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Quillen adjunctions induce adjunctions of
quasicategories

Aaron Mazel-Gee

Abstract. We prove that a Quillen adjunction of model categories
(of which we do not require functorial factorizations and of which we
only require finite bicompleteness) induces a canonical adjunction of
underlying quasicategories.
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0. Introduction

Background and motivation. Broadly speaking, the methods of abstract
homotopy theory can be divided into two types: those that work internally
to a given homotopy theory, and those that work externally with all ho-
motopy theories at once. By far the most prominent method of the first
type is the theory of model categories, introduced by Quillen in his seminal
work [Qui67]. On the other hand, there are now a plethora of models for
“the homotopy theory of homotopy theories”, all of them equivalent in an
essentially unique manner (reviewed briefly in §1); for the moment, we will
refer to such objects collectively as “∞-categories”.

However, there is some apparent overlap between these two situations:
model categories do not exist in isolation, but can be related by Quillen
adjunctions and Quillen equivalences. We are thus led to a natural question.

Question 0.1. What∞-categorical phenomena do Quillen adjunctions and
Quillen equivalences encode?
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Of course, one expects that Quillen adjunctions induce “adjunctions of
∞-categories” and that Quillen equivalences induce “equivalences of ∞-
categories”. However, it turns out that actually making these statements
precise is a subtle task. On the other hand, it is made easier by imposing
various additional assumptions or by settling for more modest conclusions,
and hence there already exist an assortment of partial results in this direc-
tion. We defer a full history to §A; the state of affairs can be summarized
as follows.

• Quillen equivalences are known to induce weak equivalences of sSet-
enriched categories (where sSet denotes the category of simplicial
sets, and by “weak equivalence” we mean in the Bergner model
structure).
• Quillen adjunctions are known to induce adjunctions of homotopy

categories, and are more-or-less known to induce adjunctions of
ho(sSetKQ)-enriched homotopy categories (where sSetKQ denotes the
category of simplicial sets equipped with the standard Kan–Quillen
model structure).
• Quillen adjunctions between model categories that admit suitable

co/fibrant replacement functors are more-or-less known to induce
adjunctions of quasicategories.
• Simplicial Quillen adjunctions between simplicial model categories

are known to induce adjunctions of quasicategories, and moreover
certain Quillen adjunctions can be replaced by simplicial Quillen
adjunctions of simplicial model categories.

Thus, in order to fully unify the internal and external approaches to
abstract homotopy theory, it remains to show that an arbitrary Quillen ad-
junction induces an adjunction of ∞-categories. The purpose of the present
paper is to prove this assertion when we take the term “∞-category” to
mean “quasicategory”.1

Since model categories have figured so foundationally into much of the
development of axiomatic homotopy theory, it seems that Quillen adjunc-
tions are generally viewed as such basic and fundamental objects that they
hardly merit further interrogation. However, inasmuch as there is a far
deeper understanding today of “the homotopy theory of homotopy theo-
ries” than existed in 1967, we consider it to be a worthwhile endeavor to
settle this matter once and for all.

Remark 0.2. An adjunction of sSet-enriched categories induces an adjunc-
tion of quasicategories (see [Lur09, Corollary 5.2.4.5]), but the converse is
presumably false: an adjunction of sSet-enriched categories is by its very
nature extremely rigid — making reference to simplicial sets up to isomor-
phism, with no mention of their ambient model structure —, whereas an

1This result has been asserted in the literature, but the argument given there falls
short of proving the actual claim; see Remark 2.3.
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adjunction of quasicategories is a much more flexible notion and incorpo-
rates a wealth of homotopy coherence data. (Of course, both of these notions
are strictly stronger than that of an adjunction of ho(sSetKQ)-enriched cat-
egories.)

In fact, the datum of “an adjunction of quasicategories” only specifies
the actual adjoint functors themselves up to contractible spaces of choices.2

This situation may appear somewhat abstruse to those not familiar with the
theory of quasicategories, but in our view, quasicategories were never really
meant to be worked with at the simplex-by-simplex level anyways: they
function best when manipulated via (quasicategorical) universal properties,
the praxis of which is actually quite similar to that of 1-categories in many
ways. So, all in all, we view this situation primarily as a reaffirmation of
the philosophy of quasicategories: that it’s too much to demand strict com-
position in the first place, and that working with rigid models can obscure
the essential features of the true and underlying mathematics.

Acknowledgments. We cordially thank Zhen Lin Low for a lively and ex-
tended discussion regarding the material presented in this paper, as well as
Dave Carchedi, Bill Dwyer, Geoffroy Horel, Tyler Lawson, Thomas Niko-
laus, Emily Riehl, and an anonymous referee for their helpful input. We also
gratefully acknowledge the financial support provided by UC Berkeley’s ge-
ometry and topology RTG (grant DMS-0838703) during the time that this
work was carried out.

1. Notation and conventions

1.1. Specific categories. As we have already indicated, we write sSet for
the category of simplicial sets. Of course, this is because we write Set for the
category of sets and we write c(−) and s(−) for categories of co/simplicial
objects; hence, we will write ssSet for the category of bisimplicial sets. We
also write Cat for the category of categories, RelCat for the category of
relative categories, and CatsSet for the category of sSet-enriched categories.
We will write N : Cat→ sSet for the usual nerve functor.

We will consider categories as special instances of both relative categories
and sSet-enriched categories: for the former we consider Cat ⊂ RelCat by
endowing our categories with the minimal relative structure (in which only
the identity maps are marked as weak equivalences), and for the latter we
consider Cat ⊂ CatsSet via the inclusion Set ⊂ sSet of sets as discrete sim-
plicial sets.

1.2. Specific model categories. As we have already indicated, we will
model “spaces” using the standard Kan–Quillen model structure sSetKQ,
while to model “the homotopy theory of homotopy theories”, we will make
use of all four of

2We refer the reader to [Lur09, §5.2] for a thorough exposition of the theory of ad-
junctions of quasicategories.
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• the Rezk model structure (a/k/a the “complete Segal space” model
structure) ssSetRezk of [Rez01, Theorem 7.2],
• the Barwick–Kan model structure RelCatBK of [BarK12b, Theorem

6.1],
• the Bergner model structure (CatsSet)Bergner of [Ber07, Theorem 1.1],

and
• the Joyal model structure sSetJoyal of [Lur09, Theorem 2.2.5.1].

As explained in [BarSP], these are all equivalent in an essentially unique way,
though the meanings of the phrases “equivalent” and “essentially unique”
here are both slightly subtle.

We will use the following equivalences between these models for “the
homotopy theory of homotopy theories”.

• The Barwick–Kan model structure is defined by lifting the cofi-
brantly generated model structure ssSetRezk along an adjunction
ssSet � RelCat (so that the right adjoint creates the fibrations and
weak equivalences), which then becomes a Quillen equivalence (see
[BarK12b, Theorem 6.1]). Then, the Rezk nerve functor

NR : RelCat→ ssSet

of [Rez01, 3.3] (there called the “classification diagram” functor)
admits a natural weak equivalence in s(sSetKQ)Reedy to this right
Quillen equivalence (see [BarK12b, Lemma 5.4]). Thus, in light of
the left Bousfield localization

s(sSetKQ)Reedy � ssSetRezk,

we see that the Rezk nerve defines a relative functor

NR : RelCatBK → ssSetRezk

which creates the weak equivalences in RelCatBK.
For any relative category (R,WR), we will write

Fun([n],R)W ⊂ Fun([n],R)

for the wide subcategory on the componentwise weak equivalences,
the nerve of which is precisely NR(R)n.
• The hammock localization functor

L H : RelCat→ CatsSet

of [DwK80a, 2.1] defines a weak equivalence in RelCatBK on the
underlying relative categories of the model categories RelCatBK and
(CatsSet)Bergner (see [BarK12a, Theorem 1.7]).
• The homotopy-coherent nerve functor

Nhc : CatsSet → sSet
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of [Lur09, Definition 1.1.5.5] (there called the “simplicial nerve” func-
tor, originally defined in [Cor82], there called the “nerf homotopique-
ment cohérent” functor) defines a right Quillen equivalence

(CatsSet)Bergner → sSetJoyal

(see [Lur09, Theorem 2.2.5.1]).

Since the model category (CatsSet)Bergner is cofibrantly generated, it comes
naturally equipped with a fibrant replacement functor. However, it will be
convenient for us to use one which does not change the objects. Thus, for
definiteness we define

RBergner : (CatsSet)Bergner → (CatsSet)Bergner

to be the functor given by applying Kan’s Ex∞ functor locally, i.e., to each
hom-object. (Note that Ex∞ preserves finite products, being a filtered col-
imit of right adjoints.) We now define the underlying quasicategory functor
to be the composite

u.q. : RelCat
L H

−−→ CatsSet
RBergner−−−−−→ CatsSet

Nhc

−−→ sSet.

As Nhc is a right Quillen functor, this does indeed take values in quasicate-
gories (and defines a relative functor RelCatBK → sSetJoyal).

1.3. General model categories. A model category C comes equipped
with various attendant subcategories, for which we must fix some notation.
We write

• WC ⊂ C for the subcategory of weak equivalences,
• Cc,Cf ,Ccf ⊂ C for the full subcategories of cofibrant, fibrant, and

bifibrant objects, respectively,

• Wc
C = Cc ∩WC ⊂ C and Wf

C = Cf ∩WC ⊂ C,

and similarly for other model categories. We will use the arrows � and �
to denote cofibrations and fibrations, respectively, and we will decorate an
arrow with the symbol ≈ to denote that it is a weak equivalence.

1.4. Foundations. We will ignore all set-theoretic issues. These are irrel-
evant to our aims, and in any case they can be dispensed with by appealing
to the usual device of Grothendieck universes (see [Lur09, §1.2.15]).

2. The main theorem

Let F : C � D : G be a Quillen adjunction of model categories. Note that
the functors F and G do not generally define functors of underlying relative
categories: they do not generally preserve weak equivalences. Nevertheless,
all is not lost: the inclusions

(Cc,Wc
C) ↪→ (C,WC) and (D,WD) ↪→ (Df ,Wf

D)
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are weak equivalences in RelCatBK (as is proved in Lemma 2.8), and more-
over by Kenny Brown’s lemma (or rather its immediate consequence [Hir03,
Corollary 7.7.2]), the composites

F c : Cc ↪→ C
F−→ D and C

G←− D←↩ Df : Gf

do preserve weak equivalences. Of course, this presents a problem: these
two functors no longer have opposite sources and targets! Despite this, we
have the following theorem, which is the main result of this paper.

Theorem 2.1. The functors F c and Gf induce a canonical adjunction be-
tween the underlying quasicategories u.q.(C) and u.q.(D), informally denoted
by

u.q.(F c) : u.q.(C) � u.q.(D) : u.q.(Gf ).

Recall that an adjunction of quasicategories is determined by a map
M → ∆1 of simplicial sets which is simultaneously a cocartesian fibra-
tion and a cartesian fibration: the left adjoint is then its unstraightening
M0 →M1 as a cocartesian fibration, while the right adjoint is its unstraight-
ening M0 ←M1 as a cartesian fibration. Thus, the first step in proving The-
orem 2.1 is to obtain a cocartesian fibration over ∆1 which models F c and a
cartesian fibration over ∆1 which models Gf . We will actually define these
as sSet-enriched categories over [1], relying on a recognition result ([Lur09,
Proposition 5.2.4.4]) to deduce that these induce co/cartesian fibrations of
quasicategories over ∆1.

Construction 2.2. We define the object cocart(L H(F c)) ∈ (CatsSet)/[1] as
follows:

• the fiber over 0 ∈ [1] is L H(Cc);
• the fiber over 1 ∈ [1] is L H(D);
• for any x ∈ L H(Cc) and any y ∈ L H(D), we set

homcocart(L H(F c))(y, x) = ∅, and

homcocart(L H(F c))(x, y) = homL H(D)(F
c(x), y).

Composition within the fibers is immediate, and is otherwise given by com-
position in L H(D).

Similarly, we define the object cart(L H(Gf )) ∈ (CatsSet)/[1] as follows:

• the fiber over 0 ∈ [1] is L H(C);
• the fiber over 1 ∈ [1] is L H(Df );
• for any x ∈ L H(C) and any y ∈ L H(Df ), we set

homcart(L H(Gf ))(y, x) = ∅, and

homcart(L H(Gf ))(x, y) = homL H(C)(x,G
f (y)).

Again composition within the fibers is immediate, but this time it is other-
wise given by composition in L H(C).
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Remark 2.3. It is actually not so hard to show using [Lur09, Proposition
5.2.4.4] that cocart(L H(F c)) gives rise to an adjunction of quasicategories
whose left adjoint is u.q.(F c).3 In fact, this is essentially the content of the
proof of [Hin14, Proposition 1.5.1]. Dually, we obtain that cart(L H(Gf ))
gives rise to an adjunction of quasicategories whose right adjoint is u.q.(Gf ).
However, a priori there is no reason that these two adjunctions must agree!
Indeed, a left adjoint has a contractible space of right adjoints and vice versa,
but this does not imply that a given left adjoint and a given right adjoint
with opposite sources and targets must actually form an adjoint pair.

We introduce the following intermediate object to show the adjunctions of
quasicategories determined by cocart(L H(F c)) and cart(L H(Gf )) actually
agree.

Construction 2.4. We define the object (Cc + Df ,WCc+Df ) ∈ RelCat/[1]

as follows:

• the fiber over 0 ∈ [1] is (Cc,Wc
C);

• the fiber over 1 ∈ [1] is (Df ,Wf
D);

• for any x ∈ Cc and any y ∈ Df , we set homCc+Df (y, x) = ∅ and

homCc+Df (x, y) = homC(x,G(y)) ∼= homD(F (x), y),

declaring none of these maps to be weak equivalences.

Composition within fibers is immediate, and is otherwise given by composi-
tion in either Cc or Df , whichever contains two of the three objects involved.
We will depict arrows living over the unique nonidentity map in [1] by

x y,

and we will refer to such arrows as bridge arrows, or simply as bridges.

Applying the hammock localization functor to Construction 2.4 gives rise
to an object

L H(Cc + Df ) ∈ (CatsSet)/[1],

and this will be what connects the two objects of Construction 2.2. In
order to see how this works, we must examine the sSet-enriched category
L H(Cc + Df ). First of all, its fiber over 0 ∈ [1] is precisely L H(Cc), while
its fiber over 1 ∈ [1] is precisely L H(Df ). On the other hand, for x ∈ Cc

and y ∈ Df , the simplicial set homL H(Cc+Df )(x, y) has as its n-simplices the

reduced hammocks of width n in the relative category (Cc + Df ,WCc+Df );

3Used in such a way, [Lur09, Proposition 5.2.4.4] becomes a quasicategorical analog
of the dual of [MacL98, Chapter IV, §1, Theorem 2(ii)]: given a functor F1 : C1 → C2

of small 1-categories, a right adjoint is freely generated by choices, for all c2 ∈ C2, of
objects F2(c2) ∈ C1 and morphisms F1(F2(c2))→ c2 in C2 inducing natural isomorphisms

homC1(−, F2(c2))
∼=−→ homC2(F1(−), c2). (Of course, both the category of right adjoints

to F1 and the category of such data are (−1)-connected groupoids in any case; we are
making the evil assertion that they are actually equal.)
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since none of the bridge arrows are weak equivalences, such a hammock must
be of the form

•
≈
��

· · · • //

≈
��

•
≈
��

· · · •
≈
��

•
≈
��

· · · • //

≈
��

•
≈
��

· · · •
≈
��

x
...

≈
��

...

≈
��

...

≈
��

...

≈
��

y

•
≈
��

· · · • //

≈
��

•
≈
��

· · · •
≈
��

• · · · • // • · · · •

(where everything to the left of the column of bridge arrows lies in Cc, while
everything to the right of the column of bridge arrows lies in Df ). Hence,
there are two maps

homcocart(L H(F c))(x, y)← homL H(Cc+Df )(x, y)→ homcart(L H(Gf ))(x, y),

in which the left-pointing arrow is obtained by applying the relative functor

Cc
F c

−→ D to the “left half” of the above hammock, while the right-pointing

arrow is obtained by applying the relative functor C
Gf

←−− Df to the “right
half” of the above hammock. In fact, it is not hard to see that this respects
composition of hammocks, and hence we obtain a diagram

cocart(L H(F c))← L H(Cc + Df )→ cart(L H(Gf ))

in (CatsSet)/[1].
The main ingredient in the proof of Theorem 2.1 is the following result.

Proposition 2.5. The horizontal maps

cocart(L H(F c)) L H(Cc + Df ) cart(L H(Gf ))

[1]

≈ ≈

are weak equivalences in (CatsSet)Bergner.

We defer the proof of Proposition 2.5 to §3. In essence, we will show that
the relative category (Cc+Df ) admits a “homotopical three-arrow calculus”,
and then we will use this to show that the hom-objects in L H(Cc+Df ) can
be computed using the co/simplicial resolutions of [DwK80b]. For an object
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x ∈ Cc equipped with a cosimplicial resolution x• ∈ c(Cc) and an object
y ∈ Df equipped with a simplicial resolution y• ∈ s(Df ), the isomorphisms

homlw
D (F c(x•), y•) ∼= homlw

(Cc+Df )(x
•, y•) ∼= homlw

C (x•, Gf (y•))

of bisimplicial sets (where the superscript “lw” stands for “levelwise”) will,
in light of the above observations and upon passing to diagonals, yield weak
equivalences

homL H(D)(F (x), y) homL H(Cc+Df )(x, y)
≈oo ≈ // homL H(C)(x,G(y))

homcocart(L H(F c))(x, y) homcart(L H(Gf ))(x, y)

in sSetKQ (which are appropriately compatible with the given maps of hom-
objects).

Using Proposition 2.5, we now prove the main theorem.

Proof of Theorem 2.1. Recall from [Lur09, Definition 5.2.2.1] that an ad-
junction of quasicategories is a map M→ ∆1 which is simultaneously a co-
cartesian fibration and a cartesian fibration, along with weak equivalences
in sSetJoyal from the participating quasicategories to the respective fibers
M0 and M1. (The unstraightening of M → ∆1 as a cocartesian fibration
yields the left adjoint, while its unstraightening as a cartesian fibration yields
the right adjoint; meanwhile, the requested weak equivalences allow us to
consider these as functors between the participating quasicategories.)

We argue using the recognition result [Lur09, Proposition 5.2.4.4] for when
the functor

Nhc : ((CatsSet)Bergner)/[1] → (sSetJoyal)/∆1

takes a fibrant object E � [1] to a cartesian fibration

Nhc(p) : Nhc(E)→ Nhc([1]) ∼= ∆1.

Namely, the following condition is both necessary and sufficient:

(∗) For each object e1 ∈ E1, there exists an object e0 ∈ E0 and a mor-
phism e0 → e1 in E inducing a weak equivalence

homE0(e, e0) = homE(e, e0)
≈→ homE(e, e1)

in sSetKQ for every e ∈ E0.

(The morphism e0 → e1 will then determine a cartesian edge of Nhc(E).)
This recognition result immediately implies that the map

RBergner(cart(L H(Gf )))→ [1]

induces a cartesian fibration corresponding to u.q.(Gf ), while its evident
dual implies that the map

RBergner(cocart(L H(F c)))→ [1]
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induces a cocartesian fibration corresponding to u.q.(F c).4 Moreover, the
criterion (∗) is clearly invariant under weak equivalence between fibrant
objects in ((CatsSet)Bergner)/[1]. Thus, it follows from Proposition 2.5 that
the map

RBergner(L
H(Cc + Df ))→ [1]

in CatsSet induces both a cartesian fibration and a cocartesian fibration of
quasicategories: that is, it induces an adjunction

u.q.(Cc + Df )→ ∆1

of quasicategories, whose left adjoint can be identified with u.q.(F c) and
whose right adjoint can be identified with u.q.(Gf ).

Finally, the fact that the inclusions

(Cc,Wc
C) ↪→ (C,WC) and (Df ,Wf

D) ↪→ (D,WD)

are weak equivalences in RelCatBK (and hence induce weak equivalences
in sSetJoyal of underlying quasicategories) follows from Lemma 2.8 below.
Hence, choosing retractions in sSetJoyal as indicated (the simplicial sets of
which are contractible Kan complexes), we obtain an adjunction of quasi-
categories

u.q.(C)

��

u.q.(D)

��

u.q.(Cc)
OO

∼=

OO

u.q.(Df )
OO

∼=

OO

u.q.(Cc + Df )0
// // u.q.(Cc + Df )

��

u.q.(Cc + Df )1
oooo

∆1

which might denoted informally as

u.q.(F c) : u.q.(C) � u.q.(D) : u.q.(Gf ),

precisely as claimed. �

Remark 2.6. In general, the property of being a co/cartesian fibration over
S ∈ sSet is not invariant under weak equivalence between inner fibrations
in (sSetJoyal)/S . However, it becomes invariant in the special case that

S = ∆1, a fact we’ve exploited in the proof of Theorem 2.1 (through our
usage of [Lur09, Proposition 5.2.4.4]). Roughly speaking, this follows from
the paucity of nondegenerate edges in ∆1. Indeed, recall that given an inner
fibration X → S:

4Note that fibrancy in ((CatsSet)Bergner)/[1] is created in (CatsSet)Bergner (see [Lur09,
Theorem A.3.2.24(2)]).
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• an edge ∆1 → X is cartesian (with respect to X → S) if it satisfies
some universal property defined in terms of all of X and S (see
[Lur09, Definition 2.4.1.1 and Remark 2.4.1.9]);
• an edge of ∆1 → X is locally cartesian if the induced edge

∆1 → ∆1 ×S X

is cartesian with respect to the inner fibration ∆1 ×S X → ∆1 (see
[Lur09, Definition 2.4.1.11]);
• the map X → S is a (resp. locally) cartesian fibration if it has a suffi-

cient supply of (resp. locally) cartesian edges (see [Lur09, Definitions
2.4.2.1 and 2.4.2.6]);
• a locally cartesian fibration is a cartesian fibration if and only if

the locally cartesian edges are “closed under composition” in the
strongest possible sense (see [Lur09, Proposition 2.4.2.8]);
• if an edge of X maps to an equivalence in S, then that edge is carte-

sian if and only if it is also an equivalence (see [Lur09, Proposition
2.4.1.5]);
• in light of the universal property defining cartesian edges, pre- or

post-composing a cartesian edge in X with an equivalence which
projects to a degenerate edge in S clearly yields another cartesian
edge.

(The notions of cartesian fibrations and of locally cartesian fibrations are
the quasicategorical analogs of the 1-categorical notions of “Grothendieck
fibrations” and “Grothendieck prefibrations”.)

Remark 2.7. One might also wonder about the possibility of using the
objects cocart(F c) = (Cc+D) and cart(Gf ) = (C+Df ) of RelCat/[1] in order
to prove Theorem 2.1. In fact, it is not so hard to show that the inclusions
cocart(F c)←↩ (Cc+Df ) ↪→ cart(Gf ) are weak equivalences in RelCatBK, and
moreover there are natural maps L H(cocart(F c)) → cocart(L H(F c)) and
L H(cart(Gf ))→ cart(L H(Gf )) in CatsSet, but it is essentially no easier to
show that these latter maps are weak equivalences in (CatsSet)Bergner than
it is to prove Proposition 2.5.

We end this section with a result used in the proof of the main theorem,
which we learned from Horel and which now appears in a joint paper of his
as [BaHH, Proposition 2.4.9].5

Lemma 2.8. The inclusions

(Cc,Wc
C) ↪→ (C,WC) and (Df ,Wf

D) ↪→ (D,WD)

are weak equivalences in RelCatBK.

5The authors of [BaHH] in turn credit Cisinski for their proof. They actually work
in the more general setting of “weak fibration categories”, and in their proof they replace
the appeal to [Hin05, Theorem A.3.2(1)] with an appeal to work of Cisinski’s.
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Proof. We will prove the second of these two dual statements, which we

will accomplish by showing that the map (Df ,Wf
D) ↪→ (D,WD) induces a

weak equivalence in s(sSetKQ)Reedy upon application of the functor

NR : RelCat→ ssSet.

In other words, we will show that for all n ≥ 0, the inclusion

Fun([n],Df )W ↪→ Fun([n],D)W

induces a weak equivalence in sSetKQ upon application of the functor

N : Cat→ sSet.

For this, let us equip Fun([n],D) with the projective model structure, which
exists since it coincides with the Reedy model structure when we consider
[n] as a Reedy category with no nonidentity degree-lowering maps. Then,
the above inclusion is precisely the inclusion

Wf
Fun([n],D) ↪→WFun([n],D),

which induces a weak equivalence on nerves by combining the duals of
[Qui73, Theorem A] and [Hin05, Theorem A.3.2(1)]. �

Remark 2.9. Lemma 2.8 actually goes back to [DwK80b, Proposition 5.2],
but the proof given there relies on a claim whose proof is omitted, namely
that the relative category (Cc,Wc

C) admits a “homotopy calculus of left
fractions” as in [DwK80a, 6.1(ii)] (see [DwK80b, 8.2(ii)]). We have not been
able to prove this result ourselves, so we provide this alternative proof for
completeness.

3. Model diagrams and the proof of Proposition 2.5

In this section, we prove Proposition 2.5 (the main ingredient in the proof
of Theorem 2.1), which asserts the existence of a diagram

cocart(L H(F c)) L H(Cc + Df ) cart(L H(Gf ))

[1]

≈ ≈

in (CatsSet)Bergner: this is what connects the made-to-order relative category

(Cc + Df ) of Construction 2.4 with the actual relative functors

F c : Cc ↪→ C
F−→ D

and

C
G←− D←↩ Df : Gf

of interest. (Recall from the proof of Theorem 2.1 that the former ulti-
mately gives rise to our desired adjunction of quasicategories.) It follows
directly from Lemma 2.8 that these horizontal maps are weak equivalences
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in (CatsSet)Bergner when we restrict to the fibers over 0 ∈ [1] and 1 ∈ [1];
the real difficulty lies in showing that we also obtain weak equivalences on
hom-objects (in sSetKQ) when our source lies over 0 ∈ [1] and our target lies
over 1 ∈ [1].

To accomplish this, we first provide an alternative description of such
“bridge-containing” hom-objects in L H(Cc + Df ). Fix a source object x ∈
Cc ⊂ (Cc +Df ) and a target object y ∈ Df ⊂ (Cc +Df ). Then, we prove as
Proposition 3.16(2) that the relative category (Cc+Df ) admits a homotopical
three-arrow calculus with respect to x and y (see Definition 3.14). This notion
is a slight variant on Dwyer–Kan’s definition of a “homotopy calculus of
fractions”, and it affords the same conclusion: that a much smaller simplicial
set — that of three-arrow zigzags from x to y — maps to homL H(Cc+Df )(x, y)

as a weak equivalence in sSetKQ (see Proposition 3.15).

However, a three-arrow zigzag in (Cc + Df ) from x ∈ Cc to y ∈ Df will
be of the form

x • • y≈ ≈

(with the middle arrow a bridge), and these are still not in any sense
visibly equivalent to the corresponding bridge-containing hom-objects in
cocart(L H(F c)) or cart(L H(Gf )): the latter are respectively given by
three-arrow zigzags in D or C (since model categories admit homotopi-
cal three-arrow calculi (with respect to any choices of source and target
objects)), whereas the above-depicted three-arrow zigzag lies partly in Cc

and partly in Df . To complete the connection (and prove the above weak
equivalences in (CatsSet)Bergner), we will appeal to Dwyer–Kan’s theory of
co/simplicial resolutions: the classical story concerns the computation of
hom-objects in the hammock localization of a model category, and we will
show that it can be made to apply to (Cc + Df ) as well. For this, we
will moreover need to pass from three-arrow zigzags to special three-arrow
zigzags, i.e., those of the form

x • • y,≈ ≈

which we accomplish as Proposition 3.11(2).
This section is organized as follows. First, in § 3.1, we introduce the

formalism of model diagrams, which provides a language for manipulating
diagrams of a specified shape inside of a model category (or inside of a more
general category equipped with three analogously-named distinguished sub-
categories, such as (Cc + Df )). Then, in §3.2, we prove that three-arrow
zigzags (and special three-arrow zigzags) do indeed compute the bridge-
containing hom-objects in L H(Cc + Df ). Finally, in §3.3 we prove Propo-
sition 2.5.

3.1. Model diagrams. To prove statements about categories of diagrams
in model categories, we provide a general framework for parametrizing them.
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Definition 3.1. A model diagram is a category I equipped with three wide
subcategories WI,CI,FI ⊂ I such that WI satisfies the two-out-of-three
axiom.6 These assemble into a category, denoted Model, whose morphisms
are simply those functors of underlying categories that respect the defining
subcategories. For I, J ∈ Model, we denote by Fun(I, J)W the category
whose objects are morphisms of model diagrams and whose morphisms are
natural weak equivalences between them. We will consider relative categories
(and in particular, categories) as equipped with the minimal model diagram
structure (in which C and F consist only of the identity maps).

Remark 3.2. Among the axioms for a model category, all but the limit
axiom (so the two-out-of-three, retract, lifting, and factorization axioms)
can be encoded by requiring that the underlying model diagram has the
extension property with respect to certain maps of model diagrams.

Variant 3.3. A decorated model diagram is a model diagram with some sub-
diagrams decorated as colimit or limit diagrams.7 For instance, if we define
I to be the “walking pullback square”, then for any other model diagram J,
we let hom?

Model(I, J) ⊂ homModel(I, J) and Fun?(I, J)W ⊂ Fun(I, J)W de-
note the subobjects spanned by those morphisms I→ J of model diagrams
which select a pullback square in J.

For the most part, we will only use this variant on Definition 3.1 for
pushout and pullback squares. In fact, all but one of the model diagrams
that we will decorate in this way will only have a single square anyways,
and so in the interest of easing our TikZographical burden, we will simply
superscript these model diagrams with either “p.o.” or “p.b.” (as in the
proof of Proposition 3.11 below). The other one (which will appear in the
proof of Proposition 3.16) will be endowed with sufficiently clear ad hoc
notation.

However, this formalism also allows us to require that certain objects
are sent to cofibrant or fibrant objects, by decorating a new object as
initial/terminal and then marking its maps to/from the other objects as
co/fibrations. Rather than write this explicitly, we will abbreviate the nota-
tion for this procedure by superscripting objects by c, f , or cf (to indicate
that we wish these to select cofibrant, fibrant, or bifibrant objects, respec-
tively).

Note that the constructions hom?
Model(I, J) and Fun?(I, J)W are not gen-

erally functorial in the target J. On the other hand, they are functorial
for some maps in the source I. We will refer to such maps as decoration-
respecting. These define a category Model?. (Note the distinction between

6The assumption that WI satisfies the two-out-of-three axiom is probably superfluous,
since we’ll generally be mapping into model diagrams whose weak equivalences already
have this property (namely the model category D as well as (Cc + Df ) and its cousins).
Nevertheless, it seems like a good idea to include it, just to be safe.

7These are closely related to what are now called “sketches”, originally introduced in
[Ehr68].
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homModel? and hom?
Model.) We consider Model ⊂ Model? simply by con-

sidering undecorated model diagrams as being trivially decorated. We will
not need a general theory for understanding which maps of decorated model
diagrams are decoration-respecting; rather, it will suffice to observe once
and for all

• that objects marked as co/fibrant must be sent to the same, and
• that given a square which is decorated as a pushout or pullback

square, it is decoration-respecting to either
– take it to another similarly decorated square, or
– collapse it onto a single edge (since a square in which two par-

allel edges are identity maps is both a pushout and a pullback).

Note that if the source of a map of decorated model diagrams is actually
undecorated, then the map is automatically decoration-respecting; in other
words, we must only check that maps in which the source is decorated are
decoration-respecting.

Remark 3.4. Of course, adding in this variant allows us to also demand
finite bicompleteness of a model diagram via lifting conditions, and hence
all of the axioms for a model diagram to be a model category can now be
encoded in this language.

We will be concerned with diagrams in model categories which connect
specified “source” and “target” objects. We thus introduce the following
variant.

Variant 3.5. A doubly-pointed model diagram is a model diagram I equip-
ped with a map ptt pt→ I. The two inclusions pt ↪→ ptt pt select objects
s, t ∈ I, which we call the source and the target. These assemble into the
evident category, which we denote by Model∗∗ = Modelpttpt/. Of course,
there is a forgetful functor Model∗∗ → Model, which we will occasionally
implicitly use. For I, J ∈Model∗∗, we denote by

Fun∗∗(I, J)W ⊂ Fun(I, J)W

the (not generally full) subcategory whose objects are those morphisms of
model diagrams which preserve the double-pointing, and whose morphisms
are those natural weak equivalences whose components at s and t are re-
spectively ids and idt. We will refer to such a morphism as a doubly-pointed
natural weak equivalence. If we have chosen “source” and “target” objects
in a model diagram, we will use these to consider the model diagram as
doubly-pointed without explicitly mentioning it. Of course, we may deco-
rate a doubly-pointed model diagram as in Variant 3.3.

We will furthermore be interested in the following special case of Vari-
ant 3.5.

Variant 3.6. We define a model word to be a word m in any the sym-
bols describing a morphism in a model diagram or their inverses (e.g., W,
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(W ∩ F)−1, (W ∩ C)), or in the symbol A (for “any arbitrary arrow”) or
its inverse. We will write A◦n to denote n consecutive copies of the sym-
bol A (for any n ≥ 0). We can extract a doubly-pointed model diagram
from a model word, which for our sanity we will carry out by reading for-
wards. So for instance, the model word m = [C; (W ∩ F)−1; A] defines the
doubly-pointed model diagram

s • • t.≈

We denote this object again by m ∈Model∗∗.

Remark 3.7. Restricting to those model words in the symbols A and W−1

and the order-preserving maps between them, we recover the category of
“zigzag types”, i.e., the opposite of the category II of [DwK80a, 4.1]. In
this way, we consider IIop ⊂ Model∗∗ as a (nonfull) subcategory. For any
relative category (R,WR) ∈ RelCat and any objects x, y ∈ R, by [DwK80a,
Proposition 5.5] we have an isomorphism

colimm∈II N
(
Fun∗∗(m,R)W

) ∼=−→ homL H(R)(x, y)

of simplicial sets, induced by the maps

N
(
Fun∗∗(m,R)W

)
→ homL H(R)(x, y)

given by reducing the hammocks involved (as described in [DwK80a, 2.1]).

Definition 3.8. We will use the abbreviations 3 = [W−1; A; W−1] and
3̃ = [(W∩F)−1; A; (W∩C)−1]; these model words correspond to the doubly-
pointed model diagrams

s • • t≈ ≈

and

s • • t,≈ ≈

respectively. We refer to diagrams of shape 3 as three-arrow zigzags, and we
refer to diagrams of shape 3̃ as special three-arrow zigzags.

3.2. From special three-arrow zigzags to hammocks. Note that there
is a unique map 3 → 3̃ in Model∗∗. In [DwK80b, 7.2(ii)], Dwyer–Kan
indicate how to prove that for any x, y ∈ D, the induced composite

N
(
Fun∗∗(3̃,D)W

)
→ N

(
Fun∗∗(3,D)W

)
→ homL H(D)(x, y)

is a weak equivalence in sSetKQ. In order to prove Proposition 2.5, in this
subsection we will show that these two maps are again weak equivalences if
we replace D by (Cc +Df ) and take x ∈ Cc and y ∈ Df . The arguments for
(Cc +Df ) are patterned on those for D, and so for the sake of exposition we
will re-prove that case in tandem.
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3.2.1. From 3̃-shaped zigzags to 3-shaped zigzags. In this subsubsec-
tion, we prove that the map

N
(

Fun∗∗(3̃, (C
c + Df ))W

)
→ N

(
Fun∗∗(3, (C

c + Df ))W
)

is a weak equivalence in sSetKQ. We begin with some preliminary results.

Lemma 3.9. Choose any doubly-pointed model diagram I ∈Model∗∗, select
a weak equivalence in I by choosing a map [W] → I in Model, and define
J ∈Model∗∗ by taking a pushout

[W] I

[(W ∩C); (W ∩ F)] J

in Model (where the left map is the unique map in Model∗∗, and J is doubly-
pointed via the composition pttpt→ I→ J). Then, the map I→ J induces

(1) for any x, y ∈ D, a weak equivalence

N
(
Fun∗∗(J,D)W

) ≈→ N
(
Fun∗∗(I,D)W

)
,

and
(2) for any x, y ∈ (Cc + Df ), a weak equivalence

N
(

Fun∗∗(J, (C
c + Df ))W

)
≈→ N

(
Fun∗∗(I, (C

c + Df ))W
)
.

Proof. This is a mild generalization of [DwK80b, 8.1], and the proof adapts
readily.8,9 The following observations may be helpful.

• The proof is unaffected by whether or not the map [W]→ I selects
an identity map, and by whether or not it hits one or both of the
objects s, t ∈ I.
• The proof does not require that the map [W] → I be “free” (i.e.,

obtained by taking a pushout [W]← pttpt→ I′), although we will
actually only need this special case.
• For item (2), note that all of the computations happen in one fiber

or the other (since none of the bridge arrows are weak equivalences),
and that the necessary simplicial resolution will automatically lie in
the relevant subcategory Cc ⊂ C or Df ⊂ D (in fact, it will even
consist of bifibrant objects). �

8In [DwK80b, 6.7], which constructs (special) simplicial resolutions, the factorization
of the latching-to-matching map which produces the next simplicial level should be as
≈
��, not

≈
�

≈
�.

9We have greatly expanded on the proof of [DwK80b, 8.1] (while generalizing it from
1-categories to ∞-categories) in our proof of [MazG, Lemma 4.24]; the reader may find
this expansion useful in verifying that the former does indeed adapt readily from model
words to more general doubly-pointed model diagrams.
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Lemma 3.10. Let I, J ∈ Model?∗∗ be decorated doubly-pointed model dia-
grams, let α, β : I ⇒ J be parallel morphisms in Model?∗∗, and let γ : α→ β
be a doubly-pointed natural weak equivalence. Then for any E ∈Model∗∗, γ
induces a natural transformation between the induced parallel maps

α∗, β∗ : Fun?∗∗(J,E)W ⇒ Fun?∗∗(I,E)W

in Cat.

Proof. This is immediate from the definitions. �

We can now prove the main result of this subsubsection.

Proposition 3.11. The unique map 3→ 3̃ in Model∗∗ induces

(1) for any x, y ∈ D, a weak equivalence

N
(
Fun∗∗(3̃,D)W

) ≈→ N
(
Fun∗∗(3,D)W

)
,

and
(2) for any x ∈ Cc and y ∈ Df , a weak equivalence

N
(

Fun∗∗(3̃, (C
c + Df ))W

)
≈→ N

(
Fun∗∗(3, (C

c + Df ))W
)
.

Proof. We first address item (1), which is somewhat simpler to prove. For
this, we factor the unique map 3→ 3̃ in Model∗∗ through a sequence

3
ϕ1−→ I1

ϕ2−→ I2
ϕ3−→ I3

ϕ4−→ I4
ϕ5−→ I5

ϕ6−→ 3̃

of maps in Model?∗∗, given by

3 =

(
s • • t≈ ≈

)
ϕ1−→


• •

s t

•

≈

≈

≈

≈



ϕ2−→


• •

s t

• •

≈

≈ ≈

≈

≈≈



p.o.

ϕ3−→
(

s • • t≈ ≈
)

ϕ4−→


•

s t

• •

≈

≈

≈≈


ϕ5−→


• •

s t

• •

≈

≈ ≈

≈

≈≈



p.b.

ϕ6−→
(
s • • t≈ ≈

)
= 3̃,



QUILLEN ADJUNCTIONS 75

in which

• the maps ϕ1, ϕ2, ϕ4, and ϕ5 are the evident inclusions, and
• the maps ϕ3 and ϕ6 are given by collapsing vertically.

We now prove that each of these maps induces a weak equivalence upon
application of N

(
Fun?∗∗(−,D)W

)
. The arguments can be grouped as follows.

• The fact that the maps ϕ1 and ϕ4 induce weak equivalences follows
from Lemma 3.9(1).
• The maps ϕ2 and ϕ5 induce acyclic fibrations in sSetKQ, since:

– D is finitely bicomplete.
– Limits and colimits are unique up to unique isomorphism.
– The subcategories (W ∩ C)D, (W ∩ F)D ⊂ D are respectively

closed under pushout and pullback.
(See, e.g., [Lur09, Proposition 4.3.2.15].)
• Note that the maps ϕ3 and ϕ6 admit respective sections ψ3 and
ψ6 in Model?∗∗. Moreover, there are evident doubly-pointed natural
weak equivalences idI2 → ψ3ϕ3 and ψ6ϕ6 → idI5 . Hence, it follows
from Lemma 3.10 that ϕ3 and ϕ6 induce homotopy equivalences in
sSetKQ.

The proof of item (2) is similar, but requires some modification: we will
show that the above sequence induces weak equivalences in sSetKQ upon

application of N
(
Fun∗∗(−, (Cc + Df ))W

)
(note the lack of decorations).10

First of all, note that since we have assumed that x ∈ Cc and y ∈ Df , then
all maps to (Cc+Df ) in Model∗∗ from all doubly-pointed model diagrams in
the above sequence must take the unmarked arrows to bridge arrows, with
everything to the left mapping into Cc and everything to the right mapping
into Df .

We now show that restriction along ϕ2 induces a weak equivalence

N
(

Fun∗∗(I2, (C
c + Df ))W

)
≈→ N

(
Fun∗∗(I1, (C

c + Df ))W
)
.

For this, we use the analogously defined object (Cc +D) ∈Model∗∗, and we
define a diagram

I2a
κ1−→ I2b

κ2←− I2c
κ3−→ I2d

κ4←− I2e

10In fact, the following argument also works for D, but its additional complexity would
just have been confusingly unnecessary if we had provided it above.
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in Model?∗∗, given by 
• •f

s t

•

≈

≈

≈

≈


κ1

y
• •f

s t

• •

≈

≈ ≈

≈

≈≈



p.o.

κ2

x
• •f

s t

• •

≈

≈ ≈

≈

≈≈


κ3

y

• •f

s t

• •

•f

≈

≈ ≈

≈

≈

≈

≈

≈


κ4

x

• •f

s t

•

•f

≈

≈

≈

≈

≈

≈


,
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in which all maps are the evident inclusions. Then, we proceed by the
following arguments.

• There is an evident isomorphism

Fun∗∗(I1, (C
c + Df ))W ∼= Fun?∗∗(I2a, (C

c + D))W.

• The map κ1 induces an acyclic fibration

N
(
Fun?∗∗(I2b, (C

c + D))W
) ≈
� N

(
Fun?∗∗(I2a, (C

c + D))W
)

in sSetKQ for the same reasons that ϕ2 and ϕ5 induced them above.
• The map κ2 induces a weak equivalence

N
(
Fun?∗∗(I2b, (C

c + D))W
) ≈→ N

(
Fun?∗∗(I2c, (C

c + D))W
)

in sSetKQ since it is the nerve of a functor which admits a right
adjoint. (Using the dual of the characterization of [MacL98, Chap-
ter IV, §1, Theorem 2(ii)], to obtain such a right adjoint suffices
to choose a coreflection in Fun?∗∗(I2b, (C

c + D))W of each object of
Fun?∗∗(I2c, (C

c + D))W, along with the corresponding component of
the counit: to obtain a coreflection we can take a pushout of the
span defined by our object, and the corresponding component of the
counit will then be the canonical map.)
• The map κ3 induces a weak equivalence

N
(
Fun?∗∗(I2d, (C

c + D))W
) ≈→ N

(
Fun?∗∗(I2c, (C

c + D))W
)

by Lemma 3.12 below.
• The inclusion κ4 admits a retraction λ4, given by taking the addi-

tional object in I2d to the bottommost object in I2e. Moreover, there
is an evident doubly-pointed natural weak equivalence idI2d → κ4λ4.
Hence, it follows from Lemma 3.10 that κ4 induces a homotopy
equivalence

N
(
Fun?∗∗(I2d, (C

c + D))W
) ≈→ N

(
Fun?∗∗(I2e, (C

c + D))W
)

in sSetKQ.
• There is an evident isomorphism

Fun?∗∗(I2e, (C
c + D))W ∼= Fun∗∗(I2, (C

c + Df ))W.

As these weak equivalences are compatible with the map

N
(

Fun∗∗(I2, (C
c + Df ))W

)
→ N

(
Fun∗∗(I1, (C

c + Df ))W
)

induced by restriction along ϕ2 (in the sense that adding in the evident inclu-
sion I2a → I2e in Model?∗∗, to which when we apply N

(
Fun?∗∗(−, (Cc + D))W

)
yields an isomorphic map to the one given by applying

N
(

Fun∗∗(−, (Cc + Df ))W
)

to I1
ϕ2−→ I2, yields a commutative diagram in Model∗∗), we see that it is

indeed a weak equivalence as well.
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From here, a nearly identical dual argument (this time using (C + Df ) ∈
Model∗∗) shows that restriction along ϕ5 also induces a weak equivalence

N
(

Fun∗∗(I5, (C
c + Df ))W

)
≈→ N

(
Fun∗∗(I4, (C

c + Df ))W
)
.

So we have proved that upon application of N
(
Fun∗∗(−, (Cc + Df ))W

)
, the

maps ϕ2 and ϕ5 induce weak equivalences in sSetKQ. That ϕ1 and ϕ4 induce
weak equivalences follows from Lemma 3.9(2), and that ϕ3 and ϕ6 induce
weak equivalences follows from the same argument as given above in the
proof of item (1). �

We now prove a lemma that was used in the proof of Proposition 3.11.

Lemma 3.12. Choose any decorated doubly-pointed model diagram I ∈
Model?∗∗, choose an object a ∈ I which is connected by a zigzag in WI to
the object t ∈ I, and use it to define J ∈ Model?∗∗ by freely adjoining a new

fibrant object and an acyclic cofibration a
≈
� •f to it from a.11 Then, assum-

ing that the target object of (Cc + D) lives in the subcategory D ⊂ (Cc + D),

the evident inclusion I
ϕ−→ J induces a weak equivalence

N
(
Fun?∗∗(J, (C

c + D))W
) ≈−→ N

(
Fun?∗∗(I, (C

c + D))W
)

in sSetKQ.

Proof. To ease notation, let us write this map as N(B1) → N(B2). Then,
appealing to the dual of [Qui73, Theorem A], it suffices to prove that for
any b ∈ B2, the comma category

B3 = B1 ×B2 (B2)b/

has weakly contractible nerve.
For this, define the subcategory B′3 ⊂ B3 on those objects (c, b→ ϕ∗(c)) ∈

B3 such that the doubly-pointed natural weak equivalence b → ϕ∗(c) is
actually idb. Then B′3 is isomorphic to the category

(Wf
D)b(a)

� = Wf
D ×WD

(WD)b(a)

�

of acyclic cofibrations from b(a) to a fibrant object, which has weakly con-
tractible nerve by applying the dual of [Qui73, Theorem A] to Lemma 3.13
(since N(∆op) is weakly contractible).12 On the other hand, to show that
the map N(B′3)→ N(B3) is a weak equivalence, again appealing to [Qui73,
Theorem A], it suffices to prove that for any (c, b→ ϕ∗(c)) ∈ B3, the comma
category

B4 = B′3 ×B3 (B3)/(c,b→ϕ∗(c))

has weakly contractible nerve.

11That is, if I already has an object marked as terminal then we add a new object
equipped with a fibration to it; otherwise we add both.

12This statement also follows from applying the dual of [Hin05, Theorem A.3.2(2)] to
the initial object of the model category Db(a)/.
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Now, an object of B4 is given by the pair of an object (c′, b
=−→ ϕ∗(c′)) ∈

B′3 and a morphism (c′, b
=−→ ϕ∗(c′)) → (c, b → ϕ∗(c)) in B3. Unwinding

the definitions, we see that the data of such an object is precisely that of

a factorization of the composite b(a)
=−→ c′(a)

≈→ c(a)
≈
� c(•f ) in D ⊂

(Cc + D) through some composite b(a)
=−→ c′(a)

≈
� c′(•f )

≈→ c(•f ), i.e., the
specification of the upper right composite in a commutative square

b(a) c′(•f )

c(a) c(•f )

≈

≈ ≈
≈

in D. Hence the category B4 is isomorphic to the category

Wcf
Db(a)/

×WDb(a)/
(WDb(a)/

)/c(•f )

of left replacements of the fibrant object c(•f ) ∈ Db(a)/ by a bifibrant object,
the nerve of which is weakly contractible by [Hin05, Theorem A.3.2(2)]. �

We now prove a lemma that was used in the proof of Lemma 3.12.

Lemma 3.13. Any object y ∈ D admits a special simplicial replacement

y• ∈ s(Wf
D) (as in [DwK80b, 4.3 and Remark 6.8]), and for any such

choice, the corresponding map ∆op y•−→ (Wf
D)y

� is homotopy right cofinal.

Proof. The first statement is just [DwK80b, Proposition 4.5 and 6.7]. The
second statement follows from combining [DwK80b, Proposition 6.11] with
the following general fact: if a composite of functors is homotopy right
cofinal and the second functor is fully faithful, then the first functor is also
homotopy right cofinal. �

3.2.2. From 3-shaped zigzags to hammocks. In this subsection, we
prove that the map

N
(

Fun∗∗(3, (C
c + Df ))W

)
→ homL H(Cc+Df )(x, y)

is a weak equivalence in sSetKQ. Purely as a matter of terminology, we begin
with a slight variant on [LowMG15, Definition 4.1], which is in turn a slight
variant on the original definition of a “homotopy calculus of fractions” given
in [DwK80a, 6.1(i)].

Definition 3.14. Let (R,WR) be a relative category, and let x, y ∈ R. We
say that the relative category (R,WR) admits a homotopical three-arrow
calculus with respect to x and y if for all i, j ≥ 1, the evident map

N
(
Fun∗∗([W

−1; A◦i; A◦j ; W−1],R)W
)

→ N
(
Fun∗∗([W

−1; A◦i; W−1; A◦j ; W−1],R)W
)
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is a weak equivalence in sSetKQ.

This notion is useful for the following reason (which is where it gets its
name).

Proposition 3.15. If (R,WR) admits a homotopical three-arrow calculus
with respect to x and y, then the map

N
(
Fun∗∗(3,R)W

)
→ homL H(R)(x, y)

is a weak equivalence in sSetKQ.

Proof. This is essentially [DwK80a, Proposition 6.2]; that the proof carries
over to the present setting is justified in [LowMG15, Theorem 4.5].13 �

Using this language, we can now prove the main result of this subsubsec-
tion.

Proposition 3.16. The doubly-pointed relative categories

(1) (D,WD), where x, y ∈ D are any objects, and
(2) (Cc + Df ,WCc+Df ), where x ∈ Cc and y ∈ Df

admit homotopical three-arrow calculi.

Proof. Again, we begin with item (1) since it is somewhat simpler to prove.
In this case, we define a diagram

[W−1; A◦i; W−1; A◦j ; W−1]
ρ1−→ J1

ρ2−→ J2
ρ3←− [W−1; A◦i; A◦j ; W−1]

in Model?∗∗, given by the evident inclusions

[W−1; A◦i; W−1; A◦j ; W−1]

=

(
s

[W−1;A◦i]
• •≈oo [A◦j ;W−1]

t

)

ρ1−→


s • • t

•

[W−1;A◦i] ≈ [A◦j ;W−1]

≈≈



ρ2−→


s • · · · • • · · · • t

• · · · • · · · •

≈ ≈

≈ ≈

≈

≈≈ ≈ ≈


i p.b.’s, j p.o.’s

13A few minor typos in the proof of [DwK80a, Proposition 6.2] are also corrected in
[LowMG15, Remark 4.6].
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ρ3←−


s t

• · · · • · · · •
≈≈


= [W−1; A◦i; A◦j ; W−1].

We claim that this induces a diagram of weak equivalences in sSetKQ upon

application of N
(
Fun?∗∗(−,D)W

)
in a way compatible with the map in Def-

inition 3.14 (in the sense that adding in the evident map which corepresents
it gives a commutative diagram in Model?∗∗). We proceed by the following
arguments.

• The map ρ1 induces a weak equivalence by Lemma 3.9(1).
• The map ρ2 induces an acyclic fibration in sSetKQ by repeatedly

applying the argument for why the maps ϕ2 and ϕ5 induce them in
the proof of Proposition 3.11(1).
• The inclusion ρ3 admits a retraction σ3 in Model?∗∗, given by collaps-

ing the whole top row of J2 (besides the objects s and t) down onto
the lower row, so that the “middle” backwards weak equivalence in
the top row gets sent to the identity map on the “middle” object
of the bottom row. If we define τ3 ∈ homModel?∗∗

(J2, J2) to be the
morphism which collapses the “left half” of J2 (besides the object
s) down onto the lower row and leaves the “right half” unchanged,
then there is an evident span

idJ2 ← τ3 → ρ3σ3

of doubly-pointed natural weak equivalences. Hence, it follows from
Lemma 3.10 that ρ3 induces a homotopy equivalence in sSetKQ.

Thus, D admits a homotopical three-arrow calculus (with respect to any
double-pointing).

For item (2), as in the proof of Proposition 3.11(2) we again modify the
proof of item (1) by applying the functor N

(
Fun∗∗(−, (Cc + Df ))W

)
to the

given diagram (i.e., by ignoring decorations).
The first thing to observe here is that since no bridge arrows are weak

equivalences, then the path components of both the source and the target
of

N
(

Fun∗∗([W
−1; A◦i; A◦j ; W−1], (Cc + Df ))W

)
→ N

(
Fun∗∗([W

−1; A◦i; W−1; A◦j ; W−1], (Cc + Df ))W
)

decompose according to where the (necessarily unique) bridge arrow lies
among the (i + j) possibilities, and moreover the map respects these de-
compositions. For each k ∈ {1, . . . , i + j}, let us use the ad hoc nota-

tion Fun
{k}
∗∗ (−, (Cc +Df ))W to denote the respective subcategories on those
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zigzags where the kth copy of A gets sent to a bridge arrow; it suffices to

show that the functor N
(

Fun
{k}
∗∗ (−, (Cc + Df ))W

)
induces a weak equiva-

lence in sSetKQ for each k. We will focus on the case that k ≤ i; the case
that k ≥ i+ 1 will follow from a completely dual argument.

• The fact that ρ1 induces a weak equivalence in sSetKQ follows from
Lemma 3.9(2).
• To see that ρ2 induces a weak equivalence, we will recycle arguments

from the proof of Proposition 3.11(2). Unlike in the proof of item
(1), we will need to separate the multiple steps in which we build

the map J1
ρ2−→ J2 into various cases. Note that by our assumption

that k ≤ i, the objects of Fun
{k}
∗∗ (J1, (C

c + Df ))W all select maps
J1 → (Cc + Df ) such that the composite in Model with the evident
inclusion

[(W ∩ F)−1; (W ∩C)−1]→ J1 → (Cc + Df )

lands in Df ⊂ (Cc + Df ).
– We begin by adding the new acyclic cofibrations one by one,

moving to the right and working in Df ⊂ (Cc + Df ). That
these induce weak equivalences in sSetKQ upon applying

N
(

Fun∗∗(−, (Cc + Df ))W
)

follows from a nearly identical argument to the one that the
same functor induces one upon application to ϕ2.

– Then, we begin adding the new acyclic fibrations, moving to the
left and working in Df ⊂ (Cc + Df ) until we reach the bridge
arrow. In this case, we can work entirely within (Cc + Df )
(i.e., without using the auxiliary object (Cc + D) ∈ Model∗∗)
since the pullback of an acyclic fibration among fibrant objects
will automatically be fibrant, and we can use completely dual
arguments to the ones used to show that κ1 and κ2 induce weak
equivalences to see that this again induces a weak equivalence.

– Once we hit the bridge arrow and thereafter, we continue adding
the new acyclic fibrations. But now, since we will be adding
objects that are in Cc that we will originally construct via pull-
back in C, we use the full strength of the argument that the
functor N

(
Fun∗∗(−, (Cc + Df ))W

)
induces a weak equivalence

in sSetKQ upon application to ϕ5.
• The fact that ρ3 induces a weak equivalence follows from the same

argument as given above in the proof of item (1).

Thus, (Cc + Df ) admits a homotopical three-arrow calculus with respect to
any x ∈ Cc and y ∈ Df . �
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3.3. The proof of Proposition 2.5. We now give a proof of the main
ingredient in the proof of the main theorem, which is based on the arguments
of [Man99, §7].

Proof of Proposition 2.5. We will prove that the map

L H(Cc + Df )→ cocart(L H(F c))

is a weak equivalence in ((CatsSet)Bergner)/[1]; that the map

L H(Cc + Df )→ cart(L H(Gf ))

is also a weak equivalence will follow from a completely dual argument.

First of all, over 0 ∈ [1] this map is an isomorphism L H(Cc)
∼=−→ L H(Cc),

while over 1 ∈ [1] this map is given by the inclusion L H(Df ) ↪→ L H(D),
which is a weak equivalence by Lemma 2.8. We claim that for any x ∈ Cc

and any y ∈ Df , the induced map

homL H(Cc+Df )(x, y)→ homcocart(L H(F c))(x, y) = homL H(D)(F
c(x), y)

is a weak equivalence in sSetKQ. From here it will follow easily that the
induced map on homotopy categories (i.e., under the functor

ho : CatsSet → Cat,

given locally by the product-preserving functor π0 : sSet → Set) will be an
equivalence of categories with target the analogously defined object

cocart(ho(F c)) ∈ Cat/[1].

Hence, we will have shown that the map L H(Cc + Df )→ cocart(L H(F c))
is indeed a weak equivalence in ((CatsSet)Bergner)/[1].

So, let x ∈ Cc and y ∈ Df . Let x• ∈ c(Wc
C) be a special cosimplicial

resolution of x, and let y• ∈ s(Wf
D) be a special simplicial resolution of

y (as in [DwK80b, 4.3 and Remark 6.8]; the existence of these resolutions
is guaranteed by [DwK80b, Proposition 4.5 and 6.7]). Let us also define a
simplicial set M• ∈ sSet with

Mn =
∐

(α,β)∈homCat([n],∆×∆op)

hom(Cc+Df )(x
α(n), yβ(0))

∼=
∐

(α,β)∈homCat([n],∆×∆op)

homD(F c(xα(n)), yβ(0))

and with structure maps as in [Man99, §7]. Then, considering

(Cc + Df ) ∈Model∗∗

via the objects x, y ∈ (Cc+Df ) and considering D ∈Model∗∗ via the objects
F c(x), y ∈ D, we claim that we obtain a commutative diagram
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diag
(

homlw
(Cc+Df )(x

•, y•)
)

diag
(
homlw

D (F c(x•), y•)
)

M• M•

N
(
Fun∗∗(3̃, (C

c + Df ))W
)

N
(
Fun∗∗(3̃,D)W

)

N
(
Fun∗∗(3, (C

c + Df ))W
)

N
(
Fun∗∗(3,D)W

)

homL H(Cc+Df )(x, y) homL H(D)(F
c(x), y)

∼=

=

≈

≈
≈

≈

≈ ≈

≈ ≈

in sSetKQ (where the maps involving M• are as described in [Man99, §7]),
from which it will follow that the bottom map is indeed a weak equivalence
as well.14 We argue as follows.

• The first right vertical arrow is a weak equivalence by [Man99, Propo-
sition 7.2], and hence (using the evident fact that the top horizontal
map is indeed an isomorphism) we obtain that the first pair of ver-
tical arrows are weak equivalences.15

• The second right vertical arrow is a weak equivalence by [Man99,
Proposition 7.3]. The second left vertical arrow is a weak equivalence
by a similar argument; we modify the one given there as follows.

– We redefine N• ∈ sSet to be the simplicial replacement of the
functor(

(Wc
C) � x

)op × (Wf
D)y

�

hom
(Cc+Df )

(−,−)
−−−−−−−−−−−→ Set.

– The functor ∆op y•−→ (Wf
D)y

� is again homotopy right cofinal

by Lemma 3.13; the functor ∆
x•−→ (Wc

C) � x is again homotopy
left cofinal by its dual.

– We redefine P•• ∈ ssSet analogously to how we redefined N• ∈
sSet (i.e., requiring the chosen objects of (WC) � x to be cofibrant
and requiring the chosen objects of (WD)y

� to be fibrant).

14There is a small mistake in the description of the first pair of vertical arrows in
[Man99, §7]: in the notation there, the map f ∈ hom∆([m], [pm]) should be given by
i 7→ fm ◦ · · · ◦ fi+1(pi) for i < m and m 7→ pm, and the map g ∈ hom∆([m], [q0]) should
be given by 0 7→ 0 and i 7→ g1 ◦ · · · ◦ gi(0) for i > 0.

15Of course, the uppermost square is unnecessary from a strictly logical point of view,
but it clarifies the connection between our proof and co/simplicial resolutions.
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– Let us clarify why the asserted maps from diag(P••) are weak
equivalences in sSetKQ.16

∗ To see that the map

diag(P••)→ N
(

Fun∗∗(3̃, (C
c + Df ))W

)
is a weak equivalence in sSetKQ, let us define the object

const
(
N
(
Fun∗∗(3̃, (C

c + Df ))W
))
∈ ssSet by precompo-

sition with the projection ∆op×∆op →∆op to the second
factor. This admits an evident map

P•• → const
(

N
(

Fun∗∗(3̃, (C
c + Df ))W

))
which yields the original map when we apply

diag : ssSet→ sSet.

By [GJ99, Chapter IV, Proposition 1.9] it suffices to show
that this is a levelwise weak equivalence in sSetKQ. In
level n, this is given by the map

P•,n → N
(

Fun∗∗(3̃, (C
c + Df ))W

)
n
,

whose target is a discrete (i.e., constant) simplicial set.
Moreover, the fiber over any point of the target is the
nerve of a category with an initial object, and hence it is
weakly contractible in sSetKQ.
∗ To see that the map diag(P••)→ N• is a weak equivalence

in sSetKQ, let us define N•• ∈ ssSet by

Nm,n =
∐

(α,β)∈homCat([n],(Wc
C

) � x)×homCat

(
[m],(Wf

D
)y

�

) hom(Cc+Df )(α(n), β(0)).

Note that this has diag(N••) ∼= N•, and moreover it ad-
mits an evident map P•• → N•• which yields the original
map when we apply diag : ssSet→ sSet. Hence, again by
[GJ99, Chapter IV, Proposition 1.9], it suffices to show
that for each n ≥ 0, the map Pn,• → Nn,• is a weak
equivalence in sSetKQ. In fact, it is not hard to see that
this last map admits a section which defines a homotopy
equivalence in sSetKQ.

• The third pair of vertical arrows are weak equivalences by Proposi-
tion 3.11.
• The fourth pair of vertical arrows are weak equivalences by Propo-

sitions 3.15 and 3.16.

16We work in the modified situation of (Cc + Df ), but the clarifications equally well
clarify the argument given in the original proof of [Man99, Proposition 7.3]; these clari-
fications actually come from private correspondence with Mandell regarding the original
proof.
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Thus, the map L H(Cc + Df ) → cocart(L H(F c)) is indeed a weak equiva-
lence in ((CatsSet)Bergner)/[1]. �

Appendix A. A history of partial answers to Question 0.1

In this appendix, we survey the results that are either explicitly stated
in the existing literature or can be extracted therefrom surrounding the
question of providing external, homotopy-theoretic meaning to the notions
of Quillen adjunctions and Quillen equivalences.

A.1. Derived adjunctions and derived equivalences. Quillen [Qui67]
proved the following results (which appear together as [Qui67, Chapter I,
§4, Theorem 3]).

• A Quillen adjunction induces a canonical adjunction between homo-
topy categories, called the derived adjunction of the Quillen adjunc-
tion.
• In the special case of a Quillen equivalence, the derived adjunction

actually defines an equivalence of categories, called the derived equiv-
alence of the Quillen equivalence.

A.2. Enhancements to ho(sSetKQ)-enriched categories. Dwyer–Kan
[DwK80a] introduced their hammock localization construction, which takes
any relative category — and hence in particular a model category — and
yields a category enriched in simplicial sets. As sSet-enriched categories
provide a model for “the homotopy theory of homotopy theories”, this laid
the foundations for the following enhancements of Quillen’s results that they
proved (which appear together by combining [DwK80b, Propositions 5.4 and
4.4]).17,18

• A Quillen adjunction F : C � D : G induces weak equivalences

homL H(C)(x,G(y)) ≈ homL H(D)(F (x), y)

in sSetKQ for every x ∈ C and every y ∈ D.
• A Quillen equivalence F : C � D : G induces weak equivalences

L H(F c) : L H(Cc)
≈→ L H(Dc) and L H(Cf )

≈← L H(Df ) : L H(Gf )
in (CatsSet)Bergner. As illustrated in Figure 1, it follows that L H(C)

and L H(D) are weakly equivalent objects of (CatsSet)Bergner.

Note that the first result does not posit the existence of any sort of ad-
junction. Indeed, this is a very subtle issue. What we have so far is the
diagram in (CatsSet)Bergner of Figure 1, in which the fact that the indicated
inclusions are weak equivalences follows from [DwK80b, Proposition 5.2] (or
Lemma 2.8, see Remark 2.9).

17There is a small typo in the statement of [DwK80b, Proposition 5.4]: it should involve
a cosimplicial resolution of the source and a simplicial resolution of the target.

18The proof of [DwK80b, Proposition 4.4] contains a mistake, which is both explained
and corrected in [Dug09] and is corrected in [Man99, §7].
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L H(Cc)
L l

≈

yy

L H(F c)
// L H(Dc)

� s

≈

%%

L H(C) L H(D),

L H(Cf )

2 R
≈

ee

L H(Df )
L H(Gf )

oo

+ �
≈

99

Figure 1. The hexagon in (CatsSet)Bergner arising from a
Quillen adjunction.

Now, a weak equivalence in (CatsSet)Bergner induces an equivalence of
ho(sSetKQ)-enriched categories.19 Hence, if we apply the “enriched homo-
topy category” functor hoenr : CatsSet → Catho(sSetKQ) to the above diagram,
we can choose enriched inverse equivalences to the upper-left and lower-right
inclusions, and then the upper and lower composites will respectively be can-
didates for the left and right adjoints of a ho(sSetKQ)-enriched adjunction

between hoenr(L H(C)) and hoenr(L H(D)).
However, things are still not so clean as this. The weak equivalences

between corresponding hom-objects in L H(C) and L H(D) pass through the
co/simplicial resolutions of [DwK80b, 4.3], and apparently nowhere in the
literature are these shown to give functorially weakly equivalent simplicial
sets to the hom-objects in the hammock localizations, at least not in full
generality. In fact, the main purpose of [Low] is to show that these weak
equivalences are indeed functorial (in ho(sSetKQ)) when the model category
admits functorial factorizations (although Low mentions in that paper that
he intends to return to the general case in future work).

But even if these weak equivalences were shown to be functorial, we still
would not immediately obtain a ho(sSetKQ)-enriched adjunction. Rather,
we would need to choose our enriched inverse equivalences to be enriched
adjoint equivalences, in order to select preferred and functorial isomorphisms
in hoenr(L H(C)) and hoenr(L H(D)) (via the unit or counit) between objects
and their images under the retractions.20

19Equivalences of enriched categories are precisely the enriched functors which are
essentially surjective on objects and induce isomorphisms on hom-objects (see [Kel05,
§1.11]).

20Adjoint equivalences would be guaranteed by the existence of functorial factorizations
in C and D (or even just functorial cofibrant replacement in C and functorial fibrant
replacement in D), but such assumptions are unnecessary since we are ultimately only
working at the ho(sSetKQ)-enriched level anyways: just as in ordinary category theory,
an enriched functor is an enriched equivalence if and only if it admits an enriched adjoint
equivalence (again see [Kel05, §1.11]).
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A.3. Enhancements to quasicategories. It has been established in the
literature that certain Quillen adjunctions satisfying additional hypotheses
induce adjunctions of quasicategories.

A.3.1. Model categories with functorial replacements. Lurie proves
as [Lur09, Proposition 5.2.2.8] that a pair of functors between quasicate-
gories are adjoints if and only if there exists a “unit transformation” with
the expected behavior at the level of ho(sSetKQ)-enriched homotopy cate-
gories (see [Lur09, Definition 5.2.2.7]).

However, it is a subtle matter to obtain such a unit transformation. Note
that a Quillen adjunction F : C � D : G gives rise to a unit transformation
idC → GF of endofunctors on the underlying category C, but its target GF
will not generally be a relative endofunctor. The standard fix is to take
cofibrant replacements in C before applying F and fibrant replacements in
D before applying G. Of course, in order to obtain a unit transformation,
these replacements must be functorial. Let us assume we are in the usual
situation in which such replacement functors exist, namely that they are
obtained as special cases of functorial factorizations; we denote them by

QC : C→ Cc ↪→ C and RD : D→ Df ↪→ D,

and we denote their corresponding replacement transformations by

QC qC−→ idC and idD
rD−−→ RD.

Now, we are interested in obtaining a unit map for the relative endofunc-
tor GRDFQC on (C,WC), at least at the level of its underlying quasicat-
egory. The first thing to note here is that we cannot proceed by passing
through hammock localizations, since the functor L H : RelCat → CatsSet

does not preserve natural transformations.21 On the other hand, the rela-
tive functor NR : RelCat → ssSetRezk preserves products (being pointwise
corepresented), and from this it is not hard to see that it preserves natu-
ral transformations and takes natural weak equivalences to natural equiva-
lences (in the evident internal sense in ssSetRezk); since the model category
ssSetRezk is compatibly cartesian closed (see [Rez01, Theorem 7.2]) and all
its objects are cofibrant, we view this as an acceptable substitute. Hence,
up to the contractible ambiguity in the various functors between models
for “the homotopy theory of homotopy theories”, we may consider a nat-
ural transformation or natural weak equivalence between relative functors

21Rather, given C1,C2 ∈ RelCat and a morphism F1 → F2 in Fun(C1,C2)W, for any
x, y ∈ C1 we obtain a natural cospan of weak equivalences

homLH (C2)
(F1(x), F1(y))

≈→ homLH (C2)
(F1(x), F2(y))

≈← homhom(C2)(F2(x), F2(y))

in sSetKQ, and combining this with the span

homLH (C2)
(F1(x), F1(y))← homLH (C1)

(x, y)→ homLH (C2)
(F2(x), F2(y))

yields a square which commutes up to a specified homotopy (see [DwK80a, Propositions
3.5 and 3.3]).
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between relative categories as giving natural transformations and natural
equivalences between the corresponding functors between their underlying
quasicategories.

From here, the most direct way to proceed would be to obtain the unit
map from the natural zigzag

x
qCx←−
≈

QC(x)
ηQC(x)−−−−→ G

(
F
(
QC(x)

)) G

(
rD
F(QC(x))

)
−−−−−−−−−→ G

(
RD
(
F
(
QC(x)

)))
in C in which the backwards arrow is a weak equivalence; assembling these
across all x ∈ C, we obtain a span

idC
qC←−
≈

QC
G(rD)◦η
−−−−−→ GRDFQC

between relative endofunctors on (C,WC) in which the backwards arrow is
a natural weak equivalence. Passing through ssSetRezk as discussed above
(and implicitly identifying the two different ways of passing from RelCatBK

to sSetJoyal), we obtain a span

idu.q.(C)

u.q.(qC)
←−−−−−
∼

u.q.
(
QC
) u.q.(G(rD)◦η)
−−−−−−−−−→ u.q.

(
GRDFQC

)
in which the backwards arrow is an equivalence.22 Hence, we can obtain a
candidate unit transformation idu.q.(C) → u.q.

(
GRDFQC

)
, which one might

then hope to verify satisfies the hypotheses of [Lur09, Definition 5.2.2.7]
using e.g., the co/simplicial resolutions of [DwK80b]. Of course, this requires
knowing that the hom-objects obtained from co/simplicial resolutions are
indeed functorially weakly equivalent to the hom-objects in the hammock
localizations, but at least this follows from [Low] in the case that C and D

both admit functorial factorizations, as mentioned above.

Remark A.1. This approach would also work if the cofibrant replacement
functor QC : C→ C were augmented (instead of coaugmented), and in fact we
would also obtain a candidate unit transformation if the fibrant replacement
functor RD : D → D were coaugmented (instead of augmented). On the
other hand, because of the way model categories are set up, it seems that
such replacement functors do not arise very frequently in practice.

Remark A.2. Of course, if all objects of C are cofibrant then the identity
functor can serve as a cofibrant replacement functor; a dual observation
holds for D.

Remark A.3. Actually, slightly more cleverly, we can use a similar argu-
ment to the one given above to obtain a natural transformation between the
standard inclusion Cc ↪→ C and the composite

Cc
F c

−→ Dc ↪→ D
RD

−−→ Df G−→ C;

22Note that we are now working internally to a quasicategory, namely the quasicategory
of endofunctors of u.q.(C).
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this yields a natural transformation between functors from u.q.(Cc) to u.q.(C),
and (horizontally) precomposing with a retraction to the acyclic cofibration

u.q.(Cc)
≈
� u.q.(C) in sSetJoyal yields a candidate unit transformation, all

without requiring that C admit any sort of cofibrant replacement functor.
Dually, one can obtain a candidate counit transformation if one assumes
that C has a cofibrant replacement functor but without assuming that D

admit any sort of fibrant replacement functor.

Remark A.4. Instead of assuming the existence of appropriate co/fibrant
replacement functors, one might alternatively extract retractions

u.q.(C)
≈−→ u.q.(Cc) and u.q.(D)

≈−→ u.q.(Df )

in sSetJoyal, i.e., at the level of underlying quasicategories. However, it
appears that the original adjunction F a G will be entirely lost by this point,
and hence that one cannot hope to provide the desired unit transformation
in full generality using this approach.

Remark A.5. Lurie proves that a Quillen adjunction F : C � D : G
between combinatorial model categories gives rise to a colimit-preserving
functor u.q.(F c) : u.q.(Cc)→ u.q.(Dc) of quasicategories (see [Lur14, Corol-
lary 1.3.4.26]). He also proves that these quasicategories are presentable,
and hence deduces from the adjoint functor theorem that this must there-
fore be a left adjoint, and moreover that one can obtain a right adjoint from
the composite

Dc ↪→ D
RD

−−→ Df G−→ C
QC

−−→ Cc

(see [Lur14, Remark 1.3.4.27]). Of course, since combinatorial model cat-
egories automatically admit replacement functors, this result can also be
recovered from the preceding argument.

A.3.2. Simplicial model categories. Dwyer–Kan prove that given a sim-
plicial model category C•, the two possible notions of “underlying homotopy

theory” agree: the full sSet-enriched subcategory C
cf
• of bifibrant objects is

equivalent (via a zigzag of weak equivalences in (CatsSet)Bergner) to the ham-

mock localization L H(C) of the underlying model category (see [DwK80b,
Proposition 4.8]).23 This paved the way for the following enhancement of
their results.

First of all, Lurie proves as [Lur09, Proposition 5.2.4.6] — and Riehl–
Verity later re-prove as [RV15, Theorem 6.2.1] — that a simplicial Quillen
adjunction of simplicial model categories F• : C• � D• : G• (that is, an en-
riched adjunction in CatsSet which is moreover a Quillen adjunction on under-
lying model categories) induces an adjunction between the quasicategories

23Note that in the statement of [DwK80b, Proposition 4.8], the right arrow should
also be labeled as a weak equivalence in (CatsSet)Bergner, there called simply a “weak
equivalence”.
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Nhc(Ccf• ) and Nhc(Dcf
• ).24 (Note that the objects C

cf
• ,D

cf
• ∈ (CatsSet)Bergner

are already fibrant, and hence do not require fibrant replacement.)
Moreover, there are various results concerning the replacement of model

categories and of Quillen equivalences by simplicial ones.

• In [Dug01], Dugger shows that a model category which is left proper
and is additionally either cellular or combinatorial admits a left
Quillen equivalence to a simplicial model category (see [Dug01, The-
orem 1.2 or 6.1]).
• In [RSS01], Rezk–Schwede–Shipley work with model categories that

are left proper, cofibrantly generated (under a slightly stronger def-
inition than the usual one, see [RSS01, Definition 8.1]), and satisfy
their “realization axiom” (see [RSS01, Axiom 3.4]), and prove:

– Every such model category admits a left Quillen equivalence to
a simplicial model category (see [RSS01, Theorem 3.6]).

– A Quillen adjunction between such model categories induces
a simplicial Quillen adjunction between their replacements by
simplicial model categories (see [RSS01, Proposition 6.1]).

Whenever these results can be used to upgrade a Quillen adjunction to a
simplicial Quillen adjunction (see [BluR14, §A] for an expanded summary
of these techniques), then by combining Lurie’s result with the Dwyer–Kan
result cited earlier (that Quillen equivalences induce weak equivalences in
(CatsSet)Bergner), we obtain from the original Quillen adjunction an adjunc-
tion of underlying quasicategories.
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