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Abstract

These are lecture notes on elliptic genera, elliptic homology and topological modular
forms. They are based on a lecture course given in the summer term 2017 in Bonn. Please
treat these informal notes with caution. If you find any mistakes (either typos or something
more serious) or have other remarks, please contact the author. This (or any other) feedback
is very welcome!
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1 Introduction
The main goal of this lecture course is to construct and understand certain homology theories
constructed since the late 80s.

The most classical and best-known homology theories are the different variants of ordinary
homology like singular homology or deRham cohomology.

Two further families (co)homology theories have played a big role in topology and ge-
ometry since the 1950s. The first family are the bordism theories. These are based on the
relation that two closed n-manifolds are cobordant if they form jointly the boundary of a
compact (n + 1)-dimensional manifold. While these theories have their roots in the work
of Poincare1 and Pontryagin, they really came to prominence through the work of Thom,
who calculated bordism rings and got the Fields medal for it, and Atiyah, who realized that
one can actually define (generalized) homology theories by bordism. Bordism theories have
played a big role in most attempts to understand manifolds eversince.

The other family consists of K-theory. It has its roots in Grothendieck’s version of the
Riemann–Roch theorem in algebraic geometry, but soon was transported by Atiyah, Bott
and Hirzebruch to topology. Here, one considers the monoid of isomorphism classes of vector
bundles on a compact Hausdorff space under direct sum and applies a group completion to it
to define K0(X) – one can either take complex or real vector bundles, resulting in complex
or real K-theory. Still in the 60s it was realized by Conner and Floyd that one can also
construct complex K-theory from complex bordism [CF66].

We will study in this lecture course a fourth family of homology theories, consisting of
elliptic homology theories and topological modular forms. The origins lie in the work of
Ochanine and Witten who constructed ring homomorphisms from bordism rings to rings of
modular forms (called elliptic genera or also the Witten genus) – this was partially motivated
by an attempt to do index theory on free loop spaces. Landweber, Ravenel and Stong

1Actually, the first attempt of Poincare to define homology in his Analysis Situs reads almost like the definition
of bordism, but both definition and proofs have a certain vagueness, which could not be quite resolved with the
differential topology at hands at that time (meaning virtually none). Thus, he switched to a more combinatorial
definition in the spirit of cellular or simplicial homology.
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[LRS95] used these ideas to construct an elliptic homology theory from complex bordism
whose coefficients are a ring of modular forms. Later it was realized that there are actually a
lot of examples of such elliptic homology theories. These can be regarded as higher analogues
of complex K-theory – though an equally close connection to geometry as the one of K-theory
via vector bundles is still subject to research.2

The next step was to find an analogue of real K-theory in this context. This was much
more demanding, but was constructed by Goerss, Hopkins and Miller (and later Lurie) un-
der the name of topological modular forms [DFHH14], [Lur09]. This has seen applications to
string bordism ([AHR10], [MH02] and [Hil09]) and the stable homotopy groups of spheres
([HM98], [BHHM08] and [BP04]).

Our basic plan for this lecture course is the following: First we will recall some basics of
bordism theory and discuss some general results about genera and orientation, mostly in the
context of complex bordism. A key concept here is that of a formal group law. Then there
will be an interlude on the theory of elliptic curves. These will be used to construct elliptic
genera. These in turn will allow to construct elliptic homology theories, once we have the
Landweber exact functor theorem. We will first formulate it in elementary language, but
then reformulate it in terms of stacks, which should make it more transparent and usable.

In the final section, we will talk about the spectrum of topological modular forms TMF .
This are based on the moduli stack of elliptic curves. We will give the idea how to construct
TMF and will sketch the computations of π∗TMF after inverting 2. At the end, we will
give some outlook to applications.

Acknowledgments
I want to thank Jack Davies and Viktoriya Ozornova for catching typos and I want to thank
all the mathematicians involved in the development of elliptic curves, formal groups, elliptic
cohomology and topological modular forms for creating such beautiful theories, of which this
document is only a imperfect fragment of a shadow.

2 Bordism, genera and orientations

2.1 Homotopy colimits and limits
It is a well-known problem that taking (co)limits in spaces does not preserve (weak) homotopy
equivalences. There is a notion of a homotopy (co)limit that solves this problem. We refer to
[Dug08] and [Rie14] for the full theory. In this chapter, we will only need directed homotopy
colimits and homotopy fiber products, which we will discuss now.

Let X0
f0−→ X1

f1−→ · · · be a directed diagram. We define its homotopy colimit hocolimiXi

as the so-calledmapping telescope. This is defined as
∐
Xi×[0, 1]/ ∼, where (x, 1) ∼ (fi(x), 0)

for x ∈ Xi. We leave it as an exercise to show that it preserves homotopy equivalences.
There is also a pointed version: If all the spaces Xi are pointed by points xi and the maps
fi are pointed, then we can define a pointed mapping telescope hocolimXi/ ∼, where we
additionally identify all xi × [0, 1] to the base point. If the Xi are well-pointed (which we
will assume), then this is homotopy equivalent to the unpointed mapping telescope. In the
well-pointed case, we have an isomorphism colimi πkXi → πk hocolimiXi. Indeed, we can
write hocolimiXi as the colimit over Tn, where Tn =

∐
i≤nXi × [0, 1]/ ∼; furthermore,

Tn ' Xn and Tn → Tn+1 is a cofibration. In particular, we see that hocolim preserves weak
homotopy equivalences (i.e. π∗-isomorphisms).

2Which is an euphemism for “Things are difficult and unclear.”
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Given a diagram
X

f

��
Y

g // Z

we define its homotopy pullback X ×hZ Y as the subspace of those X × Z [0,1] × Y of (x, α, y)
with f(x) = α(0) and g(y) = α(1). Again, we leave it as an exercise to show that this
construction preserves homotopy equivalences. Note that we have a long exact sequence

· · · → πk(X×hZ)→ Y πkX × πkY → πkZ → πk−1(X ×hZ Y )→ · · ·

This implies that homotopy pullbacks also preserve weak homotopy equivalences.

2.2 Remarks about spectra
For most of this lecture course, we will be pretty agnostic about which model of spectra we
use. Most of the time, we will actually just work in the homotopy category of spectra, which
we will denote by Ho(Sp). The most naive way to construct it is via sequential spectra; a
(sequential) spectrum X consists sequence Xn of pointed spaces together with pointed maps
ΣXn → Xn+1. This forms in an obvious way a category Sp. We define πkX as the colimit

colimi πk+iXi,

where the transition map is given as the composite πk+iXi → πk+i+1ΣXi → πk+i+1Xi+1.
There is a way to define the homotopy category of spectra Ho(Sp) (often called the stable

homotopy category). The functor Sp→ Ho(Sp) can be characterized as the universal functor
that sends π∗-isomorphism to isomorphism (i.e. every other functor Sp→ C with this prop-
erty factors uniquely over the functor Sp→ Ho(Sp)). There are different ways to construct
it more explicitly. See e.g. [Ada74] and [BF78] for two classical approaches and [MMSS01]
and [Mal11] for overviews of different approaches.

In spectra, we can also take negative suspensions of spectra by a shift construction. Thus,
a model for Σ−1X has n-th space Xn−1. Another important construction is a homotopy col-
imit along a directed system. This can be constructed, e.g. as a levelwise mapping telescope.
We have π∗ hocolimnX

n ∼= colimn π∗X
n for a sequence X0 → X1 → X2 → · · · of spectra.

The latter property implies that

X ' hocolimn Σ−nΣ∞Xn,

where we define Σ∞Y for a pointed space Y as the spectrum with i-th space ΣiY and the
obvious structure maps.

There is a smash product on the homotopy (or ∞-)category of spectra. Indeed, it is
characterized3 as a symmetric monoidal product by the following two properties:

1. There is a natural equivalence: Σ∞A∧Σ∞B ' Σ∞(A∧B)

2. The smash product is compactible with homotopy colimits:

(hocolimiA
i)∧B ' hocolimi(A

i ∧B).

For us, a ring spectrum is a monoid in Ho(Sp), i.e. we have maps R∧R → R (the
multiplication) and S → R (the unit) in Ho(Sp) such that the associativity and unitality
diagrams commute in Ho(Sp). When we talk about more refined variants, we will use terms
like A∞- or E∞-ring spectrum.

3At least in ∞-categories. See [Lur12, Corollary 4.8.2.19] for a precise statement.
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Every spectrum E represents both a reduced homology and a reduced cohomology theory.
For a pointed spaceX, we define Ek(X) as πkΣ∞X ∧E and we define Ek(X) = [Σ∞X,ΣkE],
where [−,−] denotes morphisms in Ho(Sp). If E is a a (homotopy commutative) ring spec-
trum, then E∗ becomes a multiplicative cohomology theory. Note that if we want non-
reduced homology theories, we just have to apply the reduced homology theory to X union
a disjoint base point.

By Brown’s representability theorem, every cohomology theory is represented by a spec-
trum. We denote the spectrum representing H∗(−;A) (for an abelian group A) by HA.
Remark 2.1. These foundations are an extensive topic, of which barely anything will be
relevant for us for most of the time, so I sweep it mostly under the rug. Let me comment
though on the smash product. There are different ways to construct it. One can use ∞-
categories as in [Lur12]. Or one can use symmetric or orthogonal spectra (see [Sch12] or
[MMSS01]). If one is only interested in the homotopy category, one can also construct it
directly on sequential spectra. First, we replace X by cofibrant spectrum; for example, there
is a CW-approximation theorem that we can replace X up to π∗-isomorphism (which are for
us the relevant equivalences) by a CW-spectrum, i.e. one where X0 is a CW-complex and
the maps ΣXi → Xi+1 are relative CW-complexes; this is in particular cofibrant. Then we
can define X ∧Y to have 2n-th space Xn ∧Yn and (2n + 1)-st space ΣXn ∧Yn, where the
structure map ΣΣXn ∧Yn → Xn+1 ∧Yn+1 commutes one suspension past the Xn to let it
act on Yn (you can either introdue a sign while commuting or don’t – both is possible). One
can check that this defines a smash product on Ho(Sp). It is non-trivial to see that this is
associative (as the it is clearly not associative before passing to the homotopy category). See
either [MMSS01, Section 11] or [Len12, Section 7] for comparisons of this approach to other
approaches.

2.3 Bordism
We begin by recalling how to define bordism groups and Thom spectra with extra structure.

Recall first the stable normal bundle of a manifold. Given a closed k-manifoldM , we can
embed it via some map ι into some Rn+k with normal bundle νι. If n is large enough any
two such embedings are homotopic through immersions and even this homotopy is unique up
to homotopy [Hir59]. This implies that while νι : M → BO(n) depends on the embedding,
the composite ν : M → BO(n) → BO does not up to unique homotopy;4 here, BO is the
(homotopy) colimit of the BO(n). We call this map ν the stable normal bundle and more
generally a map into BO a stable vector bundle; an isomorphism between two stable vector
bundles is a homotopy between the two maps into BO.

Extra structure on stable vector bundles can be encoded by a map ξ : X → BO as follows.
Given a stable vector bundle ν : M → BO, a X-structure on it consists of an equivalence
class of lifts g : M → X such that ξg = ν or such that there is at least a chosen homotopy H
between ξg and E. Here, two such lifts g1 and g2 are called equivalent if they are homotopic
over BO; more precisely, this means that the diagram

ξg1
+3

�$

ξg2

z�
ν

of homotopies commutes up to homotopy. If we denote the stable vector bundles classified by
ξ and ν by the same names, we see in particular, that an X-structure induces an isomorphism
g∗ξ ∼= ν.

4We use here that the normal bundle of the composition M → Rn+k → Rn+k+1 is νι ⊕ 1, where 1 denotes the
1-dimension trivial bundle.
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An X-structure on a closed manifold M is an X-structure on its stable normal bundle.
(Strictly speaking, the notion of a X-structure depends on the precise map ν : M → BO;
but a homotopy between two maps ν and ν′ allows to transport X-structures on ν to X-
structures on ν′. As the map ν is well-defined up to homotopy (which in turn is unique up
to homotopy), there is no problem.)

Examples 2.2. 1. X = BO: An BO-manifold is just an unoriented manifold.
2. X = BSO: An BSO-manifold is equipped with an orientation of the stable normal

bundle. Exercise: This is equivalent to an orientation of the tangent bundle.
3. X = BSpin: Recall that Spin(n) is the unique connected 2-fold cover of SO(n). Define

BSpin = colimBSpin(n). Exercise: Show that a BSpin-structure on an n-manifold is
equivalent to a Spin(n)-structure on the tangent bundle. (Hint: Show that if E ⊕ F
and E are spin, then also F is spin.)

4. X = BU : This is a complex structure on the stable normal bundle of M .
5. X = pt: This is a framing of the stable normal bundle of M , i.e. an isomorphism to

the trivial stable bundle.

end of lecture 1
Remark 2.3. Passing between an X-structure on the (stable) tangent bundle and the (stable)
normal bundle is in general subtle and not always possible. Let me give two examples, where
this passage is possible.

First, consider a BSO-structure, which is equivalent to an orientation. As TM ⊕ ν is a
trivial bundle, an orientation on TM and on ν are equivalent data.

Now consider a BU -structure, i.e. a complex structure on the bundle after adding a
trivial bundle of suitable dimension. If we have a complex structure on TM (e.g. if M is a
complex manifold), then we obtain a complex structure on TM ⊕ νC. As a real bundle, this
is isomorphic to (TM ⊕ ν)⊕ ν and TM ⊕ ν is trivial. Thus, we obtain a BU -structure on ν.
Remark 2.4. Recall that the homotopy groups of BO are given by Bott periodicity. More
precisely, they are 8-periodic and the first 8 groups are:

π1BO = π0O = Z/2,
π2BO = π1O = π1SO(3) = Z/2,
π3BO = 0,

π4BO = Z
πkBO = 0 for 5 ≤ k ≤ 7

π8BO = Z.

(See [Mil63, Theorem 24.7].) As SO is connected, BSO = BO〈2〉 is the 1-connected cover
of BO. As Spin is simply-connected and π2O = 0 anyhow, we see that BSpin = BO〈4〉.
The next interesting case is BO〈8〉 is often denoted for fancy reasons by BString.

To define bordism groups, we also have to discuss stable normal bundles of manifolds
with boundary. The story is the same, only that we have to require for such a manifold
W that we embed it via a map i into Rn+k × R≥0 so that the boundary of W is nicely
embedded into the boundary Rn+k of Rn+k × R≥0; here, nice means in particular that an
open neighborhood of ∂W is embedded onto i(∂W ) × [0, t). Clearly, an X-structure on W
induces an X-structure on ∂W .

Definition 2.5. We define ΩXk to be the cobordism classes of closed k-manifolds M with
X-structure. More precisely, consider the monoid of closed k-manifolds with X-structure
and define ΩXk to be the quotient monoid by the submonoid of manifolds of the form ∂W
with W a compact (k + 1)-dimensional manifold with X-structure. By the decomposition
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∂(M × I) ∼= M
∐
M ′ one sees that ΩXk is a group; note that M ′ is diffeomorphic to M , but

has a different X-structure in general.

The Pontryagin–Thom construction identifies these groups with the homotopy groups
of certain spectra, so-called Thom spectra. Recall that the Thom space Th(E) of a vector
bundle E → B is set-theoretically defined as E

∐
pt such that neighborhoods of pt are

complements of closed subsets of E whose intersection with every fiber is compact. If B is
compact, this is just the 1-point compactification of E.

If E1 → B1 and E2 → B2 are vector bundles, there is a canonical isomorphism Th(E1 ×
E2) ∼= Th(E1)∧Th(E2). In particular, if B1 = pt and E1 = R, we get Th(1⊕E) ∼= Σ Th(E),
where we denote by 1 the trivial 1-dimensional bundle.

Definition 2.6. Let X → BO be a map. Define Xn = X ×hBO BO(n) and denote the
vector bundles classified by the projection Xn → BO(n) by En. Furthermore, we get maps
jn : Xn → Xn+1 and we have j∗nEn+1

∼= 1 ⊕ En, where 1 denotes the trivial 1-dimensional
vector bundle.

Define the Thom spectrum MX for X by MXn = Th(En) and the structure maps are

ΣMXn
∼= Th(1⊕ En) ∼= Th(j∗nEn+1)→ Th(En+1) = MXn+1.

Theorem 2.7 (Pontryagin–Thom). There is an isomorphism π∗MX ∼= ΩX∗ .

Examples 2.8. 1. If Xn = BO(n), we obtain bordism of unoriented manifolds and we
call the corresponding Thom spectrum MO. It is easy to see that π∗MO consists
of 2-torsion and this theory can be understood by Stiefel–Whitney classes (HZ/2-
characteristic classes).

2. If Xn = BSO(n), we obtain bordism of oriented manifolds and we call the corre-
sponding Thom spectrum MSO. Thom and Wall showed that oriented bordism is de-
termined by Stiefel–Whitney and Pontryagin classes (HZ-characteristic classes). The
ring π∗MSO is known, but a little hard to write down. In contrast, π∗MSO ⊗ Q is
easy to understand: It is a polynomial ring generated by [CP2n].

3. More generally, we can take X = BO〈n〉. For n = 4, we obtain bordism of spin
manifolds and we call the corresponding Thom spectrum MSpin. Anderson, Brown
and Peterson have determined the structure of π∗MSpin, but is is complicated. It is
detected by characteristic classes in HZ/2 (i.e. Stiefel–Whitney classes) and character-
istic classes in real K-theory KO. For MO〈8〉 = MString, there is a connection to
topological modular forms, but less is known.

4. If X2n = BU(n), we obtain bordism of stably almost complex manifolds and the corre-
sponding Thom spectrum is called MU . Milnor computed that π∗MU is a polynomial
ring in infinitely many generators. Rationally, it is generated by the [CPn]. This will
be a major example for us.

References: Classic books on these topics are [Swi75] and [Sto68] and the latter also
includes an extensive survey of the calculations known in 1968. If one wants to be all fancy
and ∞-categorical, one can also look at the elegant treatment in [ABG+14]. The treatment
in these notes is only partially following these approaches.

end of lecture 2

2.4 Properties of Thom spaces and spectra
Definition 2.9. Let h be a multiplicative cohomology theory and E → X an n-dimensional
vector bundle. A Thom class is a class τ ∈ h̃n(Th(E)) ∼= hn(E,E0) whose restriction to
every compactified fiber Ex ∼= Sn is a generator of h̃n(Ex) ∼= h0(pt) as an h0(pt)-module.
We call a vector bundle with a Thom class h-oriented.
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Theorem 2.10. Let E → X be an h-oriented vector bundle with Thom class τ . Then there
are natural Thom isomorphisms

∪τ : hm(X) ∼= hm(E)→ h̃m+n(Th(E)) ∼= hm+n(Th(E,E0))

and
∩τ : h̃m+n(Th(E))→ hm(X).

Remark 2.11. If E → X is a non-h-oriented vector bundle, there are twisted forms of the
Thom isomorphism. This is easiest if h = HZ, i.e. singular homology. Then there is an
orientation-local system Z̃ for E. This can, for example, be defined as Hn(Ex, E0,x) over
every point x ∈ X. Then there is a Thom isomorphism H̃m+n(Th(E)) ∼= Hm(X, Z̃).

Lemma 2.12. Every Thom spectrum is connective, i.e. πkMX = 0 for k < 0.

Proof. This follows either from the Pontryagin–Thom isomorphism or from the observation
that a Thom space of an n-dimensional bundle is always n-connective.

Lemma 2.13. Let a factorization E : X
e−→ BO(n)→ BO be given. ThenMX ' Σ−nΣ∞ Th(e).

Proof. Then (m+n)-th space of Σ−nΣ∞ Th(e) is Σm Th(e) ∼= Th(e⊕m). Now consider the
diagram

Xm+n
//

fm

��

BO(n+m)

��
X // BO(n)

88

// BO

We see that the pullback bundle Em+n on Xm+n agrees with f∗me⊕m. Thus, the (m+n)-th
space of MX is Th(f∗me⊕m), which maps compatibly to Th(e⊕m). Thus, we obtain a map
MX → Σ−nΣ∞ Th(e).

The (stable) vector bundle E defines compatible local orientation systems on X and all
Xm+n. The Thom isomorphism induces isomorphisms

H̃∗+m+n(Th(Em+n);Z) ∼= H∗(Xm+n; Z̃)

and thus we obtain in the (co)limit that

H∗MX ∼= colim H̃∗+n+m(Th(Em+n),Z)

∼= colimH∗(Xm+n, Z̃)

∼= H∗(hocolimXm+n, Z̃)

∼= H∗(X, Z̃)

∼= H̃∗+n(Th(e);Z)

∼= H∗(Σ
−nΣ∞ Th(e);Z).

One can see that the map MX → Σ−nΣ∞ Th(e) induces an isomorphism between the
homologies of these connective spectra and thus we can conclude by the Whitehead theorem
that the map MX → Σ−nΣ∞ Th(e) is an equivalence.

Example 2.14. For X = pt→ BO, we obtain as the Thom spectrum the sphere spectrum
that thus represents framed bordism.

Lemma 2.15. Let X0 → X1 → · · · be a sequence of spaces with compatible maps En : Xn →
BO and denote by E the map X = hocolimnX

n → BO. Then ME ' hocolimnMEn.
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Proof. We just have to use that both homotopy fiber products and the Thom space con-
struction commute with homotopy colimits.

Lemma 2.16. Let X E−→ BO and Y F−→ BO be maps and let X × Y E×F−−−→ BO × BO →
BO classify the external sum of the corresponding vector bundles. Then there is a natural
equivalence M(E × F ) 'ME ∧MF .

Proof. Let Xn and En as above and consider analogously Yn and Fn. Then M(En × Fn) '
MEn ∧MFn because the analogous statement is true for Thom spaces. Thus,

ME ∧MF ' hocolimnMEn ∧hocolimmMFm

' hocolimn,mMEn ∧MFm

' hocolimnM(En × Fn).

As hocolimnXn × Yn ' X × Y , we see by the last lemma that this is equivalent to M(E ×
F ).

Proposition 2.17. Let X E−→ BO be a map of H-spaces (where BO is equipped with the
direct sum H-spaces structure). Then ME attains the structure of a ring spectrum. If X is
homotopy commutative, then ME is homotopy commutative as well.

Proof. This follows directly from the last lemma.

Examples 2.18. Obviously, BO → BO and BSO → BO and BU → BO are H-space maps
as these things are compatible with direct sums. It also true (more generally) that if X is an
H-space that its connective covers X〈n〉 are H-spaces and the map X〈n〉 → X is an H-space
map. The reason is that the map X〈n〉 × X〈n〉 → X × X → X factors over X〈n〉 as the
source is 2n-connective.

Thus, we see that all the Thom spectra we have considered are actually homotopy com-
mutative ring spectra. Actually, a more careful argument shows that they are all E∞-ring
spectra (i.e. they can be represented by commutative orthogonal ring spectra).

2.5 Orientations
We rephrase the theory of Thom classes from Thom spaces to Thom spectra. We will fix
throughout a ring spectrum E:

Definition 2.19. Let X ξ−→ BO be a map. Every point x ∈ X, determines a map S ∼= Mx→
MX (where the isomorphism S ∼= Mx in Ho(Sp) depends on the chosen trivialization of ξ|X .)
We say that τ ∈ E0(MX) is a Thom class if τ |x ∈ E0(Mx) is a generator of this rank-1 free
E0(S)-module for every x ∈ X. If a Thom class exists, we say that ξ has an E-orientation.

If ξ actually comes from an n-dimensional vector bundle e, this reduces to the earlier
notion of a Thom class. Here, we use that MX is in this case just Σ−nΣ∞ Th(e) so that
E0MX ∼= En Th(e).

We observe that for a map f : Y → X and a stable vector bundle X ξ−→ BO with a
Thom class τ ∈ E0(MX), the pulled back class f∗τ ∈ E0(MY ) is a Thom class as well. In
particular, a Thom class for ξ is the same as a natural choice of Thom classes for all stable
vector bundles with an X-structure.

We also obtain a Thom isomorphism in this world:

Theorem 2.20. Let X ξ−→ BO be a stable vector bundle with an E-orientation. Then
E∗MX ∼= E∗X and E∗MX ∼= E∗X.
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Proof. All the Xk → ξkBO(k) inherit E-orientations because they are pulled back from ξ.
Thus, Ẽm+k(Th(ξk)) ∼= Em(Xk). Now the argument is as in the proof of Lemma 2.13.

Remark 2.21. There is a theorem by Spanier and Milnor (see e.g. [Swi75, Theorem 14.43])
that for a closed n-manifold N with stable normal bundle ν, the Thom spectrum ΣnMν is
equivalent to the Spanier–Whitehead dual DN+. This can be constructed as the function
spectrum F (Σ∞+ N, S). This implies that

E∗Mν ∼= E∗DN+

∼= π∗(F (Σ∞+ N, S)∧E)
∼= π∗F (Σ∞+ N,E)

∼= E−∗(N)

for every spectrum E. If ν is E-oriented, the source is isomorphic to E∗Σ−nN ∼= E∗+nN .
Thus, N satisfies Poincare duality for E if ν is E-oriented.

Definition 2.22. Let X → BO be a map of connected H-spaces and E be a ring spectrum.
An X-orientation of E is a choice τξ of E-Thom class for every stable vector bundle ξ with
X-structure, where we demand

1. naturality, i.e. τf∗ξ = f∗τξ, and
2. multiplicativity, i.e. if ξ and η are stable vector bundles on spaces Y and Z, then τξ×η

corresponds to τξ × τη under the identification M(Y × Z) 'MY ∧MZ. Here, we use
the X-structure on ξ × η given by the composition Y × Z → X ×X → X.

Example 2.23. Integral singular homology HZ is BSO-oriented: oriented vector bundles
have Thom classes in singular cohomology and these are multiplicative.

Example 2.24. If X → BO is a map of connected H-spaces, then MX has a tautological
X-orientation τ can: If g : Y → X → BO classifies a stable vector bundle with X-structure,
we obtain an element τ cang = Mg ∈ [MY,MX] = MX0(MY ). This is clearly natural. For
multiplicativity, we use the (homotopy) commutative diagram

MY ∧MZ

'

��

// MX ∧MX

&&
'

��

MX

M(Y × Z) // M(X ×X)

88

We add a small observation: If u : E → F is a map of ring spectra and E has an X-
orientation {τξ}, then {u∗τξ} is an X-orientation for F .

Proposition 2.25. Let X → BO be a map of connected H-spaces. Then

(Maps MX → E of ring spectra)→ (X − orientations of E)

u 7→ {u∗τ canξ }

is a bijection. Here, maps are understood to be in the homotopy category Ho(Sp).

Proof. We can construct an inverse as follows: Let an X-orientation of E be given. In
particular, we obtain a Thom class E0(MX) = [MX,E] of the universal stable bundle with
X-structure. Multiplicativity of the Thom class shows that this is a map of ring spectra.
And it is also easy to see that this is an inverse to the map described in the statement of the
proposition.
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2.6 Complex orientations
Definition 2.26. We call a ring spectrum E complex oriented if it is equipped with a
BU -orientation (or equivalently with a ring spectrum map MU → E).

Example 2.27. Clearly, MU itself is complex orientable and also HZ (because every com-
plex vector bundle is oriented). We will see later that complex K-theory KU is also complex
oriented.

end of Lecture 3

Definition 2.28. Let ξ be a complex n-dimensional vector bundle on a space X and E be
complex oriented. Then we define the Euler class of ξ to be the pull back e(ξ) ∈ E2n(X) of
the Thom class τξ ∈ E2n(Th(ξ)) along the zero section X → Th(ξ).

Proposition 2.29. Let E be complex oriented and let xn ∈ E2(CPn) (with n possibly∞ and
x = x∞) the Euler class of the tautological line bundle ηn. Then we have ring isomorphisms

E∗(CPn) ∼= E∗[xn]/xn+1
n

E∗(CP∞) ∼= E∗JxK

Here, E∗ = E∗(pt).

Proof. We start with some general remarks. Clearly, x and xn+1 restrict to xn on CPn. One
can see that CPn+1 is the Thom space of ηn ([KT06, Lemma 3.8]) and the usual inclusion
CPn → CPn+1 corresponds to the zero section. Thus, xn+1 is a Thom class for ηn.

Now we argue by induction on (finite) n. The Thom isomorphism theorem implies
that Ẽ∗(CPn+1) is a free E∗(CPn) ∼= E∗[xn]/xn+1

n -module on xn+1. As xn is the restric-
tion of xn+1, we see that xn acts on Ẽ∗(CPn+1) as xn+1. It follows that E∗(CPn+1) ∼=
E∗[xn+1]/xn+2

n+1.
The statement for n = ∞ follows from the Milnor sequence, which we will state next.

Indeed, it is easy to see that lim1 vanishes along a tower of surjective maps.

Proposition 2.30 (Milnor sequence). Let E be a cohomology theory (satisfying the wedge
axiom), X0 → X1 → X2 → · · · a diagram of spaces with homotopy colimit X (e.g. Xi might
be the i-skeleton of a CW-complex X). Then there is a short exact sequence

0→ lim1
i E
∗−1(Xi)→ E∗X → lim

i
E∗(Xi)→ 0.

Proof. One can write X as the homotopy coequalizer of two maps
∐
iXi →

∐
iXi, namely

the identity and the map induced by the Xi → Xi+1. After taking Σ∞+ (i.e. adding a disjoint
base point and doing the suspension spectrum), we obtain a cofiber sequence⊕

i

Σ∞+ Xi
F−→
⊕
i

Σ∞+ Xi → Σ∞+ X,

where F is the difference of the two induced maps. Taking E-cohomology we obtain a long
exact sequence∏

i

E∗−1Xi
F∗−1

−−−→
∏
i

E∗−1Xi → E∗X →
∏
i

E∗Xi
F∗−−→

∏
i

E∗Xi.

From this, we obtain short exact sequences

0→ cokerF ∗−1 → E∗X → kerF ∗ → 0.

This implies the result by the definition of limit and lim1.
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Remark 2.31. An alternative definition of complex orientability is the existence of a class
x ∈ Ẽ2CP∞ whose restriction to Ẽ2(CP1) ∼= Ẽ2(S2) ∼= E0(pt) is a generator. We have only
proved that it is a necessary condition. For the equivalence of this approach with ours see
either Adams [Ada74, Part II, Section 2 and 4] for an approach using the Atiyah–Hirzebruch
spectral sequence or Kono–Tamaki [KT06], which is a rather nice read.
Remark 2.32. We can use this computation to show that not every spectrum is complex-
orientable. The easiest counter example is the sphere spectrum S itself. Indeed, consider the
cofiber sequence

S3 η−→ CP1 ∼= S2 → CP2

and the corresponding long exact sequence

Ẽ2CP2 → Ẽ2CP1 ∼= E0 η−→ Ẽ2(S3) ∼= E1.

If E is complex-orientable, we can lift 1 ∈ Ẽ2S2 ∼= E0 to Ẽ2CP2. This is possibly if and
only if η operates as 0 on 1 ∈ E0, i.e. iff the Hurewicz image of η ∈ π1S in π1E = E−1 is
zero. For E = S, this is well-known to be non-zero and the same is true for E = KO.

There is a wealth of other computations that can be done purely formally for complex-
oriented cohomology theories E. Let us list some of them.

1. E∗((CP∞)×n) ∼= E∗Jx1, x2, . . . , xnK, where the generators the pullbacks of x along the
projections prn : (CP∞)×n → CP∞.

2. E∗BU(n) ∼= E∗Jc1, . . . cnK and E∗BU ∼= E∗Jc1, c2, . . .K. The classes ci are called Chern
classes.

3. E∗(CP∞) ∼= E∗{1, β1, . . . } (this is an additive isomorphism of E∗-modules!)

4. E∗(BU) ∼= E∗[β1, β2, . . . ]. Here, the isomorphism is multiplicative, using the H-space
structure on BU given by direct sum of vector bundles. The map E∗CP∞ → E∗BU
does the expected.

To prove all of these, there are two strategies. The first is to do more elaborate versions
of our arguments for the case CP∞. The second is to assume the result for ordinary inte-
gral homology as known and deduce the general results by the Atiyah–Hirzebruch spectral
sequence. The second approach appears to be much faster, but if one adds the work for
deriving the formulae for ordinary homology, the work is about the same. We will skip this.

References: Good references are [Ada74], Part II, and [KT06].

2.7 Formal group laws
So far, we have already used theH-space structure on BU coming from adding vector bundle.
But one can also tensor vector bundles and, in particular, line bundles. This induces a
multiplication map m : CP∞×CP∞ → CP∞. Commutativity and associativity of the tensor
product show that this makes CP∞ into a homotopy commutative H-space.

This induces a map

m∗ : E∗(CP∞) ∼= E∗JxK→ E∗Jx1, x2K ∼= E∗(CP∞ × CP∞).

This map is continuous for the usual topologies defined on rings of power series, i.e. for every
k, l the preimage (m∗)−1(xk1 , x

l
2) contains (xn) for some n. This follows from the fact that

the image of m|CPk−1×CPl−1 lies in some CPn−1 because CPk−1 × CPl−1 is compact.
As furthermore, m∗ is an E∗-algebra morphism (as it is induced by a map of spaces), it

follows that m∗ is equivalent data to the power series F = m∗(x). We record how the axioms
for a homotopy commutative H-space translate into properties of F .
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We know that the composition CP∞ id× pt−−−−→ CP∞ × CP∞ m−→ CP∞ is homotopic to the
identity (right unitality). As the map E∗JxK→ E∗ induced by pt→ CP∞ sets x = 0, we see
that this translates into F (x1, 0) = x1. Likewise, left unitality translates into F (0, x2) = x2.
These two conditions are equivalent to

F (x1, x2) = x1 + x2 + higher terms (1)

The twist map CP∞×CP∞ → CP∞×CP∞ just permutes x1 and x2. Thus, the homotopy
commutativity of CP∞ translates into

F (x1, x2) = F (x2, x1) (2)

The homotopy associativity of m translates into

F (x1, F (x2, x3)) = F (F (x1, x2), x3) (3)

Definition 2.33. Let R be a commutative ring. A power series F ∈ RJx1, x2K satisfying
(1), (2) and (3) is called a formal group law over R.

If R has a grading, we say that F is a graded formal group law if the coefficient in front
of xk1xl2 has degree 2k + 2l − 2. This corresponds to |x1| = −2, |x2| = −2 and |F | = −2.

Example 2.34. If E is a complex oriented ring spectrum, we obtain a graded formal group
law over E∗ = E−∗.

end of lecture 4
Part of the strength of this observation is that formal group laws are well-studied objects

in number theory and algebraic geometry (and since the 70s in algebraic topology as well!).
Remark 2.35. We may reinterpret the formal group law as a formula for the first Chern
class of a line bundle. Let E be complex oriented and let x be the Euler class of the
tautological bundle over CP∞. Given a line bundle L on a space X, we obtain a classifying
map l : X → CP∞. We define c1(L) ∈ E2(X) as l∗x.

What is c1(L1 ⊗L2)?. We obtain it as the pullback of x along X l1×l2−−−→ CP∞ ×CP∞ m−→
CP∞. We obtain

c1(L1 ⊗ L2) = (l1 × l2)∗F (x1, x2) = F (c1(L1), c1(L2).

You might worry what this actually means as the power series F can be infinite. This
is easy to say if X has finite cup-length (for example if it is covered by finitely many con-
tractibles, like a finite simplicial complex). In general you can topologize the abelian group
E∗X by declaring all kernels of maps E∗X → E∗Y for Y a finite complex with a map
Y → X to be open. One can check that this is natural and in particular maps between
spaces preserve convergent power series.

Example 2.36. Take E = HZ, ordinary integral homology. What is m∗ : Z ∼= H2(CP∞)→
H2(CP∞×CP∞) ∼= Z⊕Z? Actually, grading and unitality directly imply that it has to send
x to x1 + x2, i.e. F (x1, x2) = x1 + x2. This is called the additive formal group law.

Example 2.37. The next example is complex K-theory KU .
For a compact connected Hausdorff space X, we define KU0(X) to be the group comple-

tion of the monoid VectC(X) of isomorphism classes of (finite-dim) complex vector bundles
on X. Here, in general for an abelian monoid M , its group completion Gp(M) is the inital
abelian group M is mapping into. This can be constructed as equivalence classes of pairs
(m1,m2) with equivalence relation generated by (m1,m2) ' (m1 +m,m2 +m). One usually
writes the elements of the group completion as m1 −m2.
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The reduced theory is slightly easier to define. By definition K̃U
0
(X) is the quotient of

KU0(X) by KU0(pt) = Z. Actually, VectC(X) modulo the trivial vector bundles is already
a group as for every vector bundle ξ, there is a vector bundle η such that ξ ⊕ η is trivial.
Thus, K̃U

0
(X) ∼= V ectC(X)/N and there is no need to group complete. On the other hand,

choosing a base point x ∈ X, we can embed K̃U
0
(X) into KU0(X) via ξ 7→ ξ − dimx ξ.

For X connected compact Hausdorff, we can identify K̃U
0
(X) with

colimn VectnC(X) ∼= colimn[X,BU(n)] ∼= [X,hocolimBU(n)] ∼= [X,BU ].

As KU0(X) ∼= K̃U
0
(X) ⊕ Z, we can deduce that KU0(X) ∼= [X,BU × Z]. Indeed, X →

BU ×Z factors over some BU(n)×Z, i.e. we obtain a vector bundle V and a number k. To
this we associate the K-theory class [V ] − (n − k). Thus, we obtain for X still Hausdorff,
compact and connected a map

0 // K̃U
0
(X) // KU0(X) // Z // 0

0 // [X,BU ]

OO

// [X,BU × Z]

OO

// [X,Z]

OO

// 0

of short exact sequences, where the outer two terms are isos.
In general, we define KU0(X) as [X,BU×Z] and obtain K̃U

0
(X) = [X,BU×Z]•, where

we assume for the latter that X is pointed and consider pointed maps.
We have Ω(BU × Z) ∼= ΩBU ' U . (Indeed, for any topological group G, we have

a principal G-fibration EG → BG with EG contractible. Thus, G ' ΩBG.) By Bott
periodicity, we also have ΩU ' BU × Z. Thus, we obtain an Ω-spectrum made out of
BU × Z in degrees 2n and of U in degrees 2n + 1. We call this spectrum KU . As KU is
an Ω-spectrum, we have that πkKU is simply πkBU × Z or more generally πk+l of its l-th
space.

Clearly, π∗KU is 2-periodic. We easily compute π0KU = π0BU × Z ∼= Z and π−1KU ∼=
π0U = 0. One can check that KU is actually a ring spectrum (using the tensor product of
vector bundles) and that π∗KU ∼= Z[u±1] with |u| = 2.

Explicitly, one can show that u ∈ π2KU ∼= K̃U
−2

(S0) ∼= K̃U
0
(S2) corresponds to

the class of the tautological line bundle η1 on S2 ∼= CP1. Thus, [η1]/u corresponds to 1.
The class x = [η]/u ∈ K̃U

2
(CP∞) is a lift of this class, which is the Euler class, yielding

KU∗(CP∞) ∼= KU∗JxK. Thus, the corresponding Chern class of a line bundle in reduced
K-theory is c̃1(L) = [L]/u. We obtain c̃1(L1 ⊗ L2) = [L1][L2]/u and hence F (x1, x2) =
x1 + x2 + ux1x2. This is called (a form of ) the multiplicative formal group law.

Other examples are harder to write down, but we will see them later.

References: Accessible references for vector bundles and KU0 are [Hat03] and [Ati67];
see also [Swi75] and [KT06] for K-theory as cohomology theories. For formal group laws see
e.g. [Ada74], Part II, and [KT06] or [Haz12] for a comprehensive treatment.

end of lecture 5

2.8 π∗MU and the universal formal group law
Given a morphism of (graded) rings f : R→ S, we can pushforward a (graded) formal group
law F ∈ RJx1, x2K to S by just applying f to the coefficients of F . Given a map E → F of
ring spectra, we can also pushforward every complex orientation of E to F and it is easy to
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check that the corresponding formal group law over F∗ is just the pushforward of that from
E∗. As MU carries the universal complex orientation, we see that every formal group law
associated to a complex oriented theory is actually pushed forward from MU∗. Amazingly,
we can decouple this statement from topology.

Theorem 2.38 (Quillen). The formal group law FMU over MU∗ is the universal formal
group law, i.e. for every (graded) commutative ring R, pushforward defines a 1-1 correspon-
dence between (graded) morphisms MU∗ → R and (graded) formal group laws over R.

Remark 2.39. It is easy to see that the ungraded version implies the graded version. The
universal ring for formal group laws is often called Lazard ring L as it was first computed
by Lazard to be a polynomial ring Z[x2, x4, x6, . . . ], where |x2i| = 2i. The existence of L is
actually easy; the determination that L ∼= Z[x2, x4, x6, . . . ] is harder, but was done before
Quillen’s theorem. An important point is that the generators xi are not canonical – while
there are some explicit choices, they are rather hard to work with.

There are two kinds of proofs of Quillen’s theorem that the morphism L → π∗MU
classifying the formal group law ofMU . One is working from the knowledge of L and π∗MU
(see e.g. [Lur10, Lecture 10]). Another proof of Quillen shows that L ∼= π∗MU differently
(see [Qui71]).

Definition 2.40. A (graded) ring homomorphism MX∗ → R∗ is called a genus.

Thus, Quillen says that genera for MU are “classified” by formal group laws.
Remark 2.41. Clearly, every complex orientation MU → E induces a genus MU∗ → E∗.
It is an interesting question whether we can lift a given genus to a transformation of ring
spectra! This is the topic of Landweber’s exact functor theorem, which we will deal with
later.

2.9 Rational formal group laws
We will state most things for formal group laws, but they hold mutatis mutandis also for
graded formal group laws.

Definition 2.42. Let F,G be two formal group laws over a ring R. A power series f ∈ RJxK
with no constant term is called an homomorphism from F → G if

F (f(x1), f(x2)) = f(G(x1, x2)).

An invertible homomorphism is called an isomorphism.

Note that a homomorphism f is an isomorphism if and only if the linear coefficient is
invertible.

Lemma 2.43. Let R be a Q-algebra. Then any two formal group laws over R are isomorphic.

Proof. Left as an exercise. See e.g. [Rav86, Appendix].

Definition 2.44. Let R be a Q-algebra and F be a formal group law over R. Then the
unique isomorphism from the additive formal group law Ĝa to F is called the logarithm logF
of F :

logF (F (x1, x2)) = logF (x1) + logF (x2)

Example 2.45. Consider the multiplicative formal group law Ĝm(x, y) = x + y + xy. It
satistifes 1 + Ĝm(x, y) = (1 + x)(1 + y). Recall the classical logarithm series

f(x) = log(1 + x) = x− 1

2
x2 +

1

3
x3 − · · · .
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We from calculus that log((1 + x)(1 + y)) = log(1 + x) + log(1 + y). That is f(x) + f(y) =
f(Ĝm(x, y)). Thus, f is the logarithm for Ĝm.

There is also the variant for F (x, y) = x+y+uxy, where u is invertible (as forK-theory!).
Then (1 + ux)(1 + uy) = 1 + uF (x, y). Thus, the logarithm is

f(x) = log(1 + ux) = ux− 1

2
u2x2 +

1

3
u3x2 − · · ·

This already suggests that we need denominators in R if the additive formal group law
should be isomorphic to a multiplicative one. This is indeed so. Before we prove this, we
need some notation.

Definition 2.46. Let F be a formal group law over a ring R. Define inductively [n]F (x) by
[1]F (x) = x and [n]F (x) = F ([n− 1]F (x), x). I.e. we “multiply by n”.

Examples 2.47. For F (x, y) = x+ y, we obtain [n]F (x) = nx.
For F (x, y) = x+ y + uxy, we obtain [n]F (x) = (1+ux)n−1

u .

Lemma 2.48. Fix a ring R and an invertible element u ∈ R. The additive formal group
law Ĝa(x, y) = x+ y is only isomorphic to F (x, y) = x+ y+uxy over R if R is a Q-algebra.

Proof. Let f be such an isomorphism Ĝa → F . Then

0 = f([n]Ga
)(f−1(x)) = [n]F (x) =

(1 + ux)n

u
− 1

over R/n. Thus un−1 = 0 in R/n and thus R/n = 0 as u is invertible. As this is true for
every n, the ring R must be a Q-algebra.

Lemma 2.49. Let x, x′ ∈ E2(CP∞) correspond to two different complex orientations of a
ring spectrum E. Then the resulting formal group laws F and F ′ are isomorphic. More
precisely, we can express x′ as a power series f(x) as E∗(CP∞) ∼= E∗JxK. Then

f(F (x1, x2)) = F ′(x′1, x
′
2) = F ′(f(x1), f(x2)).

Corollary 2.50. The integral homology H∗(KU ;Z) is a rational vector space. In particular,
H∗(KU) ∼= Q[u±1] and H∗(KU ;Fp) ∼= H∗(KU/p;Z) = 0.

Proof. By definition H∗(KU ;Z) ∼= π∗HZ∧KU . The spectrum HZ∧KU admits ring spec-
tra maps from HZ and KU and thus carries both the additive and a multiplicative formal
group law from the two different complex orientations. These are isomorphic by the last
lemma. By Lemma 2.48, it follows that π∗HZ∧KU is a Q-algebra.

The rational Hurewicz map

π∗KU ⊗Q→ H∗(KU ;Q) ∼= H∗(KU ;Z)

is (as always an isomorphism and π∗KU ∼= Z[u±1].
The last part follows by the Bockstein sequence

· · · → H∗(KU ;Z)
p−→ H∗(KU ;Z)→ H∗(KU ;Fp)→ · · ·
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2.10 Mischenko’s theorem
In this section, we will give a proof of Mischenko’s theorem modulo some parts from Adams’s
book [Ada74, Part II]. One reason that we give the proof here (though we did not treat it in
detail in the lecture) is that Adams’s proof of the crucial Lemma 9.1 is rather short.

Theorem 2.51 (Mischenko). The logarithm of the formal group law on MU∗ equals

∞∑
n≥0

[CPn]

n+ 1
xn+1.

Example 2.52. Let Td: MU∗ → Z be the ring homomorphism classifying the formal group
law x+y+xy. This is called the Todd genus. Mischenko’s theorem and Example 2.45 imply
that Td([CPn]) = 1.

end of lecture 6
We know that π∗MU → H∗MU = π∗HZ∧MU is a rational isomorphism. Thus, we can

identify the logarithm on the easier side of H∗MU . As H∗ is complex oriented, we have in
particular H∗MU ∼= Z[b1, b2, . . . ] with |bi| = 2i. The two complex orientations x (coming
from H) and xMU (coming from MU) can be translated into each other as follows [Ada74,
II.6.3, 6.6]:

Lemma 2.53. We have xMU =
∑
i≥0 bix

i+1.

By Lemma 2.49, we see that this power series is the exponential of FMU , i.e. the inverse
of the logarithm. A purely algebraic manipulation shows the following [Ada74, II.7.5].

Lemma 2.54. Setting logF (x) =
∑
i≥0mix

i+1, we have

mn =
1

n+ 1

(

∞∑
i≥0

bi)
−n−1


2n

,

where the lower n denotes the degree 2n-part.

Now recall the Pontryagin–Thom construction to see what kind of element [CPn] defines
in H∗MU . Let ν be the (complex) normal bundle of some embedding CPn → S2n+2k. Then
the element πnMU corresponding to [CPn] is defined by the composition S2n+2k → Th(ν)→
Th(ξunivk ) = MU2k. On H2n+2k this induces, we get:

H2n+2kS
2n+2k //

((

H2n+2k(Th(ν))

∼=
��

// H2n+2k(Th(ξunivk ))

∼=
��

// H2nMU

∼=
��

H2nCPn // H2nBU(k) // H2nBU

The diagonal map sends 1 to the fundamental class. All in all, we see that the image of [CPn]
in H∗MU corresponds under the Thom isomorphism to ν∗[CPn] ∈ H∗BU ∼= Z[β1, β2, . . . ]
with βi corresponding to bi under the Thom isomorphism. We have thus have to show the
following:

Proposition 2.55. We have ν∗[CPn] =
[
(
∑∞
i≥0 βi)

−n−1
]

2n
∈ H∗BU .

Milnor–Stasheff, Theorem 14.10, gives us the following:

Lemma 2.56. The total Chern class of the tangent bundle of CPn is (1+x)n+1 in H∗(CPn) ∼=
Z[x]/xn+1. Thus, the total Chern class of the (stable) normal bundle νCPn is (1 + x)−n−1

(seen as a power series in x).
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This determines completely the mapH∗BU ν∗−→ H∗CPn. The challenge is now to describe
the dual map H∗CPn → H∗BU in terms of the bi. Our trick is to guess the correct map and
then show that it dualizes to ν∗.

Denote the generator of H2kCPn by βk. Thu coproduct on H∗CPn is given by Ψ(βk) =∑
i+j=k βi ⊗ βj . The same formula is true for the βk (which are the images of the βk ∈

H2kCPn under the standard map CP∞ = BU(1) → BU). A map H∗CPn → H∗BU is
compatible with coproducts iff the dual map is multiplicative.

Lemma 2.57. The map

H∗CPn
Φ−→ H∗BU∑

k

βk 7→ [(
∑
k

βk)−n−1]≤2n

is compatible with coproducts. Thus, Φ∗ is multiplicative.

Proof. This is a simple check.

Proof of proposition: To show that Φ∗ : H∗BU → H∗CPn equals ν∗, we just have to show
that for c ∈ H∗BU the total Chern class, we have Φ∗(c) = c(νCPn). Indeed,

Φ∗(c) =
∑
i

〈Φ(βi), ci〉xi

=
∑
i

〈(
∑
k

βk)−n−1, ci〉xi

=
∑
i

〈(1 + β1)−n−1, ci〉xi

= (1 + x)−n−1

= c(νCPn).

Here, we use that the only monomial in the βk that pairs non-trivially with ci is βi1 and
〈βi1, ci〉 = 1. ([Ada74, Lemma 4.3])

Thus, Φ = ν∗. As [CPn] = xn, the result follows.

Corollary 2.58. The [CPn] are generators for π∗MU ⊗Q.

Proof. By Mischenko’s theorem, it is enough to show that the mn are rational generators.
By the inverse formula to Lemma 2.54, the bi are expressible in terms of the mn. As the bi
generate H∗MU , which is rationally isomorphic to π∗MU , the corollary follows.

3 Algebraic geometry and elliptic genera

3.1 Schemes and group schemes
We start with a reminder on the functor of points approach to schemes. Denote for that the
category of commutative rings by Alg.

Proposition 3.1. The functor Sch→ Fun(Alg,Set), sending a scheme X and a commuta-
tive ring R to HomSch(SpecR,X) is fully faithful.

Proof. Every scheme can be covered by affine schemes. We directly see that the functor is
faithful. For fullness: To describe a map X → Y , it is enough to give a compatible map
from all affine open subschemes of X to Y .
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By abuse of notation, we will often denote by SpecR just the functor Alg → Set repre-
sented by R.

We can also describe the image of the embedding Sch → Fun(Alg,Set). We call a
functor Fun(Alg,Set) (or also a functor Fun(Schop,Set)) a Zariski sheaf if it is a Zariski
sheaf restricted to the open subsets of any given SpecR (or X). We call a subfunctor
U ⊂ X : Fun(Alg,Set) open if U ×X SpecR ⊂ SpecR is representable by an open affine
subscheme of SpecR.

Proposition 3.2. A functor X : Alg→ Set is a scheme iff it is a Zariski sheaf and there is
a collection of open subfunctors SpecRi ⊂ X such that

∐
i SpecRi(K)→ X(K) is surjective

for every field K.

Definition 3.3. A group scheme is a group object in schemes, i.e. a lift of the functor
Schop → Set to groups. (Equivalently, just lift Alg → Set to groups. Indeed, maps into a
group object obtain a group structure.)

A group scheme over S is a lift of the functor (Sch /S)op → Set to groups.

Example 3.4. The scheme A1
R represents the underlying set functor on R-algebras. We can

lift this to abelian groups by addition. This gives the group schemes Ga,R.

Example 3.5. The scheme SpecR[t±1] represents the set of invertible elements. This obtains
a group structure by multiplication. This is called Gm,R.

References: See e.g. the last chapter of [EH00] for this “functor of points”-approach.

3.2 Formal groups
On an affine scheme SpecA, a group scheme structure is the same as a Hopf algebra structure
on A, i.e. we need a map A→ A⊗R A with certain properties. Can we use a formal group
law to define the structure of a group scheme on SpecRJxK? Tricky. We need a map
RJxK → RJx1K ⊗R RJx2K of R-algebras. Neither is such a map determined by the image of
x nor is the image isomorphic to RJx1, x2K. (We can look at the coefficients fi of xi1. In the
tensor product RJx1K⊗RRJx2K, these span a finitely generated R-submodule of RJx2K. This
is not true for general power series in two variables.)

Solution: Use the topology on the power series ring. Let A be a ring with an ideal I ⊂ A.
We can equip A with the minimal topology, where all In are open and which is closed under
translation. We denote by Spf A the functor Alg → Set, sending B to the continuous ring
homomorphisms from A→ B. If A is an R-algebra, Spf A can also be seen as a functor

AlgR → Set, B 7→ Homcts(B,A)

For example, Spf RJtK sends each R-algebra to its set of nilpotent elements. This functor
is denoted by Â1

R. Its n-fold product with itself is denoted by Â1
R.

The functor Spf can indeed be extended to (Sch /R)op by precomposing with the functor

(Sch /R)op → AlgR, X 7→ H0(X;OX).

Lemma 3.6. Formal group laws over R are in one-to-one correspondence with lifts of Â1
R

to the category of groups.

Proof. Exercise.

A homomorphism of formal group laws corresponds to a homomorphism of the corre-
sponding group valued functors on R-algebras. Note that this (obviously) is not the identity
on Â1

R. So we might try to define a formal group to be a functor from AlgR to groups whose
underlying functor to sets is isomorphic to Â1

R. But this is an idea, which works as well as
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defining a vector bundle on M to be something that is isomorphic to M × Rn. You only
want it locally!

end of lecture 7

Definition 3.7. Let S be a scheme. An n-dimensional commutative formal group over S
is a Zariski sheaf H : SchopS → Ab such that there exists an open cover {Ui = SpecRi ⊂ S}
such that F |Ui is equivalent to ÂnRi .

Let X be an S-scheme with an ideal sheaf I ⊂ OX (corresponding to a closed subscheme).
Then the formal completion X̂I is defined by X̂I(Y ) = {f : Y → X : f∗I locally nilpotent }.
Here, a sheaf is locally nilpotent if there is an open cover and pulled back to every open in
it, the sheaf is nilpotent. This agrees with the colimit in Zariski sheaves on Sch /S of the
vanishing loci of the In. For example, we can take X = SpecR[t] and I = (t). Then
X̂(t) = Â1

R. More generally, it generalizes the Spf-construction above.
Note that if X is a separated S-scheme and e : S → X is a section of p : X → S, then

e is automatically a closed immersion and hence defines an ideal sheaf. Indeed, look at the
pullback diagram

S //

��

X

∆

��
X

(id,e) // X ×S X.

In particular, this is true for the identity section e : S → G of a separated group scheme
G. We claim first that the group structure on G induces one on the formal completion Ĝ.
Indeed, let I be ideal sheaf corresponding to e. Let f, g : X → G be morphisms such that
f∗I and g∗I are locally nilpotent. Equivalently, the compositions fi, gi : Xred → X → G
from the underlying reduced scheme X factor over the vanishing locus of I, namely im(e).
The same is true for (fi) · (gi) = (f · g)i as e is the identity section. Thus, the pullback of I
along f · g is locally nilpotent.

One can show that Ĝ does not only have a group structure, but is actually often a formal
group:

Theorem 3.8. Let G be a commutative group scheme that is smooth of relative dimension
n over S. Then Ĝ is a formal group of dimension n over S.

If S is a field, one can for example argue as follows: Every complete regular local ring
containing a field k is of the form kJx1, . . . , xnK.

We are only interested in one-dimensional formal groups. To produce interesting formal
groups, we should look for one-dimensional smooth group schemes. Over C, tori come to
mind, so we might expect in addition to Ga and Gm also genus 1 curves as examples. Over
algebraically closed fields this is all there is:

Theorem 3.9. Every one-dimension smooth connected group scheme over an algebraically
closed field is isomorphic to Ga or to Gm or proper of genus 1 (and this case is called an
elliptic curve).

As reference, note first that every smooth connected curve over an algebraically closed
field is quasi-projective (see e.g. [Oss]; a variety is for him a irreducible, separated scheme
that is Zariski locally isomorphic to an affine variety over an algebraically closed field). The
argument in the affine case is given in [You], but the same proof works in the quasi-projective
setting. Let us sketch a few ideas. Let k be algebraically closed a G a smooth connected
group scheme over k. Then it’s easy to see that its cotangent bundle Ω1

G/k is trivial. If G is
proper, then H0(G; Ω1

G/k) is the genus of G, which must thus be 1. The non-proper case is
slightly more difficult. Embed G into a proper curve C (i.e. G is C without finitely many
points). The action of G on itself can be extended to an action of G on C via automorphisms.
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Curves of genus ≥ 2 have only finitely many automorphisms by Hurwitz. Hence, C has genus
at most 1. The rest of the argument can be found in [You]. (See also [Con02] for another
important result in the classification of group schemes.)

Summarizing: We care about elliptic curves.

References: There are several different approaches to formal groups, which makes the
subject a bit confusing. See e.g. [Str99] or [Zin] for different approaches.

3.3 Elliptic curves over algebraically closed fields
We will begin with the theory over an algebraically closed field k. A variety will for us be a
separated integral scheme of finite type over k and a curve is a variety of dimension 1.

Definition 3.10. An elliptic curve over k is a smooth proper curve C of genus5 1 with a
chosen point e ∈ C(k).

In the case k = C, every elliptic curve is a torus, i.e. of the form C/L for a lattice
L ⊂ C. There are different ways to show this. The first uses uniformization: The universal
cover of the elliptic curve C must be C or H or S2 by uniformization. Thus, C = C/G
or H/G or S2/G, where G is a group of automorphisms (acting properly discontinuous),
which is isomorphic to π1C ∼= Z2. The last case is clearly impossible (S2 cannot cover
a genus 1-curve). If the universal cover of C is H, then C gets a hyperbolic metric; this
implies by Gauss–Bonnet that the Euler characteristic is negative. Thus, C ∼= C/G, where
G is isomorphic to Z2. You can show that only translation subgroups can act properly
discontinuously. Thus, G is a lattice inside of C.

We can also sketch a different way: Let (C, e) be elliptic curve over C. The vector space
H0(C; Ω1) of differentials equals the genus of C, i.e. 1. For every path γ in C and every
differential ω ∈ H0(C; Ω1), we can consider the integral

∫
γ
ω. This is homotopy invariant in

γ if we leave the endpoints fixed. In particular, we obtan a map H1(C;Z)→ H0(C; Ω1)∨ by
evaluating on paths. Set Jac(C) to be the quotient. It is not too hard to see that H1(C;Z)
embeds as a lattice so that Jac(C) is a complex torus. Note also that it has a group structure.

Define a map D : C → Jac(C) as follows: Given a differential ω ∈ H0(C; Ω1) and a point
x ∈ C, we choose a path γ from e to x and integrate:

∫
γ
ω. While this depends on the

choice of γ any to choices of γ differ by an element of H1(C;Z) so that the image in Jac(C)
is well-defined.

A holomorphic map is open if it is not constant. Clearly the map is not constant (locally,
we can work in C and just write down examples). Thus D is open. As the image is also
closed, D is surjective. The Abel–Jacobi theorem says that it is also injective and hence an
isomorphism.

In the following, we will need some facts about divisors and their correspondence to line
bundles. See e.g. [Har77, Sections II.6 and IV.1] or [Ful69, Chapter 8] for a more elementary
account. We will use the notation O(D) to denote the line bundle associated with a divisor
D. We will use the notation K to denote a divisor such that O(K) ∼= Ω1

C/k on a curve C.
This has degree 2g − 2, where g is the genus of C. We denote by l(D) the dimension of the
global sections H0(C;O(D)).

end of lecture 8

Theorem 3.11. An elliptic curve has the (unique) structure of a group scheme over k with
e as unity.

5This is defined as dimkH
0(C; Ω1

C/k) = dimkH
1(C;OC).
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Proof. We will just give an indication. We denote by Jac(C)(k) the set of all formal linear
combinations

∑
i aiPi of k-points of C (i.e. divisors) such that

∑
i ai = 0 (degree 0) modulo

the subgroup of principal divisors: Given a meromorphic function f on C, we give Pi the
valuation ai if f has a pole of order ai at Pi or a zero of order −ai; the formal combination∑
i aiPi is called a principal divisor. As the principal divisors form a subgroup of all divisors

(just take f · g), we see that Jac(C)(k) has an abelian group structure.
We have a map C(k)→ Jac(C)(k), sending P to [P − e]. We will show using Riemann–

Roch that this is a bijection. Let D be a divisor of degree 0. Then Riemann–Roch implies
that

l(D + e)− l(K −D − e) = deg(D + e) + (1− g(C)) = 1.

As K has degree 0, we see that K −D− e has degree −1. Thus l(K −D− e) = 0. (Indeed,
if there is a section of O(D) (without poles), then there is a divisor D′ equivalent to D with
all coefficients ≥ 0, i.e. an effective divisor.) We see that l(D + e) = 1. This means there
is an effective divisor of degree 1 equivalent to D + e, which must be of the form P ; thus
D is equivalent to P − e. If Q is another point whose divisor class equals that of D + e, we
see that there is a section of O(D + e) whose only zero is at Q. As the space of sections of
O(D + e) is 1-dimensional, we see that P = Q.

One way to actually prove that C is a group scheme is to strengthen this theorem to
see that C represents the functor T 7→ Pic0(C/T ) from k-schemes (of finite type) to abelian
groups. Here, Pic0(C/T ) is the group of line bundles on C ×k T that restrict to a degree
0-line bundle on each fiber of pr2 : C ×k T → T modulo those of the form pr∗2 L for L a line
bundle on T . (For details, see [Har77, Section IV.4].)

Theorem 3.12. Every elliptic curve (C, e) can be imbedded into P2
k and is cut out by an

equation of the form

Y 2Z + a1XY Z + a3Y Z
2 = X3 + a2X

2Z + a4XZ
2 + a6Z

3. (4)

The point [0 : 1 : 0] is the chosen point. Conversely, such an equation defines an elliptic
curve iff a certain polynomial ∆ in the ai does not vanish.

Proof. Consider the divisor n ·e. By Riemann–Roch, we have l(n ·e) = n for n ≥ 1. We have
obvious inclusions O(n · e) ⊂ O((n + 1) · e). We have H0(C;OC) = k · 1. As H0(C;O(2e))
is 2-dimensional, we have one basis vector 1 and call another x. In H0(C;O(3e)), we have
one more basis vector and call it y. We can consider 1, x, x2, x3, xy, y, y2 in O(6e). As this
is only 6-dimensional, there must be a relation

a0y
2 + a1xy + a3y = a′0x

3 + a2x
2 + a4x+ a6.

If not both a0 and a′0 are nonzero, the pole orders on the two sides do not agree. We can
replace x by a0a

′
0x and y by a0(a′0)2y and divide everything by a3

0(a′0)4 and can thus set
a0 = a′0 = 1.

We get a map Φ: C → P2
k that we can informally describe by Φ(p) = [x(p), y(p), 1]. This

makes sense unless e = p; in this case y has the highest pole order, so we set this to be
[0 : 1 : 0]. General theory says that this is a morphism of schemes and the image is exactly
given by the projective variety E cut out by (4).

We sketch now, why Φ: C → E is an isomorphism. The degree of a map C1 → C2 can
be computed as the number of preimages of a point in the target weighted by the order; this
is multiplicative. The map C → E → P1 sending p to [x(p), 1] is of degree 2 because ∞ has
e as preimage with order 2. Thus, E → C has degree dividing 2. The map C → E → P1

sending p to [y(p), 1] is of degree 3 because ∞ has e as preimage with order 3. Thus, C → E
has degree 1. Next, we show that E is smooth. An explicit argument with the equation
defining E shows that if it is singular, there is a rational map E → P1 of degree 1. Thus,
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the composite C → E → P1 would be a rational map between smooth curves; such a map
can be extended to a morphism, which is of degree 1 and hence an isomorphism, which is
absurd. Thus, E is smooth and thus Φ is an isomorphism. [For details see [Sil09, Proposition
3.1]

Remark 3.13. In class, we presented a different argument why Φ is an isomorphism. Essen-
tially, we had to show that Φ is a closed immersion; in this case one says that 3e is a very
ample divisor. Hartshorne [Har77, Prop 3.1] gives a criterion when a divisor is very ample.
In our case, we could just use the Riemann–Roch formula that l(D) = dim|D| = degD if
degD > 0. This is actually done in Example 3.3.3 in [Har77].
Remark 3.14. We will later see that one can simplify this equation tremendously if char(k)
is neither 2 or 3, namely to y2 = x3 + a4x+ a6. The discriminant ∆ is a constant multiple
of ∆ = 27a2

6 + 4a3
4. If char(k) is indeed neither 2 or 3, the factor does not matter, of course.

Let us actually prove in this case that the nonvanishing of ∆ is equivalent to smoothness:
Let f(x, y) = x3 + a4x + a6 − y2 and C be the curve defined as its zero set. Then a point
(x0, y0) on C is singular iff ∂f

∂x (x0, y0) = 3x2
0 + a4 = 0 and ∂f

∂y (x0, y0) = 2y0 = 0. Assume
that this is the case. Then y0 = 0 and x3

0 + 1
3a4x0 = 0. Substract the latter from f(x0, 0)

and get 2
3a4x0 + a6 = 0, i.e. x0 = − 3a6

2a4
. Plugging this into the equation for ∂f

∂x , wee see that

a4 = − 27a2
6

4a2
4

or, equivalently, 27a2
6 + 4a3

4 = 0. This only checked smoothness on the affine
part. We still have to check smoothness at [0 : 1 : 0], i.e. smoothness of x3 +a4xz

2 +a6z
3−z

at (0, 0). This is clear. (See [Sil09, III.1] for an extensive treatment of these equations.)
We can see what happens with the group law under this embedding. Consider a line

H ⊂ P2
k defined by an equation s = ax + by + cz = 0. Suppose that H intersects Φ(C) in

three points P,Q and R; if counted with multiplicities, Bezout’s theorem actually implies that
it will always intersect C in three points. We can view s as a section of O(1) on P2

k; thus Φ∗s
is a global section of Φ∗O(1) = O(3e), namely ax+by+c (where x, y, 1 ∈ H0(C;O(3e))) as in
the previous proof. The zero locus of Φ∗s consists exactly of P,Q and R. Thus, P+Q+R−3e
is zero in the class group. Thus, P + Q + R = 0 in the group law. Upshout: To compute
P + Q, draw a line connecting P and Q (tangent if P = Q); denote the third intersection
with C by −R. Then draw a line connecting e and −R; the third point of intersection is
R = P +Q.

One can use this description to show that the addition morphism of the group structure
on points described above is actually given a a morphism of schemes. (Morphism of varieties
are determined by what they do on points [GW10, Section 3.13].)

3.4 Elliptic curves over general base schemes
Definition 3.15. Let S be a scheme. An elliptic curve E over S is a smooth proper
morphism p : E → S with a section e : S → E such that for every morphism x : Spec k → S
(with k algebraically closed), x∗E is an elliptic curve over k.

Theorem 3.16. Every elliptic curve over S has the unique structure of a group scheme over
S with unity e.

We will not prove this statement. The basic idea is the same as for the algebraically
closed case, but the details are quite a bit harder (and actually the general proof reduces at
a crucial point to the case of a field). See [KM85, Theorem 2.1.2].

end of lecture 9

Theorem 3.17. For every elliptic curve E, we can find a Zariski covering S =
⋃
i Ui with

Ui = SpecRi so that E ×S Ui has a Weierstrass form, i.e. can be embedded into P2
Ri

and is
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cut out by an equation

Y 2Z + a1XY Z + a3Y Z
2 = X3 + a2X

2Z + a4XZ
2 + a6Z

3

with ∆ invertible.

For proofs see [Ols16, Section 13.1.6] or [KM85, Section 2.2]; a more detailed account
appears in [MO17]. Note here the following lemma:

Lemma 3.18. An element x of a ring R is invertible iff f(x) 6= 0 for every map f : R→ k
to a field k.

Proof. The only if is clear. If x is not invertible, choose a maximal ideal m ⊂ R not containing
x. Then x is zero in the field R/m.

Remark 3.19. Under certain assumptions, the general Weierstrass equation of an elliptic
curve C can be simplified. We will choose some ad hoc conventions. These will be different
from e.g. [Sil09].

Assume first that 1
2 ∈ R. Then set y′ = y − 1

2a1x − 1
2a3. The coefficient in front of xy

and y become zero and thus Weierstrass equation gets the form y2 = x3 + b2x
2 + b4x+ b6.

Assume further that 1
3 ∈ R. Set x

′ = x− 1
3b2. Then the x2-term vanishes and we get an

equation of the form y2 = x3 + c4x+ c6.
Going back to the case where only 1

2 ∈ R and we have simplified the Weierstrass equation
to 0 = f(x, y) = x3 + b2x

2 + b4x + b6 − y2. Points of the form (t, 0) are exactly those of
exact order 2. Indeed: Exact order 2 means that the tangent line at that point goes through
[0 : 1 : 0] that is: of the form ax + d = 0. This happens iff ∂f

∂y = −2y is zero at that point,
i.e. iff y = 0. Suppose that there is is a point on C of the form (t, 0) with t ∈ R. By the
coordinate change x′ = x − t, we can move this point to (0, 0). That (0, 0) is on C means
exactly that b6 = 0. Upshot: If we have a point of exact order 2 on our elliptic curve (with
1
2 ∈ R, we can simplify the Weierstrass equation to y2 = x3 + b2x

2 + b4x.
This already shows that the Weierstrass form is not unique. But we understand isomor-

phisms between them. Let C be an elliptic curve over SpecR with a Weierstrass form (x, y).
Then H0(C;O(2e)) ∼= R ·1⊕R ·x and H0(C;O(3e)) ∼= R ·1⊕R ·x⊕R ·y. Other Weierstrass
coordinates (x′, y′) must be of the form x′ = vx + r and y′ = wy + sx + t with v, w ∈ R×.
If we plug this into (y′)2 + · · · = (x′)3 + · · · , we get w2y2 + · · · = v3x3 + · · · . This must
be a invertible multiple of y2 + · · · = x3 + · · · and thus w2 = v3. Putting u = w/v, we see
that u3 = w2 and u2 = v3. Thus, the general form of coordinate change is x′ = u2x+ r and
y′ = u3 + sx+ t. (Note that e.g. [Sil09, III.1] has a slightly different convention.)

We don’t want to compute what a general coordinate change does to the ai (though Sil-
verman does). We just want to see what coordinate changes preserve the simpler Weierstrass
forms we have.

Example 3.20. Let y2 = x3 + b2x
2 + b4x+ b6. Then a coordinate change can only fix the

form of the equation (i.e. a1 = a3 = 0) if y′ = u3y and x′ = u2x+ r.
Even simpler: Let y2 = x3 + c4x + c6 be a Weierstrass form. Set x′ = u2x + r and

y′ = u3y + sx + t. It is easy to see that this is of the form (y′)2 = (x′)3 + c′4x
′ + c′6 iff

r = s = t = 0 and c′4 = u4c4 and c′6 = u6c6.

Is there any way, we can actually nail down c4 and c6 precisely? This we will see in the
next section.
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3.5 Invariant differentials
Proposition 3.21. Let p : G → S be a group scheme with multiplication m : G ×S G → G
and unit section e : S → G. Set ωG/S = e∗Ω1

G/S. Then there is a natural isomorphism
Ω1
G/S
∼= p∗ωG/S.

Proof. View G×SG as a G-scheme via pr2. Consider now the automorphism (m,pr2) : G×S
G→ G×SG. As this is an automorphism over G, we obtain (m,pr2)∗Ω1

G×SG/G
∼= Ω1

G×SG/G
.

Combined with Ω1
G×SG/G

∼= pr∗1 Ω1
G/S , we obtain m∗Ω1

G/S
∼= pr∗1 Ω1

G/S . Pulling this back
along (ep, id) : G→ G×S G, this gives Ω1

G/S
∼= (ep)∗Ω1

G/S = p∗ωG/S .

Let C = G be an elliptic curve. Then C is smooth of relative dimension 1 over S so
that Ω1

C/S is a line bundle and thus also ωC/S . Zariski locally on S, this is trivial and
hence also Ω1

C/S . A non-vanishing section (and hence a trivialization) of Ω1
C/S is called an

invariant differential. Actually, every elliptic curve in Weierstrass form has an invariant
differential. The explicit formula is η = dx

2y+a1x+a3
(idea: write the elliptic curve as zero

locus of f(x, y) = 0. Then (∂f∂y )−1dx = −(∂f∂x )−1dy. Thus, if the differential (∂f∂y )−1dx has a
pole somewhere, then ∂f

∂y = ∂f
∂x = 0 at that point; this point would be thus singular, which

cannot hapen. Thus, η is a section of Ω1
C/S . If η has a zero somewhere, then it has a zero

over a point of s; thus, we can show over an algebraically closed field that η is nowhere
vanishing. In this case Ω1

C/S is isomorphic to the structure sheaf; thus every section that
vanishes somewhere, vanishes everywhere. But η is clearly not identically zero for any choice
of a1 and a3.)
Remark 3.22. By adjunction, the proposition gives a map ωC/S → p∗Ω

1
C/S . If S = Spec k

for k a field, this is an isomorphism. Indeed: Both sides have one-dimensional global sec-
tions (as the genus of C is one) and the map cannot be zero as else the adjoint would not
be an isomorphism. By a technique called cohomology and base change (combined with
Grothendieck duality) one can deduce that it is actually always true that ωC/S → p∗Ω

1
C/S is

an isomorphism. Thus, an invariant differential can be equivalently seen as a trivialization
of ωC/S .

Now assume that C is given as y2 = x3 + b2x
2 + b4x + b6 so that η = dx

2y . If we do the
coordinate change (x′, y′) = (u2x, u3y), the new differential dx

′

2y′ is u
−1η. Thus, c4 and c6 (in

the case 1
6 ∈ R) are uniquely determined, once we fix an invariant differential!

end of lecture 10
This implies the following proposition:

Proposition 3.23. The scheme SpecZ[ 1
6 ][c4, c6][∆−1] represents the moduli problem that

associates to each scheme S over Z[ 1
6 ] the set of isomorphism classes of elliptic curves with

a chosen invariant differential.
The scheme SpecZ[ 1

2 ][b2, b4][∆−1] represents the moduli problem that associates to each
scheme S over Z[ 1

2 ] the set of isomorphism classes of elliptic curves with a chosen invariant
differential and a chosen point of exact order 2.

Proof. We only prove the first thing. We first claim that every elliptic curve over a scheme
S over Z[ 1

6 ] with an invariant differential has a Weierstrass form. Indeed, it has one Zariski
locally on S, namely one of the form y2 = x3 +c4x+c6 and c4, c6 are canonically determined
(by using the chosen invariant differential); thus, they glue to functions c4, c6 ∈ H0(S;OS).
Likewise, the functions x, y are canonically determined and they glue to a map C → P2

S that
is locally a closed immersion with image cut out by y2 = x4 +c4x+c6 and thus also globally.
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Thus, every elliptic curve over S with a chosen invariant differential is isomorphic to a
unique elliptic curve of the form y2 = x3 + c4x+ c6 with invariant differential dx2y such that
∆(c4, c6) is invertible.

This gives two elliptic curves over a localization of a polynomial ring in two variables.
Both of these seem to have a natural grading (|bi| = i and |ci| = i). How does this correspond
to the functors they represent?

Proposition 3.24. Let R be a ring. There is a natural one-to-one correspondence be-
tween Gm-actions on the functor SpecR represented by R on Alg and Z-gradings of R (with⊕

i∈ZRi
∼= R).

Proof. We will only sketch the argument. Denote the functor represented by R on Alg by
SpecR. A Gm-action on SpecR is a map

Spec(R⊗ Z[t±1]) ∼= Gm × SpecR→ SpecR

satisfying the group action axioms. By Yoneda it corresponds to a map

Φ: R→ R⊗ Z[t±1].

Denote the ti-component of Φ by Φi. The group action property corresponds to r =∑
i∈Z Φi(r) and Φj(Φi(r)) = δijΦi(r). If we set Ri = Φi(R), we see that Φ defines an

isomorphism R→
⊕

i∈ZRi with the summing map as inverse.

The two functors in Proposition 3.23 have obvious Gm-actions: We can just multiply the
chosen invariant differentials with a unit. I leave it as an exercise to check that the gradings
match.
Remark 3.25. One can generalize the last proposition to gradings by an arbitrary abelian
monoid M if one replaces Gm by SpecZ[M ] (monoid ring). For example, N≥0-gradings.

3.6 The formal group
Every elliptic curve is smooth, so its completion is a formal group. Actually, a Weierstrass
equation gives an explicit identification of the formal completion with Â1

R. For simplicity, we
will only explain this in the case when the Weierstrass form is Y 2Z = X3 + c4XZ

2 + c6Z
3,

defining an elliptic curve C over a ring R. We want to have coordinates at the origin [0 : 1 : 0].
Thus, we see y = 1 and obtain z = x3 + c4xz

2 + c6z
3. Thus, we can express z in terms of x

and higher powers in z. Iterating, we obtain:

z = x3 + c4xz
2 + c6z

3

= x3 + c4x(x3 + c4xz
2 + c6z

3)2 + c6(x3 + c4xz
2 + c6z

3)3 = x3 + c4x
7 + c6x

9 + · · · =: f(x)

There is a resulting morphism Â1
R → C; on every R-algebra T , this sends a nilpotent element

x to [x : 1 : f(x)]. One sees that this induces an isomorphism Â1
R → Ĉ: Indeed, on every

R-algebra T , where x and z are nilpotent elements satisfying z = x3 + c4xz
2 + c6z

3, we have
z = f(x) (with no additional constraints on x).

Via this isomorphis, the group structure on Ĉ induces a group structure on Â1
R, which is

the same as a formal group law over R. Thus, every elliptic curve over a ring R in Weierstrass
form produces a formal group law over R (which depends not only on the elliptic curve, but
also on the chosen Weierstrass equation).

For the general case of a Weierstrass equation and also a procedure how to compute the
formal group law explicitly, see [Sil09, Section IV.1]. We record a general fact:
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Proposition 3.26. Let C be an elliptic curve over a ring R in Weierstrass form. Assume
that R is graded and |ai| = 2i. Then the formal group law corresponding to the coordinates
chosen above is graded.

Proof. The idea is that choice |x| = −2 and |z| = −6 gives a consistent choice of grading
everywhere.

Remark 3.27. You will have noticed a confusing issue. Before, we said that the natural
algebraic grading of, say, ci is i. Now we need it to be 2i to be compatible with our
topological conventions. There’s nothing that forbids us to double all the degrees of our
generators, but we have to be careful, which convention we need at which place.

3.7 Weierstrass Elliptic genera
Definition 3.28. Let C be an elliptic curve over a ring R in Weierstrass form. Let R = R∗
be graded such that |ai| = 2i and let F be its associated graded formal group law as above.
This defines a genus MU∗ → R∗.

We call such a genus a complex Weierstrass elliptic genus.

To really do something with it, we have to compute its logarithm, which gives the values
on CPn by Mischenko’s theorem. We will do this later using complex-analytic methods. One
thing we want to do already now though is to define a versions of Weierstrass elliptic genera
that go from oriented bordism, which is geometrically maybe more important. Recall to that
purpose the following theorem:

Theorem 3.29. The ring MU∗⊗Q is a polynomial ring generated by the [CPi] and the ring
MSO∗ ⊗Q is a polynomial ring generated by the [CP2i].

If we denote the forgetful morphismMU∗ →MSO∗ by u, it follows that uQ : MU∗⊗Q→
MSO∗⊗Q is onto with kernel generated by the CP2i+1. There is also the following refinement
of this observation.

Theorem 3.30. The morphism u : : MU∗ →MSO∗/tors is onto.

Proof. See [Sto68, p. 180].

Proposition 3.31. Let R∗ be a torsionfree graded ring and φ : MU∗ → R∗ be a ring mor-
phism. Then φ factors over u : MU∗ →MSO∗ if and only if φ([CP2i+1]) = 0. This happens
if and only if the logarithm of the formal group law classified by φ is of the form

∑
λ2i+1x

2i+1.

Proof. As R is torsionfree, φ factors over u if and only if it factors over u. The kernel
of u : MU∗ → MSO∗/tors equals the intersection of ker(uQ) with MU∗ as MSO∗/tors →
MSO∗ ⊗ Q is injective. Thus, ker(u) ⊂ ker(φ) if and only if ker(uQ) ⊂ ker(φQ). The latter
happens iff φ([CP2i+1]) = 0.

The last observation follows directly from Mischenko’s theorem 2.51. Indeed, if we write
the logarithm of the formal group law classified by φ as logF =

∑
λix

i, we have λn+1 =
φ([CPn])
n+1 ; thus λ2i = 0 iff φ([CP2i−1]) = 0.

In particular, this implies if R∗ is concentrated in degrees divisible by 4. If we equip
Z[ 1

2 ][b2, b4,∆
−1] with the gradings |bi| = 2i, we obtain thus Weierstrass elliptic genus

MSO∗ → Z[ 1
2 ][b2, b4,∆

−1]. The same works with Z[ 1
6 ][c4, c6,∆

−1].
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3.8 The Jacobi quartic
So far, we have considered elliptic curves defined by cubic equations. For applications of
elliptic genera it is more convenient to define elliptic curves via quartic equations instead.

Let’s consider the affine curve C defined by

y2 = 1− 2ux2 + vx4

over some Z[ 1
2 ]-algebra R. This is nonsingular iff u2 − v is invertible. We assume this and

further that v is invertible (so that we really have a quartic curve).
By homogenization, we obtain a curve in P2

R defined via the equation:

Y 2Z2 = Z4 − 2uX2Z2 + vX4.

If this was a smooth curve (over a field), it would have genus 3 (by the general genus formula
g = (d−1)(d−2)

2 ), but we will see that it is singular. There is only one solution with Z = 0,
namely [0 : 1 : 0]. We claim that this is singular. Dehomogenizing with Y = 1, indeed gives
z2 = z4 − 2ux2z2 + vx4 and (0, 0) is obviously singular. (Actually, this singularity is quite
bad: it is not ordinary. Else, the genus-degree formula for ordinary singularities would give
the wrong answer!)

We would like to produce a proper smooth curve that is birational to this curve. Consider
to that purpose an affine curve C ′ defined by the equation

y2 = x4 − 2ux2 + v.

Under our assumptions on u and v this is also smooth. Consider the part C◦ of C with x 6= 0
(i.e. if R is an integral domain, we are taking out two copies of SpecR, namely (0,±1)). This
maps via the transformation

(x, y) 7→
(

1

x
,
y

x2

)
isomorphically onto the open part of C ′ also defined by x 6= 0. We define C = C

∐
C◦ C

′,
where we embed C◦ into C ′ and once using the transformation above. As the gluing of two
smooth R-curves, this is clearly a smooth R-curve again. The curve C has a section as C
has one, namely e = (0, 1).

end of lecture 11
We have morphisms

C → P1
R, (x, y) 7→ [x : 1]

C ′ → P1
R, (x, y) 7→ [1 : x]

that glue to a morphism Φ: C → P1
R. The morphism Φ is finite as it is finite when restricted

to the preimage of the two standard A1
R. [Indeed: Let’s do it for the preimage of the first A1

R,
which is C. Then we have to check that R[x, y]/(y2−1+2ux2−vx4) is a finite R[x]-module.
It is clearly generated by 1 and y.] Thus, C is a proper over R.

To show that C is an elliptic curve, it remains to compute the genus if R = k is an
algebraically closed field. The map Φ has degree 2 (as generically for every x, there are
two possibilities for y). Moreover, there are four points where the map ramifies, namely the
points in C and C ′ with y = 0 (the quartic polynomial has 4 zeros because u2 6= v and x = 0
is no zero). By the Riemann-Hurwitz formula, we obtain that the Euler characteristic of C
is 2(−2) + 4, where −2 is the Euler characteristic of P1

k and 4 is total ramification number
(all 4 points are just ordinary double points as the degree of the map is 2). Thus, C is a
genus 1 curve.

Thus, we have shown that C is an elliptic curve over SpecR, called a Jacobi quartic. The
universal case is R = Z[ 1

2 ][u, v][(u2 − v)−1v−1].
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Remark 3.32. It is indeed true that the universal Jacobi quartic is isomorphic to the universal
elliptic curve with Γ1(2)-structure and an invariant differential. We give a sketch. To produce
a map, we have to give a 2-torsion point and a nowhere vanishing differential on the universal
Jacobi quartic C.

We claim that the point P = (0,−1) is a 2-torsion point. It is enough to check this in the
algebraically closed case (e.g. by reducing the universal case R = Z[ 1

2 ][u, v][(u2 − v)−1v−1]
to the algebraic closure of its quotient field). Then the 2-torsion property is equivalent to
(P − e) + (P − e) is equivalent to (e − e) = 0 as divisors, i.e. that there is a meromorphic
function on C with double zero at P and double pole at e. We claim that the meromorphic
function f = 1

y−1+
√
vx

+ 1
2 on C does the job.

By the same argument as for Weierstrass curves dx
2y is a nowhere vanishing differential on

C. On C ′, the differential takes the form −dx2y and is thus also nowhere vanishing.
All in all, we obtain a map Z[ 1

2 ][b2, b4][∆−1] → Z[ 1
2 ][u, v][(u2 − v)−1v−1]. One can com-

pute that the quantity ∆ equals b24(b22 − 4b4) up to unit multiple. Thus, the two rings are
isomorphic (i.e. with b2 7→ u and b4 7→ 1

2v); it is only to check whether the map we have
is an isomorphism. Computing where the generators go can be done over an algebraically
closed field, e.g. C (as Z[ 1

2 ][u, v][(u2 − v)−1v−1] embeds into C). We will come back to this
point later (perhaps).

3.9 The Ochanine elliptic genus
Consider a Jacobi quartic C : y2 = 1 − 2ux2 + vx4 over a Z[ 1

2 ]-algebra R (or rather its
compactification C). We formally complete this elliptic curve at its neutral element (0, 1) to
obtain a formal group.

We can express y as a power series in x:

y =
√

1− 2ux2 + vx4 = 1−
∞∑
n=1

(
2n

n

)
(2ux2 − vx4)n

(2n− 1)4n
=: f(x)

Note that the only denominators are powers of 2. As before, there is a resulting morphism
Â1
R → C; on every R-algebra T , this sends a nilpotent element x to [x : 1 : f(x)]. One sees

that this induces an isomorphism Â1
R → Ĉ. This defines a formal group law F over R. This

formal group law is graded if |u| = 4 and |v| = 8.
The universal case is R = Z[ 1

2 ][u, v][(u2 − v)−1v−1] with |u| = 4 and |v| = 8. As the
grading is divisible by 4, we see that the associated genus MU∗ → R factors over MSO∗.

Definition 3.33. The genus MSO∗ → Z[ 1
2 ][u, v][(u2 − v)−1v−1] just defined is called the

Ochanine genus.

This is the most important elliptic genus. When we compute its logarithm (using analytic
methods), we will actually see that it takes values in Z[ 1

2 ][u, v]. A genus MSO∗ → R that
factors over the Ochanine genus is often just called elliptic genera.

As a teaser, we already mention a remarkable theorem of Euler:

Theorem 3.34 (Euler, 1761). Let R(x) = 1− 2ux2 + vx4. Then

F (x, y) =
x
√
R(y) + y

√
R(x)

1− vx2y2
.

This is one of the few formal group laws with nice closed form. But why was Euler
interested in formal groups, almost 200 years before their definition by Bochner in 1945?
The answer is: elliptic integrals.
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3.10 Elliptic integrals and logarithms
The goal of this section is to compute the logarithms of the formal group laws attached to
elliptic curves we have defined and, at the same time, to give a short overview of elliptic
functions and elliptic integrals.

Recall that the logarithm is an isomorphism between the given formal group law and
the additive formal group law (over a Q-algebra). The ideal situation is when your formal
group law comes from a group scheme G and you give an isomorphism of G to some other
group scheme that defines manifestly the additive formal group law. This works very well
for elliptic curves over the complex numbers.

We already sketched in Section 3.3 a proof that every elliptic curve (C, e) over the complex
numbers is isomorphic to C/L for a lattice L in C. This went as follows: Choose an invariant
differential η on C. Then we obtain a map

Φ: C → C/L, P 7→
∫ P

e

η.

We have to understand this isomorphism explicitly near e. More precisely: Choose a (formal)
coordinate x on C near e. Then the logarithm of the formal group law of C with respect to
x is the (Taylor) power series that expresses Φ near e in terms of x.

Example 3.35. Let C be given by Y 2Z = X3 + c4XZ
2 + c6Z

3 in P2
C (with c4, c6 ∈ C).

As we are interested in a neighborhood around e = [0 : 1 : 0] set y = 1 and we obtain
z = x3 + c4xz

2 + c6z
3. This has an invariant differential η = dx

1−2c4z2−3c6z2 . Then the
logarithm of the formal group law of C (with respect to x) is

∫ t
0

dx
1−2c4z(x)2−3c6z(x)2 , where

z(x) is the power series describing z in terms of x that we computed in Section 3.6. Sadly,
this is not very explicit.

Example 3.36. The situation is a bit better for the Jacobi quartic. Let C be a Jacobi
quartic with affine part y2 = 1 − 2ux2 + vx4 and neutral element e = (0, 1). Consider the
invariant differential η = dx

y . Away from the zeros of y (e.g. near e), we can write y =
√
R(x)

with R(x) = 1 − 2ux2 + vx4 as we did before. Thus, we obtain that the logarithm of the
formal group F of C is

∫ t
0

dx√
R(x)

.

We obtain F (x, y) = expF (
∫ x

0
dt√
R(t)

+
∫ y

0
dt√
R(t)

). We cannot quite recover Euler’s theo-

rem from last section before we know more explicitly what expF does.

Remark 3.37. Recall from calculus that one can calculate integrals of rational functions of
x (using arctan and stuff like this) and also integrals of the form

∫
dx√
1−x2

by substituting
x = sin(t). In contrast, integrals involving squareroots of polynomials of degree bigger than
2 cannot be integrated using only elementary function (including sin, arctan etc.). Integrals
over rational functions of x and

√
R(x) with R(x) a polynomial of degree 3 or 4 are called

elliptic integrals. An example is T (k) =
∫ 1

0
1−k2x2√

(1−x2)(1−k2x2)
dx. It turns out that the arc

length of an ellipse x2/a+ y2/b = 1 is given by 4aT (
√

1− (b/a)2). Thus, the name.
Another popular example is the integral

∫
dx√
1−x4

calculating the arc length of the so-
called lemniscate. This was studied by Fagnago. Euler studied more generally integrals of
the form

∫
dx√
R(x)

with R(x) = 1− 2ux2 + vx4, thus exactly the form we are interested in!

Let φ be the Ochanine genus and F be the associated formal group law. Recall that
Mischenko’s theorem states that log′F (x) =

∑
n[CPn]xn and we just computed that log′F (x) =

dx√
1−2ux2+vx4

. This is quite explicit, we can just Taylor expand (1 − t)−1/2 and plug t =

2ux2−vx4 in; we could also use Mathematica to do this for us. Anyhow, the first few values
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are:

φ(CP2) = u

φ(CP4) =
1

2
(3u2 − v)

φ(CP6) =
1

2
(5u3 − 3uv)

φ(CP8) =
1

8
(35u4 − 30u2v + 3v2).

Note two things: First, φ(CP2i+1) vanishes for grading reasons as we have already seen
above. Second, φ(CP2i) is always in Z[ 1

2 ][u, v] (as we see from the Taylor expansion) and
thus the Ochanine genus actually takes values in Z[ 1

2 ][u, v].

Example 3.38. If we set u = v = 1, we obtain the signature as then log′F = 1
1−x2 and thus

φ(CP2i) = 1 (this determines the genus uniquely).

Example 3.39. If we set v = 0 and u = − 1
8 , we obtain the Â-genus, which is geometrically

extremely important. For example, it vanishes on a spin manifold if it has a non-trivial
S1-action or a metric of positive scalar curvature.

3.11 Elliptic functions and exponentials
To compute the exponential of Weierstrass and Jacobi formal group laws, we have to give
an isomorphism from C/L to Weierstrass or Jacobi curve. This is done using the theory of
elliptic functions, i.e. meromorphic functions on elliptic curves. So fix a lattice L in C.

Given a meromorphic function f on C, the section df of the sheaf Ω1 on C is f ′dz with
f ′ the classical meaning. The differential dz descends to a nowhere vanishing differential dz
on C/L. A meromorphic function f on C/L corresponds to a doubly-periodic function f̃ .
The differential df equals f ′dz, where f ′ corresponds to f̃ ′.

Proposition 3.40. There is a meromorphic function ℘ on C/L satisfying

(℘′)2 = ℘3 + c4℘+ c6

for c4, c6 ∈ C depending on L. If C is the curve in P2
C cut out by the equation y2 =

x3 + c4x+ c6, we obtain an isomorphism C/L→ C given by

z 7→ [℘(z), ℘′(z), 1] = [
℘(z)

℘′(z)
: 1 :

1

℘′(z)
].

Proof. We follow the program laid out in Section 3.3 to find coordinates for elliptic curves.
Choose Weierstrass coordinates x, y for C/L satisfying a Weierstrass equation

y2 + a1xy + a3 = x3 + a2x
2 + a4x+ a6.

Consider the meromorphic section dx of Ω1
(C/L)/C. The differential dz equals udx

y+ 1
2a1x+ 1

2a3
for

some u ∈ C× as the space of invariant differentials is 1-dimensional. Thus, dx = u−1(y +
1
2a1x+ 1

2a3)dz, i.e. x′ = u−1(y + 1
2a1x+ 1

2a3). By a coordinate change, we can assume that
u = 1. Then

(x′)2 = y2 + a1x+ a3y + polynomial in x = x3 + b2x
2 + b4x+ b6.

Setting ℘ = x+ t for suitable t, produces then an equation of the form

(℘′)2 = ℘3 + c4℘+ c6.

The rest is as in Section 3.3.
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Remark 3.41. The function ℘ is calledWeierstrass’ p-function and can be explicitly described
by

℘(z) = 4 ·

 1

z2
+

∑
λ∈L\{0}

(
1

(z − λ)2
− 1

λ2

) .

This implies that the logarithm of the Weierstrass curve associated with C/L can be
computed as the Taylor expansion of ℘(z)

℘′(z) at z = 0.

Remark 3.42. We should really write c4 and c6 as c4(L) and c6(L). Thus, c4 is a function
from the set of all lattices in C to C. It turns out that c4(uL) = u−4c4(L). Furthermore, it
has a holomorphicity property: Restricting to lattices generated by 1 and τ ∈ H (where H
is the upper half plane), we obtain a function c4 : H→ C. This turns out to be holomorphic
and bounded towards∞ =∞· i. These are exactly the defining properties of modular forms.

More precisely, a modular form of weight k is a function f from the set of all lattices in
C to C such that

1. f(uL) = u−kf(L) for u ∈ C×

2. f : H→ C, τ 7→ f([1, τ ]) is holomorphic
3. f is bounded.

Actually, for every lattice L ⊂ C, there is a u ∈ C× such that uL = [1, τ ] for some τ ∈ H.
The first transformation property becomes then: f(aτ+b

cτ+d ) = (cz+d)kf(z) for all z ∈ SL2(Z).

We have seen before that for an elliptic curve y2 = x3 + c4x + c6 the points of exact
order 2 are exactly those with y = 0. In terms of elliptic function, we see that ℘′(z) = 0
iff z ∈ 1

2L, but not in L. If we fix a basis ω1 and ω2 of L, set e1 = ω1/2, e2 = ω2/2 and
e3 = (ω1 + ω2)/2. We obtain

℘′(z)2 = (℘(z)− e1)(℘(z)− e2)(℘(z)− e3).

For the theory of Jacobi quartics there is equally both an analytic and an algebraic
approach. For the analytic approach see [HBJ92, Section 2.2]. We will do an algebraic
approach.

Proposition 3.43. Let C/k be an elliptic curve over an algebraically closed field of charac-
teristic not 2 with a chosen point P of exact order 2. Then there is a meromorphic function
f on C satisfying

(f ′)2 = v − 2uf2 + f4

for some u, v ∈ k.

Proof. Let D = e + P . We have two involutions on H0(C;O(nD)). The involution S
precomposes with x 7→ −x and the involution T precomposes with x 7→ x + P . These
involutions commute and so H0(C;O(nD)) decomposes into the eigenspaces ++, +−, −+
and −−. In particular, we can pick bases of eigenvectors. If we do this for n = 1, we obtain
the constant function 1 (++) and further function f . As it has a simple pole at e, we see
that it is odd. Assume that Tf = f . Then f factors as C → C/P → P1. The first map has
degree 2 and f has also degree 2; but there is no degree 1-map C/P → P1. Thus, f is −−.

The space H0(C;O(3D)) is 6-dimensional and is spanned by f, f ′, f2, f ′f and f3; indeed,
there can be no linear dependence because of the eigenspaces (as f2 is non-constant). We
have f4, (f ′)2 ∈ H0(C;O(4D)) and they are both of type ++. But T cannot act as identity
on H0(C;O(4D))/H0(C;O(3D)) since there is a function g with only pole at P and of order
4 and Tg has a pole of order 4 at e; there differnce is clearly not in H0(C;O(3D)). Thus,
there is a linear dependenc between 1, f2, f4 and (f ′)2. By scaling f , we can assume that it
is of the form

(f ′)2 = v − 2uf2 + f4.
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This gives a map Φ: C → C2, where C2 ⊂ P2
k is cut out by the projectivization of

y2 = v−2ux2 +x4. The map is given away from∞ as [f, f ′, 1]. If there are points Q,R with
f(Q) = f(R) and f ′(Q) = f ′(R), we see that O(2D−R) and O(2D−R−Q) have the same
global section, which cannot be. Thus, the map is injective away from the points e and P ,
where f has poles. Actually, one can check that it is a closed immersion away from e and
P . By the universal property of normalization, the map Φ factors over the normalization
of C2, which corresponds to our construction C. This way, we see that (at least over an
algebraically closed field of characteristic not 2) every elliptic curve with a chosen point of
order 2 can be written as a Jacobi quartic. We also can use f to compute the exponential
of the formal group of a Jacobi quartic.

Note the f2 factors over E/P and has there a pole of order 2 at the origin. Thus, it must
be equal to a+ b℘. (Exercise: Determine a and b.)

Note also that f is essentially the same as the Jacobi sine function as it satisfies (es-
sentially) the same differential equation. The Jacobi sine function is used to describe the
motion of a frictionless pendulum.

end of lecture 12

3.12 Properties of the elliptic genus
Theorem 3.44. A genus φ : MSO∗ → R (with R torsionfree) is elliptic if and only if we
have φ(HP2i+1) = 0 and φ(HP2i) = vi for some v ∈ R.

We will not prove this, but see [HBJ92, Section 1.7].
Next, we will talk about multiplicativity statements. Let M → B be a fiber bundle of

closed smooth manifolds with fiber F closed smooth again. Assume that the fundamental
group of B acts trivially on H∗(F ;Q). Let φ : MSO∗ → R (with R torsionfree) be a
genus. Chern–Hirzebruch–Serre showed (by an application of the Serre spectral sequence)
that the signature is multiplicative in such fiber bundles: sgn(M) = sgn(F ) sgn(B). Borel
and Hirzebruch showed that every φ : MSO∗ → R (with R torsionfree) that satisfies φ(M) =
φ(F )φ(B) and φ(CP2) = 1 agrees with the signature; if we drop the last condition, we have
φ(M) = φ(CP2)dim(M)/4 sgn(M), where the power is interpreted to be zero if the exponent
is non-integral.

What if we ask multiplicativity only for certain classes of bundles, e.g. projectivizations
of complex vector bundles with fiber CP2i−1? Recall that CP2i−1 is zero in MSO∗, so this
would imply that the genus just vanishes on these bundles.

Theorem 3.45 (Ochanine). A genus φ : MSO∗ → R (with R torsionfree) is elliptic if
and only if the genus φ vanishes on all projectivizations of even dimensional complex vector
bundles.

See [Och87] or again [HBJ92] for proofs.
There are more results of this form. A complex projective space CPn has a spin structure

iff n is odd. Indeed, they are always oriented so that CPn has a spin structure iff w2(CPn) = 0
(for w2 the second Stiefel–Whitney class). The class w2(CPn) is the mod 2 reduction of the
first Chern class c1(CPn). As already used earlier, the total Chern class of CPn is (1 +x)n+1

and thus the first Chern class is
(
n+1
n

)
= n+ 1. Thus, one can ask whether the elliptic genus

is actually multiplicative for bundles with spin fiber.

Theorem 3.46 (Bott-Taubes). Let φ be an elliptic genus. For every fiber bundle M → B
with a compact, oriented spin manifold F as fiber and compact, connected Lie group as
structure group, we have φ(M) = φ(F )φ(B).
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We will prove only a small part of these theorems. Namely, we will prove that if a genus
is generally multiplicative it must be (essentially) the signature and if it vanishes on all
projectivizations of even dimensional complex vector bundles it must be elliptic. The crucial
tool are Milnor hypersurfaces, which are certain generators of the complex bordism ring.
(Recall that the complex projective spaces were only rational generators.) This we will deal
with in the next section.

3.13 Geometric cobordism, Milnor manifolds and multiplicativity
Recall that the (universal) formal group law for MU was the pullback of the complex orien-
tation x ∈MU2(CP∞)→MU2(CP∞×CP∞). We want to express this more geometrically.

Theorem 3.47. For a closed smooth manifold X of dimension n, there is a natural isomor-
phism MOk(X) with bordism classes of maps g : M → X of closed smooth manifolds M of
dimension n−k. The functoriality on the right hand side is given as follows: Let f : Y → X
be a map; by a homotopy, we can assume that f is smooth and transverse to g. Then we can
consider the pullback f∗M and the associated map f∗M → Y .

We will just give a natural transformation. The proof that this is an isomorphism is
similar to the Pontryagin–Thom theorem.

Choose an embedding i : M ↪→ Rm and let ν be the normal bundle of (g, i) : M ↪→ X×Rm.
By a Pontryagin–Thom collapse, we obtain a map

ΣmX+
∼= (X × Rm)+ → Th(ν)→ Th(ξunivm+k) = MOm+k.

This gives the desired class in MOk(X).
To put a complex structure into the picture, we do the following: A BU -structure on

g : M → X is an equivalence class factorizations M i−→ X × Rm pr2−−→ X of g, where i is an
embedding with a chosen complex structure on its normal bundle. Two factorizations are
equivalent if we can obtain them from each other by isotopy or enlargening m.

Theorem 3.48. For a closed smooth manifold X of dimension n, there is a natural isomor-
phism MUk(X) with bordism classes of complex-oriented maps g : M → X of closed smooth
manifolds M of dimension n− k.

Again by a Pontryagin–Thom collapse, we obtain a map

ΣmX ∼= (X × Rm)+ → Th(νi)→ Th(ξC,univm+k
2

) = MUm+k.

Example 3.49. The fundamental class in MUn(Sn) ∼= Z is given by the embedding of a
point. More generally let E → X be an n-dimensional complex vector bundle over a closed
manifold X. We claim that the Thom class in MU2n(Th(E)) ∼= MU2n(E,E −X) is given
by the embedding X → MU2n(Th(E)). (The point that Th(E) might not be a manifold
is not a problem because it is a manifold in a neighborhood of the image of X.) Indeed,
restricting to each “fiber” S2n gives the embedding of a point.

Question 3.50. The multiplication CP∞ × CP∞ → CP∞ restricts to maps CPi × CPj →
CPN . Can we describe the image of x ∈MU2(CPN ) in MU2(CPi × CPj) geometrically?

The canonical class x ∈MU2(CPN ) corresponds to the embedding of CPN−1 into CPN .
Indeed, x is the restriction of the Thom class t ∈ MU2(Th(ξ)) ∼= MU2(CPN+1) of the
canonical bundle ξ on CPN . The tranverse intersection of two CPN in CPN+1 is a CPN−1.

Lemma 3.51. The H-space structure on CP∞ is unique. We can construct it as the colimit
of the Segre embeddings

CPi × CPj s−→ CP(i+1)(j+1)−1

((z0 : · · · : zi), (w0 : · · · : wj)) 7→ (zrws)r,s
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Proof. Homotopy classes of maps CP∞ × CP∞ → CP∞ are in one-to-one correspondence
with H2(CP∞ × CP∞;Z) ∼= Z⊕ Z. Unitality implies that it must correspond to (1, 1).

That the colimit of the Segre embeddings defines an H-space structure follows because
all injective linear maps C∞ → C∞ are homotopic.

end of lecture 13

Definition 3.52. For 1 ≤ i ≤ j, the Milnor manifold Hij ⊂ CPi × CPj is the hypersurface
cut out by the equation x0y0 + · · ·xiyi. Set Hji = Hij .

Thus,Hij is the preimage under the Segre embedding of the hyperplaneH ⊂ CP(i+1)(j+1)−1

given by x1,1 + · · ·+ xi,i = 0. One can see that the Segre embedding is transverse to H. As
all hypersurfaces in CPN define the same class in MU2(CPN ), we see that

[Hij ↪→ CPi × CPj ] = s∗x = F (x1, x2) =
∑

r≤i, s≤j

arsx
r
1x
s
2 ∈MU2(CPi × CPj)

for x1, x2 the generators of MU2(CPi × CPj). Note that the cup product in geometric
MU∗(X) is given by transverse intersection. Thus, xr1xs2 corresponds to the embedding
CPi−r × CPj−s ↪→ CPi × CPj . Note that we can also forget the embedding into CPi × CPj
and get the following equality in MU∗:

[Hij ] =
∑

r≤i, s≤j

ars[CPi−r][CPj−s].

Proposition 3.53. The Hij generate MU∗.

Proof. From the above, we see that Hij ≡ aij modulo decomposables. Thus, we only have
to see that the aij generate MU∗. Call the subring generated by them i : R ⊂ MU∗. Then
Funiv = i∗F for F the FGL F (x, y) =

∑
aijx

iyj over R. But F = j∗F
univ for some

j : MU∗ → R. Furthermore, (ij)∗F
univ = Funiv and thus ij = id. Thus, i is surjective and

hence R = MU∗.

Corollary 3.54. The Hij generate MSO∗/ -tors (and certainly MSO∗ ⊗Q).

Proposition 3.55. Set H(x1, x2) =
∑
i,j≥0[Hij ]x

i
1x
j
2. Let F be the universal FGL over

MU∗. Then:
H(x1, x2) = F (x1, x2) log′F (x1) log′F (x2).

Proof. We have

H(x1, x2) =
∑
i,j

[Hij ]x
i
1x
j
2

=
∑
i,j≥0

(
i∑

r=0

j∑
s=0

ars[CPi−r][CPi−j ]

)
xi1x

j
2

=
∑
r,s≥0

arsx
r
1x
s
2

∑
i≥r

[CPi−r]xi−r1

∑
j≥s

[CPj−s]xj−s2


= F (x1, x2) log′F (x1) log′F (x2).

Proposition 3.56. We have [Hij ] = −
(
i+j
i

)
mi+j−1 with mn = [CPn]

n+1 modulo decomposables
in MU∗ and hence also in MSO∗.
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Proof. Let F be the universal formal group law. Recall that logF =
∑
i≥0mix

i+1 and set
expF =

∑
i≥0 bix

i+1 to be its inverse, i.e. expF (logF (x)) = x. Note that the inverse is
unique for power series of the form x + · · · over any commutative ring R, in particular for
R = MU∗/decomposables. Over R, the power series x−m1x

2−m2x
3− · · · is an inverse for

logF . Thus, bi ≡ −mi modulo decomposables.
Thus, modulo decomposables, we have:

F (x, y) = expF (logF (x) + logF (y))

=
∑
i≥0

mix
i+1 +

∑
j≥0

mjy
j+1 −

∑
n≥1

mn(
∑
i≥0

mix
i+1 +

∑
j≥0

mjy
j+1)n+1

=
∑
i≥0

mix
i+1 +

∑
j≥0

mjy
j+1 −

∑
n≥1

mn

(
n+ 1

i+ 1

)
xi+1y2n+1−(i+1).

As [Hij ] is modulo decomposable exactly the coefficient in front of xiyj in F , the result
follows.

Corollary 3.57. Rationally, CP2 together with the H2,(2j+1) with j ≥ 1 generate MSO∗.
Another set of rational generators is [CP2], [H2,3] and [H3,2j ] for j ≥ 2.

The crucial point for multiplicativity is the following: The mapHij → CPi×CPj pr1−−→ CPi
is a fiber bundle whose fibers are hyperplanes in CPj and hence isomorphic to CPj−1.

Theorem 3.58. Let φ : MSO∗ → R (with R torsionfree) be a multiplicative genus (for fiber
bundles with fiber a complex projective space) with φ(CP2) = 1. Then φ is the signature.

Proof. We prove it by induction on the dimension. The base case is dimension ≤ 4, where
φ visibly agrees with the signature as 1 and [CP2] generate MSO∗ in these degrees. Assume
that φ(M) = sgn(M) has been proven for all manifold of dimension ≤ 4j. We know that

φ(H2,(2j+1)) = φ(CP2)φ(CP2j) = φ(CP2j) = sgn(CP2j) = sgn(H2,(2j+1)).

As the H2,(2j+1) together with CP2 generate MSO∗ rationally, the result follows.

Now we come to the elliptic genus. Let φ be a genus that vanishes on projectivizations
of even dimensional complex vector bundles, e.g. on the H3,2j . Then rationally, it has to
factor over MSO∗/(H3,2j)⊗Q ∼= Q[[CP2], [H2,3]] = R. Ochanine shows in [Och87] that the
quotient map MSO∗⊗Q→ R agrees with the Ochanine genus (with [CP2] corresponding to
u and [H2,3] corresponding to v). That provides one direction of Theorem 3.45. Let’s sketch
a proof.

Set hij to be the image of [Hij ] in R and h(x, y), f(x, y) and g(x) the images of H,
F and logF in R. (At the beginning of the proof, it could be actually under any genus
φ : MSO∗ → R.) We are interested in the coefficients h3,2j = h2j,3 and will thus consider
everything mod y4.

Recall from [Rav86, Appendix] that we have the formula g′(x)∂f(x,0)
∂y = 1. Thus, it seems

reasonable to write f as a Taylor series like follows:

f(x, y) = x+
∂f(x, 0)

∂y
· y +

1

2

∂2f(x, 0)

∂y2
· y2 +

1

6

∂3f(x, 0)

∂y3
· y3 mod y4

From Proposition 3.55, we obtain

h(x, y) = g′(y)

(
g′(x)x+ y +

1

2
g′(x)

∂2f(x, 0)

∂y2
y2

)
+

1

6
g′(x)

∂3f(x, 0)

∂y3
y3 mod y4.



37

We are interested in the coefficients of x2iy3. Set r(x) =
∑∞
i=1 h3,2ix

2i = h3,2x
2. Then we

have r(x) = 1
6g
′(x)∂

3f(x,0)
∂y3 . Indeed: g′(y) has only even powers of y.

Set b(x) = 1
g′(x) = ∂f(x,0)

∂y . A computation shows that ∂
3f(x,y)
∂y3 = b(x)(b′′(x)b(x)+b′(x)2−

b′′(0)). Thus,

6r(x) = b′′(x)b(x) + b′(x)2 − b′′(0) =
1

2
(b(x)2)′′ − b′′(0).

As r(x) is a polynomial of degree 2, we see that b(x)2 is a polynomial of degree ≤ 4. As does
g′(x), the power series b(x) can only have even powers of x. Set b(x)2 = 1−2ux2 +vx4. Then
g′(x) = 1√

1−2ux2+vx4
. We have already seen above that the image of [CP2] is u. Furthermore,

we have
r(x) =

1

12
(b(x)2)′′ − 1

6
b′′(0) =

1

12
(12vx2 − 4u)− 1

6
b′′(0)

and hence h2,3 = v.
end of lecture 14

4 Stacks and elliptic cohomology

4.1 Landweber’s exact functor theorem
We have seen that complex orientations (i.e. maps f : MU → E of ring spectra) give rise to
graded formal group laws. The map f∗ : MU∗ → E∗ classifies this graded formal group law.

But what if we have an arbitrary graded formal group law F over a graded ring E∗
(corresponding to MU∗ → E∗)? Is there a spectrum E with π∗E = E∗ with a complex
orientation MU → E that gives rise to exactly this formal group? Consider the functor

hF : X 7→MU∗(X)⊗MU∗ E∗

from spectra to graded abelian groups. If this is a homology theory, we can represent it by
a spectrum E by homological Brown representability:

Theorem 4.1 (Brown representability). The functor from the stable homotopy category to
homology theories (on spaces or, equivalently, on spectra) is essentially surjective and full.

By this theorem, the natural transformation MU∗(−) → hF is realized by a map of
spectra MU → E. It is a priori not clear though that hF is represented by a ring spectrum
(the non-faithfulness of the functor above doesn’t guarantee the unitality and associativity
diagrams to commute) nor that the transformation MU → E is a map of ring spectra if
E is a ring spectrum. Maps in the stable homotopy category that induce the zero map
on homology theories are called (strong) phantoms; under rather mild conditions one can
actually exclude the existence of these phantoms and live a happy phantom-free life. If this
works, then we have realized our formal group law by a complex oriented ring spectrum.

Question 4.2. When is hF a homology theory?

Equivalently, we can ask when does hF send cofiber sequences to long exact sequences
(as it is automatically homotopy invariant and additive). One obvious sufficient condition
is that E∗ is flat as a MU∗-module. But this is very restrictive, for example E∗ cannot
be finitely generated over Z! The crucial insight by Landweber was that a much weaker
condition suffices. This needs a bit of preparation, so we will state it a little later. This will
apply to certain formal group laws coming from elliptic curves. Later we will reinterpret
Landweber’s theorem in stack language, where it will become more transparent.

As a sequence is exact iff it is so at every prime p, we will work p-locally now for a fixed
prime p. So let R be a Z(p) and F be a FGL over R. Recall the definition of [p]F from
Definition 2.46. We define vi ∈ R to be the coefficient in front of xp

i

in [p]F .



38

Remark 4.3. For the experts: This is neither quite the same as Araki’s nor as Hazewinkel’s
definition of the vi. But they all agree mod (p, v1, . . . , vi−1). Indeed: Let vAi be the
Araki generators. Then [p]F (x) =

∑F
j≥0 v

A
j x

pj (see [Rav86, A2.2.4]). You see that mod
(p, v1, . . . , vi−1) this equals

∑F
j≥i v

A
j x

pj , whose first term is just vAj xp
j

. This shows that
vAi ≡ vi mod (p, v1, . . . , vi−1). And the Hazewinkel generators agree with the Araki gener-
ators mod p anyhow.

Theorem 4.4 (Landweber exact functor theorem). Let F be a graded formal group law over
a graded ring E∗ and let hF be as above. Then hF is a homology theory if for every p the se-
quence p, v1, v2, . . . is regular on E∗, i.e. that vi· : E∗/(p, v1, . . . , vi−1)→ E∗/(p, v1, . . . , vi−1)
is injective.

We will call (graded) formal group laws satisfying the assumptions of the theorem Landwe-
ber exact. If E is a complex oriented ring spectrum whose formal group law is Landweber
exact, we call E Landweber exact as well. We will later see that these notions just depend
on the underlying formal group.

Corollary 4.5. Let E be a Landweber exact complex oriented ring spectrum. The map
MU∗(−)→ E∗(−) induces an isomorphism

MU∗(X)⊗MU∗ E∗ → E∗(X)

for all spectra X.

Proof. Both sides are homology theories (by Landweber’s exact functor theorem). Thus, the
transformation is an isomorphism iff it is one for X the sphere spectrum (or the point if our
source would be spaces). In this case, it is clear.

Example 4.6. We claim that complex K-theory is Landweber exact. Recall that its formal
group law is x+ y + uxy for π∗KU = Z[u±1]. Recall further that

[p]F (x) =
(1 + ux)p − 1

u
.

Thus, v0 = p, v1 = up−1 and vi = 0 for i ≥ 2. Thus, KU is Landweber exact. We recover
the classic Conner–Floyd theorem:

KU∗(X) ∼= MU∗(X)⊗MU∗ KU∗.

4.2 Heights of formal groups
Definition 4.7. Let R be an Fp-algebra. We say that a formal group law over R has height
≥ n if v1 = · · · = vn−1 = 0 and we say that it has (exactly) height n if additionally vn is
invertible.

Example 4.8. Every formal group law has height ≥ 1 as the coefficient of x in [n]F is n.
We have seen above that the multiplicative formal group law has height 1. The additive
formal group law has height ∞ as [p]F = 0.

Remark 4.9. One can show that [p]F is of the form vnx
pn + higher terms if F is of height

n.
The height of a formal group law is unchanged under isomorphism. Indeed, the observa-

tion above implies that kJxK/[p]F (x) has rank pn over if F is a formal group law over a field
k. It is easy to see that this quantity is unchanged under isomorphisms.
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We want to show that the height of the formal group law of an elliptic curve is either 1 or
2. We need some preparation though. Recall that the degree of a finite map f : → Y over a
k-valued point y : Spec k → Y (for Y a field) is the rank of A, where SpecA = X ×Y Spec k;
this rank is finite as f is finite. If Y is connected and noetherian and f is flat, then the
degree does not depend on the choice of y.

In general, it is easier to check that a map has finite fibers (i.e. the fiber over y : Spec k →
Y has only finitely many points for every y with k algebraically closed) than that it is finite.
But if X and Y are both proper over a scheme S and f is over S, then f is automatically
proper as well and every proper map with finite fibers (with locally noetherian target) is
finite [Sta17, Tag 02OG]. [In general, quasi-finite morphisms do not need to be finite, even
if they are surjective and flat. For example, Spec k[t±1]

∐
Spec k[t, (t − 1)−1] → Spec k[t] is

quasi-finite, but not finite.]

Lemma 4.10. Let k a field. For a k-variety X, denote the cotangent space H0(X; Ω1
X/k)

by Ω1(X). If C is an elliptic curve over k, then the multiplication by n-map [n] induces
multiplication by n on Ω1(C).

Proof. We have natural isomorphisms Ω1(X ×k Y ) ∼= Ω1(X) × Ω1(Y ). Thus, the group
structure of C induces a group structure +̃ via linear maps on Ω1(C) with 0 als neutral
element (as Ω1(Spec k) = 0). Two commuting monoid operations with the same neutral
element agree:

x+ y = (x+̃0) + (0+̃y) = (x+ 0)+̃(0 + y) = x+̃y.

As idC induces the identity on Ω1(C), it follows that [n] induces multiplication by n.

Proposition 4.11. Let C be an elliptic curve over a base scheme S. Then the multiplication
by n-map [n] is finite and flat of degree n2.

Proof. We first do the case S = SpecC. By writing C = C/L, we see directly that every
point has exactly n2 preimages under [n]. Furthermore, [n] is étale (i.e. topologically a
covering map), thus there is no ramification. Thus, the degree of [n] is n2 in this case.

Let S be general. The statement is local on S, so we can assume that E has a Weierstrass
form. Thus, we can reduce to the universal case for Weierstrass curves

S = SpecZ[a1, . . . , a6,∆
−1].

The scheme C is regular as it is smooth over the regular scheme S. Thus, f is automatically
flat if it is finite (see e.g. [Gro65, Prop 6.1.5]; this is related to Hironaka’s miracle flatness). As
discussed above, thus we only need to show that f has finite fibers and then it is automatically
finite flat. Thus, we can reduce to the case that S = Spec k for k algebraically closed.

In this case, every non-constant self map of C is automatically finite. Thus, we need to
show that [n] is non-constant. The map [n] induces multiplication by n on (the global sections
of) Ω1(C) by the last lemma. Thus, it is non-constant if char k is prime to n. Actually, it
is even étale as it induces an isomorphism on Ω1 and is flat and thus it is a disjoint union
of Spec k. Thus, we already see that [n] is flat if S = SpecZ[ 1

n ][a1, . . . , a6,∆
−1] and it is

automatically of degree n2 as it has so over every C-valued point.
If char k divides n, we choose an m ≥ 2 prime to n and char k. Choose l such that ln ≡ 1

mod m. Then [n]l acts as the identity on the kernel of C[m] of [m]; the scheme C[m] has
m2 points (by what we have seen in the last paragraph) and clearly a constant map cannot
act as the identity on ≥ 2 points. Thus, [n] is also non-constant here and we deduce that [n]
is finite and flat in general (and hence automatically of degree n2).

This nice proof is taken from [KM85]; note that we used the characteristic zero result
over C to deduce the degree of the map [n] also in characteristic p by using non-field bases.
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Note also that this result directly implies that there are at most n2 points of order n in any
elliptic curve C over any (algebraically closed) field k. If n = p and char k = p, then there
are less that p2-points as we will see below.

Proposition 4.12. Let k be a field of characteristic p and C an elliptic curve over it. Then
the height of the formal group Ĉ associated with C is 1 or 2.

Proof. We claim that the formal completion Ĉ[p] agrees with the p-torsion in Ĉ. Indeed
both represent the functor

T 7→ {f ∈ C(T ) : p · f = e, f∗I nilpotent}

on k-schemes, where I is the ideal sheaf on C cutting out the neutral element e.
By the last proposition, we know that C[p] = SpecR for a finite k-algebra R of rank p2.

The (formal) group scheme Ĉ[p] is represented by limR/Ij . As R is Artinian, we have In =
In+1 = · · · for some n > 0 and thus limR/Ij ∼= R/In. Note that SpecR/In = Spf R/In as
I is already nilpotent.

If one chooses a coordinate on Ĉ, one obtains a formal group law F over k. As kJxK/[p]F (x)
represents the p-torsion Ĉ[p], we obtain kJxK/[p]F (x) ∼= R/In. Thus,

pheight(F ) = dimk kJxK/[p]F (x) = dimk R/I
n ≤ dimk R = p2.

end of lecture 15
Use the notation of the last proof: As C[p](k) is a p-torsion, it must have pk elements for

some k and k ≤ 2 (by Proposition 4.11). The case k = 2 cannot occur. Indeed, if C[p](k)
has p2 elements, these elements define a map R →

∏
p2 k. This must be surjective (for

example, we can decompose the Artin ring R is a product
∏
iRi of local Artin algebras; i

runs over the set of points which are p2 many and the map R →
∏
p2 k is just the product

of the projections onto the residue fields) and thus an isomorphism. This would imply that
R/In = k, but dimk R/I

n ≥ p as we saw in the last proof.
If the height of Ĉ = 2, then dimk R/I

n = dimk R; as the scheme SpecR/In has only one
point (its underlying reduced scheme is SpecR/I = Spec k), we see that C[p] = SpecR ∼=
SpecR/In has only one point as well. Conversely, if C[p](k) has only one point, then R
has only one maximal ideal and this must coincide with I as R/I ∼= k; furthermore, I must
also be the only prime ideal (as every commutative finite-dimensional integral domain over
k is a field). Every element in the intersection of all prime ideals is nilpotent and thus I is
nilpotent; we see that R = R/In. Thus C[p](k) has only one point iff Ĉ has height 2 and
in this case, C is called supersingular. It follows that C[p](k) has exactly p points iff Ĉ has
height 1 and in this case, C is called ordinary.

Note that a supersingular elliptic curve is not a singular curve! The wording should
rather indicate that supersingular elliptic curve are rarer than ordinary ones.

There is a useful criterion to determine whether an elliptic curve is ordinary:

Proposition 4.13. Let C/k be an elliptic curve over a field of characteristic p > 2, given
by a Weierstrass equation y2 = f(x). Then C is supersingular iff the coefficient of xp−1 in
f(x)(p−1)/2 is zero.

For a proof see [Sil09, Theorem 4.1].

Example 4.14. Consider the elliptic curve C : y2 = x3 + 1 over any field k of characteristic
bigger than 3 (else it is not an elliptic curve). The coefficient in front of xp−1 in (x3+1)(p−1)/2

is 0 if p− 1 is not divisible by 3 and
(

(p−1)/2
(p−1)/3

)
else; the latter is clearly non-zero in k. Thus

C is supersingular iff p ≡ 1 mod 3.
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Given equation of the form y2 = f(x) with non-zero discriminant, the p for which this
defines a supersingular elliptic curve over Fp are for most equation much rarer than the ones
where it defines ordinary elliptic curves; note though that there are by a result of Elkies
infinitely many primes where it is supersingular.

Proposition 4.15. For every prime p, there is an ordinary elliptic curve over Fp.

Proof. By [Sil09, Theorem 4.1] there are only finitely many supersingular elliptic curves over
Fp (less than p

12 + 2). But there are infinitely many elliptic curves over the same field. (This
can be seen e.g. by the j-invariant; this defines a bijection between isomorphism classes of
elliptic curves over an algebraically closed field k and the elements of k. Another argument
(at least for p ≥ 5) looks at elliptic curves of the form y2 = x3 + c4x+ c6.)

Theorem 4.16. Let C be an elliptic curve over a ring R. Then the corresponding formal
group is Landweber exact iff

1. R is torsionfree

2. v1 is a non-zero divisor on R/p for every p.

If R/p is an integral domain, then it is sufficient there being a morphism f : R→ k for k a
field of characteristic p such that the base change f∗C is an ordinary elliptic curve over k.

Proof. We can assume that R is p-local. The first part of the theorem says that p, v1, v2, . . .
is a regular sequence on R iff p, v1 is. One direction is clear. We claim that v2 is invertible
on R/(p, v1) so that R/(p, v1, v2) = 0. Indeed, suppose otherwise. Then there is a morphism
f : R/(p, v1)→ k to a field such that f(v2) is zero. Thus, the height of the formal group law
of f∗C on k is bigger than 2 in contradiction to the last proposition.

For the second part: If R/p is an integral domain, then we just have to show that v1 is
nonzero, which is certainly the case if it is nonzero after mapping to a field.

Definition 4.17. Let C be an elliptic curve over a ring R. Let R be graded such that
the resulting formal group law of C is graded as well and assume that this group law is
Landweber exact. The resulting homology theory is called an elliptic homology theory.

The next example is the original example of an elliptic homology theory. We will see
more later.

Example 4.18. Consider R = Z[ 1
2 ][b2, b4,∆

−1] and the elliptic curve y2 = x3 + b2x
2 + b4x.

We want to check that the resulting formal group law is Landweber exact. Clearly, R and
R/p are integral domains. We need to check that for every p, there is a morphism f : R→ k
such that y2 = x3 +f(b2)x2 +f(b4)x is ordinary. If C is an elliptic curve over an algebraically
closed field k of characteristic not 2, then C has a 2-torsion point and hence is pushed forward
from R (as we identified R as carrying the universal elliptic curve with a two-torsion point
and an invariant differential over Z[ 1

2 ]-algebras; see Proposition 3.23). Thus, we can use
Proposition 4.15 to conclude.

There is an alternative proof, which does not use the Proposition 4.15. Consider the
elliptic genus MU∗ → Z[ 1

2 ][u, v]. We claim that v1 is non-zero for the corresponding formal
group law. This can be shown after postcomposing with Z[ 1

2 ][u, v] → Z[ 1
2 ] sending u and v

to 1. Then the logarithm of the pushed forward formal group law becomes log =
∫

dx
(1−x2) .

We claim that v1 = 1 for this formal group law at any odd prime p. Indeed: The first
denominator in log divisible by p is in front of xp. Considering its inverse exp, a simple
calculation shows that the coefficients in front of x, . . . , xp−1 do not have a denominator
divisible by p and the one in front of xp is of the form − 1

p plus an element of Z(p). Thus,
the p-series exp(p log(x)) is congruent to exp(px+xp) ≡ xp modulo p and higher terms than
xp. Thus, v1 ≡ 1 mod p. (See also [Fra92], Section 2, for another version of this proof.)
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This argument does also show Proposition 4.15, at least for p ≥ 3. Indeed, as v1 is nonzero
in Fp[u, v,∆−1] (for p ≥ 3), we see that there are points (u0, v0) in Fp[u, v,∆−1] ⊂ A2

Fp
, where

v1 does not vanish. There corresponding Jacobi elliptic curve defined by

y2 = 1− 2u0x
2 + v0x

4

is ordinary.

4.3 Stacks on topological spaces
This section is an introduction to stacks, a categorical concept similar to sheaves. To motivate
this concept, we will first look at the topological situation of vector bundles.

Given a space X, we can look at the presheaf that sends every open set U to

Vectn(U) = {isomorphism classes of n-dimensional vector bundles on U}.

The restriction maps are just restriction (aka pullback) of vector bundles. This is in general
not a sheaf. Indeed, take X = Sk and cover it by two contractible subset U1 and U2. If Vectn
were a sheaf, then Vectn(Sk) would be the equalizer of the two maps Vectn(U1)×Vectn(U2)
to Vectn(U1 ∩ U2). But Vectn(U1) × Vectn(U2) consists just of one element – in contrast,
Vectn(Sk) can contain many elements.

The point is, of course, that we allowed to glue vector bundles in non-trivial manners.
That is, we must not only remember isomorphism classes of vector bundles, but the groupoids
of all vector bundles and their isomorphisms. We define a presheaf of groupoids Vectn on X
by sending U to

Vectn(U) = {groupoid of n-dimensional vector bundles on U and isomorphism between them}.

This has two useful “sheafy” properties:

1. Let E,F ∈ Vect(U) be objects. Then the presheaf Isom(E,F ) defined by Isom(E,F )(V ) =
{isomorphisms between E|V and F |V } for V ⊂ U open is a sheaf.

2. Let {Ui ⊂ X} be an open cover, let Ei be vector bundles on Ui and fij : (Ej)|Ui∩Uj →
(Ei)|Ui∩Uj be isomorphisms such that fijfjk = fik on Ui ∩ Uj ∩ Uk. Then there is
a vector bundle E on X with isomorphisms φi : E|Ui

→ Ei such that fijφj = φi on
Ui ∩ Uj .

Definition 4.19. Let X be a topological space. A stack on X is a presheaf F of groupoids
such that

1. for E,F ∈ F(U) the presheaf Isom(E,F ) on U is a sheaf, and

2. for any open cover {Ui ⊂ X}, objects Ei ∈ F(Ui) and isomorphisms fij : (Ej)|Ui∩Uj →
(Ei)|Ui∩Uj such that fijfjk = fik on Ui ∩ Uj ∩ Uk, there is an E ∈ F(X) with isomor-
phisms φi : E|Ui

→ Ei such that fijφj = φi on Ui ∩ Uj .

end of lecture 16
For any scheme X, we define groupoids Mell(X) and MFG(X) as follows: An object

ofMell(X) is an elliptic curve over X and a morphism is an isomorphism of elliptic curves
over X. Similarly, an object of MFG(X) is a formal group over X and a morphism is an
isomorphism of formal groups over X.

Proposition 4.20. Let X be a scheme. Then Mell and MFG define stacks on the Zariski
topology of X.
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Proof. We will do the proof only for Mell. We pick an open cover {Ui ⊂ X} and set
Uij = Ui ∩ Uj and Uijk = Uij ∩ Uk.

Suppose p : C → X and p′ : C ′ → X are elliptic curves over X. First suppose that we
have two isomorphism f1, f2 : C → C ′ that are equal on all C|Ui , i.e. equal on all p−1(Ui);
as the p−1(Ui) form an open cover of C, the maps f1 and f2 are clearly equal. Likewise, if
we have isomorphisms fi : p−1(Ui)→ (p′)−1(Ui) that agree over Uij , we can glue these maps
to a morphism C → C ′ that is automatically an isomorphism.

If we have elliptic curves Ci over Ui with isos fij : Cj |Uij → Ci|Uij satisfying the cocycle
conditions, we obtain a scheme C with a map C → X. We also obtain a section by gluing
the sections over the Ui. The scheme C is smooth and proper over X (as these properties
can be tested locally) and if Spec k → X is a point, it factors over some Ui, so the fiber is
also an elliptic curve in the classical sense.

Remark 4.21. For Ell the functor that takes every scheme X to the sheaf of isomorphism
classes of elliptic curves on X, one sees that Ell is not a sheaf for the Zariski topology
on a scheme X in general. E.g. let C be an elliptic curve over C and X be the union of
for A1

C that built a quadrilateral. More precisely, you take the quotient of Z/4 × A1
C by

([k], 1) ' ([k + 1], 0). Consider the two open subsets

U = {([k], x) ∈ X : [k] 6= [0] and x 6= 0 if [k] = [1] and x 6= 1 if [k] = [−1]}
V = {([k], x) ∈ X : [k] 6= [2] and x 6= 0 if [k] = [−1] and x 6= 1 if [k] = [1]}

The intersection U∩V decomposes as (A1
C−{0, 1})×{[−1], [1]}. We glue U×C with V ×C by

using the identity on (A1
C−{0, 1})×{[1]} and the automorphism [−1] on (A1

C−{0, 1})×{[−1]}.
The result C ′ is clearly an elliptic curve (e.g. by the last proposition). We claim that it is
not isomorphic to X×CC although both are isomorphic over U and V . Indeed, the 3-torsion
of X ×C C is (Z/3)2 (as is the one of C). Let P be a three-torsion section of C ′ → X. The
3-torsion of both C ′|U and of C ′|V is isomorphic to C[3] = (Z/3)2; P must correspond in
both to the same element p as we glued on (A1

C − {0, 1}) × {[1]} via the identity. But this
implies that p = −p by the glueing on (A1

C − {0, 1}) × {[−1]} and thus p = 0. Thus, C ′[3]
has just the neutral element.

Recall from Section 3.1 that we can characterize (functors represented by ) schemes as
functor F from commutative rings to sets such that F restricted to the affine opens sets of
each SpecA is a Zariski sheaf and such that F has an “open cover” by SpecAi.

If we want to define an analoug for stacks (an “algebraic stack”) we could try to ask for
contravariant functors F from schemes to groupoids such that F restricted to every scheme
is a Zariski stack and which have an “open cover” by SpecAi. There are two problems with
this, one merely technical the other one more serious.

First problem: If we want to define Mell for all schemes, we run into the problem that
if we have composable morphisms X f−→ Y

g−→ Z and an elliptic curve C over Z, then
f∗g∗Z ∼= (gf)∗Z, but not f∗g∗Z = (gf)∗Z as would befit a usual functor. Thus, we have
to weaken the notion of a functor/presheaf. We will not work fully weakly by using the
convention that (id)∗C = C.

Definition 4.22. Let C be a category. A pseudo-presheaf F of groupoids on C consists of
the following data:

1. For each c ∈ C a groupoid F(c),

2. for each f : c→ d a functor f∗F(d)→ F(c),

3. for each composable arrows c f−→ d
g−→ e a natural isomorphism φf,g : f∗g∗

∼=−→ (gf)∗.

These satisfy some axioms:
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1. (id)∗ = id

2. φe,g = id

3. for composable arrows b f−→ c
g−→ d

h−→ e, we have an equality φf,hg(f∗φg,h) = φgf,h(φf,gh
∗).

We will usually just presheaf when we mean pseudo-presheaf. (We will not have the oppor-
tunity to just work with “strict” presheaves of groupoids.)

Note that every presheaf of sets on Sch /S defines a presheaf of groupoids and in particular
every scheme does. We will often identify a scheme with its associated presheaf.

Definition 4.23. A Zariski stack over a scheme S is a (pseudo-)presheaf of groupoids on
(Sch /S) whose restriction to the opens of every scheme X over S is a stack in the sense of
Definition 4.19.

Before we discuss the second problem, we have to make sense of what an open cover of
a map of presheaves of groupoids is. For this, we have first to discuss fiber products.

Definition 4.24. Let
G
g

��
F

f // H

by a diagram of presheaves of groupoids on Sch /S. We define (F×HG)(T ) (for T ∈ (Sch /S))
as the category of triples (x ∈ F(T ), y ∈ G(T ), α : f(x)→ g(y)), where a morphism consists
of a pair of x → x′ in F(T ) and y → y′ in G(T ) such that the obvious diagram commutes.
I leave the definition of functoriality and the natural isomorphisms for composition as an
exercise.

Note that the diagram

F ×H G
pr1

��

pr2 // G

g

��
F

f // H

does not commute. Indeed if we have (x, y, α) ∈ (F ×H G)(T ), f(x) 6= g(y) – but the
morphism α induces a natural isomorphism φF,G,H between f pr1 and g pr2. This makes the
diagram 2-commutative.

Definition 4.25. A morphism F → G of presheaves of groupoids of Sch /S is called repre-
sentable if for every morphism X → G with X a scheme, the pullback F ×G X is equivalent
to a scheme.6

Let P be a property of morphisms of schemes that is closed under pullback. We say
that a morphism F → G is P if it is representable and X ×G F → X satisfies P for every
morphism X → G with X a scheme.7

Now it is clear what an open cover should be. Define an open immersion of schemes to
be a morphism that is isomorphic to the inclusion of an open subscheme. A collection of
morphisms {Ui → F} is a Zariski open cover if each Ui → F is an open immersion and the
corresponding morphism

∐
i Ui → F is surjective (both in the sense above).

Now we can formulate the second problem:

6Some people use a weaker definition, where it suffices that F ×G X is an algebraic space.
7This is not always the best definition, e.g. one also wants to consider certain morphisms as proper that are

not representable. See [LMB00, Definition 4.14].
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Proposition 4.26. Let F be a stack on (Sch /S) with a Zariski open cover {Ui
ji−→ F} where

each Ui is a scheme. Then F is equivalent to a set-valued presheaf and more precisely even
to a scheme.

Proof. Let X be a scheme over S and x ∈ F(X) be an object with an automorphism f . We
have to show that it is trivial. Suppose the contrary. The object x corresponds by Yoneda to
a morphism X → F . Let Vi = Ui ×F X, which is (equivalent to) a scheme. Then {Vi → X}
is a Zariski open cover. Thus, there is an i such that f |Vi is a non-trivial automorphism of
x|Vi

(by the sheaf property of Isom(x, x)). Construct a morphism Vi → Vi, i.e. an element in
(Ui ×F X)(Vi) as the triple (Vi → X,Vi → Ui, fφX,Ui,F ) (without this triple, this morphism
would be the identity). But there can be no non-trivial automorphism of Vi over X as
Vi → X is an open inclusion! Thus, f must be trivial and F is equivalent to a set-valued
presheaf.

Now note that the stack condition is preserved under equivalences of presheaves and that
a set-valued stack is automatically a set (exercise!). The open cover {Ui → F} is exactly the
atlas you need to show that F is a scheme.

This is a consequence we most certainly don’t want! The problem was that an open
immersion Ui → X could not have any automorphism over X. Thus, we should change the
meaning of open.

4.4 Stacks on sites
We want to change the notion of an open cover in a way that it still makes good sense to
talk about sheaves.

Definition 4.27. Let C be category and {Ui → U} be a collection T of families of morphisms,
called cover. We demand that

1. If V → U is an isomorphism, then {V → U} is a cover.

2. If V → U is any arrow and {Ui → U} a cover, the pullbacks Ui ×U V exist and
{Ui ×U V → V } is still a cover.

3. If {Ui → U} is cover and {Uij → Ui} are covers, then {Uij → U} is also a cover.

Such a collection T is called a Grothendieck topology and the pair (C, T ) is called a site.

Definition 4.28. Let (C, T ) be a site and F be a presheaf (say, of sets) on C. Then F is
a sheaf if for every cover {Ui → U} the canonical morphism from F(U) to the equalizer of
the two morphisms from

∏
i F(Ui) to

∏
i,j F(Ui ×U Uj) is an isomorphism.

Likewise, we can define a stack on a site (C, T ) to be a (pseudo-)presheaf of groupoids
on C satisfying the stack conditions.

end of lecture 17
Which Grothendieck topologies T on Sch do we want to consider? We want at least two

important properties of them:

1. Every presheaf on Sch that is represented by a scheme should be a sheaf. In this case
T is called subcanonical.

2. Covers {Ui → X} can have automorphisms.

In topology, a thing satisfying the second (and actually both) conditions are covering spaces.
The corresponding notion in algebraic geometry is that of an étale morphism, which we will
define in two steps.

Definition 4.29. A morphism f : X → Y of schemes is called flat if for every x ∈ X the
induced map OY,f(x) → OX,x exhibits OY,f(x) as a flat OY,f(x)-module.
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Note that a morphism SpecA→ SpecB is flat iff A is flat as a B-module. Geometrically,
you should have the intuition that it is a morphism, where the “fibers are varying concreteley”.

Definition 4.30. A morphism f : X → Y is étale if it is locally of finite presentation, flat
and satisfies Ω1

Y/X = 0.

The idea is: A flat morphism (locally of finite presentation) is smooth (something like a
smooth fiber bundle in topology or an open part thereof) iff Ω1

Y/X is locally free (i.e. has no
jumps in its rank). For example, if X is the affine curve y2 = x3 over Spec k, we see that
the rank of Ω1 is everywhere one but at the singularity, where it is two. If Ω1

Y/X = 0, then
we have a “fiber bundle with fibers of dimension 0” which is much like covering space (or an
open part of it).

Examples 4.31. • Every open immersion is étale.

• A morphism between smooth complex varieties is étale iff it is a local homeomorphism
in the complex topology.

• The map SpecR[
√
t]→ SpecR for t ∈ R is étale if 2 is invertible in R. Here, you have

an automorphism
√
t 7→ (−

√
t).

• Every Galois extension K → L defines an étale map SpecL→ SpecK. Recall that the
Galois group are just the automorphism of L over K.

Thus, étale maps unite covering space theory with Galois theory. There is a huge theory
of étale cohomology and étale fundamental group, which is very important in arithmetic
geometry (see e.g. the Weil conjectures), but of which we will say almost nothing!

Definition 4.32. A family {Ui → X} is an étale cover if all Ui → X are étale and
∐
i Ui →

X is surjective.

Definition 4.33. A family {Ui → X} is an fpqc cover if all
∐
i Ui → X is flat, surjective

and every quasi-compact subset of X is a the image of a quasi-compact subset of
∐
i Ui.

A morphism that is flat and surjective is also called faithfully flat because SpecA →
SpecB is faithfully flat iff A is a faithfully flat B-module (faithful means that ⊗BA detects
isomorphisms). In French, this is fidèlement plat, which explains the “fp” in fpqc. The quasi-
compactness conditions is rather technical; note that it is automatically satisfied if f is of
finite presentation or f is affine.

Note that every étale cover is also an fpqc cover! But there are many other examples,
e.g. SpecA[x1, x2, . . . ]→ SpecA.

Theorem 4.34 (Grothendieck). Both fpqc covers and étale covers define subcanonical topolo-
gies.

That these are subcanonical is not a formality at all! The fpqc topology is the biggest
subcanonical topology I have every heard someone working with. That both are topologies
are easier though (e.g. it is easy to see that pullbacks of fpqc or étale covers are fpqc or étale
covers againa).

Theorem 4.35. Both Mell and MFG are stacks for the fpqc (and hence for the étale)
topology.

While it is relatively easy to show that the first stack condition (that Isom is a sheaf) are
satisfied, the “glueing” condition is less formal. See [MO17] and [Nau07, Section 4] for the
respective details.
Remark 4.36. It is a little easier to show that the functor Ell from Remark 4.21 is no étale
sheaf. Consider the elliptic curves E1 : y2 = x3 − 1 and E2 : y2 = x3 + 1 over R. These are
not isomorphic. But after base change to C they are. Thus, there is an étale cover (namely
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SpecC → SpecR) such that E1 and E2 are isomorphic on this cover, but not isomorphic
themselves.

References: [Vis05], [Góm01], [Ols16]

4.5 Algebraic stacks and Hopf algebroids
An algebraic stack should be a stack covered in a suitable sense by (affine) schemes. We will
choose the following definition.

Definition 4.37. An algebraic stack is a stack X for the fpqc topology on Sch such that
there is an affine fpqc map SpecA→ X for some A. Here, affine means that SpecB×X SpecA
is an affine scheme for every morphism SpecB → X .

Remark 4.38. This definition is equivalent to the one in [Nau07] and [Goe08]. Indeed, they
do not require the map SpecA → X to be affine, but the diagonal X → X × X to be
affine. The latter is equivalent to every morphism SpecB → X being representable and
affine (analogously to, e.g., [Góm01, Proposition 2.19]). Thus, we have to show that if there
exists an affine fpqc map SpecA → X , every map SpecB → X is affine. Affineness can be
checked fqpc-locally (see [GW10, Proposition 14.51]) and clearly SpecB×X SpecA→ SpecA
is affine as the source is affine.

Algebraic geometers often use algebraic stack as a synonym for an Artin stack, which is
something slightly different. This is a stack X , where the diagonal is representable, quasi-
compact and separated and there exists a surjective smooth morphism X → X with X a
scheme. Unfortunately,MFG is not an Artin stack, which is why we will use our definition
of an algebraic stack.

Proposition 4.39. The stackMell is algebraic.

Proof. Let A = Z[a1, a2, a3, a4, a6,∆
−1]. The Weierstrass equation defines a morphism

f : SpecA → Mell (because by Yoneda such a morphism corresponds to an elliptic curve
over A). We need to show that f is fpqc and affine. This means that for every morphism
g : X → Mell from a scheme X, the fiber product F = X ×Mell

SpecA is equivalent to a
scheme and the projection to X is fpqc and affine.

Let C be the elliptic curve over X classified by g. Then F represents the functor, sending
a T = SpecR to a triple of a morphism h : T → X, a Weierstrass curve E on T and an
isomorphism h∗C → E. Assume now for a moment that X = SpecB and C admits a
Weierstrass form. By Section 3.4, an isomorphism from h∗E to another Weierstrass curve is
classified by r, s, t, u ∈ R such that u is invertible. Thus, F is equivalent to SpecB[r, s, t, u±1]
in this case (as the second Weierstrass curve is determined by the isomorphism). Note that
in this case F → SpecB is an affine, flat and surjective morphism (in particular, fpqc).

Back to the general case: The scheme X admits an open cover {Ui = SpecBi → X}
such that C|Ui

admit Weierstrass forms. Thus, F admits a Zariski open cover by the affine
scheme and thus is equivalent to a scheme itself by Proposition 4.26. Moreover, the morphism
F → X is locally on the target affine and fpqc; standard algebraic geometry implies that it
is affine and fpqc itself.

The proof forMFG is similar.

Proposition 4.40. The stackMFG is algebraic.

Proof. Let L = MU∗ be the universal ring for formal group laws, carrying the unviersal
formal group law Funiv. Analogously to the last proof, it follows that the obvious morphism
f : SpecL → MFG is affine and fpqc if the map Y = SpecB ×MFG

SpecL → SpecB is
affine and fpqc for every SpecB →MFG coming from a formal group law F (indeed: every
formal group is Zariski locally on the base isomorphic to a formal group coming from a
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formal group law). The fiber product F represents a triple of a morphism h : SpecC →
SpecB and an isomorphism h : h∗F → G, where G is any formal group law on C. This
isomorphism is just any power series a0t+ a1t

2 + a2t
3 + · · · such that a0 is invertible. Thus,

Y ' SpecB[a±1
0 , a1, a2, . . . ].

Let p : X → X be any morphism and let Y = X ×X X. The pair (X,Y ) represents a
groupoid valued functor on the category of schemes. Indeed, for every scheme T , we obtain
a groupoid with objects maps t : T → X and morphisms the isomorphisms between (pt1)
and (pt2) in X (T ); such isomorphisms are exactly classified by the fiber product Y . Thus,
(X,Y ) is a groupoid object in the category of schemes. Concretely this means that we have
maps

1. s, t : Y → X (called source and target, correspond to the two projections),

2. e : X → Y (the unit, corresponding to the diagonal)

3. Y ×X Y → Y (the composition, corresponding to the map Y ×X Y ' X×X X×X X →
X ×X X ' Y that is projection onto the first and third coordinate)

4. Y → Y (the inverse, corresponding to the switch map of X ×X X)

satisfying some axioms.
end of lecture 18

Assume now that X = SpecA and Y = Spec Γ are affine. Then (A,Γ) is a “cogroupoid
object” in commutative rings, which means concretely that we obtain dual maps

1. ηL, ηR : A→ Γ (called left and right unit),

2. ε : Γ→ A (called the counit or augmentation)

3. Ψ: Γ→ Γ⊗A Γ (called the diagonal)

4. c : Γ→ Γ (called the conjugation)

satisfying some axioms. Such a structure is called a Hopf algebroid. This generalizes a Hopf
algebra, which is a cogroup object in A-algebras; this means simply that ηL = ηR above.

Example 4.41. Consider SpecA →Mell as above. Then Γ = A[r, s, t, u±1]. The map ηL
is just the inclusion A→ A[r, s, t, u±1]. The map ηR : A→ A[r, s, t, u±1] classifies the Weier-
strass curve, we obtain from the universal Weierstrass curve after applying the coordinate
change x 7→ u2x + r and y 7→ u3y + sx + t. All these maps can be looked up in [Sil09,
Table 1.2] or [Bau08, Section 3] (though check whether they have the same convention or
the opposite ones!).

Example 4.42. For SpecL→MFG, we obtain the Hopf algebroid (L,L[a±1
0 , a1, a2, . . . ] =

W ).

A crucial point is that Hopf algebroids can also arise from algebraic topology. Let E be
a (homotopy) commutative ring spectrum and assume that E∗E ∼= π∗E ∧E is flat over π∗E.
(As E∗E = [E,Σ∗E] are stable cohomology operations, one calls E∗E also the homology
cooperations. We will see more about cooperations next section.) Then we have maps

1. π∗E → π∗(E ∧E)

2. π∗(E ∧E)→ π∗E (induced by multiplication)

3. π∗(E ∧E)→ π∗(E ∧E ∧E) (induced by unit in middle variable) and an isomorphism

π∗(E ∧E)⊗π∗E π∗(E ∧E)→ π∗((E ∧E)∧(E ∧E))
1∧µ∧ 1−−−−−→ π∗E ∧E ∧E.

Indeed, the corresponding morphism also makes sense, if we replace one copy of E by
an arbitrary spectrum X to get a map π∗(X ∧E)⊗π∗E π∗E ∧E → π∗X ∧E ∧E. This
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is an isomorphism for X the sphere spectrum. Moreover, the class of spectra X where
this is an isomorphism is closed under weak equivalences, direct homotopy colimits and
cofibers of maps (as π∗E ∧E is a flat π∗E-module). Thus, it is an isomorphism for all
spectra X, in particular for X = E.

4. π∗(E ∧E)→ π∗(E ∧E) (induced by twist)

These satisfy the axioms of a (graded) Hopf algebroid.

Example 4.43. We have seen a long time ago that E∗MU ∼= E∗[b1, b2, . . . ] for any complex
oriented theory E, in particular for E = MU itself, we obtainMU∗MU = L[b1, b2, . . . ]. This
is nearly the same as the W above! The difference is essentially one of gradings.

There is a functor U from the category of evenly graded Hopf algebroids to that of
(ungraded) Hopf algebroids sending (A,Γ) to (A,Γ[u±1]). While ηL and c are essentially
given by the same formula and ε sends u to 1, the new maps ηR and Ψ take the gradings
into account. More precisely, we have

η
U(A,Γ)
R (a) = u|a|/2η

(A,Γ)
R (a)

for homogeneous elements a ∈ A and

ΨU(A,Γ)(x) = u|x|/2Ψ(A,Γ)(x)

for homogeneous elements x ∈ Γ. [Again, there are two possible conventions; we could have
chosen negative powers of u as well.]

The statement (essentially proven by Quillen) is now that U(MU∗,MU∗MU) ∼= (L,W ).
This makes the connection between MU and formal groups even tighter!

References: [Rav86, Appendix],

4.6 Comodules and quasi-coherent sheaves
The importance of Hopf algebroids is that they encode structure the E-homology of any
space has.

Definition 4.44. Let (A,Γ) be a Hopf algebroid. A (right) Γ-comodule is an A-module M
together with a map Φ: M →M ⊗A Γ satisfying a counitality and a coassociativity axiom.

There is an obvious analogue for evenly graded Hopf algebroids. The category of evenly
graded comodules over (A,Γ) is equivalent to that of comodules over U(A,Γ).

Example 4.45. We can illustrate the last point by a simple example. Let R be an evenly
graded ring, which we can view as an evenly graded Hopf algebroid (R,R). The associated
ungraded Hopf algebroid is (R,R[u±1]). A comodule M consists of a map M → M [u±1]
satisfying certain properties; we have seen in Proposition 3.24 how this corresponds to a
grading on M .

If E is a homotopy commutative ring spectrum such that E∗E is flat over E∗ and X is
a space or spectrum, then E∗X has the structure of a graded E∗E-comodule:

E∗X ∼= π∗E ∧X → π∗E ∧E ∧X ∼= E∗E ⊗π∗E E∗X.

Here, we use the unit in the middle factor again. More precisely, one can say that E defines
a homology theory on spaces/spectra with values in graded E∗E-comodules.

In particular, MU∗X has always the structure of a graded (MU∗,MU∗MU)-comodule.
Every such comodule decomposes uniquely into an evenly graded and an oddly graded
part. As the evenly graded (MU∗,MU∗MU)-modules are equivalent to ungraded (L,W )-
comodules, we see that the category of graded (MU∗,MU∗MU)-comodules is equivalent to
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Z/2-graded (L,W )-comodules. A 2-fold shift corresponds to tensoring with L[2], which is
the L-module L together with the map u · ηR : L→W .

end of lecture 19
Can we express this in terms of the stack MFG? Indeed, in terms of quasi-coherent

sheaves. First recall one possible definition in the scheme case.

Definition 4.46. Let X be a scheme. An OX -module8 F is called quasi-coherent if for
every affine open U ⊂ X with U ∼= SpecA and every f ∈ A, the canonical mapping

F(U)⊗A A[
1

f
]→ F(D(f))

is an isomorphism for D(f) = SpecA[ 1
f ].

We will do a similar definition in general.

Definition 4.47. Let X be an algebraic stack. Consider the categories Aff /X and Sch /X .
Their objects are morphisms from (affine) schemes to X and morphisms are 2-commutative
diagrams. We equip them with the fpqc-topology, where a family {Ui → X} is an fpqc cover
if it is an fpqc-cover of schemes – this defines a Grothendieck topology. We define a sheaf
OX on this site by OX (X → X ) = H0(X;OX). [That this is indeed an fpqc-sheaf follows
from fpqc descent as H0(X;OX) is naturally isomorphic to HomSch(X,A1).]

A presheaf of OX -modules F on Aff /X is called quasi-coherent if for every morphism
SpecA→ SpecB in Aff /X , the canonical map

F(SpecB → X )⊗B A→ F(SpecA→ X )

is an isomorphism.
A sheaf of OX -modules F on Sch /X is called quasi-coherent if its restriction to Aff /X

is quasi-coherent.
It turns out that the categories of quasi-coherent OX -modules on Aff /X and Sch /X are

equivalent and we denote them by QCoh(X ).

Theorem 4.48 (Faithfully flat descent, Grothendieck). Let X be an algebraic stack and
p : SpecA→ X be an affine fpqc morphism. Observe that SpecA×X SpecA is equivalent to
an affine scheme Spec Γ and (A,Γ) is a Hopf algebroid.

The functor
p∗ : QCoh(X )→ QCoh(SpecA) ' A -mod

can be lifted to a functor
QCoh(X )→ (A,Γ) -comod

that is an equivalence. This takes OX to the canonical comodule A.

The structure of an (A,Γ)-comodule on F(SpecA) arises as follows: By the definition of
a quasi-coherent sheaf, the map F(SpecA) ⊗A Γ → F(Spec Γ) (arising from η∗L : Spec Γ →
SpecA) is an isomorphism. But we have also the map η∗R : F(SpecA) → F(Spec Γ) ∼=
Γ⊗A F(SpecA). This is the structure map of the comodule.

Upshot 4.49. The spectrum MU defines a homology theory with values in quasi-coherent
sheaves onMFG. More precisely, let Fi(X) be the quasi-coherent sheaf onMFG correspond
to the even part ofMU∗+i(X). Then F∗ is a homology with values in QCoh(MFG). Likewise,
we can define reduced homology sheaves F̃∗.

8This means a module over OX in the category of (Zariski) sheaves on X.
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Remark 4.50. The sheaf F2(pt) is a line bundle (as evaluated on SpecL it is isomorphic to
L). We want to give a description of this sheaf in terms of formal groups. First, we record
though another general viewpoint on comodules over (L,W ). Let F be a quasi-coherent
sheaf on MFG, let F be a formal group law on a ring R (classified by a map L → R) and
let f = a0t + a1t

2 + · · · ∈ RJtK be a power series with a0 invertible. Note first that as
SpecR×MFG

SpecR ' R[a±1
0 , a1, . . . ], we obtain maps

F(SpecR)
Ψ−→ F(SpecL)[a±1

0 , a1, . . . ]
F∗−−→ F(SpecR)[a±1

0 , a1, . . . ]
f−→ F(SpecR).

Denote this composite by φF,F,f . Another interpretation of the map φF,F,f is as follows:
We have a 2-commutative diagram

SpecR
id //

F

$$

SpecR,

fF (f−1(x),f−1(y))zz
MFG

(5)

where the isomorphism between the two formal groups is given by f . This induces a
map F(SpecR) → F(SpecR), which should be the same as above. [There is something
amiss here: One should not write F(SpecR) as the value of F can depend on the con-
crete map chosen from SpecR → MFG. And then the map is F(SpecR

F−→ MFG) →

F(SpecR
fF (f−1(x),f−1(y))−−−−−−−−−−−−→ MFG) – this should be sorted out...] Clearly, φOMFG

,F,f = id.
We claim that φF2i,F,f = a−i0 φOMFG

,F,f = a−1
0 as can be seen by chasing through the grad-

ings. Furthermore, note that the morphisms φF,F,f determine the comodule associated with
F by taking F = Funiv on L and thus also the quasi-coherent sheaf F itself.

We want now to show that F2(pt) is isomorphic to a line bundle ω whose inverse we
define as follows: Let SpecR → MFG be a morphism corresponding to a formal group G.
Then we define ω−1(SpecR → MFG) to be the kernel of G(R[t]/t2) → G(R). Let’s see
how this looks like if G comes actually from a formal group law F : G = Spf RJxK. Recall
that G represents the set-valued functor sending every R-algebra to its nilpotent elements.
Thus, the map G(R[t]/t2) → G(R) is Rnil ⊕ tR[t]/t2 → Rnil and ω−1(SpecR → MFG) is
isomorphic to tR[t]/t2, which we can identify via the isomorphism τ : R

∼=−→ tR[t]/t2 with R.
This shows that the ω−1 we defined is actually a line bundle (aka invertible sheaf).

Given a diagram like (5), the induced map ω−1(SpecR)→ ω−1(SpecR) is given by

f∗ : tR[t]/t2 → tR[t]/t2, t 7→ f(t) = a0t.

We have f∗τ = a0τ . Thus, identifying ω−1(SpecR) with R via τ , we obtain φω−1,F,f = a0.
Thus, ω−1 ∼= F−2(pt) and ω ∼= F2.
Remark 4.51. Let F be a quasi-coherent sheaf on an algebraic stack X . We define its sheaf
cohomology Hi(X ;F) as ExtiQCoh(X )(OX ,F).

In algebraic topology, one considers also often Ext of comodules. Indeed, the Adams–
Novikov spectral sequence is a spectral sequence of the form

ExtpMU∗MU -comod(MU∗,MU∗+q)⇒ πq−pS.

These Ext-groups are zero if q is odd, so we can equally well just consider Ext-groups in
the category of evenly graded MU∗MU -comodules, which is equivalent to the QCoh(MFG).
Thus, the E2

pq-term is isomorphic to Hp(X ;ω⊗q/2) for q even as zero else.
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4.7 Landweber’s exact functor theorem revisited
Recall from the exercises that for a scheme X with a Gm-action the stack [X/Gm] classifies
étale Gm-torsors T → S with a Gm-equivariant map T → X. Note that an étale Gm-torsor is
an equivalent datum to an OS-module that is étale locally isomorphic to OS ; this is indeed
equivalent to being Zariski locally trivial (i.e. to being a line bundle). Thus every étale
Gm-torsor is already Zariski locally trivial.

We claim that the canonical morphism SpecL → MFG factors over [SpecL/Gm]. Let
p : T → S be a Gm-torsor with a Gm-equivariant map T → SpecL. We can cover S by
affine opens Ui = SpecA, where the Gm-torsor is trivial, i.e. p−1(Ui) ∼= SpecA[u±1]. A
Gm-equivariant map SpecA[u±1]→ SpecL is the same as a graded map L→ A[u±1], where
|u| = 2. This is equivalent to an ungraded map L → A, producing a formal group law over
A. It is easy to see that these formal group laws glue to a formal group on S, producing a
morphism q : [SpecL/Gm]→MFG.

There is also a different way to express this construction. Let R be an evenly graded ring
and F =

∑
i,j aijx

iyj a graded formal group law on R (i.e. |aij | = 2i+2j−2). The canonical
map SpecR → [SpecR/Gm] is an fpqc cover and the pullback SpecR ×[SpecR/Gm] SpecR
is equivalent to R[u±1] with the two structure maps ηL, ηR : R → R[u±1] induced by the
projection being the obvious inclusion and a 7→ uia if |a| = 2i. Because MFG is an fpqc-
stack, giving a morphism [SpecR/Gm] → MFG is equivalent to giving a formal group
over SpecR and an isomorphism between the two pullbacks to SpecR[u±1]. From F , we
obtain a formal group on SpecR and the power series ux defines an isomorphism between
(ηL)∗F =

∑
i,j aijx

iyj and

(ηR)∗F =
∑
i,j

ηR(aij)x
iyj =

∑
i,j

ui+j−1aijx
iyj = u−1

∑
i,j

(ux)i(uy)j .

As the universal formal group law on SpecL is graded (where L is graded compatibly with
the isomorphism L ∼= MU∗), we obtain a map q : [SpecL/Gm]→MFG.

By the exercises QCoh([SpecL/Gm]) is equivalent to graded L-modules. After forgetting
the comodule-structure, q∗ agrees with the equivalence from QCoh(MFG) to evenly graded
(MU∗,MU∗MU)-comodules. In particular, the degree 0-part of q∗Fi(X) is exactly MUiX
(with Fi as in the last section). Let R be an evenly graded ring and F : L → R be a
graded ring homomorphism (corresponding to a graded formal group law F on R), which
induces a map f : [SpecR/Gm] → [SpecL/Gm]. Then the degree 0-part of (qf)∗(Fi(X)) ∼=
f∗q∗(Fi(X)) is the degree i-part of MU∗(X)⊗MU∗ R.. We could write this as

deg0(qf)∗(F∗(X)) ∼= MU∗(X)⊗MU∗ R.

The crucial observation is the following: Because F∗ is a homology theories for spaces valued
in QCoh(X ) and deg0 is exact, the pullback (qf)∗F∗(X) is a homology theory if qf is
flat. Thus, the Landweber exact functor theorem follows from the following purely algebraic
theorem. (Note that [SpecR/Gm]→MFG is flat iff SpecR→MFG is flat.)

Theorem 4.52 (Algebraic Landweber exact functor theorem). Let M be a module over L.
Then M is flat over MFG if and only if for every prime p, the sequence p, v1, v2, . . . on
M is regular. Here, M is called flat over MFG if for every morphism SpecR →MFG the
pullback of M to SpecR×MFG

SpecL ' SpecS is a flat S-module.

This is not exactly an easy theorem and the best exposition I know is in Lurie’s notes on
chromatic homotopy theory [Lur10], lectures up to 16. We will provide a rough sketch of his
proof. First note that it is enough to prove the theorem p-locally for every prime p; thus, we
fix a prime p in the following.

We sketch first the theory of p-typical formal group laws. A FGL F over a torsionfree
ring is called p-typical if its logarithm is of the form

∑
i lix

pi with l0 = 0. Facts:
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1. The universal ring for p-typical formal group laws is V = Z(p)[v1, v2, . . . ], where these
vi agree with the previous vi modulo (p, v1, . . . , vi−1) = Ii−1.

2. Every FGL over a p-local ring is canonically isomorphic to a p-typical one, its p-
typification.

3. We obtain morphisms L(p) → V (classifying Funiv,p) and V → L (classifying the p-
typification of Funiv). As Funiv,p is already p-typical, the composition V → L(p) → V
is the identity; thus V is a retract of L(p) and in particular flat as an L(p)-module.

4. The morphism SpecV →MFG,(p) is fpqc. Indeed, it is flat as V is flat as an L-module
and surjectivity follows from part (2).

Consider the pullback diagram

SpecB //

��

SpecL(p)

��
SpecV //MFG,(p)

As SpecV →MFG,(p) is fpqc, M(p) is flat overMFG,(p) iff MB = M(p)⊗L(p)
B over V . One

can show that it is enough to show that MB is flat over every Z(p)[v1, . . . , vn]. We will show
indeed by downward induction that M/Im is flat over Z(p)[v1, . . . , vn]/Im, which is clear for
m = n+ 1 as Z(p)[v1, . . . , vn]/In+1 = Fp.

We will use the following theorem from commutative algebra.

Proposition 4.53. Let N be a module over a commutative ring A and x ∈ A a non-zero
divisor. Then N is flat over A if and only if the following three conditions are fulfilled:

1. The element x is a non-zero divisor on N ,
2. N/x is flat over A/x, and
3. N [x−1] is flat over A[x−1]

Assume that we already know that MB/Im+1 is flat over Z(p)[v1, . . . , vn]/Im+1. Con-
sider the non-zero divisor vm ∈ Z(p)[v1, . . . , vn]/Im. Then vm is a non-zero divisor on
MB/Im (by the assumption of the Landweber theorem) and (MB/Im)/vm ∼= M/Im+1 is
flat over Z(p)[v1, . . . , vn]/(Im, vm) ∼= Z(p)[v1, . . . , vn]/Im+1. The only thing still to show is
that MB/Im[v−1

m ] is flat over Z(p)[v1, . . . , vn]/Im[v−1
m ].

Let Mm
FG,(p) be the moduli stack of formal groups of exact height m. This agrees

with the fiber product SpecV/Im[v−1
m ] ×SpecV MFG,(p) as strict height m is exactly de-

termined by the vanishing of p, v1, . . . , vm−1 and vm being invertible. In particular, we see
that SpecB/Im[v−1

m ] is the fiber product SpecL/Im[v−1
m ] ×Mm

FG,(p)
SpecV/Im[v−1

m ]. Thus,
MB/Im[v−1

m ] is flat as an V/Im[v−1
m ]-module if and only if M(p)/Im[v−1

m ] ∈ L/Im[v−1
m ] -mod

is flat overMm
FG,(p).

Proposition 4.54. Every quasi-coherent sheaf onMm
FG,(p) is flat.

Proof. We only give a very basic idea of it. The crucial fact is that there is an fpqc map
SpecFp → Mm

FG,(p) (at least for m ≥ 1). The surjectivity means that after suitable flat
extension all formal group laws of height exactly m in characteristic p are isomorphic. (The
statement is even slightly stronger, e.g. there is up to isomorphism a unique formal group
law of height exactly m over Fp.)

Remark 4.55. From this viewpoint, one sees that the Landweber exact homology theory
associated to a formal group law only relies on the underlying formal group and not on the
choice of coordinate.

end of lecture 20
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4.8 Applications to elliptic cohomology and TMF [1
6
]

Sending an elliptic curve to its associated formal group defines a morphism Φ: Mell →MFG

of stacks.

Theorem 4.56. The morphism Φ: Mell →MFG is flat.

Proof. Flatness can be tested fpqc-locally on the base. Thus, it suffices to show that the
composite SpecA→Mell →MFG is flat. As the formal group of the universal Weierstrass
curve carries a coordinate, this factors over SpecL, corresponding to a formal group law
F . By Theorem 4.52, the morphism SpecA → SpecL → MFG is flat if and only if F
is Landweber exact. By Theorem 4.16, it suffices to show that there are ordinary elliptic
curves over every Fp (as they have automatically Weierstrass forms). This is Proposition
4.15, which we have shown in Example 4.18 at least for p > 2.

Let f : [SpecR/Gm]→Mell be a flat morphism. Then the functor

f∗Φ∗ = (Φf)∗ : QCoh(MFG)→ QCoh([SpecR/Gm]) ' (evenly graded R-modules)

is exact (as Φ is also flat). Thus, X 7→ H0([SpecR/Gm], (Φf)∗Fi) defines a homology theory
represented by an even spectrum E such that π2∗E = R.

The upshot is the following: We obtain a presheaf Ohom of homology theories on the
category of flat morphisms [SpecR/Gm]→Mell.

We want to do some examples. Let M1(n) be the (pseudo-)presheaf of groupoids that
associates with each scheme S over SpecZ[ 1

n ] the groupoid of elliptic curve C over S with
a section S → C of exact order n; more precisely we demand that for every morphism
Spec k → S with k algebraically closed the pulled back section Spec k → C ×S Spec k has
exactly order n in C(k). Isomorphisms have to respect this point. It is not too hard to check
thatM1(n) is an fpqc-stack as well.

Proposition 4.57. The mapM1(n)→Mell,Z[ 1
n ] is étale and surjective.

Proof. Let S →Mell,Z[ 1
n ] be a morphism classifying an elliptic curve C and Cn be the fiber

product S ×M
ell,Z[ 1

n
]
M1(n). We have to show that Cn → S is étale and surjective.

The map [n] : C → C is étale by Proposition 4.11 as n is invertible on S. Thus, C[n] is
étale over S as the map C[n]→ S is by definition the pullback of [n] along the unit section
S → C. For every m|n, the map C[m] → C[n] is a closed immersion as C[m] → C is one
(as it is the base change of the closed immersion S → C). We claim that Cn is isomorphic
to the complement C̃n of the images of the C[m] for m|n with m 6= n in C[n]. Indeed: The
scheme C[n] represents the functor of morphism f : T → S together with a choice of a point
of order n in f∗T . Both Cn and C̃n can be identified with the subfunctor where the chosen
point has exactly order n in the sense above. As C[n] is étale over S and Cn is an open
subscheme of C[n], the morphism Cn → S is étale as well.

For surjectivity it is enough to show that for every C : Spec k → Mell,Z[ 1
n ] with k al-

gebraically closed, we can find a lift to M1(n). But we have seen before (in the proof of
Proposition 4.11 that the n-torsion of C(k) is isomorphic to (Z/n)2; in particular, there is a
point of exact order n.

Let M1
ell(S) be the groupoid of elliptic curve with chosen invariant differential and let

M1
1(n) =M1(n)×Mell

M1
ell. We know (from Proposition 3.23 and the exercises) that

• M1
ell,Z[ 1

6 ]
' SpecZ[ 1

6 ][c4, c6,∆
−1]

• M1
1(2) ' SpecZ[ 1

2 ][b2, b4,∆
−1]

• M1
1(3) ' SpecZ[ 1

3 ][a1, a3,∆
−1]
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Clearly, M1
1(n) is an étale Gm-torsor over M1(n), so we see by the exercises that

[M1(n)1/Gm] 'M1(n). [Strictly speaking, this identification was only shown in the scheme
case, but follows also in general.] Thus, we can obtain homology theories from the examples
above:

• TMF [ 1
6 ] := Ohom(Mell,Z[ 1

6 ])

• TMF1(2) := Ohom(M1(2)) (the same elliptic homology considered before)

• TMF1(3) := Ohom(M1(3))

One can indeed show that the M1
1(n) (and indeed the M1(n)) are also affine schemes for

n ≥ 4, resulting in homology theories TMF1(n).
Here, TMF stands for topological modular forms. We will explain how to construct TMF

without 6 inverted in the next sections. What we want to comment on now is what this has
to do with modular forms.

We will explain first what a modular function is.

Definition 4.58. An (algebraic) modular function with coefficients in a ring R is an element
of MF0,R = H0(Mell,R,OMell,R

).

If you have seen the notion of a modular function before in the complex-analytic setting,
this might not appear very similar. Let us sketch what happens if R = C. Every elliptic
curve over C is of the form C/L for some lattice. Thus, a function on Mell,C might be
seen as a function that sends every lattice L to a complex number. This function must be
invariant under isomorphism of elliptic curves and C/L and C/L′ are isomorphic iff L′ = zL
for some z ∈ C×. Thus, we can normalize the lattice to have one generating vector equals 1
and one generating vector τ with Im(τ) > 0. The elliptic curves C/〈1, τ〉 and C/〈1, τ ′〉 are

isomorphic iff τ ′ = aτ+b
cτ+d for

(
a b
c d

)
∈ SL2(Z).

Definition 4.59. A (complex-analytic) modular function is a holomorphic function f on
H = {τ ∈ C : Im(τ) > 0} such that f(aτ+b

cτ+d ) = f(τ) and such that f has at most a pole at
τ = i∞ (in a suitable sense).

One can show that these definitions agree (with R = C). One can show that MF0,R
∼=

R[j] (where j is the so-called j-invariant). This is easy if 6 is invertible in R, but not so easy
in general.

We go on to discuss modular forms. First recall that for every elliptic curve p : C → S
with section e : S → C, we obtain a line bundle ωC/S = e∗Ω1

C/S
∼= p∗Ω

1
C/S on S. This defines

a line bundle ω onMell. Indeed: it suffices to show that for a morphism f : T → S we have
a natural isomorphism f∗e∗Ω1

C/S
∼= ef∗CΩ1

f∗C/T , where f
∗C = C ×S T . But it is a general

fact that Ω1
f∗C/T is naturally isomorphic to f̃∗Ω1

C/S for f̃ : f∗C → C.

Definition 4.60. An (algebraic, meromorphic) modular form with coefficients in R is an
element of MFk,R = H0(Mell,R, ω

⊗k).

In the complex-analytic condition, we have to replace f(aτ+b
cτ+d ) = f(τ) by f(aτ+b

cτ+d ) =

(cz + d)kf(τ).
We want to claim that TMF [1/6]∗(pt) is concentrated in even degrees and π2kTMF [ 1

6 ] ∼=
MFk,Z[ 1

6 ]. By definition,

πiTMF [
1

6
] = TMF [

1

6
]i(pt) = Fi(pt)(Mell,Z[ 1

6 ])
∼= H0(Mell,Z[ 1

6 ]; Φ∗Fi(pt))

for Φ: Mell,Z[ 1
6 ] →MFG as above. Thus, we need to show the following:

Proposition 4.61. We have Φ∗F2i+1(pt) = 0 and Φ∗F2i(pt) ∼= ω⊗i.
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Before we prove this, we have to recall a property about differentials.

Lemma 4.62. Denote by AlgaugR the category of augmented R-algebras, i.e. of commutative
R-algebras A with a map p : A → R of R-algebras. Let A be such an augmented R-algebra
and M an R-module. Denote by R ⊕M the augmented R-algebra with (r,m) · (r′,m′) =
(rr′, rm′ +mr′) (i.e. a square-zero extension). Then there is a natural isomorphism

HomA -mod(Ω1
A/R,M) ∼= HomAlgaug

R
(A,R⊕M),

where A acts on M via p In particular, we get for M = R:

HomA -mod(Ω1
A/R, R) ∼= HomAlgaug

R
(A,R[t]/t2).

Proof. By definition HomR -mod(Ω1
A/R,M) is in natural one-to-one correspondence with R-

derivations d : A→M , i.e. R-linear maps satisfying d(ab) = d(a)b+ ad(b), where A acts on
M via p. Such a derivation defines a morphism

A→ R⊕M, a 7→ (p(a), d(a))

of augmented R-algebra. If f : A→ R⊕M is a morphism of augmented R-algebras, pr2 f is
a derivation

Proof of proposition: First note that F2i+1 is obviously zero. Now denote the ω defined in
Remark 4.50 by ωFG. We have seen that F2

∼= ωFG and it is easy to see that F2i
∼= F⊗i2 .

Thus, it suffices to show that Φ∗ωFG ∼= ω. As we know that the category of quasi-coherent
sheaves on the site of affine schemes overMell is equivalent to them on the site of all schemes,
it suffices to give a natural isomorphism Φ∗ωFG(SpecR) ∼= ω(SpecR) for all morphisms
SpecR→Mell (classifying an elliptic curve C).

Denote by Ĉ the formal group of C (i.e. the formal completion at the unity section).
Recall that

Φ∗ω−1
FG(SpecR) = ω−1

FG(SpecR) = ker(Ĉ(SpecR[t]/t2)→ Ĉ(SpecR)).

More concretly, this consists of all morphisms f : SpecR[t]/t2 → C such that the composition
SpecR → SpecR[t]/t2 → C is the unit section s and the pullback f∗I is nilpotent, where
I is the ideal sheaf cutting out the image of the unit section. But the latter condition is
implied by the former as s∗I = 0 by definition. Note also that the set-theoretic image of f is
automatically exactly the set-theoretic image of the unit section; thus one can replace C by
an affine neighborhood U = SpecA of the image of s (after possibly shrinking SpecR first).

We see that Φ∗ω−1
FG(SpecR) consists of augmented R-algebra homomorphisms A →

R[t]/t2. By the last lemma, we see that

Φ∗ω−1
FG(SpecR) ∼= HomA -mod(Ω1

A/R, R)

∼= HomR -mod(Ω1
A/R ⊗A R,R)

∼= HomR -mod((s∗Ω1
SpecA/R)(SpecR), R)

∼= HomR -mod((s∗Ω1
C/R)(SpecR), R)

∼= HomR -mod(ω(SpecR), R)

This is exactly what we wanted to show.

end of lecture 21
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5 Topological modular forms
The goal of this section is to construct the spectrum TMF and discuss its basic properties.

5.1 The construction of TMF and the sheaf Otop

We defined a (meromorphic) modular form of weight k to be a global section of ω⊗k on
Mell. Note that ω was a priori only defined on the site Sch /Mell and in particular not
on Mell itself. But if we choose an fpqc (or even étale) cover X → Mell, we can define
H0(Mell, ω

⊗k) simply as the equalizer of the two natural maps ω⊗k(X)→ ω⊗k(X×Mell
X).

A more functorial definition is to define it as lim(X,f)∈Sch /Mell
ω⊗k(X, f). These definitions

are easily seen to coincide if we use that ω is an fpqc-sheaf on Sch /Mell (which is automatic
from the quasi-coherence on affine schemes and the Zariski sheaf condition).

Let Ohom be as in the last section. We would like to define TMF to be the global sections
of Ohom. The problem: Ohom is only defined on affine schemes (or more generally on stacks
of the form [SpecA/Gm]). To define its global sections, we have to form a kind of limit. But
the category of homology theories does not have all limits! So we should lift it to a setting
where limits exist. For this purpose, let Aff ét /Mell be the full subcategory of Aff /Mell of
étale morphisms SpecA→Mell.

Theorem 5.1 (Goerss–Hopkins–Miller). There is a presheaf of spectra9 Otop on Aff ét /Mell

whose underlying presheaf of homology theories is isomorphic to Ohom. Actually, Otop can
be chosen to be even a presheaf of E∞-ring spectra.

Here, E∞-ring spectra can mean different things and the theorem is true for every inter-
pretation. It is a refinement of the notion of a commutative monoid in Ho(Sp) to something
stricter/more structured. One possible model: Commutative monoids in the category SpO

of orthogonal spectra. [One can also treat it via ∞-categories.]
To define global sections, it makes more sense in this homotopical setting to use a homo-

topy limit than a usual limit. (We will talk later about how to construct/define homotopy
limits.)

Definition 5.2. Define TMF as the “global sections” of Otop; more precisely, we define

TMF := holim
(SpecA

f−→Mell)∈Aff ét /Mell

Otop(SpecA
f−→Mell)

More generally, if X →Mell is an étale map from an algebraic stack, we define

Otop(X ) = holim
(SpecA

f−→X )∈Aff ét /X
Otop(SpecA

f−→ X →Mell).

To access the homotopy groups of these spectra, we will use the descent spectral sequence.
This requires some preparation to state.

Definition 5.3. Let X be an algebraic stack. We denote by Hq the q-th derived functor of
the global sections functor QCoh(X )→ AbGrps.

Remark 5.4. More commonly, sheaf cohomology is defined not as the derived functor of
global sections from quasi-coherent sheaves on some site, but rather as the derived functor
of global sections from sheaves of abelian groups on some suitable site. One can show that
these notions agree if we use the fqpc topology for algebraic stacks. This is Proposition B.8
in [TT90] in the case of a quasi-compact and semi-separated scheme and the case of algebraic
stacks is similar.

9It is of importance here that this is really a presheaf in the category of spectra and not in the homotopy
category of spectra.
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If F is an presheaf of spectra on a site, we denote by πkF the sheafification of the presheaf
X 7→ πk(F(X)). On Aff ét /Mell the presheaf X 7→ πk(Otop(X)) is already a sheaf, namely
0 if k is odd and ω⊗k/2 if k is even. In particular, πkOtop is 0 for k odd isomorphic to ω⊗k/2
if k is even.

Theorem 5.5. Let X →Mell be an étale map from an algebraic stack. There is a spectral
sequence

Hq(X : πpOtop)⇒ πp−qOtop(X ).

In particular, we have a spectral sequence

Hq(Mell : πpOtop)⇒ πp−qTMF.

The edge homomorphism is

MFk,Z = H0(Mell;ω
⊗k)→ π2kTMF.

Lemma 5.6. If X = SpecA or [SpecA/Gm] and F is a quasi-coherent sheaf on X , then
Hq(X ;F) = 0 for q > 0.

Proof. The former case is well-known. For the latter: We observed before that QCoh(X ) is
equivalent to evenly graded A-modules and that the global sections functor corresponds to
taking degree-0. This is obviously exact and so all higher derived functors vanish.

Proposition 5.7. Let A∗ be an evenly graded ring and X = [SpecA∗/Gm] with an étale
map to Mell. Then π∗Otop(X ) ∼= A∗. Thus, Otop also refines Ohom on stacks of the form
[SpecA/Gm] étale overMell.

This discussion also confirms that π2∗TMF [ 1
6 ] is just the ring of modular formsMF∗,Z[ 1

6 ]
∼=

Z[ 1
6 ][c4, c6,∆

−1]. The homotopy groups are considerably more difficult to calculate without
6 inverted.

end of lecture 22

5.2 The spectral sequence for a tower of fibrations
Lemma 5.8. Let Y • = (· · · → Y 1 → Y 0) be a tower of Serre fibrations. Then we obtain a
natural exact sequence

0→ lim 1
nπ∗+1Y

n → π∗ lim
n
Y n → lim

n
π∗Y

n → 0.

In particular we get the following: Let Y • = (· · · → Y 1 → Y 0) and Z• = (· → Z1 → Z0)
be two towers of Serre fibrations. Let Y • → Z• be a map of towers that is levelwise a weak
homotopy equivalence. Then we obtain a weak equivalence on the inverse limits.

We obtain an analogous statement for a tower of levelwise Serre fibrations of Ω-spectra
Y •. We obtain an exact couple

D =
⊕

n π∗Y
n // D =

⊕
n π∗Y

n

tt
E =

⊕
n π∗(fib(Y n → Y n−1)

jj

This produces a spectral sequence with E1-term
⊕

n π∗(fib(Y n → Y n−1) and converging
to limn π∗Y

n, which is under good circumstances the same as π∗ limn Y
n.
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5.3 The spectral sequence for a cosimplicial spectrum
Before we discuss general homotopy limits, we discuss as a first example a homotopy equalizer
and let’s start in the category of (compactly generated, weak Hausdorff) topological spaces.
Recall that the equalizer of two maps f, g : X → Y consists of all x ∈ X such that g(x) = g(x).
In the homotopy world, we replace equality by paths. Thus, the homotopy equalizer of f
and g consists of the space of x ∈ X together with a path γ : I → Y such that γ(0) = f(x)
and γ(1) = g(x). We generalize this to the totalization of a semi-cosimplicial diagram.

Let ∆inj be the category with objects n = {0, 1, . . . , n} (for n ∈ Z≥0) and (not necessarily
strictly) monotonic injective maps as morphisms. We denote the injection n− 1 → n that
has i not in its image by di. All morphisms are composites of di. For a category C, we
will call a functor ∆inj → C a semi-cosimplicial object. By the remark above, an equivalent
description is a sequence of objects Xn ∈ C with morphisms di : Xn−1 → Xn satisfying the
compatibility djdi = didj−1 if i < j.

Definition 5.9. Let ∆• be the semi-cosimplicial space whose n-th space is the n-simplex
(with di the inclusion of the face opposite to the i-th vertex). Let X• be a semi-cosimplicial
space or spectrum.

We define its totalization Tot(X•) as the mapping space/spectrum Map∆inj
(∆•, X•). (i.e.

in the space case the subspace of
∏
n Map(∆n, Xn) compatible with cofaces and codegen-

eracies; in the spectrum case we do this construction levelwise).
Let X•≤n be the restriction of the diagram to the full subcategory (∆n

0 )inj of ∆ on
[0], . . . , [n]. We define the n-th partial totalization Totn(X•)of X• to be the mapping spaces
(or spectrum) Map(∆n

0 )inj
(∆≤n, X≤n).

Example 5.10. Let X• be a semi-cosimplicial space with Xn = pt for n > k. Then the
map Tot(X•) → Totk(X•) is a homeomorphism. If k = 1, this totalization recovers the
homotopy equalizer.

Lemma 5.11. Let X• be a semi-cosimplicial space. The map Totn(X•) → Totn−1(X•) is
a Hurewicz fibration.

Proof. We have to show that every commutative diagram

Y × 0

��

f // Totn(X•)

��
Y × I α //

88

Totn−1(X•)

has a diagonal lift. It suffices to show this for Y = pt since the general case reduces to this
by considering (X•)Y . From f and the diα, we obtain a map ∆n × 0 ∪ ∂∆n × I → Xn.
We precompose with the standard retraction ∆n × I → ∆n × 0 ∪ ∂∆n × I to obtain a map
∆n × I → Xn or, by adjunction, I → Map(∆n, Xn). This map defines together with α the
required lift I → Totn(X•).

Lemma 5.12. Let X• be a pointed semi-cosimplicial space (i.e. a semi-cosimplicial object in
pointed spaces with base point ∗). Then the fiber of Totn(X•)→ Totn−1(X•) is homeomor-
phic to Map(∆n/∂∆n, Xn) ∼= ΩnXn. The induced map ΩnXn−1 → Ω Totn−1(X•)→ ΩnXn

is homotopic to dn − dn−1 + · · · ± d0 if n ≥ 2 and to (d0)−1d1 if n = 1.

Proof. By definition, the fiber is the space of all maps ∆n → Xn, which maps all faces to
the base point. This shows the first part.

For the second: The map ∂ : Ω Totn−1(X•)→ fib(Totn(X•)→ Totn−1(X•)) ∼= ΩnXn is
defined as follows: Given α : I → Totn−1(X•) with α(0) = α(1) = ∗, lift it in the manner
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of the last lemma to α̃ : I → Totn(X•) (using the map ∗ : 0 → Totn(X•) as a start) and
∂(α) = α̃(1). Restriction ∂ to ΩΩn−1Xn−1 means that the map I ×∆n → Xn is the base
point on the (n− 2)-skeleton. If we identify ∆n × 0 ∪ (∂∆n × I) with ∆n (as the retraction
defining α̃ does), we see that the resulting map ∆n/∂∆n is the alternating sum of the maps
on the faces, which are exactly the diα (as the bottom face is constantly ∗). [This should be
worked out more carefully with the orientations/signs!]

Proposition 5.13. Let X• → Y • be a levelwise weak homotopy equivalence of semi-cosimplicial
spaces. Then the induced map on totalizations is a weak homotopy equivalence as well.

The same is true if X• → Y • is a π∗-isomorphism between Ω-spectra.

Proof. By the five lemma and the Lemmas 5.11 and 5.12, we see that the induces map
Totn(X•)→ Totn(Y •) is a weak equivalence. [One has to be a little careful with π0 and π1

as these are not abelian groups; we will not be so careful with this because we will switch to
spectra in a moment.] By the Lemma 5.8, we obtain the same result for Tot itself. The case of
Ω-spectra follows because a π∗-isomorphism between Ω-spectra is a levelwise weak homotopy
equivalence and every levelwise weak homotopy equivalence is a π∗-isomorphism.

Because of this homotopy invariance property, we call Tot(X•) also the homotopy limit
of X• (if the Xn are spaces or Ω-spectra). If X• is any semi-cosimplicial diagram of spectra,
we can first functorially replace the spectra by π∗-isomorphic Ω-spectra and then take Tot
to obtain the homotopy limit.
Construction 5.14. Let X• be a semi-cosimplicial spectrum.10 We replace all Xn by Ω-
spectra without changing their π∗. Then the tower

· · ·Totn(X•)→ Totn−1(X•)→ · · · → Tot0(X•) = X0

defines a spectral sequence in the manner of the last section. It takes the form

Epq1 = πpΩ
qXq ∼= πp−qX

q ⇒ lim
q
πp TotqX

•.

In this indexing, this is an upper half-plane spectral sequence. If only finitely many differ-
ential exit each spot, then the spectral sequence converges strongly and the target can be
identified with

πp lim
q

TotqX
• ∼= πp TotX• ∼= πp holim∆inj X

•.

(See [Boa99, Theorem 7.4] for the last point) The d1-differential on E1 is induced by the
alternating sums of the di in the cosimplicial spectrum.

The spectral sequence is called the Bousfield–Kan spectral sequence associated with the
semi-cosimplicial spectrum X•.

References: [GJ99, Chapter VIII], [BK72], [Dou07]

5.4 Descent spectral sequence again
As noted above, the maps M1(n) → Mell × SpecZ[ 1

n ] are étale and surjective. Moreover
M1(n) is equivalent to an affine scheme for n ≥ 4. Thus, there exists an étale cover of
Mell by an affine scheme. The same is true for every algebraic stack X that is étale over
Mell. Indeed, just pull the cover SpecA →Mell back to SpecA ×Mell

X → X ; the source

10There is an analogous version for pointed spaces; the difficulty is however that π0 and π1 are not abelian
groups so that one gets a spectral sequence where some things are just non-abelian groups or pointed sets, which
complicates everything. The version for non-pointed spaces is even more difficult, partially because Tot(X•)
might be a priori empty.
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is equivalent to a scheme as X →Mell is representable and the map is étale and surjective
(because these properties are closed under pullbacks). Now we can just Zariski cover the
source by affine opens.

Let U → X be an étale cover by an affine scheme U . We obtain the so-called descent
spectral sequence

Epq1 = πpOtop(U×Xn+1)⇒ πp−q holim∆Otop(U×Xn+1).

We want to identify source and target with more familiar quantities. Let’s begin with
the source. The map U → X is affine (as X is algebraic) so that the U×Xn+1 are affine
schemes. Then the cochain complex Ep•1 -term can be identified with the Cech complex for
the ω⊗∗ for the cover U → X . Using that all intersections are affine (and hence acyclic for
cohomology), one sees that the cohomology of this cochain complex (i.e. Epq2 ) is isomorphic
to Hq(X ;πpOtop). Now to the target:

Definition 5.15. A presheaf F of spectra on a site C is called a sheaf if for every cover
U → X, the map

F(X)→ holim∆Otop(U×Xn+1)

is an equivalence.

Lemma 5.16. Otop is a sheaf on Aff ét /Mell (with the étale topology).

Proof. Consider the descent spectral sequence for a cover U → V of affine schemes. The
E2-term is concentrated in line zero as affine schemes have no higher cohomology. This also
implies (by a degenerate form of the Mittag–Leffler criterion) that the lim1-term vanishes.
We obtain that πk holim∆Otop(U×V n+1) is πkOtop(V ), as was to be shown.

One can show that extending a sheaf on Aff ét /Mell to all algebraic stacks étale over
Mell preserves the sheaf property. Thus, we have holim∆Otop(U×Xn+1) ' Otop(X ). This
gives the final form of the descent spectral sequence:

Proposition 5.17. For any algebraic stack X étale overMell, there is a spectral sequence

Epq2
∼= Hq(X ;πpOtop)⇒ πp−qOtop(X ).

This is conditionally convergent in the sense of [Boa99].

Recall that we showed that πpOtop = 0 vanishes if p odd and π2pOtop ∼= ω⊗p so that the
E2-term is indeed completely algebraic.
Remark 5.18. We do not have to take an affine scheme U for this to work; we can any étale
cover Y → X instead on which the ω⊗i have no higher cohomology, e.g. Y could be of the
form [SpecR/Gm].

end of lecture 23

5.5 A tale of two spectral sequences
There is another, even more important spectral sequence: The Adams–Novikov spectral
sequence. We will consider it only in the special case, where it computes (potentially)
the stable homotopy groups of the sphere spectrum. The importance for us is that there
is a comparison map to a descent spectral sequence for TMF , which allows to transfer
information both ways.

We want to use in this section a smash product of spectra that is not only defined on the
homotopy category. For definiteness we will use orthogonal spectra for this (see [MMSS01]
for the original source or [Sch12] for a comprehensive treatment of the similar theory of
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symmetric spectra, which are equally almost equally good for our purposes; it also contains
a brief treatment of orthogonal spectra in Section I.7 – one can also have a look at [Mal11] that
is an introduction to stable homotopy theory including orthogonal spectra). The basis idea
is that the category of orthogonal spectra is an enhancement of the category of usual spectra
(essentially the n-th level is equipped with a nice O(n)-action). This enhancement allows us
to define a smash product on the category of orthogonal spectra. Furthermore, the forgetful
map from orthogonal spectra to usual spectra induces an “equivalence of homotopy theories”.
In the background, we will use the positive convenient model structure of cite[Section
1.3]Stol11.
Construction 5.19. Let E be a spectrum with a map e : S→ E. We obtain a semi-cosimplicial
spectrum X• with Xn = E∧(n+1) with the di induced by e. The resulting Bousfield–Kan
spectral sequence is called the E-based Adams spectral sequence (for S). In this generality,
it is rather useless though. (In particular, it should be only applied if E is cofibrant as else
the smash product will be not homotopically correct.)
Remark 5.20. The construction is obviously functorial in maps of spectra f : E → E′, where
we have e′ = fe (where e : S→ E and e′ : S→ E′ are the two “unit maps”). We claim that it
is even functorial if we only have e′ ' fe with specified homotopy H : fe⇒ e′. It is enough
to consider for this the case f = id. We denote the n-th partial totalization associated
with e by Totn and the one associated with e′ by Tot′n. It is enough to construct maps
fn : Totn → Tot′n such that the squares

Totn

��

// Tot′n

��
Totn−1

// Tot′n−1

are commutative. Assume we have already constructed fi for i ≤ n. Recall that a point in
the k-th level of Totn consists of a point (g0, . . . , gn−1) ∈ (Totn−1)k together with a map
gn : ∆n → (E∧n+1)k satisfying diegn−1 = gnd

i; here die : E∧n → E∧(n+1) uses e at the i-th
factor. We obtain maps I × ∆n−1 → (E∧n+1)k by (t, x) 7→ (diH(t)gn−1)k(x). We can glue
them together with gn to obtain a map (∆n × 0)∪ (∂∆n × I)→ (E∧n+1)k. Using the usual
retraction, we obtain a map ∆n × I → (E∧n+1)k, whose restriction to ∆× 1 we use as the
image of (g0, . . . , gn) in (E∧n+1)k. [There is probably an easier way to do this by replacing
E′ by E′∆

1

to make the equality e′ = fe strict.]
What if e and e′ just define the same map S → E in the stable homotopy category?

Using model category language (see [MMSS01] for the stable model structure we are using),
we find a π∗-isomorphisms r : E → Ef to a fibrant orthogonal spectrum. Clearly, r induces
isomorphisms of spectral sequence the ones for (E, e) and (Ef , re) and the ones for (E, e′)
and (Ef , re′). Furthermore, re and re′ are really homotopic as S is cofibrant. Thus, we can
use the previous arguments.

The two most important examples are the following:

Example 5.21. Take E = HFp. Then the spectral sequence converges (strongly) to the
p-completion of π∗S. The E2-term can be identified with Es,t2 = Exts(Fp,Fp[t]), where
denotes the mod-p-Steenrod algebra and Fp[t] indicates a grading shift. This is one of the
most powerful tools to compute the homotopy groups of spheres (especially at p = 2). This
was the original example of an Adams spectral sequence, with which Adams solved Hopf
invariant 1 problem.

Example 5.22. Let E = MU .11 Then the spectral sequence converges (strongly) to π∗S.
11We choose a nice model for MU as a commutative monoid in orthogonal spectra that is cofibrant (as a

commutative monoid and hence as an underlying orthogonal spectrum).
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The E2-term can be identified with E2
s,t = ExtsMU∗MU (MU∗,MU∗+t). Here, the Ext is taken

in the category of (MU∗,MU∗MU)-comodules. This is as well an extremely powerful tool to
compute the homotopy groups of spheres, especially at odd primes. This spectral sequence
is also called the Adams–Novikov spectral sequence, which we will just abbreviate to ANSS.

Let us make the identification of the E2-term more explicit. From the general identifi-
cation of the E1-term of the Bousfield–Kan spectral sequence we know that the E1-term is
a cochain complex with n-th term π∗(MU∧n+1). The differential is the alternating sum of
the maps induced by taking the unit in the i-th factor.

Recall that MU∗MU = π∗MU ∧MU . Thus, we obtain a map

fn : (MU∗MU)⊗MU∗n → π∗(MU (n+1))

as follows: First, we have a map

(MU∗MU)⊗n → π∗(MU ∧MU)∧n ∼= π∗(MU∧ 2n).

Then we use the map MU∧ 2n → MU∧n+1 that multiplies the second and third entry,
the fourth and fifth entry etc. This descends to a map fn as above. The argument above
Example 4.43 shows that fn is an isomorphism. One checks that the differential on the
E1-term becomes under fn the following:

d0(a) = ηR(a)− ηL(a) (6)

dn(γ1 ⊗ · · · ⊗ γn) = (1⊗ γ1 ⊗ · · · ⊗ γn) +

n∑
i=1

(−1)iγ1 ⊗ · · · ⊗Ψ(γi)⊗ · · · γn + (−1)n+1(γ1 ⊗ · ⊗ γn ⊗ 1).

(7)

This is called the cobar complex for the graded Hopf algebroid (MU∗,MU∗MU).
We can interpret this also as a Cech complex. We have maps

gn : (MU2∗MU)⊗MU2∗n → ω⊗∗([SpecL/Gm]×MFG
n+1)

defined in a fashion analogous to the maps fn and these are also isomorphisms. Under gn
the cobar differential corresponds exactly to the Cech differential. The cohomology Hi of
quasi-coherent sheaves vanishes for i > 0 on the

[SpecL/Gm]×MFG
n+1 ' [SpecMU2∗MU⊗MU2∗n/Gm]

(for n ≥ 1) and thus the cohomology of the Cech complex is actually H∗(MFG;ω⊗∗). As
we have discussed before,

Hs(MFG;ω⊗k) ∼= ExtsMU2∗MU (MU2∗,MU2∗+2k).

One easily sees that E2
s,t = 0 for t odd.

Construction 5.23. Let X be an algebraic stack with an étale map f : X → Mell and U =
[SpecR/Gm] → X an étale cover (for R an evenly graded ring). We want to construct a
comparison map between the ANSS and the descent spectral sequence (DSS) computing
π∗Otop(X ). Set X := Otop(U).12 Note that π∗X = R. As X is even, we can choose a
complex orientation MU → X, which commutes up to homotopy with the unit maps. This
induces a map from the ANSS to the X-based Adams spectral sequence.

Now recall that the smash product is the coproduct in commutative monoids in orthogonal
spectra. We have the n + 1 maps pr∗i : X = Otop(U) → Otop(U×Mell

n+1), which induces

12We should replace X cofibrantly (up to π∗-isomorphism) for all things to be good.
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a map X∧n+1 → Otop(U×Mell
n+1), which actually defines a map of cosimplicial objects.

Thus, we obtain a map from the X-based Adams spectral sequence to the DSS computing
π∗Otop(X ).

We have identified the E1-term of the ANSS with the Cech complex for ω⊗? for [SpecL/Gm]→
MFG and the induced map on E1-terms is just that to the Cech complex for ω⊗? for
U →Mell using the commutative square

[SpecR/Gm] //

��

[SpecL/Gm]

��
X

Φf //MFG

Here, the lower map uses the map Φ: Mell → MFG considered before (sending an elliptic
curve to its formal group) and the upper map comes from the graded formal group law on
R = π2∗X.

In particular, the map on E2-terms is just the map Hs(MFG;ω⊗t) → Hs(X ; f∗ω⊗t)
induced by fΦ.

As we have already computed π∗TMF [ 1
6 ], we are interested in computing π∗TMF(2) and

π∗TMF(3). Here, we can take the coversM1(3)(2) →Mell,(2) andM1(2)→Mell,(3), which
are very explicit. We will concentrate mostly on the prime 3 as computations here are easier.

5.6 Computations in cobar complex: Moduli of elliptic curves
We will invert everywhere implicitly 2 in this section. Recall that

M1(2) ' [SpecZ[b2, b4,∆
−1]/Gm].

Set A = Z[b2, b4,∆
−1]. The pullback SpecA×Mell

M1(2) classifies 2-torsion points on elliptic
curves of the form y2 = x3 + b2x

2 + b4; these 2-torsion points are exactly points of the form
(r, 0), where r is a zero of the right hand side. Thus, M1(2) ×Mell

M1(2) ' [Spec Γ/Gm]
with Γ = A[r]/r3 + b2r

2 + b4r. By the same arguments as for MU∗, we can compute now the
cohomology ofMell as the cohomology of the cobar complex of (A,Γ). This has n-th term
Γ⊗An and differential as in (6).

Let us make the structure maps ηL, ηR and Ψ explicit. The map ηL : A → Γ is the
obvious inclusion; indeed, the projection pr1 : M1(2) ×Mell

M1(2) →M1(2) forgets in our
identification just the 3-torsion point. The map ηR corresponds however to pr2. If we want
to bring the elliptic curve y2 = x3 + b2x

2 + b4x with 2-torsion point (r, 0) into the standard
form we have to move (r, 0) to (0, 0). The coordinate change x 7→ x + r sends exactly the
(0, 0)-point to the point (r, 0). We compute

(x+ r)3 + b2(x+ r)2 + b4(x+ r) = x3 + (b2 + 3r)x2 + (b4 + 2b2r+ 3r2)x+ (r3 + b2r
2 + b4r).

Note that the constant term is zero. We obtain

ηR(b2) = b2 + 3r

ηR(b4) = b4 + 2b2r + 3r2

To compute Ψ, we observe that composing x 7→ x + r with x 7→ x + r′, we obtain x 7→
x+ (r + r′). This is represented by the map

Ψ: Γ→ Γ⊗A Γ, r 7→ r ⊗ 1 + 1⊗ r.

Note that this is both a map of A-bimodules and of algebras, thus the image of r determines
the whole map.
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This makes the cobar complex completely algebraic. Its cohomology has been computed
in [Bau08, Section 5] (without ∆ inverted). We will do just a few sample computations and
cite then the result of Bauer.

Proposition 5.24. The ring of modular forms MF∗,Z[ 1
2 ] is the zeroth cohomology of the

cobar complex above and it is Z[ 1
2 ][c4, c6,∆]/(27∆ = 4c34 − c26).13

Proof. The 0-th cohomology of the cobar complex is the equalizer of ηL and ηR. By the
definition of a sheaf (and the matching of gradings and the ω⊗∗), this agrees with the global
sections of the sheaves ω⊗∗.

It is easy to see that the elements

c4 = b22 − 3b4

c6 = 2b32 − 9b2b4

lie in the equalizer of ηL and ηR. Thus, also

∆ =
1

27
(4c34 − c26) = b24(b22 − 4b4)

is in the equalizer. We obtain a map

Z[
1

2
][c4, c6,∆]/(27∆ = 4c34 − c26)→MF∗,Z[ 1

2 ],

which is easily seen to be injective. As we know the right-hand side after inverting 6, we
see that this map is a rational isomorphism. As all (monic) monomials in c4, c6 and ∆ are
indivisible by any natural number, we see that the map is also integrally surjective. [This
might be slightly more subtle than I write.]

end of lecture 23
We identify two cocycles in the cobar complex:

d(r) = r ⊗ 1−Ψ(r) + 1⊗ r = 0

d(r2 ⊗ r − r ⊗ r2) = 1⊗ r2 ⊗ r − 1⊗ r ⊗ r2 −Ψ(r2)⊗ r + Ψ(r)⊗ r2

+r2 ⊗Ψ(r)− r ⊗Ψ(r2) + r2 ⊗ r ⊗ 1− r ⊗ r2 ⊗ 1

= 0,

where we use Ψ(r2) = r2 ⊗ 1 + 2r ⊗ r + 1 ⊗ r2. We set α = [r] ∈ H1(Mell;ω
⊗2) and

β = [r2 ⊗ r − r ⊗ r2] ∈ H2(Mell;ω
⊗6).

As d(r2) = 2r ⊗ r, we see that α2 = [r ⊗ r] is zero. Furthermore, d(b2) = 3r (hence
3α = 0) and ?? (hence 3β = 0) We obtain a map Λ(α)⊗ F3[β]⊗ F3[∆±1]→ H∗(Mell;ω

⊗∗).
By [Bau08], this is an isomorphism in positive cohomological degree. (See also [Mat12] for
a more detailed treatment.)
Remark 5.25. There is a more conceptual way to see that all cohomology classes in positive
degree have to be 3-torsion. Consider the map f : M1(2)→Mell. As

H0(M1(2);F) ∼= H0(Mell; f∗F)

and f∗ is exact (as f is finite and in particular affine), we have

Hi(Mell; f∗F) ∼= Hi(M1(2);F)

13Usually one chooses a different convention for ∆, c4 and c6, but these differ just by powers of 2.
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for all i ≥ 0. If F is quasi-coherent, this means in particular that these groups vanish for
i > 0. Note furthermore that if F is a line bundle (e.g. f∗ω⊗j) that f∗F is a vector bundle
because f is finite and flat and finite flat modules are projective (hence locally free); the
rank of f∗F is 3 as the degree of f is 3.

For quasi-coherent sheaves G and G′ on an algebraic stack X , we denote by HomOX (G,G′)
we denote the sheaf that is on every g : U → X the abelian group HomOU

(g∗G, g∗G′). If G
is a vector bundle of rank n, then the map HomOX (G,OX ) ⊗OX G → HomOX (G,G) is an
isomorphism because it is locally so. Consider now the composite

OX → HomOX (G,G) ∼= HomOX (G,OX )⊗OX G → OX .

Locally one can check that the first morphism corresponds to the unit matrix and the second
morphism to the trace. Thus, the composite is just multiplication by n. If G is a sheaf
of algebras, the map OX → HomOX (G,G) factors through G (via left multiplication). The
resulting map G → OX is also called the transfer.

In particular, we see that the multiplication by 3 map on OMell
factors over f∗OM1(2)

and hence the multiplication by 3 map on ω⊗i factors over f∗OM1(2) ⊗ ω⊗i ∼= f∗f
∗ω⊗i. (In

the last step, we use the projection formula, see e.g. [Har77, Ch III, Exercise 8.3].) Thus, the
multiplication by 3 map on Hj(Mell;ω

⊗i) factors over Hj(M1(2); f∗ω⊗i), which is zero for
j > 0. Thus, all cohomology in positive degrees of ω⊗i onMell is 3-torsion. (Recall that we
are still inverting 2 here! In general, it is only 24-torsion by using a similar argument with
the coverM1(3)→Mell,Z[ 1

3 ] of degree 8.)

We can actually compute the transfer tr : f∗OM1(2) → OM1(2) (or the same map after
tensoring with ω⊗∗) concretely via the equivalence between quasi-coherent sheaves onMell

and (A,Γ)-comodules. Evaluating tr on SpecA gives a map Tr: Γ = f∗ω
⊗∗(M1(2)) → A.

This transfer is the composite of M : Γ → HomA(Γ,Γ) (given by (left) multiplication) and
the trace Trace: HomA(Γ,Γ)→ A. The latter trace is just the usual trace of a matrix if we
identify Γ = A{1, r, r2} so that HomA(Γ,Γ) becomes the algebra of A-valued 3× 3-matrices.
Both maps are A-linear. We have

M(1) =

1 0 0
0 1 0
0 0 1


M(r) =

0 0 0
1 0 −b4
0 1 −b2


M(r2) =

0 0 0
0 −b4 b2b4
1 −b2 b22 − b4


Here, we use the equality r3 = −b2r2 − b4r. Thus, we obtain

Tr(1) = 3

Tr(r) = −b2
Tr(r2) = b22 − 2b4.

We can compute tr on (graded) global sections (i.e. as a map tr : A → MF∗,Z[ 1
2 ]) as Tr ηR.
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This map is MF∗,Z[ 1
2 ]-linear. We have

tr(1) = Tr(1) = 3

tr(b2) = Tr(b2 + 3r) = 3b2 + 3 Tr(r) = 0

tr(b4) = Tr(b4 + 2b2r + 3r2) = 3b4 + 2b2(−b2) + 3(b22 − 2b4)

= b22 − 3b4 = c4

tr(b2b4) = Tr((b2 + 3r)(b4 + 2b2 + 3r2))

= 9b2b4 − 2b32 = −c6

We see that the ideal (3, c4, c6) ⊂MF∗,Z[ 1
2 ] lies in im(tr); one can actually show that this is

equality and so MF∗,Z(3)
= F3[∆±1]. Indeed: The transfer ideal is already maximal, i.e. if it

was bigger than 1 ∈ im(tr). One can show that in general for x ∈ H∗(Mell;ω
⊗∗) we have

x tr(y) = tr(xy), where we view tr as a map H∗(M1(2); f∗ω⊗∗)→ H∗(Mell;ω
⊗∗); but for x

in positive cohomological degree tr(xy) must be zero, but if tr(y) = 1 it must also be equal
to x. Contradiction.

5.7 Computations in cobar complex: Moduli of formal groups
It is much harder to make the Hopf algebroid (MU∗,MU∗MU) explicit, but we will do
it in very low degrees. Recall that MU∗ ∼= Z[u1, u2, . . . ] and F (x, y) = x + y + u1xy +
· · · . Furthermore, MU∗MU ∼= MU∗[m1,m2, . . . ] and the mi correspond to power series
x + m1x

2 + m2x
3 + · · · that defines an isomorphism. The morphism ηL is under these

identifications just the obvious inclusion.

Lemma 5.26. ηR(u1) = u1 − 2m1

Proof. Let f(x) = x + m1x
2 + m2x

3 + · · · . We have to compute f−1F (f(x), f(y)) in low
degrees (i.e. modulo terms of degree higher than 2). For these low degrees we can pretend
that f(x) = x + m1x

2 and f−1(x) = x − m1x
2 and F (x, y) = x + y + u1xy. With this

identification, we have (modulo terms of degree higher than 2):

f−1F (f(x), f(y)) ≡ (x+m1x
2) + (y +m1y

2) + u1xy −m1(x+ y)2

≡ x+ y + (u1 − 2m1)xy.

Lemma 5.27. We have

Ψ(m1) = m1 ⊗ 1 + 1⊗m1

Ψ(m2) = m2 ⊗ 1 + 2m1 ⊗m1 + 1⊗m2.

Proof. Let f(x) = x + m1x
2 + m2x

3 + · · · and g(x) = x + m′1x
2 + m′2x

3 + · · · . We have
(modulo terms of degree higher than 3):

f(g(x)) ≡ x+m′1x
2+m′2x

3+m1(x+m′1x
2)2+m2x

3 ≡ x+(m′1+m1)x2+(m′2+2m1m
′
1+m2)x3.

This implies the result.

It is easy to see that m1 and m2 −m2
1 are cocycles. We set η = [m1] and ν = [m2 −m2

1].
As d(u1) = −2m1, we see that η is 2-torsion. It is a little harder to see that ν is 24-torsion.

Let Γ be as in the last section. We want to make the map MU∗MU → Γ explicit.
Consider the coordinate change (x, y) 7→ (x+r, y). In homogeneous coordinates, this becomes
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[x, y, z] 7→ [x+ rz, y, z]. Recall from Section 3.6 that in a neighborhood of [0 : 1 : 0], we have
z = x3 + · · · . Thus, the coordinate change induces x 7→ x+ rx3 + · · · on the level of formal
groups. This shows that MU∗MU → Γ sends m1 to 0 and m2 to r.

In particular, we see that the map H∗(MFG;ω⊗∗) → H∗(Mell,Z[ 1
2 ];ω

⊗∗) maps ν to α.
We remark that there is a further class β1 in the E2-term of the ANSS that is mapped to β.
Remark 5.28. It becomes clear how hard it is to do these computations via the cobar complex
based on MU∗MU . They become easier when using BP instead of MU , but even for BP
the cobar complex should be replaced by better methods. See [Rav86].

5.8 Homotopy groups of TMF at the prime 3

We will implicitly 3-localize everything in this section. Recall from Section 5.6 that the
E2-term of the descent spectral sequence for computing π∗TMF is

Z[c4, c6,∆
±1, α, β]/(27∆− (4c34 − c26), 3α, 3β, α2, c4α, c6α, c4β, c6β).

We have four major weapons to compute the differentials, namely the comparison map from
the ANSS, the transfer, the Toda differential and Toda brackets. We begin with the transfer.
Construction 5.29. Consider again the map f : M1(2)→Mell and theOtop-module f∗f∗Otop;
this is defined by f∗f∗Otop(U) = Otop(U ×Mell

M1(2)). It is easy to see that π∗f∗f∗Otop ∼=
f∗f
∗π∗Otop, i.e. the odd homotopy groups are zero and the evens are π2kf∗f

∗Otop ∼=
f∗OM1(2) ⊗ ω⊗k.

Note that f∗f∗Otop is a sheaf of E∞-rings. This allows us to define the transfer as in the
algebraic setting as the composite

trtop : f∗f
∗Otop → HomOtop(f∗f

∗Otop, f∗f∗Otop)
'←− HomOtop(f∗f

∗Otop,Otop)∧Otop f∗f
∗Otop → Otop.

The equivalence in the middle can be checked locally and follows there because f∗f∗Otop
is (étale) locally free as an Otop-module. It follows easily that trtop induces on homotopy
groups just the transfer considered above.

Above, we set up the descent spectral sequence only for the sheaf Otop, but one can do
it equally well for f∗f∗Otop and we obtain a map of descent spectral sequences

trSS : DSS(f∗f
∗Otop)→ DSS(Otop).

We have seen in Remark 5.25 that the H∗(Mell; f∗f
∗ω⊗k) vanishes for ∗ > 0. Thus, the E2-

term of DSS(f∗f
∗Otop) is concentrated in the 0-line and there can be no differentials. Thus,

the image of trSS consists of permanent cycles. On the zero line, trSS is just the algebraic
transfer discussed in 5.25 and thereafter. Thus, the ideal (3, c4, c6) consists of permanent
cycles.

Let us draw the descent spectral sequence for TMF modulo the image of the transfer
(where we know anyhow that it consists of permanent cycles; as it is completely in the line
0 it can also not be hit by any differentials). Note that the E2-term is 24-periodic (with
periodicity element ∆).



69

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32
0
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∆1
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β
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β3∆−1 β3

β4∆−1

β5∆−1β5∆−2

By the discussion in the last subsection, we know that α is a permanent cycle, namely
the image of ν ∈ π3S under the unit map S → TMF . To proceed, we have to talk about
Massey products and Toda brackets.

Definition 5.30. Let C• be a differential graded algebra, i.e. a (graded) commutative
monoid in cochain complexes. Let α, β, γ ∈ H∗(C•) with αβ = 0 = βγ. We obtain a
new cohomology class as follows: Choose cocycles x, y, z representing α, β, γ. Choose u with
d(u) = xy and v with d(v) = yz. Then xv−(−1)|x|uz is again a cocycle. The (non-empty) set
of the classes of all such cocycles is called the Massey product 〈α, β, γ〉 ⊂ H |α|+|β|+|γ|−1(C•).
If δ ∈ 〈α, β, γ〉, then

〈α, β, γ〉 = δ + αH |β|+|γ|−1(C•) +H |α|+|β|−1(C•)γ.

Example 5.31. We have 〈α, α, α〉 = {β} in the cobar complex (A,Γ) from Section 5.6.

Theorem 5.32. 14 Let R be an E∞-ring spectrum (actually A∞ would be enough) and
α, β, γ ∈ π∗R with αβ = 0 = βγ. Then there is a naturally defined set 〈α, β, γ〉 ⊂
π|α|+|β|+|γ|−1R, called the Toda bracket of α, β and γ. The formula for the indetermancy is
analogous to the one for Massey products.

What makes this really useful is the interplay between Massey products and Toda brackets
In most spectral sequences of interest the following is true under usual circumstances15:
Consider a spectral sequence converging to π∗R. Let α, β, γ ∈ π∗R be classes with αβ =
0 = βγ and let x ∈ 〈α, β, γ〉. The spectral sequence comes with a filtration on π∗R. If the
filtrations of α, β and γ are p, q, r, then the filtration of x is at least p+q+r−1. If moreover
α, β, γ reduce to α, β, γ in the spectral sequence of the Et-page, then x reduces to an element
in the Massey product 〈α, β, γ〉.

This is proven in the Adams–Novikov spectral sequence in the book [Koc96]. I do not
know a published reference for this fact for the descent spectral sequence. In the case of
TMF one can actually (via a non-trivial theorem) identify the descent spectral sequence
with the Adams–Novikov spectral sequence for TMF , but this is not the way it should be
done. Anyhow, we will use it.

Corollary 5.33. The Toda bracket 〈α, α, α〉 consists of exactly one element and this reduces
in the spectral sequence to β; by abuse of notation, we will also call it β.

14The state of the literatur on Toda brackets is less than ideal. But see for example [Koc96] or [Mei12, Section
4.6].

15These are: If you draw the spectral sequence, no two differentials cross each other.
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Now we use the following theorem of Toda:16

Theorem 5.34 (Toda). Let R be any E∞-ring spectrum and x ∈ π∗R a 3-torsion element.
Then νx3 = 0 ∈ π∗R.

To apply this, we need 3β = 0. The easiest way to see it is that β is the image of
〈ν, nu, nu〉. Furthermore, π10S = Z/3 (as follows directly from the computation of the E2-
term of the Adams–Novikov spectral sequence). Thus, we must have 3〈ν, ν, ν〉 = 0 and hence
3β = 0. Thus, Todas’s theorem yields αβ3 = 0 ∈ π∗TMF .

The only possible differential causing this is d5(β∆) = ±αβ3. By multiplicativity (which
we also did not show for the descent spectral sequence! But this should follow from the
methods of [Dug03]), this implies βd5(∆) = ±αβ3 and hence d5(∆) = ±αβ2. Multiplicativity
also implies some other differentials, in particular:

d5(∆n) = ±nαβ2∆n−1

d5(αβk∆n) = 0

d5(βk∆n) = ±nαβk+2∆n−1

One sees that there is no room for further d5 or d7-differentials (and d2n-differentials
cannot occur for degreee reasons anyhow). The E9-page is 72-periodic (with periodicity
element ∆3) and looks as follows:

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36
0

4

8
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α
β

β2

β3
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∆−3β5{α∆2}

36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72
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4

8
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∆3

{α∆2}

β{α∆2}

β2{α∆2}

β4

β5

16The original source is [Tod68, Theorem 3]. It states it only for the sphere spectrum, but the proof should
generalize to the result stated here. In any case, our applications would also follow from the spherical case.



71

Recall that β = 〈α, α, α〉 (as Toda bracket). The rules of Toda brackets imply that

β3 = β2 = 〈β2α, α, α〉 = 〈0, α, α〉.

The latter Toda brackets contains obviously 0 and thus equals απ27TMF . Thus, the non-
zero class β3 must be ±α{α∆} (as every other class than {α∆} is in a filtration to high for
β3). It follows that β5 = ±β2α{α∆} = 0. The only differential that can possibly kill it is
d9(±{α∆2}) = β5. One can see that there is no room for further differentials or extension
issues on E10 = E∞:

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36
0

4

8

{α∆}
1

α
β

β2

β3

36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72
0

4

8

β{α∆}

∆3

β4

Thus, we see the homotopy groups of TMF (localized at 3 modulo transfer) here with
the non-visible relation α{α∆} = β3. For degree reasons that is the only “multiplicative
extension”.

5.9 Outlook
There is a number of applications of TMF to problems in homotopy theory and geometry
(although at this point certainly not as many as of K-theory!). We want to sketch some of
these.

The Adams–Novikov spectral sequence comes with a filtration on the stable homotopy
groups of spheres, corresponding to the lines in the Adams–Novikov spectral sequence. The
0-line consists just of one copy of Z corresponding to π0S = Z.

The 1-line has been completely computed and it has been shown that all elements here
are permanent cycles for p > 2. The differentials in the case p = 2 are also known. It turns



72

out that at least for odd primes all these permanent cycles lie in the image of J . One way
to describe the image of J is via framed manifolds. Recall that π∗S ∼= Ωfr∗ the bordism
of manifolds with a (stable) framing on their stable normal bundle (or equivalently stable
tangent bundle). We know that the spheres Sn have stable framings (their normal bundle is
trivial in the standard embedding). But how many stable framings does the trivial bundle on
a sphere have? Every element in πnO = [Sn, O] defines a reframing of the standard framing.
[Here, O = colimO(n).] One can check that this induces a homomorphism

J : πnO → Ωfrn
∼= πnS,

whose image consists just of all stable framing of spheres.
Let X be an oriented smooth manifold that is homeomorphic to Sn, i.e. a (possibly)

exotic sphere. One can show that its stable normal bundle is trivial as well [KM63]. Choosing
fraings defines a map from Θn (the diffeomorphism classes of X as above) to Ωfrn , which
is well-defined after quotiening out the image of J . Actually, Θn is a group (via connected
sum) and we obtaina homomorphism Φ: Θn → Im(J).

Question 5.35. When does Θn have only one element, i.e. when is every manifold homeo-
morphic to Sn also (orientedly) diffeomorphic to Sn?

This is true classically for n = 1, 2, 3 and very much open for n = 4. The methods for
[KM63] say a lot about the case n ≥ 5 using the homomorphism Φ. In particular, for n
odd they show that Φ is surjective. Moreover, for n = 4k − 1, the kernel of Φ is big and
Θn has many elements. For n = 4k + 1 the size of ker(Φ) is intimately related to the so-
called Kervaire invariant. In monumental work by people like Browder, Mahowald, Xu and
Hill–Hopkins–Ravenel, it was shown that ker(Φ) has order 2 unless n = 2l − 3 for l ≤ 6 and
possibly for l = 7; if it has not order 2 it is trivial. Thus, the only possibilities for odd n in
the question above are n = 2l − 2 for l ≤ 7. Recently, Wang and Xu [WX16] have deduced
the following:

Theorem 5.36 (Wang–Xu). The only odd n for which Θn is trivial are n = 1, 3, 5 and 61.

This was known for n ≤ 60. The main achievement of Wang and Xu was to show that
π61S = 0 to get the result in dimension 61, but they also needed to show that π125S/Im(J) 6=
0 and they used TMF for that purpose. Let us briefly sketch what they did: The homotopy
groups πnS are known for n ≤ 61 and one also knows what their image is under the map
u : S→ TMF . Beyond π61S we know much less and we know very little about π∗S for, say,
∗ ≥ 90 at the prime 2. In contrast π∗TMF is completely known. What Wang and Xu do
is the following: There are classes κ ∈ π20S and w ∈ π45S whose image is non-trivial in
π∗TMF . More precisely, we know even that u(κ4w) = u(κ)4u(w) is non-trivial and thus,
κ4w ∈ π125S must be non-trivial as well! It is not too hard to show that it is not in the
image of J (as this image is completely known). Thus, π125S/Im(J) 6= 0 and thus Θ125 6= 0.
I know of no other way to show this. More applications in the same direction can be found
in [BHHM17].

Let us shortly sketch some other directions of applications. For this, it is useful to know
that there is a connective variant of tmf with π∗tmf [ 1

6 ] ∼= Z[ 1
6 ][c4, c6] (without inverting ∆).

1. As Ando, Hopkins and Rezk [AHR10] have shown, the map S → TMF factors over
MString → TMF , making TMF string-oriented. Actually, this factors over a map
MString → tmf . As shown in [Hil09], the map MString → tmf is 15-connected and
thus provides a pretty good approximation to study string bordism.

2. A theorem by Hopkins and Mahowald shows that H∗(tmf ;F2) ∼= A/A(2), where this
is the Hopf algebra quotient of the Steenrod algebra by the sub algebra generated by
Sq1,Sq2 and Sq4. [Mat16] It was not known before that a spectrum with this coho-
mology exists; more precisely, Davis and Mahowald had shown that such a spectrum
does not exist, but their proof had a mistake.
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3. Much of our knowledge which elements on the 2-line of the Adams–Novikov spectral
sequence are permanent cycles (at the primes 2 and 3) stems from tmf (and more pre-
cisely from the construction of certain Smith–Toda complexes accomplished by tmf).
See [HM98], [BP04] and [BHHM08].

The end
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