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0. Introduction

0.1. Summary

It has long been recognized that structured ring spectra – in particular, A∞ and 
E∞ ring spectra – are of central importance in stable homotopy theory. Indeed, such 
operadic structure allows for a good theory of modules, and is useful for importing such 
fundamental algebraic constructions as Hochschild homology and algebraic K-theory to 
the world of ring spectra. In a different direction, it also induces rich additional structure 
on the corresponding cohomology theory, namely that of power operations.

Some spectra admit enhancements to structured ring spectra for transparent reasons. 
For instance, the Eilenberg–Mac Lane spectrum HR of an associative (resp. commu-
tative) ring R carries an A∞ (resp. E∞) structure essentially by construction, as the 
functor H : Ab → Sp is lax symmetric monoidal. And the real and complex K-theory 
spectra carry E∞ structures as a result of the fact that the tensor product of vector 
bundles is associative and commutative up to natural isomorphism.

Goerss–Hopkins obstruction theory is a tool for constructing a much broader class 
of structured ring spectra. This has found many crucial uses in the study of structured 
ring spectra: its first application [24] was to show that the Morava E-theory spectra 
admit essentially unique E∞ structures and to compute their automorphisms; perhaps 
its most spectacular application to date is the construction of the E∞ ring spectrum 
tm f of topological modular forms [17]; it is a key ingredient in Galois theory for E∞
ring spectra [67]; and it plays an important role in a number of other works such as 
[3,29,43,45,68,70,73].

It would be highly desirable to have a more general version of Goerss–Hopkins obstruc-
tion theory. In particular, this should apply in the settings of equivariant and motivic 
stable homotopy theory, as well as in the setting of diagrams of spectra (e.g. sheaves of 
spectra (e.g. over the moduli stack of elliptic curves)). The recent work [33] indicates the 
expected utility of an obstruction theory for logarithmic ring spectra.

The purpose of the present paper is the construction of just such a generalized ob-
struction theory.

Slogan 0.1. There is a Goerss–Hopkins obstruction theory for any presentably symmetric 
monoidal stable ∞-category.

We will explain Slogan 0.1 in precise detail in §1.
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Remark 0.2. In forthcoming work [52], we use this obstruction theory to produce E∞
structures on the motivic Morava E-theory spectra and compute their automorphisms. 
This is a first step towards a moduli-theoretic construction of a motivic spectrum mm f of
motivic modular forms, in analogy with tm f .1 As the construction of tm f has been highly 
influential in chromatic homotopy theory, so would the construction of mm f significantly 
advance the chromatic approach to motivic homotopy theory, which is a highly active 
area of research [1,2,10,25,32,34,35,37,39–42,44,58–60,71,72].

Remark 0.3. There has been much recent interest in “genuine” operadic structures, e.g. 
genuine G-spectra with multiplications indexed by maps of finite G-sets (instead of 
just finite sets) [6–8,13,30,31,69], as well as analogous structures in motivic homotopy 
theory [5]. We do not contend with such structures here, but we are optimistic that the 
obstruction theory we construct admits a fairly direct enhancement to one that would 
handle them in a formally analogous way.

0.2. Model categories and ∞-categories

Despite the demand and evident utility, Goerss–Hopkins obstruction theory has thus 
far resisted generalization. This is not without cause, however. Its construction is based 
in a carefully chosen model category of spectra – let us denote it here by Sp –, and rests 
on a plethora of delicate foundational assumptions surrounding that choice (see [23, The-
orems 1.2.1 and 1.2.3]). These assumptions greatly simplify the arguments; for instance, 
they guarantee (among many other things) that the homotopy theory AlgE∞(Sp) of E∞
ring spectra is presented by the model category AlgComm(Sp) of strict commutative al-
gebra objects in that model category. Thus, a direct generalization of Goerss–Hopkins 
obstruction theory e.g. to the motivic setting would involve obtaining a model category 
Spmot of motivic spectra sharing these same point-set features and then proceeding from 
there.2

On the other hand, further reflection reveals that such a direct approach is actually 
less than ideal. After all, this would require a new argument for each distinct homotopy 
theory C in which one wants to obtain a version of Goerss–Hopkins obstruction theory – 
or at least, it would require the establishment of a suitable model category C presenting 
the homotopy theory C. On the other hand, the obstruction theory itself is completely 
independent of the ambient choice of model category: it only depends on the underlying 
∞-category. Thus, the more robust approach to obtaining a generalized Goerss–Hopkins 

1 The works [27,66] take a different approach, producing motivic spectra over R and C whose cohomologies 
coincide with that expected of mm f (in analogy with tm f). These constructions are indirect, and relatively 
specific to the chosen base fields; in particular, the resulting motivic spectra are not manifestly related to 
any theory of elliptic motivic spectra.
2 Indeed, [36] provides such a model category of motivic spectra, but this first step towards a motivic 

Goerss–Hopkins obstruction theory has not been carried further.
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obstruction theory is to dispense with such irrelevant point-set technicalities and work 
at the level of ∞-categories. This is the approach that we pursue here.3

0.3. Model ∞-categories

As it turns out, however, dispensing with point-set technicalities is not the same thing 
as dispensing with model structures. Indeed, the original construction of Goerss–Hopkins 
obstruction theory takes place in the resolution model structure on the category sSp of 
simplicial spectra. This presents the nonabelian derived ∞-category of spectra, which 
we denote by D≥0(Sp). Correspondingly, Goerss–Hopkins obstruction theory for a more 
general ∞-category C takes place in its nonabelian derived ∞-category D≥0(C).

On the other hand, the arguments necessary for setting up Goerss–Hopkins obstruc-
tion theory do not just take place in the nonabelian derived ∞-category D≥0(Sp). 
Rather, they make essential use of the resolution model structure itself, which is nec-
essary for computing hom-spaces therein. The reason for this is that the nonabelian 
derived ∞-category D≥0(Sp) enjoys a universal property as an ∞-category. This is one 
category-level removed from the hom-spaces themselves, and as a result the latter are a 
priori quite difficult to describe in explicit terms.4

Thus, in order to make computations within the nonabelian derived ∞-category 
D≥0(C), we apply the theory of model ∞-categories, which we developed in previous 
work [50,51,53–56] for this purpose. Namely, in this paper we construct a resolution 
model structure on the ∞-category sC of simplicial objects in C; the fundamental theo-
rem of model ∞-categories then implies that we can use this model structure to compute 
hom-spaces in the (∞-categorical) localization D≥0(C) � sC�W−1

res� at its subcategory of 
weak equivalences.

In this paper, we make free use of the theory of model ∞-categories. Given a working 
knowledge of the classical theory of model categories, the terminology and the main 
theorems surrounding model ∞-categories are all as one would expect, though of course 
the proofs are substantially more involved; we refer the reader to [53, §0.2] for a rapid 
summary of the theory of model ∞-categories (or to [57, §0.2.1] for a somewhat more 
in-depth discussion). However, we note here that the central role of the model category 
sSetKQ of simplicial sets equipped with the Kan–Quillen model structure (e.g. in the 
definition of a simplicial model category) is played by the model ∞-category sSKQ of 

3 In private communication, Goerss has explained that there were two reasons that the culminating 
Goerss–Hopkins paper [23] was never published. Firstly, they envisioned a more comprehensive version 
of the obstruction theory that would apply not just to spectra but to diagrams of spectra (in particular 
sheaves of spectra over the moduli stack of elliptic curves, towards constructing tm f), but they never man-
aged to work this out. And secondly, they came to realize that the then-nascent theory of ∞-categories 
would be able to elegantly handle the various technical problems with which they had wrestled.
4 Perhaps the simplest example of this phenomenon arises in the groupoid completion of a one-object 

category, which corresponds to the group completion of the corresponding monoid. This groupoid is easy 
to characterize in terms of its universal property, but it is hopelessly difficult to describe in concrete terms: 
this is an intractable (in fact, computationally undecidable) task, closely related to the so-called “word 
problem” for generators and relations in abstract algebra.
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simplicial spaces equipped with a likewise Kan–Quillen model structure – both of which 
present the ∞-category S of spaces.

0.4. Conventions

We take quasicategories as our preferred model for ∞-categories, and in general we 
adhere to the notation and terminology of [46] and [47]. In fact, our references to these 
two works will be frequent enough that it will be convenient for us to adopt Lurie’s 
convention and use the “code names” T and A for them, respectively. Thus, for instance, 
to refer to [46, Theorem 4.1.3.1], we will simply write Theorem T.4.1.3.1.

However, we work invariantly to the greatest possible extent: that is, we primarily work 
within the ∞-category of ∞-categories. Thus, for instance, we will omit all technical uses 
of the word “essential”, e.g. we will use the term unique in situations where one might 
otherwise say “essentially unique” (i.e. parametrized by a contractible space). For a full 
treatment of this philosophy as well as a complete elaboration of our conventions, we 
refer the interested reader to [53, §A]. The casual reader should feel free to skip this on 
a first reading; on the other hand, the careful reader may find it useful to peruse that 
section before reading the present paper. For the reader’s convenience, we also provide 
a complete index of the notation that is used throughout this paper and the model 
∞-categories papers in [53, §B].

0.5. Outline

We now provide a more detailed outline of the contents of this paper.

• In §1, we provide an informal overview of our generalized Goerss–Hopkins obstruction 
theory.

• In §2, we introduce resolution model structures on ∞-categories of simplicial objects, 
and give sufficient conditions for their existence.

• In §3, we lay out our foundations and assumptions regarding the ambient presentably 
symmetric monoidal stable ∞-category C, and we construct an auxiliary resolution 
model structure on the ∞-category sC.

• In §4, we add operadic structures into the story: if our main goal is to construct 
algebras in C over some operad O ∈ Op, we obtain a simplicial resolution T ∈ sOp of 
O and lift the above resolution model structure to one on the ∞-category AlgT (sC)
of T -algebras in sC.

• In §5, we turn to the algebraic part of the story, introducing a certain category A of 
comodules and positing monads on the categories A and sA that respectively govern 
the structures present on the homologies of O-algebras in C and of T -algebras in sC.

• In §6, we study Postnikov theory, André–Quillen cohomology, and moduli spaces in 
the model ∞-category sA.
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• In §7, we study Postnikov theory, André–Quillen cohomology, and moduli spaces in 
the model ∞-category sC.

• In §8, we prove our main theorems.
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1. Informal overview

Suppose we are given a flat homotopy commutative ring spectrum

E ∈ CAlg(ho(Sp))

satisfying Adams’s condition (which we will describe in §1.5); we will refer to the its cor-
responding homology theory E∗ as our “detecting” homology theory. Suppose moreover 
that we are given a commutative algebra
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A ∈ CAlg(Comod(E∗,E∗E))

in comodules. Then, Goerss–Hopkins obstruction theory provides a method for comput-
ing the moduli space of (E-local) realizations of A as an E∞ ring spectrum – the first 
question being whether it is nonempty. In fact, it applies to algebras over any operad 
O, though this changes the nature of the algebraic object in comodules that we must 
consider.

The purpose of the present section is to explain this story in detail, as well as the gen-
eralization from Sp to an arbitrary presentably symmetric monoidal stable ∞-category 
which is the purpose of this paper. We begin by explaining the obstruction theory as a 
black box in §§1.1–1.3, focusing for simplicity only on the E∞ case. We then proceed to 
unpack the inner workings of the obstruction theory in §§1.4–1.9.

1.1. The moduli space of realizations

First of all, a realization of A is an E∞ ring spectrum X for which there exists an 
isomorphism E∗X ∼= A (of algebras in comodules). These are our objects of interest. Note 
that we do not require the existence of a spectrum realizing the underlying comodule of 
A: that is, we start with purely algebraic data.

Next, an E-equivalence is a map X → Y of spectra that induces an isomorphism 
E∗X

∼=−→ E∗Y of E∗E-comodules (or equivalently of E∗-modules). In a universal way, 
we can invert the E-equivalences in the ∞-category of spectra to form the ∞-category 
LE(Sp) of E-local spectra. The terminology stems from the fact that this localization 
actually participates in a reflective localization

LE : Sp � LE(Sp) : UE ,

i.e. an adjunction whose right adjoint is fully faithful; in particular, we can consider 
LE(Sp) ⊂ Sp as a full subcategory.5 In other words, E-local spectra are just particular 
sorts of spectra, but E-equivalences between them are necessarily equivalences.

Finally, the moduli space of E-local realizations of A is the full subgroupoid

MA ⊂ CAlg(LE(Sp))

on the E-local E∞ ring spectra which are realizations of A; its morphisms are the E-
equivalences (which are also equivalences) between them. As indicated above, we will 
generally leave the descriptor “E-local” implicit.

Remark 1.1. Of course, this necessarily only produces E-local spectra. Thus, if one is 
interested in obtaining an E∞ ring structure on a particular spectrum X ∈ Sp, one 

5 This is the underlying ∞-categorical content of the theory of Bousfield localization of spectra, as intro-
duced in the classic paper [11].
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must choose a detecting homology theory E∗ for which X is E-local. On the other hand, 
this locality is not so hard to satisfy in practice: crucially, any E-module is necessarily 
E-local. Note that this is a relatively weak (and in particular, unstructured) hypothesis: 
we have only assumed that E is a homotopy commutative ring spectrum, and thus by 
“module” we can only possibly mean an object X ∈ ModE(ho(Sp)).

In particular, it follows that E is E-local. This implies the nearly unbelievable 
conclusion that if we would like to endow a homotopy commutative ring spectrum 
E ∈ CAlg(ho(Sp)) with an E∞-structure, then E can itself serve as the detecting ho-
mology theory!

1.2. André–Quillen cohomology

Given our commutative algebra A in comodules, one can speak of modules over A (in 
comodules); we mention now that for any n ≥ 1 one can define a canonical A-module 
ΩnA, which will play a role in our story shortly. For any A-module M and any augmented 
commutative algebra

X ∈ CAlg(Comod(E∗,E∗E))/A

in comodules, we can define the corresponding André–Quillen cohomology groups
H∗(X; M). In fact, these are given by the homotopy groups of a certain spectrum

H (X;M) = {H n(X;M)}n≥0,

in the sense that

Hn(X;M) = π−nH (X;M) ∼= π0H
n(X;M) ∼= π1H

n+1(X;M) ∼= · · ·

for any n ≥ 0 (or really for any n ∈ Z: this spectrum has vanishing positive-dimensional 
homotopy groups, not unlike homSp(Σ∞

+ X, HM) for any space X ∈ S and any Eilenberg–
MacLane spectrum HM ∈ Sp). The group

Aut(A,M)

of automorphisms of the pair (A, M) (whose elements are pairs of an isomorphism ϕ :
A 

∼=−→ A and an isomorphism M
∼=−→ ϕ∗M) naturally acts on this spectrum. In particular, 

it acts on each constituent space H n(X; M), and we write

Ĥ n(X;M) = (H n(X;M))Aut(A,M)

for the (homotopy) quotient. This action fixes the basepoint of H n(X; M) (whose path 
component corresponds to the zero element 0 ∈ Hn(X; M)), and so the inclusion of the 
basepoint is Aut(A, M)-equivariant and hence determines a map
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BAut(A,M) → Ĥ n(X;M)

on quotients. We note for future reference that this map, whose source is connected, 
lands entirely in the path component selected by the composite

pt 0−→ H n(X;M) → Ĥ n(X;M).

1.3. Obstructions to realization

As we will describe in more depth in §1.9, our understanding of the moduli space MA

actually comes from a sequence of moduli spaces Mn(A) of “n-stage approximations” to 
a realization of A. These moduli spaces are related by pullback squares

Mn(A) BAut(A,ΩnA)

Mn−1(A) Ĥ n+2(A; ΩnA)

(for all n ≥ 1), in which the left vertical map is induced by an “(n − 1)st Postnikov 
trunction” functor and the lower map is induced by an “nth k-invariant” functor

Mn−1(A) χn−−→ H n+2(A; ΩnA).

Moreover, under a key technical hypothesis that we will not discuss further here (As-
sumption 8.7 (see also Remark 8.8)), we have a canonical identification

MA
∼−→ lim (· · · → M2(A) → M1(A) → M0(A))

of our moduli space of realizations as the limit of the resulting tower (Theorem 8.9). 
Finally, as the base for our inductive understanding, we have an equivalence

M0(A) � BAut(A).

We can now describe the sense in which we can “compute” the moduli space MA. 
Observe that the above pullback square implies that an (n − 1)-stage X can be lifted to 
an n-stage if and only if the k-invariant

[χn(X)] ∈ Hn+2(A; ΩnA)

vanishes: this is the only case in which there exists a nonempty fiber in the diagram

BAut(A,ΩnA)

pt Mn−1(A) H n+2(A; ΩnA) Ĥ n+2(A; ΩnA),χ
X n
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which is necessary and sufficient for there to exist a nonempty fiber in the diagram

Mn(A)

pt Mn−1(A).
X

Remark 1.2. Of course, this is most useful in the étale case, i.e. when the relevant André–
Quillen cohomology groups all vanish. Under this assumption, the entire tower collapses 
to an equivalence

MA
∼−→ M0(A) � BAut(A).

This is visibly the case with Goerss–Hopkins’s original application to the Morava E-
theories. In fact, after enough algebraic manipulation, it also becomes the case in the 
construction of the sheaf Oder of E∞ ring spectra over the moduli stack of elliptic curves, 
whose global sections are tm f (but these manipulations are themselves not completely 
trivial) [17, §12].

In fact, this is also the case in another prominent application of Goerss–Hopkins 
obstruction theory as well. In his inspiring monograph [67], Rognes develops the Galois 
theory of E∞ ring spectra. This may be seen as the study of covering spaces among affine 
spectral schemes, and provides a remarkably effective framework for the organization of 
chromatic homotopy theory from the viewpoint of spectral algebraic geometry. Just as 
classical Galois theory, this is governed by a Galois correspondence, i.e. a contravariant 
equivalence of posets. In order to prove this fundamental theorem, Rognes uses Goerss–
Hopkins obstruction theory to obtain the desired intermediate Galois extension from a 
subgroup of the Galois group.

1.4. Nonabelian derived ∞-categories and resolution model structures

We now explain what exactly we meant by the notation “D≥0(C)” used in §0.3. In fact, 
this notation is slightly misleading: this construction does not depend on the ∞-category 
C alone. Rather, we must first choose a full subcategory G ⊂ C which is closed under 
finite coproducts, which should be thought of as a subcategory of “projective generators”. 
Given this, we define the (nonnegatively-graded) nonabelian derived ∞-category of C
to be

D≥0(C) = D≥0(C,G) = PΣ(G) = Fun×(Gop, S),

the ∞-category of product-preserving presheaves of spaces on G, i.e. the full subcategory 
of Fun(Gop, S) on those contravariant functors that take finite coproducts in G to finite 
products in S. (We will use the various notations interchangeably, depending on our 
desired emphasis.)
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Observe that there is a canonical functor

sC
X• �→

(
Y �→| homlw

C (Y,X•)|
)

−−−−−−−−−−−−−−−−−→ PΣ(G)

from the ∞-category of simplicial objects in C, the levelwise restricted Yoneda functor 
followed by geometric realization. In the case that C is an ordinary category and G ⊂ C

is a full subcategory of small projective generators, in [62, §II.4] Quillen defined a model 
structure on sC which (in hindsight) is precisely a presentation of the ∞-category PΣ(G). 
For example, if we take C = Set to be the category of sets and G = Fin to be the 
full subcategory of finite sets, this recovers the standard Kan–Quillen model structure 
sSetKQ, which presents the ∞-category

D≥0(Set) = D≥0(Set,Fin) = Fun×(Finop, S) � Fun(ptop, S) � S

of spaces as the nonabelian derived ∞-category of the category of sets. On the other 
hand, if C is an abelian category with enough projectives, then D≥0(C) recovers the 
usual (nonnegatively-graded) derived ∞-category of C, which through the Dold–Kan 
correspondence is equivalent to the usual definition in terms of nonnegatively-graded 
chain complexes in C. In general, cofibrant replacements in these model structures may 
thus be thought of as nonabelian projective resolutions.

In fact, this same idea has been carried further in homotopy theory. In [20], Dwyer–
Kan–Stover defined a resolution model structure on the category sTop∗ of simplicial 
pointed topological spaces based on the set of generators

{Sn ∈ Top∗}n≥1,

and in [12] Bousfield generalized this to an arbitrary (pointed, right proper) model cat-
egory equipped with a set of h-cogroup objects satisfying certain conditions. In both 
cases, the restriction to h-cogroup objects is motivated by the desire for spectral se-
quences converging to the “homotopy groups” (with respect to the generators and their 
finite coproducts) of the geometric realization of an object (in the model-categorical 
sense). The levelwise weak equivalences are weak equivalences in these model structures, 
but there are in general strictly more of the latter.

From the perspective of model ∞-categories, it is clear that these model 1-categories 
are fairly inefficient: it is wholly unnecessary to distinguish between objects which are 
levelwise weakly equivalent. On the other hand, the resolutions that these model struc-
tures afford are necessary – indeed, they are the entire point. Thus, one might expect 
to freely invert the levelwise weak equivalences while keeping track of the remaining 
resolution weak equivalences. To this end, we have the following theorem.

Theorem 1.3 (2.19 and 2.23). Let C be a presentable ∞-category, let {Zα ∈ C} be a set of 
compact objects, and write G ⊂ C for the full subcategory generated by the objects Zα and 
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their finite coproducts. Then there exists a resolution model structure on the ∞-category 
sC, denoted sCres. This model structure is simplicial (i.e., it is compatibly enriched over 
sSKQ). Moreover, it participates in a Quillen adjunction

Fun(G, sSKQ)proj � sCres,

whose derived adjunction is precisely the canonical adjunction

P(G) � PΣ(G).

Remark 1.4. The resolution model ∞-category structure of Theorem 1.3 is indeed much 
more efficient than its 1-categorical analogs. For example, every object in sCres is fibrant; 
by contrast, in the resolution model structures of Dwyer–Kan–Stover and Bousfield, the 
fibrant objects are precisely the Reedy fibrant objects. (This is by no means a decisive 
advantage, but it seems worth pointing out nonetheless.)

1.5. The detecting homology theory and resolutions

Let us fix a presentably symmetric monoidal stable ∞-category C. This replaces a 
model 1-category of spectra, which in the original construction of Goerss–Hopkins ob-
struction theory must be assumed to satisfy a long list of technical assumptions. We 
assume that C is equipped with a full subcategory G ⊂ C of generators, which we assume 
to be sufficiently nice (e.g. its objects must all have inverses with respect to the sym-
metric monoidal structure – thereafter, our assumptions will imply that its objects are 
compact). This generalizes the set of sphere spectra. These generators define a “homo-
topy groups” functor π�.

We now discuss our detecting homology theory, which we assume to be given by a flat 
homotopy commutative algebra E ∈ CAlg(ho(C)). We can now explain the all-important
Adams’s condition. This is the requirement that E be obtainable as a filtered colimit

colimJ Eα
∼−→ E

of dualizable objects Eα, such that their duals DEα have projective E-homology. This 
condition allows us to treat E-homology as being given by “homotopy groups with respect 
to these duals”. More precisely, our assumptions guarantee that for any generator Sβ ∈ G

we have a string of isomorphisms

colimα∈J[ΣβDEα, X]C ∼= colimα∈J[Sβ , Eα ⊗X]C ∼= [Sβ , colimα∈J(Eα ⊗X)]C
∼= [Sβ , colimα∈J(Eα) ⊗X]C ∼= [Sβ , E ⊗X]C = EβX

(where we suggestively write Σβ for the functor Sβ ⊗ −). Therefore, if a map X → Y

induces “DEα-homotopy” isomorphisms
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[ΣβDEα, X]C
∼=−→ [ΣβDEα, Y ]C

for all Sβ ∈ G and all α ∈ J, then it induces an isomorphism on E-homology. On the 
other hand, the converse will not generally hold. This subtlety can be handled with a 
little bit of care (or with a lot of care, in the original model 1-categorical case), and we 
will return to it in due time.

Let us write GE ⊂ C for the full subcategory generated by the subcategory G and the 
objects DEα under finite coproducts and de/suspensions. Then, our resolutions will be 
based on the nonabelian derived ∞-category

D≥0(C,GE).

However, we will need to make computations using actual simplicial resolutions (i.e. 
objects of sC) instead of their images under the functor

sC → PΣ(GE) = D≥0(C,GE),

and for this we will use the resolution model structure provided by Theorem 1.3.
As we will explain in §1.6, we will not actually be using this model ∞-category directly, 

but rather a generalization of it. However, even in this special case we can point out an 
essential feature of the story. Let us write Ã for the category of (E�, E�E)-comodules, 
and let us write GÃ ⊂ Ã for the full subcategory on objects of the form E�S

ε for 
some Sε ∈ GE ; by our assumptions, these will be projective as E�-modules. As we have 
assumed that C is presentably symmetric monoidal, it follows that the induced functor

E� : GE → GÃ

preserves finite coproducts. It follows formally that the induced functor

PΣ(E�) : PΣ(GE) → PΣ(GÃ)

preserves all colimits. Ultimately, this fact will be (a shadow of) the reason that our 
topological obstructions can be computed purely algebraically. At the level of model 
∞-categories, this can be seen as resulting from the fact that the functor

Elw
�

: sCres → sÃres

preserves cofibrations between cofibrant objects relative to an analogous resolution model 
structure sÃres.

1.6. Operadic structures and resolutions

We use the term “operad” to refer to a (single-colored) ∞-operad; the ∞-category Op
of operads is presented by the relative category Op(sSetKQ) of operads in simplicial sets, 
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whose weak equivalences are determined levelwise on underlying objects (i.e. ignoring the 
symmetric group actions). This relative category structure enhances to a Boardman–Vogt
model structure, which (using a generalization of Theorem 1.3) we incidentally generalize 
to the ∞-category Op(sV) of internal operads (for a suitable symmetric monoidal ∞-
category V) as Proposition 4.9.

Now, our obstruction theory can be used to construct (E-local) O-algebras in C, for 
any operad O ∈ Op. Given a choice of O, however, we must choose a monad Φ on Ã
which will parametrize our “algebraic structures”: in other words, we must have a lift

AlgO(C) AlgΦ(Ã)

C Ã

E�

UO UΦ

E�

of our E-homology functor. For instance, in the special case where O = Comm = E∞
that we described in §§1.1–1.3, we also took Φ = Comm. However, even in the case that 
we take O = Comm, it can be useful – essential, even – to have this added generality.6

So of course, we will not be interested in resolving objects of C, but rather objects 
of AlgO(C). However, it will not suffice to simply resolve them by simplicial objects of 
AlgO(C): at no point will this allow us to gain control over their levelwise E-homology 
(in the model category sÃres).

On the other hand, there is a special case in which we do have control over their 
levelwise E-homology, namely when the operad O is π0-S-free: by definition, this means 
that for every n ≥ 0, the symmetric group Sn acts freely on the set π0(O(n)) of path 
components of the nth constituent space of O. When this is the case, the “free O-algebra” 
functor

X 
→
∐
n≥0

(O(n) �X⊗n)Sn

simplifies dramatically. Even better, if we assume that E�X is projective – such as 
when X = DEα –, then the Künneth spectral sequence for the E-homology of this free 
O-algebra (which is guaranteed by Adams’s condition) immediately collapses!

Thus, a key insight of Goerss–Hopkins obstruction theory (over its predecessors) was, 
for a general operad O, to take a simplicial resolution T• ∈ sOp by π0-S-free operads. 
Amusingly, this can be achieved by choosing a cofibrant representative of O in the model 
category Op(sSetKQ)BV via the embedding

6 The construction of tm f (as the global sections of a sheaf of E∞ ring spectra over the moduli stack of 
elliptic curves), which was spelled out in full detail by Behrens in [17], makes essential use of such generality. 
In order to construct the height-1 component of the sheaf (which is necessary in order to “interpolate” 
between the supersingular loci at distinct primes, and which is by far the most technical aspect of the 
construction), one must take the p-adic complex K-theory spectrum KU∧

p as the detecting homology theory, 
and one must enhance the nature of the algebraic input from a commutative algebra in comodules to what is 
called a θ-algebra (which structure is canonically present on the p-adic K-theory of an E∞ ring spectrum).
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Op(sSet) � s (Op(Set)) ↪→ sOp.

A simplicial operad can be made to act on simplicial objects in C, and from here we 
obtain (as Theorem 4.26) a lifted resolution model structure through the adjunction

FT : sCres � AlgT (sC)res : UT

This is the model ∞-category we have been seeking. On the one hand, its objects are 
resolutions of O-algebras in C: we have a canonical lift

AlgT (sC) AlgO(C)

sC C

|−|

UT UO

|−|

of the geometric realization functor. On the other hand, we will assume enough so that 
there is a monad T̃E on sÃ admitting a lift

AlgT (sC) AlgT̃E
(sÃ)

sC sÃ.

Elw
�

UT
UT̃E

Elw
�

Just as our unstructured functor

Elw
�

: sCres → sÃres

preserves cofibrations between cofibrant objects, so will this lifted functor Elw
�

(with 
respect to an analogously lifted resolution model structure AlgT̃E

(sÃ)res), which crucially 
implies that its localization

Elw
�

: AlgT (sC)�W−1
res� → AlgT̃E

(sÃ)�W−1
res�

preserves colimits. Although there will be one more small wrinkle that must be smoothed 
out, this fact is very nearly the true reason that our topological obstructions can be 
computed purely algebraically.

1.7. E�-localization

Given our algebraic object A ∈ AlgΦ(Ã), we can now explain that our “n-stage 
approximations” to A will be objects of the ∞-category AlgT (sC)�W−1

res�, and our André–
Quillen cohomology spaces will be certain mapping spaces extracted from the ∞-category 
AlgT̃ (sÃ)�W−1

res�. However, these facts are technically true but slightly misleading.

E
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To clarify both at once, let us recall for the sake of analogy that in the ∞-category C, 
a map becoming an isomorphism under all of functors [ΣβDEα, −]C implies that it also 
becomes an isomorphism under the functor E�, but that the converse is generally false. 
Then, in the algebraic case, note that there exists a forgetful functor

AlgT̃E
(sÃ)

UT̃E−−−→ sÃ
s(UÃ)−−−−→ sSet∗,

which takes the subcategory Wres ⊂ AlgT̃E
(sÃ) into the subcategory WKQ ⊂ sSet∗, but 

not only this subcategory; defining

Wπ∗ ⊂ AlgT̃E
(sÃ)

to be the pullback of WKQ ⊂ sSet∗, we obtain a reflective localization

AlgT̃E
(sÃ)�W−1

res� � AlgT̃E
(sÃ)�W−1

π∗ �.

Similarly, in the topological case, the functor

Elw
�

: AlgT (sC) → AlgT̃E
(sÃ)

takes the subcategory Wres ⊂ AlgT (sC) into the subcategory Wπ∗ ⊂ AlgT̃E
(sÃ), but 

not only this subcategory; defining

WElw
�

⊂ AlgT (sC)

to be the pullback of Wπ∗ ⊂ AlgT̃E
(sÃ), we obtain a reflective localization

AlgT (sC)�W−1
res� � AlgT (sC)�W−1

Elw
�

�.

Now, we can clarify that the moduli spaces of n-stages for A are naturally sub-
groupoids

Mn(A) ⊂ AlgT (sC)�W−1
Elw

�

� ⊂ AlgT (sC)�W−1
res�

of the reflective localization, while the relevant André–Quillen cohomology spaces are 
computed by mapping in AlgT̃E

(sÃ)�W−1
res� to an object of the reflective subcategory 

AlgT̃E
(sÃ)�W−1

π∗ � ⊂ AlgT̃E
(sÃ)�W−1

res�. Moreover, these two reflective localization func-
tors participate as the downwards arrows in a commutative square

AlgT (sC)�W−1
res� AlgT̃E

(sÃ)�W−1
res�

AlgT (sC)�W−1
Elw

�

� AlgT̃E
(sÃ)�W−1

π∗ �,

Elw
�

Elw

�
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in which the dotted arrow exists by the universal property of localization and preserves 
colimits by an easy diagram chase. This, finally, is the true reason that our topological 
obstructions can be computed purely algebraically. However, in order to explain this, we 
must introduce the spiral exact sequence.

1.8. Bigraded E-homology groups and the spiral exact sequence

Given a simplicial object X ∈ sC, there are two sorts of E-homology groups that one 
might extract: the classical E-homology groups

πnE
lw
β X = πn[Sβ , E ⊗X]lwC

(i.e. the nth homotopy group of the simplicial abelian group [i]◦ 
→ [Sβ , E ⊗ Xi]C of 
homotopy classes of maps) and the natural E-homology groups

E�
n,βX = πn

(
homD≥0(C,GE)(Sβ , (E ⊗X)lw)

)
(i.e. the nth homotopy group of the space of morphisms in D≥0(C, GE), where (E⊗X)lw ∈
sC denotes the simplicial object [i]◦ 
→ E⊗Xi obtained by tensoring the simplicial object 
X levelwise with E). These serve dual purposes.

On the one hand, the classical E-homology groups assemble into the E2 page of a 
spectral sequence

E2 = πnE
lw
β X ⇒ E∞ = Eβ+n|X|,

where we write Sβ+n = Sβ ⊗ Sn = ΣnSβ . Of course, this spectral sequence allows us to 
obtain control over the E-homology of the geometric realization |X|.

On the other hand, the natural E-homology groups are by their very definition much 
more directly related to the ∞-category

D≥0(C,GE) � sC�W−1
res�.

Thus, they participate in a “cells and disks” obstruction theory within this ∞-category. 
In order to explain this, we introduce the notation

Dn
Δ = Δn/Λn

0 ∈ (sSet∗)KQ

and

Sn
Δ = Δn/∂Δn ∈ (sSet∗)KQ.

There are evident cofibrations

Sn
Δ � Dn+1

Δ
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in (sSet∗)KQ, which present the maps

Sn → Dn+1 � pt

in S∗. Moreover, for any K ∈ sS∗ and any X ∈ sC, there exists a “based tensor” object 
K�X ∈ sC, which is compatible with the canonical enrichment of sC over sS∗ (where 
the basepoint is given by the zero morphism). Writing Sε ∈ GE for an arbitrary object, 
the fact that the model ∞-category sCres is simplicial implies that the “cells” given by

Sn
Δ�const(Sε) ∈ sCres

and the “disks” given by

Dn
Δ�const(Sε) ∈ sCres

together control the theory of Postnikov towers in sC�W−1
res�.7

Now, the (“localized”) spiral exact sequence relates these two types of E-homology, 
running

· · · πi+1EβX E�
i−1,β+1X E�

i,βX πiEβX · · ·

· · · E�
0,β+1X E�

1,βX π1EβX 0.

δ δ

δ

Note that it is two-thirds natural E-homology, and one-third classical E-homology.8
Thus, via the spiral exact sequence, by controlling the natural E-homology groups (via 
“cells and disks”) we can also control the classical E-homology groups (which assemble 
into the E2 page of the spectral sequence).

1.9. The tower of moduli spaces

We can now explain the connection with “n-stages” for our chosen object A ∈ AlgΦ(Ã)
of which we are interested in realizations. First of all, an ∞-stage for A is an object of 
AlgT (sC)�W−1

Elw
�

� whose E2 page is simply given by A, concentrated in the bottom row; 
these assemble into a moduli space

M∞(A) ⊂ AlgT (sC)�W−1
Elw

�

�.

We then have the following result, which cements the relationship between realizations 
of A and their (approximate) resolutions.

7 Examining the structure maps of the simplicial sets Dn
Δ

and Sn
Δ

, one sees that they may be seen as 
corepresenting the nonabelian n-cycles and nonabelian normalized n-chains objects of an object X ∈ sC
(via a “based cotensor” bifunctor −�− : sSop

∗ × sC → C which we will not make precise here).
8 In fact, these long exact sequences are what organize into the exact couple defining the above spectral 

sequence.
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Theorem 1.5 (8.5). The geometric realization functor

|−| : AlgT (sC)�W−1
Elw

�

� → AlgO(LE(C))

induces an equivalence

M∞(A) ∼−→ MA.

We emphasize that the moduli space M∞(A) ⊂ AlgT (sC)�W−1
Elw

�

� will not generally 

contain all of the objects whose geometric realizations are realizations of A: rather, it only 
contains those whose geometric realizations are realizations of A “for obvious reasons” 
(namely that their spectral sequences collapse immediately).

Let us now move to the bottom of the tower. A 0-stage for A is an object X ∈
AlgT (sC)�W−1

Elw
�

� whose natural E-homology is given by

E�
i,�X

∼=
{

A, i = 0
0, i > 0.

As the natural E-homology groups govern cellular approximations in AlgT (sC)�W−1
Elw

�

�, 
the following result should be plausible.

Theorem 1.6 (8.10). The moduli space of 0-stages for A admits a canonical equivalence

M0(A) � BAut(A).

Now, if X ∈ AlgT (sC)�W−1
Elw

�

� is a 0-stage for A, then its natural E-homology is 
extremely simple. On the other hand, as dictated by the spiral exact sequence, its classical 
E-homology – and hence its E2 page – is not quite correct for it to be an ∞-stage: instead, 
we will have

πiE
lw
�
X ∼=

⎧⎪⎨⎪⎩
A, i = 0
ΩA, i = 2
0, i /∈ {0, 2}.

In fact, more generally, if X is an n-stage for A, then we will have

πiE
lw
�
X ∼=

⎧⎪⎨⎪⎩
A, i = 0
Ωn+1A, i = n + 2
0, i /∈ {0, n + 2}.

Thus, to move upwards through the tower of moduli spaces is to push the failure of X
to be an ∞-stage “further and further away”.9 However, we emphasize that the above 

9 In fact, the spectral sequence for an n-stage will collapse after the En+2 page, directly after cancelling 
out the entire (n + 2)nd row with the corresponding entries of the 0th row.
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identification of classical E-homology does not alone imply that X is an n-stage: it 
must also have the correct k-invariants (or equivalently, it must also have the correct 
natural E-homology). Indeed, an n-stage will be in essence an object that “looks like” 
the Postnikov n-truncation of an ∞-stage.

We now explain why this iterative topological procedure is indeed governed by algebraic
computations. (In fact, a somewhat simpler argument will also justify Theorem 1.6.) This 
is where we will use the cocontinuity of the functor

Elw
�

: AlgT (sC)�W−1
Elw

�

� → AlgT̃E
(sÃ)�W−1

π∗ �

between presentable ∞-categories.10
Suppose that X ∈ AlgT (sC)�W−1

Elw
�

� is an (n − 1)-stage for A. As we have just seen, 
its image

Y = Elw
�
X ∈ AlgT̃E

(sÃ)�W−1
π∗ �

will have its homotopy concentrated in degrees 0 and n +1: for brevity, we simply write

π∗Y ∼= A× (ΩnA)[n + 1].

We are interested in modifying X to obtain an n-stage for A: this entails simultaneously 
peeling off this copy of (ΩnA)[n + 1] and replacing it with a copy of (Ωn+1A)[n + 2], all 
in a way that behaves correctly with respect to the natural E-homology groups.

In order to address this task, we first examine the levelwise E-homology object 
Y = Elw

�
X. Now, in the ∞-category AlgT̃E

(sÃ)�W−1
π∗ �, homotopy groups alone do not 

characterize equivalence classes: just as with (based) spaces, one must also keep track 
of the k-invariants. In this case, since Y only has potentially nonvanishing homotopy in 
dimensions 0 and (n + 1), it participates in a uniquely determined pullback square

Y KA

A KA(ΩnA,n + 2)
χn(Y )

in AlgT̃E
(sÃ)�W−1

π∗ �, in which the objects on the right are algebraic Eilenberg–Mac Lane 
objects with π∗KA

∼= A and π∗KA(ΩnA, n +2) ∼= A ×(ΩnA)[n +2]; the right vertical map 
between them is an isomorphism on π0, and the map χn(Y ) is the unique potentially 
nontrivial k-invariant of Y . This defines a class

[χn(Y )] ∈ Hn+2(A; ΩnA)

10 The adjoint functor theorem implies that this functor admits a right adjoint. However, it appears ex-
tremely unlikely that this lifts to the level of model ∞-categories. And even if it does, the functor Elw

�
will 

not generally be a left Quillen functor, since it generally only preserves weak equivalences between cofibrant 
objects (instead of all acyclic cofibrations between arbitrary objects).
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in the indicated André–Quillen cohomology group, and taken over all (n − 1)-stages 
X ∈ Mn−1(A) this defines a map

Mn−1(A) χn−−→ H n+2(A; ΩnA)

to the indicated André–Quillen cohomology space.
Returning to topology, we now come to the crucial point: for any object Z ∈

AlgT̃E
(sÃ)�W−1

π∗ �, the composite functor

AlgT (sC)�W−1
Elw

�

�
op Elw

�−−→ AlgT̃E
(sÃ)�W−1

π∗ �
op

hom
Alg

T̃E
(sÃ)�W

−1
π∗ �

(−,Z)

−−−−−−−−−−−−−−−−−→ S

preserves limits (i.e. takes colimits in AlgT (sC)�W−1
Elw

�

� to limits in S) and so must 
be representable (by presentability). When Z = KA or Z = KA(ΩnA, n + 2), we ob-
tain topological Eilenberg–Mac Lane objects, which we respectively denote by BA and 
BA(ΩnA, n + 2).

Now, if there exists an n-stage X̃ lifting X, then Postnikov theory in AlgT (sC)�W−1
Elw

�

�

implies that it must fit into a pullback square

X̃ BA

X BA(ΩnA,n + 2),

in which the right vertical map classifies the standard map KA → KA(ΩnA, n + 2). 
Conversely, if we define X̃ to be such a pullback, then it will be an n-stage if and only 
if the lower map corresponds to an equivalence

Elw
�
X = Y

∼−→ KA(ΩnA,n + 2).

As we have just seen, the equivalence class of Y is entirely classified by a k-invariant

[χn(Y )] ∈ Hn+2(A; ΩnA),

and it is not hard to show that such an equivalence Y ∼−→ KA(ΩnA, n + 2) exists if and 
only this k-invariant vanishes.

All in all, an expansion of this argument can be used to prove the following.

Theorem 1.7 (8.11). For any n ≥ 1, there is a natural pullback square

Mn(A) BAut(A,ΩnA)

Mn−1(A) Ĥ n+2(A; ΩnA).
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This is the final ingredient in our generalized Goerss–Hopkins obstruction theory, 
which allows us to compute the purely algebraic obstructions to the inductive passage 
up the tower of moduli spaces

MA M∞(A)

...

Mn(A) BAut(A,ΩnA)

Mn−1(A) Ĥ n+2(A; ΩnA)

...

BAut(A) � M0(A).

∼

lim

2. The resolution model structure

In this section, we lift results from [28, Chapter II] in order to provide sufficient 
conditions for the existence of resolution simplicial model ∞-category structures. We 
begin in §2.1 by collecting some basic observations regarding enrichment and bitensoring 
in the presentable setting. Using these, in §2.2 we give general criteria for lifting model ∞-
category structures, for which we give various sufficient conditions in §2.3. We conclude 
by identifying the underlying ∞-category in §2.4.

Remark 2.1. In this section, we will be constructing certain resolution model structures. 
These are closely related to the model structures of [20] and [12]; indeed, it is straightfor-
ward (but tedious) to verify that the proof of [12, Theorem 3.3] immediately generalizes 
to an arbitrary right proper model ∞-category M equipped with a set of h-cogroup 
objects (in the model ∞-categorical sense). However, those model structures are in a 
sense more difficult: they’re built by modifying (sM)Reedy, and in the end the fibrant 
objects are exactly the Reedy fibrant objects. By contrast, using model ∞-categories 
effectively allows us to obtain a model structure presenting the desired ∞-category by 
starting with a trivial model ∞-category (so that the Reedy model structure on simplicial 
objects therein will also be trivial).
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2.1. Enrichments and bitensorings in the presence of presentability

We begin by providing sufficient conditions for constructing enrichments and bitensor-
ings among presentable ∞-categories, and for lifting adjunctions between ∞-categories 
equipped with these to enriched adjunctions.

Proposition 2.2. Let V ∈ Alg(PrL) be a presentably monoidal ∞-category, and let D ∈
ModV(PrL) be a presentable ∞-category equipped with a left action of V. Then this action 
− �− : V ×D → D extends to an enrichment and bitensoring of D over V, encoded by 
a two-variable adjunction(

V×D
−�−−−−→ D , Vop ×D

−�−−−−→ D ,Dop ×D
homD(−,−)−−−−−−−−→ V

)
.

Proof. The fact that the action takes place in the symmetric monoidal ∞-category PrL

guarantees that it commutes with colimits separately in each variable. From here, pre-
sentability guarantees the co/representability required by the definition of a two-variable 
adjunction. �
Lemma 2.3. Suppose that D ∈ PrL and I ∈ Cat∞. Then the levelwise tensoring of 
Fun(I, D) over Fun(I, S) commutes with colimits separately in each variable and extends 
to an action Fun(I, D) ∈ LModFun(I,S)(PrL).

Proof. The levelwise tensoring is given by the composite

Fun(I, S) × Fun(I,D) � Fun(I, S×D) Fun(I,−�−)−−−−−−−−→ Fun(I,D);

indeed, we obtain Fun(I, D) ∈ LModFun(I,S)(Cat∞) by applying Fun(I, −) to the data 
of D ∈ LModS(Cat∞). Moreover, by definition the tensoring − � − : S × D → D

commutes with colimits separately in each variable; as colimits in a functor ∞-category 
are computed pointwise, the above composite commutes with colimits separately in each 
variable as well. �
Corollary 2.4. For any D ∈ PrL, the levelwise tensoring of sD over sS extends to an 
enrichment and bitensoring.

Proof. By Lemma 2.3, the levelwise tensoring defines an action sD ∈ ModsS(PrL), and 
so the claim follows from Proposition 2.2. �
Observation 2.5. Given two ∞-categories D and E, one can define an adjunction D � E

to be a functor A : Dop × E → S satisfying certain co/representability conditions (see 
[53, item (25) of §A]). If for some closed monoidal ∞-category V these ∞-categories are 
equipped with lifts D and E to V-enriched ∞-categories, then an enriched adjunction 
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D � E can be defined as a functor A : Dop × E → V satisfying analogous co/rep-
resentability conditions. (This recovers an ordinary adjunction between the underlying 
unenriched ∞-categories by postcomposition with the functor homV(1V, −) : V → S.) 
We use this fact without further comment.

Lemma 2.6. Let V ∈ Alg(Cat∞) be a presentable monoidal ∞-category, suppose that two 
∞-categories D and E are enriched and bitensored over V, and suppose we are given an 
adjunction F : D � E : G between their underlying ∞-categories. Suppose further that 
we have a natural equivalence F (− �D −) � (−) �E F (−) in Fun(V ×D, E). Then the 
adjunction F  G lifts to a V-enriched adjunction F : D :� E : G, and moreover we 
have a natural equivalence G(− �E −) � (−) �D G(−) in Fun(Vop × E, D).

Proof. First of all, the final claim follows from our assumption (and the Yoneda lemma) 
by the string of natural equivalences

homD(d,G(v �E e)) � homE(F (d), v �E e) � homE(v �E F (d), e)

� homE(F (v �D d), e) � homD(v �D d,G(e))

� homD(d, v �D G(e)).

Now, consider the functor Dop×E → P(V) which takes a pair of objects (d◦, e) ∈ Dop×E

to the presheaf taking v◦ ∈ Vop to the space

homD(v �D d,Ge) � homE(F (v �D d), e) � homE(v �E F (d), e) � homE(F (d), v �E e).

Since V is presentable, this factors through the Yoneda embedding V 
ょV
↪−→ P(V). By 

construction, this defines an enriched adjunction F : D � E : G lifting the original 
adjunction F  G. �
Corollary 2.7. For any D ∈ PrL and any monad t ∈ Alg(End(sD)), we obtain a canonical 
enrichment and bitensoring of Algt(sD) over sS, and moreover the adjunction Ft : sD �
Algt(sD) : Ut is canonically enriched over sS.

Proof. As any object of Algt(sD) is a colimit of free objects, for any K ∈ sS and any 
Y ∈ Algt(sD) we define

K � Y = colim(X→Ut(Y ))∈sN/Ut(Y ) Ft(K �X)

(using the action sD ∈ LModsS(PrL) of Corollary 2.4). This defines a bifunctor 
− � − : sS × Algt(sD) → Algt(sD) which by construction commutes with colimits 
separately in each variable. Thus it defines an action Algt(sD) ∈ LModsS(PrL), and so 
by Proposition 2.2 extends to an enrichment and bitensoring of Algt(sD) over sS. Then, 
the enrichment of the adjunction Ft  Ut follows from Lemma 2.6. �
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2.2. Simplicial model structures

We now provide a lifting theorem for constructing simplicial model ∞-category struc-
tures. This requires two auxiliary pieces of terminology.

Definition 2.8. Given a set I of homotopy classes of maps in C, the subcategory I-proj
of I-projectives is the subcategory of maps with llp(I).

Definition 2.9. Let V be a monoidal model ∞-category, and suppose that M and N are 
V-enriched model ∞-categories. Then a V-enriched Quillen adjunction between M and 
N is a V-enriched adjunction F : M � N : G such that the underlying adjunction 
F : M � N : G is a Quillen adjunction.

Theorem 2.10. Let M be a bicomplete ∞-category, and let F : sS � M : G be an 
adjunction such that G commutes with filtered colimits. Write WM = G−1(WsS

KQ), FM =
G−1(FsS

KQ), and CM = (W ∩ F)M-proj. Suppose that the following condition holds:(
CM ∩ (FM-proj

)
) ⊂ WM. (∗)

Then M admits a resolution model structure, denoted Mres, with WM
res = WM, CM

res =
CM, and FM

res = FM, and the above adjunction becomes a Quillen adjunction F : sSKQ �
Mres : G.

Proof. The proof is almost identical to that of [28, Theorem II.4.1] (despite the fact 
that there they only work in the special case of a category of simplicial objects); the 
only modification which must be made is that in the proofs of [28, Lemmas II.4.2 and 
II.4.3] (which construct required factorizations) one must take a coproduct over homotopy 
classes of commutative squares. �
Remark 2.11. In practice, there seems to more-or-less always be (at least) one thing 
that’s difficult to check in constructing a model structure. In this case, condition (∗) of 
Theorem 2.10 effectively requires that those would-be cofibrations that moreover have 
the left lifting property for all would-be fibrations are also would-be weak equivalences. 
We will give sufficient conditions for this condition to hold in §2.3.

Remark 2.12. It follows from the proof of Theorem 2.10 that one can replace the condition 
(∗) with the following pair of conditions:

(∗′) for every map Λn
i →Δn in JsS

KQ, the induced map F (Λn
i ) →F (Δn) lies in WM ⊂M;

(∗′′) the maps in (W ∩ C)M are closed under coproducts, pushouts, and sequential 
colimits.

This is explained in [28, Remark II.4.5].
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Theorem 2.13. In the setting of Theorem 2.10, suppose that we have an action M ∈
LModsS(Cat∞), denoted − � − : sS × M → M, such that this bifunctor commutes 
with colimits separately in each variable, and suppose that we have a natural equiva-
lence F (− ×−) � (−) � F (−) in Fun(sS × sS, M). Then the resolution model structure 
canonically enhances to a simplicial model ∞-category Mres, and the Quillen adjunction 
canonically enhances to an sSKQ-enriched Quillen adjunction F : sSKQ � Mres : G.

Proof. Using Lemma 2.6, the proof is identical to that of [28, Theorem II.4.4]. �
2.3. Sufficient criteria for the satisfaction of condition (∗) of Theorem 2.10

We now provide various conditions guaranteeing that condition (∗) of Theorem 2.10
is satisfied.

The key result is the following.

Proposition 2.14. In the setting of Theorem 2.10, suppose that there exists an endofunctor 
R : M → M which factors through the subcategory Mf ⊂ M of fibrant objects and which 
admits a map idM → R whose components lie in WM. Then condition (∗) holds.

Proof. The proof is identical to that of [28, Lemma II.5.1]. �
Corollary 2.15. In the setting of Theorem 2.10, suppose that for every object X ∈ M the 
terminal map X → ptM lies in FM. Then condition (∗) holds.

Proof. This follows from Proposition 2.14, taking R = idM (equipped with the identity 
coaugmentation). �
Corollary 2.16. Let N be a bicomplete ∞-category, and for any object Z ∈ N consider 
the adjunction

−� const(Z) : sS � sN : homlw
N (Z,−).

If the object Z ∈ N is small, then this adjunction satisfies condition (∗) of Theorem 2.10.

Proof. With the theory of the Ex∞ functor for sSKQ of [53, §6] in hand (specifically [53, 
Proposition 6.22 and Remark 6.23]), this follows from Proposition 2.14 by an identical 
argument to that of [28, Proposition II.5.5]. �
Remark 2.17. The technique of Corollary 2.16 cannot work for a general (bicomplete) 
∞-category equipped with a right adjoint functor to sS: it must be an ∞-category of 
simplicial objects. In effect, this is because the endofunctor Ex is a right adjoint, but 
it is not an enriched right adjoint. Indeed, the functor homsS(Δ1, −) : sS → sS is an 
example of an enriched limit and so commutes with any enriched right adjoint, but the 
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canonical map Ex(homsS(Δ1, −)) → homsS(Δ1, Ex(−)) is not an equivalence; this can 
be seen by evaluating on Δ1, since the source has three 0-simplices but the target has 
five.

Corollary 2.18. Let N ∈ PrL, and let Z ∈ N be a small object. Then with the enrichment 
and bitensoring of sN over sS of Corollary 2.4, there exists a simplicial model structure 
on sN created by the sS-enriched Quillen adjunction

−� const(Z) : sSKQ � sNres : homlw
N (Z,−).

Proof. By Corollary 2.16, this adjunction satisfies condition (∗) of Theorem 2.10 and 
hence creates a model structure on sN. By Lemma 2.3, this adjunction furthermore sat-
isfies the hypotheses of Theorem 2.13, so that sNres and the Quillen adjunction becomes 
compatibly sSKQ-enriched. �

We will also be interested in the following “many-object” version of Corollary 2.18.

Theorem 2.19. Let N ∈ PrL, and suppose we are given a set of small objects Zα ∈ N. 
Then with the enrichment and bitensoring of sN over sS of Corollary 2.4, there exists a 
simplicial model structure on sN created by the sS-enriched Quillen adjunction∐

α

prα(−) � const(Zα) :
∏
α

sSKQ � sNres :
(
homlw

N (Zα,−)
)
.

Proof. Given the above results, the proof is essentially identical to that of [28, Proposi-
tion II.5.9]. �
Remark 2.20. In Theorem 2.19, if the objects Zα form a set of compact projective genera-
tors (in the sense of Definition T.5.5.8.23) and the ∞-category N has enough projectives, 
then weak equivalences and fibrations in sNres will be detected by all projective objects 
(see [28, Example II.5.10]).

We end this subsection with the following result, which gives a convenient class of 
examples for which the condition of Corollary 2.15 holds (i.e. that all objects are (“would-
be”) fibrant). It is an ∞-categorical analog of the classical fact that every simplicial group 
is in particular a Kan complex.

Lemma 2.21. In the adjunction FsGrp(S) : sS � sGrp(S) : UsGrp(S), the right adjoint 
factors through the subcategory sSfKQ ⊂ sS of fibrant objects with respect to the Kan–
Quillen model structure.

Proof. Observe that the adjunction FGrp(S) : S � Grp(S) : UGrp(S) factors as the com-
posite adjunction
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S Mon(S) Grp(S).
FMon(S)

UMon(S)

(−)gp

We claim that the diagram

Set Mon Grp

S Mon(S) Grp(S)

FMon (−)gp

FMon(S) (−)gp

commutes.11 Indeed, recall the factorization

Mon(S) Grp(S),

S∗

(−)gp

B Ω

and recall that the functor Mon(S) B−→ S∗ can itself be obtained as the composite

Mon(S) B−→ (Cat∞)∗
(−)gpd

−−−−→ (Gpd∞)∗ � S∗

(where B denotes the “categorical delooping” functor). The claim now follows from the 
commutativity of the diagram

Set Mon Cat∗ Gpd∗

S Mon(S) (Cat∞)∗ (Gpd∞)∗

FMon B (−)gpd

FMon(S) B (−)gpd

(where Cat denotes the category of strict categories (i.e. Segal simplicial sets) and simi-
larly for Gpd (see [53, item (4)(c) of §A])), which itself follows from [18, 5.4].

Now, applying Fun(Δop, −) to the original commutative rectangle, we obtain a com-
mutative square

sSet sGrp

sS sGrp(S).

FsGrp

FsGrp(S)

11 If we were to add in the middle vertical inclusion Mon ↪→ Mon(S), the left square would commute 
(simply by inspection of the functor FMon(S)), but the right square would not: its extreme failure to do so 
is encoded by [49, Theorem 1].
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In particular, the image of any element Λn
i → Δn of JsSet

KQ = JsS
KQ under the composite

sSet ↪→ sS
FsGrp(S)−−−−−→ sGrp(S)

admits a retraction (see e.g. [28, Lemma I.3.4]). This proves the claim. �
2.4. The underlying ∞-category of the resolution model structure

We conclude this section by identifying the underlying ∞-category of the resolution 
model structure of Theorem 2.19.

Definition 2.22. For an ∞-category D admitting finite coproducts, we write PΣ(D) =
Fun×(Dop, S) for its nonabelian derived ∞-category of product-preserving presheaves 
(i.e. of functors taking finite coproducts in D to finite products in S). We write 
Pδ

Σ(D) ⊂ PΣ(D) for its subcategory of discrete objects; thus Pδ
Σ(D) � Fun×(Dop, Set) �

Fun×(ho(D)op, Set).

Theorem 2.23. In the situation of Theorem 2.19, writing G ⊂ N for the full subcate-
gory generated by the objects Zα under finite coproducts, we have a canonical Quillen 
adjunction

Fun(Gop, sSKQ)proj � sNres

with the projective model structure (as in [54, §1.2]), with derived adjunction given by 
the canonical adjunction

P(G) � PΣ(G)

whose right adjoint is the defining inclusion.

Proof. The projective model structure can also be seen as lifted via Theorem 2.19 from 
the same product of copies of the model ∞-category sSKQ, which implies that this is 
indeed a Quillen adjunction. As the functor |−| : sS → S commutes with finite products, 
it follows that the derived right adjoint factors through the subcategory PΣ(G) ⊂ P(G). 
Moreover, as N is presentable, the restricted Yoneda embedding participates in an ad-
junction PΣ(G) � N, from which it follows that this derived right adjoint surjects onto 
PΣ(G) (by taking the constant simplicial object on a given object of N, seen as a product-
preserving presheaf on G). So, it will suffice to show that the functor sN�W−1

res� → P(G)
is fully faithful. First of all, taking any X ∈ sNf

res, since sNres is simplicial, for any 
K ∈ sSet = sScKQ we have that

homsN�W−1
res�(K � const(Zα), X) � homsN(K � const(Zα), X)

� homsS(K, homsN(const(Zα), X))
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� homsS(K, homlw
N (Zα, X))

� homS(|K|, |homlw
N (Zα, X)|)

(where the last equivalence uses the fact that sSKQ is a simplicial model ∞-category). 
The claim now follows from the fact that IsNres = {IsSKQ � const(Zα)} forms a set of 
generating cofibrations of sNres, so that we can construct a cofibrant replacement of any 
object as a transfinite composition of pushouts of these maps. �
3. Topology

In this section, we discuss our basic topological framework, absent any operadic struc-
ture. We begin in §3.1 by discussing the ∞-category C in which we will be working, as 
well as its notion of “homotopy groups”. We then discuss the resolution model structure 
on sC in §3.2, and foreshadow a further localization at its “E�-equivalences”. We dis-
cuss the spiral exact sequence (relating classical and natural homotopy groups in sC) in 
§3.3, and we discuss the localized spiral exact sequence (relating classical and natural 
E-homology groups in sC) in §3.4.

3.1. Foundations of topology

Assumption 3.1. We begin with a presentably symmetric monoidal stable ∞-category 
C = (C, ⊗, 1). By presentability, this will automatically be closed (i.e. admit an internal 
hom bifunctor).

Remark 3.2. When it is convenient, we will consider C as being enriched over the symmet-
ric monoidal ∞-category (S∗, ∧, S0) of pointed spaces equipped with the smash product: 
the basepoint 0 ∈ homC(X, Y ) is given by the unique “zero map” X → 0C → Y , and 
the fact that the composition maps factor through the smash products amounts to the 
observation that any sequence of composable maps in which at least one of the maps is 
a zero map composes canonically to another zero map. Moreover, C admits a canonical 
bitensoring over S∗ which is compatible with this enrichment. (It is not hard to make 
these assertions precise using the formalism of [22].)

Notation 3.3. We write D = homC(−, 1) : Cop → C for the “linear dual” functor, and 
we write Cinv ⊂ Cd ⊂ C for the full subcategories of invertible objects and of dualizable 
objects.

Assumption 3.4. We assume that the unit object 1 ∈ C is compact, i.e. that the functor 
homC(1, −) : C → S commutes with filtered colimits.

Observation 3.5. It follows immediately from Assumption 3.4 that any invertible object 
of C is necessarily compact. In fact, because of the assumption that the symmetric 
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monoidal structure commutes with colimits separately in each variable, it follows that 
any dualizable object is compact as well: this is a consequence of the natural equivalence 
homC(X, −) � homC(1, DX ⊗−) in Fun(C, S).

Assumption 3.6. We assume the existence of a small subcategory G ⊂ C of (strong) 
generators, which we generally denote by Sβ ∈ G (with the “S” and “β” chosen to evoke 
the notion of a “bigraded sphere” (from motivic stable homotopy theory)); that is, we 
assume that the functors

homC(Sβ ,−) : C → S

are jointly conservative. We moreover assume that the subcategory G ⊂ C

• contains the unit object 1 ∈ C,
• is closed under de/suspensions,
• consists of invertible objects, and
• is closed under the monoidal product of C.

We write Sn+β = ΣnSβ for any n ∈ Z.

Notation 3.7. We write Gδ = π0(G) ∈ AbGrp for the abelian group of equivalence classes 
of objects of G, with addition given by the monoidal product of C. We denote the element 
corresponding to Sβ ∈ G simply by β ∈ Gδ.

Definition 3.8. For any β ∈ Gδ, we refer to the equivalence Sβ ⊗− : C ∼−→ C as the β-fold 
suspension. The ordinary notion of suspension is recovered as (Σn1) ⊗ − : C ∼−→ C. We 
will henceforth refer to any β-fold suspension as a “suspension”, and refer to this latter 
more restrictive notion as a categorical suspension. We denote β-fold suspension by Σβ, 
and categorical suspension simply by Σn. (Note that these conventions jibe with those 
of Assumption 3.6.) While through this definition the term “desuspension” technically 
becomes superfluous, we will nevertheless continue to employ it for aesthetic reasons.

Notation 3.9. We write A = Fun(Gδ, Ab) for the category of Gδ-graded abelian groups, 
equipped with the Day convolution monoidal structure relative to (Gδ, +) = (Gδ, ⊗C)
and (Ab, ⊗Z). This receives a “homotopy” functor π� : C → A, given by πβX =
(π�X)(Sβ) = [Sβ , X]C.12 This functor is itself lax monoidal, and in fact descends along 
the monoidal functor C → ho(C) to another lax monoidal functor π� : ho(C) → A.

Remark 3.10. As a result of Assumption 3.6, to say that G ⊂ C is a subcategory of strong 
generators is precisely to say that the functor π� : C → A creates the equivalences in C.

12 This is the composite of the canonical projection C → ho(C) followed by the restricted Yoneda embedding 
along the functor Gδ → ho(C); note that we have a canonical equivalence Gδ  (Gδ)op since this category 
has no nonidentity morphisms.
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Remark 3.11. One could alternatively consider the “homotopy” functor as taking values 
in Pδ

Σ(G∨) = Fun((G∨)op, Set), the category of product-preserving presheaves of sets on 
the closure of G ⊂ C under finite coproducts (which remain coproducts in ho(C) since 
π0 : S → Set preserves products). This is analogous to the “Π-algebra” perspective taken 
by Dwyer–Kan–Stover in [21] and by Blanc–Dwyer–Goerss in [4]. However, in order 
to obtain a computable obstruction theory, Goerss–Hopkins take an alternative route, 
considering the homotopy groups of a spectrum simply as a Z-graded abelian group 
(rather than as a module over the stable homotopy groups of spheres).13

We conclude this subsection with a few remarks concerning the choice of ambient 
∞-category.

Remark 3.12. If we remove the requirement that C be stable, it becomes necessary to 
assume that the generators admit desuspensions in order for Lemma 3.45 to hold. It also 
becomes necessary to assume that the generators are h-cogroup objects (with respect to 
the wedge sum) in order to construct the relevant spectral sequence, but of course this 
is a strictly weaker assumption. More broadly, a great many of the arguments would 
become substantially more delicate.

Remark 3.13. If we only require C to be monoidal (instead of symmetric monoidal), then 
by the so-called “microcosm principle” it will only make sense to discuss associative alge-
bras in C, instead of commutative algebras. In the setting of ordinary spectra, associative 
algebras can be constructed via Hopkins–Miller obstruction theory (see [65]), which is 
far simpler than Goerss–Hopkins obstruction theory since it is not necessary to resolve 
the associative operad (see §4.1.3). On the other hand, if we set our sights lower and 
remove the operad from the picture entirely, we simply recover an abstract version of 
Blanc–Dwyer–Goerss obstruction theory (see [4]). In any case, we expect that practical 
examples of interest will carry symmetric monoidal structures anyways.

3.2. The resolution model structure

Notation 3.14. Let E ∈ CAlg(ho(C)) be a homotopy commutative algebra object in C. 
This induces E� = π�E ∈ CAlg(A), and we write A = ModE�

(A) for its category of 
modules. Then we obtain a “homology” functor E� : C → A by E�X = π�(E ⊗X).

Definition 3.15. An E�-equivalence in C is a morphism which becomes an isomorphism 
under the functor E� : C → A.

Notation 3.16. By definition, the E�-equivalences are created by the composite C E⊗−−−−→
C 

π∗−→ A (as isomorphisms in A are created in A). However, Remark 3.10 implies that 

13 Nevertheless, product-preserving presheaves pervade this story. We will mostly suppress them, but we 
will need to discuss them explicitly in §5.5.
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they are also created by the functor C E⊗−−−−→ C. Our assumption that C is presentably 
symmetric monoidal immediately implies that the E�-equivalences are strongly satu-
rated (in the sense of Definition T.5.5.4.5), and so by Proposition T.5.5.4.15 there exists 
a left localization adjunction LE�

: C � LE(C) : UE�
.

Definition 3.17. We define the subcategory Aproj ⊂ A of projective objects just as in 
classical algebra.

Assumption 3.18. We assume henceforth that E satisfies Adams’s condition, namely that 
there exists a filtered diagram E• : J → Cd

/E = Cd ×C C/E with colim(J 
E•−−→ C) ∼−→ E, 

such that for every α ∈ J,

• E�DEα ∈ Aproj, and
• for every M ∈ ModE(ho(C)), the canonical map

[DEα,M ]C → homA(E�DEα, π�M)(
DEα

f−→ M
)

→

(
E�DEα

E�(f)−−−−→ E�M = π�(E ⊗M) → π�M

)
is an isomorphism.

Moreover, we fix the witnessing data of such a filtered diagram E• : J → Cd
/E .14

Remark 3.19. The canonical map of Assumption 3.18 can be equivalently seen as the 
composite

[DEα,M ]C ∼= [E ⊗ DEα,M ]ModE(ho(C))
π�−−→ homA(E�DEα, π�M).

Observation 3.20. For any X ∈ C and any β ∈ Gδ, we have the string of isomorphisms

colimα∈J[ΣβDEα, X]C ∼= colimα∈J[Sβ , Eα ⊗X]C ∼= [Sβ , colimα∈J(Eα ⊗X)]C
∼= [Sβ , colimα∈J(Eα) ⊗X]C ∼= [Sβ , E ⊗X]C = EβX

in Ab.

Notation 3.21. Strings of adjunction isomorphisms having the same flavor as that of 
Observation 3.20 will frequently be useful to us. Rather than spell out the isomorphisms 
each time, we simply refer to this line of reasoning as a colimit argument.

Notation 3.22. We write GE ⊂ C for the smallest full subcategory containing G and 
{DEα}α∈J that is closed under de/suspension and finite coproducts. We generally write 

14 It will be clear from the construction that our main results do not depend on this choice.
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Sε ∈ GE for an arbitrary object (the letter “ε” being suggestive of the letter “E”), 
although we continue to write Sβ ∈ G ⊂ GE for an arbitrary object of G when considered 
as an object of GE . We write Gδ

E = π0((GE)), and so (just as we write β ∈ G) we simply 
write ε ∈ Gδ

E to denote an arbitrary element.

Observation 3.23. For any Sε ∈ GE and any M ∈ ModE(ho(C)), we have an isomorphism

[Sε,M ]
∼=−→ homA(E�S

ε, π�M).

This can be seen as follows.

• For Sε = DEα, this follows from Assumption 3.18.
• For Sε = Sβ ∈ G, note that E�S

β ∼= E� ⊗1� π�S
β , and so we are interested in the 

composite

[Sβ ,M ]C ∼= [E ⊗ Sβ ,M ]ModE(ho(C))

π�−−→ homA(E�S
β , π�M) ∼= homMod1� (A)(π�S

β , π�M),

which is an isomorphism with inverse given by evaluation at the universal element 
of πβS

β .
• In general, this property is preserved both by de/suspension and by the formation 

of finite coproducts.

Notation 3.24. Recall that sC is canonically enriched and bitensored over sS (see Corol-
lary 2.4); these data assemble into a two-variable adjunction, which we denote by

(
sS× sC

−�−−−−→ sC , sSop × sC
−�−−−−→ sC , sCop × sC

homC(−,−)−−−−−−−→ sS

)
.

Definition 3.25. We fix the following terminology.

(1) A morphism in ho(C) is called a GE-epimorphism if the restricted Yoneda functor 
ho(C) → Pδ

Σ(GE) takes it to a componentwise surjection.
(2) An object of ho(C) is called GE-projective if it has the extension property for all 

GE-epimorphisms.
(3) A morphism in ho(C) is called a GE-projective cofibration if it has the left lifting 

property for all GE-epimorphisms.

Theorem 3.26. There is a resolution model structure on sC, denoted sCres, which enjoys 
the following properties.
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(1) Its weak equivalences and fibrations are created by the functor

sC
X �→(Sε �→homlw

C (Sε,X))−−−−−−−−−−−−−−−→
∏
Gδ

E

sSKQ,

i.e. a morphism is a weak equivalence or a fibration iff it is carried to one in sSKQ

by the functor homlw
C (Sε, −) for every ε ∈ Gδ

E.
(2) It is simplicial.
(3) Its cofibrations are precisely those morphisms whose relative latching maps are GE-

projective cofibrations.
(4) All objects are fibrant in it.
(5) It is cofibrantly generated by the sets

IsCres = {IsSKQ � const(Sε)}Sε∈GE
= {∂Δn � const(Sε) → Δn � const(Sε)}n≥0,Sε∈GE

and

JsC
res = {JsS

KQ�const(Sε)}Sε∈GE
= {Λn

i �const(Sε) → Δn�const(Sε)}0≤i≤n≥1,Sε∈GE
.

Proof. This follows from Theorem 2.19 and Lemma 2.21. �
Remark 3.27. It will follow from the localized spiral exact sequence of Construction 3.52
that the weak equivalences of sCres are created by the functor

sC
[=,−]lwC−−−−−→ sFun(GE ,Ab) � Fun(GE , sAbKQ)proj.

(In fact, the fibrations are as well.)

Definition 3.28. We define the subcategory of E�-equivalences, denoted WElw
�

=
WsC

Elw
�

⊂ sC, to be created by pulling back the subcategory WsA
KQ ⊂ sAKQ under the 

functor Elw
�

: sC → sAKQ.

Notation 3.29. Rather than overburden notation, we simply write πn : sAb → Ab for 
the composite

sAb |−|−−→ AbGrp(S∗)
AbGrp(πn)−−−−−−−→ AbGrp(Set∗) = Ab.

This can be obtained more abstractly as a “homotopy” functor from a derived ∞-category 
to its heart, and indeed we use this same notation πn to denote all corresponding functors 
sSet∗ → Set∗, sA → A, sA → A, etc.
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Observation 3.30. Suppose that X ≈→ Y is a weak equivalence in sCres. By Remark 3.27, 
this means that for every Sε ∈ GE we obtain a weak equivalence [Sε, X]lwC

≈→ [Sε, Y ]lwC
in sAbKQ, i.e. that we obtain isomorphisms πn([Sε, X]lwC ) 

∼=−→ πn([Sε, Y ]lwC ) in Ab for all 
n ≥ 0. In particular, letting Sε range over the set {ΣβDEα}β∈Gδ,α∈J, by Observation 3.20
and since homotopy groups in sSet∗ commute with filtered colimits, we obtain a weak 
equivalence Elw

�
X

≈→ Elw
�
Y in sAKQ. In other words, we have an inclusion Wres ⊂ WElw

�

of subcategories of sC.

Observation 3.31. In our setting, after a colimit argument the standard filtration spectral 
sequence for an object X ∈ sC runs E2 = πnE

lw
β X ⇒ Eβ+n|X|. (This agrees with the 

spectral sequence associated to the localized spiral exact sequence of Construction 3.52
(see [23, Lemma 3.1.5 and Remark 3.1.6]).) Thus, an E�-equivalence in sC (for instance 
a weak equivalence in sCres, by Observation 3.30) induces an isomorphism on E2 pages 
of this spectral sequence. In other words, there exists a factorization

sC C A

sC�W−1
Elw

�

�

|−| E�

through the localization functor.

Definition 3.32. We refer to this spectral sequence E2 = πnE
lw
β X ⇒ E∞ = Eβ+n|X| as 

the spiral spectral sequence.

Remark 3.33. By Theorem 2.23, the resolution model structure presents the nonabelian 
derived ∞-category PΣ(GE). Moreover, the composite C const−−−→ sC → sC�W−1

res� �
PΣ(GE) clearly coincides with the restricted Yoneda embedding. We will generally omit 
this from the notation.

3.3. The spiral exact sequence

Definition 3.34. Choose any n ≥ 0 and any ε ∈ Gδ
E .

(1) We define the corresponding classical homotopy group functor to be the composite

πnπε : sC [Sε,−]lwC−−−−−→ sAb πn−−→ Ab.
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(2) We define the corresponding natural homotopy group functor to be either equivalent 
composite

sC�W−1
res�

π�
n,ε : sC Grp(ho(S∗)) Ab,

Grp(ho(sS∗))

hom
sC�W

−1
res�

(Sε,−)

homsC(const(Sε),−)

πn

|−|

where
• the commutativity of the square follows from the fact that sCres

– is simplicial,
– has const(Sε) ∈ sCc

res cofibrant, and
– has all objects fibrant,
and

• the fact that the down-and-right functors land in h-group objects follows from 
the fact that Sε ∈ C is an h-cogroup object (so that const(Sε) ∈ sC is as well).

Definition 3.35. Let K ∈ sS∗, and let X ∈ sC. We define the reduced tensoring of X
over K to be the pushout

ptsS �X K �X

ptsS � 0sC K�X

in sC. This assembles into an action sS∗ × sC → sC.

Notation 3.36. We write Dn
Δ = Δn/Λn

0 ∈ sSet∗ ⊂ sS∗ for the “reduced pointed simplicial 
n-disk” and Sn

Δ = Δn/∂Δn ∈ sSet∗ ⊂ sS∗ for the “reduced pointed simplicial n-sphere”.

Observation 3.37. The canonical composite

Sn−1
Δ → Dn

Δ → Sn
Δ

(where the first map is obtained by considering Δn−1 ∼= Δ{0,...,n−1} ⊂ Δn) is a cofiber 
sequence not just in sSet∗ but also in sS∗.

Lemma 3.38. For any n ≥ 0 and any Sε ∈ GE, there is a natural isomorphism

π�
n,ε(−) ∼= [Sn

Δ�const(Sε),−]sC�W−1
res�

in Fun(sC, Ab).
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[

Proof. In light of the facts

• that sCres is simplicial,
• that Sn

Δ�const(Sε) ∈ sCc
res is cofibrant, and

• that all objects of sCres are fibrant,

we have the string of natural isomorphisms

[Sn
Δ�const(Sε),−]sC�W−1

res�

∼= π0|homsC(Sn
Δ�const(Sε),−)|

∼= π0

∣∣∣∣∣∣∣∣∣lim
⎛⎜⎜⎜⎝

homsC(Sn
Δ � const(Sε),−)

homsC(ptsS � 0C,−) homsC(ptsS � const(Sε),−)

⎞⎟⎟⎟⎠
∣∣∣∣∣∣∣∣∣

∼= π0

∣∣∣∣∣∣∣∣∣∣
lim

⎛⎜⎜⎜⎜⎝
homsS(Sn

Δ,homsC(const(Sε),−))

ptsS homsC(const(Sε),−)

ev∗

0

⎞⎟⎟⎟⎟⎠
∣∣∣∣∣∣∣∣∣∣
.

In order to continue, we make the following observations.

• The compatibility of sCres with sSKQ implies that the vertical map in this last expres-
sion is a fibration, so that we can commute the limit with the geometric realization.

• As const(Sε) ∈ sCc
res is cofibrant and all objects of sCres are fibrant, then 

homsC(const(Sε), −) : sC → sSfKQ takes values in fibrant objects of sSKQ.
• The object Sn

Δ ∈ sScKQ is cofibrant.

Using these and the above string of natural isomorphisms, we find that

Sn
Δ�const(Sε),−]sC�W−1

res�
∼= π0 lim

⎛⎜⎜⎜⎜⎝
|homsS(Sn

Δ,homsC(const(Sε),−))|

|ptsS| |homsC(const(Sε),−)|

|ev∗|

|0|

⎞⎟⎟⎟⎟⎠

∼= π0 lim

⎛⎜⎜⎜⎜⎝
homS(|Sn

Δ|, |homsC(const(Sε),−)|)

ptS |homsC(const(Sε),−)|

|ev∗|

|0|

⎞⎟⎟⎟⎟⎠
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∼= π0 lim

⎛⎜⎜⎜⎜⎝
homS(Sn,homsC�W−1

res�(Sε,−))

ptS homsC�W−1
res�(Sε,−)

ev∗

0

⎞⎟⎟⎟⎟⎠
∼= π0 homS∗(Sn,homsC�W−1

res�(S
ε,−))

∼= πn homsC�W−1
res�(S

ε,−),

proving the claim. �
Definition 3.39. Let K ∈ sS∗, and let X ∈ sC. We define the reduced cotensoring of K
into X to be the pullback

K�X K � X

ptsS � 0sC ptsS � X

in sC. This assembles into an action (sS∗)op × sC → sC.

Observation 3.40. The reduced co/tensoring bifunctors participate into an evident two-
variable adjunction

(
sS∗ × sC

−�−−−−→ sC , (sS∗)op × sC
−�−−−−→ sC , sCop × sC

homC(−,−)−−−−−−−→ sS∗

)
,

obtained by recognizing that the (enriched) hom-objects of sC are naturally pointed since 
sC has a zero object.

Observation 3.41. If

• on the one hand we restrict the reduced tensoring bifunctor to the constant simplicial 
objects of C via the composite

sS∗ × C
idsS∗×const−−−−−−−−→ sS∗ × sC

−�−−−−→ sC,

while
• on the other hand we postcompose the reduced cotensoring bifunctor with the limit 

functor to obtain the composite

(sS∗)op × sC
−�−−−−→ sC

(−)0−−−→ C,
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then we similarly obtain a two-variable adjunction(
sS∗ × C

−�const(−)−−−−−−−−→ sC , (sS∗)op × sC
(−�−)0−−−−−→ C , Cop × sC

homC(−,−)−−−−−−−→ sS∗

)
.

Notation 3.42. In analogy with the “generalized matching object” bifunctor

M(−)(−) : sSop × sC
(−�−)0−−−−−→ C,

we write

M(−)(−) : (sS∗)op × sC
(−�−)0−−−−−→ C

for the “reduced generalized matching object” bifunctor.

Definition 3.43. We define the (nonabelian) normalized n-chains functor to be

Nn : sC
MDn

Δ
(−)

−−−−−−→ C,

and we define the (nonabelian) n-cycles functor to be

Zn : sC
MSn

Δ
(−)

−−−−−→ C.

Note that these would reduce to the usual notions if C were an abelian category.

Observation 3.44. The cofiber sequence Sn−1
Δ → Dn

Δ → Sn
Δ in sS∗ of Observation 3.37

induces a fiber sequence

Zn → Nn → Zn−1

in Fun(sC, C).

Lemma 3.45. For any Sε ∈ GE, there is a natural isomorphism

[Sε, Nn(−)]C ∼= Nn[Sε,−]lwC

in Fun(sC, Ab).

Proof. Fix a test object X ∈ sC. As by definition Nn(X) = MDn
Δ

(X), we have a pullback 
square

Nn(X) MDn
Δ

(X)

MptsS(0sC) MptsS(X)
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in C. In light of the pushout square

Λn
0 Δn

Δ0 Dn
Δ

both in sSet and in sS, we also have a pullback square

MDn
Δ

(X) MΔn(X)

MΔ0(X) MΛn
0 (X)

in C, which simplifies to a pullback square

MDn
Δ

(X) Xn

X0 MΛn
0 (X)

in C. As the relevant corepresenting maps ptsS → Dn
Δ and Δ0 → Dn

Δ in sSet ⊂ sS

coincide, we obtain the composite pullback square

Nn(X) MDn
Δ

(X) MΔn(X)

MptsS(0sC) MptsS(X) � MΔ0(X) MΛn
0 (X)

in C, which simplifies to a pullback square

Nn(X) Xn

0C MΛn
0 (X)

in C. Moreover, replacing 0 ∈ [n] with any i ∈ [n], we obtain analogous pullback squares

M(Δn/Λn
i )(X) Xn

0C MΛn
i
(X)

in C. From here, the (dual of the corresponding cosimplicial) double induction argument 
of [28, Chapter VIII, Lemma 1.8] yields the claim. �



42 A. Mazel-Gee / Advances in Mathematics 458 (2024) 109951
Lemma 3.46. For any Sε ∈ GE, there is a natural exact sequence

[Sε, Nn+1(−)]C → [Sε, Zn(−)]C → π�
n,ε(−) → 0

in Fun(sC, Ab).

Proof. For any test object X ∈ sC, we have

π�
n,εX = πn homsC�W−1

res�(S
ε, X) ∼= π0 homS∗(Sn,homsC�W−1

res�(S
ε, X)).

Now, since const(Sε) ∈ sCc
res and X ∈ sCf

res, we have that homsC(const(Sε), X) ∈ sSfKQ
and moreover |homsC(const(Sε), X)| � homsC�W−1

res�(Sε, X). On the other hand, Sn
Δ ∈

sScKQ. Since co/fibrancy in (sS∗)KQ is created in sSKQ and moreover sS∗�W−1
KQ� ∼−→ S∗

(as colimits in S∗ are computed in S), the fundamental theorem of model ∞-categories 
applied to (sS∗)KQ implies that we have a surjection

homsS∗(Sn
Δ,homsC(const(Sε), X)) → homS∗(Sn,homsC�W−1

res�(S
ε, X))

in S. Applying π0, by adjunction this yields a surjection

[Sε, Zn(X)]C → π�
n,εX

in Set. As epimorphisms are Ab are created in Set, this proves exactness at π�
n,ε(−).

Now, suppose we are given an element of ker([Sε, Zn(X)]C → π�
n,εX): this is witnessed 

by an extension

Sn homsC�W−1
res�(Sε, X)

ptS∗

in S∗. Observe that Sn
Δ ∈ sScKQ, so that by [16, Corollary 7.6.13], the model ∞-

category (sSSn
Δ
/)KQ presents the ∞-category SSn/. Since moreover Dn+1

Δ ∈ (sSSn
Δ
/)cKQ

and homsC(const(Sε), X) ∈ (sSSn
Δ
/)fKQ, the fundamental theorem of model ∞-categories 

applied to (sSSn
Δ
/)KQ implies that the above extension in S∗ is presented by an extension

Sn
Δ homsC(const(Sε), X)

Dn+1
Δ

in sS∗. This proves exactness at [Sε, Zn(−)]C. �
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Corollary 3.47. There is a natural isomorphism π0πε(−) ∼= π�
0,ε(−) in Fun(sC, Ab).

Proof. Fix a test object X ∈ sC. Applying Lemma 3.46 in the case that n = 0, we obtain 
an isomorphism

coker([Sε, N1(X)]C → [Sε, Z0(X)]C)
∼=−→ π�

0,εX

in Ab. Unwinding the definition of Z0(X), we see that Z0(X) � X0 ∈ C, so that

[Sε, Z0(X)]C ∼= [Sε, X0]C = ([Sε, X]lwC )0.

Under this identification, unwinding the definition of N1X, we see that the image of the 
map

[Sε, N1X]C → [Sε, Z0X]C ∼= ([Sε, X]lwC )0

is the set of those 0-simplices in [Sε, X]lwC ∈ sAb that are the “source” of a 1-simplex with 
“target” the basepoint 0-simplex 0 ∈ ([Sε, X]lwC )0 ∈ Ab. So we obtain an isomorphism

coker([Sε, N1(X)]C → [Sε, Z0(X)]C) ∼= π0πεX,

from which the claim follows. �
Construction 3.48. For any object X ∈ sC and any Sε ∈ GE , by Observation 3.44 we 
have long exact sequences

· · · → [Sε+1, Zn−1(X)]C → [Sε, Zn(X)]C → [Sε, Nn(X)]C → [Sε, Zn−1(X)]C

in Ab (which actually continue indefinitely to the right as well since C is stable). These 
splice together into an exact couple

[Sε+i+1, Zn−1(X)]C [Sε+i+1, Zn(X)]C

[Sε+i+1, Nn(X)]C.

(ε+i+1)�(ε+i)

Using Lemmas 3.45 and 3.46, we can identify its derived long exact sequence as

· · · πi+1πε(X) π�
i−1,ε+1(X) π�

i,ε(X) πiπε(X) · · ·

· · · π�
0,ε+1(X) π�

1,ε(X) π1πε(X) 0.

δ δ

δ

We refer to this as the spiral exact sequence.
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3.4. The localized spiral exact sequence

In the end, we will not be interested in the natural and classical homotopy groups, 
but rather in their corresponding E-homology groups.

Notation 3.49. We simply write E : sC 
(E⊗−)lw−−−−−−→ sC for the “tensor levelwise with E” 

functor.

Definition 3.50. Choose any n ≥ 0 and any β ∈ Gδ.

(1) We define the corresponding classical E-homology group functor to be the composite

πnEβ : sC E−→ sC
πnπβ−−−→ Ab.

(2) We define the corresponding natural E-homology group functor to be the composite

E�
n,β : sC E−→ sC

π�
n,β−−−→ Ab.

When considered as indexed over all β ∈ G simultaneously, we write these functors simply 
as πnE� and E�

n,�, respectively.

Lemma 3.51. There is a natural isomorphism π0Eβ(−) ∼= E�
0,β(−) in Fun(sC, Ab).

Proof. This follows from Corollary 3.47 and a colimit argument. �
Construction 3.52. For any X ∈ sC, the spiral exact sequence for EX ∈ sC with respect 
to any β ∈ Gδ becomes

· · · πi+1EβX E�
i−1,β+1X E�

i,βX πiEβX · · ·

· · · E�
0,β+1X E�

1,βX π1EβX 0.

δ δ

δ

We refer to this as the localized spiral exact sequence.

4. Algebraic topology

In this section, we add operadic structures to the mix. We begin by discussing operads 
and their algebras in §4.1, and then we add a simplicial direction in §4.2.

4.1. Foundations of algebraic topology

In this subsection, we give a brief unified treatment of all of the sorts of operads 
and algebras thereover that we will be considering. We begin by fixing basic unenriched 



A. Mazel-Gee / Advances in Mathematics 458 (2024) 109951 45
notions in §4.1.1. We then describe the enriched versions in §4.1.2 (which material is un-
dergirded by the foundational work [15]). We apply these to study simplicial resolutions 
of operads in §4.1.3.

4.1.1. Operads and their algebras

Definition 4.1. By operad we mean what might otherwise be called a “single-colored 
∞-operad”. These are presented by monoids for the composition product in symmetric 
sequences in topological spaces or in simplicial sets (via the “operadic nerve” of Definition 
A.2.1.1.23). We write Op for the ∞-category of operads. For any O ∈ Op, we write 
O(n) ∈ Fun(BSn, S) for the space of n-ary operations, equipped with its canonical 
action of the symmetric group Sn.

Notation 4.2. For any O ∈ Op, we write AlgO(C) for the ∞-category of O-algebras in C, 
and we write

FO : C � AlgO(C) : UO

for the corresponding free/forget monadic adjunction.

Observation 4.3. The monad corresponding to the monadic adjunction FO  UO can be 
computed as

UO(FO(X)) �
∐
n≥0

(O(n) �X⊗n)Sn

(where we use the diagonal action to form the quotient).

Observation 4.4. Any map O 
ϕ−→ O′ in Op determines an adjunction

ϕ∗ : AlgO(C) � AlgO′(C) : ϕ∗

between ∞-categories of algebras in C, whose right adjoint is given by restriction of 
structure. The assignment ϕ 
→ ϕ∗ assembles into a functor

Alg(−)(C) : Op → PrL.

Remark 4.5. We restrict to single-colored operads for simplicity, and because most oper-
ads of interest are single-colored. However, note that if one were interested in obtaining 
e.g. a commutative algebra A ∈ CAlg(C) as well as a module M ∈ ModA(C), one might 
proceed in steps, first using a single-colored obstruction theory in C to produce A, and 
then using a single-colored obstruction theory in ModA(C) to produce M .
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4.1.2. Enriched operads and their algebras

Notation 4.6. For an ∞-category V, we write VS = Fun(Set, V) for the ∞-category 
of symmetric sequences in V. Given O ∈ VS, we write O(n) = O({1, . . . , n}) for sim-
plicity. Assuming V has an initial object, we consider V ⊂ VS via left Kan extension 
along {ptSet} ↪→ Set. When V additionally admits a symmetric monoidal structure 
that commutes with colimits separately in each variable (e.g. if the symmetric monoidal 
structure is closed), the ∞-category VS acquires a composition product monoidal struc-
ture (VS, ◦, 1V), algebras for which are precisely (“single colored”) V-operads (a/k/a 
“operads internal to V”). We denote the ∞-category of these by Op(V), and write

FOp(V) : VS � Op(V) : UOp(V)

for the resulting monadic adjunction. For brevity, we will simply say that V “admits 
operads” in this case.

When V is the ∞-category S of spaces (equipped with the cartesian symmetric 
monoidal structure), we (continue to) omit it from all our notation and terminology; 
in particular, we (continue to) refer to the objects of Op simply as “operads”. For em-
phasis, we may refer to objects of Op(V) for some possibly unspecified V as “internal 
operads”.

Notation 4.7. Let D ∈ LModV(Cat∞) be an ∞-category admitting an action of V, and 
assume that D is cocomplete and finitely complete. Then for any O ∈ Op(V) we denote 
by AlgO(D) the ∞-category of O-algebras in D. This is monadic over D, and we write

FO : D � AlgO(D) : UO

for the monadic adjunction.

Observation 4.8. Let V be an ∞-category that admits operads, and let I be any diagram 
∞-category. Then Fun(I, V) also admits operads: it inherits a componentwise symmetric 
monoidal structure from V, and colimits (including the empty colimit) are computed 
componentwise. In fact, it is not hard to see that we have an equivalence

Op(Fun(I,V)) � Fun(I,Op(V)).

Proposition 4.9. Let V be a symmetric monoidal ∞-category that admits operads and 
admits finite limits, and suppose that the unit object 1V ∈ V is compact. Then there exists 
a Boardman–Vogt model structure on the ∞-category of sV-operads, denoted Op(sV)BV, 
which is simplicial and participates in a Quillen adjunction∏

sSKQ � Op(sV)BV :
(
homlw

V (1V,USn
((−)(n)))

)
n≥0
n≥0
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of simplicial model ∞-categories, where FSn
: V � Fun(BSn, V) : USn

denotes the 
left Kan extension adjunction for the canonical functor ptCat∞ → BSn. In other words, 
the weak equivalences and fibrations are determined levelwise after forgetting the sym-
metric group actions and applying the “underlying space” functor homV(1V, −) : V → S

levelwise.

Proof. In view of Corollary 2.15, this follows from Theorems 2.10 and 2.13 (or really 
Theorem 2.19). �
Remark 4.10. In the end, we will only use Proposition 4.9 in situations when V is a 
1-category. In this case, the result is ultimately more-or-less just a consequence of [62, 
Chapter II, §4, Theorem 4]. The name of the model structure pays homage to the founda-
tional work [14], which introduced the study of homotopy-coherent algebraic structures. 
The Boardman–Vogt model structure of Proposition 4.9 is also closely related to those 
of [9, Theorems 3.1 and 3.2], as explained in [9, Example 3.3.1].

Observation 4.11. Let V and V′ be two ∞-categories equipped with symmetric monoidal 
structures that commute with colimits separately in each variable. Then any lax sym-
metric monoidal functor V → V′ induces a functor Op(V) → Op(V′).

We single out two particular cases of interest.

• The functor − � 1 : S → C is symmetric monoidal (with respect to (S, ×, ptS) and 
(C, ⊗, 1)).

• The homology functor E� : C → A is lax symmetric monoidal: for any X, Y ∈ C, we 
have a canonical map E�X ⊗E�

E�Y → E�(X ⊗ Y ) in A, which takes the element

(
Sβ ϕ−→ E ⊗X

)
⊗

(
Sβ′ ϕ′

−→ E ⊗ Y

)
to the element(

Sβ+β′ � Sβ ⊗ Sβ′ ϕ⊗ϕ′

−−−→ E ⊗X ⊗E ⊗ Y � E⊗2 ⊗X ⊗ Y
μE⊗idX⊗idY−−−−−−−−−→ E ⊗X ⊗ Y

)
.

It follows that the composite functor

S
−�1−−−→ C

E�−−→ A

is lax symmetric monoidal, and hence induces a composite functor on internal operads, 
which for brevity we denote simply as

E� : Op = Op(S) Op(−�1)−−−−−−→ Op(C) Op(E�)−−−−−→ Op(A).
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4.1.3. Simplicial resolutions of operads

Definition 4.12. We say that an operad O ∈ Op is π0-S-free if for each n ≥ 0 the induced 
action of Sn on π0(O(n)) is free.

Remark 4.13. As early in the literature as [48, Definition 1.1], the term “S-free” is used 
to describe a point-set operad (e.g. in topological spaces) whose symmetric group actions 
are free at the point-set level. Of course, such an operad need not present a π0-S-free 
operad in the sense of Definition 4.12.

Lemma 4.14. The functor FOp : SS → Op takes values in π0-S-free operads.

Proof. This is immediate from the explicit description of FOp that follows from [64, 
Proposition A.0.2 and Remark A.0.1]. �
Notation 4.15. We simply write

Bar(−)• : Op Bar(ptS,UOpFOp,−)•−−−−−−−−−−−−−−→ sOp

for the bar construction on the monad UOpFOp ∈ Alg(End(SS)) with respect to the 
left module given by the unit ptS ∈ SS and an unspecified operad considered as a right 
module.

Corollary 4.16. The functor Bar : Op → sOp takes values in levelwise π0-S-free simpli-
cial operads, and admits a natural equivalence |Bar(−)•| � idOp in Fun(Op, Op).

Proof. This follows from Lemma 4.14. �
Corollary 4.17. Given an operad O, suppose that E�(O(n)) ∈ Aproj for all n ≥ 0. Then 
Elw

�
Bar(O)• ∈ sOp(A) � Op(sA)BV is cofibrant, and the augmentation Bar(O)• →

const(O) induces a weak equivalence Elw
�

Bar(O)•
≈→ const(E�O) in Op(sA)BV.

Proof. The asserted cofibrancy follows from the projectivity assumption, while the as-
serted weak equivalence follows from Corollary 4.16. �
Remark 4.18. While we will ultimately be interested in a simplicial operad resolving 
our operad of primary interest, much of the theory goes through equally well for any 
simplicial operad.

4.2. Simplicial algebraic topology

In this subsection, we discuss algebras over simplicial operads in more detail.
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Definition 4.19. Let T ∈ sOp be a simplicial object in operads. We define the ∞-category 
AlgT (sC) of simplicial T -algebras in C to be the lax limit of the composite

Δop T−→ Op
Alg(−)(C)
−−−−−−→ PrL.

Remark 4.20. The composite

Δop T−→ Op
Alg(−)(C)
−−−−−−→ PrL

UPrL−−−→ Cat∞

classifies a cocartesian fibration, which is in fact a bicartesian fibration; by (the dual of) 
[26, Proposition 7.1] (combined with Proposition T.5.5.3.13), its ∞-category of sections 
is precisely AlgT (sC). Thus, we can think of a simplicial T -algebra X = X• ∈ AlgT (sC)
as being specified by the following data:

• for each object [n]◦ ∈ Δop, an object Xn ∈ AlgTn
(C);

• for each morphism [n]◦ ϕ−→ [m]◦ in Δop, a morphism from Xn ∈ AlgTn
(C) to Xm ∈

AlgTm
(C) in (the bicartesian fibration over [1] corresponding to) the adjunction

(Tϕ)∗ : AlgTn
(C) � AlgTm

(C) : (Tϕ)∗

arising from the induced map Tn
Tϕ−−→ Tm in Op, i.e. a point in the space

homAlgTn
(C)(Xn, (Tϕ)∗Xm) � homAlgTm

(C)((Tϕ)∗Xn, Xm);

• higher coherence data for these structure maps corresponding to strings of compos-
able morphisms in Δop.

Observation 4.21. Any map T
ϕ−→ T ′ in sOp determines an adjunction

ϕ∗ : AlgT (sC) � AlgT ′(sC) : ϕ∗

between ∞-categories of simplicial algebras in C, whose right adjoint is given by restric-
tion of structure. In particular, taking T to be trivial yields a monadic adjunction

FT ′ : sC � AlgT ′(sC) : UT ′ ,

whose underlying monad is computed levelwise.

Observation 4.22. Let O ∈ Op be an operad, and consider the corresponding constant 
simplicial operad const(O) ∈ sOp. Since the resulting composite

Δop const(O)−−−−−→ Op
Alg(−)(C)
−−−−−−→ PrL
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is constant at AlgO(C), it follows that we have a canonical equivalence

Algconst(O)(sC) � s(AlgO(C)).

Observation 4.23. For any T ∈ sOp, we have a canonical composite adjunction

AlgT (sC) Algconst(|T |)(sC) � s(Alg|T |(C)) Alg|T |(C),
(ηT )∗
⊥

(ηT )∗

|−|
⊥

const

where

• the first adjunction follows by applying Observation 4.21 to the component T ηT−−→
const(|T |) of the unit of the adjunction |−| : sOp � Op : const(−);

• the equivalence is that of Observation 4.22; and
• the second adjunction is the colimit/constant adjunction in Alg|T |(C).

Notation 4.24. For simplicity, we simply write

|−| : AlgT (sC) � Alg|T |(C) : const

for the composite adjunction of Observation 4.23. When convenient and unambiguous, 
we will omit the right adjoint from the notation.

Lemma 4.25. The diagram

AlgT (sC) Alg|T |(C)

sC C

|−|

UT U|T |

|−|

commutes.

Proof. Both vertical functors are right adjoints which commute with sifted colimits. �
Theorem 4.26. There is a resolution model structure on AlgT (sC), denoted AlgT (sC)res; 
it is obtained by lifting the resolution model structure sCres along the adjunction

FT : sC � AlgT (sC) : UT ,

which therefore becomes a Quillen adjunction. It enjoys the following properties.

(1) Its weak equivalences and fibrations are created by pullback along the right adjoint 
UT .
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(2) It is simplicial.
(3) All objects are fibrant in it.
(4) It is cofibrantly generated by the sets

IAlgT (sC)
res = FT (IsCres) = {FT (IsSKQ � const(Sε))}Sε∈GE

= {FT (∂Δn � const(Sε)) → FT (Δn � const(Sε))}n≥0,Sε∈GE

and

JAlgT (sC)
res = FT (JsC

res) = {FT (JsS
KQ � const(Sε))}Sε∈GE

= {FT (Λn
i � const(Sε)) → FT (Δn � const(Sε))}0≤i≤n≥1,Sε∈GE

.

Proof. The model structure follows from Theorem 2.10, with condition (∗) being implied 
by Corollary 2.15. The enrichment and bitensoring over sS follows from Corollary 2.7, 
and their compatibility follows from Theorem 2.13. �
5. Algebra

In this section, we discuss algebraic structures on the various homotopy and E-
homology groups of various topological objects. We begin in §5.1 by discussing the 
relevant categories of graded abelian groups and comodules. This allows us to state some 
crucial compatibility assumptions between our simplicial operad and our E-homology 
functors in §5.2. In particular, these give us control over the E-homology localization 
of simplicial T -algebras, as we explain in §5.3. We conclude by discussing the module 
structures on the localized and unlocalized spiral exact sequences in §§5.5–5.4.

5.1. Foundations of algebra

Recall that we write Gδ = π0(G) for our chosen group of Picard elements, A =
Fun(Gδ, Ab) for the category of Gδ-graded abelian groups, and A = ModE�

(A) for the 
category of E�-modules in A.

Observation 5.1. Adams’s condition (Assumption 3.18) implies that E�E ∈ A is flat: 
this follows from the filtered colimit presentation colimα∈J(E�Eα) 

∼=−→ E�E along with 
the fact that E�Eα is the (E�-linear) dual of E�DEα ∈ Aproj.

Notation 5.2. Observe that (E�, E�E) is a Hopf algebroid in A. We write Ã =
Comod(E�,E�E) for its category of left comodules (which in light of Observation 5.1
is abelian by [63, Theorem A1.1.3]), and we consider our homology theory as a functor 
E� : C → Ã taking values in (E�, E�E)-comodules.
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Remark 5.3. In general, the forgetful functor Ã
UÃ−−→ A does not admit a left adjoint (e.g. 

it does not preserve products (see [38, §1.2])).

Observation 5.4. For any β ∈ Gδ we obtain an evident endofunctor Σβ : Ã ∼−→ Ã. This 
allows us to consider Ã as enriched over A, where for M, N ∈ Ã we set

homÃ(M,N) = {homÃ(ΣβM,N)}β∈Gδ ∈ A.

5.2. Compatibility

The resolutions of operads considered in §4.1.3 are necessary but not alone sufficient 
to render the obstruction theory to be tractable: we have introduced a new simplicial 
direction on the topology side, but we have not yet exerted any control on the simpli-
cial direction that results on the algebra side. Indeed, this will bring our E-homology 
computations into the realm of homotopical algebra, with its own attendant notions 
of “cofibrant resolution”, and we must ensure that our homology functor E� preserves 
resolutions.

We introduce three increasingly general notions of compatibility; the first is merely 
to fix ideas, the second is auxiliary, and the last is our real goal.

Definition 5.5. We say that an operad O ∈ Op is adapted to E if it comes with a 
corresponding monad OE ∈ Alg(End(A)) admitting a lift

AlgO(C) AlgOE
(A)

C A

E�

UO UOE

E�

such that the following condition holds:

• for any Z ∈ C with E�Z ∈ Aproj, the natural map FOE
(E�Z) → E�(FO(Z)) is an 

isomorphism in AlgOE
(A).

Definition 5.6. We say that a simplicial operad T ∈ sOp is adapted to E if it comes with 
a corresponding monad TE ∈ Alg(End(sA)) admitting a lift

AlgT (sC) AlgTE
(sA)

sC sA

Elw
�

UT UTE

E�

such that the following condition holds:



A. Mazel-Gee / Advances in Mathematics 458 (2024) 109951 53
• for any Z ∈ sC with Elw
�
Z ∈ sAc

KQ, the natural map FTE
(Elw

�
Z) → Elw

�
(FT (Z)) is 

an isomorphism in AlgTE
(sA).

This has the following consequence.

Lemma 5.7. If T ∈ sOp is adapted to E, then any cofibration between cofibrant objects 
in AlgT (sC)res is a retract of a map X

ϕ−→ Y such that the underlying map of degeneracy 
diagrams of Elw

�
(ϕ) is isomorphic to one of the form Elw

�
(X) → Elw

�
(X) 

∐
TE(M), where 

M is s-free on an object of Aproj.

Proof. The proof is identical to that of [23, Lemma 1.4.15], except that we use the 
description of the generating (resp. acyclic) cofibrations in AlgT (sC)res of Theorem 4.26
rather than any facts about the positive model structure on the category of symmetric 
spectra in topological spaces. �
Definition 5.8. Suppose that the simplicial operad T ∈ sOp is adapted to E. We then 
say that T is homotopically adapted to E if there exists a monad T̃E ∈ Alg(End(sÃ))
which lifts the monad TE ∈ Alg(End(sA)) (i.e. they’re intertwined by s(UÃ)) and which 
admits a lift

AlgT (sC) AlgT̃E
(sÃ)

sC sÃ

Elw
�

UT
UT̃E

Elw
�

such that the following conditions hold:

• the adjunction FTE
: sA � AlgTE

(sA) : UTE
creates a simplicial model structure on 

AlgTE
(sA); and

• there exists a simplicial model structure on AlgT̃E
(sÃ) such that the forgetful functor 

AlgT̃E
(sÃ) → AlgTE

(sA) creates weak equivalences and preserves fibrations.

Building on Lemma 5.7, this has the following key consequence.

Lemma 5.9. If T ∈ sOp is homotopically adapted to E, then the induced functor Elw
�

:
AlgT (sC)res → AlgT̃E

(sÃ)π∗ preserves both weak equivalences as well as cofibrations 
between cofibrant objects.

Proof. Analogously to [23, Corollary 1.4.18], this follows from Lemma 5.7 given the fact 
that cofibrations are retracts of (relatively) free maps. �

This result, in turn, has the following ∞-categorical significance.
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Corollary 5.10. If T ∈ sOp is homotopically adapted to E, then the functor Elw
�

:
AlgT (sC)�W−1

res� → AlgT̃E
(sÃ)�W−1

π∗ � preserves colimits.

Proof. This follows by combining Lemma 5.9 with the theory of homotopy colimits in 
model ∞-categories of [54, §1.2]; more specifically, the model ∞-categories AlgT (sC)res
and AlgT̃E

(sÃ)π∗ are both cofibrantly generated and hence admit projective model 
structures, and the functor of model ∞-categories preserves projective cofibrancy by 
Lemma 5.9. �
Remark 5.11. Given two ∞-categories that admit finite coproducts and a functor between 
them that preserves these, applying the functor PΣ automatically gives a cocontinuous 
functor: up to further left localizations (which commute with colimits), this is precisely 
the situation that Corollary 5.10 addresses. However, it is only through Theorem 2.23
that we can identify it as such.

Assumption 5.12. We henceforth assume that T is homotopically adapted to E, and fix 
the corresponding monad T̃E ∈ Alg(End(sÃ)).

Example 5.13. For any O ∈ Op, we can take T to be a cofibrant object of Op(sSet)BV
which presents it: each T (n) will have a free Sn-action (as a simplicial set), and we can 
take T̃E to be the monad corresponding to the operad E�T ∈ Op(sÃ).

5.3. Localization of simplicial T -algebras

Now that we have stipulated some compatibility between our simplicial operad T and 
the E-homology functor, we return to our study of simplicial T -algebras. Recall that 
Theorem 4.26 gives a resolution model structure AlgT (sC)res, which allows us to com-
pute hom-spaces in the localization AlgT (sC)�W−1

res�. However, most natively, our moduli 
spaces of interest will not be subgroupoids of this localization, but rather of a further 
localization. We indicate the latter in Notation 5.14, and then we establish Proposi-
tion 5.15 allowing us to use the model ∞-category AlgT (sC)res to make computations 
therein.

Notation 5.14. Extending Definition 3.28, we write WElw
�

= WAlgT (sC)
Elw

�

⊂ AlgT (sC) for 
the preimage of WsC

Elw
�

⊂ sC under the forgetful functor UT : AlgT (sC) → sC. Since 

WsC
res ⊂ WsC

Elw
�

by Observation 3.30, then also WAlgT (sC)
res ⊂ WAlgT (sC)

Elw
�

.

Proposition 5.15. The canonical functor AlgT (sC)�W−1
res� → AlgT (sC)�W−1

Elw
�

� is the left 
adjoint in a left localization adjunction

LElw : AlgT (sC)�W−1
res� � AlgT (sC)�W−1

lw� : UElw .

� E

� �
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Proof. It follows from Theorem 2.23 (and the monadic derived adjunction underlying the 
monadic Quillen adjunction FT  UT ) that AlgT (sC)�W−1

res� is presentable. Hence, we 
can apply the recognition result Proposition T.5.5.4.15: it suffices to show that the image 
in AlgT (sC)�W−1

res� of WElw
�

⊂ AlgT (sC) is strongly saturated and of small generation 
(se Definition T.5.5.4.5 and Remark T.5.5.4.7). For strong saturation, conditions (1) and 
(2) follow from Lemma 5.9 (similarly to Corollary 5.10 – again, note that the model 
∞-category AlgT (sC)res is cofibrantly generated and hence admits projective model 
structures), and condition (3) follows from the fact that WElw

�

is ultimately pulled back 
from a subcategory WKQ ⊂ sA which has the two-out-of-three property. Given the pre-
sentability of AlgT (sC)�W−1

res�, small generation follows the same cardinality argument 
as that of [23, Theorem 1.5.1] giving the existence of a small set of generating acyclic 
cofibrations. �
Remark 5.16. In [23, Theorem 1.5.1], Goerss–Hopkins establish a “semi-model structure” 
that presents the localization AlgT (sSp)�W−1

Elw
�

�. (Its failure to be a model structure in 

general is explained in [23, Remark 1.5.9].) Of course, since we are working at the level 
of underlying ∞-categories, as a result of Proposition 5.15 we have no need for such a 
(semi-)model structure. The existence of the fully faithful right adjoint UElw

�

should not 
be surprising: the semi-model structure of [23, Theorem 1.5.1] is constructed as a left 
Bousfield localization of the model structure of [23, Theorem 1.4.9].

Remark 5.17. Whereas we have identified sC�W−1
res� as a nonabelian derived ∞-category, 

it appears that sC�W−1
Elw

�

� does not generally take this form. It will become clear over the 

course of the construction that we really do need to be working in a nonabelian derived 
∞-category.

5.4. The module structure on the localized spiral exact sequence

In this subsection, we indicate certain additional algebraic structures present on the 
classical and natural E-homology of simplicial T -algebras. We can summarize the key 
statements as follows (using notation terminology that will be introduced shortly). First 
of all, given a simplicial T̃E-algebra in Ã, its π0 is naturally a Φ-algebra, and for n > 0
its πn are naturally modules thereover. Hence, given a simplicial T -algebra in C, its E0 is 
naturally a Φ-algebra, and for n > 0 its πnE

lw
�

and E�
n,� are naturally modules thereover.

Definition 5.18. An augmentation of the monad T̃E ∈ Alg(End(sÃ)) is the data of a 
monad Φ ∈ Alg(End(Ã)) and a natural isomorphism making the diagram

sÃ sÃ

Ã Ã

T̃E

π0 π0
Φ
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commute, satisfying the diagrammatic coherence conditions of [23, Definition 2.5.7]. We 
write this as T̃E ↓ Φ, though note that this does not depict a morphism in any category.

Assumption 5.19. We henceforth assume the existence of an augmentation T̃E ↓ Φ.

In order to describe the key consequence of Assumption 5.19, we must introduce some 
terminology.

Definition 5.20. For any A ∈ AlgΦ(Ã), we define the category of A-modules (relative to 
Φ) as the category ModΦ

A(Ã) = Ab(AlgΦ(Ã)/A) of abelian group objects in its overcate-
gory. To align our notation with standard intuition, we write

Ã ModΦ
A(Ã) AlgΦ(Ã)

kerÃ(ϕ) (B ϕ−→ A) B

UA −�A

for the two forgetful functors.

Lemma 5.21 ([23, Propositions 2.5.9 and 2.5.10]). There exists a canonical lift

AlgΦ(Ã)

AlgT̃E
(sÃ) sÃ Ã,

UΦ
π0

UT̃E
π0

and this lift is the left adjoint in an adjunction

π0 : AlgT̃E
(sÃ) � AlgΦ(Ã) : const.

Moreover, for any X ∈ AlgT̃E
(sÃ) and any n ≥ 1, the object πnX ∈ Ã admits a canonical 

lift through the functor

ModΦ
π0X(Ã)

Uπ0X−−−−→ Ã. �
Corollary 5.22. There exists a canonical lift

AlgΦ(Ã)

AlgT (sC) AlgT̃E
(sÃ) sÃ Ã.

UΦ
π0E

lw
�

Elw
�

UT̃E
π0

Moreover, for any X ∈ AlgT (sC) and any n ≥ 1, the object πnE
lw
�
X ∈ Ã admits a 

canonical lift through the functor
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ModΦ
π0Elw

�
X(Ã)

U
π0Elw

�
X

−−−−−−→ Ã. �
We record a useful fact about the adjunction of Lemma 5.21.

Lemma 5.23. The adjunction of Lemma 5.21 lifts to a Quillen adjunction

π0 : AlgT̃E
(sÃ)π∗ � AlgΦ(Ã)triv : const,

whose derived adjunction is a left localization adjunction.

Proof. To see that this is a Quillen adjunction, we observe that the left adjoint

• trivially preserves cofibrations, and
• preserves acyclic cofibrations by definition of the subcategory Wπ∗ ⊂ AlgT̃E

(sÃ).

Then, to see that the derived adjunction is a left localization adjunction, we check that 
its counit is a componentwise equivalence. Since every object of AlgΦ(Ã)triv is fibrant, 
the composite

AlgΦ(Ã) const−−−→ AlgT̃E
(sÃ) → AlgT̃E

(sÃ)�W−1
π∗ �

computes the derived right adjoint Rconst. Now, let

∅AlgT̃E
(sÃ) � Qconst(A) ≈→ const(A)

be a cofibrant replacement in AlgT̃E
(sÃ)π∗ . Then by definition the induced map

π0(Qconst(A)) → π0(const(A)) ∼= A

is an isomorphism in AlgΦ(Ã). So the counit is indeed an equivalence. �
Notation 5.24. As both functors in the Quillen adjunction of Lemma 5.23 preserve all 
weak equivalences, we will simply write

π0 : AlgT̃E
(sÃ)�W−1

π∗ � � AlgΦ(Ã) : const

for its derived adjunction (as opposed to Lπ0  Rconst). Moreover, we will often leave 
implicit both the right Quillen functor as well as its derived right adjoint.

We have just seen that classical homology groups admit certain algebraic structure. 
In fact, natural homology groups do too.
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Lemma 5.25 ([23, Examples 3.1.14 and 3.1.17]). There exists a canonical lift

AlgΦ(Ã)

AlgT (sC) A.

UA◦UÃ◦UΦ
E�

0,�

E�
0,�

Moreover, for any X ∈ AlgT (sC) and any n ≥ 1, the object E�
n,�X ∈ A admits a 

canonical lift through the functor

ModΦ
E�

0,�X
(Ã)

UA◦UÃ◦U
E

�
0,�X

−−−−−−−−−−−→ A. �
Moreover, these algebraic structures are compatible in the following way.

Lemma 5.26 ([23, Corollary 3.1.18]). The isomorphism π0E
lw
�

(−) ∼= E�
0,�(−) in 

Fun(AlgT (sC), A) of Lemma 3.51 is compatible with the lifts to Fun(AlgT (sC), AlgΦ(Ã))
of Corollary 5.22 and Lemma 5.25. �
Notation 5.27. In order to keep our notation unbiased, we may simply write

E0 = π0E
lw
�

∼= E�
0,� ∈ Fun(AlgT (sC),AlgΦ(Ã))

(where the isomorphism is that of Lemma 5.26).

Lemma 5.28 ([23, Example 3.1.13]). For any A ∈ AlgΦ(Ã) and any n ≥ 1, the endo-
functor Ωn : Ã ∼−→ Ã lifts to an endofunctor Ωn : ModΦ

A(Ã) ∼−→ ModΦ
A(Ã). �

Remark 5.29. In fact, if we define Σβ
+S

ε = (1 ⊕ Sβ) ⊗ Sε, then the construction of [23, 
Example 3.1.13] generalizes to define lifted endofunctors Ωβ : ModΦ

A(Ã) ∼−→ ModΦ
A(Ã)

for any β ∈ Gδ.

We can now give the module structure on the localized spiral exact sequence.

Proposition 5.30 ([23, Corollary 3.1.18]). For any X ∈ AlgT (sC), assembling the local-
ized spiral exact sequence in Ab over all β ∈ Gδ, we obtain an exact sequence

· · · πi+1E�X Ω(E�
i−1,�X) E�

i,�X πiE�X · · ·

· · · Ω(E�
0,�X) E�

1,�X π1E�X 0

δ δ

δ

in ModΦ
E X(Ã). �
0
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5.5. The module structure on the spiral exact sequence

We will make certain computations before appealing to a colimit argument, and for 
these we will need to obtain analogous structure on the unlocalized spiral exact sequence. 
In fact, this is an input to the module structure on the localized spiral exact sequence 
(via a colimit argument, as always), but the algebraic objects at play are slightly less 
familiar so we have reversed their order here. However, the story is nearly identical to 
that of §5.4, and so we only highlight the key points.

Notation 5.31. We write T (GE) ⊂ AlgT (sC)�W−1
res� for the full subcategory spanned by 

the image of the composite

GE ↪→ C
const
↪−−−→ sC

FT−−→ AlgT (sC) → AlgT (sC)�W−1
res�.

Observation 5.32. The functor GE
FT−−→ T (GE) preserves coproducts, and so induces a 

forgetful functor Pδ
Σ(T (GE)) 

UT (GE)−−−−−→ Pδ
Σ(GE).

Definition 5.33. For any A ∈ Pδ
Σ(T (GE)), we define the category of A-modules (relative 

to T (GE)) as the category ModT (GE)
A (Pδ

Σ(GE)) = Ab(Pδ
Σ(T (GE))/A) of abelian group 

objects in its overcategory. This admits two forgetful functors, which we denote by

Pδ
Σ(GE) ModT (GE)

A (Pδ
Σ(GE)) Pδ

Σ(T (GE)).

kerP
δ
Σ(GE)(ϕ) (B ϕ−→ A) B

UA −�A

The following example will be of use later.

Notation 5.34. Let A ∈ AlgΦ(Ã). Then we obtain an object ょE(A) ∈ Pδ
Σ(T (GE)) by 

declaring that

ょE(A)(FT (Sε)) = homAlgΦ(Ã)(π0E
lw
�

FT (Sε), A).

Similarly, if M ∈ ModΦ
A(Ã), we obtain an object ょE(M) ∈ ModT (GE)

ょE(A) (P
δ
Σ(GE)) by declar-

ing that

ょE(M)(Sε) = homÃ(π0E
lw
�
Sε,M);

technically, the A-action arises through Definitions 5.20 and 5.33 (in terms of abelian 
objects in overcategories), but morally it just comes from postcomposition.

Notation 5.35. In order to keep our notation unbiased, we may simply write

π0 = π0π
lw
�

∼= π�
0,� ∈ Fun(AlgT (sC),Fun(Gδ

E ,Ab))

(where the isomorphism is that of Corollary 3.47).
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Observation 5.36. As the functor AlgT (sC) → ho(AlgT (sC)) preserves finite coproducts, 
by adjunction there exists a canonical lift

Pδ
Σ(T (GE))

AlgT (sC) sC Pδ
Σ(GE).

UT (GE)

UT

π0

π0

Proposition 5.37 ([23, Theorem 3.1.15]). For any X ∈ AlgT (sC), assembling the spiral 
exact sequence in Ab over all ε ∈ Gδ

E, we obtain an exact sequence

· · · πi+1π�X Ω(π�
i−1,�X) π�

i,�X πiπ�X · · ·

· · · Ω(π�
0,�X) π�

1,�X π1π�X 0

δ δ

δ

in ModT (GE)
π0X

(Pδ
Σ(GE)). �

6. Homotopical algebra

In this section, we discuss the inductive construction of simplicial T̃E-algebras in Ã, 
foreshadowing an approximately parallel topological discussion in §7. We begin with 
their Postnikov theory in §6.1. This leads in to our discussion in §6.2 of a classification 
of extensions in terms of André–Quillen cohomology, which we observe to be represented 
by certain Eilenberg–Mac Lane objects. A functorial upgrade of this classification leads 
to a study of moduli spaces of simplicial T̃E-algebras in §6.3, regarding which we also 
establish a number of results that will be used in §8.

6.1. Postnikov towers in algebra

Definition 6.1. For any n ≥ 0, an object X ∈ AlgT̃E
(sÃ)�W−1

π∗ � is called n-
truncated if π>nX = 0. Such objects form a full subcategory AlgT̃E

(sÃ)�W−1
π∗ �

≤n ⊂
AlgT̃E

(sÃ)�W−1
π∗ �, and as n varies these subcategories are evidently nested as

AlgT̃E
(sÃ)�W−1

π∗ � ←↩ · · · ←↩ AlgT̃E
(sÃ)�W−1

π∗ �
≤1 ←↩ AlgT̃E

(sÃ)�W−1
π∗ �

≤0
.

By presentability, these inclusions admit left adjoints, and we denote the corresponding 
left localization adjunctions by

P alg
n : AlgT̃E

(sÃ)�W−1
π∗ � � AlgT̃E

(sÃ)�W−1
π∗ �

≤n : Ualg
n .

We therefore obtain a tower of functors
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idAlgT̃E
(sÃ)�W−1

π∗ � → · · · → P alg
1 → P alg

0 .

We refer to its value on an object of AlgT̃E
(sÃ)�W−1

π∗ � as its Postnikov tower. We write

idAlgT̃E
(sÃ)�W−1

π∗ �

τalg
n−−→ P alg

n

for the natural transformation (or for its composite with Ualg
m for any m ≥ 0), which we 

refer to as the n-truncation map.

6.2. Cohomology

Our obstructions will take place in (André–Quillen) cohomology groups in
AlgT̃E

(sÃ)�W−1
π∗ �. We will only need to consider them with respect to a base object 

lying in AlgΦ(Ã), so we restrict to this special case.
We begin by defining the representing objects for cohomology.

Definition 6.2. Let A ∈ AlgΦ(Ã), let M ∈ ModΦ
A(Ã), and let n ≥ 1.

(1) We say that an object X ∈ AlgT̃E
(sÃ)�W−1

π∗ � is of type KA if there exists an 
equivalence X � A, i.e. if
• there exists an isomorphism π0X ∼= A in AlgΦ(Ã), and
• πiX = 0 for i > 0.

(2) We say that an object Y ∈ AlgT̃E
(sÃ)�W−1

π∗ � is of type KA(M, n) if
• there exists an isomorphism π0Y ∼= A in AlgΦ(Ã),
• there exists an isomorphism πnY ∼= M via the resulting equivalence of categories 

ModΦ
π0Y (Ã) � ModΦ

A(Ã), and
• πiY = 0 for i /∈ {0, n}.

(3) We say that a morphism X → Y in AlgT̃E
(sÃ)�W−1

π∗ � is of type �KA(M, n) if
• X is of type KA,
• Y is of type KA(M, n), and
• the map π0X → π0Y is an isomorphism in AlgΦ(Ã).

(4) We say that an object is of type KA(M, 0) in AlgT̃E
(sÃ)�W−1

π∗ � if it is of type KM�A, 
and we say that a morphism in AlgT̃E

(sÃ)�W−1
π∗ � is of type �KA(M, 0) if it admits 

an equivalence to the map const(A → M �A).

We refer to objects of type KA and KA(M, n) collectively as algebraic Eilenberg–Mac 
Lane objects, and to morphisms of type �KA(M, n) collectively as algebraic Eilenberg–
Mac Lane morphisms. We will see that these all exist and are unique in Propositions 6.25
and 6.26; justified by this, we may simply write KA or KA(M, n) for convenience when 
referring to an algebraic Eilenberg–Mac Lane object of the indicated type.
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Observation 6.3. Suppose that X → Y is morphism in AlgT̃E
(sÃ)�W−1

π∗ � of type 
�KA(M, n) for some n ≥ 1. Then P alg

0 (Y ) is of type KA, and the composite

X → Y
τalg
0−−→ P alg

0 (Y )

with the canonical 0-truncation map is an equivalence. Fixing an equivalence X � A

then allows us to consider

KA(M,n) ∈ AlgT̃E
(sÃ)�W−1

π∗ �
A//A

.

Of course, such consideration is immediate for n = 0.

Observation 6.4. For any n ≥ 0, taking the pullback of a map of type �KA(M, n +1) with 
itself yields a fiber square

KA(M,n) A

A KA(M,n + 1)

τalg
0

τalg
0

in AlgT̃E
(sÃ)�W−1

π∗ �. Hence, the objects{
KA(M,n) ∈ AlgT̃E

(sÃ)�W−1
π∗ �

A//A

}
n≥0

assemble into an Ω-spectrum object

KAM ∈ Stab
(
AlgT̃E

(sÃ)�W−1
π∗ �

A//A

)
.

Definition 6.5. Let A ∈ AlgΦ(Ã), let M ∈ ModΦ
A(Ã), and let n ≥ 0. Suppose that k →

A = const(A) is a morphism in AlgT̃E
(sÃ)�W−1

π∗ �, and use this to consider KA(M, n) ∈
AlgT̃E

(sÃ)�W−1
π∗ �

k//A
. Then, choose any object X ∈ AlgT̃E

(sÃ)�W−1
π∗ �

k//A
.

(1) We define the nth (André–Quillen) cohomology group of X with coefficients in M
to be the abelian group

Hn
T̃E

(X/k;M) = [X,KA(M,n)]AlgT̃E
(sÃ)�W−1

π∗ �
k//A

∈ Ab.

(2) We define the nth (André–Quillen) cohomology space of X with coefficients in M to 
be the based space

H n
T̃E

(X/k;M) = homAlg ˜ (sÃ)�W−1
π∗ � (X,KA(M,n)) ∈ S∗.
TE k//A
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Thus, we have that

Hn
T̃E

(X/k;M) = π0(H n
T̃E

(X/k;M)),

and moreover it follows from Observation 6.4 that

Hn−i
T̃E

(X/k;M) = πi(H n
T̃E

(X/k;M))

for 0 ≤ i ≤ n. (In particular, cohomology groups are indeed abelian groups, and coho-
mology spaces are infinite loopspaces.)

Observation 6.6. In the setting of Definition 6.5, there is an evident pullback square

homAlgT̃E
(sÃ)�W−1

π∗ �
X//A

(A,KA(M,n)) homAlgT̃E
(sÃ)�W−1

π∗ �
k//A

(A,KA(M,n))

{X → A → KA(M,n)} homAlgT̃E
(sÃ)�W−1

π∗ �
k//A

(X,KA(M,n))

in S∗, which is by definition a pullback square

H n
T̃E

(A/X;M) H n
T̃E

(A/k;M)

{0} H n
T̃E

(X/k;M).

This gives rise to a long exact sequence

0 H0
T̃E

(A/X;M) H0
T̃E

(A/k;M) H0
T̃E

(X/k;M) · · ·

· · · Hn
T̃E

(A/X;M) Hn
T̃E

(A/k;M) Hn
T̃E

(X/k;M) Hn+1
T̃E

(A/X;M) · · ·

δ

δ δ

in Ab; exactness at H0
T̃E

(A/X; M) follows from the fact that the space

homAlgT̃E
(sÃ)�W−1

π∗ �
k//A

(X,KA(M, 0)) � homAlgΦ(Ã)π0k//A
(π0X,M �A)

is discrete (and so in particular has vanishing π1). We refer to this as the transitivity 
sequence.

Remark 6.7. When M ∈ Ã is an extended comodule, these cohomology computations 
reduce to analogous ones in AlgT (sA)�W−1

π � (see [23, Proposition 2.4.7]).

E ∗
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6.3. Moduli spaces in algebra

We will be interested in various moduli spaces of algebraic objects: ultimately, our ob-
struction theory will be based on homotopy groups in the ∞-category AlgT̃E

(sÃ)�W−1
π∗ �.

In order to be able to effectively control these homotopy groups, we need to make the 
following assumption.

Assumption 6.8. We assume that AlgT̃E
(sÃ)�W−1

π∗ � has Blakers–Massey excision: for 
any pushout square

X Z

Y W

ψ

ϕ ρ

such that π<m(fib(ϕ)) = π<n(fib(ψ)) = 0, the map πk(fib(ϕ)) → πk(fib(ρ)) is an isomor-
phism for k < m + n and is surjective for k = m + n.

Corollary 6.9 ([23, Corollary 2.3.15]). Suppose that

X Z

Y W

ψ

ϕ

is a pushout square in AlgT̃E
(sÃ)�W−1

π∗ � such that π<m(fib(ϕ)) = π<n(fib(ψ)) = 0. Then 
there is an induced partial long exact sequence

πm+n(Y ) ⊕ πm+n(Z) πm+n(W ) πm+n−1(X) · · ·

· · · π0(X) π0(Y ) ⊕ π0(Z) π0(W ) 0

δ

δ

in Ã, which we refer to as the Blakers–Massey long exact sequence.

Remark 6.10. Assumption 6.8 holds in examples of interest, e.g. when T̃E is the monad 
corresponding to an operad E�(T ) ∈ Op(sÃ) for any T ∈ Op(sSet) (see [23, Theo-
rem 2.3.13 and Remark 2.3.14]).

Our moduli spaces will be related by the following natural construction.

Construction 6.11. Let X ϕ−→ Y be a map in AlgT̃E
(sÃ)�W−1

π∗ �, and write

palg
0 (ϕ) = Y

∐
X

P alg
0 X = colim

⎛⎜⎜⎜⎝
X P alg

0 (X)

Y

τalg
0

ϕ

⎞⎟⎟⎟⎠
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for the indicated pushout. For any n ≥ 0 we obtain a commutative diagram

X P alg
0 (X)

Y palg
0 (ϕ) P alg

n+1(p
alg
0 (ϕ))

τalg
0

ϕ
δn(ϕ)

τalg
n+1

in AlgT̃E
(sÃ)�W−1

π∗ �, and we refer to the map δn(ϕ) as the nth difference construction
on the map ϕ. This defines an augmented endofunctor on Fun([1], AlgT̃E

(sÃ)�W−1
π∗ �). 

We will generally only apply this in the case that n ≥ 1, and in the case that π<n(ϕ) is 
an isomorphism.

Lemma 6.12. Suppose that the map X
ϕ−→ Y in AlgT̃E

(sÃ)�W−1
π∗ � is an isomorphism on 

π<n for some n ≥ 1. Write A = π0X ∼= π0Y ∈ AlgΦ(Ã) and M = πn fib(ϕ) ∈ ModΦ
A(Ã). 

Then, the map

P alg
0 (X) δn(ϕ)−−−→ P alg

n+1(p
alg
0 (ϕ))

is of type �KA(M, n + 1).

Proof. This follows from Assumption 6.8. �
Corollary 6.13 ([23, Proposition 2.5.13]). Let X ϕ−→ Y be a map in AlgT̃E

(sÃ)�W−1
π∗ �. 

Suppose that π∗ fib(ϕ) is concentrated in degree n. The square

X P alg
0 (X)

Y P alg
n+1(p

alg
0 (ϕ))

τalg
0

ϕ δn(ϕ)

is a pullback in AlgT̃E
(sÃ)�W−1

π∗ �. �
Observation 6.14. In the setting of Corollary 6.13, if additionally X (and hence Y ) is 
n-truncated, then we can identify the map X → Y as τalg

≤nX → τalg
≤(n−1)X, and from here 

Lemma 6.12 allows us to identify the pullback square of Corollary 6.13 as

P alg
n X KA

P alg
n−1X KA(M,n + 1)

τalg
n−1
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(in which the right vertical map is of type �KA(M, n +1)). This is a functorial construction 
of k-invariants in AlgT̃E

(sÃ)�W−1
π∗ �.

Notation 6.15. We fix an object k ∈ AlgT̃E
(sÃ)�W−1

π∗ �. We will generally work in its 
undercategory AlgT̃E

(sÃ)�W−1
π∗ �

k/
; in particular, we will generally have fixed a map k →

A = const(A). Everything will take place in this undercategory, so that e.g. a morphism 
in AlgT̃E

(sÃ)�W−1
π∗ �

k/
of type �KA(M, n) will be understood to mean a commutative 

triangle

k

KA KA(M,n)

in AlgT̃E
(sÃ)�W−1

π∗ � in which the left vertical arrow identifies with the fixed map.

Notation 6.16. Suppose that Y ∈ AlgT̃E
(sÃ)�W−1

π∗ �
k/

is (n −1)-truncated for some n ≥ 1, 
write A = π0Y ∈ AlgΦ(Ã)k/, and suppose M ∈ ModΦ

A(Ã). We write

Mk(Y ⊕ (M,n)) ⊂ AlgT̃E
(sÃ)�W−1

π∗ �
k/

for the moduli space of those objects X such that

• X is n-truncated,
• there exists an equivalence P alg

n−1X
∼−→ Y , and

• there exists an isomorphism πnX ∼= M via the resulting equivalence ModΦ
π0X(Ã) �

ModΦ
A(Ã).

Notation 6.17. In our moduli spaces, we will use the symbol � to denote a restriction to 
morphisms which are isomorphisms on homotopy groups in those dimensions for which 
both the source and the target have nonvanishing homotopy. So for instance, we would 
write M (KA � KA(M, n)) for the moduli space of morphisms of type �KA(M, n).

We now arrive at our first equivalence of moduli spaces, which expresses “extensions of 
Y by M in dimension n” (as in Notation 6.16) in terms of the nth difference construction.

Proposition 6.18 ([23, Theorem 2.5.16]). Suppose that Y ∈ AlgT̃E
(sÃ)�W−1

π∗ �
k/

is (n −1)-
truncated for some n ≥ 1, write A = π0Y ∈ AlgΦ(Ã)k/, and suppose M ∈ ModΦ

A(Ã). 
Then the functor

X 
→
(
P alg
n−1(X) → P alg

n+1(p
alg
0 ((τalg

n−1)X))
δn((τalg

n−1)X)
←−−−−−−−− P alg

0 (X)
)
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determines an equivalence

Mk(Y ⊕ (M,n)) ∼−→ Mk(Y � KA(M,n + 1) � KA)

in S.

Proof. An inverse is provided by the pullback functor. �
Notation 6.19. For any A ∈ AlgΦ(Ã)k/, we write

MA/k ⊂ AlgT̃E
(sÃ)�W−1

π∗ �
k/

for the moduli space of objects of type KA/k. For any M ∈ ModΦ
A(Ã) and any n ≥ 1, we 

write

MA/k(M,n) ⊂ Fun([1],AlgT̃E
(sÃ)�W−1

π∗ �
k/

)

for the moduli space of morphisms of type �KA/k(M, n).

Notation 6.20. It will be of auxiliary use to write

MA/k(M, 0)

for the moduli space of pairs of an object X ∈ AlgT̃E
(sÃ)�W−1

π∗ � and an abelian (∞-
)group object Y ∈ Ab(AlgT̃E

(sÃ)�W−1
π∗ �

/X
) in its overcategory which are in the image 

of (A, M) under the derived right adjoint

AlgΦ(Ã)/A
const−−−→ AlgT̃E

(sÃ)�W−1
π∗ �

/A

of the Quillen adjunction of Lemma 5.23.

Our next equivalence of moduli spaces shows that MA/k(M, n) is in fact independent 
of n; we will give a more explicit identification in Proposition 6.26.

Proposition 6.21. Let A ∈ AlgΦ(Ã)k/, let M ∈ ModΦ
A(Ã), and let n ≥ 0. Then the 

functor

(X → Y ) 
→

⎛⎜⎜⎝X → limAlgT̃E
(sÃ)�W−1

π∗ �
k/

⎛⎜⎜⎝ X

X Y

⎞⎟⎟⎠
⎞⎟⎟⎠

defines an equivalence
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MA/k(M,n + 1) ∼−→ MA/k(M,n)

in S.

Proof. For n ≥ 1, an inverse is provided by the functor

(Z → W ) 
→ δn(W → P alg
0 (W )).

For n = 0, an inverse is provided by the functor taking the pair(
W ∈ AlgT̃E

(sÃ)�W−1
π∗ � , Z ∈ Ab(AlgT̃E

(sÃ)�W−1
π∗ �

/W
)
)
,

say with structure map Z
ϕ−→ W , to the map

Kπ0W → Kπ0W (ker(π0(ϕ)), 1)

(which is evidently of type �KA(M, 1)). �
We now identify homotopy classes of maps into algebraic Eilenberg–Mac Lane objects 

in terms of cohomology groups.

Proposition 6.22 ([23, Lemma 2.5.18]). Let A ∈ AlgΦ(Ã)k/, let M ∈ ModΦ
A(Ã), let 

X ∈ AlgT̃E
(sÃ)�W−1

π∗ �
k/

, and let n ≥ 0. Then there exists a natural isomorphism

[X,KA(M,n)]AlgT̃E
(sÃ)�W−1

π∗ �
k/

∼=
∐

homAlgΦ(Ã)k/
(π0X,A)

Hn
T̃E

(X/k;M)

in Ab (where the implicit structure map X → A = const(A) in AlgT̃E
(sÃ)k/ necessary 

for defining the cohomology of X varies over the indexing set). �
Notation 6.23. Given an ∞-category D and objects d1, d2 ∈ D, we write hom

D(d1, d2) ⊂
homD(d1, d2) for the subspace of equivalences. For any other sort of decoration denoting 
a certain property of a morphism, we use corresponding exponent notation to denote the 
subspace of the hom-space corresponding to morphisms having this property.

Notation 6.24. For any A ∈ AlgΦ(Ã)k/, we write Autk(A) = AutAlgΦ(Ã)k/
(A). Moreover, 

for any M ∈ ModΦ
A(Ã), we write Autk(A, M) for the group of pairs(

ϕ ∈ Autk(A) , ψ ∈ hom∼=
ModΦ

A(Ã)(M,ϕ∗(M))
)
.

Proposition 6.25 ([23, Proposition 2.5.19(1)]). For any A ∈ AlgΦ(Ã)k/, we have an 
equivalence MA/k � BAutk(A) in S.
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Proof. This is the assertion that the canonical map

AutAlgΦ(Ã)k/
(A) → AutAlgT̃E

(sÃ)�W−1
π∗ �

k/

(const(A))

induced by the functor

AlgΦ(Ã) const−−−→ AlgT̃E
(sÃ)�W−1

π∗ �

is an equivalence, which follows from Lemma 5.23 since it implies that this functor is a 
full inclusion. �

We now give a straightforward description of the moduli spaces MA/k(M, n).

Proposition 6.26 ([23, Proposition 2.5.19(2)]). Suppose that A ∈ AlgΦ(Ã)k/ and that 
M ∈ ModΦ

A(Ã). Then for any n ≥ 0 we have an equivalence MA/k(M, n) �
BAutk(A, M).

Proof. This follows from combining Proposition 6.21 with the essentially definitional 
equivalence MA/k(M, 0) � BAutk(A, M). �
Notation 6.27. Given an object X ∈ AlgT̃E

(sÃ)�W−1
π∗ �

k/
, we write

Mk(X) ⊂ AlgT̃E
(sÃ)�W−1

π∗ �
k/

for the full subgroupoid generated by it.

The following fiber sequence in particular expresses the moduli spaces appearing in 
Proposition 6.18 as extensions by cohomology spaces.

Lemma 6.28 ([23, Proposition 2.5.22]). For any X ∈ AlgT̃E
(sÃ)�W−1

π∗ �
k/

, there exists a 
canonical pullback square

∐
hom∼=

AlgΦ(Ã)(π0X,A)
H n

T̃E
(X/k;M) Mk(X � KA(M,n) � A)

ptS Mk(X) ×BAutk(A,M)
(X,id(A,M))

in S.

Proof. This is immediate from the definitions. �
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Notation 6.29. We write

Ĥ n
T̃E

(A/k;M) =
(
H n

T̃E
(A/k;M)

)
Autk(A,M)

∈ S∗

for the based space of coinvariants of the canonical action of Autk(A, M) on
H n

T̃E
(A/k; M) ∈ S∗.

Corollary 6.30. There exists a canonical pullback square

H n
T̃E

(A/k;M) Mk(A � KA(M,n) � A)

ptS BAutk(A,M)

in S, whose induced action of Autk(A, M) on H n
T̃E

(A/k; M) is the natural one, and 
which induces an equivalence

Mk(A � KA(M,n) � A) � Ĥ n
T̃E

(A/k;M)

in S.

Proof. First of all, applying Lemma 6.28 in the case that X = A yields a pullback square

∐
hom∼=

AlgΦ(Ã)(A,A)
H n

T̃E
(A/k;M) Mk(A � KA(M,n) � A)

ptS Mk(A) ×BAutk(A,M)
(X,id(A,M))

in S. By Proposition 6.25, we have Mk(A) � BAutk(A) = AutAlgΦ(Ã)k/
(A), and the 

action on the fibers is clearly the canonical one and is hence free on its path components. 
Thus, pulling back along the map

BAutk(A,M) � {A} ×BAutk(A,M) → Mk(A) ×BAutk(A,M)

yields a pullback square

H n
T̃E

(A/k;M) Mk(A � KA(M,n) � A)

ptS BAutk(A,M)id(A,M)

in S. The claim now follows readily from [50, Proposition 2.1]. �
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7. Homotopical topology

In this section, we discuss the inductive construction of simplicial T -algebras in C, in 
approximate parallel with our algebraic discussion in §6. We begin with their Postnikov 
theory in §7.1. In §7.2, we establish the existence of Eilenberg–Mac Lane objects that 
represent the André–Quillen cohomology of their levelwise E-homology. This leads to 
a preliminary discussion of moduli spaces of simplicial T -algebras in §7.3, although we 
defer a deeper analysis thereof to §8.

7.1. Postnikov towers in topology

We now study the homotopy theory of the ∞-category AlgT (sC) of simplicial T -
algebras; we will mostly work in its localization AlgT (sC)�W−1

res�, but we will ultimately 
be interested in deducing results about its further localization AlgT (sC)�W−1

Elw
�

� via 

Proposition 5.15.

Definition 7.1. For any n ≥ 0, an object X ∈ AlgT (sC)�W−1
res� is called n-truncated if 

π�
>n,εX = 0 for all ε ∈ Gδ

E . Such objects form a full subcategory AlgT (sC)�W−1
res�

≤n ⊂
AlgT (sC)�W−1

res�, and as n varies these subcategories are evidently nested as

AlgT (sC)�W−1
res� ←↩ · · · ←↩ AlgT (sC)�W−1

res�
≤1 ←↩ AlgT (sC)�W−1

res�
≤0

.

By presentability, these inclusions admit left adjoints, and we denote the corresponding 
left localization adjunctions by

P top
n : AlgT (sC)�W−1

res� � AlgT (sC)�W−1
res�

≤n : Utop
n .

We therefore obtain a tower of functors

idAlgT (sC)�W−1
res� → · · · → P top

1 → P top
0 .

We refer to its value on an object of AlgT (sC)�W−1
res� as its Postnikov tower. We write

idAlgT (sC)�W−1
res�

τtop
n−−−→ P top

n

for the natural transformation (or its for composite with Utop
m for any m ≥ 0), which we 

refer to as the n-truncation map.

Observation 7.2. By a colimit argument, if X ∈ AlgT (sC)�W−1
res� is n-truncated then 

E�
>n,�X = 0 as well.
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7.2. Topological Eilenberg–Mac Lane objects

We now define certain objects of AlgT (sC)�W−1
res� which will represent the various 

functors “apply Elw
�

, then take cohomology”.

Definition 7.3. Let A ∈ AlgΦ(Ã), let M ∈ ModΦ
A(Ã), and let n ≥ 1.

(1) We say that an object X ∈ AlgT (sC)�W−1
res� is of type BA if there exists a universal 

map Elw
�
X → KA inducing natural equivalences

homAlgT (sC)�W−1
res�(Z,X) ∼−→ homAlgT̃E

(sÃ)�W−1
π∗ �(E

lw
�
Z,KA)

for all Z ∈ AlgT (sC)�W−1
res�.

(2) We say that an object Y ∈ AlgT (sC)�W−1
res� is of type BA(M, n) if there exists a 

universal map Elw
�
Y → KA(M, n) inducing natural equivalences

homAlgT (sC)�W−1
res�(Z, Y ) ∼−→ homAlgT̃E

(sÃ)�W−1
π∗ �(E

lw
�
Z,KA(M,n))

for all Z ∈ AlgT (sC)�W−1
res�.

(3) We say that a map X → Y in AlgT (sC)�W−1
res� is of type �BA(M, n) if X is of type 

BA, Y is of type BA(M, n) and the map π0E
lw
�
X → π0E

lw
�
Y is an isomorphism in 

AlgΦ(Ã).

We refer to objects of type BA and BA(M, n) collectively as topological Eilenberg–Mac 
Lane objects, and to morphisms of type �BA(M, n) collectively as topological Eilenberg–
Mac Lane morphisms.

Lemma 7.4. For any A ∈ AlgΦ(Ã), and M ∈ ModΦ
A(Ã), and any n ≥ 1, there exist 

objects of type BA and BA(M, n), and there exist morphisms of type �BA(M, n).

Proof. By the presentability of AlgT (sC)�W−1
res� (which follows from Theorem 2.23 and 

the derived monadic adjunction underlying the monadic Quillen adjunction FT  UT ), 
this follows from Corollary 5.10. �
Notation 7.5. Justified by Lemma 7.4, we may simply write BA or BA(M, n) for con-
venience when referring to a topological Eilenberg–Mac Lane object of the indicated 
type.

Observation 7.6. If X ∈ AlgT (sC)�W−1
res� is an object of type BA, it follows immediately 

that π�
0,�X

∼= ょπ0E
lw
� (A) in Pδ

Σ(T (GE)) and that π�
>0,∗X = 0. By the spiral exact 

sequence, it follows that
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πiπ�X ∼=

⎧⎪⎨⎪⎩
ょE(A), i = 0
ょE(ΩA), i = 2
0, i /∈ {0, 2}.

For convenience, we simply write π∗π�X ∼=ょE(A) ×ょE(ΩA)[2].
Now, suppose that X → Y is a map of type �BA(M, n). It follows that π�

0,�Y
∼=ょE(A)

in Pδ
Σ(T (GE)) and that for i ≥ 1,

π�
i,�Y

∼=
{
ょE(M), i = n

0, i �= n

in ModΦ
A(Ã), and furthermore that the composite X → Y → P top

0 (Y ) is an equivalence. 
Combining this with the spiral exact sequence yields that π∗π�Y ∼= π∗π�X×ょE(M)[n] ×
ょE(ΩM)[n + 2].

7.3. Moduli spaces in topology

We begin by mimicking Construction 6.11.

Construction 7.7. Let X ϕ−→ Y be a map in AlgT (sC)�W−1
res�, and write

ptop
0 (ϕ) = Y

∐
X

P top
0 X = colim

⎛⎜⎜⎜⎝
X P top

0 (X)

Y

τtop
0

ϕ

⎞⎟⎟⎟⎠
for the indicated pushout. For any n ≥ 0 we obtain a commutative diagram

X P top
0 (X)

Y ptop
0 (ϕ) P top

n+1(p
top
0 (ϕ))

τtop
0

ϕ
δn(ϕ)

τtop
n+1

in AlgT (sC)�W−1
res�, and we refer to the map δn(ϕ) as the nth difference construction

on the map ϕ. This defines an augmented endofunctor on Fun([1], AlgT (sC)�W−1
res�). We 

will generally only apply this in the case that n ≥ 1, and in the case that π�
<n,�(ϕ) is an 

isomorphism.

We now employ our assumption that T is homotopically adapted to E, which provides 
a fundamental link between our computations in homotopical topology and homotopical 
algebra.
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Proposition 7.8. Let X ϕ−→ Y be a map in AlgT (sC)�W−1
res�, let n ≥ 1, and suppose that 

E�
<n,�(ϕ) is an isomorphism and that E�

n,�(ϕ) is surjective. Write A = E�
0,�X

∼= E�
0,�Y

in AlgΦ(Ã), and write M = fib(E�
n,�(ϕ)) ∈ Ã.

(1) We can canonically consider M ∈ ModΦ
A(Ã).

(2) The map δn(ϕ) becomes equivalent to a morphism of type �BA(M, n) under the local-
ization functor LElw

�

: AlgT (sC)�W−1
res� → AlgT (sC)�W−1

Elw
�

�.

(3) If π�
i,�(fib(ϕ)) = 0 for i �= n + 1, then the square

X P top
0 (X)

Y P top
n+1(p

top
0 (ϕ))

τtop
0

ϕ δn(ϕ)

becomes a pullback under the localization functor LElw
�

: AlgT (sC)�W−1
res� →

AlgT (sC)�W−1
Elw

�

�.

Proof. It follows from Corollary 5.10 that the functor

AlgT (sC)�W−1
res�

Elw
�−−→ AlgT̃E

(sÃ)�W−1
π∗ �

preserves pushouts. Thus, the square

Elw
�
X Elw

�
(P top

0 (X))

Elw
�
Y Elw

�
(ptop

0 (ϕ))

Elw
�

(τtop
0 )

Elw
�

(ϕ)

is a pushout in AlgT̃E
(sÃ)�W−1

π∗ �. From here, the proof is essentially identical to that of 
[23, Proposition 3.2.9]. �

In order to work in a relative setting, we fix the following.

Notation 7.9. We assume we are given an object Y ∈ AlgO(C) equipped with an isomor-
phism Elw

�
Y ∼= k in AlgΦ(Ã) for some chosen object k ∈ AlgΦ(Ã) (specialized via the 

derived right adjoint AlgΦ(Ã) const−−−→ AlgT̃E
(sÃ)�W−1

π∗ � from our previous assumption 
from Notation 6.15 that k ∈ AlgT̃E

(sÃ)�W−1
π∗ �). A map k → A in AlgΦ(Ã) gives rise to 

a composite

Elw
�

const(Y ) ∼−→ k → A
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in AlgT̃E
(sÃ)�W−1

π∗ �, via which for any choice of topological Eilenberg–Mac Lane object 
BA we obtain a canonical map const(Y ) → BA. We will simply write Y = const(Y ) ∈
AlgT (sC)�W−1

res�, and we will work in AlgT (sC)�W−1
res�Y//BA

.

Observation 7.10. Fix any morphism BA → BA(M, n) in AlgT (sC)�W−1
res� of type 

�BA(M, n). From Observation 7.6 and Notation 7.9, we obtain a sequence of compos-
able morphisms

Y → BA → BA(M,n) → BA

(in which the composite of all but the first map is an equivalence). For any X ∈
AlgT (sC)�W−1

res�Y//BA
and as soon as n ≥ 2, we immediately obtain equivalences

homAlgT (sC)�W−1
res�Y/

(X,BA) ∼−→ homAlgΦ(Ã)k/
(π0E

lw
�
X,A)

and

homAlgT (sC)�W−1
res�Y//BA

(X,BA(M,n)) ∼−→ H n
T̃E

(Elw
�

(X)/k;M)

in S∗.

Notation 7.11. We write MY (A) ⊂ AlgT (sC)�W−1
res�Y/ for the moduli space of objects 

Y → X such that X is of type BA and moreover the map Elw
0 Y → Elw

0 X is equiv-
alent to the map k → A in AlgT̃E

(sÃ)�W−1
π∗ �. Moreover, we write MA/Y (M, n) ⊂

AlgT (sC)�W−1
res�Y/ for the moduli space of morphisms Z → W of type �BA(M, n) under 

Y such that (Y → Z) ∈ MY (A).

Proposition 7.12. The functor

X 
→ P alg
0 Elw

�
(X)

defines an equivalence

MY (A) ∼−→ Mk(A),

and the functor

ϕ 
→ δn−1(E�(ϕ))

defines an equivalence

MA/Y (M,n) ∼−→ MA/k(M,n) � BAutk(A,M).
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Proof. These assertions both follow immediately from the functors that topological 
Eilenberg–Mac Lane objects are defined to represent, just as in the proof of [23, Propo-
sition 3.2.17]. �
8. Decomposition of moduli spaces

In this section we prove our main theorems. We introduce the various objects of 
interest in §8.1, and proceed to study the relationships between their moduli spaces in 
§8.2.

8.1. Realizations and n-stages

We finally come to our main theorems: these provide an inductive procedure for 
understanding our moduli space of ultimate interest, which we begin by introducing.

Definition 8.1. With respect to

• our fixed base object Y ∈ AlgO(C),
• our chosen morphism k → A in AlgΦ(Ã), and
• our chosen isomorphism E�Y ∼= k in AlgΦ(Ã),

we define a realization to be an object (Y ϕ−→ X) ∈ AlgO(LE(C))Y/ such that there exists 
an isomorphism E�X ∼= A in AlgΦ(Ã)k/. We write

MA/Y ⊂ AlgO(LE(C))Y/

for the moduli space of realizations (and E�-equivalences between them).

Before diving in, we provide a bit of big-picture intuition.

Remark 8.2. Given a simplicial T -algebra Z, a good way to control E�|Z| is to control 
its spiral spectral sequence. More to the point, the easiest way to ensure that |Z| be a 
realization is to demand that E2 = π∗E

lw
�
Z ∼= π0E

lw
�
Z ∼= A, so that the spectral sequence 

collapses immediately.
However, it is not so straightforward to obtain such an object or understand its au-

tomorphisms: the E2 page consists of classical E-homology groups, but it is the natural
E-homology groups that are more closely connected to the actual homotopy theory of 
the ∞-category AlgT (sC)�W−1

res�.
Luckily, however, we have a tool that relates these two types of E-homology groups: 

the localized spiral exact sequence. As it is one-third classical and two-thirds natural, 
it allows us to exert control over the classical E-homology groups by manipulating the 
natural E-homology groups.
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Thus, our method will be to attempt to interpolate one stage at a time from

• objects which are easy to understand (read: have controlled natural E-homology) 
but do not have the correct E2 pages (read: have the wrong classical E-homology), 
towards

• objects which are somewhat more difficult to understand (read: have more com-
plicated natural E-homology) but have E2 pages which are closer and closer to 
collapsing at A (read: their classical E-homology is equivalent to A itself (concen-
trated in degree 0) in an increasingly large range).

Of course, such interpolations will not always be possible, but in the course of our attempt 
we will discover the precise cohomological obstructions to their possibility.

We now define certain objects which, via geometric realization, provide approxima-
tions to realizations.

Definition 8.3. For 0 ≤ n ≤ ∞, we say that an object Z ∈ AlgT (sC)�W−1
Elw

�

�
Y/

is an
n-stage if the following conditions hold:

(1) there exists an isomorphism π0E
lw
�
Z ∼= A in AlgΦ(Ã)k/;

(2) π�
>n,�Z = 0; and

(3) πiE
lw
�
Z = 0 for 1 ≤ i ≤ n + 1.

We write

Mn(A/Y ) ⊂ AlgT (sC)�W−1
Elw

�

�
Y/

for the moduli space of n-stages (and E�-equivalences between them).

Observation 8.4. Suppose that Z ∈ Mn(A/Y ). By condition (3), the tail end of the lo-
calized spiral exact sequence degenerates into a sequence of isomorphisms. By induction, 
this implies that E�

i,�Z
∼= ΩiA for all i ≤ n: the base case of i = 0 follows from condition 

(1) and Lemma 5.26. Then, after a colimit argument, condition (2) implies that we have 

an isomorphism πn+2E
lw
�
Z

∼=−→ Ω(E�
n,�Z) and that π>n+2E

lw
�
Z = 0. The table of Fig. 1

summarizes these computations. Moreover, the same argument shows that if n = ∞ then 
E�

i,�Z
∼= ΩiA for all i ≥ 0 and that π∗Elw

�
Z ∼= π0E

lw
�
Z ∼= A.

We now provide the connection between realizations and n-stages.

Theorem 8.5. Geometric realization induces an equivalence

M∞(A/Y ) ∼−→ MA/Y .
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i 0 1 2 · · · n − 1 n n + 1 n + 2 n + 3 · · ·
πiE

lw
�

Z A 0 0 · · · 0 0 0 Ωn+1A 0 · · ·
E�

i,�Z A ΩA Ω2A · · · Ωn−1A ΩnA 0 0 0 · · ·

Fig. 1. The classical and natural E-homology groups of an n-stage Z ∈ Mn(A/Y ).

Proof. The adjunction |−| : AlgT (sC) � AlgO(C) : const evidently descends (or perhaps 
rather restricts) to an adjunction |−| : AlgT (sC)�W−1

Elw
�

� � AlgO(LE(C)) : const by 

the universal property of localization. In turn, the spiral spectral sequence implies that 
(after taking undercategories of Y ) this latter adjunction restricts to give the desired 
equivalence. �
Remark 8.6. Note that commutative square

M∞(A/Y ) MA/Y

AlgT (sC)�W−1
Elw

�

�
Y/

AlgO(LE(C))Y/|−|

is not generally a pullback. Rather, as alluded to in Remark 8.2, an ∞-stage is exactly 
an object whose spiral spectral sequence has E2 = π∗Elw

�
X ∼= π0E

lw
�

∼= A, so that in 
particular it collapses immediately.

Assumption 8.7. We assume that Postnikov towers in AlgT (sC)�W−1
Elw

�

� converge.

Remark 8.8. Assumption 8.7 is a key technical assumption, whose necessity was first 
observed by Pstragowski–VanKoughnett [61, Remark 6.11]; they also proved that it 
holds e.g. in the case that E is Morava E-theory [61, Theorem 7.4]. Note that we are 
applying Postnikov theory in AlgT (sC)�W−1

res� to study objects in AlgT (sC)�W−1
Elw

�

�, and 

it is not a priori clear that the functor LElw
�

: AlgT (sC)�W−1
res� → AlgT (sC)�W−1

Elw
�

�

preserves n-truncatedness.

Theorem 8.9. For any 0 ≤ n ≤ m ≤ ∞, the n-truncation functor

AlgT (sC)�W−1
Elw

�

�
P top

n−−−→ AlgT (sC)�W−1
Elw

�

�

induces a map

Mm(A/Y ) → Mn(A/Y ),

and these assemble to give an equivalence
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M∞(A/Y ) ∼−→ lim
(
· · · P top

2−−−→ M2(A/Y ) P top
1−−−→ M1(A/Y ) P top

0−−−→ M0(A/Y )
)
.

Proof. First of all, it is immediate from the localized spiral exact sequence that the 
n-truncation of an m-stage is an n-stage. From here, by Assumption 8.7, the asserted 
equivalence follows from an (∞-categorical but otherwise) identical argument to that of 
[19, 4.6]. �
Theorem 8.10. The functor

AlgT (sC)�W−1
Elw

�

�
π0E

lw
�−−−−→ AlgΦ(Ã)

induces an equivalence

M0(A/Y ) ∼−→ MA/k.

Proof. Inspection of the definitions reveals an equivalence M0(A/Y ) � MY (A) with 
the moduli space of objects under Y of type BA, and from here the claim follows from 
Proposition 7.12. �
8.2. Climbing the tower

We now come to the essential result, which explains how to move up the tower of 
moduli spaces.

Theorem 8.11. For any n ≥ 1, there is a natural pullback square

Mn(A/Y ) BAutk(A,ΩnA)

Mn−1(A/Y ) Ĥ n+2
T̃E

(A/k; ΩnA)

P top
n−1

in S.

In order to prove this, we will first develop an understanding of the object-by-object 
passage between (n − 1)-stages and n-stages, and then we will analyze how this behaves 
in families.

Observation 8.12. Directly from the definitions, topological Eilenberg–Mac Lane objects 
are local with respect to the left localization adjunction LElw

�

: AlgT (sC)�W−1
res� �

AlgT (sC)�W−1
Elw

�

� : UElw
�

. We use this fact without further comment.

Notation 8.13. Since we are working in AlgT (sC)�W−1
Elw

�

� (as opposed to AlgT (sC)�W−1
res�), 

we henceforth simply omit the localization functor LElw from the notation.

�
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Observation 8.14. Suppose first that Z ∈ Mn(A/Y ). Then P top
n−1(Z) ∈ Mn−1(A/Y ) by 

Theorem 8.9, and moreover Proposition 7.8(3) implies that we have a pullback square

Z BA

P top
n−1(Z) BA(ΩnA,n + 1)

τtop
n−1

in AlgT (sC)�W−1
Elw

�

�.
Let us attempt to reverse this process. Suppose that W ∈ Mn−1(A/Y ), and suppose 

that we form a pullback

W̃ BA

W BA(ΩnA,n + 1)ϕ

in AlgT (sC)�W−1
Elw

�

�. Then, W̃ ∈ Mn(A/Y ) if and only if the induced composite

Elw
�
W

E�(ϕ)−−−−→ Elw
�

(BA(ΩnA,n + 1)) → KA(ΩnA,n + 1)

with the universal map is an equivalence in AlgT̃E
(sÃ)�W−1

π∗ �: this follows from the long 
exact sequence in classical E-homology induced by a pullback square.

Observation 8.15. We can interpret the conclusion of Observation 8.14 as follows. By 
Observation 8.4, the object Elw

�
W ∈ AlgT̃E

(sÃ)�W−1
π∗ � has homotopy concentrated in 

degrees 0 and n + 1 and moreover P alg
n (Elw

�
W ) � A. By Proposition 6.18, this object 

therefore corresponds to a unique pullback square

Elw
�
W KA

A KA(ΩnA,n + 2)χ

in AlgT̃E
(sÃ)�W−1

π∗ �.
Recall from Observation 6.4 that we have a pullback square

KA(ΩnA,n + 1) KA

KA KA(ΩnA,n + 2)
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in AlgT̃E
(sÃ)�W−1

π∗ �. Now, we claim that there exists an equivalence Elw
�
W

∼−→
KA(ΩnA, n + 1) in AlgT̃E

(sÃ)�W−1
π∗ � if and only if χ represents the zero element 

0 ∈ Hn+2
T̃E

(A/k; ΩnA).

• Indeed, if [χ] = 0, then the existence of an equivalence is manifest.
• Conversely, if such an equivalence exists, then by Proposition 6.18 there exists an 

equivalence between these two pullback squares, implying that [χ] = 0.

Thus, the obstructions to a given (n −1)-stage lifting to an n-stage are given by elements 
of Hn+2

T̃E
(A/k; ΩnA). In particular, if this group vanishes then every (n − 1)-stage lifts 

to an n-stage.

We now provide the key piece of input to the proof of Theorem 8.11: in effect, we 
work with Mn−1(A/Y ) one path component at a time.

Notation 8.16. For any Z ∈ Mn−1(A/Y ), we write Mn/Z(A/Y ) ⊂ Mn(A/Y ) for 
the subspace of those n-stages W ∈ Mn(A/Y ) such that there exists an equivalence 
P top
n−1(W ) � Z in AlgT (sC)�W−1

Elw
�

�
Y/

.

Observation 8.17. Note that the space Mn/Z(A/Y ) may well be empty; indeed, by Ob-
servation 8.15 it will be empty if and only if Mk(Elw

�
Z � KA(ΩnA, n + 1)) is empty.

Notation 8.18. For any Z ∈ Mn−1(A/Y ), we write Z �−→ BA(ΩnA, n) for a mor-
phism in AlgT (sC)�W−1

res�Y/ which classifies an equivalence Elw
�
Z

∼−→ KA(ΩnA, n) in 

AlgT̃E
(sÃ)�W−1

π∗ �
k/

.

Lemma 8.19. Suppose that Z ∈ Mn−1(A/Y ) for some n ≥ 1. Then there is a natural 
pullback square

Mn/Z(A/Y ) Mk(Elw
�
Z � KA(ΩnA,n + 1) � KA)

MY (Z) Mk(Elw
�
Z)

P top
n−1

Elw
�

in S.

Proof. The difference construction provides a map Mn/Z(A/Y ) → MY (Z �−→
BA(ΩnA, n + 1) � BA), which is an equivalence by Observation 8.14. Thus we ob-
tain a commutative diagram
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Mn/Z(A/Y ) MY (Z �−→ BA(ΩnA,n + 1) � BA) Mk(Elw
�
Z � KA(ΩnA,n + 1) � KA)

MY (Z) MY (Z) Mk(Elw
�
Z)

∼

P top
n−1

∼
Elw

�

in S, in which

• the right square is obtained by applying Elw
�

and using the universal characterization 
of topological Eilenberg–Mac Lane objects,

• the left square is tautologically a pullback, and
• our goal is to show that the outer rectangle is a pullback;

thus, it suffices to show that the right square is a pullback.
In the right square, both downwards maps are obtained by forgetting certain data: 

a morphism of type �BA(ΩnA, n + 1) on the left, and a morphism of type �KA(ΩnA, n +
1) on the right. Thus, it is convenient to use the equivalence MA/Y (ΩnA, n + 1) ∼−→
MA/k(ΩnA, n + 1) of Proposition 7.12 (between the moduli spaces of such Eilenberg–
Mac Lane morphisms) to obtain a larger commutative square

MY (Z �−→ BA(ΩnA,n + 1) � BA) Mk(Elw
�
Z � KA(ΩnA,n + 1) � KA)

MY (Z) × MA/Y (ΩnA,n + 1) Mk(Elw
�
Z) × MA/k(ΩnA,n + 1)

which it then suffices to show is a pullback.
Now, observe that both spaces on the bottom row are connected (by definition and 

by Propositions 6.26 and 7.12). So for any basepoint of MY (Z) × MA/Y (ΩnA, n + 1), 
it suffices to check that the induced map on fibers is an equivalence. Unwinding the 
definitions, we see that this is the map

hom�

AlgT (sC)�W−1
Elw

�

�
(Z,BA(ΩnA,n + 1)) → hom

AlgT̃E
(sÃ)�W−1

π∗ �
(Elw

�
Z,KA(ΩnA,n + 1)).

As AlgT (sC)�W−1
Elw

�

� ⊂ AlgT (sC)�W−1
res� is a full subcategory, we see that this is by 

definition an equivalence of subspaces of the equivalence

homAlgT (sC)�W−1
res�(Z,BA(ΩnA,n + 1)) ∼−→ homAlgT̃E

(sÃ)�W−1
π∗ �(E

lw
�
Z,KA(ΩnA,n + 1))

characterizing the object BA(ΩnA, n + 1) ∈ AlgT (sC)�W−1
res�. �
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We can now prove our main decomposition theorem.

Proof of Theorem 8.11. We begin with the commutative square

Mk(KA(ΩnA,n + 1) � KA) Mk(KA(Ωn, n + 2) � KA)

Mk(KA ⊕ (ΩnA,n + 1)) Mk(KA � KA(ΩnA,n + 2) � KA)

∼

∼

in S, in which

• the upper horizontal map is (the inverse of) the equivalence of Proposition 6.21,
• the left vertical map is forgetful,
• the right vertical map repeats the given morphism,
• the lower horizontal map is the equivalence of Proposition 6.18.

This is tautologically a pullback square.
Now, suppose that Z ∈ Mn−1(A/Y ). We claim that there exists a pullback square

Mn/Z(A/Y ) Mk(KA(ΩnA,n + 2) � KA)

MY (Z) Mk(KA � KA(ΩnA,n + 2) � KA)

in S. To see this, we separate the argument into two cases, depending on whether or not 
there exists an equivalence Elw

�
Z

∼−→ KA(ΩnA, n + 1) in AlgT̃E
(sÃ)�W−1

π∗ �.

• Suppose that no such equivalence exists. Then Mn/Z(A/Y ) is empty by Observa-
tion 8.17. In this case, the subspace Mk(Elw

�
Z) ⊂ Mk(KA ⊕ (ΩnA, n + 1)) is not in 

the image of the left vertical map of our original tautological pullback square. These 
facts imply that the above square is indeed (equally tautologically) a pullback.

• Suppose that such an equivalence exists. In this case, we obtain an evident forgetful 
equivalence

Mk(Elw
�
Z � KA(ΩnA,n + 1) � KA) ∼−→ Mk(KA(ΩnA,n + 1) � KA)

in S, which reduces the pullback square of Lemma 8.19 to a pullback square

Mn/Z(A/Y ) Mk(KA(ΩnA,n + 1) � KA)

MY (Z) Mk(KA(ΩnA,n + 1)).
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The right vertical arrow of this pullback square includes as a subobject of the left 
vertical arrow of our original tautological pullback square, yielding the claim.

Now, assembling this pullback square over all Z ∈ Mn−1(A/Y ), we obtain a pullback 
square

Mn(A/Y ) Mk(KA(Ωn, n + 2) � KA)

Mn−1(A/Y ) Mk(KA � KA(ΩnA,n + 2) � KA).

From here, the equivalence

Mk(KA(ΩnA,n + 2) � KA) = MA/k(ΩnA,n + 2) � BAutk(A,ΩnA)

of Proposition 6.26 and the equivalence

Mk(KA � KA(ΩnA,n + 2) � KA) � Ĥ n+2
T̃E

(A/k; ΩnA)

of Corollary 6.30 allow us to rewrite this as a pullback square

Mn(A/Y ) BAutk(A,ΩnA)

Mn−1(A/Y ) Ĥn+2
T̃E

(A/k; ΩnA),

which completes the proof. �
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