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Model ∞-categories II: Quillen
adjunctions

Aaron Mazel-Gee

Abstract. We prove that various structures on model ∞-categories
descend to corresponding structures on their localizations: (i) Quillen
adjunctions; (ii) two-variable Quillen adjunctions; (iii) monoidal and
symmetric monoidal model structures; and (iv) enriched model struc-
tures.
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0. Introduction

0.1. Presenting structures on localizations of model ∞-categories.
A relative ∞-category is a pair (M,W) of an ∞-category M and a sub-
category W ⊂ M containing all the equivalences, called the subcategory of
weak equivalences. Freely inverting the weak equivalences, we obtain the
localization of this relative ∞-category, namely the initial functor

M→MJW−1K

from M which sends all maps in W to equivalences. In general, it is ex-
tremely difficult to access the localization. In [13], we introduced the notion
of a model structure extending the data of a relative ∞-category: just as
in Quillen’s classical theory of model structures on relative categories, this
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allows for much more control over manipulations within its localization.1

For instance, in [17] we prove that a model structure provides an efficient
and computable way of accessing the hom-spaces homMJW−1K(x, y).

However, we are not just interested in localizations of relative∞-categories
themselves. For example, adjunctions are an extremely useful structure, and
we would therefore like a systematic way of presenting an adjunction on lo-
calizations via some structure on overlying relative ∞-categories. The pur-
pose of this paper is to show that model structures on relative ∞-categories
are not only useful for computations within their localizations, but are in fact
also useful for presenting structures on their localizations. More precisely,
we prove the following sequence of results.2

Theorem (1.1 and 1.3). A Quillen adjunction between model∞-categories
induces a canonical adjunction on their localizations. If this is moreover a
Quillen equivalence, then the resulting adjunction is an adjoint equiva-
lence.

Theorem (4.6). A two-variable Quillen adjunction between model ∞-
categories induces a canonical two-variable adjunction on their localizations.

Theorem (5.4 and 5.6). The localization of a (resp. symmetric) monoidal
model ∞-category is canonically a closed (resp. symmetric) monoidal ∞-
category.

Theorem (6.7). The localization of an enriched model ∞-category is
canonically enriched and bitensored over the localization of the enriching
model ∞-category.

Along the way, we also develop the foundations of the theory of homotopy
co/limits in model ∞-categories.

Remark 0.1. Perhaps surprisingly, none of these results depends on the
concrete identification of the hom-spaces homMJW−1K(x, y) in the localiza-
tions of model ∞-categories provided in [17]. Rather, their proofs all rely
on considerations involving subcategories of “nice” objects relative to the
given structure, for instance the subcategory of cofibrant objects relative
to a left Quillen functor. Such considerations are thus somewhat akin to
the theory of “deformable” functors of Dwyer–Hirschhorn–Kan–Smith (see
[5], as well as Shulman’s excellent synthesis and contextualization [18]), but
the philosophy can be traced back at least as far as Brown’s “categories of
fibrant objects” (see [2]).

1For the precise definition a model∞-category, we refer the reader to [13, §1]. However,
for the present discussion, it suffices to observe that it is simply a direct generalization of
the standard definition of a model category.

2The precise definitions of Quillen adjunctions and Quillen equivalences are also con-
tained in [13, §1], while the remaining relevant definitions are contained in the body of
the present paper. However, for the present discussion, it likewise suffices to observe that
they are all direct generalizations of their classical counterparts.
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Remark 0.2. In the special case of model categories and their 1-categorical
localizations, these results are all quite classical (and fairly easy to prove).3

However, the study of ∞-categorical localizations – even just of model cat-
egories – is much more subtle, because it requires keeping track of a wealth
of coherence data.

The following specializations of our results to model 1-categories (and
their ∞-categorical localizations) appear in the literature.

• We proved this special case of the first of the results (regarding
Quillen adjunctions) listed above as [12, Theorem 2.1]. (For a de-
tailed history of partial results in this direction, we refer the reader
to [12, §A].)

• Under a more restrictive definition of a (resp. symmetric) monoidal
model category in which the unit object is required to be cofibrant
(as opposed to unit axiom MM∞2 of definition 5.1), Lurie proves
that its localization admits a canonical (resp. symmetric) monoidal
structure in [11, §4.3.1] (see particularly [11, Proposition 4.1.3.4]).
Moreover, under an analogously more restrictive definition of a (resp.
symmetric) monoidal model∞-category, a canonical (resp. symmet-
ric) monoidal structure on its localization likewise follows from this
same result. (See remark 5.7.)

Aside from these, the results of this paper appear to be new, even in the
special case of model 1-categories.

Remark 0.3. Our result [12, Theorem 2.1] is founded in point-set con-
siderations, for instance making reference to an explicit “underlying quasi-
category” functor from relative categories (e.g. model categories). By con-
trast, the proof of the generalization given here works invariantly, and relies
on a crucial result of Gepner–Haugseng–Nikolaus identifying cocartesian fi-
brations as lax colimits, which appeared almost concurrently to our [12].
(Specifically, the proof of our “fiberwise localization” result proposition 2.3
appeals multiple times to [7, Theorem 7.4].) Nevertheless, we hope that our
model-specific proof will still carry some value: the techniques used therein
seem fairly broadly applicable, and its point-set nature may someday prove
useful as well.

0.2. Conventions. The model∞-categories papers share many key ideas;
thus, rather than have the same results appear repeatedly in multiple places,

3Given a relative category (R,W), its 1-categorical localization and its ∞-categorical
localization are closely related: there is a natural functor RJW−1K → ho(RJW−1K) '
R[W−1] between them, namely the projection to the homotopy category (see [14, Remark
1.29]). Moreover, all of these structures – adjunctions, two-variable adjunctions, closed
(symmetric) monoidal structures, and enrichments and bitensorings – descend canonically
from ∞-categories to their homotopy categories.
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we have chosen to liberally cross-reference between them. To this end, we
introduce the following “code names”.

title reference code

Model ∞-categories I: some pleasant properties
of the ∞-category of simplicial spaces

[13] S

The universality of the Rezk nerve [14] N

On the Grothendieck construction for ∞-categories [15] G

Hammocks and fractions in relative ∞-categories [16] H

Model ∞-categories II: Quillen adjunctions n/a Q

Model ∞-categories III: the fundamental theorem [17] M

Thus, for instance, to refer to [17, Theorem 1.9], we will simply write The-
orem M.1.9. (The letters are meant to be mnemonical: they stand for
“simplicial space”, “nerve”, “Grothendieck”, “hammock”, “Quillen”, and
“model”, respectively.)

We take quasicategories as our preferred model for ∞-categories, and in
general we adhere to the notation and terminology of [10] and [11]. In fact,
our references to these two works will be frequent enough that it will be
convenient for us to adopt Lurie’s convention and use the code names T and
A for them, respectively.

However, we work invariantly to the greatest possible extent: that is, we
primarily work within the ∞-category of ∞-categories. Thus, for instance,
we will omit all technical uses of the word “essential”, e.g. we will use
the term unique in situations where one might otherwise say “essentially
unique” (i.e. parametrized by a contractible space). For a full treatment of
this philosophy as well as a complete elaboration of our conventions, we refer
the interested reader to §S.A. The casual reader should feel free to skip this
on a first reading; on the other hand, the careful reader may find it useful
to peruse that section before reading the present paper. For the reader’s
convenience, we also provide a complete index of the notation that is used
throughout this sequence of papers in §S.B.

0.3. Outline. We now provide a more detailed outline of the contents of
this paper.

• In §1, we begin by stating our results concerning Quillen adjunctions
and Quillen equivalences (theorem 1.1 and corollary 1.3, resp.). We
then develop the rudiments of the theory of homotopy co/limits in
model ∞-categories, and provide a detailed study of Reedy model
structures on functor ∞-categories.
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• In §2, we provide some auxiliary material on relative co/cartesian
fibrations and on bicartesian fibrations. These two enhancements of
the theory of co/cartesian fibrations are used in the proofs of the
main results of the paper.

• In §3, we prove theorem 1.1 and corollary 1.3.

• In §4, we show that two-variable Quillen adjunctions between model
∞-categories present two-variable adjunctions between their local-
izations.

• In §5, we show that (resp. symmetric) monoidal model ∞-categories
present closed (resp. symmetric) monoidal ∞-categories.

• In §6, we show that enriched model ∞-categories present enriched
and bitensored ∞-categories.

0.4. Acknowledgments. We would like to thank Geoffroy Horel, Zhen
Lin Low, and Adeel Khan Yusufzai for their helpful comments; Dmitri
Pavlov, for spotting and helping us correct a small mistake in a previous
version; and the NSF graduate research fellowship program (grant DGE-
1106400) for financial support during the time that this work was carried
out.

1. Quillen adjunctions, homotopy co/limits, and Reedy
model structures

Model structures on relative (1- and ∞-)categories are extremely useful
for making computations within their localizations. However, it can also
be quite useful to obtain relationships between their localizations. Perhaps
the most important relationship that two ∞-categories can share is that of
being related by an adjunction. The central result of this section (theo-
rem 1.1) provides a systematic way of obtaining just such a relationship: a
Quillen adjunction between model∞-categories induces a canonical derived
adjunction on their localizations. As a special case (corollary 1.3), a Quillen
equivalence induces a derived equivalence on localizations.4

This section is organized as follows. In §1.1, we state these fundamental
theorems regarding Quillen adjunctions and Quillen equivalences. (However,
their proofs will be postponed to §3, after we have developed some necessary
scaffolding in §2.) Then, in §1.2 we study the important special case of
homotopy co/limits, briefly introducing the projective and injective model
structures. Finally, in §1.3, we pursue a more in-depth study of the Reedy
model structure.

4Quillen adjunctions and Quillen equivalences are respectively given as Defini-
tionsS.1.12 and S.1.14. These are completely straightforward generalizations of the model
1-categorical counterparts, and so we do not feel the need to repeat them here.
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1.1. Quillen adjunctions and Quillen equivalences. The classical the-
ory of derived functors arose out of a desire to “correct” functors between
relative categories which do not respect weak equivalences to ones that do.
There, one replaces a given object by a suitable resolution – the nature of
which depends both on the context and on the sort of functor which one
is attempting to correct – and then applies the original functor to this res-
olution, the point being that the functor does respect weak equivalences
between such “nice” objects.

A Quillen adjunction

F : M� N : G

between model (1- or ∞-)categories is a prototypical and beautifully sym-
metric example of such a situation. In general, neither Quillen adjoint will
preserve weak equivalences. However, in this case there are canonical choices
for such subcategories of “nice” objects: left Quillen functors preserve weak
equivalences between cofibrant objects, while right Quillen functors preserve
weak equivalences between fibrant objects (see Kenny Brown’s lemma (3.5)).

Moreover, the inclusions (Mc,Wc
M) ↪→ (M,WM) and (N,WN)←↩ (Nf ,Wf

N)
induce equivalences

McJ(Wc
M)−1K ∼−→MJW−1

M K

and

NJW−1
N K ∼←− Nf J(Wf

N)−1K

on localizations (see corollary 3.4). A perfect storm then ensues.

Theorem 1.1. A Quillen adjunction

F : M� N : G

of model ∞-categories induces a canonical adjunction

LF : MJW−1
M K� NJW−1

N K : RG

on localizations, whose left and right adjoints are respectively obtained by

applying the localization functor RelCat∞
L−→ Cat∞ to the composites

Mc ↪→M
F−→ N

and

M
G←− N←↩ Nf .

Definition 1.2. Given a Quillen adjunction F a G, we refer to the the
resulting adjunction LF a RG on localizations of theorem 1.1 as its derived
adjunction . We refer to LF as the left derived functor of F , and to RG
as the right derived functor of G.

theorem 1.1 has the following easy consequence.
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Corollary 1.3. The derived adjunction

LF : MJW−1
M K� NJW−1

N K : RG

of a Quillen equivalence

F : M� N : G

of model ∞-categories is an adjoint equivalence.

Remark 1.4. With theorem 1.1 in hand, to prove corollary 1.3 it would
suffice to show that either one of the derived adjoint functors is an equiva-
lence; this can be accomplished using the fundamental theorem of model ∞-
categories (M.1.9), which provides an explicit description of the hom-spaces
in the localization of a model ∞-category. However, our proofs of theo-
rem 1.1 and of corollary 1.3 will not rely on that result (recall remark 0.1).

Remark 1.5. A number of examples of Quillen adjunctions and Quillen
equivalences are provided in §S.2.2.

1.2. Homotopy co/limits. Some of the most important operations one
can perform within an ∞-category are the extraction of limits and colimits.
However, co/limit functors on relative ∞-categories do not generally take
natural weak equivalences to weak equivalences. In view of the theory of
derived adjunctions laid out in §1.1, in the setting of model∞-categories it is
therefore important to determine sufficient conditions under which co/limit
functors can be derived, i.e. under which they determine left/right Quillen
functors.

We now codify this desired situation.

Notation 1.6. For a model ∞-category M and an ∞-category C, we write
WFun(C,M) ⊂ Fun(C,M) for the subcategory of natural weak equivalences.
Of course, considering (M,W) as a relative ∞-category, via Notation N.1.6
this identifies as

WFun(C,M) Fun(C,M)

Fun(min(C),M)W Fun(min(C),M)Rel.

∼ ∼

Definition 1.7. Let M be a model∞-category, and let C be an∞-category.
Suppose that M admits C-shaped colimits, so that we obtain an adjunction

colim : Fun(C,M)�M : const.

If (Fun(C,M),WFun(C,M)) admits a model structure such that this adjunc-
tion becomes a Quillen adjunction, we refer to its resulting left derived
functor

Lcolim : Fun(C,M)JW−1
Fun(C,M)K→MJW−1

M K
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as a homotopy colimit functor. Dually, suppose that M admits C-shaped
limits, so that we obtain an adjunction

const : M� Fun(C,M) : lim.

If (Fun(C,M),WFun(C,M)) admits a model structure such that this adjunc-
tion becomes a Quillen adjunction, we refer to its resulting right derived
functor

MJW−1
M K← Fun(C,M)JW−1

Fun(C,M)K : Rlim

as a homotopy limit functor.

Now, to check that an adjunction between model∞-categories is a Quillen
adjunction, it suffices to show only that either its left adjoint is a left Quillen
functor or that its right adjoint is a right Quillen functor. This leads us to
define the following “absolute” model structures on functor ∞-categories.

Definition 1.8. Let M be a model∞-category, and let C be an∞-category.
Suppose that there exists a model structure on Fun(C,M) whose weak equiv-
alences and fibrations are determined objectwise. In this case, we call this
the projective model structure , and denote it by Fun(C,M)proj. Dually,
suppose that there exists a model structure on Fun(C,M) whose weak equiv-
alences and cofibrations are determined objectwise. In this case, we call this
the injective model structure , and denote it by Fun(C,M)inj.

Remark 1.9. definition 1.8 immediately implies

• that whenever M admits C-shaped colimits and there exists a pro-
jective model structure on Fun(C,M), then we obtain a Quillen ad-
junction

colim : Fun(C,M)proj �M : const,

and

• that that whenever M admits C-shaped limits and there exists an
injective model structure on Fun(C,M), then we obtain a Quillen
adjunction

const : M� Fun(C,M)inj : lim.

Remark 1.10. As in the classical case, the projective and injective model
structures do not always exist. However, it appears that

• the projective model structure will exist whenever M is cofibrantly
generated (see §S.3), while

• the injective model structure will exist whenever M is combinato-
rial (that is, its underlying ∞-category is presentable and its model
structure is cofibrantly generated);

see [8, Theorem 11.6.1] and Proposition T.A.2.8.2.5

5In the construction of the projective model structure, one can replace the appeal to
the “set of objects” of C with an arbitrary surjective map C → C from some C ∈ Set ⊂
Cat∞; the necessary left Kan extension will exist as long as M is cocomplete, which seems
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1.3. Reedy model structures. While the projective and injective model
structures of definition 1.8 are not always known to exist (even for model
1-categories), there is a class of examples in which a model structure on
(Fun(C,M),WFun(C,M)) is always guaranteed to exist: the Reedy model struc-
ture. This does not make any additional assumptions on the model ∞-
category M (recall remark 1.10), but instead it requires that C be a (strict)
1-category equipped with a certain additional structure.

The Reedy model structure will be useful in a number of settings: we’ll
use example 1.18 a number of times in the proof of theorem 1.1, it will be
heavily involved in our development of “cylinder objects” and “path objects”
in model∞-categories in §M.1 (leading towards the fundamental theorem of
model ∞-categories (M.1.9)), and it is also closely related to the resolution
model structure (see e.g. §S.0.3).

We begin by fixing the following definition.

Definition 1.11. Let C ∈ Cat be a gaunt category equipped with a factor-

ization system defined by two wide subcategories
−→
C ,
←−
C ⊂ C; that is, every

morphism ϕ in C admits a unique factorization as a composite −→ϕ ◦←−ϕ , where
−→ϕ is in

−→
C and ←−ϕ is in

←−
C . Suppose there do not exist any infinite “decreas-

ing” zigzags of non-identity morphisms in C, where by “decreasing” we mean

that all forward-pointing arrows lie in
←−
C and all backwards-pointing arrows

lie in
−→
C . Then, we say that C is a Reedy category , and we refer to the

defining subcategories
−→
C ,
←−
C ⊂ C respectively as its direct subcategory

and its inverse subcategory .

Remark 1.12. definition 1.11 is lifted from Definition T.A.2.9.1. There
is also a more restrictive definition in the literature, given for instance as
[8, Definition 15.1.2], in which one requires that C comes equipped with a
“degree function” deg : N(C)0 → N such that all non-identity morphisms

in
−→
C raise degree while all non-identity morphisms in

←−
C lower degree: the

nonexistence of infinite decreasing zigzags then follows from the fact that N
has a minimal element.

However, as pointed out in [8, Remark 15.1.4], the results of [8, Chap-
ter 15] easily generalize to the case when the degree function takes values
in ordinals rather than simply in nonnegative integers. Indeed, Notation
T.A.2.9.11 introduces the notion of a “good filtration” on a Reedy category,
which is a transfinite total ordering of its objects that effectively serves the
same purpose as an ordinary degree function (although note that a degree

to be generally true in practice. However, there is also some subtlety regarding whether
the resulting sets of would-be generating cofibrations and generating acyclic cofibrations
do indeed admit the small object argument: it suffices that the set I (resp. J) of generating
(resp. acyclic) cofibrations have that all the sources of its elements be small with respect to
the tensors of its elements over the various hom-spaces of C. However, it similarly seems
that in practice these objects will in fact be small with respect to the entire ∞-category
M, so that this is not actually an issue.
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function need not be injective in general), and Remark T.A.2.9.12 observes
that good filtrations always exist.

In any case, these data (either degree functions or good filtrations) both
reflect the most important feature of Reedy categories, namely their amenabil-
ity to inductive manipulations. In practice, we will generally only use Reedy
categories of the more restrictive sort, but it is no extra effort to work in
the more general setting.

Definition 1.13. Given a Reedy category C, we define its latching cate-
gory at an object c ∈ C to be the full subcategory

∂
(−→
C /c

)
⊂
−→
C /c

on all objects besides idc, and we define its matching category at an object
c ∈ C to be the full subcategory

∂
(←−
C c/

)
⊂
←−
C c/

on all objects besides idc.

Remark 1.14. We will assume familiarity with the basic theory of Reedy
categories. For further details, we refer the reader to [8, Chapter 15] or to
§T.A.2.9 (with the caveat that the latter source works in somewhat greater
generality than the former, as explained in remark 1.12). In particular, given
a functor

∂
(−→
C /c

)
F−→M

(e.g. the restriction of a functor C
F−→M) we will write

Lc(F ) = colim
∂
(−→
C /c

)(F ),

and given a functor

∂
(←−
C c/

)
G−→M

(e.g. the restriction of a functor C
G−→M) we will write

Mc(F ) = lim
∂
(←−
C c/

)(G).

(This notation jibes with that of item S.A(29)).

Remark 1.15. In general, the usual constructions with Reedy categories
go through equally well when the target is an ∞-category. In particular, we
explicitly record here that given a bicomplete ∞-category M and a Reedy
category C, one can inductively construct both objects and morphisms of
Fun(C,M) in exactly the same manner as when M is merely a category, using
latching/matching objects and (relative) latching/matching maps. For the
construction of objects this is observed as Remark T.A.2.9.16, but both of
these assertions follow easily from Proposition T.A.2.9.14.
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As indicated at the beginning of this subsection, the primary reason for
our interest in Reedy categories is the following result.

Theorem 1.16. Let M be a model ∞-category, and let C be a Reedy cat-
egory. Then there exists a model structure on Fun(C,M), in which a map
F → G is

• a weak equivalence if and only if the induced maps

F (c)→ G(c)

are in W ⊂M for all c ∈ C,

• a (resp. acyclic) cofibration if and only if the relative latching maps

F (c)
∐

Lc(F )

Lc(G)→ G(c)

are in C ⊂M (resp. W ∩C ⊂M) for all c ∈ C,

• a (resp. acyclic) fibration if and only if the relative matching maps

F (c)→ Mc(F ) ×
Mc(G)

G(c)

are in F ⊂M (resp. W ∩ F ⊂M) for all c ∈ C.

Proof. The proof is identical to that of Proposition T.A.2.9.19 (or to those
of [8, Theorems 15.3.4(1) and 15.3.5]). �

Definition 1.17. We refer to the model structure of theorem 1.16 as the
Reedy model structure on Fun(C,M), and we denote this model ∞-
category by Fun(C,M)Reedy.

Example 1.18. There is a Reedy category structure on [n] ∈ ∆ ⊂ Cat
determined by the degree function deg(i) = i. As the inverse subcategory
←−
[n] ⊂ [n] associated to this Reedy category structure consists only of identity
maps, the resulting Reedy model structure Fun([n],M)Reedy coincides with
the projective model structure Fun([n],M)proj of definition 1.8.

Remark 1.19. In particular, example 1.18 shows that the projective model
structure Fun([n],M)proj always exists (without any additional assumptions
on M). We will use this fact repeatedly without further comment.

Remark 1.20. It follows essentially directly from the definitions that when-
ever they all exist, the projective, injective, and Reedy model structures
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assemble into a commutative diagram

Fun(C,M)proj Fun(C,M)inj

Fun(C,M)Reedy

⊥

⊥ ⊥

of Quillen equivalences. (If only two of them exist, then they still participate
in the indicated Quillen equivalence.)

The Reedy model structure is also functorial in exactly the way one would
hope.

Theorem 1.21. For any Reedy category C, if M � N is a Quillen ad-
junction (resp. Quillen equivalence) of model ∞-categories, then the induced
adjunction

Fun(C,M)Reedy � Fun(C,N)Reedy

is a Quillen adjunction (resp. Quillen equivalence) as well.

Proof. The proof is identical to that of [8, Proposition 15.4.1]. �

Of course, much of our interest in functor ∞-categories stems from the
fact that these are the source of co/limit functors. Thus, we will often want
to know when a co/limit functor is a Quillen functor with respect to a given
Reedy model structure. This will not always be the case. However, there
does exist a class of “absolute” examples, as encoded by the following.

Definition 1.22. Let C be a Reedy category. We say that C has (model
∞-categorical) cofibrant constants if for every model ∞-category M

admitting C-shaped limits, the adjunction

const : M� Fun(C,M)Reedy : lim

is a Quillen adjunction. Dually, we say that C has (model ∞-categorical)
fibrant constants if for every model ∞-category M admitting C-shaped
colimits, the adjunction

colim : Fun(C,M)Reedy �M : const

is a Quillen adjunction.

This notion differs slightly from the classical definition (see [8, Definition
15.10.1]). We first provide a characterization, and then explain the difference
in Remark 1.24.
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Proposition 1.23. Let C be a Reedy category. Then C has model ∞-
categorical cofibrant constants if and only if for every c ∈ C the groupoid
completion (

∂
(−→
C /c

))gpd
of its latching category is either empty or contractible. Dually, C has model
∞-categorical fibrant constants if and only if for every c ∈ C the groupoid
completion (

∂
(←−
C c/

))gpd
of its matching category is either empty or contractible.

Proof. Suppose that for every c ∈ C the latching category ∂
(−→
C /c

)
has

either empty or contractible geometric realization, and suppose that M is a
model ∞-category admitting C-shaped limits. Fix an object c ∈ C. Then,
for any object z ∈M, the latching object

Lc(const(z)) = colim
∂
(−→
C /c

) const(z)

is either

• always equivalent to ∅M, or

• always equivalent to z itself.

Hence, for any map x→ y in M, the relative latching map

(const(x))(c)
∐

Lc(const(x))

Lc(const(y))→ (const(y))(c)

is either x→ y or y → y. It follows that const : M→ Fun(C,M)Reedy is a left
Quillen functor, so that the adjunction const : M� Fun(C,M)Reedy : lim is
a Quillen adjunction, as desired.

Conversely, suppose that for some object c ∈ C the groupoid completion(
∂
(−→
C /c

))gpd
of the latching category at c ∈ C is not empty or contractible. Then for any
nonempty object x ∈ sSetKQ ⊂ sSKQ (i.e. considered in sSKQ), the latching
map at c ∈ C of the functor const(x) will not be a cofibration.

Of course, the dual claim follows from a dual argument. �

Remark 1.24. In the theory of ordinary model categories, according to
[8, Proposition 15.10.2(1)], a Reedy category has cofibrant constants if and
only if the its latching categories are all either nonempty or connected. In
light of the proof of Proposition 1.23, the reason for the difference should
now be clear: in 1-category theory, in order for a constant diagram to have
colimit isomorphic to its constant value, it suffices for the indexing category
to merely be connected. By contrast, in ∞-category theory the colimit of
a constant diagram recovers the tensoring of the value with the groupoid
completion of the diagram ∞-category.
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Example 1.25. For any simplicial set K ∈ sSet, its “category of simplices”
(i.e. the category

∆/K = ∆ ×
sSet

sSet/K ,

or equivalently the category Gr−(K) ∈ CFib(∆) obtained by considering
K ∈ Fun(∆op, Set)) is a Reedy category with fibrant constants; this fol-
lows from the proof of [8, Proposition 15.10.4]. In particular, the category
Gr−(ptsSet)

∼= ∆ itself has fibrant constants. By dualizing, we obtain that
the category ∆op has cofibrant constants.

Remark 1.26. Note that in general, the observations of example 1.25 only
provides Quillen adjunctions

const : M� sMReedy : lim

and

colim : cMReedy �M : const,

which are rather useless in practice (since ∆op has an initial object and ∆
has a terminal object). To obtain a left Quillen functor sMReedy → M, we
will generally need to take a resolution of the object const(ptM) ∈ sM (e.g.
one coming from a simplicio-spatial model structure (see definition 6.2)).6

Example 1.27. The Reedy trick generalizes from model categories to model
∞-categories without change. Recall that the walking span category

N−1(Λ2
0) = (• ← • → •)

admits a Reedy category structure determined by the degree function de-
scribed by the picture (0 ← 1 → 2). Moreover, it is straightforward to
verify that this Reedy category has fibrant constants (see e.g. the proof of
[8, Proposition 15.10.10]). Thus, for any model ∞-category M, we obtain a
Quillen adjunction

colim : Fun(N−1(Λ2
0),M)Reedy �M : const,

in which the cofibrant objects of Fun(N−1(Λ2
1),M)Reedy are precisely the

diagrams of the form x← y� z for x, y, z ∈Mc ⊂M.

Example 1.28. Clearly, the poset (N,≤) admits a Reedy structure (defined
by the identity map, considered as a degree function) which has fibrant con-
stants. Thus, for any model ∞-category M, we obtain a Quillen adjunction

colim : Fun((N,≤),M)Reedy �M : const,

6If C is an∞-category (which is finitely bicomplete and admits geometric realizations)
and we equip C with the trivial model structure (see Example S.2.2), then we do obtain a
Quillen adjunction |−| : s(Ctriv)Reedy � Ctriv : const. However, unwinding the definitions,
we see that this is really just the Quillen adjunction |−| : (sC)triv � Ctriv : const.
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in which the cofibrant objects of Fun((N,≤),M)Reedy are precisely those

diagrams consisting of cofibrations between cofibrant objects.7 Dually, we
obtain a Quillen adjunction

const : M� Fun((N,≤)op,M)Reedy : lim,

in which the fibrant objects of Fun((N,≤)op,M)Reedy are precisely those
diagrams consisting of fibrations between fibrant objects.

We end this section by recording the following result.

Lemma 1.29. Let C be a Reedy category, and let c ∈ C.

(1) (a) The latching category ∂
(−→
C /c

)
admits a Reedy structure with

fibrant constants, in which the direct subcategory is the entire
category and the inverse subcategory contains only the identity
maps.

(b) With respect to the Reedy structure of part (a), the canonical

functor ∂
(−→
C /c

)
→ C induces an isomorphism

∂

(−−−−−→
∂
(−→
C /c

)
/(d→c)

)
∼=−→ ∂

(−→
C /d

)
of latching categories (from that of the object (d→ c) ∈ ∂

(−→
C /c

)
to that of the object d ∈ C).

(2) (a) The matching category ∂
(←−
C c/

)
admits a Reedy structure with

cofibrant constants, in which the direct subcategory contains only
the identity maps and the inverse subcategory is the entire cat-
egory.

(b) With respect to the Reedy structure of part (a), the canonical

functor ∂
(←−
C c/

)
→ C induces an isomorphism

∂

(←−−−−−
∂
(←−
C c/

)
(c→d)/

)
∼=−→ ∂

(←−
C d/

)
of matching categories (from that of (c→ d) ∈ ∂

(←−
C c/

)
to that

of d ∈ C).

Proof. Parts (1)(a) and (2)(a) follow from the proof of [8, Proposition
15.10.6], and parts (1)(b) and (2)(b) follow by inspection. �

7In fact, this Reedy poset has cofibrant constants as well. However, the resulting
Quillen adjunction will be trivial since this poset has an initial object.
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2. Relative co/cartesian fibrations and bicartesian fibrations

In this section we describe two enhancements of the theory of co/cartesian
fibrations which we will need: in §2.1 we study relative co/cartesian fibra-
tions, while in §2.2 we study bicartesian fibrations.

2.1. Relative co/cartesian fibrations. Suppose we are given a diagram

C RelCat∞ Cat∞

Cat∞.

F L

URel

In our proof of theorem 1.1, we will be interested in the relationship between
the upper composite (of the componentwise localization of the diagram F
of relative ∞-categories) and the cocartesian fibration

Gr(URel ◦ F )→ C.

In other words, we would like to take some sort of “fiberwise localization”
of this cocartesian fibration. In order to do this, we must keep track of the
morphisms which we would like to invert. This leads us to the following
terminology.

Definition 2.1. Let C ∈ Cat∞, and suppose we are given a commutative
diagram

RelCat∞

C Cat∞.

URel
F

URel◦F

Then, we write GrRel(F ) for the relative ∞-category obtained by equipping
Gr(URel ◦F ) with the weak equivalences coming from the lift F of URel ◦F .
Note that its weak equivalences all map to equivalences in C, so that we can
consider the canonical projection as a map GrRel(F ) → min(C) of relative
∞-categories. We write coCFibRel(C) for the ∞-category of cocartesian fi-
brations over C equipped with such a relative ∞-category structure, and we
call this the ∞-category of relative cocartesian fibrations over C. The
Grothendieck construction clearly lifts to an equivalence

Fun(C,RelCat∞)
GrRel−−−→
∼

coCFibRel(C).

Of course, we have a dual notion of relative cartesian fibrations over
C; these assemble into an ∞-category CFibRel(C), which comes with an
equivalence

Fun(Cop,RelCat∞)
Gr−

Rel−−−→
∼

CFibRel(C).
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Remark 2.2. Note that an arbitrary cocartesian fibration over C equipped
with a subcategory of weak equivalences which project to equivalences in
C does not necessarily define a relative cocartesian fibration: it must be
classified by a diagram of relative∞-categories and relative functors between
them (i.e. the cocartesian edges must intertwine the weak equivalences). A
dual observation holds for cartesian fibrations.

We can now precisely state and prove our desired correspondence.

Proposition 2.3. Let C ∈ Cat∞, and let C
F−→ RelCat∞ classify GrRel(F ) ∈

coCFibRel(C). Then the induced map

L (GrRel(F ))→ C

is again a cocartesian fibration. Moreover, we have a canonical equivalence

L (GrRel(F )) ' Gr(L ◦ F )

in coCFib(C), i.e. this cocartesian fibration classifies the composite

C
F−→ RelCat∞

L−→ Cat∞.

Proof. By [7, Theorem 7.4], we have a canonical equivalence

Gr(L ◦ F ) ' colim

(
TwAr(C)→ Cop × C

C−/×(L ◦F )
−−−−−−−−→ Cat∞ × Cat∞

−×−−−−→ Cat∞

)
.

Since the composite Cat∞
min−−→ RelCat∞

L−→ Cat∞ is canonically equivalent

to idCat∞ and the functor RelCat∞
L−→ Cat∞ commutes with finite products

by Lemma N.1.20, this can be rewritten as

Gr(L ◦ F ) ' colim

(
TwAr(C)→ Cop × C

(min ◦C−/)×F−−−−−−−−−→ RelCat∞ × RelCat∞

−×−−−−→ RelCat∞
L−→ Cat∞

)
.

Moreover, the functor RelCat∞
L−→ Cat∞ commutes with colimits (being a

left adjoint), and so this can be rewritten further as

Gr(L ◦ F ) ' L

(
colim

(
TwAr(C)→ Cop × C

(min ◦C−/)×F−−−−−−−−−→

RelCat∞ × RelCat∞
−×−−−−→ RelCat∞

))
.

On the other hand, RelCat∞
URel−−−→ Cat∞ also commutes with colimits (being

a left adjoint as well) and is symmetric monoidal for the respective cartesian
symmetric monoidal structures, and so we obtain that

URel

(
colim

(
TwAr(C)→ Cop × C

(min ◦C−/)×F−−−−−−−−−→ RelCat∞ × RelCat∞
−×−−−−→
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RelCat∞

))
' colim

(
TwAr(C)→ Cop × C

C−/×(URel◦F )
−−−−−−−−−→ Cat∞ × Cat∞

−×−−−−→ Cat∞

)
' Gr(URel ◦ F ),

again appealing to [7, Theorem 7.4]. In other words, the underlying ∞-
category of the relative ∞-category

colim

(
TwAr(C)→ Cop × C

(min ◦C−/)×F−−−−−−−−−→ RelCat∞ × RelCat∞

−×−−−−→ RelCat∞

)
is indeed Gr(URel◦F ); moreover, by definition its subcategory of weak equiv-
alences is inherited from the functor F , and hence we have an equivalence

GrRel(F ) ' colim

(
TwAr(C)→ Cop × C

(min ◦C−/)×F−−−−−−−−−→ RelCat∞ × RelCat∞

−×−−−−→ RelCat∞

)
in (RelCat∞)/min(C).

8 Thus, we have obtained an equivalence

Gr(L ◦ F ) ' L (GrRel(F ))

in (Cat∞)/C, which completes the proof of both claims. �

2.2. Bicartesian fibrations. Recall that an adjunction can be defined as
a map to [1] ∈ Cat∞ which is simultaneously a cocartesian fibration and a
cartesian fibration. As we will be interested not just in adjunctions but in
families of adjunctions (e.g. two-variable adjunctions), it will be convenient
to introduce the following terminology.

Notation 2.4. Let C be an ∞-category. We denote by biCFib(C) the ∞-
category of bicartesian fibrations over C. This is the underlying ∞-category
of the bicartesian model structure of Theorem A.4.7.5.10; its objects are
those functors to C which are simultaneously cocartesian fibrations and
cartesian fibrations, and its morphisms are maps over C which are simul-
taneously morphisms of cocartesian fibrations and morphisms of cartesian
fibrations (i.e. they preserve both cocartesian morphisms and cartesian mor-
phisms). We thus have canonical forgetful functors

coCFib(C)←↩ biCFib(C) ↪→ CFib(C),

8The structure map for the object on the right comes from its canonical projection to

min(TwAr(C)) ' colim

(
TwAr(C)

const(ptRelCat∞ )
−−−−−−−−−−−→ RelCat∞

)
followed by the composite projection min(TwAr(C))→ min(Cop × C)→ min(C).
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which are both inclusions of (non-full) subcategories, and which both admit
left adjoints by Remark A.4.7.5.12. By Proposition A.4.7.5.17, the compos-
ite

biCFib(C) ↪→ coCFib(C)
Gr−→
∼

Fun(C,Cat∞)

identifies biCFib(C) with a certain subcategory of Fun(C,Cat∞),

• whose objects are those functors C
F−→ Cat∞ such that for every map

c1 → c2 in C, the induced functor F (c1) → F (c2) is a left adjoint,
and

• whose morphisms are those natural transformations satisfying a cer-
tain “right adjointableness” condition,

and dually for the composite

biCFib(C) ↪→ CFib(C)
Gr−−−→
∼

Fun(Cop,Cat∞).

Remark 2.5. Giving an adjunction C� D is equivalent to giving an object
of biCFib([1]) equipped with certain identifications of its fibers, which data
can be encoded succinctly as an object of the pullback

lim


biCFib([1])

ptCat∞ Cat∞ × Cat∞

(ev0,ev1)

(C,D)


in Cat∞. In other words, the space of objects of this pullback is (canoni-
cally) equivalent to that of the ∞-category Adjn(C;D). However, note that
morphisms of bicartesian fibrations are quite different from morphisms in
Adjn(C;D): a map from an adjunction F : C � D : G to an adjunction
F ′ : C� D : G′ is given

• in Adjn(C;D), by either a natural transformation F ′ → F or a nat-
ural transformation G→ G′, but

• in biCFib([1]), a certain sort of commutative square in Cat∞.

(So the latter is (∞, 1)-categorical, while the former is inherently (∞, 2)-
categorical.) In fact, it is not hard to see that the above pullback in Cat∞
actually defines an ∞-groupoid: really, this is just a more elaborate version
of the difference between Fun(C,D) and

lim


coCFib([1])

ptCat∞ Cat∞ × Cat∞

(ev0,ev1)

(C,D)

 .

Despite remark 2.5, we will have use for the following notation.
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Notation 2.6. For C,D ∈ Cat∞, we denote by coCFib([1];C,D) the second
pullback in remark 2.5. We will use analogous notation for the various
variants of this construction (namely cartesian, relative co/cartesesian, and
bicartesian fibrations over [1]). For consistency, we will similarly write

Cat∞([1];C,D) = lim


(Cat∞)/[1]

ptCat∞ Cat∞ × Cat∞

(ev0,ev1)

(C,D)

 .

For any R1,R2 ∈ RelCat∞, we also set

RelCat∞([1];R1,R2) = lim


(RelCat∞)/min([1])

ptCat∞ RelCat∞ × RelCat∞

(ev0,ev1)

(R1,R2)

 .

Remark 2.7. Using notation 2.6, note that we can identify

N∞(Fun(C,D))• ' coCFib([1]; [•]× C,D)'.

This identification (and related ones) will be useful in the proof of lemma 4.5.

3. The proofs of theorem 1.1 and corollary 1.3

This section is devoted to proving the results stated in §1.1, namely

• theorem 1.1 – that a Quillen adjunction has a canonical derived
adjunction –, and

• corollary 1.3 – that the derived adjunction of a Quillen equivalence
is an adjoint equivalence.

We begin with the following key result, the proof of which is based on
that of [1, Lemma 2.4.8].

Lemma 3.1. Let M be a model ∞-category, and let x ∈M. Then(
Wf

Mx/

)gpd
' ptS.

Proof. By [4, Lemme d’asphéricité], it suffices to show that for any finite

directed set considered as a category C ∈ Cat, any functor C → Wf
Mx/

is

connected to a constant functor by a zigzag of natural transformations in

Fun(C,Wf
Mx/

).9 Note that such a functor is equivalent to the data of

9[4, Lemme d’asphéricité] can also be proved invariantly (i.e. without reference to
quasicategories) by using the theory of complete Segal spaces and replacing Cisinski’s
appeal to the Quillen equivalence sd : sSetKQ � sSetKQ : Ex and the functor Ex∞ to
their ∞-categorical variants (see §S.6.3).
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• the composite functor C→Wf
Mx/
→Wf

M, which we will denote by

C
F−→Wf

M, along with

• a natural transformation const(x)→ F in Fun(C,WM).

We now appeal to Cisinski’s theory of left-derivable categories introduced
in [3, §1] (there called “catégories dérivables à gauche”), which immediately
generalizes to a theory of left-derivable ∞-categories: one simply replaces
sets with spaces and categories with ∞-categories.10 Clearly the model ∞-
category M is in particular a left-derivable ∞-category. Hence, considering

C
F−→ Wf

M ↪→ M as an object of Fun(C,M), by [3, Proposition 1.29] there
exists a factorization

F
≈→ F ′ � ptFun(C,M) ' const(ptM)

of the terminal map in Fun(C,M), where F
≈→ F ′ is a componentwise weak

equivalence and the map F ′ � ptFun(C,M) is a boundary fibration (there

called “une fibration bordée”). In other words, F ′ is fibrant on the boundaries
(there called “fibrant sur les bords”), and in particular by [3, Corollaire 1.24]
it is objectwise fibrant. Thus, we can consider F → F ′ as a morphism in

Fun(C,Wf
M), and hence for our main goal it suffices to assume that F itself

is fibrant on the boundaries.
Now, our map const(x) → F induces a canonical map x → limC F in M

(where this limit exists because M is finitely complete), and this map in
turn admits a factorization

x
≈→ y � limCF.

Moreover, [3, Proposition 1.18] implies that limC F ∈M is fibrant, and hence
y ∈M is fibrant as well. Further, in the commutative diagram

const(x) F

const(y) const(limC F )

≈

≈

in Fun(C,M), the dotted arrow is a componentwise weak equivalence by
the two-out-of-three property (applied componentwise). This provides the
desired zigzag connecting the object

(C
F−→Wf

M, const(x)→ F ) ∈ Fun(C,Wf
Mx/

)

to a constant functor, namely the object

(C
const(y)−−−−−→Wf

M, const(x)→ const(y)) ∈ Fun(C,Wf
Mx/

),

which proves the claim. �

10However, the notion of finite direct categories (there called “catégories directes finies”)
need not be changed. Note that such categories are gaunt, so 1-categorical pushouts and
pullbacks between them compute their respective ∞-categorical counterparts.
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This has the following convenient consequence.

Lemma 3.2. For any model ∞-category M, the inclusion Wf ↪→ W in-
duces an equivalence under the functor (−)gpd : Cat∞ → S.

Proof. This functor is final by Theorem A (Theorem G.4.10) and lemma 3.1;
note that for an object x ∈W, we have an identification

Wf ×W Wx/ 'Wf
Mx/

.

Hence, the assertion follows from Proposition G.4.8. �

In turn, this allows us to prove the following pair of results, which we will
need in the proof of theorem 1.1.

Proposition 3.3. For any model∞-category M, the inclusion (Mf ,Wf ) ↪→
(M,W) induces an equivalence

NR
∞(Mf ,Wf )→ NR

∞(M,W)

in sS.

Proof. We must show that for every n ≥ 0, the map

preNR
∞(Mf ,Wf )n → preNR

∞(M,W)n

in Cat∞ becomes an equivalence upon applying (−)gpd : Cat∞ → S. By
definition, this is the map

Fun([n], (Mf ,Wf ))W → Fun([n], (M,W))W.

But this is precisely the inclusion

Wf
Fun([n],M)proj

↪→WFun([n],M)proj ,

which becomes an equivalence upon groupoid completion by lemma 3.2. �

Corollary 3.4. For any model ∞-category M, the inclusion (Mf ,Wf ) ↪→
(M,W) is a weak equivalence in (RelCat∞)BK, i.e. it induces an equivalence

Mf J(Wf )−1K ∼−→MJW−1K

in Cat∞.

Proof. This follows from proposition 3.3 and the global universal property
of the Rezk nerve (Proposition N.3.9). �

We now give one more easy result which we will need in the proof of
theorem 1.1, which we refer to as Kenny Brown’s lemma (for model
∞-categories).

Lemma 3.5. Let M be a model ∞-category, and let (R,WR) ∈ RelCat∞ be
a relative ∞-category such that WR ⊂ R has the two-out-of-three property.
If M → R is any functor of underlying ∞-categories which takes the sub-
category (W ∩ C)cM ⊂ M into WR ⊂ R, then it also takes the subcategory
Wc

M ⊂M into WR ⊂ C.
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Proof. Given any map x
≈→ y in Wc

M ⊂M, we can construct a diagram

x y

z

≈

≈

≈

≈

in M, i.e. a factorization of the chosen map and a section of the second map
which are contained in the various subcategories defining the model structure
on M as indicated, exactly as in [8, Lemma 7.7.1] (only omitting the assertion
of functoriality). Hence, our functor M→ R must take our chosen map into
WR ⊂ R since this subcategory contains all the equivalences, has the two-
out-of-three property, and is closed under composition. This proves the
claim. �

We now turn to this section’s primary goal.

Proof of theorem 1.1. Let (M+N)→ [1] denote the bicartesian fibration
corresponding to the underlying adjunction F a G of the given Quillen
adjunction. Let us equip this with the subcategory of weak equivalences
inherited from WM ⊂ M and WN ⊂ N; its structure map can then be
considered as a map to min([1]) in RelCat∞.11 Let us define full relative
subcategories

(Mc + Nf ), (Mc + N), (M + Nf ) ⊂ (M + N)

(which inherit maps to min([1])) by restricting to the cofibrant objects of M
and/or to the fibrant objects of N, as indicated by the notation. Moreover,
let us define the functors F c and Gf to be the composites

Mc M N Nf .

F c

F
⊥
G

Gf

Note that F c and Gf both preserve weak equivalences by Kenny Brown’s
lemma (3.5). It follows that we have a canonical equivalence

(Mc + N) ' GrRel(F
c)

in coCFibRel([1]) and a canonical equivalence

(M + Nf ) ' Gr−Rel(G
f )

in CFibRel([1]). By proposition 2.3 (and its dual), it follows that

L (Mc + N) ' Gr(L ◦ F c)

11Note that this will not generally make this map into a relative cocartesian fibration
or a relative cartesian fibration: left and right Quillen functors are not generally functors
of relative ∞-categories.
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in coCFib([1]) and that

L (M + Nf ) ' Gr−(L ◦Gf )

in CFib([1]).
Now, by lemma 3.6, the canonical inclusions induce weak equivalences

(Mc + N)
≈←− (Mc + Nf )

≈−→ (M + Nf )

in ((RelCat∞)/min([1]))BK. Hence, applying RelCat∞
L−→ Cat∞ yields a dia-

gram

Gr(L ◦F c) ' L (Mc +N)
∼←− L (Mc +Nf )

∼−→ L (M+Nf ) ' Gr−(L ◦Gf )

in (Cat∞)/[1], so that in particular the map L (Mc+Nf )→ [1] is a bicartesian
fibration (which as a cocartesian fibration corresponds to F c while as a
cartesian fibration corresponds to Gf ). Appealing to corollary 3.4 (and its
dual), we then obtain a diagram

MJW−1
M K McJ(Wc

M)−1K L (Mc + Nf ) Nf J(Wf
N)−1K NJW−1

N K

{0} [1] {1}

∼ ∼

in which the squares are fiber inclusions and which, upon making choices of
inverses for the equivalences (the spaces of which are contractible), selects
the desired adjunction. �

We now prove a key result which we needed in the proof of theorem 1.1.

Lemma 3.6. The inclusions

(Mc + N)←↩ (Mc + Nf ) ↪→ (M + Nf )

are weak equivalences in ((RelCat∞)/min([1]))BK.

Proof. We will show that the inclusion

(Mc + N)←↩ (Mc + Nf )

is a weak equivalence in ((RelCat∞)/min([1]))BK; the other weak equivalence
follows from a dual argument. By the global universal property of Rezk
nerve (Proposition N.3.9), it suffices to show that applying the functor

RelCat∞
NR
∞−−→ sS to this map yields an equivalence. This is equivalent to

showing that for every n ≥ 0, the map

preNR
∞(Mc + Nf )n → preNR

∞(Mc + N)n

in Cat∞ becomes an equivalence upon groupoid completion. By definition,
this is the postcomposition map

Fun([n], (Mc + Nf ))W → Fun([n], (Mc + N))W.

Now, observe that since neither (Mc + Nf ) nor (Mc + N) has any weak
equivalences covering the unique non-identity map of [1], these∞-categories
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decompose as coproducts (in Cat∞) over the set of possible composite maps

[n]→ (Mc+N(f))→ [1], and moreover the map between them respects these
decompositions. Thus, it suffices to show that for each choice of structure
map [n]→ [1], the resulting map

Fun/[1]([n], (Mc + Nf ))W → Fun/[1]([n], (Mc + N))W

in Cat∞ becomes an equivalence upon applying (−)gpd : Cat∞ → S.
First of all, we obtain an equivalence of fibers over the constant map

[n]
const(0)−−−−−→ [1]. Moreover, over the constant map [n]

const(1)−−−−−→ [1], the above
map reduces to

preNR
∞(Nf ,Wf

N)n → preNR
∞(N,WN)n,

in which situation the result follows from proposition 3.3. Thus, let us
restrict our attention to the intermediate cases, supposing that our structure
map [n]→ [1] is given by 0, . . . , i 7→ 0 and i+1, . . . , n 7→ 1, where 0 ≤ i < n.
Let us write j = n− (i+ 1). Then, we can reidentify these ∞-categories as

Cc,f = Fun/[1]([n], (Mc + Nf ))W

' lim



Fun([j],Nf )W

Fun([1],N)W WN

Fun([i],Mc)W WN

{0}

{1}

{0}

F c◦{i}


and

Cc = Fun/[1]([n], (Mc + N))W

' lim



Fun([j],N)W

Fun([1],N)W WN

Fun([i],Mc)W WN

{0}

{1}

{0}

F c◦{i}



' lim


Fun([j + 1],N)W

Fun([i],Mc)W WN

{0}

F c◦{i}
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(with the evident map between them). By Theorem A (G.4.10) and Propo-
sition G.4.8, it suffices to show that for any object

x = ((m0 → · · · → mi), (F (mi)→ n0), (n0 → · · · → nj)) ∈ Cc,

the resulting comma ∞-category

D = Cc,f (
Cc

Cc)x/

has that Dgpd ' ptS.
Let us write x|N = (n0 → · · · → nj) ∈ Fun([j],N)W, and using this let us

define the ∞-category E via the commutative diagram

E

D Cc,f Fun([j],Nf )W

(
Fun([j],N)W

)
(x|N)/

(Cc)x/ Cc Fun([j],N)W

Fun([1],N)W WN

Fun([i],Mc)W WN

{0}

{1}

{0}

F c◦{i}

in which all of Cc,f , D, and E are defined as pullbacks (which is what provides
the functor D → E). By applying lemma 3.1 to the model ∞-category
Fun([j],N)proj and the object x|N ∈ Fun([j],N), we obtain that Egpd ' ptS.
Moreover, unwinding the definitions, we see that the functor D → E is a
right adjoint, with left adjoint given by taking the object

n0 · · · nj

n′0 · · · n′j

ν0

≈

νj

≈

 ∈ E
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to the object
 m0 · · · mi

m0 · · · mi

idm0

≈

idmi

≈

 ,


F (mi) n0

F (mi) n′0

idF (mi)

≈ ν0

≈

 ,


n0 · · · nj

n′0 · · · n′j

ν0

≈

νj
≈


 ∈ D

and acting in the expected way on morphisms.12 Hence, by Corollary N.1.28,
it follows that Dgpd ' ptS as well. This proves the claim. �

Building on the proof of theorem 1.1, we can now prove corollary 1.3.

Proof of corollary 1.3. We will prove that the unit of the derived adjunc-
tion

LF : MJW−1
M K� NJW−1

N K : RG
is a natural equivalence; that its counit is also a natural equivalence will
follow from a dual argument. For this, choose any x ∈ MJW−1

M K, and
choose any cofibrant representative x̃ ∈Mc. Then by theorem 1.1, F (x̃) ∈ N

represents (LF )(x) ∈ NJW−1
N K. Let us choose any fibrant replacement

F (x̃)
≈→ R(F (x̃))� ptN

in N. Then, again by theorem 1.1, G(R(F (x̃))) ∈M represents

(RG)((LF )(x)) ∈MJW−1
M K.

Moreover, it follows from the proof of theorem 1.1 that the unit map of
LF a RG at x ∈MJW−1

M K is represented by the composite map

x̃
ηFaGx̃−−−→ G(F (x̃))→ G(R(F (x̃)))

in M. As this composite map is adjoint to the original weak equivalence

F (x̃)
≈→ R(F (x̃)) in N, it must itself be a weak equivalence in M since

F a G is a Quillen equivalence. So the unit of the adjunction LF a RG is
indeed a natural equivalence. �

4. Two-variable Quillen adjunctions

Recall that a model∞-category M may be thought of as a presentation of
its localization MJW−1K. The foremost results of this paper – theorem 1.1
and corollary 1.3 – assert that certain structures on model ∞-categories
(namely, Quillen adjunctions and Quillen equivalences) descend to corre-
sponding structures on their localizations (namely, derived adjunctions and
derived adjoint equivalences). In this section, we elaborate further on this
theme: we define two-variable Quillen adjunctions (see definition 4.3), and

12Rather than exhibit all of the necessary coherences, the existence of this adjunction
can be deduced via (the dual of) Proposition T.5.2.2.8 from the evident counit transfor-
mation.
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prove that they induce canonical derived two-variable adjunctions (see theo-
rem 4.6). For a more leisurely discussion of two-variable Quillen adjunctions
(between model 1-categories), we refer the reader to [9, §4.2].

We begin with a few auxiliary definitions.

Definition 4.1. Suppose that we are given three ∞-categories C, D, and
E, along with a two-variable adjunction(

C×D
−⊗−−−−→ E , Cop × E

homl(−,−)−−−−−−−→ D , Dop × E
homr(−,−)−−−−−−−→ C

)
between them.

• We define the corresponding pushout product bifunctor

Fun([1],C)× Fun([1],D)
−�−−−−→ Fun([1],E)

to be given by

(c1 → c2)�(d1 → d2) =

(c2 ⊗ d1)
∐

(c1⊗d1)

(c1 ⊗ d2)→ d1 ⊗ d2

 .

• We define the corresponding left pullback product bifunctor

Fun([1],C)op × Fun([1],E)
hom�

l (−,−)
−−−−−−−→ Fun([1],D)

to be given by

hom�l ((c1 → c2)
◦, e1 → e2) =(

homl(c2, e1)→ homl(c2, e1) ×
homl(c1,e2)

homl(c1, e1)

)
.

• We define the corresponding right pullback product bifunctor

Fun([1],D)op × Fun([1],E)
hom�

r (−,−)
−−−−−−−→ Fun([1],C)

to be given by

hom�r ((d1 → d2)
◦, e1 → e2) =(

homr(d2, e1)→ homr(d2, e1) ×
homr(d1,e2)

homr(d1, e1)

)
.

Remark 4.2. In the situation of definition 4.1, the bifunctor C×D −⊗−−−−→ E is
a left adjoint and hence commutes with colimits. Thus, we obtain canonical
equivalences ∅C⊗D ' ∅E ' c⊗∅D for any c ∈ C and any d ∈ D. It follows
that we obtain identifications

(c1 → c2)�(∅D → d) ' (c1 → c2)⊗ d.
and

(∅C → c)�(d1 → d2) ' c⊗ (d1 → d2).
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Similarly, we obtain an identification

(∅C → c)�(∅D → d) ' (∅E → c⊗ d).

We can now given the main definition of this subsection.

Definition 4.3. Suppose that C, D, and E are model ∞-categories, and
suppose we are given a two-variable adjunction(

C×D
−⊗−−−−→ E , Cop × E

homl(−,−)−−−−−−−→ D , Dop × E
homr(−,−)−−−−−−−→ C

)
between their underlying ∞-categories. We say that these data define a
Quillen adjunction of two variables (or simply a two-variable Quillen
adjunction) if any of the following equivalent conditions is satisfied:

• the pushout product bifunctor satisfies

– CC�CD ⊂ CE,

– (W ∩C)C�CD ⊂ (W ∩C)E, and

– CC�(W ∩C)D ⊂ (W ∩C)E;

• the left pullback product bifunctor satisfies

– hom�l (CC,FE) ⊂ FD,

– hom�l ((W ∩C)C,FE) ⊂ (W ∩ F)D, and

– hom�l (CC, (W ∩ F)E) ⊂ (W ∩ F)D;

• the right pullback product bifunctor satisfies

– hom�r (CD,FE) ⊂ FC,

– hom�r ((W ∩C)D,FE) ⊂ (W ∩ F)C, and

– hom�r (CD, (W ∩ F)E) ⊂ (W ∩ F)C.

Before stating the main result of this subsection, we must introduce a
parametrized version of theorem 1.1.

Notation 4.4. Let M and N be model ∞-categories. We write

QAdjn(M;N) ⊂ Adjn(M;N)

for the full subcategory on the Quillen adjunctions, and we write

LQAdjt(M,N) ⊂ Fun(M,N), RQAdjt(N,M) ⊂ Fun(N,M)

for the full subcategory of left and right Quillen functors.13 Thus, there are
evident equivalences

LQAdjt(M,N)op
∼←− QAdjn(M;N)

∼−→ RQAdjt(N,M).

Similarly, for model ∞-categories C, D, and E, we write QAdjn(C,D;E) ⊂
Adjn(C,D;E) for the full subcategory on the two-variable Quillen adjunc-
tions.

13More precisely, in the latter definitions we might refer only to those functors which
admit right (resp. left) adjoints. The question of whether the resulting adjunction will be
a Quillen adjunction is independent of that choice, however.
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Lemma 4.5. For any model ∞-categories M and N, the construction of
theorem 1.1 assembles canonically into a functor

QAdjn(M;N)→ Adjn
(
MJW−1

M K;NJW−1
N K
)
.

We will prove lemma 4.5 below. First, we state the main result of this
section.

Theorem 4.6. Suppose that C, D, and E are model ∞-categories. Then, a
two-variable Quillen adjunction(

C×D
−⊗−−−−→ E , Cop × E

homl(−,−)−−−−−−−→ D , Dop × E
homr(−,−)−−−−−−−→ C

)
induces a canonical two-variable adjunction

CJ(WC)−1K×DJ(WD)−1K −
L
⊗−−−−→ EJ(WE)−1K ,

CJ(WC)−1Kop × EJ(WE)−1K
Rhoml(−,−)−−−−−−−−→ DJ(WD)−1K ,

DJ(WD)−1Kop × EJ(WE)−1K
Rhomr(−,−)−−−−−−−−→ CJ(WC)−1K


on localizations, whose constituent bifunctors are respectively obtained by

applying the localization functor RelCat∞
L−→ Cat∞ to the composites

Cc ×Dc ↪→ C×D
−⊗−−−−→ E ,

(Cc)op × Ef ↪→ Cop × E
homl(−,−)−−−−−−−→ D ,

(Dc)op × Ef ↪→ Dop × E
homr(−,−)−−−−−−−→ C

 .

Moreover, this construction assembles canonically into a functor

QAdjn(C,D;E)→ Adjn(CJW−1
C K,DJW−1

D K;EJW−1
E K).

We will prove theorem 4.6 at the end of this section (after the proof of
lemma 4.5).

Definition 4.7. Given a two-variable Quillen adjunction, we refer to the
resulting two-variable adjunction on localizations of theorem 4.6 as its de-
rived two-variable adjunction , and we refer to its constituent bifunctors
as the derived bifunctors of those of the original two-variable Quillen
adjunction.

Remark 4.8. A two-variable adjunction can be thought of as a special
sort of indexed family of adjunctions.14 Thus, lemma 4.5 provides a crucial
ingredient for the proof of theorem 4.6. As a result, it is essentially no more
work to prove the parametrized version of theorem 4.6 than it is to prove
the unparametrized version.

Proof of lemma 4.5. Our argument takes place in the diagram in Cat∞
of Figure 1. Our asserted functor is the middle dotted vertical arrow. More-

14The “special” here refers to the fact that functor Adjn(C,D;E) →
Fun(Cop,Adjn(D;E)) will not generally be surjective.
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over,

• the diagonal factorizations follow from Kenny Brown’s lemma (3.5),

• the vertical maps out of the targets of these factorizations are those
of Remark N.1.23,

• the vertical equivalences follow from corollary 3.4 (and its dual), and

• the vertical factorizations follow from theorem 1.1.

Thus, it only remains to show that the diagram commutes, i.e. that the two
shorter vertical dotted arrows – which by definition make the outer parts of
the diagram commute – also make the part of the diagram between them
commute.

The chief difficulty is in aligning the various sorts of fibrations over [1],
which are the setting of the proof of theorem 1.1, with our ∞-categories of
adjunctions (recall remark 2.5). We can solve this using remark 2.7. For

instance, via the equivalence N∞ : Cat∞
∼−→ CSS, we can identify the right

portion of the diagram of Figure 1 as in Figure 2.
However, we have not quite reached a symmetric state of affairs: we would

like to somehow relate this to the corresponding identifications of the nerves
of the left side of the diagram of Figure 1, but for instance we have

N∞(Fun(M,N))• ' coCFib([1]; [•]×M,N)',

and the fibers here do not match up with those in Figure 2 (nor is this
rectified by the fact that we’re actually interested in Fun(M,N)op (recall
Remark N.2.3)). To rectify this, we observe that for any n ≥ 0 and any
C,D ∈ Cat∞, we have a canonical map

N∞(Fun(C,D))n ' homCat∞([n]× C,D)→
homCat∞([n]× C, [n])× homCat∞([n]× C,D) ' homCat∞([n]× C, [n]×D)

selected by the point pr[n] ∈ homCat∞([n] × C, [n]), and this target in turn
admits a forgetful map

homCat∞([n]× C, [n]×D) ' coCFib([1]; [n]× C, [n]×D)→
Cat∞([1]; [n]× C, [n]×D).

Bootstrapping this technique up to the relative case (and piecing the maps
together for all objects [n]◦ ∈ ∆op), we obtain the diagram of Figure 3,
which provides an inclusion of the right edge of the diagram of Figure 2
into various complete Segal spaces whose constituent spaces now consists of
maps to [1] whose fibers over both objects 0 ∈ [1] and 1 ∈ [1] are “fattened
up”.

From here, we only need mimic the proof of theorem 1.1 and restrict fur-
ther along the inclusion Mc ⊂ M: as displayed in the diagram of Figure 4,
the lower part of the left edge of the diagram of Figure 3 admits an inclu-
sion into a map which is now completely self-dual. This, finally, gives us a
common home for the left and right sides of the diagram of Figure 1: its left
side
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N∞(RQAdjt(N,M))• CFib([1];M, [•]×N)'

CFib([1];M, [•]×Nf )'

CFibRel([1];M, [•]×Nf )'

CFib([1];MJW−1
M K, [•]×Nf J(Wf

N)−1K)'

CFib([1];MJW−1
M K, [•]×NJW−1

N K)'

N∞(RAdjt(MJW−1
M K,NJW−1

N K))•

∼

Figure 2. The nerve of the right portion of the diagram of Figure 1.

• admits an identification of its nerve as in Figure 2, which in turn

• admits an inclusion into certain “fattened up” objects as in Figure 3,
which finally

• connects, by restricting along the inclusion Nf ⊂ N, to the very
same map

RelCat∞([1]; [•]×Mc, [•]×Nf )'

Cat∞([1]; [•]×MJW−1
M K, [•]×Nf J(Wf

N)−1K)'

as that on the left edge in Figure 4.
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Cat∞([1]; [•]×M, [•]×N)'

CFib([1];M, [•]×N)'

Cat∞([1]; [•]×M, [•]×Nf )'

CFib([1];M, [•]×Nf )'

RelCat∞([1]; [•]×M, [•]×Nf )'

CFibRel([1];M, [•]×Nf )'

Cat∞([1]; [•]×MJW−1
M K, [•]×Nf J(Wf

N)−1K)'

CFib([1];MJW−1
M K, [•]×Nf J(Wf

N)−1K)'

Cat∞([1]; [•]×MJW−1
M K, [•]×NJW−1

N K)'

CFib([1];MJW−1
M K, [•]×NJW−1

N K)'

∼

∼

Figure 3. An inclusion of the right edge of the diagram of Figure 2.

It is now simply a matter of unwinding the definitions to see that the middle
part of the diagram in Figure 1 does indeed commute: all the localization
functors admit full inclusions into the one indicated just above, and the
∞-category

Adjn(MJW−1
M K;NJW−1

N K)

includes as a full subcategory of its target by, after breaking symmetry, once
again appealing to the trick of selecting a canonical projection map to [n] ∈
Cat∞ (though the entire point is that the two different ways of obtaining
this inclusion are canonically equivalent). This proves the claim. �
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RelCat∞([1]; [•]×Mc, [•]×Nf )'

RelCat∞([1]; [•]×M, [•]×Nf )'

Cat∞([1]; [•]×MJW−1
M K, [•]×Nf J(Wf

N)−1K)'

Cat∞([1]; [•]×MJW−1
M K, [•]×Nf J(Wf

N)−1K)'

Cat∞([1]; [•]×MJW−1
M K, [•]×NJW−1

N K)'

∼

∼

∼

Figure 4. The restriction along Mc ⊂ M of the lower part
of the left edge of the diagram of Figure 3.

Proof of theorem 4.6. By remark 4.2, for any c ∈ Cc the induced adjunc-
tion c⊗− : D� E : homl(c,−) is a Quillen adjunction. Thus, we obtain a
factorization

Fun(Cop,Fun(Dop × E, S)) Fun(Cop,Adjn(D;E))

Adjn(C,D;E) Fun((Cc)op,Adjn(D;E))

QAdjn(C,D;E) Fun((Cc)op,QAdjn(D;E)),

which we compose the functor (Cc)op → QAdjn(D,E) selected by our two-
variable Quillen adjunction with the canonical functor of lemma 4.5 to obtain
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a composite functor

(Cc)op → QAdjn(D;E)→ Adjn(DJW−1
D K;EJW−1

E K).

We claim that this composite functor takes weak equivalences to equiv-
alences. To see this, suppose first that we are given an acyclic cofibration

c1
≈
� c2 in Cc. Again by remark 4.2, for any d ∈ Dc the induced adjunction

−⊗ d : C� E : homr(d,−)

is a Quillen adjunction, so that in particular we obtain an acyclic cofibration

c1 ⊗ d
≈
� c2 ⊗ d

is an acyclic cofibration in E. Since by theorem 1.1 the derived left adjoints of
these Quillen adjunctions D� E are computed by localizing the composite
Dc ↪→ D→ E, it follows that the induced map (c1 ⊗−)→ (c2 ⊗−) in

LQAdjt(D,E) ' QAdjn(D;E)op

does indeed descend to an equivalence in

LAdjt(DJW−1
D K,EJW−1

E K) ' Adjn(DJW−1
D K;EJW−1

E K)op.

The claim now follows from Kenny Brown’s lemma (3.5). We therefore
obtain a factorization

(Cc)op Adjn(DJW−1
D K;EJW−1

E K)

(CcJ(Wc
C)−1K)op

which, appealing to Remark N.1.23, in fact arises from the induced factor-
ization in the diagram

QAdjn(C,D;E) Fun((Cc)op,Adjn(DJW−1
D K;EJW−1

E K))

Fun((Cc)op,min(Adjn(DJW−1
D K;EJW−1

E K)))Rel

Fun(CcJ(Wc
C)−1K,Adjn(DJW−1

D K;EJW−1
E K)).
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Thus, it only remains to show that we have a further factorization

QAdjn(C,D;E) Fun(CcJ(Wc
C)−1K,Adjn(DJW−1

D K;EJW−1
E K))

Fun(CJW−1
C K,Adjn(DJW−1

D K;EJW−1
E K))

Adjn(CJW−1
C K,DJW−1

D K;EJW−1
E K)

∼

which does not depend on our having privileged C among the model ∞-
categories C, D, and E participating in our two-variable Quillen adjunction.
We accomplish these tasks simultaneously by replacing C with D in the
above arguments: by essentially the same argument as the one given in the
proof of theorem 4.6 for why the diagram of Figure 1 commutes, one sees
that we have a commutative square

QAdjn(C,D;E)

Fun((CJW−1
C K)op,Adjn(DJW−1

D K;EJW−1
E K))

Fun((DJW−1
D K)op,Adjn(CJW−1

C K;EJW−1
E K))

Fun((CJW−1
C K)op × (DJW−1

D K)op × EJW−1
E K, S),

which shows

• that those trifunctors in the image of either of the two (equivalent)
composites are indeed co/representable in all variables and hence
define two-variable adjunctions, and

• that the resulting functor

QAdjn(C,D;E)→ Adjn(CJW−1
C K,DJW−1

D K;EJW−1
E K)
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is indeed completely independent of the choice of C, since rotating
the two-variable (Quillen) adjunctions involved – which really just
amounts to reordering and passing to opposites as appropriate –
clearly does not affect the induced functor either. �

5. Monoidal and symmetric monoidal model ∞-categories

In this section, we show that the localization of a (respectively symmet-
ric) monoidal model ∞-category is canonically closed (respectively symmet-
ric) monoidal. For a more leisurely discussion of monoidal and symmetric
monoidal model categories, we again refer the reader to [9, §4.2].

Definition 5.1. Let V ∈ Alg(Cat∞) be a closed monoidal ∞-category, and
suppose that V is equipped with a model structure. We say that these data
make V into a monoidal model ∞-category if they satisfy the following
evident ∞-categorical analogs of the usual axioms for a monoidal model
category.

MM∞1 (pushout product) The underlying two-variable adjunction(
V× V

−⊗−−−−→ V , Vop × V
homl(−,−)−−−−−−−→ V , Vop × V

homr(−,−)−−−−−−−→ V

)
is a two-variable Quillen adjunction.

MM∞2 (unit) There exists a cofibrant replacement ∅V � Q1V
≈→ 1V such

that the functors

V
(Q1V→1V)⊗−−−−−−−−−−→ Fun([1],V)

and

V
−⊗(Q1V→1V)−−−−−−−−−→ Fun([1],V)

take cofibrant objects to weak equivalences.

Remark 5.2. The unit axiom MM∞2 is automatically satisfied whenever
the unit object 1V ∈ V is itself cofibrant.

We have the following key example.

Example 5.3. The model∞-category sSKQ of Theorem S.4.4 is a monoidal
model ∞-category with respect to its cartesian symmetric monoidal struc-
ture:

• that the underlying two-variable adjunction is a Quillen adjunction
follows from (an identical argument to) the proof of [9, Lemma 4.2.4]
(see [9, Corollary 4.2.5]), and

• the unit object ptsS ' ∆0 ∈ sSKQ is cofibrant.

We then have the following result.
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Proposition 5.4. Suppose that V is a monoidal model ∞-category. Then
the derived two-variable adjunction of its underlying two-variable Quillen
adjunction itself underlies a canonical closed monoidal structure on its lo-
calization VJW−1K.

Proof. Observe that the monoidal product preserves cofibrant objects. So
the underlying non-unital monoidal structure on V restricts to one on Vc.
Moreover, the structure maps for Vc ∈ Algnu(Cat∞) preserve weak equiv-
alences by Kenny Brown’s lemma (3.5), so we obtain a natural lift to
Vc ∈ Algnu(RelCat∞).

Now, the localization functor is symmetric monoidal by Lemma N.1.20, so
that we obtain VcJ(Wc)−1K ∈ Algnu(Cat∞). To see that this can in fact be
canonically promoted to a unital monoidal structure, we use the guaranteed

cofibrant replacement ∅V � Q1V
≈→ 1V. First of all, by assumption, the

resulting natural transformations (Q1V ⊗−)→ (1V ⊗−) and (−⊗Q1V)→
(− ⊗ 1V) in Fun(V,V) restrict to natural weak equivalences in Fun(Vc,V).
As the unit object comes equipped with equivalences

(1V ⊗−) ' idV ' (−⊗ 1V),

it follows that the restrictions along Vc ⊂ V of these functors all lie in the
full subcategory

Fun(Vc,Vc)Rel ⊂ Fun(Vc,Vc) ⊂ Fun(Vc,V),

where they give rise to a diagram

(Q1V ⊗−)
≈→ (1V ⊗−) ' idVc ' (−⊗ 1V)

≈← (−⊗Q1V)

of natural weak equivalences. Applying the canonical functor

Fun(Vc,Vc)Rel → Fun(VcJ(Wc)−1K,VcJ(Wc)−1K)

of Remark N.1.23 then yields a diagram(
Q1V

L
⊗−

)
∼−→ idVcJ(Wc)−1K

∼←−
(
−

L
⊗Q1V

)
of natural equivalences. Thus, the map ptCat∞

Q1V−−→ VcJ(Wc)−1K is a
quasi-unit (in the sense of Definition A.5.4.3.5) for the non-unital monoidal
∞-category VcJ(Wc)−1K ∈ Algnu(Cat∞). It then follows from Theorem
A.5.4.3.8 (and Propositions A.4.1.2.15 and A.5.4.3.2) that there exists a
unique refinement VcJ(Wc)−1K ∈ Alg(Cat∞) to a monoidal ∞-category.15

The assertion is now clear: we have exhibited a canonical monoidal struc-
ture on VcJ(Wc)−1K ' VJW−1K whose underlying monoidal product is pre-
cisely the left derived bifunctor of the original monoidal product on V, and
the derived bifunctors Rhoml(−,−) and Rhomr(−,−), being participants

15Note that Definition A.5.4.3.5 only requires the existence of a quasi-unit; the quasi-
unit itself is not part of the data.
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in the derived two-variable adjunction, have no choice but to define left and
right internal hom-objects. �

We also have the following variant.

Definition 5.5. Let V ∈ CAlg(Cat∞) be a closed symmetric monoidal ∞-
category, and suppose that V is equipped with a model structure. We say
that these data make V into a symmetric monoidal model ∞-category
if they make the underlying closed monoidal ∞-category V ∈ Alg(Cat∞)
into a monoidal model ∞-category.

We then have the following corresponding result.

Proposition 5.6. Let V be a symmetric monoidal model ∞-category. Then
the derived two-variable adjunction of its underlying two-variable Quillen
adjunction itself underlies a canonical closed symmetric monoidal structure
on its localization VJW−1K.

Proof. In light of proposition 5.4, it only remains to show that the symmet-
ric monoidal structure on V descends canonically to one on VJW−1K (extend-
ing its monoidal structure). Just as in the proof of that result, the under-
lying datum V ∈ CAlgnu(Cat∞) restricts to give Vc ∈ CAlgnu(Cat∞), which
admits a natural lift Vc ∈ CAlgnu(RelCat∞), and then the fact that the local-
ization functor is symmetric monoidal yields VcJ(Wc)−1K ∈ CAlgnu(Cat∞).
The existence of a canonical lift VcJ(Wc)−1K ∈ CAlg(Cat∞) now follows
from Corollary A.5.4.4.7. �

Remark 5.7. In the special case that our (resp. symmetric) monoidal
model ∞-category V has that its unit object is cofibrant, then its local-
ization VJW−1K obtains a canonical (resp. symmetric) monoidal structure
by Proposition A.4.1.3.4. However, this result does not alone guarantee a
closed (resp. symmetric) monoidal structure, as does proposition 5.4 (resp.
proposition 5.6).

Remark 5.8. Though they presumably exist, we do not pursue any notions
of “O-monoidal model ∞-category” for other ∞-operads O here.

Remark 5.9. In Definitions 5.1 and 5.5, one could remove the requirement
that there exist a suitable cofibrant replacement of the unit object (or even
that there exist a unit object at all); then, Propositions 5.4 and 5.6 would
admit non-unital variants.

6. Enriched model ∞-categories

In this final section, we show that the localization of a model ∞-category
that is compatibly enriched and bitensored over a closed monoidal model
∞-category is itself enriched and bitensored over the localization of the
enriching model ∞-category. For a more leisurely discussion of enriched
model categories, we yet again refer the reader to [9, §4.2] (beginning with
[9, Definition 4.2.18]).
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Definition 6.1. Let V ∈ Alg(Cat∞) be a monoidal model ∞-category, let
M ∈ RModV(Cat∞) be a right V-module (with respect to its underlying
monoidal ∞-category structure) whose underlying action bifunctor extends
to a two-variable adjunction(

M× V
−�−−−−→M , Mop ×M

homM(−,−)
−−−−−−−→ V , Vop ×M

−t−−−−→M

)
,

and suppose that M is equipped with a model structure. We say that these
these data make M into a V-enriched model ∞-category (or simply a
V model ∞-category) if they satisfy the following evident ∞-categorical
analogs of the usual axioms for an enriched model category.

EM∞1 (pushout product) The above two-variable adjunction is a two-variable
Quillen adjunction.

EM∞2 (unit) There exists a cofibrant replacement ∅V

≈
� Q1V

≈→ 1V such
that the functor

M
−�(Q1V→1V)−−−−−−−−−→ Fun([1],M)

takes cofibrant objects to weak equivalences.

We use the same terminology in the case that V ∈ CAlg(Cat∞) is in fact a
symmetric monoidal model ∞-category.

Definition 6.2. As a special case of definition 6.1, we refer to a sSKQ-
enriched model ∞-category as a simplicio-spatial model ∞-category
(recall example 5.3).

Example 6.3. Given a model ∞-category M, the resolution model ∞-
category sMres (see Example S.2.7) is simplicio-spatial, much as the classical
resolution model structure is simplicial (see [6, 3.1 and 5.3]).

Example 6.4. If Ctriv is an ∞-category equipped with the trivial model
structure (see Example S.2.2) and the underlying ∞-category C is biten-
sored, then Ctriv can be considered as a simplicio-spatial model ∞-category
in which

• the co/tensoring over sS is obtained by precomposition with |−| :
sS→ S, and

• the internal hom is obtained by postcomposition with const : S ↪→
sS.

Example 6.5. If M is a simplicial model category (i.e. a sSetKQ-enriched
model category), then M can also be considered as a simplicio-spatial model
∞-category in which

• the co/tensoring over sS is obtained by precomposition with πlw0 :
sS→ sSet, and

• the internal hom is obtained by postcomposition with disclw : sSet ↪→
sS.
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Example 6.6. if M is a simplicio-spatial model ∞-category, then the lev-
elwise action sM�lw sS→ sM given by (x•�Y )n = xn�Y makes sMReedy

into a simplicio-spatial model ∞-category.

We now show that the structure of an enriched model ∞-category de-
scends to localizations as claimed.

Proposition 6.7. Suppose that M is a V-enriched model ∞-category. Then
the derived two-variable adjunction of its underlying two-variable Quillen ad-
junction itself underlies a canonical enrichment and bitensoring of MJW−1

M K
over VJW−1

V K.

Proof. The proof is almost identical to that of proposition 5.4, only now
we replace the appeal to Theorem A.5.4.3.8 with an appeal to (the dual of)
Proposition A.5.4.3.16. �

Remark 6.8. Let M be a simplicio-spatial model ∞-category. As being
bitensored over S is actually a condition (rather than additional structure),
it follows that the derived bitensoring over sSJW−1

KQK ' S of MJW−1K guar-
anteed by proposition 6.7 must indeed be a bitensoring in the usual sense.
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