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A USER’S GUIDE TO CO/CARTESIAN FIBRATIONS

AARON MAZEL-GEE

Abstract. We formulate a model-independent theory of co/cartesian morphisms and co/cartesian fibra-
tions: that is, one which resides entirely within the ∞-category of ∞-categories. We prove this is suitably
compatible with the corresponding quasicategorical (and in particular, model-dependent) notions studied
by Joyal and Lurie.
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0. Introduction

Outline and goals. This note concerns the notions of cocartesian fibrations and of cartesian fibrations, as
well as their connection to the Grothendieck construction, in the ∞-categorical context.

• The ur-example of a cartesian fibration is the forgetful functor VectBdl→Mfld from the category
of vector bundles – that is, of pairs (M,V ) of a manifold M and a vector bundle V ↓ M – to the
category of manifolds; the fact that this is a cartesian fibration encodes the observation that vector
bundles can be pulled back in a category-theoretically meaningful way. (See Example 1.5.)

• Meanwhile, the ur-example of the Grothendieck construction accounts for the equivalence be-
tween the two competing definitions of a stack in algebraic geometry, either as a functor to the
category of groupoids or as a “category fibered in groupoids”.

The purpose of this note is twofold.

(1) On the one hand, we offer a relaxed and informal discussion of co/cartesian fibrations and their
motivation coming from the Grothendieck construction, which assumes no prerequisites beyond a
vague sense of the meaning of the signifier “∞-category”.

(2) On the other hand, we carefully prove that our relaxed and informal discussion was in fact actually
completely rigorous all along . More precisely, we show that our definitions, which are formulated
within the ∞-category of ∞-categories, are suitably compatible with the corresponding notions in
quasicategories (see Theorem 3.3 and Corollary 3.4).1

The bulk of this note consists in §1 (where we offer our relaxed and informal discussion) and in §3 (where
we present our proofs). Separating these, in §2 we distill the discussion of §1 into precise model-independent
definitions of co/cartesian morphisms and of co/cartesian fibrations.

Wherefore model-independence? As for the technical content of this note, the skeptical reader is com-
pletely justified in asking: Why does this matter? We offer three related and complementary responses.

Date: October 9, 2015.
1As the quasicategorical definitions are not manifestly model-independent, the proofs of these results are nontrivial. Indeed,

they are fairly involved, and rely on rather subtle model-categorical manipulations.
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2 AARON MAZEL-GEE

(a) The first and most obvious justification for model-independence is that it allows one to work model-

independently . Being a vastly general and broadly applicable home for derived mathematics, the
theory of ∞-categories has recently found widespread and exciting use in a plethora of different
areas – for instance in the geometric Langlands program and in mathematical physics, to name but
two (closely related) examples. In such applications, “∞-categories” are generally manipulated in a
purely formal fashion, a rule of thumb being that anything the typical user of∞-categories would like
to study should be accessible without reference to model-dependent notions such as quasicategories,
various sorts of fibrations between them, their individual simplices, etc.

For the most part, the theory of quasicategories – being itself soundly founded in the theory of
model categories – allows for direct and straightforward manipulation of the corresponding model-
independent notions: by and large, the definitions visibly descend to the underlying ∞-category of
the model category sSetJoyal. However, the theory of co/cartesian fibrations is a glaring exception.
It is therefore not a priori meaningful to work with these notions in a model-independent fashion.
In order to allow the myriad users of ∞-category theory throughout mathematics to employ the
theory of co/cartesian fibrations – and in particular, to allow them to appeal to the various results
which have been proved about their incarnations in quasicategories –, it seems like nothing more
than good homotopical manners to prove that these quasicategorical definitions do indeed descend
to the underlying ∞-category of sSetJoyal as well.

In particular, our results provide the crucial input to a model-independent reading of [Lur14],
which work is premised heavily on the notion of co/cartesian morphisms in quasicategories.

(b) The next most obvious justification for model-independence is that it provides conceptual clarity :
a model-independent definition is by definition unfettered by point-set or model-dependent notions
which obfuscate its true meaning and significance.

For a rather grotesque example, recall that one can define the “nth homotopy group” of a based
simplicial set (Y, y) ∈ sSet∗ as certain subquotient

πn(Y, y) =
{

σ ∈ (RY )n : δni (σ) = σ◦(n−1)(y) for all 0 ≤ i ≤ n
}/

∼

of the set of n-simplices of a fibrant replacement Y
≈
→ RY ։ ∆0 (relative to the standard Kan–

Quillen model category structure sSetKQ, and with respect to the induced basepoint ∆0 y
−→ Y → RY ).

This definition completely obscures a number of important features of homotopy groups:

• that they are independent of the choice of fibrant replacement;

• that they actually form a group at all (for n ≥ 1, let alone an abelian group for n ≥ 2);

• that a path connecting two basepoints (which itself may only be representable by a zigzag of
edges in Y itself) induces a conjugation isomorphism (for n ≥ 1);

• that they are corepresentable in the homotopy category ho(S∗) of pointed spaces.

Though the quasicategorical definitions of co/cartesian morphisms and co/cartesian fibrations are
not nearly so abstruse, they are nevertheless model-dependent, and hence the assertion that they
have homotopical meaning requires further proof.

(c) Lastly, proving that quasicategorical definitions are model-independent also allows mathematicians
employing specific but alternate models for ∞-categories to employ these notions and their
attending results while continuing to work within their native context. As is particularly well-known
to homotopy theorists, different model categories presenting the same ∞-category (e.g. and i.e. that
of spectra) can be advantageous for different purposes. For a few examples of where such alternate
models for ∞-categories arise:

• Top-enriched categories appear in geometric topology;

• A∞-categories appear in mirror symmetry;

• dg-categories appear in derived algebraic geometry and homological algebra;

• Segal spaces (and indeed, Segal Θn-spaces) appear in bordism theory;
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• sSet-enriched categories appear in homotopy theory (both as hammock localizations of relative
categories (e.g. model categories) and as (the full subcategories of bifibrant objects of) simplicial
model categories).

In some sense, this is mainly a preservation-of-sanity issue. All of the various the model cate-
gories which present “the ∞-category of ∞-categories” are connected by an intricate web of Quillen
equivalences (see [BSP]). It is therefore already possible to wrangle a given question asked in any of
these model categories into a corresponding question asked in the model category sSetJoyal, so long
as one is willing to take the appropriate co/fibrant replacements at every step to ensure that one
is computing the derived values of these various Quillen equivalences. However, this procedure is a
hassle at best, and at worst can effectively destroy all hope of answering the given question (since
taking co/fibrant replacements generally drastically alters the object’s point-set features).

This motivation can therefore be seen as something of a “down-then-up” maneuver: in proving
that these notions actually descend to the underlying ∞-category which is common to all of these
distinct model categories of∞-categories, we prove that all of the results which have been proved in
quasicategories can be brought to bear while working in any of these models – no wrangling required.

Conventions. We refer to Lurie’s twin tomes [Lur09] and [Lur14] for general references on quasicategories.
For further motivation regarding the Grothendieck construction (including a variety of applications), we refer
the interested reader to [MGa]. Lastly, we refer to [MGb, §A] for details and specifics on working “within
the ∞-category of ∞-categories” (as well as for further clarification regarding our conventions).

Acknowledgments. It is a pleasure to acknowledge our debt of influence to David Ayala, both for the
generalities as well as for various specific observations that appear throughout this note. We are also deeply
grateful to Piotr Pstragowski for his suggested outline of the proof of Theorem 3.3, and to Zhen Lin Low for
countless conversations regarding the ideas that appear here. Finally, we would like to thank Montana State
University for its hospitality as well as UC Berkeley’s Geometry and Topology RTG grant (which is part of
NSF grant DMS-0838703) for its generous funding of our stay there (during which this note was written).

1. A leisurely soliloquy on co/cartesian fibrations and the Grothendieck construction

A fundamental principle in mathematics is that objects do not exist only in isolation, but tend to occur
in families. Perhaps the most basic example is that a covering space

E

B

f

can be thought of as a family of sets, parametrized by the base space B: a point b ∈ B corresponds to the
fiber f−1(b) ⊂ E. This allows for a natural shift in perspective: our covering, a map whose target is the
space B, is simultaneously classified by a map whose source is the space B, namely a map

B Set≃

to the maximal subgroupoid Set≃ ⊂ Set of the category of sets. Indeed, this construction furnishes an
isomorphism

Cov(B) [B, Set≃]
∼=

from the set of covering spaces of B to the set of homotopy classes of maps B → Set≃.
But this, in turn, allows for another a shift in perspective. Returning to our covering space, note that a

path b1 → b2 between two points of B provides an isomorphism f−1(b1)
∼=
−→ f−1(b2) between their respective

fibers. In other words, it is only because all morphisms in a space are invertible that our classifying
map B → Set factors through the maximal subgroupoid Set≃ ⊂ Set.

Question 1.1. If B is a “space whose morphisms are not all invertible” – that is, if B is an ∞-category –,
then what, exactly, is classified by a map B→ Set?



4 AARON MAZEL-GEE

The answer to this question – and to its successive generalizations along the inclusions

Set ⊂ S ⊂ Cat∞

of the category of sets into the ∞-categories S of spaces and Cat∞ of ∞-categories – is provided by the
Grothendieck construction , which furnishes an equivalence of ∞-categories

Fun(B,Cat∞) coCFib(B)
Gr
∼

from the ∞-category of functors B → Cat∞ to the ∞-category of cocartesian fibrations over B, a
subcategory

coCFib(B) ⊂ (Cat∞)/B

of the ∞-category of ∞-categories lying over B.
Given a functor

B Cat∞,
F

let us describe the salient features of the resulting cocartesian fibration

E

B

f

which it classifies.

(1) Over an object b ∈ B, the fiber f−1(b) ⊂ E is canonically equivalent to F (b) ∈ Cat∞.

(2) Given a morphism b1
ϕ
−→ b2 in B and an object e ∈ f−1(b1) of the fiber over its source, there is a

canonical morphism

e→ ϕ∗(e)

in E which projects to ϕ, called an f -cocartesian lift (or simply a cocartesian lift) of ϕ relative to e,
such that the canonical equivalence f−1(b2) ≃ F (b2) identifies the object ϕ∗(e) ∈ f

−1(b2) with the
object (Fϕ)(e) ∈ F (b2). This is illustrated in Figure 1.

e ϕ∗(e)

E

B Cat∞

b1 b2 F (b1) F (b2)

e (Fϕ)(e)

f

F

ϕ Fϕ

Figure 1. An illustration of a cocartesian morphism.
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(3) An arbitrary morphism e1 → e2 in E admits a unique factorization as a cocartesian morphism
followed by a morphism lying in the fiber f−1(b2) – which we will therefore refer to as a fiber morphism

–, as illustrated in Figure 2. Under the equivalence f−1(b2) ≃ F (b2), the morphism ψ∗(e1)→ e2 in

e1 ψ∗(e1)

e2

E

B Cat∞

b1 b2 F (b1) F (b2)

e1 (Fψ)(e1)

e2

f

F

ψ Fψ

Figure 2. An illustration of the factorization system in a cocartesian fibration.

f−1(b2) corresponds to a morphism (Fψ)(e1)→ e2 in F (b2). Thus, we have canonical equivalences

homE(e1, e2) ≃ homf−1(b2)(ψ∗(e1), e2) ≃ homF (b2)((Fψ)(e1), e2)

of hom-spaces.

This informal description already makes visible an exciting feature of the Grothendieck construction,
namely that it reduces category level. For instance, in Figure 1, we see that the Grothendieck construction
translates

e 7→ (Fϕ)(e),

an assertion about a functor between ∞-categories, into

e→ ϕ∗(e),

a morphism within a single ∞-category.

Example 1.2. Let us illustrate just a hint of the bookkeeping power which results from this reduction of
category level. First of all, the datum of a monoidal category (C,⊗) can be encoded as a certain functor

∆op
Cat,

Bar(C)•

namely its bar construction (as a monoid object in the symmetric monoidal category (Cat,×)): this is given
on objects by Bar(C)n = C×n, while its structure maps encode the monoidal structure on C and the unit
map ptCat ≃ {1C} →֒ C. Similarly, we can encode the datum of a symmetric monoidal category (C,⊗) as a
functor

Fin∗ → Cat
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from the category of finite pointed sets: this takes an object T+ = T ⊔{∗} to the category C×T , and it takes

a morphism T+
α
−→ U+ to the functor C×T → C×U described by the formula

(ct)t∈T 7→





⊗

t∈α−1(u)

ct





u∈U

where, by convention, a monoidal product indexed over an empty set is defined to be the unit object 1C ∈ C.
(We note in passing that if α(t) = ∗ ∈ U+ for some t ∈ T , then ct does not appear in any of the resulting
monoidal products indexed by the elements u ∈ U : it is simply “thrown away”.) It follows that we can
equivalently consider a symmetric monoidal category (C,⊗) as a cocartesian fibration

C⊗

Fin∗

p

over the category of finite pointed sets. For instance, writing 〈n〉 = {1, . . . , n}+, the unique map 〈2〉
µ
−→ 〈1〉

in Fin∗ satisfying µ−1(∗) = {∗} has cocartesian lifts of the form

(c1, c2)→ (c1 ⊗ c2),

which morphisms therefore encode the monoidal product C× C
−⊗−
−−−→ C.

Now, in this language, a symmetric monoidal functor

(C,⊗)
F
−→ (D,⊠)

is equivalent data to that of a morphism of cocartesian fibrations

C⊗ D⊠

Fin∗

F

p q

over Fin∗: over an object T+ ∈ Fin∗ the induced map on fibers is given by C×n F×n

−−−→ D×n, and the fact that
the functor respects the monoidal products is encoded by the fact that it preserves cocartesian morphisms.
For instance, the p-cocartesian morphism

(c1, c2)→ (c1 ⊗ c2)

of C⊗ lying over 〈2〉
µ
−→ 〈1〉 is taken to a morphism

(F (c1), F (c2))→ F (c1 ⊗ c2)

of D⊠ also lying over 〈2〉
µ
−→ 〈1〉, and the assertion that this is q-cocartesian guarantees a unique isomorphism

F (c1)⊠ F (c2) ∼= F (c1 ⊗ c2)

in D ∼= D×1.
However, more is true: even if F is now only a lax symmetric monoidal functor, it still defines a morphism

among cocartesian fibrations (in constrast to “a morphism of cocartesian fibrations”), but in general it
will not preserve the cocartesian morphisms. For instance, the p-cocartesian morphism (c1, c2) → (c1 ⊗ c2)
in C⊗ will be sent to an arbitrary morphism (F (c1), F (c2)) → F (c1 ⊗ c2), which then admits a unique
cocartesian/fiber factorization

(F (c1), F (c2)) (F (c1)⊠ F (c2))

F (c1 ⊗ c2)

in D⊠, in which the fiber morphism is the “structure map” witnessing the laxness of F (at the pair of objects
c1, c2 ∈ C).
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As a special case, note that the identity map of Fin∗ is a cocartesian fibration, which corresponds to
the canonical (and unique) symmetric monoidal structure on the terminal category ptCat ∈ Cat. Then,
a commutative algebra object in the symmetric monoidal category (C,⊗) is nothing but a lax symmetric
monoidal functor

ptCat
A
−→ (C,⊗).

Moreover, the functoriality of commutative algebra objects for a lax symmetric monoidal functor

(C,⊗)
F
−→ (D,⊠)

is encoded simply by the composition

Fin∗ C⊗ D⊠

Fin∗

A

idFin∗

F

p
q

of morphisms among cocartesian fibrations. (Of course, we can equivalently write the map A as a section

of the cocartesian fibration C⊗ → Fin∗; then, the functoriality of commutative algebras for lax symmetric
monoidal functors is encoded by the functoriality of sections.)

Remark 1.3. In Example 1.2, we were careful not to say that a lax symmetric monoidal functor (or, in
particular, an algebra object) was exactly characterized as a morphism

C⊗ D⊠

Fin∗

F

p q

among cocartesian fibrations. This was only because we had not yet introduced a certain bit of terminology.

First of all, let us say that a morphism T+
α
−→ U+ in Fin∗ is inert if for all u ∈ U , the preimage α−1(u) has

exactly one element. Inasmuch as the basepoints of objects in Fin∗ might be thought of as “trash receptacles”,
such an inert morphism should therefore be thought of as parametrizing the operation of “throwing away”

some specified subset of the T -indexed list of objects. For instance, the unique map 〈2〉
ρ
−→ 〈1〉 in Fin∗

satisfying ρ−1(1) = {2} has p-cocartesian lifts of the form

(c1, c2)→ c2.

Then, a morphism in C⊗ is called p-inert (or simply inert) if it is p-cocartesian and lies over an inert
morphism in Fin∗. Now, we can define a lax symmetric monoidal functor

(C,⊗)
F
−→ (D,⊠)

to be a commutative triangle as above which preserves inert morphisms (i.e. which takes p-inert morphisms
to q-inert morphisms).

Remark 1.4. The observations of Example 1.2 and Remark 1.3 form the foundations of the extremely versatile
theory of ∞-operads introduced and studied in [Lur14, Chapter 2].

In Question 1.1, we made an implicit choice when generalizing morphisms

B Set≃

of ∞-groupoids to morphisms

B Set

of∞-categories: we chose to study covariant functors. There is also a contravariant Grothendieck construc-
tion

Fun(Bop,Cat∞) CFib(B)
Gr−

∼
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from the ∞-category of functors Bop → Cat∞ to the ∞-category of cartesian fibrations over B, which is
likewise a subcategory

CFib(B) ⊂ (Cat∞)/B

of the∞-category of∞-categories lying over B. In parallel with the salient features of a cocartesian fibration
described above, let us briefly describe those of the cartesian fibration

E

B

f

classified by a functor

Bop Cat∞.
F

(1) Over an object b ∈ B, the fiber f−1(b) ⊂ E is canonically equivalent to F (b) ∈ Cat∞.

(2) Given a morphism b1
ϕ
−→ b2 in B and an object e ∈ f−1(b2) of the fiber over its target, there is a

canonical morphism

ϕ∗(e)→ e

in E which projects to ϕ, called a cartesian lift of ϕ (relative to e).

(3) An arbitrary morphism e1 → e2 in E projecting to a map b1
ψ
−→ b2 in B now admits a unique

factorization

e1

ψ∗(e2) e2

as a fiber morphism followed by a cartesian morphism.

Example 1.5. Consider the category VectBdl of vector bundles: its objects are the pairs (M,V ) of a
manifold M and a vector bundle V ↓M , and its morphisms are commutative squares

V W

M N

(of a morphism of manifolds and a compatible morphism of (total spaces of) vector bundles). Then, the
forgetful functor

VectBdl

Mfld

UVectBdl

to the category of manifolds is a cartesian fibration. Given a morphismM
ϕ
−→ N in Mfld and a vector bundle

W ↓ N , a cartesian lift is provided by the pullback vector bundle, which is defined by a pullback square

ϕ∗(W ) W

M Nϕ
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of underlying topological spaces. The fiber/cartesian factorization system in this cartesian fibration translates
into the assertion that for any vector bundle V ↓M , the induced diagram

homVectBdl(M)(V ↓M,ϕ∗(M) ↓M) homVectBdl(V ↓M,W ↓ N)

{ϕ} homMfld(M,N)

is a pullback square in Set, where VectBdl(M) denotes the fiber U−1
VectBdl(M) of the forgetful functor over

the object M ∈Mfld (or equivalently, the value at M of the functor

Mfldop Cat
VectBdl

classifying our cartesian fibration).
There is a canonical section

VectBdl

Mfld

UVectBdl
T

of the forgetful functor, called the tangent bundle: this takes a manifold M ∈ Mfld to its tangent bundle
TM ↓ M . Note that this is not a cartesian section: it does not take morphisms in Mfld to cartesian
morphisms of the cartesian fibration. (Correspondingly, this does not arise from a natural transformation

Mfldop Cat

const(ptCat)

⇓

VectBdl

between Cat-valued functors on Mfldop.) In other words, given an arbitrary morphismM
ϕ
−→ N of manifolds,

we obtain a canonical map TM → ϕ∗(TN) in VectBdl(M), but this map is not generally an isomorphism.
However, it is an isomorphism (and the morphism TM → ϕ∗(TN) is a cartesian lift of ϕ) whenever the
morphism ϕ is an open embedding.

The following example illustrates the essential consequence on hom-sets (or hom-spaces) of a functor being
a co/cartesian fibration, which was alluded to in Example 1.5 (but in which case the notation would have
been a bit unwieldy if we had tried to elaborate fully on this consequence there).

Example 1.6. The forgetful functor

Top

Set

UTop

is a cartesian fibration. Given a morphism U → Y in Set and a topological space Y ∈ Top equipped with
an isomorphism UTop(Y) ∼= Y in Set, a UTop-cartesian lift is provided by endowing the set U ∈ Set with
the induced topology: this yields a topological space U ∈ Top equipped with a map U → Y in Top and an
isomorphism UTop(U) ∼= U in Set, which has the universal property that for any Z ∈ Top with underlying
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set Z = UTop(Z) ∈ Set, the resulting diagram

homTop(Z,U) homTop(Z,Y)

homSet(Z,U) homSet(Z, Y )

is a pullback square in Set. (If the morphism U → Y is actually the inclusion of a subset, this specializes to
define the subspace topology on the set U .)

2. Definitions

In this brief section, we give precise definitions of the concepts we have introduced in §1.

Definition 2.1. Let E
f
−→ B be a functor of ∞-categories.

(1) We say that a morphism e1
ϕ
−→ e2 in E is f-cocartesian (or simply cocartesian , if the functor f

is clear from the context) if it induces a pullback diagram

Ee2/ Ee1/

Bf(e2)/ Bf(e1)/

− ◦ ϕ

f f

− ◦ f(ϕ)

in Cat∞. In this case, we call ϕ an f-cocartesian lift (or simply a cocartesian lift) of f(ϕ)
relative to e1. We then say that the functor f is a cocartesian fibration if every object of

Fun([1],B) ×
s,B,f

E

admits an f -cocartesian lift.

(2) Dually, we say that a morphism e1
ϕ
−→ e2 in E is f-cartesian (or simply cartesian) if it induces a

pullback diagram

E/e1 E/e2

B/f(e1) B/f(e2)

ϕ ◦ −

f f

f(ϕ) ◦ −

in Cat∞. In this case, we call ϕ an f-cartesian lift (or simply a cartesian lift) of f(ϕ) relative
to e2. We then say that the functor f is a cartesian fibration if every object of

Fun([1],B) ×
t,B,f

E

admits an f -cartesian lift.
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Remark 2.2. Let E
f
−→ B be a functor of ∞-categories. The crucial consequence of a morphism e1

ϕ
−→ e2 in

E being f -cocartesian is that for any object e ∈ E, the induced diagram

homE(e2, e) homE(e1, e)

homB(f(e2), f(e)) homB(f(e1), f(e))

is a pullback square in S. Dually, the crucial consequence of a morphism e1
ϕ
−→ e2 in E being f -cartesian is

that for any object e ∈ E, the induced diagram

homE(e, e1) homE(e, e2)

homB(f(e), f(e1)) homB(f(e), f(e2))

is a pullback square in S. (Recall Example 1.6, and see [Lur09, Proposition 2.4.1.10].)

Remark 2.3. A cocartesian fibration E
f
−→ B whose fibers f−1(b) are all ∞-groupoids is called a left fibra-

tion. These assemble into the full subcategory LFib(B) ⊂ coCFib(B). Correspondingly, the (covariant)
Grothendieck construction restricts to an equivalence

Fun(B,Cat∞) coCFib(B)

Fun(B, S) LFib(B)

Gr
∼

∼

Gr

from the ∞-category of functors B → S valued in the ∞-category of spaces to the ∞-category LFib(B) of
left fibrations over B. As a result of the fact that all morphisms in a space are equivalences, given a left

fibration E
f
−→ B, every morphism in E is f -cocartesian.

Dually, a cartesian fibration whose fibers are all ∞-groupoids is called a right fibration, the contravariant
Grothendieck construction restricts to an equivalence

Fun(Bop,Cat∞) CFib(B)

Fun(Bop, S) RFib(B)

Gr−

∼

∼

Gr−

from the ∞-category of functors Bop → S to the full subcategory RFib(B) ⊂ CFib(B) of right fibrations

over B, and given a right fibration E
f
−→ B, every morphism in E is f -cartesian.

3. Proofs

In this final section, we prove that our definitions of co/cartesian morphisms and co/cartesian fibrations
coincide with the corresponding “point-set” definitions in quasicategories; as these latter have been studied
extensively, it will follow that all quasicategorical results regarding co/cartesian morphisms and co/cartesian
fibrations can be applied either when working model-independently or when working in some other model
category of ∞-categories. In order to directly align with the definitions given in [Lur09, §2.4] we will focus
on the cartesian variants, but of course our results will immediately apply to the cocartesian variants as well
(simply by taking opposites).

Notation 3.1. We will write

hom(−,−) = homsSet(−,−) : (sSet)
op × sSet→ sSet
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for the internal hom bifunctor in sSet (relative to its cartesian symmetric monoidal structure).

For precision and disambiguation, we introduce the following terminology (which pays homage to Joyal
and Lurie, the architects of a theory without which the present note could never exist).

Definition 3.2. Let E
p
−→ B be an inner fibration in sSet. Following [Lur09, Definition 2.4.1.1], we will say

that an edge ∆1 f
−→ E is JL-p-cartesian (or simply JL-cartesian) if the induced map

E/f → E/f(1) ×
B/p(f(1))

B/p(f)

lies in (W∩F)Joyal ⊂ sSet.
2 In this case, we will refer to the edge f ∈ E1 as a JL-p-cartesian lift (or simply

a JL-cartesian lift) of the edge p(f) ∈ B1 relative to the vertex f(1) ∈ E0. Following [Lur09, Definition
2.4.2.1], we then say that the morphism f is a JL-cartesian fibration if every vertex of

hom(∆1, B) ×
ev1,B,f

E

admits an f-cartesian lift.

We now show that our model-independent notion of cartesian morphism is suitably compatible with the
quasicategorical notion of a JL-cartesian edge.

Theorem 3.3. Let E
p
։ B be a fibration between fibrant objects in sSetJoyal which presents a map E

p
−→ B

in Cat∞. Suppose that a map ∆1 f
−→ E in sSetJoyal presents a p-cartesian morphism [1]

f
−→ E. Then the edge

f ∈ E1 is JL-p-cartesian.

Proof. We must show that the map

E/f → E/f(1) ×
B/p(f(1))

B/p(f)

in sSetJoyal lies in (W ∩ F)Joyal.
First of all, using the characterization FJoyal = rlp((W ∩C)Joyal), it is easy to see

• that the object E/f(1) ∈ sSetJoyal is fibrant and

• that the map B/p(f) → B/p(f(1)) is a fibration in sSetJoyal.

Hence, it follows from the Reedy trick that this fiber product is in fact a homotopy pullback in sSetJoyal.
Thus, this map in sSetJoyal presents the map

E/f → E/f(1) ×
B/p(f(1))

B/p(f),

in Cat∞, which can be canonically identified with the map

E/f(0) → Ef(1) ×
B/p(f(1))

B/p(f(0))

in Cat∞ and therefore lies in WJoyal by assumption.
To see that it also lies in FJoyal, we argue as follows. We claim that there is a Quillen adjunction

α : Fun([1], sSetJoyal)Reedy ⇄ (sSetJoyal)∆1/ : β,

where

• we equip [1] with the Reedy category structure determined by the degree function 0 7→ 0 and 1 7→ 1,

• we define

β(∆1 y
−→ Y) = (Y/y → Y/y(1)),

and

2The map E/f → E/f(1) should be thought of simply as “postcomposition with f”: the restriction map E/f → E/f(0) lies in

(W ∩ F)Joyal . Similarly for the map B/p(f) → B/p(f(1)).
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• we define

α(Z→ W) =

(

∆1 →

(

Z ⋆∆1
∐

Z⋆∆{1}

W ⋆∆{1}

))

.

It is not hard to see that indeed α ⊣ β, so it suffices to show that α is a left Quillen functor. For this, given
a map

Z1 W1

Z2 W2

g1

g2

in Fun([1], sSetJoyal)Reedy (reading the square vertically), observe that for this to be a (resp. acyclic) cofi-
bration is precisely to require that the two relative latching maps Z1 → Z2 and W1

∐

Z1
Z2 → W2 are (resp.

acyclic) cofibrations. For simplicity, let us write the composite

Fun([1], sSet)
α
−→ sSet∆1/ → sSet

of our left adjoint with the evident forgetful functor simply as Fun([1], sSet)
α′

−→ sSet. Now, assuming our
map g1 → g2 is a cofibration in Fun([1], sSetJoyal)Reedy, then its image α′(g1)→ α′(g2) fits into the diagram
in sSetJoyal of Figure 3, in which

Z2 ⋆∆
{1} W2 ⋆∆

{1}

(

W1
∐

Z1

Z2

)

⋆∆{1}

Z1 ⋆∆
{1} W1 ⋆∆

{1}

Z2 ⋆∆
1 α′(g2)

Z1 ⋆∆
1 α′(g1)

?
≈

?
≈

? ≈

?
≈

?
≈

Figure 3. The diagram in sSetJoyal used in the proof of Theorem 3.3.

• the front and back faces are pushouts by definition;

• the quadrilateral contained in the top face is a pushout since in the composite

sSet
−⋆∆{1}

−−−−−→ sSet∆{1}/ → sSet

where the second functor is forgetful,

– the first functor commutes with colimits by [Lur09, Remark 1.2.8.2] and

– the second functor commutes with pushouts since the walking span N−1(Λ2
0) ∈ Cat has an initial

object

(although really we have only rewritten this pushout to improve readability), and the dotted arrow
is then the induced map;

• the left face is a pushout by inspection;
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• all maps labeled as cofibrations are such

– by inspection,

– by the assumption that g1 → g2 is a cofibration in Fun([1], sSetJoyal)Reedy,

– because CJoyal ⊂ sSet is closed under pushouts, or

– because CJoyal ⊂ sSet is closed under composition;

and

• the maps labeled with the symbol
?
≈ are weak equivalences in sSetJoyal if g1 → g2 is additionally a

weak equivalence in Fun([1], sSetJoyal)Reedy

– by the assumption that g1 → g2 is an acyclic cofibration in Fun([1], sSetJoyal)Reedy,

– because (W ∩C)Joyal ⊂ sSet is closed under pushouts, or

– because (W ∩C)Joyal ⊂ sSet is closed under composition.

Now, because the left and back faces are both pushouts, then the composite rectangle which they form is
also a pushout. But this is the same as the composite rectangle formed by the front and right faces. As the
front face is a pushout, it follows that the right face is also a pushout as well. Thus, the functor

Fun([1], sSetJoyal)Reedy
α′

−→ sSetJoyal

preserves both cofibrations and acyclic cofibrations, since these are each closed under pushout in sSetJoyal.
But the cofibrations and acyclic cofibrations in (sSetJoyal)∆1/ are created by the forgetful functor sSet∆1/ →
sSetJoyal, and so the functor

Fun([1], sSetJoyal)Reedy
α
−→ (sSetJoyal)∆1/

is indeed a left Quillen functor, as claimed.
We now return to our given composite

∆1 f
−→ E

p
։ B

in sSetJoyal. This can be considered as defining a fibration in (sSetJoyal)∆1/, and hence applying our right
Quillen functor

(sSetJoyal)∆1/
β
−→ Fun([1], sSetJoyal)Reedy

yields another fibration. In particular, the resulting relative matching map

E/f → E/f(1) ×
B/p(f(1))

B/p(f)

at the object 1 ∈ [1] must lie in FJoyal ⊂ sSet, as desired. �

Using Theorem 3.3, we now show that our model-independent notion of a cartesian fibration is suitably
compatible with the quasicategorical notion of a JL-cartesian fibration.

Corollary 3.4. Let E
p
։ B be a fibration between fibrant objects in sSetJoyal which presents a map E

p
−→ B

in Cat∞. If p is a cartesian fibration, then p is a JL-cartesian fibration.

Proof. Suppose we are given any edge f ∈ B1. Let us write δ0(f) = b2 ∈ B0 and δ1(f) = b1 ∈ B0. Suppose
further that we are given any vertex e2 ∈ E0 with p(e2) = b2. Then we must find a JL-p-cartesian lift of the
edge f ∈ B1 relative to the vertex e2 ∈ E0.

Let us respectively write e1
f̃
−→ e2 and b1

f
−→ b2 for the morphisms in E and B presented by the maps

∆1 f̃
−→ E and ∆1 f

−→ B in sSetJoyal (for any choice of edge f̃ ∈ E1). Then, according to Theorem 3.3, for an

edge f̃ ∈ E1 to be p-cartesian, it suffices to verify that the morphism f̃ in E is p-cartesian.
Now, the given data define a vertex

(f, e2) ∈

(

hom(∆1, B) ×
ev1,B,p

E

)

0
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of the fiber product in sSet. Moreover, by [Lur09, Proposition 1.2.7.3(1)] and the Reedy trick, this fiber
product is a homotopy pullback in sSetJoyal. Hence, this vertex defines an object

(f, b2) ∈ Fun([1],B) ×
t,B,p

E

of the pullback in Cat∞.
Next, it is easy to check that the map

hom(∆1, E)
hom(∆1,p)
−−−−−−−→ hom(∆1, B)

lies in FJoyal ⊂ sSet, simply by using

• the fact that FJoyal = rlp((W ∩C)Joyal),

• the adjunction −×∆1 : sSet ⇄ sSet : homsSet(∆
1,−), and

• the fact that sSetJoyal
−×∆1

−−−−→ sSetJoyal is a left Quillen functor and hence in particular preserves
acyclic cofibrations.

Moreover, the map

hom(∆1, E)
ev1−−→ E

also lies in FJoyal ⊂ sSet, since by applying the dual of [Lur09, Corollary 2.4.7.12] to the map E
idE−−→ E in

sSetfJoyal we see that it is a JL-cocartesian fibration, which by [Lur09, Remark 2.0.0.5] implies that it is in

particular a fibration in sSetJoyal. Thus, our conditions that δ0(f̃) = e2 and that p(f̃) = f translate into the
single condition that f̃ ∈ E1 define a vertex of the limit

lim

























∆0

hom(∆1, E) E

∆0 hom(∆1, B)

e2

ev1

hom(∆1, p)

f

























in sSetJoyal.
Now, we claim that the above limit is in fact a homotopy limit in sSetJoyal. For this, we appeal to a more

elaborate version of the Reedy trick: we endow the category

N−1(sd2(∆1)) = (• → • ← • → • ← •) ∈ Cat

with the Reedy structure determined by the degree function described by the picture (0→ 1← 2→ 1← 0).
Using [Hir03, Proposition 15.10.2(1)], it is easy to see that this Reedy category has cofibrant constants, and
hence by [Hir03, Theorem 15.10.8(1)] we obtain a Quillen adjunction

const : sSetJoyal ⇄ Fun(N−1(sd2(∆1)), sSetJoyal)Reedy : lim .

Then, to see that the diagram in the above limit defines a fibrant object of Fun(N−1(sd2(∆1)), sSetJoyal)Reedy,
since it is objectwise fibrant, it only remains to check that the latching map

hom(∆1, E)
(ev1,hom(∆1,p)
−−−−−−−−−−→ E× hom(∆1, B)

lies in FJoyal ⊂ sSet. For this, we use the characterization FJoyal = rlp((W ∩ C)Joyal): given any solid
commutative square

Y hom(∆1, E)

Z E× hom(∆1, B)

q

≈

(ev1, hom(∆1, p)
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in sSetJoyal, unwinding the definitions we see that a dotted lift is equivalent to a dotted lift in the diagram

(Y×∆1)
∐

∆{1},Y,q

Z E

Z×∆1 B

p

in sSet. But it is easy to see that the left map lies in (W ∩C)Joyal, while the right map lies in FJoyal by as-

sumption. Hence the diagram in the above limit defines a fibrant object of Fun(N−1(sd2(∆1)), sSetJoyal)Reedy,
and so the above limit is a homotopy limit in sSetJoyal and thus presents the limit

lim

























{e2}

Fun([1],E) E

{f} Fun([1],B)

t

Fun([1], p)

























in Cat∞.
Now, we have assumed that p is a cartesian fibration, so in particular there must exist a p-cartesian lift

f̃ of f relative to the object e2. This defines an object of the above limit in Cat∞, which must therefore be
represented by a vertex of the above homotopy limit in sSetJoyal: this selects the desired JL-p-cartesian lift

f̃ ∈ E1 of f ∈ B1 relative to e2 ∈ E0. So the map E
p
։ B in sSetJoyal is indeed a JL-cartesian fibration, as

claimed. �
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