
THE DOLD-KAN CORRESPONDENCE

1. Simplicial sets

We shall now introduce the notion of a simplicial set, which will be a presheaf on a suitable
category. It turns out that simplicial sets provide a (purely combinatorial) model for the homo-
topy theory of CW complexes, although we shall not prove this here. We will restrict ourselves to
describing their basic properties, and then move on to our ultimate goal, the Dold-Kan correspon-
dence.

1.1. The simplex category.

Definition 1.1. Let ∆ be the category of finite (nonempty) ordered sets and order-preserving
morphisms. The object [n] will denote the set {0, 1, . . . , n} with the usual ordering. Thus ∆ is
equivalent to the subcategory consisting of the [n]. This is called the simplex category.

There is a functor from ∆ to the category Top of topological spaces. Given [n], we send it to
the standard topological n-simplex ∆n that consists of points (t0, . . . , tn) ∈ Rn+1 such that each
ti ∈ [0, 1] and

∑
ti = 1. Given a morphism φ : [m]→ [n] of ordered sets, we define ∆m → ∆n by

sending

(t0, . . . , tm) 7→ (uj), uj =
∑
φ(i)=j

ti.

Here the empty sum is to be regarded as zero.
For instance, an inclusion of ordered sets [n− 1] ↪→ [n] will embed ∆n−1 as a face of ∆n.

1.2. Simplicial sets.

Definition 1.2. A simplicial set X• is a contravariant functor from ∆ to the category of sets. In
other words, it is a presheaf on the simplex category. A morphism of simplicial sets is a natural
transformation of functors. The class of simplicial sets thus becomes a category SSet.

A simplicial object in a category C is a contravariant functor ∆→ C.

We have just seen that the category ∆ is equivalent to the subcategory consisting of the [n]. As
a result, a simplicial set X• is given by specifying sets Xn for each n ∈ Z≥0, together with maps

Xn → Xm

for each map [m] → [n] in ∆. These maps are required to satisfy compatibility conditions (i.e.,
form a functor). The set Xn is called the set of n-simplices of X•.

Example 1.3. Let X be a topological space. Then we define its singular simplicial set SingX•
as follows. We let (SingX)n = homTop(∆n, X). Using the functoriality of ∆n discussed above, it
is clear that there are maps (SingX)n → (SingX)m for each [m]→ [n].

Example 1.4. Given n ∈ Z≥0, we define the standard n-simplex ∆[n]• via

∆[n]m = hom∆([m], [n]).

Given a category C, we know that there is a way of generating presheaves on C. For each
X ∈ C, we consider the presheaf hX defined as Y 7→ homC(Y,X); the presheaves obtained are the
representable presheaves. The standard simplices are a special case of that.
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2 THE DOLD-KAN CORRESPONDENCE

Example 1.5. Let X• be a simplicial set, and Y• ⊂ X• be a simplicial subset, so Yn ⊂ Xn for each
n and the obvious diagrams commute. Then we can define a quotient simplicial set set (X/Y )•,
whose n-simplices are Xn/Yn.

Consider the quotient of ∆[1]• modulo the boundary ∆[0]• t∆[0]•, imbedded in ∆[1]• via the
two maps [0] ⇒ [1]. This is the simplicial circle.

Example 1.6. Arbitrary (small) limits and colimits exist in SSet, and are calculated “pointwise”;
this is true for any presheaf category.

Finally, we note the universal property of the standard n-simplices.

Proposition 1.7. Let X• be a simplicial set. Then there is a natural bijection

Xn ' homSSet(∆[n]•, X•).

In other words, mapping from a standard n-simplex into X• is equivalent to giving an n-simplex
of X.

Proof. Immediate from Yoneda’s lemma. �

1.3. Generalities on presheaves. We are interested in describing functors on the category of
simplicial sets. It will be convenient to describe them first on the standard n-simplices ∆[n]•. In
general, this will be sufficient to characterize the functor. In fact, we are going to see that the
values on the standard n-simplices (that is, on the simplex category ∆) will be enough, in many
cases, to determine a functor out of SSet. We shall discuss this in a general context of presheaves
on any small category, though.

Let C be any small category. We shall, most often, take C to be ∆. Let Ĉ be the category of
presheaves on C, so for instance SSet = ∆̂.

Proposition 1.8. Any presheaf on C is canonically the colimit of representable presheaves.

Proof. Let F ∈ Ĉ be a presheaf on C. For each X ∈ C, we let hX be the representable presheaf
defined, as above, by hX(Y ) = homC(Y,X). Now form the categoryD whose objects are morphisms
of presheaves hX → F , such that the morphisms between hX → F and hY → F are given by
commutative diagrams

hX

  AAAAAAAA
// hY

~~}}}}}}}}

F

.

Note that these commutative diagrams depend on nothing fancy: a morphism hX → hY is just
a map X → Y , in view of Yoneda’s lemma. There is a functor φ : D → Ĉ sending hX → F to
hX . The image of this functor consists of representable presheaves (clear) and, by definition of the
category D, there is a map of presheaves

φ(c)→ F, ∀c ∈ D

that commutes with the diagrams. So there is induced a map

(1) lim−→
D
φ(c)→ F.

This is a map from a colimit of representable presheaves to F . The claim is that it is an isomor-
phism.

But by the Yoneda lemma, if X ∈ C and α ∈ F (X), then there is a map hX → F in Ĉ such that
the identity in hX(X) is sent to α in F (X). It follows that we can hit any element in any part of
the presheaf F by a representable presheaf. Thus the map (1) is surjective.
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Now let X ∈ C be a fixed object. We want to show that the map

lim−→
D
φ(c)(X)→ F (X)

is injective. Note that we can calculate direct limits in Ĉ “pointwise.” Suppose two elements
α1 ∈ φ(c1)(X) and α2 ∈ φ(c2)(X) are mapped to the same element of F (X). Then c1, c2 correspond
to maps hY1 → F, hY2 → F given by elements β1 ∈ F (Y1), β2 ∈ F (Y2), and α1, α2 correspond to
maps f1 : X → Y1, f2 : X → Y2. The fact that they map to the same thing in F (X) means that
f∗1 (β1) = f∗2 (β2), where the star denotes pulling back. Call γ = f∗1 (β1) = f∗2 (β2).

We are now going to show that α1, α2 are identified in the colimit. To see this, we construct
diagrams

hX
f1 //

γ

  AAAAAAAA hY1

β1~~}}}}}}}}

F

and

hX
f2 //

γ

  AAAAAAAA hY2

β2~~}}}}}}}}

F

.

The first comes from the map f1 : X → Y1 and the map hX → F given by γ; the map hY1
→ F ,

given by β1, is just the object c1. The second diagram is similar. The first shows that the object
α1 ∈ hY1(X) of the colimit is identified with the identity of hX(X) by f1 in the diagram (where
hX is an element of D by the map hX → F given by γ). Similarly α2 is identified with this in the
colimit, so α1, α2 are identified. It follows that (1) is also injective.

The fact that this colimit is “canonical” follows from the fact that if F → F ′ is a morphism of
presheaves, there is a functor between the categories D associated to each of them. �

To clarify, if F is a presheaf, then we have described a category DF and a functor DF → C such
that F is the colimit of DF → C → Ĉ. This association is functorial; if F → F ′ is a morphism of
presheaves, then there is a functor DF → DF ′ that fits into an obvious commutative diagram.

Corollary 1. Any simplicial set is canonically a colimit of standard n-simplices.

Proof. This follows from the previous result with C = ∆. �

Warning: Just because every element of Ĉ is a colimit of representable presheaves does not
mean that every element of Ĉ is representable, even if C is cocomplete. For instance, the empty
presheaf (which assigns to each element of the category ∅) is never representable (if C is not
empty).1 The problem is that the Yoneda embedding does not commute with colimits.

1.4. Adjunctions. Let C be a category, and D a cocomplete category. We are interested in
colimit-preserving functors

F : Ĉ → D.
Here, as before, Ĉ is the category of presheaves on C. We shall, in this section, write functors out
of a presheaf category with a line above them, and functors just defined out of C without the line.
Functors will be in bold.

We have the standard Yoneda embedding X 7→ hX of C → Ĉ. Thus any such functor F : Ĉ → D
determines a functor F : C → D. However, we know that any object of Ĉ is a colimit of representable

1I learned this from http://mathoverflow.net/questions/59503/question-on-the-interpretation-of-a-presheaf-category-as-a-co-completion.
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presheaves. So any colimit-preserving functor Ĉ → D is determined by what it does on C, embedded
in Ĉ via the Yoneda embedding.

Conversely, let F : C → D be any functor. We want to extend this to a functor F : Ĉ → D that
preserves colimits. For each presheaf G, we can write it (Theorem 1.8) as a colimit of representable
presheaves over some category DG and functor DG → C; if G → G′ is a morphism of presheaves,
we get a commutative diagram

DG //

  AAAAAAAA DG′

}}||||||||

C

.

So we can define

F(G) = lim−→
c∈DG

F(c).

By functoriality of DG, this is a functor. This extends F because for a representable presheaf G,
the associated category DG has a final object (namely, G itself!). We will see that this functor
commutes with colimits. In fact:

Proposition 1.9. If D is cocomplete, there is a natural bijection between left adjoints F : Ĉ → D
and functors F : C → D, given by restriction.

Proof. Given a left adjoint F : Ĉ → D, restriction gives a functor F : C → D, and F is determined
from F as above, because a left adjoint commutes with colimits.

Conversely, we need to show that if F : C → D is any functor, then the functor F : Ĉ → D built
from it as above is a left adjoint.

So we need to find a right adjoint G : D → Ĉ. We do this by sending D ∈ D to the presheaf
X 7→ homC(FX,D). We need now to see that F,G are indeed adjoints. This follows formally:

homĈ(F,GD) ' lim←−
hX→F

homĈ(hX ,GD)

' lim←−
hX→F

GD(X)

' lim←−
hX→F

homD(FX,D)

' homD( lim−→
hX→F

FX,D)

' homD(FF,D)

�

From this, we can get a characterization of representable functors on presheaf categories.

Corollary 2. Any contravariant functor F : Ĉ → Set that sends colimits to limits is representable.

Proof. Let F : Ĉ → Setop be a functor that commutes with colimits. Then, as we have seen, F
has an adjoint G : Setop → Ĉ. Let F = G(∗) ∈ Ĉ, where ∗ is the one-point set. Then we claim
that F is a universal object. To see this, consider the chain of equalities for any presheaf F ′

homĈ(F
′, F ) ' homĈ(F

′,G(∗))
' homSetop(FF ′, ∗)
' homSet(∗,FF ′)
' FF ′.

�
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1.5. Geometric realization. We recall that there was a functor ∆ → Top that sent [n] to the
topological n-simplex ∆n. The category Top is cocomplete, so it follows that there is induced a
unique colimit-preserving functor

SSet→ Top

that sends the standard n-simplex ∆[n]• (i.e., the simplicial set corresponding to [n] under the
Yoneda embedding) to ∆n, with the maps ∆n → ∆m associated to [n]→ [m] as discussed earlier.
So, in our previous notation, the functor ∆→ Top is F, and the extension to SSet is F.

Definition 1.10. This functor is called geometric realization. The geometric realization of X•
is denoted |X|.

As a left adjoint, geometric realization commutes with colimits. It is a basic fact, which we
do not prove, that geometric realization commutes with finite limits if the limits are taken in the
category of compactly generated spaces.

We can explicitly describe |X|. Namely, one forms the simplex category, which has objects
consisting of all maps

∆[n]• → X•

with morphisms corresponding to maps ∆[n]• → ∆[m]• fitting into a commutative diagram. Then
we can define

|X| = lim−→
∆[n]•→X•

∆n.

This functor has a right adjoint. In fact, this adjoint is none another than the singular simplicial
set SingT• for a topological space T ! To see this, recall that we computed the adjoint to be

GT = {[n] 7→ homTop(F[n], T )},

and since F takes [n] to ∆n, it is easy to see that this is the singular simplicial set.

Proposition 1.11. The functors | · | : SSet→ Top,Sing : Top→ SSet form an adjoint pair.

1.6. The simplicial identities. We shall define certain important morphisms in the simplex
category ∆ and show that they generate the category, modulo certain relations.

Let n ∈ Z≥0. We define

di : [n− 1]→ [n], 0 ≤ i ≤ n, di(j) =

{
j if j < i

j + 1 if i ≥ j
.

Here di maps the ordered set [n − 1] to [n] via an inclusion, but where the element i in [n] is
omitted. These are called the coface maps. So one is supposed to think of the coface map is being
the string 0→ 1→ · · · → i− 1→ i+ 1→ · · · → n of n− 1 elements in [n].

Similarly, we define the codegeneracy maps

si : [n]→ [n− 1], 0 ≤ i ≤ n, si(j) =

{
j if j < i

j − 1 if i ≥ j
.

The codegeneracy si is a surjective map, where the elements i, i + 1 are mapped to the same
element. One is supposed to think of this as the string of n elements 0→ 1→ · · · → i− 1→ i→
i→ i+ 1→ · · · → n− 1 of elements of [n− 1].

Lemma 1.12 (Cosimplicial identities). We have:

djdi = didj−1, [n− 2]→ [n] i < j(2)

didi = di+1di, [n− 2]→ [n](3)
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Proof. We can think of the map djdi : [n− 2]→ [n] as a map that clearly omits j from the image.
Moreover, dj(i) = i is omitted. Similarly, we see that didj−1 omits i and di(j − 1) = j from the
image. Since both maps are injective, the first assertion is clear. The second assertion can be
proved similarly. �

We now describe identities involving the codegeneracies. (We follow [1].)

Lemma 1.13 (More cosimplicial identities). We have:

sjdj = sjdj+1 = 1(4)

sjdi = disj−1, i < j(5)

sjdi = di−1sj , i > j + 1(6)

sjsi = sisj+1, i ≤ j(7)

We omit the verification, which is easy.
Let X• be a simplicial set. There are induced maps

di : Xn → Xn−1, si : Xn → Xn+1

for each n, by applying the functor X• to the di, si. These are called the face and degeneracy
maps, respectively.

Lemma 1.14 (Simplicial identities). For any simplicial set X•, we have

didj = dj−1di, i < j(8)

didi = didi+1(9)

djsj = dj+1sj = 1(10)

disj = sj−1di, i < j(11)

disj = sjdi−1, i > j + 1(12)

sisj = sj+1si i ≤ j(13)

Proof. This is now clear from the cosimplicial identities. �

One way to think about this is that “the smaller map can be moved to the inside.” For instance,
if we have didj with i < j, then we can move the “smaller” map di to the inside of the composition.
Another thing to keep in mind is that for a simplicial set X•, the degeneracy maps are injective;
indeed, they have canonical sections, namely the face maps.

2. Simplicial abelian groups

A simplicial abelian group A• is a simplicial object in the category of abelian groups. This
means that there are abelian groups An, n ∈ Z≥0 and group-homomorphisms An → Am for each
map [m]→ [n] in ∆.

2.1. Three different complexes. Following [1], we are going to define several ways of making a
chain complex from a simplicial abelian group. They will all have the same homotopy type, but
one of them will be the most convenient for the Dold-Kan correspondence.

Definition 2.1. The Moore complex of a simplicial abelian group A• is the complex A∗ which
in dimension n is An. The boundary map

∂ : An → An−1

is the map
∑n
i=0(−1)idi, the alternating sum of the face maps. The simplicial identities easily

imply that this is in fact a chain complex. Thus A• 7→ A∗ defines a functor from simplicial abelian
groups to chain complexes.
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The singular chain complex of a topological space X can be obtained by taking the Moore
complex of Z[SingX•], where Z[] denotes the operation of taking the free abelian group. (Note
that applying Z turns a simplicial set into a simplicial abelian group.)

Recall that if X• is a simplicial set, then a simplex x ∈ Xn is called degenerate if it is in the
image of one of the degeneracy maps (from Xn−1).

Proposition 2.2. Let A• be a simplicial abelian group. There is a subcomplex DA∗ ⊂ A∗ of the
Moore complex such that DAn consists of the sums of degenerate simplices in degree n.

Proof. We need only check that DA∗ is stable under ∂. In particular, we have to check that ∂(sia)
is a sum of degeneracies for any a ∈ An−1. Now this is

∂(sia) =
∑

(−1)jdj(sia) =
∑

j 6=i,i+1

djsia,

because the terms (−1)i(disia − di+1sia) = (−1)i(a − a) = 0 vanishes in view of the simplicial
identities. Moreover, the simplicial identities show that we can move the d part inside in the rest
of the terms of the summation, potentially changing the subscript of the s. So ∂sia belongs to
DAn−1. �

Definition 2.3. Consequently, if A• is a simplicial abelian group, we can consider the chain
complex (A/DA)∗. This is functorial in A•, and there is a natural transformation

A∗ → (A/DA)∗.

Nonetheless, in defining the Dold-Kan correspondence, we shall use a different construction
(which we will prove is isomorphic to (A/DA)∗).

Definition 2.4. If A• is a simplicial abelian group, we define the normalized complex NA∗
as follows. In dimension n, NAn consists of the subgroup of An that is killed by the face maps
di, i < n. The differential

NAn → NAn−1

is given by (−1)ndn.

It needs to be checked that we indeed have a chain complex. Suppose a ∈ NAn; we must show
that dn−1dna = 0. But dn−1dn = dn−1dn−1 by the simplicial identities, and we know that dn−1

kills a. Thus the verification is clear.
We thus have three different ways of obtaining a complex from A•. By the way we defined the

normalized chain complex, we have natural morphisms

NA∗ → A∗ → (A/DA)∗.

Our goal is to prove:

Theorem 2.5 (Dold-Kan). The functor A• 7→ NA∗ defines an equivalence of categories between
chain complexes of abelian groups and simplicial abelian groups. Moreover, the three complexes
NA∗, A∗, (A/DA)∗ are all naturally homotopically equivalent (and the first and the last are even
isomorphic).

2.2. The functor in the opposite direction. A priori, the normalized chain complex of a
simplicial abelian group A• looks a lot different from A•, which a priori has much more structure.
Nonetheless, we are going to see that it is possible to recover A• entirely from this chain complex.

A key step in the proof of the Dold-Kan correspondence will be the establishment of the func-
torial decomposition for any simplicial abelian group A•

(14)
⊕

φ:[n]�[k]

NAk ' An.



8 THE DOLD-KAN CORRESPONDENCE

Here the map from a factor NAk corresponding to some φ : [n] � [k] to An is given by pulling
back by φ. We will establish this below.

Now, let us assume that (14) is true. Motivated by this, we shall define a functor from chain
complexes to simplicial abelian groups.

Let us now determine how the simplicial maps will play with the decomposition (which we
are assuming) An =

⊕
[n]�[k]NAk. Given f : [m] → [n] and a factor NAk of An (for some

epimorphism φ : [n] � [k]), we want to know where f∗ takes NAk into Am. We can factor the

composite [m]→ [n] � [k] as [m]
ψ1

� [m′]
ψ2
↪→ [k]. It is easy to see that simplicial maps induced by

injections in ∆ preserve NA. There is a commutative diagram:

NAk

φ∗

��

ψ∗2 // NAm′

ψ∗1
��

An
f // Am

.

Now ψ1 is an epimorphism. It follows that ψ∗1 : NAm′ → Am is one of the maps in the canonical
decomposition.

It follows that we have a recipe for determining where the φ-factor NAk of An goes:

(1) Consider the composite [m]
f→ [n]

φ→ k, and factor this as a composite ψ2 ◦ ψ1 with
ψ1 : [m] � [m′] an epimorphism and ψ2 : [m′] ↪→ [k] a monomorphism.

(2) Then NAk (embedded in An via φ∗) gets sent to NAm′ ⊂ Am (embedded in Am via ψ∗1).
(3) The map NAk → NAm′ is given by ψ∗2 .

2.3. Simplicial abelian groups from chain complexes. Motivated by this, let us describe the
inverse construction. Let C∗ be a chain complex (nonnegatively graded, as always). We define a
simplicial abelian group σC• such that

σCn =
⊕

[n]�[k]

Ck.

The sum is taken over all surjections [n] � [k]. We can make this into a simplicial abelian group
using the above “recipe” describing how the canonical decomposition for a simplicial abelian group
behaves, but there is a bit of subtlety.

Since the ψ∗2 in the explanation of (3) above does not a priori make sense, let us note that if we
restrict to the subcategory ∆′ ⊂ ∆ consisting of injective maps, then the map [n] 7→ Cn becomes a
contravariant functor in a natural way. Indeed, we let the map Cn → Cm induced by an injection
[m] ↪→ [n] be zero unless m = n− 1 and we are working with the map dn, in which case we let the
map Cn → Cn−1 be the differential. Since C∗ is a chain complex, this is indeed a functor. So a
chain complex gives an abelian presheaf on the “semi-simplicial” category.

Note that if we started with a simplicial abelian group A•, then if the chain complex NA is made
into a contravariant functor ∆′ → Ab, we have gotten nothing new: we just recover the simplicial
structure maps. Indeed, if ψ : [m] ↪→ [n] is an injection, then the map ψ∗ : NAn → NAm is zero
unless ψ = dn and m = n− 1. Otherwise ψ will contain a di for some i < n, and the definition of
NA completes the proof.

We thus see:

Lemma 2.6. Let C∗ be a chain complex. Then there is a functor from ∆′ → Ab sending [n]→ Cn
and an injection [m] ↪→ [n] to zero unless m = n− 1 and the injection is dn, in which case it is the
differential. If A• is a simplicial abelian group, this construction agrees with the simplicial maps
when restricted to NA∗.

Let us now, finally, show how to make σC• into a simplicial abelian group. Given some map
[m] → [n] in ∆, we map the individual terms as follows. Let φ : [n] � [k] be an epimorphism in
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∆, giving a factor Ck ⊂ σCn. We then map

Ck → σCm =
⊕

[m]�[l]

Cl

as follows. If [n] � [k] is the given surjection, then we have a map [m]→ [n]→ [k], which we can

factor as a composite [m] � [m′]
ψ
↪→ [k], of a surjection and an injection. So we send Ck (via ψ∗,

which is defined by the functoriality) to Cm′ , imbedded in σCm as the factor corresponding to the
surjection [m] � [m′].

Lemma 2.7. The above construction gives a functor from chain complexes to simplicial abelian
groups.

In fact, the above construction will give a simplicial object from any semi-simplicial object.
(A semi-simplicial object is a presheaf on the category of finite ordered sets and injective order-
preserving maps.)

Proof. In other words, we need to show that if we have a composite [m] → [n] → [p], then the
corresponding map σCp → σCm induced by the composite [p]→ [m] is the composite of the maps
σCp → σCn → σCm. So consider a factor of σCp corresponding to a surjection [p] � [p′]. Now we
can draw a commutative diagram in the simplex category ∆:

[m]

����

// [n]

����

// [p]

����
[m′]

� // [n′] � // [p′]

A close look at this will establish the claim, since C∗ is a functor from the category of finite ordered
sets and injective, order-preserving maps. �

As a result, we have (finally!) constructed our functor σ from chain complexes to simplicial
abelian groups. Note that there is a natural transformation

(σNA∗)• → A•

for any simplicial abelian group A•. On the n-simplices, this is the map⊕
φ:[n]�[k]

NAk → An

where the factor corresponding to φ is mapped to An by pulling back by φ. This is the map
discussed above. It is immediate from the definition that this is a simplicial map. The crux of the
proof of the Dold-Kan correspondence is that this is an isomorphism.

2.4. The canonical splitting. We have just defined the functor σ from chain complexes to sim-
plicial abelian groups, and the natural transformation σ(NA∗)• → A• for any simplicial abelian
group A•. We want to show that this is a quasi-inverse to N , that is, the above natural transfor-
mation is an isomorphism. Thus we need to show:

Proposition 2.8 (One half of Dold-Kan). For a simplicial abelian group A•, we have for each n,
an isomorphism of abelian groups ⊕

φ:[n]�[k]

NAk ' An.

Here the map is given by sending a summand NAk to An via the pull-back by the term φ : [n] � [k].
Alternatively, the morphism of simplicial abelian groups

σ(NA∗)• → A•

is an isomorphism.
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This is going to take some work, and we are going to need first a simpler splitting that will,
incidentally, show that NA∗ and (A/DA)∗ are isomorphic. We are going to prove the above result
by induction, using:

Lemma 2.9. Let A• be a simplicial abelian group. Then the map

NAn ⊕DAn → An

is an isomorphism.

So we have a canonical splitting of each term of a simplicial abelian group. This splitting is into
the degenerate simplices (or rather, their linear combinations) and the ones almost all of whose
faces are zero.

Proof. Following [1], we shall prove this by induction. Namely, for each k < n, we define NkAn =⋂k
0 ker dk and DkAn to be the group generated by the images of sj(An−1), j ≤ k. So these are

partial versions of the NAn, DAn. The claim is that there is a natural splitting

NkAn ⊕DkAn = An.

When k = n−1, the result will be proved (note that Dn−1An is the group generated by degenerate
simplices because the degeneracies si : An−1 → An only go up to n− 1).

When k = 0, the splitting is

ker d0 ⊕ ims0 = An.

We can see this as follows. We have maps

An−1
d0 // Ans0
oo .

Here s0 is a split injection, with d0 being a section. But in general, whenever i : A→ B is a split
injection with section q : B → A, then B splits as ker q ⊕ imi.

Now let us suppose we have established the splitting An = Nk−1An ⊕ Dk−1An. We need to
establish it for k. For this we will write some exact sequences.

a) We have a split exact sequence:

(15) 0→ An−1/Dk−1An−1
sk→ An/Dk−1An → An/DkAn → 0.

Indeed, exactness of this sequence will be clear once we show that is well-defined. But if j < k,
then sksj = sjsk−1, so sk sends Dk−1An−1 into Dk−1An. The splitting is given by dk.

b) Similarly, we have a split exact sequence (where the simplicial identities show that sk(Nk−1An−1) ⊂
Nk−1An)

(16) 0→ Nk−1An−1
sk→ Nk−1An → NkAn → 0.

This is perhaps less obvious. This is equivalent to the claim that the map

NkAn ⊕Nk−1An−1
(i,sk)→ Nk−1An

is an isomorphism. (Here i denotes the inclusion.)
We first claim that it is surjective. Indeed, if a ∈ Nk−1An, then a−skdka lies in fact in NkAn.

This is because dk is a section of the split injection sk, and because dj(a− skdka) for j < k by
using the simplicial identities to move dj to the inside. Conversely, to see that it is injective,
it suffices to note that if skb ∈ NkAn for b ∈ Nk−1An−1, then b = 0; but b = dk(skb) = 0 by
definition of NkAn.
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Now we are going to fit the exact sequences (15) and (16) into a diagram:

0 // Nk−1An−1

'
��

// Nk−1An

'
��

a 7→a−skdka // NkAn

��

// 0

0 // An−1/Dk−1An−1
// An/Dk−1An // An/DkAn // 0

It is clear that this diagram commutes. The first square consists of the natural inclusions and
projections, so it is obvious. For the second square, the extra term skdka does not affect things
modulo DkAn, so it commutes as well. Since both rows are exact and the first two columns are
isomorphisms by the inductive hypothesis, so is the third. �

Corollary 3. The map

NA∗ → (A/DA)∗

is an isomorphism of chain complexes.

This is why we added the sign to the definition of the differential in constructing NA∗.

2.5. The proof of Theorem 2.8. We have a natural map

Φn :
⊕

φ:[n]�[k]

NAk → An,

which we need to prove is an isomorphism. This is a map of simplicial abelian groups.
Let us first show that Φn : (σNA∗)n → An is surjective. By induction on n, we may assume

that Φm : (σNA∗)m → Am is surjective for smaller m < n. Now An splits as the sum of NAn and
DAn. Clearly NAn is in the image of Φn (from the factor NAn). But by the inductive hypothesis,
everything in An−1 is in the image of Φn−1, and taking degeneracies now shows that anything in
DAn is in the image of Φn. Thus Φn is surjective.

Let us now show that Φn is injective. Suppose a family (aφ) ∈
⊕

φ:[n]�[k]NAk is mapped to

zero under this map; we must show that each aφ is zero. By assumption, we have∑
φ:[n]�[k]

φ∗aφ = 0 ∈ An.

Suppose some aφ is nonzero. Note that a1:[n]→[n] is zero by the canonical splitting, since that
is the only term that might not be in DAn.

We shall now define an ordering on the surjections [n] � [k]. Say that φ1 ≤ φ2 if φ1(a) ≤ φ2(a)
for each a ∈ [n]. We can assume that φ is chosen minimal with respect to this (partial) ordering
such that aφ 6= 0. Now choose a section ψ : [k] ↪→ [n] which is maximal in that ψ is not a section
of any φ′ > φ. If we think of φ as determining a partition of [n] into k subsets, then we have ψ
sending i ∈ [k] to the last element of the ith subset of [n]. Then ψ is a section of φ, and of no
other φ′ < φ.

If we apply ψ∗ to the equation (aφ) = 0, we find that

Φk((ψ∗aφ)) = 0

which implies by the inductive hypothesis (as k < n) that ψ∗ pulls back (aφ) ∈ (σNA∗)n to zero.
But the component of the identity [k]→ [k] of this pull-back is just aφ, from the choice of ψ. This
means that aφ = 0.
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2.6. Completion of the proof of Dold-Kan. We thus have defined a functor N from simplicial
abelian groups to chain complexes. We have defined a functor σ in the opposite direction. We
have, moreover, seen that the simplicial abelian group associated to NA∗ for A• a simplicial abelian
group is just A• itself, in view of the canonical decomposition of a simplicial abelian group. It
suffices now, at least, to prove that the normalized chain complex associated to σC• is just C∗, for
any chain complex C∗.

So we need to compute N(σC•). In degree n, this consists of elements of⊕
[n]�[k]

Ck

that are killed by the di, i < n. The claim is that this consists precisely of Cn under the identity
[n] � [n]! We can see this because we can show that Cn ⊂ N(σC)n by direct computation; if i < n,
then the map di : [n − 1] → [n] � [n] pulls Cn down to Cn−1 via the functor ∆′ → Ab induced;
however, this functor induces zero on coface maps that are not the highest index. Conversely,
we must show that N(σC•)n ⊂ Cn. To do this, we have to show that Cn ⊂ N(σC•)n; but we
know that N(σC)n is a complement to the degeneracies. However, the Ck, k < n occurring in the
expression for (σC)n are all (clearly) degeneracies. Thus our assertion is clear.
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