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One flourishing branch of category theory, namely coherence theory, lies at the 

heart of algebraic K-theory. Coherence theory was initiated in MacLane’s paper 

[13]. There is an analogous coherence theory of higher homotopies, and the 

classifying space construction transports categorical coherence to homotopical 

coherence. When applied to interesting discrete categories, this process leads to the 

products and pairings (and deeper internal structure) of algebraic K-theory. 

In much of the literature on algebraic K-theory, the underlying coherence theory 

is tacitly assumed (as indeed it is throughout mathematics). However, the details of 

coherence theory are crucial for rigor. For one thin g, they explain which diagrams 

can, and which cannot, be made simultaneously to commute. For example, a 

symmetric monoidal category is one with a coherently unital, associative, and com- 

mutative product. It can be replaced by an equivalent permutative category, namely 

one with a strictly unital and associative but coherently commutative product. One 

cannot achieve strict commutativity except in trivial cases. 

Thomason [26] has given an amusing illustration of the sort of mistake that can 

arise from a too cavalier attitude towards this kind of categorical distinction when 

studying pairings of categories, and one of my concerns is to correct a similar 

mistake of my own. 

In [ 171, I developed a coherence theory of higher homotopies for ring spaces up to 

homotopy and for pairings of H-spaces. That theory is entirely correct. I also 

discussed the analogous categorical coherence, proving some results and asserting 

others. That theory too is entirely correct, my unproven assertions having been 

carefully proven by Laplaza [unpublished]. However, my translations from the 

categorical to the homotopical theories in [17], that of course being the part I 

thought to be obvious, are quite wrong. 

The moral is that to treat the transition from categorical coherence to homo- 

topical coherence smoothly and rigorously, one should take advantage of the 

definitional framework established by the category theorists. Given the work of 

MacLane, Kelly, Street, Laplaza, and others [9, 10,241, this transition is really quite 

easy. One can handle the simplest coherence situations satisfactorily without it, as in 

Segal’s original passage from permutative categories to f-spaces [22] or my original 
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passage from permutative categories to y-spaces [ 161, but these procedures are 
inadequate to handle the full generality of morphisms between permutative 
categories and inappropriate for the study of more complicated types of categorical 
input. In particular, neither cited approach works to handle pairings, at least not 
with the very simple topological notion of pairing that I shall introduce here. I 
should have learned this philosophy from MacLane. In fact, I learned it from 
Thomason. 

This analysis of the categorical input is half of the remedy needed to retrieve and 
extend the results of [17]. The other half is a generalization of the homotopical 
coherence theory needed to make it accept the space level categorical output as 
input, and this generalization should be of independent interest. While I talked 
about the generalized Em ring theory at Aspen, that theory will be presented in a 
sequel. Here I shall restrict myself to the simpler theory of pairings. Only the 
pairings on the relevant spectra, and not their deeper infrastructure, are of present 
use in algebraic K-theory, and this separation of material allows at least an attempt 
to make the exposition accessible to algebraists. The two theories have a quite 
different flavor, and there is a real need for a full treatment of pairings since 
nothing in the literature is adequate for spectrum level theoretical work. It is 
essential to study naturality, associativity, etc., up to natural isomorphism (or even 
natural transformation) on the category level and up to homotopy on the spectrum 
level. Such a theory has not been worked out before. I shall illustrate by proving the 
“projection formula” relating K,R to K,S when given a ring homomorphism S-R 

such that R is a finitely generated projective S-module. While that formula was 
known, the corresponding formula in mod q K-theory was not. With our topo- 
logical proof, the latter is no more difficult than the former. I should admit that this 
formula actually could be obtained without much difficulty from alternative 
approaches, but the much deeper fact that the formula comes from a commutative 
diagram of spectra could not. 

A quick review of additive infinite loop space theory will establish notations and 
set the stage for the present theory. 

The idea of homotopical coherence theory on H-spaces is to specify enough 
higher homotopies for the product on an H-space Y to ensure that Y has a 
classifying space, or is an n-fold or infinite loop space. It would be horrendous to 
specify the required homotopies explicitly, so one incorporates them in some 
abstract framework. See Adams [2] for a nice intuitive discussion. There are two 
main ways of doing this, either by use of parameter spaces U(J) for j-fold products 
or by use of sequences {X,,} which look formally and homotopically as if they were 
sequences {Y”} of powers of a based space Y. 

In the former approach, the spaces vu) are so related as to comprise an operad 
(as described in section one below), and an action of v on Y is just a suitably related 
collection of maps ‘gcj) x Yj- Y. See [15, Section 11. 

In the latter approach, due to Segal [22], one starts with the category n with 
objects the finite based sets n = (0, 1, . . . , n} and morphisms @ : m-n such that 
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CJ - ‘(J’) has at most one element for 1 <is n. Thus n consists of injections, 

projections, and permutations. One defines a U-space to be a functor f7- -7, where 

.I is the category of (well-behaved) based spaces, such that the n projections n-l 

induce an equivalence 6 : X,-+X; (and a technical cofibration condition is 

satisfied). One lets 7 be the category of sets n and all based functions. An ?-space 

(or r-space) is a functor .X---r whose restriction to n is a n-space. 

In our axiomatization of infinite loop space theory [20], Thomason and I 
developed a common generalization of these two notions. A category of operators is 

a topological category d with object set {n i n 2 0) such that 8” contains n and is 

augmented over ,7 by a functor which restricts to the inclusion on f7. A ‘(“-space is a 

continuous functor (“-7 whose restriction to fl is a U-space. When @= .F, this is 

Segal’s notion. When X= {Y”} for a space Y, this is essentially an operad action. 

To make the last assertion precise, we associate a category of operators Z” to an 

operad ‘6 in such a way that a ‘K-action on Ydetermines and is determined by a %-- 

action on { Y”}. For that operad I I such that each ._ 1 (j) is a single point, I” is 

precisely .K 

See [20, Sections 1, 41 for details of these definitions; the cited sections are short 

and are independent of the rest of that paper. 

Let us say that an operad ‘6 is spacewise contractible if each r(j) is contractible. 

For such %, there is an essentially unique functor from ‘?-spaces to spectra. It now 

seems perfectly clear that the notion of %*-space is definitively the right one for the 

study of coherence homotopies on (additive) H-spaces. 

This sketch makes it very natural to seek a development of homotopical 

coherence theory for pairings of H-spaces in which the underlying additive 

coherence theory is based on the use of ‘Z”-spaces. While the categorical applications 

are based on the use of F-spaces, our passage from F-spaces to spectra will exploit 

the extra generality, and the extra generality is bound to have other applications. 

We introduce the notion of a pairing of ZIspaces and state our main theorems on 

the passage from space level to spectrum level information in Section 1. We recall 

the notion of a pairing of permutative categories, state our main theorems on the 

passage from category level to space level information, and prove the projection 

formula in Section 2. We review the passage from permutative categories to F- 

spaces in Section 3 and prove the theorems stated in Section 2 in Section 4. 

Our theorems in Section 1 are stated in terms of maps DAE-F of spectra in the 

stable category. If we were willing to settle for pairings of spectra in the crude old- 

fashioned sense of maps DAEj+F. ,+j such that appropriate diagrams commute up 

to homotopy, then we could simply elaborate the proofs I gave in [17, IX Section 21 

via the generalization of the additive theory given in [20, Section 61. However, at 

this late date, no self-respecting homotopy theorist could be satisfied with such an 

imprecise treatment. The extra precision requires the introduction of a notion of 

pairings of .Y*-prespectra, a review of how smash products are constructed in the 

stable category, and a study of the passage from pairings of Y*-prespectra to 

pairings of spectra, all of which is given in Section 5. Since the problem of con- 



302 J. P. ,Lluj 

strutting pairings in the stable category arises very often in stable homotopy theory 
and the general prescription we shall give is adequate for many applications far 
removed from our present concerns, this material should be of independent interest. 

We prove the theorems of Section 1 in Section 6. We shall use the “&lay 
machine”, but I have little doubt that, upon restriction to Y-spaces, the results 
could also be proven by use of the “Segal machine”. Note that nothing in the earlier 
sections is bound to any particular choice of machinery. There is probably also a 
uniqueness theorem for pairings along the lines of the uniqueness theorem in [20], 
but at this writing there are unresolved technical obstructions to a proof. Of course, 
one can simply translate the pairings here along the equivalence of additive 
machines to introduce pairings in the Segal or any other machine. 

Our notion of a pairing (X,X)-X on an Y-space X is simpler than Segal’s notion 
in [22, Section 51 of a multiplication on X. The extra complication is unnecessary 
for the known applications starting from categorical input but is necessary for appli- 
cations in etale homotopy theory. In an appendix, we explain how to generalize our 
theory of pairings to accept the more complicated input data. After writing the body 
of this paper, but before writing the appendix, I learned that Robinson [30] has 
recently used the Segal machine to construct pairings of spectra from (generalized) 
pairings of Y-spaces; he has not considered commutativity and associativity 
diagrams (or naturality on the up to homotopy morphisms our theory accepts). 

Loday [ 121 gave the first systematic study of products in algebraic K-theory. It is 
immediate from the diagram following Corollary 6.5 below and a direct comparison 
of definitions that the appropriate specializations of our pairings agree with his 
pairings. The basic difference is that he obtains space level diagrams which only 
commute up to weak homotopy. There is one lim’ ambiguity obstructing their 
commutativity up to space level homotopy and another lim’ ambiguity obstructing 
their commutativity up to spectrum level homotopy. Our theory circumvents these 
ambiguities. The extra precision is irrelevant if all one cares about are the actual K- 
groups but is essential to the more sophisticated spectrum level analysis (which can 
lead to powerful calculational consequences, as in recent work of Thomason for 
example). 

Waldhausen [29, II Section 91 used pairings of Q-constructions on exact 
categories to obtain pairings in algebraic K-theory, the point being that connectivity 
allows direct use of induced pairings of classifying spaces. This gets around the first, 
but not the second, limi ambiguity mentioned above. It is intuitively clear, although 
I have not checked the details, that his result [29, 9.261 can be used to show that his 
pairings in algebraic K-theory agree with ours. 

By the axiomatization of the spectra of algebraic K-theory given by Fiedorowicz 
[16] (but see also Thomason [26]), the present theory of pairings directly implies that 
the machine-built spectra of algebraic K-theory are equivalent to those obtained ring 
theoretically by Gersten [7] and Wagoner [27]. 

I am much indebted to Steinberger for finding the mistakes in [17] and to 
Thomason for a number of very useful discussions of this material. The mod q 
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projection formula is proven here at Thomason’s request, with a view towards 
applications in his work. Also, at the end of Section 3, I use an argument given to 
me by Thomason to generalize my uniqueness theorem for the passage from 
permutative categories to spectra [ 181 so as to allow its application to lax rather than 
strict morphisms. I am very grateful to Steiner for his paper [23], which vastly 
improves the geometric theory of [17] and thus of section 6 below. The appendix is 
included at Friedlander’s request, with a view towards applications in Ctale 
homotopy theory. 

1. Pairings of f-spaces 

Wedges and smash products of finite based sets induce functors V : lTxl7+17 

and A : I7x n-n, and similarly on the larger category K To be precise, we 
identify mvn with m+ n in blocks and identify mAn with mn via lexicographic 
ordering of pairs. 

A pairing of n-spaces f : (X, Y)+Z is a natural transformation of functors 
f : XAY-Zo A. That is, we require maps f,,,,, : X,&Y,,-Z,, such that the follow- 
ing diagrams commute for morphisms @ : m+p and w : n-*q in 17: 

XmA Y” h Zmn 

@AviI l@AV (*) 

&A Y, fm l Z,, 

The simplest example occurs when X, Y, and Z arise from powers of based spaces 
U, V, and W. Here we are given a pairing of based spaces, that is a map 
f : UA V+ W, and the maps f,,,,, : Uml\ V”+ Wm” can and must be defined to have 
(i,j)th coordinate the given map applied to the ith coordinate in Urn and the jth 
coordinate in V”. Because @ - i(r) and I,U - l(s) have at most one element for 15 r <p 

and 1 sssq, the commutativity of (*) is automatic. 
We regard pairings of D-spaces as underlying space-level scaffolding, and we 

want to elaborate to take account of products and richer internal structure on X, Y, 
and Z. For example, X, Y, and Z could be F-spaces rather than just n-spaces in the 
definition above. If they arose from spaces U, V, and W, then these spaces would be 
Abelian monoids and the diagrams (*) for $ and r// in .%r would be equivalent to 
bilinearity of the original map f : UA V+ W. We have the following simple and 
natural generalization of this notion of a pairing of F-spaces. 

Definition 1.1. Let d, 6, and kbe categories of operators. A pairing A : @x $+ d 
is a functor such that the following diagram commutes: 

nxl7- @x5$-----+ ,FxS 
h 
I I 

h 
I 

n 

IT------ d 9 
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Let X, Y, and Z be a @-space, a g-space, and an g-space, respectively. A pairing 
f : (X, Y)-Z is a natural transformation of functors XA Y-ZQA. That is,fconsists 

of maps fmn : X,,,AY,,+Z~,, such that the following parametrized version of the 
diagram (*) commutes: 

@((m,p)xXmx G((n,q)x Y, (Ax’mn)(‘xrx’)* g(mn,pq)xZmn. 
1 I 
I 

I 
XPX yq 

+i 
ZP, 

Here the vertical arrows are evaluation maps (and we have suppressed the evident 
quotient maps to smash products). A morphism f-f' of such pairings is a triple 
(a,p,y) consisting of morphisms of @-, $-, and i-spaces such that the following 
diagram of functors commutes up to homotopy: 

While morphisms of @-spaces are just natural transformations, with no 
homotopies allowed, we emphasiie that it is not sufficient to require the last 
diagram to commute strictly. The following general definition makes the phrase 
“up to homotopy” precise. 

Definition 1.2. Let Y be a topological category and let d and d’ be natural transfor- 
mations between continuous functors X and Y from 3 to .7. A homotopy h : d = d 

consists of homotopies 

hn : X,/U+ + Y,,, hn : d,=d’r,, 

for objects no 1 such that the following diagrams commute for morphisms 

@ : m+n in 3: 

X,/U+ h, Ym 

OnI II I 4 

x,/d+ -5 Yn 

Here XAI’ =Xx I/*x 1, and use of this reduced cylinder amounts to restriction 
to homotopies through based maps. Thus a homotopy h : d=d’ is a homotopy 
through natural transformations X- Y. 

We next write down unit, associativity, and commutativity specifications. W’hile 
this could be done in the general context above, we restrict attention to ring type 
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pairings for notational simplicity. However, we remark that (left or right) module 
objects over ring objects have obvious definitions for which all of our results 
throughout the paper remain valid (where “objects” are Z’-spaces, permutative 
categories, ye,-prespectra, or spectra). 

Note that I7 and F are permutative categories under A. That is, A is associative 
and unital with unit 1 and is commutative up to the natural isomorphism 
7 : A-+-Aot specified on the object (m, II) as the transposition permutation 

r(m, n) : mn = mAn-+nAm = nm, 

the left and right equalities being lexicographical identifications. As here, we shall 
write t for transposition functors and 7 for transposition isomorphisms throughout 
the paper. 

In particular, for @-spaces X and X’, the transposition homeomorphisms 
X;AX> -X)/\X, specify a natural isomorphism 7 : XA X’-(X’A X) oc of functors 1 
‘FX d-,7. 

Note too that there is an obvious definition of the smash product YAX : d-.7 

of a space Y and a functor X : %‘-.K 

Definition 1.3. A permutative category of operators is a category of operators ‘6” 
which is a permutative category under a pairing A: 6-x @- ‘6” whose unit is 1 and 
whose commutativity isomorphism r : A+ A 0 t is given by the permutations r(m, n) 

in I7c ‘6’. Thus I7- @and @- .9 are morphisms of permutative categories. 
A %^-space X is said to be a ring %‘-space if it has a unit e : S”+Xr (that is, a 

second basepoint 1 E XI) and a pairing f : (X,X)-X such that the following 
diagrams of functors commute up to homotopy: 

soAX A XlAX, XAXI z XAS’ 

and 
XAXAX PI 

) (XQA)AX=(XAX)~(AX 1) 

MI// 

1 I 

(/(A x 1) 

XA(XOA) = (XAX) o(l x A) f(lxh! XoAo(l xA)=XoAo(Ax 1) 

X is said to be commutative if the following diagram of functors commutes up to 
homotopy: 

XAX - XoA 

i ’ I 

X? 

(XAX)t /r XoAot 
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A map a : X-X’ of ring g-spaces is a map of ‘@-spaces such that there is a path 

connecting 1 to a( 1) in Xi and the triple (a, a, a) is a morphism of pairings of 6*- 

spaces. 

Our passage from pairings of g-spaces to pairings of spectra will depend on the 

use of operads. Briefly, an operad ‘C is a sequence of spaces g(j) such that 

Y(O) = { *}, there is a unit 1 E ‘C(l), the symmetric group Cj acts from the right on 

U(j), and there is a suitably associative, unital, and equivariant family of maps 

Y: Y(k) x W(jl) x *** x z djk)-* ‘/(jt + **a +j,). 

See [15, p. 11. The associated category of operators d has morphism spaces 

$m,n)= JJ_ n ,I:(:@-I(j) 
oe 3cm.n) I S/6n 

Its composition is specified on [20, p. 2151. All useful categories of operators seem 

to be of this form. The following is the operad level precursor of the pairing data we 

have assumed on categories of operators. 

Definition 1.4. A pairing A : (‘T, l/)+/i of operads consists of maps 

A : E(j) x P(k)-A((jk) 

such that the following properties hold, where CE ‘6 (j) and do 2 (k). 

(i) If~~E,and v~Zk, then 

C/fAdV = (CAd)(LfAV), 

where ,UAV is regarded as a permutation in E,J~. 

(ii) If cqE ‘6(h4) for 1 sqrj and drE 6(i,) for 1 <rsk, then 

y(Chd; ,z, (c,W)w=+ ~c+‘(d; )!dr)> 

where w is the natural distributivity isomorphism 

V hyhL+(y h,)A(V L) 
(4. r) 

regarded as a permutation (via block and lexicographic identifications of the source 

and target). A permutative operad is one equipped with a unital (with unit 1) and 

associative pairing A : (‘6, ‘6)-t % which is commutative in the sense that 

cAd = (dAc)r(j, k). 

An elementary inspection of definitions gives the following result, which only 

asserts the correctness of the preceding definition. 

Lemma 1.5. A pairing A : (K, P)+ c! determines and is determined by a pairing 
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A : ( ,2, i;) + ct. An operad W is permutative if and only if the associated category of 

operators ‘i is permutative. 

Examples appear in [15, p. 721, [17, p. 2501, and Section 6 below. However, the 

example to concentrate on is ‘8’ = + 1, with d= 3. If %’ is spacewise contractible, 

then a %Ispace X determines a spectrum EX whose zero-th space EGX is a “group 

completion” of XI and there is a unique such functor E; see [20]. With this 

definitional apparatus, our main theorems read as follows. We shall recall what the 

“stable category” is in Section 5. 

Theorem 1.6. Let A : (Z; 9)- 4 be a pairing of spacewise contractible operads. 
Then pairings f : (X, Y) -Z of a %*-space X and ?-space Y to an 6’-space Z 

functorially determine pairings Ef : EXAE Y+ EZ in the stable category. 

Theorem 1.7. Let %’ be a permutative spacewise contractible operad and let X be a 

ring ?-space. Then EX is functorially a ring spectrum. That is, the following 
diagrams commute, where S is the sphere spectrum and e : S-EX is induced by 

e : SO-+XI: 

SAEX * EXAEX z EXAS 

and 

EXAEXAEX a EXAEX 

If X is commutative, then EX is commutative; that is, the following diagram 

commutes: 

Of course, these diagrams must be interpreted in the stable category, and the 

proof will require an understanding of the coherence isomorphisms for the unity, 

associativity, and commutativity of the smash product in that category. We reiterate 

that these results are much stronger than mere assertions about pairings of spectra in 

the classical sense. 

Our proof of Theorem 1.6 will have as a byproduct an analogous result on 
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pairings of machine-built m-fold and n-fold loop spaces to machine-built (m + n)- 
fold loop spaces. Of course, the use of three different operads is essential to any 
such result. 

The module theoretic version of Theorem 1.7 is perhaps more interesting than the 
version stated. In practice, machine-built commutative ring spectra have a great deal 
more internal structure. That will be the subject of the sequel, but the basic idea will 
become apparent in Section 5. 

As a matter for amusement, our proofs of Theorems 1.6 and 1.7 will actually 
work without the spacewise contractibility hypothesis on the operads in question. 

2. Pairings of permutative categories 

Write r’.~/ and //.-/ for the object and morphism spaces of a small topological 
category _‘/; we require the identity function /‘.v -. /(.:i to be a cofibration. Let Cat 
denote the category of small topological categories and continuous functors (and 
suppress the adjectives henceforward). In the applications to algebraic K-theory, 
everything will be discrete. 

A pairing of categories is simply a functor @ : .d x I + ‘4’. If .Y, .3, and L are 
symmetric monoidal categories (under @ and 0), we obtain the notion of a pairing 
by requiring the zero objects to act as strict zeros, a@O=O and 006 =O, and 
requiring a coherent natural bidistributivity isomorphism 

The meaning of coherence here has been made precise by LaPlaza [unpublished, but 
see 9 and lo]. We insist on strict zeros since we want to arrive at smash products on 
the topological level; with a bit of extra verbiage, we could manage just as well with 
nullity of zero coherence isomorphisms. 

To avoid excess parentheses and other more substantial annoyances, it is con- 
venient to restrict attention to permutative categories. Then one way to make 
coherence precise is to require prescribed subsets Yd of Bd and YD of c.3 
which generate Bd and 03 under 0. One requires strict zeros and strict equality 

for all sequences (al, . . . . a,,,) and (bl, . . . , b,) of objects in ‘$d and YB and of 
morphisms between objects of 81 and 99. Here the right-hand sum is taken in 
lexicographic order. One requires these equalities for different orderings of the ai 
and bj to be compatible with the commutativity isomorphisms for d, 9, and Y [see 
17, p. 247 (where various O’s should be 0’s in (**))I. 

The use of permutative rather than symmetric monoidal categories results in no 
loss of generality. As shown in [17, 1X.1.21, passage from symmetric monoidal to 
permutative categories preserves pairings, the proof there showing that the use of 
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generating sets of objects in formulating coherence is not as artificial as it might 

appear at first sight. While we no longer have any pressing mathematical need to 

replace symmetric monoidal by permutative categories, since this step is not 

essential for the passage to ./-spaces given in the next section, strictly as a matter of 

taste I prefer to eliminate all coherence isomorphisms that can be eliminated. 

Thus our objects of study will be permutative categories and their pairings. 

However, as observed by Thomason [25], the notion of morphism used in [17] and 

implicitly in [22] is unnecessarily strict. A morphism of symmetric monoidal 

categories should be a functor F : .v ‘+.d together with coherent natural transfor- 

mations A : O-F(O) and 0 : Fa@ Fb-+F(a + b), the coherence diagrams being those 

of Lewis [9; see also 17, p. 1531. There is no need for 1 and @ to be isomorphisms, 

hence no possibility for them to become the identity on passage to permutative 

categories. Thus a morphism of permutative categories should be the same thing as 

a morphism of underlying symmetric monoidal categories. 

Similarly, we define a morphism of pairings of symmetric monoidal or 

permutative categories to be a triple (F, G, H) of morphisms of symmetric monoidal 

or permutative categories such that the following diagram commutes up to a 

coherent natural transformation Y : FOG-H=‘a: 

FxG I I H 

.d’ x 9 ’ 
s - ‘g’ 

The precise meaning of coherence in this particular situation is probably not in the 

literature, but can be extracted by the methods of [9, lo]. Certainly passage from 

pairings of symmetric monoidal to pairings of permutative categories is functorial. 

We define a ring permutative category to be a permutative category .d with a unit 

object 1 (and resulting unit injection e : *-..Y’) and a pairing @ : .d x d--.i such 

that the following diagrams of categories commute up to coherent natural 

isomorphism: 
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We say that .Y is commutative if the following diagram commutes up to coherent 
natural isomorphism: 

Coherence here has been made precise by LaPlaza [9 and unpublished]; see also 
Kellv [lo]. A morphism F : z-i-.d’ of ring permutative categories is a morphism of , 
permutative categories such that there is a morphism 1 -) F(1) in .Y” and the triple 
(F,F,F) is a morphism of pairings of permutative categories (compare Definition 
1.3). 

Passage from symmetric monoidal to permutative categories by the usual 
procedures [e.g., 16, Section 41 would not reduce any of the natural isomorphisms 
above to identities, as a glance at the proof of [17, 1X.1.21 will make clear. It is for 
this reason that use of homotopies was essential to the definitions in the preceding 
section. If we concentrate on commutative ring theory and resolutely ignore the 
possibility of pairing different categories, the situation changes completely 
(compare [ 17, VI Section 3]), and much sharper results than those to follow emerge. 
These will be studied in the sequel. 

Henceforward, we leave all unspecified details of coherence to the interested 
category theorist, but with the warning that this means that all substantive work in 
the proofs of the following theorems is also being left to the category theorist. 

As will be recalled in Section 4, there is a functor which associates an .Y-space 
B.T~ to a permutative category .-J. Its first space S.2, is equivalent to the classifying 
space B ;/. We shall prove the following results in Section 4. 

Theorem 2.1. Pairings .,z x 3 4 % of permutative categories functorially determine 
pairings B.ri x B .g-, B d of Y-spaces. 

Theorem 2.2. If .d is a ring permutative category, then B.2 is functorially a ring .X- 
space. If .d is commutative, then Bd- is commutative. 

Write E.2 =EB.,j. This passage from permutative categories to spectra was 
axiomatized in [18] (see Remarks 4.1 below). The previous theorems feed directly 
into those of the first section to yield pairings of spectra from pairings of categories. 
We apply this to prove the “projection formula” for higher algebraic K-theory. 

Corollary 2.3. Let f : S-R be a homomorphism of commutative rings (with unit) 
such that R is a finitely generated projective S-module via f. Let 3(R) and .2’(S) be 
the categories of finitely generated projective R and S-modules (made permutative). 

Let f* : d(R)+ 3(S) be the forgetful functor which sends an R-module P to P 
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regarded as an S-module by pullback along f, Let f * : .9(S)- -i(R) be the extension 
of scalars functor which sends an S-module Q to the R-module R 0s Q. By passage 

to spectra and then to homotopy groups, f, and f * induce homomorphisms 

ft : K,R-K,S and f * : K,S-+K,R 

such that f * is a morphism of commutative graded rings and 

f*(xf *cv)) =f*W 

in K, + rY for x E K& and y E K&3. 

Proof. Since .9(R) is a commutative ring permutative category, E.?(R) is a com- 

mutative ring spectrum. By definition, or by a standard argument if one prefers 

another definition, K,R = n,E.?(R). The product on K,R is obtained by composing 

the smash product between maps from sphere spectra to EC?(R) with the product of 

Ed(R), hence K,R is a commutative graded ring. Since f * : .9(S)-.9(R) is a 

morphism of ring permutative categories by virtue of the coherent natural 

isomorphism 

(ROSQ)OR(RO~Q?~RRO~(QOSQ?, 

f * : E.?‘(S)+E.?(R) is a map of ring spectra and f * : K,S-K,R is a ring homo- 

morphism. The coherent natural isomorphism 

of S-modules gives the commutativity of the following diagram up 

natural isomorphism: 

9 (R) x 3 (R) = 2 (R) x .2’ (S) = :2’(S) x .2(S) 

to coherent 

I 

c3 II x 

y(R) 
f. * Y(S) 

This may be viewed as a morphism of pairings of permutative categories, hence 

induces a similar commutative diagram on passage to spectra, and the projection 

formula follows. 

The special case q=O of the projection formula was proven by Quillen [21, 

Section 7, 2.101. The general case is implicit in Loday [12] and is given a different 

proof in Gillet [8, 2.91. 

The advantage of our proof is that one can easily apply standard topological 

constructions to it. For example, Browder [4] has shown the efficacy of introducing 

coefficients into algebraic K-theory. Let M be the Moore spectrum with 0th 

homology group 2, for some prime power q=p” and with no other non-zero 

homology groups. Then 

K,(R; Z,) = z.(EB(R)M4). 
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If p f 2, M has a product. If also p f 3, then M is a ring spectrum and therefore so is 
EAM for any ring spectrum E. Now the projection formula in mod q K-theory is 
immediate: one need only replace Ed(R) and E3(S) by their smash products with 
M in the proof just given. 

3. Street’s first construction 

Our passage from pairings of categories to pairings of F-spaces is based on use of 
Street’s first construction in (241. Since we need facts about this that are most simply 
verified just by looking at it, we review the relevant definitions. While the work here 
is due to Street, understanding of its relevance to infinite loop space theory is due to 
Thomason [25]. 

The category theorist will know that the following three definitions specify the O- 
cells, l-cells, and 2-cells of a 2-category [14, p. 441, but we eschew all avoidable 
categorical terminology @ace Saunders). 

Definition 3.1. Let Y E Cat. A lax functor A : 9 -Cat is a pair of functions which 
assign a category A(n) to each object n of Y and a functor A(@) : A(m)-+A(n) to 
each morphism r$ : m+n of ‘9 together with natural transformations 

e(n) : 41Pid and NV,@) : ~v@PA(wM@) 

for each identity morphism 1 : n-* n and each composable pair of morphisms (ty, C#J) 

such that the following diagrams of functors commute: 

and 

A(wNJ) a@Jv~O’ ’ A(oly)A(@) 

U(W. wa, I I ~(WVM(rn) 

A( A(v)O(w~o’ ’ A(clJ)A(~)A(@) 

In our applications, the e(n) will be identities and the a(~,@) will be isomor- 
phisms. This is not Street’s definition but its opposite, called an op-lax functor by 
Thomason [25]. 

Definition 3.2. Let A,B : Y-Cat be lax functors. A (left) lax natural transfor- 
mation d : A+B is a pair of functions which assign a functor d(n) : A(n)+B(n) to 
each object n of 3 and a natural transformation 

d(Q) : B(@Mm)-+4nM(O,) 
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to each morphism q3 : m-n of ~3 such that the following diagrams of functors 

commute for 1 : n+n and w : ndp: 

and 

d(n) 

~(veW(m) 
d(m) 

+ d@M(W) 

UC 1.0 )dW ) 

I i 

dcP(P)O(W.@) 

N,W(@Mm) = B(y)d(n)A(@) = d@)A(ty)A(@) 

The composite of d : A-tB and e : B-C is specified by (cd)(n) =e(n)d(n) on 
objects and by the composite 

W)(Q) : C(@MmVW) s e(n)B(@)d(m) 3 e(n)d(n)A(@) 

on morphisms. There results a category of lax functors and lax natural transfor- 
mations. 

In our applications, the d(@) will usually be isomorphisms. The name adopted in 
the following definition is non-standard. 

Definition 3.3. Let d,d’ : A+B be lax natural transformations of las functors 
Y-Cat. A natural homotopy 6 : d-d’ consists of natural transformations 

6(n) : d(n)+d’(n) such that the following diagram of functors commutes for 
I$ :.m+n: 

WV(m) Bad(m) B(@)&(m) 

If 6’ : d’-d” is another natural homotopy of lax natural transformations A-B, 
then 6’6 : d+d” is specified by (6’&(n) =&(n)&(n). If e,e’ : B-C are lax natural 
transformations and E : e-e’ is a natural homotopy thereof, then .sS : ed-+e’d’ is 
the natural homotopy with (&6)(n) the common composite, “&(n)a(n)“, in the 
diagram 

e(n)d(n)y 
e(n)dYn)T e,(n)d’(n) 

+e,(n)d(n)/Gr 
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Of course, all this is utterly familiar to the category theorist, who will immediately 

see the standard 2-category condition (c’B’)(sB) = (E’E)(&&): 

d e- 

Homotopy theorists may be appalled by this definitional apparatus, but it is 

unquestionably right for the purposes at hand. 

In nature lax functors Y-Cat are ubiquitous but actual functors are rare. Street 

[24] introdiced the following rectification of lax functors to genuine functors. 

Much more can be said about its categorical properties, but we restrict attention to 

what we shall use. 

Theorem 3.4. There is a functor, written A -A- on objects and d--d on morphisms. 
from the category of lax functors :Y i -Cat and lax natural transformations to the 
category of genuine functors ‘9’ + Cat and genuine natural transformations. For 
each object n of 3, there is an adjoint pair of functors E : A-(n)-A(n) and 
q : A(n)-A(n), and the q are the functors of a lax natural transformation A-A. If 
A is a genuine functor, the E specify a genuine natural transformation A-A. If 
6 : d-d’ is a natural homotopy of lax natural transformations between lax functors 
A and B, then there are induced natural transformations 8(n) : &n)+d’(n) such 
that the following diagram of functors commutes for t$ : mdn: 

B(@)d(m) a B(@)a(m) 

I! II 
d(n)A(@) a h(n)A(@) 

That is, 8 is a natural homotopy of genuine natural transformations. Passage from 

6 to Jpreserves both compositions of natural homotopies. 

For the benefit of homotopy theorists lost in the notation, we explain what this 

says homotopically before proceeding to the proof. Let .Y be the category with 

objects 0 and 1 and one non-identity morphism I : 04 1. Recall that a natural trans- 

formation x : F-G between functors ad -+A’ determines and is determined by the 

functor x : .% x .I -+ .d which restricts to F and G on .T/ x (0) and ri x { I} and is the 

common composite xF(cr)= G(a)x on morphisms (a,r). Recall too that the 

classifying space functor B preserves products and carries 9 to I, hence carries 

categories, functors, and natural transformations to spaces, maps, and homotopies. 
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In particular, it carries adjoint pairs of functors to inverse homotopy equivalences. 

Now restrict attention to based categories and consider the theorem. BA : 9 -, .7 

is a functor with BA(n) equivalent to BA(n), Bd : BA-Bl? is a natural transfor- 

mation, and, the heart of the matter for our purposes, considering 8(n) as a functor 

A(n) x Y-+&n). B8is precisely a homotopy between natural transformations in the 

sense of Definition 1.2. Thus the theorem serves to convert the lax notions to which 

categorical coherence theory naturally gives rise to exactly the sort of space level 

data one needs to apply our homotopical coherence theory. 

We give the constructions, since we need the details, but we omit all verifications 

in the following outline proof of the theorem. Write x(a) for the value of a natural 

transformation x on an object a. 

Proof. For an object no Y, A(n) is the category whose objects are pairs (Q; a), 

where @ : m+n is a morphism of 3 and a is an object of A(m), and whose 

morphisms (Q; a)+(@‘; a’), @’ : ml-n, are pairs (t,u; a), where I// : m-m satisfies 

@‘v=@ and where a is a morphism A(ty)(a)-‘a’ in A(m’). The composite 

(I/; a’)(y; a) is (I#I+v;/_?), where /? is the composite 

A(v’w)(~) - A( B A(W’)(u’) d a”. 

The identity morphism of (@; a) is (1; g(m)(a)). For a morphism w : n-p in 5, 

A(w) : A(n)-+A@) is the functor specified on objects and morphisms by 

A(w)(@; a) = (w@; a) and A(w)(w; a) = (ty; a). 

This completes the construction of the functor 2 : .// -Cat. 

The functor E : A(n)-A(n) is specified by 

e(@; 4 =A(@)@) and E(V; a) =A(@‘Xa)oo(@‘, w)(a). 

The functor q : A(n)+A(n) is specified by 

0)=(1;6) and &LU=(l;po~(n)(b)) 

for bcA(n) and p : 6-b’ in A(n). The counit .sq+id and unit id-*qc of the 

adjunction are specified by the morphisms 

~(n)(b) : A(l)(b)+6 and (Q; 1) : (Q; a)+(l;A(O)(u)), 

and the latter morphisms also specify the natural transformations 

r](g) : A(@Mm)-v(n)A(@) 

required for q to give a lax natural transformation A+A. 

For a lax natural transformation d : A-B, the genuine natural transformation 

d : 2-B is given by the functors r?(n) : A(n)+&n) specified on objects and 

morphisms by 

&r)(@; 4 = (Q; d(m)(a)) and d(n)(w; a) = (w; d(m’Xa)o4~)(@). 
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For a natural homotopy 6 : d-d’, the natural transformation S(n) : d(n)-d’(n) is 

specified by the morphisms 

(1; 4m)(a)Mm)d(m)(~)) : (@; d(m)@N-(@; d’(m)(a)). 

We have ignored the topology so far in this section. We assume for simplicity that 
i//’ is discrete, since this holds in our applications. Via disjoint unions and products, 
the sets @A(n) and //A(n) inherit topologies from the spaces [1,4(m) and PA. 

Here points of .&A(n) must be regarded as triples (source, morphism, target) in 
order to obtain continuous source and target maps. When, as holds in our 
applications, the e(n) are given by identity morphisms, the identity functions 
r,A(n)+. #A(n) are cofibrations because the identity functions fiA(m)+.,RA(m) 
are cofibrations. 

We need a few general observations about the constructions above. For typo- 
graphical simplicity, we write SA =A in the remainder of this section. 

Lemma 3.5. Lax functors A : 3 -Cat and B : .Y’-rCat induce a product lax 
functor A x B : Y x Y+Cat, and S(A x B) = SA x SB. Similar assertions hold for 
[ax natural transformations and natural homotopies thereof. 

Lemma 3.6. If F : I+ Y is a functor and A : Y-rCat is a lax functor, then 
AF : ~‘+Cat is a lax functor and application of F to the first coordinate of objects 
and morphisms specifies a natural transformation C : S(AF)-S(A)F which is 
natural with respect to lax natural transformations d : A+ B and natural 

homotopies thereof. 

Clearly the following diagram commutes when defined: 

We shall be interested in lax functors T-Cat, where we shall have < : S(AoA)-+ 
S(A)oA for A : 3x 3+.F. If II : I- Y-FX Y is specified by ~t(n)=(n, 1) and 
[I(@)=(@, 1) on objects and morphisms, then AOII is the identity. The diagram just 
given shows that the composite 

S(AoAor,) c S(AoA)otl --% S(A) 

is the identity, and similarly for 12 = t I I. The diagram also implies the commutativity 
of the following associativity diagram, the composites having common value [: 

S(A 0A o( A x 1)) c S(A~A)O(AX~)~ S(A)oAo(Axl) 

/I /I 
S(AoAo(l x A)) ’ b S(AoA)o(l x A) (0 S(A)oAo(l x A) 
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For the study of commutativity, we shall need a much less obvious analog. Recall 
the natural commutativity isomorphism r : A oA-+A o/lot from section one and 
define a lax natural transformation r : A 017-A oA of by letting the (m, n)th functor 
s(m, n) : A(mn)-+A(nm) be A(r(m, n)) and letting 

be the natural transformation a(@, q), @A~)oo(~A@, s(m, n))- ‘. We assume the 
cr(w,@) are isomorphisms, as that will be obvious in our examples; we see that the 
definition makes sense by applying A to the diagram 

mAn ghy pAq 

em. fl) 

i 1 

rv. 4) 

nAm WilQ qAp 

Lemma 3.7. The following diagram of functors commutes up to a natural 
homotopy which is itself natural in A: 

S(A OA) -2.-+ S(A) QA 
I I 

Proof. A typical object of the category S(A oA)(m, II) has the form (I&, v); a), where 
fi : i+m, v : j-n, and acA(ij). We have 

(S(A M(o1, v); a) = (S(A )r)Ol Av; a> = (r(m, nM.mv); a> 
and 

CoS(r)(Ol. v); a) = M_u, v); r(U)(a)) = (HAP; r(i,j)(a)). 

The required natural transformations 

(CoS(r))(m, n)-+(S(A)r9(m, n) 

are specified by the morphisms 

(r(U); 1) : (VW; ~(i,i)(a))~(r(m,n)OlAv); 4 

in S(A)(m, n). The remaining verifications are tedious exercises. 

4. The passage from permutative categories to F-spaces 

We first apply Theorem 3.4 to construct a functor from permutative categories to 
Y-spaces and then use this functor to prove Theorems 2.1 and 2.2. Symmetric 
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monoidal categories would work just as well but would serve only to complicate the 
notation. 

We associate a lax functor A : .F- Cat to a permutative category .-l as follows. 
Set A(n) = Y”. For a morphism 0 : m-n in .i, specify the function A(@) : A(m)- 

Ain) by 

A(@)( ;, q= ,‘(, (@(p) 

on objects and morphisms, where the empty sum is interpreted as the object 0 or its 
identity morphism. Note that A( 1) is the identity functor and let ,o(n> be the identity 
transformation. For w : n-p, 

while 

A( = 4 1 c ai. 
k:=I WIJ)=k O,,,=j 

The sums are taken in different order, and the commutativity isomorphism in .:d 
determines a natural isomorphism o(u/,@) : A(tpc$)+A(y)A(@); its kth coordinate 
rearranges sums ordered by increasing i to sums ordered by increasing j and for 
fixed j increasing i. If @ or w is the identity, no rearrangement is necessary and 
~(I,u,@) is the identity. The second diagram in Definition 3.1 commutes by 
coherence. 

For a morphism F : .d+ 3’ of permutative categories, the functors FR : .Y+ A n 

and natural transformations B(@)F”‘-+F”A(@) with ith coordinate 

C F(a;)-+F 

determined by @ : F@F-*Fo@ (or by ,! : O-F(O) ifje Im @) specify a lax natural 
transformation A-B of lax functors. Again, the second diagram of Definition 3.2 
commutes by coherence. 

We have associated functors A : Y-+-Cat and natural transformations P : 2-B. 

We shall also write A = .y to emphasize that it is a collection of categories A(n) = .;?” 
to which the classifying space functor B can be applied. We give .z?~ the base object 
0 = (0 : O-n; 0); this uses the convention that .-Jo is the trivial category with object 
0. Then the lax functor A and induced functor A both take values in based 
categories (because o 00 = 0 for any morphism o in .X). It is now clear from the 
general discussion in the previous section that B.2 is an Y-space and Bf is a 
morphism of Y-spaces. 

Remarks 4.1. A different functor J : .Y--Cat was introduced by Segal [22, Section 
21 and made precise in [ 181. That construction is smaller and perhaps more elegant; 
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-7, is precisely .Y, and :T,, is equivalent to -//” rather than just related to it by an 
adjunction. It is a basic insight of Thomason that -i is usually the more powerful 
tool. In particular, Theorems 2.1 and 2.2 are direct consequences of coherence 
theory using .x, but cannot be proven using -7, On the other hand, the uniqueness 
theorem in [18] for the passage from permurative categories to spectra depends on 
the fact that each .:7,, is a permutative category. I do not see how to prove such a 
result for 72, hence a generalization of the uniqueness assertion to non-strict 
morphisms is not quite immediate (in contradiction to a claim in [25]). However, vve 
shall give a proof of such a generalization, due to Thomason, at the end of the 
section. The appendix will give a comparison of .-if to .J and will show how to 
develop a theory of pairings based on use of 7. 

With these preliminaries, we show how the category theorist’s work on coherence 
proves Theorems 2.1 and 2.2 for us. 

Let @ : .-/ x .d -+ % be a pairing of permutative categories. We define a lax 
natural transformation @ : A x B-CoA of lax functors 7x X-Cat as follows. 
The (m, n)th functor 

has (i,j)th coordinate the given pairing applied to the ith coordinate of -/I”’ and the 
jth coordinate of .A”. For morphisms cp : m-p and ly : n-q in .;i; the functors 

C(@w)oO(m,n) and 0@.(7)o(A(@)xB(w)) 

from .Ymx .1” to %PQ have respective (r,s)th coordinates given on objects and 
morphisms ( x zI a;, x/“=, bj) by 

c a;@bj and 
@(l)=r.W(/)=i (,A:‘)@ ( AbJ). 

The given natural distributivity isomorphism provides a natural isomorphism 

O(@,w) : C(~Aw)oO(m,n)-O(P,q)o(A(~)xB(W)). 

If re Im Q, or se Im (I/, we use the nullity of zero here, and we could use nullity of 
zero isomorphisms if the zeros of d and J were not strict. If 0 and w are identities, 
then so is @(@, I,u). The second diagram of Definition 3.2 commutes by coherence. 

Converting @ to a natural transformation by Street’s first construction and 
applying Lemmas 3.5 and 3.6 to the source and target, we obtain a natural transfor- 
mation @ : Ax B-+doA of functors fx .Y -Cat. By inspection of definitions, the 
zeros of A(m) and B(n) act as strict zeroes for @ (even if this only holds up to 
isomorphism for .d and 2). Upon usage of the commutation of the classifying 
space Functor with products, we see that the induced maps 

factor through smash products and specify a pairing of Y-spaces. 
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For functoriality, suppose given a morphism of pairings 

Then FOG and Ho@ induce lax natural transformations from A x B to C’QA with 
induced natural transformations & G+(flA) 0 6. The natural transformation 
Y : F@GdHo@ given as part of the definition of a morphism of pairings induces 
a natural homotopy of lax natural transformations, by coherence again, and thus a 
natural homotopy !8 : F@G-(AA)o@. Verification that composition behaves 
properly up to homotopy is an exercise in the use of the first notion of composition 
specified in Definition 3.3. 

Turning to Theorem 2.2, let d be a ring permutative category under the 
coherently unital and associative pairing 0 : d x .,d+.d. With e : *-+.a’ the unit 
injection, the diagrams 

I xe 
*xA-(..dxA)12 and (Ax_d)rt -AX* 

of lax functors .Y+Cat commute up to natural homotopies determined coordinate- 
wise by the unit isomorphism of .d. Similarly, the diagram of lax functors .Y3-Cat 

AxAxA 
8x1 

*(AoA)xA=(AxA)o(Ax I) 

1x8 

I I 

8 0th x 1) 

Ax(AvI)=(AxA)Q(~xA)- AoAo(lxA)=AoAo(Axl) 

commutes up to a natural homotopy determined coordinatewise by the associativity 
isomorphism of .d. The diagram of Definition 3.3 amounts to a typical coherence 
diagram relating distributivity to associativity; specifically, it says that the two 
visible ways of going from 

to 

c QiO (bj0 Ck), 
W)=~.r(~,=s,x(kl=~ 

by first distributing and then associating or first associating and then distributing, 
coincide. Again, if ;:i/ is commutative, the diagram of lax functors .Fr-+Cat 
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commutes up to a natural homotopy determined coordinatewise by the com- 

mutativity isomorphism of .-J. Here 5 on the right is specified above Lemma 3.7 and 

r on the left is given by the transposition isomorphism in Cat. Let 

1 = (1 : 1-l; 1) E $1. Upon application of Street’s first construction, quotation of 

the unit, associativity, and commutativity properties of c given in and above Lemma 

4.7, and passage to classifying spaces, we conclude that the diagrams above imply 

the desired homotopy commutativity of the analogous diagrams of Definition I .3. 

This proves Theorem 2.2, its functoriality assertion following from that of Theorem 

2.1 and a trivial check of units. 

I probably should point out where the mistake occurs in my erroneous earlier 

treatment. 

Remark 4.2. In [17, IX Section I], I introduced a particular pairing of operads 

(9, I/ )- 9 and defined the notion of a pairing of Y-spaces. That notion was 

exactly our present notion of a pairing of g-spaces between n-spaces arising as 

powers of actual spaces. I then asserted [17, IX, 1.41 that a certain diagram of 

categories determined by a pairing of permutative categories was commutative. 

That diagram would have given a pairing of i/-spaces on passage to classifying 

spaces, but in fact it only commutes strictly on generating objects and morphisms. It 

does commute up to natural isomorphism, but that is not good enough for the 

machinery of infinite loop space theory. The point of using Street’s theory is that it 

so beautifully converts diagrams which commute up to natural isomorphism to 

diagrams which commute strictly. 

Finally, we give the promised generalization of the uniqueness theorem in [18]. 

An infinite loop space machine E defined on permutative categories is a functor 

from permutative categories to connective spectra together with a natural group 

completion I : B.r/-Eo.ri. This makes sense with either strict or lax morphisms of 

permutative categories. We know by [18] that, up to equivalence, there is a unique 

such machine when strict morphisms are understood. The following result, which 

specializes constructions due to Thomason [26,27], immediately implies the corres- 

ponding uniqueness assertion when lax morphisms are understood. The point is 

that, up to equivalences (in the sense of strict morphisms which induce equivalences 

upon passage fo classifying spaces), we can convert lax morphisms to strict 

morphisms, and such equivalences .v’--.-Y” induce equivalences E.rii*E.:,’ by [18, 

Lemma 51. 

Proposition 4.3. There is a functor, written .Y/-.-/^ on objects and F-P on 



morphisms, from the category of permutative categories and lax morphisms to the 
category of permutative categories and strict morphisms. There is a natural adjoint 
pair of functors 

such that E is a strict morphism of permutative categories (and n is a non-unital lax 
morphism of permutative categories). 

Proof. Let ..$ have objects [k; al, . . . , ad, where k 2 0 and the ar are objects of ..Y’. In 
particular, there is an object 0= [O; 1. Let -2 have morphisms 

[w; aI, ..* ,o_J : [k;al,..., ak]*[j; bl,..., b,], 

where IC/ : {I,..., kl~{l,..., j) is a surjective function and a, is a morphism 

c w(r)=4 ar-+bq in .:I’. The composite of such a morphism with another morphism 

[@; PI, .*. ,B;] : [j; bl, . . . ,bj]+[i; CI, . . . ,c[] 

is I@u/; YI, . . . , y;], where yP is the following composite: 

c 
0c0. V) r 

a,- Y _ Car 
” OIqI=p a, 

’ C 6, ” * cp. 

(ovKrl=P m)=P wtrj=q mcu, =P 

Here a(@,u/) is the evident permutation isomorphism. There are no non-identity 
morphisms with source or target 0. (That is, 0 is a disjoint basepoinr for .?.) The 
sum on .-i^ is specified by 

[j; at, . . . , a,]@[k; bl,..., bk]=(j+k;al,..., aj,bl,..., bk] 

on objects and similarly on morphisms. Certainly @ is strictly associative with strict 
unit 0. The evident block shuffle permutations of j+k letters (and identity 
morphisms in .-I) give the required natural commutativity isomorphism 0 - 0 0 t. 
For a lax morphism F : .ri-*.d’, define a strict morphism F : .T?--.T? by 

E[k; al , . . . ,ak] = [k; Fai, . . . ,Fak] 

on objects and by 

P[w; (III, . . . ,CYj]=[u/;d~,...,a)] 

on morphisms, where ah is the composite 

E Far A F C a, “’ + Fbq. 
WC0 =v ( j w(r) =q 

Here @ is the natural transformation required of a lax morphism, composition is 
preserved by coherence, and p strictly preserves @ by a glance at the definitions. 
The functor q : d--.-i is specified on objects and morphisms by 

n(a)=[l;a] and n(a)=[l;a]. 
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A natural transformation @ o(q x ~)+~oB is specified by the morphisms 

[@2; 11 : (2; a+6]-[l; a+b], 

where @k is the unique surjection { 1, . . . , k} --t (1); however, there is no morphism in 

7; between 0 and ~(0) = [l; 01. The functor E * . ..:?*.d is specified on objects and 

morphisms by 

&[k; (II, . . . ,ak]= i ar and E[W; CII, . . . ,a,] =/3, 
r=, 

where /I is the composite 

k 
c ar-t i c ar cb=taq, i 6,; 

r=I q= I wco=q q=l 

the first morphism here is the evident permutation isomorphism. We set e(O) = 0. It 

is obvious that E strictly preserves sums; it preserves commutativity isomorphisms 

by virtue of the role played by permutations in its definition on morphisms. The 

composite EV is the identity functor, and the unit Id+qe of the required adjunction 

is the natural transformation specified by the morphisms 

[C#Ik; 1) : [k;al,...,ak]+ [l; i a,]. 
L r= I J 

5. Pairings of I,-prespectra and of spectra 

The proofs of Theorems 1.6 and 1.7 will proceed by passage from pairings of (1 

spaces to pairings of I,-prespectra to pairings of spectra. We give the second step 

first, and we precede it by a sequence of definitions closely analogous to those of 

section one. 

Let .I* denote the category of finite-dimensional real inner product spaces and 

their linear isometric isomorphisms. Observe that .f, admits the coherently 

associative, unital (with unit {0)), and commutative operation 0. The natural 

commutativity isomorphism r : o--t @ of is given by the transposition isometries 

V@ W-+ W@ V. Let S : .f,-+i denote the sphere-valued functor obtained by one- 

point compactification; in particular, S(0) = So. We abbreviate Ss = r and write CL) 

for the evident natural isomorphism SAS--So@. Define 

Z’X=Xr\SV and Q”X=f(SV,X), 

F( Y,X) being the function space of based maps Y-X. 

Definition 5.1. An .g,-prespectrum is a continuous functor T : .X,-.7 together 

with a natural transformation o : TM-To@ such that the following conditions 

hold. 

(i) o : TV= TV/G(O) -+ T( V@ (0)) = TV is the identity map. 
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(ii) The following associativity diagram commutes: 

Ohl 
TVASWASZ - T( V@ W)ASZ 

IAW 

i I rJ 

TVAS( W@ Z) d T( vg W@ Z) 

(iii) The adjoint d : TV-!2 “T( V@ W) of o is an inclusion. 
A morphismf : T- T’ of 4,-prespectra is a natural transformation such that the 

following diagram of functors commutes: 

Let I*[31 denote the category of 9,-prespectra. 

Remark 5.2. For a based space Y, there is an evident .J,-prespectrum F(Y) with 
Vth space YASV. In particular, S=F(SO) is an J,-prespectrum. The functor 
F : .y-J,[.F] is left adjoint to the zeroth space functor. That is, a map Y-T(O) 

extends uniquely to a morphism F(Y)-+ T of .J,-prespectra. 

Observe that the transposition xAY+ YAX induces a natural isomorphism 
r : TAT’-(T’AT)~~ of functors 9, x1, e.5 for 9.-prespectra T and T’. The first 
diagram to follow may be viewed as one of functors .I”,- .K A more conceptual 
formulation will be given in the appendix. 

Definition 5.3. A pairing o : (P, Q)+ T of .J,-prespectra is a natural transfor- 
mation o : PAQ-, To@ of functors 9, x .J* *J such that the following diagrams 
commute: 

PVAS WAQV’ASW’ a PVAQV’ASWASW’~ T(V@ V)AS(W@ w? 

Oh0 
I ! 

0 

P( I’@ W)l\Q( V’@ W’j w T( V@ W@ V’@ W’) = T( V@ V’@ W@ W? 

A morphism o-+w’ of such pairings is a triple (6,cJ) of morphisms of 4.- 
prespectra such that the following diagram of functors commutes up to homotopy: 

Definition 1.2 makes the last notion precise. 
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Definition 5.4. An 4,-prespectrum T is said to be a ring 4,-prespectrum if it has a 
unit map e : S-T of .I,-prespectra and a pairing w : (T, T)-+ T such that the 
following diagrams commute up to homotopy: 

and 

TATAT 
wni 

+ (T+)AT=(TAT)o($I x 1) 

IAW 
i I 

LA 3 X II 

TA(T@)=(TAT)~(~x@)~ TQqlx@)~T~@~(~xl) 

T is said to be commutative if the following diagram commutes up to homotopy: 

TAT A To@ 

A morphism f : T-T’ of ring 9,-prespectra is a map of J,-prespectra such that 
e’=fe : S-+ T’ and the triple (JJf) is a morphism of pairings. 

Remark 5.5. S is a commutative ring Y,-prespectrum with the identity functor as 
unit e and with w = o : sAs-So@. For any ring .Y*-prespectrum T, e : S- T is a 
morphism of ring Ye,-prespectra by virtue of the diagram 

SAS ehl TAS - IAe TAT 

Remarks 5.6. In [17, p. 731, Quinn, Ray, and I introduced the notion of an 4,- 
prefunctor. This is precisely a strictly unital, associative, and commutative ring 9,- 
prespectrum. That is, all diagrams in Definition 5.4 commute, without homotopies. 
(We only prescribed T, e, and CO there since we could then set CJ = o( 1 Ae) and deduce 
the diagrams in which it appears.) We showed that the spectra associated to 4,- 
prefunctors are E, ring spectra and observed that Thorn spectra are naturally 
occurring examples. We shall see in the sequel that the derived notion of an _Y- 
spectrum is general enough for all of multiplicative infinite loop space theory. In 
particular, the spectra associated to bipermutative categories will be seen to be 9- 
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spectra, provided that the May machine is used for the construction. (It will be seen 
that the Segal machine inevitably leads to considerably more complicated output 
when fed the same multiplicative input.) 

The reader will surely not find it hard to believe that suitable machinery converts 
the input data of section one to the output data prescribed above. On the other 
hand, this output data feeds naturally into stable homotopy theory. 

Theorem 5.1. There is a functor E from .I.-prespectra to spectra under which 
pairings (P, Q)- T of .Y,-prespectra functorially determine pairings EPAEQ- ET in 
the stable category. 

Theorem 5.8. If T is a ring I,-prespectrum, then ET is functorially a ring spectrum. 

If T is commutative, then ET is commutative. 

To begin the proofs, we require a notion of spectrum compatible with the notion 
of an .1,-prespectrum. We follow the approach to spectra and the stable category 
outlined in [17, II]. Details will appear in [19] and also in [5], where an equivariant 
generalization is given. 

Let I/ be any countably infinite dimensional real inner product space. We are 
thinking of U= (R “y for any jr 1. A prespectrum D indexed on U consists of based 
spaces DV for all finite-dimensional VC U (or all V in a large enough family of 
subspaces) and based maps cr : D V&S W-, D( V+ W) whenever V is orthogonal to W 
in I/. These spaces and maps are required to satisfy conditions (i)-(iii) of Definition 
5.1 with external direct sums replaced by internal direct sums. Clearly an I’*- 
prespectrum determines a prespectrum indexed on I/ for any U. 

A prespectrum D indexed on (I is said to be a spectrum if each d : DV- 
l2 “D( V+ W) is a homeomorphism. Thus, when I/= I?“, DR’ is homeomorphic to 
GDR”‘. A prespectrum D functorially determines a spectrum LD by an 
passage to limits. That is, 

(LD)(V)= u nWD(V+ W), 
VL w 

where the union is taken over loops of inclusions d and the required 
morphisms are evident. 

obvious 

homso- 

Morphisms of prespectra (or of spectra) are collections of maps D V-D’V strictly 
compatible with the structural maps [T. Two morphisms are homotopic if their 
component maps DV+D’Vare homotopic through homotopies which at each time t 

comprise a map of prespectra. Clearly passage from 4.-prespectra to prespectra 
indexed on U is functorial and homotopy-preserving, where homotopies between 
morphisms of .J,-prespectra are homotopies of natural transformations. 

Let 2U and YU denote the categories of prespectra and spectra indexed on U, 
and use a prefix h to denote homotopy categories. There are sphere spectra Sq in 
hYiJ, hence there are homotopy groups, and there is a concomitant notion of weak 
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homotopy equivalence. There is a category H./U obtained from h.7 L/ by formally 
inverting its weak equivalences. Passage from h.~ U to H-7 I/ is equivalent to the 
familiar process of replacing spectra by CW-approximations (with the right notion 
of CW-spectrum in % U). We abbreviate .YR”= 9 and /R”= .Y. It is H’/’ that we 
understand to be the stable category, and we have an evident composite functor 

This stable category, like any other worthy of the name, is equivalent to that 
introduced by Boardman [3] and explained in elementary terms by Adams [I]. The 
present construction has various advantages, the trivial passage from .Y,-prespectra 
to the stable category just given being an illustrative example. 

The reason for bothering with different “universes” U is that there is an obvious 
“external” smash product functor .bU x t’U’-+ .S(U@ U’) specified by 

(Here we exploit the fact that prespectra need not be defined on all finite 
dimensional subspaces W of U@ U’.) We extend this to a functor on spectra by 

Er\E’= L(vEAvE?, 

where v is the evident forgetful functor from spectra to prespectra. Technically, the 
inclusion condition in our definition of a prespectrum need not be satisfied by 
vEAvE’, so the functor L must be extended to prespectra defined without this 
condition. The extension is due to Lewis [ll; see also 191. It follows formally that L 

commutes with A, 

L(DAD? G L(vLDAvLD~ = LDALD’. 

To exploit these smash products, we need change of universe functors. For a 
linear isometry g : U-U’, there is an evident functor g* : .dU’-+ .PU specified by 
(g*D’)( V) = D’(gV) for b’C U. Clearly g* restricts to g* : YLI’-+ Y’U, and g*L = Lg*. 

When g is an isomorphism, these functors g* are isomorphisms of categories with 
inverses g, = (g - ‘) *. In general, g* admits a left adjoint g, : 3 U+ B U’. We define 
g, = Lg, v : .YU’-+ YU’ and have that g, is left adjoint tog* and satisfies g,L = Lg.. 

The construction of g, is given in 15, VIII and 191 and it is shown there that g, and 
g* induce inverse equivalences of categories between HjvU and HY’LI’ and that, up 
to coherent natural equivalence, these stable category level functors are the same for 
different linear isometries g and g’. We shall write = for equivalences that only hold 
in stable categories and E for spectrum level isomorphisms. By the explicit 
definitions, there are coherent natural isomorphisms 

g,EAh.Fr(g@h),(EAF) and (g’g).(E)zgg:g,E. 

Write Y’(Rmy= Yj so that Yi= 5“. The “internal” smash product on the stable 
category H%’ is the composite functor 

HY: x HP’= HY, x HYl -% HY2 1. 
* HP’, = HY 
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determined by any linear isometry g : Rm@R”+Rm. Technically, to pass from the 
spectrum level to the stable category level, we must first replace given spectra by 
CW-approximations; this is the standard procedure for handling functors, such as 
A, which need not preserve weak equivalence. The internal smash product is unital, 
associative, and commutative up to coherent natural isomorphism, and to prove 
Theorem 5.8 we need to know exactly what these isomorphisms are. 

Define the stabilization functor C” : J+ Y by Z-Y= LFt( Y), where Ft( Y) = 
{C’Y} denotes the suspension prespectrum of Y. Let i : Rw+Rm@Rw be the 
inclusion onto the first summand. We have a smash product 

EAY=L(vEAY), 

where the prespectrum level version is specified by 

(TA Y)( V) = TVA Y= (TAFt( Y))(iV) = i*( TAFl( Y))( V). 

That is, TA Y= i*(TAFl( Y)). By adjunction and application of L, we obtain 

i,(Tl\Y) = TAF~( Y) in 32 and ~,(EA Y) = Eti”Y in .3?. 

Define a natural isomorphism ,f? in Hy by the diagram 

EAY=(~~).(EAY) 

B 
I 

111 

g,(EAZ”Y) =g,i,(EA Y) 

Here the top equivalence is that between the functors 1, and (gi),, where 
1 : R”-R” is the identity linear isometry. When Y= So, S=Z”S” is the sphere 
spectrum and p : E+EAS is the required unit isomorphism in If.% 

For associativity, we use the following composite a, where we exploit the evident 
associativity of the external smash product in obtaining the vertical isomorphisms. 

g(g0 1)4D~EW=g(l O~MDAEAF) 

Ill Ill 

g.(g,(DAE)AF)) u gdDAgs(EAF)) 

For commutativity, we use the following composite r, where r : R”@R”- 

Rm@Rm is the transposition isometry and FAEsr,(EhF) expresses the evident 
commutativity of the external smash product. 

g,(EW = (gr>.(EW 

7 I III 

g.(FAE)=.g.r,(EAF) 

We can now prove Theorems 5.7 and 5.8. We already have our functor 
E : ./,[.~-]-+H2/: For an J,-prespectrum T, write Tj for the induced prespectrum 
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indexed on (R”)‘. Thus ET= LTI. It is immediate from the definitions that a pairing 

w : (P, Q)- T induces a map 

w : PiAQj+ Tl,j in 3,+, 

for each i and j. Application of L then gives 

LW z LPALQjnL(PiAQj)+LTi+j in Yi+j. 

Letf : (R”)‘+(R”)j be any linear isometry. We have a map Ti+f *Tj in 2, specified 

by the maps 

Tcf/ V) : T/V= TV+ Tf( V) = (f*Tj)( V) 

given for VC(R”)’ by the fact that T is a functor 9. +X. Passing to adjoints and 

then to spectra, we obtain 

4 : feTi+Tjin 9, and L@ 1 f,LTi=Lf*Ti+LTjin 2”. 

The functoriality of T and naturality of o on the Y6,-prespectrum level translate 

directly to give functoriality and naturality properties of the prespectrum level maps 

4 and o. If f is an isomorphism, then @ and L@ are isomorphisms by inspection. We 

need a technical lemma. Its proof requires use of the explicit definition of the f. and 

is deferred to the end of the section. 

Lemma 5.9. Let f and f’ be linear isometries (R”)‘-+(R”)? Then the natural 
equivalence fi =f: fits into the foIlowing commutative diagram in H.9;: 

f.LT,=f:LT, 

L Tj 

It follows that all of the L@ are natural equivalences. Now specialize. Choose 

linear isometries f : Rw-+Rw@ROD and g : R”@R”-R”. Application of g, to Lo 
and use of L@ gives the desired pairing Ew via the diagram 

EPr\EQ=g,(LPlALQ++g,LTz 

EW I1 

ET=(gf).(LTl)sg,f,LTI 

in the stable category H-7; the last equivalence being the natural one between (gf)* 

and l,, 1 : R”-R”. Here we could have used g* rather than ft and exploited 

g*g *= 1, but use off, will simplify the proof of Theorem 5.8. Since a morphism of 

pairings of .Y’,-prespectra clearly induces a homotopy commutative diagram in 92, 

the functoriality of this passage from pairings of J,-prespectra to pairings of 
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spectra is obvious. This proves Theorem 5.7 and the functoriality claim in Theorem 
5.8. 

For the proof of Theorem 5.8, observe that Ew is actually independent of the 
choice of f. Indeed, Lemma 5.9 and the coherence of our change of isometries 
equivalences gives the commutative diagram 

gaf,LTIzkf-).(LTd 
4 B 

g,LTz II I( LTI 
\\ & 

gJ-‘dT~=.(gf?.(LTd 

Let T be a ring .Y,-prespectrum. We must derive the diagrams displayed in Theorem 
1.7 (with X replaced by T) from the diagrams displayed in Definition 5.4. For the 
unit diagrams, we need the observation that 

o : T&I-+T2 and @ : i,Tl-+Tr 

coincide under the identification of TIMI with i,Tl. (Here SI =FI(SO) is the 
suspension prespectrum of So.) The unit condition involving lr\e in Theorem 1.7 is 
then easily verified simply by choosing f = i in the construction of Eo, the point 
being that Ew and the coherence isomorphism /? are then defined in terms of exactly 
the same equivalence (gi)* = 1 * . For the unit condition involving er\l, one chooses f 

to be the inclusion ri of R” onto the second summand of Rm@R” in defining Em 

and notes that the relevant coherence isomorphism is SD. For this diagram, and for 
commutativity, one must observe that 

r: TAT-(Tr\T)ot and Tr: To@-+T+ot 

on the ./,-prespectrum level correspond to the external commutativity isomorphism 
TAT= s*( TAT) and to instances of @J -’ on the prespectrum level. For the 
commutativity diagram, Ew 0 T = Eo, it is convenient to use any givenfto define one 
of the instances of Ew and to use sf to define the other. Since the remaining work is 
the purely formal exercise of writing down large diagrams and verifying that the 
information above guarantees their commutativity, we leave further details to the 
interested reader. 

We have left one unfinished piece of business. 

Proof of Lemma 5.9. We shall be sketchy since we don’t wish to go into full detail 
on the relevant constructions. The space of linear isometries (R”)‘-(R”)’ is con- 
tractible (e.g. [17, p. lo]), hence we can choose a path of isometries h connecting f to 
f’. By [S, VIII], h induces a functor h, : .Yi+ .Yj and thus h, = Lh,v : .li;-+ .2,. For 
E E Y,, the inclusions of (0) and { 1) in I induce natural weak equivalences 
f,E-h,E+f:E, by [5, VIII]. This diagram gives the equivalence f*E=f:E in H; 
exploited in the arguments above. We claim that there is a map (0 : h, T;i- Tj such 
that the following diagram commutes: 
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Upon application of L, this will imply the lemma. For WC (R”)i (h, T,)( W) is 

obtained by choosing b’C (R”)’ such that h(Zx V) C Wand letting (h, Ti)( W) be the 

smash product of T;V with the Thorn complex of the complementary bundle over / 

of the bundle map Ix V-+(x W determined by h. For t~1, the fibre is the comple- 

ment W, of hXV) in W, and the maps cr : TV&S WP TW glue together to specify 

@ : (h,T,)( W)- TjW. The maps @ on f*T; and f: T; are restrictions. With these 

indications, the details are straightforward from the constructions in [5, VIII 

Section 41, which are largely concerned with setting up sufficient language to explain 

how to choose the V’s consistently so as to obtain a prespectrum and to show that 

everything becomes independent of choice on passage to spectra. 

6. The passage from ‘?-spaces to 4,-prespectra 

We shall begin by proving the following result. 

Theorem 6.1. Let % be any operad whatever. Then there is a functor Tfrom ‘k- 
spaces to 9, -prespectra. 

The point is that the spacewise contractibility of % assumed in section one serves 

only to identify the homotopy type of the zero-th space of the associated spectrum. 

It has nothing to do with the general constructions. We shall then prove the 

following results. 

Theorem 6.2. Let A : ( C, i/)-i be a pairing of operads. Then pairings 

f : (X, Y) --t Z of a ‘?-space X and ?-space Y to an l-space Z functorially determine 
pairings Tf : ( TX, T Y) -+ TZ of .I* -prespectra. 

Theorem 6.3. Let 8 be a permutative operad and let X be a ring @-space. Then TX 
is functorially a ring 9,-prespectrum. If X is commutative, then TX is commutative. 

With EX=ETX, Theorems 6.2 and 6.3 combine with Theorems 5.7 and 5.8 to 

prove Theorems 1.6 and 1.7, generalized to arbitrary operads. While our main 

interest is of course in the spacewise contractible case, there may well be useful 

applications of the full generality. We record one amusing trivial case. There is a 

trivial permutative operad .9 with 9’(O) = {0}, .8(l) = {I}, and .9(j) empty forj> 1. 

The associated category of operators is precisely n. It will be immediate from our 

constructions that there is a natural equivalence F(XI)- TX for a n-space X, where 
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F(Xt) is the suspension .f,-prespectrum introduced in Remark 5.2. Therefore 
P’Xt = EX in the stable category. 

Corollary 6.4. A pairing (X, Y)-Z of III-spaces induces a pairing PXIA_??YI~ 
Z”Z, of spectra. If X is a ring II-space, then C”XI is a ring spectrum, and Z;“X, is 

commutative if X is commutative. 

In fact, this observation has a bit more than just amusement value. Our con- 
structions are natural in y, and B is an initial object in the category of operads. For 
a @-space X, there results a natural map i : J?XI+ EX. By the definitions in section 
one, the structures in Theorems 6.2 and 6.3 have underlying L!-structures. 

Corollary 6.5. Under the hypotheses of Theorem 6.2, the following diagram 
commutes in the stable category. 

EXAEY - EZ 

Under the hypotheses of Theorem 6.3, i : C”XI+EX is a map of ring spectra. 

The map i is adjoint to a natural map I : XI-E&. The natural equivalence 
,P(Xr\ Y) = C”XAZ” Y in the stable category for spaces X and Y and the adjunction 
between C” and the zero-th space functor S?=E=Eo yield the following composite 
natural map o of spaces for spectra E and F: 

P’L’“(EoAFo) = Qm(L?=‘E~~ODFo) 

Here q and E are the unit and counit of the adjunction. An elementary diagram 
chase shows that the diagram of the previous corollary implies the following 
commutative diagram: 

We recall the following result, which is the characteristic property of infinite Ioop 
space machines [20]. 
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Theorem 6.6. If c is spacewise contractible, then t : XI -+EoX is a group 

completion. 

The proofs follow the same lines as in [17], but the arguments there can be made 
very much cleaner by virtue of a lovely improvement of my theory contributed by 
Steiner [23]. In [17, VII Section 11, I tried to prove the following result by taking 
iv”(j) to be the space of suitable j-tuples of embeddings V-+ V. This worked only 
“partially”, and the failure led me to introduce the perfectly hideous notions of 
partial operads and partial monads. Steiner very cleverly observed that everything I 
hoped for could be proven by using suitable j-tuples of paths of embeddings. The 
little convex bodies partial operads of [17] should therefore be consigned to 
oblivion, along with the partial notions to which they gave rise, and supplanted 
henceforward by Steiner’s operads. We recall his definitions in the following proof. 

Theorem 6.7 (Steiner). There is a continuous functor .Y from .I+ to the category of 
operads, written .Y’c, on objects V and g : .YL,-+.~w. on morphisms g : V- W. Here 
continuity means that the evaluation maps 

.A( V, W) x .Xv(j)-+Xw(i> 

are continuous for all j. .J’O is the trivial operad and, for V+ 0, .luv(j) is C/-free and 
has the .Zj-equivariant homotopy type of the configuration space F( V, j) of j-tuples 
of distinct points of V. Further, there is a system of pairings 

A : (Xv, .YW)‘.YV@ w 

which is natural with respect to morphisms in .JI x .Yt and satisfies the following 
properties. 

(i) Inclusion: The map o : _Yk/y(j)-+Y~3u(j) specified by o(c)=cr\l, where 
1 E _Y’w(l) is the unit, is a closed inclusion. 

(ii) Unity: For CE .I&) and 1 E .X0(1), 

l/\c=c and cl\l=c in Xv(j). 

(iii) Associativity: For b E ;I’z(i), c E _%‘a), and d E .Xw(k) 

(bAc)Ad= bA(cAd) in Yz@ VG u(t’jk). 

(iv) Commutativity: For CE jl/v(j) and de Xw(k), 

cAd= T( W, V)((dAc)rCj, k)) in .Yv~ u(jk), 

where T( W, V) : W@ V+ V@ W is the transposition. 

Proof. Let dv be the space of embeddings V - V and let 6~ be the space of paths 
h : /--d/v such that h(1) is the identity map of V and each h(t) is distance reducing. 
Let _~‘a) be the &-invariant subspace of G$ consisting of j-tuples (hl, . . . , hj) such 
that the h;(O) have disjoint images. We have composition maps t”vx &v-+5v and 
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product maps i. vx (5 w* rt c-2 u specified by 

(h/oh)(t) = h’(r) oh(r) and (h xi)(t) = h(r) xj(f), 

and we let 1 E r/~(l) be the constant path at the identity map. The structural maps jt 
of the .dc. are given by blocks of composites and the pairings A are given by lexico- 
graphically ordered pairwise products, exactly as for the little cubes operads [ 15, pp. 
30 and 721. We have action maps .f.( V, W) x li c.*f’ 11’ specified by 
(gh)(t)=gh(t)g-‘, and these apply coordinatewise on j-tuples to give g : .n’,(j)-+ 
.;l’w(j). The formal verifications are trivial, and the topological assertions are 
proven by Steiner [23]. 

The maps cr of (i) specify inclusions of operads .Xv*.Yvs w. Define I, to be the 
union of the operads Iv for VCR”. The .x,(j) are ,Z,-free and contractible, hence 
.;Y~ is an E, operad. 

Steiner’s point is that this use of paths controls the homotopy type of the ivc(j), 
while use of just the initial embeddings h(O) gives natural actions of the .XC, on V- 
fold loop spaces just like those of the little n-cubes operads on n-fold loop spaces 
(15, p. 401. 

Proposition 6.8. There is a natural action 8 of J’V on R vY. The action of .a’~- on 
Q v!2 “Y = R v@ wY coincides with the restriction to XV of the action of .iyve II, and 
there results a natural action of I, on the Oth spaces of spectra indexed on R”. 

Operads naturally determine monads in .i [15, Section 2). As Steiner points out, 
one has the following assertion just as in [15, p. 441 for the little cubes operads, the 
group completion property being due independently to Cohen and Segal. Recall that 
Q &‘.Z“ is a monad in .T and that suspension gives a map of monads cr : S2 ‘% I-+ 
av~~Zv~w(e.g., [15, pp. 17 and 421). 

Theorem 6.9. Define ctv : KvY-+R vZ;‘Y to be the composite 
e 

KvY KI.‘I Kv.nvZvY - l-2 vZvY. 

Then QV is a weak equivalence if Y is connected and is a group completion in 
general. The O(V specify a morphism of monads Kv-+QvCv, and the following 
diagram of monads commutes. 

The adjoints PV : 21vKv+Cv specify an action of the monad Kv on the funcror 
C”, as explained in [IS, pp. 86-881. 
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We can now prove Theorem 6.1 by arguments like those of [20, Sections j-61. 

There we constructed a monad C in the category I7[.l] of II-spaces such that a i- 

space is the same thing as a C-space. There is an adjoint pair of functors 

L : f7[.7]-.;l and R : .y-+l7[ I] 

specified by LX = XI and R Y = ( Y”}. The monad C in II[ J-] extends the monad C in 

.I in the sense that CRY= RCY. By a formal argument [20, p. 2191, if C acts on a 

functor F, then C acts on the functor FL. 

For simplicity of notation, write % v for the product operad 8 x ..x K. The 

projections induce morphisms 7c : dv--+I?v and I,U : cv-e of monads in fl[.l]. By 

pullback along I,V, a C-space X is a Cv-space. By pullback along rr, the Rr--functor 

C’L. is a Cv-functor. By [15, Sections 9 and 111, there results a two-sided bar 

construction 

(TX)(V)=B(ZL,Cv,X). 

More explicitly, (TX)(V) is the geometric realization of a simplicial space whose 

space of q-simplices is Zr’LC$X. The action of linear isometries on paths of 

embeddings and on spheres passes through the construction to yield maps 

for g : V-+ W. All functors in sight are continuous, and we have the continuous 

functor TX : .I* -+ .7 required for Theorem 6.2. 

To construct 0 : TXAS-(TX)o@, we recall first that suspension commutes with 

realization [15, 12.11. By the adjoint of the diagram in Theorem 6.9, the maps 

0: dc+C v,a w induced from 1 x o : ‘6 x .ivc,+ ‘t x .J’v~ w determine the required 

maps 

(TX)(V)r\SW=Z-‘B(zZVL,ev,X) 

0 I B(C v@ wL, c v, X) 

I B(1.o. I) 

(TX)( V@ W) = B(Z ‘@ %, c vg cc; X) 

Properties (i)-(iii) in Theorem 6.7 imply properties (i)-(iii) in Definition 5.1. We 

have proven Theorem 6.1. 

The use of .Y,-prespectra here is just a reinterpretation of my earlier constructions 

and, with the little cubes operad there replaced by the Steiner operads here, the 

proof of Theorem 6.6 is exactly the same as in [20, 6.41. 

We are ready to return to our theme of pairings. We take more or less seriously 

the full categorical generality of the constructions of [IS, Section 91. Given a monad 

C in any category Y whatever and given a C-object P in 3’ and a C-functor 

F : Y + W in any other category ~1, we are entitled to a simplicial object B,(F, C, P) 

in 1. 
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Let Pair J be the category of pairings XA Y-Z of based spaces; its morphisms 
are homotopy commutative diagrams. This category will play the role of %, but our 
B,(F, C, X) will have faces and degeneracies given by strictly commutative diagrams 
and our morphisms will be homotopy commutative diagrams of simplicial spaces, in 
the sense that the homotopies on q-simplicies will be compatible with the faces and 
degeneracies. By the product and homotopy preserving properties of geometric 
realization [ 15, 11.5 and 11.91, we will arrive back in Pair .T upon realization. 

Let Pair Z7[.7] be the category of pairings XA Y-Z of n-spaces; its morphisms 
are homotopy commutative diagrams of functors. This category will play the role of 
K Applied to all variables, the functors L : l7[.7]- X and R : .?-+l7[.7] induce 

functors 
L : Pair II[.y]*Pair 3 and R : Pair .y+Pair n[.l]. 

The following lemma may be viewed as giving monads (C, d)-z in Pair II[.T]. 
We refer to strict morphisms of pairings when no homotopies are required. 

Lemma 6.10. Let A : (‘if, U)- G be a pairing of operads. Pairings f : XA YdZ of 
spaces functorially determine pairings f : CXADY-EZ of spaces such that 
q = (q, q. q) and p = (_u, p, p) are strict morphisms of pairings. Pairings f : (X, Y) - Z 
of n-spaces functorially determine pairings f : (CX,~Y)+l?Z of II-spaces such 
that rj = (ii, rj,4) and fi = (j, fi,@) are strict morphisms of pairings. Both functors 
preserve strict morphisms. If f is a pairing of spaces with associared pairing of IT- 

spaces Rf, then RT= Rf. 

Proof. For the first statement, fis induced by the maps 

~(i)~xj~ p(/qx yk 'Ax'Rf~~i)('XrX'), ~(jk)~zjk. 

For the second statement, &, : C,XA~~~Y-E~,Z is induced by passage to coends 
from the maps 

+(m,p)xXmx G(ri,q)x Y, (Axl~n)(‘xrx’)* i(mn,pq)xZmn. 

The verifications are easy, being combinatorial from Definition 1.1 in the first case 
and categorical in the second. In both cases, the functoriality is immediate from the 
continuity of the functors involved, which allows their application to homotopies. 

When %’ = i/’ = 6, we write?= cf and t= C< on pairings and their morphisms. 
The following lemma may be viewed as giving actions of these monads on objects 

of Pair n[.s]. The proof is an immediate verification from Definition 1.1. 

Lemma 6.11. A pairing f : (X, Y)-Z of a %*-space X and a G-space Y to an d--space 
Z determines and is determined by a strict morphism of pairings < from 
f : (CX, bY)-+f?Z to f such that <rj = 1 and &I = <[. 

Finally, the following observation will lead to actions of our monads on functors. 
The proof is exactly the same as for the little cubes operads [15, p. 721. 
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Lemma 6.12. For spaces X and Y, the following diagram commutes: 

Passing to adjoints, we see that a pairing f : XAY-Z 
commutative diagram 
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of spaces gives rise to a 

~vK~X~~WKwY- Cva wKv~ WZ 

This may be interpreted as saying that we have a functor (2 “,Z w)+Evo w from the 
category Pair .f to itself and an action of the monad (Kv,Kw)+Kvgu’ on this 

functor. The formal arguments of [20, p. 2191 apply equally well to pairings and, by 

pullback along the projections n, we deduce an analogous diagram which may be 
interpreted as asserting that the monad (dc;d~~)-+~~~ w in Pair I7[.7] acts on the 

functor (C ‘L, C wL)-+Z Q’wj from Pair n[.ri-] to Pair .ri: 

The verbiage may seem a bit strained, but the ideas should be clear enough. The 

lemmas above combine to show that a pairingfof a g-space X and a g-space Y to 

an A.-space Z gives rise to maps 

which together specify a map of simplicial spaces. Upon passage to geometric 

realization, we obtain 

Tf : (7X)( V)r\(TY)( W)-(TZ)( V@ W). 

The Tf clearly specify a natural transformation of functors 4, x $,-.J-. The 

defining diagram for a pairing of .J,-prefunctors in Definition 5.3 commutes by 

virtue of the case k= 1 of Theorem 6.7(iv), in which r(j, 1) is the identity 

permutation. The point is that the %‘, 9 and X, Y coordinates of our constructions 

are obviously mapped in the same way by the two composites in that diagram, and 

the sphere and Steiner operad coordinates are also mapped in the same way by 

inspection and use of the cited commutativity relation. Since we have kept track of 

functoriality throughout, we have now proven Theorem 6.2 and the functoriality 

claim in Theorem 6.3. 

It remains to show that the diagrams given by Definition 1.3 for a ring ‘k-space X 

imply the diagrams in Definition 5.4 required for a ring .I,-prespectrum. 

For the unit diagrams, e : S”+Xt determines 

e : S=F(S’+F(X,)c TX, 
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where the inclusion is given by the spaces of 0-simplices CyL.X=Z’;Y1 contained in 

the (TX)(V). Note that ,EVXt maps to ,E”(iqXt) under the unique iterated 

degeneracy operator from 0-simplices to q-simplices. Here d(x) = [ 1; x] E L6i.X for 

XEXI, where 1 = (1,l) E ‘C(1) x .Xv(l). These degeneracies are relevant because of 

the role played by degeneracies in the commutation of realization with products. 

The composite (Tf)(lr\e) : TAS- 700 is given on q-simplices at the simplicial 

space level by 

ZciC~.XAS w 4 zw~.xAcw(rpx,) Tq’ ’ ,P’t “i&a w-x. 

This differs from the corresponding level of cr only in that here the X coordinates of 

,EvL~‘Qc.X are paired with 1 E XI, whereas they are mapped identically under G. The 

homotopy f(lr\e) = 1 given in Definition 1.3 therefore implies the homotopy 

(Tf)(lAe)=a required in Definition 5.4. If we transpose in the middle before 

applying T,f in the composite above, then the result differs in the symmetric lvay 

from the composite of cr with T,s( V, W), hence f(eAl)= 1 implies the other unit 

diagram in Definition 5.4. 

Similarly, to check the associativity or commutativity of Tf, it suffices to consider 

the relevant diagram at the level of smash products of spaces of q-simplices. By 

Definition 1.3 and Theorem 6.7, we have precise associativity and commutativity 

for the operad coordinates. The given associativity or commutativity homotopy for 

X induces homotopies on the relevant spaces of q-simplices, and these homotopies 

as q varies specify a simplicial homotopy and so pass to realizations. This proves 

Theorem 6.3. 

Remark 6.13. The arguments above simplify to show that a pairing of a .>‘x;r,-space X 

and a ;c’cr,-space Y to a .>v, Iv-space Z induces a pairing 

B(_i? ‘1, xv, x)AB(z “‘L, R u’, Y) 

I 
B(C ‘5 “i, I&S u; z>. 

Such pairings also enjoy unity, associativity, and commutativity properties. Here 

f2 ‘B(Z’L, xv, X) is a group completion of XI. That is, our theory applies directly to 

these V-fold delooping machines. 

Appendix. Generalizations and variants of the theory 

The following is a straightforward generalization of Segal’s definition [22, 

Section 51 of a multiplication on an y-space (or r-space) and of our Definition 1.1. 

Definition A.l. Let A : ‘6-x 5’-+ d-be a pairing of categories of operators. Let X, Y, 
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and Z be a %“-space, a $-space, and an i-space, respectively. A (generalized) pairing 
(X, Y)-Z is a functor M : dx G-.7 together with natural transformations 

g: M-Xx Y and f: M+ZoA 

such that each g,,,,. : Mm,,, -Xm x Y, is an equivalence. We require ($4 w) : .Wm, n-+ 
LVI~,~ to be a L* x C,-equivariant cofibration if @ : m+p and w : n+q are injections 
in I7 (compare [20, 1.21). Diagrammatically, we are given 

Among other things, the cofibration condition ensures that gm.n induces an 
equivalence of pairs 

(MV,, nr Mm, OVMO, n) + (X, x Y”, (X, x Yo)V(Xo x Y,)), 

and naturality implies that fm,,,(Mm.o~Mo,,,) C Zo. At least if Xo= Yo= Zo= { *}, as 
could be arranged functorially by [20, App. B] and will be assumed tacitly below (in 
order to ensure the appearance of smash products), the case when M= X x Y and g 
is the identity is precisely the notion of pairing given in Definition 1.1. The case 
when d= r/^= I(= J and X= Y= Z is essentially Segal’s notion of a multiplication 
on X. 

rklorphisms of pairings are quadruples (a,/?, y, 6) of natural transformations such 
that the following diagram of functors commutes up to homotopy: 

Unit, associativity, and commutativity conditions on a @-space X with a pairing 
(X,X)+X can be expressed in terms of homotopy commutative diagrams involving 
auxiliary functors P,P’ : ?+.7 and Q : f3+,E 

X1xX ,-k.M,,. / X / XxX1 A-M,,, - X 

rx, I I I *e 1 i 
SOXXGP - x xxso_= p’ - x 
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XxXxX+ 
&-Xl 

MxX /*1 (x~A)xx=(xxx)~(Ax 1) 
* * 

lxg 
1 ( 

= 
* T 

CIA * I, 
= 

XTM 
Q Mo(A x 1) 

1 xf 
I I i 

AA x II 

Xx(X~/j)=(XxX)~(l x/$=hb(l xA)/N*II,(X~A)~(l xA)=(XoA)o(Ax 1) 

xxxLM f 
+XoA 

r 

I I I 

X7 

(XxX)t L 
/I 

Mt- XoAot 

While this does give a generalized notion of (commutative) ring Z--space, it is clearly 
all much more cumbersome than Definition 1.3 and therefore to be avoided when- 
ever possible. 

If we use the functor d of [18, Const. lo] to pass from permutative categories to 
X-spaces, then we are forced to use this generalized notion of pairing rather than the 
simpler notion of the body of the paper. We show this in the following elaboration 
of the cited construction. A special case was sketched by Robinson [30]. We assume 
familiarity with [18, Const. lo] and we write r~~,~=l,$) in it. We sometimes write A 
instead of d, in parallel with Section 4. 

Construction A.2. Let 0 : 2 x P + ‘6 be a pairing of permutative categories. We 

construct a diagram 

of functors and natural transformations which yields a pairing (B.g,B.@+B6 on 
passage to classifying spaces. 

Step I. Construction of the categories Q,,,,“: The objects of Q,,,,,, are systems 

(A, B, C,l7,,), where 

A= (Ar,zcr,.r,>, B= (Bs,ns.f), and C= (Cr,nrrr) 

are objects of J,, g,,, and g,,,,, and where I7,,, is a nullary and distributive system 
of isomorphisms Ar@Br+C,,,s. Here rCm sCn, and the precise requirements are 

that 
no,,=0 : Ao@Bs=O@Bs-‘Co, J7,0=0 : A,@Bo=A,OO+Co, 
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and that the following diagram commutes: 

The morphisms of Y,,,, ,, are triples (a, p, y) of morphisms A -+A’ in .g,, B+ B’ in .gn, 

and C-c’ in grnn which are strictly compatible with the flr,s. 

Step 2. Construction of functors (@, w) : 9,,,,,, - =ip,4: Let @ : m-+p and w : n-q 

be morphisms of Fx .F. Define 

(@, w)(A B, C, n,,) = (GA, wB, (GAY)(C), Au. 1.)) 

where Au,V=17~-l,u).w-l,V, for UC p and vcq. Here @-i(u) is to be interpreted as 

{ 0) U {i 1 Q(i) E u - (0) } and similarly for w - i(v). Define 

(e4 w)(a;P, r) = (@a, WA (GAY)(Y)). 

The definition makes sense in view of Step 2 of [18, Const. lo], and it is easily seen 

that these data specify a well-defined functor D : Jx .3-i-Cat. 

Step 3. Construction of g : D-A x B and f : D-+CoA: The requisite (m, n)th 

functors 9’m, n -‘.J,,,x 8, and Bm,,,-+ 6,, are specified by 

(A,&C,17,s)-(A,&, (a,P,v)*(o,/3) 

and 

(A,B,C,n,J-C, (a,P,y)~y. 

Naturality with respect to morphisms of JX .F is clear. Construct a functor 

v(m, n) : d, x s?-,- Bm,,, by sending (A, B) to (A, B, C,Z7,,) and (a,p) to (a,/?, r), 

where C and y are obtained from (A,& and (a,/?) via the composite functor 

d, x ?J-, 
d(m)x&n), dmX 9n %(m.n), Fmn VW”), 6,,_ 

Here 6(m) : Jm+dm and v(m) : d “+dm are the inverse equivalences defined in 

Step 2 of [18, Const. lo]; the specification of the 17r,s is dictated by the conditions of 

Step 1. Then g(m, n)v(m, n) = Id, and the 17,* of general objects determine a natural 

equivalence <(m, n) : Id+v(m,n)g(m, n), just as in [18, Const. lo]. 

Passage from & to A is only functorial on strict morphisms of permutative 

categories, and passage from 2 x 3 -, ‘?? to (,%8)+c is only functorial on 

morphisms of pairings given by natural isomorphisms. Thus use of this construction 

results in considerable loss of information. One could go on to treat unit, 

associativity, and commutativity conditions in terms of A, but one would only end 

up with more complicated proofs of weaker results than in the body of the paper. 
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Instead, we use the following elaboration of [18, Const. 101 to obtain a direct 
comparison between A and 2. Recall the lax functor A : .Y-Cat of Section 1. 

Proposition A.3. Let .d be a permutative category, There are lax natural transfor- 
mations 6 : A-A and v : A +A such that 6v = Id : A+A and there is a natural 
homotopy < : Id--+& of lax natural transformations such that each t(n) is a natural 
isomorphism of functors .-d7,+.?,. 

Proof. The component functors 6(n) : .?I,,-.rd” and v(n) : .d”+.:?,, and the natural 
isomorphisms T(n) are specified in [18, Const. IO]. For @ : m-+n in .I-, the requisite 
natural transformations 

6(Q) : .-J(@)&m)-&n).J(@) and V(Q) : .zY(@)v(m)-+v(n).:/(@) 

are specified on objects (Anns,O of .J, and (Al,...,A,,J of .:Jm by the 
isomorphisms 

C Ai+A(O)Ugm’(,) and C Ai4 C C A, 
00) =/ @(OEl-10) jer-(01 $(I)=/ 

given by the system { n,,t} and by the commutativity isomorphism of :i, respectively. 
Verification that the relevant coherence diagrams commute is left as an exercise. 

Corollary A.4 There is a natural transformation A-A of functors .F-+Cat such 
that each .Y-,,-* ..?I” induces an equivalence on passage to classifying spaces. 

Proof. With 2 as an intermediary, this is immediate from Theorem 3.4; EG is the 
required transformation. 

Of course, there results an equivalence EB.~~-I;-EB.J on passage to spectra. 
We have a similar comparison on the level of pairings. 

Proposition A.5. Let @ : d x 3 J + % be a pairing of permutative categories. Then 
there is a lax natural transformation v : A x&D (between actual functors 
.Y x Y--Cat) such that the left square commutes and the right square commutes up 
to natural homotopy in the diagram 

AxB 
@ 

-AxB- CQA 

_I 

I 
VXV 

VX” AXB 

I 

Y 
1 

“A 

f AxB 6 D - co/\ 

Proof. Step 3 of Construction A.2 gave functors v(m, n). Natural transformations 

v(@, w) : D(& wMm n)-+vC~~ q)(&O) x g(v)) 
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(of functors G,, x In-+ ir,, for@ : m-pandry : n-q) are easily obtained. Indeed, 

they are dictated by requiring 

gov=Id and fov=v~o@o(6x6) 

as lax natural transformations between functors .Px _-Cat. With this specifi- 
cation, the result follows from Proposition A.3. 

Corollary A.6 There is a natural diagram of functors 

such that the left square commutes, the right square commutes up to natural 
homotopy, and the vertical arrows induce equivalences on passage to classifying 
spaces. 

Proof. This is immediate from Theorem 3.4 and Lemmas 3.5 and 3.6. 

Naturality refers to strict morphisms of pairings of permutative categories. We 
conclude that our results proved about the spectra EE.;? carry over to their 
equivalents EB.J. Thus the generalized definition of pairing in Definition A. 1 serves 
no useful purpose in the usual categorical applications. However, it is necessary in 
applications to &ale homotopy theory, and for this reason it is worth going on to a 
generalization of our recognition principle. Since the generalization presents only 
notational complications, we shall be rather sketchy. We begin by generalizing the 
material of Section 5. 

Definition A.7. An _“* x $,-prespectrum is a continuous functor R : .J. x .f*+J 

together with a natural transformation 

o : RASAS-Ro(@ x @)o(l x tx 1) 

of functors .Yt-S such that o is appropriately unital and associative and the 
adjoints 

d : R( V, V’)*F(SW/GW’, R( V@ W, L”@ W’)) 

are inclusions; compare Definition 5.1. 

We can define J/c:-prespectra similarly; the case n=3 is needed for the study of 
associativity of pairings. The smash product of Y,-prespectra P and Q is an .Y* x Y,- 
prespectrum with respect to the structural maps 

(or\a)(l~r~l) : PVAQV’ASWASW’+P(V@ W)AQ(V’@W’). 
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If T is an Y,-prespectrum, then To@ is an -ic. x ;4,-prespectrum with respect to the 
structural maps 

T(l@r@l)~cr~(l~~): T(V~V’)ASWASW’-T(V~W~V’~W’). 

This allows the following generalization and conceptualization of Definition 5.3. 

Definition A.& A (generalized) pairing (P, Q)+ T of Ye-prespectra is an .Y* x .J.- 
prespectrum R and maps 

IJ/: R-PAQ and o : R-To@ 

of 9, x 9,-prespectra such that each component map 

w(I’, IV) : R(V, W)-PVAQW 

is an equivalence. Morphisms of pairings are defined in the evident way in terms of 
homotopy commutative diagrams of functors. 

There is an analogous generalization of Definition 5.4, involving auxiliary 
.Y* x YP.-prespectra for the unit diagrams and an auxiliary 9?-prespectrum for the 
associativity diagram. We leave the details to the interested reader. 

Theorem A.9. Theorems 5.7 and 5.8 remain valid as stated with respect to the 
generalized notions of a pairing of J,-prespectra and of a ring .I,-prespectrrtm. 

Proof. For any pair of universes U and I/‘, an .a, x .Y,-prespectrum determines a 
prespectrum indexed on U@U’ in an evident and natural way. In particular, a 
pairing as above gives a diagram 

of prespectra indexed on R”@R”, with w a spacewise equivalence. We pass to 
spectra indexed on R”@ R” and then to spectra indexed on R” just as in Section 5. 
Here w is a weak equivalence, hence an isomorphism in the stable category, and 
there results the required pairing EPAEQ-+ET in HP’. Unit, associativity, and 
commutativity conditions are also handled just as in Section 5, the only compli- 
cations being purely notational. 

Theorem A.lO. Theorems 6.2 and 6.3, and therefore also Theorems 1.6 and 1.7, 
remain valid as stated with respect to the generalized notions of a pairing of a b*- 
space and a &space to an ?-space and of a ring %‘-space. 

Proof. On general nonsense grounds, the category @x L? determines a monad 
d x b in the category (nx rr)[.Y] of functors M : l7 x l7- Y such that an action of 
dxb on M is the same thing as an extension of M to a continuous functor 
‘6’~ 54.~: The @,q)th space is a coend 

(dxB),,(M)= (;f;5) @((m,p)x G(n,q) xMd(-1, 
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and the equivalence relation is such that 

(Cx&,,(Xx Y)=&Xx&Y 

for functors X, Y : IT-.Y. Let L’ and L” be the functors which assign MO.. : I~-._Y- 

and M,,o : I7--+f to M : ITxl77-.T. Then the functor (L’, L”) has the evident 
product construction as right adjoint. With notations as in Section 6, the functor 

Aq,PL,zwL)=~vLAPL : l7[./] xl7[.7]-.7 

has an evident right action by (cv,d~), and it follows formally that the functor 

ZVLLJA‘zWLL” : (nxl7)[.;-]+.7 

has a right action by ~L.x~w. For a functor M : ‘6-x G-+.li; there results an 
J’* x ye-prespectrum RM with (V, W)th space 

(RM)(V, W’)=B(ZvLL’~ZWLL”,&xdw,M). 

When M= Xx Y, there is a natural homeomorphism 

R(X x Y)( V, W) z (TX)( V)A( TY)( W). 

Now consider a pairing (X, Y)-Z as in Definition A.l. The transformations g andf 
induce maps 

These specify maps of simplicial spaces and so induce maps 

(TX)(UNTY)(W)e(RM)(K W)-+(TZ)(vO W) 

on passage to realization. These maps specify a pairing of .8,-prespectra in the sense 
of Definition A.8 (the cofibration condition of Definition A.1 being needed to 
ensure that the first map is an equivalence). The remaining verifications are exactly 
parallel to those in Section 6. 
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