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Affineness and chromatic homotopy theory

Akhil Mathew and Lennart Meier

Abstract

Given an algebraic stack X, one may compare the derived category of quasi-coherent sheaves on
X with the category of dg-modules over the dg-ring of functions on X. We study the analogous
question in stable homotopy theory, for derived stacks that arise via realizations of diagrams
of Landweber-exact homology theories. We identify a condition (quasi-affineness of the map to
the moduli stack of formal groups) under which the two categories are equivalent, and study
applications to topological modular forms. In particular, we provide new examples of Galois
extensions of ring spectra and vanishing results for Tate spectra.
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1. Introduction

Let X be a scheme (or, more generally, an algebraic stack). Then one has a natural abelian
category QCohab(X) of quasi-coherent sheaves on X, which comes with a left exact functor

Γ: QCohab(X) −→ Modab(R),

into the abelian category Modab(R) of R-modules, where R = Γ(X,OX) is the ring of regular
functions on X. When X is affine, so that X = SpecR, the functor Γ is an equivalence of
categories (and is in particular exact). Conversely, a classical result of Serre implies that ifX is a
quasi-compact scheme, then the converse holds: if Γ is an equivalence, thenX � Spec Γ(X,OX),
so that X can be recovered as the spectrum of the ring of global sections on X, which in turn
is determined by the category of Γ(X,OX)-modules.

Namely, one has the following theorem.

Theorem 1.1 (Serre). Let X be a quasi-compact scheme. Suppose that the higher
cohomologies {Hi(X,F)}i�1 vanish, for every quasi-coherent sheaf F ∈ QCohab(X). Then X
is affine.

For a modern reference (and the strongest statement), we refer the reader to [51, Tag 01XF].
(These references can be looked up on http://stacks.math.columbia.edu/tag.) One can consider

Received 13 August 2014; revised 18 January 2015; published online 8 May 2015.

2010 Mathematics Subject Classification 16D90, 55P42, 55P43 (primary).

The first author is supported by the NSF Graduate Research Fellowship under grant DGE-110640.

http://stacks.math.columbia.edu/tag


AFFINENESS AND CHROMATIC HOMOTOPY THEORY 477

the equivalent question in the derived setting. Given a stack X, one has a natural derived
category of quasi-coherent sheaves on X, which we will denote by QCoh(X). Rather than
being an abelian category, it is a triangulated category or, better, the underlying homotopy
category of a stable∞-category in the sense of [40]. One has a similar (derived) global sections
functor

Γ: QCoh(X) −→ Mod(R),

where R = Γ(X,OX) = RΓ(X,OX) is now no longer a commutative ring, but itself a derived
ring: it is a coconnective E∞-ring spectrum, obtained as the homotopy limit of the discrete
rings that map to X. In characteristic zero, R is a commutative, differential graded algebra
such that Hi(R) = 0 for i < 0. In particular, Mod(R) itself is a stable ∞-category: if R is
discrete, then it is the derived category of the abelian category Modab(R) of ordinary (that is,
discrete) R-modules.

Certain phenomena work better in the derived context. For example, Γ is always ‘exact’ in
the stable sense, which means that it respects finite homotopy limits and homotopy colimits.
(Indeed, it respects arbitrary homotopy limits.) Unlike in the ordinary setting, it is possible
for Γ to be an equivalence even if X is not affine, although in these cases R will usually be
non-discrete.

Example 1.2. In this example, we work over the rational numbers. Let X = BGa be the
classifying stack of the additive group. Then Γ(X,OX) = Q[x−1] is the free E∞-algebra (over
Q) on a generator in degree −1, that is, the cochains on the circle S1. Then it is known that
taking global sections establishes an equivalence between the derived∞-category QCoh(X) and
the∞-category Mod(Q[x−1]) of modules (that is, module spectra) over Q[x−1]. This result can
be extracted from [37] as follows. The stack X = BGa sends a rational connective E∞-ring R
to Ω∞(ΣR). In the notation of [37, Section 4], one has X = cSpecA for A = Q[x−1]. Now, as
in [37, Section 4.5] one has a t-structure on Mod(A) whose connective objects are those A-
modules M such thatM ⊗A Q (for the map A→ Q, unique up to homotopy) is connective. One
also has a t-structure on QCoh(X). The left adjoint Mod(A)→ QCoh(X) exhibits QCoh(X) as
the left completion of Mod(A) by [37, Remark 4.5.6]. But we claim that Mod(A) is already left
complete, that is, for any M ∈ Mod(A), the natural map M → lim←−n

τ�nM is an equivalence.
In fact, if N ∈ Mod(A)�n, then N ⊗A Q is an n-connective spectrum by definition. However,
in view of the cofiber sequence of A-modules ΩQ→ A→ Q, this implies easily that N is an
(n− 1)-connective spectrum. It follows that for any M ∈ Mod(A), the cofiber of M → τ�nM is
(n+ 1)-connective as a spectrum, so that M → lim←−n

τ�nM is an equivalence of A-modules as
desired. Thus, QCoh(X) � Mod(A). This equivalence of∞-categories also gives us Γ(X,OX) �
A. Generalizations of this phenomenon have been explored in [37, 52].

The purpose of this paper is to study this sort of affineness in a different setting, namely
derived stacks in chromatic homotopy theory. Our motivational example is the (periodic)
spectrum TMF of topological modular forms. It arises as the global sections of a sheaf of E∞-
ring spectra Otop on the moduli stack of elliptic curves Mell, constructed by Goerss, Hopkins
and Miller and later by Lurie.

There are two natural ∞-categories one can associate to this construction.

(1) The ∞-category QCoh(Mell) of quasi-coherent sheaves on the derived stack Mell =
(Mell,Otop).

(2) The ∞-category Mod(TMF) of TMF-modules.
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478 AKHIL MATHEW AND LENNART MEIER

As an example of the affineness result, we prove the following theorem.

Theorem 1.3. The global sections functor establishes an equivalence of symmetric
monoidal ∞-categories QCoh(Mell) � Mod(TMF).

This theorem was originally established away from the prime 2 by the second author in [44],
and is useful for both theoretical and computational purposes. The result was also known
to Lurie in unpublished work (by a different argument). We also prove a version for the
compactified moduli stack of elliptic curves Mell, which carries a sheaf of E∞-ring spectra
Otop as well, defining a derived stack Mell = (Mell,Otop). The global sections Γ(Mell,Otop)
are denoted by Tmf.

Theorem 1.4. The global sections functor establishes an equivalence of symmetric
monoidal ∞-categories QCoh(Mell) � Mod(Tmf).

The main purpose of this paper is to prove these theorems in a more general context, as a
consequence of nilpotence technology.

Given any noetherian and separated Deligne–Mumford stack X with a flat morphism X →
MFG to the moduli stack MFG of formal groups, one can construct a presheaf of even periodic
Landweber-exact homology theories on X. Sometimes, it can be lifted to E∞-rings to produce
a derived stack X, as in the case X = Mell. If it can be lifted, then one can ask the same
question as above: is the ∞-category QCoh(X) of quasi-coherent sheaves on X equivalent to
the ∞-category of modules over Γ(X,Otop)? This is certainly true when X is affine. We show
that the same conclusion holds in the following setting.

Main Theorem. If X →MFG is quasi-affine, then the global sections functor establishes
an equivalence of symmetric monoidal ∞-categories QCoh(X) � Mod(Γ(X,Otop)).

Recall here that a map X →MFG is quasi-affine if for every map Spec A→MFG the
pullback Spec A×MF G

X is quasi-affine, that is, a quasi-compact open subscheme of an affine
scheme. The result is proved via a consequence of derived Morita (Schwede–Shipley) theory
together with a version of the Hopkins–Ravenel smash product theorem. The latter states that
the localization functor Ln commutes with homotopy colimits. Likewise, a crucial part of our
main theorem is that the global sections functor commutes with homotopy colimits. This turns
out to be true even if X →MFG is not quasi-affine, but only tame, that is, the order of every
automorphism of a point of X not detected by the formal group is invertible on X.

We apply our main theorem to the study of Galois extensions of E∞-rings (in the sense
of Rognes [47]) and to vanishing results about Tate spectra. As an example, we consider the
moduli stack of elliptic curves with Γ(n)-level structure Mell(n) and its compactified version
Mell(n). These classify (generalized) elliptic curves with a chosen isomorphism between the n-
torsion points and (Z/nZ)2. The action of GL2(Z/nZ) on (Z/nZ)2 defines GL2(Z/nZ)-actions
on Mell(n) and Mell(n). Both of these stacks carry sheaves of E∞-ring spectra Otop, whose
global sections are denoted by TMF(n) and Tmf(n), respectively. The latter was recently
defined by work of Goerss–Hopkins and Hill–Lawson [23].

We can prove the following two theorems.

Theorem 1.5. For every n, the E∞-ring spectrum TMF(n) is a faithful GL2(Z/nZ)-Galois
extension of TMF[1/n].

Theorem 1.6. For every n, the norm map Tmf(n)hGL2(Z/nZ) → Tmf(n)hGL2(Z/nZ) is an
equivalence. Equivalently, the Tate spectrum Tmf(n)tGL2(Z/nZ) vanishes.

 17538424, 2015, 2, D
ow

nloaded from
 https://londm

athsoc.onlinelibrary.w
iley.com

/doi/10.1112/jtopol/jtv005 by U
niversity O

f R
ochester, W

iley O
nline L

ibrary on [25/04/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



AFFINENESS AND CHROMATIC HOMOTOPY THEORY 479

Note that the vanishing of Tate spectra is automatic for faithful Galois extensions, but
Tmf[1/n]→ Tmf(n) is not a Galois extension. Note furthermore that the second theorem
was proved by Stojanoska in [50] in the case n = 2 in her investigation of the Anderson self-
duality of Tmf. We hope that our results about the vanishing of Tate spectra will have future
applications to duality.

In Section 2, we will discuss various background material. This includes the relationship
between formal groups and even periodic ring spectra and, furthermore, derived stacks and
coarse moduli spaces. The knowledgeable reader may just want to pick up our definitions
of an even periodic refinement (Definition 2.5), of a derived stack (Definition 2.6) and of a
tame morphism (Definition 2.28). In Section 3, we discuss first an abstract characterization of
derived stacks for which the global sections functor is an equivalence (via the Schwede–Shipley
theorem). Then we show certain descent and ascent properties of this class of derived stacks.
In Section 4, we specialize these abstract theorems to chromatic homotopy theory and obtain
our main theorem. Section 5 contains our abstract theorems about Galois extensions and the
vanishing of Tate spectra, which are then applied to examples in Sections 6 and 7. Theorem 7.12
discusses the behavior of ∞-category-valued sheaves with respect to a finite open cover of a
topological space (as used in Section 3).

Throughout this paper, we use the language of quasi-categories (that is,∞-categories) of [28,
33], and the theory of structured ring spectra as developed originally in [17], and formulated in
∞-categorical terms in [40]. We will let S denote the∞-category of spaces, Sp the∞-category
of spectra and we will write ⊗ for the smash product in the latter.

2. Derived stacks

We will take a naive approach to derived stacks in this paper, and avoid the most general
theory. In this section, we summarize what we need, and briefly review the role of formal groups.
Furthermore, we will review the theory of coarse moduli spaces and the Zariski topology for
algebraic stacks.

2.1. Even periodic ring spectra and formal groups

Recall first the following definition.

Definition 2.1. Let MFG be the moduli stack of formal groups: that is, it is the (infinite-
dimensional) stack assigning to a commutative ring R the groupoid of one-dimensional,
commutative formal groups over R and isomorphisms between them.

Define MUP =
∨

k∈Z Σ2kMU to be a periodic version of complex bordism MU . A theorem
of Quillen (see, for example, [2]) shows that MU∗ = MUP0 is isomorphic to the Lazard ring
L, which carries the universal formal group law. Even more is true: the simplicial scheme
Specπ0(MUP⊗•+1) is isomorphic to the simplicial scheme (SpecL)×MF G

•+1. In particular,
if we use the notation SpecW = SpecL×MF G

SpecL, it is true that the Hopf algebroids
(MUP0,MUP0MUP ) and (L,W ) are isomorphic.

Construction 2.2. Given a spectrum X, both MUP0(X) and MUP1(X) are
comodules over the Hopf algebroid (MUP0,MUP0MUP ). Via the equivalence between
(MUP0,MUP0MUP )-comodules and quasi-coherent sheaves on MFG, this defined a Z/2-
graded sheaf F∗(X). This sheaf is characterized by the property that the evaluation of F0(X)
on SpecL agrees with MUP0(X) as comodules over (MUP0,MUP0MUP ) ∼= (L,W ), and
evaluation of F1(X) on SpecL agrees with MUP1(X).
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480 AKHIL MATHEW AND LENNART MEIER

The Z/2-graded sheaf F∗(X) can often be described explicitly. For example, the sphere S−2

is associated to a line bundle ω ∈ Pic(MFG) which assigns to every formal group the dual of its
Lie algebra. Moreover, the theorem above by Quillen implies that F0(MUP ) = (φL)∗OSpec L

and F0(MUP ⊗MUP ) = (φW )∗OSpec W , where φL : SpecL→MFG and φL : SpecW →MFG

are the obvious maps. This point of view has been very fruitful in describing large-scale features
of stable homotopy theory via the special geometry of MFG.

An example of this connection is the partial correspondence between certain ring spectra
and formal groups: one can associate a formal group to certain ring spectra, and in some cases
one can recover the value of the associated cohomology theory in terms of the Z/2-graded
quasi-coherent sheaf F∗(X) on MFG. In this way, complex bordism allows one to manufacture
a great deal of new ring spectra.

Definition 2.3 ([3]). A homotopy commutative ring spectrum E is said to be even periodic
if πiE = 0 for i odd and if π2E is an invertible module over π0E, with inverse π−2E, such that

π2kE � (π2E)⊗k, k ∈ Z,

under multiplication. This is slightly weaker than the definition in [3], which requires π2E to
be the trivial invertible module, that is, to contain a unit. We will refer to such ring spectra
as strongly even periodic.

Given an even periodic ring spectrum E, the Atiyah–Hirzebruch spectral sequence for the
E-cohomology of any even space X (that is, with integral homology free and concentrated
in even dimensions) degenerates. For example, if E is strongly even periodic, then there
is an isomorphism of rings E0(CP

∞) = π0E[[x]], where the generator x ∈ Ẽ0(CP
∞) is non-

canonical (and called a complex orientation of E). The multiplication on CP∞ is dual
to a comultiplication in E0(CP

∞), which gives E0(CP
∞) the structure of a (continuous)

commutative, cocommutative Hopf algebra. Equivalently, the formal scheme SpfE0(CP
∞) is

canonically a formal group over π0E. This persists for a general even periodic ring spectrum,
although the formal group need only admit a coordinate Zariski locally on π0E, and we get a
map Specπ0E →MFG. This is one direction of the correspondence between ring spectra and
formal groups.

In some cases, one can reconstruct the cohomology theory (and even the ring spectrum) from
the formal group. For example, the Landweber exact functor theorem [30] gives a concrete and
often easily checked criterion for a map φ : SpecR→MFG to be flat. Given such a flat map,
and a spectrum X, one can pullback the Z/2-graded quasi-coherent sheaf F∗(X) to SpecR to
define an invariant of X, which is in fact an even periodic homology theory E. More precisely,
we define

E2k(X) := Γ(SpecR,φ∗(F0(X)⊗ ω⊗k)) = (F0(X)⊗ ω⊗k)(SpecR),

E2k+1(X) := Γ(SpecR,φ∗(F1(X)⊗ ω⊗k)) = (F1(X)⊗ ω⊗k)(SpecR).

Given a flat morphism φ : SpecR→MFG, the formal group of the Landweber-exact even
periodic cohomology theory that one obtains is precisely classified by the map φ. Conversely,
given an even periodic ring spectrum E, one obtains a map φ : Specπ0E →MFG classifying the
formal group SpfE0(CP

∞); if this map is flat, then E is the Landweber-exact theory obtained
from φ. An important example of such a theory is given by complex K-theory KU , as was first
shown (without using Landweber’s theorem) by Conner and Floyd.

The following proposition is well known.

Proposition 2.4. Given two flat morphisms φR : SpecR→MFG and φR′ : SpecR′ →
MFG, we denote the corresponding Landweber exact spectra by ER and ER′ . With this
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AFFINENESS AND CHROMATIC HOMOTOPY THEORY 481

notation, we have an isomorphism

π2k(ER ⊗ ER′) ∼= ω⊗k(SpecR×MF G
SpecR′).

Proof. We first investigate the situation φR′ = φL so that ER′ = MUP . By definition,

MUP0(ER) = (ER)0(MUP ) = (F0(MUP ))(SpecR).

The latter agrees with

((φL)∗OSpec L)(SpecR) = OMF G
(SpecL×MF G

SpecR) = ((φR)∗OSpec R)(SpecL).

Similarly, (MUP ⊗MUP )0(ER) = ((φR)∗OSpec R)(SpecW ), which implies F(ER) = (φR)∗
OSpec R.

In the general case, we get now:

π2k(ER ⊗ ER′) = (ER′)2k(ER)

= ((φR)∗OSpec R ⊗ ω⊗k)(SpecR′)

= ((φR)∗(φR)∗ω⊗k)(SpecR′)

= ω⊗k(SpecR×MF G
SpecR′).

2.2. Even periodic enhancements and derived stacks

The upshot of the discussion of the previous section is that there is a presheaf of even periodic
homology theories on the affine flat site of MFG. Equivalently, for every commutative ring
R with a formal group over R classified by a flat map SpecR→MFG, one obtains an even
periodic homology theory E with E0 given by R, and one obtains morphisms between homology
theories from morphisms of formal groups. One can show that one actually gets a homotopy
commutative ring spectrum from each such Landweber-exact homology theory, and that each
map of formal groups gives a map of ring spectra, such that all functoriality holds up to
homotopy, albeit not coherent homotopy (see [27, Theorem 2.8] or [35, Lecture 18]).

For the purposes of homotopy theory, a diagram such as above, which takes values in the
homotopy category of spectra, is insufficient to make many natural constructions, such as
homotopy limits and colimits. For example, there is no way to extend the above construction
to a non-affine scheme (or stack) flat over MFG. Given a (discrete) group acting on a formal
group, that does not produce a strict group action on the associated spectrum. Moreover, the
ring spectra one obtains do not have the structure needed to perform algebraic constructions
with them: for example, one cannot generally obtain a good theory of modules (for example,
a triangulated category or stable ∞-category) over an unstructured ring spectrum.

However, in certain restricted cases, it is possible to realize diagrams of homology theories
much more rigidly. A survey of this problem, including a general result of Lurie, is in [19].

Let X be a Deligne–Mumford stack together with a flat map

X −→MFG,

so that, as above, one obtains a presheaf of multiplicative homology theories on the affine
flat site of X. Here a map X →MFG, not necessarily representable, is flat if for every étale
covering SpecR→ X, the composite SpecR→ X →MFG is flat in the sense that for every
map SpecA→MFG, the pullback SpecA×MF G

SpecR→ SpecA (which is a map of schemes)
is flat. Let Affet

/X be the affine, étale site of X.
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482 AKHIL MATHEW AND LENNART MEIER

Definition 2.5. An even periodic enhancement or even periodic refinement X of X is a
sheaf Otop of even periodic E∞-rings on the site Affet

/X , lifting the above diagram of homology
theories on Affet

/X .

In other words, for an étale map SpecR→ X, the E∞-ring Otop(SpecR) defines an even
periodic cohomology theory, with formal group given by the classifying map SpecR→ X →
MFG: it yields the Landweber-exact (co)homology theory associated to this formal group. The
‘sheaf’ condition is actually redundant here, because by construction, the homotopy groups of
Otop already form a sheaf on the affine étale site. Note that the phrase ‘sheaf of spectra’ refers
to a functor from the category Affet

/X into the ∞-category of spectra (for example, realized via
a functor into some model category) and does not refer to the homotopy category.

Even periodic enhancements are examples of (even periodic) derived stacks. Our notion of
a derived stack is a special case of the notion of a non-connective spectral Deligne–Mumford
stack in Lurie’s DAG series (see [36, 8.5 and 8.42] for his definition). We prefer to spell this
special case out (informally) for the convenience of the reader.

Definition 2.6. A derived stack X will be for us a Deligne–Mumford stack X together
with a sheaf of E∞-ring spectra Otop = Otop

X on Affet
/X and an isomorphism π0Otop

X
∼= OX .

Here πiOtop
X is the sheaf U 	→ πi(Otop

X (U)) on Affet
/X . Furthermore, one requires πiOtop

X to be
quasi-coherent as an OX -module.

The derived stack X is called even periodic if ω = π2Otop
X is a line bundle such that

multiplication induces isomorphisms

π2kOtop
X ⊗ π2lOtop

X
∼= π2(k+l)Otop

X , k, l ∈ Z,

and we have

πiOtop
X = 0 for i odd.

Next, we want to define morphisms of derived stacks. If f : Y → X is a map of Deligne–
Mumford stacks and F a sheaf of spectra on Affet

/X , then we can define a sheaf of spectra f−1F
on Affet

/Y as the sheafification of the presheaf given by

(f−1
preF)(U −→ Y ) = hocolimU→V →X, V →X étale F(V ).

As this homotopy colimit is filtered, in a 2-categorical sense, it follows that if Otop
X is a sheaf

of E∞-ring spectra, then f−1
preOtop

X is a presheaf of E∞-ring spectra on Affet
/Y (see [40, 3.2.3.2])

and thus f−1Otop
X a sheaf of E∞-ring spectra [36, 1.15]. Furthermore, f−1π∗(F)→ π∗(f−1F)

is an isomorphism.

Definition 2.7. Let X = (X,Otop
X ) and Y = (Y,Otop

Y ) be derived stacks. Then a morphism
f : Y→ X of derived stacks consists of a morphism f0 : Y → X of the underlying Deligne–
Mumford stacks and a morphism α : f−1

0 Otop
X → Otop

Y of E∞-ring spectra such that π0α

coincides with the morphism f−1
0 OX → OY defined by f0.

Given such a morphism f : Y→ X of derived stacks and an Otop
X -module F , we define f∗F

as f−1F ⊗f−1Otop
X
Otop

Y .
In an evident manner, an even periodic enhancement of X defines even periodic enhance-

ments of each stack étale over X. Given an even periodic enhancement, it follows that one can
evaluate the sheaf Otop on any stack Y étale over X. Namely, one defines

Otop(Y ) = holimSpec R→YOtop(SpecR),
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AFFINENESS AND CHROMATIC HOMOTOPY THEORY 483

as SpecR→ Y ranges over all the étale morphisms from affine schemes. Then Otop(Y ) is
naturally an E∞-ring. Such spectra will generally fail (if Y is not affine) to be Landweber-
exact or even periodic, and may exhibit intricate torsion phenomena. For example, we can
consider Otop(X) itself, which we can think of as the ring of ‘functions’. Below, we will write
Γ(X,Otop) for this.

Remark 2.8. It is also fruitful to consider derived stacks as representing some type of
moduli problem for (possibly non-connective) structured ring spectra. This point of view was
used by Lurie to give a construction of the even periodic enhancement of the moduli stack of
elliptic curves in [34], producing the spectrum of TMF.

2.3. Quasi-coherent sheaves

In this subsection, we will review the basics of quasi-coherent sheaves on derived stacks. Fix
one such X = (X,Otop). Given an E∞-ring A, we write Mod(A) for the stable ∞-category of
A-modules.

Definition 2.9. The∞-category QCoh(X) of quasi-coherent sheaves on X is the homotopy
limit

QCoh(X) def= holim(Spec R→X)∈Affet
/X

Mod(Otop(SpecR)).

In other words, a quasi-coherent sheaf on X assigns to every étale map SpecR→ X a module
MR over Otop(SpecR), together with equivalences

MR ⊗Otop(Spec R) Otop(SpecR′) �MR′ ,

for each (2-)commutative diagram

SpecR′ ��

����
��

��
��

�
SpecR

����
��

��
��

�

X

(1)

and appropriate compatibility data between these equivalences.

We note that one is constructing a homotopy limit of presentable, stable∞-categories under
colimit-preserving, exact functors. It follows that the homotopy limit is itself a presentable,
stable ∞-category where homotopy colimits are computed ‘pointwise’ (see [33, Proposition
5.5.3.13]).

Using the derived version of flat descent theory [38], which states that the assignment A 	→
Mod(A) for an E∞-ring A is a sheaf of ∞-categories in the flat topology on affine (derived)
schemes, it follows that one can give an alternative definition. Suppose first that X has affine
diagonal. Choose an étale surjection SpecR→ X. Then QCoh(X) is the homotopy limit of the
cosimplicial diagram of ∞-categories

Mod(Otop(SpecR)) ⇒ Mod(Otop(SpecR×X SpecR))
→→→ · · · .

If the diagonal of X is not affine, then one should use an étale hypercover rather than a Cech
cover.

Let F be a quasi-coherent sheaf on X. Then, for each k, the assignment

(SpecR −→ X) ∈ Affet
/X 	−→ πk(F(SpecR)),

defines a quasi-coherent sheaf πkF on the ordinary stack X: that is, it assigns an R-module (in
the classical sense) to each étale map SpecR→ X, together with appropriate equivalences and
compatibility data. We note that no further sheafification is required since we are working with
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484 AKHIL MATHEW AND LENNART MEIER

affine schemes. Given a 2-commuting diagram (1), the map Otop(SpecR)→ Otop(SpecR′) is
flat (even étale) on homotopy groups, and it follows that one has canonical isomorphisms

πk(F(SpecR))⊗R R′ � πk(F(SpecR′))

and thus πkF is quasi-coherent. In the even periodic case, only π0 and π1 are necessary for
bookkeeping, because

πn+2kF � πnF ⊗ ωk,

where ω = π2Otop.

Example 2.10. Let T be a spectrum. Then one has a quasi-coherent sheaf Otop ⊗ T ∈
QCoh(X), given by

(SpecR −→ X) 	−→ Otop(SpecR)⊗ T.
In fact, the category QCoh(X) (like any presentable, stable∞-category) is canonically tensored
over spectra in this way.

Suppose that X is an even periodic refinement of a flat map X →MFG. Then the homotopy
groups π0(Otop ⊗ T ), π1(Otop ⊗ T ) are given by the pullback of the Z/2-graded sheaf F∗(T )
on MFG to X via the given map X →MFG, since we have assumed that the diagram Otop of
E∞-rings lifts the diagram of Landweber-exact homology theories.

These homotopy groups πkF are important for several reasons; one is that the homotopy
groups of the global sections

Γ(X,F) = holim(Spec R→X)∈Affet
/X
F(SpecR)

of F are the abutment of a descent spectral sequence

Hi(X,πjF) =⇒ πj−iΓ(X,F).

We will abbreviate the descent spectral sequence to DSS.
Let Γ(X,Otop) be the E∞-ring of global sections of the structure sheaf. Then the global

sections functor on QCoh(X) takes values in Γ(X,Otop)-modules. Indeed, one has a functor of
‘tensoring up’

Mod(Γ(X,Otop)) −→ QCoh(X),

which sends a Γ(X,Otop)-module M to the quasi-coherent sheaf

(SpecR −→ X) 	−→ Otop(SpecR)⊗Γ(X,Otop) M.

The global sections functor is the right adjoint to ‘tensoring up’. The relation between these
two ∞-categories given by this adjoint pair is the main subject of this paper.

In the next two subsections, we will discuss several important examples of even periodic
refinements.

2.4. Affine schemes

We begin with the following basic observation.

Proposition 2.11. Let A be a Landweber exact, even periodic E∞-ring. Then the affine
scheme Specπ0A, together with the natural map Specπ0A→MFG, has a canonical even
periodic enhancement, and its category of quasi-coherent sheaves is equivalent to Mod(A).

Proof. It suffices to show that for every étale π0A-algebra A′
0, there exists an even periodic

E∞-A-algebra A′ with the property that π0A
′ � A′

0, and that this construction can be done
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AFFINENESS AND CHROMATIC HOMOTOPY THEORY 485

functorially in A′
0. This follows from [40, Section 8.4], reviewed below, which implies that the

∞-category of such A-algebras is equivalent to the discrete category of étale π0A-algebras.

The basic result about E∞-rings needed for the above is the following derived version of the
‘topological invariance of the étale site’, a proof of which appears in [40, Section 8.4].

Theorem 2.12. Let R be an E∞-ring, and consider the ∞-category CAlgR/ of E∞-rings

under R. Let CAlget
R/ ⊂ CAlgR/ be the subcategory of étale R-algebras: that is, those R-

algebras R′ with the properties that:

(1) π0R
′ is étale over π0R;

(2) π∗R′ � π∗R⊗π0R π0R
′.

Then we have an equivalence of ∞-categories

CAlget
R/

π0� Ringet
π0R/,

with the (discrete) category of étale π0R-algebras.

In other words, if A→ B is an étale morphism in CAlg, then for any B′ ∈ CAlg, we have a
homotopy cartesian square of spaces

HomCAlg(B,B′)

��

�� HomCAlg(A,B′)

��
HomRing(π0B, π0B

′) �� HomRing(π0A, π0B
′)

(2)

where both horizontal arrows are given by precomposition. It will be useful to have the following
slight generalization (and corollary) of Theorem 2.12.

Corollary 2.13. Let C be an ∞-category, and F : C → CAlg be a functor to E∞-
rings. Consider the composite F : C → CAlg π0→ Ring, and consider an extension G ∈ Fun(C ×
Δ1,Ring), of F , in the sense that the restriction of G to the first vertex is identified with F .
Suppose that for each x ∈ C, the morphism G(x) is étale. Then there is a unique extension
G ∈ Fun(C ×Δ1,CAlg), of both F and G.

Proof. Let Funet(Δ1,CAlg) denote the full subcategory of Fun(Δ1,CAlg) spanned by those
morphisms of E∞-rings that are étale. Define Funet(Δ1,Ring) similarly. Then Theorem 2.12
gives us that the natural functor

Funet(Δ1,CAlg) −→ CAlg ×Ring Funet(Δ1,Ring), (A 	−→ B) 	−→ {A, π0A, π0A→ π0B}
is an equivalence of ∞-categories.

Indeed, the existence part of Theorem 2.12 gives essential surjectivity. To see full faithfulness,
consider two objects A→ B,A′ → B′ in Funet(Δ1,CAlg). Then

HomFunet(Δ1,CAlg)((A −→ B), (A′ −→ B′))
� HomCAlg(A,A′)×HomCAlg(A,B′) HomCAlg(B,B′)

� HomCAlg(A,A′)×HomRing(π0A,π0B′) HomRing(π0B, π0B
′),

where the last equivalence holds because (2) is homotopy cartesian. This shows that our functor
is fully faithful.
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486 AKHIL MATHEW AND LENNART MEIER

Finally, we find that

Fun(C,Funet(Δ1,CAlg)) � Fun(C,CAlg)×Fun(C,Ring) Fun(C,Funet(Δ1,Ring))

is an equivalence of ∞-categories, which is equivalent to the desired statement.

In other words, the ‘topological invariance of the étale site’ can be done functorially.

Example 2.14. Let G be a group acting on an E∞-ring R. Suppose we have an étale
extension T0 of π0R. Suppose that T0 is given a G-action in such a way that

π0R −→ T0

is G-equivariant. Then the étale extension R→ T constructed in Theorem 2.12 canonically has
a G-action in view of Corollary 2.13.

2.5. Group actions

In this subsection, we give the most basic non-affine example of an even periodic refinement.
Let R be an even periodic, Landweber-exact E∞-ring, and let G be a finite group acting on R

(in the∞-category of E∞-rings). Then we get a map from even periodicity, Specπ0R→MFG,
which has canonically the structure of a G-equivariant map: that is, G acts compatibly on the
formal group. Consequently, we get a map of stacks,

(Specπ0R)/G −→MFG.

For example, take R to be complex K-theory KU . Then there is a Z/2-action on KU coming
from complex conjugation of vector bundles, which can be made into a Z/2-action in E∞-rings.
At the level of formal groups, one has

SpfKU0(CP
∞) � Ĝm,

that is, the formal group of KU is the formal multiplicative group, which is classified by a flat
map

Spec Z −→MFG,

so that KU is Landweber-exact. The Z/2-action on KU corresponds to the involution of Ĝm

given by x 	→ x−1. In particular, one obtains a map

BZ/2 −→MFG.

This map takes a Z/2-torsor over a scheme SpecR and outputs the formal completion of
the associated one-dimensional torus over SpecR, not necessarily split, in such a way that
the Z/2-action on a torsor maps to the Z/2-action on the torus given by inversion. Since
Aut(Gm) � Z/2, the stack BZ/2 classifies precisely one-dimensional tori.

The next result shows that we can obtain an even periodic refinement of stacks such as BZ/2.

Proposition 2.15. If R and G are as above and R is Landweber exact, then there is a
canonical even periodic refinement of (Specπ0R)/G→MFG.

See also [32] for the example of KU -theory.
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AFFINENESS AND CHROMATIC HOMOTOPY THEORY 487

Proof. Consider an étale map SpecT → (Specπ0R)/G, from which we form the pullback

SpecT ′

��

�� Specπ0R

��
SpecT �� (Specπ0R)/G.

Since SpecT ′ is étale over Specπ0R, we have defined an even periodic, Landweber-exact E∞-
ringOtop(SpecT ′), which is étale overR. Since the groupG acts onR, it follows (Corollary 2.13)
that it acts on Otop(SpecT ′) in a compatible manner; we set

Otop(SpecT ) def= Otop(SpecT ′)hG.

Since G acts freely on SpecT ′ (that is, the map SpecT ′ → SpecT is a G-torsor), it follows
that there is no higher cohomology for theG-action on π∗Otop(SpecT ′). This is a consequence of
the fact that T → T ′ is a G-Galois extension of commutative rings: that is, after the faithfully
flat base-change T → T ′, we have an equivalence of T ′-modules with G-action, T ′ ⊗T T

′ �∏
G T

′. Moreover, coinduced representations of G have no higher cohomology. The homotopy
fixed-point spectral sequence thus degenerates and we get

π∗Otop(SpecT ) � (π∗(SpecT ′))G,

which implies that Otop(SpecT ′) is the desired even periodic, Landweber exact E∞-ring.
This procedure thus gives, for any étale map SpecT → (Specπ0R)/G, an even periodic,

Landweber-exact E∞-ring Otop(SpecT ), and this is the structure sheaf for the even periodic
refinement of (Specπ0R)/G desired.

This result has a converse. If X = (X,Otop) is an even periodic refinement of X →MFG,
and if X is the quotient (SpecR)/G for a finite group G acting on an affine scheme SpecR,
then X arises in this way from the G-action on the E∞-ring Otop(SpecR).

Let R be an E∞-ring with a G-action as above, let X be the associated even periodic
refinement of Specπ0R and let Y be the associated even periodic refinement of (Specπ0R)/G.
The next result describes quasi-coherent sheaves on Y in terms of X. Note first that since G
acts on R, it acts on the stable ∞-category Mod(R), in symmetric monoidal ∞-categories.

Proposition 2.16. One has equivalences of symmetric monoidal ∞-categories

QCoh(Y) � QCoh(X)hG � Mod(R)hG.

Proof. This is a formal descent-theoretic statement: in an appropriate ∞-category of
derived stacks, Y is the homotopy quotient (X)hG and the construction QCoh is defined so as
to send homotopy colimits to homotopy limits (of stable∞-categories). Let us prove it directly
in our setup.

We have an étale cover Specπ0R→ (Specπ0R)/G, and therefore

QCoh(Y) � holim
(
Mod(Otop(Specπ0R))

⇒ Mod(Otop(Specπ0R×(Spec π0R)/G Specπ0R))
→→→ · · · ).

Since Specπ0R→ (Specπ0R)/G is a G-torsor, the iterated fiber products that appear in the
above construction are precisely

G×G× · · · × Specπ0R,

the rings in question are
∏

Gn R, and the above cosimplicial diagram is the usual cobar
construction for homotopy fixed points: the construction R 	→ Mod(R) sends products in R
to products of ∞-categories.

 17538424, 2015, 2, D
ow

nloaded from
 https://londm

athsoc.onlinelibrary.w
iley.com

/doi/10.1112/jtopol/jtv005 by U
niversity O

f R
ochester, W

iley O
nline L

ibrary on [25/04/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



488 AKHIL MATHEW AND LENNART MEIER

In other words, to give a quasi-coherent sheaf on Y is equivalent to giving an R-module M ,
together with a G-action on M intertwining the G-action on R.

Example 2.17. The most basic example of all this comes from the Z/2-action on KU
described above. By Proposition 2.15, it endows the stack BZ/2 of one-dimensional tori with
an even periodic refinement. The global sections of the structure sheaf give KUhZ/2 � KO.

The ∞-category of quasi-coherent sheaves on the derived version of BZ/2 is precisely
Mod(KU)hZ/2, where the Z/2-action is by complex conjugation on KU -modules: it takes a
KU -module M and ‘twists’ the KU -action by Ψ−1. We will show later (as is well known) that
this is equivalent to the ∞-category Mod(KO).

Example 2.18 (Classical Galois descent). In classical commutative algebra, recall that if
R→ R′ is a morphism of rings which is a G-torsor for a finite group G (or rather, SpecR′ →
SpecR is a G-torsor), then we have an equivalence between the category of (ordinary) R-
modules and the homotopy fixed points of the G-action on the category of R′-modules.

Namely, given an R-module M , we can form the tensor product M ⊗R R′, which acquires
a G-action with G acting on the second factor. Conversely, given an R′-module M ′ with a
compatible G-action, the G-fixed points M ′G define an R-module, which is the inverse of the
previous functor.

This equivalence persists at the level of derived ∞-categories, with homotopy fixed points
replacing fixed points.

2.6. Coarse moduli spaces

It is crucial for our purposes to give criteria for when an algebraic (Artin) stack has finite
cohomological dimension. In a quasi-compact and separated setting, every scheme and even
every algebraic space has finite cohomological dimension. The best approximation of an
algebraic stack by an algebraic space is the coarse moduli space. Later in this subsection, we
will define the notion of tameness, which allows us to conclude that an algebraic stack already
has finite cohomological dimension, by relating it to its coarse moduli space. Throughout the
subsection, we choose implicitly a base scheme S.

Recall first that a coarse moduli space of an algebraic stack X is an algebraic space Y
together with a map f : X → Y which

(1) is initial among all maps from X to algebraic spaces and
(2) induces a bijection π0X(Spec k)→ π0Y (Spec k) for every algebraically closed field k,

where π0 denotes the set of isomorphism classes.

The following was first proved by Keel and Mori [29] and reformulated by Conrad in [11].

Theorem 2.19. Let X be an algebraic stack locally of finite presentation over a base
scheme S with finite inertia stack π : X ×X×SX X → X. Then X has a coarse moduli space
f : X → Y . The algebraic space Y is separated if X is separated, and the map f is proper and
quasi-finite. Moreover, the formation of coarse moduli spaces commutes with flat base change.

For example, every locally noetherian, separated Deligne–Mumford stack has finite inertia.
Indeed, by [31, Lemme 4.2], we know that the diagonal X → X ×S X of every Deligne–
Mumford stack is quasi-finite. Since X is separated, the diagonal is proper; hence, the diagonal
is finite.

In the following, we will always assume implicitly that our algebraic stacks are locally of
finite presentation over a base scheme S and have finite inertia.
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AFFINENESS AND CHROMATIC HOMOTOPY THEORY 489

A very convenient class of algebraic stacks is given by the so-called tame stacks as studied
in [1].

Definition 2.20. An algebraic stack X is called tame if the map f : X → Y to its coarse
moduli space induces an exact functor f∗ : QCoh(X)→ QCoh(Y ).

The question remains of how to decide whether a stack is tame. This was completely answered
in [1]. We begin with a few preliminary definitions and propositions. In the following, we ignore
the notation from the introduction and, for an ordinary stack X, we write QCoh(X) for the
ordinary (abelian) category of quasi-coherent sheaves on X. If G is a group scheme over X,
then we let QCohG(X) be the ordinary category of G-representations in QCoh(X).

Definition 2.21. A group scheme G→ S is linearly reductive if the functor QCohG(S)→
QCoh(S), F 	→ FG, sending an equivariant sheaf to its fixed points, is exact. Note that this is
equivalent to the tameness of the stack quotient S/G as QCohG(S) � QCoh(S/G).

Recall that the datum of an affine group scheme G over Spec R is equivalent to that of a
commutative Hopf algebra Γ over R. The group scheme G is commutative if and only if Γ
is cocommutative. For example, given a (discrete) abelian group G′, we can form the group
algebra R[G′]. The corresponding group scheme is called diagonalizable. Examples include μn

(with G′ = Z/nZ).

Theorem 2.22 ([1, Theorem 2.19]). Let G→ S be a finite, flat group scheme of finite
presentation. Then G is linearly reductive if and only if fpqc-locally, we can write G as a
semidirect product Δ �H, where Δ is diagonalizable and H is a constant of an order prime
to all residue characteristics of S.

Theorem 2.23 ([1, Theorem 3.2]). An algebraic stack X is tame if and only if for every
geometric point Spec k → X and object ξ ∈ X(Spec k), the automorphism group scheme
Autk(ξ) is linearly reductive over Spec k. Here, Autk(ξ) is defined to be the scheme equivalent
to the pullback of the inertia stack X ×X×SX X along the map Spec k → X classifying ξ and
the group structure is induced by the diagonal X → X ×S X.

Remark 2.24. Let q : Y → Spec k be a k-scheme and q∗ξ ∈ X(Y ) be the pullback of ξ.
Then Autk(ξ)(Y ) is isomorphic to the automorphism group of q∗ξ in the groupoid X(Y ).

Indeed, a morphism Y → Spec k ×X×SX X over Spec k consists of the choice of η ∈ X(Y )
together with two isomorphisms f : q∗ξ → η and g : q∗ξ → η in X(Y ) agreeing in S(Y ). A
morphism between (η, f, g) and (η′, f ′, g′) consists of i : η → η′ such that f ′ = if and g′ = ig.
Thus, every morphism Y → Spec k ×X×SX X over Spec k is isomorphic to a unique (q∗ξ, f :
q∗ξ → q∗ξ, id : q∗ξ → q∗ξ).

Suppose that X is Deligne–Mumford, so that the automorphism group schemes of geometric
points are étale and thus constant. ThenX is tame if and only if the orders of the automorphism
groups (at geometric points) are invertible on X.

Example 2.25. Let X be a Deligne–Mumford stack over a field of characteristic zero. Then
X is tame.

Example 2.26. If U is a scheme over a base scheme S and G is a finite group acting on
U such that |G| is invertible on S, then the quotient stack U/G is tame. For example, one can

 17538424, 2015, 2, D
ow

nloaded from
 https://londm

athsoc.onlinelibrary.w
iley.com

/doi/10.1112/jtopol/jtv005 by U
niversity O

f R
ochester, W

iley O
nline L

ibrary on [25/04/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



490 AKHIL MATHEW AND LENNART MEIER

take the moduli stack of elliptic curves over Z[16 ]. Indeed, Mell[16 ] �Mell(3)[16 ]/GL2(F3), where
Mell(3) is the moduli scheme of elliptic curves with level 3 structures.

Recall for the next proposition that a stack X is called quasi-compact if for every collection
{fi : Ui → X}i∈I of open immersions such that

∐
i∈I fi : Ui → X is surjective, there exists

a finite subset J ⊂ I such that
∐

j∈J fj : Uj → X is still surjective. We will see in the next
subsection that X is quasi-compact if and only if its coarse moduli space is.

Proposition 2.27. Let X be a tame algebraic stack that is quasi-compact and separated.
Then there is a natural number n such that Hi(X;F) = 0 for all i > n and all quasi-coherent
OX -modules F .

Proof. In the case of X an algebraic space, this is [51, 072B].
In the general case, denote by f : X → Y the map to the coarse moduli space and let F be

a quasi-coherent sheaf on X. Then we have a Leray spectral sequence

Hp(Y ;Rqf∗(F))⇒ Hp+q(X;F)

with Rqf∗(F) = 0 for q > 0. The result follows as Y is a quasi-compact and separated algebraic
space and thus has finite cohomological dimension.

Now we want to introduce a relative version of tameness. For this, we will no longer assume
our stacks to have finite inertia.

Definition 2.28. Let f : X → Y be a morphism of stacks. We call f tame if for every
geometric point ξ : Spec k → X, the kernel of the induced map Autk(ξ)→ Autk(f(ξ)) is finite
and linearly reductive over Spec k.

If X is Deligne–Mumford, then this is equivalent to assuming that for every ξ ∈ X(k) for
an algebraically closed field k, the kernel of the map AutX(k)(ξ)→ AutY (k)(f(ξ)) has order
coprime to the characteristic of k. Indeed, the automorphism group scheme of ξ is a discrete
group (scheme).

Recall for the next proposition that a map X → Y of stacks is quasi-compact if for every
map SpecA→ Y , the stack X ×Y SpecA is quasi-compact.

Proposition 2.29. Let f : X → Y be a quasi-compact, separated and tame morphism of
stacks, where we assume X to be algebraic, but for Y only that the diagonal Y → Y ×S Y is
representable by an algebraic stack. Then SpecA×Y X has finite cohomological dimension for
every map q : SpecA→ Y .

We do not assume that Y is an Artin stack because the moduli stack of formal groups MFG

is not an Artin stack. But it has still representable (even affine) diagonal.

Proof. Let q : SpecA→ Y be a morphism. We have to show that Z = X ×Y SpecA has
finite cohomological dimension. First note that X ×Y SpecA ∼= (X ×S SpecA)×Y ×SY Y is an
algebraic stack. Let now ξ : SpecR→ Z be an R-valued point. This corresponds to a point
ξX : SpecR→ X, a point ξA : SpecR→ SpecA, and an isomorphism φ : f(ξX)→ q(ξA). An
automorphism of this is an automorphism ψ of ξX such that φ ◦ f(ψ) = φ. This is equivalent
to ψ being in the kernel of Aut(ξ)(R)→ Aut(f(ξ))(R). In particular, it follows that Z has
quasi-finite inertia and all automorphism group schemes of geometric points of Z are kernels of
Autk(ξ)→ Autk(f(ξ)) for geometric points ξ of X. Since Z is separated, Z has actually finite
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AFFINENESS AND CHROMATIC HOMOTOPY THEORY 491

inertia. Thus, Z is tame. By Proposition 2.27, it follows that Z has also finite cohomological
dimension.

2.7. The Zariski topology

In this subsection, we will define and investigate the Zariski site of an algebraic stack. This is
important because certain properties only allow Zariski-descent and not étale or fpqc-descent
as we will see in Subsection 3.3.

Definition 2.30. Let X be an algebraic stack. The Zariski site of X is given by all open
immersions into X and open immersions between them, where a covering is a jointly surjective
map. Recall here that a map Y → X is an open immersion if it is representable and for every
map Z → X from a scheme, the map Y ×X Z → Z is an open immersion.

We define an algebraic stack X to be quasi-compact if every Zariski cover of X has a finite
subcover.

The Zariski site of an algebraic stack X is actually always equivalent to the site of open
subsets of the underlying space |X| of X. We will first define the space |X|, following [31] and
then prove this equivalence.

The points of |X| are equivalence classes of objects in the groupoids X(Spec k) for k a field.
Two such objects x1 ∈ X(Spec k1) and x2 ∈ X(Spec k2) are equivalent if there is a common
field extension K of k1 and k2 such that (x1)K and (x2)K are isomorphic in X(SpecK).
The open subsets of |X| are those of the form |U | for an open substack U of X. Recall that
substack means in particular that U(Z) is a full subcategory of X(Z) for every scheme Z. The
construction X 	→ |X| is functorial (see [31, Section 5] for details).

If X satisfies the conditions of Theorem 2.19, then the map X → Y in its coarse moduli
space induces a homeomorphism |X| → |Y |. Indeed, it is clearly a continuous bijection and it
is also closed as X → Y is proper.

Lemma 2.31. Let X be an algebraic stack and U → X be a presentation, that is, a
smooth surjective map from an algebraic space. Then |X| is the coequalizer of the maps
pr1,pr2 : |U | ×|X| |U | → |U |.

Proof. By [31, Remarque 5.3], the map |U | → |X| is surjective. By
[21, Corollary 14.34; 31, Proposition 5.6], this map is also open. By the definition of the
pullback, the images of two points

y1, y2 ∈ U(Spec k)

are isomorphic in X(Spec k) if and only if there are isomorphic

z1, z2 ∈ (U ×X U)(Spec k)

with pr1(z1) = y1 and pr2(z2) = y2. Thus, the images of y1 and y2 in |X| are equal if and
only if there is a point z in |U ×X U | with |pr1 |(z) = y1 and |pr2 |(z) = y2. Thus, |X| is the
coequalizer of the two maps

|pr1 |, |pr2 | : |U ×X U | −→ |U |.
As the map

|U ×X U | −→ |U | ×|X| |U |
is surjective by [31, Proposition 5.4(iv)], the result follows.
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492 AKHIL MATHEW AND LENNART MEIER

Proposition 2.32. The functor U 	→ |U | defines an order-preserving bijection between
open substacks of X and open subsets of |X|.

Proof. Let W ⊂ |X| be an open subset. Choose a presentation f : Y → X with Y an
algebraic space and f smooth and surjective. The preimage |f |−1(W ) is open in |Y |. By [51,
03BZ], there is a unique open algebraic subspace V of |Y | with |V | = |f |−1W . If

pr1,pr2 : Y ×X Y −→ Y

denote the two projections, we get likewise an open algebraic subspace V ′ of Y ×X Y
corresponding to

(|pr1 | ◦ |f |)−1(W ) = (|pr2 | ◦ |f |)−1(W ).

By stackifying the groupoid defined by

(pr1)|V ′ , (pr2)|V ′ : V ′ −→ V,

we get an open substack U of X. By the last lemma, we have |U | = W .
On the other hand, if U is an open substack of X, then the open substacks associated with
|f |−1|U | and |f ◦ pr1 |−1|U | agree with U ×X Y and U ×X Y ×X Y by [51, 03BZ]. As U equals
the substack of X associated with

pr1,pr2 : U ×X Y ×X Y −→ U ×X Y,

the proposition follows.

Corollary 2.33. The Zariski topology on an algebraic stack X is equivalent to the site
of open subsets of |X|. In particular, X is quasi-compact if and only if |X| is.

Proof. Note first that every open immersion intoX is equivalent overX to an open substack
by considering its image. Thus, we only have to show that {Ui → X} is a covering by open
substacks if and only if {|Ui| → |X|} is an open covering by open subsets. This follows directly
from the fact that one can test the surjectivity of a map between algebraic stacks on the
underlying topological spaces by [31, Proposition 5.4(ii)].

As a last point, we want to discuss non-vanishing loci.

Proposition 2.34. Let X be an algebraic stack and L be a line bundle on X. Let f ∈
Γ(X,L). Then we have the following.

(a) Let x1 : Spec k1 → X and x2 : Spec k2 → X be two morphisms for k1 and k2 fields. If
x1 and x2 define the same point in |X|, then (x1)∗f = 0 if and only if (x2)∗f = 0.

(b) The locus of points in |X| where f does not vanish is open.

Proof. As field extensions are always faithfully flat, part (a) follows easily.
For part (b), consider a presentation q : Y → X such that q∗L is trivial and Y is a scheme.

As discussed in the proof of Lemma 2.31, the map |q| : |Y | → |X| is open and surjective.
Furthermore, x∗(q∗f) = 0 if and only if (q ◦ x)∗f = 0 for x : Spec k → Y a point. Thus, we can
assume that L = OX and that X is a scheme. The result is well known in this case.

Definition 2.35. Let X be an algebraic stack and L be a line bundle on X. Let f ∈
Γ(X,L). Then we define the non-vanishing locus D(f) of f to be the open substack of X
corresponding to the non-vanishing locus of f on |X| by Proposition 2.32.

The following property will later be freely used.
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AFFINENESS AND CHROMATIC HOMOTOPY THEORY 493

Proposition 2.36. Let q : Y → X be a map of algebraic stacks. Let furthermore, L be a
line bundle on X and f ∈ Γ(X,L). Then there is a natural equivalence D(q∗f) � D(f)×X Y
where q∗f ∈ Γ(Y, q∗L) is the pullback.

Proof. The map pr2 : D(f)×X Y → Y is an open immersion. The image of |pr2 | in |Y |
agrees with those points y in |Y | such that |q|(y) ∈ |D(f)|. This agrees with |D(q∗f)|. Thus,
D(q∗f) agrees with the image of D(f)×X Y → Y in Y .

3. Abstract affineness results

The aim of this section is to give criteria when the global sections functor establishes an
equivalence between quasi-coherent sheaves and modules over the ring of global sections for a
derived stack. We call such derived stacks 0-affine (following [18]).

Definition 3.1. A derived stack X = (X,Otop) is called 0-affine if the global sections
functor

Γ: QCoh(X) −→ Mod(Γ(X,Otop))

is an equivalence of symmetric monoidal ∞-categories.

In particular, Γ is a symmetric monoidal functor (and not only a lax symmetric monoidal
functor) if (X,Otop) is 0-affine. In the next subsection, we will show that a derived stack X is
0-affine if and only if

(1) the functor of taking global sections Γ commutes with homotopy colimits in QCoh(X)
and

(2) the functor Γ is conservative, that is, whenever F ∈ QCoh(X) is such that Γ(X,F) is
contractible, then F is itself contractible.

In the following two subsections, we show that 0-affineness descends under certain (topolog-
ical) finiteness conditions fpqc-locally and under certain ampleness conditions Zariski-locally.
In the last subsection, we will show that 0-affineness ascends under affine morphisms and open
immersions.

The theorems in this section are abstract in the sense that they are not special to chromatic
homotopy theory. The main known techniques to guarantee the finiteness assumptions of these
abstract theorems, though, will use powerful nilpotence technology in chromatic homotopy
theory. This will be the topic of the following section.

One of the main issues can already be illustrated by the following example: If 2 is not
inverted, then the functor

E 	→ EhZ/2, Fun(BZ/2,Sp) −→ Sp,

from spectra with a Z/2-action to spectra, fails to commute with homotopy colimits, or
equivalently fails to send wedges to wedges (Example 3.2). The homotopy groups of EhZ/2

are the abutment of a homotopy fixed-point spectral sequence each of whose terms (the group
cohomology of π∗E) sends wedges in E to direct sums. However, the potential infiniteness
of the spectral sequence (in particular, the infinitude of the filtration) does not allow us to
conclude that the abutment sends wedges to wedges. In chromatic homotopy theory, however,
it is possible to show that the analogous filtrations are finite under certain conditions, as we
will see in the next section.
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494 AKHIL MATHEW AND LENNART MEIER

Example 3.2. We provide a simple illustration of the fact that the functor

E −→ EhZ/2, Fun(BZ/2,Sp) −→ Sp

fails to commute with wedges. Consider the spectrum X =
∨

n∈Z HZ/2[n], and give it the
trivial Z/2-action. Then we claim that

XhZ/2 = F(BZ/2,X) 
�
∨
n∈Z

F(BZ/2,HZ/2[n]).

In fact, this follows from the fact that π∗F(BZ/2,X) is an uncountable abelian group. We can
write

F(BZ/2,X) = F(RP
∞,X) � lim←−

m

F(RP
m,X),

and π∗F(RP
m,X) � H∗(RP

m; Z/2)⊗Z/2 π∗(X). As m→∞, the Milnor exact sequence shows
that π∗F(BZ/2,X) � lim←−m

H∗(RP
m; Z/2)⊗Z/2 π∗(X) is actually uncountable. If we regard X

as a ring spectrum such that π∗(X) � F2[u±1] with |u| = 1, then π∗(XBZ/2) � F2[u±1]�v� with
|v| = 0, while π∗(

∨
n∈Z F(BZ/2,HZ/2[n])) gives only the polynomial subring F2[u±1][v].

3.1. Schwede–Shipley theory

Let A be an abelian category with all colimits. If A = Mod(R) is the category of (discrete)
modules over a (not necessarily commutative) ring R, then A has a compact, projective
generator: that is, R itself. More precisely, the functor HomA(R, ·) : A → Ab (which assigns
to a module its underlying abelian group) commutes with all colimits, and is conservative.

It is a basic principle that module categories are characterized precisely by this property: that
is, an abelian category is equivalent to a category of modules precisely when it has a compact,
projective generator. This point of view explains the classical Morita theorem that describes
equivalences between categories of modules: they arise from compact, projective generators.

In the derived setting, the objects of study are not abelian categories, but presentable,
stable ∞-categories, and the question one asks is when such an ∞-category is the ∞-category
of modules over an A∞-ring. An answer in the language of stable model categories was given
by Schwede and Shipley in [48]; a reformulation of the statement in terms of ∞-categories is
in [40, Theorem 8.1.2.1].

Theorem 3.3 (Schwede–Shipley and Lurie). A presentable, stable ∞-category C is
equivalent to the ∞-category of modules over an A∞-ring if and only if it has a compact
generator X ∈ C: that is, X is such that HomC(X, ·) : C → Sp commutes with filtered homotopy
colimits and sends non-zero objects to non-contractible spectra.

Example 3.4 (Bĕilinson [10]). The derived category of quasi-coherent sheaves on pro-
jective space Pn is equivalent to the derived category of modules over the (discrete) ring
EndQCoh(Pn)(OPn ⊕ · · · ⊕ OPn(n)). Namely, Bĕilinson shows that OPn ⊕ · · · ⊕ OPn(n) is a
compact generator for the derived category of coherent sheaves on Pn.

We will also need a version in the symmetric monoidal case. When R is an E∞-ring, the
∞-category Mod(R) is symmetric monoidal, and it has the property that the unit object (that
is, R itself) is a compact generator. This is essentially the distinguishing feature of such module
categories according to the next result.

Theorem 3.5 ([40, Proposition 8.1.2.7]). Let (C,⊗,1) be a presentable stable, symmetric
monoidal ∞-category where the tensor product preserves homotopy colimits. The endomor-
phism ring R = End(1) has a canonical structure of an E∞-ring. If the unit object 1 ∈ C is a
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AFFINENESS AND CHROMATIC HOMOTOPY THEORY 495

compact generator, one has a symmetric monoidal equivalence

C � Mod(R), X 	−→ HomC(1,X),

between C and the category of R-modules.

Example 3.6. We asserted in Example 1.2 that the derived category of quasi-coherent
sheaves on the stack BGa (over the base field Q), or equivalently the derived category of Ga-
representations, was equivalent to Mod(Q[x−1]) via an adjunction of symmetric monoidal ∞-
categories. This is equivalent to the assertion that the structure sheaf itself, which corresponds
to the trivial one-dimensional representation of Ga, is a compact generator, and this in turn is
closely related to the unipotence of Ga.

Our strategy will be to apply the Schwede–Shipley theorem to the ∞-category of quasi-
coherent sheaves on a derived stack. More precisely, we will use the following corollary.

Corollary 3.7. A derived stack X = (X,Otop
X ) is 0-affine if and only if the global sections

functor

Γ: QCoh(X) −→ Mod(Γ(X,Otop
X ))

commutes with homotopy colimits and is conservative. Here, conservative means that for F ∈
QCoh(X,Otop

X ) a quasi-coherent Otop
X -module, Γ(F) = 0 already implies F = 0.

Proof. The global sections functor Γ is corepresented by Otop
X . Thus, Γ commutes with

filtered homotopy colimits and is conservative if and only if Otop
X is a compact generator of

QCoh(X,Otop
X ). By Theorem 3.5, the result follows. Note here that if Γ is an equivalence, then

it commutes automatically with all homotopy colimits.

3.2. fpqc-descent for 0-affineness

In this section, we describe a basic technique for showing that certain homotopy limits (given
by global sections functors) commute with homotopy colimits. The strategy is to first verify
that this holds after smashing with something that generates the original category as a thick
tensor-ideal; then it is possible to apply ‘descent’. We note that the idea of descent via thick
tensor-ideals has been explored further in [7, 42].

Let us first recall the definition of a thick tensor-ideal.

Definition 3.8. Given an E∞-ring R, a thick tensor-ideal of Mod(R) is a full subcategory
C ⊂ Mod(R) containing the zero object, such that:

(1) the fiber and cofiber of every morphism M → N in C is in C again;
(2) if X ⊕ Y is in C, then X ∈ C and Y ∈ C;
(3) if X ∈ C and Y ∈ Mod(R) is arbitrary, then X ⊗R Y ∈ C.

We say that an R-module M generates C as a thick tensor-ideal if C is the smallest thick
tensor-ideal of Mod(R) containing M .

Proposition 3.9. Let X = (X,Otop) be a derived stack whose underlying stack X is a
quasi-compact, separated Deligne–Mumford stack. Suppose that we have the following.
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496 AKHIL MATHEW AND LENNART MEIER

(1) There is a flat, affine morphism q : Y → X from an algebraic stack of finite
cohomological dimension.

(2) There is a Γ(X,Otop
X )-moduleM that generates Mod(Γ(X,Otop

X )) as a thick tensor-ideal
such that we have an isomorphism

π∗(Otop
X ⊗Γ(X,Otop

X ) M) ∼= q∗q∗π∗(Otop
X )

of π∗Otop
X -modules.

Then the global sections functor Γ from quasi-coherent Otop
X -modules to Γ(X,Otop

X )-modules
commutes with homotopy colimits.

Proof. We start by showing that the functor

F 	−→ Γ(X,F ⊗Γ(X,Otop
X ) M), QCoh(X) −→ Mod(Γ(X,Otop)),

commutes with homotopy colimits in F . Since the functor is an exact functor between stable
∞-categories, it suffices to show that it commutes with arbitrary direct sums (that is, wedges).

We will prove that the E2-term of the DSS

Hi(X,πj(F ⊗Γ(X,Otop
X ) M)) =⇒ πj−iΓ(X,F ⊗Γ(X,Otop

X ) M)

is concentrated in finitely many rows. In fact, by the isomorphism

π∗(Otop
X ⊗Γ(X,Otop

X ) M) ∼= q∗q∗π∗(Otop
X )

we know that π∗(Otop
X ⊗Γ(X,Otop

X ) M) is flat as a π∗Otop
X -module, since q is flat and affine. Note

further that, by the projection formula, the morphism

πkOtop
X ⊗OX

q∗q∗OX −→ q∗q∗πkOtop
X

is an isomorphism as q is affine. Thus, we have the following isomorphisms of OX -modules:

πj(F ⊗Γ(X,Otop
X ) M) ∼= (π∗F ⊗π∗Otop

X
π∗(Otop

X ⊗Γ(X,Otop
X ) M))j

∼= (π∗F ⊗π∗Otop
X

q∗q∗π∗(Otop
X ))j

∼= (π∗F ⊗π∗Otop
X

π∗Otop
X ⊗OX

q∗q∗OX)j

∼= πjF ⊗OX
q∗q∗OX .

As q is affine, the projection formula allows us to rewrite this as

q∗(q∗πjF ⊗OY
OY ) ∼= q∗q∗πjF .

Thus, we have a Leray spectral sequence

H l(Y, (Rmq∗)q∗πjF)⇒ H l+m(X,πj(F ⊗Γ(X,Otop
X ) M)).

By (1), the E2-term of this spectral sequence is concentrated in finitely many columns
(bounded by the cohomological dimension of Y ) and in the 0-row; hence, we see that
Hi(X,πj(F ⊗Γ(X,Otop

X ) M)) is zero for large i.
Since the E2-page of the spectral sequence for π∗Γ(X,F ⊗Γ(X,Otop

X ) M) commutes with direct
sums (as X is quasi-compact and separated; see Lemma 3.10), it follows thus that these
homotopy groups themselves commute with direct sums in F . Indeed, for a collection (Fi)i∈I

of quasi-coherent Otop
X -modules, the natural map⊕

i∈I

Γ(X,Fi) −→ Γ

(
X,
⊕
i∈I

Fi

)
induces an isomorphism on the E2-terms of the corresponding DSSs, and thus on the E∞-terms
and because of the finiteness of the filtration also on the abutment.
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AFFINENESS AND CHROMATIC HOMOTOPY THEORY 497

Let us consider now the collection C of all Γ(X,Otop
X )-modules T such that the functor

F 	−→ Γ(X,F ⊗Γ(X,Otop
X ) T ), QCoh(X) −→ Sp,

commutes with homotopy colimits. As we have just seen, M ∈ C. Since the composition of
homotopy colimit-preserving functors is homotopy colimit-preserving, it follows that C is an
ideal: If T ∈ C and T ′ is any Γ(X,Otop

X )-module, then T ⊗Γ(X,Otop
X ) T

′ ∈ C. Moreover, C is a
stable subcategory of Sp, and C is closed under retracts. (A retract of a functor that preserves
homotopy colimits preserves homotopy colimits.) AsM generates Γ(X,Otop

X )-modules as a thick
tensor-ideal, we see that C consists of all of Γ(X,Otop

X )-modules; in particular, Γ(X,Otop
X ) ∈ C

and Γ commutes with homotopy colimits.

In the last proof, we used the following algebraic lemma stating that cohomology commutes
with filtered colimits.

Lemma 3.10. Let X be a quasi-compact, separated stack. Then the cohomology group
functors Hi(X, ·) on the category of quasi-coherent sheaves on X commute with filtered
colimits.

Proof. Choose an affine, flat cover SpecA→ X. The iterated fiber products SpecA×X

SpecA, . . . are all affine schemes, so the cohomology of F is the cohomology of the cochain
complex associated to the cosimplicial abelian group

F(SpecA) ⇒ F(SpecA×X SpecA)
→→→ · · · ,

that is, the Cech construction. But this clearly commutes with filtered colimits in F .

Lemma 3.10 is analogous to the following fact: the homotopy fixed point functor

E 	−→ EhZ/2, Fun(BZ/2,Sp) −→ Sp

does commute with filtered homotopy colimits if we restrict to the subcategory of
Fun(BZ/2,Sp) whose underlying spectra have bounded-above (by some fixed value) homotopy
groups.

The arguments for the conservativity of Γ are related but different. We will present an
algebraic and a topological analog of the last proposition for this purpose. The latter will turn
out to be more powerful, yet is also more subtle regarding its input. But first we state a little
lemma.

Lemma 3.11. Let X = (X,Otop
X ) be a derived stack and assume that

Γ: QCoh(X) −→ Mod(Γ(X,Otop
X ))

commutes with homotopy colimits. Then the natural map

Γ(F)⊗Γ(X,Otop
X ) N −→ Γ(F ⊗Γ(X,Otop

X ) N)

is an equivalence for every Γ(X,Otop
X )-module N and every quasi-coherent Otop

X -module F .

Proof. This is by definition true for N = Γ(X,Otop
X ). As the class of Γ(X,Otop

X )-modules
for which it is true is closed under homotopy colimits, it is true for every Γ(X,Otop

X )-module
N .

In particular, we see that the left adjoint to Γ (that is, ‘tensoring up’) is fully faithful if Γ
commutes with homotopy colimits.
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498 AKHIL MATHEW AND LENNART MEIER

Proposition 3.12. Let X = (X,Otop) be a derived stack whose underlying stack X is a
quasi-compact, separated Deligne–Mumford stack. Suppose that we have the following.

(1) There is a faithfully flat, affine morphism q : Y → X from a quasi-affine scheme of
cohomological dimension at most 1.

(2) There is a Γ(X,Otop
X )-module M such that we have an isomorphism

π∗(Otop
X ⊗Γ(X,Otop

X ) M) ∼= q∗q∗π∗(Otop
X ).

(3) The global sections functor Γ: QCoh(X,Otop
X )→ Mod(Γ(X,Otop

X )) commutes with
homotopy colimits.

Then the global sections functor Γ is conservative.

By Proposition 3.9, the last condition is satisfied if M generates Mod(Γ(X,Otop
X )) as a thick

tensor-ideal.

Proof. Let F ∈ QCoh(X,Otop
X ) and assume Γ(F) = 0. We have to show that πjF = 0 for

every j ∈ Z.
By the last lemma, Γ(F ⊗Γ(X,Otop

X ) M) � Γ(F)⊗Γ(X,Otop
X ) M = 0. As in the last proof, we

have

πj(F ⊗Γ(X,Otop
X ) M) ∼= q∗q∗πjF .

Thus, the DSS for F ⊗Γ(X,Otop
X ) M has E2-term isomorphic to

Hi(X; q∗q∗πjF) ∼= Hi(Y ; q∗πjF).

As Y has cohomological dimension at most 1, this spectral sequence degenerates at E2. Since it
converges to 0, it follows that H0(Y ; q∗πjF) = 0. As Y is quasi-affine, this implies q∗πjF = 0
by [21, Proposition 13.80] and thus πjF = 0 as q is faithfully flat.

For the next proposition, we need the following definition.

Definition 3.13. We call a morphism f : Y→ X of derived stacks quasi-compact or
separated if the underlying map of classical algebraic stacks is. We call it (faithfully) flat
if the map f0 : Y → X of the underlying stacks is and the map f∗πkOtop

X → πkOtop
Y is an

isomorphism for every k ∈ Z.

Lemma 3.14. Let f : Y→ X be a flat map of derived stacks. Then

π∗f∗F ∼= f∗π∗F
for every quasi-coherent Otop

X -module F .

Proof. Recall that f∗F is defined to be f−1F ⊗f−1Otop
X
Otop

Y . As f is flat, π0Otop
Y
∼= OY is

a flat module over π0f
−1Otop

X
∼= f−1OX . By the Künneth spectral sequence, it follows that

π∗(f−1F ⊗f−1Otop
X
Otop

Y ) ∼= f−1(π∗F)⊗f−1OX
OY = f∗π∗F .

Lemma 3.15. Let f : Y→ X be a faithfully flat map of derived stacks. Then the functor

f∗ : QCoh(X) −→ QCoh(Y)

is faithful.
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AFFINENESS AND CHROMATIC HOMOTOPY THEORY 499

Proof. Let F be a quasi-coherent Otop
X -module such that f∗F is equivalent to the 0-object.

We need to show that π∗F = 0. By the last lemma, we know that f∗π∗F ∼= π∗f∗F = 0. Since
f is faithfully flat, the result follows.

Proposition 3.16. Let X = (X,Otop
X ) be a derived stack whose underlying stack X is

quasi-compact, separated, and Deligne–Mumford. Suppose that given a faithfully flat, quasi-
compact and separated morphism q : Y→ X from a derived stack Y = (Y,Otop

Y ).
Assume the following.

(1) The global sections functor Γ: QCoh(Y)→ Mod(Γ(Y,Otop
Y )) is conservative.

(2) There is a Γ(X,Otop
X )-module M such that we have an equivalence

Otop
X ⊗Γ(X,Otop

X ) M −→ q∗Otop
Y

of Otop
X -modules.
(3) The global sections functor Γ: QCoh(X,Otop

X )→ Mod(Γ(X,Otop
X )) for X commutes

with homotopy colimits.

Then the global sections functor Γ for X is conservative.

Proof. Let F ∈ QCoh(X,Otop
X ) and assume Γ(F) = 0. We have to show that F = 0 or,

equivalently, q∗F = 0 by the last lemma.
By assumption, we have

F ⊗Γ(X,Otop
X ) M � F ⊗Otop

X
Otop

X ⊗Γ(X,Otop
X ) M � F ⊗Otop

X
q∗Otop

Y .

By the projection formula (see [39, Remark 1.3.14]), this is equivalent to

q∗(q∗F ⊗Otop
Y
Otop

Y ) � q∗q∗F .
Thus, we get

Γ(q∗F) � Γ(q∗q∗F)
� Γ(F ⊗Γ(X,Otop

X ) M)

� Γ(F)⊗Γ(X,Otop
X ) M

� 0.

Since the global sections functor on (Y,Otop
Y ) is conservative, it follows that q∗F = 0.

To apply the last proposition, we need as input a good supply of derived stacks with
conservative global sections functor. In particular, this will turn out to be the case when
the underlying stack X is a quasi-affine scheme. In the next subsection, we will show that this
criterion is Zariski-local in certain cases.

3.3. Zariski-descent for 0-affineness

This subsection is concerned with understanding to what extent 0-affineness can be checked
Zariski-locally. In this paper, only the quasi-affine case of Corollary 3.25 will be used, but the
other criteria are still useful in other situations.

Recall that for 0-affineness it is sufficient that the global sections functor commutes with
homotopy colimits and is conservative. The former property can (nearly) always be checked
Zariski-locally.

Proposition 3.17. Let X = (X,Otop
X ) be a derived stack with underlying separated and

quasi-compact Deligne–Mumford stack X. For {Ui → X}i∈I , a finite Zariski covering by open
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500 AKHIL MATHEW AND LENNART MEIER

substacks, we get induced derived stacks Ui = (Ui,Otop
Ui

). Assume that the global sections
functors

Γ: QCoh(Ui) −→ Mod(Γ(Ui,Otop
Ui

))

for all Ui commute with homotopy colimits. Then the global sections functor

Γ: QCoh(X) −→ Mod(Γ(X,Otop
X ))

for X commutes with homotopy colimits as well.

The idea is that the global sections over X are obtained as a finite homotopy limit of the
sections over the Ui and their intersections. It is important here that a Zariski cover is used.

Proof. Observe that the pushforward along an open immersion of derived stacks commutes
with homotopy colimits by [37, Example 2.5.6 and Proposition 2.5.12]. It follows easily that
the global sections functor for every open substack of each Ui also commutes with homotopy
colimits. Observe furthermore, that restriction of a quasi-coherent sheaf to an open substack
commutes with arbitrary homotopy colimits. Thus, the functor

QCoh(X) −→ Sp, F 	−→ F(U)

commutes with arbitrary homotopy colimits for any substack U of some Ui.
Let F be an Otop

X -module. By Proposition A.18 and Remark A.19, the canonical map

Γ(X,F) −→ holimPI
opF(CU,c)

is an equivalence. Here, PI denotes the (finite) poset of non-empty subsets of I and CU,c(S) =⋂
i∈S Ui for a subset S ⊂ I.
As before, it is enough to show that the global sections functor

Γ: QCoh(X) −→ Mod(Γ(X,Otop
X ))

commutes with direct sums. So let (Fj)j∈J be a family of quasi-coherent Otop
X -modules.

Consider the commutative diagram⊕
j∈J Γ(Fj) ��

��

Γ(
⊕

j∈J Fj)

��⊕
j∈J holim∅	=S⊂IFj(CU,c(S)) �� holim∅	=S⊂I

⊕
j∈J Fj(CU,c(S)).

As just discussed, the vertical arrows are equivalences. Moreover, the lower horizontal arrow is
an equivalence since finite homotopy limits commute with arbitrary homotopy colimits (in a
stable ∞-category). Thus, the upper horizontal arrow is an equivalence as well.

Now we turn to the conservativeness of Γ. This will depend on the notion of an ample line
bundle, which in turn, depends on the notion of non-vanishing loci as in Definition 2.35.

Definition 3.18. Let X be a quasi-compact and separated Deligne–Mumford stack with
coarse moduli space f : X → Y . We call then a line bundle L on X ample if Y is a scheme and
the non-vanishing loci D(x) of sections x ∈ Γ(X,L⊗k) form a basis of the Zariski topology of
X. This agrees with the usual definition if X is a scheme by [21, Proposition 13.47].

Let X = (X,Otop
X ) be a derived stack. Let L be a locally free Otop

X -module of rank 1. We say
that L is ample if the non-vanishing loci D(x) of the reductions x ∈ Γ(πk(L⊗l)) of elements
x ∈ πkΓ(X,L⊗l) form a basis of the Zariski topology of X.
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AFFINENESS AND CHROMATIC HOMOTOPY THEORY 501

Proposition 3.19. Let X be a quasi-compact and separated Deligne–Mumford stack and
L be a line bundle on X. Then the following are equivalent.

(1) The line bundle L is ample.
(2) There are finitely many sections xi ∈ Γ(X,L⊗ki) with ki � 1 such that the D(xi) have

affine coarse moduli space and cover X.
(3) The affine non-vanishing lociD(x) of sections x ∈ Γ(X,L⊗k) form a basis of the Zariski

topology.

Proof. This is true if X is a scheme by [21, Propositions 13.47 and 13.49]. As the Zariski
topologies of X and its coarse moduli space Y agree, we have only to show in the cases (2)
and (3) that the coarse moduli space Y is a scheme. This follows from [11, Theorem 3.1].

Example 3.20. The line bundle ω ∼= π2Otop on Mell is ample. Indeed, the non-vanishing
loci of c4 ∈ Γ(ω⊗4) and Δ ∈ Γ(ω⊗12) have affine coarse moduli space and cover Mell. More
details about (Mell,Otop) will be given in Section 7.

Let X = (X,Otop
X ) be an even periodic derived stack, f ∈ πkΓ(X,Otop

X ) and f ∈ Γ(X,πkOtop
X )

be its reduction. Let F be a quasi-coherent Otop
X -module. By the theory of [40, Section 8.2.4],

we can consider the localization

Γ(X,F) −→ Γ(X,F)[1/f ].

This has the following universal property: let M be a Γ(X,Otop
X )-module such that f operates

invertible on π∗M . Then the induced map

Map(Γ(X,F)[1/f ],M) −→ Map(Γ(X,F),M)

is an equivalence.
Now assume that the global sections functor Γ: QCoh(X)→ Mod(Γ(X,Otop

X )) commutes
with homotopy colimits. Then the presheaf

F [1/f ] : U 	−→ F(U)⊗Γ(X,Otop
X ) Γ(X,Otop

X )[1/f ] � F(U)[1/f ]

is already a sheaf by Lemma 3.11. As F → F [1/f ] is an equivalence étale locally on D(f), we
can conclude thus that F(D(f)) � F(D(f))[1/f ]. In particular, there is thus a canonical map
Γ(F)[1/f ]→ F(D(f)).

Lemma 3.21. Let X = (X,Otop
X ) be an even periodic, quasi-compact, and separated derived

stack. Assume that the global sections functor commutes with homotopy colimits. Let f ∈
πkΓ(X,Otop

X ) and F be a quasi-coherent Otop
X -module. Then the canonical map

Γ(X,F)[1/f ] −→ F(D(f))

is an equivalence, where f ∈ Γ(πkOtop
X ) is the reduction of f .

In other words, restricting to a basic open affine gives the corresponding localization at the
level of sections.

Proof. First assume that X is an affine derived scheme with π2Otop
X trivial. In particular,

we can assume f to be in π0Γ(X,Otop). By the definition of a derived scheme, we know that
Γ(Otop

X )[1/f ] � Otop
X (D(f)). Now the result follows by the quasi-coherence of F .
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502 AKHIL MATHEW AND LENNART MEIER

Now consider the general case. Let p : U→ X be an affine étale cover with p affine and such
that π2Otop

X is trivial on U. Define pn : Un = U×Xn → X. We have a commutative diagram

Γ(F)[1/f ]

��

�� F(D(f))

��
holim(F(Un)[1/p∗nf ]) �� holimF(D(p∗nf)) � holimF(Un ×X D(f)).

The vertical maps are equivalences since F [1/f ] and F are sheaves. The lower horizontal map
is an equivalence by the affine case. Thus, the result follows.

Proposition 3.22. Let X = (X,Otop
X ) be an even periodic, quasi-compact, separated

derived stack. Assume that the global sections functor commutes with homotopy colimits
and that Otop

X is ample. Let {Ui → X}i∈I → X be a Zariski covering and Ui = (Ui,Otop) be
the induced open derived substacks. Assume that the global sections functor for every Ui is
conservative. Then the global sections functor

Γ : QCoh(X) −→ Mod(Γ(X,Otop
X ))

for X is conservative.
In other words: under the assumptions, the conservativity of the global sections functor is a

Zariski-local property.

Proof. By shrinking the Ui, we can assume that Ui = D(xi) ⊂ X, where xi ∈ Γ(πki
Otop

X ) is
the reduction of an element xi ∈ πki

Γ(X,Otop
X ). By Proposition 3.28, this preserves the property

that the global sections functor is conservative.
Now let F be a quasi-coherent Otop

X -module. By the last lemma, we know that

F(D(xi)) � Γ(F)[1/xi] = 0.

As the global sections functor is conservative on each D(xi), we have F|D(xi) = 0 for every
i ∈ I. Since F is a sheaf, it follows that F = 0.

Next, we want to prove an algebraic criterion for ampleness of the structure sheaf Otop
X . We

need first a simple lemma.

Lemma 3.23. Let X be a quasi-compact and separated Deligne–Mumford stack, L be
a line bundle on X and x ∈ H0(X;L). Then Hi(D(x);L⊗∗) ∼= Hi(X;L⊗∗)[1/x] for L⊗∗ ∼=⊕

n∈Z L⊗n.

Proof. Let j : D(x)→ X be the inclusion of the non-vanishing locus. Define the quasi-
coherent graded OX -module L⊗∗[1/x] as the colimit over

L⊗∗ rx−→ L⊗∗ rx−→ · · · ,
where rx denotes multiplication by x. Then the map L⊗∗ → j∗j∗L⊗∗ factors over L⊗∗[1/x].
The map L⊗∗[1/x]→ j∗j∗L⊗∗ is an isomorphism as it is on affine schemes with L trivial. As
j is affine, we have an isomorphism

H∗(X; j∗j∗L⊗∗) ∼= H∗(D(x); j∗L⊗∗).

It remains to show that cohomology commutes with localization at x on X. This follows
from the fact that cohomology commutes with filtered colimits, by Lemma 3.10.
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AFFINENESS AND CHROMATIC HOMOTOPY THEORY 503

Proposition 3.24. Let X = (X,Otop
X ) be an even periodic, quasi-compact and separated

derived Deligne–Mumford stack. Assume that πkOtop
X is ample for some k ∈ Z and that the

length of the differentials in the DSS for Otop
X is bounded. Then Otop

X itself is ample.

Proof. Consider some x ∈ H0(X,πk(Otop
X )) such that the non-vanishing locus D(x) has

affine coarse moduli space. We want to show that some power of x is a permanent cycle in the
DSS for Otop

X . Note that k has to be even.
Let di1(x) be the first non-zero differential of x. Consider the morphism X→ XQ =

(XQ, (Otop
X )Q) and the image xQ of x in H0(XQ, πk(Otop

X )Q). We show first that di1xQ is
annihilated by a power of xQ. Denote by j : D(xQ)→ XQ the inclusion. Then we have a
map of spectral sequences DSS((Otop

X )Q)→ DSS(j∗j∗(Otop
X )Q). As j∗ is affine, the E2-term

of the latter is isomorphic to H∗(D(xQ); j∗π∗(Otop
X )Q). As shown in the last lemma, this is

isomorphic to H∗(X;π∗(Otop
X )Q)[1/xQ] since π2k(Otop

X )Q
∼= (π2Otop

X )⊗k
Q . On the other hand,

Hi(D(xQ); j∗π∗(Otop
X )Q) = 0 for i > 0 as the coarse moduli space of D(xQ) is affine and D(xQ)

is tame by Example 2.25 as it is rational. Thus, indeed, di1(xQ) has to be annihilated by a
power of xQ.

For m ∈ N, we have di1x
m = mxm−1di1(x). Hence, di1x

m
Q = 0 for some m and thus di1x

m

is l-torsion for some l. It follows that di1(x
lm) = lxm(l−1)di1(x

m) = 0. The argument can be
repeated for the first non-trivial differential of xlm, etc. and comes to an end somewhere as the
length of the differentials is bounded. Thus, there is some power xK of x that is a permanent
cycle and D(xK) = D(x).

As the D(x) with affine coarse moduli space form the basis of the Zariski topology by
Proposition 3.19, Otop

X is ample.

The existence of an upper bound for the length of differentials in the DSS is actually closely
related to the cocontinuity of Γ. One situation where these conditions are trivially fulfilled is
that of bounded cohomological dimension, which is satisfied for a derived scheme.

Corollary 3.25. Let X = (X,Otop
X ) be an even periodic, quasi-compact and separated

derived scheme X. Assume that πkOtop
X is an ample OX -module for some k ∈ Z. Then the

global sections functor

Γ: QCoh(X) −→ Mod(Γ(X,Otop
X ))

is an equivalence. In particular, this is true for X quasi-affine as every line bundle is ample on
a quasi-affine scheme.

Proof. There is an n � 0 such that Hi(X;πlOtop
X ) = 0 for i > n and all l ∈ Z. The global

sections functor Γ commutes with homotopy colimits as the DSS for Otop
X is concentrated in

finitely many rows. Likewise it follows that the length of differentials in the DSS for Otop
X is

bounded. By the last proposition, it follows that Otop
X is ample. Furthermore, it is certainly

Zariski-locally true that the global sections functor is conservative (as it is true on every
affine scheme). Thus, we can apply Proposition 3.22 to see that Γ is conservative. This implies
0-affineness by Corollary 3.7.

Remark 3.26. In the quasi-affine case, Corollary 3.25 was already proved in [37,
Propositions 2.4.4 and 2.4.8] for connective spectral Deligne–Mumford stacks. From this, the
even periodic case can be easily recovered by taking the connective cover. Any (possibly non-
connective) spectral Deligne–Mumford stack has a connective cover it maps to (just as any
E∞-ring R receives a map from its connective cover τ�0R), and any quasi-coherent sheaf can
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504 AKHIL MATHEW AND LENNART MEIER

be pushed forward to the connective cover. The global sections are the same in either case. In
this way, one can always reduce to the case in which the derived stack is connective.

Our original formulation of our main results was restricted to the case of cohomological
dimension 1. We are indebted to Jacob Lurie for explaining to us his (only slightly different)
argument for Corollary 3.25, which consequently yielded a stronger formulation of Theorem 4.1.

Example 3.27. Consider the compactified moduli stack of elliptic curves Mell(n) with
level n structure. By work of Goerss–Hopkins and Hill–Lawson [23], this can be refined to an
even periodic derived stack (Mell(n),Otop) with π2Otop ample. Thus it follows directly from
Corollary 3.25 that for n � 3, when Mell(n) is a scheme, (Mell(n),Otop) is 0-affine. As explained
in Section 7, this is actually true for all n.

3.4. Ascent for 0-affineness

In this subsection, we note a couple of additional easy criteria for 0-affineness.

Proposition 3.28. Suppose that X = (X,Otop) is a 0-affine derived stack. Let U ⊂ X be
an open substack and let U = (U,Otop

U ) be the induced derived stack. Then U is also 0-affine.

Proof. Given a quasi-coherent sheaf F on U, if its global sections are zero, then we show
F = 0 as follows: form the pushforward j∗F along the inclusion j : U ↪→ X. By assumption,
Γ(j∗F) � Γ(F) � 0, so that j∗F � 0 by the 0-affineness of X. Since j∗j∗F � F , it follows that
F � 0.

Furthermore, the pushforward functor j∗ commutes with homotopy colimits by [37, Example
2.5.6 and Proposition 2.5.12]. Thus, Γ(U,−) � Γ(X,−) ◦ j∗ also commutes with homotopy
colimits.

Proposition 3.29. Let f : Y→ X be a morphism of derived stacks for X = (X,Otop
X ) and

Y = (Y,Otop
Y ) such that the underlying morphism Y → X is affine. If X is 0-affine, then Y is

0-affine.

Proof. The conservativeness of Γ(Y,−) follows again, because the pushforward along Y→
X is a conservative functor. Indeed, we can choose an étale cover {Ui → X}i∈I by affine schemes.
Thus, {Ui ×X Y → Y }i∈I is an étale cover of Y . If f∗F = 0 for a quasi-coherent sheaf F on
Y, then f∗F(Ui) = F(Ui ×X Y ) = 0 for every i ∈ I. Thus, F = 0.

Furthermore, the pushforward functor f∗ commutes with homotopy colimits by [37, Example
2.5.6 and Proposition 2.5.12]. Thus, Γ(Y,−) � Γ(X,−) ◦ f∗ also commutes with homotopy
colimits.

4. Affineness results in chromatic homotopy theory

The main result of this section is the following theorem.

Theorem 4.1. Let X be a noetherian and separated Deligne–Mumford stack, equipped
with a flat map X →MFG that is quasi-affine. Let X be an even periodic refinement of X.
Then the derived stack X = (X,Otop) is 0-affine.

Recall here that a map X →MFG is quasi-affine if for every map Spec A→MFG the
pullback Spec A×MF G

X is quasi-affine, that is, a quasi-compact open subscheme of an affine
scheme.
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AFFINENESS AND CHROMATIC HOMOTOPY THEORY 505

Remark 4.2. The condition that X is separated is not very restrictive. Recall that X is
separated if its diagonal is universally closed. This implies for (locally noetherian) Deligne–
Mumford stacks only that the diagonal is finite, but not that it is a closed immersion.
The Deligne–Mumford stacks most commonly considered by algebraic geometers, like the
(compactified) moduli stack of elliptic curves or PEL-Shimura stacks, are separated.

We will first show Theorem 4.1 locally at every prime p using Propositions 3.9 and 3.16. This
relies crucially on the fact that Morava E-theory En generates the En-local stable homotopy
category as a thick tensor-ideal, which in turn follows from the nilpotence technology to be
reviewed in the next subsection. We will then glue the p-local results together to deduce an
integral statement.

4.1. Nilpotence technology

The power of the use of formal groups in stable homotopy theory is especially illustrated by
the nilpotence and periodicity theorems of [14, 25], and their cousin, the Hopkins–Ravenel
smash product theorem.

Theorem 4.3 (Nilpotence theorem [14]).

(1) Let R be a (not necessarily structured) ring spectrum and let α ∈ π∗R. Suppose that
α maps to zero in MU∗(R). Then α is nilpotent.

(2) Let f : ΣkX → X be a self-map of a finite spectrum. Then f is nilpotent if and only if
MU∗(f) is nilpotent.

In particular, the association X 	→ F∗(X), from spectra to quasi-coherent sheaves on MFG,
is sufficient to detect all maps except up to nilpotence, at least for finite spectra. Conversely,
many of the ‘periodicities’ visible in the geometry of MFG can be realized topologically, via
the periodicity theorem of [25].

Next, recall that a subcategory of the ∞-category Spω
(p) of finite p-local spectra is called

thick if it is stable and closed under retracts.

Theorem 4.4 (Thick subcategory theorem [25]). The thick subcategories of Spω
(p) are

in natural bijection with the reduced, closed substacks of (MFG)(p) of finite presentation. In
particular, if a thick subcategory C contains a spectrum with non-trivial rational homology,
then C = Spω

(p).

The next result is the strongest finiteness theorem that we need. Let En be the nth
Morava E-theory ; then En is a Landweber-exact, even periodic E∞-ring with π0En �
W (Fpn)[[v1, . . . , vn−1]]. Given a spectrum, the functor of En-localization can be thought of
as (after localizing at p) restriction to the open substack of (MFG)(p) parameterizing formal
groups of height at most n.

Theorem 4.5 (Smash product theorem [45]). The En-localization functor Ln : Sp→ Sp
commutes with homotopy colimits, so that for any spectrum X, the natural map

X ⊗ LnS
0 −→ LnX

is an equivalence.

Note here that En has the same Bousfield class as the Johnson–Wilson theory E(n) by [27,
Proposition 5.3].
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506 AKHIL MATHEW AND LENNART MEIER

Theorem 4.5 is essentially a statement about certain homotopy colimits and limits commuting
with each other, and is crucial to describing the structure of the ∞-category LnSp of En-local
spectra. A general reference for this category is [27]. The smash product theorem implies that
LnSp is a full subcategory of Sp which is closed under homotopy limits and colimits. The
∞-category LnSp has much better finiteness properties than the category of spectra (or even
the category of p-local spectra), as we will explain next.

We will need various slightly stronger versions of Theorem 4.5 (which are ultimately the
ingredients used to prove it) for our purposes. We can recover the En-local sphere LnS

0 via
the totalization of the classical cobar construction

En ⇒ En ⊗ En
→→→ · · · ,

whose associated Tot spectral sequence is the En-local ANSS. A strong form of the smash
product theorem implies that this spectral sequence (drawn with the Adams indexing (s, t− s))
degenerates at a finite stage with a horizontal vanishing line. More generally, this is true for
any En-local spectrum replacing LnS

0 by the following result.

Theorem 4.6 ([27, Proposition 6.5]). There is a uniform bound N = N(n) such that given
any En-local spectrum X, the ANSS for X satisfies Es,t

N = 0 for s > N .

We can formulate a closely related statement in the language of pro-spectra. The∞-category
Pro(Sp) is the ∞-category of pro-objects in Sp in the sense, for example, of [33, Chapter 5]: a
pro-spectrum is a formal filtered homotopy inverse limit of spectra.

Given a cosimplicial diagram F : Δ→ Sp, we can form the homotopy inverse limit TotF in
spectra, but we can also do it in pro-spectra. This amounts to considering the Tot tower

· · · −→ Tot2F −→ Tot1F −→ Tot0F,

as a pro-object. There is a fully faithful inclusion of ∞-categories Sp→ Pro(Sp). Pro-spectra
in the image of Sp are called constant. Another reformulation of the smash product theorem
is the following.

Theorem 4.7 (Hopkins–Ravenel [45, Chapter 8]). The pro-spectrum associated to the
cobar construction on En is constant with value LnS

0.

The proof of this is explained in Lectures 30 and 31 of Lurie’s course on chromatic
homotopy theory [35]. As explained in [35, Lecture 30], this is closely related to (and in fact
follows from) the horizontal vanishing line in the Ln-local Adams–Novikov spectral sequence
(Theorem 4.6), using a delicate criterion for constancy of pro-spectra due to Bousfield. In
particular, Theorem 4.6 is actually used to prove Theorem 4.7.

Theorem 4.7 states that there is an equivalence of pro-objects between the Tot-tower for
the cobar construction and the constant pro-object with value LnS

0. In particular, the natural
maps

LnS
0 −→ Totm((E⊗(•+1)

n ))

have, for large enough m, sections up to homotopy. For further discussion, see also [35, Lecture
30] and, for connections between these ideas and descent theory, [42, Sections 3 and 4].

In particular, we get the following corollary, which is the piece of the nilpotence technology
that we shall use.

Corollary 4.8. The spectrum En generates LnSp as a thick tensor-ideal.
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AFFINENESS AND CHROMATIC HOMOTOPY THEORY 507

Proof. Let C ⊂ LnSp be a thick tensor-ideal containing En. This implies that the partial
totalizations Totm of the cobar construction on En belong to C. Since C is closed under retracts,
it follows that LnS

0 ∈ C and thus C = LnSp.

A similar result is discussed in [26, Theorem 5.3], where it is shown that every spectrum in
LnSp is ‘E(n)-nilpotent’, or equivalently belongs to the thick tensor-ideal generated by E(n).

Remark 4.9. Similarly, the nilpotence theorem is closely related to the statement that for
any connective spectrum X, the (MU -based) Adams–Novikov spectral sequence for X has a
vanishing curve of slope tending to zero as t− s→∞ at E∞. See [24] for further discussion
of this. However, the MU -based cobar construction (whose homotopy inverse limit is S0) is
definitely non-constant, because of the existence of non-trivialMU -acyclic spectra (for instance,
the Brown–Comenentz dual I of the sphere; see [25, Appendix B]).

4.2. The p-local case

Let X be a noetherian separated Deligne–Mumford stack over Z(p) with a flat map to MFG. In
this section, everything is implicitly localized at p: for instance, MFG really means MFG ×Spec Z

Spec Z(p).
We want to find in this case instances of the abstract theorems of the last section. We begin

by choosing an n ∈ N such that the flat map X →MFG factors through the open substack
M�n

FG ⊂MFG of formal groups of height at most n. We can do this because we have a descending
sequence of closed substacks

MFG ⊃M�1
FG ⊃M�2

FG ⊃ · · · ,
where each M�n+1

FG is cut out by the vanishing of a regular element on M�n
FG. Since X is

noetherian, X ×MF G
M�m

FG must be empty for m� 0.
Observe the following (well-known) lemma.

Lemma 4.10. Let f : Spec R→MFG be a flat map, which factors over M�n
FG, and ER be

the corresponding Landweber exact spectrum. Then ER is En-local.

Proof. Let T be a spectrum. The MU∗-comodule (MU∗T, (MU ⊗MU)∗(T )) defines a
Z/2-graded quasi-coherent sheaf F∗ on MFG (see Subsection 2.1 for a discussion). Then
π∗(ER ⊗ T ) ∼= f∗F∗(Spec R). Denote by q the canonical map Spec π0En →M�n

FG ⊂MFG. So,
likewise, we have an isomorphism π∗(En ⊗ T ) ∼= q∗F∗(Spec R). Now assume that T is En-
acyclic. Thus, q∗F∗ = 0 and hence, since Spec π0En →M�n

FG is faithfully flat, F∗|M�n
F G

= 0.
This implies f∗F∗ = 0 and thus ER ⊗ T = 0. Thus

[T,ER] = 0

for every En-acyclic spectrum T , since ER (as a ring spectrum) is local with respect to itself.

Now let X = (X,Otop
X ) be an even periodic refinement of X →MFG. By the lemma, for

every étale map SpecR→ X, the E∞-ring Otop(SpecR) is En-local. Since En-local spectra
are closed under homotopy limits, thus for every étale map Y → X, the E∞-ring Otop(Y ) is
En-local. We see that the whole argument takes place in the En-local category.

Proposition 4.11. Let X be a noetherian and separated Deligne–Mumford stack over a
p-local ring, equipped with a flat and tame map X →MFG. Let X = (X,Otop

X ) be an even
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508 AKHIL MATHEW AND LENNART MEIER

periodic refinement of X. Then the functor of taking global sections

Γ: QCoh(X) −→ Mod(Γ(X,Otop))

commutes with homotopy colimits.

Proof. Let Y = X ×MF G
Specπ0En. This has finite cohomological dimension by Proposi-

tion 2.29 as the mapX →MFG is tame. It is also quasi-compact and separated asX, Specπ0En

and the diagonal of MFG are. We want to apply Proposition 3.9 with M = Γ(X,Otop
X )⊗ En. It

follows from Corollary 4.8 that M generates Mod(Γ(X,Otop
X )) as a thick tensor-ideal. We have

to show that
π∗(Otop

X ⊗Γ(X,Otop
X ) M) ∼= π∗(Otop

X ⊗ En) ∼= q∗q∗π∗(Otop
X )

for q : Y → X the projection map. This follows from Proposition 2.4, that for flat maps
SpecR→MFG and SpecR′ →MFG the smash product of the two Landweber exact spectra
ER and ER′ can be computed as

π2k(ER ⊗ ER′) ∼= ω⊗k(SpecR×MF G
SpecR′).

Specialized to our situation, we get that for every flat map SpecR→ X we have the following
natural isomorphisms:

π2k(Otop
X (SpecR)⊗ En) ∼= π2k(Otop

X )(SpecR×MF G
Specπ0En) ∼= q∗q∗π2k(Otop

X ).

Set again Y = X ×MF G
Specπ0En. We want to define an even periodic refinement of this.

There are two equivalent ways of doing this.

(1) Let U → X be an affine étale cover and U• be the corresponding Cech simplicial object.
We can define even periodic refinements on Uk ×MF G

π0En by considering SpecOtop
X (Uk)⊗En.

Note here that En has the structure of an E∞-ring spectrum by the Goerss–Hopkins–Miller
theorem. Then we can define Y := hocolim Spec (Otop

X (Uk)⊗ En).
In other words, one notes that to realize Y as a derived stack, one needs to construct an

appropriate diagram of even periodic E∞-rings, corresponding to any given presentation of Y
as an ordinary stack. Given any étale map SpecR→ X, we can realize SpecR×MF G

Specπ0En

via the E∞-ringOtop(SpecR)⊗ En. This constructs a diagram of E∞-rings which is enough (by
a descent procedure) to produce the sheaf of E∞-rings on the étale site of Y (in an analogous
way to Proposition 2.15).

(2) We can define Y as the ‘relative Spec ’ of the sheaf of algebras Otop ⊗ En, using
essentially the previous construction.

Thus, we get an even periodic stack Y = (Y,Otop
Y ) with a faithfully flat, separated and quasi-

compact map q : Y→ X such that

q∗Otop
Y � Otop

X ⊗ En.

We now get the following theorem.

Theorem 4.12. We use the same notation and assumptions from Proposition 4.11. Assume
furthermore that Y is quasi-affine. Then Γ: QCoh(X)→ Mod(Γ(X,Otop

X )) is conservative and
thus an equivalence.

Proof. In light of Proposition 4.11, this is a direct application of Proposition 3.16 and
Corollary 3.25 as the underlying stack Y of Y is quasi-affine.

Remark 4.13. Note that the condition that πkOtop
Y is ample is not more general as

πkOtop
Y
∼= π0Otop

Y for k even and 0 else (since En is strongly even periodic).
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AFFINENESS AND CHROMATIC HOMOTOPY THEORY 509

4.3. The integral version

In this section, we complete the proof of Theorem 4.1. To start with, we extend the proof of
the first step when localized at p, as done in the previous section, to an integral statement.
Once again, we have a slightly stronger statement.

Theorem 4.14. Let X be a noetherian and separated Deligne–Mumford stack, equipped
with a flat map X →MFG. Let X be an even periodic refinement of X. Then, if X →MFG is
tame, the global sections functor

Γ: QCoh(X) −→ Mod(Γ(X,Otop))

commutes with homotopy colimits.

Proof. In order to prove this, we will use the p-local version proved earlier, for each prime,
together with an arithmetic square to fit everything together integrally. There is an obstacle
in that the ‘arithmetic square’ is infinite in nature. To deal with this, we use the following
lemma.

Lemma 4.15. Let X be a quasi-compact and separated Deligne–Mumford stack over some
quasi-compact scheme S. Then there is an N such that X[1/N ] has bounded cohomological
dimension.

Proof. We want first to show that the order of automorphism groups of points in X is
bounded. As X is separated, the inertia stack X ×X×SX X = IX is finite over X. Since X is
quasi-compact, there is an étale covering q : SpecA→ X for some ring A. The pullback q∗IX →
SpecA corresponds to an A-module generated by m elements for some m. If x : Spec k → X
is a geometric point, then the pullback Spec k ×X SpecA is equivalent to a disjoint union of
Spec k. Thus, x∗IX → Spec k has also rank at most m, that is, the stabilizer of x has at most
m elements.

Let N = m!. Then all stabilizers have invertible order on X[1/N ]. Thus, X[1/N ] is tame,
which implies the result by Proposition 2.27.

It follows from this that there exists an integer N ∈ N such that, after tensoring with the
localization S0[N−1], the functor

F 	−→ Γ(X,F ⊗ S0[N−1]), QCoh(X) −→ Mod(Γ(X,Otop)),

commutes with homotopy colimits. In fact, the spectral sequence to compute the homotopy
groups of Γ(X,F ⊗ S0[N−1]) starts from the cohomology of π∗F on the open substack X[N−1],
since cohomology commutes with localization, and is consequently concentrated in finitely many
rows at E2.

In view of Propositions 4.11 and 2.29, we can thus apply the following lemma to conclude
the proof of the theorem.

Lemma 4.16. Let F : C → D be an exact functor between cocomplete stable ∞-categories.
Suppose that:

(1) F (· ⊗ S0
(p)) commutes with homotopy colimits for every prime number p;

(2) there exists an integer N such that F (· ⊗ S0[1/N ]) commutes with homotopy colimits.

Then F commutes with homotopy colimits.
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510 AKHIL MATHEW AND LENNART MEIER

Proof. Consider the collection I of spectra T such that F (· ⊗ T ) commutes with homotopy
colimits. It is an ideal in spectra: that is, if X is a spectrum and Y ∈ I, then X ⊗ Y ∈ I. By
hypothesis, this ideal contains S0[1/N ] for some N and each S0

(p) for each prime number p. We
want to show that it contains S0.

To do this, we use an inductive argument. Let N ∈ Z>0 be chosen minimal such that
S0[1/N ] ∈ I. We want to show that N = 1. Observe that if (m, p) = 1, then there is an
arithmetic square, that is, a homotopy pullback diagram

S0[1/m]

��

�� S0[1/mp]

��
S0

(p)[1/m] �� S0
Q.

It follows that if N > 1, then N = pm for (p,m) = 1 (N is squarefree by minimality), and then
the above arithmetic square implies that S0[1/m] ∈ I, a contradiction. Thus N = 1 and we are
done.

This completes the proof of Theorem 4.14.

Proof of Theorem 4.1. Let us now complete the proof of the main theorem. By Corol-
lary 3.7, it suffices now to show that if Γ(X,F) = 0 for some quasi-coherent sheaf F on X, then
F = 0.

So assume Γ(X,F) = 0. Then Γ(X(p),F(p)) � Γ(X,F)(p) = 0 for every prime p. Indeed, since
Γ commutes with homotopy colimits, it commutes with localization at p. By Theorem 4.12, it
follows that F(p) = 0 for every prime p. Thus, F = 0.

5. Applications to Galois theory

Let R be an E∞-ring. Recall that an E∞-R-algebra R′ is said to be étale if π0

R→ π0R
′ is an étale morphism of commutative rings, and the natural map π0R

′ ⊗π0R π∗R→
π∗R′ is an isomorphism. The theory of étale extensions in this sense is entirely algebraic:
the ∞-category of étale R-algebras is equivalent to the (ordinary) category of étale π0

R-algebras.
This definition excludes useful examples such as the map KO → KU , which behaves in

many respects as an étale morphism in commutative algebra, albeit not on the level of
homotopy groups. Since π0KO � Z, there are no finite étale extensions of KO. Nonetheless,
KO � KUhZ/2, and, as we have shown (for example, in view of Theorem 4.1), there is a
good theory of Z/2-‘descent’ from KU to KO. Rognes’s notion of a faithful Galois extension
(Definition 5.1) is a generalization of the above notion of étaleness (or at least the Galois
version) that encompasses examples such as KO → KU .

In this section, we analyze the Galois theory, in this sense, for E∞-rings such as KO and
TMF which arise as ‘rings of functions’ Γ(X,Otop) of 0-affine derived stacks. Our main result
(Theorem 5.8) is that a Galois cover (in the algebraic sense) of the underlying stack yields
a faithful Galois extension of Γ(X,Otop). This provides examples of Galois extensions of
(localizations of) TMF via level structures, for instance.

5.1. Galois extensions

Let B be an E∞-ring with the action of a finite group G and let A = BhG be the homotopy
fixed points. We recall the following definition of Rognes.
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AFFINENESS AND CHROMATIC HOMOTOPY THEORY 511

Definition 5.1 ([47]). The map A→ B is said to be a G-Galois extension if the map of
E∞-A-algebras

B ⊗A B −→
∏
g∈G

B,

which informally is given by b1 ⊗ b2 	→ {b1 · g(b2)}g∈G, is an equivalence. A Galois extension is
said to be faithful if the Bousfield classes of A and B (for A-modules) are equivalent: that is,
if an A-module smashes to zero with B, then it itself is zero.

This is inspired by the notion of a Galois extension of (discrete) commutative rings, which
can be defined in the same way, but where faithfulness is automatic. Equivalently, a map
R→ S of commutative rings is G-Galois if SpecS → SpecR is an étale G-torsor in the sense
of algebraic geometry.

Faithful Galois extensions (which are the only type of Galois extensions we shall consider)
are very well-behaved. The map A→ B exhibits B as a perfect (that is, compact or dualizable)
A-module, and for any E∞ A-algebra A′, the map of rings A′ → B ⊗A A′ is again faithful and
G-Galois. Moreover, one can develop [42] a version of Grothendieck’s étale fundamental group
formalism in this setting.

We start by noting a few examples and properties of faithful Galois extensions.

Example 5.2. Suppose that A is an E∞-ring, and suppose that B0 is a G-Galois extension
of the ring π0A. Then there exists a unique E∞-ring B étale over A with π0B � B0, and a
G-action on B in the ∞-category of A-algebras such that the natural map A→ BhG is an
equivalence (by Theorem 2.12).

Example 5.3 ([6, Proposition 3.6; 42, Proposition 6.28]). Suppose that A is an even
periodic E∞-ring such that π0A is a field. Then G-Galois extensions of A are equivalent
to G-Galois extensions of π0A: that is, they are étale. The main ingredient is the Künneth
isomorphism for A-modules.

Example 5.4. A simple example of a Galois extension that is not étale is as follows: let A
be an E∞-ring with π∗(A) � Z[1/2, t±1], where |t| = 2. Consider a Z/2-action on A that sends
t 	→ −t. In this case, the map AhZ/2 → A is a Z/2-Galois extension realizing on homotopy the
map Z[1/2, u±1]→ Z[1/2, t±1], u 	→ t2, as we will now show.

First observe that the map

Φ: Z[1/2, t±1]⊗ Z[1/2, t±1] −→ Z[1/2, t±1]× Z[1/2, t±1],
x⊗ y 	−→ (x · y, x · g(y))

is surjective, where g generates Z/2. As this map is Z[1/2, t±1]-linear, this follows from the
fact that Φ(1

2 ⊗ 1 + 1
2 t

−1 ⊗ t) = (1, 0) and Φ(1
2 ⊗ 1− 1

2 t
−1 ⊗ t) = (0, 1). By a graded version

of [22, Theorem 1.6], we see that Z[1/2, u±1]→ Z[1/2, t±1], u 	→ t2 is a Z/2-Galois extension
in the graded sense. As Z[1/2, t±1] is free over Z[1/2, u±1], this implies that AhZ/2 → A is a
Z/2-Galois.

Example 5.5. While the notion of a faithful Galois extension generalizes that of an étale
Galois extension (see [5]), the notions coincide on connective E∞-rings A. We prove this here
if π0(A) is noetherian. In fact, let A be as in the previous sentence, and let B be a faithful
G-Galois extension. For any morphism π0A→ k, for k a field, we get a map of E∞-rings

A −→ τ�0A � Hπ0A −→ Hk,
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512 AKHIL MATHEW AND LENNART MEIER

and the base-change B ⊗A Hk is therefore a faithful G-Galois extension of Hk, which, thanks
to the Künneth isomorphism, is necessarily discrete (and the Eilenberg–MacLane spectrum
associated to a product of copies of finite separable extensions of k).

It follows that B, which is a perfect A-module, is actually connective, and indeed flat in the
sense of [40, Section 8.2.2]: In [40], it is shown that an A-module M is flat if and only if, for
every discrete A-module (that is, π0A-module) N , the A-module M ⊗A N is discrete. However,
it suffices to show that M ⊗A Hπ0A is a discrete, flat Hπ0A-module. Now we can appeal to a
classical fact from commutative algebra (see the discussion in [51, Tag 0656] for the local case
to which one reduces) given a commutative noetherian ring R, and a perfect complex P • of
R-modules, then P • is quasi-isomorphic to a projective R-module concentrated in dimension
0 if and only if the same holds (over k) for P • ⊗R k for every residue field k of R.

It follows that π0(B) is flat over π0(A) and is unramified in the sense of classical commutative
algebra: therefore, π0(A)→ π0(B) is étale. Since A→ B is flat, we are done. See also [42,
Theorem 6.16].

Our goal is to show that even periodic refinements provide a rich source of Galois extensions
which are not étale.

Example 5.6. The map KO → KU is a Z/2-Galois extension, as shown in [47, Chapter
5] using the following result, a proof of which appears in [41].

Theorem 5.7 (Wood). There is an equivalence of spectra KO ⊗ Σ−2CP
2 � KU .

Our next result is a generalization of this, which states that Galois coverings of an associated
stack can be used to manufacture Galois extensions of ring spectra. For example, the Z/2-Galois
extension KO → KU arises in this way from the Z/2-torsor Spec Z→ BZ/2.

Theorem 5.8. Let G be a finite group acting on a Deligne–Mumford stack X, with Y =
X/G the stack quotient. Consider a flat map Y →MFG. Let Y be a 0-affine even periodic
refinement of Y and X be the induced refinement of X. Then Γ(X,Otop

X ) is a faithful G-
Galois extension of Γ(Y,Otop

Y ) = Γ(X,Otop
X )hG. In particular, the Tate spectrum of G acting

on Γ(X,Otop
X ) is contractible.

Proof. Choose an étale map SpecR→ Y . Then the map

Otop
Y (SpecR) −→ Otop

X (SpecR×Y X) (3)

is a G-Galois extension: in fact, it is so even on homotopy groups, in the sense of Example 5.2.
In particular, the map

Otop
X (SpecR×Y X)⊗Otop

Y (Spec R) Otop
X (SpecR×Y X)→

∏
g∈G

Otop
X (SpecR×Y X)

is an equivalence. In other words, if f : X→ Y is the projection, then the map

f∗Otop
X ⊗Otop

Y
f∗Otop

X −→
∏
G

f∗Otop
X

is an equivalence. Now, using the fact that Γ(Y, ·) is a symmetric monoidal functor (by 0-
affineness), we find that the map

Γ(X,Otop
X )⊗Γ(Y,Otop

Y ) Γ(X,Otop
X ) −→

∏
g∈G

Γ(X,Otop
X )

is an equivalence, as desired.
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AFFINENESS AND CHROMATIC HOMOTOPY THEORY 513

The claim about faithfulness follows from the following commutative square of∞-categories:

Mod(Γ(Y,Otop
Y ))

�
��

�� Mod(Γ(X,Otop
X ))

�
��

QCoh(Y)
f∗

�� QCoh(X)

where the lower horizontal functor (pullback) has trivial kernel, since Y → X is faithfully flat
(see Lemma 3.15). This shows that the Galois extension is faithful, and implies that the Tate
spectrum vanishes [47, Proposition 6.3.3].

5.2. Tate spectra

In this section, we give a strengthening of the earlier result on vanishing of Tate spectra, which
will apply in certain non-Galois cases as well.

We begin by reviewing the Tate spectrum in more detail. Let X be a spectrum with the
action of a finite group G. Recall that there is a norm map

XhG −→ XhG,

from homotopy coinvariants to homotopy invariants, whose cofiber is defined to be the Tate
spectrum XtG. If X has a ‘free G-action’ in that it is freely induced from an ordinary
spectrum Y , then the Tate spectrum is contractible. The Tate spectrum commutes with finite
homotopy colimits and limits in the ∞-category Fun(BG,Sp) of spectra with a G-action, so
it vanishes identically on the thick subcategory of Fun(BG,Sp) generated by the spectra with
free G-action.

Example 5.9. Suppose that X ∈ Fun(BG,Sp) has the property that the functor

Y 	−→ (Y ⊗X)hG, Fun(BG,Sp) −→ Sp,

commutes with homotopy colimits. (Equivalently, X has the property that the functor Y 	→
(Y ⊗X)tG commutes with homotopy colimits.) Here Y is a spectrum with a G-action, and
Y ⊗X is given the ‘diagonal G-action’: that is, at the level of functors, the smash product is
computed pointwise. Then, the Tate construction XtG is contractible.

To see this, observe first that if Y =
⊔

G Z is free, then

Y ⊗X �
⊔
G

Z ⊗X,

so that the Tate construction (Y ⊗X)tG is contractible. Since we can write the sphere S0 with
trivial G-action as a geometric realization (via the bar construction) of objects in Fun(BG,Sp)
with free G-action, it follows that (S0 ⊗X)tG � (X)tG is contractible too.

We can now prove our main result on the vanishing of Tate spectra.

Theorem 5.10. Let X be a noetherian and separated Deligne–Mumford stack equipped
with a flat map X →MFG, which is tame. Let Y → X be a G-torsor for a finite group G.

Let X = (X,Otop
X ) be an even periodic refinement, and let Y = (Y,Otop

Y ) be the induced
even periodic refinement of Y → X →MFG, which acquires a G-action. Let q : Y→ X be the
induced morphism. Then, for any F ∈ QCoh(X), we have

(Γ(Y, q∗F))tG � 0.
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514 AKHIL MATHEW AND LENNART MEIER

Proof. By Galois descent, we obtain an equivalence of ∞-categories

QCoh(X) � QCoh(Y)hG,

where the G-action on Y induces a G-action on the∞-category of quasi-coherent sheaves. This
is true locally in view of étale descent as in [37, 38], and then follows globally by sheafification.
Moreover, for any F ∈ QCoh(X), we get Γ(X,F) � Γ(Y, q∗F)hG.

As a result, given a spectrum T with a G-action and given any quasi-coherent sheaf F ∈
QCoh(X), we can form a twisted pullback F ⊗′ T ∈ QCoh(Y)hG � QCoh(X), which intertwines
the G-action on T . At the level of global sections, we have

Γ(Y, q∗(F ⊗′ T )) � Γ(Y, q∗F)⊗ T ∈ Fun(BG,Sp),

that is, using the diagonal G-action on each tensor factor. We note that Γ: QCoh(Y)→
Mod(Γ(Y,Otop)) and Γ: QCoh(X)→ Mod(Γ(X,Otop)) commute with homotopy colimits by
Theorem 4.14.

Now, it follows from Galois descent again that we have natural equivalences

Γ(X,F ⊗′ T ) � (Γ(Y, q∗F)⊗ T )hG, T ∈ Fun(BG,Sp).

Since Γ commutes with homotopy colimits on QCoh(X), and since the construction ⊗′ preserves
homotopy colimits, it follows by Example 5.9 that the Tate construction (Γ(Y, q∗F))tG is
contractible.

6. Some examples

In this section, we discuss a few basic examples of even periodic refinements and discuss
applications of the results of this paper. The main example that motivated us, that of TMF,
will be discussed in more detail in the next section.

6.1. Non-examples

As a non-example, consider the Z/2-action on KU -theory where Z/2 acts trivially. The induced
map BZ/2→MFG is the ‘constant’ map BZ/2→ Spec Z→MFG, where Spec Z→MFG

classifies the multiplicative formal group. In particular, it is a flat morphism. Since KU -theory
is an E∞-ring, and it is possible to make Z/2 act trivially on KU , this gives a derived version
of BZ/2, whose global sections are given by KhZ/2.

In this case,

KhZ/2 � F(BZ/2,K),

whose homotopy groups are computed, by the classical Atiyah–Segal completion theorem [4],
to be the completion of the representation ring of Z/2 in even dimensions and zero in odd
dimensions.

The homotopy fixed-point spectral sequence (equivalently, the Atiyah–Hirzebruch spectral
sequence for K∗(RP

∞)) has no room for differentials and degenerates at E2, with an infinite
‘checkerboard’ of non-zero terms, and thus without a horizontal vanishing line. It follows that
Theorem 4.1 and many of the results in this paper definitely fail for a derived stack arising from
a flat morphism X →MFG which is not representable. For example, the associated pro-object
is not constant, as there are elements in E∞ of arbitrarily high filtration.

Even if X →MFG is representable, Theorem 4.1 may fail for more mundane reasons. For
instance, let us work over Q, so that MFG � BGm and any map to MFG is flat: to give a
formal group over a Q-algebra is equivalent to giving its cotangent space ω, a line bundle.
Given a scheme X over Q and a line bundle ω on X, we can produce a sheaf Otop of E∞-rings
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AFFINENESS AND CHROMATIC HOMOTOPY THEORY 515

on X via

Otop def= Sym∗(Σ2ω)[Σ2ω−1],

where the notation means that over an open affine U � SpecR ⊂ X over which ω is trivial,
Otop(SpecR) � R[x, x−1] is the free E∞ R-algebra on a generator x in degree two, with x
inverted. The gluing data comes from the gluing data on ω. In particular, the choice of
(X,ω) determines a canonical choice (not necessarily unique) of even periodic refinement
X = (X,Otop).

In this case, Otop is a sheaf of OX -algebras, so given any coherent sheaf F0 on X, we can
produce a quasi-coherent sheaf F = Otop ⊗OX

F0 on X. If F0 is such that Hi(X,F0 ⊗ ωj) = 0
for all i, j, then F ∈ QCoh(X) has no global sections. To be concrete, we can take X = P1

Q,
ω = OX and F0 = O[−1].

6.2. Finite group actions: KO-theory and EOn spectra

Let R be a Landweber-exact, E∞-ring with the action of a finite group G. This induces an
action of G on the formal group of R compatible with the action on Specπ0R: as we have seen,
we get a map

(Specπ0R)/G −→MFG.

This map is affine (equivalently, representable) precisely when, for every field-valued point
x : Spec k → Specπ0R, the stabilizer Gx ⊂ G of x acts faithfully on the pullback of the formal
group to Spec k. Under these hypotheses, it follows that

RhG −→ R

is a faithful G-Galois extension, and Galois descent goes into effect.
We discuss two basic examples of this.

Example 6.1 (KO-theory, again). As discussed in Example 2.17, we have a map

BZ/2 −→MFG,

sending a one-dimensional torus (equivalently, Z/2-torsor) to its formal completion. It is flat
and affine. The Z/2-action on KU -theory by complex conjugation enables the construction of
a derived stack BZ/2 = (BZ/2,Otop), which is an even periodic refinement of the above map,
such that Γ(BZ/2,Otop) � KO.

As a result, we recover the equivalence of ∞-categories

Mod(KO) � QCoh(BZ/2) � Mod(KU)hZ/2,

which we could have also seen by Galois descent.

Example 6.2 (EOn). Let En be the Morava E-theory with coefficient ring
W (Fpn)[[v1, . . . , vn−1]]. By the Goerss–Hopkins–Miller theorem [20], En is an E∞-ring with
an action of the extended Morava stabilizer group G: that is, the semidirect product of the
automorphism group of the Honda formal group with Gal(Fpn/Fp). For a discussion, see [47,
Section 5.4.1].

Given a finite subgroup H ⊂ G, it follows from the above discussion that we can construct
a derived stack (Specπ0En/H,Otop), and that (En)hH → En is a faithful H-Galois extension.
This is proved K(n)-locally in [47]. Especially interesting is the case where H is a maximal
finite subgroup, where (En)hH is denoted by EOn (with implicit dependence on H).
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516 AKHIL MATHEW AND LENNART MEIER

6.3. Open subsets

Let R be a Landweber-exact, even periodic E∞-ring. Then any open subset of Specπ0R yields
a derived stack, which by Proposition 3.28 is 0-affine. This includes the case where we are
localized at a prime p, so that R is En-local for some n. For m < n, the conclusion is that

Mod(LmR) � QCoh(X)

for X an even periodic refinement of Specπ0R×MF G
M�m

FG .
Although elementary, this construction has some uses because the associated rings of

functions are definitely far from being even periodic. For instance, in [43, Theorem C], it is
shown that the Picard groups of LmR can be unexpectedly large, even when R = En (although
the algebraic Picard group is trivial).

6.4. The affine line

In this subsection, we note an important example. Let Z�0 be the (discrete) topological,
commutative monoid of non-negative integers. Since

Σ∞
+ : S −→ Sp

is a symmetric monoidal functor, it carries E∞-monoids in spaces to E∞-ring spectra. In
particular, we get an E∞-ring Σ∞

+ Z�0, which we can think of as the ‘group algebra’ on Z�0.
Given an even periodic E∞-ring R, the smash product R[Z�0]

def= R⊗ Σ∞
+ Z�0 is still even

periodic, with π0R[Z�0] = (π0R)⊗Z Z[x], and the map

Spec (π0R)[x] −→MFG,

associated to R[Z�0] is the one obtained from Specπ0R→MFG obtained by taking the product
with the constant map Spec Z[x]→ Spec Z. If R is Landweber-exact, so is R[Z�0].

It follows from this that if X = (X,Otop) is an even periodic refinement of a flat map X →
MFG, then we get a natural choice of even periodic refinement A1

X of A1
X →MFG (together

with a map A1
X → X). By Proposition 3.29, if X is 0-affine, so is A1

X.

7. Applications to topological modular forms

In this section, we discuss the primary example that motivated this work, and apply our results
in this case.

Let Mell be the moduli stack of stable, 1-pointed genus 1 curves (that is, the Deligne–
Mumford compactification of the moduli stack Mell of elliptic curves). A map SpecR→Mell

is equivalent to a flat family of proper curves p : C → SpecR together with a section (or
marked point) e : SpecR→ C contained in the smooth locus of p, such that each geometric
fiber is irreducible of arithmetic genus 1 with at worst nodal singularities. Then Mell is a
Deligne–Mumford stack of finite type over Z. See [13] for more details.

Given such a curve C → SpecR, one has a canonical group scheme structure on the smooth
locus C◦, with the marked point as the identity, and taking the formal completion gives a
morphism of stacks

Mell −→MFG,

which one can check is flat using the Landweber-exact functor theorem (see [15, Chapter 4.4]).
In this case, one has the fundamental theorem.

Theorem 7.1 (Goerss–Hopkins–Miller and Lurie). The stack Mell (together with the map
Mell →MFG) admits an even periodic refinement Mell.
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AFFINENESS AND CHROMATIC HOMOTOPY THEORY 517

A construction of Mell is detailed in [8], and another is sketched in [34]. In other words,
the Goerss–Hopkins–Miller–Lurie theorem states that given a stable 1-pointed genus 1 curve
C → SpecR, such that the classifying map SpecR→Mell is étale. (This requires SpecR to be
regular, and the Kodaira–Spencer map at each point of the base to be an isomorphism.) One
can build an E∞-ring spectrum from the associated formal group; moreover, one can do this
functorially in the elliptic curve.

Using this derived stack, one defines the spectra of topological modular forms:

Tmf = Γ(Mell,Otop), TMF = Γ(Mell,Otop),

where Mell ⊂Mell is the open derived substack corresponding to smooth elliptic curves. These
will provide examples of the results in this paper.

When 6 is inverted, the moduli stack Mell is the weighted projective stack P(4, 6), and the
homotopy limits necessary to describe Tmf take a simple form. However, the stack Mell is
quite complicated at the primes 2 and 3 (that is, there are elliptic curves with relatively large
automorphism groups), which contributes to significant torsion at those primes in π∗Tmf;
moreover, it makes working with Tmf-modules trickier, and it is not a priori clear how well the
homotopy limit that builds Tmf behaves. The results of this paper show that the homotopy
limit behaves well.

In fact, the idea of this paper arose, in part, from the analysis of the homology of connective
tmf def= τ�0Tmf by the first author in [41]. There, working over Z(2) rather than Z, it was
shown that there is a 2-local eight cell complex DA(1) such that the homotopy group sheaf
π0 of Otop ⊗DA(1) ∈ QCoh(Mell) is given by the pushforward of the structure sheaf via an
eightfold cover

p : P(1, 3) −→Mell,

where the weighted projective stack P(1, 3) is the quotient of a scheme by a Gm-action, and
in particular is much simpler cohomologically than Mell. Using this, it followed that after
smashing with DA(1), the category of quasi-coherent sheaves on Mell becomes much better
behaved. For example, it was possible to conclude that

Γ(Mell,Otop ⊗DA(1)⊗ T ) � Γ(Mell,Otop ⊗DA(1))⊗ T
for any spectrum T , because the spectral sequence to compute the homotopy groups of
Γ(Mell,F ⊗DA(1)) is concentrated in the bottom two rows (in dramatic contrast to the
spectral sequence for Γ(Mell,Otop)). In general, the global sections functor Γ is exact, so
it commutes with finite homotopy colimits and limits, but we cannot a priori expect it to
commute with arbitrary homotopy colimits.

Applying the thick subcategory theorem of [25], one may replace DA(1) with the sphere
spectrum, and thus show that

Γ(Mell,Otop ⊗ T ) � Γ(Mell,Otop)⊗ T
for all T ∈ Sp. As an application, it is possible to compute the Tmf-homology of infinite spectra
such as MU using the DSS. In this paper, we did not have such finite complexes available to
work with, but we used the En-spectra themselves to prove analogous results in more generality.

We apply our results to the case of TMF (respectively, Tmf) and the derived stacks Mell

(respectively, Mell) that give rise to them; recall that these are even periodic refinements of
the moduli stacks of elliptic curves (respectively, possibly nodal elliptic curves). We will study
both the ∞-categories of modules and the Galois theory.

7.1. Modules over TMF

Our first main result is the following theorem.
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518 AKHIL MATHEW AND LENNART MEIER

Theorem 7.2. (1) The∞-category of TMF-modules is equivalent (via Γ) to the∞-category
of quasi-coherent sheaves on Mell.

(2) The ∞-category of Tmf-modules is equivalent (via Γ) to the ∞-category of quasi-
coherent sheaves on the compactified derived stack Mell.

Away from the prime 2, the first part of Theorem 7.2 was originally proved in [44]. The
result was also known to Lurie.

Proof. Indeed, for the first claim, it suffices by Theorem 4.1 to show that the map

Mell −→MFG

is affine. To see this, observe that the moduli stack of elliptic curves together with a coordinate
to order four on the formal group is precisely Spec Z[a1, a2, a3, a4, a6][Δ−1]: that is, a choice
of coordinate to order four is precisely the data needed to put an elliptic curve in a canonical
Weierstrass form. See [46, Proposition 12.2]. The universal elliptic curve with such a coordinate
is given by the equation

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6

and the coordinate on the formal group is given by −x/y.
Since the moduli stack of formal groups with a coordinate to order four M�4

FG is affine over
MFG, it follows easily that Mell →MFG is affine. Indeed, SpecL×MF G

M�4
FG ×MF G

Mell is
affine as the diagonal of MFG is affine and SpecL×MF G

M�4
FG →MFG is an affine fpqc cover,

for L the Lazard ring.
The map Mell →MFG is not affine, but it is quasi-affine (and even of cohomological

dimension 1). The moduli stack of generalized elliptic curves together with a coordinate
to order four is precisely Spec Z[a1, a2, a3, a4, a6] \ V ((c4,Δ)), where c4,Δ are the standard
modular forms evaluated on the cubic curve given by y2 + a1xy + a3y = x3 + a2x

2 + a4x+ a6.
Therefore, we can still apply Theorem 4.1 to the derived stack Mell and conclude that it is
0-affine, as desired.

7.2. Galois theory

Next, we study the Galois theory of TMF (respectively, Tmf).
The use of level structures provides various covers of the moduli stack of elliptic curves that

rigidify the ‘stackiness’. These can be realized topologically.
Fix a positive integer n.

Definition 7.3. Let Mell(n) be the moduli stack (over Z[1/n]) of elliptic curves with a
level n structure: that is, if S is a scheme where n is invertible, then maps

S −→Mell(n)

are given by (smooth) elliptic curves p : C → S, 0: S → C together with sections φ1, φ2 : S → C
contained in the n-torsion subgroup C[n] ⊂ C, such that, over each geometric fiber Cs, for
s ∈ S, the sections φ1, φ2 form a basis for the n-torsion Cs[n] � (Z/nZ)2.

Then Mell(n) is étale over Mell[1/n], and in fact the natural forgetful map

Mell(n) −→Mell[1/n],
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AFFINENESS AND CHROMATIC HOMOTOPY THEORY 519

is a GL2(Z/nZ)-torsor, where the GL2(Z/nZ) acts on Mell(n) by matrix multiplication on the
level structure. It follows that the composite map

Mell(n) −→Mell[1/n] −→MFG,

is flat, and Mell(n) is realizable by a derived stack Mell(n) over Mell.

Definition 7.4. The global sections Γ(Mell(n)[1/n],Otop) are called TMF of level n and
are denoted by TMF(n).

It follows in particular that TMF(n) has a GL2(Z/nZ)-action, and that

TMF[1/n] � TMF(n)hGL2(Z/nZ).

For n � 3, Mell(n) is actually an affine scheme, and the resulting spectra TMF(n) are therefore
Landweber-exact, even periodic E∞-rings.

Example 7.5. The moduli stack (over Z[1/2]) of elliptic curves together with a full level 2-
structure is given by Spec Z[1/2, λ][λ−1, (λ− 1)−1]×BZ/2, given by putting the elliptic curve
in ‘Legendre form’

y2 = x(x− 1)(x− λ), λ 
= 0, 1,

together with the 2-torsion points (0, 0), (0, 1). The BZ/2 factor is necessary to account for the
automorphism −1.

Since Mell(2)[12 ] is not affine (in fact, not even a scheme), the spectrum TMF(2) is not even
periodic, but only 4-periodic, with homotopy groups given by

π∗TMF(2)[12 ] � Z[12 , λ, t][λ
−1, (λ− 1)−1, t−1], |λ| = 0, |t| = 4.

The S3 � GL2(Z/2Z)-Galois descent from TMF(2)[12 ] to TMF[12 ] is studied in detail in [50].

By taking various partial quotients of Mell(n) over Mell, one can realize other variants of
‘moduli of elliptic curves with level structure’. For instance, let Mell,1(n) be the moduli stack
of elliptic curves with a Γ1(n)-structure: that is, a choice of an n-torsion point that generates
a Z/nZ-summand in the n-torsion on each fiber. Then Mell,1(n) �Mell(n)/H where H ⊂
GL2(Z/nZ) consists of matrices of the form [ 1 b

0 c ]. The stack Mell,1(n) is étale (though no
longer Galois) over Mell[1/n] and can consequently be realized by a derived stack, whose E∞-
ring of global sections is denoted by TMF1(n). Similarly, one defines TMF0(n) from the moduli
stack of elliptic curves together with a cyclic degree n subgroup.

Using the 0-affineness of Mell, Proposition 3.29 and Theorem 5.8, we find the following
theorem.

Theorem 7.6. The map TMF[1/n]→ TMF(n) is a faithful GL2(Z/nZ)-Galois extension.
Similarly, the map TMF0(n)→ TMF1(n) is a faithful (Z/nZ)×-Galois extension. In particular,
the Tate spectra of these group actions vanish.

The vanishing of Tate spectra in the latter case is proved for n = 5 via different means in [9].

Remark 7.7. One can show in fact that all Galois covers of TMF and its localizations
arise from Galois extensions of the associated stack; in particular, TMF over Z is ‘separably
closed’, that is, has no non-trivial Galois extensions. This is carried out in [42, Section 10].

7.3. Tate spectra and compactified moduli

Our earlier results showed that TMF[1/n]→ TMF(n) is a faithful GL2(Z/nZ)-Galois exten-
sion; in particular, the Tate spectrum for the action of GL2(Z/nZ) on the latter is contractible.

 17538424, 2015, 2, D
ow

nloaded from
 https://londm

athsoc.onlinelibrary.w
iley.com

/doi/10.1112/jtopol/jtv005 by U
niversity O

f R
ochester, W

iley O
nline L

ibrary on [25/04/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



520 AKHIL MATHEW AND LENNART MEIER

In this subsection, we show the analogous Tate spectra for the non-periodic versions of TMF(n)
also vanish. The associated extensions are no longer Galois, as the associated covers of stacks
are now ramified. However, we will still be able to apply Theorem 5.10.

Recall that it is useful to compactify the moduli stack Mell(n) by allowing the elliptic curve
to degenerate, although we will need to drop irreducibility and allow slightly more complicated
degenerations: instead of P1 with two points glued together (a nodal cubic), we need to allow
Néron n-gons, which are obtained by gluing n copies of P1, where 0 in the ith P1 (for i ∈ Z/nZ)
is attached to ∞ in the (i+ 1)st. This theory was developed in [13]; another helpful reference
(which extends the theory to the cusps in characteristics dividing n, which we do not need)
is [12].

Definition 7.8. Let M (n)

ell
be the moduli stack that assigns to a Z[1/n]-scheme S the

groupoid of generalized elliptic curves [13, Chapter II] p : C → S, such that each geometric
fiber of p is either smooth or an n-gon.

We do not review the definition of a generalized elliptic curve, except to note that it requires
more than a curve over the base S together with a section: the group structure (on the smooth
locus C◦ ⊂ C) must be part of the data, rather than a consequence of the definition. In [13,
Theorem 2.5, Chapter III], it is shown that M (n)

ell
is a smooth Deligne–Mumford stack of finite

type over Spec Z[1/n]. Moreover, there is a morphism

M
(n)

ell
−→Mell[1/n],

which sends a generalized elliptic curve C → S to the stable elliptic curve C → S obtained
by fiberwise contracting all irreducible components not containing the identity section. (This
process is discussed in [13, Section IV.1].)

In particular, M (n)

ell
→Mell[1/n] is an equivalence of stacks away from the ‘cusps’. Near

the cusps, it fails to be representable: the automorphism group scheme of a Néron n-gon is
a semidirect product Z/2Z � μn ([13, Section 2, Proposition 1.10]), while the automorphism
group scheme of a nodal elliptic curve (that is, a Néron 1-gon) is simply Z/2Z. However, using
M

(n)

ell
, one can construct the compactification of Mell(n).

Definition 7.9 ([12, 13]). The stack Mell(n) classifies generalized elliptic curves p : C → S
over a base S with n invertible, such that each geometric fiber of p is either smooth or a
Néron n-gon, together with an isomorphism of group schemes φ : (Z/nZ)2 � C◦[n] (that is, a
trivialization of the n-torsion points on the smooth locus).

Similarly, one defines Mell,1(n), a compactification of the moduli stack of elliptic curves with
Γ1(n)-structure, to classify generalized elliptic curves over a base S (of the same form) with an
injection of group schemes Z/nZ→ C◦[n] such that the divisor cut out by the image of Z/nZ

is ample (that is, intersects each irreducible component in every geometric fiber). One also
defines Mell,0(n), a compactification of the moduli stack of elliptic curves with Γ0(n)-structure,
to classify generalized elliptic curves over a base S with a (finite flat) subgroup G ⊂ C◦[n]
which is ample and which is étale locally isomorphic to Z/nZ.

Here, the moduli interpretation of Mell,1(n) and Mell,0(n) is from [12]. Note that while
Conrad only requires an fppf-local generator, in our situation we have actually an étale-local
generator as we assume that n is invertible so that G is étale and étale locally free (see, for
example, [49, Theorem 34 and discussion below Theorem 33]).

As Mell(n) is to Mell[1/n], the stack Mell(n) lives as a GL2(Z/nZ)-torsor over M (n)

ell
. The

moduli stack Mell(n) is a smooth Deligne–Mumford stack over Z[1/n]. There is a morphism
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AFFINENESS AND CHROMATIC HOMOTOPY THEORY 521

of stacks

Mell(n) −→Mell[1/n],

which sends a pair p : C → S, φ : (Z/nZ)2 � C◦[n] as above (over some base S) to the stable
elliptic curve over S obtained from C by fiberwise contracting all non-identity irreducible
components. This map is naturally equivariant for the natural GL2(Z/nZ)-action on the source
and the trivial GL2(Z/nZ)-action on the target. This comes from the map M (n)

ell
→Mell[1/n].

In [13], it is shown that Mell(n)→Mell is finite and flat. It fails to be étale over the cusps,
and the existence of a topological realization is not a direct consequence of the existence of
Tmf. However, one has the following theorem.

Theorem 7.10 (Goerss–Hopkins and Hill–Lawson [23]). The moduli stack Mell(n) has an
even periodic refinement Mell(n), in such a way that

Mell(n) −→Mell,

is a GL2(Z/nZ)-equivariant morphism of derived stacks. Equivalently, M
(n)

ell
→Mell →MFG

has an even periodic refinement.

In particular, it is possible to construct E∞-algebras

Tmf(n) def= Γ(Mell(n),Otop)

over Tmf, which acquire GL2(Z/nZ)-actions. Similarly, one defines even periodic refinements of
Mell,1(n),Mell,0(n), and obtains E∞-rings Tmf0(n),Tmf1(n), where Tmf1(n) has a (Z/nZ)×-
action with homotopy fixed points given by Tmf0(n).

Our first main result in this section is the following theorem.

Theorem 7.11. The Tate spectrum of GL2(Z/nZ) on Tmf(n) is contractible.

For n = 2, this result appears in [50].

Proof. This is a consequence of Theorem 5.10, once we show that the map

M
(n)

ell
−→MFG

is quasi-compact, separated and tame.
To see this, it suffices to check at the level of stabilizers. Away from the cusps, there is no

issue: the stabilizers of M (n)

ell
(equivalently, of Mell) inject into those of MFG. At the cusps,

we recall that the automorphism group of a Néron n-gon is a semidirect product (Z/2) � μn,
where the Z/2 piece (which acts by inversion) injects into the associated stabilizer for MFG.
Since we have inverted n, it follows that the kernels of the maps of stabilizers are invertible
and the map is tame. Thus by Theorem 5.10, we are done.

For Tmf1(n), the situation is even better.

Theorem 7.12. The map Tmf0(n)→ Tmf1(n) is a faithful (Z/nZ)×-Galois extension.

Proof. By [12, 4.1.1], Mell,0(n) is finite over Mell. While he states it only for n squarefree,
it is also true if n is invertible, as in our setting. By Proposition 3.29, Theorem 5.8 and the
0-affineness of Mell, it is enough to show that Mell,1(n)→Mell,0(n) is a (Z/nZ)×-Galois cover.
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522 AKHIL MATHEW AND LENNART MEIER

More precisely, we claim that we have a cartesian square

Mell,1(n)

��

�� Spec Z[ 1
n ]

��
Mell,0(n) �� Spec Z[ 1

n ]/(Z/nZ)×.

As Z[1/n]→ Z[1/n]/(Z/nZ)× is a (Z/nZ)×-torsor, this is sufficient.
We first have to define the map Mell,0(n)→ Spec Z[1/n]/(Z/nZ)×. The target classifies étale

(Z/nZ)×-torsors over a scheme S with n invertible on S. The datum of an étale (Z/nZ)×-torsor
over S is equivalent to that of an S-group scheme that is étale locally isomorphic to Z/nZ.
Indeed, the latter is given by an étale cover U → S together with a section of the constant group
scheme Aut(Z/nZ) = (Z/nZ)× on U ×S U satisfying a cocycle condition (by descent). Exactly
the same datum defines an étale (Z/nZ)×-torsor over S. Thus, Z[1/n]/(Z/nZ)× classifies group
schemes over S (for n invertible on S) which are étale locally isomorphic to Z/nZ.

Recall that a Γ0(n)-level structure consists of a subgroup G ⊂ C◦[n] which is étale locally
isomorphic to Z/nZ and which is an ample divisor. Thus, we get a map Mell,0(n)→
Spec Z[ 1

n ]/(Z/nZ)×. The fiber product Mell,0(n)×Spec Z[ 1
n ]/(Z/nZ)× Spec Z[1/n] classifies gen-

eralized elliptic curves with a subgroup G ⊂ C◦[n], which is an ample divisor together
with a chosen isomorphism G ∼= Z/nZ. This is exactly a generalized elliptic curve with a
Γ1(n)-structure.

Appendix A. Homotopy limits and sheaves

Let U ∪ V = X be an open covering of a topological space. Let F be a sheaf on X with values
in an ∞-category. Is then the square

F(X)

��

�� F(U)

��
F(V ) �� F(U ∩ V )

(homotopy) cartesian? A priori, we can compute F(X) only as the homotopy limit over the
(infinite) Cech cosimplicial object associated to the covering. Nevertheless, in this appendix,
we will give a positive answer to the question for arbitrary finite covers. This is used in
Proposition 3.17, where we need to compute F(X) as a finite homotopy limit. Our strategy
is first to compare an ordered and an unordered version of the Cech cosimplicial object for a
sheaf on a space. At least in outline, this material is surely known to the experts.

Let X be a topological space and let (Ui)i∈I be open subsets covering X. Let I be finite of
cardinality n and totally ordered. For a tuple i = (i1, . . . , ik) ∈ Ik, denote by Ui the intersection
of Ui1 , . . . , Uik

. Let Ik
� be the set of weakly increasing k-tuples (that is, i1 � i2 � · · · � ik).

To these data, we can associate (at least) two simplicial objects:

CU
• : k 	−→

∐
i∈Ik+1

Ui
∼=
(∐

i∈I

Ui

)
×Xk+1,

CU,�
• : k 	−→

∐
i∈Ik+1

�

Ui.

The face maps are given by leaving out elements and the degeneracies by repeating elements.
There is an obvious simplicial map e : CU,�

• → CU
• .
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AFFINENESS AND CHROMATIC HOMOTOPY THEORY 523

Note that we are given a presheaf F on X, we can evaluate F on a disjoint union
∐

i∈Ik Ui

by setting F(
∐

i∈Ik Ui) =
∏

i∈Ik F(Ui). We view the disjoint unions here as formal and never
identify the disjoint union of more than one open subsets of X with an open subset of X.

The following proof is inspired by [16, Proposition 2.7].

Proposition A.13. Let Top be the category of topological spaces. Let F be a Top-valued
presheaf on X. Then the canonical map

e∗ : TotF(CU
• ) −→ TotF(CU,�

• )

is a homotopy equivalence.

Proof. For each multi-index i = (i0, . . . , im), there is a unique permutation σi ∈ Sm+1 with

(1) iσi(0) � iσi(1) � · · · � iσi(m) and
(2) σ−1

i (k) < σ−1
i (l) if ik = il for some k < l.

This will allow us to define an inverse map g : TotF(CU,�
• )→ TotF(CU

• ) to e∗:
Recall that TotF(CU

• ) ⊂∏[m]∈Δ F(CU
m)Δ

m

consists of all maps of cosimplicial topological
spaces Δ• → F(CU

• ). Thus, to give a map into TotF(CU
• ) is equivalent to giving maps into all

F(Ui)Δ
m

, i : [m]→ I a multi-index, compatible with coface and codegeneracy maps. Given a
multi-index i : [m]→ I, we define the map gi : TotF(CU,�

• )→ F(Ui)Δ
m

as the composition

TotF(CU,�
• )

priσi−−−→ F(Uiσi
)Δ

m σ∗
i−→ F(Uiσi

)Δ
m =−→ F(Ui)Δ

m

.

Here, σi sends a point (t0, . . . , tm) ∈ Δm to (tσi(0), tσi(1), . . . , tσi(m)). We will only check
compatibility with coface maps. Let f ∈ TotF(CU,�

• ). We want to show that the diagram

Δm−1

dj

��

gidj (f)
�� F(Uidj )

dj
i

��
Δm

gi(f) �� F(Ui)

commutes for dj : [m− 1]→ [m]. Here, dj
i denotes F(CU

m−1)
dj

−→ F(CU
m)

pri−−→ F(Ui), factoring
through F(Uidj ).

By definition, this is the outer part of the rectangle

Δm−1

dj

��

τ �� Δm−1
fidjτ ��

dσ−1(j)

��

F(Uidjτ ) = F(Uiσdσ−1(j))

d
σ−1(j)
iσ

��

= �� F(Uidj )

dj
i

��
Δm σ �� Δm

fiσ �� F(Uiσ) = �� F(Ui).

Here, σ = σi and τ = σidj for short. We claim that all the small squares commute (and make
sense).

One can check that dσ−1(j)τ−1 = σ−1dj . This gives the commutativity of the first square
(note how the permutations become inverted). The equality in the upper right corner of the
next square follows from djτ = σdσ−1(j). The commutativity of this square follows since f ∈
TotF(CU,�

• ). In the last square, the vertical morphisms are induced by inclusions between the
same open subsets and thus have to be equal. The proof for the codegeneracies is similar. Thus,
we get a well-defined map

g : TotF(CU,�
• ) −→ TotF(CU

• ).
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524 AKHIL MATHEW AND LENNART MEIER

The composition e∗g equals the identity. We want to show that ge∗ is homotopic to the
identity. For a permutation σ ∈ Sm+1 and an element s ∈ [0, 1], define a map uσ,s : Δm →
Δ2m+1 by

(t0, . . . , tm) 	→ (st0, . . . , stm, (1− s)tσ(0), . . . , (1− s)tσ(m)).

Then for σ = σi, we define maps

TotF(CU
• )× [0, 1] −→ F(Ui0i1···im

)Δ
m

as the composition

TotF(CU
• )× [0, 1]

pri0···imiσ(0)···iσ(m)
×u(σ,•)

��
F(Ui0···imiσ(0)···iσ(m))

Δ2m+1 ×Map(Δm,Δ2m+1)

��
F(Ui0···imiσ(0)···iσ(m))

Δm

=

��
F(Ui0i1···im

)Δ
m.

This defines the required homotopy H : TotF(CU
• )× [0, 1]→ TotF(CU

• ) between id and ge∗,
once we have checked the compatibility with coface and codegeneracies. We will only treat the
coface maps again. We set τ = σidj again and choose (f, s) ∈ TotF(CU

• )× [0, 1]. Furthermore,
for functions a, b : [m]→ I we use the notation a|b : [2m+ 1] = [m] � [m]→ I for the sum
of a, b. For example, i|iσ = (i0, . . . , im, iσ(0), . . . , iσ(m)). The compatibility follows from the
commutative diagram

Δm−1

dj

��

uτ,s �� Δ2m−1

dj
dσ−1(j)

��

fidj |idjτ �� F(Uidj |idjτ )

dj
i
d

σ−1(j)
iσ

��

= �� F(Uidj )

dj
i

��
Δm

uσ,s �� Δ2m+1
fi|iσ �� F(Ui|iσ) = �� F(Ui).

The commutativity is shown as above.

Note that we did this proof in a topological and not in a simplicial setting since the symmetric
group Sm+1 acts on the topological m-simplex, but not on the simplicial m-simplex.

As a preparation for the following proof, we note that CU
• and CU,�

• have free degeneracies
in the sense of the following definition.

Definition A.14. Let C be a category with coproducts. A C-valued simplicial object X• is
said to have free degeneracies if there exist maps Nk → Xk from Nk ∈ C such that the canonical
map ∐

σ:[k]�[m]

Nm −→ Xk

is an isomorphism for every k.

Equivalently, the restriction of X• to (Δepi)op is isomorphic to the left Kan extension
of N : N0 → C along N0 → (Δepi)op. Here, Δepi is the subcategory of Δ consisting of
order-preserving epimorphism.

 17538424, 2015, 2, D
ow

nloaded from
 https://londm

athsoc.onlinelibrary.w
iley.com

/doi/10.1112/jtopol/jtv005 by U
niversity O

f R
ochester, W

iley O
nline L

ibrary on [25/04/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



AFFINENESS AND CHROMATIC HOMOTOPY THEORY 525

Both CU,�
• and CU

• have free degeneracies: In the case of CU,�
• , we choose Nk =∐

i0<i1<···<ik
Ui0i1···ik

. In the case of CU
• , we choose Nk =

∐
i0 	=i1 	=i2 	=···	=ik

Ui0i1···ik
. Here, we

really do not mean pairwise inequality, but just il 
= il+1. This can be refined to the following
statement, which we will use for Corollary A.17.

Lemma A.15. Define a functor CU,<
• : Δop

mono,�n−1 → Top by CU,<
k =

∐
i0<i1<···<ik

Ui0i1···ik
.

Then the canonical map LKanF CU,<
• → CU,�

• along the functor F : Δop
mono,�n−1 → Δop is an

isomorphism.

Here, Δmono,�n−1 denotes the subcategory of Δ consisting of order-preserving monomor-
phisms between [0], . . . , [n− 1]. Note furthermore that a similar statement with Δmono instead
of Δmono,�n−1 is also true for CU

• .

Proof. By definition

(LKanF CU,<
• )([k]) = colim[k]−→[l],l�n−1 CU,<

l ,

where a morphism in the index category between f : [k]→ [l] and g : [k]→ [l′] consists of
an injection i : [l′]→ [l] such that f = i ◦ g. As every morphism in Δ factors uniquely as an
epimorphism followed by a monomorphism, the full subcategory on all [k] � [l], l � n− 1 is
final. As this category is discrete, the result follows.

Let X• be again a simplicial object in a category C (with coproducts) and F be a product-
preserving functor Cop → Top. Assume that X• has free degeneracies with maps Nk → Xk as
above. Then the mth matching object of F(X•) is isomorphic to

lim
[m]�[k],k<m

∏
[k]�[l]

F(Nl) ∼=
∏

[m]�[l],l<m

F(Nl).

Thus, the matching map

F(Xm) ∼=
∏

[m]�[l]

F(Nl) −→
∏

[m]�[l],l<m

F(Nl)

is a projection and thus a fibration.

Corollary A.16. Let F be a Top-valued presheaf on X. Then the canonical map

e∗ : holimΔF(CU
• ) −→ holimΔF(CU,�

• )

is a homotopy equivalence.

Proof. The relevant cosimplicial objects are Reedy fibrant by the discussion preceding this
corollary. Thus, the statement follows from Proposition A.13.

Corollary A.17. Let F be a sheaf on X with values in a complete ∞-category C. Then
the maps

F(X) �−→ holimΔF(CU
• ) −→ holimΔF(CU,�

• ),

induced by the inclusion CU,�
• → CU

• , and

holimΔF(CU,�
• ) −→ holimΔmono,�n−1F(CU,<

• ),

induced by the inclusions Δmono,�n−1 → Δ and CU,<
• → CU,�

• , are equivalences.
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526 AKHIL MATHEW AND LENNART MEIER

Proof. By the last corollary, the first map is an equivalence if C is the ∞-category S of
spaces. Indeed, S is equivalent to the coherent nerve of the simplicial category of Kan simplicial
sets. Given an S-valued sheaf F , this can be thus strictified to a presheaf of simplicial sets
on X by [33, Theorem 4.2.4.4]. Its geometric realization is a presheaf of topological spaces.
As geometric realization commutes with homotopy limits and homotopy limits in S can be
computed as homotopy limits in simplicial sets by [33, Theorem 4.2.4.1], we can apply the last
corollary.

Thus, the first part of this corollary follows also for the ∞-category of presheaves P(C) =
Fun(C,S) for an arbitrary ∞-category C. As the canonical map C → P(C) is a (homotopy)
limit-preserving embedding [33, Propositions 5.1.3.1 and 5.1.3.2], the corollary follows for an
arbitrary complete ∞-category C.

The second part follows as we can see from (the proof of) Lemma A.15 that F(CU,�
• ) is

(homotopy) right Kan extended from F(CU,<
• ), first for the ∞-category of spaces and then for

all complete ∞-categories as above, so the homotopy limits agree.

For example, if X = U ∪ V , then this implies that F(X) is the homotopy equalizer of

F(U)×F(V ) ���� F(U ∩ V ).

This formulation is all we need for this article, but to answer the question posed at the beginning
of this appendix, we introduce one further reformulation of this homotopy limit.

Let PI be the poset of non-empty subsets of I. Each subset of I with k elements has a unique
order-preserving bijection to [k − 1]. This defines a functor G : PI → Δmono,�n−1, where n is
still the cardinality of I. Furthermore, there is a functor

CU,c : Pop
I −→ Top, S 	−→

⋂
i∈S

Ui.

Proposition A.18. The map LKanGopCU,c → CU,< is an isomorphism. Thus, for F a sheaf
with values in a complete ∞-category, the map

F(X) −→ holimPI
F(CU,c)

is an equivalence.

Proof. By definition,

(LKanGopCU,c)([k]) = colim∅	=S⊂I,[k]↪→[|S|−1]

⋂
i∈S

Ui.

The index category has the discrete subcategory of all subsets of I with k + 1 elements as a
final subcategory (note the op). This proves the first part of the proposition. The second part
follows from Corollary A.17 and the fact that F sends this left Kan extension to a right Kan
extension.

In particular, for X = U ∪ V , this implies that the square

F(X)

��

�� F(U)

��
F(V ) �� F(U ∩ V )

is (homotopy) cartesian. People familiar with Goodwillie calculus will note that this special
case actually implies the last proposition for arbitrary finite covers.
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Remark A.19. Note that we can apply the whole discussion also to a Zariski covering
{Ui → X} of an algebraic stack X by using the underlying space of X (see Corollary 2.33).

Acknowledgements. We would like to thank Dan Dugger, Mike Hopkins, Tyler Lawson,
Jacob Lurie, Niko Naumann and Vesna Stojanoska for several helpful discussions related to
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References

1. D. Abramovich, M. Olsson and A. Vistoli, ‘Tame stacks in positive characteristic’, Ann. Inst. Fourier
(Grenoble) 58 (2008) 1057–1091.

2. J. F. Adams, Stable homotopy and generalised homology, Chicago Lectures in Mathematics (University
of Chicago Press, Chicago, IL, 1974).

3. M. Ando, M. J. Hopkins and N. P. Strickland, ‘Elliptic spectra, the Witten genus and the theorem of
the cube’, Invent. Math. 146 (2001) 595–687.

4. M. F. Atiyah and G. B. Segal, ‘Equivariant K-theory and completion’, J. Differential Geom. 3 (1969)
1–18.

5. A. Baker and B. Richter, ‘Realizability of algebraic Galois extensions by strictly commutative ring
spectra’, Trans. Amer. Math. Soc. 359 (2007) 827–857 (electronic).

6. A. Baker and B. Richter, ‘Galois extensions of Lubin–Tate spectra’, Homology, Homotopy Appl. 10
(2008) 27–43.

7. P. Balmer, ‘Separable extensions in tt-geometry and generalized Quillen stratification’, Preprint, 2013,
http://arxiv.org/abs/1309.1808.

8. M. Behrens, ‘Notes on the construction of tmf’, 2011, http://www-math.mit.edu/˜mbehrens/papers/
buildTMF.pdf.

9. M. Behrens and K. Ormsby, ‘On the homotopy of Q(3) and Q(5) at the prime 2’, Preprint, 2012, http://
arxiv.org/abs/1211.0076.
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31. G. Laumon and L. Moret-Bailly, Champs algébriques, Ergebnisse der Mathematik und ihrer Grenzge-

biete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas.
3rd Series. A Series of Modern Surveys in Mathematics] 39 (Springer, Berlin, 2000).

32. T. Lawson and N. Naumann, ‘Strictly commutative realizations of diagrams over the Steenrod algebra
and topological modular forms at the prime 2’, Int. Math. Res. Not. 10 (2014) 2773–2813.

33. J. Lurie, Higher topos theory, Annals of Mathematics Studies 170 (Princeton University Press, Princeton,
NJ, 2009).

34. J. Lurie, ‘A survey of elliptic cohomology’, Algebraic topology, Abel Symposia 14 (Springer, Berlin, 2009)
219–277.

35. J. Lurie, ‘Chromatic homotopy theory’, 2010, Course notes available at http://math.harvard.edu/˜
lurie/252x.html.

36. J. Lurie, ‘DAG VII: spectral schemes’, 2011, http://math.harvard.edu/˜lurie.
37. J. Lurie, ‘DAG VIII: quasi-coherent sheaves and Tannaka duality theorems’, 2011, http://math.harvard.

edu/˜lurie.
38. J. Lurie, ‘DAG XI: descent theorems’, 2011, http://math.harvard.edu/˜lurie.
39. J. Lurie, ‘DAG XII: proper morphisms, completions, and the Grothendieck existence theorem’, 2011,

http://math.harvard.edu/˜lurie.
40. J. Lurie, ‘Higher algebra’, 2012, http://math.harvard.edu/˜lurie/papers/HA2012.pdf.
41. A. Mathew, ‘The homology of tmf’, Preprint, 2013, http://arxiv.org/abs/1305.6100.
42. A. Mathew, ‘The Galois group of a stable homotopy theory’, Preprint, 2014, http://arxiv.org/

abs/1404.2156.
43. A. Mathew and V. Stojanoska, ‘The Picard group of topological modular forms via descent theory’,

Preprint, 2014, http://arxiv.org/abs/1409.7702.
44. L. Meier, ‘United elliptic homology’, PhD Thesis, University of Bonn, Bonn, 2012.
45. D. C. Ravenel, Nilpotence and periodicity in stable homotopy theory, Annals of Mathematics Studies

128 (Princeton University Press, Princeton, NJ, 1992). Appendix C by Jeff Smith.
46. C. Rezk, ‘Supplementary notes for math 512’, 2007, http://www.math.uiuc.edu/˜rezk/512-spr2001-

notes.pdf.
47. J. Rognes, ‘Galois extensions of structured ring spectra. Stably dualizable groups’, Mem. Amer. Math.

Soc. 192 (2008).
48. S. Schwede and B. Shipley, ‘Stable model categories are categories of modules’, Topology 42 (2003)

103–153.
49. J. Stix, ‘A course on finite flat group schemes and p-divisible groups’, Preprint, 2009, http://www.math.

uni-frankfurt.de/˜stix/skripte/STIXfinflatGrpschemes20120918.pdf.
50. V. Stojanoska, ‘Duality for topological modular forms’, Documenta Math. 17 (2012) 271–311.
51. ‘The Stacks Project Authors’, Stacks Project, 2015, http://stacks.math.columbia.edu.
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