page of the Adams

spectral sequence. Therefore, the ring spectrum (N2
1HF2)hC2 ' (a−1

λ BP ((C4)))C4 detects all Hopf
invariant one elements. They all restrict to 0, since the underlying Adams spectral sequence of
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HF2 ∧HF2 is concentrated in filtration 0. Therefore, they are detected by red subgroups in the
corresponding degree.

The proof of Theorem 4.4 is by computing a−1
λ SliceSS(BP ((C4))) and is given in the next section.

The most relevant differentials in the spectral sequence are listed in the following table:

Differential Formula Proof

d3
d3(u2σ2

) = a3
σ2

(t1 + γt1)
d3(uλ) = Tr4

2(a3
σ2
t1)

Proposition 5.8

d5 d5(u2σ) = N(t1)aλa
3
σ Theorem 5.7

d5 d5(u2
λ) = N(t1)uλa

2
λaσ Proposition 5.11

d7
d7(u2

2σ2
) = a7

σ2
(t2 + t

3
1 + γt2)

d7(2u2
λ) = Tr4

2(a7
σ2
t
3
1)

Theorem 5.4
Proposition 5.16

d7 d7(u4
λ) = Tr4

2(t
3
1u

2
2σ2
a7
σ2

) Proposition 5.17

d13 d13(u4
λaσ) = N(t2 + t

3
1 + γ(t2))u2

2σa
7
λ Proposition 5.21

d15 d15(2u4
λ) = Tr4

2(t
C2

3 a15
σ2

) Proposition 5.22

5. Computing the localized slice spectral sequences of BP ((G))

5.1. Computing the E2-page. In this section, we compute a−1
λ SliceSS(BP ((C4))) and prove

Theorem 4.4. Our approach is similar to that of [HHR17] and [HSWX18]. Before we start our

computation, we give a complete algebraic description of the E2-page of a−1
λ SliceSS(BP ((C4))) in

terms of generators and relations. To do so, by Theorem 4.1, we need to describe the C2-homotopy
groups πF(a−1

σ2
HZ) and the C4-homotopy groups πF(a−1

λ HZ).

Proposition 5.1. We have

πC2

F (a−1
σ2
HZ) = F2[u2σ2

, a±1
σ2

].

The Mackey functor structure is determined by the contractibility of the underlying spectrum.

This proposition is proved by a standard Tate cohomology computation, see [Gre18, Sec-
tion 2.C] for details.

In order to compute πF(a−1
λ HZ) forG = C4, note that we only need to consider representations

of the form a+bσ, as multiplications by powers of aλ induce isomorphisms between representations
with nontrivial λ components.

Let S be the subring of

R = Z/4[aσ, u
±1
2σ , uλa

−1
λ ]/(2aσ, uλa

−1
λ a2

σ = 2u2σ)

generated by the elements {aσ, u2σ, uλa
−1
λ , 2uk2σ, u

k
2σuλaλ | k < 0}, and letM = Z/2[u±1

2σ , uλa
−1
λ , a±1

σ ]/(u∞2σ, a
∞
σ )

be considered as a module over S. Here, R[x±1]/(x∞) is the cokernel of the map R[x]→ R[x±1].

Proposition 5.2. We have

πC4

F (a−1
λ HZ) = (S ⊕ Σ−1M)[a±1

λ ],

where S ⊕ Σ−1M is the square-zero extension of M over S of degree −1.
The Green functor structure is determined by the following facts:

(1) The C2-restriction of a−1
λ HZ is the spectrum a−1

σ2
HZ in Proposition 5.1.

(2) The C2-restrictions of the classes uλ and u2σ are u2σ2 and 1, respectively.
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(3) Given V ∈ RO(C4), there is an exact sequence (see [HHR17, Lemma 4.2])

πC2

i∗C2
VX

Tr42−−→ πC4

V X
aσ−→ πC4

V−σX
Res42−−−→ πC2

i∗C2
V−1X.

In other words, the kernel of aσ-multiplication is the image of the transfer from C2 to C4,
and the image of aσ-multiplication is the kernel of the restriction from C4 to C2.

The proof of Proposition 5.2 and a more explicit presentation of the Mackey functor are given
in [Zen, Proposition 6.7]. Fortunately, in most of the paper we only need the ”positive cone” of
the coefficient Green functor, that is, the part F = a + bσ + cλ for b ≤ 0. The Green functor
structure of this part is computed in [HHR17, Section 3]. However, the other part also plays an
important role on the computation, see for example proofs of Proposition 5.14, 5.20 and 6.7.

The relation uλ
aλ
a2
σ = 2u2σ and its integral version uλa

2
σ = 2u2σaλ are commonly called the

gold relation (see [HHR17, Lemma 3.6]).
Figure 2 gives the Lewis diagrams (first introduced in [Lew88]) we use for C4-Mackey functors,

where restrictions ResGH map downwards and transfers TrGH map upwards. These notations are
consistent with [HHR17, Section 5].

Symbol ◦ N H
Lewis Diagram Z/4

1
��
Z/2

��

2

UU

0

UU

Z/2

1
��
Z/2

��

0

UU

0

UU

Z/2

0
��
Z/2

��

1

UU

0

UU

Symbol • •̂ •
Lewis Diagram Z/2

��
0

��

UU

0

WW

Z/2

∆
��

Z/2[C4/C2]

��

∇
UU

0

UU

0

��
Z/2

��

WW

0

UU

1
Figure 2. Table of C4-Mackey functors

Figure 3 shows πa+bσ(a−1
λ HZ) in the range −6 ≤ a, b ≤ 6. In the figure, the horizontal

coordinate is a and the vertical coordinate is b. Vertical lines are aσ-multiplications, where solid
lines are surjections and the dash lines represent maps of the form Z/2 ↪→ Z/4.
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−6 −4 −2 0 2 4 6
−6

−4

−2

0

2

4

6 H ◦ ◦ ◦ ◦ ◦ ◦
H • • • •

H
• ◦ ◦ ◦ ◦ ◦
H • • • •

H ◦ ◦ ◦ ◦
• • • •
◦ ◦ ◦ ◦
• • •
◦ ◦ ◦
• •
◦ ◦
•
◦

1

Figure 3. πa+bσ(a−1
λ HZ) for −6 ≤ a, b ≤ 6.

Although we only care the most about the C4-equivariant homotopy groups of a−1
λ BP ((C4)),

there are two advantages for computing a−1
λ SliceSS(BP ((C4))) as a spectral sequence of Mackey

functors:

(1) The Mackey functor structure can transport certain differentials on the C2-level to dif-
ferentials on the C4-level.

(2) The Mackey functor structure and dr-differentials can result in exotic extensions of fil-
tration r − 1 (see Section 3.3).

We will see (1) in the computations of d3, d7, and d15-differentials below. (2) will be used to
prove certain extensions forming the (Z/4)s in Theorem 4.4, see Proposition 5.14 and 5.20.

Notation 5.3. Let V ∈ RO(H) be a virtual representation that is in the image of the restriction
i∗H : RO(G)→ RO(H). Then for any preimage W of V , there is a transfer map

TrG,WH : πHV X → πGWX,

as a part of the homotopy Mackey functor structure. In our computation we will omit writing W
when it is clear from the context what W is.

5.2. The C2-spectral sequence. We start our computation with the C2-underlying spectral

sequence of a−1
λ SliceSS(BP ((C4))).

Theorem 5.4.

(1) The underlying C2-spectral sequence of a−1
λ SliceSS(BP ((C4))) is a−1

σ2
SliceSS(BPR ∧BPR).

Its E2-page is
a−1
σ2
HZF[t1, γt1, t2, γt2, · · · ].

More precisely, the E2-page of the underlying non-equivariant spectral sequence is trivial,
and the E2-page of the C2-spectral sequence is

F2[u2σ2 , a
±1
σ2

][t1, γt1, t2, γt2, · · · ].
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The elements u2σ2 , ti and γti have filtration 0, while aσ2 has filtration 1.1

(2) All the differentials in a−1
σ2

SliceSS(BPR ∧ BPR) are determined by aσ2 , ti and γti being
permanent cycles, the differentials

d2k+1−1(u2k−1

2σ2
) = a2k+1−1

σ2

k∑
i=0

t
2i

k−iγti, k ≥ 1

and the Leibniz formula (for notational convenience, we let t0 = γt0 = 1). The E2k+1-page
has the form

F2[u2k

2σ2
, a±1
σ2

][t1, γt1, · · · ]/(v1, v2, · · · , vk)

where vk =
k∑
i=0

t
2i

k−iγti.

(3) The E∞-page of a−1
σ2

SliceSS(BPR ∧BPR) is

F2[a±1
σ2

][t1, γt1, · · · ]/(v1, v2, · · · )
In particular, in the integral grading, all the stem-n non-trivial permanent cycles are
located in filtration n.

Proof. For (1), note that since i∗C2
BP ((C4)) = BPR ∧ BPR, the C2-underlying slice spectral se-

quence of SliceSS(BP ((C4))) is SliceSS(BPR ∧BPR). Moreover, i∗C2
aλ = a2

σ2
. Therefore inverting

aλ in the C4-spectral sequence inverts aσ2 in the underlying C2-spectral sequence.
For (2), we use the Hill–Hopkins–Ravenel slice differential theorem [HHR16, Theorem 9.9]

and the formula in [BHSZ20, Theorem 3.1] that expresses the v̄i-generators in terms of the ti-
generators. The Hill–Hopkins–Ravenel slice differential theorem states that in the slice spectral
sequence of BPR, there are differentials

d2k+1−1(u2k−1

2σ2
) = via

2k+1−1
σ2

, k ≥ 1.

The formula in [BHSZ20, Theorem 3.1] shows that under the left unit map BPR → BPR ∧BPR,

vk =

k∑
i=0

t
2i

k−iγti mod (2, v1, · · · , vk−1).

The left unit map induces a map

a−1
σ2

SliceSS(BPR) −→ a−1
σ2

SliceSS(BPR ∧BPR)

of spectral sequences. We will use naturality and induction to obtain the differentials and the
description of the E2k+1-page.

To start the induction process, note that the description of the E2-page is already given in (1).
Now assume that we have obtained a description of the E2k -page. For degree reasons, the next
potential differential is of length exactly 2k+1 − 1. The differential formula for a−1

σ2
SliceSS(BPR)

above shows that for any polynomial P ∈ F2[t1, γt1, · · · ]/(v1, v2, · · · , vk−1) and l an odd number,
we have the differential

d2k+1−1(Pu2kl
2σ2

) = Pvku
2k(l−1)
2σ2

a2k+1−1
σ2

in a−1
σ2

SliceSS(BPR ∧ BPR). The source and the target of this differential are always non-zero
on the E2k -page because the sequence (v1, v2, · · · ) is a regular sequence in the polynomial ring

1We recall the convention here that the filtration of an element in πH
V P

n
nX in the slice spectral sequence for

some X is in filtration n− dimR V . In particular the classes aV will be always in filtration dimR V .
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1Figure 4. The integral E2- and E∞-pages of a−1
σ2

SliceSS(BPR ∧BPR)

F2[t1, γt1, · · · ]. Taking the quotient of the kernel and cokernel of this differential, we see that the
E2k+1 -page has the above description.

(3) is a direct consequence of (2) by letting k → ∞. See Figure 4 for the integral E2 and
E∞-pages of this spectral sequence. �

Remark 5.5. One can show that the C2-geometric fixed points of the ti and γti generators are
the ξi and ζi generators in the mod 2 dual Steenrod algebra A∗. More precisely, ΦC2(ti) = ξi and
ΦC2(γti) = ζi, and the formula

vk =

k∑
i=0

t
2i

k−iγti mod (2, v1, · · · , vk−1)

reduces to Milnor’s conjugation formula relating ξi and ζi in A∗. Although we don’t need this fact
in this paper, it is one of the observations that originally motivated this project.

5.3. The C4-spectral sequence: d3, d5 and d7-differentials. The rest of this section is dedi-

cated to computing the first 8 stems of the C4-Mackey functor homotopy groups of a−1
λ BP ((C4)).

The result is stated in Theorem 4.4. By Section 3.4, we are free to use the norm structure from
C2 to C4 in the localized slice spectral sequence.
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As a consequence of the slice theorem [HHR16, Theorem 6.1], the 0-th slice of MU ((G)) is HZ
and π0MU ((G)) ∼= Z. Therefore, every Mackey functor in the (localized) slice spectral sequence
and the homotopy of any MU ((G))-module is a module over Z. By [TW95, Theorem 16.5], we
have the following proposition.

Proposition 5.6. Let K ⊂ H ⊂ G, and x be an element in the G/H-level of a Mackey functor
either in the (localized) slice spectral sequence or the homotopy of a MU ((G))-module, then

TrHK(ResHK(x)) = [H : K]x.

Before getting to the page-by-page computation, we note that all the differentials on the classes

u2k

2σ, k ≥ 0 are already known by the work of Hill–Hopkins–Ravenel. Their theorem is originally
formulated for the slice spectral sequence for MU ((C4)) and the exact same statement and proof

carries over to SliceSS(BP ((C4))) and a−1
λ SliceSS(BP ((C4))).

Theorem 5.7 ( [HHR16, Theorem 9.9]). For k ≥ 0 and i < 2k+3 − 3, di(u
2k

2σ) = 0 and

d2k+3−3(u2k

2σ) = N(tk+1)a2k+1−1
λ a2k+2−1

σ .

Now we will start the page-by-page computation. First, note for degree reasons all the differ-
ential lengths will be odd.

Proposition 5.8.

d3(uλ) = Tr4
2(t1a

3
σ2

)

Proof. By Theorem 5.4, the restriction Res4
2(uλ) = u2σ2 supports the differential

d3(u2σ2) = (t1 + γt1)a3
σ2

in the C2-spectral sequence. By naturality and degree reasons, the class uλ must also support a
d3-differential in the C4-spectral sequence whose target restricts to the class (t1 + γt1)a3

σ2
. The

only class that restricts to (t1 + γt1)a3
σ2

with RO(C4)-degree 1− λ is Tr4
2(t1a

3
σ2

). �

In Figure 5, this proposition gives all d3 coming out of ◦, namely uλa
−1
λ at (2,−2), N(t1)2uλu2σaλ

at (6, 2) and u3
λa
−3
λ at (6,−6).

Corollary 5.9. Let P be a polynomial of ti, γti, aσ2
, then

d3(u2k+1
λ Tr4,V

2 (P )) = Tr4,V−2λ+2
2 (P (t1 + γt1)a3

σ2
)u2k
λ

for all k > 0 and any V ∈ RO(C4) restricting to the RO(C2)-degree of P .

Proof. This is a direct consequence of Proposition 5.8, the Frobenius relation [HHR17, Defini-
tion 2.3] and the Leibniz rule. �

In Figure 5, this corollary gives all other d3-differentials. We now explain them in detail.
In terms of Mackey functors, the d3-differentials give the following exact sequences:

0→ • →◦ d3−→ •̂ → • → 0

0→•̂ d3−→ •̂ → 0

0→• d3−→ •̂ → H→ 0.
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Figure 5. Left: d3-differentials in a−1
λ SliceSS(BP ((C4))).

Right: d5- and d7-differentials in a−1
λ SliceSS(BP ((C4))).
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Here are examples of d3-differentials corresponding to each exact sequence above:

d3(uλ) = Tr4
2(t1a

3
σ2

)

d3(Tr4
2(t1aσ2)uλ) = Tr4

2(t
2
1a

4
σ2

)

d3(u2σ2
aσ2

) = (t1 + γt1)a4
σ2
.

Note that the last differential is a C2-differential, but it has an effect on C4-level Mackey
functor structure. By results in Section 3.3, the d3-differentials also give certain exotic restrictions
of filtration jump at most 2 (that is, the image of the restriction is of filtration at most 2 higher
than the source). For example, consider the element N(t1)uλaσ at (3, 1). This class is a d3-cycle.
By Proposition 5.8, the class N(t1)uλ supports the d3-differential

d3(N(t1)uλ) = Tr4
2(t

2
1γt1a

3
σ2

).

By Proposition 3.5, the class t
2
1γt1a

3
σ2

receives an exotic restriction of filtration jump at most

2 in integral degree, and the only possible source is N(t1)uλaσ. The same argument applies to
all 2-torsions classes with (t − s, s)-bidegrees (3 + 4i + 4j, 1 + 4i − 4j) for i, j ≥ 0. The exotic
restrictions are represented by the vertical green dashed lines in Figure 5.

Remark 5.10. These exotic restrictions are the first family of examples of an interesting phe-
nomenon in the RO(G)-graded spectral sequence of Mackey functors. Exotic restrictions and
transfers can imply nontrivial abelian group extensions. As Mackey functors, these extensions
are of the form

0→ • → ◦ → H→ 0,

which represents a nontrivial extension

0→ Z/2→ Z/4→ Z/2→ 0

if one evaluates the exact sequence of Mackey functors at C4/C4.
For readers who are familiar with Lubin-Tate E-theories and topological modular forms, the

family of 2-extensions above is a generalization of the type of 2-extension between the class ν
at (3, 1) and the class 2ν at (3, 3) in the homotopy fixed points spectral sequences of EhC4

2 and
TMF0(5) (see [BBHS19] and [BO16]).

In summary, the d3-differentials can be described as follows:

(1) On C2-level, it is the first differential in Theorem 5.4.
(2) The Green functor structure of the spectral sequence gives d3-differentials on the C4-level,

by Proposition 5.8 and Corollary 5.9. After these d3-differentials, there is no room for
further d3-differentials.

(3) Every d3-differential of the form • → •̂ gives an extension of filtration 2 by the above
remark.

Now we will prove the d5-differentials. There are two different types of d5-differentials. The
first type is given by Theorem 5.7:

d5(u2σ) = N(t1)aλa
3
σ.

On the integral page for our range, it gives the following d5-differential at (4, 4):

d5(N(t1)2u2σa
2
λ) = N(t1)2a3

λa
3
σ,

and it repeats by multiplying by N(t1)aλaσ. In Figure 5, these are the d5-differentials with
sources on or above the line of slope 1.
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The second type of d5-differentials is given by the following proposition.

Proposition 5.11.

d5(u2
λ) = N(t1)uλa

2
λaσ,

d5(u2
λaσ) = 2N(t1)u2σa

3
λ.

Proof. The restriction Res4
2(u2

λ) = u2
2σ2

supports the d7-differential

d7(u2σ2
) = (t2 + γt2 + t

3
1)a7

σ2

by Theorem 5.4. By naturality, u2
λ must support a differential of length at most 7. For degree

reasons, the length of this differential can only be 5 or 7. If the length of this differential is 7,

the target must restrict to the class (t2 + γt2 + t
3
1)a7

σ2
. However, this class is not in the image of

the restriction map Res4
2. Therefore, u2

λ must support a d5-differential. The only possible target
of this d5-differential is N(t1)uλa

2
λaσ. This proves the first d5-differential

Multiplying with aσ on both sides of the first d5-differential gives

d5(u2
λaσ) = N(t1)uλa

2
λa

2
σ.

Applying the gold relation uλa
2
σ = 2u2σaλ gives the second d5-differential. �

In Figure 5, the d5-differentials in Proposition 5.11 can be seen on the following classes:

(1)
u2
λ

a2λ
at (4,−4),

(2) N(t1)u2
λa
−1
λ aσ at (5,−1),

(3) N(t1)2u2
λu2σ at (8, 0),

(4) N(t1)3u2
λu2σaλaσ and N(t2)u2

λu2σaλaσ at (9, 3).

Remark 5.12. Although u2
λ and u2

λaσ support differentials of the same length, this is not true
in general. For example, we will see soon that u4

λ supports a d7-differential, while u4
λaσ supports

a d13-differential.

Corollary 5.13.

d5(u3
λaσ) = 2N(t1)uλu2σa

3
λ.

Proof. First, we will show that uλaσ is a nontrivial permanent cycle. Since the target of the
d3-differential on uλ is a transfer class, it is killed by aσ, and therefore uλaσ is a d3-cycle. The
only potential non-trivial differential that uλaσ can support is the d5-differential

d5(uλaσ) = N(t1)a2
λa

2
σ.

If this differential happens, then multiplying aσ on both sides and using the gold relation will
produce the differential

d5(2u2σaλ) = N(t1)a2
λa

3
σ.

This is a contradiction to Theorem 5.7.
Applying the Leibniz rule on the first d5-differential in Proposition 5.11 with the class uλaσ

produces the d5-differential

d5(u3
λaσ) = uλaσd5(u2

λ) = N(t1)u2
λa

2
λa

2
σ = 2N(t1)uλu2σa

3
λ. �
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In Figure 5, this d5-differential implies the d5-differential on the class N(t1)u3
λa
−2
λ aσ at (7,−3).

Notice that the classN(t1)uλu2σa
2
λ supports a d3-differential and the class 2N(t1)uλu2σa

2
λ is killed

by a d5-differential. In the integral grading, this happens to the Z/4 in (6, 2).
There are extensions of filtration jump 4 induced by the d5-differentials.

Proposition 5.14. There is an exotic transfer of filtration jump 4 from (2, 2) to (2, 6):

Tr4
2(t

2
1a

2
σ2

) = N(t1)2a2
λa

2
σ.

There is an exotic restriction of filtration jump 4, from (2,−2) to (2, 2):

Res4
2

(
2uλa

−1
λ

)
= t

2
1a

2
σ2
.

Proof. We use Proposition 3.5 to prove both extensions.
For the first claim, note that d5(N(t1)u2σaλ) = N(t1)2a2

λa
3
σ, and N(t1)2a2

λa
2
σ is a nontrivial

d5-cycle. Therefore, N(t1)2a2
λa

2
σ is the target of an exotic transfer of filtration jump 4 in E6, and

the only possible source is t
2
1a

2
σ2

.
For the second claim, first note that by Proposition 5.2 (also see Figure 3) and the gold relation,

2uλa
−1
λ =

(
u2
λ

u2σ
a−2
λ aσ

)
aσ.

We have the d5-differential

d5

(
u2
λ

u2σ
a−2
λ aσ

)
= Tr4

2(t
2
1a

2
σ2

).

To prove this differential, consider the class
u2
λ

u2σ
a−2
λ . This class supports a d5-differential because

after multiplying it by u2
2σa

2
λ (which is a d5-cycle), the class u2

λu2σ supports the d5-differential

d5(u2
λu2σ) = N(t1)uλu2σa

2
λaσ

by Proposition 5.11. Therefore

d5

(
u2
λ

u2σ
a−2
λ

)
= N(t1)

uλ
u2σ

aσ.

Multiplying both sides by aσ, we have

d5

(
u2
λ

u2σ
a−2
λ aσ

)
= N(t1)

uλ
u2σ

a2
σ = 2N(t1)aλ = Tr4

2(Res4
2(N(t1)aλ)) = Tr4

2(t1γt1a
2
σ2

) = Tr4
2(t

2
1a

2
σ2

)

The last equation holds because by Theorem 5.4, t1 = γt1 after the d3-differentials in the C2-
spectral sequence.

Therefore, t
2
1a

2
σ2

must receive an exotic restriction of filtration jump 4 in the integral degree,

and the only source of the restriction is 2uλa
−1
λ . �

In Figure 6, the exotic restrictions and transfers are the green and blue dashed lines, respec-
tively.

Remark 5.15. Similar to Remark 5.10, the exotic restrictions and transfers also give extensions
of abelian groups on the C4-level. The situation is more subtle here because each individual
exotic extension doesn’t involve non-trivial extensions of abelian groups at any level. When we
combine the two extensions together, however, we obtain an abelian group extension of filtration
8 from (2,−2) to (2, 6):

0→ Z/2→ Z/4→ Z/2→ 0,
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and 2( 2uλ
aλ

) = N(t1)2a2
λa

2
σ in homotopy. This extension is similar to the extension in the 22-stem

of EhC4
2 and TMF0(5). (See [BBHS19, Figure 10] and [BO16, Section 2]).

We will now prove the d7-differentials. While we state them first in some RO(C4)-graded page
first, we recommend that the reader multiplies with appropriate powers of aλ whenever possible
to visualize the arguments in Figure Fig. 5.

Proposition 5.16. We have the following d7-differentials

d7(2u2
λ) = Tr4,3−2λ

2 (a7
σ2
t
3
1),

d7(2u2
λu2σ) = Tr4,5−2λ−2σ

2 (a7
σ2
t
3
1),

(see Notation 5.3 for the transfer notations).

Proof. We will prove the first differential. The second differential is proven by the exact same
method. On the C2-level, we have the d7-differential

d7(u2
2σ2

) = (t2 + t
3
1 + γt2)a7

σ2

by Theorem 5.4. Taking transfer on the target and using naturality, the class

Tr4,3−2λ
2 (a7

σ2
(t2 + t

3
1 + γt2)) = Tr4,3−2λ

2 (a7
σ2
t
3
1)

must be killed by a differential of length at most 7. For degree reasons, it must be the d7-
differential with source 2u2

λ. �

In Figure 5, The d7-differentials in Proposition 5.16 and the underlying C2-level d7-differentials
in Theorem 5.4 are supported by the classes at (4 + i,−4 + i) for i ≥ 0.

Proposition 5.17.

d7(u4
λ) = u2

λ Tr4
2(t

3
1a

7
σ2

).

Proof. We will prove in Proposition 5.21 that there is a nontrivial d13-differential on the class
u4
λaσ (we can already prove it at this point, but for organization reasons we prove it later). This

implies that the class u4
λ must support a differential of length at most 13. For degree reasons,

the claimed d7-differential is the only possibility. �

In Figure 5, the d7-differential in Proposition 5.17 gives the d7-differential supported by the

class
u4
λ

a4λ
at (8,−8).

5.4. The C4-spectral sequence: higher differentials and extensions. We will now prove
the higher differentials in our range (see Figure 6). The next possible differential is a d13-
differential from Theorem 5.7:

d13(u2
2σ) = N(t2)a3

λa
7
σ.

However, we won’t see this differential in Figure 6. This is because its first appearance in the
integer graded spectral sequence is on the class (10, 14), which is outside of our range. Note also
that even though some classes at (8, 8) contain u2

2σ, they don’t support d13-differentials. We will
give a detailed discussion of the classes at (8, 8) in Section 5.5.

Proposition 5.18.

d13(u4
λu2σ) = N(t2)uλu

2
2σa

6
λaσ
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Figure 6. Left: d13- and d15-differentials in a−1
λ SliceSS(BP ((C4))).

Right: E∞-page of a−1
λ SliceSS(BP ((C4))) with all extensions.
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Proof. On the C2-level, the restriction Res4
2(u4

λu2σ) = u4
2σ2

supports a d15-differential hitting the

class v3a
15
σ2

= (t3 +t
2
2t1 +t

4
1γt2 +γt3)a15

σ2
. Since this class is not in the image of the restriction after

the d3-differentials, by naturality the class u4
λu2σ must support a differential of length shorter

than 15. After computing the first few pages, we see that for degree reasons the potential targets
are the following classes:

(1) Tr4
2((t2 + t

3
1 + γt2)u2

2σ2
a7
σ2

) in filtration 7;

(2) N(t1)3uλu
2
2σa

6
λaσ in filtration 13;

(3) N(t2)uλu
2
2σa

6
λaσ in filtration 13.

We will first prove that the class Tr4
2((t2 + t

3
1 + γt2)u2

2σ2
a7
σ2

) supports the d11-differential

d11(Tr4
2((t2 + t

3
1 + γt2)u2

2σ2
a7
σ2

)) = N(t1)4u2
2σa

8
λa

2
σ.

To prove this, first note that

Tr4
2((t2 + t

3
1 + γt2)u2

2σ2
a7
σ2

) = Tr4
2(t

3
1u

2
2σ2
a7
σ2

)

since the class (t2 + γt2)aσ transfers to 0 in the homotopy. On the C2-level, we have the d7-
differential

d7(t
3
1u

2
2σ2
a7
σ2

) = t
3
1(t2 + t

3
1 + γt2)a14

σ2
.

The transfer of the target, Tr4
2(t

3
1(t2 + t

3
1 + γt2)a14

σ2
) = Tr4

2(t
6
1a

14
σ2

), is zero. This is because after

the C2-level d3-differentials, the class t
6
1a

14
σ2

is identified with the class t
3
1γt

3
1a

14
σ2

, which transfers

to 0. We will show that the class t
6
1a

14
σ2

actually supports an exotic transfer of filtration jump 4.

Let x = N(t1)3a7
λu

3
2σ. We have the d5-differential from Theorem 5.7

d5(x) = N(t1)4u2
2σa

8
λa

3
σ.

By Proposition 3.5, N(t1)4u2
2σa

8
λa

2
σ receives an exotic transfer of jump 4, and the only possible

source is t
6
1a

14
σ . Combining the C2-level d7 and this exotic transfer, we prove the claimed d11.

The class N(t1)3uλu
2
2σa

6
λaσ in filtration 13 is killed by a d5-differential from Proposition 5.11:

N(t1)3uλu
2
2σa

6
λaσ = d5(N(t1)2u2

λu
2
2σa

4
λ).

It follows that the class N(t2)uλu
2
2σa

6
λaσ is the only possible target. �

Remark 5.19. The class u4
λu2σ is a permanent cycle in the homotopy fixed points spectral

sequence of EhC4
2 (see [BBHS19, Proposition 5.23]) because N(t2) is zero there.

Although this d13 doesn’t imply any differentials in our range, it is used in proving extensions.

Proposition 5.20. (1) There is an exotic transfer in stem 6 of filtration 12,

Tr4
2(t2γt2a

6
σ2

) = N(t2)2a6
λa

6
σ.

(2) There is an exotic restriction in stem 6 of filtration 12,

Res4
2(2u3

λa
−3
λ ) = t2γt2a

6
σ2
.

Proof. The proof is similar to that of Proposition 5.14. The exotic transfer comes from applying
Proposition 3.5 to the d13-differential

d13

(
N(t2)u2

2σa
3
λ

)
= N(t2)2a6

λa
7
σ

in Theorem 5.7.
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For the exotic restriction, first note that 2u3
λa
−3
λ =

(
u4
λ

u2σ
a−4
λ aσ

)
aσ by the gold relation. We

will prove that the class
u4
λ

u2σ
a−4
λ aσ supports a d13-differential. To do so, we multiply this class by

u2
2σa

4
λ. After multiplying the differential in Proposition 5.18 by aσ, we have

d13(u4
λu2σaσ) = 2N(t2)u3

2σa
7
λ.

As by the gold relation u2
λ kills d13(u2

2σa
4
λ), we can use the Leibniz rule to obtain the d13-

differential

d13

(
u4
λ

u2σ
a−4
λ aσ

)
= 2N(t2)u2σa

3
λ.

On the E2-page, 2N(t2)u2σa
3
λ = Tr4

2(t2γt2a
6
σ2

). By Proposition 3.5, t2γt2a
6
σ2

must receive an

exotic restrion of filtration jump 12, and the only possible source is 2u3
λa
−3
λ (see Figure 6). �

In Figure 6, they are the exotic restriction from the class (6,−6) to (6, 6) and the exotic transfer
from (6, 6) to (6, 18). Since these extensions involve elements containing t2, we expect similar

extensions in the homotopy fixed points spectral sequence of EhC4
4 by [BHSZ20, Theorem 1.1].

Proposition 5.21.

d13(u4
λaσ) = N(t2 + t

2
1γt1 + γt2)u2

2σa
7
λ.

Proof. Consider the C2-differential

d7(u2
2σ2

) = t
C2

2 a7
σ2
.

Applying Proposition 3.6 to its target, we see that its norm N(t2 + t
2
1γt1 + γ(t2))a7

λ must be
killed by a differential of length 13 or shorter. Since the restriction of this element is killed by
d7, it must be killed by a differential of length between 7 and 13. Since u2

2σ supports a d13, if

dr(x) = N(t2 +t
2
1γt1 +γ(t2))a7

λ happens for r < 13, one can multiply both sides by u2
2σ. However,

for degree reasons N(t2 + t
2
1γt1 + γt2)u2

2σa
7
λ cannot be hit by a differential shorter than a d13.

Thus this element and hence also N(t2 + t
2
1γt1 + γ(t2))a7

λ must be hit by a d13 and the only
possible source is u4

λaσ. �

On the integer graded page, this contributes to the d13-differential supported by the class
N(t1)u4

λa
−3
λ aσ at (9,−5).

The last differential in our range is a d15-differential.

Proposition 5.22. We have the d15-differential

d15(2u4
λ) = Tr4

2(t
C2

3 a15
σ2

).

Proof. In the the C2-spectral sequence, we have the d15-differential

d15(u4
2σ2

) = t
C2

3 a15
σ2
.

Applying the transfer shows that the class Tr4
2(t

C2

3 a15
σ2

) must be killed by a differential of length

at most 15. By naturality and degree reasons, the only possible source is the class 2u4
λ =

Tr4
2(u4

2σ2
). �

In Figure 6, this contributes to the d15-differential supported by the class
2u4
λ

a4λ
at (8,−8) (the

d15-differential supported by the class at (9,−7) is a C2-level differential).
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These are all the differentials and extensions in the first 8 stems. Now we will discuss in
detail the generators and relations in degree (8, 8) after each differential in order to illustrate the
technical aspect of tracking differentials in the localized slice spectral sequences.

5.5. The classes at (8, 8). Since our discussion here focuses on a single degree, we will omit the
powers of aV and uV classes on each monomial, except in formulas of differentials. That is, we
omit u2

2σa
4
λ on C4-classes and a8

σ2
on C2-classes.

On the E3-page, there are 2 ◦ and 16 •̂. The 2 ◦ are N(t1)4 and N(t2)N(t1). The 16 •̂ are

(1) Tr4
2(t

8
1), Tr4

2(t
7
1γt1), Tr4

2(t
6
1γt

2
1), Tr4

2(t
5
1γt

3
1);

(2) Tr4
2(t2t

5
1), Tr4

2(t2t
4
1γt1), Tr4

2(t2t
3
1γt

2
1), Tr4

2(t2t
2
1γt

3
1), Tr4

2(t2t1γt
4
1), Tr4

2(t2γt
5
1);

(3) Tr4
2(t

2
2t

2
1), Tr4

2(t
2
2t1γt1), Tr4

2(t
2
2γt

2
1);

(4) Tr4
2(t2γt2t

2
1);

(5) Tr4
2(t3t1), Tr4

2(t3γt1).

At the C2-level, the d3-differentials identifies t1 with γt1. At the C4-level, the effect of the
d3-differentials are as follows:

(1) All the classes in (1) are identified with 2N(t1)4;
(2) all the classes in (2) are identified to be the same;
(3) all the classes in (3) are identified to be the same;

(4) the class Tr4
2(t2γt2t

2
1) is identified with 2N(t2)N(t1);

(5) all the classes in (5) are identified to be the same.

Therefore after the d3-differentials, there are 2 ◦, generated by N(t1)4 and N(t2)N(t1), and 3 •̂,
generated by Tr4

2(t2t
5
1), Tr4

2(t
2
2t

2
1), and Tr4

2(t3t1).
On the E5-page, by Proposition 5.11, we have the following two d5-differentials:

d5(N(t1)3u2
λu2σaλaσ) = 2N(t1)4u2

2σa
4
λ,

d5(N(t2)u2
λu2σaλaσ) = 2N(t2)N(t1)u2

2σa
4
λ.

It follows that after the d5-differentials, the 2 ◦ become 2 N, with the same generators. In total,
there are 2 N and 3 •̂ at (8, 8) after the d5-differentials (with the same generator as before).

Now we will discuss the d7-differentials. At (9, 1), there are two classes on the E7-page: a

•̂ generated by Tr4
2(t2t

2
1) and a • generated by t

5
1 (it only exists on the C2-level). Since v2 =

t2 + t
3
1 + γt2, the d7-differential on the class Tr4

2(t2t
2
1) hits the class

Tr4
2(t2t

2
1(t2 + t

3
1 + γt2)) = Tr4

2(t
2
2t

2
1) + Tr4

2(t2t
5
1) + Tr4

2(t2γt2t
2
1) = Tr4

2(t
2
2t

2
1) + Tr4

2(t2t
5
1).

In other words, it identifies the classes Tr4
2(t

2
2t

2
1) and Tr4

2(t2t
5
1).

The d7-differential on the class t
5
1 hits the class

t
5
1(t2 + γt2 + t

3
1) = t2t

5
1 + γt2t

5
1 + t

8
1

= Res4
2(Tr4

2(t2t
5
1)) + Res4

2(N(t1)4)

= Res4
2(Tr4

2(t
2
2t

2
1)) + Res4

2(N(t1)4).

As Mackey functors, we have

•̂• d7−→ 2N3•̂� •N2•̂.
In the quotient we need to choose our generators carefully: The • is generated by N(t1)4 +

Tr4
2(t

2
2t

2
1), because the image of • identifies the restriction of N(t1)4 with the restriction of
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Tr4
2(t

2
2t

2
1). Therefore their sum is the unique element in C4-level that has trivial restriction.

The N is generated by N(t2)N(t1), as it still has nontrivial restriction. The two •̂ are generated

by Tr4
2(t

2
2t

2
1) and Tr4

2(t3t1).
The next differential is a d13-differential supported by the class N(t1)u4

λa
−3
λ aσ at (9,−5). By

Proposition 5.21, the target of this differential is the class N(t1)N(t2 + t
3
1 + γt2)u2

2σa
4
λ. The

restriction of this class is

t1γt1(t2 + t
3
1 + γt2)(γt2 + γt

3
1 − t2),

which, after the d3-differentials, is

t
2
2t

2
1 + γt

2
2t

2
1 + t

8
1 = Res4

2(Tr4
2(t

2
2t

2
1)) + Res4

2(N(t1)4).

As we have discussed above, this class is killed by the d7-differentials supported by the class t
5
1. It

follows that the target of the d13-differential is the generator of •, the unique nontrivial element
that restricts to 0.

There is another possible d13-differential supported by some classes at (8, 8) that is induced
by the differential

d13(u2
2σ) = N(t2)a3

λa
7
σ.

However, in (8, 8) every monomial containing u2
2σ also contains N(t1). By [HHR16, Corol-

lary 9.13],

d13(N(t1)u2
2σ) = N(t1)N(t2)a3

λa
7
σ = d5(N(t2)u2σa

2
λa

4
σ).

This makes all elements containing u2
2σ in (8, 8) d13-cycles.

In summary, after the d13-differentials, we have two •̂, generated by Tr4
2(t

2
2t

2
1) and Tr4

2(t3t1),
and N, generated by N(t2)N(t1).

Our final differential is a d15-differential on the C2-level supported by the class at (9,−7):

d15(t1u
4
2σ2
a−7
σ2

) = t1(t3 + t
2
2t1 + γt2t

4
1 + γt3)a8

σ2

= (t3t1 + γt3t1)a8
σ2

+ (t
2
2t

2
1 + γt2t

5
1)a8

σ2

= Tr4
2(t3t1) + (t

2
2t

2
1γt

2
2t

2
1 + t2γt2t

2
1)a8

σ2

= Tr4
2(t3t1) + Tr4

2(t
2
2t

2
1) + Tr4

2 Res4
2(N(t2)N(t1)).

The map in Mackey functors is

• d15−−→ N2•̂� •2•̂.
On the E∞-page, (8, 8) is given by •2•̂. The generators for the two •̂ are Tr4

2(t
2
2t

2
1) and Tr4

2(t3t1).

The generator for • is Tr4
2(t

2
2t

2
1) + Tr4

2(t3t1) +N(t2)N(t1).

5.6. A family of permanent cycles. We will now present families of nontrivial permanent

cycles in a−1
λ SliceSS(BP ((C4))). These families will be used in the proof of Theorem 6.8.

Lemma 5.23. In πC4

F a−1
σ S, the element aλ is invertible.

Proof. Unstably, we have the following commutative diagram

S0 aλ //

a2σ !!

Sλ

θ
��

S2σ
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where θ is the C4-equivariant 2-folded branched cover. Since θaλ = a2
σ is invertible, aλ is invert-

ible. �

Proposition 5.24. In πC4

F a−1
λ BP ((C4)), the classes N(tk)aiσ for k > 0 and 0 ≤ i < 2k+1 − 1 are

non-zero.

Proof. By Lemma 5.23 we have a map of spectral sequences

a−1
λ SliceSS(BP ((C4))) −→ a−1

σ SliceSS(BP ((C4))).

Notice that in a−1
σ SliceSS(BP ((C4))), the differentials in Theorem 5.7 completely determine the

spectral sequence (See [HHR16, Remark 9.11]). In particular, we have the following differentials

in a−1
σ SliceSS(BP ((C4))):

d2k+2−3(u2k−1

2σ a
−(2k−1)
λ a−(2k+1−1)+i

σ ) = N(tk)aiσ.

On E2k+2−3-page, this is the only differential happens in this degree.

By Proposition 5.2 and the gold relation, the class u2k−1

2σ a
−(2k+1−1)+i
σ is in the image of

πC4

F a−1
λ HZ→ πC4

F a−1
σ HZ

only when aσ has a non-negative power, i.e. i ≥ 2k+1 − 1. Therefore by naturality, if the class

N(tk)aiσ, 0 ≤ i < 2k+1 − 1 is killed in a−1
λ SliceSS(BP ((C4))), the differential killing it must be of

length longer than 2k+2−3. By Proposition 5.2 and Theorem 4.1, the source of such a differential
is trivial in the E2-page. It follows that the classes N(tk)aiσ for k > 0 and 0 ≤ i ≤ 2k+1 − 1 are
nontrivial permanent cycles. �

Remark 5.25. Note that after inverting aλ, the element N(tk)a2k+1−1
σ is zero by Theorem 5.7.

6. The Tate spectral sequence of N2
1HF2

In this section, we use the computation of a−1
λ SliceSS(BP ((C4))) to understand the Tate diagram

of N2
1HF2. We use the computation in the previous section to prove families of differentials in

the Tate spectral sequence of N2
1HF2. By Corollary 2.4, the group C2 here is the quotient

group of C4 rather than the subgroup, and the RO(C4)-graded a−1
λ SliceSS(BP ((C4))) computes

the RO(C4/C2)-graded homotopy groups of N2
1HF2. Therefore, we use σ, instead of σ2, for the

sign representation of the quotient group C2.
By the generalized Segal conjecture for C2 [LNR11], in the bottom row of the Tate diagram of

N2
1HF2

(N2
1HF2)hC2

(N2
1HF2)C2 ΦC2N2

1HF2

(N2
1HF2)hC2

(N2
1HF2)hC2 (N2

1HF2)tC2T

the map T induces an isomorphism of homotopy groups except for π0. In π0, the long exact
sequence of homotopy groups becomes the short exact sequence

0→ Z/2→ Z/4→ Z/2→ 0.

We can identify the negative filtration part of the Tate spectral sequence with the homotopy
orbit spectral sequence (HOSS) and the non-negative part of the Tate spectral sequence with
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the homotopy fixed points spectral sequence (HFPSS). All differentials in the Tate spectral se-
quence originating from negative filtration to non-negative filtration represent nontrivial elements
mapping to each other under the Tate norm map T .

Note that the Tate spectral sequence of N2
1HF2 and of N2

1HF2 ∧ S−bσ agree up to a fil-
tration shift. Thus, modulo transfers the homotopy fixed point spectral sequence computing
πC2

∗+bσN
2
1HF2 also embeds into the Tate spectral sequence, only with a filtration shift of b.

The folllowing proposition makes these observations more precise. For an element x ∈ π∗(HF2∧
HF2) ∼= A∗, we denote by x its conjugate under the permutation C2-action.

Proposition 6.1. Consider πC2

F (N2
1HF2) as a commutative algebra over Z[aσ], where aσ acts

via multiplication by aσ ∈ πC2
−σ(S).

(1) Let I = {0} ∪ {Tr2,V
1 (x) |x ∈ πe∗(N2

1HF2), x 6= x}, then I is an ideal of πC2

F (N2
1HF2).

(2) In πC2

F (N2
1HF2)/I, every aσ-tower except for the one on ±1 is finite.

(3) The aσ-towers in πC2

F (N2
1HF2)/I are in one-to-one correspondence with differentials in

the C2-Tate spectral sequence of N2
1HF2. More precisely, given an aσ-tower starting at

degree a+bσ with length r, it corresponds to a differential dr in the Tate spectral sequence,
hitting a cycle in bidegree (a, b).

Proof. For (1), we first need to check that I is closed under addition. If x and x′ are not equal to
x and x′, respectively, then they span together with their conjugates F2[C2]2. Its C2-fixed points
are 2-dimensional and spanned by x+ x and x′ + x′, whose transfers are zero (as they are in the

image of Tr Res Tr). Thus x+ x′ = x+ x′ is only possible if Tr2,V
1 (x+ x′) = 0.

Let now y ∈ πC2

W (N2
1HF2). By the Frobenius relation [HHR17, Definition 2.3], we have

yTr2,V
1 (x) = Tr2,V+W

1 (Res2
1(y)x).

Notice that A∗ is a polynomial ring, thus an integral domain. Thus either Res2
1(y) = 0 (and then

yTr2,V
1 (x) = 0 ∈ I) or Res2

1(y) 6= 0 and hence Res2
1(y)x is not fixed by conjugation; this implies

yTr2,V
1 (x) ∈ I as well.

For (2), since

(a−1
σ N2

1HF2)C2 ' ΦC2(N2
1HF2) ' HF2,

all elements other than akσ in πC2

F (N2
1HF2)/I are killed by some power of aσ. (Note that the

standard sequence with transfer, aσ-multiplication and restriction implies that aσx = akσ is only
possible if x = ak−1

σ with k ≥ 1 or x = −1.) On the other hand, N2
1HF2 being cofree implies

that there is no element that is infinitely divisible by aσ: such an element x would be the image
of 1 under a map Σ|x|a−1

σ N2
1HF2 → N2

1HF2, which is necessarily zero as cofreeness is equivalent
to being aσ-complete.

For (3), first note that the homotopy fixed points spectral sequence computing the ∗ + bσ-
homotopy groups maps to the homotopy fixed points spectral sequence computing the ∗+ (b− 1)σ-
homotopy groups, and this map is multiplication by aσ.

Let x be an element of degree a + bσ in πC2

F (N2
1HF2)/I that is not divisible by aσ and r be

the minimal number such that arσx = 0. Then x corresponds to a permanent cycle of filtration
0 in the homotopy fixed points spectral sequence computing the ∗ + bσ-homotopy groups. Now
arσx = 0 means that when mapping to the spectral sequence computing the ∗+(b−r)σ-homotopy
groups it is killed by an differential. Since ar−1

σ x 6= 0, the differential must be an dr.
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Conversely, assume that there is a Tate differential dr(ỹ) = x̃ where x̃ is in bidegree (a, b).
Since modulo I, the map from the homotopy fixed points spectral sequence to the Tate spectral
sequence is injective, x̃ represents a permanent cycle x ∈ πC2

a+bσN
2
1HF2/I. Now if ar

′

σ x = 0 for
r′ < r and we choose r′ to be the smallest positive integer that kills x, then x̃ must be killed
in the homotopy fixed point spectral sequence computing the a + (b − r′)σ-homotopy groups.
By the injectivity mentioned above, it implies that x̃ is killed by a dr′ -differential, which is a
contradiction. �

In the HFPSS, the ideal I corresponds to the image of the Tate norm map T in the E2-page.
For the rest of this section we compute certain families of differentials in the Tate spectral

sequence of N2
1HF2. We give multiple arguments for the same differential if possible, not only to

show that the differentials are indeed correct, but also to illustrate how the localized slice spectral
sequence and the Tate spectral sequence interact. Since the HOSS is locally finite on the E2-page
but the HFPSS is not, we apply Theorem 1.1 to HOSS to deduce differentials. For notation
convenience, in the rest of this section, we use HO to refer to (N2

1HF2)hC2
, whose C2-equivariant

RO(C2)-graded homotopy groups are isomorphic to the C4-equivariant RO(C4)-graded homotopy

groups of a−1
λ BP ((C4)) except in degrees n− nσ.

The E2-page of the Tate spectral sequence of N2
1HF2 is of the form

Ĥ∗(C2;A∗) ∼= Ĥ0(C2;A∗)[x±1],

where x ∈ Ĥ−1(C2,A0) ∼= Ĥ−1(C2,F2) and C2 acts onA∗ via conjugation. Moreover, Ĥ0(C2;A∗)
are precisely the fixed points of A∗ under the conjugation action modulo transfers. These can be
computed by a computer program in any finite range. Here we use the computation of Bruner
in [Bru]. In our range of interest, there are algebra generators

b1 = ξ1

b6 = ξ2ξ
3
1 + ξ3

2 = ξ2ξ2

b9 = ξ3ξ
2
1 + ξ3

2 .

with relations

b31 = 0

b1b6 = 0

b1b9 = 0.

In general, a closed formula of the E2-page of the Tate spectral sequence is not known, see
[CW00]. Figure 7 shows the E2-page of the Tate spectral sequence with known differentials in a
range. The red class at (0, 0) is the only nontrivial permanent cycle surviving to the E∞-page.

One can read both HFPSS and HOSS of N2
1 (HF2) from Figure 7. If we ignore all elements

with filtration ≥ 0 and add elements in I into filtration −1, then we obtain (up to a shift of
degree 1) the E2-page of the HOSS. Every element that supports a differential hitting filtration
≥ 0 becomes a nontrivial permanent cycle in the HOSS. Similarly, we can ignore all elements with
filtration < 0 and add elements in I into filtration 0 to obtain the homotopy fixed points spectral
sequence. This can also be done in an RO(C2)-graded manner: If we ignore all elements with
filtration ≥ b for any b ∈ Z and add I in filtration b − 1, then we obtain the HOSS computing
the (∗+ bσ) stems of the homotopy orbit, and similarly for the homotopy fixed points.

On the other hand, one can compute the (∗+ bσ) stems of the homotopy orbit or fixed points

by computing a−1
λ SliceSS(BP ((C4))) in degree ∗+bσ+cλ, making full use of Proposition 5.2. This
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Figure 7. E2-page of the Tate spectral sequence of N2

1HF2 with known differentials

RO(C4/C2)-graded comparison gives more information than the integral graded comparison, but
at the cost of running computations similar (but not identical) to Section 5 for each b ∈ Z. We
will only use this approach in the proof of Proposition 6.7, where the integral graded comparison
is not sufficient.

Proposition 6.2. There is a differential

d2(x) = b1x
−1

and therefore differentials d2(x2k+1) = b1x
2k−1 for all k ∈ Z.

Proof. We provide two arguments.

(1) By Proposition 5.2, the element 2 is (uniquely) divisible by a2
σ in πC4

F (a−1
λ HZ), but the

class 2
a2σ

supports a d3 as Res4
2( 2
a2σ

) =
u2σ2

a2σ2
does. Since 2aσ = 0 not only in a−1

λ HZ but

also in the homotopy of BP ((C4)) and 2 must be divisible by aσ as its restriction is trivial,
the aσ-tower involving 2 has length 2. By Proposition 6.1, b1x

−1 in bidegree (0,1) is killed
by a d2, and the only possible source is x.

(2) By Theorem 4.4 π1(HO) = Z/2. That means the class b1x in (2,−1) must be a cycle,
otherwise b1x and x2 (which cannot support a d2 since the differential on it must be
longer than the one on x) both support differentials into filtration ≥ 0, forcing π1(HO)
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to have order at least 4. The only possible differential that can kill b1x is d2(x3) = b1x.
By the Leibniz rule, we deduce that d2(x) = b1x

−1.

�

Proposition 6.3. There is a differential

d2(b1) = b21x
−2

and therefore differentials d2(b1x
2k) = b21x

2k−2 for all k ∈ Z.

Proof. We provide two arguments.

(1) b1 is not a target of any differential, since the only possible differential that can kill it
is d2(x2), but x2 is a d2-cycle. Now if d2(b1) = 0, then by the Leibniz rule d2(b1x) =
b21x
−1 6= 0, which contradicts to the previous proposition stating that b1x is a cycle.

Therefore d2(b1) 6= 0 and b21x
−2 is the only potential target.

(2) By Theorem 4.4 π3(HO) = Z/2 ⊕ Z/2, but one of Z/2s comes from transfer. Since
d2(x5) = b1x

3, this forces a nontrivial differential d2(b1x
4) = b21x

2. Since x4 is a d2-cycle,
we must have d2(b1) = b21x

−2.

�

Proposition 6.4. There is a differential

d3(x2) = b21x
−1

and therefore differentials d3(x4k+2) = b21x
4k−1.

Proof. We provide two arguments.

(1) The element N(t1) is not divisible by aσ modulo transfers and the aσ-tower involving
it has length 3: N(t1)a2

σ 6= 0 since N(t1)2a2
λa

2
σ 6= 0 in the integral page of a−1

λ SliceSS.
N(t1)a3

σ = 0 is the direct consequence of Theorem 5.7. By Proposition 6.1 the element
in (1, 1) of the Tate spectral sequence receives a d3, and the only possible differential is
d3(x2) = b21x

−1.
(2) By Theorem 4.4, π4(HO) = Z/2 and it is from transfer. Combining with earlier differ-

entials, we see d3(x6) = b21x
3 must happen. Therefore d3(x2) = b21x

−1.

�

Proposition 6.5. There is a differential

d5(b21x) = b6x
−4

and therefore differentials d5(b21x
4k+1) = b6x

4k−4.

Proof. In π6(HO), the Z/4 indicates the starting point of an aσ-tower, therefore the element in
(6, 0) of the Tate spectral sequence is a cycle. The only differential that kills it is d5(b21x

5) = b6.
Since x4 is a d5-cycle, we have d5(b21x) = b6x

−4. �

Proposition 6.6. There is a differential

d7(x4) = b6x
−3

and therefore differentials d7(x8k+4) = b6x
8k−3.

Proof. We provide two arguments.
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(1) Consider the element N(t2). Its restriction in A∗ is ξ2ξ2 = ξ2
2 + ξ2ξ

3
1 , which is non-

zero modulo transfers. Therefore it is a starting point of an aσ-tower. On the other
hand, N(t2)a7

σ = 0 by Theorem 5.7 and N(t2)a6
σ 6= 0 since N(t2)2a6

σ 6= 0 in the integral
degrees. It follows that the aσ-tower on N(t2) has length 7, which implies the differential
d7(x4) = b6x

−3.
(2) One can compute the (∗+4σ)-graded slice spectral sequence and see that in degree 3+4σ

there is nothing other than transfers, which implies that b6x
−3 is a cycle and x4 is the

only element that can kill it.

�

Proposition 6.7. There is a differential

d4(b6x
2) = b9x

−2

and therefore differentials d4(b6x
4k+2) = b9x

4k−2.

Proof. One can compute stem 7+2σ of a−1
λ BP ((C4)) by a−1

λ SliceSS, and see that modulo elements
in I of Proposition 6.1, the only non-trivial element is N(t3)a7

λa
5
σ, which by the proof of Theorem

6.8 below, corresponds to the element x8 in the Tate spectral sequence. Therefore, b6x
2 must

support a differential of at most length 4, and from the E2-page there is only one possibility. �

Finally, we describe an infinite family of differentials in the Tate spectral sequence.

Theorem 6.8. In the Tate spectral sequence of N2
1 (HF2), the element x2k supports a nontrivial

differential of length exactly 2k+1 − 1.

To prove Theorem 6.8, we will first prove the following lemma.

Lemma 6.9. In πC2

2(2k−1)ρ2
(a−1
λ BP ((C4))), the element tkγtk cannot be written as x+ γx for any

element x ∈ πC2

2(2k−1)ρ2
(a−1
λ BP ((C4)))

Proof. We follow the computation in [CW00]. By Theorem 5.4 γtk = tk + P where P doesn’t

involve tk. Therefore, writing tkγtk as a polynomial of t1,. . .,tk, t
2
k appears as one of the mono-

mials. Consider a monomial x of t1,t2,. . .,tk in this degree (tk+1 cannot appear since its degree is

one larger than t
2
k), the only possible monomial that t

2
k might appear as a part of x+ γx is when

x = t
2
k. However, t

2
k is not a monomial of t

2
k + γt

2
k, by Theorem 5.4. �

Proof of Theorem 6.8. Consider the class N(tk) in a−1
λ SliceSS(BP ((C4))). The restriction of this

class is tkγtk, which is nontrivial modulo transfer by the lemma. Therefore the corresponding
element of N(tk) in (N2

1HF2)hC2 is not divisible by aσ modulo I, so it is the starting point of
its aσ-tower. By Proposition 5.24, N(tk)aiσ = 0 only when i ≥ 2k+2 − 1. Hence this aσ-tower
starts in bidegree (2k−1, 2k−1) of the Tate spectral sequence and is killed by d2k+2−1. The only

possible source of this differential is x2k+1

. �

Currently we cannot describe the target of these differentials, because we don’t have a complete
description of the E2-page, and we don’t understand many shorter differentials. However, it is
very likely that the target of these differentials are the elements in the Tate cohomology of F2

generated by the elements ξkξk in the dual Steenrod algebra. This can be verified for k ≤ 4 by
direct computation.
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[Böh19] Benjamin Böhme. Multiplicativity of the idempotent splittings of the Burnside ring and the G-sphere

spectrum. Adv. Math., 347:904–939, 2019.
[Bru] Robert R. Bruner. Tate cohomology of the anto-involution of the Steenrod algebra. http://www.rrb.

wayne.edu/papers/tate.pdf.

[Car84] Gunnar Carlsson. Equivariant stable homotopy and Segal’s Burnside ring conjecture. Ann. of Math.
(2), 120(2):189–224, 1984.

[CW00] M.D. Crossley and Sarah Whitehouse. On conjugation invariants in the dual Steenrod algebra. Proc.

Amer. Math. Soc., 128(9):2809–2818, 2000.
[Gre18] J. P. C. Greenlees. Four approaches to cohomology theories with reality. In An alpine bouquet of

algebraic topology, volume 708 of Contemp. Math., pages 139–156. Amer. Math. Soc., Providence, RI,

2018.
[GW18] Javier J. Gutiérrez and David White. Encoding equivariant commutativity via operads. Algebr. Geom.

Topol., 18(5):2919–2962, 2018.
[HH14] M. A. Hill and M. J. Hopkins. Equivariant multiplicative closure. In Algebraic topology: applications

and new directions, volume 620 of Contemp. Math., pages 183–199. Amer. Math. Soc., Providence,

RI, 2014.
[HHR16] M. A. Hill, M. J. Hopkins, and D. C. Ravenel. On the nonexistence of elements of Kervaire invariant

one. Ann. of Math. (2), 184(1):1–262, 2016.

[HHR17] Michael A. Hill, Michael J. Hopkins, and Douglas C. Ravenel. The slice spectral sequence for the C4

analog of real K-theory. Forum Math., 29(2):383–447, 2017.

[Hil12] Michael A. Hill. The equivariant slice filtration: a primer. Homology Homotopy Appl., 14(2):143–166,

2012.
[HK01] Po Hu and Igor Kriz. Real-oriented homotopy theory and an analogue of the Adams-Novikov spectral

sequence. Topology, 40(2):317–399, 2001.
[HS20] Jeremy Hahn and XiaoLin Danny Shi. Real orientations of Lubin–Tate spectra. Invent. math.,

221:731–776, 2020.

[HSWX18] Michael A Hill, XiaoLin Danny Shi, Guozhen Wang, and Zhouli Xu. The slice spectral sequence of a
C4-equivariant height-4 Lubin-Tate theory. arXiv preprint arXiv:1811.07960, 2018.

[HW19] Jeremy Hahn and Dylan Wilson. Real topological Hochschild homology and the Segal conjecture.

arXiv preprint arXiv:1911.05687, 2019.
[Lew88] L. Gaunce Lewis, Jr. The RO(G)-graded equivariant ordinary cohomology of complex projective

spaces with linear Z/p actions. In Algebraic topology and transformation groups (Göttingen, 1987),

volume 1361 of Lecture Notes in Math., pages 53–122. Springer, Berlin, 1988.
[Lin80] Wen Hsiung Lin. On conjectures of Mahowald, Segal and Sullivan. Math. Proc. Cambridge Philos.

Soc., 87(3):449–458, 1980.

http://www.rrb.wayne.edu/papers/tate.pdf
http://www.rrb.wayne.edu/papers/tate.pdf


NORMS OF EILENBERG–MAC LANE SPECTRA AND REAL BORDISM 43

[LNR11] Sverre Lunøe-Nielsen and John Rognes. The Segal conjecture for topological Hochschild homology of
complex cobordism. J. Topol., 4(3):591–622, 2011.

[Lur09] Jacob Lurie. Higher topos theory, volume 170 of Annals of Mathematics Studies. Princeton University

Press, Princeton, NJ, 2009.
[Lur17] Jacob Lurie. Higher algebra. https://www.math.ias.edu/~lurie/papers/HA.pdf, 2017.

[McC96] J. E. McClure. E∞-ring structures for Tate spectra. Proc. Amer. Math. Soc., 124(6):1917–1922, 1996.
[MM82] J. P. May and J. E. McClure. A reduction of the Segal conjecture. In Current trends in algebraic

topology, Part 2 (London, Ont., 1981), volume 2 of CMS Conf. Proc., pages 209–222. Amer. Math.

Soc., Providence, R.I., 1982.
[MM02] M. A. Mandell and J. P. May. Equivariant orthogonal spectra and S-modules. Mem. Amer. Math.

Soc., 159(755):x+108, 2002.

[NS18] Thomas Nikolaus and Peter Scholze. On topological cyclic homology. Acta Math., 221(2):203–409,
2018.

[Rog] John Rognes. Private communication. 2014.

[Sch14] Stefan Schwede. Lectures on equivariant stable homotopy theory. http://www.math.uni-bonn.de/

people/schwede/, 2014.
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