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In [22], Thomason and I gave a synthesis which combined the different existing 
infinite loop space theories into a single coherent whole. In particular, we proved 
that, up to equivalence, there is only one sensible way to pass from space level input 
data to spectrum level output. 

In [21], I elaborated the additive theory by showing how to incorporate into it a 
theory of pairings. This explained how to pass from space level pairing data to pair- 
ings of spectra. The input data there was as general as would be likely to find use, 
and the output, while deduced using one particular infinite loop space machine, 
automatically applied to all machines by virtue of the uniqueness theorem. 

We shall here obtain a comparably complete multiplicative infinite loop space 
theory, The idea is to start with input data consisting of ring spaces up to all possible 
htgher coherence homotopies and to obtain output consisting of ring spectra with 
enriched internal structure. Applications of such internal structure abound, both in 
infinite loop space theory and its applications to geometric topology [5,14, IS] and 
in stable homotopy theory [3,16]. 

We shall explain the notion of a ‘category of ring operators’ I in Section 1 and 
the notion of a F-space in Section 2. We shall see that this notion includes as special 
cases both the (V, Y)-spaces that were the input of the E, ring theory in [14] and the 
SLY&paces that provide the simplest input for a Segal style development of multi- 
plicative infinite loop space theory. On a technical note, we shall define 8_spaces 
with a cofibration condition, but we shall see in Appendix C that the cofibration 
condition results in little loss of generality. We shall also see that if f and .X are 
categories of ring operators which are equivalent in a suitable sense, then the 
categories of T-spaces and of .X-spaces are equivalent. All of this is precisely parallel 
to the additive theory in (221. 

The main applications start with categories with products @ and @ which satisfy 
the axioms for a commutative ring up to coherent natural isomorphism. Making as 
many diagrams as possible commute strictly, one arrives at the notion of a bipermu- 
tative category. We shall show in Section 3 that bipermutative categories functorially 
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give rise to FiSspaces, this being a direct application of standard categorical con- 
structions. The use of Sf&spaces here substitutes for an incorrect passage from 
bipermutative categories to E, ring spaces in [14], and the present theory originated 
with the need to fill this gap. We also take the opportunity to extend and complete 
various remarks in (141 about such things as units and analogs of monomial 
matrices in general bipermutative categories. 

Thus the input data is well understood. However, in contrast to the additive 
theory, it is not immediately apparent what the appropriate output should be. In 
[14], Quinn, Ray, and I introduced E, ring spectra and, more generally, y-ring 
spectra for appropriate operads S’. Here 5 might model n-fold loop spaces rather 
than infinite loop spaces, and need for this extra generality arises naturally in the 
study of Thorn spectra [3, lo] and the splitting of n-fold loop spaces [4]. The notion 
of a y-ring spectrum (which will be recalled in Section 8) is not very complicated 
and feeds effortlessly into the study of classifying spaces [14], the calculation of 
homology operations [S], and applications in stable homotopy theory [3,16]. I am 
convinced that this is definitively the right notion of enriched internal structure on 
ring spectra. 

Thus we seek to pass from f-spaces to Sspectra. Here f is taken to be the 
‘wreath product’ @lg. where (V, y) is a suitable ‘operad pair’ and 4 and $ are the 
‘categories of operators’ associated to %’ and y. The category of ring operators f 
maps to 579, hence 9%Kspaces are y-spaces by pullback, and (V’ Y)-spaces are 
those T-spaces defined in terms of strict Cartesian powers of a given space rather 
than the Cartesian powers up to homotopy allowed in the general definition. 

It is at this point that problems and subtleties arise. The action of Y on S-spectra 
is defined in terms of strict smash products. It is therefore too much to expect that 
the spectra associated to general y-spaces are S-spectra. One possible solution 
would be to define a weaker notion than that of a %-spectrum, using smash products 
up to homotopy, and so formulate a new target category for the output. However, 
in any such approach, the resulting objects would inevitably be far more compli- 
cated than y-spectra, and their use would entail elaborate reworkings of the theories 
of [3,5, and 141 to arrive at the desired applications. 

It was proven in [14] that the spectra associated to (g, y)-spaces are g-spectra. An 
alternative approach therefore suggests itself. One might first try to replace general 
F-spaces by equivalent (9, ?+spaces and then pass to %-spectra. In fact, this can be 
done, but for intrinsically interesting reasons having to do with the nature of free 3 
spaces, there seems to be no direct, one step, construction of such a replacement 
functor. 

What turns out to be the case is that there is an intermediate notion of a (@, y)- 
space, for which addition is defined using Cartesian products up to homotopy but 
multiplication is then superimposed using strict Cartesian products. There is a 
functorial way to replace general T-spaces X by equivalent (g, 99)-spaces VX, and 
the spectra EY associated to (@, y)-spaces Y are Y-spectra. This allows us to pass 
from y-spaces to S-spectra and so recover all the applications. Moreover, the 
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zeroth spaces of y-spectra are (‘e, ??)-spaces, there is a functorial way to replace 
(@, Y)-spaces Y by equivalent (V, y)-spaces &Y, and there is a natural (V, 0map 
VoY-+EoY which is a group completion of the underlying additive structure. In 
sum, V,VX is a (‘e, Y)-space equivalent to the original y-space X, and the group 
completion V, VX ‘Eo VX preserves the (%, Y)-structure. 

Effectively then, this allows us to arrive at the simplest possible output at the price 
of considerable complexity inside the black box which converts input to output. The 
complexity and shape of the theory were imperiously dictated by the surprising 
behavior of the input data when reformulated in terms of actions by monads. 

We state our results on the passage from input to output in Section 4. Their 
proofs require certain categorical preliminaries presented in Section 5. These con- 
cern the relationship between monads defined on adjoint pairs of ground categories 
and the construction of monads associated to topological categories which contain 
discrete subcategories with the same objects. The heart of the theory is in Sections 6 
and 7. These give a conceptual and combinatorial analysis of the monads associated 
to categories of ring operators and their relationship to the underlying purely 
additive and purely multiplicative monads. The phenomena produced by the 
interplay between the conceptual categorical framework and the concrete combina- 
torial structure of free p-spaces strike me as altogether fascinating. It is the nature 
of these phenomena which dictates the shape of the theory. The passage to 
V-spectra is completed in Section 8, and several results identifying the output 
Y-spectra associated to certain generic types of input are also presented there. 

One possibly unsatisfactory feature of this theory is that, in contrast to the work 
of [21 and 221, which was based on the premise that all machines are equivalent, 
these results are bound up with one particular choice of machinery. We return to 
this point in Appendix D, where we compare our work with that of Segal [24,§5] 
and Woolfson [3 1,321. 

I am very grateful to Steinberger for finding the mistakes in [14] and a related 
mistake in [19]. Corrigenda are given in Appendices A and B, but the basic conclu- 
sion is that all applications are correct as originally stated. A sequel with Fiedorowicz 
[6] will justify the homological applications of [5]. The key idea of focussing on 
replacement functors is part of his contribution to that paper, and he also noticed 
that my first draft of this paper actually proved significantly more than it claimed. I 
am also grateful to Thomason for a number of illuminating conversations. 
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1. Categories of ring operators and operad pairs 

We begin by constructing categories which will parametrize the ring operations on 
ring spaces up to higher coherence homotopies. Here categories will be small and 
topological, with the identity function Ob g -* Mor ‘Z a cofibration, and Cat will 
denote the category of small topological categories and continuous functors. 

Let N denote the discrete space of based sets n = (41, . . . , n} with basepoint zero. 
Let 9 denote the category with objects n and morphisms all based functions 
9 : m+ n. Let nC 9 be the subcategory consisting of those morphisms I$ such that 
@-t(j) has at most one element for 1 S~S n. Recall from [22, 1. l] that a category of 
operators is a category @ with object space N such that d contains 17 and maps to 
9 via a functor E : Cd + F which restricts to the inclusion on I7. Observe that I7 and 
3 are each permutative categories under both wedge sums and smash products of 
finite based sets. To be precise, mvn is to be identified with m+n in blocks and 
mAn is to be identified with mn via lexicographic ordering of pairs. By convention, 
the empty wedge sum is 0 and the empty smash product is 1. We need notations for 
certain canonical permutations, 

Notations 1.1. Let 9 : m+n and w : n-p be morphisms of 5 Given nonnegative 
integers fj for 1 5 is m, let Sk = x(,,,(i)_k , f, and let ak(W, @) denote the permutation 

sk= A rid A A r;=sk. 
v@(i) = k wW=k @W-i 

Here the left and right equalities are lexicographic identifications and the arrow 
permutes the factors ri from their order on the left (i increasing) to their order on the 
right (j increasing and, for fixed j, i increasing). By convention, sk= 1 and 
ak(W, @) : l+ 1 is the identity if there are no i such that (t&)(i) = k. Let 

be the morphism in l7P with kth coordinate ak(W, @). For morphisms g : m -+ n and 
h : n+p in a category of operators @, define 

a(h, g) = &#), e(g)). 

The following definition specifies the appropriate relationship between an 
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‘additive’ category of operators % and a ‘multiplicative’ category of operators :j 
for them to together determine a category of ring operators. Let go be the trivial 
category with unique object *. 

Definition 1.2. Let @ and :j be categories of operators. An 
consists of functors A(g) : %“+ %” for each morphism g : m 4 n 

ing properties hold, where s(g) = @: 
(i) On objects, A(g) is specified by 

J(g)(rl, . . . . r,,,) = 61, . . . ,sJ, where sj = I!=, r;. 

action A of ./; on d 
such that the follow- 

(ii) On morphisms (xl, . . . ,x,) of flrnc ‘L’~, A(g) is specified by 

~(g)(XI,...,Xm)=(O1,...,O,), where u/j=G,‘I,Xi- 

(iii) On general morphisms (cl, . . . ,c,) of z’~, A(g) satisfies 

E(~(g)(CI,...,~,))=trl,...,l;~), where [j= A a(cJ. 
@(:)=J 

(iv) For morphisms $I : m + n of li’C :g, A(@) is specified by 

A(@)(CI, *** 9 cm) = (C,d(,,, ***, c@-‘(n)). 

(v) For g : m + n and h : n + p, the morphisms o(h, g) in Ii’PC @P specify a natural 
isomorphism of functors A(hg) + A(h)rl(g). 

In (i), the jth coordinate is 1 if @-t(j) is empty (as holds for all j when m = 0); in 
(ii)-( the jth coordinate is the identity morphism of 1 if @-I(J) is empty. 

The substantive point is to specify 1(g) on morphisms of em not in IIm, where g is 
a morphism of 9 not in IT, and to do so in such a way that A(g) is a functor and the 
naturality condition of (v) is satisfied. It is easy to see that thejth coordinate of 

W(Cl. *--, cm) depends only on those ci with @(i)=j and may thus be written 
,Ij(g)(X,(i,=, ci); as g varies, these should be thought of as parametrized smash 
products of the ci. The following implicit examples are central to the theory. 

Examples 1.3. (i) The definition itself specifies an action of 17 on any category of 
operators @. 

(ii) The definition itself specifies an action of any category of operators 3 on 17. 
(ii) Most importantly, via formula (iii), the definition itself specifies an action of 

any category of operators $ on _+I 

Of course, the definition is not plucked out of the air. With A(n)= @“, the i(g) 
and a&g) specify a lax functor (or pseudofunctor) I : U 4 Cat [28; 29; 21, 3. I]. 
Street [28] has given two general procedures for replacing lax functors by suitably 
equivalent actual functors. However, the introduction of any such rectification 
would serve only to introduce wholly unnecessary and irrelevant complications into 
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the theory. The following special case of a standard categorical construction 
provides the most convenient domain categories for multiplicative infinite loop 
space theory. We go into detail in order to fix notations. 

Definition 1.4. Let A be an action of :$ on 6. Definte the wreath product SSd to be 
the following category. Its space of objects is LL .zoN”, with elements denoted (n; S) 
where S=(sr, . . . . s,). Its space of morphisms (m; R) -+ (n; S) is 

with typical elements denoted (g; c) where c= (c,, . . . ,c,). For (h; d) : (n; S)-(p; T), 

composition is specified by 

(h; d)(g; c) = (hg; e), where e = d 0 I(h)(c) 0 o(h, g). 

More explicitly, with e(g) = $J and e(h) = IJI, the kth coordinate of e, 1 I kdp, is the 
composite 

u/Jw. 0) L,(h)(X dk 
A q------+ A Arj 

w(A=k’,) 

(w,)(i) =k w(j)=k W)=j 

’ A 5j-t k* 
w(i)=k 

No has the single object (0; *). The morphisms with target (0; *) are written (g; *) for 
g : m-0. With Cj : l+Sj, the general notation applies to morphisms with source 

(0; *). 

It is useful to think of a morphism (Q; x) : (m; R)+(n; S) in Z7U7 as a map 

XI x *** xxn : rO-lcl) x ..e x rO-l(n)+sl x a.. x s,, 

where rG-lti)= 1 if @-r(i) is empty. This makes sense since @-t(i) has at most one 
element. 

The following observation will play a crucial role in our theory. 

Lemma 1.5. There are inclusions of categories 

~~,jcnj/~,cc~jB>Sjn> :$ 

Proof. The middle two inclusions are obvious. The first is given by n+ (1; n) on 
objects and c+ (1; c) on morphisms. The last is given by n + (n; 1”) on objects and 
g --* (g; 1”) on morphisms g : m -, n. 

For use in Section 6, we record the following commutation formula for the 
morphisms of $1d. 

Lemma 1.6. Let 9 act on d and let 

(8; xl : tn; S)-+ (P; T) and t@; cl : W; R) + (n; 9 
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be morphisms in $jI7 and III+, respectively. Let E(g) = I//. Then the following 
formula holds in iS’k: 

(g; x)(& c) = (1; x O A(g)(c)) O (g& o(w9 @)). 

Proof. Inspection of the definitions gives the following commutative diagram, 
where, for 1 ljln and 1 skip, 

rkn= A r#-I(,,, S;= A Sj* 
wO)=k v(/)=k 

(P; R”) 

(n; R’) =(P, S’) 

The conclusion follows upon composing the legs of the triangle. 

While these categories %Sd are the ones of real interest, it clarifies ideas and 
simplifies notations to introduce the following more general concept. 

Definition 1.7. A category of ring operators is a category 2 with object space 
- - 

I.I,,oN” such that f contain I7117 and is augmented over 9 S.Y by a functor 
E : f-+ SjS which restricts to the inclusion on nU7. A map of categories of ring 
operators is a functor v: f+X such that v is the identity function on objects and 
the following diagram commutes: 

The map v is said to be an equivalence if each of its induced maps of morphism 
spaces is an equivalence. 

As in [22], by an equivalence of spaces we understand a weak homotopy equiva- 
lence. 

We shall add a minor technical condition to the definition in Addendum 2.8 
below. 

While the definitions above suffice for the work in the next two sections, our later 
arguments depend on the association of categories of ring operators to operad pairs 
that is the subject of the rest of this section. 
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Recall from [12,1.1] that an operad ‘6’ is a sequence of spaces X(j) such that 
Y(O) = { *}, there is a unit element 1 E Z’(l), there is a right action of the symmetric 

group Zj on Z(j), and there are suitably associative, unital, and equivariant struc- 
tural maps 

y:%(k)x~(j,)x-~*xY(j~)-+%(j,+“‘+j~). 

As explained in [22, $41, an operad ‘6’ determines a category of operators @ with 

The composite of (@; cl, . . . , c,) E @(m, n) and (w; d,, . . . , dp) E $(n, p) is 

Note that 0 is both an initial and a terminal object of d. The notion of an action of 
one operad on another is specified in [14, VI.l.61. Since the cited definition contains 
two misprints and admits some notational simplification, we rephrase it here. 

Definition 1.8. An action L of an operad Y on an operad v consists of maps 

I : 3((k) x V(j,) x ..- x V( jk)+ V( j, -.. jk) 

for kz0 and j+O, interpreted as A(*) = 1 E ‘G(1) when k=O, which satisfy the 
following properties, where 

g E W% g, E y(j,) for 15r5k, 

c E Yj), c,E r(j,) for 1 Irlk, 

(a) 

c, 4 E W, al for 1 rqsj,and 1 ~rlk. 

where Q runs through the lexicographically ordered set of sequences (ql, . . . ,qk) with 
1 I qrs jr and v is that permutation of the set of 

letters which corresponds under block sum and lexicographic identifications on the 
left and right to the natural distributivity isomorphism 



Multiplicative infinite loop space theory 

(b) A(1; c)=c, where 1 E Y(1) is the unit of Y. 

(b’) A(g; lk)= 1, where 1 E V(1) is the unit of V. 

(c) l(go;~,c,)=I(g;~,c,lk,)~(j,,...jx), 

where a( j,, . . . jk) is that permutation which corresponds under lexicographic identi- 

fications to the permutation of smash product factors 

where r1 @ *-a@ ?k is that permutation which corresponds under lexicographic identi- 
fications to the smash product 

7,A*-- ATk:j,A...Ajk~j,A...Ajk. 

The categorical rightness of this combinatorial definition is given by the following 
result. Let @j : j + 1 be the morphism in 9 which sends i to 1 for 15 isj. 

Proposition 1.9. An action L of an operad 3 on an operad 
determined by an action A of 9 on ‘2. 

Proof. Given an action A of 3 on %’ and given morphisms 

and 

V determines and is 

for 1 ~i~rn, specify the jth coordinate of the required categorical action by 

where U runs over the lexicographically ordered set of sequences with ith term Ui 
satisfying iSu;Iri for 1 zzil I@-‘(j)/. Here 

gje 4@-'Wlh Ci,uE m~'(u)i), 

and the formula makes sense because 

x IXi’(Ui)l =l(O~,Xi)-‘Cu)I* 
W)=i 

Each A(@; XJ’=, gj) is a functor by a routine calculation from (a’)-(c’) of the preced- 
ing definition. The naturality of Definition 1.2(v) is verified by a similar, but longer, 
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calculation from (a)-(c). Conversely, given an action I of 9 on %, the formula 

ntekig)(~,(@j,; cr))z(L, @jr; l(kYi :, cr)) 

defines 1(g; Xs,, c,) for ge Y(k) and C,E V(j,). This makes sense since Af=, @jr= 

@j,...jr9 and the requisite verifications are tedious reversals of those needed for the 
first part. 

There is a trivial operad .9 with Y(O) = { *}, 9( 1) = { 1 }, and .9(j) empty for j> 1; 
9 is precisely n. There is an operad I 1 with each c 1 (j) a point; ,i is precisely .K As 
in Examples 1.3, jo acts on any V and any 3 acts on 9 and on .,ti. A comparison of 
Definition 1.7 to [21, 1.41 gives the following relationship between the notions here 
and the notions used in our theory of pairings. (The latter notions will play no 
explicit role in this paper.) 

Lemma 1.10. An action of i 1 on % determines and is determined by a structure of 
permutative operad on %. 

By [21, 1.51, %’ is a permutative operad if and only if 2 is a permutative category 
of operators in the sense of [21, 1.31. The following analog is easily verified by 
comparison of Definition 1.2 to [21, 1.31. 

Lemma 1.11. An action of 3 on a category of operators e determines and is 
determined by a structure of permutative category of operators on d. 

When ‘& comes from an operad ‘6, the two lemmas above have precisely the same 
content. If f acts on %, ,I(&) gives the product A : d x ‘8 + d. If %’ is permutative, 
the ,I(@) can be defined as in Definition 1.2(ii) in terms of A on 9. 

2. Actions by categories of ring operators 

We first define the notion of a y-space for a category of ring operators 2. The 
essential point is the incorporation of higher coherence homotopies for distribu- 
tivity, but the subtle point is the correct handling of 0 and 1. We then discuss special 
cases and compare the categories of R-spaces as 2 varies. 

Let # denote the category of compactly generated weak Hausdorff spaces and let 
.? denote the category of nondegenerately based spaces in -‘U. 

Let di : n ---) 1 be the projection in I7 specified by 6i(j) = 1 if i= j and S,(j) =0 
otherwise. Say that a morphism (@; x) : (m; R) -+ (n; S) in 17117 is an injection if 
@ : m * n is an injection and if xj : ri + Sj is an injection when @(i) =j; xj : 1 -+sj can 

be any morphism in n (including 0) when je Im @. These are precisely those 
morphisms of I7U7 which admit left inverses. For an injection (4; x), let Z(@; x) 
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denote the group of automorphisms (a; r) : (n; S) + (n; S) such that (a; r)Im(@; x) = 
Im(@; x), where (0; x) and (6; r) are interpreted as maps of based sets. Say that a 
space is aspherical if its homotopy groups are trivial. 

Definition 2.1. Let f be a category of ring operators. A f-space is a functor 
X : f-+ +!‘, written (n; S) - X(n; S) on objects, such that the evaluation maps 

f((m; R), (n; S)) x X(m; R) + X(n; S) 

are continuous and the following properties hold (where we use the same names for 
morphisms in J? and for their images under X). 

(1) X(0; *) is aspherical and contains a nondegenerate basepoint *. 
(2) X(1; 0) is aspherical. 
(3) The map 6’ : X( 1; s) + X( 1.1)’ with coordinates (1; 6,) is an equivalence. 
(4) The map 6” : X(n; S) -+ n,“=, X(1; sj) with coordinates (6,; 1) is an equivalence. 
(5) If (4; x) : (m; R)+ (n; S) is an injection in nU7, then (@; x) : X(m; I?)-+ 

X(n; S) is a z(@, X)-equivariant cofibration. 
Let f[ ;‘/I denote the category of f-spaces, its morphisms being the natural trans- 

formations under f. A map X 4X’ of F-spaces is said to be an equivalence if each 
X(n; S) -+ X’(n; S) is an equivalence. 

We shall often have X(0; *) = { *}. The single basepoint * determines both 0 and I. 

Indeed, we have canonical injections (0; 0) : (0; *)*(l; s) for sr0 and (0; 1”) : (0; *)+ 
(n; 1”) for nz 1. Applied to *, these yield compatible nondegenerate basepoints 
0 E X( 1; s) and 1 E X(n; 1”). For nontriviality, 0 and 1 must lie in different path com- 
ponents of X(1; 1). The role of the cofibration condition will not become apparent 
until Section 7. Its verification is not difficult in practice, and some of the condition 
can be arranged by a whiskering construction to be explained in Appendix C. 

The definition is analogous to that of a g-space for a category of operators @ 
[22, 1.21; however, in the cofibration condition of the cited definition, Z, for 
$J : m + n in Z7 was intended to be the group of permutations cr : II-+ n such that 
0 Im @ = Im 0 (rather than a@ = @). With this correction, the following result is an 
immediate consequence of the definitions. Recall Lemma 1.5. 

Lemma 2.2. Let X be a ye-space, where f= $S @. Define X, : ?? -+Jand X8 : 3 +I 

to be the restrictions of X to the subcategories @ and 3 of $ the basepoints under- 
stood are 0 and 1 respectively. Then X, is a g-space and X, is a g-space. 

Restriction- gives a forgetful functor f[ “/I -(f7jn)[ j/‘/l, and a p-space is to be 
thought of as an underlying nln-space with additional structure. Clearly conditions 
(l)-(5) refer only to nln. In turn, a fllf7-space is to be thought of as a collection of 
spaces X(n; S) with all the formal and homotopical properties that would be present 
if X(n; S) were ZsI x em. x Zsn for a space Z with two basepoints 0 and 1. We make 
this precise in the following analog of [22, 1.31. 
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Definition 2.3. Let Fe denote the category of spaces Z with nondegenerate base- 
points 0 and 1. Let L : (Z7U7)[ +Y] +& be the functor which sends a nln-space X to 
the space X(1; 1). Let R : Ye+ (l7ll7)[ 521 be the functor which sends a space Z to the 
lirln-space RZ such that (RZ)(O; *) = { *} and (RZ)(n; S) = ZSl x .-- x Z*n for n > 0, 
where Z”= (0); for a morphism (@; x) : (m; R) -, (n; S) in nln, the induced map 

has (j, o)th coordinate 0 if x,~‘(u) is empty, 1 if G-‘(j) is empty and the morphism 
Xi: l*Sj satisfies Xi(l) = u, and the (i, u)th domain coordinate if @(i) =j and 
xi(u) = IJ. Observe that L and R are left and right adjoints, 

Ye(LX, Z) z (l7!l7)[ kY](X, RZ), 

since a map f : X( 1,l) -c Z extends uniquely to a map J: X + RZ, the (j, o)th coordi- 
nateofJ(n;S):X(n;S)-cZS1x--- x Zsn being the composite off and the projection 
(Sj; 6,) : X(n; S)+X(l; 1). Let 6: X+RLX be the unit of the adjunction (that is, 
6= i). 

Note that RS” is a sub 171Z7-space of RZ (if 0# l), but that (&x) need not be 
basepoint preserving in either possible sense. 

The term ‘category of ring operators’ is justified by the following observation. 

Lemma 2.4. An _F,-IY-space with underlying I7U7-space RZ determines and is deter- 
mined by a structure of commutative topological semi-ring on Z. 

Proof. If Z is a commutative topological semi-ring, define 

(~;~):Z~Ix...xZ’m-rZ’I~...xZ~n 

for morphisms @ : m+n and Xj : /J,ci,=j ri+sj in Y as follows. For _Yi = (26 1, . . . ,~i,~~) E 

Z’;, let (& X)(YI, . . . , y,,,) have (j, u)th coordinate, 1 ~j I n and 1 I u ISj, the element 

c x ti,ui 
x,(iJ)=u W)=j 

where U runs over the lexicographically ordered set of sequences with ith term Ui 

satisfying 1 s Ui I ri for i E G-‘(j), this set being identified with &,=, ri - { 0). Here 
the empty sum is 0 and the empty product is 1. The requisite functoriality is a 
tedious calculation. Conversely, if RZ is an 97=7_space, the maps 

(1; &):ZxZ +Z and (&; 1):ZxZdZ 

specify an addition and multiplication with respect to which Z is a commutative 
topological semi-ring. The essential point is the deduction of distributivity from the 
commutative diagram 
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(2; 191) 

(1; @fi@*; ,,h 
(2; 292) (1; 1) 

*/iii 

(1; 4) 

in SlS (where G4= & A @z). The unit condition for the multiplication comes from 
the commutative diagrams 

where r;(l) = i for i= 1 or i= 2, and our conventions on empty smash products and 
the basepoint 1. The interested reader is invited to fill in complete details, as the 
exercise provides considerable insight into the working of our definitions. 

The preceding result is the special case (77, 3) = (. I,. 1 ) of the following one. We 
recall the notion of an action of an operad pair on a space which was the essential 
starting point of the multiplicative infinite loop space theory in [ 141. 

Definition 2.5. A I-space with zero, or Ya-space, is a :$-space (Z, <) with unit 1 and 
a second basepoint 0 such that &g; Xr=, z,) = 0 if any z,=O. A (‘6, :$)-space is a 
V-space (Z, 0) and a %e-space (Z, 0 such that the following diagrams commute: 

qk) x > 
i xek 

- Y(k) x Zk 

$f(j, . . .jk) X zil -ik 
e 

I 
- Z 

Here < on the left is specified by 

where Q runs over the lexicographically ordered set of sequences (ql, . . . , qk) with 
1 S q,r j,. 

Proposition 2.6. Let j= $S@, where (Y, Y) is an operadpair. A Tspace with under- 
lying ITlIT-space RZ determines and is determined by a structure of (Y, Q-space 
on Z. 
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Proof. If 2 is a (z; :$)-space, define 

( 
(@;g);,+,(&;c;) :Z’lX...XZrm,ZSIX...XZSn 

> 

as follows, where g = (gi, . . . ,g,) and cj = (c;, 1, . . . , c;,~,) with 

gjc T9(l@-'(j)l) and cj,“E ‘c(~x,:‘(u)/). 

With the notations of the proof of Lemma 2.4, let the (j, u)th coordinate of the 
image of (yi, . . . . y,) be 

This is the same formula as in the cited proof but with k-fold products parametrized 
by 5(k) and k-fold sums parametrized by y(k). The parametrized distributivity law 
of the previous definition implies the requisite functoriality by direct computation 
from the definitons. For the converse, assume RZ is a fspace. The morphisms 

((G&i g); I) : 6% 1, ***, l)*(l; 1) and (1; (&;c)):(l,k)+(l; 1) 

in 3 determine action maps 

<: 5(k)xZk+Z and 8: E’(k)xZk-*Z. 

Definition 1.2(ii) and consideration of the relevant injections shows that 0 E Z is a 
strict zero for <, and functoriality implies the requisite parametrized distributivity 
law. 

The following remarks should be compared to [22, 1.4 and 4.31 and will be 
followed up in Appendix D. 

- - 
Remarks 2.7. The notion of an 9 P-space provides appropriate domain data for a 
Segal type development of multiplicative infinite loop space theory, and the present 
notion of a p-space provides the appropriate simultaneous generalization of the 

- - 
notions of Y I&pace and (V, %)-space. In turn, each of these notions is a natural 
generalization of the notion of an (_,c,_I )-space, or commutative topological semi- 
ring. 

We can compare categories of y-spaces precisely as we compared categories of 
‘t-spaces in [22, p. 2071. Thus assume given a map v: f-X of categories of ring 
operators. For a +pace Y, pullback along v gives a f-space v*Y. We associate a 
&space v,X to a y-space X as follows, where v must be an equivalence for proper 
behavior on the underlying Z7lf7-space level. For (n; S) in &,,,N”, the space 

x(n; 8 = $I.,x((m; R), (n; S)) 
m. 
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is a right graph over f. For a pspace X, LI X(n; S) is a left graph over f, again 
denoted X. We have a two-sided bar construction 

(v*X)(n; S) =B(X(n; S), 3X). 

In [22, p. 2081, we collapsed out by a trivial cofibration in order to fix basepoints. 
Here we prefer to choose the basepoint 

*EX(O; *)C.Iy(O; *)xX(0; *)C(v*X)(O, *), 

the first inclusion being given by the identity morphism of (0; *). Just as in 
[22, p. 2081, v,X is a continuous functor ;Y 4 10, and the following addition to the 
definition of a category of ring operators ensures that v,X satisfies the cofibration 
condition of Definition 2.1(5). 

Addendum 2.8. We require of a category of ring operators f that left composition 

‘@r; R)+Y(n; 3 b y an injection (@; x) in 17M7 be a Z(@; X)-cofibration. 

This holds trivially when f= :$I$ for an operad pair (V, Y) since here the maps in 
question are inclusions onto unions of components. Now the proof of the following 
result is exactly the same as the proof of [22, 1.81. 

Theorem 2.9. Let v : f-+X be an equivalence of categories of ring operators. For a 
f-space X, v*X is a y-space and there are natural equivalences of f-spaces 

Pv*X+l*X*X, 

where I* is induced by the identity functor of 2. For a l-space Y, there is a natural 
equivalence of Z-spaces v*v* Y --) Y. 

Thus the categories of y-spaces and of 3’-spaces are essentially equivalent. 

3. Bipermutative categories and SW&paces 

A symmetric bimonoidal category is a symmetric monoidal category under opera- 
tions @ and @ which satisfy the axioms for a commutative semi-ring up to 
coherent natural isomorphism. Here coherence has been made precise by Laplaza 
[18]. A bipermutative category is a symmetric bimonoidal category in which all 
diagrams commute strictly that might reasonably be expected to do so. Precisely, 
such a category .d is permutative under @ and 0, with unit objects 0 and 1 and 
commutativity isomorphisms c and c?. The right distributivity law holds strictly and 
0 is a strict zero for 0. The left distributivity isomorphism 

a@(b@c) - ’ (b@c)@a=(b@a)@(c@a)z (aOb)O(aOc) 
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determined by c’ is coherent with c in a sense made precise in [14, p. 1541. Clearly it 
would be unreasonable to ask that both distributive laws hold strictly. 

Our concern in this section, which precisely parallels [21, $41, is to discuss the 
passage from bipermutative categories to X,-S.5spaces via the classifying space 
functor B. We could use symmetric bimonoidal categories directly but, as a matter 
of aesthetics, we prefer to eliminate all coherence isomorphisms that can be 
eliminated. It is shown in (14, VI $31 that symmetric bimonoidal categories can be 
replaced functorially by equivalent bipermutative categories. However, just as dis- 
cussed in [29 and 21, $21, we do not want to restrict ourselves to the strict 
morphisms of symmetric bimonoidal and bipermutative categories used in [14]. 

Thus define a morphism F:.d*.2 of symmetric bimonoidal categories to be a 
functor F together with natural transformations (not necessarily isomorphisms) 

v: O-F(O), @:Fa@Fb+F(a@b), 

v’: 1 -F(l), 6: Fa@Fb+F(a@b), 

such that the appropriate coherence diagrams commute. (See Lewis [8] and [14; 
VI $31; a complete treatment of coherence here is not in the literature but has been 
obtained by Laplaza and is more or less implicit in Kelly’s work in [9]). A morphism 
of bipermutative categories is a morphism of underlying symmetric bimonoidal 
categories. These are lax morphisms; strict morphisms would have isomorphisms in 
the symmetric bimonoidal case and equalities in the bipermutative case. 

The association of equivalent bipermutative categories to bimonoidal categories is 
functorial in both senses. One can associate strict morphisms to strict morphisms by 
exploiting the freeness of the constructions involved or one can associate lax 
morphisms to lax morphisms by exploiting the constructed equivalences. Following 
Thomason, we showed in [21,4.3] that, by settling for adjunction rather than actual 
equivalence, one can replace permutative categories and lax morphisms by permuta- 
tive categories and strict morphisms. The corresponding assertion for bipermutative 
categories is more delicate if true, and I have not been able to obtain a proof. 

We proceed to construct a functor from the category of bipermutative categories 
and (lax) morphisms to the category of 915spaces. Just as in [29 and 21, §4], we 
first pass to lax functors Sly- Cat and lax natural transformations between them, 
then use Street’s first construction [28] to rectify these to actual functors SlS- Cat 
and actual transformations, and finally apply the classifying space functor. The 
necessary categorical definitions and constructions are given in detail in [21, $31 and 
will not be repeated. 

Thus let d be a bipermutative category. We construct an associated lax functor 
A : 313--rCat as follows. Let 

where A(0; *) is the trivial category { *) and do is the trivial category (0). For a 

morphism (@; x) : (m; R) --* (n; S), specify the functor 
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A(@; x):A(m; R)+A(n; S) 

by the following formula on both objects and morphisms: 

A(@+*+~u)=;, i,,$=. O~j%* 

The notations and conventions here are precisely the same as in the proof of Lemma 
2.4. There we had precise commutativity and distributivity and so obtained a 

- - 
functor .y I2 -, Ju from a commutative semi-ring. Here we have coherence iso- 
morphisms which give lax functoriality. In detail, note first that A takes identity 
morphisms to identity functors. However, for a second morphism (IJI; o) : (n; S)+ 

(P; T), 

k=I w=l ;,lY,=w (woltr)=k 
ai,y,, 

where & = wkO ( A,,,,=, xi) 0 ok(v, @) and Y runs through apprOpriate sequences 
regarded as elements of A,voJ(iJ=k ri, while 

where CJ and V run through appropriate sequences regarded as elements of &,,,,=, ri 
and A W(,,=ksi. The commutativity isomorphisms c and C in .“J, together with the 
strict right distributive law, induce a natural isomorphism 

o((w; QJ),(& x)) :A(@; <)+A(w; a)A(@; x). 

The compatibility diagram in [21, 3. l] for a composable triple of morphisms 
commutes by coherence, hence these isomorphisms give A a structure of lax 
functor. 

For a morphism F : .:r’ -, J of bipermutative categories, the functors 

FS1 x . . . x FSn : .?lsl x . . . x .d%-+ .~SI x . . . x .&%I 

and natural transformations 

B(@; x)(F’l x --- x F’m) -+ (PI x .-. x FSn)A(@; x) 

with (J u)th coordinate 

@ @ F@i,.J+F 
x,(U)=0 o(r)=/ 

determined by the natural transformations given as part of the definition of a 
morphism together specify a lax natural transformation of lax functors. Note the 
need for the two unit transformations to handle O’s and 1’s. The compatibility 
diagram in [21, 3.21 required for composites of morphisms commutes by coherence. 

By [21, 3.41, we have associated functors A : .FI.F-+ Cat and natural transforma- 
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tions F : A -* Z?. We also write A = .J to emphasize that it is a collection of categories 
to which the classifying space functor B can be applied. We give .d(O; *) the base 
object * specified (in terms of the explicit constructions of [21, 3.41 by the identity 
morphism of (0; *) and the unique object + EA(O; *). Since .d(n; S) is related to 
.@I x --- x &‘n by a pair of adjoint functors, one of which is part of a lax natural 
transformation q :A -A, it is immediately obvious that the homotopy type 
conditions in (l)-(4) of Definition 2.1 are satisfied by the functor B.d. The 
cofibration condition (5) holds trivially when .Y is discrete, since then the maps in 
question are inclusions of subcomplexes in CW-complexes, and can be deduced in 
general by inspection of the constructions and use of our standing hypothesis that 
Id : Ob ..-J +Mor .ryl is a cofibration. In view of Remarks C.8 below, we omit the 
details. 

Thus we, or rather those category theorists who study coherence, have proven the 
following basic result. 

Theorem 3.1. There is a functor, written .:s/ + B.Y/ on objects and F --) BF on 
morphisms, from the category of bipermutative categories to the category of YW 
spaces. There is also a natural homotopy equivalence 9 : B.d -+ B.:j( 1; 1). 

The following remarks explain the relationship between the construction just 
given and the analogous constructions for .Y’ regarded just as a permutative 
category. 

Remarks 3.2. Let .:io and .z/~ denote .Y regarded as a permutative category under 
@ and 0. The corresponding lax functors A ,s : .F+ Cat and A ,a : Y* Cat are pre- 
cisely the restrictions to 3-c l7l.T and to .Fc .Fjl7 of A : SlS- Cat. Write .Y@ and 
9- g to distinguish these two copies of Y contained in 51.X There result natural 
transformations 

of functors .X-Cat (compare [21, 3.61). Their component functors (for n ~9) 
induce equivalences on passage to classifying spaces since they are compatible with 
the component functors of the respective lax natural transformations q with domain 
A, and A,. 

The following observation about general permutative categories is particularly 
useful when applied to .Yo. 

Remarks 3.3. Let (.:/, 0, *, c) be any permutative category and let .:/* denote the full 
subcategory of .P/ with object space { *}. The morphism space of .-J* is a topological 
monoid under both composition and Cl, and these operations satisfy 
(a 0 b)(a’ 0 b’) = aa’ 0 bb’ and have the identity map of * as common unit. There- 
fore these operations coincide and are commutative. It follows that c= 1 : *+ *. 
Thus .Y/* is a sub permutative category of .Y’. 
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In practice, when ,Y’ is bipermutative, doc.;ylo is usually trivial and .Y’,Cdalo is 
usually discrete, so that B.Y’, is a K(n, 1). In this situation, the full analysis of the 
relationship between B.dt and the spectrum determined by B-2 will depend on the 
following observations. 

Remarks 3.4. Let d, be a commutative topological monoid with unit 1 and let _dc 
be the union of ,~‘t and a disjoint basepoint 0. Regard & as a category with objects 
0 and 1 in the obvious way and note that B(.a/T) =(B.,d,)+. There is a functor 
A c : 3X7 + Cat specified on objects by 

and specified on morphisms precisely as was A above. No addition is needed 
because of the use of Z7, and A r is an actual functor by commutativity. Rectification 
gives another functor AT, also written JT, and the left adjoints E :A,‘(n; S)- 
AT@; S) of [21, 3.41 specify an (actual) natural transformation a:-A:. Clearly 
BA 1' = RB.dT as an SSf7-space. If 21, arises from a bipermutative category .d, we 
have an evident inclusion A: +A of lax functors .Fln * Cat and thus a natural 
transformation c: A: +(A 1 fU7) by [21, 3.61. We therefore have the diagram 

RB.d,? -BE.:?,+ 2.62 /3X7) 

of .FSZ7-spaces, in which the component maps of BE are equivalences. 

The force of these observations comes from the following remarks on unit mor- 
phisms, which show that z/i naturally generates a sub bipermutative category of .-Y. 

Remarks 3.5. (i) Let A denote the subcategory of J consisting of those morphisms 
which are isomorphisms (that is, permutations). It is closed under wedges and smash 
products (thought of as @ and @ on permutations) and is thus bipermutative. It is 
easy to see that any bipermutative category .d admits a strict unit morphism 
e: I: +.+. Indeed, 6 is the free bipermutative category generated by 0 and 1. 
(Compare [14, p. 1611.) 

(ii) Let .d, be any commutative topological monoid. Then 0 and d, generate a 
wreath product bipermutative category ffI.71,. Its object space is N, there are no 
morphisms m -+ n for rn # n, and the monoid &I.:/, is the space of morphisms n + n. 
Addition and multiplication 

and 
@ : (Z, Id,) x (Z;, Id,) + a&,,,, W, 

are specified in terms of @ and 0 on d by the formulas 
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(iii) By e(a; ar, . . . . a,)=e(o)o(ar@...@a,) for a~&, and a;:l+l, the unit 
e: d +a/ of a bipermutative category _s’ extends to a strict morphism e : tpl.d, +d of 
bipermutative categories. When d is the general linear category YPA or orthogonal 
category UA of a commutative ring A, djd, is the appropriate subcategory of 
monomial matrices. 

4. The passage from p-spaces to Y-spectra 

As the previous sections make clear, y-spaces provide the appropriate input data 
for multiplicative infinite loop space theory, where g= @l d for an operad pair 
(V, 9). The special case of (V, ?I)-spaces, or y-spaces with underlying ITUT-space 
RZ, is particularly simple. We explain here how our machinery converts p-spaces on 
the input side to Sspectra and thus, by passage to 0th spaces, to (K %)-spaces on 
the output side. Proofs are deferred to the following sections. To accomplish this 
conversion, we shall make heavy use of an intermediate category. The following 
elaboration of Definition 2.5 sets the stage. 

Definition 4.1. Let n[.=T], denote the category of n-spaces Y: I7 -3 with a second 
nondegenerate basepoint 1 E Y, which is sent to 0 under the map Y, + Y0 induced by 
0 : 1 +O. We define a diagram of adjoint pairs of functors 

R 

I R’ R” 1 
J - 

e - nw1, L” - (Lw7)[~] 
T L’ 

I 
L 

Just as in [22, 1.31, which gives details, L’Y= Y, and R’Z= {Z”} for ZE 3,. For a 
I7lI7-space X, define L”X= (X(1, s)} =X,, as in Lemma 2.2. For YE n[3], define 
R”Y by 

(R” Y)(O; *) = { *} and (R” Y)(n; S) = 

For a morphism (Q; K) : (m; R) -+ (n; S) in f7lf7, let 

(@;x): Y~,X.~.XY~~-*Y~,X~~.Xy,~ 

Y,,x...x YS, forn>O. 

have jth coordinate the composite of the projection to Yri and the map Xj : Yr, + YSj 
if G(i) = j; if @-r(j) is empty, then xj is a map Yr + YSj and is to be applied to the 
point 1 E Y,. We have 

l7[3]JL”X, Y) = (njl7)[ #](X, R” Y) 
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since a map f : L”X -+ Y extends uniquely to a map f : X .+ R” Y, the j th coordinate 
of f(n; S) : X(n; S) + (R’Y)(n; S) being r/ 3 (8,; 1). Clearly R = R”R’ and L = L’L”. 

Write 
6:X+RLX, 6’: Y-R’L’Y, 6”: Z-+R”L”Z 

for the units of the various adjunctions; thus 6 = R”6’L” 0 6”. By the very definitions 
of n-spaces and of nU7-spaces, these maps are all (weak) equivalences. 

The following definition gives our intermediate notion. 

Definition 4.2. A (‘& :Qspace is a n-space Y (with 1 E Y,) together with a structure 
of y-space on R” Y. For example, R ‘Z is a (%, :4)-space for any (%; B )-space Z. 

We shall arrive at a more intrinsic description at the end of Section 6, but the 
present formulation is well suited to the explanation of what our basic theorems say. 
The intuition is that the additive, g-space, structure on Y is based on use of the 
products up to homotopy Y,= Yf, but the multiplicative, y-space, structure is then 
superimposed on actual products Ys, x *.. x Y,,. 

Let us say that an operad %’ is Z-free if Zj acts freely on c(j) for all j. The 
following result asserts that 8_spaces can be replaced functorially by equivalent 
(9, y)-spaces. 

Theorem 4.3. Let g= @I@, where % and Y are Z-free operads. There is a functor U 
from g-spaces to y-spaces and a functor Vfrom J-spaces to (*i, :g)-spaces together 
with a natural pair of equivalences of J-spaces 

E 
X-UXdR”VX. 

There is also a functor Ufrom (e, 9)-spaces to (‘8, O)-spaces such that UR” = R”U. 
When X= R” Yfor a (9 @-space Y, the diagram just displayed is obtained by appli- 
cation of R” to a diagram 

E 
Y -UY= VR”Y 

of (@, g)-spaces in which E is a natural equivalence. 

A second functor, V,, which replaces (%‘, %)-spaces by equivalent (V, ?+spaces 
will appear in Theorems 4.6 and 4.8. It would obscure the structure of the theory to 
think of the composite V,V as a single replacement functor, although that is a con- 
venient point of view in the homological applications of [6]. 

To state our results on the passage from (9, 3)-spaces to y-spectra, we need some 
recollections. An operad % is said to be spacewise contractible if each V(j) is con- 
tractible. An E, operad is one which is Z-free and spacewise contractible. There is a 
canonical (additive) E, operad, namely the Steiner operad &,. Itsjth space consists 
of appropriate j-tuples of paths of embeddings R”+R”, and it acts naturally on 
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infinite loop spaces. See Steiner [26] and [21, $61. The operad .iu, supplants the ugly 
little convex bodies partial operad I introduced in [14], and my results about the 
latter apply more simply to the former. There is also a canonical (multiplicative) E, 
operad, namely the linear isometries operad Y. Its jth space consists of linear 
isometries (R”)j--R”, and [14, VII.2.31 specifies an action of L/ on .J_ (compare 
[21, 6.71). 

Throughout the rest of this section, we assume given an operad pair (X’, :g’). We 
define a second operad pair 

(‘{, Y) = (‘<’ x .x_, Y’ x Y ), 

we set f = %I?‘, and we regard $‘I??-spaces as f-spaces by pullback. Ignoring the 
multiplicative operads for the moment, we have a functor E from %-spaces to 
spectra by [21, $61. We shall recall our conventions on spectra and the definition of 
E in Section 8. When Y= R’Z for a v-space Z, EY coincides with the spectrum EZ 
constructed earlier in [ 14, VII $3). A n1@-space X determines an underlying 
e-space X,, by Lemma 2.2, and we define EX=EX@. Remarks 8.3 below will 
show the inevitability of this definition. 

We shall recall the notion of a y-spectrum in Section 8. As pointed out in the 
introduction, this notion is defined in terms of strict smash products, and it is too 
much to ask that EX be a %-spectrum when X is a +pace. However, EX is equiva- 
lent to EVX, by Theorem 4.3, and we shall prove the following result. By Lemma 
C. 1, the hypothesis Yc= (0) can be arranged functorially and so results in no loss of 
generality. 

Theorem 4.4. For (@, y)-spaces Y with Y, = { 0), EY is functorially a %-spectrum. If 
Y = R ‘Z for a (%, Y)-space Z, then E Y = EZ as a Y-spectrum. 

The last statement asserts the compatibility of the old passage from (y, g)-spaces 
to y-spectra of [14, VII $41 with the new passage from (9 Y)-spaces to y-spectra. 
By [14, VII.2.41, we have the following basic result. 

Theorem 4.5. The zeroth space of a Sspectrum is functorially a (5’, 3)-space. 

The previous three theorems together show that the composite functor EOV 
converts the fuzzy structure of a T-space X on the input side to the precise structure 
of a (v, 9)-space on the output side. The force of the construction comes from the 
following relationship between the input and the output. We first recall information 
implicit in our earlier treatment of the purely additive theory. 

Theorem 4.6. There is a functor U, from e-spaces to e-spaces and a functor V, 
from ‘k-spaces to v-spaces together with a natural diagram of maps of ‘?-spaces 

E 
Y-U YLR’VoYa 0 R’Eo Y (*) 
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such that E is an equivalence with natural inverse r (of n-spaces), 6 is an 
equivalence, and y : V, Y + E,, Y is a group completion if % ’ is spacewise con- 
tractible. Therefore I = yL’(&) : Y, * EOY is also a group completion if y’ is 
spacewise contractible. There is also a functor US from x-spaces to ‘6‘-spaces such 
that U,R’=R’U3. When Y = R’Z for a ‘x-space Z, the diagram just displayed is 

obtained by application of R’ to a diagram 

& 
Z - U,Zz V@R’Z LE,,Z 

of &spaces in which E is an equivalence with natural inverse r. 

(**) 

We shall see that the following result is implicit in Definition 4.2. Recall the 
notation X8 from Lemma 2.2 and the notion of a Be-space from Definition 2.5. 

Lemma 4.1. For (@, g)-spaces Y, Y, is a y-space whose associated &space is 

precisely (R” Y)@. Zf Y, = {0}, then Y, is a %o-space. 

The following theorem asserts the compatibility of the given (@, 8)cspace 
structure on Y with the derived (v, %)-space structure on E0 Y. 

Theorem 4.8. If Y is a (@’ y)-space with Y,= (O}, then CJ@ Y is a (@‘, Y)-space, V,Y 
is a (v, %)-space, (*) is a diagram of maps of (@, Y)-spaces, and Ls and therefore 
also I : Y, --* E0 Y are maps of 3a-spaces. Zf Y = R’Z for a (<g, Y)-space Z, then (**) is 
a diagram of maps of (v, 1)-spaces. 

The last statement was proven in [14, VII $41. 
The following relationship between $,-spaces and y-spectra was pointed out in 

[14, p. 70). Let Z” denote the stabilization functor from spaces to spectra. 

Lemma 4.9. For C@paces Z, 2”Z 13 functorially a g-spectrum. Zf E is a 
Y-spectrum and f : Z+ E0 is a map of %-+paces, then the adjoint f : 2I”Z --, E of f is 
a map of Sspectra. 

Applied to 1: Y, * E0 Y, this gives the following result. 

Corollary 4.10. For a (@‘, 3)-space Y with Y,,= {0}, r’:,??Y, +EY is a map of 
g-spectra. 

Of course, our main interest is in the case Y= VX (after modification by Lemma 
C.l so as to arrange Yc= (0)). Here we have the following important consequence 
of the results above. 

Corollary 4.11. For a pspace X, 6 and E are equivalences in the following diagram 
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of g-spaces: 

X8 A(LJX)@ -2 (R n VX), . 

Here (R” VX), is the $-space associated to the %-space V, X, and I : V, X -+ EO VX is 
a map of Y-spaces. 

For a Y-spectrum E, such as EVX, FE denotes the space of unit components of EO 
and SFE denotes the component of 1. These are Y-spaces and thus give rise to 
spectra when 1’ is spacewise contractible. Many of the applications of [14] were 
based on the use of these “spectra of units”. Such applications work more generally 
in view of the present theory but are otherwise unchanged since the notion of 
Y-spectrum is unchanged. 

In particular, the results above apply to the Y,-I.Y-spaces X=B.sj associated to 
bipermutative categories .Y’. Here we take (U’, ??‘) = (_V;_ ti’) and have (V, Y) = (&,, U). 
That is, we regard X as an &.i,-space by pullback. We agree to write E-Y = EVBJ. 
By Remarks 3.2 and Theorem 4.3, Ed is naturally equivalent to the spectrum 
E.d@ = EB.2@ associated to the underlying additive permutative category of d. All 
but the last statement of the following result are immediate from Remarks 3.6 and 
naturality. 

Proposition 4.12. The unit e of Ed factors naturally as a composite 

SdEb-+E(Ejd,)-+Ed 

of maps of Y-spectra. Moreover, e : S -, E8 is an equivalence and E(&I..-J,) is equiva- 

lent as an Y-spectrum to .PB&. 

The assertion about E8 is a multiplicatively enriched version of the Barratt- 
Quillen theorem to the effect that the spectrum determined by the category of finite 
sets and their isomorphisms is the sphere spectrum. The assertion about E(ab’J is 
of particular interest when specialized to categories of monomial matrices. 

We shall round out the theory by generalizing some further results proven in [14] 
in Section 8, but it is high time we turned to the proofs of the results claimed. 

5. Generalities on monads 

We require some categorical preliminaries (and earlier notations should be for- 
gotten for the moment). The proofs of the results stated in the previous section are 
all based on use of the general categorical two-sided bar construction B,(F, C, X) 
introduced in [12, $91. Here C is a monad in some ground category V, X is a 
C-object in V, and F: v’-r Y’ is a C-functor with values in some other category Y’ 
(see [12, 82 and $91 for the definitions). B+(F, C, X) is a simplicial object in Y’, its 
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object of q-simplices being FCqX. When y ‘= &, we obtain a space 

JV’,C,X)= IB&=,C,X)/ 

by geometric realization. More generally, f ’ might be a category of functors Z- & 

for some category E, and then B(F, C, X) will also be a functor Z + ‘U. 
We shall first give a general discussion of the behavior of this construction with 

respect to appropriate changes of ground category. We shall next give a general 
result, due to Beck [l], on distributivity diagrams and interchange of monads. We 
shall then give a generic categorical construction of the monads relevant to our 
theory. Finally, we shall review the material of [22, 551 on monads associated to 
categories of operators in the light of the new categorical perspective. 

Until otherwise specified, we assume given categories Y and YI and an adjoint 
pair of functors L : I -+ Y and R : 1 + % such that LR is the identity functor of Y. 
Thus for YE I and Z E V, we have 

W’(LY,Z)z N(Y,RZ) and LRZ=Z. 

We let 6 : Id + RL denote the unit of the adjunction. We then have the following 
equalities of natural transformations: 

LG=Id:L+L and 6R=Id:R-+R. 

We are interested in the relationship between monad structures on functors 

C:Y+1’ and D:%-r%. 

Proposition 5.1. Let (C, p, q) be a monad in F . 

(i) RCL is a monad in rl with unit and product the composites 

1dd.L RqL - RCL and RCLRCL = RCCL - RPL RCL. 

(ii) If (F,I) is a C-functor (in some category P ‘), then FL is an RCL-functor 
with action transformation 

AL : FLRCL =FCL -+FL. 

(iii) If (Z,r) is a C-object in %, then RZ is an RCL-object in 1/ with action map 

Rc:RCLRZ=RCZ+RZ. 

For examples, (F, A) might be (C, p) and (Z, <) might be (CZ’, p) for any Z’E y. 
Since LR = Id, we have the equality 

B,(F, C, Z) = B,(FL, RCL, RZ). 

Because of the asymmetry in our standing assumptions on L and R, LDR need 
not inherit a monad structure when D is a monad in 1. 
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Proposition 5.2. Let (0, v, c) be a monad in N, define C= LDR, and suppose that 
(C, p, q) is a monad in Y such that the following diagrams commute: 

LR a LDR 
LvR 

LDDR ’ LDR 

and LDGDR 

I 
rl 

Id- C LDRLDR = CC A C 

Let 6 denote the common composite in the diagram 

D, D6 ’ DRL 

I 
-\ \ 

6D ‘\J 

I 

GDRL 
\ 

\ 

RLDG ‘\I 

RLD - RLDRL = RCL 

(i) 8 is a morphism of monads in W. 
(ii) If (F, A) is a C-functor, then FL is a D-functor with action 

FL8 AL 
FLD-FLRCL=FCL-FL; 

in particular, RCL is a D-functor and 8: D --* RCL is a map of D-functors. 
(iii) If (2, <) is a C-object, then RZ is a D-object with action 

6R R5 
DRZ-RCLRZ=RCZ-RZ; 

in particular, for YE y1, RCL Y is a D-object and 8: DY + RCL Y is a map of 

D-objects. 

The proof of (i) is elementary and (ii) and (iii) follow via (ii) and (iii) of the 
previous result. The hypothesis on C can usually be verified from the structure of D. 
Precisely, we have the following result. 

Proposition 5.3. Let C= LDR for a monad (0, v, C) in V. Consider 

aDR=JR:DR-+RC and LD6=LS:LD*CL. 

If either of these is a natural isomorphism, then C is a monad in v with unit tf and 
product p the composites 

Id=LR LcR 
WaDtO- LDDR 

- LDR and LDRLDR- 
LvR + LDR. 

Moreover, if (RZ, w) is a D-object, then Z is a C-object with action 

Lw:CZ=LDRZ-LRZ=Z, 
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and C-objects in Y may be identified with D-objects of the form RZ in %. In the 
case when LD6 is an isomorphism, if (Y, I& is a D-object, then L Y is a C-object with 
action 

and 6 : Y + RL Y is a morphism of D-objects. 

Proof. We are defining q and p by the diagrams of the previous result, but, for the 
associativity of p, it would not be enough just to assume that LDGDR is an iso- 
morphism. For the second statement, the correspondences (RZ, w) - (Z, Lw) and 
(Z, c) - (RZ, R< 0 JR) between actions are mutually inverse. 

The essential point is that the hypothesis DR P RC or LDa CL is a computational 
property of D which may or may not hold in practice. We shall encounter all 
possible variants, and the basic structure of our theory is largely determined by the 
behavior of the monads we shall encounter with respect to the adjunctions of 
Definition 4.1. 

The previous results have the following consequences, special cases of which will 
lead to the proofs of Theorems 4.3, 4.6, and 4.8. 

Corollary 5.4. If JR : DR --, RC is an isomorphism in the previous proposition, then 

B,(GR, C, Z) a B,(G, D, RZ) 

for a C-object Z and D-fun&or G, hence 

B,(F, C, Z) s B,(FL, D, RZ) 

for a C-functor F. If L6: LD-+ CL is an isomorphism, then 

B,(F, C, L Y) 2 B,(FL, D, Y) 

for a D-object Y, L Y being a C-object via CL Yz LDYd L Y. 

Corollary 5.5. Under the hypotheses of Proposition 5.2, there is a natural diagram 

Y* 2 B,(D, D, Y) 
6. 

- RB,(CL, D, Y) 

of simpliciai D-objects, where Y is a D-object and Y, denotes the constant simplicial 
D-object which is Y in each degree. If 6R : DR -, RC is an isomorphism and Y= RZ 
for a C-object Z, then this diagram is obtained by application of R to a natural 
diagram 

Z, zB,(C,C,Z)=B,(CL,D,RZ) 

of simplicial C-objects. Moreover, the E* are simplicial homotopy equivalences (in 
the respective ground categories W and Y ) with natural homotopy inverses r*. 



28 J.P. May 

Proof. The assertions about E* are general nonsense [S, 9.81. The map 6+ is 
B,(6, 1, I), and we have used the evident relation 

B,(RCL, D, Y) = RB*(CL, D, Y). 

The rest is immediate modulo a little diagram chasing for the assertion that 6* is a 
map of simplicial D-objects. 

We are particularly interested in the relationship between ‘additive’ and ‘multipli- 
cative’ monads defined on the same ground category, and we shall have three differ- 
ent applications of the following result of Beck [I]. Given a monad G in V; let G[ U] 
denote the category of G-objects in % Recall that the composite /3a of natural trans- 
formations a : A + C and fi : B + D such the range category of A and C is the domain 
category of B and D is defined to be the common composite in the diagram 

BA\ /dDC 
DA 

Proposition 5.6. Let (C, pa, tlo) and (G, p@, q@) be monads in the same category 
% Then the following dktributivity data relating C and G are equivalent. 

(i) A natural transformation Q : GC -+ CG such that the following diagrams of 

functors commute: 

and 
Qc CR 

GCC - CGC - CCG 

GC 
Q 

+ CG 

I GQ QG I 

GGC - GCG - CGG 
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(ii) A natural transformation p : CGCG 4 CG such that the following properties 
hold: 

(a) (CG, p, q) is a monad in Y, where q = qgqq : Id + CG. 
(b) Cqo : C- CG and q3G : C- CG are morphisms of monads. 
(c) The composite 

CG 
C’I$#,aG 

+ CGCG 
P 

*CG 

is the identity. 

(iii) A structure of monad in G[ V] on C; that is, for a G-action GX +X, a 
functorial induced G-action GCX --, CX (and thus GCCX -+ CCX by iteration) such 
thatqo:X+CXand,uuo: CCX + CX are morphisms of G-objects in Y. 

When given such data, the category of CG-objects in I is isomorphic to the 
category of C-objects in G[ I 1. 

Proof. We outline the argument. The verifications of the claims to follow are 
lengthy, but straightforward, diagram chases [l, p. 120-1281. Given Q as in (i), 
define p to be the composite 

CGCG 
QG 

- CCGG --=% CG. 

Given p as in (ii), define Q to be the composite 

GC 
vlsGQa 

’ CGCG A CG. 

These are inverse correspondences between the data of(i) and the data of (ii). Given 
Q as in (i) and given (X, 4) E Y [ V’], the composite 

Q C< 
GCX-CGX-CX 

specifies an action of G on CX as required in (iii). Given the data of (iii), let Q be the 
composite 

GQ3 
GC - GCG - CG, 

where, for XE V, the second arrow is the action of G on CGX induced by the action 
~1~ of G on GX. These are inverse correspondences between the data of (i) and the 
data of (iii). Suppose given these equivalent data. Then a CG-object (X, I& in Y 
determines a C-object (X, <, 0) in G[ Y] by letting < and 19 be the pullback actions 

rlaG w c’ts 
GX-CGX-X and CX- 

w 
CGX - X, 

and a C-object (X, r, 0) in G[ V] determines a CG-object (X, I& in %’ by letting I,V be 
the composite 

CGX - ct cxex. 
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These correspondences are inverse isomorphisms of categories. 

The following generalization of [22, 5.11 gives a generic categorical source for the 
monads we need. 

Construction 5.7. Let 9 be a topological category and let Z be a discrete sub- 
category with the same objects. Let [E, ‘Uu] denote the category of functors Z+ -‘u 
and natural transformations between them. We construct a monad (0, v, [) in [E, Y] 
such that a continuous functor 9 -, ‘ti is the same thing as a D-object in [z, Y]. For 
an object n E 3, (DX)(n) is the coend 

i 
P(m, n) xX(m) = u. 9(m, n) xX(m)/(-), 

d m 

where the equivalence relation is specified by 

(@V9 x) - (A wx) 

for morphisms @ : m + n in 9 and w : k -, m in Z and points x E X(k). 
this description of the coend is not valid without point-set topological 

Technically, 
assumptions 

designed to ensure that the quotient space lies in JU; we tacitly assume such hypo- 
theses. Composition on the left by maps n+p in Z gives maps @X)(n)4 (LX)(p) 

such that DX is a functor 3 + Y. The identity maps and composition of the category 

9 induce maps 

c : X(n) -, @X)(n) and v : (DDX)(n) --*(DX)(n), 

and these specify natural transformations of functors Z+ ‘V. The monad identities 
are inherited from the category axioms. If X: - =--, )2/ extends to a continuous functor 
9 4 ?!, then the evaluation maps Q(m, n) x X(m) +X(n) induce maps 
r: (DX)(n)+X(n) which specify an action of D on X. Conversely, if <:DX-+X 
satisfies the identities required for an action of D on X, then the composites 

5 
P(m, n) xX(m) 4 @X)(n) - X(n) 

are the evaluation maps of a continuous functor L * 8. 

To illustrate the combination of this construction with the theory at the beginning 
of the section, suppose given an operad V with associated category of operators d. 
We agree to let [II, 3-1 denote the category of functors Y: I7 +3 which satisfy the 
cofibration condition required of n-spaces. Since 0 is an initial object of 17, the 
basepoints of all Y, are determined by that of Y,. Then our construction specializes 
to give a monad (c, fi, ii) in [Z7,3]. The cofibration condition ensures that each c”Y 
lies in y, and it is easy to see that this condition is also satisfied by CY. 

On the other hand, [12, $21 gave a more combinatorial specification of a monad 
(C, cc, q) in _K As we shall need the details later, we recall the definition of the spaces 
CZ. 
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Construction 5.8. Let .4 CZ7 be the subcategory of injections. Thus /1 is generated 
by permutations and by the degeneracy operators o4 : r+ 1 -+r, 1 I q I r, specified by 
o,(i)=i for i<q and a,(i)= i+ 1 for izq. Via their permutations and the 
degeneracy operators rs4 : V(r) -, V(r- 1) specified by 

cfJq= y(c; 1Q-’ x * x lr-g), where 1 E ‘k’( 1) and *E v(O), 

operads determine contravariant functors /i + #. Then 

cz= 
5 

V(r) x Z’= II, F(r) x,, Z’/(-), 
A r 

where the equivalence relation is generated by 

(c, 2 I ,..., tJ-(c~7~,21,..., z+_~,t~+~ ,..., z,) if z,=O. 

Analysis of these monads requires two pieces of information, which are given in 
(22, 5.7 and 5.61 and are verified by direct inspection of the constructions. The first 
asserts that the monad C is entirely determined by the monad c and the adjunction 
(L’,R’) relating I to [n, 31. 

Lemma 5.9. LcR’= C and &R’: CR’+ R’C is a natural isomorphism. Moreover, 
the unit and product of C are those specified in Proposition 5.3. 

This means that enR’Zz (CZ)“. Note that L’C$CL’. This result entitles us to all 
the rest of the conclusions of Propositions 5.2 and 5.3 and their corollaries. The 
second piece of information is an invariance statement. It is a consequence of the 
way the spaces c,,Y are built up by successive cofibrations. 

Lemma 5.10. Assume that % is Z-free. If Y and Y’ are in [Z7,3] andf: Y 4 Y’ is a 
natural transformation such that each f,: Y, -, YL is an equivalence, then each 
Cn f : C, Y -+ C” Y ’ k also an equivalence. 

The conclusion of the lemma is necessary for the validity of the following result 
and thus for the utility of the monad e. 

Corollary 5.11. If %’ is E-free, then e restricts to a monad in the category l7[T] of 
I;l-spaces. 

Proof. It must be shown that each 6’: &‘,,Y *(e,Y)” is an equivalence when each 
6’ : Y,,-+ Yf is an equivalence. This is immediate by specialization of the diagram 
defining 6 in Proposition 5.2 to D = e. Indeed, its top and bottom are equivalences 
by application of the previous lemma to 6’: Y -, RL Y’, its right side is an isomor- 
phism by Lemma 5.9, and its left side is given by the maps in question. 
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6. The monads associated to categories of ring operators 

Assume given an operad pair (V, 9) and let f= sld. We agree to let [f?U7, &] 
denote the category of functors X: nU7 -+ ‘1/ which come with a nondegenerate 
basepoint * EX(O; *) and which satisfy the cofibration condition required of 
nU7-spaces in Definition 2.1(5). Then Construction 5.7 specializes to give a monad 
(3, p, rf) in [nU7, !@u] associated to JJ. The cofibration condition ensures that each 
JX(n; S) lies in %? (by the combinatorial analysis in the next section). Since the 
action of nU7 on .?X is induced by composition nlnx f+f, it is not hard to 
check that IX also satisfies the cofibration condition. 

As in Definition 4.1, we have adjunctions (L”, R”) relating [n, 31, to [f?ln, %] 
and (L’, R’) relating ye to [n, 31 and a composite adjunction (L, R). Here [n, 31, 
denotes the category of functors Y: n-.Gn [fl, .fl which come with a nondege- 
nerate basepoint 1 E Y, which maps to Oe Y0 and which satisfy the cofibration 
condition above Lemma 2.2. 

We aim to understand the relationship of J to these adjunctions and to the 
various additive and multiplicative monads in sight. In particular, we shall prove 
Theorem 4.3 (and Lemma 4.7) and shall lay the groundwork for the proofs of 
Theorems 4.4 and 4.8. Formal proofs are given in this section. Proofs which depend 
on detailed analysis of the construction of 1 are deferred until the following section, 
and we begin with statements of results of the latter type. The following result is 
crucial. 

Theorem 6.1. Define I= LnJRn and J= L’.!R’= LJR. Then FJRn: JR”-1 R”J^ is a 
natural isomorphism. In general, the remaining natural transformations L”J- JL”, 
JR’+ R’J, and L’.i+ JL’ are not isomorphisms. 

The first statement means that JR” Y(n; S)s n,“=, jSjY. It entitles us to all of the 
conclusions of Propositions 5.2 and 5.3 and their corollaries. In particular, J^ is a 
monad and j-spaces are the same things as (@, @-spaces (modulo homotopy type 
conditions to be discussed shortly). This is analogous to Lemma 5.9, the essential 
difference being that there we had a preassigned monad C on hand, whereas here J^ 
is a new construction. We shall obtain a precise description of j in Corollary 7.3. 

The second statement dictates the central role played by (@, ?+spaces in our 
theory. In fact, .?“R’Z is not even equivalent to (JZ)” in general. Therefore, JRZ is 
not equivalent to RJZ. It is this fact which obstructs the direct replacement of 
F-spaces by equivalent (%‘, 9)-spaces. We shall explain the relationship of the 
functor J to the notion of a (%‘, Q)-space in Proposition 6.11. 

The following invariance result is analogous to Lemma 5.10, but the way in which 
the spaces JX(n; S) are built up from successive cofibrations is far more elaborate. 

Theorem 6.2. Assume that V and 9 are Z-free. If X and x’ are in [l7U7, %] and 
f: X 4x’ is a natural transformation such that each f(n; S) : X(n; S) +X’(n; S) is 
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an equivalence, then each Jf(n; 5’) : JX(n; S) -+ JX(n; S) is also an equivalence. The 

analogous assertion for J^ is also valid. 

Again, by specialization of the diagram defining 6 in Proposition 5.2 to D = Jand 
the adjunction @“,I?“), the following result is an immediate consequence of the 
preceding theorems. Let us say that XE [nJI7, JU] is a semi f7lKspace if 
6” :X + R”L”X, but not necessarily 6 : X + RLX, is an equivalence. 

Corollary 6.3. If % and 3! are &free, then J restricts to a monad in the category of 
semi l7lI7-spaces. That is, 6” : ,?X + R *L”JX is an equivalence if 6” : X -, R”L”X is 
an equivalence. 

We do not claim, and it is not true, that JX is a fllZ7-space if X is a Z7lf7-space. 
Nor is it true that J^Y is a D-space if Y is a n-space. 

We need one more preliminary to prove Theorem 4.3, namely the following 
analog of [12, 12.21. The proof is essentially the same as that of the cited result and 
will therefore be omitted. 

Theorem 6.4. For simplicial objects X in [l7ll7, $11, there is a natural isomorphism 
v : 1 JX I+ 11 X) in [l7ll7, #] such that the following diagrams commute: 

If (X, <) is a simplical J-space, then (IX I, 15 / v-*) is a J-space. The analogous 
assertions for J^ are also valid. 

We can now define the functors needed to prove Theorem 4.3. 

Definition 6.5. For a @pace (or J-space) X, define 

UX = B(J, .?, X) and VX = B(jL”, J, X). 

For a (d, Y)-space (or j-space) Y, define 

UY=B(j,j, Y)z VR”Y. 

Here UX is a p-space and VX and UY are (‘& :5)-spaces (the following paragraph 
implying the requisite homotopy type conditions irrespective of the fact that the 
functors J and J^ fail to preserve I7U7-spaces and n-spaces). 
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We recall that geometric realization preserves products and (weak) equivalences 
and carries simplicial homotopies to homotopies (see [ 12, Q Ill, [13, A.41, and 
[2, App. 4.81). In particular, 1 YI is a n-space if Y is a simplicial U-space, 
IR”YJ zR” I YI, and IX/ is a (semi) UU7-space if X is a simplicial (semi) nj- 
space. Theorem 4.3 is now an immediate consequence of Corollaries 5.4 and 5.5. In 
the latter result, & is an equivalence since 6” : .7X +R”jL”X is an equivalence for 
any njI7-space X. 

The additive and multiplicative specializations of .7 play special roles, and here 
Theorem 6.1 can be improved. Let C denote the monad in [/7U7, %] associated to 
njti and recall the inclusion of 4 in nld from Lemma 1.5. 

Proposition 6.6. L”CR”= e and both F’CR“: CR”- R”e and L”c&‘: L”C+ CL” 

are natural isomorphisms. Therefore LCR = C and &?R : CR * RC is a natural 
isomorphism. 

Of course, Li?f CL since L’C’ICL’. As in Lemma 2.2, L”X=Xo is the @-space 
associated to anj@-spaceX; its e-action is just the composite e(X&(cX),-X,. 

The following observations should help clarify the multiplicative specialization 
and will lead to the proof of Lemma 4.7. 

Remark 6.7. For ZE.&, we have two different derived functors n-.5 with nth 
space Z”. The first, R’Z, has degeneracies (i.e. actions by injections in n) defined 
with respect to 0. The second, which we denote by R&Z, has degeneracies defined 
with respect to 1. Recall the notation X, from Lemma 2.2. For YE [n, J], we have 
(R” Y)@ = R& Y, : 17 + Z indeed both of these functors have n th space Yt and have 
degeneracies defined with respect to 1. 

If Y is a (@, Y)-space, then (R” Y)@ is a %-space by Lemma 2.2. By application of 
Proposition 5.3 and Lemma 5.9 to (L’,R&) and G, this structure determines and is 
determined by a structure of S-space on Yi. This proves all but the last statement of 
Lemma 4.7. For that we need a slight variant of Construction 5.8. 

Construction 6.8. For ZE &, construct GZ by use of the operad 5 and basepoint 1 
and define G,,Z to be the quotient space of GZ obtained by identifying all points any 
of whose coordinates in Z are 0. Observe that Go gives a monad in ye such that a Go- 
space is the same thing as a G-space with zero. 

Now let G denote the monad in [nln, Y] associated to g’517. 

Proposition 6.9. Define L”CR”= 6. Then L’6R’= Go on &and L'dS' : L’d-+GoL’ 
is a natural isomorphism on the full subcategory of those YE [I7, J], such that 
Y,= (0). Thus, forsuch Y,6,YnGoY, and therefore 

(GR”Y)o~(R”~Y)o=R&~,YzR~GoY,. 
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Of course, GR “sR”d by Theorem 6.1. However, neither L”Gz C?L” nor 
6R’=R’Go. The last statement implies the last statement of Lemma 4.7. Proposi- 
tions 5.2 and 5.3 and their corollaries apply both to (L”,R”) and G and to (L’,R’) 
and G restricted to objects Y with Ye= (0). In particular, d is a monad in [n, 31, 
such that a G-space is the same thing as a G-space of the form R”Y. Here G must 
not be confused with the monad G in [n,.T]. The former relates to the ‘additive’ 
inclusion of I7 in 31n. The latter relates to the ‘multiplicative’ inclusion of @ in 
dll7. 

Remarks 6.10. When Y,,# {0}, dtYa!GoY,. It is for this and related reasons that 
the hypothesis Ye= (0) occurs in Section 4. One can generalize the previous result to 
all Y by replacing (L’,R’) by an adjunction relating [fl,F], to the category Sz of 
retraction diagrams 

I 
20-Z 2 &, el=id, 

with ZO~ f, ZE ye,, I(O) = 0, e(0) = 0 = e(l), and I a cofibration. Taking ZO= Ye and 
Z= Y,, we see that any YE [n, _Q determines a retraction diagram L;Y, and it is 
easy to check that R’: ye+ [Z7,3], extends to a right adjoint R;: &,- [l7, 31e to L;. 
One can generalize Go to a functor Cc: Fz --r& such that L;6Y=GoL;Y for all 
YE [n, F],. 

So far in this section, we have concentrated on the relationship between monads 
defined on different ground categories: spaces, n-spaces, and fllf7-spaces. To 
recapitulate, we have functors 

3, C, and G on [nU7, $1, 

j, C, and G on [I7,3],, 

J, C, and Go on fe. 

We agree to ignore G, which plays no further role in this section. The second row is 
obtained from the first via L”? R”. The third row is obtained from the second via 
L’? R’ and is therefore also obtained from the first via L ? R. All of these functors 
except J are monads. 

In the rest of this section, we are concerned with the relationship between the 
functors on a given row. In the notion of a T-space, the additive and multiplicative 
products are intertwined. The central feature of the earlier theory of (v, ‘9)-spaces 
was a reinterpretation in which the multiplicative products were subsumed in the 
structure of the ground category. A similar reformulation of the notion of a (9, y)- 
space will be central to the proofs of Theorems 4.4 and 4.8, and we shall also give 
such a reformulation of the notion of a p-space. 

We first reconsider the notion of a (r, %)-space. Looking at Definition 2.5, we see 
that a (%‘, 5)-space is a C-space and a Go-space such that a certain parametrized dis- 
tributivity diagram commutes. According to [ 14, VI $11, the left-hand maps 5 in 
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that diagram induce an action of 9 on CZ such that C restricts to a monad in the 
category Go[9’J of Go-spaces, and a (‘&, 9)-space is just a C-object in Gc[FJ. That 
is, the distributivity diagram asserts that 8 : CZ -+ Z is a map of Go-spaces. 

Proposition 5.6 leads to an alternative proof of this that both places the functor J 
in perspective and suggests the proper generalization to (@, @-spaces and 3spaces. 

Proposition 6.11. For ZE S,, there are natural maps 

Q’: G&Z+JZ and &:JZ-CGoZ 

whose composite Q : G&- CG,-, satisfies the conditions of (i) of Proposition 5.6. 
Therefore C is a monad in Go[S,], CG,, is a monad in Ye, and a CG,-+pace 
determines and is determined by a C-object in the category of Go-spaces, that is to 

say, by a (V, Y)-space. 

Proof. We shall be a bit schematic in the definitions. We have 

GoCZ= JJ g(m) x %‘(r,) x Z’I x .-= x g(rm) x Zrm/(-), 
(m.R) 

JZ= u s(m) x g(R, 1) x Z’I x --. x Zr4(-), 
(m.R) 

CGoZ = u V(n) x Y(s,) x Z’I x ..- x Y(s,) x ZW(-). 
@I. S) 

Here R = (r, , . . ..rm). S=(SI , . . . ,s,), and %‘(R, 1) is specified in Notations 7.1 below; 
it is of the form U %‘( Ix-I(l) where the union is taken over certain morphisms 
~:A~~~rri~1in~,andallwereallyneedtoknowisthat~=~,,...,,with Ix-‘(l)/= 
r1 .-- r,, is allowed. The equivalence relation for JZ is specified in Corollary 7.3. 
The map Q’ is obtained by passage to quotients from 

Q’h?,Cl, YI, *-es c,,Y,)=(g,~(g;cl,...,c*),Yl,...,Y,), 

where gE s(m), CUE V(ri), and Yi E Zc. The map Q” is obtained by passage to 
quotients from 

e”(g,c,Yl,...,Y,)= c. 
( 

,($ * (g, YU) 9 = > 

where gEY(m), c~%‘((Ix-t(l)/), Yi=(Yit v..., Yir,)EZ’i, U runs through the 
sequences (u,, . . . , u&with l~ui~r~andx(U)=l, andYo=(Yt,u ,,..., Y,,,,U,). Thus 

Q@CI.YI, .a., cm,ym)= 
( 

~(g;cI,...,cm), f(&Yv) * 
> 

The diagrams of Proposition 5.6 commute by the formulas required of i, in 
Definition 1.8; compare [14, p. 145). 

Observe the role played in the definition of Q” by the diagonal maps implicit in the 
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notion of distributivity. On the JQpace level, these are incorporated into the con- 
struction of the JX(n; S). One therefore has the following more conceptually 
satisfying result, which works for any categories of operators d and ~4 such that :J 
acts on %. Observe that the inclusions of n]? and :iSI7 in f induce 
c-3 and G -3 of monads in [nU7, @;‘/I. 

morphisms 

Theorem 6.12. For XE [f7Sl7, 4’1, there is a natural transformation 

p:GCX+CGX 

of functors l7U7 + 9 such that p is natural in X and satisfies the conditions of(i) of 
Proposition 5.6. Therefore C is a monad in G[l7lli’, #I, GC is a monad in 
[I7M7, $1, and a Cc-space determines and is determined by a C-object in the 
category of G-spaces. Moreover, the diagram 

I I 
33x &3x& 33x 

commutes, and the composite 

m-33- p 3 

is an isomorphism of monads in [liW, 91. 

Proof. The diagram dictates the definition of p. With the notations of Lemma 1.6, 
its (p, T)th map is obtained by passage to quotients from the maps 

(gjn)((n; 9, (P; TN x (nS @)((m; RI, (n; 9) x X(m; RI 

(~J@)((P; R”), (P; TN x (gUO((m; RI, (P; R”)) xX(m; RI 

specified by 

P((g; xx (@; c), x) = ((1; x O 4g)(c)x w; @w @))a XL 

The diagram is then just a reinterpretation of the cited lemma. If (g; x) = (1; l), then 
the right side is 

((1; c)*(& 1),x)-((CR c),(l; 1),x). 

If (@; c) = (1; l), then the right side is 

((1; x)9 (g; LA-9 - ((1; 1). k x),x). 
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These give the diagrams involving q& and qs of Proposition 5.6(i), and the 
diagrams involving .no and fi8 are verified by formal calculations based on the 
definition of composition in 3U7 and nl’&, the definition of ,a, the naturality of 
a(~, @), the functoriality of J(g), and the equivalence relation used to define EX, 
compare Definitions 1.2 and 1.4. Routine diagram chases show that the specified 
composite Cc + J is a morphism of monads. Since :j In and fll,< generate f under 
composition, the component maps (eGX>(n; S) -* JX(n; S) are obviously surjective. 
In view of the amalgamations over IIlI7, they are easily checked to be homeomor- 
phisms. A more conceptual proof that cc 3.7 is also possible. Clearly J-spaces are 
C&paces by pullback. Conversely, suppose that X is a 0%space (in [f7U7, #I). 
For a typical morphism (g; c) : (m; R) -+ (n; S) in f, we have the factorization 

(g;c)=(l;c)(g; l”):(m;R)+(n;R’)-+(n;S), 

where rj = ABcrj=, ri if c(g) = @. Since a CG-space is a c-space and a G-space, we can 
use this factorization to define (g; c) : X(m; R) -X(n; 3). Direct calculation shows 
that this specifies X as a functor f -, ti and that we may identify J-spaces and 
C&paces. For XE [f7U7, #//I, .?X is the free J-space generated by X, and there 
results a J-map JX + CGX. The given composite cGX +.7X is the Cc-map 
obtained by the freeness of CGX. The respective composites are identity maps by 
freeness. 

Thus Tspaces are C-spaces and G-spaces such that the additive action CX -+ X is 
a map of G-spaces. It is the analog for ($, %)-spaces that we really need, and the 
following result is a purely formal consequence of Propositions 5.3 and 5.6 and 
Theorems 6.1 and 6.12. 

Corollary 6.13. For YE [f7, S],, define &3 : &Y -+ccY by commutativity of the 
diagram 

GCY= L%R~L~~CR~’ Y 
(L”GG”CR”)-’ 

l LnCCR” Y 

Then @ satisfies the conditions of(i) of Proposition 5.6. Therefore e is a monad in 
G[II, 3],, cd is a monad in [II, I],, and a &space determines and is determined 
by a c-object in the category of G-spaces. Moreover, the natural composite 

is an isomorphism of monads in [II,.?],. 

Thus (@, y)-spaces are &paces and 6-spaces such that eY + Y is a map of 
G-spaces. 
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Proposition 6.14. The relationship between the previous result and Proposition 6.11 
is given by the following commutative diagram: 

G&Z = L’CR’L’CR’Z 
(L’6d’&‘)-’ 

b L’GCR’Z 

e L’BR’ 

1 
L’fiR’ __ 

c 

JZ = L’jR’Z 
^_ 

-L’JJR ‘Z - L’CGR’Z 

Q” 

1 I 

L’d;r’dR’ 

CGoZ L’CR’L’GR’Z 

Therefore CR’Z 2 R’CZ as e-spaces for GO-spaces Z and C= L’CR’ as monads in 

Go[&]. 

Proof. The second statement follows by simple diagram chases from the first. The 
first requires explicit calculation. We omit the details since we could just as well 
define Q’ and Q” by the diagram and deduce that the composite Q satisfies the 
conditions of Proposition 5.6(i). 

7. Combinatorial analysis of the functor JX 

This section is technical and is devoted to the detailed analysis of JX required to 
prove Theorems 6.1 and 6.2 and Propositions 6.6 and 6.9. By construction 5.7, 
Definition 1.4, and the specification of d and 3 in terms of Y and 4 (above 
Definition 1.8), we find that 

JX(n; S)= U. J_L fi 
(m; R) C+? x) i= I [ %l0-‘(j)l)x 4 ~(l~,~‘(u)I) x.Um; RN-), 1 

where (@; x) runs through (313)((m; R), (n; S)). 
The morphisms of Y were discussed in [22, p. 2171. A morphism @: m-+n is a 

projection if it is a surjection in n; it is effective if Q-‘(O)= (0); it is ordered if 
@(i)<@(i’) implies i<i’. Any $J factors as E~Z with n a projection and E effective, 
uniquely up to permutation of the target of 71. ‘If E : m + n is effective, then ET is 
ordered for some permutation 5 of m. An ordered effective morphism @ : m -, II is 
uniquely of the form @m,~~~~~@m,, where mj=I@-‘(j)l and m,+...+m,,=m. 
Such @ determine and are determined by partitions M= (m,, . . . , m,) of m, and such 
partitions A4 determine partitionings R = (R,, . . . , R,), where Rj is the jth block 
subsequence of R, with mj entries. 

To proceed further, we need some notations; in reading them, m and R should at 
first be thought of as mj and Rj. For an operad %, write co E V(q) for the action of 
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an injection o : q -+ r on an element c E Z(r). Recall the notion of an injection in nU7 
from Section 2. 

Notations 7.1. (i) Consider a sequence R = (rl, . . . , r,) and a morphism x : A;“=, ri+s 
in $7 Say that x is R-effective if for each i, 1 I is m, and each U, 1 I u I r;, there is a 
sequence U=(ut, . . . , u,) such that ni = U, 15 Uj 5 rj for j# i, and x(U) # 0. By con- 
vention, any x : l-, s is R-effective when m = 0 and R is the empty sequence *. Let 
&‘(R,s) denote the set of R-effective morphisms A:, rps and define 

XE ,:(R.s) u= I 

If R = * or if all ri=O, let V(R,s)+ = V(R,s). Otherwise let ,%'(R,s)'= %(R,s)U V(0)s, 
where the point VT(0)s is thought of as indexed on the morphism 0 : A:=, ri+s. 

(ii) For an injection (w; o) : (k; Q)-+ (m; R) in I7]I7 and for x : A:, rids in 35 
define 2 : A:=, qh+s to be the composite 

i qh 
NOm. w) m w , 

p A Qw-‘(i) p i ri x S; 
h=l i=l i=l 

here q+,-!(i) = 1 if v-‘(i) is empty and then oi may be 0 : 14 ri. If 2 # 0, then the first 
two maps of the composite restrict to injections 

A,(w; 0; x) : R-*(o)~~-‘(o) for 15 ~5s; 

ifx=O, let&,(W;o;X)=O:O-+X-l(o). Defineamap 

(~/;a): %(m)x V(R,s)++ Y(k)x V(Q,s)+ 

by requiring (v; o) to map the xth component to the xth component by the rule 

(& ++w; 0) = (W +A(w; W)). 

where C,E U(lx-‘(o)l) and thus c&y/; w; X)E %‘(IK-‘(o)l). 
(iii) For an object (m; R) of I75Z7 and a partition M= (ml, . . . . m,) of m with 

derived partitioning (RI, . . . . R,) of R, define 

and 

j(M R, S) cjQ Wj) X v(Rj, sj) 

f(A4, R,S)+ = fi Y(mj) X g(RjtSj)+. 
j=l 

For injections (q; wj) : (kj; Qj)+(mj; Rj) in nlfl, 1 ~jln, define (w; w): W; Q)* 

W; RI by 
y=ty,v~~~vyl,, and w=(wt ,..., w,). 

also, let R[j] be obtained from R by replacing all entries of Rj by 0 and define 

fJj=(l; 1 ml+~..+mj-lXOmj~ l”i+l+““““):(m;R)~(m;R[~]). 

With these notations, we have the following description of .7X. 
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Proposition 7.2. .7X(0; *) =X(0; l ). For n ~0 and S = (sl, . . . . s,), 

JX(n, S) =(g) Y(M R, S)+ xX(m; R)/(-), 

where the equivalence is given by relations of the form 

for injections (vi, Oj) : (kj; Qj)+(mj; Rj) and for XE X(k; Q) and Y E~(M, R, S)+ 
and of the form 

(Y, x, - (Y* Cjx> 

for XE X(m; R) and for any y E~(M, R,S)+ with j-th coordinate indexed on 

0: A?!“=, Tj,i’Sj; here y is also viewed as an element of f&i, R[ j], S)+ with j-th 
coordinate indexed on 0 : 0 --* Sj. 

Proof. We claim first that if x’: A;=, r,!-s is not R’-effective, then x’=xo A:=“=, oi, 
where Oi : rf-+ ri is a projection and x is R-effective. To see this, suppose x(U) = 0 
for all CJ with ith term U. Let vj = 1: rj --* rj for j + i, let vi : ri + ri - 1 be the projection 
which sends u to 0 and is ordered otherwise, let cU : ri - l+ ri be the ordered injec- 
tion which misses U, and let x1 =x’(l’-iAcr,A lnei). Visiblyx’=x, o/\E, v,, and our 
claim follows by inductive application of such decompositions. We claim next that, 
in our original description of JX(n; S), we may restrict attention to those com- 
ponents indexed on morphisms (0; x) : (m; R) + (n; S) such that C#J = @,, v ... v &,, 
for some partition M and x =(x 1, . . ..x.) where each Xj is Rj-effective. Indeed, if 
(Q’; x’) : (m’; R’) * (n; S) is not of this form, then it admits a factorization (0’; x’) = 
(0; x)(w; o) where (@; x) is of this form and where w and each coordinate of w is a 
projection. Moreover, we then have I@-i(j)1 = I(@)-*(j)1 and lx,~‘(o)/ = k;)-i(u)1 
for 15 j I n and 1 I LJ ‘Sje It follows easily that any morphism (c’; g’) : (m’; R’) + 
(n; S) in y which augments to (#‘; x’) in SlS factors as (c; g)(u/; o) for some 
morphism (c; g) which augments to (0; x). In fact, up to permutations, we may take 
(c; g) = (c’; g’) as elements of 

The equivalence relation used to define JX(n; S) restricts accordingly. However, to 
handle degeneracies, it is convenient to allow xj = 0. If ($J; x) is of this less restrictive 
form and if (@; x) = (4’; x’)(w; w), then w is an injection and, for each j. either 
Xj = 0 or each Oi with G’(i) =j is an injection. Further, if Xj =0 and if x[ j] is 
obtained from x by replacing Xj by 0 : 0 + sj, then (4; x) = (@; x[j])[j. With these 
indications, the remaining details are straightforward. 

Specialization gives the following description of J^Y. 
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Corollary 7.3. 

&Y = 1l Y(m) x qR,s)+ x Y,, x *** x Y,/(-), 
(m; RI 

where the equivalence is given by relations of the form 

((g; c)(w; a), (VI, **a, Yk)) - ((g; c), (w; W)(Y,, . . ..Yk)) 

for injections (t,u; o) : (k; Q) -, (m; R) and of the form 

((g; *9. (Yl, ***, Ym)) - ((g; *9. (A9 * * * 9 rnJ)t 

where yi E Yr,, yi E Y, is its image with respect to 0 : ri -, 0, and *‘E v(O)’ is viewed as 
an element of both V(R, s)+ and W(O”, s)+. In particular, JZ is obtained by setting 
s = 1 and replacing Y, by Z’. 

Visibly, the decompositions of the f(M, R, S)+ as n-fold products are respected 
by the equivalence relation. Therefore (JR”Y)(n; S) 3 ny=, js,Y and JR”= R”J^. 
Since JX(l; s) depends on all X(m, R) and not just the X(1; s), L”~s 3L“. Similarly, 
j,Y depends on all Y, and not just Y, (or Y, and Ye), hence L’J^z JL’ (and L;gr JL;). 
Manifestly, j,R’Z is a very different construction from (JZ)s, hence JR’S R’J. 

These observations prove Theorem 6.1. 

Some of these distinctions disappear when E’ or %’ is the trivial operad .2+‘. Recall 
that a(O)={*), 9(1)=(l), and .9(m) is empty for m > 1. If :q = 9, so that J= c, 
then the components with m = 1 in the construction of cX( 1; s) yield exactly cSL”X. 
The component with m = 0 is 1+(O) x v(*, s) xX(0; *). Since X(0; *) is a retract of 
X(1; 1) via (0; 1) : (0; *)-+( 1, 1) and (0; *) : (1; l)+ (0; *), we have the relations 

((1; c)(O; *), (0; 1)x) - ((*; c),x) for CE r(*,s) and x~X(0; *). 

These show that this component is unnecessary to the construction. Therefore 
L”c = CL” and thus L”CR” = c. This proves Proposition 6.6. 

Suppose next that v = 9, so that J = G and J^= 6, and consider GsY for s = 0 and 
s = 1. Clearly 3(R, O)+ is a point indexed on x = 0, only those R with ri = 0 con- 
tribute, and therefore d,Y = GYe constructed with respect to the basepoint 0. Less 
obviously, .2’(R, 1)’ is a point indexed on x = 0 unless R = * or R = l”, when 3(R, l)+ 
consists of a point indexed on x = 0 and a point indexed on x = 1. The components 
indexed on x = 1 give rise to GYi/(-) where GY, is constructed with respect to the 
basepoint 1 and the equivalence relation is generated by 

[g; YIP a*** u,l- [ga,,re~~,...,re~,-~,I,gv,+l,...,lev~l ify,=O, 

where I : Ye+ Y, and Q : Y, -+ Y, are determined by 0 : 0 + 1 and 0 : l-0. The com- 
ponents indexed on x=0 account for the image of GYc in GYt/(-). When Ye= {0}, 
these reduce to G,Y= (0) and G,Y=GeY,, and this proves Proposition 6.9. For 
general Y, these calculations dictate the construction of Go: .&+ .li; required to 
validate Remarks 6.10. 
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It only remains to prove Theorem 6.2. For this purpose, it is convenient to 
separate the injections in njn into permutations and degeneracy operators. Thus 
define Z(m; R) to be the group of automorphisms of (m;R) in 17517. Notations 
7.l(ii) specify a right action of z(m; R) on Y(m) x ‘R(R,s), and we have the 
following observation. 

Lemma 7.4. If % and 9 are Z-free, then the action of Z(m; R) on Y(m) x F(R, s) is 
free. 

Proof. If 

(g+“)(yI;~)= (&,c,i,ww;x+= (g;~,c”). 
where gc Y’(m) and C,E Y(Ix-t(o)]), then gy/ =g and thus I,Y= 1. Also, we clearly 
must have x = 2 and &(w; o; x) = 1 for all u. Thus 

iWiZirj4ir; 
i=l i=l i=l 

must restrict to the identity x-~(u)--,x-~(u) for each u. Since x is R-effective, this 
implies that each oi = 1. 

For an object (m; R) of I7117 and a partition A4 of m, define 

.Z(M, R) = fi Z(mj; Rj) C Z(m; R), 
J=I 

where the inclusion is given by Notations 7.l(iii). If ‘& and Y are Z-free, then 
Z(M, R) acts freely on a(M, R, S). 

We may now write 

Here the equivalence relation is defined with respect to the appropriate degeneracy 
operators, all of which correspond to insertions of basepoints (0 or 1) when X = RZ 
for Z E Y;. The components of f(M, R, S)+ not in f(M, R, S) are unnecessary in 
view of the second kind of relation specified in Proposition 7.2. Their role is to 
allow evaluation of those degeneracy operators (u/; o) such that some of the com- 
ponents Wi with domain 1 are zero. 

To prove Theorem 6.2, we shall describe how JX(n; S) is built up inductively by 
pushouts and unions. We need another set of notations. Observe that ~.(R,s) is 
empty unless R = * or all rj = 0 or all ri > 0 and define IR I= 0 in the first two cases 
and jRl =rl+ ... + r, - (m - 1) in the last case; here m - 1 is subtracted in order to 
make IRl = 1 if all ri= 1. Recall the o4 from Construction 5.8. 

Notations 7.5. (i) Write /MI = m and (M, RI = lR,/ + *a* + lRnl. Define .7,X@; S) to 
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be the image in JX(n; S) of those components indexed on (M, R) with JMI = m. Then 
JX(n; S) is a quotient of LL, J,X(n; S); filter it by letting F,JX(n; S) be the image 
of those components indexed on k s m. In turn, filter each 1,X@; S) by letting 
F,J,,,X(n; S) be the image of those components indexed on (M, R) with IM, R 1 I r. 

(ii) If ri > 1, let R,: be the sequence obtained from R by replacing ri by ri - 1 and let 

a~,=(l;li-ixaqxlm-i):(m;R,~)+(m;R). 

If M is a partition of m with mj > 0 and if all entries of Rj are 1, let 

Aj=(l; 1 ??Q+...+mj_1 xOmjx I*j+,+“.+m, ) : (m; WI) -, Cm; RI; 

these satisfy CjAj = 1, with cj as in Notations 7.1 (iii). For IM, R I> 1, define 

q,X(m; R;) 1 [ U ,,u=, AjW; R)Al C XW; R). / 1 
(iii) Let i& be obtained from Ri by deleting the ith entry ri. If ri = 0 and E = 0 or if 

ri= 1 and s=O or 1, define 

~~~=(O~;1’-‘~&~l~-‘):(m-l;R~)~(m;R), 

where E : 1 -+ ri is the morphism 0 if E = 0 or 1 if E = 1. Define 

CX(m; R) = ,,,I;‘,,, ri,,X(m- l,&)CX(m;R) 

and, for jM,RIzl, 

BX(M, R) = CX(m; R) n DX(M, R) c X(m; R). 

(iv) Define KX(n; S) to be the image in JX(n; S) of 

u B(M, R 9 xzCMR) CX(m; R) 
CM. .V 

and define 

and 
K,x(~; S) = KX(~; S) n J,x(t2; s) 

F,K,,,X(n; S) = KX(n; S) fl F,J,,,X(n; S). 

Inspection of the permutations in Z(M, R) makes clear that DX(m, R), CX(m; R), 

and BX(M, R) are invariant subspaces of X(m; R). With these notations, we have 
the following inductive descriptions of 

J,X(n; S) = ,vo F,J,X(n; S) and JX(n; S) = /.lJ0FJX(n; 9. 

The essential points are that all injections in nU7 are accounted for as composites of 
permutations and the specified degeneracy operators and that each of these de- 
generacy operators raises filtration by exactly one. 
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Lemma 7.6. Let XE [f7li7, ti], so that X satisfies the cofibration conditions 

required of a ITlIT-space. Then the following three diagrams are pushouts in which 
the vertical arrows are cofibrations. 

I_L 
@f =m. .M.R, =r 3(M,R,S)x,,,,DX(M,R)~F,-,J,X(n;S) 

n 

,,,=,u,, =,3(~~R,S)XI(,rr.R,X(*,R) - F,J,,,X(n; S) 
. . 

where, for y E f(M, R, S), 

where v is the restriction of the corresponding map of (i). 

K,X(n; S) ---L--b F,- ,JX(n; S) 

n 
I 

J,X(n; S) - F,,,JX(n; S) 

where, for y E f(A4, R, S) and i in the j-th block of mj numbers in { 1, . . . . m}, 

/4 [ y, Ti, EX] = [ YTi, E, X] if E = ri = 0 or E = ri = 1 
and 

p[ y, r;,,-,x] = [ ~r;,o, CjX] if E = 0 and ri = 1. 

Proof. The very last definition makes sense because yri,o is indexed on (@; x) with 
xj = 0; we have used both relations of Proposition 7.2 here, and we interpret cj as the 
identity when Mj = 1 and the jth subsequence of I& is empty. We must first check 
that v and p are well defined; the need for such a verification should have been 
pointed out in the simpler analog [22,5.5]. Let nq : r -, r - 1, 1 I q I r, be the projec- 
tionwhichsendsqtoO,itoiifi<q,anditoi-1ifi>q.Forri>1,let 

niq=(l; l’-‘x nqx l”-‘):(m;R)*(m;R;). 

For any ri, let 

@j = (n;; 1m-’ 
^ 

):(m;R)+(nt-l;Ri). 
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These morphisms and the [; and the degeneracy operators oicl, ij, and r;,, satisfy 
commutation relations somewhat similar to those satisfied by the faces and de- 
generacies of simplicial objects. In particular, Xi,qo;*q = 1, ijAj= 1, and Piri,,= 1. To 
see that v in (i) is well defined, suppose for example that ch,px= (3,,qY. If h + 6 the 

nh,p and oh,p commute with the ?rig and ~~~ and we have 

X=nh poh px=~h,p~i,qY=~i,q~h,pY * , 

and thus 

[y~h,p,xl = [Ych,pt ~i,q~h,pYI = [yah,pai.q* rh,pYl 

= [ ybi,qch,p, nh.pYl= [ Yoi,qs gh,pnh,pYl = [ Vi.q* YI- 

The verification when h =i proceeds similarly, as do the verifications when 
ljx=Lky or when ljx=oi,,Y. TO see that v in (ii) is well defined, suppose oi,gX= 

r,,Ey. Then 

X= ?Ti,qOi,qX= ni,qTh,EY = 

t 

Th.c71i,qY if i < h, 

?h,Eni-l,qy if i>h. 

The case h = i cannot occur, and these equalities show that [ yai,q, x] E F,- ,K,,X(n; S). 
A similar verification applies when AjX= rh,Ey unless h is in the jth block of mj 
numbers in { 1, . . . . m), when 

([j on the right being the identity if mj = 1). To see that p in (iii) is well defined, we 
must check (for example) that if 6 = fh and & = ri, then 

[8;Th,dXl=[% ri,cYl in KrnX(n; s) 

implies 

[bTh.a,XI=[Yqi.E9YI inFm-IJX@;S). 

By inspection of the equivalence relation used to define J,,,X(n; S), we may assume 
that 0 = y and ?h,#” ri,Ey. If h = i, we must have 6 = E (so as to land in the same 
X(m; R)), and then application of Qi shows that x= y. In the remaining cases, easy 
calculations give 

x _ 

-I 

ri-l.e@hY if h < i, 

if h > i 
and y = TO@hY if h <i, 

r+?,,_]y Th-1,6@h-IY if h >i, 

and then [~r,,~,x] = [ yri,,,y] just as in our first verification. Examination of the 
injections in n!n and their factorizations in terms of permutations and degeneracy 
operators demonstrates that our diagrams are pushouts. The left vertical arrows in 
(i) and (ii) are verified to be cofibrations by use of our assumptions on Xand a result 
of Boardman and Vogt [2, App. 2.71. By the inclusion of the diagram of (i) in that of 
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(ii) and inductive use of a result of Lewis [l 1,2.5], the left vertical arrow of (iii) is 
also a cofibration. 

The proof of Theorem 6.2 is now fairly straightforward. One first verifies by 
tedious inductive analyses of degeneracy spaces that if each f(n; S) : X(n; S) -, 

X’(n; S) is an equivalence, then so are the restrictions 

BX(M; R) + BX’(M; R), CX(m; R) -, CX’(m; R), 

DX(M, R)+DX’(M, R) 

of each f(m; R). One then uses Lemma 7.4 and covering space arguments to show 
that thef(m; R) induce equivalences on the spaces in the left columns of diagrams (i) 
and (ii) because they induce equivalences on the corresponding spaces before 
passage to orbits. One then proceeds inductively, using that, in the presence of co- 
fibrations, pushouts of (weak) equivalences are (weak) equivalences (e.g. by 

[2, APP. 4.81). 

8. The construction and identification of Y-spectra 

This section is devoted to the proofs of results claimed in Section 4 and to some 
additional results on the evaluation of the Y-spectra associated to certain generic 
types of input data. We must first recall the notions of Y-prespectra and :%-spectra. 

Consider finite dimensional sub inner product spaces Vof R”. Let SVdenote the 
one-point compactification of V, with S(0) = So. For a based space Z, let 

Z”Z=Zr\SV and f2’Z=F(SV,Z), 

where F(Z’, Z) is the function space of based maps Z’-+Z. 
Recall from [21,§ 51 that a prespectrum D consists of based spaces D V for V c R” 

and based maps CT :EwDV-+D(V+ W) for Vorthogonal to Wsuch that the adjoints 
d : DV-+ Q WD( V+ W) are inclusions and certain obvious unity (for W= (0)) and 
associativity conditions hold. D is said to be a spectrum if each d is a homeomor- 
phism, and a prespectrum D determines an associated spectrum LD via 

(LD)(V) = u Q’+“D(V+ W 
VI w 

The following is a slightly schematic version of the definition of a 5prespectrum 
given by Quinn, Ray, and myself [14, III.1 .l]. Write {SV} for the sphere prespec- 
trum and S for the sphere spectrum iYYS”=L(SV}. 

Definition 8.1. Let 3’ be an operad and assume given a morphism of operads 
E : Y-r %; regard elements of 3u) as linear isometries (R”)i+ R” via E. A Y-pre- 
spectrum is a prespectrum D together with a morphism e : {SV} + D of prespectra 
and maps 
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for j L 0, gE 5(j), and k$C R” such that the following properties hold; by defini- 
tion, <e(l) is the zeroth map e : S”+Do. 

(a) If gE :5(k) and h,~ :‘i(jr) for 1 srlk, then 

<ji+...+jk(y(ig;h 19 -*** hk)) = <k(g)O(S/l(hi)A .**ASjk(hk))* 

(b) <i(l) is the identity map, where 1 E cl;(l) is the unit of :K 
(c) If ge :9(j) and rEZJ.9 then <j(gr)=<j(g)or. 
(d) <j is continuous in g in an appropriate sense. 
(e) If g E 5(j), XiE OK, and WiE W;, where V, I Wi for 15 is j, then 

rj(g)(o(xt A”‘,) A***A o(xjA Wj)) 

=O(~j(g)(X,A...AXj)Ag(Wlo...oWj)). 

D is a y-spectrum if it is a spectrum, and we again write e for the induced map 
S+D. A morphism f : D-D’ of %-spectra is a morphism of prespectra such that 
fae=e’and 

$‘5j(g)=r~(g)“CfA...AS) for gE Tg(j). 

In particular, {SV} is a :F-prespectrum and e : {SY} -*D is a map of 5prespectra 
for any !Gprespectrum D, and similarly for :&spectra. 

Conditions (a)-(c) are just obvious analogs of the associativity, unity, and equi- 
variance conditions required of an action of an operad on a space, and (e) is the 
obvious commutation with structural maps condition. These conditions are spelled 
out diagrammatically in [ 14, p. 671. Condition (d) is spelled out in [3]; the condition 
in [14, p. 671 is too weak for the applications in [3] although adequate for the 
applications in [ 141. Since the precise change is technical and could not be motivated 
here, we prefer not to go into detail. 

We recall the following observation from [14, p. 71). 

Lemma 8.2. For 9-prespectra D, LD is functorially a Wpectrum. 

As in Section 4, we assume given (U’, ??3 and we set 

(V, S)=(le’X&, I’XY). 

We wish to prove that spectrum EY associated to (‘8, 8)-space Y is a y-spec- 
trum, and we must first recall the construction of EY (which only depends on Y as a 
g-space). Let XV be the Steiner operad [26; 21 061 associated to the inner product 
space V and let V, = V’ x 2”. By [21,6.9], we have a morphism of monads 
cry: KV+s2vCr Its adjoint ~v:~vKv+Zv is an action of Kv on .Z’! By pullback 
along the projection x : CpKv, Cv acts on Z? By Proposition 5.2(ii) and Lemma 
5.9, it follows that et, acts on Z”yL,. We define 

(DY)(V) = B(Z’L’, t,, Y). 
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We have inclusions of operads cr : .Xv -+J’“+ w when VI I+‘, and these induce 

u : @Yv+ Vv+ w. Since suspension commutes with geometric realization [8, 12.11, we 
obtain maps 

This specifies a prespectrum DY, and EY = LDY. See [21, $61 for an alternative 
viewpoint and more details. 

Remarks 8.3. If Y = R’Z for a ‘F-space 2, then Corollary 5.4 gives 

(DY)(V) = B(,rYL’, Y) z B(Zv, cv, Z) = (DZ)(Y). 

If Y = X, for a nl V-space X, then Corollary 5.4 gives 

@Y)(V) = B(z”L: e,, Y) I B(J?‘L, cv, X) = (DX)(V), 

where ZvL is a C-functor by Propositions 5.2 and 6.6. Thus the constructions DY 
and EY for @-spaces Y specialize to the analogous constructions DZ and EZ for 
%‘-spaces Z and DX and EX for l7!‘2-spaces X. These observations on bar construc- 
tions apply equally well with Z v replaced by any other Cv-functor F; here Vmay be 
R” itself, when vv= F’. 

Now let Y be a (@ s)-space such that YO= (0). We prove that DY is a %prespec- 
trum. By passage to spectra and use of the previous remarks, this will prove 
Theorem 4.4. In fact, the proof is virtually the same as that given for (% :+)-spaces 
in [14, p. 188-1911. Via the basepoints 0 and 1 in Y, and the natural inclusion of Yt in 
DoY, we have a map S”-*DoY. This determines e: {SV}-+DY. Since Ye=(O), all 
@Y= (0). Thus all L’f?Y = e:Y are <q&spaces by Lemma 4.7. As in the cited 
earlier proof, these actions pull back to finite dimensional inner product spaces and 
combine with the maps g on suspension coordinates to induce maps 

where W=g( Vi @ -.a @ 5). These maps together specify a map of simplicial spaces. 
On passage to realization and use of the commutation of realizations with products, 
one obtains the required maps (j(g). The remaining verifications are entirely 
straightforward and no different from the case Y= R’Z. 

The following definition provides the functors required for the proof of 
Theorems 4.6 and 4.8. 
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Definition 8.4. For a g-space Y, define 

U,Y = B(C, C, Y) and VoY = B(CL’, C, Y). 

For a v-space Z, define 

U,Z=B(C,C,Z)s V@R’Z. 

Here U,Y is a C-space and Vo Y and U,Z are C-spaces. 

Precisely as in the argument following Definition 6.5, Corollaries 5.4 and 5.5 
couple with standard facts about realization to give equivalences E and 6 of C-spaces 
in the diagram 

E 
Y-U 

6 

0 Y-R’V Y- 0 R’y R’E,,Y. (*I 

We have a composite map (Y, II : C- Q of monads in 3; where QZ = colim n wZwZ. 
The map y : VBY-EoY is the composite 

&CL: c, Y) 3 B(QL: C?, Y) ‘” - colim n wB(Zwf.‘, Cw, Y). 

Here y” is obtained by passage to colimits from the natural comparison Is2r”XI + 
aw/X/ for a simplicial space A’; y” is an equivalence by 112.12.31 and a C-map by 
[12, 12.41. When %’ is spacewise contractible, B(o,n, 1,l) is a group completion by 
[13,2.3] and [14, VI.2.7(iv)J and is a C-map since it is the realization of a simplicial 
C-map. This proves Theorem 4.6. 

Now assume again that Y is a (% :+)-space with Y,= (0). To prove Theorem 4.8, 
we change ground categories from f and n[f] to G,-J.&] and the category 
G[fl, .X], of G-spaces with 0th space (0). While GY will not satisfy the homotopy 
type condition required of n-spaces when Y does, this is of no concern since the 
monads G,-, and d are only used to keep track of underlying multiplicative struc- 
tures. By Proposition 6.9, we have L’d z Gof.‘. Therefore, by application of 
Propositions 5.2 and 5.3 to Go and G, L’ and R’ restrict to an adjoint pair of 
functors relating Gc(XJ and G[U, .yJ,. We take these categories as I and ti, respec- 
tively, in the discussion at the start of Section 5. By Proposition 6.11 and Corollary 
6.13, C restricts to a monad in y’ and C restricts to a monad in ~1. By Proposition 
6.14, C = L’CR’ as monads in r and CR’ z R’C as functors f -* yl. Now Corollaries 
5.4 and 5.5 apply once more to give that E and 6 in (*) are G-maps as well as C-maps 
and that the natural inverse r of E is a G-map. Since a-71 is a morphism of monads 
in Go[.&], by [14, VII.2.41, B(a,n, 1, 1) above is a Go-map, and y” is a Go-map by 
an easy explicit computation (these arguments being no different from the case of 
(‘c, ://)-spaces). This proves Theorem 4.8. 

There are several important generic types of (<, :g)-spaces for which the associated 
:?-spectrum can readily be identified. We first identify ECY for a n-space Y. CY is 
the colimit over V c R” of the C,Y, and we construct a slight modification D’CY of 
the associated prespectrum DCY. Thus let 

(D’CY)(V) = B(,PL’, cv, CVY) c B(PL’, e,, er, = (MY)(V) 
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and specify structural maps CY as before. By a glance at the relevant colimits, we see 
that 

LD’cY=LDcY=i?CY. 

By general nonsense [12,9.9], there are natural deformation retractions 

and these specify a homotopy equivalence c: D’eY- {CyY,} of prespectra. If Y is 
also a G-space with Yc = {0}, then Y, is a Go-space and CY is a (3 Qspace, hence 
D’eY and {Z’Y,} are Sprespectra (the first by an argument just like the one for 
DY above), and [ is easily checked to be a morphism of l-spectra. On passage to 
spectra via L, this proves the following result. 

Proposition 8.4. For U-spaces Y, there is a natural equivalence of spectra 

[:EC?Y-Z”Y,. 

If Y is a e-space with Y, = {0}, then c is a map of 3spectra. 

In fact, c is naturally a deformation retraction with inverse inclusion the adjoint 
Z” Y, d&Y of the evident composite 

rl - I 

Yl - CIY-E CY. 0 

Of course, IV is a map of Go-spaces and its adjoint is a map of %-spectra when Y is a 
G-space with Y0 = (0). 

We next recall from [14] the identification of EFO, where F0 is the zeroth space of 
a spectrum F, here F0 is a .X--space and thus a %-space by pullback. The evaluation 
maps CvFO z Z”Q”FIf-+ FV induce maps 

o : B(.??“, Cv, FO) + FV 

which specify a map of prespectra (see [14, VII.3.21). If F is a Sspectrum, then w is 
a map of Sprespectra by [14,VII.4.3]. On passage to spectra, the composite 

I WO 
F-EF-F 0 0 0 

is the identity. Since F. is grouplike, I is an equivalence if %’ is spacewise con- 
tractible. This implies the following result. 

Proposition 8.5. For spectra F, there is a natural map of spectra 

w : EFo+ F. 

If T is spacewise contractible, then w. is an equivalence and thus w is an equiva- 
lence ifF is connective. If F is a Sspectrum, then w is a map of :$-spectra. 



52 J.P. May 

This is closely related to the specialization 
Go-spaces) Z. Indeed, QZ is the zeroth space 
commutes: 

of the previous result to spaces (or 
of .X-Z, and the following diagram 

ECZ 
EC&R 

’ EQZ 
c 

\/ 
w 

2”Z 

Armed with this understanding of the relationship between the infinite loop space 
machinery and suspension spectra, we turn to the last unfinished piece of business 
from Section 4, namely the proof of the last statement of Proposition 4.12. 

Proposition 8.6. For commutative topological monoids ;ui, there is a natural 
equivalence of Y-spectra between E(&ld,) and .Z:“(Bd,‘+). 

Proof. Abbreviate d= &J&t. The problem here is that there is no Ye-map Bdc- 

E,& in sight. By Remarks 3.4, we do have a diagram 

RBd,+ A B..d,+ - B(.rj 1 yjf7) 

of X_lI7-spaces and thus, by pullback, of Ylirl-spaces. We apply the functor V of 
Theorem 4.3 to convert this to a diagram of (I7, Y)-spaces (which works since B and 
Y are Z-free). Similarly, regard the YJ.%pace B.2 as an 5%=-spate by pullback 
and convert it to a (.J$,, Y)-space via V. Of course, VB.2 is a (n, %)-space by restric- 
tion. Since the construction V is functorial on operad pairs, we now have a diagram 

R’B.-J,+ A -+ UR’B.$ 3 VRBdlf : VBd, 

of (fiY’)-spaces, where we have exploited the second statement of Theorem 4.3. 
Without changing notation, we apply Lemma C.l to arrange that all zeroth spaces 
are (0). By Lemma 4.7, we then obtain &-spaces by passage to first spaces. By 
Theorem 4.8, we have an &-map (VB.C?)~ -EoVB.d. Omitting intermediate maps, 
this yields a diagram 

Bd, A (VB$), - E,,VB.? 

of I/d-maps. Applying F“ and using its freeness, there results a diagram 

Z”B.:/,+ A .P(VB.$), - E VB.?T 
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of r-spectra. It suffices to prove that the second map here is an equivalence, and for 
this we are free to ignore the multiplicative structure. As a spectrum, 

by Theorem 4.3 and Remarks 3.2. Write .d for .-f? henceforward, regarding it just 
as an additive permutative category. Under these equivalences and the equivalence 
(VB.$), = B.:i,+ , the map in question becomes the map P’B.-/,,C +EB:i adjoint to 
the composite of the map B.r/,+ -, B.d induced by the inclusion of .:/,:/I’ in .:I and the 
natural group completion B.Y -EoB.:?. Here EBr; is constructed from the ?-space 
B.? (of [21, $41). On the other hand, as explained in (13, $4 and 14,VI $41, there is a 
certain E, operad 9 which acts naturally on B.,/ for a permutative category .-/. By 
the uniqueness theorem for the passage from permutative categories to spectra [17], 
there is an equivalence EB.? = EB.d which is compatible with the group completions 
from B.d to the respective zeroth spaces. However, as in [14, VII.5.81, we have 

as g-spaces. Taking V’= 3 in the general (additive) theory, the projection v-+ 9 
induces an equivalence CY-+bY of g-spaces for any n-space Y (since Li is an E, 
operad). Therefore 

EBd = ED(Bd*+) = EC(B,&) = C”B.g,+ 

by Proposition 8.4, and the conclusion follows. 

There is one further generic identification result in [ 141, and it generalizes directly 
to the present context. 

Remarks 8.7. In [14,VII 951, it is proven that if X is a (K 8)-space with noX the 
nonnegative integers Z + and if M is a nontrivial multiplicative submonoid of Z +, 
then, under a homological stability hypothesis, there is a natural equivalence of 
‘multiplicative’ infinite loop spaces 

(SFEX)[M-‘1 = (E,,X),[M-‘I= E,,(XM),. 

Here X, denotes the union of those components of X in M; this is a S-space, and 
Eo(XM) is the zeroth space of the associated spectrum. The subscripts 1 refer to 
components of 1, and the claim is that the localization away from M of the l-com- 
ponent of the zeroth space of the spectrum EX obtained from the additive r-space 
X is equivalent via the zeroth map of a map of ‘multiplicative’ spectra to Eo(XM),. 
The result remains true, with precisely the same proof, with X replaced by a (e CC?)- 
space Y with Ye= (0) and noYr = Z+ and with X, replaced by (YJM. The case 
Y = VBai for appropriate bipermutative categories d is of particular interest. 
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Appendix A. Corrigenda to the theory of E, ring spaces 

I shall explain just where the error occurs in the passage from bipermutative cate- 
gories to E, ring spaces proposed in [14] and will point out how the results above 
provide substitutes for details based on that passage. I will also take the opportunity 
to give other corrigenda and addenda to [ 141. Errata and addenda to [12] and [13] 
are given in [5, p.485-4901, and a minor error in [5] is corrected in [20, p. 6351. 
Those homological calculations of [5] which start from bipermutative categories will 
be justified in [6]. 

Scholium A.l. Since the classifying space of a permutative category is a Q-space 
for a certain categorical operad L? and there are evident maps 

1: 3(k) x P(j,) x -*a x Wk) + Wl ---j&h 

it seems intuitively obvious that (9, 9) is an operad pair and that the two actions of 
9 on the classfying space of a bipermutative category give it a structure of (9, p)- 
space. It is these and related ‘obvious’ assertions in [14] that are false. They im- 
plicitly demand both the left and right distributive laws to hold strictly. On the cate- 
gory level, the assertions hold up to natural isomorphism; on the space level, they 
hold up to homotopy. This is inadequate for multiplicative infinite loop space 
theory. 

The mistake shows up most clearly in [14,VI.2.3], where it is claimed that the 
operad ,/( with each _$ =Zj acts on itself. In fact, the equivariance formulas 
required of action maps L’yield an’incompatible overdetermination. An J-space is 
a topological monoid, and an (M, .&)-space would have to be a topological semi-ring 
with noncommutative addition. If there were such a theory, there would be such 
objects (namely free ones) with no commutation relations and satisfying cancella- 
tion laws. But this is absurd. Distributivity would give 

(x+y)(z+w)=(x+y)z+(x+y)w=xz+yz+xw+yw; 

(x+y)(z+ w) =x(z+ w)+y(z+ w) =xz+xw+yz+yw. 

Cancellation and the case z = w = 1 would give y + x =x +y. 
Thus all references to the operad pairs (.R, _/o and (9, 9) in [ 141 are nonsense. 

However, as illustrated by our proof of Proposition 8.6, use of 9 alone is entirely 
correct and often convenient. 

As a matter of speculation, there may well be an alternative generalization of the 
theory of [14] which does allow use of (9, 2). It may be that the maps A specify a 
‘lax’ action of L? on E and that (9, Q) acts on B.Y in a ‘lax’ sense. The appropriate 
lax weakening of the distributivity data of Proposition 5.6 has been developed and 
exploited by Kelly [9]. With such a definitional framework, one might never have to 
use Cartesian products up to homotopy, but I have not pursued the idea. 

We list the resultant changes, and other corrections and addenda, to [14]. I would 
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like to thank Bruner, Fiedorowicz, Lewis, McClure, E. Miller, Steinberger, and 
Weibel for spotting errors. The essential points are that the theory of spectra 
outlined in Chapter II is made rigorous and given an equivariant generalization in 
(31, that the present theory fully compensates for the errors in Chapter VI, that the 
previous section streamlines as well as generalizes the theory of Chapter VII, and 
that Chapter IX is supplanted by [21]. The chapters devoted to applications, namely 
I, III, IV, V, and VIII, require no significant changes. In retrospect, the time was 
ripe for the applications when [ 141 was written, but the theory was premature: if the 
mistake discussed above had been noticed then, there would have been little chance 
for a satisfactory repair. 

Corrigenda A.2. (Page references are to [14].) 
(1) p. 11,13,27, 73: The closed image condition on the relevant inclusions is 

unnecessary in the definitions of ;r-functors, J*-functors, prespectra, and &pre- 
functors. 

(2) p, 27: In the interest of simplicity, the use of isometries should be eliminated 
from the definition of prespectra; by 11.1.10 (p. 32), there is no significant loss of 
information. 

(3) p. 29-31: The notations 2?, Q-, and Qm are awkward. In this and other more 
recent papers, I use the notations {Z”X}, L, and C” for these notions 
(respectively), reserving Q- for the zeroth space functor from spectra to spaces. 

(4) p. 32-35: This approach to the stable category requires use of prespectra 
defined without an inclusion condition. Details are given by Lewis [lo], and he and I 
have generalized this material to a development of stable categories of G-spectra for 
compact Lie groups G in [3]. 

(5) p. 39: The promised limr = 0 discussion is given by McClure [23,3]. 
(6) p. 41-42: Details, minor corrections, and careful consideration of the lim’ 

terms implicit in this comparison of Whitehead prespectra to spectra are also given 
by McClure [23,3]. 

(7) p. 67-68: The continuity condition IV.l.l(d) will be strengthened in [3]; in 
line with (2), condition IV.l.l(f) should be deleted. 

(8) p. 89: The reference to Brumfiel should be [24]. 
(9) p. 99.: The last part of Lemma 2.4 should be interpreted as saying that the 

equivalence (A, q) gives &SF; ET) an infinite loop structure. 
(10) p. 136: Friedlander [7] has proven the infinite loop complex Adams conjec- 

ture. Together with the uniqueness theorem of [18], this completes the odd primary 
infinite loop analysis of classifying spaces studied in V $7. 

(11) p. 144: Misprints in VI.1.6(a) and (a’) are corrected in Definition 1.8 here. 
(12) p. 148-150: Lemmas 2.3 and 2.6 and Remarks 2.7(i) are incorrect: J does 

not act on J and 9 does not act on 9; however, Remarks 2.7(ii)-(iv) remain correct 
and useful. 

(13) p. 158-160: The diagram of Lemma 4.3 commutes only up to natural iso- 
morphism and Proposition 4.4 fails; Remarks 4.5 are correct, but Remarks 3.3 here 



provide a better way of looking at the roles of .+, and Lru’,. 
(14) p. 161,162,167: The references to (p,p) must be deleted; Remarks 3.4 and 

3.5 here provide generalized substitutes, and Propositions 4.12 and 8.6 show that 
these substitutes have the desired topological implications. 

(15) p. 169-180: The Steiner operads [26] greatly simplify this theory. 
(16) p. 181-183: Elimination of isometries as in (2) eliminates the need for restric- 

tions on X here. 
(17) p. 187: As pointed out in [22, A.31, Q is really the shift desuspension in this 

proof; this makes no difference to the result. 
(18) p. 193,199: Proposition 4.12 here provides a generalized substitute for the 

first of these usages of (g,g) and combines with Remarks 8.7 to substitute for the 
second. 

(19) p. 204: The present theory substitutes for this mention of (9,4). 
(20) p. 205: While the assertion that the plus construction associated to a perfect 

commutator subgroup of rr, always yields a simple space is obviously nonsense, the 
simplicity is immediately apparent in the relevant applications. 

(21) p. 208: The diagram is not commutative but is homotopy commutative, as 
will be shown in [6]; this suffices for the applications. 

(22) p. 236-237: L must be eliminated from this discussion and thus DS” must be 
interpreted as B& In view of Proposition 4.12 and Remarks 8.7, the infinite loop 
diagrams on the cited pages can be reconstructed from the present theory with only 
a few changes of notation. 

(23) p. 244-256: This theory of pairings contains an error (in 1X.1.4) and is 
entirely superceded by the much sharper and more general treatment of [21]. 

Appendix B. Corrigenda to the theory of A, ring spaces 

In [19], I studied A, ring spaces. These are (?$ Y)-spaces X, where %’ is a space- 
wise contractible (or &) operad and Y is a spacewise contractible non-Zoperad (i.e. 
operad without permutations). These notions are specified by Definition 1.8, with 
condition (c) deleted, and Definition 2.5. The present theory generalizes [ 19, Q l-31. 
However, lroX was assumed to be a ring in the substantive parts of [19] and, under 
this hypothesis, there is no loss of generality in restricting attention to actual (U: Y)- 
spaces. 

I used (9, 9) in [19] in an attempt to arrange the hypothesis ‘Z( 1) = { 1) (and to get 
around problems now obviated by use of the Steiner operad). I also made a related 
combinatorial error, and the details to follow would simplify if one actually could 
arrange V(1) = { 1). The error occurs in the construction of non-% operads 2” acting 
on the space M,X of n x n matrices with entries in a (Ek: Y)-space X. 

Scholium B.l. I described the combinatorial details as ‘perfectly straightforward’ 
on page 257 of [19]. It serves me right that I got them wrong on page 258. The error 
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begins on line 9; there there are nk+’ rather than n”-‘e,‘s; the misprint is not im- 
portant, but the fact that there are nm + ’ and not n”‘- 1 indices r such that sr = 1 is. In 
fact, with the line of argument there, one would have to define a different 

ttj,, **-. jk) for each matrix position (r, s). Then b in (8) would depend on (r, s) and, 
to allow for this, c must also depend on (T,s). 

Steinberger found this mistake and also found a quite simple solution, which he 
sketched in [25]. We give some details. 

Definitions B.2. Let (y 1) be an operad pair, with !q non-Z. Fix n L 1. Define 

&(j) = M,Y((ni-I) x U(j) for j > 0. 

Define &(O) = SC’(l)” x Y(O), where Y( 1)” is thought of as the space of matrices with 
diagonal entries in Y(l) and with all remaining entries the point + E Z’(0). Give &(O) 
the basepoint + = (l”, +), where 1 E v(l) is the unit. Let 1 = (J,,, 1) I&, where 
J, E M,,V( 1) is the matrix all of whose entries are 1. For 1% r 5 n, 1 IS I n, and j L 1, 
let T(r,s,j) be the set of sequences I/ = (u,,, . . . . Uj) such that ~0 = r, 1 I U; in, and 
Uj = s. Let T(r, s, 0) be empty if r # s and contain just the sequence (r) if r = S. Define 
maps 

y : Yn(k) x &(j,) x --. x&(jk)-+X(j), j=j,+...+jk, 

Here dEM,f(nj-‘) has (r,s)th entry 

and CEZJ- I is the permutation described as follows. Via an obvious splicing of 
sequences construction, we have a bijection 

c converts the lexicographic ordering on the left to the ordering via the lexicographic 
ordering of T(r, s, k) and, for fixed V, the lexicographic ordering of the product of k 
ordered sets on the right. If k = 0, y is to be interpreted as the identity map of jrl”,(O); 
the interpretation when any of the ji are zero is forced. 

We now redefine the notion of a non-Z operad by letting the 0th space be a based 
space rather than a point; for an A, operad, we require spacewise contractibility. 
Then [19,4. I] takes the following corrected form. 

Theorem B.3. The X;, are non-.X operads and are A, operads if % and B are space- 
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wise contractible. for a (%‘, 3)-space X, define 

wj:Jun(j)X(MnX)j+MnX 

by 
Vj(Gg; XI9 *.-s 

when j = 0, the definition is to be interpreted as 

wo(c, *r Z&s) = 
O,(c(r,r), 1) if r=s, 

0 if rfs. 

Then the wj specify an action of Y,, on M,,X, 

Proof. The formula for wj is just (1) of [19, p. 2561 but with C(T,S) in place of c on 
the right. Except that steps (4)-(9) can now be omitted, with a concomitant simplifi- 
cation of notation, the details are as given in [ 19, p. 257-2601. Dare I say that they 
are perfectly straightforward? 

The following is a direct consequence of the definitions. 

Corollary B.4. The maps y : Y,,(j) x _%‘,,(O)j-X-,(O) specify an action of 31pn on the 
space x,,(O) such that the map v/O : R,,(O) ‘M,, X is an x,-map. If n = 1 and K’( 1) is 
connected, w. takes values in the component of 1 E X. 

To complete our repairs, we also need the following result (stated in passing in 

[19,6.4]). 

Proposition B.S. There are maps T,,,~ : X,,, + ,, +Y,,, XX,, of non-2 operads such that 

the block sum of matrices map @ : M,,, X x M,, X + M,,, + ,, X is an Ju;, r .-map. 

Proof. Define T: _&+,(j)+&,(j) by r(c,g) = (d,g), where d(r,s) = y(c(r,s); tnj); here 
tnj is the degeneracy operator specified in [19, p. 2661. As in the proof on that page 
(more perfectly straightforward combinatorics), these maps specify a morphism 
.F ,, + , +&, of non-z operads related to the standard inclusion v, : M, X -, M,,, *X, 
v,(x) =x@Z,. By symmetry, there is a morphism 7’ : Y,,, 1 +#,, related to the 
inclusion VA, v;(x) = I, Ox. The components of 7,,,, in ;rP, and .%,, are m-fold and 
n-fold iterates of r and 7’, respectively. That @ is an .%F,,, + .-map uses more perfectly 
straightforward combinatorics, along the lines of [19, p. 2671. 

With these results on hand, we can record the changes required to recover the 
conclusions asserted in [ 191. 

Corrigenda B.6. (Page references are to [19].) 
(1) p. 257-260: Theorem 4.1 must be replaced by Theorem B.3 here. 
(2) p. 263-264: Proposition 5.2 is correct, but the proof needs easy changes to 

account for our corrected definition of the N,,. 
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(3) p. 266-269: Theorem 6.1 is correct, but I know of no interesting cases where 
its hypothesis %(I)= (I} holds. 

(4) p. 273-275: With V(l)# {l}, v, is not an ~,+~-map. However, the results 
above give the following diagram of Jp,, I -maps relating the spaces of unit com- 
ponents FM, X and FM,, + , X: 

=I 
FM,X -FM,Xxx,(O) 

1 x wg 0 
-FM,,XxFX- FM,+,X. 

Here nt is an equivalence since Z,(O) is contractible. We need only replace v, by 
@ 0 (1 x we) to retrieve the passage to classifying spaces and telescopes discussed on 
these pages. 

(5) p. 279-281: The space F,,X of monomial matrices is a sub Z,,-space of 
FM,,X, and the following diagram of ,yP,+ I -spaces includes in the diagram of (4): 

n 
F,X -F,,Xx.f,(O) 

1 x lo 0 
-F,,XxFX-F X. n+l 

However, with V(l)# { l}, the homeomorphism a,: F,,X*.Z,,IFX of p. 280 is not 
an &-map. One can use the contractibility of V(1) to show that (Y, is an sh N,,-map 
in the sense of Lada [5] and that the diagram above maps into the diagram 

ZJFX = 
0 

-(Z,IFX)x~,(O)- “” (ZJFX)xFX -Z,. ,lFX 

with the appropriate conditions on higher homotopies to allow delooping of the 
right hand square; see [5, p. 2461. This gives one way of recovering the results of 
[19, $71, but the details are unpleasant. 

Steinberger [25] has proven [19, Conjecture 12.51, which asserts that my defini- 
tion of the algebraic K-theory of spaces agrees with Waldhausen’s [30]. 

Steiner [27] has shown that the algebraic K-theory space KX of a (F, %)-space X is 
actually an infinite loop space (something I was not at all sure would be true) and 
that Steinberger’s equivalence is one of infinite loop spaces. With his approach, one 
can entirely dispense with the operads -)Ipn. 

Igusa [33] has recently shown that, in the interesting cases, M,,X inherits a 
structure of A, ring space from X. He has also made the first concrete calculational 
application of A, ring space theory. 

Appendix C. Whiskerings of j%paces 

Let f= $1@ for an operad pair (V, 9). We first show how to arrange YO= (0) for 
(@, y)-spaces Y and then show how to arrange part of the cofibration condition 
required of p-spaces X in Definition 2.1(5). In Remark C.8, we give an alternative 
way of arranging this condition in the cases of greatest interest. 

Lemma C.l. Let Y be a (@, y)-space and define I’ by letting E= x/Y,, where Y, is 
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embedded in YS via 0 : 0 + s. Then I’ is a (@, 9)-space with PO= {0), and the projec- 
tion Y + P is a natural equivalence of (92, ‘9)~spaces. 

Proof. Since 0 is an initial object of Z7, it is easy to see that P inherits a structure of 
n-space from Y. We must check that R”l’ inherits a structure of j-space. For a 
morphism (g; c) : (m; R) + (n; S) in 3, we must see that the following diagram can be 
completed: 

Consider any morphism (1; x) : (m; P)+ (m; R) such that, for 1 sis m, either pi = rj 
and Xi = 1 or pi = 0. We construct a square 

W; P) 

O;x) ! ‘WJJ) 

w c, I 
Cm; RI---- @; S) 

Thus let qj = sj, Uj = I, and bj = Cj if xi= 1 for all i such that 4(i) = j, where $ z&(g), 
and let qj = 0, Oj = 0, and bj = 0 if xi = 0 for any such i, A moment’s reflection shows 
that these squares imply the existence of the dotted arrows (g; c) and these clearly 
specify P as a functor j + % 

Remarks C.2. One might think that it would be equally simple to replace f-spaces 
X by f-spaces X with X(0; *) = { *} by letting X(n; S) =X(n; S)/X(O; +), where 
X(0, *) is embedded in X(n; S) via (0; 0”) : (0; *) *(n; S). In fact, 2 is not even 
a ITSL%pace, let alone a f-space, since (0; *) is not an initial object of Z7U7. 
If (@; x) : (m; R)*(n; S) is a morphism with @-l(j) empty and xi#O, then 
(@; x)(0; Om) + (0; 0”). Note that Bd(O; *) # { *} for the .+V%paces constructed from 
bipermutative categories in Section 3. 

It would be asking too much to try to arrange the entire cofibration condition of 
Definition 1.2(5) by growing whiskers. If 2 is a commutative topological semi-ring 
and we try to attach whiskers at 0 and at 1 to replace these by nondegenerate base- 
points, then we quickly see that there is no reasonable way to define addition on the 
whisker attached at 1. 

We explain briefly what can be achieved. Regard I= [0, l] as a commutative topo- 
logical semi-ring with 0 and 1 as zero and identity elements by letting 

s + t = max(s, t) and st = min(s, t). 
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Then RI is an 31.5space by Lemma 2.3 and thus a R-space by pullback. For a 
functor X : 2 -+ +V, we have a product functor Ix X: 2 -* JU with 

(Ix X)(n; S) = I’1 x **- x Pn x X(n; S). 

Definition C.3. Define WX(n; S) to be the subspace of (Ix X)(n; S) which consists 
of those points (f,x), 

such that XE Im(1; w), where Oj : qj+Sj is that ordered injection such that u E Im Wj 
if and only if tj.v = 1. Define rr : WX(n; S)+X(n; S) by n(t,x) =x. Observe that 
X(n; S) embeds in WX(n; S) as the subspace of points (f,x) with all tj,” = 1 and that 
X(n; S) is thereby a deformation retract of IVX(n; S). 

Lemma C.4. WX is a subfunctor of I x X : f --* %/. 

Proof. Consider (g; c) : (m; R)-+ (n; S) in f with c(g) = @ and E(C) =x. Let 
(~,x)E WX(m; R). We must check that (g; c)(d;x)~ WX(n; S). We have 

(g; c)(d, X) = (t, (g; C)(X)) where tj, o = max min d, ui, 
X,(u)=0 @(f)=J 

In particular, tj, 0= 0 if o $ Im Xj and tj.0 = 1 if ie Im @ and o E Im Xi. Let vi : pi -+ ri 

and Wj : qj+Sj be those ordered injections such that u E Im vi if and only if d,, = 1 
and v E Im Oj if and only if t,,“= 1. We are given that XE Im(1; v) and must verify 
that (g; c)(x) E Im( 1; w). By easy separate checks of the cases i E Im @ and ie Im @, 
the latter separated into the cases Xj = 0 and xj # 0, we see that there is a morphism cj 
in 3 such that the following square commutes: 

6 
A Pi- 

-b(i) =i 
% 

A vi 

I I 

wi 

A Ti xi Sj 
@(i)=j 

An elaboration, as in [22, B.31, shows that there exists b such that 

(1; o)(g; 6) = (g; c)(l; ~1, 

and this implies the conclusion. 

Clearly IL : WX -, X is a natural transformation of functors f --* 3 and a space- 
wise equivalence. Also, WX(0; *) =X(0; *). Thus if X satisfies (l)-(4) of Definition 
2.1, then so does WX. As to cofibration conditions, we have the following asser- 
tions. 



Lemma C.5. if (1; X) : (n; R) -+ (n; S) is such that each xi : rj +Sj is an injection, then 
(1; x) : WX(n; R) + WX(n; S) is a Z( 1; ,y)-equivarianf cofibfation. 

Proof. Taking (g; c) = (1; x) in the previous proof, we see that each cj is an 
isomorphism since pi = qj by inspection and the diagram gives that cj is an injection. 
From this we see that 

Im(l;~)={(~,x)~fj,~=Oif~bIm~j}CWX(n;S). 

Indeed, if x~Im(1; w), then xEIm(1; x) since (1; w)(l; O=(l; x)(1; v). The con- 
clusion follows from this description as in [22, B.41. 

Remark C.6. Any injection f7U7 is a composite of one of the form (1; x) as in the 
previous lemma and one of the form (@; A), where rj = sj and Aj is the identity for all 
j E Im @ (the J.j : l+Sj being arbitrary when jt$ Im @). Suppose that all such 
(@; A) : X(m; R) -, X(n; S) are Z(@; A)-cofibrations. By a modification of the proof 
that products of cofibrations are cofibrations to account for the extra condition on 
the X-coordinate of elements of WX, one can show that the (@; A) are also E(@; A)- 
cofibrations for WX and thus that WX satisfies the cofibration condition of 
Definition 2.1(5). 

Remark C.7. For a based space Z, let WZ be formed by attaching a whisker to the 
basepoint. For a functor Y from n to based spaces with Y,= Yf, let WY be con- 
structed as in [22, App. B] (but using the sum rather than the product to specify R’Z 
as an &pace) and then let IVY be constructed from WY as in Lemma C.1. Then 
IVY is a n-space with I7’eY= (0). Given second base points 1 E Z and 1 E Y,, we find 
by inspection that R’WZ= WR’Z and R” WY= WR”Y. Thus, by Lemmas C.4 and 
C. 1, if RZ or R” Y extends to a functor f + JR, then so does R WZ or R” WY. (While 

1 E WZ and 1 E IVtY need not be nondegenerate, this condition plays no real role in 
the theory of Section 8.) Thus whiskering of (V’, y)-spaces Z or (@, %)-spaces Y with- 
out cofibration conditions gives them all of the properties needed for the passage to 
y-spectra. 

Remark C.8. There is an alternative procedure for arranging our cofibration con- 
dition that applies when V and B are both spacewise contractible. The replacement 
of f-spaces by SSS-spaces of Theorem 2.9 does not depend on cofibration con- 
ditions. Because SlS is discrete, application of the geometric realization of the 
total singular complex functor replaces functors SSS- P by equivalent ones for 
which injections in nU7 induce inclusions of subcomplexes in CW-complexes (with 
the appropriate equivariance). 

Thus the cofibration condition results in no real loss of generality. 
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Appendix D. Comparison with the theory of Segal and Woolfson 

In (24, $51, Segal hinted at an alternative approach to multiplicative infinite loop 
space theory, and Woolfson supplied some details in [31]. We give a precise com- 
parison of Woolfson’s input to our input and a rough comparison of his output to 
our output. 

Woolfson’s input is based on use of a different wreath product of Y with itself 
than our 3J.K The following recollections will lead to a precise comparison. 

For a permutative category d, let .A also denote the associated lax functor 
i-+Cat with n-.?/” ([29, $4 or 21, $41) and let .:2 : .Y+Cat be the actual functor of 
[17, Const. IO]; we assume familiarity with the cited construction and we write 
71 =i(;,\) in it. The following pair of results was 
ci:egorical definitions are given in [21, 3.1-3.31. 

proven in [21, App.]. The relevant 

Proposition D.l. There are lax natural transformations 6: .z? -*.“J’ and v: .d*-d 

such that Sv = Id : .,Y’ +.d and there is a natural homotopy < : Id + vS of lax natural 
transformations of functors d -J such that each r(n) is a natural isomorphism of 

functors .gn-Jn. 

Corollary D.2. There is a natural transformation ,_j -d of functors i-+ Cat such 
that each ._d,, -2” induces an equivalence on passage to classifying spaces. 

Here d is Street’s first construction on the lax functor -2. 
There is a wreath product construction which associates a category %J2 to a lax 

functor &i’ : Y -, Cat, a functor 9Sb : YlJ 1 + Yb?’ to a lax natural transformation 
b: P -+a’, and a natural transformation YJb- UJb’ to a natural homotopy 
b : b-+ b’. See for example Thomason [29; $31; the last clause is not stated there but 
is easily verified (and was in Thomason’s thesis). Thus the proposition has the 

following consequence. 

Corollary D.3. There are functors I = YJv : SJ& + YJd and Q = SJ6 : YJs? + YJ& 
such that @I = Id and there is a natural isomorphism < : Id ---) re. 

Thus SJ,z’ is equivalent to and a retract of YJ.2. Now take d = Y regarded as a 
permutative category under smash product. Then 316 is the category Woolfson 
denotes rJr (except that he omits the detailed specification of 3). 

Definition D.4. An YJSspace is a functor X : 3JYf- +P such that the restriction of 
X to SJS is an YJSspace. 

Scholium D.5. This differs from Woolfson’s notion of a ‘hyper-T-space’ [29,2. l] in 
two respects. First, he requires X(0; *) = So and requires the functor X to take values 
in the category of based spaces. As the details of Section 2 make clear, these conven- 
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tions are incompatible with the unit axioms for rings. Second, he requires no co- 
fibration conditions. In view of the arguments of the previous appendix, the added 
conditions cause no loss of generality. They have the usual convenience of allowing 
use of the standard, unthickened, product-preserving geometric realization. 

Woolfson sketched a construction associating JlAspaces to certain bipermuta- 
tive categories. I failed to understand what was intended and was convinced that the 
idea was completely wrong when I wrote (20, p. 6321. By way of penance, and 
because the construction is of definite interest, I shall present a detailed treatment. 
This should also give a feel for the relationship between S13 and SM, and we must 
first establish notations describing the former. Its objects are of the form (n; N) 
where nr0 and N=(N,,n,,) is an object of &. Here s runs through the based 
subsets of n, (s, t) runs through the pairs of subsets with stl t = (01, N, is an object of 
9 with No= 1, and {n,,} is a unital, associative, and commutative system of 
isomorphisms II,~:N,AN~*N,~~ (as in [17, Const. lo] with n,,=i&). The mor- 
phisms are pairs (@; p) : (m; M) + (n; N) with @ : m + n in 9 and p : @*Ad *ZV in &, 
where @*: $“-_F,, denotes the functor induced by 0. Composition is specified by 

(w; u)(& P) = (w O @; y O V*lu). 

Construction D.6. Let d be a bipermutative category. We construct a functor 
.$ : Sib + Cat such that g.2 is an .F%pace. 

S&p 1. Construction offhe (n; N)-lh category .:?@I; N). Recall that 3 on .d gives 
a functor A& : .F+ Cat with nth category .:&. The objects of .~i(n; N) are systems 
(B,,Z7,,), where B,=@,(a), n,(o,a’)> is an object of dNS and {n,,} is a ‘unital, 
associative, and distributive system of isomorphisms ITS,, : B,@ B, -+ Bsu;. Here o 
runs through the based subsets of N,, (a, a’) runs through the pairs with an cr’= (01, 
B,(a) is an object of d with B,(O) = 0, and { rtS(o, 0’)) is a unital, associative, and 
commutative system of isomorphisms 

7z,(cr, a’) : B,(a) @ BJa’) -* B,(oU a’). 

We require Bo= 1 Ed =,ai,. Each IT,, is itself a system of isomorphisms 

n,,(o, r) : B,(4OB,(r) -‘&uA~s,,(~~~)h 
where 

I~,,:~A~cN,AN,+N,,,,, 

and we require the following diagrams to commute: 

Bs(d 0 1= B,(d 
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&(@I 0 &(d 0 B,(7) 
1OnJO.T) 

‘B,(e)0B,u,(n,,(~A7)) 

I 
n r,s”,k?. n,*,@Jfir)) 

n,.,k?. a3 1 B rusur (II r,ruAer 7G,I(~A7N) 

I n 
Bru,(~r,,(e~o))OBr(7) 

,“s,(nr,,(Pw. r) II 
*B rusur (n rus,,k?A~)r 7)) 

W~KWW’))OB,(~) = (B,(o)OB,(r))O(B,(a’)OB,(r)) 

n&.7, a’)63 1 I I ~~,,kT7K3~~,,W 7) 

B,(~UQ’)OB,(T) B,uI(~,I(~A~))~B,u~(~,,(Q’A~)) 

ns,,w 0: 7) 

I 1 

n,ul(~~,,(~A7).n,,(rr’A7)) 

&~,07s,rWJ~‘)~7N = &JI(~~,,GJ~~) U ~‘b,r(~‘A7)) 

The morphisms (x3) : (B,) + (B:) in &n; N) are systems of morphisms xs 
in ~3~~ such that the following diagrams commute: 

B,(@CW,(7) 
“& ,(a. 7) 

‘&,&,(~~7)) 

XBXr 

I 

xsui 

B:(@OB;(r) 

q,cu. 7) 
, I 

&~‘,,,(%,,(oA7)) 

Composition is inherited from composition in the .Y?,~,. 

: B,-B; 

Step 2. Construction of functors (@; p),, : J(m; M) -..&I; N). By abuse, write 

$J-‘(~)={O}U~-~(~-{O}) forscn. 

If M= (M,, n,,,) and N= (N,, R~,~,), then 

G&f= (&-I~,), Q-~(,),~-+Y)) and P = (A>, 

ps:MG-~6,*Ns. Write 

~(;‘(a)= {O}UpU;‘(o- (0)) for acN$. 

For (A,,l7,,.> ~.$m; M), define 

(& PMA,, n,,,> = (B,, f-7x,,,>, 
where 

Bs(o) =&-~&U;‘(Q)), Jr,(6 0’) = ~,-~&&-‘(~), Pc;‘(0, 
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and 

Similarly, on morphisms, (Q; ~)&IJ = (x3> where xs= &,-I~~). Functoriality is easily 
checked. Note that, as in Sections 2 and 3, there is no choice of base objects for 
which all (0; p)* are based functors. 

Step 3. Verification of proper behavior on SSSc .A.% We use the notations of 
Definition 2.1 and check conditions (l)-(4) there, leaving the cofibration condition 
(5) to the reader. Clearly .?i(O; *) is the trivial category, and .-i(1; s) = -74 in view of the 
identification of 5, with X. By (17, Const. lo], .$(l;O) is trivial and 6’:~?(l;s)* 
J(l; US is an equivalence. We must show that 8”:.-ji(n; S)- ny=,J(l; sj) is an 
equivalence; here we write S = (s t, ,. . , s,) but think of N= VS E Y. Note that an equi- 
valence of the same sort for general N will follow formally in view of the 
equivalence relating SlS and Xl.9. Define v” : fly=, ._d( 1; Sj) -.G(n; S) as follows. If 
s={O,i,,--. ,&} with O<i,<.-- <i,ln, then N,=s;,A 
of oc N, are of the form al A --- 

.a. AS+ The nonzero elements 
Aa, with 15 a,sSi, and are ordered lexicographi- 

tally. For Bj ~‘3’5; and for SC II and aC N,, write Bj(a) = B,({O, a}) for 15 asSj and 

Starting from rr,(~, a’) = 1 if cr = (0, a) and Q’= (0, a’) with a < a’, the diagrams in 
Step 1 of [17, Const. lo] dictate specification of the n,(a,o’). Starting from 
KJJa,r)= 1 if s={O,i} and t={O,j) with i<j and if o and r are singletons, the 
diagrams in Step 1 here then dictate specification of the Z7,,(a, r). This specifies the 
functor v” on objects, and its specification on morphisms is similar. The composite 
6”~” is nyl, ~‘6’ (because we have used only the Bj(a), ignoring the given Bj(a) for 
other aCsj)- It is not hard to construct a natural isomorphism c”: Id+ v”6”, its 
form being dictated by our specification of objects (as in the definition of r in 
[17, Const. lo]). 

Let us also write d for the lax functor .YjS- Cat with (n; S) ~=yl+ x ... x d*n 
specified (and denoted A) in Section 3 and let us continue to write d for the 
restriction of d to FM. Then an elaboration of the last step of the construction 
gives the following bipermutative analog of Proposition D. 1. 

Proposition D.7. There are lax natural transformations 6: .2~.:/ and v :.d;y/-2 
such that 6v = Id : .d --+.d and there is a natural homotopy < : Id -, vS of lax natural 
transformations of functors 22 -d such that each c(n; S) is a natural isomorphism 
of functors d(n; S) -J(n; S). 

Again, via [21, 3.41, this has the following immediate consequence. 

Corollary D.8. There is a natural transformation 8-.,-i of functors gjy-+Cat 
such that each &; S) -_j(n; S) induces an equivalence upon passage to classifying 
spaces. 
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For what it is worth, we record the bipermutative analog of Corollary D.3. 

Corollary D.9. There are functors I : (YjS)jd 4 (SjX)jd and Q : (sJX)ld -+ 
(SlS)U such that QI = Id and there is a natural isomorphism < : Id + r@. 

Although d is unnecessary to the theory of this paper, I do see possible applica- 
tions of it. While it is rather complicated to make precise, it is a much more 
economical construction than d. As a consequence, however, it is only functorial on 
strict morphisms of bipermutative categories. 

Summarizing, we see that Woolfson’s hyper r-spaces are our S&paces and are 
thus T,-l.Sspaces by neglect of extraneous combinatorial structure. His passage from 
categorical to space level input accepts less general morphisms but is otherwise 
usable interchangeably with ours. 

To explain the relationship between Woolfson’s output and ours, observe that we 
can still construct a category SSY from a (large) symmetric monoidal category Y 
since ju determines a lax functor 3 + Cat with n +Y” (see [29, 3.1.2 and 4.1.21). Via 
an elaboration of [17, Const. IO], we can associate an actual functor 9: Y,-Cat to 
this lax functor and so define SE The relationship between SP and 3-I;;’ is as in 
Corollary D.3. 

Let S, be the category of finite dimensional real inner product spaces and linear 
isometric isomorphisms. (Woolfson uses vector spaces and linear maps, but this 
makes no real difference.) Then Y* is symmetric monoidal under @ and l-point 
compactification gives a morphism S : Y* +T of symmetric monoidal categories. 

Recall from [14, p. 731 that an 9*-prefunctor (K o, e) is a continuous functor 
T: J*-+S together with natural transformations o : A 0 (TX T) + To @ and 
e : S + T such that o is commutative and associative and w and e satisfy some 
obvious compatibility properties. We define 

IAe 
u: TVASW- TVA TW w T( V@ W) 

and require its adjoint to be an inclusion. By restriction to sub inner product spaces 
of R”, T determines an Y-prespectrum. The requisite maps <j(g) for g E S(j) are 
just the composites 

TV,A~~~AT~~ 
Gz 

T(V,@+..@ 4)- Tg( V,@...@ L$). 

(Compare Definition 8.1 and [14, p. 731.) Thus .&prefunctors are natural pre- 
cursors of Sspectra and the two notions have essentially the same level of com- 
plexity. Of course, our theory manufactures Y-spectra from .%Qpaces (although 
these manufactured Sspectra do not arise from .Y*prefunctors). 

Ye-prefunctors determine functors 91.Y* -+ .=/: Indeed, for an object (n; V) E SLY*, 
V=(V,,..., V,), one defines 

T(n; V) = TV, x ..a x TV,,. 
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For a morphism (@;f):(m; U)-(n; v), @:m+n in d and f=(f,,...,fJ with 
fj : @oci,=j CJ;- I$ in 9,. one defines (@; f) : T(m; U)- T(n; V) to be the composite 

Moreover, the maps o above induce maps 

Q : T(n; I’) x S(n; W) --* T(n; I’@ W) (*) 

with appropriate naturality and associativity properties. A similar, but more com- 
plicated, construction associates functors 31j* +3 to J*-prefunctors. In both 
cases, of course, the spaces comprising the functor are given by actual Cartesian 
products of the TV. 

Woolfson’s theory takes ‘hyperspectra’ as output. Modulo details, these are 
functors Slj**-S such that T(n; V) is homotopy equivalent rather than equal to 
n;=, T(l; 5) together with structural maps cr as in (*) and a bit of extra basepoint 
data designed to enable one to see smash products as opposed to just Cartesian 
products. That is, hyperspectra are essentially .&prefunctors up to homotopy. They 
lead to a weakened, up to homotopy, notion of an Y-spectrum. The main idea of 
Woolfson’s work is to construct functorial extensions of YlY-spaces to functors 
SL74 7’( whose restrictions to 939* are hyperspectra. While various choices of 
detail are possible, it is intrinsic to the conception that smash products up to 
homotopy appear in the output since products up to homotopy appear in the input. 
Since our theory converts the same input to actual Y-spectra and since there are 
no known naturally occurring examples of hyperspectra which do not arise from 
Y*-prefunctors, I see no present applications for the more complicated notion and 
have not pursued the details required for a precise comparison of machines. 
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