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E∞ AUTOMORPHISMS OF MOTIVIC MORAVA E-THEORIES

AARON MAZEL-GEE

Abstract. We apply Goerss–Hopkins obstruction theory for motivic spectra to study the motivic Morava
E-theories. We find that they always admit E∞ structures, but that these may admit “exotic” E∞ auto-
morphisms not coming from the usual Morava stabilizer group.

0. Introduction

0.1. Overview. In this short note, we equip the motivic Morava E-theory spectra with canonical E∞

structures, and compute their automorphisms as E∞ ring spectra. We find that these automorphism groups
are (homotopically) discrete, but that they are apparently distinct from the usual Morava stabilizer group.
We refer the reader to Theorem 1.1 for a precise statement of our main result, and to Remark 1.4 for a
discussion of these automorphism groups. In Remark 1.5, we explain the precise relationship between our
work and that of Naumann–Spitzweck–Østvær [NSØ15] on motivic algebraic K-theory (i.e. in the height-1
case).

Our proof is patterned directly on that of Goerss–Hopkins [GH04, GH] for the ordinary (i.e. non-motivic)
Morava E-theory spectra (which is based on much prior work, notably that of Hopkins–Miller [Rez98]).
Whereas their proof is based in Goerss–Hopkins obstruction theory for ordinary spectra, our proof uses our
generalization [MG] of Goerss–Hopkins obstruction theory to an arbitrary presentably symmetric monoidal
stable ∞-category.

The most immediate consequence of the present work is that it endows the motivic cohomology theories
represented by the motivic Morava E-theories with the rich algebraic structure of power operations. However,
we also view it as a first step towards a moduli-theoretic construction of a motivic spectrum mmf of motivic

modular forms, in analogy with the ordinary spectrum tmf of topological modular forms [DFHH14].1 As
the construction of tmf has been highly influential in chromatic homotopy theory, so would the construction
of mmf significantly advance the chromatic approach to motivic homotopy theory, which is a highly active
area of research [Voe98, HK01, Vez01, Bor03, Hor, LM07, PPR08, NSØ09b, NSØ09a, Bal10, Isa09, Isa, And,
Hoy15a, Hor18, Joa, HO, Ghe].

There has been much recent interest in “genuine” operadic structures, e.g. genuineG-spectra with multipli-
cations indexed by maps of finite G-sets (instead of just finite sets) [BH15, HH, BHb, BHc, Rub, BP, GW18],
as well as analogous structures in motivic homotopy theory [BHa]. We do not contend with such structures
here. However, we are optimistic that our generalization of Goerss–Hopkins obstruction theory admits a
fairly direct enhancement to one that would handle them in a formally analogous way. Thereafter, it seems
quite plausible that the present work would admit a straightforward extension to give “motivically genuine”
E∞ structures on the motivic Morava E-theory spectra.

0.2. Conventions.

• We write Spmot for the (presentably symmetric monoidal stable) ∞-category of motivic spectra.2

This comes equipped with a distinguished group of invertible objects

G = {Si,j}i,j∈Z
∼= Z× Z,

Date: January 18, 2019.
1The works [Ric, GIKR] take a different approach, producing motivic spectra over R and C whose cohomologies coincide

with that expected of mmf (in analogy with tmf). These constructions are indirect, and relatively specific to the chosen base
fields; in particular, the resulting motivic spectra are not manifestly related to any theory of elliptic motivic spectra.

2We implicitly work over a regular noetherian base scheme of finite Krull dimension, but this is only in order to employ
the results of [NSØ09b]. We will additionally use a result of [GS09], which requires a (not necessarily regular) noetherian base
scheme of finite Krull dimension.
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the motivic sphere spectra: the unit object is 1 = S0,0, its categorical suspension is Σ1 = S1,0, and
then by definition we have Σ∞Gm = S1,1. In particular, it follows that S2,1 = Σ∞P1.

• For any X ∈ Spmot, we write X∗∗ = π∗∗X for its bigraded homotopy groups, i.e. Xi,j = πi,jX =
[Si,j , X ]Spmot . Additionally, we write X∗ = π∗X for its (2, 1)-line of homotopy groups, i.e. Xi =

πiX = [S2i,i, X ]Spmot .

• We write Spmot
cell ⊂ Spmot for the coreflective subcategory of cellular motivic spectra. This is the

subcategory generated under colimits by the motivic sphere spectra. It can also be characterized as
the subcategory of colocal objects for the “bigraded homotopy groups” functor; in particular, within
this subcategory, bigraded homotopy groups detect equivalences.

• We fix a finite field k of characteristic p > 0, and we fix a formal group law G0 over k of finite height
n.

• We write E(k,G0) for the corresponding Lubin–Tate deformation ring, we write m ⊂ E(k,G0) for
its unique maximal ideal, and we fix an isomorphism E(k,G0)/m ∼= k.

• We fix a versal deformation G of G0 over E(k,G0). To be precise, G is a formal group law over
E(k,G0), and pushes forward to G0 along the now-canonical map E(k,G0) → k. Geometrically, this
corresponds to a pullback

G0 G

Spec(k) Spf(E(k,G0))

of formal groups (where we notationally identify formal group laws with their underlying formal
groups).

• We write

Etop = Etop
k,G0

∈ Sp

for the (ordinary) Morava E-theory spectrum corresponding to the pair (k,G0), coming from the
Landweber exact functor theorem (see e.g. [Rez98, Theorem 6.4 and 6.9]) applied to the formal
group law G over E(k,G0).

3 To be precise, we have a chosen isomorphism

Etop
∗

∼= E(k,G0)[u
±]

(with |u| = 2), and the degree-(−2) formal group law G on Etop
∗ coming from its complex orientation

corresponds to G via the unit u ∈ Etop
2 , considered as a degree-0 formal group law on Etop

∗ .

• We write

E = Emot = Emot
k,G0

∈ Spmot
cell

for the motivic Morava E-theory spectrum corresponding to the pair (k,G0) coming from the motivic
Landweber exact functor theorem of [NSØ09b, Theorem 8.7]. This is cellular by construction, and
comes equipped with a quasi-multiplication (i.e. a multiplication up to phantom maps). Moreover,
writing MGL ∈ Spmot for the algebraic bordism spectrum and MU ∈ Sp for the complex bordism
spectrum, we have isomorphisms

E∗∗
∼= MGL∗∗ ⊗MU∗

Etop
∗

and

E∗∗E ∼= E∗∗ ⊗Etop
∗

Etop
∗ Etop,

and the structure maps of the Hopf algebroid (E∗∗, E∗∗E) are tensored up from those of (E∗, E∗E).

3This is known to be E∞, by [GH04, Corollary 7.6] (which is precisely the result we generalize here).
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1. E∞ automorphisms of motivic Morava E-theories

We now state the main result.

Theorem 1.1. The motivic Morava E-theory spectrum E = Emot
k,G0

has a unique E∞ structure refining

the ring structure on its bigraded homotopy groups, and as such generates a subgroupoid of CAlg(Spmot)
equivalent to

B(AutCAlg(Comod(E∗∗,E∗∗E))(E∗∗E)).

In particular, its space of automorphisms is discrete.

Lemma 1.2. Any Landweber exact motivic spectrum satisfies Adams’s condition.

Proof. The proof is almost identical to that of [Rez98, Proposition 15.3]. First of all, the general statement
follows from the universal case of MGL. In turn, we can present MGL as a filtered colimit of Thom spectra
over finite Grassmannians, which are then dualizable. Let us write this as MGL ≃ colimα MGLα.

4 So,
it only remains to verify that MGL∗∗(D(MGLα)) is projective as an MGL∗∗-module. In bidegree (0, 0),
we observe that MGL∗∗(D(MGLα)) ∼= (MGL∗∗MGLα)

∨, so that here the claim follows from the algebra
presentation of [GS09, Proposition 2.19], which in particular implies (by inducting on the dimension of the
Grassmannians) that this algebra itself is actually free as an MGL∗∗-module. From here, in an arbitrary
bidegree (i, j) we then compute that

MGLi,j(D(MGLα)) ∼= MGL0,0(S
−i,−j ⊗D(MGLα))

∼= MGL0,0(S
−i,−j)⊗MGL0,0 MGL0,0(D(MGLα))

(using the Künneth theorem). �

Observation 1.3. By definition, E∗∗-localization in Spmot is the localization determined by the E∗∗-acyclics,
i.e. those objects Z such that E∗∗Z ∼= 0. Note that such motivic spectra Z may not be E-acyclic, i.e. it
might still be the case that E ⊗ Z 6≃ 0. On the other hand, if Z is also cellular, since E is cellular then
so is E ⊗ Z (since Spmot

cell is a colocalization of Spmot and the symmetric monoidal structure commutes with
colimits in each variable). Thus, when restricted to cellular motivic spectra, the localizations LE and LE∗∗

agree. This is summarized by the diagram

LE∗∗
(CAlg(Spmot

cell )) LE∗∗
(CAlg(Spmot))

LE(CAlg(Sp
mot
cell )) LE(CAlg(Sp

mot))

CAlg(Spmot
cell ) CAlg(Spmot)

∼

of ∞-categories.

Proof of Theorem 1.1. The proof is formally identical to that of [GH04, Corollary 7.6], only we work in
the ∞-category Spmot

cell : the key pieces of input are [MG, Theorems 8.5, 8.8, and 8.9], which are respectively
generalizations of [GH04, Proposition 5.2, Proposition 5.5, and Theorem 5.8]. The passage from the ordinary
case to the motivic case runs as follows.

First of all, a priori we only have a quasi-multiplication on E ∈ Spmot
cell . However, this suffices to give all

the required structure on its bigraded E-homology groups: these are by definition homotopy classes of maps
out of bigraded spheres, which by definition cannot detect phantom maps.

4Explicitly, D(MGLα) is also a Thom spectrum via the formula D(Xξ) ≃ X−ξ .
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Next, a priori, Goerss–Hopkins obstruction theory in Spmot
cell using the homology theory E∗∗ computes a

moduli space in LE∗∗
(CAlg(Spmot

cell )). However, as explained in Observation 1.3, we have an equivalence

LE∗∗
(CAlg(Spmot

cell )) ≃ LE(CAlg(Sp
mot
cell )),

and the usual proof that E is E-local then applies (see e.g. [Rav84, Proposition 1.17]). Thus we have E ∈
LE∗∗

Spmot
cell , and hence the moduli space that we construct inside of CAlg(LE∗∗

(Spmot
cell )) ≃ LE∗∗

(CAlg(Spmot
cell ))

is that of an object whose underlying motivic spectrum is indeed E itself.
Now, let us turn to the remainder of the proof of [GH04, Corollary 7.6] and its ingredients. We do not

carry over the last line (which identifies the relevant automorphism group with an automorphism group in a
category of formal group laws).5 However, everything else used there is entirely algebraic, and works equally
well replacing ordinary gradings with bigradings. Note that the gradings appearing in [GH04, §6] arise from
the external simplicial direction (and the internal gradings play no real role); note too that the “Dyer–Lashof
operations” arising there arise from the algebraic theory given in [May70] (and in particular have nothing
whatsoever to do with operations in motivic homology). �

Remark 1.4. Using various adjunctions as well as the fact that all morphisms respect bigradings, one can
identify the endomorphism monoid

EndCAlg(Comod(E∗∗,E∗∗E))(E∗∗E)

(the classifying space of whose maximal subgroup appears in the statement of Theorem 1.1) with the hom-set

homCAlg(Mod
E

top
∗

)(E
top
∗ Etop,MGL∗ ⊗MU∗

Etop
∗ ).

This appears to fall under the auspices of [Rez98, §17], and thus ought to have a moduli-theoretic interpre-
tation.

A reasonable guess would be that, if we define the map χ via the pullback diagram

Spec(Emot
∗ ) Spec(Etop

∗ )

Spec(MGL∗) Spec(MU∗),

χ

then the group in question should be the group of (strict) automorphisms of the formal group law χ∗G over

Emot
∗ = MGL∗ ⊗MU∗

Etop
∗ .

However, we have not managed to verify this claim. If it holds, however, it would be in keeping with the
general philosophy that motivic homotopy theory should be thought of as a flavor of parametrized homotopy
theory: the pullback of a sheaf over a small space to a larger one will generally admit more automorphisms
than the original sheaf itself.

In any case, there is an evident map to this automorphism group from the Morava stabilizer group, which
therefore acts on the object Emot ∈ CAlg(Spmot) as well. Moreover, this map should be an inclusion whenever
the map MU∗ → MGL∗ is (indeed, in certain cases the latter is even an isomorphism (see [Hoy15b])).

Remark 1.5. in [NSØ15], Naumann–Spitzweck–Østvær prove that the motivic algebraic K-theory spectrum
KGL (over a noetherian base scheme of finite Krull dimension) admits a unique E∞ structure refining
the canonical multiplication on its represented motivic cohomology theory. Meanwhile, Goerss–Hopkins
obstruction theory takes a commutative algebra in comodules and returns the moduli space of realizations.
These are not directly comparable: the former addresses the question of E∞ structures on a given object,
while the latter addresses the question of the ∞-groupoid of objects that realize some chosen algebraic
datum. Moreover, [NSØ15] addresses KGL as an integral object, whereas Theorem 1.1 only applies to
Emot
k,Ĝm

≃ KGL∧
p .

5However, see Remark 1.4.
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To clarify, for a variable object X ∈ Spmot
cell we locate both the main theorem of [NSØ15] as well as

Theorem 1.1 in the diagram

homOp(Comm,EndSpmot
cell

(X))

homOp(Comm,Endho(Spmot
cell )

(X))) CAlg(Comod(E∗∗,E∗∗E))
≃

S/LE∗∗
(CAlg(Spmot

cell ))

E∗∗

M (−)

(where End denotes the endomorphism operad): the two downwards arrows are the settings for the respective
theorems.

• On the one hand, takingX = KGL, there is a canonical point in the set homOp(Comm,Endho(Spmot
cell )

(KGL))

which selects the standard multiplication on KGL in ho(Spmot
cell ). The main theorem of [NSØ15] can

then be interpreted as saying that the fiber over this point is nonempty and contractible.

• On the other hand, Goerss–Hopkins obstruction takes an algebraic object in CAlg(Comod(E∗∗,E∗∗E))
≃

and provides a spectral sequence converging to the homotopy groups of its moduli space of realizations
(which in our case collapses), considered as a subgroupoid of the ∞-category LE∗∗

(CAlg(Spmot
cell )).

The inclusion of this subgroupoid is the target of this algebraic object under the lower vertical map.

A toy example illustrating the difference between these two approaches is the difference between E∞

structures on a fixed two-element set (of which there are four) and the moduli space of such objects in
CAlg(Set) (which consists of two discrete components).6 These two approaches are both explored in the
more sophisticated setting of algebras over an operad in [Rez96].

Note that the horizontal map in this diagram may not be injective: it is a priori possible that distinct
multiplications on X in ho(Spmot

cell ) might induce the same commutative algebra object structure on E∗∗X ∈
Comod(E∗∗,E∗∗E). This represents a further obstruction to a direct comparison of these two approaches to
the realization problem.
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Hohnhold, Michael J. Hopkins, Jacob Lurie, Mark Mahowald, Carl Mautner, Haynes R. Miller, and Corbett Red-
den, topological modular forms, Mathematical Surveys and Monographs, vol. 201, American Mathematical Society,
Providence, RI, 2014.

[GH] Paul G. Goerss and Michael J. Hopkins, Moduli problems for structured ring spectra, available at
www.math.northwestern.edu/∼pgoerss.

[GH04] , Moduli spaces of commutative ring spectra, Structured ring spectra, London Math. Soc. Lecture Note Ser.,
vol. 315, Cambridge Univ. Press, Cambridge, 2004, pp. 151–200.

[Ghe] Bogdan Gheorghe, Exotic motivic periodicities, available at arXiv:1709.00915, v1.
[GIKR] Bogdan Gheorghe, Daniel C. Isaksen, Achim Krause, and Nicolas Ricka, C-motivic modular forms, available at

arXiv:1810.11050, v1.

6However, this analogy fails in that the upper vertical map is already an equivalence since Set
∼

−→ ho(Set).



6 AARON MAZEL-GEE

[GS09] David Gepner and Victor Snaith, On the motivic spectra representing algebraic cobordism and algebraic K-theory,
Doc. Math. 14 (2009), 359–396.

[GW18] Javier J. Gutiérrez and David White, Encoding equivariant commutativity via operads, Algebr. Geom. Topol. 18
(2018), no. 5, 2919–2962.

[HH] Michael A. Hill and Michael J. Hopkins, Equivariant symmetric monoidal structures, available at arXiv:1610.03114,
v1.

[HK01] Po Hu and Igor Kriz, Some remarks on Real and algebraic cobordism, K-Theory 22 (2001), no. 4, 335–366.
[HO] Jeremiah Heller and Kyle Ormsby, Primes and fields in stable motivic homotopy theory, available at

arXiv:1608.02876, v2.
[Hor] Jens Hornbostel, Chromatic motivic homotopy theory, available at https://faculty.math.illinois.edu/K-

theory/0642/Motchrom2.pdf.
[Hor18] , Some comments on motivic nilpotence, Trans. Amer. Math. Soc. 370 (2018), no. 4, 3001–3015.
[Hoy15a] Marc Hoyois, From algebraic cobordism to motivic cohomology, J. Reine Angew. Math. 702 (2015), 173–226.
[Hoy15b] , From algebraic cobordism to motivic cohomology, J. Reine Angew. Math. 702 (2015), 173–226.
[Isa] Daniel C. Isaksen, The homotopy of C-motivic modular forms, available at arXiv:1811.07937, v1.
[Isa09] , The cohomology of motivic A(2), Homology Homotopy Appl. 11 (2009), no. 2, 251–274.
[Joa] Ruth Joachimi, Thick ideals in equivariant and motivic stable homotopy categories, available at arXiv:1503.08456,

v1.
[LM07] M. Levine and F. Morel, Algebraic cobordism, Springer Monographs in Mathematics, Springer, Berlin, 2007.
[May70] J. Peter May, A general algebraic approach to Steenrod operations, The Steenrod Algebra and its Applications

(Proc. Conf. to Celebrate N. E. Steenrod’s Sixtieth Birthday, Battelle Memorial Inst., Columbus, Ohio, 1970),
Lecture Notes in Mathematics, Vol. 168, Springer, Berlin, 1970, pp. 153–231.

[MG] Aaron Mazel-Gee, Goerss–Hopkins obstruction theory for ∞-categories, available at arXiv:1812.07624, v1.
[NSØ09a] Niko Naumann, Markus Spitzweck, and Paul Arne Østvær, Chern classes, K-theory and Landweber exactness over

nonregular base schemes, Motives and algebraic cycles, Fields Inst. Commun., vol. 56, Amer. Math. Soc., Providence,
RI, 2009, pp. 307–317.

[NSØ09b] , Motivic Landweber exactness, Doc. Math. 14 (2009), 551–593.
[NSØ15] , Existence and uniqueness of E∞ structures on motivic K-theory spectra, J. Homotopy Relat. Struct. 10

(2015), no. 3, 333–346.
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