

Homology Fibrations and the "Group-Completion" Theorem

D. McDuff (York) and G. Segal (Oxford)

A topological monoid M has a classifying-space BM, which is a space with a base-point. There is a canonical map of H-spaces $M \rightarrow \Omega BM$ from M to the space of loops on BM, and it is a homotopy-equivalence if the monoid of connected components $\pi_0 M$ is a group. The "group-completion" theorem ([2-4, 6, 9]) describes the relationship between M and ΩBM in general. Let us regard $\pi = \pi_0 M$ as a multiplicative subset of the Pontrjagin ring $H_*(M)$, using singular integral homology. The map $M \rightarrow \Omega BM$ induces a homomorphism of Pontrjagin rings, and (because $\pi_0(\Omega BM)$ is a group) the image of π in $H_*(\Omega BM)$ consists of units.

Proposition 1. If π is in the centre of $H_*(M)$ then

 $H_{*}(M)[\pi^{-1}] \xrightarrow{\cong} H_{*}(\Omega BM).$

Although several proofs of this theorem have appeared its importance for the process of "Quillenization"¹ perhaps justifies our publishing the present one, which is simple and conceptual. We shall prove, moreover, a stronger statement than Proposition 1 in the two respects described in Remarks 1 and 2 below. Our method was suggested by Quillen's second unpublished proof, and by conversations with him for which we are very grateful. The use of homology fibrations arose from [5]. We have listed some examples and applications of the theorem at the end.

Remark 1. In Proposition 1 one need not assume that π is in the centre of $H_*(M)$, but only that $H_*(M)[\pi^{-1}]$ can be constructed by right fractions. Recall that if π is a multiplicative subset of a ring A one says that $A[\pi^{-1}]$ can be constructed by right fractions if every element of it can be written ap^{-1} with $a \in A$, $p \in \pi$, and if $a_1 p_1^{-1} = a_2 p_2^{-1}$ if and only if $a_1 p_1' = a_2 p_2'$ and $p_1 p_1' = p_2 p_2'$ for some $p_1', p_2' \in \pi$. A typical example is when π consists of the powers of an element $x \in A$ such that $ax = x\alpha(a)$ for all $a \in A$, where α is an endomorphism of A. This arises as the Pontrjagin ring of the monoid of all maps $S^n \to S^n$ whose degrees are powers of a prime p, as we shall see below.

¹ This word is due to I. M. Gel'fand.

We shall prove Proposition 1 by constructing a space M_{∞} whose homology is obviously $H_*(M)[\pi^{-1}]$, and a homology equivalence $M_{\infty} \rightarrow \Omega BM$. The basic example is the case when $M = \prod_{n \ge 0} B\Sigma_n$, where Σ_n is the *n*th symmetric group, and the monoid structure of M comes from juxtaposition $\Sigma_n \times \Sigma_m \rightarrow \Sigma_{n+m}$. Then M_{∞} will be $\mathbb{Z} \times B\Sigma_{\infty}$.

Remark 2. To say that a map $f: X \to Y$ is a homology equivalence may have at least two meanings. The weaker one is that f induces an isomorphism of integral homology. The stronger is that $f_*: H_*(X; f^*A) \xrightarrow{\cong} H_*(Y; A)$ for every coefficient system A of abelian groups on Y. The map $M_{\infty} \to \Omega BM$ we shall construct will be a homology equivalence in the stronger sense. Thus ΩBM , whose components have of course abelian fundamental groups, is a "Quillenization" of M_{∞} . The advantage of allowing twisted coefficient systems is that one can conclude that $\tilde{M}_{\infty} \to \Omega BM$ is a homology equivalence as well as $M_{\infty} \to \Omega BM$, where ΩBM is the universal covering space of ΩBM , and \tilde{M}_{∞} is its pull-back to M_{∞} . This means that the fundamental group of \tilde{M}_{∞} must be perfect, and so our method incorporates a general proof that the commutator subgroup of $\pi_1(M_{\infty})$ is perfect. If isolated this would reduce to Wagoner's argument in [11].

Everything we say below is true if homology equivalence is given either of the above meanings. Nevertheless it will be convenient to adopt a middle definition, allowing only *abelian* coefficient systems A on Y, i.e. those such that for each $y \in Y$ the group of automorphisms of the coefficient group A_y at y induced by the action of $\pi_1(Y, y)$ is abelian. Of course any system coming from ΩBM is abelian.

Our main idea is that of a homology fibration. In [5] a homology fibration was defined as a map $p: E \rightarrow B$ such that for each $b \in B$ the natural map $p^{-1}(b) \rightarrow F(p, b)$ from the fibre at b to the homotopical fibre at b is a homology equivalence. $(F(p, b) \text{ is defined as the fibre-product } P_b \times_B E$, where P_b is the space of paths in B beginning at b.) In this language to obtain a homology equivalence $M_{\infty} \rightarrow \Omega BM$ it is enough to produce a homology fibration $E \rightarrow BM$ with E contractible and with fibre M_{∞} at the base-point.

If M is a topological group which acts on a space X one often considers the space X_M fibred over BM with fibre X, associated to the universal bundle $EM \rightarrow BM$. But the construction of X_M makes sense even if M is only a topological monoid, for X_M can be described as the realization of the topological category whose space of objects is X and whose space of morphisms is $M \times X$, a pair (m, x) being thought of as a morphism from x to mx. (Here, and in constructing BM also, we use the "thick" realization of simplicial spaces, denoted by $\parallel \parallel$ in the appendix to [9].)

Our main result is

Proposition 2. If M is a topological monoid which acts on a space X, and for each $m \in M$ the map $x \mapsto m x$ from X to itself is a homology equivalence, then $X_M \to BM$ is a homology fibration with fibre X.

This should be compared with the fact that if $x \mapsto xm$ is a homotopy equivalence for each *m* then $X_M \rightarrow BM$ is a quasifibration. (When *M* is discrete this is a particular case of [7] (Lemma p. 98); in general it is a particular case of [9] (1.5).) Notice that in the basic example the left action of $M = \coprod_{n \ge 0} B\Sigma_n$ on $M_{\infty} = \mathbb{Z} \times B\Sigma_{\infty}$ is essentially the "shift" maps $B\Sigma_{\infty} \to B\Sigma_{\infty}$ induced by embedding Σ_{∞} in Σ_{∞} as the permutations of $\{n, n+1, \ldots\}$. These are homology equivalences but not

homotopy equivalences, even though they induce the identity on $[K; B\Sigma_{\infty}]$ for any compact space K. They would not be homology equivalences if we had allowed non-abelian coefficient systems.

To see how the group completion theorem follows from Proposition 2 let us begin with the case when $\pi_0 M$ is the natural numbers \mathbb{N} . Choose $m \in M$ in the component $1 \in \mathbb{N}$, and let X be the telescope M_{∞} formed from the sequence $M \to M \to M \to \cdots$, where each map is right multiplication by m. The homology of M_{∞} is the direct limit of

 $H_*(M) \to H_*(M) \to H_*(M) \to \cdots,$

which is precisely $H_*(M)[\pi^{-1}]$ because we have assumed the latter can be formed by right fractions. For the same reason the action of M on M_{∞} on the left is by homology equivalences. The space $(M_{\infty})_M$ is the telescope of a sequence of copies of M_M , which is canonically contractible. (It is the standard *EM* of [8].) So $(M_{\infty})_M$ is contractible, and the homotopical fibre of $(M_{\infty})_M \to BM$ is ΩBM , and Proposition 2 yields Proposition 1.

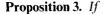
The general case of Proposition 1 reduces at once to that where $\pi_0 M$ is finitely generated, for both $H_*(M)[\pi^{-1}]$ and $H_*(\Omega BM)$ are continuous under direct limits. But if $\{s_1, \ldots, s_k\}$ generate π then $H_*(M)[\pi^{-1}] = H_*(M)[s^{-1}]$, where $s = s_1 s_2 \ldots s_k$, and the preceding argument applies, defining M_{∞} as the telescope generated by multiplication by any element *m* in the component *s*.

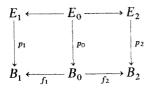
We come to the proof of Proposition 2. For technical convenience we shall adopt a stronger definition of homology-fibration than that of [5]. It is appropriate only for base-spaces B which are locally contractible in the sense that each point has arbitrarily small contractible neighbourhoods. But if M has this property then BM has; and restricting to such M is immaterial for our purposes, as both $H_*(M)$ and $H_*(\Omega BM)$ are unchanged if M is replaced by the realization of its singular complex.

Definition. A map $p: E \rightarrow B$ is a homology-fibration if each $b \in B$ has arbitrarily small contractible neighbourhoods U such that the inclusion $p^{-1}(b') \rightarrow p^{-1}(U)$ is a homology-equivalence for each b' in U.

To justify this definition we must show that such a map is a homology-fibration in the earlier sense. This will be done in Proposition 5 below.

The advantage of the new definition is that it makes the following proposition obvious. (Cf. [5](5.2).)





is a commutative diagram in which p_0 , p_1 , p_2 are homology-fibrations, and $p_0^{-1}(b) \rightarrow p_i^{-1}(f_i(b))$ is a homology-equivalence for each $b \in B_0$, then the induced map of double-mapping-cylinders

 $p: \operatorname{cyl}(E_1 \leftarrow E_0 \rightarrow E_2) \rightarrow \operatorname{cyl}(B_1 \leftarrow B_0 \rightarrow B_2)$

is a homology-fibration.

Proof. Each point of the lower cylinder has arbitrarily small neighbourhoods U in the form of mapping-cylinders of maps $V_0 \rightarrow V_i$ (i=0, 1 or 2), and $p^{-1}(U)$ is the mapping-cylinder of $p_0^{-1}(V_0) \rightarrow p_i^{-1}(V_i)$.

Exactly as in [9](1.6) one deduces

Proposition 4. If $p: E \to B$ is a map of simplicial spaces such that $E_k \to B_k$ is a homology-fibration for each $k \ge 0$, and for each simplicial operation $\theta: [k] \to [l]$ and each $b \in B_l$ the map $p^{-1}(b) \to p^{-1}(\theta^*b)$ is a homology-equivalence, then the map of realizations $||E|| \to ||B||$ is a homology-fibration.

Proof. This follows from Proposition 3 because the realizations ||E|| and ||B|| can be made up skeleton by skeleton, and $||B||_{(k)}$ is the double-mapping-cylinder of $(||B||_{(k-1)} \leftarrow \Delta^k \times B_k \rightarrow \Delta^k \times B_k)$, and so on.

Proposition 2 is a particular case of Proposition 4, for X_M and BM are the realizations of simplicial spaces E and B such that $E_k = X \times B_k$ and $B_k = M^k$.

To conclude we need the following justifying proposition.

Proposition 5. If B is a paracompact locally contractible space, and p: $E \rightarrow B$ is a homology-fibration, then $p^{-1}(b) \rightarrow F(p, b)$ is a homology-equivalence for each $b \in B$.

Proof. Let P be the space of paths in B beginning at b, and let $f: P \rightarrow B$ be the end-point map, a Hurewicz fibration. Then f^*E is F(p, b). Choose a basis \mathscr{B} for the topology of B consisting of contractible sets. Then there is a basis \mathscr{B}^* for the topology of P consisting of contractible sets U such that $f(U) \in \mathscr{B}$ and $f: U \rightarrow f(U)$ is a Hurewicz fibration. \mathscr{B}^* consists of sets $P(t_1, \ldots, t_k; U_1, \ldots, U_k; V_1, \ldots, V_k)$, where $0 = t_0 < t_1 < \cdots < t_k = 1$, and $U_1 \supset V_1 \subset U_2 \supset V_2 \subset \cdots \subset U_k \supset V_k$ belong to \mathscr{B} ; a path α belongs to this set if $\alpha(t_i) \in V_i$ and $\alpha([t_{i-1}, t_i]) \subset U_i$ for $i = 1, \ldots, k$. Because $f: U \rightarrow f(U)$ is both a homotopy-equivalence and a Hurewicz fibration when $U \in \mathscr{B}^*$, the pull-back $f^*E|U$ is homotopy-equivalent to E|f(U). Thus $f^*E \rightarrow P$ is a homology-fibration in our sense, and Proposition 5 follows from the particular case:

Proposition 6. If $p: E \rightarrow B$ is a homology-fibration (with B paracompact and locally contractible), and B is contractible, then $p^{-1}(b) \rightarrow E$ is a homology-equivalence for each $b \in B$.

Proof. Let \mathscr{B} be a basis for B consisting of contractible sets U such that $p^{-1}(b) \rightarrow p^{-1}(U)$ is a homology equivalence for each $b \in U$. There is a Leray spectral sequence for the covering of E by the $p^{-1}(U)$. One obtains it as in [8] by forming a space $E_{\mathscr{B}}$ homotopy-equivalent to E which maps to the nerve $|\mathscr{B}|$ so that above a point of the open simplex $[U_0 \subset U_1 \subset \cdots \subset U_p]$ of the nerve one has $p^{-1}(U_0)$.

The spectral sequence comes from the filtration of $E_{\mathscr{B}}$ by the inverse-images of the skeletons of $|\mathscr{B}|$. It is $H_p(|\mathscr{B}|; \mathscr{H}_q) \Rightarrow H_*(E)$, where \mathscr{H}_q is the local coefficient system $U \mapsto H_a(p^{-1}(U))$ on \mathcal{B} . But $|\mathcal{B}|$ is homotopy-equivalent to B, which is contractible, so $H_0(|\mathscr{B}|; \mathscr{H}_q) \cong H_q(E)$, as we want.

Examples. (i) If M is a discrete monoid whose enveloping group is G, and Gcan be constructed from M as the set of formal fractions $m_1 m_2^{-1}$ with m_1 and m_2 in M, then Proposition 2 implies that $BM \simeq BG$.

(ii) The case $M = \prod_{n \ge 0} B\Sigma_n$, where Σ_n is the *n*th symmetric group, has already been mentioned. It is closely related to the basic example of algebraic K-theory, where $M = \prod B \operatorname{Aut}(P)$, and P runs through the finitely generated projective modules over a fixed discrete ring A, and the composition law in M comes from the direct sum of modules. Then M_{∞} can be taken to be $K_0(A) \times BGL_{\infty}(A)$, as one can form the telescope $M \rightarrow M \rightarrow \cdots$ by successively adding the free A-module on one generator. As with Σ_{∞} the shifts $GL_{\infty}(A) \rightarrow GL_{\infty}(A)$ induce homology isomorphisms because they are conjugate to the identity on each $GL_n(A)$.

(iii) If $M = \coprod_{k > n} G_n(p^k)$, where $G_n(p^k)$ is the space of maps $S^{n-1} \to S^{n-1}$ of degree p^k

(for some prime p), and the composition is composition of maps, then one has an example where π is not in the centre of $H_{*}(M)$. Each component of M is the telescope of

$$G_n(1) \rightarrow G_n(p) \rightarrow G_n(p^2) \rightarrow \cdots,$$

where the maps are composition on the left with a standard map of degree p. This telescope is the same up to homotopy as one component of the space of maps from S^{n-1} to the telescope $S^{n-1} \rightarrow S^{n-1} \rightarrow S^{n-1} \rightarrow \cdots$ whose maps have degree p, i.e. as one component of Map $(S^{n-1}; S^{n-1}\lceil p^{-1}\rceil)$, where $S^{n-1}\lceil p^{-1}\rceil$ is S^{n-1} localized away from p. Comparing homotopy groups one finds that M_{∞} can be identified with $\mathbb{Z} \times G_n(1)[p^{-1}]$. The right-hand action of M on M_{\times} is by homotopy equivalences, so the homology fibration of Proposition 2 is actually a quasifibration, and $M_{\infty} \simeq \Omega BM$. Thus enlarging the monoid of homotopy equivalences of S^{n-1} to the monoid of maps of degree p^k has the effect of localizing the classifying space, a result essentially equivalent to the "mod p Dold theorem" of Adams [1].

In this example because the right-hand action of M on M_{∞} is by homotopy equivalences $H_*(M)[\pi^{-1}]$ can be formed by left fractions. But it cannot be formed by right fractions. For example $G_2(p^k)$ is homotopically a circle, and composition on the right with a map of degree p is a homotopy equivalence $G_2(p^k) \rightarrow G_2(p^{k+1})$, and the telescope formed from it is not local for the left action.

(iv) A closely related example is $M = \prod_{k=1}^{k} B\Sigma_{p^k}$, where composition comes

from the cartesian product of permutations. Then $M_{\infty} \simeq \mathbb{Z} \times B \Pi$, where $\Pi =$ $\lim_{k \to \infty} \Sigma_{p^k}$ is the group of periodic permutations of \mathbb{Z} whose period is a power of p. But ΩBM is $\mathbb{Z} \times Q[p^{-1}]$, where Q is one component of $\Omega^{\infty} S^{\infty}$. This follows from the Barratt-Priddy-Quillen homology isomorphism $B\Sigma_{\infty} \rightarrow Q$; for $B\Sigma_{\nu^{k}}$ has the homology of Q up to a dimension tending to infinity with k, and in the telescope defining M_{∞} the map $B\Sigma_{p^k} \rightarrow B\Sigma_{p^{k+1}}$ corresponds to multiplying by p in the H-space structure of Q.

Examples (iii) and (iv) have been studied by Tornehave and Snaith in works to appear.

References

- 1. Adams, J. F.: On the groups J(X) I. Topology 2, 181–195 (1963)
- 2. Barratt, M.G.: A note on the cohomology of semigroups. J. Lond. Math. Soc. 36, 496-498 (1961)
- 3. Barratt, M.G., Priddy, S.B.: On the homology of non-connected monoids and their associated groups. Comm. Math. Helvet. 47, 1-14 (1972)
- 4. May, J. P.: Classifying spaces and fibrations. Mem. Amer. Math. Soc. 155 (1975)
- 5. McDuff, D.: Configuration spaces of positive and negative particles. Topology, 14, 91-107 (1975)
- 6. Quillen, D.G.: On the group completion of a simplicial monoid. Unpublished preprint
- 7. Quillen, D.G.: Higher algebraic K-theory I. In: Algebraic K-theory I, 85–147. Lecture Notes in Mathematics **341**. Berlin-Heidelberg-New York: Springer 1973
- 8. Segal, G.B.: Classifying spaces and spectral sequences. Publ. Math. I.H.E.S. (Paris) 34, 105-112 (1968)
- 9. Segal, G.B.: Categories and cohomology theories. Topology 13, 293-312 (1974)
- 10. Segal, G.B.: The classifying space for foliations. (To appear)
- 11. Wagoner, J. B.: Delooping classifying spaces in algebraic K-theory. Topology 11, 349-370 (1972)

Received September 1, 1975

Dusa McDuff Department of Mathematics University of York Heslington, York YOI 5DD, England Graeme Segal St. Catherine's College Oxford OX1 3UJ, England